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ABSTRACT 

Non-invasive IC Tomography Using Spatial Correlations 

by 

Davood Shamsi 

We introduce a new methodology for post-silicon characterization of the gate-

level variations in a manufactured Integrated Circuit (IC). The estimated char-

acteristics are based on the power and the delay measurements that are affected 

by the process variations. The power (delay) variations are spatially correlated. 

Thus, there exists a basis in which variations are sparse. The sparse representa-

tion suggests using the Ll-regularization (the compressive sensing theory). We 

show how to use the compressive sensing theory to improve post-silicon charac-

terization. We also address the problem by adding spatial constraints directly to 

the traditional L2-minimization. 

The proposed methodology is fast, inexpensive, non-invasive, and applicable 

to legacy designs. Noninvasive IC characterization has a range of emerging ap-

plications, including post-silicon optimization, IC identification, and variations' 

modeling/simulations. The evaluation results on standard benchmark circuits 

show that, in average, the gate level characteristics estimation accuracy can be 

improved by more than two times using the proposed methods. 
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Chapter 1 

Introduction 

In the modern integrated circuit (IC) design the objective is to increase operation 

speed (maximum frequency) and decrease power consumption. The maximum 

frequency of an IC is a function of the longest encountered delay in its different 

parts. Signal delay can be reduced by increasing the transistor density, but to 

increase transistor density in an IC, dimensions of the CMOS transistors in the 

IC must be scaled. Decreasing power consumption also demands reducing CMOS 

transistors dimensions. As we know, Moore's law predicts that the number of 

transistors on an inexpensive IC doubles every two years. For example, the Intel 

80486 introduced in 1989 was manufactured using 0.8/im CMOS technology and 

had a the maximum clock speed of 133MHz. Today's modern processors, such 

as the Intel Core 2, are manufactured using 65nm technology or less, and the 

maximum frequency can be more than 3.20 GHz. 
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Dimensions of a manufactured CMOS transistor is not exactly as it was de-

signed. If one measures the dimensions of the manufactured transistors, there 

are some variations from the design specifications. This phenomenon is called 

manufacturing variation. Imperfection in manufacturing tools is the main con-

tributor to systematic process variations. For example, because of the limitations 

on the minimum wavelength of the laser etching the mask [45], masks that are 

used in the manufacturing are not totally similar and symmetric. Thus, the tran-

sistors dimensions depend on the specific mask used in the manufacturing process 

and the transistors' location on the mask. Another reason for the manufactur-

ing variations is uncontrollable physical parameters of the manufacturing process 

(random variations). Because it is not possible to control strictly the physical 

environment of the fabrication, manufacturing two ICs with the same mask does 

not result in the same variations. 

Process variations can dramatically affect properties of manufactured ICs. 

Statistical static timing analysis (SSTA) statistical power analysis are two exam-

ples of the techniques that considers variations for pre-silicon optimizations. In 

SSTA, the goal is to find the longest path delay in the circuit. Because of the 

nondeterministic behavior of variations, no single path always elicits the longest 

delay. Thus, path delays should be statistically modeled and then the longest 

delay of the circuit is determined with a specific confidence interval. Orshansky 

et al. [57] showed that variations might cause up to 25% error in timing analysis. 
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In the statistical power analysis, it is also shown that under variations the ratio 

of standard deviation to the mean of the total current might varies between 0.17 

to 0.98 [5]. However, pre-silicon optimizations, such as SSTA, have some limita-

tions: the statistical characterizations of variations are not precisely determined 

and they might vary on different chips. 

A number of post-silicon variations characterization methods have recently 

introduced [23,30,36,79]. Friedberg et al. [30] used electrical linewidth metrology 

(ELM) to measure variations of chips' dimensions on a wafer. They exhaustively 

measured the variations of all the transistors. Hargreaves et al. [36] introduced a 

post-silicon characterization method using ring oscillators. They put a number of 

ring oscillators in different locations on an IC. Then, they measured the frequency 

of each ring oscillator. Frequencies of the oscillators represent variations across 

the IC. The mentioned methods are either expensive [30] or design specific [36]. 

We propose a fast, non-invasive, and inexpensive method for gate level post-

silicon characterization using power and delay measurements. In the power frame-

work, we first explain how the nominal leakage power consumptions of a logic gate 

are multiplied by a scaling factor due to process variations. The scaling factor 

indicates the ratio of the gate leakage to its expected value. Then, we show that 

measuring the total power consumption for each circuit input enforces a linear 

constraint on scaling factors. Feeding the circuit with different input vectors 

and measuring the total power for each input vector leads to a system of lin-
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ear equations with scaling factors as unknown variables. A common technique 

to solve the system of linear equations is traditional least square minimization 

(^-minimization). 

This estimation approach can be improved by incorporating the spatial cor-

relations in our framework. We show that spatia^correlations suggest that there 

is a basis in which variations in the scaling factors can be represented sparsely. 

We specifically consider wavelet bases that can capture spatial correlation effi-

ciently [25,73]. We experimentally determine a wavelet basis that results in the 

sparsest representation for variations. Having a sparse representation for varia-

tions, we use compressive sensing technique to efficiently recover scaling factors. 

Here, we regularize the objective function of the optimization problem with an 

£i-norm term to impose the sparsity on the solution. 

The post-silicon characterization also can be improved by adding spatial con-

straints directly to the optimization. The spatial correlation implies that two 

spatially close gates approximately follow similar variations. It is not statisti-

cally expected that two nearby gates follow totaly independent variations. Thus, 

in the underlying optimization, we penalize the difference among scaling factors 

of the nearby gates. The new formulation results in a better estimation of gates 

scaling factors. The approach is based on our paper in ISLPED 2008 confer-

ence [62]. 

Next, we use path delay analysis to characterize the variations in gate de-
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lays [63]. The same approach as in post-silicon leakage characterization is used 

for gate level delay variation characterization. However, in contrast to the power 

variations, the variations in delay are additive and they are linear functions of the 

CMOS dimensions. We use HSPICE simulation to find linear relations between 

transistor variations and delay variations in various gates. However, in the delay 

framework, the from and the construction of the system of linear equations is dif-

ferent from the power framework. In the delay framework, one can only measure 

the delay of the signal propagation on specific paths that start form a primary 

input and end at a primary output. Such paths are called sensitizable (testable) 

paths [64,65]. We use the testable basis selection method in [65] to find a set of 

sensitizable basis paths for a circuit. Then, using the linear relationship between 

transistor dimensions and the gate delays, we construct a system of linear equa-

tions with variations as the unknown variables. Again, we can use traditional 

.^-minimization or ^i-regularization (compressive sensing) to estimate the gate 

level timing characteristics. 

We evaluate performance of the proposed methods for both delay and power 

frameworks on a number of circuits from the MCNC benchmark suits. Results 

indicate that ^i-regularization method can estimate the variations much more 

accurately than the traditional ^-minimization. However, performance of the 

^i-regularization method depends on the circuit topology. For example, in delay 

framework, the ^i-regularization method on the C499 benchmark circuit improves 
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gate-level characteristics estimation more than 100%, while on the b9 benchmark, 

the improvement is only 10%. 

A number of applications can enjoy non-invasive post-silicon characterization. i.1* 

They include post-silicon optimization, manufacturing process characterization, 

simulation improvement and IC identification. 

The new aspect of this thesis are as follows: 

• We propose a method for post-silicon gate-level characterization for both 

power and delay frameworks, that only uses non-invasive measurements. In 

contrast to variation measurement methods based on the ring oscillators, 

our method works for a general combinatorial IC. 

• For the first time, we represent post-silicon variations in a sparse domain. 

Even though the spatial correlation in the variations is widely studied before 

[23,30,79], it is the first time that is used for post-silicon optimization. 

We experimentally determine which wavelet basis results in the sparsest 

representation. 

• We use the theory of compressive sensing to estimate the variations with 

a small number of measurements. We use the wavelet basis to sparsely 

represent delay and power variations. 

• We analyze the regularization factor in ^j-regularization and introduce a 

method to estimate the optimal regularization factor. 
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• We modify the original compressive sensing formulation such that it can be 

applied to irregular gate placements. 

• We add new constraints to the optimization problem that directly impose 

spatial correlations. With these additional constraints, variation estima-

tions improve considerably. 

• The proposed post-silicon variation characterization method is fast, inex-

pensive, and non-invasive. It enables a range of new applications. We 

introduce a number of novel applications for the proposed method. 

The thesis is organized as follows. In Chapter 2, we discuss related work and 

preliminaries that are used in the thesis. Preliminaries include the variations 

model and the compressive sensing theory. Chapters 3 and 4 introduce our vari-

ation estimation method in power and delay frameworks, respectively. Next, we 

discuss a number of applications for the proposed post-silicon variations charac-

terization method in Chapter 5. The evaluation results are presented in Chapter 

6. We finally summarize the thesis in Chapter 7. 
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Chapter 2 

Background 

2.1 Related work on process variation 

2.1.1 Early work 

Manufacturing variations have been a main source of random properties of pre-

cisely designed ICs. Even though process variations were very small in 20th 

century fabrication technology, they could affect precise analog design and they 

were addressed by a number of researchers [27,41,55,66]. Three of the early 

works in identification of random variations stand out. 

In 1982, Shyu et al. [66] studied effects of random variations on MOS capac-

itors. They identified the capacitor edge and the oxide thickness fluctuation as 

two sources of randomness in MOS capacitors. The variations in the physical 

properties lead to a random capacitance. They analytically derived the relation-
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ship between the capacitance and the random variations, and they numerically 

showed how variations affect the capacitance. For example, they showed that a 

Gaussian random fluctuation with variance 0.1/im in a capacitor with edge length 

50iJ,m causes only 0.036% difference in capacitance. Their results indicate that, 

in early CMOS capacitors, the effects of the random variations were negligible. 

Lakshmikumar et al. [41] in 1982 proposed a method to predict the current 

mismatch (intra-die) of the transistors on an integrated circuit. Since only the 

relative dimensions of transistors are important in analog design, the impacts of 

global variations (inter-die) were not analyzed in this work. They had two main 

missions in the paper. First, sources of variations were determined and a model 

was fitted to the measurement data. In other words, they tried to predict the 

systematic part of the variation. Second, they constructed an analytical relation 

between the current mismatch and transistor dimensions. Thus, the predicted 

current mismatch could be transformed into dimension variations. Knowing the 

variation in dimensions helps designing more precise analog circuits. However, 

random variations were not considered. This, the total variations could not be 

predicted. 

In 1995, Eisele et al. [27] used a 10 x 10 transistor array to study intra-

die variations in manufactured ICs. Their addressing scheme allowed individual 

transistor selection, meaning, they could characterize each transistor separately. 

After finding VGS of all transistors, a normal distribution was fitted to the mea-
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sured values. They also showed that variations in gate source voltage, VGS, are 

spatially correlated. They then repeated the procedure for different aspect ra-

tios (W/L) and verified the relation between the transistor dimensions and the 

threshold voltage variance: o~vth oc {WLeff)~i. Thus, as the CMOS transistor 

dimensions decrease, the fluctuations variance increases. 

2.1.2 Variation estimation and modeling 

As technology improved and nano-scale CMOS transistors could be fabricated, 

process variations became a determining factor. To appreciate how variations 

affects the circuit design, one needs a thorough understanding of variation and 

its statistical properties in ICs. Several researchers performed measurement and 

modeling of the process variations in different CMOS technologies [8,12,16,23, 

30,36,43,46,47,50,76,79]. 

In 2005, Doh et al. [23] experimentally characterized the spatial correlation in 

process variations. To do so, they fabricated a 4 x 5 module array in 130nm CMOS 

technology. As can be seen in Figure 2.1, each module consisted of 16 patterns of 

nMOS and pMOS transistors and an oscillator. Oscillators are standard devices 

used to characterize properties of integrated circuits [36]. They consist of a 

number of inverters that are connected in a loop circuit. Doh et al. [23] used a 

40-pattern ring oscillator (see Figure 2.1). Using this method, they explained the 

spatial correlation in variations. Figure 2.2 shows the scatter plot for saturation 
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Figure 2.1: Design structure used by Doh et al. to characterize spatial correlation in 

process variations [23]. The left part is the 4 x 5 module array that they 

used in the experiment. Each module includes 16 patterns of nMOS, 16 

patterns of pMOS, and an oscillator. 

voltage of nMOS transistors. Saturation voltage of transistors in close modules, 

like M l and M2, are strongly correlated. The right side of Figure 2.2 shows that 

the correlation decreases linearly with distance. 

To characterize accurately variations, Friedberg et al. [30] used Electrical 

Linewidth Metrology (ELM) to measure transistors feature sizes in a 200mm 

wafer. They used the Kelvin test to find linewidth by ELM measurements. Fig-

ure 2.3 shows variations distribution of 130nm technology for a complete wafer. 

Patterns of inter-die and intra-die variations can be clearly observed in the pic-

ture. They measured dimension variations of all transistors in a number of wafers 

and introduced a variation model for the transistor dimensions. They proposed a 

piecewise linear fit to the measurement data. Their experimental results showed 

11 

: M2 M3 M4 

m M5 

TO M6 

m M7 

ni ra 

nMOS Ring oscillator 
16 patterns 40 patterns 

< 1 
pMOS 
16 patterns 

I 

H L 



Figure 2.2: Spatial correlation study by Doh et al [23], Left: scatter plot of saturation 

voltage of nMOS transistors. Close modules are strongly correlated. Right: 

Spatial correlation decreases as distance between modules increases. 

that spatial correlation increases after a specific distance, but they do not have 

any argument that interprets the experimental results. Their method is inva-

sive and expensive in time and equipment, making it very hard to characterize 

variations in a large number of ICs using ELM. 

Zhao et al. [79] used a transistor array to study the process variation. They 

used the test chip that was designed and fabricated by Agraval et al. [7]. The test 

structure was specifically designed to determine the local variation in transistors. 

The dimension of the test structure was 125fim x 110[im and it consisted of 1000 

columns and 96 rows. They used Level Sensitive Scan Device (LSSD) latch banks 

in the structure to allow addressing each transistor uniquely. They determined 

current voltage characteristics of all transistors. The observed variations were 

thought to be a result of threshold voltage and gate-length variations. They also 
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50 0 50 
Wafer X (mm) CD<nm) 

Figure 2.3: Measured process variation in a wafer [30]. Friedberg et al. used Electrical 

Linewidth Metrology (ELM) to measure the process variation in all the dies 

of the wafer. Inter-die and intra-die variations can be clearly observed. 

proposed a model for each parameter variations. The results show that having 

a statistical characterization of variations can reduce IC power prediction error 

from 30% to 7%. Their work signaled benefit of variations modeling. However, 

their analysis used a test array circuit and it can not be extended for modeling 

legacy ICs that are not equipped with the sensors. 

Liu [47] proposed a new modeling approach that described systematic vari-

ations as an affine function of the device's geometric coordinates. To model 

random variations, he recommended three spatial correlation functions: expo-

nential, Gaussian, and linear. Using generalized least square fitting, he chose a 
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Gaussian model for the measured data. His main focus was on modeling rather 

than on measuring IC variations. 

Ring oscillators spread throughout a test chip were used by Hargreaves et 

al. [36] to measure variation on a test chip. The chip design allowed the ring 

oscillators could be accessed sequentially. Thus, Hargreaves et al. [36] could 

measure each ring oscillator frequency separately. Figure 2.4 shows inverter delays 

for four different test ICs. They finally also modeled the variations as a Gaussian 

field. Their method differs from the model by Liu [47] in the correlation function 

and fitting procedure. Hargreaves et al. used more accurate parameter estimation 

method with higher complexity compared to Liu [47]. 

Ctm1 018)2 

Figure 2.4: Variation on four test chips measured by Hargreaves et al. [36]. 
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None of these methods provides a fast and practical method for variation 

estimation. They are either invasive, that is destructive, and expensive in terms 

of the time and equipment cost, or they rely on addition of on-chip oscillators 

for variation sensing. We introduce a fast, non-invasive, and inexpensive method 

to estimate the variation. Only a small number erf power or delay measurements 

are used to characterize the gate-level post-silicon variations. 

2.1.3 Effects of variations on the design 

Process variations have considerable effects on chip properties [2-6,9,19,21,26, 

33,44,51,57]. For example, they can seriously affect timing [14,17,19,39,49, 

51,57,58,78]. In statistical static timing analysis (SSTA), researchers try to 

find signal propagation delays on the critical paths in a circuit. Most of the 

proposed solutions are particularly interested in finding the statistical distribution 

of the maximum propagation delay. Orshansky et al. [57] found that in 180nm 

technology not considering process variation might cause a 25% timing error. 

Choi et al. [19] estimated path delays under process variation and proposed a 

new sizing algorithm. Their proposed method performed up to 19% better than 

the worst case analysis. Mangassarian et al. [51] found the delay probability 

distribution function (pdf) of the critical paths and sorted them. Based on sorted 

pdf of path delay, they proposed a statistical timing analysis that is about 30% 

better than the worst case analysis. 
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Above methods are pre-silicon models that a specific variations distribution 

is assumed on the IC. Cline et al. [20] analyzed impacts of the variations models 

on SSTA methods. They used real measurement data to fit the models such 

that the correlation decreases as distance between two gates increases. Then, 

they compared the SSTA methods of the models with the static timing analysis 

(STA). They showed that correlation models for the SSTA should follow the 

specific process variations in the IC. Otherwise, the performance of the SSTA 

would degrade. 

Liu et al. [48] introduced an SSTA method using post-silicon measurements 

and optimizations. They combined post-silicon measurements with the existing 

pre-silicon models for the variations. Thus, they constructed a specific model for 

each die. The proposed method could decrease the standard deviation by 83.5% 

compared to the traditional post-silicon SSTA techniques. 

Process variations affect the performance of pipelined circuits as well. 

Pipelined circuits consist of a number of sequential stages. To increase the oper-

ating frequency, one needs stages with small delays, but the slowest stage is the 

system's bottleneck. In the presence of variations, delay of each gate is randomly 

distributed according to a some pdf and it is not possible to exactly determine 

the slowest stage [21]. Datta et al. [21] showed that considering variations can 

result in a 9% improvement of design yield. Eisele et al. [26] showed that, in 

180nm CMOS technology, variation might cause a 10% reduction in the operat-
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ing frequency. 

Leakage current of an IC also changes with process variation [3,5,11,59,60]. 

Agarwal et al. [5] proposed a method to model IC leakage current distribution. 

They showed that in 50nm CMOS technology the coefficient of variation of the 

total current might vary between 0.17 to 0.98. 

2.1.4 Testing 

The goal of the IC testing is finding the defective gates in the circuit [56,64,65]. 

The test might be a functional test or a delay test. In the functional test, the 

logical functionality of the gates is tested. The delay test ensures that the delays 

of all gates satisfy a number of specific constraints. 

Finding a set of testable paths is the most important task in the testing. 

Sharma et al. [65] introduced a technique to construct a small basis path set 

that cover all gates. They proposed automatic test pattern generation (ATPG) 

techniques to identify the longest testable path through each gate. Thus, they 

could detect any defect in the circuits using delay measurements. 

Murakami et al. [56] introduced a method to recognize untestable paths. Their 

method was based on the logical necessity conditions that should be satisfied 

for a path to be testable. Knowing the necessity conditions, they proposed an 

algorithm to find the longest testable path trough each gate. 

Although, similar to our method, the circuit testing is based on the delay 
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measurements on a set of testable paths, the goal is not characterizing the delay 

variations. In the circuit testing, only defected gates are interested while the goal 

of our method is to characterize the delay variations of the gates. 

Thus, the process variations affect many different properties of a manufactured 

IC and they can not be ignored anymore. The previously described methods for 

variation estimation are expensive and cannot be extended for a legacy IC. 

2.2 Preliminaries 

2.2.1 Variation model 

Process variations can be generally described as the sum of systematic variations 

and random variations. The systematic variations have a deterministic pattern 

resulting from physical imperfection in the manufacturing process. For example, 

mask imperfections result in systematic variations in the chip. Because of their 

deterministic source, systematic variations can potentially be known beforehand 

[76]. The systematic variations of a specific logical gate u, denoted by ip^, are 

usually linearly modeled [47], 

i>Su = a0 + Ol^u + a2Vu\ 

where «o, and «2 are the model parameters and [xu, yu) is physical location of 

the gate on the IC. 
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Random variations result from arbitrary fluctuations in the manufacturing 

process. These variations can be decomposed into inter-die ^>inter and intra-die 

variations •0intra. Inter-die variations represent the differences among the dies for 

the same wafer. Inter-die variation is a random variable equaling some constant 

value for each chip. Intra-die variations represent the differences among the 

devices on one chip. Thus, the total random variation for gate u is 

V£ = V>inter + C t r a -

Finally, total variation can be written as 

= r u + r u 

= a0 + alXu + a2yu + ^mter + VjT* 

= (2.1) 

Where Fu = [1 ,xu,yu]T and = [a0 + ip^tOT, a1 ; a2]T. Note that Fu contains the 

gates location information. The term F^/3 for a specific gate is constant. VC*™ 

is a Gaussian random vector with zero mean and correlation matrix E [47] 

^>u,v = p(Fu — Fv). 

p is the correlation function and can have three forms [47]: p(-) = exp(—a2|| • ||) 

(exponential), /?(•) = exp(—a2|| • ||2) (Gaussian), or p(-) = max{0,1 — a2|| • ||} 

(linear). 
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Note that Gaussian random variables describe variations in the dimensions 

of gates (or equivalently gate delays), i.e., du = + tpu where d?u is nominal 

dimension of the gate. 

2.2.2 Compressive sensing 

The compressive sensing concepts, that enable us to reconstruct a sparse vector 

by partial measurement, are explained here (see [10,15,24]). A vector is called 

s-sparse when it has only s non-zero elements. Assume X is an s-sparse N x 1 

vector. Assume Y is described based on the following equation 

Vector X is the unknown sparse vector; U is a known KxN measurement matrix 

and e is measurement noise. Note that not only are the values of the non-zero 

components of X are not known, neither which components are zero. The vector 

Y is our observation (measurement). The goal is to estimate the sparse vector X 

using the measurement vector Y. To retrieve the vector X r one might choose a 

vector that minimizes — UX\\2- Because of the measurement noise and small 

number of measurements, this procedure usually leads to a non-sparse signal. 

However, solving the following optimization problem finds an sparse solution 

Y = UX + e. (2.2) 

min||X||o + a| |e| |2 (2.3) 

such that Y = UX + e, 
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where a is a positive constant. 

Note that the zero norm,|| • ||o, in Equation 2.3 measures the number of non-

zero elements of the vector. This objective function is not convex which means 

solving the optimization problem in Equation 2.3 is difficult. Instead, Danaho 

et al. showed [10,15,24] that one can use the following optimization problem to 

approximate the sparse vector X. 

min| |X| | i + a| |e| |2 (2.4) 

such that Y = UX + e. 

They proved that, for a Gaussian measurement matrix, an s-sparse vector can 

be retrieved via ^i-norm optimization if 

K 
S<Clog(N/K)> 

where C is a constant. Moreover, for a general measurement matrix U, Restricted 

Isometry Property (IRP) should be satisfied [15]. 

Most of the real world vectors have an approximately sparse representation. 

A vector X^rxi is called approximately s-sparse if it has s large elements and 

N — s very small elements. It is also shown that the optimization problem in 

Equation 2.4 can be used to recover approximately sparse vectors that he in weak 

lp ball of radius r [15]. i.e., 

M« < ri~p,l < i < N (2.5) 
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where X = (xi,x2, • • • X(i) is z-th largest element of X, and p is a positive 

integer number. 
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Chapter 3 

Power Tomography 

In this chapter, we introduce the new fast power variations estimation (power 

tomography) method. The proposed power tomography is based on our paper in 

ISLPED 2008 conference [62], 

3.1 Preliminaries 

3.1.1 Leakage current 

Digital circuits are designed such that there is no direct path between the voltage 

source and ground. Thus, one might expect that digital circuits do not consume 

static power; however, the leakage current does occur. There are four sources of 

leakage current [28]: (1) reverse-biased junctions, (2) gate-induced drain leakage, 

(3) gate direct-tunneling leakage, and (4) sub-threshold leakage. Finding the 
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exact value of the leakage current involves elaborate expressions. Since such an 

exact leakage model does not affect our basic approach, we use following model 

presented yi [60]. 

I** = q i e ^ L + * L 2 l (3.1) 

/ieak is the leakage current of a transistor; qi, <72, and are three constants 

that are determined by physical characteristic of the transistor and L is the 

gate length of the transistor. q3 is a small number and q^L2 <C q^L [60]. This 

model suggests an exponential relation between the transistor gate length and 

the leakage power. Thus, the leakage current approximately has a log-normal 

distribution and pu = 4>up^; where and pu are nominal power and real power 

of the gate, respectively, and 4>u = ; where i/)u represent variation in transistor 

dimension. 

Thus, given a combinational circuit C consisting of N logical gates, Pi input 

pins, and Po output pins, each gate gu, based on its inputs signals b, consumes a 

specific power p9ufi- Because of the process variation, power consumption of gate 

gu does not equal to its nominal power consumption Rather, it is scaled by 

<t>u-

P9u,b = P0gu,b(f>U 

The scaling factors of gates, <f>u, need to be estimated, whenever it is feasible. 
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3.1.2 Global flow of the power tomography 

Compressed sensing 
y ^ r y f j 

\represeflt/\_ 

t:2-iiorn» mm. 
with spatial 

^constrains (TUSC) 

Figure 3.1: Global flow of the power tomography. 

Figure 3.1 shows the global flow of our method. A number of random input 

vectors are applied to the circuit, and the leakage current corresponding to each 

input vector is measured (Steps 1 and 2). Next, a system of linear equations is 

formed where each equation corresponds to one measurement (Step 3). The equa-

tion unknowns are the (normalized) leakage current variations of each gates. The 

standard way to estimate the IC's leakage tomogram is to use ^2-norm optimiza-

tion (Steps 4a-5a). However, our method exploits spatial correlations of the sta-

tistical leakage variations and compressive sensing theory to estimate efficiently 

the leakage tomogram (Steps 4b-5b). We also enforce the spatial constraint on 

power variations estimation directly (the TUSC method in Steps 4c-5c). 
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Figure 3.2: A simple logic circuit. 

Table 3.1: Static power for different input vector combinations. 

input vector NAND-2 NOR-2 

00 0.776 nW 17.41 nW 

01 10.39 nW 4.112 nW 

10 4.137 nW 7.581 nW 

11 15.15 nW 3.527 nW 

3.2 Noninvasive tomography 

In this section, we detail the full matrix measurement method for noninvasive 

gate-level characterization. First, different inputs are applied to the circuit and 

the total chip's leakage current measured for each input. Then, an optimization 

problem is solved to find the process variation based on the power measurements. 

Consider the simple logic circuit in Figure 3.2. It has 3 inputs and 2 outputs. 

The nominal power consumptions of each gate for different inputs are shown 

in Table 3.1.The table shows power consumption for 65nm CMOS transistor 
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technology. As a result the circuit has a different power consumptions for each 

input vector. Because of the process variation, the nominal power consumption 

of the gate gu is scaled by <j)u. For example, if input 1, input 2, and input 3 are 

0, 1, and 1, respectively, then the total power consumption of the circuit would 

be 

Poll = Pgi,O101 + Pg-x ,1102 + Pga,00<p3 + P94,OO04 

= 4.112^1 + 15.1502 + 0.77603 + 17.4104, (3.2) 

where pg.b» is the power consumption of the gate gi for input bj. Note that 6® , the 

input of each gate gi, is a function of input vector of the circuit that is denoted 

by bj. For example, in Figure 3.2, if bj = 011 then b) = 00. 

In a digital circuit with N gates, for the binary input vector bj, total power 

consumption pj, is 
N 

Pbj = J^PgM^' (3.3) 
i=l 

If there are M input vectors b\,..., 6m> define measurement matrix A as 

Pgub\ Pgifi\ 

Pgub\ Pg2fil 

Pgubl
M P92,b*M 

P9nK 

PgN,b» 

PgN,bZ 

Also, let 
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d = . . . , < M r -

Then, we need to solve following system of linear equations to find the gate 

variations. 

p = Ad. (3.4) 

G& 

Since there are N unknown variables (0j,i = 1 . . . N), N independent mea-

surements are needed to describe completely the solution of the linear system in 

Equation 3.4. In the presence of power measurement noise, we can least square. 

' m i n | | A d - p | | | . (3.5) 

We call this method the ii-minimization method. 

Note that each input vector bj, based on the topology of the circuit, determines 

a row of the measurement matrix A (power vector). It may be that the rows of 

the measurement matrix are not necessarily independent, making it impossible 

to find the variation of all gates by optimization as in Equation 3.5. 

Multi-voltage leakage measurement 

The number of independent power vectors (row of the measurement matrix) 

may increase by increasing the number of power measurements, M. However, 

circuit topology dictates an upper bound on the maximum number of independent 

power vectors. But as discussed in Section 2.2, supply voltage and the leakage 

current are not linearly dependent. Hence, measuring static power for different 

supply voltages results in independent power vectors. We use this fact to increase 

the number of the independent power vectors in the measurement matrix. 
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Figure 3.3: Number of independent measurement vectors for single voltage measure-

ments and multiple voltages (3 voltages) measurements. Multiple voltage 

measurements increase number of independent rows in the measurement 

matrix. 

Figure 3.3 shows the number of the independent power vectors in the C432 cir-

cuit from ISCAS'85 benchmarks. Similar to the previous section, this experiment 

is based on the 65nm CMOS transistor technology. In this figure, the number 

of independent power vectors versus the number of random measurements are 

shown. Two cases were investigated: measurement under single supply voltage 

and measurement under three supply voltages. It is clear that for the same to-

tal number of measurements, three supply voltages measurements result in more 

independent power vectors. 
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Figure 3.4: Process variation and its sparse wavelet transform for a typical circuit in 

power framework. 

3.3 Fast tomography by compressive sensing 

As discussed in Section 2.2, sparse vectors can be acquired using very few mea-

surements. In this section, first, we introduce fast tomography for chips with 

gates located on regular grids. Then, we extend this approach for cases with 

gates located on irregular grids. 

3.3.1 Sparse representation 

The spatial correlation in the variations provides some redundancies in the varia-

tion values. The spatial correlation suggests that variations can be sparsely rep-

resented in an appropriate basis. In this section, we use wavelet basis to sparsely 

represent the process variations. Specifically, we assume d = where W is 
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Figure 3.5: Sorted wavelet coefficients for different basis functions in power framework. 

The db9 basis produces the most sparse representation. 

a wavelet basis and s is a sparse vector. Wavelet basis are very efficient in sparse 

modeling of spatial correlation, as shown in Figure 3.4. The left side of the figure 

images the variations of a chip in the spatial domain. The right side shows the 

variations in the wavelet domain. In the wavelet domain most of the non-zero 

coefficients are concentrated in the upper-left corner of the transform and most 

of the remaining coefficients are close to zero. 

Figure 3.5 shows wavelet transformation of variations for a number of wavelet 

bases. The figure demonstrates the coefficients decay rate for a variety of wavelet 

families on typical 32x32 regular grid circuits. The figure suggests that the 

Daubechies 9 (db9) wavelet basis is very good at sparsifying the process variation. 

In the remainder of the thesis, we use the Daubechies 9 wavelet to model process 
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variation sparsity in the power framework. 

3.3.2 Regular grid tomography 

First, we assume that the logic gates are located on a regular T x R grid on 

the chip. The matrix of process variation on the regular grid is denoted by 

H = {hS:T}S=I...T,T=I...R} where h,%t is variation of the gate located in the (s, t)-th 

point of the grid. We stack all the elements of the matrix H in a long column 

vector d. Assume W is the transformation matrix for a wavelet in which variation 

vector d is sparse. Let 

then, s is a sparse vector. 

Using the wavelet basis to model the spatial correlation of the process varia-

tion, Equation 3.4 becomes 

s = Wd- (3.6) 

p = ,4d + e = AW'1 s + e. (3.7) 

The sparse s can be recovered using the optimization in Equation 2.4: 

min||s||i +A|| iW_ 1s-y 2 
2" (3.8) 

The process variation d is then recovered using d = Ws. 
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Figure 3.6: Gates are not placed on regular grids. 

3.3.3 Irregular grid tomography 

In practice, gates are not placed on a regular layout grid. Figure 3.6 shows an 

example of an IC in which gates are placed on an irregular grid. To address 

the irregular placement, we cover the IC with fine regular grids. Then, using 

Procedure 1, each gate is assigned to a point on the regular grid. At the first 

step of Procedure 1, all the regular grid points are labeled unmarked, meaning 

that none of the regular points is assigned to any gate. In the second step, for 

every gate, we find its closest regular point that is unmarked. Finally, to prevent 

multiple selection, we mark the selected regular grid. 

Then, we assign auxiliary variables to the points in the fine grid that are not 

assigned to any gate. We also modify the measurement matrix A to be consistent 

with the fine regular grids, i.e., for each auxiliary variable, we add an appropriate 

zero column to the matrix A. Since the coefficients of auxiliary variables in the 
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Figure 3.7: Wavelet coefficient of irregular wavelet transformation and fine-gride 

wavelet transformation. 

measurement matrix are zero, they do not affect the optimization. 

P R O C E D U R E 1 

Mapping from irregular gates to fine regular grids 

(1) Set all the regular grid points unmarked 

(2) for all gates, gi 

a. p = the closest grid point to the gates that is unmarked 

b. assign gate gl to p 

c. Mark regular grid point p 

Note that as an alternative method to deal with irregular grids, we could use 

irregular wavelet transformation introduced by Wagner et al. [75]. The irregular 

wavelet transformation is based on the regular wavelet transformation; however, 

it is adapted to irregular point arrangement. Figure 3.7 shows sorted wavelet 
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coefficient for both irregular wavelet transformation and our fine-grid wavelet 

transformation in the C880 circuit. The wavelet coefficients of the of the proposed 

fine-grid method decay much faster than irregular grid transformation. The main 

reason is that the gate placement is not completely irregular. The standard gate 

sizes are integer multiplicand of a specific value. Moreover, the placement tools 

assume irregularity in just one dimension. 

3.4 Tomography using spatial constraints 

(TUSC) 

In this section, we directly use the spatial correlation to improve the estimation 

error of power variations. In Section 3.2, we just used power (leakage) mea-

surements in Equation 3.3 to estimate the variations. Representing variations in 

sparse domain in Section 3.3 is based on the spatial correlation in the variations. 

Here, we reformulate the variation estimation problem such that the spatial cor-

relation explicitly appears in the optimization problem. 

3.4.1 Adding spatial constraints 

Adding spatial constraints directly to the optimization problem improves the 

estimation performance. The spatial correlation implies that nearby gates should 

have approximately similar scaling factors. As the distance between two gates 
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increases, the correlation between their scaling factors decreases. Thus, far gates 

might have totally different scaling factors. We should penalize solutions in which 

nearby gates do not have close scaling factors. 

s Consider optimization problem in Equation 3.5. We add a number of the 
I 

constraints to the optimization problem such that they enforce spatially correla-

tion solutions. Assume gu and gv are two logic gates that are located at (xu, yu) 

and (xv, yv), respectively. Similar to Section 3.2, their scaling factors are denoted 

by 4>u and <f)v. We use the following optimization problem to improve variation 

estimation. 

min||4d-p||!+ ^ kdu,v)(<t>u-<t>v)2, (3.9) 

(9u,9V)&£ 

where 

d"U,V V(XU "I" (yu Vv)^ 1 

£ = {(Gu,9v)\fJu and gv are two gates in the circuit}, (3.10) 

and 7(.) is a monotone-decreasing function. Thus, when the distance between 

two gates (du>v) is small, 7 ( d u > v ) is large. It enforces a small value for (4>u — (j)v)2. 

Consequently, when, the distance between two gates (d U j V ) is large, ~f(dUtV) is small 

and ((j)u — <t>v)2 does not affect optimization problem dramatically. Hence, solution 

of the optimization problem in Equation 3.9 will exhibit spatial correlations. 

To simplify the constraints, one can eliminate the gate pairs that are far from 
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each other. For example, we can define S r as 

£r = {{gu,9v)\9u and gv are two gates in the circuit,du.u < r}. (3.11) 
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Chapter 4 

Delay Tomography 

In this chapter, we extend the variation estimation to the delay framework. Sim-

ilar to the power tomography in Chapter 3, we only use primary inputs/outputs 

of the IC to characterize the delay variations. The approach is based on our 

paper in ICCAD 2008 conference [63]. 

4.1 Preliminaries 

4.1.1 Delay variation model 

Transition delay is usually modeled as a linear function of transistor feature size 

variations [38,49,58]. For example, consider a NAND2 gate where one of its 

inputs is 1 and the other input, at time t = 0, transits from 0 to 1. Because of 

propagation delay, the output transits from 1 to 0 at time t = dr. When there 
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are variations in transistor feature size, rising propagation delay, dr, varies among 

different NAND2 gates in the IC. i.e. [49] 

d r{^u
 o t a l ) = nominal + ^ t o t a l (4.1) 

where £ is a constant and is the nominal rising delay of the gate. Note 

that, even if we model the propagation delay quadratic (or higher order) [29], we 

can use the same approach by assuming new variables for higher order parameters. 

4.1.2 Sensitizable paths 

A path in an IC is defined as a sequence of logic gates from an input of the 

IC to one of its output pins. To find propagation delay in a path, one should 

find an appropriate input vector for the IC. The input vector should guarantee 

propagation of a transition in the path. If such an input vector exists, the path 

is called sensitizable; otherwise it is called unsensitizable. 

4.1.3 Global flow of the delay tomography 

Figure 4.1 shows the global flow of the work. At the first step, we feed the circuit 

with a number of input vector pairs based on the set of sensitizable paths. The 

inputs are found based on the path selection procedure introduced in Section 

4.5. In step 2, propagation delay is measured for every sensitizable path. Based 

on the measured propagation delays, we construct a System of Linear Equations 
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Figure 4.1: Global flow of the delay tomography. 

Figure 4.2: A sensitizable path from an input to the output. Inputs to the circuit are 

set such that a rising (falling) transition in input a can propagate to the 

output n. 

(SLE) with gate variations as its unknown parameters. Then, we estimate varia-

tions by two methods (4a and 4b). The first method is based on the traditional 

^2-minimization (4a.) In the second method, we show sparsity of variations in 

wavelet domain and use compressed sensing (^i-regularization) to estimate vari-

ation more efficiently. 
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4.2 Delay estimation by 4-norm minimization 

The signal propagation delays of a number of sensitizable paths are measured. 

Linear equations are constructed with the scaling factors of gate delays (defined 

in Section 4.1.1) as the unknown parameters. Finally, solving these equations, 

we estimate the scaling factors and, therefore, the gate variations. In Section 

4.3, we utilize the variations in spatial correlations to improve the scaling factor 

estimations. 

An example of path delay analysis is shown in Figure 4.2. Lines labeled by a, 

b, c, and d are the circuit's primary inputs and the line n is the circuit's primary 

output. We want to sensitize the delay of the highlighted path, P\\ (a-^i-z-e-^-

f-(74-s-<76-k-(77-n). We need to find an input vector that guarantees a transition in 

input a that would propagate through the path. Let us assume a rising transition 

in a (input a transits from 0 to 1). To allow propagation through the gate gi, 

we need to set b to be equal to 0. Then, there would be a falling (1 —> 0) and 

a rising (0 —> 1) transition in lines e and /, respectively. If g is equal to 1 and 

m is equal to 0, then the rising transition propagates in the lines s, k and n. To 

guarantee that g is equal to 1 and m is equal to 0, we just need to set the input 

c = 0. 

The input assignments above allow the transition in input a to propagate 

through the path Pi •.a,-gi-z-e-g^-i-g4-s-g&-k-g-I-n. Using the delay bounding 

method introduced in [64], one can measure the total delay of the underlying 



path. We can measure the time difference between the transitions in line a and 

in line n. Let us denote the total delay of the path Pi for the rising transition by 

dr(Pl). ^ 

The total path delay is an additive composition of the delays of its elements. 

For example, delay of the path Pi can be written as the summation of the delays 

in line a, gate gi, line k, line e, gate <73, and so on. i.e., 

dr{Pi) = d{a) + dr(gi) + d(z) + d(e ) + df(g3) 

+ d ( f ) + dr(g4) + d(s) + df(ga) + d{k ) 

+ dr(g7) + d(n), (4.2) 

where d(x) is the delay of the line x, and dr(gi) and df(gi) are the rising and 

falling delays of gate gj, respectively. 

Here, we assume for presentation clarity that interconnect delays (line delays) 

are zero. The proposed method can be easily extended to cases with non-zero 

interconnect delays. Note that it maybe the case that variations in the inter-

connects have a separate statistical representation. In such scenarios, one may 

consider compressed sensing methods that address the summation of two distinct • 

distributions in one framework [24]. Assuming zero interconnect delays, Equation 

4.2 reduces to: 

dr(Pi) = dr(g 1) + df(g3) + dr(gA) + df(g6) + dr(g7). (4.3) 

In Section 4.1, we illustrated that because of the process variation, delays of 



Table 4.1: Transition propagation rate for different gates. The rising and the falling 

transitions do not enforce the same delay rates. 

Gate Rising (pS//xm) Falling (pS/ptm) 

Inverter 86.9 40.77 

NAND2 176.9 507.7 

NOR2 95.4 1106.2 

the gates deviate from their nominal values, i.e. [49], 

dr{9i) = d™™™\9i) + ir,9ilgi, (4.4) 

where d?ominal(gi) is the nominal delay for rising transition and l9i is the varia-

tion for the gate gl and is a constant coefficient. Table 4.1 shows the constant 

coefficients for NAND2 gate. Similarly for the falling transition, 

df(9i) = ^ o m i n a l ( f t ) + ZfJm. (4.5) 

Thus, Equation 4.3 becomes 
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or 

+ dfomhial(g3) + Cf,g3l93 

+ d™™™\g7) + t,grl97, (4.6) 

= d r(Pi) - < o m i n a l ( . 9 i ) - 4 1 0 m i n a l (53) 

_ ^ n o m i n a l ^ _ ^ n o m i n a l ^ _ ^ n o m i n a l ^ 

bp1 is a constant. Thus, each sensitizable path in the circuit leads to a linear 

relation among the variation elements, l g r The falling and rising coefficients 

(£/,9i a n d £r,gi) are known and our goal is to estimate the variations, l9i. 

Assume that Pi, P2 . . . Pm are M sensitizable paths in a general combinational 

circuit C with N gates. For each path Pj, if it is stimulated by a rising transition, 

N 

i=1 

where 

aP(i) = < 
1 if gi belongs to the path Pj; 

0 otherwise, 
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and 

/ if gi has a falling transition when path Pj 

A r(Pj,i) = < is stimulated by a rising transition; 

r otherwise. 

Similarly for a falling transition, 

N 

where 

A f(Pj,i) = i 

f=i 

/ if gi has a falling transition when path P j 

is stimulated by a falling transition; 

r otherwise. 

(4.8) 

To write Equations 4.7 and 4.8 in a compact form, we define matrix A and 

measurement vector b and variation vector 1 as follows. 

/ 

A = 
q ; P m ( 1 ) ^ A ' - ( P M , 9 I ) , 9 I 

" P i ^ K A / C P I , ! ? ! ) , ! , ! 

aP2(X)£\'{P2,9l),9l 

.Si),: 

apAN)^{Pi,gN),gN 

aP2(N)£\r(P2,9N),9N 

aPM(N)&r(PM,9N),9N 

(XPi(N)t\f(Pi,9N),gN 

aP2(N)€\f(P2 ,9N),9N 

\ 

91 ,9N),: 9n 
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b = (bl,br
2,...br

M,b{,bf
2,---bf

M)T, 

and 

1 = h - • • IN)T• 

This notation allows following minimization for finding the variation 1. 

m m | | A l - b | | 2 . (4.9) 

we call this method ^-minimization method. 

Note that it may not be possible to find the variations of all gates by this 

method. For example in Figure 4.2, if we want to find another sensitizable path 

that includes <74, we should fix / = 1 (none-controlling value) causing e — 0 and 

<7=1. Thus, the transition cannot propagate on the line g and path / 0 is the 

only path that includes the gates <73, <74 and As a result, there is at most two 

equations (falling and rising) that includes variation of the gates gs, <74 and g$] it 

is impossible to find the variation of the three gates separately. We refer to such 

cases as ambiguous gates. 

4.3 Delay estimation using compressive sensing 

Section 4.2 presents a system of linear equations to estimate variations of the 

gates. However, the optimization problem in Equation 4.9 does not consider the 

spatial correlation of the delay variations. Incorporating the spatial correlation in 
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Figure 4.3: Left: Spatial correlation in delay variations in a typical IC. Right: wavelet 

transform of the variation. Because of the spatial correlation the variation 

is sparse in the wavelet domain. 

the model significantly improve the results and allows resolving the ambiguities 

described in the previous section. This section incorporates sparsity in the wavelet 

domain as a model for the spatial correlation of the timing variation. Thus, we 

can use compressive sensing theory to estimate the variations more accurately. 

4.3.1 Sparse representation of variations 

As we explained in Section 3.3.1, because of the spatial correlation, wavelet basis 

can sparsely represent the variations. Similar to power tomography, we use the 

wavelet basis to sparsely represent variations. Note that variations in power 

framework are based on a log-normal distribution but variations in the delay are 

approximately normally distributed. Thus, power variations and delay variations 
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Figure 4.4: Sorted wavelet coefficients for different bases. bio3.5 bases results in the 

most sparse representation. 

might be sparse in different wavelet bases. 

Figure 4.3 demonstrates the effectiveness of the wavelet transform in repre-

senting spatial variations. The left side of the figure is the image plot of the 

variations in a typical IC, generated using the Gaussian model in [47]. The spa-

tial correlation is evident in the figure. The right side of the figure represents 

the wavelet transform of the left hand side. Most of the transform coefficients 

are zero. Only the top-left part of the figure has a dense amount of significant 

non-zero elements. 

Figure 4.4 presents the decay rate of the wavelet coefficients for a number 

of different wavelet transforms. A transform appropriate for compressed sensing 

should have a fast decay rate. The faster the decay, the sparser the signal under 

this transform, and the fewer the measurements necessary to acquire the variation 
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vector. The figure demonstrates that the (3,5) Biorthogonal wavelet basis best 

describes the spatial variations. We use this wavelet basis for the remainder of 

this thesis. 

4.3.2 Gates on the regular grids 

When gates are located on a regular grid, the two-dimensional wavelet transform 

of the variations, s, can be expressed as the product of the variation vector, 1, 

with the wavelet transform matrix W. 

s = W\. (4.10) 

As discussed in Section 4.3.1, s is assumed sparse because of the spatial correlation 

in the variations. We enforce the sparsity prior by regularizing Equation 4.9 using 

the £\ norm of s, as described in Section 2.2.2: 

min ||s||i + A||A1 — b | | | (4.11) 

or, equivalently, 

min ||s||i + — b|||, (4.12) 

where A is the regularization coefficient. Sparsity of the variations wavelet trans-

formation, s, provides a new piece of information. We call this method i\-

regularization method. 
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4.3.3 Gates on the irregular grids 

As we saw in Section 3.3.3, in practice because of area and logic gate constraints, 

the gates are not located on regular grids. An example of gate placement is shown 

in Figure 3.6. Similar to Section 3.3.3, we overcome this problem by using a dense 

regular grid such that the center of each gate is close to some grid point for all 

the gates in the circuit. We assign the variation of each gate gu to the point on 

the regular grid that is closest to the center of the gate. If there are more than 

one closest points, we select one of them randomly. The remaining grid points 

are assigned to free variables that do not correspond to physical gates and do not 

affect the measurements. 

The remainder of the measurement process is similar to Section 4.3.2. The 

points on the regular grid are mapped to a column vector 1 which is measured by 

a measurement matrix A as in Equation 4.11. Note that if the z-th element of 

the 1 is a free variable not assigned to any gate variation, then i-th column of A is 

zero. The vector 1 is still spatially correlated, and therefore sparse in the wavelet 

domain, and can be recovered through s in Equation 4.12. From the recovered 1 

the free variables can be ignored since they do not correspond to physical gates. 
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Figure 4.5: The variation estimation error for various regularization factors A. 

4.4 Determining the regularization coefficient A 

Consider ^-regularization problem, 

When A is very small, A||Ax — 6||\ would be small compared to the ^i-norm term, 

||x||i and does not affect objective function dramatically. Thus, norm-one term 

11 a; ||i. is the main component that determines the solution of the regularization 

problem; the solution tends to be sparse. In the other hand, when A is very large, 

\\\Ax — &H2 would be large compared to the norm-one term, ||x||i, and small 

changes in ||Ac — 6||\ result in large changes in objective function. In general, A 

balances between sparsity (^i-norm term) and fitting to measurements (^2-norm 

term). 

Measurement noise and sparsity of the vector x are two major components 

min ||jc||i + A||Ar - b\\\. (4.13) 
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that determine A. When there is no noise in measurements, i.e., Axr = b, the 

regularization coefficient A should be set infinity. As measurement noise increases, 

we should relax ^2
_norm constraint or equivalently decrease A. In addition, sparse 

vectors imply small A. When it is known that vector x is strongly sparse, one 

should relax £2-norm constraint (decrease A) to obtain a very sparse solution for 

the problem. 

Figure 4.5 shows estimation error for different regularization coefficients, A. 

As explained, for very small A and very large A estimation error is high. There is 

an optimal regularization coefficient Aopt in which the variation estimation error is 

minimum. Optimizing Equation 4.13 for A = Xopt leads to the minimum variation 

estimation error. Aopt is a function of the measurement matrix, measurement 

noise, and the true variations xr\ thus, it is not possible to find Xopt exactly. 

Applying first-order necessity condition for regularization problem in Equa-

tion 4.13 determines minimum value for A. Let 

J(x)= ||x||i + A| |Ac-6 | | l . 

The first-order necessity condition for optimal solution implies = 0, i = 

1 . . . n. Thus, 

<9[|x||i _ d\\\Ax-b\\l 
dxi dxi 
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or 

1 Xi > 0 

- 1 X4 < 0. 

Hence, 

dxi 

^-\\Ax-b\\l\\00 = 2\\AT(Ax-b)\\00<\ (4.14) 

As we mentioned before, for very small regularization coefficients A, zero is close 

to the optimal point. Thus, putting x = 0 in Equation 4.14 determines a value 

for A. i.e., if x = 0 is a optimal solution, 

Kim et al. [40] suggest determining A based on Ao- They use Ai = 10Ao. For 

the problem shown in Figure 4.5, Ai = 10Ao = 5.56 x 10~4. This estimation of 

the A is far from Xuvt (Xopt is shown in Figure 4.5). 

Hale et al. [35] use distribution of measurement error to find A. Assuming 

independent normal distribution for measurement noise, they suggest 

Thus, the value for A corresponding to zero would be 
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where a = minimum eigen value of AAT. For a = 0.05, A2 will be 591.13. It is 

clearly far from the optimal regularization factor, Xopt (Figure 4.5). 

To understand the behavior of the best A, we study optimal point curves of 

the problem. For each A 6 [Ao,oo), let x\ be the solution of the problem in 

Equation 4.13. Define 

s(A) = M i 

t( A) = | |AC a -6 | | 2 . (4.15) 

(s(A),£(A)) defines a curve in s-t plane. A number of these curves are shown in 

Figure 4.6. These curves are for different noise levels. The points that are shown 

by star on each curve represent the optimal regularization factor, (s(Aopt). s(Aopt)); 

we call these point optimal points. It suggests that the optimal points are approx-

imately on a horizontal line. Thus, we use following optimization formulation to 

estimate the variation. 

min \\Ax — b\\2 

such that ||x||i < c (4.16) 

where c is a constant number. We assume c = 0i2(||a;||i); where 6 € [1.5,2]. 
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Figure 4.6: Optimization curves for various measurement errors. 

4.5 Path selection 

The accuracy of variation estimation is a function of the paths that are used for 

constructing optimization problems. First of all, paths should be sensitizable; i.e., 

they should be possible to measure delay of the paths by externally stimulating 

the primary input of the IC. Moreover, the paths should be linearly independent. 

Ignoring the measurement noise, dependent paths provide redundant information 

about the variations. 

4.5.1 Sensitizable paths 

As we mentioned in Section 4.1, it might not be possible to find the delay of 

every arbitrary path. Only delays of the sensitizable paths (testable paths) can 

be measured by externally stimulating the IC. 
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Figure 4.7: An example of a circuit with sensitizable and unsensitizable paths. 

Figure 4.7 shows examples of a sensitizable path and an unsensitizable path. 

Consider following path in the circuit: P2. a-g2-g-g4-k. To propagate a transition 

in the path P2, d should be 1 and h should be 0. Choosing c = 1 and b = 0 

will satisfy these constraints. Thus, P2 is a sensitizable (testable) path. However, 

path P3: c-f-g3-h-g4-k is not sensitizable. Propagation of a transition in this path 

happens if and only if g = 0 and c = 0. To satisfy g = 0, we should have a = 1 

and d = 1. It contradicts with e = 0. Thus, P3 is unsensitizable. 

To ensure that a path is sensitizable, we should generate two input vectors 

for the circuit such that a transition propagates in the path. Creation such input 

vectors might be very complex and take a long time. Thus, we determine a path 

is testable or not in two steps: primary necessity check and using automatic test 

pattern generation (ATPG) tools. 

Primary necessity check is based on the partial path sensitization introduced 

by Murakami et al. [56]. Using the topology and functionality of the circuit, they 

introduce bf-pairs in the circuit. Each bf-pair consists of a b-line (back line) and 
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an f-line (forward line), bf-pairs are determined such that necessary conditions 

for transition propagation in b-line and f-line contradict. Thus, a testable path 

can not contain any bf-pair. If a path contains at least one bf-pair, it is not 

testable; otherwise, the path is potentially testable. 

To determine if a potentially testable path is testable or not, we can use any 

ATPG tool to generate input vectors that test the path. In the simulations, we 

have used TranGen [77] for the test generation. It is a fast ATPG algorithm 

based on the SAT solvers. 

4.5.2 Basis path set 

In path selection, it is also important to select independent paths. Consider 

following four paths in the circuit shown in Figure 4.7. 

Pa- c-.j-gi-e-g3-h-.94-k 

P5: b-gi-e-g3-h-g4-k 

Pe- c-j-gi-d-g2-s-g4-k 

P7: b-gi-d-g2-£-g4-k 

For the circuit, it is not hard to verify 

dr(Pi) + dr{P7) = dr{Pb) + dr(P6). 

Thus, these four paths are not independent. Knowing delay of each three of them 

leads to the delay of the fourth one. 
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To efficiently minimize the number of path delay measurements, we should 

restrict the path set to the independent paths. We have used the method proposed 

by Sharma et al. [65] to generate a testable basis set for the underlying circuit. 

It is based on the basis generation algorithm introduced in [42] and [18]. 
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Chapter 5 

Applications 

In this chapter, we introduce a number of novel applications for the proposed 

variations estimation methods. My methods are fast, cheap, and applicable to 

all the combinatorial circuits. However, the previously proposed methods for 

variations estimation are expensive and design specific. Thus, they can barely be 

used in the following applications. 

1. Improving modeling and simulation: Modeling a random variable is the 

first step in finding its effects on a system. Modeling the process variation 

is widely addressed in the literature [8,12,16,23,30,36,43,46,47,50,76,79]. 

However, there are a limited number of variation measurements that can 

be used to fit a specific model and verify it. Our method introduces a fast 

method to acquire an accurate estimation of variations in a specific IC. 

The introduced variations estimation method can be also used in variation 
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simulations. Since there are a limited number of variation measurements, 

researchers have to use non-precise parametric models of variations in their 

simulations. Thus, simulations results might not be accurate enough. Our 

method provides a fast technique to estimate variations and researchers can 

use the real variation measurements in their simulations and improve their 

evaluations. These models can also be integrated within power simulator 

tools for accurate and realistic simulation models. 

2. Post-silicon optimization: Traditional VLSI design is based on the pre-

silicon optimizations. Various parameters of the design are considered by 

the designer and they are tuned to meet different constraints of the design. 

The variations are not considered at all; or only the statistical characteris-

tics of variations are considered. 

The static timing analysis (STA) is an example of pre-silicon optimization. 

The goal of STA is finding the longest delay in a specific circuit. The 

variations in delay are not considered in the STA. Delays of the interconnect 

wires and gates are deterministically modeled; then, using the graph model 

of the circuit, the longest path in the circuit is found. However, in the 

statistical static timing analysis (SSTA), the statistical characterizations of 

variations are utilized to improve the longest delay estimation in presence 

of the variations. 

Today's modern fabrication processes with high variability make the post-
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silicon optimization necessary. When there is no variation or variations are 

very small, the designer can predict the behavior of the circuit with small 

uncertainty. However, in the modern fabrication process, even considering 

statistical characteristics of the process variation might not be enough. Op-

timizations after manufacturing (post-silicon) can improve efficiency of the 

IC dramatically [34,52,70,71]. 

Tschanz et al. [71] used bidirectional adaptive body bias to mitigate effects 

of the intra-die and inter-die variations on the circuits. They have consid-

ered frequency-leakage optimization in which the designer should optimize 

the circuit for the maximum frequency while it meets a number of leakage 

constraints. They vary the body bias to change the threshold voltage of 

the transistors in the circuit. If variations reduce the operating frequency 

then the threshold voltage should be decreased. If variations increase the 

leakage current then the threshold voltage should be increased. Thus, by 

increasing or decreasing the body bias, one can adjust the manufactured 

ICs to meet the frequency and leakage constraints. To mitigate the inter-die 

variation, they suggest optimizing the supply voltage based on the variation 

realization in each IC. Intra-die variations can be also handled using differ-

ent reference voltages in different parts of the IC. They need an estimation 

of variations to optimize each circuit separately. Our method can efficiently 

provide them the estimation. 
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Pre-silicon optimizations (gate sizing) and post-silicon optimizations (adap-

tive body bias) can be used to reduce the loss of the parametric yield. Mani 

et al. [52] propose a joint optimization method to mitigate effects of varia-

tions on the yield. They show that their method results in a reduction of 

5-35% in the leakage current. 

In all the mentioned post-silicon optimization methods, an estimation of 

variations is necessary to optimize each circuit separately. Our method can 

efficiently provide them such an estimation. 

3. Manufacturing process characterization: The proposed variations estima-

tion method can be used to characterize the statistical properties of a spe-

cific manufacturing technique. In the other words, one can characterize 

variations based on the specific manufacturing technology. This characteri-

zation can be used to optimize designs for a specific manufacturing technol-

ogy. It can also be used to modify the manufacturing technology in order 

to decrease variations. 

4. IC identification and finger printing: Variations are result of complicated 

nanoscale physical interactions and systematic imperfectness of the manu-

facturing tools. Thus, it is practically impossible to clone variations in an 

IC; i.e., the variations in each IC are unique and can not be replicated. It 

is an important property that can be used in IC identification and finger 

printing. 
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Physical unclonable function (PUF) [31] is a security scheme that uses 

variations in a chip as its secrete key. Delay based PUFs use delay variations 

in the ICs to construct a function in the chips such that the output of the 

function depends on the variations. Thus, for the same input, the output of 

the function varies across the different chips. This unique and unclonable 

function in each IC can be used as the secrete key. 

5. Identifying hot spots: Various sections of an IC dispatch different power 

levels. Hot spot are the sections that dispatch more power and become 

hot sooner than other sections of the IC. Process variation also affects the 

hot spots on the IC. Using proposed variations estimation method, one can 

determine hot spots of a specific IC in presence of variations. Thus, these 

hot spots can be specifically controlled or cooled down to avoid possible 

damages. 

6. Workload scheduling: Maximum frequency of the various parts of the IC is 

a function of the design and variations. Knowing variation in an IC helps 

us to find the true power consumption and speed of the different parts of 

the IC. Thus, one can develop softwares that consider process variations 

and uses all the resources of the IC optimally. 

An example of such a software is proposed for workload management of 

cache memories by Meng and Joseph [53]. They show that inter-die and 

intra-die variations can dramatically affect leakage current of the ways in 



the cache; i.e., maximum leakage to minimum leakage under variation might 

be 10~100. Then, they introduce way prioritization technique to select low 

leakage ways in cache management. The propose technique can approxi-

mately reduce leakage current by 20%. It is important to note that the way 

prioritization technique utilize variations estimation. However, they do not 

provide a fast and cheap method for the variations estimation. 
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Chapter 6 

Evaluation Results 

To verify the accuracy of the proposed methods, we simulated variations in a 

number of MCNC benchmark circuits. Then, we used ^i-regularization, 

minimization and TUSC (see Section 3.4) to estimate the variations. The simula-

tion result shows that using .^-regularization and TUSC improve the estimations 

dramatically. 

6.1 Simulations setup 

• The variation model: As it is explained in Section 2.2.1, we have used 

multivariate Gaussian distribution to model the spatial correlation in the 

variations. The model well agrees with the measurement data and is also 

used by other researchers [22,32,47,69]. 
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The transistor model: We have used BSIM4 model for 65nm technology 

in the simulations [13]. The BSIM4 model is developed such that it can 

accurately model behavior of a transistor in the sub-lOOnm regime. 

Benchmark circuits: We have used a number of MCNC benchmark circuits 

in our simulations. The MCNC benchmarks were introduced in 1985 on 

magnetic tapes, and they are updated, modified, and enhanced regularly. 

The benchmarks are widely used in design automation community (for ex-

ample see [37,54,74]). 

The £i-regularization software: The SPGL1 software package [68] is used 

for .^-regularization. The SPGL1 uses an iterative approach to solve the 

LASSO problem. In each iteration radius of l\ ball is increased until the 

convergence. For more details, please see [72]. 

The quadratically constrained quadratic program (QCQP) solver. We 

have used SeDuMi (self-dual minimization) software package [61] for i2-

nimization and the QCQP in Section 3.4. SeDuMi is maintained at the 

Advanced Optimization Lab at McMaster University. It can be used to 

solve various symmetric cone problems. 

The ATPG tool: PathATPG [77] is used to identify testable paths and to 

generate test input pairs for the testable paths. PathATPG is fast ATPG 

tool that is based on the SAT-solvers. 
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• Estimation in a subspace of the variations space: Measurement matr ices in 

Equations 3.5 and 4.9 are not full rank. Thus, we should not expect to 

estimate variations of all gates; i.e., null space of the measurement matrix 

A, J\f(A) = {)/£ R"|Ay = 0}, is not accessible. 

Assume Ak is a measurement matrix that includes K measurements (delay 

or power). For a large K (say K > 10N, where N is the number of 

gates), range of Ak, cover almost whole the variation space that can be 

measured. Hence, we use singular vectors of Ak as the comparison space. 

By estimation in ne subspace, we mean estimation in direction of the first 

ne singular vectors of Ak. 

• As it is explained in Section 3.2, we use multi-voltage power measurements 

to construct the measurement matrix. 

• We have used the exponential correlogram function to generate the varia-

tions (see 2.2). We have used the same function as 7(e?j,u) i n Section 3.4. 

6.2 Power tomography results 

In this section, we evaluate performance of the ^2-norm optimization, the ^i-norrri 

regularization, and TUSC for the chip tomography. 
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Figure 6.1: Singular values of the measurement matrix. 

6.2.1 Measurement matrix evaluation 

The functionality of the IC imposes dependencies in logic gate status. Thus, the 

power vectors for the input vectors (i.e., the rows of the measurement matrix 

A) are not necessarily independent. In this sections, we use the singular value 

decomposition (SVD) to quantify the dependency of the rows of A. 

A matrix with N independent rows has N non-zero singular values. The 

sorted singular values of C499 and C880 circuits are shown in Figure 6.1 for a 

measurement matrix with M = 6 x N measurements, where N is the number of 

gates. On the figure the singular values for each circuit are normalized such that 

the largest singular value is 1. The figure demonstrates that the singular values 

decay rapidly; the 20-th singular value in both circuits are less than 10% (0.1). 
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Figure 6.2: Variations estimation error vs. percent of the power measurement noise. 

This decay suggests that it is not possible to find variation of all gates indepen-

dently because there is no information about the null space of the measurement 

matrix, Af(A) = {y G R^j/ ly = 0}. Thus, we can only estimate the variation in 

a subspace S that does not contain M(A). 

6.2.2 Tomography results in the power framework 

To study the performance of the proposed tomography method, we have simulated 

the process variation on a number of MCNC benchmarks. A total of 12% variation 

is assumed in the simulations. Based on the data in [16] and [76], 20% of the 

total variation is inter-die variation, 60% is spatial correlated intra-die variation, 

and 20% is random uncorrelated variation. To model the leakage current (static 
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Figure 6.3: Variation estimation error vs. number of power measurements. 

power), we used the HSPICE simulator on 65nm CMOS transistor technology. 

Figure 6.3 presents variations estimation error for the C499 and the C880 

benchmark circuits. The horizontal axis is the power measurement noise and 

the vertical axis is the variations estimation error. The variation estimation is 

calculated in a TV/3-dimensional subspace, where N is the number of gates. Note 

that by construction the estimation space is orthogonal to the null space of the 

measurement matrix. Thus, for low noise measurements the £i-regularization and 

TUSC are very similar. As the noise level increases, TUSC performs better than 

the £i-norm regularization. Note that ^-minimization performs much worse than 

^i-regularization and TUSC; it is not shown on the figure, please refer to Table 

6.2 for this comparison. 
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The number of measurements also affects the estimation error. Figure 6.3 

presents variation estimation error versus number of measurements. The hori-

zontal axis is the ratio of measurements to the total number of the gates in the 

circuit. The variation is estimated on N/4-dimensional subspace. M is 383 and 

317 for C499 and C880 respectively (M denotes the number of measurements in 

Table 6.2). Note that as the number of measurements increases, they cover most 

of the identifiable directions. Thus sparsity and shape constraints are similar in 

large number of measurements and the errors of the ^i-regularization and TUSC 

become nearly the same. 

Table 6.1 shows average number of the independent power vectors for single 

and multiple voltage measurement. The second column is the number of power 

vectors (measurements). To find number of the independent vectors in each mea-

surement set, we first find their singular values, then we count the number of 

non-zero singular values. The third and fifth columns show the number of inde-

pendent power vectors for single and triple voltage measurements, respectively. 

The table explains that triple voltage measurements increases the number of 

independent power vectors. 

Table 6.2 shows tomography results on different benchmark circuits. We used 

the software package SIS [67] with NAND2, NAND3, NAND4, NOR2, NOR3, 

NOR4, and inverters to map the circuit to the logic gates. The second column 

shows the number of gates and the third column reports the number of input 
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I. 

Table 6.1: Average number of independent power vectors for single and triple voltage 

measurements. 

Circuit Number of measurements Single-voltage 3-voltages 

C432 185 132.6 151.6 

C499 383 183.4 265.0 

C880 317 217.0 250.7 

C1355 465 184.4 251.5 

C1908 553 192.9 260.9 

C2670 540 322.9 350.3 

alu2 324 167.9 198.2 

alu4 659 312.9 351.8 

comp 127 84.5 112.7 

cordic 79 55.1 71.1 

b9 101 84.2 92.7 

c8 138 112.0 127.0 
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Table 6.2: Performance of the ^2-norm minimization, the ^-norm regularization, and 

TUSC for a number of MCNC benchmark circuits in the power framework. 

Circuit propert ies 3% noise 6% noise 9% noise 

name # g a t e s // inputs # m e a s "N/2 
'i subspace « l - reg . < 2 -min . T U S C ^l-reg. ^2-min. T U S C * l -reg . ^2-min. T U S C 

C432 206 36 185 0 .0076 61 2 .82 6.08 3 .97 5 .13 12.13 5 .57 7 .75 18.19 7 .46 C432 206 36 185 0 .0076 

92 4 .85 10.21 7 .40 8 .76 20 .41 9 .58 12.86 30 .63 12.27 

C499 532 41 383 0 .0009 127 2 .71 9 .87 2.7 4 .98 19.77 4 .77 7 .31 29 .67 6 .97 C499 532 41 383 0 .0009 

191 7 .83 38.08 8.18 13.90 76 .40 11.56 20 .50 114 15.6 

C880 353 60 317 0 .004 105 3 .20 8 .61 2 .99 6 .06 17.27 5 .66 9 .01 2 5 . 9 4 8 .39 C880 353 60 317 0 .004 

158 6 .03 16.00 5 .59 11.27 32.11 10.12 16.72 2 5 . 9 4 8 .39 

C1355 517 41 465 0 .0008 155 4 .27 65 .19 4 .27 7 .61 130.7 7 .32 11 .10 196 .3 10.42 C1355 517 41 465 0 .0008 

232 15.82 248 .3 15.33 26.51 498 .2 19.11 37 .65 748 .3 23 .72 

C 1 9 0 8 615 33 553 0 .0002 184 4 .89 44 .77 5 .19 9 .29 89 .69 8 .35 13.77 134.6 11.87 C 1 9 0 8 615 33 553 0 .0002 

276 14.71 113.4 13.05 22 .53 227 .1 16.78 30 .60 340 .9 2 1 . 8 3 

C2670 900 233 540 4e-5 180 4 .05 5.43 3 .76 7 .29 10.87 6 .95 10 .70 16 .30 10 .24 C2670 900 233 540 4e-5 

270 8 .53 11.52 8 .37 15.17 23 .04 13.75 22 .25 34 .56 19.56 

alu2 360 10 324 0 .0014 108 6 .35 54 .97 5 .67 10.12 109.7 9 .21 14 .29 164.5 13 .10 alu2 360 10 324 0 .0014 

162 13.61 120.9 12.83 21 .54 241 .4 17.80 30 .37 361 .9 23 .74 

alu4 733 14 659 0 .0008 219 6 .70 64.01 5.82 11.56 127.96 10.74 16 .73 191.9 15.81 alu4 733 14 659 0 .0008 

329 13.61 129.53 11.66 21 .91 258 .9 19.75 31 .06 388 .4 28 .44 

c o m p 163 32 127 0 .005 42 2 .73 3.94 2 .60 4 .87 7 .74 4 .67 7 .12 11.56 6 .84 c o m p 163 32 127 0 .005 

63 4 .47 6 .34 4 .25 7 .94 12.42 7 .56 11 .64 11.56 6 .84 

cordic 102 23 79 0 .005 26 1.87 3 .74 3 .01 3 .23 7 .45 3 .85 4 .67 11.17 4 .93 cordic 102 23 79 0 .005 

39 3 .35 6 .54 6 .97 5 .84 13.01 8 .02 8 .46 19.51 9 .48 

b9 113 41 101 0 .014 33 2 .51 4 .02 3 .66 4 .68 8 .02 5 .01 6 .90 12.02 6 .66 b9 113 41 101 0 .014 

50 4 .00 6.84 6 .79 7 .42 13.63 8 .50 10.97 20 .44 10.67 

c8 165 28 138 0 .008 46 3 .50 4.61 4 .32 6 .01 8 .93 6 .06 8 .74 13 .30 8 .10 c8 165 28 138 0 .008 

69 6 .22 8 .06 8 .50 10.56 15.66 10.91 15.26 23 .36 13.86 
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Figure 6.4: Singular values of the measurement matrices decay very fast. 

pins. For each circuit, we have measured the path delays for a number of paths 

in the testable basis set, reported in the fourth column. The fifth column shows 

the ratio of the iV/2-th singular value of the measurement matrix to the 1-st one. 

The M/3 and the M/2-dimensional subspaces—the sizes of which are reported in 

the sixth column—were estimated for the -regularization, the ^-minimization, 

and the TUSC methods were evaluated (M is the number of measurements). The 

remaining columns demonstrate the results for 3%, 6%, and 9% measurement 

noise. On average, the ^-regularization and the TUSC perform more than two 

times better in estimating the variations. 
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6.3 Delay evaluation results 

6.3.1 Measurement matrix and estimation in subspaces 

As mentioned in Section 4.2, due to the existence of ambiguities (path dependen-

cies), it may not be possible to find the variations for all gates in the circuit. In 

the other words, the measurement matrix, A, is not necessarily a full-rank ma-

trix. Most often the measurement matrix is ill-conditioned and its singular values 

decay rapidly. Figure 6.4 shows singular values of the measurement matrix for 

C880 and C499 circuit. The singular values are normalized to have the maximum 

value equal to 1. The singular values decay to 10% of the maximum after almost 

100 singular values. Note that C432 and C880 have 206 and 353 gates, respec-

tively. The figure also shows the singular value of a random Gaussian matrix. It 

is clear that singular values of the measurement matrices (for C499, C800) decay 

much faster than the random Gaussian matrix. 

Hence, it is not possible to find the variations of all gates. We measured 

estimation error in the space of singular values. The estimation error is minimum 

at the direction of the singular vector corresponding to the largest singular value 

and so on. We say the estimation subspace has dimension ne, when we project 

estimation error to the space of the first ne singular vectors. 
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6.3.2 Delay tomography results 

To evaluate the performance of the proposed methods, we simulate the variation 

model (Section 4.1.1) on a number of MCNC benchmark circuits. A total of 12% 

random variations is assumed. Correlated intra-die variation is 60% of the total 

variation [16] [76]; 20% of the total variation is uncorrelated intra-die variation 

and the remaining variation is allotted to the inter-die variation. 

Similar to Section 6.2, we have used SIS software to map the benchmark 

circuits to NAND2, NAND3, NAND4, NOR2, NOR3, NOR4, and inverter gates. 

Then, using Dragon, a placement software package [1], gates are placed on the IC. 

Since various gates cover different areas on the IC, gates are located on irregular 

grids. 

To calculate the falling and rising coefficients (£/lSu and £r,gu in Equation 4.7), 

we implemented all the gates with 65nm CMOS transistor technology. Then, we 

used the HSPICE software to fit the linear model for all gates. 

Figure 6.5 shows variations estimation error for the ^-minimization and the 

^i-regularization methods. The horizontal axis is delay measurement noise and 

the vertical axis is variations estimation error. The ^-regularization yields more 

than a 50% decrease in error over the ^-minimization. The estimation subspace 

is 84 for both C432 and C880 circuits. When measurement noise is small, delay 

measurements provides enough information to estimate variations accurately. As 

measurement noise increase, sparsity does not provide significant information. 
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Figure 6.5: Variation (delay) estimation error vs. measurement error. 

Thus, performance of the ^-regularization over the ^-minimization increases as 

measurement noise increases. 

The effect of the number of measurements is illustrated in Figure 6.6. The 

horizontal axis is the number of delay measurements divided by the number of 

the gates. Again, the ^i-regularization performs more than two times better than 

the ^-minimization. On the figure, the estimation subspace is 84 for both C432 

and C880 circuits. 

Next, we evaluate the basis path sets for the benchmark circuits. The method 

introduced in Section 4.5.2 provides a heuristic procedure for basis path selection. 

However, it does not necessarily result in an independent basis path that covers all 

the space. Table 6.3 shows the number of basis paths in the benchmark circuits. 
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Table 6.3: Number of independent paths and independent linear equations. For each 

path, rising and falling transitions result in different linear equations. 

Circuit gates # basis path # independent 

paths 

# independent 

linear equations 

C432 206 199 121 153 

C499 532 422 271 375 

C880 353 351 184 253 

C1355 517 480 233 335 

C1908 615 590 318 414 

C2670 900 979 422 632 

alu2 360 368 183 230 

alu4 733 693 337 449 

comp 163 131 84 122 

cordic 102 92 59 77 

b9 113 142 75 90 

c8 165 201 96 119 
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Figure 6.6: Variation (delay) estimation error vs. the number of measurements. 

The third column is the number of independent paths in each basis path. As 

mentioned before, two linear equations can be written for each path (rising and 

falling transitions). The last column of the table is number of independent linear 

equations that provides each basis path set. 

Finally, Table 6.4 shows results of variation estimation on 12 benchmark cir-

cuits. After the benchmarks' name, the first, the second and the third columns 

are the number of gates, the number of inputs in the circuit, and the number of 

delay measurements, respectively. The fourth column is the ratio of the TV/2-th 

singular value to the first singular value in the measurement matrix (N is num-

ber of gates). This column shows how fast singular values decay; or how the 

measurement matrix is well conditioned. The fifth column is the estimation sub-
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Table 6.4: Performance of ^2-norm minimization and ^i-norm regularization for a num-

ber of MCNC benchmark circuits. 

Circuit propert ies 3% noise 6% noise 9% noise 

name # g a t e s # i n p u t s # m e a s "N/2 subspace i\ error £2 error £2 error £2 error £\ error £2 error 

C432 206 36 199 0 .035 39 6 .05 7.15 10.38 13.72 14.88 20 .42 C432 206 36 199 0 .035 

66 10.13 12.29 16.18 22 .47 22.8 32 .93 

C499 532 41 422 0 .022 84 7 .31 13.15 10.82 25 .72 15.29 38.41 C499 532 41 422 0 .022 

140 11.10 20.47 16.12 39.0 22 .69 57 .94 

C880 353 60 421 0 .036 84 4 .52 8 .93 8 .42 17.81 12.41 26.71 C880 353 60 421 0 .036 

140 7 .71 13.12 14.86 26 .06 21 .95 39 .04 

C1355 517 41 4 8 0 0 .0211 96 5 .00 8 .19 9 .04 16 .39 12.61 24.58 C1355 517 41 4 8 0 0 .0211 

160 6 .35 9 .50 11 .90 19.00 17.07 28 .50 

C1908 615 33 590 0 .020 118 4 .89 7 .51 8 .87 14.66 13.0 21 .89 C1908 615 33 590 0 .020 

196 7 .9 12.54 13.92 24 .30 20 .32 36 .20 

C2670 900 233 979 0 .022 194 8 .68 21.76 11 .34 41 .48 14.99 61 .47 C2670 900 233 979 0 .022 

326 10.42 21 .83 14.61 41 .37 19.52 61 .29 

alu2 360 10 368 0 .015 73 5 .20 6 .06 7 .75 9 .83 10.66 13.99 alu2 360 10 368 0 .015 

122 10.22 11.59 14 .53 17.98 19.43 25.11 

alu4 733 14 693 0 .010 138 5 .94 10.06 9 .84 19 .89 14.21 29 .79 alu4 733 14 693 0 .010 

231 10.60 16.51 15.70 32 .76 21.99 49 .10 

c o m p 163 32 131 0 .023 26 5 .18 11.00 8 .07 21 .23 11.08 31 .53 c o m p 163 32 131 0 .023 

43 7 .60 15.92 13.52 31 .16 19.38 46 .45 

cordic 102 23 92 0 .03 18 4 .43 26 .72 7 .11 53 .41 10.09 80 .11 cordic 102 23 92 0 .03 

30 9 .75 62 .83 14.57 125 20 .27 188 

b9 113 41 142 0 .076 28 2 .12 2 .22 3 .51 3 .75 5 .04 5 .43 b9 113 41 142 0 .076 

47 4 .27 4 .94 6 .43 8 .04 8 .97 11.48 

c8 165 28 201 0 .039 40 11 .03 17.51 16.15 31 .19 21 .52 45 .52 c8 165 28 201 0 .039 

67 25 .70 41 .12 33 .43 74 .30 43 .00 109 
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space. The rest of the columns represent the estimation error (in percent) for 12 

minimization and t\ regularization with 3%, 6%, and 9% percent measurement 

noise. 
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Chapter 7 

Conclusion 

We proposed a fast and inexpensive method for the gate-level variations estima-

tion in the power and the delay frameworks. In the power framework, the total 

power consumption is measured for a number of input vectors to the IC. Because 

of the variations, the power consumption of the gates in the circuit will be scaled. 

Using the leakage model of variations, we construct a linear equation for each 

power measurement with the scaling factors of the gates as the unknown vari-

ables. In the delay framework, the linear equations are constructed by measuring 

delays of a sensitizable basis path set. Here, unknown variables are the variations 

in the gate sizing that have a linear relationship with the delay. 

Next, we estimate the gate-level variations (power or delay) by solving the ap-

propriate system of linear equations. We can use the traditional ^-minimization 

to estimate the gate level variations. Since there are not enough linearly inde-
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pendent measurements, the ^-minimization method performs poorly. However, 

it is widely known that variations (power or delay) are spatially correlated; i.e., 

nearby gates are expected to have close variations. Because of the spatial correla-

tions in the variations, there exists a basis in which variations can be represented 

sparsely. The sparse representation suggests using the compressive sensing theory. 

We show how to use the compressive sensing theory to improve the post-silicon 

characterization. We also modify the traditional ^-minimization by adding the 

spatial constraint directly. The spatial constraints enforce the nearby gates to 

have close variations. The proposed method just uses external input/output pins 

of the IC for the estimation. In the power framework, first, a number of input 

vectors are applied to the IC and power consumption is measured for each input 

vector. Next, we establish an optimization problem based on the power measure-

ments. Finally, we improve the optimization problem using spatial correlation in 

variations. In the delay framework, we follow the same procedure as we did in 

the power framework. However, one can measure paths delays just in sensitizable 

paths. Thus, here, the optimization problem is constructed based on the delay 

measurements in a set of testable basis paths. 

The variations can affect various properties in the IC and estimating variations 

in an IC suggests a number of applications such as post-silicon optimizations. 

Evaluation results verify our method. We showed that, compared to traditional 

.^-minimization, £i-regularization can improve variation estimation about 80% 
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on average. 
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