
RICE UNIVERSITY

Performance Analysis for Parallel P rograms

From Multicore to Petascale

by

N a t h a n Russel l Tallent

A T H E S I S S U B M I T T E D

IN PARTIAL F U L F I L L M E N T O F T H E

R E Q U I R E M E N T S F O R T H E D E G R E E

Doctor of Phi losophy

A P P R O V E D , T H E S I S C O M M I T T E E :

yMjlt ~
John Mellor-Crummey, (Sha
Professor of Computer Science and
Electrical & Computer Engineering

Vivek Sarkar
E.D. Butcher Professor of Computer Science
and Electrical/fe Computer Engineering

1 1 +->-^

Peter Va^jflan
Professor of Electrical & Computer
Engineering and Computer Science

Robert Fowler
Chief Domain Scientist, High Performance
Computing, Renaissance Computing Institute

H O U S T O N , T E X A S

M A R C H 2010

UMI Number: 3421196

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3421196
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Performance Analysis for Parallel Programs

From Multicore to Petascale

by

Nathan Russell Tallent

Cutting-edge science and engineering applications require petascale computing.

Petascale computing platforms are characterized by both extreme parallelism (sys

tems of hundreds of thousands to millions of cores) and hybrid parallelism (nodes

with multicore chips). Consequently, to effectively use petascale resources, appli

cations must exploit concurrency at both the node and system level — a difficult

problem. The challenge of developing scalable petascale applications is only partially

aided by existing languages and compilers. As a result, manual performance tuning

is often necessary to identify and resolve poor parallel and serial efficiency.

Our thesis is that it is possible to achieve unique, accurate, and actionable insight

into the performance of fully optimized parallel programs by measuring them with

asynchronous-sampling-based call path profiles; attributing the resulting binary-level

measurements to source code structure; analyzing measurements on-the-fly and post

mortem to highlight performance inefficiencies; and presenting the resulting context-

sensitive metrics in three complementary views. To support this thesis, we have

developed several techniques for identifying performance problems in fully optimized

serial, multithreaded and petascale programs. First, we describe how to attribute

very precise (instruction-level) measurements to source-level static and dynamic con

texts in fully optimized applications — all for an average run-time overhead of a

few percent. We then generalize this work with the development of logical call path

profiling and apply it to work-stealing-based applications. Second, we describe tech

niques for pinpointing and quantifying parallel inefficiencies such as parallel idleness,

parallel overhead and lock contention in multithreaded executions. Third, we show

how to diagnose scalability bottlenecks in petascale applications by scaling our our

measurement, analysis and presentation tools to support large-scale executions. Fi

nally, we provide a coherent framework for these techniques by sketching a unique

and comprehensive performance analysis methodology. This work forms the basis of

Rice University's H P C T O O L K I T performance tools.

Acknowledgments

This dissertation represents more than just my past few years of Computer Science

graduate study. Seemingly by accident, I became involved in the early stages of

the HPCTOOLKIT performance tools project (nee HPCView), inaugurated by John

Mellor-Crummey. Consequently, before beginning any work toward this dissertation,

I had helped build most of what became the proto HPCTOOLKIT.

Nevertheless, I must highlight this dissertation's profound debt to others. The

most generous share of credit goes to my advisor, John Mellor-Crummey, whose

guidance and insight inform and infuse this work. I must also acknowledge several

additional collaborators (in alphabetical order):

• Laksono Adhianto, who is the primary implementer of H P C T O O L K I T ' S presen

tation tool, hpcviewer.

• Mike Fagan, who contributed to Chapter 3's on-the-fly binary analysis for un

winding call stacks and whose continual questions uncover weaknesses in our

thinking.

• Mark Krentel, whose efforts and commitment to correctness have vastly im

proved H P C T O O L K I T ' S ability to dynamically and statically monitor processes

and threads.

• Allan Porterfield, who helped develop Chapter 6's blame shifting.

Additionally, I am grateful to (in chapter order):

• Chapter 3: Mark Charney and Robert Cohn of Intel who assisted with XED2 [38].

• Chapter 6: Robert Fowler for focusing our attention on MADNESS; Robert

Harrison for helping us with his MADNESS code; and William Scherer for

reminding us of Bacon's prior work on dual-representation locks and pointing

out the similarity to STM contention managers.

• Chapter 7: Anshu Dubey and Chris Daley of the FLASH team; and Peter

Lichtner, Glenn Hammond and other members of the PFLOTRAN team. Both

teams graciously provided us with a copy of their respective code, configuration

advice, and a test problem of interest.

Finally, I would like to acknowledge Robert Fowler, who was deeply involved with

H P C T O O L K I T while at Rice; Gabriel Marin, who was part of the original HPC-

TOOLKIT team; Nathan Froyd, who worked on an early version of what is now HPC-

TOOLKIT'S measurement tool; and Cristian Coarfa, who first explored the scalability

analysis technique used in Chapter 7.

Development of the H P C T O O L K I T performance tools would not have been pos

sible without without

• support from the Department of Energy's Office of Science under cooperative

agreements DE-FC02-07ER25800 and DE-FC02-06ER25762;

• equipment purchased in part with funds from NSF Grant CNS-0421109;

• resources at the Argonne Leadership Computing Facility at Argonne National

Laboratory, which is supported by the Office of Science of the U.S. Department

of Energy under contract DE-AC02-06CH11357;

• resources at the National Center for Computational Sciences at Oak Ridge

National Laboratory, which is supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC05-00OR22725.

* * *

While academic supervision and financial support are necessary for dissertation

research, they are not sufficient. To my parents, who lived like sojourners for their

children; and to my grandfather Jack, who wanted to see this day: this dissertation

is dedicated to you. To my wife, two sons and baby: we let the wind sweep away

the world's wisdom and, despite a shoestring budget and some competition between

midnight baby sitting and midnight paper writing, have been the happier for it. And

finally, would science be possible without a starting point?

For all knowledge proceeds from faith of whatever kind. You lean on

God, you proceed from your own ego, or you hold fast to your ideal. The

person who does not believe does not exist. At the very least, one who

had nothing standing immediately firm before him could not find a point

for his thinking to even begin. And how could someone whose thinking

lacked a starting point ever investigate something scientifically?

Abraham Kuyper, October 20, 1880. [24, p. 486]

Contents

1 Introduction 1

2 A Methodology for Performance Analysis 9
2.1 Introduction 9
2.2 Principles of Performance Analysis 10
2.3 From Principles to Practical Methods 16

2.3.1 Measurement 18
2.3.2 Attribution 22
2.3.3 Analysis 24
2.3.4 Presentation 25

2.4 Related Work 30
2.5 Discussion 35

3 Measurement & Attribution: Fully Optimized Applications 37
3.1 Introduction 37
3.2 Binary Analysis for Call Path Profiling 44

3.2.1 Inferring Procedure Bounds 46
3.2.2 Computing Unwind Recipes 50
3.2.3 Evaluation 53

3.3 Binary Analysis for Source-Level Attribution 60
3.3.1 Recovering the Procedure Hierarchy 62
3.3.2 Recovering Alien Contexts 65
3.3.3 Recovering Loop Nests 67
3.3.4 Normalization 72
3.3.5 Summary 73

3.4 Putting It All Together 73
3.4.1 MOAB 74
3.4.2 S3D 75

3.5 Related Work 77
3.6 Discussion 79

4 Measurement &: Attribution: Logical Call Path Profiling 81
4.1 Introduction 81
4.2 The Challenges of Work Stealing 84
4.3 Logical Call Path Profiles 88

4.3.1 Logical Call Paths 89
4.3.2 Representing Logical Call Path Profiles 92

l

4.4 Obtaining Logical Call Path Profiles 93
4.4.1 Logical Stack Unwinding 94
4.4.2 Thread Creation Contexts 95
4.4.3 An API for Logical Unwinding 95

4.5 Logical Call Path Profiles of Cilk Executions 98
4.6 Related Work 100
4.7 Discussion 101

5 Analysis of Multithreaded Executions: Work Stealing 103
5.1 Introduction 103
5.2 Pinpointing Parallel Bottlenecks 105

5.2.1 Quantifying Insufficient Parallelism 105
5.2.2 Quantifying Parallelization Overhead 108
5.2.3 Analyzing Efficiency 110

5.3 Measurement and Analysis of Cilk Executions I l l
5.3.1 Parallel Work and Idleness 112
5.3.2 Parallel Overhead 112
5.3.3 Case Study 115

5.4 Related Work 119
5.5 Discussion 122

6 Analysis of Multithreaded Executions: Lock Contention 123
6.1 Introduction 123
6.2 Attributing Idleness to its Calling Context 125

6.2.1 A Straightforward Strategy 125
6.2.2 Blocking (Sleep-waiting) 127
6.2.3 Evaluation 127

6.3 Blaming Idleness on Lock-holders 129
6.3.1 Extending a Prior Strategy 129
6.3.2 Making It Practical 131
6.3.3 Evaluation 133

6.4 Communicating Blame Directly to Lock-holders 134
6.4.1 Blame Shifting: A Distributed and Precise Strategy 134
6.4.2 Blame Shifting in Action 136
6.4.3 Dual-representation Locks 139
6.4.4 Blocking (Sleep-waiting) 145
6.4.5 Hints for Developers 146

6.5 Case Studies 147
6.5.1 MADNESS 147
6.5.2 UTS 153
6.5.3 SSCA #2 154

6.6 Related Work 154
6.7 Discussion 157

7 Analysis & Presentation of Petascale Executions 160
7.1 Introduction 160
7.2 Scalable Measurement, Analysis and Presentation 166

7.2.1 Pinpointing Scaling Losses Using Call Path Profiling 166
7.2.2 Analyzing & Presenting Large-Scale Executions 169
7.2.3 Scalably Computing Metrics 171
7.2.4 Scalably Presenting Call Path Profiles 177

7.3 Application Studies 194
7.3.1 PFLOTRAN 196
7.3.2 FLASH 209
7.3.3 MILC 215

7.4 Related Work 219

7.5 Discussion 221

8 Conclusions 224

Appendices 234

A Theory of Sampling-Based Measurement 234
A.l A Sampling-based Measurement Strategy 235

A. 1.1 Instruction-based sampling 237
A.1.2 Event-based sampling 238
A.1.3 Practical considerations 239

A.2 Analyzing the Strategy 241
A.2.1 Error bounds for Yc 242
A.2.2 Accuracy of Yc 244
A.2.3 Choosing sampling periods 246

B Efficiently Representing Logical CCTs 249
B.l Terminology 250
B.2 Sharing Within Bichords 251
B.3 Implementation 253

C Definitions of Atomic Primitives 256

List of Figures

2.1 Overview of HPCTOOLKIT tool's workflow 16
2.2 An asynchronous-sampling-based call path profiler 20
2.3 hpcviewer's Calling Context view of scaling losses (cycles). 26
2.4 hpcviewer's Callers view of scaling losses (cycles) 27

3.1 Attributing call path metrics to source code 43
3.2 Comparing hpcrun's and Intel PTU's overhead and unwind failures on

SPEC CPU2006 54
3.3 Representing program structure with a mapping between object code

and source-code structure 60
3.4 Example of typical line map information 62
3.5 Bounding procedure end lines 64
3.6 Recovering alien contexts 66
3.7 Detecting incorrect loop placement via nesting cycles while recovering

program structure 70
3.8 Correcting nesting cycles while recovering program structure 71
3.9 hpcviewer's Calling Context view showing call paths overlayed with

static program structure for MOAB (C++) 74
3.10 hpcviewer's Flat view exposing loops for S3D (Fortran 90) 76

4.1 Example of Cilk's simplicity and expressiveness 85
4.2 Scheduling work via work stealing 86
4.3 An asynchronous-sampling-based call path profiler 87
4.4 A case for logical call path profiling 88
4.5 The logical call path for a typical Cilk worker thread 100

5.1 Using parallel idleness and overhead to determine if the given applica
tion and input are effectively parallel on n cores 110

5.2 Fragment of a Cilk program for computing Fibonacci numbers and
compiled C code for that fragment 114

5.3 hpcviewer's Calling Context view of Cholesky 116
5.4 hpcviewer's Callers view of Cholesky 118

6.1 hpcviewer's Calling Context view of MADNESS's moldft 149
6.2 hpcviewer's Callers view of MADNESS's moldft 151

7.1 A pictorial representation of differencing call path profiles to pinpoint
(weak) scaling bottlenecks 168

7.2 Function prototypes for an incrementally computed metric 172

IV

7.3 Computing sum, mean, minimum and maximum incrementally 174
7.4 Computing standard deviation incrementally 175
7.5 Comparing different definitions for exclusive Calling Context metrics. 179
7.6 Example showing that it is, in general, impossible to compute derived

metric values given finalized derived metric values 184
7.7 Computing metrics incrementally for a Flat or Callers view 190
7.8 hpcviewer's Calling Context view of PFLOTRAN on a Cray XT4. . 197
7.9 hpcviewer's Flat view of PFLOTRAN on a Cray XT4 199
7.10 hpcviewer's Callers view of scaling losses for PFLOTRAN on a Cray

XT4 200
7.11 hpcviewer's Flat view of floating point efficiency for PFLOTRAN on

a Cray XT5 203
7.12 hpcviewer's Callers view of variance within PFLOTRAN on a Cray

XT5 205
7.13 hpcviewer's Calling Context view of PFLOTRAN's variability on a

Cray XT5 208
7.14 hpcviewer's Callers view of scaling losses (wallclock) for FLASH on

an IBMBG/P 211
7.15 hpcviewer's Callers view of scaling losses (cycles) for FLASH on a

Cray XT4 213
7.16 hpcviewer's Calling Context view of scaling losses (cycles) for MILC

o n a B G / P 216
7.17 A closer look at scaling losses for MILC on a BG/P 217

A.l A systematic sample 242

List of Algorithms

3.1 backtrace: Use on-the-fly binary analysis to unwind call stacks from fully
optimized code 47

3.2 recover-program-structure: Recover static source code structure from an
application binary 69

3.3 determine-context: Determine the static context of a loop or statement. 69

4.1 logical-backtrace: Perform a logical unwind 97

6.1 blame-suspects: On sampling a working thread, compute that thread's
blame for the execution's idleness based on associated suspects 133

6.2 demand-mon-lock: The protocol for converting a native lock into an out-
of-band lock in demand-driven fashion 140

6.3 lock-mon-lock: Lock a dual-representation lock 141
6.4 trylock-mon-lock: Trylock on a dual-representation lock 143
6.5 unlock-mon-lock: Unlock a dual-representation lock 145

7.1 incrementally-compute-metrics: Incrementally compute derived metrics
in parallel 173

7.2 make-flat-view: Given a Calling Context view with non-finalized derived
metric values, make a Flat view 187

7.3 make-callers-view: Given a Calling Context view with non-finalized de
rived metric values, make a Callers view 191

VI

Chapter 1

Introduction

High performance computers have become enormously complex. Today's largest

systems consist of tens of thousands of nodes and current plans call for a hundred

thousand. Nodes themselves are equipped with one or more multicore microproces

sors. Often these processor cores support additional levels of parallelism, such as

hardware threads, short vector operations and pipelined execution of multiple in

structions. Microprocessor-based nodes rely on deep multi-level memory hierarchies

for managing latency and improving data bandwidth to processor cores. Subsystems

for interprocessor communication and parallel I/O add to the overall complexity of

these platforms. Recently, accelerators such as graphics chips and other co-processors

have started to become more common on nodes. As the complexity of high perfor

mance computing (HPC) systems has grown, the complexity of applications has grown

as well. Multi-scale and multi-physics applications are increasingly common, as are

coupled applications.

Because HPC computing resources are limited and therefore precious, achieving

top performance on leading-edge systems is critical. Unfortunately, existing compilers

and other automatic techniques often fail to achieve top performance. The inability

to harness such machines efficiently limits their ability to tackle the largest problems

of interest. As a result, there is an urgent need for effective and scalable tools that can

pinpoint a variety of performance and scalability bottlenecks in complex applications.

1

Our thesis is that it is possible to achieve unique, accurate, and actionable insight

into the performance of fully optimized parallel programs by (1) measuring them

with asynchronous-sampling-based call path profiles; (2) attributing the resulting

binary-level measurements to source code structure; (3) analyzing measurements on-

the-fly and post-mortem to highlight performance inefficiencies; and (4) presenting

the resulting context-sensitive metrics in three complementary views. By actionable

insight, we refer to insight into an application's performance that justifies concrete

actions, such as determining how to resolve a performance bottleneck or deciding that

there are no significant and worthwhile opportunities for performance improvement.

By program performance, we refer to characterizing the performance of a particular

execution. This is in contrast to constructing analytical models of a program that can

be used for performance prediction on different inputs or architectures. Although we

only focus on obtaining performance insight from a particular execution, it is often

the case that fixing a bottleneck in a representative execution improves performance

on different inputs and architectures.

To support this thesis, we have developed several techniques for identifying per

formance problems in fully optimized serial, multithreaded and petascale programs

and have shown how these techniques form a coherent methodology. This work forms

the basis of Rice University's HPCTOOLKIT performance tools [119].

Methodology. To lay a foundation for our work, Chapter 2 sketches a performance

analysis methodology. This methodology is based on a set of complementary prin

ciples that, while not novel in themselves, form a coherent synthesis that is greater

than the constituent parts. Our methodology is accurate, because it assiduously

avoids systematic measurement error (such as that introduced by instrumentation);

scalable, because it can be used to effectively analyze the performance of a single

2

thread or a large parallel execution; and actionable, because it associates insightful

performance metrics (such as parallel inefficiency, scalability loss or memory band

width consumed) with important source code abstractions (such as loops) in their

full dynamic calling contexts [1,95,96,138].

Measurement 8z Attribution. Chapters 3 and 4 present the measurement and at

tribution technology that serves as a foundation for the analysis techniques described

in later chapters. In particular, we describe how to attribute very precise measure

ments to source-level static and dynamic contexts in fully optimized applications —

all for an average run-time overhead of a few percent [141].

Modern programs frequently employ sophisticated modular designs. As a result,

performance problems cannot be identified from metrics attributed to procedures in

isolation; understanding code performance requires information about a procedure's

calling context. Performance tools that attribute performance metrics to their full

calling context are called call path profilers [67]. Current strategies for attributing

calling-context-sensitive performance at the source level for fully optimized applica

tions either compromise measurement accuracy, remain too close to the binary, or

require custom compilers. Many tools measure using instrumentation, i.e., special

instructions inserted directly into an application. Tools based on general instrumen

tation incur large overheads — often factors of at least two — that compromise

accuracy. To avoid large overheads, we use asynchronous sampling. Sampling-based

call path profilers must be able to unwind a program thread's call stack and then

attribute the result back to source code. Existing sampling-based call path profilers

are unable to reliably do this for fully optimized applications.

To understand the performance of fully optimized modular code, Chapter 3 de

scribes two novel binary analysis techniques for asynchronous-sampling-based call

3

path profilers: (1) on-the-fly analysis of optimized machine code to enable minimally

intrusive measurements qualified by their full dynamic calling contexts; and (2) post

mortem analysis of optimized machine code and its debugging sections to recover

its program structure and reconstruct a mapping back to its source code [141]. By

combining the recovered static program structure with dynamic calling context infor

mation, HPCTOOLKIT can accurately attribute performance metrics to procedures,

loops, and inlined instances of procedures in their full calling contexts.

Over the past decade, high-level multithreaded programming models such as

Cilk [58] have emerged to simplify the development of multithreaded programs. These

programming models raise the level of abstraction of parallel programming by parti

tioning the problem into two parts: the programmer is responsible for expressing the

logical concurrency in a program and a run-time system is responsible for partitioning

and mapping parallel work efficiently onto a pool of threads for execution.

To apply our work on call path profiling to parallel programming models such

as Cilk, Chapter 4 generalizes the notion of call path profiling to logical call path

profiling [140,142]. For many high-level programming models, using call path profiling

to associate costs with the context in which they are incurred is not as simple as it

sounds. Standard call path profiling assumes a thread's call stack can be used as a

proxy for the full source-level calling context of a particular point in its execution.

However, for applications written in Cilk, which uses a work-stealing scheduler to

partition and map work onto a thread pool, the stack of native procedure frames active

within a thread represents only a suffix of the calling context. Moreover, Cilk's work-

stealing scheduler causes calling contexts to become separated in space and time as

procedure frames migrate between threads as work is distributed (stolen). As a result,

a standard call path profile of a Cilk execution shows fragments of call paths mapped

to each of the threads in the scheduler's thread pool. In contrast, a logical call path

4

profile attributes arbitrary performance metrics to source-level contexts for a Cilk

application, even in the presence of work distribution (stealing). Accomplishing this

requires bridging the gap between the expression of logical concurrency in a program

and its realization at run time as the program's work is dynamically partitioned and

scheduled onto a pool of threads. A later chapter uses these results to attribute

metrics that reflect parallel inefficiency to source-level calling contexts in Cilk.

Analysis of Multithreaded Executions. Chapters 5 and 6 focus on performance

analysis of multithreaded executions. Understanding why the performance of a mul

tithreaded program does not improve linearly with the number of cores in a shared-

memory multicore node is increasingly important. For instance, nodes on the Depart

ment of Energy's 'leadership class' machines currently contain 4-12 cores and nodes

on less-balanced large-scale systems will soon contain scores of threaded cores. To

address these issues, we developed techniques for pinpointing and quantifying parallel

inefficiencies in work-stealing-based and lock-based multithreaded applications.

To understand the performance of work-stealing-based programs, Chapter 5 de

velops techniques for quantifying parallel idleness and overhead and pinpointing them

to their logical calling context [140,142]. Parallel idleness occurs when threads are

stalled and unable to work, whereas parallel overhead occurs when a thread per

forms miscellaneous work other than the user's computation. These metrics enable

one to identify areas of an application where concurrency should be increased (to

reduce idleness), decreased (to reduce overhead), or where the present parallelization

is hopeless (where idleness and overhead are botff high). By basing our techniques on

asynchronous sampling, we can measure and attribute parallel idleness for minimal

overhead (< 5%). By using a combination of compiler support and post-mortem

binary analysis, we can measure parallel overhead without any measurement cost be-

5

yond normal profiling. These techniques apply broadly to high-level programming

models such as Cilk and OpenMP. Our results provide unique insight into the per

formance of complex modular code where existing techniques fail.

Although higher-level parallel programming models are attractive, most multi

threaded codes use locks to coordinate access to shared data. Indeed, fine-grain

locking remains the gold standard for performance. In addition, locks are used to

implement higher-level abstractions such as software transactional memory [50]. The

chief cause of parallel inefficiency in lock-based programs is lock contention. Being

able to quantify and attribute lock contention is important for understanding how to

improve a multithreaded program's scalability.

Chapter 6 proposes and evaluates three strategies for gaining insight into perfor

mance losses due to lock contention [144]. First, we consider using a straightforward

strategy based on call path profiling to attribute idle time and show that it fails to

yield insight into lock contention. Second, we consider an approach that builds on the

strategy of Chapter 5 for analyzing idleness in work stealing computations; we show

that this strategy does not work well for understanding lock contention. Finally, we

propose a new technique for measurement and analysis of lock contention that uses

data associated with locks to blame lock holders for the idleness of spinning threads.

Our approach incurs less than 5% overhead for a non-trivial execution of a quantum

chemistry code that makes extensive use of locking (65M distinct locks, a maximum

of 340K live locks, and an average of 30K lock acquisitions per second per thread)

and attributes lock contention to its full static and dynamic calling contexts. Our

strategy is distributed and should scale well to systems with larger core counts.

Analysis & Presentation of Petascale Executions. Finally, Chapter 7 focuses

on the performance analysis and presentation of petascale executions. The first petas-

6

cale systems became available in 2009. To compute at the petaflop level — a thousand

trillion floating point operations per second — petascale systems have hundreds of

thousands of processor cores. Because of the challenge of using petascale comput

ing platforms effectively, there is an acute need for application scientists to resolve

scaling bottlenecks. To help address these issues, we develop new features for HPC-

TOOLKIT to support the low-overhead (1-2%) collection of precise measurements on

emerging petascale platforms [2,56,143]. Additionally, we show how to scalably an

alyze and present data from large-scale runs, including how to scalably compute a

large set of derived metrics in parallel. With these new features, we show how to use

H P C T O O L K I T ' S call path sampling to pinpoint and quantify both scaling and node

performance bottlenecks. By applying this method to several emerging petascale ap

plications on the Cray XT and IBM BlueGene/P platforms, H P C T O O L K I T identifies

specific source lines — in their full calling context — associated with performance

bottlenecks in these codes. This information is exactly what application developers

need to know to improve their applications to take full advantage of the power of

petascale systems.

* * *

The principal goal of performance analysis is to determine if a production appli

cation has any performance bottlenecks and, if so, to provide actionable insight into

what should be done next. This at least involves highlighting, within source code,

bottlenecks that are both profitable and worthwhile to resolve. However, achieving

such actionable insight is difficult. Since performance measurement typically occurs

within a program's execution space, the very act of measuring disturbs a program's

execution. Consequently, there is a natural tension between measurement precision

and accuracy: the more precise measurements are, the more difficult to obtain ac-

7

curacy. Yet, both precise and accurate measurements are usually prerequisites for

actionable insight into program performance.

As a result, one of the principal focuses of this thesis has been the design and

implementation of techniques for providing accurate fine-grain measurements of pro

duction applications running at scale. For measurements to be accurate, performance

tools must avoid introducing measurement error, including error from overhead. For

tools to be useful on production applications, they cannot significantly increase ex

ecution time by inducing large overhead. H P C T O O L K I T is able to attribute precise

measurements — statements in their full static and dynamic calling context — with

low, controllable overhead and high accuracy.

A second overriding theme has been constructing insightful metrics from these

accurate fine-grain measurements. We have accomplished this in two ways. First, we

have highlighted sources of inefficiency in a program rather than where it spends its

time. Second, we have developed ways to blame sections of source code for causing

inefficient computation rather than reporting where that inefficiency is manifested.

8

Chapter 2

A Methodology for Performance Analysis

2.1 Introduction

In this chapter, we sketch H P C T O O L K I T ' S unique and comprehensive methodol

ogy for analyzing the performance of parallel programs [1,95,96,138]. The methodol

ogy is based on a set of complementary principles that, while not novel in themselves,

form a coherent synthesis that is greater than the constituent parts. This method

ology is (1) accurate, because it assiduously avoids systematic measurement error

(such as that introduced by instrumentation); (2) scalable, because it can be used to

effectively analyze the performance of a single thread or a large parallel code; and

(3) actionable, because it associates insightful performance metrics (such as parallel

inefficiency, scalability loss or memory bandwidth) with important source code ab

stractions (such as loops) in their full calling context. These emphases have resulted

in measurement techniques that incur low overhead, preserve low-level detail, and

scale to large systems; metrics that highlight inefficiency rather than simply resource

usage; and attribution, analysis and presentation techniques that yield insight by

projecting low-level measurements to much higher levels of abstraction.

The methodology we describe is a significant development of prior work with

Mellor-Crummey, Fowler and Marin [93] and Froyd [60,61]. Since this prior work,

H P C T O O L K I T ' S measurement, attribution, analysis, and presentation abilities have

been radically advanced and its ability to effectively analyze multithreaded and large-

9

scale parallel executions is entirely new. Accordingly, we now present a full-orbed

methodology for performance analysis of parallel programs. As a companion to our

methodology, Appendix A presents an analysis, the first to our knowledge, of statis

tical sampling as a means of obtaining a thread-based profile.

This chapter is organized as follows. Section 2.2 enumerates several principles of

performance analysis and then Section 2.3 applies those principles to form a method

ology based on accurate measurement, source-level attribution, effective analysis and

insightful presentation. Finally, Section 2.4 discuses related work and Section 2.5

discusses the chapter's main themes.

2.2 Principles of Performance Analysis

The following principles form the basis of our methodology.

The goal is actionable insight.

The goal of performance analysis is actionable insight. By actionable insight, we

refer to insight into an application's performance that justifies concrete actions such

as determining how to resolve a performance bottleneck or deciding that there are

no significant and worthwhile opportunities for performance improvement. Although

obtaining insight requires accurate and scalable measurement techniques, such tech

niques are only a means to an end.

One way of stating this principle more concretely is to observe that the role of

performance tools is not so much to highlight program hot spots, but to pinpoint and

diagnose bottlenecks. For instance, the most important thing to know for a parallel

application is whether there are parallel scaling bottlenecks at any architectural level.

If both inter-node and intra-node parallelism are good, the next step is to determine

10

if the application making the most of a processor core. What are the rate-limiting

factors for the application? Is there a mismatch between the application's needs and

the computing system's capabilities? Finally, when a bottleneck is identified, it is

important to know two things about it: What the expected benefit of resolving the

bottleneck is and what level of effort will be necessary to do so.

Be language independent.

Modern parallel scientific programs, on one hand, often have a numerical core

written in some modern dialect of Fortran, but on the other hand, leverage frame

works and communication libraries written in C or C-t-+. For this reason, the ability

to analyze multi-lingual programs is essential. To provide language independence,

HPCTOOLKIT works directly with application binaries rather than source code.

Avoid code instrumentation for measurement.

We define instrumentation to be any addition to a program that is directly and

synchronously invoked during the course of normal program execution; it can be

contrasted with the indirect execution of an asynchronous signal handler. Although

instrumentation can take several forms — source code, compiler-inserted or binary —

all forms can distort application performance through a variety of mechanisms [109].

The most common problem with instrumentation is overhead, which distorts mea

surements. The classic tool Gprof [65], which uses compiler-inserted instrumentation,

induced an average overhead of over 100% on the SPEC 2000 integer benchmarks [60].

Intel's VTune [77], which uses static binary instrumentation, claims an average over

head of a factor of eight. Intel's Performance Tuning Utility (PTU) [7] includes a call

graph profiler based on Pin's dynamic binary instrumentation [88]; we found that it

yielded an average overhead of over 400% on the SPEC 2006 integer benchmarks [141].

11

Another problem with instrumentation is the trade-off between accuracy and pre

cision. While all measurement approaches must address this trade-off, the problem

is particularly acute for instrumentation. For example, tools such as TAU [128] may

intentionally refrain from instrumenting certain procedures to avoid large overheads.

A common selective instrumentation technique is to ignore small frequently executed

procedures. The more this approach reduces overhead, the more it reduces precision.

Moreover, the ignored procedures may be just the synchronization library routines

that are critical performance bottlenecks.

Tools that rely on source code instrumentation can distort application performance

in even more subtle ways. Because instrumentation often has side effects, it interferes

with inlining and template optimization [139]; some compiler-based instrumentation

also disables compiler optimizations. Additionally, source code instrumentation is

fundamentally unable to measure procedures for which source is unavailable, such as

from binary-only libraries. This results in blind spots.

To avoid instrumentation's pitfalls, HPCTOOLKIT uses statistical sampling to

measure performance. When possible, we prefer using asynchronous signals to gen

erate sample events. However, in some cases an event is fundamentally and syn

chronously tied to program execution. For example, our analysis of lock contention

(Chapter 6) requires intercepting every invocation of lock and unlock — poten

tially frequent events. To minimize the distorting overhead of instrumentation in

these cases, HPCTOOLKIT applies sampling to instrumentation, i.e., it uses very

lightweight instrumentation to periodically switch to short periods of heavyweight

instrumentation. Another example of a fundamentally synchronous event is an appli

cation thread's entry and exit point. HPCTOOLKIT intercepts these entry and exit

points to initialize and finalize statistical sampling.

12

Avoid blind spots.

Production applications frequently link against fully optimized and even partially

stripped binaries, e.g., math and communication libraries, for which source code is

not available. To avoid systematic error, one must measure costs for routines in

these libraries. However, fully optimized binaries create challenges for asynchronous-

sampling-based call path profiling and hierarchical aggregation of performance mea

surements. To deftly handle optimized and stripped binaries, H P C T O O L K I T per

forms several types of binary analysis that are summarized in Sections 2.3.1 and 2.3.2.

Context is essential for understanding modular software.

Modern software design emphasizes modularity through layers of functional ab

straction, generics and object-orientation. In such programs, it is important to at

tribute the costs incurred by each procedure to the different contexts in which the

procedure is called. The costs incurred for calls to communication primitives (e.g.,

MPI_Wait) or for code that results from instantiating C++ data structure templates

can vary widely depending upon their calling context. When considering how to

implement a set, different choices may be appropriate for different contexts. For in

stance, a bit vector can be a good implementation where a dense set is needed, but

other representations are preferable for sparse sets. Because there are often layered

implementations within applications and libraries, it is insufficient either to measure

at any one level or to distinguish costs based only upon the immediate caller. For

this reason, HPCTOOLKIT supports call path profiling [67] to attribute performance

metrics to the full calling contexts in which they are incurred.

Although we focus on calling contexts, it is possible to collect other forms of

contextual information. If calling context represents inter-procedural control flow, it

is also possible to additionally collect intra-procedural context representing the path

13

of flow within a procedure's control flow graph [53,71]. Yet another piece of context

is the value of a state variable or a particular procedure's input. For example, one

may wish to distinguish communication calls by message size. Finally, it is possible

to distinguish between context instances by qualifying all measurements by time,

or more generally, by any monotonically increasing resource. This is also known as

tracing.

While more contextual information theoretically produces more fine-grained mea

surement data, this is only true if there is a reasonable balance between accuracy

and the desired level of measurement (precision). We have focused on calling context

because it is very useful and becuase we have developed highly accurate low-overhead

techniques for gathering it. Moreover, we have developed fully post-mortem tech

niques for fusing static program structure — including loop nests — with dynamic

calling contexts. Such information enables H P C T O O L K I T to expose the most impor

tant aspect of intra-procedural flow without any measurement overhead.

Any one performance measure produces a myopic view.

Measuring time or only one species of event seldom diagnoses a correctable per

formance problem. One set of metrics may be necessary to identify a problem and

another set may be necessary to diagnose its causes. For example, counts of cache

misses indicate problems only if both the miss rate is high and the latencies of the

misses are not hidden. HPCTOOLKIT supports collection, correlation and presenta

tion of multiple metrics.

Metrics pinpointing inefficiency are essential for effective analysis.

Typical metrics such as elapsed time are useful for identifying program hot spots.

However, tuning a program usually requires a measure not of where resources are

14

consumed, but where they are consumed inefficiently. For this purpose, derived mea

sures such as the difference between peak and actual performance are far more useful

than raw data such as operation counts. H P C T O O L K I T supports the computation of

user-defined derived metrics and enables users to rank and sort program scopes using

such metrics. In addition, HPCTOOLKIT can compute metrics that blame sections

of source code for causing inefficient computation rather than simply reporting where

that inefficiency is manifested.

Performance analysis should be top-down.

It is unreasonable to require users to wade through mountains of data to hunt for

evidence of important problems. To make analysis of large programs tractable, per

formance tools should present measurement data in a hierarchical fashion, prioritize

what appear to be important problems, and support a top-down analysis method

ology that helps users quickly locate bottlenecks without the need to wade through

irrelevant details. H P C T O O L K I T ' S presentation tool supports hierarchical presenta

tion of performance data according to both static and dynamic contexts, along with

ranking and sorting based on metrics.

Hierarchical aggregation is vital.

The amount of instruction-level parallelism in processor cores can make it difficult

or expensive for hardware counters to precisely attribute particular events to specific

instructions. However, even if fine-grain attribution of events is flawed, total event

counts within loops or procedures will typically be accurate. Moreover, in most

cases, it is the balance of operations within loops that matters — for instance, the

ratio between floating point arithmetic and memory operations. H P C T O O L K I T ' S

15

compile & Sink profile
execution
[hpcrun/
hpclink]

call path
profile

binary
analysis

[hpcstruct]

presentation
[hpcviewer]

correlate: profile +
structure + source

[hpcprof]

Figure 2.1: Overview of HPCTOOLKIT tool's workflow.

hierarchical attribution and presentation of measurement data deftly addresses this

issue; loop-level information available with H P C T O O L K I T is particularly useful.

Measurement and analysis must be scalable.

Large parallel systems may have tens of thousands of nodes, each equipped with

one or more multicore processors. For performance tools to be useful on these systems,

measurement and analysis techniques must scale to tens to hundreds of thousands of

threads. H P C T O O L K I T ' S sampling-based measurements are compact and the data

for large-scale executions is not unmanageably large.

2.3 From Principles to Practical Methods

From these principles, we have devised a general methodology summarized by the

workflow depicted in Figure 2.1. The workflow is organized around four principal

capabilities:

16

1. measurement of context-sensitive performance metrics while an application ex

ecutes;

2. binary analysis to recover program structure from application binaries;

3. attribution of performance metrics by correlating dynamic performance metrics

with static program structure; and

4. presentation of performance metrics and associated source code.

To use HPCTOOLKIT to measure and analyze an application's performance, one

first compiles and links the application for a production run, using full optimiza

tion. Second, one launches an application with H P C T O O L K I T ' S measurement tool,

hpcrun, which uses statistical sampling to collect a performance profile. Third, one

invokes hpcstruct , H P C T O O L K I T ' S tool for analyzing an application binary to re

cover information about files, procedures, loops, and inlined code.1 Fourth, one uses

hpcprof to combine information about an application's structure with dynamic per

formance measurements to produce a performance database. Finally, one explores a

performance database with H P C T O O L K I T ' S hpcviewer graphical presentation tool.

At this level of detail, much of the HPCTOOLKIT workflow approximates other

performance analysis tools, with the most unusual step being binary analysis. How

ever, the high level of the workflow discussion masks several novel aspects of H P C

TOOLKIT'S methodology. In the following sections, we (1) sketch how the principles

described above inform our methodology and (2) highlight several novel approaches

to accurate measurement (Section 2.3.1), source-level attribution (Section 2.3.2), ef

fective analysis (Section 2.3.3) and insightful presentation (Section 2.3.4).

1For the most detailed attribution of application performance data using HPCTOOLKIT, one
should ensure that the compiler includes line map information in the object code it generates.
While HPCTOOLKIT does not need this information to function, it can be helpful to users trying to
interpret the results. Since compilers can usually provide line map information for fully optimized
code, this requirement need not require a special build process.

17

2.3.1 Measurement

Without accurate performance measurements for fully optimized applications,

analysis is unproductive. Consequently, one of our chief concerns has been designing

an accurate measurement approach that simultaneously exposes low-level execution

details while avoiding systematic measurement error, either through large overheads

or through systematic dilation of execution. For this reason, HPCTOOLKIT avoids

instrumentation and favors statistical sampling.

Statistical sampling

Statistical sampling is a method for estimating performance metrics for a whole

execution from a sample of that execution. There are two basic technique types for

sampling a program's execution: asynchronous and synchronous.

HPCTOOLKIT primarily relies on asynchronous sampling for measurement. Asyn

chronous sampling uses a recurring event trigger to send signals to the program being

profiled. When an event trigger occurs, a signal is sent to the program. A signal

handler then records the context where the sample occurred. The recurring nature

of the event trigger means that the program counter and context is sampled many

times, resulting in a histogram of program contexts. As long as the number of sam

ples collected during execution is sufficiently large (and is not correlated with certain

program features), their distribution is expected to approximate the true distribution

of the costs that the event triggers are intended to measure.

The second form of statistical sampling is synchronous sampling. Sometimes it is

necessary to monitor fundamentally synchronous events such as lock acquisitions. To

minimize the overhead typically associated with synchronously monitoring frequently

occurring synchronous events, HPCTOOLKIT samples them. In effect, this involves

switching between lightweight and heavyweight instrumentation.

18

Event triggers

Different kinds of event triggers measure different aspects of program performance.

Prom the perspective of a program, event triggers can be either asynchronous or

synchronous, corresponding to asynchronous and synchronous sampling, respectively.

Asynchronous triggers are external to the monitored program and are not initiated

by direct program action. H P C T O O L K I T initiates asynchronous samples using either

an interval timer or hardware performance counter events. Hardware performance

counters enable HPCTOOLKIT to statistically profile events such as cache misses

and issue-stall cycles. Synchronous triggers, on the other hand, are generated via

direct program action. Examples of interesting events for synchronous profiling are

memory allocation, I/O, and inter-process communication. For such events, one might

measure bytes allocated, written, or communicated, respectively. Another example

of a synchronous trigger is lightweight instrumentation that samples heavyweight

instrumentation.

Unless there is a compelling need for a synchronous event trigger, we prefer an

asynchronous one. Asynchronous triggers use easily controllable sampling periods,

require no direct change to an application, and, assuming the sampling period is not

correlated with program behavior, cannot contribute to a blind spot.

Maintaining control over parallel applications

To manage profiling of an executable, H P C T O O L K I T intercepts certain process

control routines including those used to coordinate thread/process creation and de

struction, signal handling, dynamic loading, and MPI initialization. To support mea

surement of unmodified, dynamically linked, optimized application binaries, H P C

TOOLKIT uses the library preloading feature of modern dynamic loaders to preload

19

(a) Call path sample
return address •*

(b) Calling Context Tree (CCT)

return address

return address

*
instruction pointer

sample point

Figure 2.2: An asynchronous-sampling-based call path profiler (a) collects a call
path for each sample point; and (b) several call paths form a calling context tree.

a profiling library as an application is launched.2 For statically linked executables,

a script arranges to intercept process control routines at link time.3 In either case,

H P C T O O L K I T is able to execute its own code both before and after the intercepted

routine executes.

Call path profiling

Experience has shown that comprehensive performance analysis of modern mod

ular software requires information about the full calling conteod in which costs are

incurred. The calling context for a sample event is the set of procedure frames active

on the call stack at the time the event trigger fires. We refer to the process of moni

toring an execution to record the calling contexts in which event triggers fire as call

path profiling [67].

When synchronous or asynchronous events occur, hpcrun records the full calling

context for each event. A calling context collected by hpcrun is a list of instruction

2On Linux, see the loader's special environment variable LD_PRELOAD.
3On Linux, see the linker's special --wrap option.

20

pointers, one for each procedure frame active at the time the event occurred; an ex

ample is shown in Figure 2.2(a). The last instruction pointer in the list is the program

address at which the event occurred. The rest of the list contains the return address

for each active procedure frame. Rather than storing the call path independently for

each sample event, we represent all of the call paths for events as a calling context tree

(CCT) [9]. In a calling context tree, shown in Figure 2.2(b), the path from the root

of the tree to a node corresponds to a distinct call path observed during execution;

a count at each node in the tree indicates the number of times that the path to that

node was sampled.

Coping with fully optimized binaries

Collecting a call path profile requires capturing the calling context for each sam

ple event. To capture the calling context for a sample event, hpcrun must be able

to unwind the call stack at any point in a program's execution. Obtaining the re

turn address for a procedure frame-that does not use a frame pointer is challenging

since the frame may dynamically grow (as space is reserved for the caller's registers

and local variables; as the frame is extended with calls to alloca; as arguments to

called procedures are pushed) and shrink (as space for the aforementioned purposes

is deallocated) as the procedure executes. To cope with this situation, we developed

a fast, on-the-fly binary analyzer that examines a procedure's machine instructions

and computes how to unwind a stack frame for the procedure [141]. For each address

in the routine, there must be a recipe for how to unwind. Different recipes may be

needed for different intervals of addresses within the routine. Each interval ends in

an instruction that changes the state of the procedure's stack frame. Each recipe

describes (1) where to find the current frame's return address, (2) how to recover the

value of the stack pointer for the caller's frame, and (3) how to recover the value that

21

the frame pointer register had in the caller's frame. Once we compute unwind recipes

for all intervals in a routine, we memoize them for later reuse.

To apply our binary analysis to compute unwind recipes, we must know where

each routine begins and ends. When working with applications, one often encounters

partially stripped libraries or executables that are missing information about function

boundaries. To address this problem, we developed a binary analyzer that infers

routine boundaries by noting instructions that are reached by call instructions or

instructions following unconditional control transfers (jumps and returns) that are

not reachable by conditional control flow.

H P C T O O L K I T ' S use of binary analysis for call stack unwinding has proven to

be very effective, even for fully optimized code. At present, H P C T O O L K I T provides

binary analysis for stack unwinding on the x86-64, Power, and MIPS architectures. A

detailed study of the x86-64 unwinder on versions of the SPEC CPU2006 benchmarks

optimized with several different compilers showed that the unwinder was able to

recover the calling context for all but a vanishingly small number of cases [141].

Handling dynamic loading

Modern operating systems such as Linux enable programs to load and unload

shared libraries at run time, a process known as dynamic loading. Dynamic loading

presents the possibility that multiple functions may be mapped to the same address

at different times during a program's execution. During execution, hpcrun ensures

that all measurements are attributed to the proper routine in such cases.

2.3.2 Attribution

To enable effective analysis, measurements of fully optimized programs must be

correlated with important source code abstractions. Since HPCTOOLKIT measures

22

with reference to instructions in executables and shared libraries, for analysis it is

necessary to attribute these low-level measurements back to program source. To do

this, we need a mapping between a load module's object code and its associated

source code. Most load modules contain such mappings in the form of a 'line map.'

However, to accurately attribute measurements to interesting source-level structure

such as loop nests, it is necessary to have much richer information than can typically

be obtained from the line map, which is fundamentally line based. Moreover, the line

map for fully optimized programs often contains ambiguities resulting from inlining.

Consequently, H P C T O O L K I T ' S hpcstruct tool constructs such a mapping using a

binary analysis technique that we call recovering program structure.

hpcstruct focuses its efforts on recovering procedures and loop nests, the most

important elements of source code structure. To recover program structure, hpc

s t ruc t (1) parses a load module's machine instructions; (2) reconstructs a control

flow graph; and (3) combines line map information with interval analysis on the

control flow graph in a way that enables it to identify transformations to procedures

such as inlining and account for transformations to loops [141] .4

Several benefits naturally accrue from this approach. First, HPCTOOLKIT can

expose the structure of what is actually executed and assign metrics to it, even if

source code is unavailable. For example, hpcstruct 's program structure naturally

reveals transformations such as loop fusion and scalarized loops implementing Fortran

90 array notation. Similarly, it exposes calls to compiler support routines and wait

loops in communication libraries of which one would otherwise be unaware, hpc-

run's function discovery heuristics expose distinct logical procedures within stripped

binaries.
4Without line map information, hpcs t ruc t can still identify procedures and loops, but is not

able to account for inlining, which can affect loops in the vicinity of inlined code.

23

2.3.3 Analysis

Derived metrics

Identifying performance problems and opportunities for tuning may require syn

thesizing performance metrics from others. To identify where an algorithm is not

effectively using hardware resources, one should compute a metric that reflects inef

ficiency rather than accomplishment; wasted rather than consumed resources. For

instance, when tuning a floating-point-intensive scientific code, it is often less use

ful to know where the majority of the floating-point operations occur than where

floating-point performance is low. Knowing where the most cycles are spent doing

things other than floating-point computation hints at opportunities for tuning. Such

a metric can be directly computed by taking the difference between the cycle count

on one hand and, on the other hand, the floating point operations (FLOPs) count

divided by a target FLOPs-per-cycle value, and displaying this measure for loops

and procedures. Our experiences with using multiple computed metrics such as miss

ratios, instruction balance, and 'lost cycles' underscore the power of this approach.

Third-party metrics

For multithreaded applications, critical inefficiency occurs when threads idle wait

ing for work. In contrast to serial code, idleness in one thread is usually caused by

another thread. For example, if one thread holds a lock that another thread needs, the

latter's execution must be delayed. Or, if threads who are responsible for generating

parallel work fail to do so, then other threads will be starved of work. To attribute the

idleness in one thread to its cause in another thread, we have developed techniques

for efficiently blaming the offending thread for the idleness it causes [140,144]. We

call these metrics third-party because in contrast to first-party metrics, they require

24

some knowledge of the execution state of other threads and the interactions between

those threads.

Scalably identifying scalability bottlenecks in parallel programs

We have developed scalable versions of hpcprof and hpcviewer for scalably ana

lyzing, attributing and presenting call path profiles from large-scale executions. One

novel application of H P C T O O L K I T ' S call path profiles is to use them to pinpoint and

quantify scalability bottlenecks in emerging petascale SPMD parallel executions [143].

In particular, with H P C T O O L K I T ' S scalable analysis and presentation, it is possible

to apply differential profiling [41,92] to compare two whole executions instead of,

as with non-scalable techniques, two 'representative' threads. Combining execution-

wide call path profiles with program structure information, HPCTOOLKIT can use

an excess work metric to quantify scalability losses and attribute them to the full

calling context in which these losses occur.

We have also developed techniques for effectively analyzing scalability bottlenecks

in multithreaded applications [140,144]. Using them, HPCTOOLKIT can attribute

precise measures of lock contention, parallel idleness, and parallel overhead to source-

level calling contexts — even for a multithreaded language such as Cilk [58], which

uses a work-stealing scheduler.

2.3.4 Presentation

H P C T O O L K I T ' S presentation tool, hpcviewer, interactively presents context-

sensitive performance metrics correlated to program structure (Section 2.3.2) and

mapped to a program's source code, if available. Figure 2.3 shows a snapshot of

hpcviewer's user interface presenting a call path profile. The user interface is com

posed of two principal panes. The top pane displays program source code. The bot-

25

no^ hpcviewer: MILC BG/P 256, 512, 8192

^ makejattice.c S3 "\ comjnpi.c *^ up date.c "^ layout. hvper_tstr... Q

for(t=3; t<nt ; t++)for(z=0;z<nz;z++>forCy=0;y<ny;y++)for(x=0;»{<nx;x++){ j
i f (node_number (x , y, z, t>-=_MYNODEQ}{

u=node_indexCx,y,z, t) ;
la t t ice[i] .x^x; lattice[u].y=y; lat t ice[i] .z=z; la t tuce[i] . t=t ;
l a t t i c e [i] . i n d e x = x+nx*(y+ny*(z+nz*t)) ;
i fC (x4y4z+t)S62 == 0 } l a t l i c e [i] . p a r i t y = E V E N ;
else l a t t i c e [i] . p a r i t y = O D D ;

' ;^#i fdef S1TERAMD
"',:'• in i t ia l ize_prr>C & (l a t l i c e [i] . su te .prn) , iseed, l a t t i c e [i] . i ndex) ;
] i#endif
• I * }

ib }

41 0

" s Calling Context View ^ Callers View ft. Flat View

j1> |6«bo!IW1le*/f *
Scope

j Experiment Aggregate Metrics

w main

• K> setup

T g{>make_latticc
w loop at make_la t t ice .c : 35

• gj> mynode

• g{> nodc_number
make_lat t icc .cj 3b
make._latticc.ci 36
make_l at t i c e. c: 3 7

• _*> initialize_prn

• gj> node_indcx

• _*> libc_malloc

• _{> libc_malloc

• _*> makc_nn_gathcrs

• inlined from setup.c: 292

• gj> phaseset

|» loop at cont ro l .c t 34

8192 cores (
7.S7c*08

7.57e+G8

1.26O+08

1.23e+08

1.23e+08

6.90C+07

S.Q2e*Q7

l.S8e*06

1.70e+06

6.0Qc*05

l.SGe+04

S.GQe+03

S.00e+03

2.Q6C+06

7.00e*05

l.SOe+04

6.31e+08

JS)II>...
100 %

100 %

16.7%

16.3%

16.3%

9.1%

6.6%

0.2%

0.2%

0.1%

0.0%

0.0%

0.0%

0.3%

0.1%

0.0%

83.3%

% scaling loss (1).*

1.83e+01

1.83C+Q1

l.SSe+01

1.53e+01

l.S3e+01

8.S0e+00

6.26e+00

2.32e-01

2.07e-0l

7.46e-02

•6.60e-04

•6.60e-04

6.60e-04

1.760-01

6.60e-03

2.86e+00

100 %

100 %

84.4%

83.4%

83.4%

46.4%

34.2%

i.3%

1.1%

0.4%

0.0%

0.0%

0.0%

1.0%

0.0%

IS.6%

Figure 2.3: hpcviewer's Calling Context view of scaling losses (cycles).

26

http://make._latticc.ci

O O O hpcviewer: FLASH/white dwarf: Cray XT, weak 256->8192 r~>

"•^ amr_set_runtime_parani... s 13L tocal_tre«_build.F90 £3 , "V, mpi_amr_comm_setup.r90 a r
t l s e

Ca'.: MP1_SINDRLCV_RLPI_ACL Gnb'.ocks, 1 , MPi_lN1LGLR,
Idcst, mype,
isrc, isrcj
MPi_C0MM_A0RLD, status, icrr)

Co*.: MPl_SLNDRtCV_RtPLACt (".refine, '.nblocks./nox, MPl.lNTtGLR,
idest, mypc,
isrc. isrc.

&
&
&

&
&
&

3 < •

-. Calling Context View •. Callers View ' ; . flat View

j^> 6 fcoHA

a

Scope

* N'PIDI.

¥ scaling loss (I) » X scaling loss tD

IF

*

.CRAY_Progress_wait
f/PIC_Sendrecv

>• MPIR_ Barrier
*> N'PIR_Allreduce
»' ^PIDI_CRAY_Alltoall
*> N'PIR_Scan

MPI_Sendrecv_replace
<f mpi_sendrccv_replace_

• <JS local_tree_build_
*• <53 local_tree_build_

MPIC.Rccv
I^PIR_rC_Alltoallvw

* ^PIDI_CRAY_rC_Alltoallv

f N'PI_Alltoallv

* mpi_alltoallv_

P O mpi_amr_boundary_blockjn(
MPI_Waitall
VPI Ssend

2

1

S

1

£

2

S

6

4
3

€

1

1

1

1

1

1

2

7-*,e+Cl

Cle+Gl

9-Se+CC

Cee+GC

D£e-C2

<3Qe-G2

£2e+CC

62e+CC

73e+CQ

89e+0C

92e+CC

37e+CC

57e+CC

S7e+CC

S7e+CC

37e+CC

19e-Cl

91e-C2

8<5

21

27
2

C

c
26

26

14

12

21

•'.

1

r,

'.
•J

0

c

1%

Ci

5%

2%

2%

C%.

5%
S%

5*

C%

3%

E%

6%

e%
s%
s%
•5%

1%

1.96e-Cl

9.97e-C2

S,6ie-C2

1.33e-02

-£.31e-C'.

S.31e-C'<

S,9Se-C2

S.9£e-G2

3.82e-02

2.16e-02

2.91e-C2

l,C£e-C2

l.CSe-C2

l.£Se-C2

l.CSe-C2

l.CEe-C2

1.66e-C2

-S.62e-C3

C

C

c
c
c
c
0

c
0

c
c
c
c
c
c
c
c
-c

6% r*
2% W

3%

C«

c%
a
2%

2%

11

1%

1%

c%
c%
z\
c%
c%
c%
c* ^

Figure 2.4: hpcviewer's Callers view of scaling losses (cycles).

27

torn pane associates a table of performance metrics with static or dynamic program

structure, hpcviewer provides three different views of performance measurements

collected using call path profiling. We briefly describe the three views and their

corresponding purposes.

• Calling Context view. Figure 2.3 shows a Calling Context view. This top-

down view associates metrics with the full calling context in which they were

incurred. Indentation in the lower pane shows dynamic nesting of calls, loops

and inlined code. Using this view, one can readily see how much of the applica

tion's cost was incurred by a procedure when called from a particular context.

If finer detail is of interest, one can explore how the costs incurred by a call in

a particular context are divided between the callee itself and the procedures it

calls. HPCTOOLKIT distinguishes calling context precisely by individual call

sites; this means that if a procedure / contains calls to procedure g in different

places, each call represents a separate calling context. The Calling Context

view is created by integrating dynamic calling contexts gathered by hpcrun

with static program structure (e.g., loops) gathered by hpcstruct . Loops ap

pear explicitly in the call chains shown in Figure 2.3.

• Callers view. This bottom-up view enables one to look upward along call

paths. Because the Callers view apportions metrics of a callee on behalf of

its caller, this view is particularly useful for understanding the performance of

software components or procedures that are called in more than one context.

For instance, a message-passing program may call MPI_Wait in many different

calling contexts. The cost of any particular call will depend upon its context.

Serialization or load imbalance may cause long waits in some calling contexts

28

but not others. Figure 2.4 shows hpcviewer presenting a Callers view of a call

path profile.

When several levels of the Callers view are expanded, saying that the Callers

view apportions metrics of a callee on behalf of its caller can be ambiguous:

what is the caller and what is the callee? To resolve this ambiguity we can

say that the Callers view apportions the metrics of a particular procedure in

its various calling contexts on behalf of that context's caller. Alternatively but

equivalently, the Callers view apportions the metrics of a particular procedure

on behalf of its various calling contexts. For example, notice that the highlighted

line in Figure 2.4 shows a (partially collapsed) callers chain ending with local_

t ree_bui ld that is four levels deep. The metrics at local_tree_bui ld are

actually formed by attributing the metrics at the chain's root (MPIDI_CRAY_

Progress_wait) up its call chain to local_tree_build.

• Flat view. This view organizes performance data according to an application's

static structure. That is, all costs incurred by a procedure, in any calling

context, are aggregated together to form the Flat view. This view complements

the Calling Context view, in which the costs incurred by a particular procedure

are represented separately for each call to the procedure from a different calling

context.

hpcviewer can present an arbitrary collection of performance metrics gathered

during one or more runs, or compute derived metrics expressed as formulae with

existing metrics as terms.

For any given scope in these three views, hpcviewer computes both inclusive and

exclusive metric values. For the moment, consider the Calling Context view. Inclusive

metrics reflect costs for the entire subtree rooted at that scope. Exclusive metrics are

29

of two flavors, depending on the scope. For a procedure, exclusive metrics reflect all

costs within that procedure but excluding callees. In other words, for a procedure,

costs are exclusive with respect to dynamic call chains. For all other scopes, exclusive

metrics reflect costs for the scope itself; i.e., costs are exclusive with respect to static

structure. The Callers and Flat views contain inclusive and exclusive metric values

that are relative to the Calling Context view. This means, e.g., that inclusive metrics

for a particular scope in the Callers or Flat view are with respect to that scope's

subtree in the Calling Context view.

Within a view, a user may order program scopes by sorting them using any perfor

mance metric, hpcviewer supports several convenient operations to facilitate analy

sis: revealing a hot path within the hierarchy below a scope; flattening one or more

levels of the static hierarchy, e.g., to facilitate comparison of costs between loops in

different procedures; and zooming to focus on a particular scope and its children.

2.4 Related Work

Here, we primarily discuss work related to H P C T O O L K I T ' S measurement method

ology. We defer detailed discussion of attribution, analysis and presentation to later

chapters.

Tools that permit monitoring of unmodified executables are critical for applica

tions with long build processes or for attaching to an existing production run. Al

though different performance tools measure the same dimensions of an execution,

they may differ with respect to their measurement methodology. These different

methodologies determine whether a tool can analyze the performance of unmodi

fied applications. TAU [129], OPARI [102], and Pablo [117], among others, add

instrumentation to source code during a program's build process. Gprof relies on

30

compiler-inserted instrumentation [66]. Model-dependent strategies often use instru

mented libraries [34,62,101,126,148]. Intel's VTune [77], Cray's CrayPAT [48], and

IBM's HPC Toolkit [74] statically instrument an application's binary. None of these

strategies support performance analysis of unmodified applications. To work with

unmodified application binaries, tools have taken two approaches. Some tools use

dynamic binary instrumentation [29,49,99] or library preloading [44,60,107,127,130]

(a special, less flexible, form of dynamic binary instrumentation). Other tools use

asynchronous sampling [7,13,78,85,106,127]. H P C T O O L K I T ' S call path profiler

uniquely combines preloading (to monitor unmodified dynamically linked binaries),

asynchronous sampling (to control overhead), and binary analysis (to help handle

unruly object code) for measurement. In addition, our call path measurement has

novel aspects that make it more accurate and impose lower overhead than other call

graph or call path profilers (see Chapter 3).

These different measurement approaches also fundamentally affect a tool's po

tential for accurate and precise measurements. Source code instrumentation cannot

measure binary-only library code, may affect compiler transformations, and incurs

large overheads. Binary instrumentation may have blind spots and incur large over

heads. For example, Intel's widely used VTune [77] call path profiler employs binary

instrumentation that fails to measure functions in stripped object code and imposes

enough overhead that Intel explicitly discourages program-wide measurement. When

measuring at a fine granularity, dynamic binary instrumentation suffers from over

head. H P C T O O L K I T ' S call path profiler uses asynchronous sampling to obtain both

accurate and precise measurements. Moreover, no other tool combines asynchronous

sampling with post-mortem binary analysis to attribute those measurements back

to source-level program structure, including loops and inlined procedures. Other

31

tools [7,13,106] use post-mortem analyses to detect loops, but only at the binary

level.

An alternative to asynchronous sampling is to (synchronously) sample instrumen

tation itself. The basic idea is to use extremely lightweight instrumentation to peri

odically employ heavyweight instrumentation. This technique can be used at either

the source or binary level. When carefully applied, sampling instrumentation can be

quite effective at reducing the overhead of gathering selective performance data [99]

or (intraprocedural) path or edge profiles [17,147,156]. Applying this technique to

call path profiles is also effective relative to heavyweight instrumentation. For in

stance, Zhuang et al. report 20% overhead as opposed to hundreds of percents [158].

Hirzel and Chilimbi collect both contextual (call path) and flow (path) information

for 3-18%, though at the expense of extensive code duplication [71].

The basic difficulty with sampling instrumentation is that for small frequently

executed routines, the lightweight instrumentation itself is executed frequently. In a

few cases, the synchronous nature of instrumentation may be needed, such as when

it is necessary to intercept every instance of a lock routine. We have successfully

used lightweight instrumentation in such a specialized case [144]. However, in most

cases, this is unnecessary. Even the DTrace [33] tool, which is based on extremely

lightweight dynamic binary instrumentation, supports asynchronous sampling and

stack unwinding for collecting profiles.

In some cases, it may be possible to overcome the problems of sampling instru

mentation by sophisticated placement of instrumentation and individual control of

instrumentation points [21]. However, we postulate that, when measurements do

not naturally require synchroneity, asynchronous sampling is preferable. To effec

tively control overhead, sampling instrumentation relies on careful placement so that

measurement-related code is not executed too frequently. This selective placement

32

can result in blind spots that would not exist with asynchronous sampling. Our

approach of using asynchronous statistical sampling to obtain call paths via stack

unwinding, enriching those paths with static program structure and correlating the

result to source code naturally avoids these problems while achieving a low level of

overhead (usually 1-2%). Such accuracy and precision is difficult to replicate using

instrumentation. Although we do not gather all details of intraprocedural flow, we

highlight loops, which usually are critical to performance. Moreover, PMU-based

sampling gives rich information about resource consumption and inefficiency — in

formation that would at best be difficult to obtain for similarly low overhead using

instrumentation-based measurement.

Tools for measuring parallel application performance are typically model depen

dent, such as libraries for monitoring MPI communication (e.g., [148,149,153]), in

terfaces for monitoring OpenMP programs (e.g., [34,102]), or global address space

languages (e.g., [137]). In contrast, H P C T O O L K I T can pinpoint contextual perfor

mance problems independent of model — and even within stripped, vendor-supplied

math and communication libraries [41].

To our knowledge, Appendix A presents the first formal analysis of statistical

sampling as a means of obtaining a thread-based profile or trace. Although other

profilers are based on statistical sampling, we are not aware of any formal attempts

at analyzing their error and accuracy; cf. [7,10,13,25,48,65,78,81,85,106,127,157].

Sastry et al. use systematic sampling to implement a lossy hardware compressor

designed to support flat profiling [124]. Their analysis partially overlaps with ours,

as they make an observation similar to our Equation A.9. However, the rest of their

analysis depends on using a simulator to compare an ideal flat profile with flat profiles

obtained from various compressor designs. Azimi et al. analyze the accuracy of using

sampling to multiplex hardware performance counters [18]. Because these authors

33

are only interested in program-wide totals, they compare probability distributions

derived from absolute counts and from multiplexing. In contrast, we are interested in

procedures, loops and statements in their full calling context. Maxwell et al. assess

the accuracy of a given performance counter by comparing the results of analytical

models, simulations and experiments for microbenchmarks [91]. While each of these

analyses is useful in its context, none of them provides a formal analysis to address

all the questions we do.

Although other work has grounded itself on a formal statistical analysis, its focus

has been to use sampling as a mechanism for monitoring only a small subset of clus

ter nodes or application processes for a large-scale system. For instance, Mendes and

Reed use simple random sampling of node characteristics to estimate system-wide at

tributes such as "the fraction of available nodes" on large-scale clusters [97]. Gamblin,

Fowler and Reed use sampling of processes within a parallel program to drastically

reduce data volume of tracing [64]. They describe an application-wide 'daemon' that

uses adaptive stratified sampling to periodically select processes within each of the

application's process groups. The daemon then instructs each selected and unselected

process to enable and disable tracing, respectively. Although an unselected process

may continue executing tracing instrumentation, it does not continue generating trace

records that must be handled by a limited-bandwidth I/O subsystem. Thus, while

both our work and this work use sampling to obtain measurements that grow sub-

linearly with the population size, this work is different in two respects. First, whereas

we use independent per-thread sample sources, this work uses one application-wide

sample source. Second, by sampling processes, Gamblin et al. sample at a coarser

level of granularity than our work, which samples contexts within a thread.

34

2.5 Discussion

We have described a unique methodology for analyzing the performance of an

application's execution under the subheadings measurement, attribution, analysis

and presentation. This methodology is unique in three important ways.

First, our techniques are based on accurate and precise measurement. If mea

surement includes systematic error, insightful presentation would be misleading and

therefore useless. By pairing sampling-based profiling with binary analysis to aid

both measurement and attribution, H P C T O O L K I T achieves both highly accurate

and precise measurements.

Second, our methodology is capable of obtaining unique and actionable insight

into the performance of parallel programs. To obtain such insight, it is necessary

to precisely identify where applications execute inefficiently. Moreover, poor presen

tation of excellent data obscures and hinders insight. HPCTOOLKIT combines (1)

accurate and precise thread-level measurements; (2) novel analyses for pinpointing

and quantifying parallel inefficiency and scalability bottlenecks in parallel programs;

and (3) data presentation using three complementary views to facilitate rapid top-

down analysis.

Third, our methodology is comprehensive and capable of identifying performance

issues in real large-scale parallel applications, hpcrun samples the whole calling con

text of an unmodified fully optimized parallel programs irrespective of whether the

call chain passes through communication libraries or process launchers, hpcstruct

recovers the source code structure for any portion of the calling context regardless

of source code (as long as line map information is present). H P C T O O L K I T ' S use of

binary analysis to support both measurement (call stack unwinding of unmodified

optimized code) and attribution to loops and inlined functions has enabled its use on

35

today's grand challenge applications — multi-lingual programs that leverage third-

party libraries for which source code and symbol information may not be available,

hpcprof scalably attributes measurements to source code and summarizes thread-

level performance metrics for large-scale executions, hpcviewer scalably presents the

contextual measurements in three complementary views to enable top-down analy

sis. In sum, HPCTOOLKIT can measure what actually executes and present it in an

effective way that exposes details, but within the context of larger abstractions.

Our work has emphasized obtaining actionable insight. Such information is foun

dational for feedback-directed optimization, automated performance tuning, and for

validating performance models. In the future, we are interested in transforming this

descriptive information into targeted list of prescriptive recommendations for resolv

ing performance bottlenecks.

36

Chapter 3

Measurement &; Attribution: Fully Optimized

Applications

3.1 Introduction

Modern programs frequently employ sophisticated modular designs that exploit

object-oriented abstractions and generics. Composition of C++ algorithm and data

structure templates typically yields loop nests spread across multiple levels of routines.

To improve the performance of such codes, compilers inline routines and optimize

loops. However, careful hand-tuning is often necessary to obtain top performance.

To support tuning of such code, performance analysis tools must pinpoint context-

sensitive inefficiencies in fully optimized applications.

Several contemporary performance tools measure and attribute execution costs

to calling context in some form [7,13,48,65, 77, 78,85,127,129]. However, when ap

plied to fully optimized applications, existing tools fall short for two reasons. First,

current calling context measurement techniques are unacceptable because they ei

ther significantly perturb program optimization and execution with instrumentation

(e.g., [7,48,65,77,129]), or rely on compiler-based information that is sometimes

inaccurate or unavailable, which causes failures while gathering certain calling con

texts (e.g., [7,13,78,85,127]). Second, by inlining procedures and transforming loops,

optimizing compilers introduce a significant semantic gap between the binary and

37

source code. Thus, prior strategies for attributing context-sensitive performance at

the source level either compromise measurement accuracy or remain too close to the

object code.

To clarify these issues, we consider the capabilities of some popular tools using

three related categories: calling context representation, measurement technique and

attribution technique.

Calling Context Representation

Performance tools typically attribute performance metrics to calling context using

a call graph or call path profile. Two widely-used tools that collect call graph profiles

are Gprof [65] and Intel's VTune [77]. A call graph profile consists of a node for each

procedure and a set of directed edges between nodes. An edge exists from node p

to node q if p calls q. To represent performance measurements, edges and nodes are

weighted with metrics. Call graph profiles are often insufficient for modular appli

cations because a procedure p that appears on multiple distinct paths is represented

with one node, resulting in shared paths and cycles. Consequently, with a call graph

profile it is in general not possible to assign costs to p's full calling context, or even to

long portions of it. To remove this imprecision, a call path profile [67] represents the

full calling context of p as the path of calls from the program's entry point to p. Call

path profiling is necessary to fully understand the performance of modular codes.

Measurement Technique

There are two basic approaches for obtaining calling context profiles: instrumen

tation and asynchronous sampling. Instrumentation-based tools use one of four prin

cipal instrumentation techniques. Tools such as TAU [129] use source code instrumen

tation to insert special profiling code into the source program before compilation. The

38

well-known Gprof [65] relies on compiler-inserted instrumentation. Intel's VTune [77]

uses static binary instrumentation to augment application binaries with profiling code.

The fourth technique is dynamic binary instrumentation, which is used by Pin [88]

and Dynlnst [29].

While source-level instrumentors collect measurements that are easily mapped

to source code, their instrumentation can interfere with compiler optimizations such

as inlining and loop transformations. As a result, measurement approaches based

on source-level instrumentation may not accurately reflect the performance of fully

optimized code [139]. Compiler-inserted instrumentation may also compromise opti

mization. For example, in some compilers Gprof-instrumented code cannot be fully

optimized.

An important problem with source, compiler-inserted and static binary instru

mentation is that they require recompilation or binary rewriting of a program and

all its libraries. This requirement poses a significant inconvenience for large, complex

applications. More critically, the need to see the whole program before run time can

lead to 'blind spots,' i.e., portions of the execution that are systematically excluded

from measurement. For instance, source instrumentation fails to measure any por

tion of an application for which source code is unavailable; this frequently includes

critical system, math and communication libraries. For Fortran programs, this ap

proach can also fail to associate costs with intrinsic functions or compiler-inserted

array copies. Static binary instrumentation is unable to cope with shared libraries

that are dynamically loaded during execution.

The fourth approach, dynamic binary instrumentation, supports fully optimized

binaries and avoids blind spots by inserting instrumentation in the executing appli

cation [29]. Intel's recently-released Performance Tuning Utility (PTU) [7], includes

a call graph profiler that adopts this approach by using Pin [88]. However, dynamic

39

instrumentation remains susceptible to systematic measurement error because of in

strumentation overhead.

Indeed, all four instrumentation approaches suffer in two distinct ways from over

head. First, instrumentation dilates total execution time, sometimes enough to pre

clude analysis of large production runs or force users to a priori introduce blind

spots via selective instrumentation. For example, because of an average slowdown

factor of 8, VTune requires users to limit measurement to so-called 'modules of inter

est' [77]. Moreover, overhead is even more acute if loops are instrumented. A recent

Pin-based 'loop profiler' incurred an average slowdown factor of 22 [106]. Second, in

strumentation dilates the total measured cost of each procedure, disproportionately

inflating costs attributed to small procedures and thereby introducing a systematic

measurement error.

The alternative to instrumentation is asynchronous sampling. Since sampling pe

riods can easily be adjusted (even dynamically), this approach naturally permits low,

controllable overhead. Sampling-based call path profilers, such as the one with In

tel's PTU [7], use call stack unwinding to gather calling contexts. Stack unwinding

requires either the presence of frame pointers or correct and complete unwind infor

mation for every point in an executable because an asynchronous sample event may

occur anywhere. However, fully optimized code often omits frame pointers. More

over, unwind information is often incomplete (for epilogues), missing (for hand-coded

assembly or partially stripped libraries) or simply erroneous (optimizers often fail to

update unwind information as they transform the code). In particular, optimized

math and communication libraries frequently apply every 'trick in the book' to crit

ical procedures (e.g., hot-cold path splitting [43]) — just those procedures that are

likely to be near the innermost frame of an unwind.

40

Attribution Technique

By Mining procedures and transforming loops, optimizing compilers introduce

a semantic gap between the object and source code, making it difficult to reconcile

binary-level measurements with source-level constructs. Compiler transformations

such as inlining and tail call optimization cause call paths during execution to differ

from source-level call paths. After compilers inline procedures and apply loop trans

formations, execution-level performance data does not correlate well with source code.

Since application developers wish to understand performance at the source code level,

it is necessary for tools to collect measurements on fully optimized binaries and then

translate those measurements into source-level insight. Since loops are critical to per

formance, but are often dynamically nested across procedure calls, it is important to

understand loops in their calling context.

Much prior work on loop attribution either compromises measurement accuracy by

relying on instrumentation [106,129] or is based on context-less measurement [93]. A

few sampling-based call path profilers [7,13,106] identify loops, but at the binary level.

Moseley et al. [106] describe a sampling-based profiler (relying on unwind informa

tion) that additionally constructs a dynamic loop/call graph by placing loops within

a call graph. However, by not accounting for loop or procedure transformations, this

tool attributes performance only to binary-level loops and procedures. Also, by us

ing a dynamic loop/call graph, it is not possible to understand the performance of

procedures and loops in their full calling context.

Our Approach

To understand the performance of modular programs, we built H P C T O O L K I T ' S

hpcrun, hpcstruct and hpcprof. hpcrun is a call path profiler that measures and

attributes execution costs of unmodified, fully optimized executables to their full

41

calling context — and with the help of hpcstruct and hpcprof — also attributes

costs to loops and inlined code. Achieving this result required novel solutions to three

problems:

• To measure dynamic calling contexts, we developed a context-free on-line bi

nary analysis for locating procedure bounds and computing unwind informa

tion. We show its effectiveness on x86-64 applications in the SPEC CPU2006

suite compiled with Intel, Portland Group and PathScale compilers using peak

optimization.1

• To attribute performance to source-level source code, we developed a novel

post-mortem analysis of the optimized object code and its debugging sections to

recover its program structure and reconstruct a mapping back to its source code.

The ability to expose inlined code and its relation to source-level loop nests

without a special-purpose compiler and without any additional measurement

overhead is unique.

• To compellingly present performance data, we combine (post-mortem) the re

covered static program structure with dynamic call paths to expose inlined

frames and loop nests. No other sampling-based tool attributes the perfor

mance of transformed loops in the full calling context of transformed routines

for fully optimized binaries to source code.

In this chapter, we describe our solutions to these problems. The major benefit of

our approach is that hpcrun is minimally invasive, yet accurately attributes perfor

mance to both static and dynamic context, providing unique insight into program

performance.

xThe Acknowledgments section recognizes the contributions of collaborators.

42

(a) User's view (b) Other sampling-based (c) Our reconstruction
tools

instance/?
loop/

callsite c
p

u

instance q
loop/

callsite c

\
instance r

loop /.
callsite c

r

> t
instance s

instance p

callsite c
p

yt

instance q

callsite c
r

^
instance s

instance p
loop/

callsite c
p

\
instance q

loop/

inlined r
loop /.

callsite c
r

u

instance s

Figure 3.1: Attributing call path metrics to source code. If a compiler inlines call
site cq, current attribution techniques (b) produce confusing results. Our techniques
(c) expose both loops and inlined frames by correlating call paths with program
structure.

Our results are summarized by Figure 3.1. As shown in Figure 3.1a, let p —>

q —> r —> s be a source-level call chain of four procedures. Procedure p contains a

call site cp (that calls q) embedded in loop lp; procedures q and r contain analogous

call sites. Assume that a compiler inlines call site cq so that code for procedure r

appears within loop lq. Consequently, at run time cq is not executed and therefore a

procedure frame for r is absent. Using call stack unwinding and line map information

recorded by compilers yields the reconstruction of context shown in Figure 3.1b. By

combining dynamic context obtained by call stack unwinding with static information

about inlined code and loops gleaned using binary analysis, our tools obtain the

reconstruction shown in Figure 3.1c. Specifically, our tools (1) identify that cp and cr

are located within loops; (2) detect the inlining; and (3) nest cr within both its original

procedure context r and its new host procedure q. Most importantly, reconstructed

43

procedures, loops and inlined frames can be treated as 'first-class' entities for the

purpose of assigning performance metrics.

The rest of the chapter is as follows. Section 3.2 describes our use of binary anal

ysis to support call path profiling of optimized code and evaluates its effectiveness.

Section 3.3 describes our binary analysis to support accurate correlation of perfor

mance measurements to optimized code. Section 3.4 highlights the rich performance

data we obtain by fusing dynamic call paths and static structure. Finally, Section 3.5

discusses related work; and Section 3.6 discusses the chapter's high-level themes.

3.2 Binary Analysis for Call Pa th Profiling

Call path profilers based on asynchronous sampling use call stack unwinding to

gather calling contexts. For such profilers to be accurate, they must be able to unwind

the call stack at any point in a program's execution. A stack unwind, which forms

the calling context for a sample point, is represented by the program counter for the

innermost procedure frame and a list of return addresses — one for each of the other

active procedure frames. Successfully unwinding the call stack requires determining

the return address for each frame and moving up the call chain to the frame's parent.

Obtaining the return address for a procedure frame without a frame pointer is non-

trivial since the procedure's frame can dynamically grow (as space is reserved for the

caller's registers and local variables, or supplemented with calls to al loca) and shrink

(as space for the aforementioned purposes is deallocated) as the procedure executes. If

the return address is kept in the stack (as is typical for non-leaf procedures), the offset

from the stack pointer at which the return address may be obtained often changes as

a procedure executes.

44

Finding the return address for a procedure frame is simple with correct and com

plete compiler-generated unwind information [61]. Unfortunately, compilers routinely

omit unwind information for procedure epilogues because it is not needed for excep

tion handling. However, even if compilers generate complete unwind information,

fully optimized applications often link with vendor libraries (e.g., math or OpenMP)

that have incomplete unwind tables due to hand-coded assembly or partial strip

ping. Since codes may spend a significant fraction of time in procedures that lack

proper unwind information,2 dropping or mis-attributing samples that occur in such

procedures could produce serious measurement error.

To enable accurate unwinding of all code, even code lacking compiler-based un

wind information, we developed two binary analyzers — one to determine where a

procedure begins and ends in partially stripped code, and a second to compute how

to unwind to a caller's frame from any address within a procedure. At any instant,

a frame's return address (which also serves as the program counter for the calling

frame) may be located either (1) in a register, (2) in a location relative to the stack

pointer, or (3) in a location relative to the frame pointer (which the frame must have

initialized before using). The value of the frame pointer for a caller's frame may be

found similarly. To recover the program counter, stack pointer and frame pointer

values for a caller's frame, we compute a sequence of unwind recipes for a procedure.

Each unwind recipe corresponds to an interval of code that ends in a frame-relevant

instruction. A frame-relevant instruction is one that changes the machine state (e.g.,

by moving the stack pointer, saving the frame pointer value inherited from the caller,

or initializing the frame pointer for the current frame) in such a way that a different

unwind recipe is needed for instructions that follow.

2For example, the S3D turbulent combustion code described in Section 3.4.2 spends nearly 20%
of its total execution time in the math library's exponentiation routine as it computes reaction rates.

45

Although procedure bounds and unwind recipes could be computed off-line, we

perform both analyses on demand at run time. We perform binary analysis on each

load module to recover the bounds of all of its procedures. This analysis is triggered at

program launch for the executable and all shared libraries loaded at launch and when

ever a new shared library is loaded with dlopen. The computed procedure-bounds

information for a module is cached in a table that is queried using binary search. We

perform binary analysis to compute unwind intervals for a procedure lazily — the first

time that the procedure appears on the call stack when a sample event occurs. This

approach elegantly handles dynamically loaded shared libraries and avoids wasting

space and time computing unwind recipes for procedures that may never be used.

To support fast queries, we memoize unwind recipes in a splay tree [132] indexed by

intervals of code addresses. Algorithm 3.1 shows a high-level overview of the pro

cess of performing on-the-fiy binary analysis to support call path profiling. Because

dynamic analysis must be efficient, we prefer fast linear-time heuristics that may oc

casionally fail over slower fully general methods.3 (An evaluation of our approach in

Section 3.2.3 shows that our methods almost never fail in practice.) In the next two

sections, we describe how we infer procedure bounds and compute unwind recipes.

3.2.1 Inferring Procedure Bounds

To compute unwind recipes for a procedure based on its instruction sequence, one

must know the procedure's bounds, namely where the procedure begins and ends. In

many cases, complete information about procedure bounds is not readily available.

For instance, stripped shared libraries have only a dynamic symbol table that contains

only information about global procedure symbols; all information about local symbols

is missing. Often, libraries are partially stripped. For instance, the OpenMP run-time
3For example, Rosenblum et al. [122] developed an off-line analyzer to recover procedure bounds

in fully stripped code. However, the focus of their work was on thorough analysis for security.

46

Algor i thm 3.1: backtrace: Use on-the-fiy binary analysis to unwind call stacks
from fully optimized code.

Input: B, procedure bounds for each load module
Input: U, unwind recipes for procedure intervals (splay tree)

1 let T = (PC, FP, SP) be the frame of the sample point (consisting of program
counter, frame and stack pointer)

2 while J7 is not the outermost frame do
3 if U has no unwind recipe for PC then
4 let JJ, be the load module containing PC
5 if B has no bounds for fi then
6 Compute bounds for all procedures in a
7 let 7T be the procedure (from B) with bounds f3 containing PC
8 Scan the object code of ir, (1) tracking the locations of its caller's program

counter, frame and stack pointer; and (2) creating an unwind recipe for
each distinct interval

9 let v be the unwind recipe (from U) for PC
10 let T' = (PC, FP', SP') be the caller's frame, computed using v
n JT 4= r

library for version 3.1 of PathScale's x86-64 compiler only has symbol information for

OpenMP API procedures; all information about other procedures is missing. For

this reason, inferring procedure bounds for stripped or partially stripped code is an

important precursor to computing unwind intervals.

Our approach for inferring procedure bounds is based on the following observa

tions.

• We expect each load module to provide information about at least some procedure

entry points.

Performance analysis of a stripped executable is typically unproductive. In

terpreting measurement results is difficult without procedure names. For this

reason, entry points for user procedures will generally be available for an ex

ecutable. Dynamically linked shared libraries have (at a minimum) procedure

entry points for externally visible library procedures.

• We must perform procedure discovery on all load modules.

47

Partially stripped libraries are not uncommon. There is no a priori way to

distinguish between a partially stripped load module and one that has full sym

bol information. We have also encountered (non-stripped) executables that

lack information about some procedures. For instance, the SPEC benchmark

483.xalancbmk, when compiled with the PathScale C++ compiler (version 3.1,

using -03) contains small anonymous procedures.

• Having the proper address for a procedure start is more important than having

the proper address for a procedure end.

For a procedure with the interval [s, e), incorrectly inferring the procedure end

at address e' > e will not change the unwind recipes that we compute for the

interval [s,e). This rule is especially relevant when data or alignment bytes

separate two procedures.

• We assume all procedures are contiguous.

In other words, we assume a single procedure is not divided into disjoint code

segments. For the most part, this assumption holds. We have, however, encoun

tered compilers that employ hot-cold optimization [43]. This optimization some

times splits the procedure into disjoint segments. Furthermore, an unrelated

procedure may be placed between the disparate parts of the hot-cold-optimized

procedure. Our treatment of a divided procedure is to treat each part as a

separate procedure. Our treatment simplifies procedure discovery, but requires

additional consideration when determining the unwind recipe for the various

segments of a divided procedure. See Section 3.2.2 for more information.

• Not all false positives are equally problematic.

48

We classify false procedures starts into two categories: malignant and benign.

If we infer a false procedure start in a gap between two real procedures that

contains data (e.g., a jump table for a switch statement), this will not affect the

bounds of any real procedures for which we need to compute unwind intervals.

For this reason, we call such a false procedure start benign. On the other hand,

if we infer a false procedure start s' in the middle of a real procedure ranging

from [s,e), this may cause us to compute incorrect unwind information for the

interval [s;, e). We call such a false procedure start malignant.

Approach

We take an aggressive approach to procedure discovery. Without evidence to the

contrary, we assume that the instruction following an unconditional jump or a return

is the start of a new procedure. In optimized code, we have also seen procedures that

end with a call to a procedure that doesn't return (e.g., ex i t or abort). To handle

this case, we infer a function start after a call if we immediately encounter code that

is obviously a function prologue. We use the following collection of heuristics to avoid

inferring a procedure start within a procedure (a malignant false positive).

• We call the interval between a conditional branch at an address a and its target

at address t a protected interval. No procedure start will be inferred in a pro

tected interval. If a < £, this yields a protected interval [a, £'), where t' is the

end of the instruction at address t; otherwise, this yields a protected interval

[t,a'), where a' is the end of the instruction at address a. (Conditional jumps

are almost always within procedures. While we have found one or two condi

tional forward branches used as tail calls in l ibc , other heuristics prevent us

from missing procedure starts in this rare case.)

49

• A backward unconditional jump at address a into a protected interval that

extends from [s, e) extends the protected interval to cover the range [s,a'),

where a' is the end of the instruction at address a. (Such jumps often arise at

the end of 'cold path' prefetching code that has been outlined from loops and

deposited after what would have been the end of the procedure.)

• Moving the stack pointer upward at address a in a procedure prologue (to

allocate stack space for local variables) must be followed by a compensating

adjustment of the stack pointer in each of the procedure's n epilogues, at ad

dresses e i , . . . , en. Let en be the epilogue with the largest address. We treat the

interval [a, en) as protected.

• Let the interval between initializing the frame pointer register with the value

of the stack pointer and restoring the value of the frame pointer be a protected

interval. Similarly, let the interval between a 'store' and 'load' of the frame

pointer be a protected interval.

• A global symbol in the symbol table or the dynamic symbol table is always

considered a procedure start, even if it lies within a protected interval. In

contrast, a local symbol only considered a procedure start if it does not fall

within a protected interval.

3.2.2 Computing Unwind Recipes

Because dynamic analysis must be efficient, we prefer fast linear-time heuristics

that are typically accurate over slower fully general methods. Experiments described

in Section 3.2.3 show that our approach is nearly perfect in practice. Although we

initially developed our strategy for computing unwind recipes for x86-64 binaries, the

general approach is architecture independent. We have'adapted it to compute unwind

50

recipes for MIPS and PowerPC binaries to support call path profiling on SiCortex4

clusters and Blue Gene/P, respectively.

Our binary analyzer creates an unwind recipe for each distinct interval within a

procedure. An interval is of the form [s, e) and its unwind recipe describes where to

find the caller's program counter, frame pointer (FP) register value, and stack pointer

(SP). For example, the caller's program counter (the current frame's return address)

can be in a register, at an offset relative to SP or at an offset relative to FP; the value

of the caller's FP register, which may or may not be used by the caller as a frame

pointer, is analogous.

The initial interval begins with (and includes) the first instruction. The recipe

for this interval describes the frame's state immediately after a call. For example,

on x86-64, a procedure frame begins with its return address on the top of stack, the

caller's value of FP in register FP, and the caller's value of SP at SP — 8, just below

the return address (where 8 is the size of the return address). In contrast, on MIPS,

the return address is in register RA and the caller's value of FP and SP are in registers

FP and SP, respectively.

The analyzer then computes unwind recipes for each interval in the procedure by

determining where each interval ends. (Intervals are contiguous and cannot overlap.)

To do this, it performs a linear scan of each instruction in the procedure. For each

instruction, the analyzer determines whether that instruction affects the frame. (For

x86-64, where instruction decoding is challenging, we use Intel's XED2 tool [38].)

If so, the analyzer ends the current interval and creates a new interval at the next

instruction. The unwind recipe for the new interval is typically created by applying

the instruction's effects to the previous interval's recipe. An interval ends when an

instruction:
4This work was completed before SiCortex's unfortunate demise in May 2009.

51

1. modifies the stack pointer (pushing registers on the stack, subtracting a fixed

offset from SP to reserve space for a procedure's local variables, subtracting a

variable offset from SP to support al loca, restoring SP with a frame pointer

from FP, popping a saved register);

2. assigns the value of SP to FP to set up a frame pointer;

3. jumps using a constant displacement to an address outside the bounds of the

current procedure (performing a tail call);

4. jumps to an address in a register when SP points to the return address;

5. returns to the caller;

6. stores the caller's FP value to an address in the stack; or

7. restores the caller's FP value from a location in the stack.

There are several subtleties to the process sketched above: following a return or

a tail call (items 4 and 5 above), a new interval begins. What recipe should the new

interval have? We initialize the interval following a tail call or a return with the

recipe for the interval that we identify as the canonical frame. We use the following

heuristic to determine the canonical frame C. If a frame pointer relative (FP) interval

was found in the procedure (FP was saved to the stack and later initialized to SP),

let C be the first FP interval. Otherwise, we continue to advance C along the chain

of intervals while the frame size (the offset to the return address from the SP) is

non-decreasing, and the interval does not contain a branch, jump, or call. We use

such an interval as a signal that the prologue is complete and the current frame

is the canonical frame. In addition, whenever a return instruction is encountered

during instruction stream processing, we check to make sure that the interval has the

52

expected state: e.g., for x86-64, the return address should be on top of the stack, and

the FP should have been restored. If the interval for the return instruction is not

in the expected state, then the interval that was most recently initialized from the

canonical frame is at fault. When a return instruction interval anomaly is detected,

we adjust all of the intervals from the interval reaching the return back to the interval

that was most recently initialized from the canonical frame.

To handle procedures that have been split via hot-cold optimization, we check the

end of the current procedure p for a pattern that indicates that p is not an independent

procedure, but rather part of another one. The pattern has two parts:

1. p ends with an unconditional branch to an address a that is in the interior of

another procedure q.

2. The instruction preceding a is conditional branch to the beginning of p.

When the hot-cold pattern is detected, all intervals in p are adjusted according to the

interval computed for a.

In the linear scan between the start and end address of a procedure, the analyzer

may encounter embedded data such as jump tables. This may cause decoding to fail

or lead to corrupt intervals that would leave us unable to unwind. Although such

corrupt intervals could cause unwind failures (we note such failures in a log file),

we have not found them to be a problem in practice. This is because x86/x86-64

disassembly tends to be self-synchronizing [122].

3.2.3 Evaluation

To evaluate the efficiency and effectiveness of our binary analyses for unwinding

against contemporary tools, we compared hpcrun with two of the tools from Intel's

Performance Tuning Utility (PTU) [7, 75] — PTU's sampling-based call path pro-

53

Integer programs

Benchmark
400.perlbench
401.bzip2
403.gcc
429.mcf
445.gobmk
456.hmmer
458.sjeng
462.1ibquantum
464.h264ref
471.omnetpp
473.astar
483.xalancbmk

Average
Std. Dev.

Overhead

hpcrun
1.3%
2.9%
3.2%
1.3%
1.7%
0.4%
0.3%

-0.2%
0.1%
1.6%
1.6%
9.5%

2.0%
2.6%

PTU-
sample

0.9%
0.9%
1.3%
2.6%
1.3%
1.0%
1.6%

-0.2%
0.0%
1.7%
1.7%

10.8%

1.9%
2.8%

PTU-
Pin

1043.3%
197.1%
300.9%

8.5%
481.3%

36.4%
694.4%

16.3%
784.2%
701.2%
184.1%
732.0%

431.6%
353.4%

Unwind Failures

hpcrun*
0.0
0.0

15.1
0.0
0.1
0.0
0.0
0.0
0.6
0.0
0.0
0.0

1.3
4.3

PTU-sample
Intel Others
4.5%
0.8%
4.5%
0.1%
2.4%
0.1%

19.2%
0.1%

21.9%
1.4%
0.5%
1.0%

4.7%
7.6%

87.5%
52.2%
70.7%
60.4%
71.6%
74.4%

100.0%
99.9%
69.7%
49.4%
57.6%
0.4%

66.1%
26.6%

Floating-point programs
410.bwaves
416.gamess
433.milc
434.zeusmp
435.gromacs
436.cactusADM
437.1eslie3d
444.namd
447.dealII
450.soplex
453.povray
454.calculix
459.GemsFDTD
465.tonto
470.1bm
481.wrf
482.sphinx3

Average*
Std. Dev.

1.7%
0.8%
0.6%
2.1%
0.6%
1.6%
2.0%
0.2%
0.5%
1.6%
0.1%

-0.5%
-0.8%
0.3%
0.9%
3.0%
0.4%

0.9%
1.0%

1.9%
0.1%
0.4%
2.0%
0.4%
1.5%
1.7%
1.5%
0.7%
1.8%
0.3%
0.9%

-1.2%
1.3%
1.2%
1.5%
2.4%

1.1%
0.9%

9.9%
t

61.0%
t

57.3%
6.7%
2.5%
5.1%

1746.4%
19.3%

1732.8%
62.5%
45.3%

287.4%
10.2%
59.5%
84.7%

279.4%
566.0%

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.5
0.0

0.0
0.1

0.0%
0.3%
0.0%
0.0%
0.1%
0.0%
0.0%
0.0%
2.7%
2.0%
6.5%
0.2%
0.1%

11.1%
0.0%
0.0%
1.9%

1.5%
3.0%

66.6%
99.7%
99.9%
99.7%

100.0%
100.0%
93.5%
42.0%
83.8%
54.3%
49.8%
99.5%
74.9%
98.0%
13.5%
98.2%
48.0%

77.7%
27.1%

Neither the arithmetic nor geometric mean summarizes these values well,
t PTU-Pin failed to execute any version of these benchmarks.

$ These values are not percents.

Figure 3.2: Comparing hpcrun's and Intel PTU's overhead and unwind failures on
SPEC CPU2006.

54

filer (PTU-sample) and PTU's Pin-based call graph profiler (PTU-Pin) — using the

SPEC CPU2006 benchmarks [134]. Since PTU is designed for Intel architectures,

this evaluation focuses on analysis of x86-64 binaries. We compiled two versions of

each benchmark, distinguished by 'base' or 'peak' optimization, using the Intel 10.1

(20080312), PathScale 3.1 and Portland Group (PGI) 7.1-6 compilers; this resulted in

six versions of each benchmark. We used the following 'base' and 'peak' optimization

flags: for Intel, -03 and - f a s t (but with static linking disabled); for PathScale, -03

and -Ofast; for PGI, - f a s t -Mipa=fast, in l ine . To permit high-throughput test

ing, we performed the experiments on a cluster where each node is a dual-socket Intel

Xeon Harpertown (E5440) with 16 GB memory running Red Hat Enterprise Linux

5.2. Figure 3.2 summarizes our results.

Efficiency

The first multi-column of Figure 3.2 compares the average overhead of hpcrun with

PTU-sample and PTU-Pin. We first observe that despite PTU-Pin's sophistication,

dynamic binary instrumentation is not an acceptable measurement technique for two

reasons. First, compared to a worst case sampling overhead of about 10% (average

of 1-2%), instrumentation can introduce slowdown factors of 10-18. Second, the

drastic variation in overheads strongly suggests that Pin's instrumentation dilates

the execution of small procedures and introduces systematic distortion. Because of

the extremely long run times and the clear advantage of sampling, we chose not to

collect PTU-Pin results on executables generated by non-Intel compilers, assuming

that an Intel tool used with an Intel-generated executable represents a best-case usage.

Both hpcrun's and PTU-sample's results are averaged over all six versions of

the benchmarks; each tool used a 5 ms sampling period, yielding approximately 200

samples/second. Because of hpcrun's additional dynamic binary analysis, one might

55

expect it to incur more overhead. However, our results show that a reasonable ex

ecution time and sampling rate quickly amortizes the binary analysis overhead over

thousands of samples and makes it negligible.5 In fact, the overhead differences be

tween hpcrun and PTU are statistically insignificant. This is seen in two ways. First,

the average overheads for each set of benchmarks are very similar; and given the high

standard deviations, a statistical test would not meaningfully distinguish between

the two. Second, average overheads for the individual benchmarks are within within

1-2% of each other, but no tool consistently performs better. Moreover, these small

differences are well within the natural execution-time variability for a standard op

erating system (especially when using shared I/O) [109]; this fact accounts for the

small negative overheads.

The one benchmark for which both hpcrun and PTU incur meaningful overhead

is 483.xalancbmk, at around 10%. The reason is that 483.xalancbmk has many call

paths that are 1000-2000 invocations long. An earlier version of hpcrun for the Alpha

platform used a technique of inserting an 'active return' on a sample to memoize

stack unwinds and collect return counts [60]. We plan to implement this technique

and expect that it will significantly reduce hpcrun's overhead in such cases.

Effectiveness

Given that hpcrun and PTU-sample incur comparably low overheads, multi-

column two of Figure 3.2 assesses the quality of their call path profiles in terms

of unwind failures. An unwind failure is defined as the inability to collect a complete

calling context. Note that for hpcrun, this metric directly assesses the quality of

5 Although it is more difficult to amortize the overhead of our binary analyses for very short
executions, this does not imply that for such executions tools like PTU-sample that use statically
computed unwind information induce significantly less overhead. Because typical compiler-generated
unwind information is stored sparsely, a tool like PTU-sample must invest some effort to read and
interpret it.

56

unwind recipes and indirectly reflects the accuracy of procedure bounds. This is a

reasonable metric because we have designed hpcrun's binary analyses to cooperate

for the purpose of obtaining accurate unwinds.

There are two ways to directly measure unwind failures. The most comprehensive

method uses binary analysis to attempt to verify each link in the recovered call chain.

For each each step in the unwind, we have a segment p —> q and a return address

(RA) within p. The analysis can then certify the unwind from q to p as (almost

certainly) valid, likely, or (provably) invalid:

• valid, if a statically linked call to q immediately precedes RA

• valid, if a dynamically linked call to q immediately precedes RA (via inspection

of the procedure linkage table)

• likely, if a dynamically dispatched call immediately precedes RA

• likely, if a call to procedure r immediately precedes RA, and r is known to have

tail calls

• invalid, if none of the above apply

Two details are worth noting. First, for architectures with variable-width instructions,

it is reasonable to simply test offsets from RA that correspond to possible call or jump

instructions rather than disassembling from the beginning of the procedure. Second,

delay slots will offset the location of the call site.

The second way to measure unwind failures is based on the observation that, in

practice, if an unwinder attempts to use an incorrect frame or stack pointer, errors

very quickly accumulate and result in return addresses that are provably wrong in

that they do not correspond to mapped code segments. Additionally, we make use

of the fact that hpcrun's program monitoring technology intercepts a process's or

57

thread's entry point (for both statically and dynamically linked binaries). Thus, this

second method classifies an unwind as invalid if it finds a provably wrong return

address or if the unwind is not rooted in the process's or thread's entry point.

hpcrun implements both methods. Because the first and stronger method incurs

noticeable overhead, we do not activate it by default. Rather, we use the second

method and make a note of all invalid unwinds. This gives us an efficient way to

directly assess unwind failures.

In contrast, for PTU-sample, we measured unwind failures indirectly. PTU-sample

does retain partial unwinds; and if it performs any sort of verification, that informa

tion is not exported. Therefore, we wrote a script to analyze the results of PTU-

sample's 'hot path' listing. The script classifies a path as valid if it is rooted at some

variant of 'main' or any ancestor frame. Observe that this requirement is more relaxed

than hpcrun's. It is also worth noting that this requirement does not not penalize

PTU-sample for skipping a frame by incorrectly following its parent's frame pointer

rather than its own — an easy mistake for an x86-64 tool that is unwinding from

an epilogue or frame-less procedure and that relies on compiler-generated unwind

information.

Our results showed radically different failure rates for PTU-sample on Intel-

generated code (5%) versus PathScale and PGI code (65-75%). Since PTU-sample

is dependent upon frame pointers and unwind information, and since frame point

ers are not reliably maintained in these binaries, the results strongly suggest that,

compared to PathScale and PGI, the Intel compiler places a much higher priority on

consistently recording correct unwind information. However, even on Intel-generated

binaries, PTU-sample can have high enough failure rates — as high as 5-20% — that

it risks introducing systematic distortion by failing to unwind through a commonly

58

appearing procedure instance. On the non-Intel benchmark versions, PTU-sample's

failure rate is so high that it essentially becomes a call path fragment profiler.

In contrast, the number of unwind failures for hpcrun is vanishingly small, hpc-

run's failures are reported as the average number (not percent) of failures over all

six benchmark versions. Its worst performance was on the 403.gcc benchmark. The

benchmark averages on the order of 100K samples. Across the six versions of the

benchmark that we studied, hpcrun failed to gather a full call path for 15.1 of those

samples on average. All of these failures stem from a calling-context-sensitive frame

formed by a procedure calling abort () to handle an error. Specifically, the Intel

compiler recognizes that the call to abort 0 never returns and uses this information

to tear down the procedure's current frame before the call abort () occurs, something

that usually only occurs before a tail call or a return instruction. Since the procedure

must return in the non-exceptional case, it contains an additional epilogue to tear

down the procedure's frame before the return statement. As a result, our heuristics

detect an inconsistency in the computed unwind recipes and attempt to self-correct,

but are unable to fully account for the context-sensitive complexity.

Summary

Despite the fact that hpcrun's binary analysis for unwind recipes is (1) context

insensitive, (2) operates without a control flow graph, (3) does not formally track

register values, and (4) cannot treat embedded data as such, these results show that

the cost of our analysis is very modest and its results are very effective. Given

that hpcrun almost always collects a full call path and that PTU-sample much more

frequently fails, we can say that on average hpcrun performs more useful work per

sample than PTU-sample — at the same overhead.

59

(LM /mypath/hmc load module
(File /mypath/hmc. cc source file

(Proc doHMC 257-449 { [Oxabe-Oxfeed)} procedure
(Stmt 309-309 {[babl-Oxbabe)}) statement
(Loop 311-435 {[Oxdad-Oxfad)} loop

(Stmt 313-313 {[Oxdaf-Oxeal), [eel-Oxeef)})
))))

Figure 3.3: Representing program structure with a mapping between object code
and source-code structure. Static scopes include a load module, file, procedure, loop
and statement. Procedures, loops and statements are annotated with their corre
sponding object address interval sets.

The clearest downside to our approach is the effort we have invested in developing

these heuristics. The x86-64 unwinder was the most difficult to write, in large part

because of its irregular architecture and variable-sized instructions. Nevertheless,

once we arrived at the general approach we were able to relatively quickly develop

MIPS and PowerPC unwinders. For example, we wrote the PowerPC unwinder —

for use on Blue Gene/P — and resolved some OS-specific issues in about a week and

a half. During our first major test, we collected performance data for an 8192-core

execution of the FLASH astrophysics code [52] compiled with the IBM XL Fortran

and C compilers for BG/P (versions 11.1 and 9.0, respectively) using options -04

-q in l ine -qnoipa.6 Out of approximately 1 billion total samples, hpcrun failed to

unwind approximately 13,000 times — a failure rate of 0.0013%.

3.3 Binary Analysis for Source-Level Attribution

This section discusses the hpcstruct binary analysis tool for recovering static pro

gram structure from a binary. Although originally presented in our M.S. thesis [139],

we include this summary for the sake of completeness.

6We were forced to disable inter-procedural analysis because of an incompatibility between IBM's
compiler and our tool for inserting hpcrun in statically linked binaries.

60

To combine dynamic call path profiles with the static structure of fully optimized

binaries, we need a mapping between object code and its associated source code

structure. Since the most important elements of the source code structure from the

perspective of performance are procedures and loop nests, we focus our efforts on

them. An example of what this mapping might look like is shown in Figure 3.3. The

mapping is a tree of scopes representing static program structure. The scope hier

archy is straightforward: a load module (a binary) contains source files; files contain

procedures; procedures contain loops; procedures and loops contain statements; and

scopes such as procedures, loops and statements can be annotated with object code

address interval sets.

There are two ways to obtain the desired mapping: use a summary of transforma

tions recorded by the compiler or reconstruct it through analysis. Because debuggers

must associate the execution of object code with source code, one would expect de

bugging information to provide the former. In 1992, Brooks et al. [27] developed

debugging extensions for mapping object code to a scope tree of procedures, loops,

blocks, statements and expressions. While they left to future work a solution for the

inlining problem, neither compilers nor debugging formats followed their lead. Al

though DWARF [57], the de facto standard on Linux, can represent inlining, it cannot

describe loops or loop transformations. Even worse, all x86 Linux compilers that we

have used generate only limited DWARF, often failing to record inlining decisions.

Intel's compiler (10.x) retains line-level information in the presence of inlining, but

the information is incomplete (e.g., there is no association between inlined code and

object code) and sometimes erroneous. Thus, however easy the problem of creating

the object to source code mapping could have been, the fact remains that vendor

compilers do not provide what we desire. Consequently, we wrote the hpcstruct tool

to reconstruct the mapping through binary analysis, using only a 'lowest common

61

A d d r e s s
Ox . . . 15550
Ox . . . 15570
Ox . . . 17030
O x . . . 1 7 2 c 0

File
hmc.cc
hmc.cc
qdp_multi.h
stLtree.h

Line
499

14
35

1110

P r o c e d u r e
main
main
main
main

Figure 3.4: Example of typical line map information.

denominator' set of debugging information. We focus on programs written in C++,

C, and Fortran.

An obvious starting point is to consult an executable's line map, which maps an

object address to its corresponding source file, line number and procedure name for

use by a debugger. However, the line map is insufficient for detecting inlined, or more

generally, alien code, i.e., code that originates outside of a given procedure. To see

this, consider the unexceptional line map excerpt from a quantum chromodynamics

code shown in Figure 3.4. Given that the first entry maps to native (as opposed to

alien) code, what is the first line of procedure main? Although one is tempted to

answer 14, it turns out that the second line is actually alien; this is not detectable be

cause the line map retains the original file and line information (from before inlining)

but assumes the name of the host procedure (after inlining). Even worse, because

optimizing compilers reorder the native and alien instructions (including prologues

and epilogues), no particular entry is guaranteed to map to native code, much less

the procedure's begin or end line. Consequently, to reconstruct the desired map

ping we must supplement the line map with a 'lowest common denominator' set of

DWARF-specific information.

3.3.1 Recovering the Procedure Hierarchy

Compilers perform several procedure transformations such as flattening nested

procedures, inlining, and cloning for specialization. Recovering the procedure hier-

62

archy involves re-nesting source code procedure representations, determining their

source line bounds and identifying alien code.

It turns out that by combining standard DWARF information with certain pro

cedure invariants, recovering the procedure hierarchy is less difficult than it first

appears. A load module's DWARF contains procedure descriptors for each object

procedure in the load module and the nesting relationship between the descriptors.

Each descriptor includes (1) the procedure's name, (2) the defining source file and

begin line, and (3) its object address ranges. The key missing piece of information is

the procedure's end line. Observe however, that two source procedures do not have

overlapping source lines unless they are the same procedure or one is nested inside

the other. Intuitively, in block structured languages, source code does not 'overlap.'

More formally:

Non-overlapping Principle. Let scopes X\ and x2 have source line intervals <7i and

a2 within the same file. Then, either X\ and X2 are the same, disjoint or nested, but

not overlapping:7

• {xi = x2) <=>• (CTI = a2)

• (xi ^ x2) <=*• ((<xi n a2 = 0) V (o-i C a2) V (a2 C oi))

We can also say (where x2 E< x\ means X\ is nested in x2):

• {ax n o2 = 0) & ((xi ^ x2) A -.(xi E< x2) A ->(x2 E< x{))

• (a2 C <7i) <̂ > (xi E< x2)

The implication of this principle is that given DWARF nesting information, we

can infer end line bounds for procedures, resulting in the following invariants:

Unstructured programming constructs may give rise to irreducible loops or alternate procedure
entries. While the former is not strictly an exception (no block of source code actually overlaps),
the latter is. However, Fortran's alternate entry statement is deprecated and used very infrequently.

63

(a) Sibling procedures (b) Nested procedures (Fortran)

y E
z

Figure 3.5: Bounding procedure end lines.

Procedure Invariant 1. A procedure's bounds are constrained by any (parent) pro

cedures that contain it.

Procedure Invariant 2. Let procedure y have sibling procedures x and z before and

after it, respectively. Then, y 's begin line is greater than x 's end line and its end

line is less than z's begin line.8 Figure 3.5a graphically depicts application of this

invariant.

Neither C++ nor C permits procedure nesting. To handle Fortran, which places

strict limits on where a procedure can be nested, we derive a special invariant (de

picted graphically in Figure 3.5b):9

Procedure Invariant 3. Let procedure Y have nested procedures Jb J . . . JUflj bib that

order. Then Fortran nesting implies that the executable code of Y and x\... xn forms

n + 1 ordered, contiguous source code regions.

These invariants enable hpcstruct to infer an upper bound on all procedure end

lines except for the last top-level procedure of a source file, whose upper bound is oo.

We can ignore the case where two procedures are denned on the same source line; column
information would make this precise.

9Because DWARF contains a language identifier, this nesting rule can be applied only when
appropriate.

64

Moreover, accurate procedure bounds information is sufficient for detecting all alien

code within a procedure (assuming two restrictions discussed below).

There are two complications with this strategy. First, it is often the case that a

load module's DWARF does not contain a DWARF descriptor for every source-level

procedure, creating 'gaps' in the procedure hierarchy. For example, no descriptor is

generated for a C++ static procedure that is inlined at every call site. Although

this knowledge can never be fully recovered, we have developed a simple and effective

heuristic to close most of the important gaps [139].

Second, C++ permits classes to be declared within the scope of a procedure,

thereby allowing class member functions to be transitively nested within that pro

cedure. Consider a procedure-scoped C++ class with n member functions. The n th

member function may be inlined into the procedure but because the only end line

bound we can establish on the n th member function is the end line bound of the

containing procedure itself, we will not be able to detect it. This means that in

the presence of procedure-scoped classes, even with DWARF descriptors for every

procedure we may not be able to detect all alien code. However, this issue is of

little practical concern: procedure-scoped classes are rare; and we have developed a

strategy for detecting the presence of most procedure-scoped classes [139].

A high-level sketch of hpcstruct is shown in Algorithm 3.2. It consists of two

parts: recovering the procedure hierarchy (beginning at line 3) and recovering loop

nests for each procedure (beginning at line 5). This section has covered the first part;

the second part is covered below.

3.3.2 Recovering Alien Contexts

Before discussing loops, we note three important aspects of detecting alien code.

65

(File main.cpp (P r o c /•'
(Proc zoo 10-100 (Alieni .

(Loopj A\ (Al ien zoo moo.cpp:10-13

. . .) " • . .

Lx (Loop 20-50 U l i e n m

(Loop„
A2 (A l i en zoo moo.cpp:10-15

. . .)
(A l i e n m + 1 . . .

(Stmt s...)

Figure 3.6: Recovering alien contexts: (a) Alien context ambiguity; (b) Maximum
procedure context nesting for scope s.

Figure 3.6a shows an example of two alien scopes, A\ and A2, representing the

presence of alien code within procedure 200. Consider the task of identifying the

alien code within zoo. In general, given an object code instruction, its correspond

ing source-level statement is classified as alien if its source file is different than the

enclosing procedure's or if its source line is outside the line bounds of the enclos

ing procedure's. However, as an instruction is processed, adjacent instructions may

belong to different alien contexts (i.e., different inlined procedures). Since inlining

can be nested, it is natural to ask how to distinguish between nested and non-nested

inlining. The short answer is that without DWARF inlining or source-level call graph

information, we cannot. Therefore, we choose to flatten alien scopes with respect to

their enclosing loop or procedure. This implies that for a loop nest of depth m, there

can be at most m 4- 2 parent contexts (procedure or alien scopes), as illustrated in

Figure 3.6b.

Return again to Figure 3.6a. Observe that A\ and A2 have overlapping bounds,

where A2 is embedded within loop L\. Without call site information, it is not possible

to distinguish between (1) one distinct call site within the loop, where some of the

inlined code was was loop invariant; or (2) two distinct call sites where some of the

code from the first call site [A\) was entirely eliminated.

66

Finally, the number and bounds of alien scopes can be refined using the Non-

overlapping Principle [139].

3.3.3 Recovering Loop Nests

Having an outline of the procedure hierarchy, hpcstruct recovers the loop nesting

structure for each procedure. As shown in Algorithm 3.2, this task can be broadly

divided into two components: (1) analyzing object code to find loops (line 6) and (2)

inferring a source code representation from them (line 7). To find loop nests within

the object code, hpcstruct first decodes the machine instructions in a procedure

to compute the control flow graph (CFG) and then uses Havlak's algorithm [70] to

recover the tree of loop nests [93]. Given this tree of object code loops, hpcstruct then

recovers a source code representation for them. This is a challenging problem because

with fundamentally line-based information hpcstruct must distinguish between (1)

loops that contain inlined code, (2) loops that may themselves be inlined, and (3)

loops that may be inlined and contain inlined code. Finally, hpcstruct must account

for loop transformations such as software pipelining.

Because loops also obey the Non-overlapping Principle, there are analogous loop

invariants for Procedure Invariants 1 and 2. However, without symbolic loop infor

mation, these invariants are of little value. Consequently, hpcstruct 's strategy is to

initially assume that the source loop nesting tree mirrors the object code loop tree,

and then look for exceptions. Specifically, hpcstruct performs a preorder traversal of

the object loop tree, recursively visiting outer loops before inner loops. The challenge

we now discuss is reconstructing a source representation for every loop during this

traversal.

As a starting point, we observe that loop invariant code motion implies that a

computation at loop level I will (usually) not be moved into a loop that is at a nesting

67

level deeper than I. Coupling this observation with accurate procedure bounds, we

could scan through all the non-alien statements within a particular loop and compute

a minimum and maximum line number, which we call the min-max heuristic.

One complication for the min-max heuristic is Fortran's use of statement func

tions, which are single-statement functions nested within a procedure. Statement

functions have no associated DWARF descriptors. Code for statement functions is

forward substituted wherever they are used. Applying the min-max heuristic to the

first loop of a procedure that uses a statement function will result in a loop begin

line that erroneously includes all executable statements prior to the loop. To prevent

this problem, we would like some mechanism for estimating the begin line of a loop.

When loops are compiled to object code, the loop header's continuation test is typi

cally translated into a conditional backward branch that, based on the result of the

continuation test, returns to the top of the loop or falls through to the next instruc

tion. Moreover, most compilers associate the loop's backward branch with the source

line of the continuation test, and therefore the loop header. We therefore modify the

simple min-max heuristic to form the bbranch-max heuristic for computing loop begin

and end lines: the loop begin line can be approximated using information from the

backward branch; and the best loop end line is the maximum line after all alien lines

have been removed.

Although the bbranch-max heuristic can be thwarted by unstructured control flow,

it suffers from a more serious defect. The difficulty is that when estimating a loop's

begin line from that loop's continuation test, the heuristic implicitly determines the

loop's procedure context, i.e., the loop's enclosing alien or procedure scope. Specif

ically, bbranch-max assumes that the procedure context for that instruction is the

same context as other instructions within the (object) loop body. This results in a

severe problem if the loop's condition test derives from inlined code, something that

68

Algor i thm 3.2: recover-program-structure: Recover static source code structure
from an application binary.

Input: A load module Im (with DWARF information)
Result: S, Im's object to source code structure map

1 let X>, dwarf map : object-procedure i—> DWARF-descriptor
2 let £, line map : address H-> {file-name, proc-name, line)

II Recover procedure hierarchy (§3.3.1)

3 Create a source procedure ps for each DWARF descriptor in T> with no object code
4 Create a source procedure ps for each object-procedure po using V(po) or C{po)-

II Recover loop nests (§3.3.3)

5 foreach procedure ps in S with object-procedure po do
6 Form po's loop nests by creating the strongly connected regions tree T induced

by po's control flow graph
7 foreach basic block b inT (preorder traversal) do
8 if b is a loop header then
9 let a — C{i) for backward-branch i

io let ess = determine-context(a)
n Create a source code loop Is located within ess
12 foreach instruction i in b do
13 let a = C(i)
14 let ess = determine-context(cr)
15 Create a statement scope ss for a within ess

16 Normalize each procedure p in <S (§3.3.4)

Algor i thm 3.3: determine-context: Determine the static context of a loop or
statement.

Input: Let (se, a = (fnm, pnm, In)) be the argument list. Let scope s be a loop or
statement whose context is unknown. Then se is s's expected enclosing
scope (loop or procedure) and a its source code descriptor.

Result: The actual enclosing scope c (loop or procedure context) for s.

is very common within object-oriented C + + . Therefore, it is necessary to somehow

distinguish between a loop deriving from an alien context (and which itself may have

alien loops) and one that only contains alien contexts within its header or body. As

previously suggested, our solution to this problem, is to guess and correct. In brief,

h p c s t r u c t processes instructions within a loop one-by-one (Algorithm 3.2, line 7);

and for each instruction it determines that instruction's procedure context, its source

69

(File main.cpp Steps
(Proc in i t 145-199

A\ (Alien . . . Array, cpp: 82-83 1. Find alien context
Si (Stmt 82-82)
L2 (Loop 83-83 2. Locate loop (incorrectly)
S2 (Stmt 83-83)
A3 (Alien . . . main.cpp :158-158
S3 (Stmt 158-158) 3. Self nesting!

Figure 3.7: Detecting incorrect loop placement via nesting cycles while recovering
program structure.

line location within that context, and its enclosing loop (if any). Figure 3.7 shows a

partially reconstructed procedure where alien scope Ai has been identified (Step 1)

by using the source line information for the instruction corresponding to S\. When

hpcstruct processes the loop header (S2) for L2 using bbranch-max (Step 2), it must

determine whether the source line loop should be located in the current procedure

context, a prior context (which would imply the current context is alien), or a new

alien context. In this case, because of the presence of statement 52, hpcstruct

'guesses' that the loop header should be located within the current alien procedure

context Ai. hpcstruct next processes S3 (Step 3), which it determines must be alien

to the current procedure context Ai, resulting in the new alien context A3. However,

because As's bounds are within i n i t ' s bounds, this implies that i n i t is inlined inside

of itself, which is a contradiction. This shows that the guess at Step 2 was wrong.

This observation, which is another implication of the Non-overlapping Principle,

can be formally stated as follows:

Procedure Invariant 4. Let L be a loop nest rooted in an alien scope Ca. Fur

thermore, let L have loop levels 1 . . . n. Now, let s be a statement at level n that

clearly belongs in a shallower procedure context C. Since C is a shallower procedure

70

Before After
(File main.cpp

(Proc init 145-199

Ai (Alien Array.cpp:

(Stmt 82-82)

Li (Loop 83-83)

S2 (Stmt 83-83)

(Alien main.

S3 (Stmt 158

82-

cpp

83>

:158-
-158)

•158

(F ile main.cpp
(Proc init 145-199

(Alien Array.cpp:82-83
(Stmt 82-82)

)
(Loop 158-158

(Alien Array.cpp:82-83
(Stmt 83-83)

)

(Stmt 158-158)

Figure 3.8: Correcting nesting cycles while recovering program structure.

context, it must be a parent of Ca which implies that C is nested within itself, which

is impossible.

When an impossibility such as this is found, hpcstruct , knowing that L was mis-

located, corrects the situation by relocating all levels of L from Ca to within C.

Figure 3.8 shows how we correct the loop nesting cycle shown in Figure 3.7. In this

case, L\ is un-nested one level, which places it within the correct procedure context

and its bounds are updated to include S3. 52 remains nested in L\, but Ai's context

must be replicated to correctly represent it.

At first glance, the process of selecting the procedure context for a given in

struction and possibly correcting an erroneous guess appears to be costly. However,

because (1) a loop nest of depth m can have at most m + 2 parent contexts and (2)

even after inlining, loop nests rarely exceed a depth of 10, scanning the current parent

procedure contexts is, for practical purposes, a constant time operation.

Observe that to properly recover the corrected L\, it is critical to appropriately

expand its begin line so that statements that should belong in the loop are not ejected.

To do this, we use a tolerance factor when testing for a statement's inclusion within

71

the current loop. If the current begin line minus the tolerance factor would include

the statement within the bounds, the statement is deemed to be within the loop and

the bounds grow accordingly; the loop's end line can thought of having a tolerance

of oo to assign the maximum line within the loop as the end line. The effects of

fuzzy matching can be complex, because a loop may initially appear to be within an

alien context (by backward branch information) but later emerge as a native loop.

To account for this, hpcstruct uses different tolerances based on context [139].

3.3.4 Normalization

Because of loop transformations such as invariant code motion and software pipe

lining, the same line instance may be found both within and outside of a loop or there

may be duplicate nests that appear to be siblings. To account for such transforma

tions, we developed normalization passes based on the observation that a particular

source line (statement) appears uniquely with a source file (an application of the

Non-overlapping Principle) [93,139].

For its most important normalization passes, hpcstruct repeatedly applies the

following rules until a fixed point is reached:

• Whenever a statement instance (line) appears in two or more disjoint loop

nests, fuse the nests but only within the same procedure context. (Correct for

loop splitting.)

• Whenever a statement instance (line) appears at multiple distinct levels of the

same loop nest (i.e., not crossing procedure contexts), elide all instances other

than the most deeply nested one. (Correct for loop-invariant code motion.)

72

3.3.5 Summary

Thorough application of a small set of invariants enables hpcstruct to recover

very accurate program structure even in the presence of complex inlining and loop

transformations. Importantly, in the (rare) worst case, while the effects of an incorrect

inference may be compounded, they are limited to at most one procedure. Further

details, including discussions of macros, procedure groups and algorithms can be

found in [139].

We have tested hpcstruct on the GCC, Intel, PathScale, Portland Group and

IBM XL compilers (among others). When debugging information is accurate, hpc

s t ruc t produces very good results. However, we have observed that debugging in

formation from certain compilers is sometimes erroneous — and even violates the

DWARF standard. We have hardened hpcstruct to handle certain errors, but it

cannot psychoanalyze. While compilers may opt to generate incomplete information,

the information that they do generate should be correct.

3.4 Put t ing It All Together

By combining hpcrun's minimally intrusive call path profiles and hpcstruct 's

program structure, we relate execution costs for a fully optimized executable back to

static and dynamic contexts overlaid on its source code. One particularly noteworthy

result is that hpcstruct 's program structure naturally reveals inlining (or the absence

of it) as well as loop fusion and the generation of scalarization loops to implement

Fortran 90 array notation. To demonstrate our tools' capabilities for analyzing the

performance of modular applications, we present screen shots of H P C T O O L K I T ' S

hpcviewer browser displaying performance data collected for two modern scientific

codes.

73

B O O hpcviewer: MOAB: mbperfJWesh 200 B (Barcelona 2360 S£)

"% mbperHMesh.cpp j **? AEntityractory.cpp | "3, stl_tree.h j Tt Ty|MSequenceMan»eer.hpp S3 j "? ir.*esh_MOAB.cpp I = B |

-i c l ass SoquenceCarjpare { /r-
..€ p u b H c : boo l o p o r a t o r Q C const Ent i t yScquencc* a , const EntutySequence* b) const %hl
_;' { r e t u r n a->cnd_hand' .cO < b - > s t a r t _ h a n d l c O ; } A

- . } ; »

\ Calling Context View!*

j o ;6J«MHII:

o
Scope PAPI_Ll_OCM (I) I

^r main 8.63e+06 100 %

• K> testB(vold*,lnt, double const*, intconst*! 8.3Se+08 96.74

• inlined from mbpcrrJVesh.cpp. 261 6.81e+CB 78.9%

T loop at mbperMN'esh.cpp. 336-349 3.36e+oe 38.9%

] V BC> imesh_getentadj_ 3.35e+08 38.84

j j -V St> lmesh_getentarradj_ 3.3Se+08 38.8%

' V loop at IWcsh.MOAB.cpp. 1010-1024 3.3Se+C8 38. e%
i *w BC> MBCore:.get_adjacencies(unsignod long const6, int.int. bool,std:.vector<unsigned Ion 3.3Se+©8 38.8%

' T @£ AEntityFactory.:get_adjacencies(unsigned long, unsigned int. bool. std::vector<un 3.3Se+C8 38.8%

j j V R>AEntityractory:.creatc_vert_elem_adiacencies() 3.1«e+C8 36.«%

j • loop at AEntityfactory.cpp:$ 13-530 3.1«e+C6 36.«%

• loopatAEntityractory.cpp. 522-530 3.1«e408 36.Q%

• loopatAEntltyFactory.cpp 529-S30 3.1«e+08 36.3% I

w B£>AEntityFactory::add_adjacency(unsigncd long, unsigned Ion 3.05e+CB 3S.3%

f ©• AEntityFactory.:gct_adjacencies(unsigned long,std.vec 2.47e*G8 28.6%

• inlined from stl_trec.h: 466 2.08e+C8 20.1%

v loop at stLtree.h: 1370 2.08e+C8 2«.1% 4 j

* inlined from TypeSequenceN>an3ger.hpp: 27 1.84e+08 21.3% T j

Figure 3.9: hpeviewer's Calling Context view showing call paths overlayed with
static program structure for MOAB (C++). Context sensitive metrics are attributed
to both inlined code and loops.

3.4.1 MOAB

We first show the detailed attribution of performance data for MOAB, a C++

library for efficiently representing and evaluating mesh data [145]. MOAB implements

the ITAPS iMesh interface [37], a uniform interface to scientific mesh data. We

compiled MOAB on an AMD Opteron (Barcelona) based system using the Intel 10.1

compiler with -03. (We could not use - f a s t because of a compiler error.) We profiled

a serial execution the mbperf performance test using a 200 x 200 x 200 brick mesh

and the array-based/bulk interface.

Figure 3.9 shows a calling context tree view of a call path profile of MOAB. The

navigation pane (lower left sub-pane) shows a partial expansion of the calling context

74

http://IWcsh.MOAB.cpp

tree. The information presented in this pane is a fusion of hpcrun's dynamic and

hpcstruct 's static context information. The selected line in the navigation pane (at

the bottom) corresponds to the highlight in the source pane (top sub-pane).

The navigation pane focuses on the hottest call path (automatically expanded

by hpcviewer with respect to LI data cache misses). A closer look reveals that

the path contains six loops dynamically nested within inlined and non-inlined pro

cedure activations. The root of the path begins prosaically with main —> testB but

then encounters an inlined procedure and loop from mbperf _iMesh. cpp. The in-

lined loop makes a (non-inlined) call to imesh_getentadj which descends through

several layers of mesh iteration abstractions. Near the end of the hot call path,

AEntityFactory: :get_adjacencies contains an inlined code fragment from the

C+-1- Standard Template Library (STL), which itself contains a loop over code in-

lined from the MOAB application (TypeSequenceManager.hpp). Closer inspection

of the call path confirms that get_adjacencies calls an (inlined) procedure that

calls the STL se t : :find function — which makes a call back to a user-supplied

comparison functor in TypeSequenceManager.hpp. In this context, the comparison

functor incurs 21.3% of all LI data cache misses, suggesting that objects in the STL

set should be allocated to exploit locality. Our tools are uniquely able to measure

and attribute performance data at the source level with exquisite detail, even in the

presence inlining.

3.4.2 S3D

The second application we discuss is S3D, a Fortran 90 code for high fidelity

simulation of turbulent reacting flows [104]. We compiled S3D on a Cray XD1 (AMD

Opteron 275) using Portland Group's 6.1.2 compiler with the - f a s t option.

75

n n o hpcviewer: 11 S3D-calipath-50xSOxSO

i "\ mixavg_transport_m.f90 j >% rhsf.OO S3 Q

»3- !The array dimensioning can be misleading
J.Yi !For grad_u, 4th dimension is the direction and Sth dimension is the vei
J.V^ .Tor grad_Ys, 4th dimension is the species and Sth dimension is the dir^jj

J. call computeVectorGradient(u, grad_u)
JM call computeScalarGradientC temp, grad.T)
c'-i.-i do n^l,n_spec
..If; call computeScalarGradientC yspeciesC:,:,: ,n), grad_YsC •:,: ,n,:)) *
.11 enddo T

Scope
j • loop at mixavg_transport_m.f90. 739-764

f loop at rhsfi90. 209-210

* loop at rhsf.OO. 210

S> computoscalargradient

• loop at mixavg_transport_mJ90 1025-1028

• loop at mixavg_transport_m.f90. 929-935

I getratcsi: 16

samples (E)w
J2.17e07 11.24

jl.07e07 S.S%
1.07e07 S.St

G

|9.32eC6 4.8t
8.65e06 4.6% A :

J8 .7Se<56 ' . . 5 % T

',...- .. . _j

Figure 3.10: hpeviewer's Flat view exposing loops for S3D (Fortran 90).

Figure 3.10 shows part of a loop-level Flat view for a call path profile of a single-

core execution. The Flat view organizes performance data according to an applica

tion's static structure. All costs incurred in any calling context by a procedure are

aggregated together in the Flat view. This particular view was obtained by flattening

away the procedures normally shown at the outermost level of the Flat view to show

outer-level loops. This enables us to view the performance of all loop nests in the

application as peers. We focus on the second loop on lines 209-210 of file rhsf. 90.

Notice that this loop contains a loop at line 210 that does not appear explicitly in

the code. This loop consumes 5.5% of the total execution time. This is a compiler-

generated loop for copying a non-contiguous 4-dimensional slice of array grad_Ys into

a contiguous array temporary before passing it to computeScalarGradient. The

ability to explicitly discover and attribute costs to such compiler-generated loops is

a unique strength of our tools.

76

3.5 Related Work

There is a large body of prior work on call path profiling, but its focus has not

been on using binary analysis to enable sampling-based measurement and attribution

of performance metrics for fully optimized code. For this this reason we focus on

comparing with contemporary tools with the most closely related capabilities for

measurement and attribution.

To our knowledge, no other sampling-based profiler is capable of collecting full call

path profiles for fully optimized code. Perhaps the closest conceptual work is a patent

by Pierce that describes binary analysis for unwinding call stacks [116]. To unwind the

call stack given an arbitrary sample point, Pierce proposes moving forward from that

instruction to the first return point. During this process, each instruction is examined

to determine how it affects the corresponding frame and return address location. One

benefit of this approach is that because there is no necessity to know a function's begin

point, it also applies to stripped binaries. In principle, this approach enables one to

obtain call paths during execution of fully optimized code. However, it is difficult

to provide a full comparison because the patent contains obviously expansive claims

(e.g., Claims 14-16, 20-22) and lacks experimental results; additionally, we know of no

publicly available implementation. One point of comparison is between approaches

to binary analysis. Pierce's scan is not linear in the sense that it examines not

only the region between the sample point and a return, but the callees within that

region. In contrast, we perform a strictly linear scan through a function, computing

function bounds as needed, and cache the results in a sparse data structure. We also

demonstrate that we can use our approach to collect call path profiles for an average

overhead of 1-2%.

77

Any tool based on libunwind [105], such as LoopSampler [106], requires frame

pointers or unwind information. OProfile [85] and Sysprof [123], two well-known Linux

system-wide call stack profilers, require frame pointers. AMD's CodeAnalyst [8] for

Linux uses OProfile [85] to collect measurements and therefore inherits the latter's

limitation. Since the x86-64 ABI does not require frame pointers, the restriction

of these tools necessitates recompilation of any application and system library of

interest. Apple's Shark [13], one of the nicer tools, also fails to correctly unwind

optimized code. On a simple test, we observed it incorrectly unwinding calls from

the sinh math library procedure.

Sampling-based call path profilers naturally fail to record a complete calling con

text tree. However, they also naturally highlight the most important paths, which

comports well with performance analysis. Zhuang et al. develop 'bursty' call path

profiling for Java [158] — a combination of sampling and adaptive, time-limited dy

namic instrumentation — that more accurately approximates the complete CCT with

an average overhead of 20%. For performance tuning, it is no bargain to pay such

overhead to increase knowledge of infrequently executed paths.

The importance of correlating performance measurements with source code has

been widely acknowledged. The task of correlation is easy with custom-generated

compiler information [3,150]. Unfortunately, this solution is impractical. Typically,

open systems supply multiple compilers. Consequently, current sampling-based call

path profilers trivially correlate dynamic data with source code using the binary's

line map. In the presence of inlining and loop transformations, this approach results

in confusing correlations that attribute costs of inlined code back to their source files

rather than where they were incurred.

The major benefit of our approach is that hpcrun is minimally invasive, yet accu

rately attributes performance to both static and dynamic contexts, providing unique

78

insight into program performance. No other sampling-based tool attributes the per

formance of transformed loops in the full calling context of transformed routines for

fully optimized binaries to source code.

3.6 Discussion

We have designed methods of binary analysis for (1) minimally intrusive call path

profiling of fully optimized code and (2) effective attribution and interpretation of

performance measurements of fully optimized code. Our evaluation of hpcrun using

the SPEC benchmarks on executables optimized by several different compilers shows

that we can attribute costs incurred by fully optimized code to full calling context

with low run-time overhead. The examples in Figure 3.10 highlight the unique con

textual information we obtain by combining hpcrun's dynamic call path information

with hpcstruct 's static program structure. They show both how we attribute costs

to inlined frames and loop nests and how this information yields insight into the

performance of complex codes.

When compared with instrumentation-based techniques, our measurement and

analysis methods have several advantages. First, (asynchronous) sampling-based call

path profilers do not interfere with compiler optimization and introduce minimal

distortion during profiling. On many operating systems, they can even be invoked

on unmodified dynamically linked binaries. Second, using binary analysis to recover

source code structure is uniquely complementary to sampling-based profiling, hpc

run samples the whole calling context in the presence of optimized libraries and even

threads, hpcstruct recovers the source code structure, by using only minimal sym

bolic information, for any portion of the calling context — even without the source

code itself. Using binary analysis to recover source code structure addresses the com-

79

plexity of real systems in which source code for libraries is often missing. Third,

binary analysis is an effective means of recovering the source code structure of fully

optimized binaries. When source code is available, we have seen that hpcstruct 's

object to source code structure mapping accurately correlates highly optimized bina

ries with procedures and loops. Among other things, it accounts for inlined routines,

inlined loops, fused loops, and compiler generated loops. In effect, our binary anal

ysis methods have enabled us to observe both what the compiler did and did not

do to improve performance. We conclude that our binary analyses enable a unique

combination of call path data and static source code structure; and this combination

provides unique insight into the performance of modular applications that have been

subjected to complex compiler transformations.

Both of our analyses have been motivated, in part, by a lack of compiler informa

tion. While we would welcome improved compiler support, it seems unlikely any will

be forthcoming. Although compiler vendors have been sympathetic to our requests

to fix or improve their symbolic information, they have been clear that their high

est priority is highly efficient and correct code. Improving line maps or debugging

information in binaries is at the bottom of their list of tasks. We have shown that

accurate and rich contextual information can be obtained with only minimal com

piler information and we believe that the utility of our results and the lack of a viable

alternative justify our effort.

80

Chapter 4

Measurement & Attribution: Logical Call Path

Profiling

4.1 Introduction

In recent years, the microprocessor industry has shifted its focus from increasing

clock frequencies to delivering increasing numbers of processor cores. Following this

general trend, cluster designs have shifted from single- or dual-processor nodes to

multi-socket multicore processor nodes. For instance, nodes on the Department of

Energy's 'leadership class' machines currently contain 4-12 cores and nodes on less-

balanced large-scale systems will soon contain scores of threaded cores. Programming

models for these machines have not shifted as decisively. Models that were designed

for distributed-memory clusters are still being used on systems with shared-memory

multicore processors, even though they may be less than optimal.

The shift to multicore processors plagues typical application developers as well.

Without parallelism, no longer can a programmer expect an application to perform

better on a next-generation processor. As a result, there is an urgent need for pro

gramming models and tools to support development of efficient multithreaded pro

grams.

For a multicore programming model to become widely adopted, it must have four

key properties. First, expressing parallelism should be simple. Second, parallel lan-

81

guages must be expressive enough to easily combine different parallel programming

models. Although the (flat) data parallel model — in which the same computation

is mapped across many data elements — has traditionally dominated high perfor

mance computing, many applications contain both data and task parallelism, and

in irregular ways. Third, the programming model must make it possible to exploit

parallel resources efficiently. Finally, the model must provide insurance against future

architectural changes by transparently scaling to increasing core counts.

The Cilk language [58] was an early model that possessed these four properties.

Cilk has proven very influential, spawning a commercial version of the language by

Cilk Arts and serving as an exemplar for Intel's Threading Building Blocks [118], Mi

crosoft's Concurrency Runtime, as well as ongoing research projects. In fact, a Cilk-

like approach has even been applied to large-scale distributed-memory clusters [51].

These programming models raise the level of abstraction of parallel programming by

partitioning the problem into two parts: the programmer is responsible for expressing

the logical concurrency in a program and a run-time system is responsible for parti

tioning and mapping parallel work efficiently onto a pool of threads for execution.

Although programming models like Cilk substantially ease the difficulty of writing

parallel programs, the developer is still responsible for identifying and resolving scal

ing bottlenecks in a poorly performing application. Consequently, there is an urgent

need for performance tools that apply to the multithreaded programming models of

choice. Unfortunately, the dynamic nature of Cilk-like run-time systems obscures

application behavior and renders ineffective existing tools that measure and attribute

performance directly to threads.

As described in Chapter 3, performance analysis of modern software requires as

sociating costs with calling context. That chapter showed how to use asynchronous

sampling to obtain very low overhead call path profiling of fully optimized applica-

82

tions. Of particular interest is providing this capability for high-level multithreaded

programming models such as Cilk.

For Cilk-like programming models, using (asynchronous) sampling-based call path

profiling to associate costs with the context in which they are incurred is not as

simple as it sounds. At each sample event, a call path profiler must attribute the

metric represented by the sample to the current execution context, which consists of

the stack of procedure frames active when the event occurred. In contrast to native

execution, Cilk's work-stealing scheduler dynamically partitions and maps work onto

a thread pool, with the result that the stack of native procedure frames active within

a thread represents only a suffix of the calling context. In effect, the work-stealing

scheduler causes calling contexts to become separated in space and time as procedure

frames migrate between threads as work is stolen. Since frames can be stolen, even the

mapping between even an individual procedure frame and a thread may not be one

to one. As a result, a standard call path profile of a Cilk program will show fragments

of call paths mapped to each of the threads in the scheduler's thread pool, a result

that is at best cumbersome and at worst incomprehensible. For effective performance

analysis of multithreaded programming models with sophisticated run-time systems,

it is important to bridge the gap between the abstractions of the user's program and

their realization at run time.

To attribute metrics to the full source-level context of work-stealing computations,

we develop a method for efficiently collecting logical call path profiles. Logical call

path profiling is a generalization of call path profiling that enables one to measure

and correlate execution behavior at different levels of abstraction. We show how

to efficiently obtain a logical call path profile using a technique called logical stack

unwinding and describe how to represent it using a logical calling context tree. Al

though we develop logical call path profiling to relate the execution of a multithreaded

83

program by a work-stealing scheduler back to its source-level representation, it is ap

plicable to any execution model for which native stack frames cannot serve as a proxy

for a source-level call path.

This chapter is organized as follows. Section 4.2 explains the specific challenge that

work stealing raises for call path profiling. Section 4.3 defines a logical call path profile

and Section 4.4 explains the process of obtaining one using logical stack unwinding;

Appendix B presents some important implementation details. Then, Section 4.5

shows how to apply these ideas to Cilk in particular. Related work is discussed in

Section 4.6. Finally, Section 4.7 discusses some high-level themes.

4.2 The Challenges of Work Stealing

Cilk is an extension of C and provides two keywords for expressing parallelism:

spawn and sync. A spawn may be thought of as transforming a sequential (blocking)

function call into an asynchronous (non-blocking) call. A sync blocks a function's

execution until all of its spawned children have completed. Figure 4.1(a) shows an

example of a Cilk program for computing the n th Fibonacci number. The function

computes f ib(n) as the sum of f i b (n - l) and fibCn-2).1 Since neither of the recur

sive calls to f ib depends on the other, they may be executed in parallel, as indicated

by the spawn. However, because the expression (x + y) depends upon the results

of both of these calls, the sync ensures that both calls have completed before the

addition commences.

Figure 4.1(b) graphically represents, in a simplified form, the logical parallelism

in this computation. The spawns and syncs form a tree of dependences where each

interior (non-leaf) node directly depends on its two children. The tree is slightly

1This example is for illustration; there are much more efficient ways of computing f ib (n) .

84

(a) A simple Cilk program

cilk int fib(n) {
if (n < 2) return n;
else {

int x, y;
x = spawn fib(n-l);
y = spawn fib(n-2);
sync;
return/(x + y);

(b) Its logical tasks (simplified)

fib(A7)

}
}

Asynchronous calls create
logical tasks that only block
at a sync...

... which quickly creates
significant logical parallelism.

Figure 4.1: Example of Cilk's simplicity and expressiveness. The simple program of
(a) uses asynchronous calls (spawn) to express (b) a complex pattern of parallelism.

unbalanced to reflect the fact that there is more work in each node's left child than

on its right.

The challenge for the Cilk run time is to map logically independent calls onto

compute cores in an efficient way. Each asynchronous call may be thought of as

a lightweight thread, commonly called a task. Cilk's approach is to combine lazy

task creation with a work-stealing scheduler. The Cilk run time creates a pool of

OS-level worker threads, one per available core, to execute the program. The first

worker thread begins execution of the program (the first task). If there are no other

worker threads in the pool, execution of the program continues sequentially, without

any additional task creation. Whenever the thread pool contains an idle worker, that

worker attempts to steal a task from a working thread. Figure 4.2 shows the beginning

of a possible parallel execution of the Fibonacci program of Figure 4.1. Execution

begins by assigning the whole computation to worker thread 1 (red). This worker

starts elaborating the call tree in a depth-first order and continues down the leftmost

branch, as would a serial execution. Worker thread 2 (green), currently idle, steals the

85

Figure 4.2: Scheduling work via work stealing. Cilk's scheduler separates source-
level calling contexts in space and time.

continuation associated with fib(n), which promptly spawns a second asynchronous

call to compute fib(n — 2). A third idling worker thread (blue) now has two threads

from which to steal. Suppose that this thread randomly chooses to steal from thread

1 and then selects the next piece of available work, the continuation associated with

fib(n — 1), which then spawns a call to fib(n — 3).

The Cilk model has many attractions. For example, although a spawn identifies

an independent task, the overhead of assigning this work to a separate thread is only

realized when necessary, i.e., when a worker thread is idle. Moreover, as long as worker

threads execute enough spawns, it is easy to see that work stealing naturally achieves

very good load balance. Both of these facts means that the same Cilk program can

execute efficiently on one or several cores.

Unfortunately, Cilk's work-stealing scheduler renders useless even sophisticated

techniques for gathering calling context. To appreciate the difficulty, consider how

state-of-the-art call path profilers [67] — tools that attribute metrics to calling context

86

(a) Call path sample (b) Calling Context Tree (CCT)
return address -*-..

return address

return address

instruction pointer

sample point

Figure 4.3: An asynchronous-sampling-based call path profiler (a) collects a call
path for each sample point; and (b) several call paths form a calling context tree.
(Duplicated from Figure 2.2.)

— perform their job. To achieve low overhead, (asynchronous) sampling-based call

path profilers use asynchronous sampling (rather than instrumentation) to attribute

costs of a program execution to the calling contexts in which they occur. To sample

a program, a profiler initializes a timer or hardware counter that generates a signal

when it expires or overflows. For each sampling signal, a call path profiler gathers

the profiled application's calling context using stack unwinding. This results in a call

path sample (Figure 4.3(a)), represented as a list of instruction pointers, with the

leaf being the sample point. A collection of samples naturally forms a calling context

tree (Figure 4.3(b)), where the program's entry point is the root of the tree. The

key advantage of sampling over instrumentation is that the overhead of the former

is proportional to the sampling frequency and not the call frequency. Moreover,

sampling naturally elides unimportant data since (given a reasonable sampling rate)

if an area of the application receives no samples, then its cost is negligible.

Cilk's work-stealing run time confuses call path profilers. Figure 4.4 shows what

would happen if thread 3 (blue) from Figure 4.2 receives a sample. Because thread

87

Figure 4.4: A case for logical call path profiling. Suppose that thread 3 (blue) from
the example in Figure 4.2 receives a sample. Because that thread began its execution
with a steal, the rest of its context (red) is separated in space and time. Logical call
path profiling attributes metrics to their full logical context.

3 began its execution with a steal, the stack of native procedure frames within that

thread represents only a suffix of the full calling context. In fact, the rest of thread

3's context is separated in both space and time: space, because thread 1 contains

its parent context; time, because thread 1 continues executing rather than blocking

and waiting for thread 3 to complete the asynchronous call. Over the course of

an execution, call paths become even more fragmented as procedure frames migrate

between threads during steals. As a result, a standard call path profile of a Cilk

program yields a result that is at best cumbersome and at worst incomprehensible.

For effective performance analysis, it is important to bridge the gap between source-

level abstractions and their realization at run time by attributing costs to their full

logical calling context. We call this logical call path profiling.

4.3 Logical Call Pa th Profiles

For languages based on work stealing, mapping measurements during execution

back to a source program requires reassembling source-level contexts, which have

been fragmented during execution. This and the next section (Section 4.4) extend

the notion of call path profiling by defining logical call paths and describing how to

generally and efficiently obtain logical call path profiles using a logical calling context

88

tree. Logical call path profiling applies to both parallel and serial applications. In

Section 4.5, we describe how this technique forms an essential building block for mea

surement and analysis of multithreaded Cilk program executions by a work-stealing

scheduler.

4.3.1 Logical Call Paths

A sampling-based call path profiler obtains a call path by unwinding the call stack

at a sample point to obtain a list of active procedure instances, or frames. Such a

call path may not correspond directly to a source-level calling context. We introduce

the notion of logical call paths to bridge this gap. We obtain logical call paths by

logically unwinding the call stack. To support a precise discussion of this concept, we

introduce and define the following terminology.

A bichord is a pair (Pi, Li) consisting of a p-chord Pi and a \-chord Li where each

p-chord (or /-chord) is is a sequence of p-notes (/-notes), e.g.:

*ii -^i) \(.Pi,l-> • • • iPi,mi)i V^,l> • • • > "1,1712))

A note represents a frame; a chord a grouping of frames; and a bichord the association

of a group of physical stack frames (Pi) with a group of logical (Li) stack frames.

Logical frames correspond to a source-level calling context; physical frames correspond

to an implementation-level realization of that view. The p-notes Pi — (piti,... ,Pi,mi)

that form p-chord Pt represent the bichord's physical call path fragment, while the

/-notes form the logical call path fragment. We say that the length |Pj| of p-chord Pi,

is the number of p-notes contained therein, i.e., m,\ in the above example; similarly,

\Li\ = m2.

89

file:///-chord

A logical call path is a sequence of bichords

((P1,L1),{P2,L2),...,(Pn,Ln))

where (Pi,Li) is the program's entry point and where bichord {Pn,Ln) represents

the innermost set of frames. It is natural to speak of the p-chord projection for the

logical call path as

(Pi, . . . ,P„>

and the p-note projection as

< (p i , i . - - -
jPl,mi),---,(Pn,l,---,Pn,mn))

where p^i represents the physical program entry point and the projection represents

the physical call path from the entry point to the sample point. Logical projections

are analogous.

To provide intuition for a discussion of bichord forms, it is useful to consider a

concrete representation. We represent a p-note projection as a list of instruction

pointers, one for each procedure frame active at the time a sample event occurs.

The first instruction pointer of the unwind (pn,mn) is the program counter location

at which the sample event occurred. The rest of the list contains the return address

for each of the active procedure frames. Similarly, each /-note in a logical call path

contains an opaque logical instruction pointer that represents the logical context.

Defining a logical call path to consist of a sequence of bichords formed of notes

enables us to preserve interesting relationships between the physical and logical call

path. To formalize these relationships, we first observe that a logical call path's p-

note projection should always have a non-zero length because the physical stack is

90

never empty. Moreover, intuitively, every /-chord must be associated with at least one

p-note. This implies that no bichord should have a zero length p-chord. Equivalently,

we observe that a p-note projection should not have 'gaps,' i.e., a machine cannot

return to a 'virtual' logical frame — an /-note without an associated p-note — and

then return back to a physical frame. From this starting point, we consider the

possible relationships, or associations, between the lengths of a bichords's p-chord and

/-chord. Given bichord Bi = (Pi, Li), there are several possible associations between

\Pi\ and \Li\ that we describe with a member from the set {0,1, M} x{ 0,1, M},

where M (a mnemonic for multi or many) represents any natural number m > 2.

We are interested in the following four categories accounting for five of the possible

association types:

1. 1 <-> 1. One p-note directly corresponds to one /-note — the typical case for

C or Fortran code where a physical procedure frame corresponds to a logical

procedure frame.

2. 1 «->• 0 and M <->• 0. A p-chord corresponds to an empty /-chord. This situation

typically arises when run-time support code is executed. For example, a sample

event that interrupts the run-time system's scheduler may find several physical

frames that correspond to no logical procedure frame.

3. M «-» 1. This association often describes the run-time system implementing a

high-level user routine. For example, a Python interpreter may require a chain

of procedure calls (several p-notes) to implement a user-level call to sort a list.

4. 1 <-> M. At first sight, this association may seem esoteric. However, it has

important applications. It directly corresponds to using Cilk's scheduling loop

as a proxy for walking the cactus stack of parent procedures that are stored in

the heap and have no physical presence on the stack. As another example, a

91

Java compiler could form one physical procedure from a 'hot' chain of source-

level procedures.

Three observations are apropos. First, as previously discussed, associations 0 <->

{0,1, M} are excluded meaning that the length of a p-chord is always non-zero.

Second and in contrast, association (2) implies that it is possible to have a zero-

length /-chord. The final omitted association, M <-> M, can always be represented as

some combination of categories (1-4) above.

We now concisely define a logical call path as a sequence of bichords

{{P1,L1),(P2,L2),...,(Pn,Ln))

where n > 1 and Vi[|Pj| > 1], but where it is possible that |L;| = 0 for any i.

4.3.2 Representing Logical Call Path Profiles

At run time, we wish to efficiently obtain and represent a logical call path profile,

i.e., a collection of logical call paths annotated with sample counts with the time

dimension removed. Our approach is to form a logical calling context tree — an

extension of a calling context tree (CCT) [9] — that associates metric counts with

logical call paths.

Weighted logical calling context trees

We first define a very simple logical CCT. Given a logical unwind

((Pn, Ln), (Pn_i,Z/n_i), . . . , (Pi, Li))

92

where {Pn, Ln) is a sample point, the straightforward extension of a CCT ensures

that the path

((P1,L1),(P2,L2),...,(Pn,Ln))

exists within the tree, where (Pi, Li) is the root of the tree and where (Pn, Ln) is a

leaf node. Metrics such as sample counts are associated with each leaf node (sample

point); in this example metrics at (Pn,Ln) are incremented.

We define the physical projection of a logical CCT to be the CCT formed by taking

the p-chord projection of each call path in the logical CCT. The logical projection of

a logical CCT is defined analogously.

Efficiently representing logical calling context trees

While this logical CCT representation is simple, treating bichords as atomic units

can result in considerable space inefficiency. To reduce memory effects, we wish

to share notes without losing any information represented in the logical CCT. Ap

pendix B describes when sharing is possible and develops a more efficient and practical

implementation.

4.4 Obtaining Logical Call Path Profiles

Given the definition of a logical call path and the representation of a call path

profile using a logical calling context tree, we now turn our attention to obtaining a

logical call path profile. To provide low controllable measurement overhead, we use

asynchronous sampling and form the logical calling context tree by collecting and

inserting logical call paths on demand for each sample. 'Physical' call path profilers

use stack unwinding to collect the call path. Since the physical calling context alone

93

is insufficient for obtaining the logical call path, we develop the more general notion

of logical stack unwinding to collect the logical call path.

4.4.1 Logical Stack Unwinding

Consider a contrived example where a Python driver calls a Java routine that calls

a Cilk solver. Though unusual, this example shows that each bichord in a logical call

path could potentially derive from a different run-time system. Because run-time

systems use the system stack in their implementation, this suggests that the actual

process of logical unwinding should be controlled by the physical stack. This is natural

because although the physical call stack may represent the composition of calls from

many different languages, it conforms to a known ABI. In addition, using a physical

unwind naturally corresponds to our requirement that a p-note projection not have

'gaps', i.e., there is at least one representative stack frame for each /-chord in the

logical unwind. However, since a physical stack unwinder alone cannot determine

either the association of the bichord or the length of the p-chord or the content of

the /-chord, some sort of additional information must be available to construct the

bichord. This information can be obtained using a language-specific plug-in or agent

to assist a 'physical' stack unwinder. Each agent would understand its corresponding

language implementation well enough to determine the particulars of reconstructing

an /-chord given the start of a p-chord. It is important to emphasize a p-chord's

start because assistance from the agent will in general be necessary to determine the

p-chord's length, e.g., 1 versus M.

There must be some way of selecting which agent to use at any point in the logical

unwind. In the example above, one must know when to use the Cilk, Java and Python

agents, respectively, to obtain the relevant bichords. Observe that at any point in the

execution, the return address instruction pointer located in the stack frame should

94

map to at most one run-time system and therefore one agent. Consequently, the

frame's return address serves a proxy for the specific agent that should be consulted

to assist formation of the bichord. During a program's execution, the mapping of

code segments within the address space (the load map) can typically be determined

by interrogating the operating system.

4.4.2 Thread Creation Contexts

Often it is useful to know the context in which a thread was created. The creation

context of a thread is defined as the calling context at the time the thread was created.

For example, consider a solver using fork-join parallelism where a pool of Pthreads [32]

is created using several calls to pthread_create. It is desirable to capture the calling

context of the pthread_create so that the Pthread can be rooted within the context

of the solver. The thread creation context may be captured and maintained as an

extension to the thread's physical stack.

4.4.3 An API for Logical Unwinding

We have designed and implemented a general API for obtaining logical unwinds

given language specific agents. Technically, there are two sub-APIs, one for collecting

logical unwinds (using agents) and one describing the interface to which language-

specific agents must conform and the assumptions they may make.

The API for logical unwinding is designed to place as much burden as possible on

the non-agent library routines so that agent implementation is as easy as possible.

For example, an agent is not required to perform any look-ahead to determine the

length of an £-chord. Although this information could be used by the logical unwinder

(Algorithm 4.1) for allocating storage, we determined that it was more desirable to

complicate the code for the unwinder than to complicate each agent's implementation.

95

Consequently, the logical unwinder ensures that enough buffer space is always avail

able to store a bichord. As another example, the agent interface sub-API promises

a small amount of functionality to ease agent implementation, such as a means to

inspect the address space and a safe memory allocator (malloc may not be safe).

The logical unwinding API is divided into a two-level hierarchy corresponding

to the division between bichords and notes. In particular, the top level addresses

finding the bichords within a logical unwind while the other level targets finding the

notes of a chord. An outline of of the backtrace routine is shown in Algorithm 4.1.

Each level adopts semantics similar to libunwind [105]. This means that to find each

bichord in the logical unwind ((Pn, Ln), {Pn-i, Ln-i), • • • > {Pi, -^i))>2 n successive calls

to step-bichord are required along with an additional call that returns a special value

to indicate the unwind is completed. The advantage of these semantics is that they

help ensure agents do not have to perform contextual look ahead. For example, to

examine all /-notes within the /-chord (/j ;i,..., /j,m), m+1 calls are issued to step-lnote.

This means that the agent need not know that liti is the last /-note in the /-chord

unwind until the (m + l) t h call to step-lnote. This fact is particularly useful for an

agent to a multithreaded run-time system because thread-specific state need not be

maintained within the agent. Rather, all state for the unwind can be maintained by

a fixed-sized thread-specific cursor allocated by the logical unwinder.

As discussed previously, logical unwinding is driven by a stack unwind. On each

call to step-bichord, the library determines if a valid physical stack frame exists. If

so, it extracts the return address instruction pointer and determines if it maps to

any agent. If it does, that particular agent is used to complete the discovery of the

bichord. Otherwise, the 'identity' agent is used to create a l< -> l bichord representing

native code.
2 A logical unwind is simply the reverse of a logical call path.

96

Algor i thm 4.1: logical-backtrace: Perform a logical unwind.

1 let c be the unwind cursor, initialized with the machine context and
language-specific logical unwind agents

2 wh i le step-bichord(&c) ^ EndUnwind do
3 let a be the bichord's association (from c)
4 wh i le step-pnote(&c) ^ EndChord do
5 Record p-note (instruction pointer from c)
6 wh i le step-lnote(&c) ^ EndChord do
7 Record /-note (logical instruction pointer from c)
8 Form bichord from a and the lists of p-notes and /-notes

Observe that the asymmetry between p-chords and /-chords plays a critical role

in the unwind process. For a p-chord Pj of length TO;, the {rrii + l) t h call to step-

pnote both completes enumeration of Pi's p-notes and discovers the next p-chord. For

example, consider a section of the physical projection representing p-chords P, and

Pi+l'

(• • • , P « , m i) (P i + l , l . - - -)

While iterating over the p-notes in p-chord Pj, we first issue rrii calls to step-pnote. On

the (rrii + l) t h call, the agent discovers that there are no more p-notes in P,, but only

because it has found p-note Pi+i,i, the beginning of p-chord Pj+i- This means that

the p-note portion of the cursor is pointing to the beginning of Pj+ i before the cursor

has stepped to Pj+i- This 'peeking' behavior is important because we must know the

initial portion of Pj+i in order to know which agent to assign the responsibility of the

next bichord. In contrast, step-lnote need not 'peek' ahead in to the next /-chord.

Indeed, it should not because the next /-chord may be handled by a different agent

and may have length 0.

97

4.5 Logical Call Path Profiles of Cilk Executions

To attribute metrics to logical calling contexts, we modified HPCTOOLKIT to

collect logical call path profiles for Cilk. We added capability to the hpcrun profiler

to bridge the gap between Cilk's source-level calling contexts and their realization at

run time within Cilk. In particular, we implemented the logical unwind API described

in Section 4.4.3 and developed a Cilk-specific agent. To attribute source code static

program structure and dynamic logical contexts, we extended the hpcprof tool to

correctly interpret the measurements. Finally, in Section 5.3, we show how we present

logical call path profiles in our interactive viewer.

The design of the Cilk agent illustrates several important points. Although dis

cussing this agent necessarily involves details about the Cilk implementation, it is

important to note that the API remains language independent.

To understand the Cilk agent, it is necessary to review some high-level details

about the Cilk-5 implementation. For each source Cilk routine, the Cilk compiler

generates two clones, a 'fast' and 'slow' version. The fast clone (which is similar

to the corresponding 'C-elision' [58]) is executed in the common case. Importantly,

whenever a procedure is spawned, the fast version is executed. The slow clone is

executed only when parallel semantics are necessary such as when a procedure is

stolen.

Each worker thread maintains a deque (stored in the heap) of ready procedure

instances, which together form a Cactus stack, i.e., a tree where the root corresponds

to the bottom (outermost frame) of the stack. Local work is pushed and popped from

the tail of the deque (top or inner frames) while thieves steal from the head (bottom

or outer frames). Execution proceeds on the thread's stack even though a 'shadow'

continuation is maintained on the deque. Whenever a thief steals a procedure's con-

98

tinuation, it resumes it using the slow version of that procedure. Since frames may

only be stolen from the deque's head (bottom of cactus stack), this implies that the

descendants of a fast procedure may only be fast procedures themselves.

We may infer the following invariants about the frames on a worker's stack (in

top-down order):

A. There may be i frames corresponding to Cilk run-time routines (e.g., creation

of continuation information) or source-level C routines. Cilk run-time routines

correspond to a bichord with association 1 <-> 0 (since they are not part of the

logical call path), while source-level C routines correspond to an association of

1 <-* 1.

B. There may be j frames corresponding to Cilk fast frames. Since the fast clone

of a Cilk routine directly corresponds to a physical frame and a logical frame,

the pair corresponds to a bichord with association 1 <-> 1.

C. There is always at least one frame corresponding to the Cilk scheduler.

These segments may not be interchanged.

The exact interpretation of segment C depends upon whether there are additional

ancestor frames in the Cactus stack. That is, when a worker steals any procedure

other than 'main,' that procedure's logical context is represented as a chain of ancestor

frames within the Cactus stack. In this case, the scheduler frame has association

1 *-> M. Otherwise, if the innermost frame in segment B corresponds to 'main,'

which has no logical calling context, the scheduler frame has association 1 <-» 0.

Figure 4.5 shows an example of the case where the scheduler frame has association

1 <-> M. The logical call path in the figure has five pairs, where the outermost frame

is at the left. For each pair, source-level frames are on the bottom (the green nodes)

and native frames (red and blue nodes) are on the top. Thus, the top frames represent

99

thread's physical stack

Cilk scheduler Cilk worker's stack

steal sample

® ® ® ® ®
_t i—i—±—£

worker's context (w/in Cilk run time)

One '1-to-Many' frame pair Four '1-to-1' frame pairs

user-level calling context

Figure 4.5: The logical call path for a typical Cilk worker thread

the native frames of a worker thread's stack. The outermost native frame represents

Cilk's scheduler loop and the next native frame is a steal point. Because of the steal

point, the outermost native frame corresponds to several source-level frames that

represent the context of the steal. In contrast, each native frame after the steal point

corresponds to only one source-level frame.

4.6 Related Work

Several tools for obtaining call path profiles have been developed, they collect only

physical call path profile projections [44,60,107,127,130] or logical call path profile

projections, such as for Java [23,156,158]. Furthermore, we know of no prior work for

collecting even logical call path profile projections for a multithreaded programming

language based on lightweight tasks.

In parallel but independent work, Itzkowitz et al. describe an OpenMP API that

enables a statistical call path profiler to correlate source-level call paths with run

time metrics about whether a thread is working or waiting [79]. Our work is more

100

general in the sense that we define logical call path profiles, explain how they can be

efficiently represented, and describe a general API for obtaining them.

Cantrill et al. [33] point to interesting stack unwinding possibilities using the

DTrace systems tool. DTrace dynamically instruments a large number of system

events, including function entry or exit points. With a DTrace-enabled kernel, it is

possible to obtain stack unwinds that bridge the the user/kernel boundary. Cantrill et

al. also cite future work that includes obtaining "a user-level stack trace that contains

both Java and C/C++ stack frames."

4.7 Discussion

Because of the growing influence of languages with dynamically managed paral

lelism, effective tools for quantifying and for pinpointing performance bottlenecks in

multithreaded applications are absolutely essential. No tool can be effective without

attributing performance metrics to source-level contexts. Consequently, there is a

clear need to use logical call path profiling as a foundation for gathering low-overhead

contextual measurements that highlight inefficient computation. In Chapter 5 we will

use logical call path profiling to attribute work, parallel idleness and parallel overhead

to the logical calling contexts of a Cilk application. The results enable one to quickly

obtain unique insight into the application's performance.

Logical profiling is a powerful tool for understanding performance. An especially

useful technique is to combine logical call path profiling with differential profiling,

where corresponding sections of different execution profiles are mathematically com

bined [92]. Differencing two profiles that are expected to be similar is especially

powerful. For example, a logical call path profile could be an effective way to com

pare two different implementations of Cilk executing the same program.

101

Besides high-level parallel languages, logical unwinding applies to serial codes

developed in languages that rely on managed run-time systems such as Java and

Python. The concept could be applied to multi-lingual applications such as those

built using common component architectures [16] and inter-language binding systems

such as Babel [80].

102

Chapter 5

Analysis of Multithreaded Executions: Work

Stealing

5.1 Introduction

Over the last several years, power dissipation has become a substantial problem for

microprocessor architectures as clock frequencies have increased [103]. As a result,

the microprocessor industry has shifted its focus from increasing clock frequencies

to delivering increasing numbers of processor cores. For software to benefit from

increases in core counts as new generations of microprocessors emerge, it must exploit

threaded parallelism. As a result, there is an urgent need for programming models

and tools to support development of efficient multithreaded programs.

As Chapter 4 discusses, Cilk [58] was developed to simplify the development of

multithreaded programs. In particular, Cilk pioneered a sophisticated and influential

work-stealing scheduler that is provably efficient assuming the availability of sufficient

concurrency. Nevertheless, while Cilk eases the burden of writing parallel programs, it

does not necessarily make it easier to write programs that scale well with the number

of available cores.

To help developers to rapidly understand why their programs do not perform

as intended, it is necessary to have effective performance tools. Performance tools

typically report how resources, such as time, are consumed rather than wasted. For

103

parallel programs, it is typically most important to know where time is wasted as

a result of an ineffective parallelization. To enable an average developer to quickly

assess the quality of the parallelization in a multithreaded application, tools should

pinpoint program regions where the parallelization is inefficient and quantify their

impact on performance. Two aspects of a parallelization in particular are important

for efficiency: whether there is adequate parallelism in the program to keep all of the

processor cores busy, and whether the parallelism is sufficiently coarse-grain so that

the cost of managing the parallelism does not become significant with respect to the

cost of the parallel work.

In this chapter, we develop two novel techniques for assessing both of these aspects

of parallel efficiency.

• A technique for measuring and attributing parallel idleness — when threads are

idling or blocked and unable to perform useful work. This technique primarily

applies to work-stealing-based languages such as Cilk [58] and Threading Build

ing Blocks [118]. It relies on minor modifications to the run-time systems of

multithreaded programming models.

• A technique for measuring and attributing parallel overhead — when a thread

is performing miscellaneous work other than executing the user's computation.

This technique can be applied to both library-based programming models such

as Pthreads [32] and Threading Building Blocks, as well as compiler-based pro

gramming models such as Cilk and OpenMP. By employing a combination

of compiler support and post-mortem analysis, we incur no measurement cost

beyond normal profiling to glean this information.

We pair these techniques with logical call path profiling (Chapter 4) to effectively mea

sure, attribute, and analyze the performance of multithreaded programs. Logical call

104

path profiles are the key for mapping measurements of work, idleness and overhead

back to the source-level abstractions in high-level multithreaded parallel program

ming models. Our idleness and overhead metrics enable one to pinpoint areas of an

application where concurrency should be increased (to reduce idleness), decreased (to

reduce overhead), or where the present parallelization is hopeless (where idleness and

overhead are both high). To show the utility of these techniques, we describe their

implementations within Cilk. We then use the H P C T O O L K I T suite of performance

tools to attribute work, idleness, and overhead to Cilk source code lines in their full

source-level calling contexts.

This chapter is organized as follows. First, Section 5.2 describes parallel idleness

and overhead. Section 5.3 describes the application of these ideas to Cilk. Finally,

Section 5.4 discusses related work and Section 5.5 discusses the chapter's high-level

themes.

5.2 Pinpointing Parallel Bottlenecks

We describe two novel measurement and analysis techniques that enable an aver

age developer to quickly determine whether a multithreaded application is effectively

parallelized. If the application is not effectively parallelized, our techniques direct

one's attention to areas of the program that need improvement.

5.2.1 Quantifying Insufficient Parallelism

To quantify insufficient parallelism in work-stealing-based applications, we have

developed a method to efficiently and directly measure parallel idleness, i.e., when

threads are idle and unable to perform useful work. Our goal is to compute the

105

metrics 'work' and 'idleness' where:

effort = work + idleness

Assume we are using a (asynchronous) sampling-based logical call path profiler to

profile a Cilk application. Further assume that our asynchronous sample source is a

time-based counter such as the wall clock or a hardware cycle counter. Recall that

Cilk's work-stealing scheduler creates one worker thread per core. When a sample

event occurs during profiling, each thread receives an asynchronous signal. Worker

threads are either working or idle. If a worker thread is idle, then it is spinning within

a scheduler loop waiting for another thread to create a stealable task. A logical call

path profiler attributes samples based on a 'first party' basis, i.e., based on what a

thread itself is doing. This means that working threads accumulate samples where

they work, but idle threads accumulate samples in the scheduler loop.

While this method quantifies parallel idleness — samples received within the

scheduler clearly reflect idleness — the results are not actionable because they do

not pinpoint the cause of idleness. To pinpoint the cause of idleness, there must be

a way to correlate a thread's idleness with those threads that are responsible for its

idleness. To establish this correlation, threads must have some 'third party' knowl

edge about other threads, such as which threads are responsible for another thread's

idleness. Recall that within the Cilk model, a thread is idle precisely because other

threads have no extra tasks available to steal. Therefore, when a thread is idle, the

current working threads are in an important sense culpable for not being sufficiently

parallelized. Consequently, we want to change how samples are attributed for idle

threads to form a metric that blames working threads for not spawning enough tasks

to keep all workers busy.

106

We can accomplish our goal by doing two things. First we make a slight adjust

ment to the Cilk run-time to always maintain W and / , the number of working and

idle threads, respectively. This can be done by maintaining a node-wide counter rep

resenting W. When a thread begins a task, it atomically increments W. When that

thread completes its current task it atomically decrements W to indicate that it is no

longer actively working. Thus, I = n — W, where n is the number of worker threads.

Second, we slightly modify our sampling strategy. If a sample event occurs in a

thread that is not working, we ignore it. When a sample event occurs in a thread

that is actively working, the thread attributes one sample to the work metric for its

sample context. It then obtains W and I and attributes a fractional sample I/W to

the idleness metric for the sample context. Even though the thread itself is not idle, it

is critical to understand what work it is performing when other threads are idle. Our

strategy charges each working thread its proportional responsibility for not keeping

the idle processors busy at that moment at that point in the program.

As an example, consider taking a sample of a Cilk execution where five threads

are working and three threads are idle. According to our scheme, each working thread

records one sample of work in its work metric, and 3/5 sample of idleness in its idleness

metric. The three idle threads ignore their samples. The total amount of work and

idleness charged for sampling each thread is 5 and 3, respectively.

After measurement is completed, idleness can be computed for each program con

text. Since samples are accumulated during measurement, the idleness value for a

given thread and context is ^h/Wi over all samples i for that context. It is often

useful to express this idleness metric as a percentage of the total idleness for the

program. Total idleness may be computed post-mortem by summing idleness metric

over all threads and contexts in the program. The idleness value may be converted

to a time unit by multiplying by the sample period. One can also divide the idleness

107

for each context by the application's total effort — the sum of work and idleness

everywhere across all threads — to understand the fraction of total effort that was

wasted in each context.

The measurement overhead of our strategy is expected to be low for two reasons.

First, logical call path profiling has very low overhead when using sampling frequencies

of hundreds to thousands of samples/second; in addition, the sampling rate is con

trollable by adjusting the sampling frequency. Second, at least on small-scale nodes,

a work-stealing scheduler is unlikely to cause contention for atomically modifying the

global counter W. To see this, observe that the global counter is modified only when

a thread steals. Thus, contention can only occur when multiple threads enter/exit

the scheduler loop simultaneously. We have empirically verified that contention is

very low on (at least) up to 16 cores. For large-scale shared-memory machines or

for applications where stealing is very frequent, it may be necessary to adapt the

distributed blame shifting strategy we present in Chapter 6.

5.2.2 Quantifying Parallelization Overhead

Now that we have quantified parallel idleness, we wish to refine the work metric

in the equation

effort = work + idleness

to distinguish useful work from parallel overhead:

work = useful-work + overhead

We define parallel overhead to be time spent executing something other than the

user's computation. Sources of parallel overhead include task synchronization and

bookkeeping operations to prepare tasks for the possibility of being stolen.

108

Our goal is to pinpoint parallel overhead with logical call path profiling. For

library-based programming models such as Pthreads, identifying parallel overhead is

easy: any time spent in a routine in the Pthreads library can be labeled as parallel

overhead. For language-based parallel programming models, the problem is harder

because within a working thread, both overhead and useful work are indistinguishable

without prior arrangement. We could use instrumentation, but that is too costly.

Our main insight is that if we could distinguish instructions that contribute to

overhead from the application's work, then we could quantify parallel overhead. In the

case of Cilk, we modified the compiler to tag statements in its generated code to iden

tify instructions that are associated with parallelization overhead. The tags therefore

partition the application code into instructions corresponding to either useful work or

overhead. These tags could take several forms, but one particularly convenient form

is to associate overhead instructions with special file or procedure names within the

binary's debugging information. For example, synchronization code could be tagged

with the special procedure or file name paral le l -overhead: sync. In a post-mortem

analysis, we recover the compiler-recorded tags, identify instructions associated with

overhead, and attribute any samples of work associated with them to parallelization

overhead. In Section 5.3.2, we describe how we mark sources of parallel overhead for

Cilk.

The key benefit of this scheme is that tags are only meta-information: they can

be created and used without affecting run-time performance in any way. (Although

tags consume space, they need not be loaded into memory at run time.) In addition,

the tags may be refined to partition sources of overhead into multiple types. For

example, it may be useful to distinguish between task-packaging overhead and all

other overhead. Such a refinement would provide more detailed information to users

or analysis tools.

109

parallel
idleness overhead

low
low
high
high

low
high
low
high

interpretation
effectively parallel; focus on serial performance
coarsen concurrency granularity
refine concurrency granularity
switch parallelization strategies

Figure 5.1: Using parallel idleness and overhead to determine if the given application
and input are effectively parallel on n cores.

5.2.3 Analyzing Efficiency

In a parallel program, one must consider two kinds of efficiency: parallel efficiency

across multiple processor cores and efficiency on individual processor cores. With

information about parallel idleness and overhead attributed hierarchically over loops,1

procedures, and the calling contexts of a program, we can directly assess parallel

efficiency and provide guidance for how to improve it. Figure 5.1 provides a high-

level guide for interpreting the results. If a region of the program (e.g., a parallel loop)

is attributed with high idleness and low overhead, the granularity of parallelism could

profitably be reduced to enhance parallel efficiency. If the overhead is high and the

idleness low, the granularity of the parallelism should be increased to reduce overhead.

If the overhead is high and there is still insufficient parallelism, the parallelism is

inefficient and no granularity adjustment will help; keeping the idle processors busy

requires a different parallelization. For instance, one might use a combination of data

and functional parallelism rather than one alone.

One can assess the efficiency of work and identify rate limiting factors on indi

vidual processor cores by using metrics derived from hardware performance counter

measurements. Many different factors can limit an application's performance such

1 Because we collect performance metrics using asynchronous sampling of hardware performance
counters, which associates counts directly with instructions, and use binary analysis to associate in
structions with higher-level program structures such as loops, we can directly compute and attribute
metrics at the level of individual loops.

110

as instruction mix, memory bandwidth, memory latency, and pipeline stalls. For

each of these factors, information from hardware performance counters can be used

to compute derived metrics that quantify the extent to which the factor is a rate

limiter. Consider how to assess whether memory bandwidth is a rate limiter. During

an execution, one can sample hardware counter events for total cycles and memory

bus transactions. By multiplying the sampling period by the sample count for each

instruction, one can obtain an estimate of how many bus transactions are associated

with each instruction. By multiplying the number of bus transactions by the trans

action granularity (e.g., the line size for the lowest level cache), one can compute

the amount of data transferred by each instruction. By dividing the amount of data

transferred by instructions within a scope (e.g., loop) by the total number of cycles

spent in that scope, one can compute the memory bandwidth consumed in that scope.

By comparing that with a model of peak bandwidth achievable on the architecture,

one can determine whether a loop is bandwidth bound or not.

5.3 Measurement and Analysis of Cilk Executions

To demonstrate the power of using our parallel idleness and overhead metrics in

combination with logical call path profiling, we added capabilities to H P C T O O L K I T

to profile programs written in Cilk-5 [58] (currently at version 5.4.6).

To attribute work, idleness, and parallel overhead metrics to source-level calling

contexts, H P C T O O L K I T ' S hpcrun tool collects logical call path profiles (Chapter 4).

After a profile is collected, H P C T O O L K I T ' S hpcprof tool correlates the work, idle

ness, and parallel overhead metrics with the static and dynamic structure of the Cilk

source program. Finally, H P C T O O L K I T ' S hpcviewer interactively presents the re-

I l l

suiting performance data. In the following sections, we describe our approach, along

with minor related modifications to the Cilk scheduler.

5.3.1 Parallel Work and Idleness

To support measurement of our idleness metric, we modified the Cilk scheduler to

classify threads as working or non-working and to maintain the number of working

and idle threads (W and / , respectively). These modifications were straightforward.

Each worker thread executes a scheduling loop that acquires work (through a steal,

if necessary) and then performs that work. Since the work is executed via a method

call, the scheduling loop is 'exited' to perform the work and then re-entered as the

worker thread waits to acquire more work. To identify a thread as actively working

or idle, we set a thread-specific state variable just before the thread exits or enters

the scheduling loop, respectively. At the same time, a global counter representing the

number of working threads is atomically incremented or decremented as each thread

exits and enters the scheduling loop, respectively. When a sample event interrupts a

worker thread, one of two things happen. If the worker is idle, the sample event is

ignored. Otherwise, if the worker is active, hpcrun collects the logical calling context

for the sample point and then attributes one sample to the context's work metric and

a fractional sample I/W to the context's idleness metric.

5.3.2 Parallel Overhead

To attribute parallel overhead to logical calling contexts we use several mechanisms

to identify all overhead inserted by the Cilk compiler into a Cilk application binary. At

run time, hpcrun attributes all work-related samples to the logical call path profile's

work metric, regardless of whether these samples represent useful work or overhead.

112

Then, after program completion, hpcprof uses a post-mortem analysis to reattribute

work-related samples to either a useful-work or overhead metric.

Our strategy for identifying the parallel overhead within a Cilk application binary

relies on H P C T O O L K I T ' S hpcstruct binary analysis tool for recovering program

structure from a binary, hpcstruct analyzes an application binary to recover a map

ping between object code and program structure. In particular, hpcstruct recovers

the structure of procedures, including a procedure's loop nests, and identifies code

that has been inlined therein. Thus, hpcstruct naturally identifies overhead-related

code in a procedure if that code appears to have been inlined. To simulate inlining,

we use #l ine compiler directives.

Given this overall strategy, we used two different methods to ease the implementa

tion effort. The Cilk compiler compiles Cilk source code to C and then uses a vendor

C compiler to generate an executable. It turns out that nearly all parallel overhead

inserted into the intermediate C code by the Cilk compiler is encapsulated either by

a call to a method or macro.2 Consequently, it is possible to identify essentially all

overhead by (1) tagging about 45 Cilk run-time library routines with # l ine directives,

and (2) inserting appropriate #l ine directives surrounding the appropriate macro ref

erences before the generated C code is fed to the vendor compiler.3 Given this fact,

and given our unfamiliarity with the Cilk compiler's source code, we determined that

instead of modifying the compiler it would be easier to (1) appropriately tag the Cilk

run-time routines and (2) write a Cilk post-processor that inserted the appropriate

tags in the intermediate C file. To preserve the ability to recover sensible structure

for a routine and use a debugger with the resulting executable, our post-processor

2 Parallel overhead that derives neither from a method nor macro call is either continuation control
flow, a declaration, or trivial.

3When a macro is expanded by the C preprocessor, no indication of its originating source file is
typically recorded. In contrast, if a function call is inlined, a C compiler will effectively generate the
appropriate # l ine directives.

113

l cilk int fib(int n)

2 {

3 if (n < 2)

4 r e tu rn (n);
5 else {
6 int x, y;

7 x = spawn fib(n — 1);

1 int fib(WorkerState* ws, int n) { s t ruc t frame* fr;
2 # l i n e 28 "hpctoolkit:parallel—overhead"
3 CILK2CJNIT_FRAME(f r , . . .) ;
4 CILK2C_START_THREAD_FAST();
5 # l i n e 28 "fib.cilk"
6

7 if (n < 2) { int t = n;
8 # l i n e 31 "hpctoolkitrparallel—overhead"
9 CILK2C_BEF0RE-RETURN_FAST();

10 # l i n e 31 "fib.cilk"
n r e tu rn t;}
12 else {
13 int x; int y;
14 { f r—>header .ent ry=l ; fr—>scope0.n = n;
15 # l i n e 34 "hpctoolkitrparallel—overhead"
16 CILK2C_BEFORE_SPAWN_FAST();
17 CILK2C_PUSH_FRAME(fr);
is # l i n e 34 "fib.cilk"
19 x = fib(ws, n — 1);
20 # l i n e 34 "hpctoolkitrparallel—overhead"
21 CILK2C_XPOP_FRAME_RESULT(fr , 0, x);
22 CILK2C_AFTER.SPAWN_FAST() ;
23 # l i n e 34 "fib.cilk"
24 }

25

Figure 5.2: (a) Fragment of a Cilk program for computing Fibonacci numbers; and
(b) compiled C code for that fragment. Regions of parallel overhead are demarcated
with # l i n e directives that contain special file names.

preserves the line number of the original source file. A sanitized example of an origi

nal Cilk routine and its corresponding post-processed C code is shown in Figure 5.2.

(Note that the 'unusual' formatting in the post-processed C, such as Cilk's frame

s t r u c t declaration on line 1 of Figure 5.2(b), is critical for aligning the line numbers

of the generated code with the source.)

114

5.3.3 Case Study

To demonstrate the effectiveness of attributing work, parallel idleness and parallel

overhead to logical call path profiles, we applied our method to analyze the perfor

mance of a Cilk program for Cholesky decomposition. We used the example Cholesky

program included in the Cilk 5.4.6 source distribution. We profiled a problem size

of 3000 x 3000 (30,000 non-zeros) on an SMP with dual quad-core AMD Opterons

(2360 SE, 2.5 GHz) and 4 GB main memory.

Figure 5.3 presents one view of the aggregated results displayed by our presen

tation tool hpcviewer. The view has three main components. The navigation pane

(lower left sub-pane) shows a top-down view of the calling context tree, partially ex

panded. One can see several source-level procedure instances along the call paths.

(Physical procedure instances are not shown.) The selected line in the navigation

pane and the source pane (top sub-pane) shows the procedure cholesky. Each entry

in the navigation pane is associated with metric values in the metric pane to the

right. Sibling entries are sorted with respect to the selected metric column (in this

case 'work (all/I)'). Observe at the bottom of the navigation pane a loop, located

within the context of cilk_main; the navigation pane actually contains a fusion of

the dynamic logical calling contexts and static loop contexts.

The metric columns in Figure 5.3 show values for work (useful-work, in cycles),

parallel idleness and parallel overhead. These values are summed over all of the eight

worker threads, yielding the 'all' qualifier in their names. Both idleness and overhead

are shown as percentages of total effort, where effort is the sum of work, idleness

and overhead. In the idleness and overhead columns, the values in scientific notation

represent the aforementioned percentages; the values shown as percentages to their

right give an entry's proportion of the total idleness or overhead, respectively. The

metrics are inclusive (hence the T qualifier) in the sense that they represent values

115

p> O 0 hpcviewer: cholesky (2xBarcelona)[-n 3000 - z 30000]

IX chotesky.cilk £2

!

= Q

bSii/*
&51 * Compute Cholesky f a c t o r i z a t i o n o f A.
bbl * /
fa53cilk Ma t r i x c h o l e s k y (i n t dep th , Ma t r i x a)
b M {
faSS a s s e r t (a 1= NULL);
bSb
faS? i f Cdepth == BL0CK_DI.PTH) {
bbii LeofNode *A - (LeafNode *> a ;
853 b lock_eho lesky(A->b lock) ;
bb'S } e lse {

[..

bbl Ma t r i x a00, o l 0 , a l l
bbc

t 1
* j | Calling Context View

] tt ^ 16 Jbo 1 Ittl

*

^ Callers View ft. Flat View)

S A+ A-
csv f^ "

• « l

• K> cilk_main

• K> cholesky

• K> backsub

• K> cholesky

• BJ> mul_and_subT

t • K> mul_and_subT

• B> mul_and_subT

• K> mul_and_subT

• K> free_matrix

i • St> free_matrix

j • K> mag
• B>> num_nonzeros

• loop at cholesky.cilk: 455

work (all/l>T. % idleness (all/1)...
3 .51e+10 100 %

1 .78e+10 50.7%

7.85e+Q9 22.4%

6 .47e+09 1 8 . 4 4

3 .49e+09 9.9%

1 .65e+10 47.0%

1 .64e+10 46.6%

1 .44e+08 0.4%

2 .48e+08 0.7%

2 .08e+08 0.6%

1 .20e+08 0.3%

1.04e+08 0.3%

1.04e+08 0.3%

1 .21e+01

2 .45e+00

1 . 2 6 e - 0 1

2.31e+GC

2 . 0 9 e - 0 2

3 .11e -C2

3 .11e-Q2

3. lSe+OC

2.67e+Q0

1.54e+00

1.33e+CC

1 .33e+00

r " ~ - -

98.6%

19.9%

1.0%

18.7%

0.2%

0.3%

0.3%

25.8%

21.7%

12.5%

10.8%

10.8%

• - —

P

I * ' •

•=» n

% overhead (all/1)...^
2 . 3 3 e + 0 1

1 . 2 8 6 + 0 1

5 .42e+00

4 . 8 8 e + 0 0

2 . 5 2 e + 0 0

l . G 4 e + 0 1

l . C 3 e + C l

1 . 1 7 e - 0 1

99.3% ;'-!

54.7%

2 3 . 1 % | 1

20.8% i

10.7%

4 4.5%

44.0%

0.5%

,
t

1

:

A

•

" » « •

Figure 5.3: hpcviewer's Calling Context view of Cholesky.

for the associated procedure instance in addition to all of its callees. Thus, the metric

name 'work (all/I)' means inclusive work summed over all threads.

Because Cilk emphasizes algorithms based on recursive decomposition — paral

lelism is exposed through asynchronous procedure calls — call chains can become

quite long. Nevertheless, expanding the calling context tree to the first call of

cholesky and noting the metrics on the right is very informative. Figure 5.3 shows

that 50.7% of of the total work of the program is spent in the top level call to

116

cholesky; the top level call to mul_and_subT (which verifies the factorization) is a

close second at about 47.0%. We can also quickly see that 19.9% and 54.7% of the to

tal parallel idleness and overhead, respectively, occur in cholesky. However, because

this idleness and overhead are relatively small with respect to effort (about 2.45%

and 12.8%, respectively), we can say that the parallelization of cholesky is effective

for this execution. In contrast, the parallelization of the entire program (for which

we can use cilk_main as a proxy) is less effective, with both overhead and idleness

increasing to 23.3% and 12.1% of total effort, respectively.

To pinpoint exactly where inefficiency occurs using the idleness and overhead

metrics, we turn to the Callers or bottom-up view in Figure 5.4. If the top-down

view looks down the call chain, the bottom-up view looks up to a procedure's callers.

Thus at the first level, the bottom-up view lists all the procedures in the program,

rank-ordered according to the selected metric — in this case, relative idleness. Note

that in contrast to Figure 5.3, these metric values are exclusive (signified with an

'E') in the sense that they do not include values for a procedure's callees. The

top two routines in the rank-ordered list are versions of the C library routine free

and together account for about 35.8% (20.8% + 15.0%) of the program's idleness.

When the callers for these routines are expanded, it is evident that they are both

called by free_matrix, a non-Cilk, i.e., serial, helper routine that deallocates the

matrix for the Cholesky driver. Continuing down the list reveals that every routine

shown in the screen shot is a serial helper. Since each of these serial routines except

block_schur_f u l l is related to initialization or finalization, it is immediately evident

that to reduce parallel idleness either the size of the matrix must be increased or

the initialization and finalization routines must be parallelized. The significance of

this conclusion is that without having any prior knowledge of the source code, our

techniques have enabled us to quickly make strong and precise statements about the

117

B O O hpeviewer: cholesky (2xBarcelona)[-n 3000 - z 30000]

•St cholcsky.cilk £5 = a
233void free_motr ix(int depth, Motrix a)
284 {

•£&% i f (o == NULL)
28b return;
287 i f (depth == BLOCK_DEPTH) {
2SS f ree(a) ;
zm> } else {
293 depth-- ;
291 free_matrix(depth, o->chi ld[_08]) ;
292 free_matrix(depthj a->chi ld[_01]};
293 free_matrix(depth, a~>child[_10]);
294 free_matrix(depth, a~»ch i ld [_ l l]) ; |
295 f ree(a) ;
-•.-. .• , i

t - • 1

* ^ Calling Context View

Ji> ^ l6 lbo|WI

%, Callers View] fa, Flat View

eS fit A-

j Scope
Experiment Aggregate Metrics

• _int_free

• CO free

• free

| • <KD free_matrix

• O free matrix

• <S1 free matrix

I • <J9 free_matrix

i • mag

! • num nonzeros

1 • malloc consolidate

• block schur full

j • num_blocks

-.

|

& !
i

!

j

i
•

= •

work (all/E)...
3 .51e+10 100 %

2 .00e+0S 0.6%

B.00e+06 0.0%

1 .44e+08 0.4%

B.00e+06 0.0%

8.CCe+C6 0.0%

8 .00e+06 0.0%

1.2Ce+0S 0.3%

1 .20e+08 0.3%

7 .20e+07 0.2%

2 .64e+10 75.3%

S.60e+07 0.2%

% idleness (all/E).T
1 .23e+01

2 .56e+00

1 . 0 3 e - 0 1

1 .85e+00

1 . 0 3 e - 0 1

l . C 3 e - 0 1

1 . 0 3 e - Q l

1.54e+G0

1.54e+Q0

9 . 2 3 e - 0 1

9 . 0 5 e - Q l

7 . 1 8 e - 0 1

100 %

20.8%

0.8%

15.0%

0.8%

0.8%

0.8%

12.5%

12.5%

7.5%

7.3%

5.8%

% overhead Call/B
2 . 3 4 e + 0 1 100 %

]

m

w
1

:!

"i"
1 •

Figure 5.4: hpcviewer's Callers view of Cholesky.

parallel efficiency of this program. Although it is not surprising that serial code is

responsible for idleness, the fact that we can immediately quantify and pinpoint its

impact on parallel efficiency shows the effectiveness of our methods.

118

5.4 Related Work

Our parallel idleness metric is similar to Quartz's [12] notion of normalized time to

highlight code with poor concurrency. Normalized time is computed by attributing

\/W to the relevant section of code on each sample of a working thread, inflating

compute times in areas of poor parallelization. While our idleness metric is similar in

that it also highlights code sections with poor concurrency, it is different in that it is a

direct measure of parallel idleness: I/W. This quantitative/qualitative distinction is

important because Quartz's qualitative metric can be ambiguous. Consider a program

that executes with n threads (on n cores) with two phases named 4>x and <f>y, where

each phase executes for an equal amount of time, t. During phase </>x, procedure x

executes serially; during phase </>y, n instances of procedure y execute without any

loss to overhead. Unintuitively, the normalized times ||rx|| and ||ry|| for procedures x

and y are identical [t/1 and nt/n, respectively) even though n — 1 threads are idle for

the whole duration of phase <f>x. In contrast, our idleness metric would yield values

of Jx = (n — \)t and Jy = 0. Although Quartz eliminates this ambiguity by using n

counters for each procedure, assigning t to counter X\ and 0 to counters X2 . . . xn, this

solution requires a comparison between n counters to convey the same thing as Xx.

Additionally, we attribute idleness to full logical calling contexts, even in the presence

of a work-stealing run time.

The idea of computing parallel overhead is not new. For example, cycle account

ing is a powerful methodology for partitioning stall cycles during the execution of

serial code [55,84]. To predict parallel performance, Crovella and LeBlanc describe

a lost cycles analysis [45] that separates parallel overhead from pure computation.

They further divide parallel overhead into sub-categories useful for differentiating be

tween different performance problems. However, they lament that "[measuring lost

119

cycles directly for the entire environment space is still impractical." Our method di

rectly measures parallel overhead without any run-time cost above and beyond that

of normal profiling.

It is interesting to compare our performance analysis of Cilk to Cilk's own per

formance metrics. Cilk computes two metrics that attempt to directly correspond to

the theoretical model that underlies Cilk's provably-efficient scheduler. The first is

total work or the time for a serial execution of the program with a given input. The

second is critical path, or a prediction of the execution time on an infinite number of

processors. The significant advantages of Cilk's metrics are that they approximate a

platform independent model and provide a theoretical upper bound on the scalability

of a program with a given input. However, they share two important disadvantages.

First, Cilk's metrics are computed using extremely costly instrumentation — which

itself disturbs the application's performance characteristics. Second, these metrics do

not aid the programmer in pinpointing where in the source code inefficiency arises.

In contrast, our method immediately pinpoints parallel inefficiency in source-level

code. Moreover, paired with hardware performance counter information, our method

can help distinguish between different types of architectural bottlenecks in different

regions of code.

Critical path is a classic metric for understanding parallel programs. While Cilk

computes the critical path's lower bound for a program and given input, it is also

possible to determine the actual critical path for an execution. Intel's VTune [77]

computes the actual critical path for an execution, though at the native thread level.

The classic problem with critical path information is that after expending much effort

to reduce its cost, a completely different critical path may emerge, slightly less costly

than the original. Therefore, it is much more useful to know how much 'slackness'

exists in the critical path. Intel's Thread Profiler [26,76] not only computes critical

120

path but classifies its segments by concurrency level and thread interaction. Given

a segment where UT threads execute on n cores [n > 1), the tool classifies that

segment's concurrency level as either serial (ny = 1), under-subscribed (1 < nr < n),

fully parallel (nT = n), or oversubscribed (nT > n). These categories are then

qualified by three interaction effects, which are called cruise time, impact time and

blocking time. Cruise time is time that a thread does not delay the next thread

on the critical path while impact time is the opposite. If a thread on the critical

path waits for some external event, it accumulates blocking time. Thus, performance

tuners should focus on areas of serial or under-subscribed impact time rather than

fully parallel cruise time. The disadvantages of Thread Profiler are that it uses costly

instrumentation, reports information at the native (Win32) thread level, and does

not provide contextual information.

An interesting observation about our idleness and overhead metrics is that, in the

context of Cilk, they approximate a quantitative measure of critical path slackness,

tied to full calling context. To see this, note that a Cilk worker thread is idle only if

it is waiting for another worker thread to (1) make asynchronous calls or (2) release

a lock. Therefore, if a thread's idleness is high in a certain context, then that context

was on one of the 'interesting' critical paths. One deficiency of our profile data is that

it does not distinguish between idleness (or overhead) that is the result of a few calls

to a long-running function as opposed to many calls to a fast one. However, given the

properties of the Cilk scheduler, we can compute metrics similar to Thread Profiler's

but for a fraction of the overhead.

121

5.5 Discussion

Because of the growing need to develop applications for multicore architectures,

effective tools for quantifying and for pinpointing performance bottlenecks in multi

threaded applications are absolutely essential. This will be increasingly true as less

skilled application developers are forced to write parallel programs to benefit from

increasing core counts in emerging processors.

We have shown that attributing work, parallel idleness and parallel overhead to

logical calling contexts enables one to quickly obtain unique insight into the run

time performance of Cilk programs. In particular, we demonstrated the power of

our method by using it to pinpoint and quantify serialization in a Cilk execution. A

strength of our approach is that our performance metrics are completely intuitive and

can be mapped back to the user's programming abstractions, even though the run

time realization of these abstractions is significantly different. While we described

a prototype tool for measurement and analysis of multithreaded programs written

in Cilk, our underlying techniques for computing parallel idleness, parallel overhead,

and obtaining logical call path profiles are more general and can be applied directly to

other multithreaded programming models such as OpenMP and Threading Building

Blocks.

Our work shows that it is possible to construct effective and efficient performance

tools for multithreaded programs. The run-time cost of our profiling can be dialed

down arbitrarily low by reducing the sampling frequency. We have also shown that it

is possible to collect implementation-level measurements and project detailed metrics

to a much higher level of abstraction without compromising their accuracy or utility.

122

Chapter 6

Analysis of Multithreaded Executions: Lock

Contention

6.1 Introduction

Many programs exploit shared-memory parallelism using multithreading based on

thread libraries such as POSIX Threads (Pthreads) [32]. Despite a recent surge of

interest in transactional memory [82], locks remain the principal mechanism used to

guard the integrity of shared data structures in multithreaded programs. Indeed,

fine-grain locking remains the gold standard for performance. Moreover, some of

the fastest software implementations of transactional memory use locks under the

hood [50].

Contention for locks has long been recognized as a key impediment to performance

for shared-memory parallel programs. Early simulation studies of large-scale shared-

memory parallel systems showed that hot spots, such as those caused by spin-waiting

for locks on machines without coherent caches, could dramatically degrade perfor

mance by clogging multistage interconnection networks [115]. Later work explored

alternative implementations for locks that reduce interconnection network traffic as

sociated with spin-waiting, e.g., [11,94]. Today, the potential for performance losses

in parallel systems due to synchronization traffic resulting from spin-waiting is well

123

understood and in most cases it can be largely avoided by using appropriate algo

rithms.

However, there remains a fundamental performance problem caused by using locks

in parallel programs and run-time systems: contention for locks causes serialization.

As a result, idling while waiting for a lock reduces parallelism and parallel efficiency.

For this reason, pinpointing and ameliorating sources of lock contention in parallel

applications is of significant interest. As the number of cores per processor increases,

the scale of multithreading will grow. Diagnosing performance bottlenecks in multi

threaded applications will be of increasing interest as multithreaded applications be

come ubiquitous. A tool that helps pinpoint sources of lock contention and quantifies

their performance impact can provide invaluable guidance for tuning multithreaded

applications.

This chapter proposes and evaluates three strategies that a performance tool can

use to gain insight into performance losses due to lock contention. The approaches we

consider move from blaming lock contention on victims, then to suspects, and finally

to perpetrators. This shift in perspective can be subtle — the first two strategies

are actually modest extensions to state-of-the-art measurement techniques — but it

is critical. Section 6.2 explores the utility of attributing the idleness of spin-waiting

for locks directly to the calling contexts in which spin-waiting occurs (victims). Sec

tion 6.3 considers spreading the blame for idleness due to lock spin-waiting among

threads holding locks (suspects). Section 6.4 describes a new strategy for directly

blaming a lock holder for the idleness of threads spinning on a lock that it holds

(perpetrators).1

We evaluate our new strategy of directly attributing blame for lock contention

in Section 6.5. We use three codes: MADNESS [69] — a quantum chemistry appli-

1The Acknowledgments section recognizes the contributions of collaborators.

124

cation that makes extensive use of locking; UTS [112] — an unbalanced tree search

benchmark; and SSCA #2 [20] — a graph analysis benchmark that is a member

of the Synthetic Scalable Compact Application Benchmark suite [46]. For complex

applications like these, locks may be acquired frequently — an execution of MAD

NESS uses 65M distinct locks, a maximum of 340K live locks, and an average of

30K lock acquisitions per second per thread — and the sources of lock contention

can be context sensitive. Moreover, a performance tool must not itself significantly

affect an execution. This is difficult to ensure. Adding overhead to critical sections

can make the tool itself a new source of contention, while adding overhead outside of

critical sections can reduce contention. Consequently, any tool for understanding lock

contention must operate with very low overhead, obtain calling context, and produce

insightful metrics. The significance of our result is that we achieve all these goals.

Finally, Section 6.6 relates our strategies to prior work; and Section 6.7 discusses

the chapter's general themes.

6.2 Attributing Idleness to its Calling Context

6.2.1 A Straightforward Strategy

The first strategy we consider for understanding the impact of lock contention in

multithreaded programs is straightforward and is based on two key ideas.

The first idea is to quantify lock contention by measuring lock idleness, i.e., the

idle time a thread spends waiting for a lock. Thus, we distinguish between the useful

work that a thread performs and its idleness. If a thread repeatedly idles waiting for

a lock, then its idleness metric will consume a significant percentage of the thread's

total effort (effort = work + idleness).

125

The second idea is to use call path profiling [67] to attribute these metrics to the

calling context in which they are incurred. Call path profiling is especially useful for

modular programs, where it is important to attribute costs incurred by procedures

to the different contexts in which the procedures are called. We use H P C T O O L K I T ' S

hpcrun [141], a sampling-based call path profiler that attributes metrics to the full

static and dynamic contexts in which they are incurred. Asynchronous-sampling-

based call path profilers use a recurring event trigger to raise signals within the

program being profiled. When an event trigger occurs, it raises a signal, and a

signal handler obtains a call path by unwinding the call stack. H P C T O O L K I T ' S

profiler incurs minimal overhead for reasonable sampling frequencies (typically 2-

3% for hundreds to thousands of samples/second) and is capable of measuring and

attributing performance metrics to fully optimized code.

To combine these two ideas, when attributing a sample to its calling context,

it is necessary to know whether the sample represents work or idleness. Consider

the case of right-sized parallelism, where each thread is associated with a unique

hardware context. In this case, threads would typically use spin locks, i.e., locks

that busy-wait rather than yield to the operating system (OS). Since each thread

has a sample source, samples are delivered to a thread both while it is working and

while it is spinning for a lock. To determine whether to charge a sample to a work

or idleness metric, we intercept a monitored application's calls to lock routines to

set a thread-local flag immediately before and after the thread begins waiting for a

lock. In contrast to samples, which arrive asynchronously and whose frequency can

be controlled independently of the application, this flag is set synchronously on every

lock attempt. Keeping instrumentation overhead low is important; the cost of having

locking routines maintain a flag is not a problem.

126

6.2.2 Blocking (Sleep-waiting)

In contrast to spin locks, Pthreads mutex locks and condition variables sleep-wait.

When a thread is sleeping, no user-level resources are used, effectively muting any

sampling triggers based on those resources.2 An obvious solution to the problem

at hand is to directly measure lock (or condition variable) wait time. However, this

requires gathering time stamps both before and after a wait and, if the idleness is non

zero, attributing it to the calling context. Thus, it is potentially necessary to perform

an unwind for every lock release, which would cause significant overhead for programs

that have a high volume of lock acquisitions and releases. Applying this strategy to

measure locking in a non-trivial execution of MADNESS [69] (see Section 6.5.1),

which performed 30K lock acquisitions per second per thread, yielded a monitoring

overhead of 260%. To reduce this overhead, we can sample the lock acquisitions

themselves. That is, on every pth lock acquisition, we measure the thread's idleness

/ and attribute p x I units of idleness to the calling context. In effect, this scheme

amortizes the cost of heavyweight instrumentation across p lock acquisitions.

6.2.3 Evaluation

For the Pthreads library, we implemented this strategy by overriding routines that

could potentially cause a thread to idle: pthread_{spin, mutex}_lock and pthreads

concLwait. To override a routine in a dynamically linked application, we use library

preloading.3 That is, at program launch time, HPCTOOLKIT injects a dynamically

linked profiling library into an unmodified program's address space. For statically

linked programs, compilation remains unchanged, but we require users to adjust their

2It is possible to use a sampling trigger based upon real time rather than user time, but on
standard OS's, this does not work well with threads. For example, on Linux, ITIMER_REAL does not
provide a thread-specific sample source and therefore delivers signals to a random thread within a
process.

3On Linux, see the loader's special environment variable LD_PRELOAD.

127

link step to invoke a script that adds H P C T O O L K I T ' S profiling library to a statically

linked executable.4 When a monitored application calls one of the overridden routines,

control is transferred to the monitored version of the routine, or the override. The

override then sets a thread-local idleness flag — pessimistically assuming the thread

will idle — and immediately calls the actual Pthreads routine. When the thread

enters the lock or condition variable critical section, the Pthreads routine returns to

the override, which immediately clears the idleness flag and returns to the monitored

application.

This strategy computes a thread's idleness with accuracy and with low overhead.

On average, a thread receives samples while its idleness flag is set in proportion to

the time it is actually idle. If a thread attempts to acquire a lock many times but

without contention, that thread will spend relatively little time with its idle flag set

and its idleness metric will be proportionally small. In contrast, if a thread spends

a large percentage of time idle, whether due to few or many lock acquisitions, its

idleness metric will proportionally reflect this fact. Consequently, our conservative

assumption yields a simple implementation without sacrificing accuracy. Another

important benefit of this scheme is that all data is thread-local which means that it

naturally scales to a large number of threads.

One limitation of our implementation is that it does not handle over-subscription

— i.e., when there are more threads than available hardware contexts — if a thread

sleep-waits.

The more serious limitation of this approach is that it fails to yield the insight

into lock contention that we desire. While this idleness metric reflects contention in

the sense that higher contention results in higher idleness, it pinpoints the symptom

rather than the cause; the victim rather than the perpetrator. In other words, this

4On Linux, see the linker's special --wrap option.

128

idleness metric takes a 'first party' view of lock contention and records its effect rather

than its provenance by blaming a waiting thread for its own waiting. To pinpoint the

cause of idleness, idle threads must have some 'third party' knowledge about which

threads are responsible for their idleness. We next describe an idleness metric that

attempts to account for this problem.

6.3 Blaming Idleness on Lock-holders

6.3.1 Extending a Prior Strategy

In Chapter 5, we recognized the problem of attributing idleness as a symptom

rather than as a problem source. There, we described an idleness metric that blamed

idleness in work-stealing programs to regions of code with too little parallelism. In

Cilk [58], such parallelism is expressed with asynchronous calls. We implemented our

ideas by modifying the Cilk run time to (1) track when an individual thread was

working or idle; and (2) maintain a node-wide counter representing the total number

of working (W) and idle (/) threads. Like the strategy of Section 6.2, if a sample

event occurs in a thread that is actively working, the thread attributes that sample

to a work metric associated with the sample context. However, there are two key

differences. First, the working thread also attributes a fractional sample I/W to an

idleness metric associated with the sample context to blame itself for the current

idleness in the execution. Second, if a sample occurs in an idle thread, it is simply

ignored. This strategy equally spreads the blame for not keeping threads busy at that

moment to the active contexts of working threads.

This strategy can be adapted to Pthreads. As in Section 6.2, we override Pthreads

routines that potentially cause a thread to idle (pthread_{spin,mutex}_lock and

pthread_cond_wait). We add a node-wide counter to maintain the number of work-

129

ing threads, W. During an override, immediately before calling an actual Pthreads

library primitive that might wait, we atomically decrement W; we then increment W

when the primitive returns. At any point in time, / can be computed implicitly as

T — W, where T is the number of threads. Then we process samples as described

above.

One natural benefit of this strategy is that there is no need to distinguish be

tween spin-waiting and sleep-waiting. In the first strategy it was necessary to handle

sleep-waiting specially (using timers) because sleeping threads do not receive samples.

However, in this scheme, any samples received by an idle thread are already ignored.

Although our prior work suggested that this strategy could be effectively applied

to Pthreads, we found that it did not yield actionable insight into lock contention

within complex applications like MADNESS. There is a simple explanation for why

evenly apportioning blame for waiting due to lock contention is not very useful for

threaded applications. For a work-stealing scheduler such as Cilk, any working thread

may rightly be blamed for idleness: if that thread is not shedding parallel work, it

is part of the cause of idleness. However, the same is not true for lock-waiting in

explicitly threaded programs. For example, if one thread is working but not holding

a lock, then it is misleading for that thread to accept blame for threads contending

for a lock. Consequently, evenly apportioning blame is not a sound strategy.

To rectify the problem of misappropriated blame, we redesigned our strategy to

assign blame more precisely. We wish to apportion idleness deriving from lock con

tention only to threads that hold locks. We also wish to minimize the number of

atomic increments that are required during critical sections.

We first observe that working threads W may be in one of three mutually exclusive

states:

Wf. working directly in a lock critical section

130

Wc: working directly in a condition variable critical section

W0: working neither directly nor indirectly within any critical section (other)

Note that because critical sections can be nested, a thread in state Wco may addition

ally acquire another lock, moving to state W\ until this additional lock is released.

(Again, we ignore the case of over-subscription.)

Similarly, idle threads / may be classified according to one of three mutually

exclusive states:

i/: idling at a (non-condition variable) lock

Icf. idling at a condition variable lock (i.e., the thread has been signalled but is

waiting to obtain the associated condition variable lock)

ICtV: idling at condition variable (i.e., waiting for a signal)

Given these observations, the most natural form of blaming is:

• Blame idleness 7/ on workers in state W\.

• Blame idleness ICti on workers in state Wc.

• Blame idleness 7C>„ on workers in state W0 since any of the workers in state W0

could signal the threads in state Ic<v.

In the first two cases, idleness is blamed on the worker directly responsible for it.

In the third case, it is impossible to attribute idleness directly since, relative to the

Pthreads API, no particular thread is necessarily responsible for signalling.

6.3.2 Making It Practical

To implement this revised scheme for Pthreads it is necessary to make a minor

adjustment to what we have just presented. At the user-level it is impossible to

131

distinguish between idleness categories ICji and ICiV. While it is possible to distinguish

between threads waiting for only the condition variable lock and both a signal and

the lock, this distinction can only be made within the Pthreads library. As discussed

more fully in Section 6.4, our interest is in building tools by using techniques that are

as general and portable as possible. Since the Linux Pthreads library is part of the

low-level g l ibc system library, revising Pthreads would require that we recompile a

system-level library (and possibly relink the monitored application) before using our

tools. Therefore, we merge categories Icj with ICtV and Wc with W0 to obtain the new

rule:

• Blame idleness in category Ic = Icj + ICjV on workers in state Wco = WC + W0.

Clearly, it is possible to use four global counters to compute the number of idle

and worker threads in states Ii, Ic, Wi, and Wco. Unfortunately, these counters require

frequent adjustment within critical sections. Because a key implementation concern

is minimizing the overhead of the Pthreads overrides, it is important to refrain from

lengthening critical sections. For example, it is less of a problem for the override to

perform bookkeeping before calling the actual pthread_spin_lock routine as opposed

to after this routine has returned and the lock acquired. Therefore, it is important

to minimize the number of atomic increments during critical sections.

It is possible to reduce the number of frequently maintained counters. Given that

T = W + I, we have

W = Wt + Wco

I = T-W = Il + Ic

Consequently, to compute all necessary values it is possible to use T (which only

changes on thread creation/destruction) along with only three frequently adjusted

counters, e.g., W, W\ and Ic. All other state can be thread-local. By directly main-

132

Algor i thm 6.1: blame-suspects: On sampling a working thread, compute that
thread's blame for the execution's idleness based on associated suspects.

Assume: T, W, Wi and Ic are directly maintained.
Input: T, W, Wt and Ic

1 Wi<= max(l,Wi) / / Wi > 1
2 Ic <= max(0, Ic) // Ic>0
3 if is working within lock then
4 let / = (T - W) II I > 0
5 let It = max(0,1 - IC) // h > 0
6 return Ii/Wi
7 else
8 let Wco = max(l, W - Wj) / / Wco > 1
9 return Ic/Wco

taining the suggested subset of counters, only two counters need to be atomically

adjusted within lock and condition variable critical sections.

Algorithm 6.1 shows how this scheme apportions idleness when a sample is fielded

by a working thread. If the worker is in category Wi, it attributes one unit of work

to its work metric and Ii/Wi units of idleness to its idleness metric. Otherwise the

worker is in category Wco and it attributes Ic/Wco units of idleness to its idleness

metric. The algorithm uses max to account for possible timing windows between the

(multiple) atomic increments that occur during the overrides.

It is worth noting that there are complications with correctly maintaining the

global counters. For example, because critical sections can be nested, a thread can

move from state Wco to Wi and back, which means that correctly maintaining counters

requires some care.

6.3.3 Evaluat ion

Unfortunately, we found that even our extension to more precisely attribute blame

was ineffective for complex programs. There are two key problems.

133

The first problem is that, as was not the case with work stealing, contention to

atomically increment or decrement the global counters can be a significant issue. By

using tuned primitives and by preventing false sharing with cache-block alignment, we

managed to bring overhead to an acceptable 5% on a 16-core machine. Nevertheless,

even though we managed to achieve respectable overhead, the prospect of 48- and

64-core systems — or massively multithreaded systems such as the Cray XMT —

suggests that global counters are likely to be an important weakness. A monitoring

scheme should not itself cause significant amounts of new contention.

The second problem is even more fundamental. Even assuming low-overhead

monitoring, we found that the lock-contention blame of this approach was still spread

too diffusely for complex applications. While the approach of Section 6.2 attributes

blame to victims, this approach targets suspects. While it is an improvement to

attribute the idleness of lock-waiting threads to lock-working threads, the results can

be inaccurate if most of the idling threads are waiting on one critical lock. For similar

reasons, it can be misleading to attribute the idleness of 'cond'-waiting threads to all

other working threads, even though any one could in theory potentially signal the

condition variable. Consequently, for complex programs, we found blame to be too

diluted because it is accumulated by actively working threads that have no relation

to a source of contention.

6.4 Communicating Blame Directly to Lock-holders

6.4.1 Blame Shifting: A Distributed and Precise Strategy

To pinpoint the cause of lock contention in its context, while avoiding the prob

lems we have encountered thus far, we developed a fully distributed scheme that

we call blame shifting to communicate blame for contention directly to lock-holders.

134

Because it uses a fully distributed strategy and only lightweight instrumentation of

synchronization primitives, it incurs very low overhead.

The key idea is to use a lock as a communication channel for directing blame.

Consider the case of spin locks where threads busy-wait while contending for a lock.

While profiling an application using sampling, threads contending for locks will receive

samples while idling. When a thread takes a sample while waiting for a lock, we use

an atomic add to accumulate that idleness in a counter associated with the lock.

Then, when a thread that possesses a lock releases it, that thread blames itself for

all of the idleness that accumulated while it held the lock. To accept blame, when

a thread releases a lock, it atomically swaps zero into the lock's associated idleness

counter. If the result of the swap is a non-zero value, then other threads must have

contended for that lock while the lock-holder was working. So, the thread holding

the lock attributes that idleness to the context of its lock release operation.

Although one might desire to attribute idleness to the lock acquisition point,

using the release point provides a key benefit. Typically, there are several points in

an execution where certain lock acquisitions are uncontested. Consequently, there

are likely to be many lock release points where it is not necessary to incur the cost

of unwinding the call stack to attribute zero blame. In contrast, attributing idleness

to a lock acquisition point would require eager unwinds since that context may never

again exist. Moreover, if a lock is contested only a short time, then it is unlikely to

have a sample of idleness attributed to it. To see this, note that whereas a thread

may acquire hundreds of thousands of locks per second, it is sufficient to use sample

frequencies of hundreds to thousands of samples/second for most programs.

135

6.4.2 Blame Shifting in Action

To implement blame shifting, it is necessary (1) to have thread-local data to

indicate when a thread is not working and (2) to create a shared piece of monitoring

state for each lock. As the former has been discussed in prior schemes, we focus on

the latter.

In-band versus out-of-band state

The first question is how to create the shared monitoring state. There are two

possibilities: within the existing lock structure (in-band) or outside of it (out-of-band).

An in-band approach requires storing additional information within the existing

lock. In particular, blame shifting requires a shared idleness counter for each lock. In

general, reinterpreting bits within a data structure to add an extra field is difficult

and at the very least requires overriding every routine that might access that data.

Pthread's spin locks are simply 32-bit integers, even on 64-bit platforms. An in-band

approach requires unevenly dividing this space into two fields to have enough room

for the idleness counter. It also requires that the idleness field never overflow. It is

also worth observing that both fields will be accessed by different threads and will

be the target of atomic operations, even though neither is the natural architectural

word size.

A second option is to create a special library and include file to implement an

extended representation for a lock that includes a counter for blame shifting. This

approach suffers from the disadvantage that one would need to recompile the appli

cation to use the larger lock structure. Because one of our underlying goals is to

develop techniques that can be used to monitor unmodified programs, we consider

such an option an approach of last resort. Of course, one could modify a system's

136

standard threading library to use the extended representation for a lock; however,

such an approach would not be portable.

A third approach is to allocate additional state associated with a lock in out-of-

band data. A benefit of this approach over the in-band approach is that it is a more

flexible solution; for example, additional monitoring state can easily be added. We

implemented this approach.

Allocating out-of-band state

We now consider when to allocate this additional out-of-band state. At first

glance, it might appear straightforward to allocate the out-of-band state when a lock

is initialized with pthread_{mutex, spin}_ini t . This would be attractive since one

could assume a race-free context. However, this approach is fraught with difficulty.

First, while it is possible to override every instance of a Pthreads call, some of these

overrides may occur in contexts in which a profiler cannot manage the out-of-band

state. For example, Pthreads locks are often used very early during execution within

gl ibc and during initialization of shared libraries and static constructors.

Second, supporting out-of-band lock state requires managing dynamic allocation

and deallocation of state instances. In many programs, components of dynamic data

structures are decorated with locks (e.g., nodes in a tree). In such lock is

destroyed when a node is freed; thus, managing the destruction of lock state is an

essential part of an overall strategy for dynamic allocation. This shows that allocating

out-of-band state for monitoring locks at the time of lock initialization requires the

ability to dynamically allocate lock state and manage a per-thread free list5 to which

lock states could be appended when they are no longer needed. (Similarly, locks may

be used after the application exits and monitoring tool shuts down but before the

5Using a per-thread free list avoids contention for the free list.

137

process has completely retired.) Providing both of these capabilities very early in an

execution before the profiler is initialized is problematic.

Therefore, the shared lock state must in general be created on demand, i.e., when

the performance tool first sees an attempt at locking (which may be different than

the first attempt at locking). This implies the state is created in a context where

other lock operations might be executed concurrently.

Accessing out-of-band state

On each call to a Pthreads locking routine, it is necessary to obtain the associated

out-of-band state. There are two possibilities for accessing this data. The first option

is to replace the contents of the lock itself with a pointer to a monitored lock. The

second option is to write a function to quickly map between a pointer to a lock (which

is unique) and its associated monitoring state.

The primary advantage of the first scheme is that finding a monitored lock can

be an extremely fast constant-time operation. The primary disadvantage is that,

because a performance tool might not see a lock's initialization, a native lock must be

converted to a monitored lock within a race-sensitive context. For example, one thread

may attempt to convert a lock into a monitored lock while that lock is currently held

by a second thread and while a third thread is attempting to acquire that same lock.

This implies that there must a concurrency protocol between the locking routines and

the conversion routine.

The second option requires a data structure that supports both fast look ups and

high concurrency. Because complex applications have a high rate of lock acquisitions,

it is necessary to eschew coarse-grain locking. One potentially easy way to support

high concurrency at the expense of extra memory is to make per-thread look ups

138

faster by using an additional per-thread mapping data structure such as a splay tree.

In other words, many look ups benefit from thread-local caches.

We initially tried the second approach because of its easier implementation. How

ever, even using a local-global lookup to reduce contention on a centralized data

structure — a balanced tree which itself used a sophisticated reader-writer lock — we

were not satisfied with the resulting profiler overhead for programs that performed

a high rate of lock acquisitions. Consequently, we developed protocols to support

installing and managing monitored locks in a concurrent environment.

6.4.3 Dual-representation Locks

To support fast accesses to shared lock state and to sidestep a difficult refactoring

of profiler initialization to enable out-of-band monitored lock states to be used very

early during execution, we opted to use a dual representation for locks. In prior

work, Bacon et al. used a dual representation for object locks in Java [19], though

for different reasons. We discuss this in more detail in Section 6.6. Note that the

algorithms presented below for managing dual-representation locks use the atomic

primitives swap and CAS (compare-and-swap), which are defined in Appendix C.

Before profiler initialization, a lock is simply represented by a (32-bit) pthread_

spinlock_t. Lock operations that occur before profiler initialization use this native

lock representation. Once the profiler state is initialized, any lock, trylock, or unlock

operation converts the native lock, in demand-driven fashion, to point to a monitored

lock. The monitored lock includes the extra state needed to attribute contention.

Once a lock has been converted into a monitored lock, it will remain a monitored

lock until it is destroyed.6 On each subsequent lock operation, the representation

6Bacon et al. use an analogous approach for Java locks. Once they innate a Java lock to a "fat"
out-of-band representation, the lock remains inflated for its remaining life.

139

Algor i thm 6.2: demand-mon-lock: The protocol for converting a native lock
into an out-of-band lock in demand-driven fashion.

1 typedef struct monJock { / / a monitored lock
2 pthread_spinlock_t lock; / / typedef d as "volatile int"
3 long idleness;
4 } mon_lock_t;

5 mon_lock_t* demand_mon_lock(pthread_spinlock_t* lock) {
6 if (!is_mon_lock(*lock)) {
7 mon_lock_t* mlock = alloc_mon_lock();
8 in t newVal = make_mon_lock_ptr(mlock);

9 bool didSwap = false;
10 while (true) {
11 int curVal = *lock;
12 if (is_mon_lock(curVal)) break;

13 mlock—>lock = curVal;
14 didSwap = (CAS(lock, curVal, newVal) = = curVal);
15 if (didSwap) break;
16 }

17 if (IdidSwap) free_mon_lock(mlock);
18 }
19 re turn get_mon_lock(*lock);
20 }

is examined, the monitored lock is obtained, and the operation proceeds using the

monitored representation.

After profiler initialization, all lock, trylock, or unlock operations request a native

lock's monitored lock by calling demand_mon_lock, shown in Algorithm 6.2. If the

lock already represents a monitored lock, the routine simply accesses the associated

monitored lock by reinterpreting the bits of the native lock. If a native lock is not yet

a monitored lock, then the routine initiates a protocol for converting the native lock

(of type p th r ead_sp in lock_ t) into a monitored lock. The protocol first allocates a

new monitored lock and computes a 'pointer' to install in the native lock.7 Then, it

7 A pthread_spinlock_t is 32 bits, even for 64-bit programs. In a program running in 64-bit
mode, this is not long enough to contain a full pointer. To address this problem, we allocate a
segment for locks. We represent a lock pointer in a pthread_spinlock_t as an offset from a base

140

Algor i thm 6.3: lock-mon-lock: Lock a dual-representation lock.

1 const int UNLOCKED = 1, LOCKED = 0;

2 int pthread_spin_lock(pthread_spinlock_t* lock) {
3 if (is.profiler-initialized) demand_mon_lock(lock);
4 while (true) {
5 if (is_mon_lock(*lock)) {
6 / / acquire a monitored lock
7 mon_lock_t* mlock = get_mon_lock(*lock);
8 lock = femlock—>lock;
9 while (true) {

io while (*lock = = LOCKED);
n if (swap(lock, LOCKED) = = UNLOCKED)
12 r e tu rn 0; / / success
13 }
14 }
15 / / acquire a native unmonitored lock
16 while (*lock = = LOCKED);
17 if (CAS(lock, UNLOCKED, LOCKED) == UNLOCKED)
18 r e t u r n 0; / / success
19 }
20 return 1; //failure
21}

enters the compare-and-swap (CAS) loop beginning on line 10. The loop obtains the

current value of lock and ensures that since the test on line 6, lock is still a native

lock. In that case, the protocol initializes a monitored lock with lock 's current value

and attempts to atomically install a pointer to the monitored lock with the CAS on

line 14. The loop exits when the CAS succeeds or some other thread converts the

lock. If the latter occurs, the newly allocated monitored lock is reclaimed by placing

it on a thread-local free list.

Algorithms 6.3-6.5 show the lock, trylock, and unlock protocols we use on these

dual-representation locks. The algorithms are optimized for the typical case: a

p t h r e a d _ s p i n l o c k _ t contains a pointer to a monitored lock.

address for the segment of monitored locks. For simplicity, in the rest of the chapter we omit the
quotation marks around 'pointer.'

141

The lock operation shown in Algorithm 6.3 works as follows. First it tests to see

if the native lock has been overlaid with a pointer to a monitored lock state (line 5).

If so, it extracts the pointer and then attempts to acquire the lock with a simple

test-and-test-and-set protocol. While the lock word of the monitored lock is found

to be in the LOCKED state, it continues to spin (line 10). When this condition is no

longer true, some other thread must have set the lock word to its UNLOCKED state.

A swap operation is used to atomically set the value of the lock word to LOCKED and

recover its prior value. If the lock was UNLOCKED when the swap occurred, the lock

acquisition is complete and the protocol returns. Otherwise, another thread acquired

the lock. In that case, the protocol returns to the spin-wait loop where it again delays

until the lock word is no longer LOCKED.

If a lock operation initially finds that lock does not point to a monitored lock,

it enters a protocol to acquire the lock using the native representation. As with

acquisition of a monitored lock, the protocol enters a loop that spin-waits for the

lock representation to no longer be in the LOCKED state (line 16). When attempting

to acquire an unmonitored lock, there are two conditions that might cause one to

exit this spin-wait: another thread may have set the lock word to unlocked, or the

profiler may have been initialized and another thread may have exchanged the lock

word representation to point to a monitored lock. If the lock is available and in the

UNLOCKED state, the subsequent compare-and-swap (CAS) operation will find it in

the UNLOCKED state, set it to LOCKED, and return that it was in the UNLOCKED

state. At this point the protocol will terminate after successfully acquiring the lock

using the native representation. It is noteworthy that at this point in the protocol, it is

necessary to use a CAS rather than a swap as used in the protocol for monitored locks.

The reason is simple: the representation may have changed since we last inspected the

lock word. If the lock word has been promoted to a pointer, one cannot obliviously

142

A l g o r i t h m 6.4: trylock-mon-lock: Trylock on a dual-representation lock.

1 int pthread^spin_trylock(pthread_spinlock_t* lock) {
2 if (is_profiler.initialized) demand_mon_lock(lock);
3 while (true) {
4 if (is_mon_lock(*lock)) {
5 / / trylock a monitored lock
6 mon_lock_t* mlock = get_monJock(*lock);
7 lock = fcmlock—>lock;
8 int prev = swap(lock, LOCKED);
9 r e tu rn ((prev = = UNLOCKED) ? 0 / * success */: 1 /* failure */);

io }
n / / trylock a native unmonitored lock
12 int prev = CAS(lock, UNLOCKED, LOCKED);
13 if (prev = = UNLOCKED)
14 r e tu rn 0; / / success
15 else if (prev = = LOCKED)
16 r e tu rn 1; //failure
17 }
18}

overwrite it with LOCKED using a swap; instead, we conditionally overwrite it only

if it is a native lock word in the UNLOCKED state. If the CAS fails, we return to

the top of the outermost loop, check if the representation has changed, and execute

the appropriate branch of the protocol to repeat the attempt to acquire the lock.

An important feature of the protocol is that both the spin-wait and the CAS for the

unmonitored lock representation can tolerate the representation being asynchronously

switched to its monitored form. That would not be the case if line 16 read whi le

(*lock != UNLOCKED) or line 17 used swap rather than CAS.

The trylock operation shown in Algorithm 6.4 similarly is designed to cope with

our dual representation. If the lock word points to a monitored lock, it extracts the

pointer and then at tempts to acquire the lock with simple swap (line 8). Depending

upon whether swap returns UNLOCKED, trylock succeeds or fails. Since a lock will

never revert from a monitored lock pointer to a native representation until the lock

143

is destroyed, if a lock is found to be using a monitored representation, it is safe to

acquire it using a swap. If initially the lock word is not a pointer to out-of-band

state, trylock attempts to acquire the lock in native form. In this case, the protocol

uses a CAS operation (line 12) since the lock word may asynchronously change to

a monitored lock pointer. If the lock word is still using the native representation

(i.e., with value LOCKED or UNLOCKED), the trylock returns immediately with the

appropriate result. If the representation was asynchronously converted to a monitored

lock pointer, execution will continue at the top the while loop on line 3, enter the

protocol to try to acquire a monitored lock, and complete in a few operations. Note

that that although this protocol contains a while loop, the loop will execute at most

two iterations, resulting in a fixed number of instructions and leaving the trylock

protocol non-blocking.

While the use of CAS in these dual-representation protocols is potentially more

costly than simply using a swap to try to acquire a native lock, or using a simple write

to unlock, this will have little impact on the run-time cost of the locking protocol.

These CAS operations execute only before profiler initialization. Since profiler ini

tialization happens relatively early, in the typical case, the expected additional cost

of the dual-representation in these protocols is limited to testing the lock word for

a monitored lock pointer and converting that pointer into an actual pointer to the

monitored lock.

The unlock operation shown in Algorithm 6.5 is quite similar to trylock in its

handling for the dual representation. If the lock is found to point to a monitored lock,

it simply sets the monitored lock's lock word to UNLOCKED. Otherwise, it attempts

to unlock the lock by using a CAS (line 15) to update the lock word from LOCKED

to UNLOCKED. If this fails, the lock must have been asynchronously converted to a

monitored lock pointer. A second pass around the while loop (line 3) will release the

144

Algor i thm 6.5: unlock-mon-lock: Unlock a dual-representation lock.

1 int pthread_spin_unlock(pthread_spinlock_t* lock) {
2 if (is.profiler.initialized) demand_mon_lock(lock);
3 while (true) {
4 int lockval = *lock;
5 if (is_mon_lock(lockval)) {
6 / / release a monitored lock
7 monJock_t* mlock = get_mon_lock(lockval);
8 if (mlock->lock = = UNLOCKED) return 1; //failure
9 else {

10 mlock->lock = UNLOCKED;
n return 0; / / success

}
13 }
14 / / release a native unmonitored lock
15 if (CAS(lock, LOCKED, UNLOCKED) = = LOCKED) return 0; / / success
16 if (*lock = = UNLOCKED) return 1; //failure (prevent indefinite spinning)
17 }
18}

monitored lock. Although this protocol contains a whi le loop, the loop will execute

at most two iterations, resulting in a fixed number of instructions and leaving the

unlock protocol non-blocking.

6.4.4 Blocking (Sleep-wait ing)

Recall that when Pthreads mutex locks sleep-wait, they receive no samples because

samples are only delivered while threads are running. To implement blame shifting for

sleep-waiting, we used a sampling strategy similar to that in Section 6.2.2. That is,

on every nth blocking call we time the thread's idleness and store it in the associated

monitored lock's idleness counter. If the idleness count is non-zero when a thread

releases the lock, it gathers the calling context. In principle this strategy should also

work for condition variable waiting, but we have not implemented it.

145

6.4.5 Hints for Developers

Many subtle implementation issues arise when overriding various Pthreads library

functions for profiling. For our profiling tools to be broadly applicable, each issue

needs to be solved generically in a way that induces low run-time overhead. In some

cases, the nature of interactions between target programs, run-time systems, and our

profiler forced more complicated solutions than originally desired.

For instance, overriding pthread_mutex_lock and performing any non-trivial op

eration involves subtle complexities. Many operations in thread-safe run-time li

braries, such as malloc or dlsym, directly or indirectly call pthread_mutex_lock in

at least some circumstances. The former would commonly be used to allocate out-of-

band memory for monitoring locks; the latter for preparing the override for pthread_

mutex_lock. To allocate dynamic memory, we use mmap-ed regions. To prepare the

pthread_mutex_lock override, we use the special symbol pthread_mutex_lock

exported in the Linux implementation of Pthreads.

Although only a subset of Pthreads functions need to be wrapped, care must be

taken to prevent inconsistent versions. Problems of this sort come in two flavors.

First, one might wrap a Pthreads function that sets values visible to other functions

that are not wrapped. One must choose the set of functions to wrap carefully to

ensure that all functions sharing data have a consistent notion of appropriate states.

Second, intra-library calls have to see a consistent world. In particular, calls that use

hidden interfaces within libraries that cannot be overridden must be handled.

Finally, most unwinders — including H P C T O O L K I T ' S — are not designed to be

recursive. Since our strategy uses both asynchronous-sampling-based call path profil

ing and synchronous unwinds of the call stack at a lock release point, it is important to

specify what happens if an asynchronous sampling trigger occurs during a synchronous

146

unwind. The simplest way to prevent interference is to prevent asynchronous samples

during any unwind.

6.5 Case Studies

To show the effectiveness of blame shifting, we describe our experience applying it

to three multithreaded applications with interesting locking and scheduling patterns.

Our goal is to provide evidence that our method yields insight into non-trivial codes.

In doing this, we distinguish between obtaining and applying insight. This is an

important distinction because given an understanding of lock contention that includes

a quantitative measure of the problem (insight), one might either resolve the problem

or determine that a resolution is too costly (different applications). Because of the

effort that would be involved in resolving the problems we identify, these studies focus

on obtaining and not applying insight.

All experiments were performed on a Dell M905 blade running CentOS 5.2 and

with four quad-core AMD 2.2 GHz Opterons (8354) and 48 GB main memory.

6.5.1 MADNESS

The first application we consider is MADNESS [69], a quantum chemistry ap

plication that makes extensive use of locking. MADNESS is designed to scale well

both in SMP environments and on petascale clusters with multicore nodes. We focus

on SMP executions here, but note that node-based performance is also critical for

efficient performance on petascale clusters. MADNESS uses its own dynamic work

scheduler based on a centralized queue. Worker threads create tasks (futures), which

are pushed the queue. As necessary, workers pop tasks from the queue to obtain

work. Among other things, MADNESS uses locks to manage access to the queue.

147

To obtain a sense of MADNESS's scaling losses, we gathered elapsed time for 4

and 16-core executions using the same input (strong scaling, averaged over five runs).

While a 4-core run completed in 1150 seconds, a 16-core run took 516 seconds, an

improvement of only a factor of 2.2. MADNESS' authors were aware of scaling losses

but were unsure of the precise cause. Ignoring architectural concerns such as memory

bandwidth, an obvious suspect is lock contention from managing a centralized task

queue. However, it is not at all easy to show this for two reasons. First, understanding

the different sources of lock contention in MADNESS is difficult because of its complex

structure. Futures are implemented with templates. Typically, locks are implicitly

acquired automatically through object creation and destruction. Furthermore, most

critical sections are not straight-line code but a chain of templated method calls,

heavily optimized by the compiler. Second, any monitoring tool must manage locks

very efficiently to have low overhead for MADNESS. During a single 16-core execution

of a non-trivial input, MADNESS used 65M distinct locks, had a maximum of 340K

live locks, and performed an average of 30K lock acquisitions per second per thread.

Finally, it is worth noting that MADNESS's authors had already spent considerable

time experimenting with different implementation parameters.

We used our blame shifting strategy to measure lock contention on a version of

MADNESS using spin locks. We used a sampling period of 5 ms to yield an average

sampling rate of 200 samples/second. Curiously, during profiling, the execution time

actually slightly decreased from 516s to 508s (averaged over 5 runs with no significant

variability). We are not sure of the precise reason but note that this is an anomaly.

Typically, our profiling overhead is positive, but less than 5%.

Figure 6.1 presents one view of the aggregated results displayed by our presen

tation tool. The view has three main components. The navigation pane (lower left

sub-pane) shows a top-down view of the calling context tree, zoomed to focus on

148

« n o hpcviewer: mold ft

" ^ Calling Context View [^ Callers View! f t . Flat View]

\ worldtaskt •5 worldobj.h "5 worldthread.h £3 worldmutexh
_L

"^ lusrt-pthread.h

/// Add a now task to the poos
static void add(Poo'.ToskInterfcce* tosk) {

if (Itask) thro* "ThreadPoo!: inserting a NULL tosk pointer";

int nthread - tosk->get_nthreadO;
// Currently multithreaded tasks must be shoved on the end of the q
// to avoid a race condition as muHithrcaded task is starting up

if (tosk->is_high_priorityO && nthread~~l) {
instance()-»queue.push_front(task);

}

else {
instanceC)->queue.push_backCtask1 n th read) ;

}
}

10 :6forflfl C«A*A-

V g{> madness::Tasklnterface..fun(ffladness..TaskThrcadEnv const&)

^ loopatworldtask.h: 107

^ g{> madness:TaskN!emfun<»..fun(madness:.Wortd&)

^ g{> madncss:Tunctlonlmpl<>::compress_spawn(madness::Kcv<> const&. bool, bool)

v toop at mraimpl.h: 1026

V loop at mraimpLh: 1026

• loop at mraimpl.h: 1027

• loop at mraimpl.h; 1031

V g£> madness:Future<> madness::WorIdObject<>::ta$k<>{int(madne

V Inlined from worldtask.h: SSI
w &> madness:.ThreadPool: add(madneis::Poorrasklnterface")

^ intined from worldmutex.h. 142

v g{> madness .Spirtlock::unloekO const

^ B>> pthread_spin_unlock

« I J

0

Ktdtertess (af t /0* »idleness &J /Q
i . e e e t o i eo.1%
I . G S G * C I e c u

1.67e+Cl 70.24

7.«e*CX 31.6*

7.44e-KS(» 31.6*

7.37e+0G 31.38

7.36e+0C 31.3%

7.36e*CC 31.34

?.3Se+0C 31. 2*

7.3Se*0C 31.24

7.35.+CC 31.24

7.35e+CC 31.24

7.3Se+CC 31.2%

7.3Se+0C 31.2% 7.2Se<-C0 31.2*

Figure 6.1: hpeviewer's Calling Context view of MADNESS's moldft.

a portion of one call path. The call path is actually a fusion of dynamic calling

contexts and the static context information such as loops and inlined frames. The

selected line in the navigation pane highlights an instance of ThreadPool: : add whose

corresponding source code is shown in the source pane (top sub-pane). Each entry in

the navigation pane is associated with metric values in the metric pane to the right.

Two metrics are visible: '% idleness (all/I)' and '% idleness (all/E).' Both metrics

represent idleness as a percentage of total effort (giving the '%' qualifier) and summed

over all threads (yielding the 'all' qualifier). (Recall that effort is the sum of work and

idleness.) The former metric shows inclusive (T) values, or values that are inclusive

of an entry's children. The latter shows exclusive ('E') values that exclude its chil

dren. In the metric columns, metric values are shown in scientific notation. Note that

149

because these particular metrics are percentages, the values in scientific notation are

actually percents. The values formatted as percentages on the right side of a column

give an entry's proportion of the total idleness (as opposed to total effort).

The call path in the navigation pane is the hot call path with respect to the

former metric and was expanded automatically. It is actually a fusion of dynamic

calling contexts and static contextual information such as loops and inlined frames.

The highlighted line in the navigation pane of Figure 6.1 indicates that 7.35% (sci

entific notation) of the total effort of the execution was spent in idleness at this

context. Three lines below, we see the call to pthread_spin_unlock, exactly where

blame shifting attributed the idleness due to lock contention. Within this call, both

the inclusive and exclusive idleness metrics are identical, indicating that the call to

pthread_spin_unlock accounts for all the idleness in this context.

This call path shows that there is lock contention associated with adding tasks to

the centralized thread queue via ThreadPool: : add. However, the remaining 68.8%

of the idleness arises in other calling contexts. To avoid the need to search for other

contexts in which there may be lock contention caused by ThreadPool: : add, we turn

to a bottom-up Callers view in Figure 6.2. If the top-down view looks down the call

chain, the bottom-up view looks up to a procedure's callers. At the first level, the

bottom-up view lists all the procedures in the program, rank-ordered according to

the selected metric. Bottom-up metrics are computed by apportioning the costs of a

procedure on behalf of its various calling contexts.

The first thing we observe is the very top line which gives aggregate values for

the various metrics. (This line was not visible in Figure 6.1 because of scrolling.)

We immediately see from the column labeled '% idleness (all/E)' that 23.5% of the

execution's total effort consisted of lock contention. The column labeled 'idleness

(all/E)' gives the absolute value of idleness (in microseconds): 1.57 x 109/xs. We

150

flOO hpcviewer: moldft

j "*4 worldtask.h S3 I "*? worldobj.h " " ^ worldthrcad.h

b/b /// Invoke "resultT (obj.*memfun)(arglT,arg2T,arg3)" as a local task
br'fc template <typename memfunT, typenome arglT, typenome arg2T, typenome arg3T»
b,v Future<REMfUTURE(M£MPUN_RETURNTCmcmfunT)}»
i , ; addCMEMfUN_0BJT(menifunT3& o b j ,
Si.'w tnemfunT memfun,
b'.-'.-' const arglT& a r g l , const arg2T& org2, const arg3T& a r g 3 , const 7askAt t r ibutes& at t r^TaskAl
feci future<REMrUTUftt(MEMFUN_RETU(!NT(iiie»funT»» r e s u l t ;
SbJ add(nev. TaskMemf unaiiemf u n T » (r e s u l t , o b j , m e m f u n , a r g l , a r g 2 , a r g 3 , a t t r J) ;
bo.- return result;
b:i^ }

0

"^Calling Context View] ̂ Cillers View j f } . Flat View .|

JO 6 foo M £ A* A-

Scope

| Experiment Aggregate Metrics

f pthread_spin_unlock

I f 43 madness Spinlock unlockO const

"*• 43 inlincd from worldmutex.h. 142

• 43 madness::ThreadPool::add(madness::PoolTasklnterface*i

* 43 inlined from worldtask.h: S81

I • 43 madness::Futurc<> madnoss:;WorldObjecto::task<>

V 43 inlined from worldtask.h: 569

• 43 madness::Future<> madness::WorldObject«::task<>

• 43 inlincd from vvorlddcp.h: 68

j W 43 inlined from worldtask.h: 570

• 43 madnessiFuturco madness::V.'orldObiect<>::task<>

• 43 inlined from worldtask.h: 558

• 43 madnessTutureo madness::WorldTaskQueue:,addo!ma

% idleness <«ft/E).« idleness (ail/0
2.35e+01 ICC % l.S7e+C9 ICO %

3Se+Cl 100.0 :i-S7e-»C9 100.C

3Se+01 1 0 C . C ! l . 5 7 « + C 9 10C.C
1

78e-t01 7 5 . 6 % : 1 . 1 9 e * C 9 7 3 . S t

7 8 e * 0 1 75 .6%J1.19e+C9 7 S . 6 *

35e+0C 31.2% 4 . 9 2 e + 0 8 31.2% 1 . 5 5 e + 0 6

3Se+C0 31.2% |<S.92e+08 31.2% l . S i e + C S
-3.36e»CC 19.«% f3.C5B*08 1 9 . « * S.81e+CS

<i .S6e+00 19.4% ;3.CSe+C8 19.4% S . 8 1 e + 0 5

l . £ 3 e + 0 C

l.<S9e+CC

1.<.9e+CC

1.38e+C0

6 . 7 2 e - C l

I
6.S% l .C2e+C6

6.3% } 9 . 9 7 6 * 0 7

6.3% 9 . 9 7 e * C 7

S.9% ; 9 . 2 6 e + 0 7

2.9% ; 4. (19e+07

6.5% S.7Se+C5

6.3% 1 .96e+C6

6.3% 1 .96e+C6

S.9% 1.71e+C5

2.9% l .C9e+C6

Figure 6.2: hpeviewer's Callers view of MADNESS's moldft.

should note that this value does not reflect all the idleness in the program. Because

Pthreads does not provide a spin-based condition variable, MADNESS implements

its own. In principle, we could instrument MADNESS itself. Since this is not the

point of our work, our MADNESS results only measure regular lock contention and

ignore any waiting at a condition variable critical section. However, we obtain an

accurate measure of Pthreads spin lock contention.

When we automatically expand the hot path relative to the metric '% idleness

(all/E)', we see something similar to the screen shot in Figure 6.2. This view shows

how all the idleness attributed to pthread_spin_unlock is apportioned to its callers

(in their context). Just above the selected line in the navigation pane is ThreadPool: :

add. Its associated idleness metrics show that it is responsible for 75.6% of the locking

151

contention, accounting for 17.7% of the execution's total effort. This line not only

confirms that adding tasks to a centralized queue is problematic, but quantifies its

effect on idleness.

To see the effects of lock contention by context, we look up the call chain to the

callers of ThreadPool: : add. The selected line and its siblings (some of which are not

shown) lists those callers (for this particular callee context). Since sibling entries in

the navigation pane are sorted relative to their exclusive idleness (the selected metric),

we can easily examine the handful of important ones. Doing this shows that most

of the locking contention (67.5% of the total idleness) derives from creating Futures.

The idleness costs are spread across distinct templates — not distinct instantiations

— that manage Futures with different numbers of arguments. The selected line

shows the templated add function for a Future with three arguments. An approach

using distributed work queues and work stealing would likely significantly reduce lock

contention.

Our original scaling experiment shows that we have not accounted for all scaling

losses. There are at least two sources. First, the fact that memory bandwidth does not

scale linearly with the number of cores is likely to be a factor. Second, besides missing

idleness due to condition variable waiting, we cannot effectively monitor the non-

idle overhead of creating and managing tasks. In Chapter 5, we precisely computed

overhead values for Cilk by modifying the Cilk compiler to distinguish between useful

work and parallel overhead. While we have adopted this approach to identify the non-

idle overhead of Pthreads routines, that overhead is negligible. The approach does

not directly translate to MADNESS where there is no formal separation between the

task management and the user code.

In hindsight, it is not surprising that a centralized queue protected by locks could

introduce lock contention. However, it would be an error to conclude that these

152

results are trivial. To see this, consider the question of how severe lock contention

is on 8 cores. It turns out that the total lock contention on 8 cores is 1-2% because

MADNESS' developers had optimized for this case. However, MADNESS' developers

had no clear answers to questions like: How severe is lock contention for a particular

execution? Do these executions fail to scale because of lock contention or some other

reason? Is lock contention occurring primarily at the centralized queue or is it more

evenly spread among other lock acquisitions? Our results help answer these questions.

6.5.2 UTS

The second case study is a Pthreads implementation of the Unbalanced Tree

Search (UTS) benchmark [112]. UTS was designed to evaluate the performance and

ease of programming parallel applications that require dynamic load balancing. UTS

builds and searches trees where each vertex unpredictably either has no children or

millions of descendants. The number of active vertices varies between a few and tens-

of-thousands during the execution (depending on the starting parameters and current

depth).

UTS uses a work-stealing scheduler where each worker thread maintains a queue

with two pieces, a local section that can be accessed without locks and a shared

portion from which work can be stolen and which is protected by locks. A lock is

acquired when work is moved from the local to the shared portion of a queue.

We profiled UTS and examined the resulting work and idleness metrics (microsec

onds) aggregated across all 16 threads. It was immediately apparent that although

all cores were busy throughout the execution, they were only doing useful work about

40% of the time. With the idleness metric, we immediately pinpointed the source of

idleness to contention for locks protecting the shared queues. About 72% of the idle

ness derived from contexts where new 'stealable' work was pushed onto the shared

153

queues. Almost all of the remaining idleness (27.5%) was attributed to successful

steals of work by otherwise idle threads. Thus, a majority of this execution time was

spent contending for the privilege of either providing or extracting work. One way to

reduce this contention is to use larger granularity tasks.

6.5.3 SSCA # 2

The last case study is from the Scalable Synthetic Compact Application (SSCA)

benchmark suite [46]. SSCA # 2 was designed to be a hard-to-parallelize, compute-

intensive analysis program that stresses memory access using integer and character

operations.

We profiled an implementation of SSCA #2 using Pthreads written by Bader and

Madduri [20]. Interestingly, idleness is very unevenly distributed across threads. In

particular, 99.9% of the idleness of the first thread derives from a coarse-grained lock

protecting an update to the graph. Having one lock per graph vertex rather than one

graph-wide lock would reduce contention for that critical section and could greatly

speed the initialization phase. The post-initialization compute kernels contained no

significant sources of lock contention.

6.6 Related Work

Performance Tools

Intel's Thread Profiler [26] (for Windows) has two ways to analyze multithreaded

performance. First, it provides a measure of a routine's effective parallelism, a useful

metric that is similar to Quartz [12] and the strategy of Hansen et al. [68]. Second,

and more related to our work, it instruments synchronization objects with timers to

further classify a thread's execution by its effects on other threads. Thread Profiler

154

makes use of this information to (1) qualify a thread's execution and (2) to highlight

synchronization objects that accumulate blocking time. To classify a thread's execu

tion, Thread Profiler distinguishes between interaction effects such as cruise, impact

and blocking time. Cruise time is time that a thread does not delay the next thread

on the critical path while impact time is the opposite. If a thread on the critical

path waits for some external event, it accumulates blocking time. While this is useful

information, it requires substantial overhead to collect.

To highlight synchronization objects, Thread Profiler reports how much time was

spent waiting for a particular object and the utilization of the system during that wait

time [36]. It also shows the creation calling context of the synchronization object.

If locks are statically allocated and have long lifetimes, this information can be very

effective. However, additional information is needed if there is no direct line of sight

from idleness at the lock to the source of contention. For example, only certain

threads may be responsible for contention, locks may be dynamically created and

destroyed (e.g., linked data structures), or contention may be related to context. Our

approach is superior to that of Thread Profiler in two ways. First, we 'blame' lock

contention on the offending thread's context rather than aggregating wait time at a

synchronization object; this directs an analyst to the source of the problem. Second,

our approach is able to deliver this insight with very low monitoring overhead (< 5%).

Several current tools detect lock contention in Java. IBM's Lock Analyzer for

Java [73] computes a metric that reflects the number of delayed lock acquisitions as

a percentage of total lock acquisitions. Sun's JConsole [40] helps identify contention

by timing idle and by counting the number of delayed lock acquisitions. Like Intel's

Thread Profiler, these tools attribute these metrics to locks themselves rather than to

calling contexts. Also, while these tools might be effective for programs with statically

allocated and long-lived locks, they do not provide enough information to diagnose

155

problems in applications with a large number of dynamically created and destroyed

locks.

Dual-representation Locks

Bacon et al. use a dual representation for object locks in Java [19]. They use a 24-

bit field in a Java object's header to implement a 'thin lock' for objects that (a) are not

subject to contention, (b) do not have wait, notify, or notifyAII operations performed

upon them, and (c) are not locked to a nesting depth of more than 255. Objects

that do not meet these criteria have their locks implemented as out-of-band "fat"

locks. As with our scheme, once locks are converted to an out-of-band representation,

they remain in that state. Bacon et al. avoid the need for a compare-and-swap in

unlock because in their protocol, once a thread acquires a lock, no other thread may

modify the lock word. In our approach, a lock may be changed to its out-of-band

representation at any time. Without this, we would be unable to attribute contention

to any lock that was acquired before profiling was initiated.

Contention Managers for STM

In our work, we use auxiliary state associated with a lock to blame idleness re

sulting from contention for that lock on the lock holder and attribute the idleness

to the calling context of the lock holder's unlock operation. Some contention man

agers for Software Transactional Memory (STM) use auxiliary state associated with

transactional objects to notice and manage contention on the fly. For instance, the

Eruption contention manager by Scherer and Scott [125] uses data associated with

transactional objects not only to observe contention, but also to transfer priority

from a blocked transaction to the transaction it is blocked behind. At an abstract

level, both our profiler and the Eruption contention manager use state associated

156

with synchronization objects to communicate information about contention between

competing threads.

Hardware Support for Attributing Stalls Due to Contention

The Alpha 21264's ProfileMe hardware support for instruction-based sampling [47]

measures and quantifies the impact of contention for registers or execution units by

measuring stalls while waiting for resources. While ProfileMe identifies contention

and quantifies its impact, it attributes stall cycles to the victim of a stall rather

than the instruction on which it is waiting. This strategy of attributing contention

to waiting instructions is similar in effect to the strategy we describe in Section 6.2,

which directly attributes contention to waiting threads.

6.7 Discussion

Being able to quantify and attribute lock contention is important for understand

ing where a multithreaded program needs improvement.

We described three different approaches for quantifying lock contention that pro

gressed from (1) attributing a thread's idleness to itself in the context in which it is

idling (the victim); (2) then to the set of threads holding locks at the time (the sus

pects); and finally (3) to the thread holding the target lock (the perpetrator). Three

underlying principles drove the development of our final blame shifting strategy. First,

we strove to obtain a high degree of precision and detail in our measurements. Sec

ond, rather than sacrificing high overhead to obtain high precision, we developed

extremely low overhead profiling methods. When using reasonable sampling frequen

cies (hundreds to thousands of samples/second), our overhead is typically < 5%, even

for an application that uses 65M distinct locks and an average of 30K lock acquisi-

157

tions per second per thread. To prevent profiling itself from introducing serialization,

we used a minimal amount of shared state and accessed it very rapidly. By using a

sampling-based profiler that recovers call paths by unwinding a call stack, we were

able to attribute idleness to its full static and dynamic context while maintaining

extremely low overhead. We also used a form of sampling to amortize the cost of

heavyweight instrumentation. Third, our aim was to develop a general method that

enables tools to monitor unmodified programs. Doing this required solving subtle but

complex problems such as how to maintain a dual-representation lock.

For future work, we would like to increase the precision of our results by recording

the number of lock operations within its calling context. This would allow us to

distinguish between a few highly contested long waits and many moderately contested

short waits. A low-overhead way of doing this is by collecting return counts from

sampled frames [60].

Our profiler is based on the general principle of using shared state to communicate

information about performance losses due to resource contention between competi

tors. While in this chapter we apply this principle to attribute spin-waiting for a

lock back to the calling context of the lock holder, we can imagine using variants of

our strategy for other purposes. As one example, this same strategy could be used

for reporting lock contention in multithreaded languages that provide locks such as

Cilk. As another, in a lock-based software transactional memory system, transac

tions acquire locks associated with objects that they wish to modify transactionally.

When another transaction needs an object that is already locked, a contention man

ager is invoked to decide which transaction to abort. Rather than just using using

auxiliary object state to communicate information about contention and guide a con

tention manager's handling of competing transactional operations, our profiler could

augment a transactional object with information that would enable us to attribute

158

contention back to the transaction that holds an object lock and the calling context

of the transaction.

159

Chapter 7

Analysis & Presentation of Petascale Executions

7.1 Introduction

A wide range of scientific applications require petascale computing to address

problems at the frontier of computational science research. In 2009, the first petascale

systems became available. Two of the most powerful 'leadership computing platforms'

available for open science in the United States are Jaguar, a Cray XT4/XT5 at the

National Center for Computational Sciences and Intrepid, an IBM BlueGene/P at the

Argonne Leadership Computing Facility. Each system contains over 160,000 processor

cores. Tackling grand challenge problems requires using such platforms effectively,

which requires addressing two issues. First, an application must scale efficiently to

large processor counts. Second, an application must make efficient use of individual

processor nodes.

If an application contains significant scaling bottlenecks, it cannot productively

use the large number of cores in leadership computing platforms. Unfortunately, it is

extremely difficult for applications to effectively use computing resources at this scale

because seemingly benign inefficiencies emerge as major bottlenecks on a large number

of processors. Understanding why an application does not scale can be quite diffi

cult. To date, approaches to analyze scalability on petascale systems have required

laborious human effort [4-6,72,111,152], used instrumentation-based measurement

techniques that can significantly dilate execution time and distort the nature of per-

160

formance measurements [48,74,129,151], or provide only qualitative information [149].

Moreover, at best these approaches only identify scaling bottlenecks at the procedure

level because detailed instrumentation at a finer level (e.g., loops) is too costly. As

a result, there is a critical need for better tools that can accurately measure and

attribute performance information in ways that enable scientists to understand in

detail how impediments to scaling arise in parallel applications. Without detailed

information about where scaling losses occur, addressing their underlying causes can

be difficult.

If an application loses a factor of two in node performance, that halves the amount

of science that can be accomplished with a fixed allocation on a leadership computing

platform. Understanding node performance inefficiencies in applications at full scale

may require measuring performance at scale because it may be difficult to recreate

the same conditions for study on a smaller number of processors.

The H P C T O O L K I T project has developed low-overhead techniques for sampling-

based performance measurement and analysis that make it possible to precisely quan

tify and attribute both scalability losses and node performance losses. H P C T O O L K I T

can attribute both kinds of losses to individual lines of source code, in their full static

and dynamic contexts [41,141]. However, H P C T O O L K I T ' S analysis relies on the ac

curate collection of precise performance measurements. Petascale platforms present

two principal challenges to collecting such measurements.

Scale

The first challenge is that of scale. When analyzing data from many cores, re

liance on serial algorithms is likely to be problematic. Also, one must take care to

ensure that measurement approaches do not overly tax shared system resources, e.g.,

the network or file system. For instance, a measurement approach based on tracing,

161

where performance information is distinguished by time, faces significant challenges

at scale. Collecting traces at scale can burden file systems and interfere with ap

plication and system performance. Even with careful design, trace files can quickly

become terabytes in size [154]. Some of these challenges are addressed by on-line data

compression, but at the expense of coarser measurements [63]. Another approach for

reducing trace data volume uses sampling to monitor only certain processes within

the execution [64]. In our work, we avoid the problems of tracing by focusing on pro

filing. Since profiling collapses the time dimension of measurements, it more readily

scales to long-running large-scale executions.

There are different ways to profile. A profiler that uses instrumentation — whether

source code [129,151], compiler-inserted [66,129], static binary [48,74], or dynamic

binary [99] — can introduce significant measurement overhead in programs with small

procedures. For instance, a previous study [60] showed that simple instrumentation

for the Gprof [66] profiler introduced overhead with a geometric mean of 93% when

monitoring the SPEC CPU2000 [136] integer benchmarks. The TAU performance

tools [129] reduce instrumentation overhead at the expense of detail through the use

of throttling and selective instrumentation [128]. However, selective instrumenta

tion can be problematic because it introduces blind spots, often in critical places

such as small, frequently executed routines that lie on hot paths. The alternative to

instrumentation is asynchronous statistical sampling. With an appropriate choice of

sampling frequency, sampling-based tools can deliver precise measurements with little

overhead. The HPCTOOLKIT performance tools use event-based sampling in com

bination with call stack unwinding to collect detailed call path profiles; experiments

with the SPEC CPU2006 [134] benchmarks show that H P C T O O L K I T ' S measurement

overhead is only a few percent for reasonable sampling rates [141]. Sampling-based

call path profiling is scalable because a call path profile does not grow with the num-

162

ber of samples, but only with the number of unique call paths observed during the

samples.

Since HPCTOOLKIT collects per-thread call path profiles, it must scalably analyze

and present those measurements. To support performance analysis of large-scale

executions, we have created a parallel version of H P C T O O L K I T ' S analysis tool that

scalably generates a database that can be scalably presented by H P C T O O L K I T ' S

presentation tool.

Microkernels

The second challenge that petascale systems had posed for measurement was that

their compute node microkernels made asynchronous-sampling-based measurement

impossible, in part because of a concern about unnecessary features within stan

dard operating systems. Petrini et al. showed that for large systems, asynchronous

operating system activity, such as periodically monitoring I/O, could cause serious

performance problems [72,113]. As a result, minimizing interrupts to avoid operating

system 'jitter' was a critical concern when designing the Catamount microkernel for

the Cray XT3 [6]. As a side effect, it was not possible to use asynchronous sampling

as a measurement approach on Catamount until we interceded with its developers at

Sandia National Laboratory. In modern compute node kernels for the Cray XT and

Blue Gene/P, the intent of their developers was to provide kernel support for sam

pling; however, before we exercised this capability with HPCTOOLKIT, this support

was non-functional in both kernels. In 2008, we engaged kernel developers at IBM

and Cray to address the shortcomings of their implementations and in early 2009,

kernel versions with working support for sampling were released and installed on the

DOE's leadership computing platforms.

163

Our Approach

To support asynchronous-sampling-based call path profiling on emerging petascale

platforms, including x86-64-based systems running Linux (e.g., the Ranger system at

the University of Texas), x86-64-based Cray XT systems running Compute Node

Linux, and PowerPC-based Blue Gene/P systems running IBM's compute node ker

nel, we added several new capabilities to H P C T O O L K I T . 1 These capabilities include

(1) technology for monitoring processes, threads, and dynamic loading; (2) on-the-fly

binary analysis to support call path profiling of optimized and partially stripped ex-

ecutables; and (3) support for injecting a monitoring library into a statically linked

executable. While support for statically linked binaries is needed for the Cray XT and

Blue Gene/P platforms, support for dynamically loaded shared libraries is needed for

dynamically linked binaries, which are typical on clusters that run more full-featured

Linux kernels, e.g., the University of Texas's Ranger.

To support scalable analysis and presentation of call path measurements from

petascale executions, we developed hpcprof-mpi, a parallel version of HPC-

TOOLKIT'S hpcprof tool. When given all per-thread measurements for a large-scale

execution, hpcprof-mpi does two things. To scalably analyze and attribute mea

surements to source code, hpcprof-mpi creates a canonical call path profile that

summarizes a whole execution. Then, to facilitate scalable presentation, it gener

ates a database of thread-level data correlated with the canonical call path profile.

The database is designed so that H P C T O O L K I T ' S presentation tool hpcviewer can

scalably present the summary data.

To scalably analyze and present H P C T O O L K I T ' S petascale measurements using

hpcprof-mpi and hpcviewer, we present solutions to three key problems:

1The Acknowledgments section recognizes the contributions of collaborators.

164

• We formally define hpcviewer's three views: Calling Context, Callers and Flat.

Earlier informal definitions were not fully correct for recursive programs.

• We show how to scalably compute summary metrics for the Calling Context

view based on all thread-level profiles from a large-scale execution. Rather

than assuming that all thread-level inputs are simultaneously available and fit

within memory, we show how to create summary metrics by partitioning the

thread-level inputs into chunks that can be processed in parallel — even when a

summary metric relies on non-commutative and non-associative operators such

as the square root in the formula for standard deviation.

• To generate as small a database as possible, we define the Callers and Flat views

only in terms of a Calling Context view with summary metrics. This means

that hpcviewer can compute its Callers and Flat views using only the Calling

Context view — even when the Calling Context view only contains summary

metrics defined with non-commutative and non-associative operators.

This chapter shows that it is possible, for little measurement overhead, to identify

and quantify both scaling and node performance bottlenecks on petascale systems.

Using asynchronous-sampling-based call path profiling, we show that H P C T O O L K I T

provides extremely detailed information about the performance of several emerging

petascale applications on Cray XT and IBM BlueGene/P systems. Our tools pinpoint

performance bottlenecks to source code lines, in their full static and dynamic context.

Our analyses are rapid and their results are actionable. The effectiveness of our

approach and our tools provides an argument that asynchronous sampling support is

so beneficial that it should be included within microkernels for future extreme-scale

systems.

165

The rest of this chapter is organized as follows. Section 7.2 describes HPC-

TOOLKIT'S approach to measurement, analysis and presentation and shows how it

enables costs, including scalability bottlenecks, to be attributed to their full static

and dynamic contexts. In Section 7.3, we use HPCTOOLKIT to analyze the scaling

of several applications slated for use on petascale systems. Section 7.4 compares our

approach with related work and Section 7.5 discusses the chapter's main themes.

7.2 Scalable Measurement, Analysis and Presentation

This section explains H P C T O O L K I T ' S measurement, analysis and presentation

capabilities for scalably pinpointing and quantifying scalability bottlenecks.

7.2.1 Pinpointing Scaling Losses Using Call Path Profiling

To pinpoint scaling losses, we use call path profiling. H P C T O O L K I T ' S sampling-

based call path profiler, hpcrun, attributes execution costs of optimized executables

to the full calling context in which they occur. To attribute metrics back to source

code, HPCTOOLKIT combines a call path profile with program structure informa

tion reconstructed by a post-mortem analysis of an application's object code and

its debugging sections. Using this information, HPCTOOLKIT attributes metrics to

dynamic call paths fused with static context such as loops and inlined functions.

H P C T O O L K I T ' S measurement approach scales well to large executions because it is

distributed (thread-based) and because profiles grow slowly over time. In particular,

profiles grow only with the number of new calling contexts revealed on each sample

(cf. Chapter 3).

166

To pinpoint and quantify scalability bottlenecks in context, we compute a metric

that quantifies scaling loss by scaling and differencing call path profiles from a pair

of executions [41].

Consider two parallel executions of an application, one executed on p processors

and the second executed on q > p processors. In a weak scaling scenario, processors

in each execution compute on the same size data. If the application exhibits perfect

weak scaling, then the execution times should be identical on both q and p processors.

In fact, if every part of the application scales uniformly, then this equality should hold

in each scope of the application.

Using hpcrun, we collect call path profiles on each of p and q processors to measure

the cost associated with each calling context in each execution, hpcrun uses a data

structure called a calling context tree (CCT) to record a call path profile. Each node in

a CCT is identified by a code address. In a CCT, the path from any node to the root

represents a calling context. Each node has a weight w > 0 indicating the exclusive

cost attributed to the path from that node to the root. Given a pair of CCTs,

one collected on p processors and another collected on q processors, with perfect

weak scaling, the cost attributed to all pairs of corresponding CCT nodes2 should be

identical. Any additional cost for a CCT node on q processors when compared to

its counterpart in a CCT for an an execution on p processors represents excess work.

This process is shown pictorially in Figure 7.1. The fraction of excess work, i.e., the

amount of excess work in a calling context in a q process execution divided by the

total amount of work in a q process execution represents the scalability loss attributed

to that calling context. By scaling the costs attributed in a CCT before differencing

them to compute excess work, one can also use this strategy to pinpoint and quantify

2 A node i in one CCT corresponds to a node j in a different CCT if the sequence of nodes along
the path from i to root and the sequence of nodes from j to root are labeled with the same sequence
of code addresses.

167

Jp

excess work

Figure 7.1: A pictorial representation of differencing call path profiles to pinpoint
(weak) scaling bottlenecks.

strong scalability losses [41]. As long as the CCT's are expected to be similar, this

analysis strategy is independent of the programming model and bottleneck cause.

Above, we described applying our scalability analysis technique across nodes in

a cluster. This technique can also be used to pinpoint scaling bottlenecks within

multicore nodes. For instance, one might want to understand how performance scales

when using all of the cores in a node with multicore processors instead of just a

single core. This can be accomplished by measuring an execution on a single core,

measuring an execution on all cores, and then comparing the costs incurred by a

core in each of the executions using the strategy described above for analysis of weak

scaling. We have used this strategy to pinpoint and quantify scaling bottlenecks on

multicore nodes at the loop level [138]. Measurements of L2 cache misses showed that

contention in the memory hierarchy was the problem.

168

Our analysis is able to distinguish between different causes. For example, an

analysis using standard time-based sampling is sufficient to precisely distinguish MPI

communication bottlenecks from computational bottlenecks. With hardware perfor

mance counters, one can distinguish between different architectural bottlenecks such

as floating point pipeline stalls, memory bandwidth, or memory latency.

7.2.2 Analyzing & Presenting Large-Scale Executions

To apply the scalability analysis summarized in the prior section to a large-scale

execution, it is necessary to have a canonical calling context tree (CCT) that summa

rizes all of the individual thread-level call path profiles within an execution. Creating

a canonical CCT requires unioning each thread-level CCT in the execution so that

a context appears in the canonical CCT if and only if it appears in any thread-level

CCT. If an execution contains n? threads and there metrics per thread, then

each node in that execution's canonical CCT will have TIT X nm associated metric

values. Because for large-scale executions nT can be on the order of hundreds of

thousands (currently) to millions (near future), it is neither reasonable to process

each CCT sequentially nor feasible to store all thread-level metrics in memory. To

handle large-scale measurements, it is critical that analysis and presentation itself be

scalable.

To scalably analyze and present measurements from petascale executions, we de

veloped hpcprof-mpi, a parallel version of hpcprof. Like hpcprof, hpcprof-mpi

attributes measurements of executions to source code and creates a database that

can be presented by hpcviewer. Unlike hpcprof, it is parallel and scalable. Addi

tionally, it automatically creates metrics that summarize all per-thread CCT data,

hpcprof-mpi is based on Single Program Multiple Data (SPMD) parallelism, which

169

is implemented using MPI [98]. The high-level algorithm can be divided into three

key phases. Assume an hpcprof-mpi job executes with P processes.

First, the master process divides the thread-level call path profiles into P groups,

and assigns one group to each process. Each process is responsible for processing all

the thread-level profiles assigned to it.

Second, hpcprof-mpi creates a canonical CCT that represents all of the thread-

level CCTs' call path profiles. The canonical CCT contains a context — a path from

a leaf to the root — if and only if it appears in any thread-level CCT. Although the

canonical CCT represents a union of all the thread-level CCTs, in practice it does not

grow linearly with the number of threads. The thread-level CCTs of SPMD scientific

applications are often very similar. Even applications that model multiple physical

systems usually do not induce more than a handful of distinct CCT groups, and the

groups themselves have commonality between them. This means that with respect to

its structure, we expect the canonical CCT to be no more than a small constant factor

larger than the average thread-level CCT. To create the canonical CCT, hpcprof-mpi

performs a parallel (tree-based) reduction on the thread-level CCTs. (Metric data

is excluded from this reduction.) Then it uses a parallel (tree-based) broadcast to

return the canonical CCT to each process. After this step is completed, each MPI

process contains a copy of the canonical CCT. hpcprof-mpi aligns each thread-level

CCT with the canonical CCT so that the canonical CCT can serve as an index for

both the new summary metrics as well as all of the thread-level metrics.

Third, hpcprof-mpi creates summary metrics. To do this, hpcprof-mpi deter

mines a useful set of derived metrics such as minimum, maximum, sum, mean, and

standard deviation that summarize thread-level metrics. To compute a derived met

ric for a given canonical CCT node x, it is necessary to use the thread-level metric

values from the thread-level CCT nodes that correspond to x. Since hpcprof-mpi

170

cannot depend on storing all thread-level inputs to the derived metric computation

in memory simultaneously, it computes the derived metric incrementally, a process

that is discussed in the next section.

7.2.3 Scalably Computing Metrics

HPCTOOLKIT was originally designed to compute derived metrics given all

thread-level data simultaneously stored in memory. For example, consider the case

of computing the arithmetic mean for a particular node in an execution's canonical

CCT. If the execution contained nT threads, then the arithmetic mean m(x) for

a given node x would be •£-Y^t=im(x^)-> where m(x,t) represents node rr's metric

value for thread t. However, as we have seen, because the number of threads in an

execution can be very large, it not feasible to require that all thread-level metric

values for each node in the CCT reside in memory simultaneously. This implies that

the computation of m(x) must be broken into multiple steps.

To address this problem, we have developed an approach to scalably compute de

rived metrics. We call the approach incremental because it tolerates receiving inputs

one at a time rather than all at once. Linford et al. [87] observe that covariance can

be computed incrementally. Our contribution is to formalize the technique and show

how it can be applied to computing several kinds of metrics for scalably analyzing

and presenting call path profiles. Specifically, we partition the thread-level inputs into

chunks that can be as small as one. Any metric that can be expressed as a function

of polynomials over thread-level data can be computed incrementally. This approach

can also be used to compute the minimum and maximum, though it is insufficient to

compute order statistics in general.

To compute a given metric m incrementally for a CCT node x, we divide the

computation into four stages, as shown in Figure 7.2. The key stages are accumulate

171

Stage
initialize
accumulate
combine
finalize

Function Prototype

Oi()

©i(«P>«g)
%((ai,...,anA),n)

(—> accumulator,
accumulatorj x input i—• accumulator,
accumulator^ x accumulator, H-> accumulator,
accumulator-list x input-size i—• output

Figure 7.2: Function prototypes for an incrementally computed metric with accu
mulators di,... ,anA. Observe that there is one initialize, accumulate and combine
function for each accumulator.

and finalize. During the accumulation phase, each thread-level input is revealed

one by one and in no particular order. To compute m(x), we isolate portions of

the computation that use commutative and associative operators from portions that

do not; the latter operations are saved for the finalization stage. We associate two

things with each isolated portion of the computation: a piece of state called an

accumulator and an accumulate function. Recall that to compute the arithmetic mean

for a particular CCT node x, we use the formula •£-]C"=i ™>(x,i). To compute this

metric incrementally, we associate the sum Yl7tlirn(x^) with an accumulator m*(x)

and postpone the division by UT to the finalization stage. Thus, the accumulate

function is m*(x) + m(x,t) and the finalize function is m*{x)/nr- Then for each

input value, we update each accumulator using its respective accumulate function.

For the arithmetic mean example, the one accumulator simply maintains a running

sum of the input values. Consequently, when the arithmetic mean metric is given

a new input m(x,t), we update the accumulator using the following computation:

m*(x) <£= m*{x) + m(x,t).

During the finalization phase, a finalize function takes all of a metric's accumula

tors and the number of inputs and applies any additional operations that are required

to obtain the metric's final value. For arithmetic mean, the finalize function com

putes the final value m(x) for node x using the operation m*(x)/riT, where nT is

the number of thread-level inputs. Before application of the finalize function, we say

172

Algor i thm 7.1: incrementally-compute-metrics: Incrementally compute derived
metrics in parallel.

Input: Metric descriptor M, which includes the following (see Figure 7.2):
initialize functions Qi> • • •, O n > accumulate functions 0 X , . . . , 0 n ;
combine functions ® 1 } . . . , (J)n ; and a finalize function w<

Input: Input metric values X = (x\, X2, • • •, xn) (which may not fit in memory).
Input: P processes.
Result: The metric value when metric descriptor M is applied to X.

1 Divide X into P groups X i , . . . , Xp

2 In parallel at process p:
3 let Ap = (a i , . . . , anA) D e accumulators for metric M, where each ai = OiO
4 let X p = (x\,..., xUp) be the metric values assigned to p
5 foreach Xi in Xp do
6 foreach aj in Ap do

8 In parallel, reduce accumulators A 2 , . . . , Ap into A\. To reduce Ap and Aq into Ap:
9 foreach (aPti,aqti) in make-pairs(Ap, Ag) do

10 apj <= KVi\Clp,i, O-qj)

11 return # ((a i , . . . , a „ A) , n)

that the accumulator m*(x) is non-finalized; afterwards, it is finalized. It is easy to

see that, instead of simultaneously requiring storage for all input values, this method

only requires simultaneous storage of one input value and a set of accumulators.

To parallelize the computation of metric m at node x, we divide the per-thread

input into several chunks. Assume we have a metric that requires only one accumu

lator. Then, one accumulator is associated with each chunk. We task each process

in a parallel job with accumulating all the input values within a particular chunk.

Then we use the metric's combine function (Figure 7.2) to reduce the per-chunk ac

cumulators back into one accumulator. The combine function takes two non-finalized

accumulator values m*(x) and m*(x) and combines them into another non-finalized

value. The combine function for arithmetic mean is simply m*(x) + m*(x).

Algorithm 7.1 shows a parallel algorithm for computing a derived metric incre

mentally. The algorithm takes as input a metric descriptor that includes the functions

173

Sum

0 0 = 0
Q(a,x) = a + x
0 (a p , aq) — ap + aq

%({a),n) = a

Mean

O0 =o
0 (a , x) = a + x
0 (a p , aq) = ap + aq

%((a),n) = a/n

Minimum

oo
0 (a , x) = min(a, x)
(&(ap,aq) = min(ap, aq)
%({a),n) = a

Maximum

O O
0 (a , x) = max(a, x)
(B(ap,aq) = max(ap,aq)
%((a),n) = a

Figure 7.3: Computing sum, mean, minimum and maximum incrementally, using
one accumulator a; see function prototypes in Figure 7.2.

prototyped in Figure 7.2 and a vector of values to which the metric descriptor should

be applied. The algorithm separates the computation into four phases. Assume a

parallel job executes with P processes.

First, line 1 divides the input metric values into P groups, one group for each

process, to facilitate data parallelism. Second, the algorithm initializes a process-local

set of accumulators using the metric's initialize functions (line 3) and then uses the

metric's accumulate functions to form partially accumulated values for that process-

local set of metric values (line 5). Although this algorithm operates over one vector

X of inputs, it can easily be extended to operate over a set of vectors, such as a CCT

that has one input vector per node. In this latter case, X would become an input

matrix where row i is a vector of inputs for CCT node i. Third, the algorithm uses

a parallel reduction to reduce all the local accumulators into one set (line 8). This

phase relies on the metric's combine functions. Finally, line 11 applies the metric's

finalize function to obtain the metric's final value.

Figures 7.3 and 7.4 show how to compute sum, mean, minimum, maximum and

standard deviation incrementally. Each algorithm gives the number of accumulators

174

Standard Deviation

Oi()
Oi(oi,x)
02(a2,x)
(Bi(aP>aq)
• ((01 ,02) ,

= 0
= ai + x2

= a2 + 2
= ap + ag

n) = y/{ai/n) - (a2/n)2

a\ : sum of squares
a2 : sum

Figure 7.4: Computing standard deviation incrementally, using two accumulators
ai and a2; see function prototypes in Figure 7.2.

needed and the definitions for the corresponding initialize O , accumulate Q , combine

0 and finalize • functions.

While the algorithms for sum, mean, minimum, and maximum are straightfor

ward (Figure 7.3), the algorithm for standard deviation (Figure 7.4) merits further

explanation. The typical definition of the standard deviation for values xi,...,xn is

\/n Y^i=\{xi ~ A*)2- This formula depends on previously computing the mean fj, of

the Xj. Such a dependency is undesirable because it implies that the computation

for standard deviation requires at least two stages. With algebraic manipulation,

we can turn this formula into one that does not depend on a previously computed

value. During the derivation, we use the fact that because // = - Y^!i=ixii w e have

XX=i x* = nfJ'- Beginning with the formula for standard deviation, we have:

N
1 n

-J>;-^)2 =
i = l

1 "
- J^(xf - 2xiyu + M2)

\ n * = i

\

I (n n \

\ t = i i = i /

\

1 (n \ n

— I 2_]x1 ~ 2n£i2 + n^2 I (subst. Y J x i — nlJ)
n \ i = i) i=\

n\U J

175

With this reaxranged formula, it is evident that standard deviation can be computed

using two accumulators, as shown in Figure 7.4. The first accumulator tracks the sum

of xf. The second, behaving like the accumulator for arithmetic mean in Figure 7.3,

tracks the sum of Xi on behalf of //. The finalize function uses both accumulators to

compute the final value for standard deviation.

The example of standard deviation illustrates the more general form of incremen

tally computed metrics. To compute standard deviation incrementally, we effectively

transform the 'non-incremental' formula into a function F that has the form:

F(Ai(xi,... xn),..., AnA(xi,... xn), n) (7.1)

where F corresponds to a finalize function, each Aj is analogous to an accumulate

function (cf. Figure 7.2), and the the per-thread input values. Although

the value of n changes for each set of input values, the number of accumulators UA is

fixed for a given F. Each Aj has the form:

Ai{xx,...x^) = X\g{xi) (7.2)

where fj is a commutative and associative operator over all g(xi). Often, Aj is a

polynomial where fj =]T) and each g(xi) forms a term in the polynomial; frequent

examples are g(xi) = Xj or g(xi) ~ xf. However, Aj is not necessarily polynomial; for

example, [] can be min or max.

After transforming a 'non-incremental' formula to have the forms of Equations 7.1

and 7.2, it is straightforward to associate an accumulator with each Aj and to compute

176

F in an incremental fashion. To see how Aj is analogous with an accumulate function,

consider the case where Aj receives only one input value Xi at a time. Aj takes this

input value Xj, applies the function g to that input, and then uses fj to fold the result

into the accumulator. The requirement that [] be commutative and associative is due

to the fact that inputs arrive in no particular order and also permits the accumulation

step to be parallelized. Observe that because it is not generally possible to save all

inputs (riA <C n), it is not in general possible to compute order statistics using the

incremental method.

7.2.4 Scalably Presenting Call Path Profiles

To enable insightful presentation of performance data, we wish to present contex

tual measurements in multiple views: the Calling Context, Callers and Flat views.

A Calling Context view attributes performance metrics to their full calling context.

If the Calling Context view looks down a call chain, the Callers view looks up a call

chain to apportion metrics of a callee on behalf of its calling contexts. A Flat view

organizes performance data according to an application's static structure so that all

costs incurred in any calling context by a procedure are aggregated together. Each

view is important in analysis. However, the Calling Context view is foundational in

the sense that it can be used to define both the Callers and Flat views, but not vice

versa.

In this section, we develop formal definitions for metric values in hpcviewer's

Calling Context, Callers and Flat views. We designed these definitions for two pur

poses. First, with appropriate definitions, it is possible to compute the Callers and

Flat views not just from thread-level CCT metrics but also from derived CCT met

rics. The significance of this is that to create all three views with derived metrics,

hpcprof -mpi only needs to generate one view — a Calling Context view with derived

177

metrics. Second, our definitions correct deficiencies of the informal definitions used

in prior versions of HPCTOOLKIT. For example, our definitions correctly account

for recursion when computing metrics for the Callers and Flat view.

Overview of the Calling Context view

The Calling Context view is represented by the canonical calling context tree

(CCT) that hpcprof-mpi generates. An important feature of the canonical CCT is

that it is a fusion of dynamic calling contexts and static program structure. Each

node in the CCT can be classified as representing either a dynamic or static scope. A

dynamic node is either a call site (CallSite) or a statement (Stmt), where a statement

is a sample point. A static node is either a procedure frame (ProcFrame), loop (Loop),

or alien code (Alien), where the latter usually represents inlined procedures. There

are three important invariants that govern the structure of this CCT. First, every

CallSite node has one or more ProcFrame nodes as children. Conversely, except for

the root, every ProcFrame has a CallSite node for a parent. The second invariant is

that every CallSite, Stmt, Loop, and Alien node is a descendant of a ProcFrame node.

Third, a Stmt node is always a leaf.

We define two types of Calling Context metrics: inclusive and exclusive. Inclusive

metrics for a particular node reflect costs for the entire subtree rooted at that node.

This suggests that exclusive metrics for a node x do not include costs for the entire

subtree. While this is true, it does not precisely distinguish between two reasonable

definitions. The two definitions are distinguished by whether exclusive metric val

ues for a node x should be computed with respect to dynamic call chains or static

hierarchy:

1. Dynamic: sum every Stmt descendant of x that is not across a CallSite.

178

Procedure structure
ProcFrame

Loopx

Loopy
Stmt
Loop2

Stmt
Stmt
CallSite

Exclusive work
Dynamic

11
11
11
1

10
5
5
0

Static
0
0
1
1

10
5
5
0

Hybrid
11
0
1
1

10
5
5
0

Inclusive
work

111
111
111

1
110

5
5

100

Figure 7.5: Comparing different definitions for exclusive Calling Context metrics.

2. Static: sum every Stmt child of x.

These definitions are illustrated in Figure 7.5, which shows exclusive and inclusive

metric values for a procedure frame with unremarkable structure. The inclusive metric

values are intuitive. For example, the metric value at Loop2 is 110. By including the

cost of all Loop2's children (5 + 5 + 100), the value of 110 reflects the fact that the

loop contains a relatively costly call site (100). The exclusive metric values require

more discussion.

As the figure shows, the Exclusive/Dynamic definition is quite natural when ap

plied to a procedure frame. The frame's three Stmt nodes are responsible for 11

units of work (1 + 5 + 5). The metric value at the ProcFrame (11) captures the

fact that computation within the frame itself, excluding callees, is responsible for 11

units of work. In contrast, the Exclusive/Static definition unhelpfully reports that

the ProcFrame is directly responsible for 0 units of work. Unfortunately, although the

Exclusive/Dynamic definition is preferable for the ProcFrame, when applied to the

loop nest rooted at Loopx, this definition is less than satisfactory. To see this, observe

that the Exclusive/Static column shows that there is no direct work in Loopx, only 1

unit of direct work in Loop^, and 10 units of direct work in Loop2. Yet, unhelpfully,

the Exclusive/Dynamic metric value for Loop^ (11) is equal to that of Loopy (11),

179

and nearly equal to that of Loopz (10). To preserve the strengths of each of these

definitions, we adopt a hybrid definition, shown in the Exclusive/Hybrid column,

that applies the Dynamic definition to ProcFrame nodes and the Static definition to

all other structure in a procedure frame. This hybrid definition makes sense when

we consider that although we often think of procedure frames in the context of call

chains, it is natural to think of loops in the context of a procedure.

Per-thread Calling Context view metrics

Now we are ready to precisely define exclusive and inclusive metrics for the Calling

Context view. Initially, a thread-level CCT contains metric values only at Stmt

nodes, or sample points (leaves). We define these values to be exclusive metrics for

Stmt nodes. Specifically, for a Stmt node x at thread t, the exclusive value m,E(x,t)

for metric m is defined to be the number of samples at x multiplied by the sample

period. For any non-Stmt node x, we initialize mE(x,t) = 0. We then compute

exclusive values for each node x using the formula:

mE(x,t) = <

2_] rriE(xs,t) x: ProcFrame
sedesc-Stmt(a;)

Y j mE(xs,t) x: other static (7-3)
sechi ld-Stmt(x)

rriE(x,t) x: dynamic

The three cases in the formula preserve the Exclusive/Hybrid definition discussed

above. When a: is a dynamic node, case three simply returns the metric's initial

value. When x is a static node that is not a ProcFrame, the second case uses the

Static definition. Here, the function child-Stmt(x) returns every Stmt that is a child

of x. When x is a ProcFrame, the first case applies the Dynamic definition. The

180

function desc-Stmt(rr) returns every Stmt s that is a descendant of x and for which

the path between x and s contains no CallSite.

Using the per-thread exclusive metric values from Equation 7.3, we define per-

thread inclusive values for metric m at node x and thread t as:

I nc{x)

2_\ mj(xc,t) + rriE(x,t) x: interior
e=l (7.4)

mE{x,t) x: leaf

This simple inductive definition computes an interior node's inclusive metric value

from its children's inclusive values and its own exclusive value. The function nc(x)

refers to the number of children for node x.

Before turning to derived Calling Context view metrics, we note that that the

definition of exclusive metrics above treats Alien nodes just like Loop nodes. Because

Alien nodes usually represent inlined procedures, an alternative definition might be:

1. ProcFrame and Alien nodes: sum every Stmt descendant of x that is not across

a CallSite or Alien node.

2. Other structural hierarchy: sum every Stmt child of x.

This is a defensible definition, but for reasons that will become apparent below, it

should only be adopted only if Alien nodes are instantiated within the Flat view.

Currently, hpcstruct does not recover Alien scopes with enough precision to do this

well [139].

Derived Calling Context view metrics

When all thread-level inputs are available in memory simultaneously, it is possible

to compute a derived Calling Context metric m for a node x by applying m's formula

181

across all inputs. We use m(x) to represent metric m's value for node x over all nT

threads. Given m's formula J , to compute derived exclusive ('E') and inclusive (T)

values for metric m at node x, we simply evaluate the following formulas, which are

based on Equations 7.3 and 7.4, respectively:

mE(x) = fZimE(x, t) (7.5)

t = 1m/(x,t) (7.6)

Although computing derived metrics in this way is easy, it is not scalable.

To scalably compute Equations 7.5 and 7.6 we use the method of Algorithm 7.1.

This algorithm incrementally computes metrics in parallel. To apply the algorithm

to a CCT, we extend it to take not just a vector of inputs, but a vector for each

CCT node. By using a dense CCT node numbering, a CCT's metric values can

be represented as a dense matrix, and thus can be easily partitioned for parallel

computation. Since this parallelism is straightforward, to simplify the remaining

discussion, we will only focus on computing derived metrics incrementally.

Recall that Algorithm 7.1 divides the computation of a derived metric into four

stages, where the two critical stages are accumulation and finalization. Let m be a

derived metric m with one accumulator m*. To compute the value of m for CCT node

x, the algorithm accumulates each new thread-level input m(x, t) into the accumulator

using the accumulate function Q . Then it applies the finalize function 0 to return

m's final value m{x). Recall that before application of the finalize function, we say

the accumulator m*(x) is non-finalized; afterwards, it is finalized.

Thus, to incrementally compute exclusive and inclusive derived Calling Context

metric values for m at a CCT node x, we must define corresponding accumulate and

finalize functions. In doing this, we will depart from the notation in Figure 7.2. Al-

182

though the prototypes in Figure 7.2 show precisely how the accumulate and finalize

functions interact with Algorithm 7.1, they tend to emphasize the means of perform

ing the computation rather than it results. To focus on the results of the accumulate

and finalize functions, we use definitions that resemble Equations 7.5 and 7.6 rather

than the prototypes of the figure. Our formulas are as follows. First, we apply the

accumulate function Q t o aU thread-level inputs for a node x (see Equations 7.3

and 7.4) to obtain a non-finalized accumulator for that node:

m*E(X) = O ma(X> *) (7-7)
t = l

m*(x) = Qmi(x,t) (7.8)
t=i

Recall that the subscripts 'E' and T signify 'exclusive' and 'inclusive,' respectively.

Then, to obtain the final values for each node, we apply the finalize function 0 :

mE(x) = %m*E{x) (7.9)

mj(x) = %m*I{x) (7.10)

These formulas are trivially extended to apply to metrics that use more than one

accumulator.

The problem of accumulating or combining from children to a parent

For thread-level metrics, it is possible to compute inclusive Calling Context metrics

from exclusive Calling Context metrics and vice versa. For example, Equation 7.4 was

defined in terms of Equation 7.3 because for every Stmt x and thread t, rriE(x,t) =

mi(x,t). Combining this equality with Equations 7.5 and 7.6 implies that for every

Stmt x, it is also the case that ra^x) = mi(x). Does this mean that for derived

183

CCT

ProcFrame x

Stmt a

Stmt b

Stmt c

Inclusive standard deviation of ProcFrame x based on:
Per-thread values
at node (correct)

<?x = \J^; E i T (O 0 > t) + m(b, t) + m(c, t)) - /xx)

^a = y ^ E l T (jn(a, *) - Ma)

^ = ^ £?T MM) - w>)
*c = y/± E l T M e t) - Mc)

Derived values
from children

[e.g.: aa = 1.0]

[e.g.: a6 = 2.0]

[e.g.: ac = 1.0]

Figure 7.6: Example showing that it is, in general, impossible to compute derived
metric values given finalized derived metric values.

metrics it is also possible to compute inclusive Calling Context metric values from

their exclusive counterparts? If so, hpeprof-mpi could generate its canonical CCT

with only one version of each metric's values, rather than two, resulting in a smaller

database.

Given finalized derived metrics, it is impossible in general to compute inclusive

metrics from exclusive metrics. To see this, consider computing the inclusive value

for a metric like standard deviation for an interior node x, where x's children are all

leaves, as in Figure 7.6. The column in the figure labelled 'Per-thread values at node'

shows values for standard deviation (correctly) computed according to Equations 7.5

and 7.6. In contrast, the column labelled 'Derived values from children' attempts

to compute the value of x from its children. Since inclusive and exclusive metric

values are identical at leaves, this column first computes values for x's children and

then sums those values to form the metric value ax at node x (cf. Equation 7.4).

Unfortunately, simply computing ax from the individual standard deviation values of

its children is invalid and does not yield the correct answer in general. For example,

if aa, o"6, ac have the values 1.0, 2.0, and 1.0, respectively, we cannot conclude that

ax = 1.0 + 2.0 + 1.0.

184

Clearly, part of the problem in this example was using finalized metric values that

were the result of non-commutative and non-associative operators such as square

root. However, what if we are given non-finalized derived exclusive metrics? Is it

then possible to compute non-finalized derived inclusive metrics? In other words, is

it possible to define Equation 7.8 in terms of Equation 7.7 rather than Equation 7.4? If

possible, it would mean that hpcprof-mpi need only generate non-finalized exclusive

metrics rather than both inclusive and exclusive versions.

Unfortunately, it is impossible in general to compute non-finalized derived inclu

sive metrics from their exclusive counterparts and vice versa. To see this, we attempt

to define Equation 7.8 in terms of Equation 7.7:

m*j(x) = ^ e=i

m*E{x)

(nc(x)

2_] m*j(xc) + m*E(x) x: interior
(7.11)

x: leaf

(Recall that the function nc{x) refers to the number of children for node x.) We now

show that Equations 7.8 and 7.11 are not equivalent in general:

m*j(x) = (J}mi(x,t)

nT /nc(x)

O (zL> mi(xc,t) + mE(x,t) I x: interior

= <
t=\ \ c=l

TIT

x: leaf

- <

QmE(x,t)
t=i

(2) 2_j m/(a:c.^) +m*E(x) x: interior
4=1 c = l

m*E{x) x: leaf

(Eq. 7.8)

(subst. Eq. 7.4)

(subst. Eq. 7.7)

185

= <

(nc{x) nT

2_\ Cym^(: rc'^) + m*E(x) x: interior
e=l t= l

(iffO = E!»)
m*E(x) x: leaf

= <

rnc{x)

2_] rn*j(xc) + m*E(x) x: interior
c=i (subst. Eq. 7.8)

m*E(x) x: leaf

This derivation shows that Equation 7.8 is equivalent to Equation 7.11 if and only if

the accumulate function 0 is Y2- As Figure 7.3 shows, this condition does not hold

for the metrics minimum and maximum.

One might wonder if the result would change with a different definition of Equa

tion 7.11. The answer is no. To see this, observe that any attempt to compute

non-finalized inclusive metrics for an interior node from their exclusive counterparts

must include some form of accumulation (with 0) or combination (with 0) from

that node's children. This is because inclusive and exclusive metric values are only

identical at a Stmt node (leaf). Thus, any alternative definition that includes accu

mulation or combination from children to parents will meet the same problem.

The fact that it is in general invalid to accumulate or combine non-finalized derived

metric values from children to parents will restrict the forms that the algorithms for

computing the Callers and Flat views can take. This is particularly true for computing

the Flat view, which is discussed next.

Flat view metrics

hpcviewer's Flat view organizes performance data according to an application's

static structure. This means that all costs incurred by a procedure in any calling

context are aggregated together. As with the Calling Context view, it is trivial to

186

Algor i thm 7.2: make-flat-view: Given a Calling Context view with non-finalized
derived metric values, make a Flat view.

Input: Metric descriptor M, which includes the following (see Figures 7.2 and 7.7):
combine functions (D j , . . . , © „ . and a finalize function W-

Input: cct, a Calling Context view with non-finalized exclusive ('E') and inclusive
(T) metric values for M.

Result: A Flat view flat with finalized exclusive and inclusive metric values for M.

1 let flat be an empty Flat view
2 foreach Stmt or CallSite x in cct do
3 let 7rcct = ((callern, callsitera) ~» (calleri,callsitei) —> x) be the path from cctfs

root to x
4 let Kcct = (ProcFrame, (Loop|Alien)*,x) be the static context of x within cct
5 let Kfiat be the corresponding context in flat
6 foreach {ycct, yflat) in make-pairs(Kcci, Kflat) do
7 mj-dfcat) <S=©(m^(yf lat),m^(ycct)) / / for each ® i

8 if is-outermost-instance(7rcct, /ccct's ProcFrame) orycct is a Stmt then
9 rn;(yflat) <^0(m}(?/flat),m|(ycct)) / / for each © ;

10 Apply finalize function & to each node in flat.

compute derived metrics for the Flat view by first creating all thread-level (Flat

view) metrics (cf. Equations 7.5 and 7.6). However, creating all thread-level metrics

for petascale executions is both time- and space-consuming. This section shows how

to compute a Flat view with derived metrics using a Calling Context view with non-

finalized derived metrics.

Algorithm 7.2 shows the process for building a Flat view. Assume we have a

metric descriptor that defines an incrementally computed metric (see Figure 7.2).

Given this metric descriptor and a Calling Context view with exclusive and inclusive

metric values, the algorithm shows how to compute a Flat view with both exclusive

and inclusive metric values.

This algorithm does two things: build the structure of the Flat view and attribute

metrics to it. Lines 4-5 build the structure. Line 4 obtains the static structure of the

Stmt or CallSite x within the Calling Context view. This static structure includes all

of the enclosing scopes between x and the immediately enclosing ProcFrame. Line 5

187

creates or finds this corresponding structure in the Flat view. In this way, the Flat

view aggregates metrics according to the static structure of ProcFrame nodes, regard

less of its calling context.

The second part of the algorithm, which is located in the loop beginning at line 6,

computes metric values. The loop considers each portion of x's static context Kcct

and attributes metric values from the instance in the Calling Context view to the

corresponding instance in the Flat view. (The function make-pairs takes Kcct and its

counterpart in the Flat view and makes pairs of corresponding nodes.) Recall that the

metric values in the Calling Context view are non-finalized. Since attributing metric

values from the Calling Context to the Flat view requires aggregating multiple non-

finalized values, lines 7 and 9 use the metric's combine operator 0 . To account for

metric descriptors that have multiple combine operators, the left-margin comments

on these lines indicate that the respective statements should be considered vector

operations. There are two important subtleties related to combining metric values.

We discuss each in turn.

The first subtlety is the use of two tests on line 8 to conditionally attribute

inclusive metrics. These tests are designed to correctly attribute metrics in the

presence of recursion. There are two cases to consider, depending on the result of

is-outermost-instance. For the first case, let us refer to the context «cct's ProcFrame

as T. We know that the path 7rcct from the Calling Context view's root to x contains

at least one instance of T\ for recursive programs there may be more than one in

stance. Let T' be the first instance of T encountered along this path. The function

is-outermost-instance returns true if and only if T — J7'. That is, it returns true if and

only if .F's inclusive metric values have not been folded into an ancestor instance. If

T is an outermost instance, then every portion of the context (including every Stmt)

is combined into the corresponding context in the Flat view by line 9. If, on the other

188

hand, T is not an outermost instance, then only its Stmt nodes (leaves) can contain

metric values that are not already reflected in the inclusive costs of the Flat view's

structure Avfjat. Consequently, the test ensures any such Stmt in the Calling Context

view is added to its corresponding Stmt in the Flat view.

The second subtlety is that using a metric's combine function affects the value of

the number of inputs n that must be passed to that metric's finalize function in the

Flat view. For example, assume the Calling Context view contains two instances of a

ProcFrame p. In the Calling Context view, summary metric values for each instance

of p are computed over all UT per-thread input values. In contrast, the Flat view's

metrics reflect values over all instances of p. This means that the Flat view's metric

values for p have 2 x TIT input values. In general, if a node x appears k times in

the Calling Context view, its combine operator will be applied k — 1 times to create

non-finalized values for x in the Flat view; and the number of inputs for x's Flat view

metrics will be k x ny. Thus, when making the Flat view, it is necessary to track

the appropriate number of inputs for each node that should be passed to the finalize

function. As shown in Figure 7.7, this is easy to do by extending the definitions of

metrics that depend on the number of inputs to use an additional accumulator. This

additional accumulator tracks the number of Calling Context view instances that the

algorithm combines to form a given node in the Flat view.

It is worth observing that there is an alternative way to compute Flat view metrics

for non-derived (thread-level) metric values. This alternative method first accumu

lates values at Stmt and CallSite nodes within the Flat view and then, within the

Flat view, uses combine functions to aggregate those (leaf) values to the interior

static structure of ProcFrame nodes. Unfortunately, this method is incorrect for de

rived metrics. It is an instance of the previously discussed problem of combining

non-finalized derived metric values from children to parents.

189

Function Prototypes
initialize
combine
finalize

0*0
©i(a,occt)
((a i , . . . , a n /)) ,n)

H-> accumulator,
accumulator, x CCT-accumulatorj H-» accumulator,
accumulator-list x CCT-input-size i—> output

Mean
OiO = 0
O2O = 1
0 1 (a, fleet) = a + acct

02(a,a c c t) = a + l
#((ai ,a 2) ,n) = ai/a2n

ai : sum
a2 : scope's instances within CCT

Standard Deviation

Oi,2()
OsO
0i(a ,aCct)
02(a,acct)
0 3 (a, acct)
0 ((a i , a 2 , a 3) ,

= 0
= 1
= a + acct
= a + acct

= a + 1
n) = yj(ai/a3n) - (a2/azn)2

a\ : sum of squares
a2 : sum
03 : scope's instances within CCT

Figure 7.7: Computing metrics incrementally for a Flat or Callers view; cf. Fig
ures 7.2, 7.3, and 7.4. Each metric uses accumulators ai,...,anA. The finalize
function assumes n is the number of inputs for the corresponding Calling Context
view.

Finally, it is sometimes useful to include load module and file information in the

Flat view structure. To compute metric values for these scopes while avoiding the

problem of combining non-finalized metric values from children to parents, it would

be necessary to include metric values for load modules and files in the Calling Context

view or use hpeprof -mpi to precompute metrics for those two layers of the Flat view.

Callers view metrics

If the Calling Context view looks down a call chain, the Callers view looks up a call

chain to apportion metrics of a callee (in its context) on behalf of its caller. As with

the Calling Context and Flat views, it is trivial to compute derived metrics for the

Callers view by first creating all thread-level (Callers view) metrics (cf. Equations 7.5

and 7.6). However, if this was undesirable for the Flat view, it is even more undesirable

190

Algori thm 7.3: make-callers-view: Given a Calling Context view with non-
finalized derived metric values, make a Callers view.

Input: Metric descriptor M, which includes the following (see Figures 7.2 and 7.7):
combine functions 0 - ^ . . . , 0 n . and a finalize function W-

Input: cct, a Calling Context view with non-finalized exclusive ('E') and inclusive
(T) derived metric values for M.

Result: A Callers view with finalized exclusive and inclusive metric values for M.

1 let callers be an empty Callers view
2 foreach ProcFrame x in cct do
3 let 7rcct = ((callern, callsiten) ~-+ (calleri, callsitei) —> x) be the path from ccts

root to x. (x ~+ y = x —•...—• y, where it may be that x = y.)
4 let 7rcaners be the corresponding path in callers. 7rcaners is formed by reversing

7rcct and projecting out all non-ProcFrame nodes.
5 foreach (ycct,ycallers) in make-pairs(7rcc4, ircauers) do

/ / Given path ycct —> x' ~~» x, a t t r i b u t e x' ~~» x t o ycct
6 rn^(ycaners) 4= © (m^ca l l e r s) ,™^)) / / for each 0 .
7 if is-outermost-instance(7rCCi, ycct —>• x' ~» x) t hen
8 m}(ycaiiers) ^=0(m|(y c a i i e r s) ,m}(x)) / / for each 0 i

9 Apply finalize function 0 to each node in callers.

for the Callers view. Creating all Callers-view thread-level metrics is especially time-

and space-consuming because the Callers view is quadratic in terms of the Calling

Context view. That is, if the Calling Context view has n nodes, then the Callers-

view has 0(n2) nodes. To avoid such behavior, this section shows how to compute a

Callers view with derived metrics using a Calling Context view with only non-finalized

derived metrics.

Algorithm 7.3 describes the process for building a Callers view. Assume we have

a metric descriptor that defines an incrementally computed metric (see Figure 7.2).

Given this metric descriptor and a Calling Context view with exclusive and inclusive

metric values, the algorithm shows how to compute a Callers view with both exclusive

and inclusive metric values.

Like Algorithm 7.2, this algorithm does two things: build the structure of the

Callers view and attribute metrics to it. Lines 3-4 build the structure. As a notational

191

note, the algorithm uses an arrow (—>) to denote a call and a squiggly arrow (~>) to

denote a (possibly-empty) path of calls, i.e., x -~> y = x —>...-+ y, where it may

be that x = y. To build the view's structure, line 3 obtains the full path from the

Calling Context view's root to the ProcFrame x. Then, line 4 creates or finds the

corresponding structure in the Callers view. This corresponding structure is rooted

at x. Observe that the Callers view is a forest, with a root for each ProcFrame. Using

this structure, for every ProcFrame x in the Calling Context view, the Callers view

shows all the paths (contexts) that x was called from and attributes x's metrics, in

context, to its various callers.

The second and critical part of the algorithm is to compute metric values for the

Callers view. This occurs in the loop beginning at line 5. Recall that line 3 defines

7rcct, the path from the Calling Context view's root to the ProcFrame x. The loop at

line 5 effectively considers all calling contexts for x within 7rcct — i.e., all paths in 7rcct

for which a; is a sink — and attributes the metric values of x to the corresponding

caller in the Callers view. To do this, the function make-pairs takes the path 7rcct and

its counterpart in the Callers view and makes pairs of corresponding nodes, where ycct

acts as a cursor in the path 7rcct. Prom ycct and x, we form the path ycct —> x' ~-> x,

where it may be that ycct = x. Then, the algorithm attributes the metric values of x

in context (x' ~* x) to that context's caller, ycct (lines 6 and 8). There are two things

that require further discussion: the use of is-outermost-instance and the process of

attributing metric values. We discuss them in turn.

As with Algorithm 7.2, it is necessary to use is-outermost-instance (line 7) to

correctly attribute inclusive metrics in the presence of recursion. However, whereas in

that algorithm it was only necessary to consider whether a single ProcFrame appeared

in the path 7rcct, in this algorithm it is necessary for is-outermost-instance to determine

whether a path (context) appears in the path 7rcct. This is because whereas the Flat

192

view attributes the cost of a particular procedure regardless of calling context, the

Callers view attributes the cost of a particular procedure in its calling context (x' ~>

x) to the context's caller (ycct)- Consequently, this version of is-outermost-instance

returns true if and only if there is no instance of ycct —• x' -w x that is a (strict)

ancestor of ycct in the path 7rcct. If so, inclusive metric values are updated.

The process of attributing the metric values of x to ycct (lines 6 and 8) can be

divided into two cases. The first case is the special case of ycct = x' = x. In this case,

a: is a root in the Callers view and its metrics are computed without context, as in the

Flat view. In the second case, ycct ^ x. Here, it is necessary to attribute metrics for

x's calling context to that context's caller, ycct. The calling context for x is x' --~> x,

where x' may or may not equal x. The metric values that must be attributed to ycct

are precisely those at x, since these values are with respect to the context x ' ^ i a s it

is called by ycct. Because the outer loop (line 2) considers all additional instances of

ProcFrame x with the Calling Context view, the algorithm correctly apportions the

metrics of the procedure x, in its various calling contexts, on behalf of that context's

caller.

The second point of further discussion relates to metric values. Recall that the

metric values in the Calling Context view are non-finalized. Since attributing metric

values from the Calling Context to the Callers view requires aggregating multiple

non-finalized values, lines 6 and 8 of the algorithm use the metric's combine operator

0 . To account for metric descriptors that have multiple combine operators, the

left-margin comments on these lines indicate that the respective statements should

be considered vector operations. As with the Flat view, using a metric's combine

function affects the value of the number of inputs n that must be passed to that

metric's finalize function. This means, e.g., that if the Calling Context view contains

two instances of a ProcFrame p and has nT input metric values, the Caller's view

193

root for p has 2 x HT input values. Thus, it is necessary to use the revised metric

definitions of Figure 7.7 to track the number of Calling Context view instances that

this algorithm combines into a given node in the Callers view.

The Callers view potentially contains a full copy of the canonical CCT for every

ProcFrame in the Calling Context view. That is, if the CCT has n nodes, then each

root x in the Callers view potentially has 0(n) nodes, because ProcFrame x could

appear in every calling context within the CCT. Because of this, the Callers view

has the undesirable property that it requires space that is quadratic in terms of the

input CCT. To prevent this, it is possible to trade space for time and build the view

incrementally on demand. Two things are necessary to do this. First, we modify

Algorithm 7.3 to initially compute only the top (first) level of the Callers view by

setting 7rcct to x on line 3. When a user attempts to expand any particular subtree,

we can build only that subtree. Second, before finalizing the metric values in the

Calling Context view, it is necessary to keep a copy of the non-finalized values for use

in the demand-driven Callers view algorithm.

7.3 Application Studies

To demonstrate the utility of HPCTOOLKIT for performance analysis of appli

cations on emerging petascale applications, we apply it to study the performance of

three codes: PFLOTRAN, FLASH, and MILC. We studied these applications on

core counts up to 8192.3 Our performance studies were performed on two systems:

Jaguar — a Cray XT system at Oak Ridge National Laboratory's National Center for

the Computational Sciences — and Intrepid — a Blue Gene/P at Argonne National

3 We could have used larger core counts for our study, but opted to limit the scale of our executions
to limit our resource consumption.

194

Laboratory's Leadership Computing Facility. We describe these machines as they

exist in Spring 2010.

Jaguar consists of 84 Cray XT4 racks and 200 Cray XT5 racks linked together.

There are 7,832 XT4 compute nodes and 18,688 XT5 compute nodes for a total of

255,584 cores. Each XT4 node contains a quad-core 2.1 GHz Opteron (Budapest), 8

GB memory and a SeaStar2 network interface card, for a total of 31,328 cores. Each

XT5 node contains two hex-core 2.6 GHz Opterons (Istanbul), twice the memory

and twice the memory bandwidth, but with one SeaStar2+ interface card, for a total

of 224,256 cores. Nodes in the system are arranged in a 3-D torus topology. Com

pute nodes run Cray's Compute Node Linux (CNL) microkernel. In early February

2009, CNL version 2.1 was installed which corrects bugs that inhibited asynchronous

sampling in prior versions.

Intrepid is a BlueGene/P system with 163,840 compute cores divided into 40 racks.

Each rack consists of 1024 compute nodes (and is thus more densely populated than a

Cray XT). Each node is a custom system-on-a-chip design that contains four 850 MHz

PowerPC 450 cores, each with a dual floating point unit, and 2 GB of off-chip shared

memory. Multiple networks connect each node by attaching directly to the SoC,

including a 3-D torus, a global collective network (for broadcasts and reductions),

and a global barrier network. Compute nodes run IBM's Compute Node Kernel for

BG/P. In late January 2009, patches were installed to correct bugs in kernel version

V1R3M0 that inhibited asynchronous sampling.

We collected Jaguar data on XT4 or XT5 nodes in which an MPI process was

assigned to each core. Similarly, we collected BG/P data using 'virtual node' mode

in which an MPI process was assigned to each core.

195

7.3.1 PFLOTRAN

PFLOTRAN is a code for modeling multi-phase, multi-component subsurface flow

and reactive transport using massively parallel computers [86, 100]. The code is

designed to predict the migration of contaminants underground. "PFLOTRAN solves

a coupled system of mass and energy conservation equations for multiple compounds

and phases including H20, supercritical CO2, black oil, and a gaseous phase" [100].

With support from the DOE SciDAC program, the authors of PFLOTRAN plan to

use it to understand radionuclide migration at the DOE Hanford facility and model

sequestration of CO2 in deep geologic formations. Typical simulations involve massive

computation due to ten or more chemical degrees of freedom on a grid of millions of

nodes. PFLOTRAN employs the PETSc library's Newton-Krylov solver framework.

Analyzing scaling losses on a Cray XT4

In this section, we use HPCTOOLKIT to examine study the performance of PFLO

TRAN when strong scaling from 512 to 8192 cores of a Cray XT4. (A strong scaling

study employs different numbers of cores on the same test problem.) The test prob

lem used for this section is a steady-state groundwater flow problem in heterogeneous

porous media on a 5123 element discretization. It uses PETSc's IBCGS (Improved

Stabilized version of BiConjugate Gradient Squared) solver [114,155] to solve for flow.

Figure 7.8 shows a screen snapshot from H P C T O O L K I T ' S hpcviewer user inter

face displaying a top-down Calling Context view of how PFLOTRAN spends its

time on 512 processors. The view has three main components. The navigation

pane (lower left sub-pane) shows a top-down view of the calling context tree, par

tially expanded. One can see several procedure instances along the call paths in

the calling context tree. Each entry in the navigation pane is associated with met

ric values in the metric pane to its right. The line selected in the navigation pane

196

Oi O O hpcviewer: PFLOTRAN: Cray XT, IBCCS solver, AU Matrix format, strong scaling 5i2->8192

"5 snes.c • J , timestepper.F90 £3

ib7<:
lt,7i
l b 74
1&7S

is>r&
1&77

i b b i

1&8:5

1&«4

lfc.8b

11-.C&

1&67

fieldS6porosity_loe,ONEDOF)
c o l l Discret izat ionLocalToLocQl(discret izQt ion, f ietdS6tor_loc, &

fieldKtorJloc.ONEDOF)
c o l l Discret izafcionLocalToLocolCdiscret izat ion, f ieldS6icop_loc, &

fieldSftcap_loc,QNEDOF)
c o l l Discret izat ionLocalToLocalCdiscret izat ion, f ieldS6ithrm_loc, &

fieldS6ithnn_loc,QNED0F)
c o l l D iscre t iza t ionLocotToLoca l (d iscre t iza t ion, f ie ld&iphas_ loc) &

fieldSftphos.loc.QNEDOF)

i f (optionS6print_screen_flag) wr i teC*. , (/ , 2 (" - ") . " FLOW (STEADY STATE) " ,37 ("

c a l l SNESSolve(solver$6snes, PfTSC_NULL_OBJECT, f ieldS6flo*_xx, i e r r)

c a l l SNESGetIterotionNumber(solverSSsnes,nuni_ne'Aton_ifcerafcions< i e r r)
c a l l SNESGetLineorSolveItera+.ions(solverS6snes,nuni_linear_i+.erations, i e r r)
call SNESGefcConvergedReason(solver&snes, snes_reason, ierr)

»»-)

^ J Calling Context View ^% Callers View ft. Flat View

JO !6«w:rtri; A* A-

Scope

Experiment Aggregate Metrics
• main

• "]•> pflotrart
• Et> timestepper_module_stepperrun_

• K> timestepper_module_stepperruristeadystate_
• K> timestepper_module_steppersolveflowsteadys

• K> snessolve_
• K>SNESSolve

• K> SNESSolve_LS
• loop atls.c: 245
• K> SNESComputeFunction
• E0> VecNormEnd
• K> VecNormBegirt
• K> VecNormBegin

• K>SNESSetUp
• Et> discretization_module_discretizationlocaltc
• K> discretization_module_discretizatiorilocaltc
• S> discretization_module_discretizationlocaltc
^ SH> discretization_moduie_discretizationlocaltc
• S>vecnorm_
'*• K> discretization_module_discretizatiortlocaltc

512 Cyc
6 . 3 0 0 + 1 1

6 . 3 0 e + l l

6 . 3 0 e + U

6 . 1 8 e + l l

6 .18D+11

6 . 1 8 e + l l

6 . 1 7 e + l l

6 .17C+11

6 .17C+11

6 . 1 S e + U

2 . 2 6 e + 0 9

1 . 9 6 e + 0 8

4 .00O+06

1 . 6 0 e + 0 7

1.20C+07

8 .00O+06

8 .00C+06

S . 0 0 e + 0 6

8 . 0 0 e + 0 6

4 .00O+06

es (l).T
100 %

100 %

100 %

98.0%

98.0%

9 8 . 0 4

98.0%

98.0%

98.0%

97.6%

0.4%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

512 FLOPS {l>...
5 .41O+10

S.41O+10

5.41O+10

5 .39O+10

5 .39O+10

5 .39O+10

5 . 3 9 e + 1 0

5 . 3 9 0 + 1 0

5 . 3 9 0 + 1 0

5 .37O+10

2 .15O+08

100 %

100 %

100 %

99.6%

99.6%

99.6%

99.6%

99.6%

99.6%

99.2%

0.4%

Figure 7.8: hpeviewer's Calling Context view of PFLOTRAN on a Cray XT4.

197

is displayed in the source pane (top sub-pane). For the steady state flow problem

measured, on 512 processors the selected line shows that PFLOTRAN spends 98%

of its time (measured as inclusive processor cycles using the PAPI [28] interface to

hardware counters) inside PETSc's SNESolve procedure, called from PFLOTRAN's

StepperSolveFlowSteadyState procedure in module Timestepper_module. Com

paring the cycles spent in SNESolve with the floating point operations performed

(shown in the rightmost column), we see that the solver executes only one floating

point operation about every 11 cycles. This low performance bears further investiga

tion.

Figure 7.9 shows a Flat view of the most costly procedure, PETSc's MatSolve_

SeqAIJ_NaturalOrdering, where the 512 processor execution of PFLOTRAN spent

44.8% of the total execution time when executing the steady state flow problem. A

strength of HPCTOOLKIT is that it attributes costs not only at the routine level, but

at the loop level too. The second line of the metric pane shows the most costly loop

in the aforementioned routine: a forward solve of a lower triangular matrix, which

accounts for 23.1% of the total cycles during execution. Almost all of the loop's costs

are attributed to line 949 of file a i j f a c t . c since the PGI compiler only associates

one source line number with each basic block. By comparing the cycles with the

second column, floating point operations, we see that the loop executes only about

one floating point operation every 20 cycles. The fact that we can pinpoint and

quantify the nature of this performance loss demonstrates H P C T O O L K I T ' S abilities

for locating node performance bottlenecks.

In the loop highlighted in Figure 7.9, L2 misses (elided in the figure) are lower than

average: the loop accounts for only 8.0% of the L2 misses even though it accounts

for 23.1% of the cycles. Execution time for the loop correlates more closely with

TLB misses: 19.1% of TLB misses and 23.1% of the program cycles. Comparing the

198

r> O O hpcviewer: i PFLOTRAN: Cray XT, IBCCS solver, AIJ Matrix format, strong scali... CD

™\ snes.c

44 i
44 4
3 4 i
S'4&

3 47

ii'4-Ji

^ B 3

4S&

i< t, y

i? b 1

"*?, timestepper.F90 <% aijfact.c S3 = Q

/ * forward solve the lower tr iangular * /
x[0] - b [0] ;
for Ci~l i i<n; i++) {

a i_ i = a i [i] ;
v = aa + a i _ i ;
v i - aj + a_\;
nz = ad iag[i] - a i _ i ;
sunt - b [i] ;
PetscSparseDenseMinusDot(sum,x,v,vi,nz); |
x [i] -= sunt;

}

/ * backward solve the upper tr iangular * /
for (i -=n- l ; i>-Z; i - -) {

adiag_i - a d i a g [i] ;
v -aa + adiag_i + 1 ;
v i ~- aj + adiag_i + l j
nz = a i [i + l] - adiag_i - 1 ;
sum ^ x [i] ;
PetscSparseOenseMinusDotCsuni.x.VjVi^z);
x [i] ^ surn*aa[adiag_i];

}

r *
"^ Calling Context View ^% Callers View

J A A J .. • i 6 fiw! H41: 'eS A

ft. Flat View

fA"

0

•* • •

= a

Scope S12 Cycles <I).T
[• MatSolve_SeqAU_NaturalOrderirtg 2.82e+ll 44.8%
! • loop at aijfact.c: 949 l .46e+l l 23.1%

j

j •

1
i

j.

• loop at aijfact.c: 949 • i .30e+n 20.7%
aijfact.c: 943 1.56D+-10 2.5%

loop at aijfact.c: 960 i .36e+ll 21.6%
• loop at aijfact.c 960 i . i 9e+ i l 18.9%

inlined from aijfact.c: 954 l .7le+l0 2.7%

S12 FLOPS (1)...

l .S7e+10 2 9 . 1 %

7.26e+09 13.4%

6.62e+09 12.3%

6.380+08 1.2%

8.49e+09 13.7%

5.26e+09 9.7%

3.23e+09 6.0%

- - — -

512 TLB Misses (0...

6.0804-07 38.3%

3.04e+07 19 .1%

2 .36e+07

6.80C+06

3 .04e+07

2.40e+-07

6.40O+06

- -

14.9%

4.3%

19 .1%

15 .1%

4.0%

6
i
s
i

- !
• 1

1

Figure 7.9: hpcviewer's Flat view of PFLOTRAN on a Cray XT4.

number of TLB misses to the number of floating point operations shows that there is

a TLB miss for every 239 floating point operations. These measurements suggest that

the performance on the Opteron architecture might be improved by reducing TLB

misses. To reduce the TLB miss rate, we tried using 2MB jumbo pages; however,

we found that this change had little effect on overall run time. This suggests that

199

non hpcviewer: PFLOTRAN: Cray XT, IBCCS solver, AIJ Matrix format, strong scaling 512- >8192 O

"if, snes.c "\ timestepper.F90 "5. aijfact.c ""S pdvec.c [«% hdfS.F90

lcifc-1 d e a l l o c a t e (r e a l _ b u f f e r)
lei>5
libb e n d i f

lafas c o l l h 5 p c l o s e _ f (p r o p _ - i d , h d f 5 _ e r r)

S3 ™% vectorf.c

1S&S i f (memory_space_id > - 1) c o l l hSsc lose_f (memory_spoce_ id ,hdfS_err)
lfefffl c a l l h 5 s c l o s e _ f (f i l e _ s p a c e _ i d , h d f S _ e r r)
11471 c a l l h S d c l o s e _ f (d a t a _ s e l _ i d , h d f S _ e r r)
lb 7 2
lh/i c a l l V e c A s s e m b l y B e g i n (n o t u r o l _ v e c , i e r r)
Ib'i'A c o l l VeeAssemb!yEnd(natLir -al_vee1 ierr ')

= B

l t i ' 5 c a l l D \ s c r e t i 2 a t i o n N a t u r a l T o G l o b a l C d i s c r e t i Z Q t i o n , n Q t u r a i _ v e c , g l o b o l _ v e c , & f t
11,7b ONEDOF)
l t i , c a l l V e c D e s t r o y (n a t u r a l _ v e c , i e r r)
lis 7'6
liJV'3 c a l l PetscLogEventEnd(logging%event_read_array_hdf5) &
1..B3 PETSC_NUU_OBJECT,PETSC_NULL_QBJECT, &
I S i i l PETSC_NULL_OB:ECT,PETSC_NULL_OBJtCT,ierr)

xj Calling Context View j ?«, Callers View f } , Flat View

A

T

= •

JO •'•\6to\M\£# A-
Scope 512 Cycl

Experiment Aggregate Metrics 6.30e+u
T MPIDI_CRAY_Progress_wait 2.70e+10

• C MPIC_Recv 2.56e+10
• \L MPIR.Bcast 2.S6e+10

• <L MPIDI_CRAY_SMPCIus_Allreduce 2.34e+l0
• : PMPl.Allreduce 2.34e+10

• O VecAssemblyBegin.MPI 2.33e+09
T O VecAssemblyBegin 2.33e+09

• <& vecassemblybegin_ 2.33e*09
! • <}3 h d f S _ m o d u l e _ h d f S r e a d a r r a v 2 - 3 3 e + 0 9

j • <u pmpi_allreduce_ i . 28e+08

| • O KSPSolveJBCCS 2.07O+10

j • \iJ ADIO.Open 1.60e+08

• <J3 PetscSpiiiReductionApply i.92e+oa
• CL MPIR_Comm_copy l.l2e+08
• 'sL ADIO.ResolveFileType 2.40e+07
• O PetscSplitCwmership 2.80e+08
• O VecNorm.MPI 7.36e+08

es (I)... 8192 Cycles (1)...: % Scaling Loss •

ioo %
4.3%

4 . 1 4

4 . 1 %

4.0%

4.0%

0.4%

0.4%

0.4%

0.4%

0.0%

3.3%

0.0%

0.0%

0.0%

0.0%

0.0%

0 . 1 %

7 .14e+10

3 .76e+10

3 .22e+10

2 .86e+10

2 .74e+10

2.74C+10

9.14O+09

9.14C+09

9 .14e+09

9 .14e+09

6 .35e*09

4.66C+09

2.03C+09

1.52C+09

9 .60e+08

9.24C+08

8.76C+08

5.4004-08

100 %

52.7%

4 5 . 1 %

4 0 . 1 %

38.4%

38.4%

12.8%

12.8%

12.3%

12.8%

8.9%

6.S%

2.8%

2 . 1 %

1.3%

1.3%

1.2%

0.8%

4 . 4 9 e + 0 1 100 % « t !

5 . 03e+01 112 .2 W j

4 . 2 9 e + 0 1 95.6% j

3 . 790+01 84.4% j

3 .61e+01 80.6% j

3 .61C+01 80.6% ;

1.26O+01 2 8 . 1 % i

1 .26e+01 2 8 . 1 % j

1 .26e+01 2 3 . 1 %

1 .26e+01 2 8 . 1 %

8.89C+00 19.8%

4.71C+00 10.5% |

2 .83e+00 6.3%

2 .12e+00 4.7%

1.33e+00 3.0%

1.29e+00 2.9%

1.20e+00 2.7% A

6 . 9 2 e - 0 1 1.5% V

Figure 7.10:
XT4.

hpcviewer's Callers view of scaling losses for PFLOTRAN on a Cray

we should use other hardware counters to further investigate the reason for the low

performance.

Figure 7.10 shows a bottom-up Callers view of the losses when scaling from solving

the test problem on 512 cores to 8192 cores (strong scaling). The Callers view appor

tions the cost of a procedure (in context) to each call site in each of its callers. For

200

inclusive costs (as shown in this figure), hpcviewer's bottom-up view attributes costs

incurred within. For each calling context c in the program executions in this scaling

study, we compute the percent of scaling losses as 100(16 Tc,8192 — TC!5i2)/(16 Tri8i92),

where r is the root of the calling context tree, and TitH represents the time spent in

context i in an n core execution. In English, the quantity (16 TC]si92 — TC)5i2) cal

culates the difference in parallel work performed by the executions on 512 and 8192

cores for a particular calling context c. The factor of 16 arises because when strong

scaling from 512 to 8192 processors, the amount of work per processor is a factor of

16 smaller on the larger number of processors. We divide through by 16 Tr,8i92i the

total amount of work performed on 8192 cores, to compute the relative fraction of

the execution that corresponds to parallel overhead. We multiply through by 100 to

express this number in percent. In Figure 7.10, the percent relative scaling loss in the

8192-core execution is represented using scientific notation. The percentages shown

in that column show the percentage of the total scaling loss that is associated with

each line in the display.

Figure 7.10 shows that 112.2% of the scaling loss in the application is attributed

to the routine MPIDI_CRAY_Progress_wait and the routines that it calls. Percentage

losses in any individual context are relative to total losses in the execution. While a

scaling loss greater than 100% for a particular context might seem odd, it just means

that there were scaling gains elsewhere in the execution that offset losses here. By

looking up the call chain to see what calling sequence caused the program to incur

scalability losses in MPIDI_CRAY_Progress_wait, we see that 80.6% of the scaling

losses in the application can be traced to the use of MPI_AllReduce. Looking at the

number of cycles spent in MPI_AllReduce in the 512 core and 8192 core executions, the

poor scalability is clear: the 8192 core execution spends more time in MPI_AllReduce

than in the 512-core execution.

201

Our bottom-up Callers view enables us to identify how losses associated with

MPI_AllReduce are apportioned across various calling contexts that use this primitive.

Looking two levels further up the call chain, we see that 28.1% of the total scaling

losses come from the use of MPI_AllReduce on behalf of VecAssemblyBegin (a PETSc

routine), which in turn was called to create a distributed vector out of an array

read from an HDF5 file. In this case, the losses seem unavoidable and represent a

fundamental limit to strong scalability. Other lines in the display show the breakdown

of other scaling losses due calls to MPI_AllReduce from other contexts. Here, we

have shown that H P C T O O L K I T ' S sampling-based measurements provide quantitative

information about scaling losses and enable attribution of these losses to the full

calling contexts in which they occur. Understanding scalability losses at this level of

precision is essential if one's aim is to ameliorate them so that a code can scale well

to full configurations of petascale systems.

Analyzing a large-scale execution on a Cray XT5

In this section, we use summary metrics from H P C T O O L K I T ' S hpcprof-mpi to

analyze an 8184-core execution of PFLOTRAN on a Cray XT5. The test problem

used for this section is a steady-state groundwater flow problem in heterogeneous

porous media on an 850 x 1000 x 80 element discretization with 15 chemical species

per cell. We used H P C T O O L K I T to simultaneously collect four hardware counter

metrics: cycles, floating point operations, resource stalls and LI data cache misses.

The effective sampling rate was about 925 samples/second and the overhead was less

than 1%.

We first assess the overall floating point efficiency of PFLOTRAN's execution.

Figure 7.11 shows a Flat view of PFLOTRAN's static structure with two metrics that

highlight floating point utilization. The first metric, which is the sort key, provides

202

ftOO hpcwewer: Pf LOTRAN: Cray XTS, 28 DoF TiQerTeam, 8X84

reaction.rgo £3

PetscReol
PetscReol

'n_conc
ln_act -

Q

tota;_sorb_eq(reoction&ncon<p)
dtotQi_sorb„eq(reoctionS5ncomp,reoct*ionS!ncomp)

iOgCt.auxvarSpr-l.molai)
*in_conc*log(rt_auxvar5ISpri_act_coef) 0

• fdef T£MP_OtPENDtNT_LOGK
i f (.not .opHonSSuscisotheraai) then

c o l l ReactionIntcrpoiQleLogKCreactionXcqsrfcp1x_ iogKcocf ,reaclion$Ecqsrfcpix_logK, & »

" ^ Calling Context View ^y Callers View {$. Flat View

A A Jbo M cZ A* A-

3 - -

Scope R»w«**e<B»i
Experiment Aggregate Metrics

p dgemv_n
«• PtIEQPeek
• MPIDI_CRAY_smpdev_progress
• reaction_Tnodu!e_rrauitiratesorpti(

• loop at reaction.("90 3278
• loop at reaction.r90 3277
• loop at reaction.rgo 3429

• I :*, oafdO auto alloc
• loop at reaction.T90 3267

reaction.r90: 34:0
K> _libcJree

• loop at reaction TOO 3292
Bt> pgf 90_auto_dea'loc

• loop at reaction.r9C. 3413
feaction.r90: 3267

• reaction_moiSiiSe_rtotaL
• fast_nal_po!|
• fmth i dexp g".

*

Figure 7.11: hpeviewer's
a Cray XT5.

l . C 6 e + 1 6

4 . 3 1 e * l S

4 . 2 9 e + l S

4 . 1 4 e + 1 5

4 . 3 9 e + 1 3

4 . 2 5 e + 1 3

2 . G 5 e U 3

i . i s « * n
1 . 2 7 e + 1 3

1 . 0 7 e + 1 3

9 . 8 9 e + 1 2

2 .C6e+12

1 .79e+12

6 . 9 1 e + l l

S . 5 1 e + l l

3 . 3 2 e + 1 5

2 .«Ce*15

2 . 5 6 e + l S

rPACyc (1)
1 . 7 7 e - C l

1 . 9 7 e - C l

3 . 9 8 e - 0 1

6 . 3 8 e - C 3

7.SCS-C3

1 . 3 8 e - C l

1 . 2 2 e - C 3

1 . 3 1 e - C l

4 . 3 5 e - C l

l . S l e - C l

2 .32C-C1

TO~_CYC:Sum «) TOT_CYC:Sum !£)

1 .76e+16

2 . 7 S e + 1 5
i . 2 i o t i :

l .C8e+X5

l . J S e + 1 5

l . l C e + 1 3

l .OSe+13

5 . 1 5 e + 1 2

2.33«+13
3 . 2 S e + 1 2

2 . 6 7 e + 1 2

l . C 4 e + 1 3

5 . 8 6 e + 1 3

4 . 4 9 e + u
1 . 1 3 e + 1 3

1 . 3 8 e » U

l.<S9e+15

2 . 9 3 e + l S

6 . 7 9 e + 1 4

ICC %

1 5 . 7 *

6.9%

6.1%

7.1%

C.1%

C.1%

C.0%

O . l t

C.Ci

C.C%

C.1%

C.3%

C.C-%

6 . 4 *

C.G*

8.5%

16.6%

3.9%
• • 4

Flat view of floating point effic

2 . 7 8 e + l S

1 . 1 3 e + l S

l . C 7 e + l S

1 . 1 6 e t l S

l . l C e + 1 3

l . O t e + 1 3

S . 1 5 e * 1 2

3.3»«+12
3 . 2 8 e + 1 2

2 . « ? e * 1 2

2 . 4 7 e + 1 2

S . 3 1 e * U

4 . 4 9 e + l l

1 . 8 7 e + l l

1 . 3 S e * l l

8 . 6 3 e + 1 4

6 . 4 9 e * 1 4

6 . 7 9 e + 1 4

iency for I

RCS.STLtSum (0

2 . 4 3 e + 1 5 w

3 . 4 6 e + 1 4

3 . 5 2 e + 1 4

4 . 2 2 e + 1 4

9.53C+12

9 . S 4 e + 1 2

1 .82e+12

3 . S 3 e + U M
2 . 0 6 e + 1 2

2 .C2e+12

5 . 2 6 e + l l

7 .G3e+lC

1 . 2 7 e + l l

2 .C5e+lC

3 .45e+C9

4 . 9 8 e + l 4

l.eee-ni *
3.19C+14 •

* »•

3FLOTRAN o

a measure of floating point waste ('FP waste'). Each Opteron core on an XT5 node

has a maximum peak performance of four double-precision floating point operations

(FLOPs) per cycle. Therefore, we can compute floating point waste by subtracting

actual floating point throughput from ideal throughput as follows: (4 x cycles) —

FLOPs. The presentation tool computes this 'FP waste' metric using the cycle and

FLOPs summary metrics that hpeprof-mpi generates by summing over all processes

in the execution. This metric is exclusive, meaning that it excludes callees (hence

203

the 'E' modifier). The second metric is inclusive FLOPs per cycle. Overall, this

execution of PFLOTRAN performed 0.177 floating point operations per cycle, which

is only 4.43% of peak.

The first routine that the 'FP waste' metric highlights is dgemv_n, which is un

derlined in Figure 7.11's lower pane. According to the TOT_CYC:Sum columns, this

matrix-vector multiply routine consumes 15.7% of the execution's cycles, but has a

floating point efficiency of 0.197 FLOPs/cycle. For comparison, the matrix-matrix

multiply routine dgemm_kemel (not shown) delivers 2.27 floating point operations

per cycle. The 'RES_STL:Sum' metric column shows the exclusive cycles that a pro

cessor core was stalled on any resource, over all processes in the execution. According

to this metric, 87% (2.43 x 1015/2.78 x 1015) of the cycles spent in dgemv.n were

attributed to resource stalls. Although not shown, dgemv_n accounts for 20.9% of the

LI data cache misses. This low efficiency bears further investigation.

Figure 7.11 also shows static structure within the reaction_module_

rmul t i ra tesorp t ion routine, which accounts for 7.1% of the total cycles. At 0.398

FLOPs/cycle, this routine has better floating point throughput than dgemv_n. The

static structure recovered by HPCTOOLKIT exposes two important compiler trans

formations. The first is shown in the highlighted call site to pgf 90_auto_alloc.

This call site indicates that the Portland Group (PGI) compiler automatically allo

cated a temporary vector to implement the highlighted Fortran 90 statement shown

in the source code (top) pane. The right hand side of this statement performs a

vector logarithm and then adds the result to another vector. Although the whole

statement could have been implemented with a loop and without a temporary, HPC-

TOOLKIT shows that the compiler allocated an unnecessary temporary vector. The

second transformation to notice is that the four top loops in this routine are actually

compiler-generated scalarization loops to implement Fortran 90 vector operations.

204

«oo hpcviewer: PFLOTRAN: Cray XT5, 2B DoF TigerTeam, 8184

•"* pbvec.c 23 ""5, snes.c

Petscfunct ionBegin;
• e r r VecDot_Soq(xin,yin,&wkork};CMKLRRQCierr);
t e r r - MPl_AUreduceC4wopk,4sum,l,MPIU_SCALAR,PetscSum_0p,<(Petsc0bjec
*z - sum;
Petscfunct ionRcturnCB);

0

" ^ Calling Context View ^ Callers View fo. Flat View

l> 6 ft*) M c" A* A-
Scope
• SNESSoive

TOT_C¥C:CfVar (!) T0T.CVC: Sum <D »
3.13e-Cl l.€7e+l€ 34.9%

TO~_CYC:Meanm
1.02e+12 47.5%

• snesso!ve_
»-SNtSSoive„LS
t>timestepper_modu!e_stepperstcpt
• KSPSolve
*SNES_KSPSolve
fc KSPSolve BCCS

MMDt-CRAY
MP!C_Recv

v MPlR_Beast
» WPIDI_CRAY_SWPCIus

• MPIJVIireaucc
*• <3S VecDot_MPi

MPiC_Recv
• MPJR_Bcast

-w MPIDI_CRAY_SMPCIus
w MPI_AIIrefidce

K j a VecDotNorir2
; MPlC_Recv
* MPIR_,Bcast

* WPIDI_CRAY_SVPCIus
v MPI_AllreCjce

» <£ ^atAssembiyBe

© s
3

5

2

2

1

i

3

3

3
3

3

3
3

3

3

3

lSe-Cl

ISe-Cl

«Se-C3

SCe-Cl

5Ce-Cl

15e-Cl

.o»«*ei
31e-Cl

Sle-Cl

31e-Cl

51e-Cl

Sle-Cl

49e-CI

49e-Cl

49e-Cl

49e-Cl

49e-Cl

£8e+0©

C8e+C0

CSc+CC

C8e+CG

C8e+CC

1

1

1

9

9

6

€7e+l€

€?e+16

30e+16

99e+lS

99e+15

25e*15

94.9%

94.9%

73.5%

S6.7%

56.7%

46.8%

4.50*415 25.5%

S

€

£
6

6

£

6

6
6

6

3

3

3

3

3

83e*15

83e+14

£3e+14

S3e+14

S3e+14

71e+14

71e+15

71e+14

71e+14

71e+14

86e+14

S6e+14

S6e+14

86e+14

S6e+14

3.9%

3.9%

3.9%

3.9%

3.9%

3.8%.

3.6%

3.8%

3.8%

3.6%

2.2%

2.2%

2.2%

2.2%

2.2%

1

1

1

6
6

5

C2e+12

C2e+12

58e#12

ICe+ll

ICe+ll

C4e+ll

t.37«+08

S

£
8

8

S
8

S

8

£

8

4

4

4

'i

4

34e+lC

34e+10

34e+lG

34e+lC

34e+10

19e+lG

19e+lC

19e+10

19e*10

19e+10

71e*lC

71e+lC

71e+lC

71e+10

71e+10

47

47

73

28

28

23

0

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

5 % Vfc,

5%

5%

3%

3%

4%

.ox m
9%

9%

91

9%

9%

8%

8%

8%

8%

8%

2%

2%

2%

2% *

2% *

Figure 7.12: hpcviewer's Callers view of variance within PFLOTRAN on a Cray
XT5.

We next perform two preliminary assessments of load balance. The first one uses

a Callers view and the second one uses a Calling Context view.

205

Figure 7.12 shows a Callers view of PFLOTRAN sorted by total inclusive cy

cles, summed over all processes (TOT_CYC:Sum (I)'). The left-most metric column

labelled 'TOT_CYC:CfVar (I)' shows the corresponding coefficient of variation of cy

cles across all processes. The coefficient of variation is defined as standard deviation

divided by mean and thus presents a relative measure of the standard deviation of

cycles across all processors. For instance, a value of 2.0 means that the standard

deviation has a magnitude of two means.

To find the most time-consuming routine with the most variation, we sort by

inclusive summed cycles and then highlight the first routine with a large coefficient

of variation.4 The routine SNESSolve (underlined) is the first item in the list with

a coefficient of variation larger than 0.02. Because this routine consumes 94.9% of

the total cycles, has a large mean and a coefficient of variation of 0.515, it is a prime

candidate for further study. Nevertheless, we defer discussing it for the moment

and move down the list to the highlighted routine, which has an extremely large

coefficient of variation of 10.0. This routine, MPIDI_CRAY_Progress_wait, is part of

the low-level implementation of the Cray XT's MPI library. Although the routine

has a relatively small mean, it accounts for 25.5% of the total (inclusive) cycles in the

execution. The figure partially expands the top three of the many calling contexts

from which this routine is called. Each call chain passes through MPI_Allreduce

into the PETSc library (shown) and then into PFLOTRAN source-level routines (not

shown). Nearly all the other contexts from which MPIDI_CRAY_Progress_wait is

called also pass through MPI_Allreduce (not shown).

It is not surprising that a low-level communication routine would have a high

coefficient of variation on a large-scale execution. Nevertheless, two things make the

highlighted routine interesting. First, MPI_Allreduce is an MPI collective, which

4To find the highest-level routine with the most variation, we could sort by inclusive mean cycles.

206

means that it must be invoked by all processes in the execution.5 In the general case,

the coefficient of variation statistic is unable to distinguish between variations caused

by (1) some routine instances completing more slowly than others and (2) certain

processes invoking a routine many more times than other processes. The fact that

MPI_Allreduce is a collective means that it must be invoked the same number of

times by each process, eliminating the ambiguity for this case. (By collecting return

counts [60] we could resolve this ambiguity in the general case.) Second, as the figure

shows, the Cray XT's implementation of MPI.Allreduce has several layers. The

Callers view highlights these layers and shows that the important calling contexts

of MPIDI_CRAY_Progress_wait all have a much lower coefficient of variation, but a

much larger mean. H P C T O O L K I T ' S is able to show how variation and mean abruptly

change precisely at this wait routine — even though it is within a vendor-supplied

binary only library.

We next turn to the Calling Context view shown in Figure 7.13. We create a simple

measure of variability by creating an inclusive '% Variation' metric based on cycles.

For a given node in the Calling Context view, we take the maximum and minimum

per-process cycle value of that node. The difference between the two represents the

maximum variability for any given node. We then display the result as a percentage

of the execution's total mean cycles:

cyclesmax - cyclesmin ^ ^
total-cyclesmean

Although this metric can exaggerate the potential for improvement between back-to-

back communication and computation, it provides a quick and effective assessment

of variability. In the future, we plan to compute a more precise load imbalance met-

5The MPI_Allreduce is performed on the global MPI process group instead of a subgroup.

207

flno hpcviewer: PFLOTRAN: CrayXTS, 2B DoF TigerTeam, 8184

"»!_ matrix.c *?_ vscat.c "•?_ aij.c «_ mpiaij.c "•=_ bcgs.c S3 "=_ vinv.c 6

.';• a lpha - rho / d l ; / * a <- rho / C v . r p) * /
i e r r - VedAAXPY(S,-a'ipha,V1R>;CHKERRQ(ierr)i / * s <- r - a v
i e r r - KSP_PCAppjyBAorABCksp,S,T,R);CHKtRRQCierr);/* t <- K s V
i e r r - VecDotNorra2(S,T,S.dl,&d2);CHKILRRQCierr};
i f Cd2 — 3 . 8 } {

r ;•__-.;. ; .;;.,1 ;_ ; : \ ' ;\
"^ Calling Context View }^ Flat View

tt 6fM |tf| C~A*A-
Scope

Experiment Aggregate Metrics

• main

• pflotran

T B!>tirrestepper_»nodule_stcppcri'un_

wloop at timestepper.raO: 486

finlincd from timestepper.F90: 384

w BC>tin-estepper_"nodule_stcpperstepflowdt_

irloopattimestepper.r90: 901

• loop at timesteppcr.r90: 901

f K>s«essove_

f B^SNESSo]ve

• E^SNtSSo ve.LS

wloop at Is.c: 245

Tinlined from Is.c: 161

f K>SNES_KSPSo!ve

TBC>KSPSolve

•w Bt>KSPSolve_BCCS

• loop at bcgs.c: 113

rinlined from bcgs.c:

0

•

KVtrttHond) • .
6 . 6 2 e + C 0

6.82e+CC

6.62e+CC

6 . 8 6 e + 0 C

6 . 8 6 e + C 0

6.86e+CC

S.G4e+C0

5.04e+GG

5 .C-5e+CC

5.04e+GC

S.04e+CC

S.CSe+GO

£.C2e+CC

S.Cle+CG

4 . 96e+CC

4.96e+CC

4.98e+CC

4.9€e+CC

69 4 .97e+CC

100 %

ICG %

IOC %

I C C . 6

1 C C . 6

1 0 0 . 6

7 3 . 9 %

7 3 . 6 %

7 3 . 9 %

7 3 . 9 %

7 3 . 9 %

7 3 . 9 %

7 3 . 6 %

7 3 . 5 %

7 2 . 6 %

7 2 . 6 %

7 3 . C %

7 2 . 8 %

7 2 . 6 %

TOT_CYC:Sum{l)
1.

1

1,

1.

1.

1,

4 .
rt,

4.

4.

4.

4.

4.

4.

3 .

3 .

3 .

3 .

3 .

, 7 6 e + 1 6

. 7 6 e + 1 6

. 7 6 e + 1 6

. 7 3 e + 1 6

, 7 3 e + 1 6

. 7 3 e + 1 6

, 0 9 e + 1 5

,C8e+15

, 0 6 e + 1 5

.C6e+lS

, 0 6 e + l S

.C6e+15

, C 3 e + l S

, 0 2 e + l S

, 7 S e + 1 5

, 7 5 e + 1 5

. 7 5 e + l £

. 7 4 e + l S

, 7 4 e + l S

ICO %

ICO %

ICC %

9 8 . 2 %

9 8 . 2 %

9 6 . 2 %

2 3 . 2 %

2 3 . 2 %

2 3 . 1 %

2 3 . 1 %

2 3 . 1 %

2 3 . 1 %

2 2 . 9 %

2 2 . 8 %

2 1 . 3 %

2 1 . 3 %

2 1 . 3 %

2 1 . 2 %

2 1 . 2 %

>V*eGotNewi»2 3.3«o+Q0 4».5% 7.91«+14 4 .5*
• B^VecDot 3.30e+0C 48.4% 8.03e+14 4.6%

• BJ>PCApplyBAOTAB 2.9Se+0C 43.2% 7.14e+14 4 . 1 % A

• B^PCApplyBAorAB 2.74e+G0 4C.1% 6.72e+14 3.6% •

^ ^

Figure 7.13: hpeviewer's Calling Context view of PFLOTRAN's variability on a
Cray XT5.

ric that, like Cray PAT [48], distinguishes between computation and communication

routines.

After computing the '% Variation' metric, we use hpeviewer's 'Hot path' but

ton to automatically expand the unambiguous portion of the hot path with respect

to the metric. The resulting path goes through PFLOTRAN's main time-stepper

loop and into PETSc's SNESSolve routine, the routine that we passed over when

208

discussing the Callers view. From SNESSolve, the call path descends several more

layers into PETSc's KSPSolve_BCGS routine. The figure shows the four key call sites

within this routine, the first of which is highlighted. Taken together, the four call

sites are responsible for about 17% of the inclusive cycles in the execution. Although

each call site has several descendants, in each case the variation is concentrated in

a few spots. For the call sites to VecDotNorm2 and VecDot, the variation exclu

sively derives from MPI_Allreduce. For the two call sites to PCApplyBAorAB, the

variation is concentrated in computation from the PetscSparseDenseMinusDot and

PetscSparseDensePlusDot macros and in delays manifested in MPI_Waitany. This

result shows that H P C T O O L K I T ' S automatically computed summary metrics can help

a performance analyst quickly identify portions of a computation that contribute to

the most important performance variations, even if those areas are within third party

(PETSc) and vendor-supplied (MPI) libraries.

7.3.2 FLASH

Next we consider FLASH [52], a code for modeling astrophysical thermonuclear

flashes. We performed a weak scaling study of a white dwarf explosion by executing

256-core and 8192-core simulations on both Jaguar (Cray XT4) and Intrepid (IBM

BlueGene/P). Both the input and the number of cores are 32x larger for the 8192-core

execution. With perfect scaling, we would expect identical run times and call path

profiles for both configurations.

A glance at the Calling Context view (top-down) for each scaling study (not

shown) quickly reveals some differences between application scaling on the two sys

tems. On BG/P there was a 24.4% loss of parallel efficiency (i.e., scaling loss), whereas

on the XT4 the loss was larger, 32.5%. An execution of FLASH is divided into three

phases, initialization (Driver_initFlash), simulation (Driver_evolveFlash), and

209

finalization (Driver_f inal izeFlash) . In our benchmark runs, on BG/P 42.9% of

the scaling loss (10.5% of the run time) came from initialization while the remaining

57.1% of the scaling loss (13.9% of the run time) came from simulation. In contrast,

on the XT4, the initialization and simulation phases account for 54% and 46% of the

scaling loss (about 17.6% and 15% of the run time), respectively. We consider the

differences between the BG/P and XT4 in turn.

IBM BG/P

To quickly understand where the scaling losses for the initialization and simulation

phases are aggregated, we turn to the bottom-up Callers view. Recall that the Callers

view apportions the cost of a procedure (in context) to its callers. We sort the

Callers view by the exclusive scaling loss metric, thus highlighting the scaling loss for

each procedure in the application, exclusive of callees. Two routines in the BG/P

communication library immediately emerge as responsible for the bulk of the scaling

loss: TreeAllreduce: : advance and globalBarrierQueryDone.6 To determine how

these library calls relate to source-level code, we look up their call chains; the result

is shown in Figure 7.14. When we look up the first call chain, we find calls to

MPI_Allreduce. The first call, which accounts for 57% of the scaling loss (14.1% of

run time), is highlighted in blue; the others, which are inconsequential, are hidden by

an image overlay indicated by the thick horizontal black line. As the corresponding

source code shows, this call to MPI_Allreduce is a global max reduce for a scalar

that occurs in code managing the adaptive mesh. H P C T O O L K I T is uniquely able to

pinpoint this one crucial call to MPI_Allreduce and distinguish it from several others

that occur in the application.

6The full names are DCMF::Protocol::MultiSend::TreeAllreduceShortRecvPostMessage::
advance and DCMF: :BGPLockManager: :globalBarrierQueryDone.

210

f > ^ 0 hpcviewer: FLASH/white dwarf; IBM BC/P, weak 2S6->8192

" H mpi_amr_comm_setu... £3 * i CridJil lCuardCel.. . "S. mpi_am _lblk_rest. . .

11 >'
l i e i t e m p c maxCsuni(con!!iiat«'ux_scnd), sum(conmotr>t ix_recv})

413 ColH MPI.ALLREDUCE (i t e m p ,

Jiili mox_b l l<s_sent 1

- l . i l 1 ,

l i Z MPI_INTEGER,
:ic- MPI_MAX,

' ^ 4 MPI_C0MM_K0RLD,
•idb t e r r o r }

r, ' f?
* .Call ing Context View | , Cc

JO ' ^Jtoltrl-

Hers View! r;;- FlatVicw;

: Scope

1 Experiment Aggregate Metrics

v DCMF::Protocol:A*ulti5end:.TreeAllreduceShortRccvPostlt"essage::ac

; v <L inlined f rom Devicc.cc: 4 3 2

V \ '., DCMF::Queueing::Tree::Device::postRecv(DCN'F::Queuei

> v C j inlined from Wessage.h: S16

• W C_ DCIVF.CIobalAllrcducc

1 ^ C J VPIDO_Allreducc_global_tree

v v VPIDO.AIIreducc

i ; v <L PWPI_Allreduce

^7 <.... pmpi_allreduce

^ < a mpi_amr_comm_sctup

W rXMF::BGPLockN*anager::globalBarrierQueryDone(»

v CJ DCMF::Qucueing::CI::git£essage::advance()

| V '„„ DCMF::Queueing::GI:.Device::advanco()

! V CL inlined from msgr.h: 1S7

V < , DCMF_Wcssagcr_advance

v CL MPID_Progress_wait

v CL WPIDO_Barrier_gi

^ <.;.. KPIDO_Barrier

v ; PKPI_Barricr

v CJ pmpi_barricr

v <SI grid_fillguardcells

, 1 !> <S hv oom sweer
I

-

^T"™"

«•

&
&
&
&
&

•= B

0
A

T

= Q

% scaling Coss, time ® i % sealing toss, time (E) *
2 .4< ie+01

l . S 9 e + C l

l . S 9 e + 0 1

l . S 9 e + 0 1

l . S 9 e + 0 1

1 . 5 9 e + 0 1

l . S S e + 0 1

l . S S e + 0 1

l . S 5 e + C l

l . S 5 e + 0 1

l .<51e+Cl

6 . 8 3 e * 0 C

6 . 8 3 6 + 0 0

6 .83e+CC

6 . 8 3 6 + 0 0

6 . 8 3 e + 0 C

6 . 8 3 e + 0 0

6 . 3 « e + 0 C

6 .3<le+00

6.346+150

6.3<8e+00

3 .31e+CC

1 .3£e+C0

ICC %

6 5 . 1 %

6 5 . 1 %

6 5 . 1 %

€ 5 . 1 %

6 5 , 1 %

6 3 . 8 %

£ 3 . 8 %

6 3 . 8 %

6 3 . 8 %

£ 7 . 7 %

2 8 . 0%

28.(54

2S.CS.

2 8 . 0 %

2 8 . 0 %

2 8 . 0 %

2 6 . 0 %

2 6 . 0 %

2 6 . 0 %

2 6 . 0 %

13 .6%

5,5%

2.<3<Se+01

l . S 9 e + 0 1

l . S 9 e + 0 1

l . S 9 e + C l

1 . 5 9 6 + 0 1

1 .59S+C1

l . S S e + 0 1

1 . 5 S e + 0 1

l . S 5 e + 0 1

l . S S e + 0 1

1 . 4 1 e + C l

6 . 8 3 e + 0 0

6 . 8 3 e + 0 0

6 .83e+CC

6 . 8 3 e + 0 C

6 . 6 3 e + © 0

6 . 8 3 e + 0 0

6.3<ie+CG

6.3<le+C0

6 . 3<5e+GO

6.3<ie+0C

3 . 3 1 e + O 0

1 . 3 5 e + 0 0

_.

100 % JT*

6 5 . 1 % W

6 5 . 1 %

6 5 . 1 % :

6 5 . 1 % :

6 5 . l t ':

6 3 . 8 % i

6 3 . 8 % ;

6 3 . 8 % ' ' :

6 3 . 8 %

5 7 . 7 %

2 8 . 0 %

2 8 . 0 %

28 .0% 1

2 8 . 0 %

2 6 . 0 %

2 8 . 0 % ' ' !

2 6 . 0 %

2 6 . 0 %

2 6 . 0 %

2 6 . 0 %

13 .6% * j

5.5% 7

Figure 7.14: hpcviewer's Callers view of scaling losses (wallclock) for FLASH on
an IBM BG/P.

Next, we peer up the globalBarrierQueryDone call chain. The 'Hot path' button

automatically expands the unambiguous portion of the hot path. By expanding this

hot path automatically, we hone in on the one call to MP I .Ba r r i e r that dispropor

tionately affects scaling. The call site is within Grid_f i l lGuardCells and is visible

211

http://-l.il
http://2S.CS
http://65.lt

at the bottom of Figure 7.14; it accounts for 13.6% of the scaling loss (or 3.31% of

the run time).

H P C T O O L K I T enables us to quickly pinpoint exactly two calls that account for

about 70% of FLASH'S scaling loss on BG/P. It is interesting to note that the these

two calls relate to two of BG/P specialized networks: the MPI_Allreduce to the

global collective network and the MPI_Barrier to the global barrier network.

Cray X T 4

In Figure 7.15, we turn to the same bottom-up Callers view that we used to

analyze scaling losses on BG/P. We first sort by the exclusive scaling loss metric.

However, because losses are more finely distributed than on BG/P, we sort by inclu

sive losses, which includes losses for callees. Since 100% of the scaling loss occurs

in or below FLASH'S 'main' routine, it appears at the top. The next procedure,

MPIDI_CRAY_Progress_Wait, accounts for 84.1% of the scaling loss, is related to

MPI communication, is shown in Figure 7.15. By inspecting the callers of this proce

dure, we see the breakdown of scaling losses among different types of communication.

When using the hpcviewer interface interactively, one can expand the tree further to

show the full context in the user program where these losses originate.

By inspecting the callers of MPIC_Sendrecv, one can see that 27.5% of the losses

are due to barrier synchronization. Exploring a few levels deeper in the subtree

rooted at MPIR_Barrier, we find that 12.1% of the scaling losses are due to barrier

synchronization in the routine amr_setup_runtime_parameters. This routine con

tains a loop that iterates over each of the processor IDs. On each iteration of the

loop, the processor whose ID is equal to the loop induction variable opens the input

file, reads a set of program input parameters, and then closes the file. All processors

meet at the bottom of the loop at a barrier. This represents a scaling bottleneck

212

r\ o r\ hpcviewer: FLASH/white dwarf: Cray XT, weak 2S6->8192

\ amr_set_runtimc_parani...

Else

* \ local_tree_build.F90 S3 "K ; mpi_amr_comm_setup.r90 Q

CaVi MPI„SENDRECV„RtPUCE Clocks, 1 , MPON
i d e s t , rcype,

i s r c , i s r c ,

TEGER,

MPi.COMMJAORLD, s ta tus , i c rc)

Co".] MPI.SENDRECV.REPLACE (> e f u n e , Inblocks. j rax, WPJ
i des t , mype,
i s r c . i s r c .

f '

Calling Context View Callers View FlatView

O 6 ftoWl
Scope ... X scaling loss (15 »

tfPIDI_CRAY_Progress_wait

v VPIC_Sendrecv

IV'PIR_Barrier

e> IW>IR_Allreduce

N'PIDI_CRAY_Alltoall

> N*PIR_Scan

IVPI_Sendrccv_replace

^ mpi_sendrccv_replace_
s <59 local_tree_build_

•S> <53 local_tree_build_

VPIC_Recv

V •... IVPIR_rC_Alltoallviv

7 |yplDI_CRAY_rC_Alltoallv

^ C N'PI_Alltoallv

? mpi_alltoallv_

l> <39 mpi_amr_boundary_block_in!

> VPIJV'aitall

!> v . VPI_Ssend

2 . 7 < J e + C l

i.oie+ea
8.9<3e*CC

l.C6e+CC

€.3Se-C2

2.<i9e-02

S,£2e+C0

8.62e+00

5.73e+CC

2.85e+CC

€.92e+CC

l .£7e+C0

1.57e+CC

l.S7e+CC

l.S7e+CC

l.»7e+CC

1.19e-01

2.31e-C2

61 .1%

3i.es,
2 -,-:-%

3 . 3 %

C . 2 %

o.e%

26.5%

26 . S%

14.53

12.0%

21.2%

<S.8%

iS.6%

<S.S%

<5. 6%

• ' i . £4

0.-1%

0 .1%

.INTEGER,

>

&
&
&

c
& A

& •

« *>

° B

St scaling oss CD

1.36e-01

S.37e-02

S.64e-£2

1.33e~02

- S . 3 1 e - 0 4

6 . 3 1 e - 0 1

S.0£e-C2

£.9Ee-02

3.82e-C2

2 . l € e - 0 2

2 .31e-02

l . e e e - 0 2

l .C£e-02

l .CSe-02

l .CSe-02

l .CSe-02

l .S€e-C3

-S.S2e-C3

CSS. f

0.3%

0.3%

0.0%

0.0%

0.0%

0.2%

0.2%

C. l * .

0 .1%

0 .1%

0.0% !'

0.0%

0. 0%

0.0%

0.0%

0.0%

-0 .0%

Figure 7.15: hpeviewer's Callers view of scaling losses (cycles) for FLASH on a
Cray XT4.

213

http://3i.es

whose severity increases with the number of processors. Fortunately, it has a remedy:

one processor can open the input file and broadcast its contents to the rest of the

processors; this change transforms the operation from 0(p) time to 0(\ogp) time.

Implementing and testing this solution on the Cray XT4 reduced the scaling loss due

to amr_setup_runtime_parameters on 8192 cores to almost zero.

The highlighted line in Figure 7.15 shows one of two call sites for local_t ree_

build. This routine is part of the PARAMESH library [89] used by FLASH. Together,

the function's two call sites account for 26.5% of the scaling losses and 8.62% of

execution time on 8192 processors. This function builds an oct-tree as part of the

structured adaptive mesh refinement. It scales poorly as the number of processors

is increased. local_tree_bui ld uses a communication pattern known as a digital

orrery [14], in which all-to-all communication is implemented by circulating content

from each processor around a ring of all processors. The communication phase takes

0(p) time. By consulting the Calling Context view (not shown) we found that local_

t ree_bui ld is called both within FLASH'S initialization and simulation phases. In

the initialization phase it accounts for 18.5% of the scaling loss; in simulation it

accounts for about 7.9%. We have had preliminary discussions with the FLASH

team about how to improve the scaling of local_tree_build.

Figure 7.15 shows that 21.3% of the scaling loss results from MPI_Recv. Expanding

the subtree rooted at that point, one discovers that almost all of these costs are due

to calls to MPI_AllReduce. 15.5% of the total scaling loss is for MPI_AllReduce calls

that are used to exchange information about blocks to set up communication prior

to guard cell filling and flux conservation. In contrast, the same max reduction on

BG/P accounts for 40.6% of the scaling loss.

214

Summary

In the span of minutes, we have used H P C T O O L K I T to pinpoint and quantify the

scaling losses in each system deriving from just a few crucial call sites. HPCTOOLKIT

enables us to focus on the key areas and ignore the other losses, which are more

finely distributed. Moreover, HPCTOOLKIT obtains accurate call paths and precise

measurements despite several layers of communication library calls for which no source

code is available to application developers. The static program structure information

computed by H P C T O O L K I T even reports inlining within these layers.

7.3.3 MILC

The third application we analyze is a lattice quantum chromodynamics (QCD)

simulation with dynamical Kogut-Susskind fermions from MILC, or MIMD Lattice

Computation package [22]. MILC is a Lattice Quantum Chromodynamics code that is

one of six application benchmarks in a suite used to evaluate bids for an NSF-funded

petascale computer. We performed a weak scaling study by profiling 512-core and

8192-core simulations on both Jaguar (Cray XT4) and Intrepid (IBM Blue Gene/P).

To keep execution time for the scaling study reasonable, we altered the default NSF

problem size by decreasing the number of trajectories. In our scaling study, the input

data and the number of cores are scaled by a factor of 16 so if scaling is ideal we

should expect identical run times and call path profiles for both core counts.

Figures 7.16 and 7.17 respectively focus on the breakdown of execution time and

scaling losses (relative to a 512-core execution) for MILC in an 8192-core execution

on a BG/P. The most time-consuming part of the code is the lattice update. In

Figure 7.16, we can see that this phase accounts for 76.3% of the time on BG/P in an

8192-core execution; in an execution on a Cray XT4, this phase accounted for 83.3%

215

o o o hpcviewer: MILC BC/P 2S6, 512, 8192

"\ makejattice.c T l update.c £3 ™Ŝ control.c "\ update_r

i£ / * r e f r e s h t h e momenta * /
l"i ranmomO;

51 /* do " s t e p s " m i c r o c a n o n i c a l s t e p s " V
i'l f o r (s t e p = l ; s t e p <= s t e p s ; s t ep++){

i 4 # i f d e f PHI_ALGORITHM

X *S

35 / * g e n e r a t e a pseudofer tmon c o n f i g u r a t i o n on ly a t s t a r t * /
ib / * a l s o c l e a r xxx, s i n c e ze ro i s our b e s t guess fo r the s o l u t i o n
il w i th a new random phi f i e l d . * /
iS i f (s t e p = = l) {
i-i c l e a r _ l a t v e c (F.OFFSETfxxxl), EVENANDODD }
4M g r s o u r c e _ i m p (FJ)FFSET(ph i l) , n iass l , EVEN)
41 c l e a r . l a t v e c C F_0FFSET(xxx2), EVENANDODD)
42 g r source_ imp(F_0FFSET(phi2), mass2, EVEN)
43 }
44
4S# i fde f HMC_AtGORITHM

t 'r

**; Calling Context View

]<KH6lbolW1

^J, Callers View J j . Flat View

= a

n
U ;

3 - -
= Q

" 5 A+ A"

Scope ...! 8192 cores
E x p e r i m e n t A g g r e g a t e M e t r i c s

v m a i n

w l o o p a t c o n t r o l . c : 34

w l o o p a t c o n t r o l . c : 34

f l o o p a t c o n t r o l . c : 46

• g> u p d a t e

• l o o p a t u p d a t e . c : 32

• K> u p d a t e _ h

»> B{> k s c o n g r a d

• K> g r s o u r c e _ i m p

• K> g r s o u r c e _ i m p

• @j> k s _ c o n g r a d

• B>> u p d a t e _ u

! • B> u p d a t e _ u

• K> u p d a t e _ u

• E> u p d a t e _ u

• Bi> r e u n i t a r i z c

• gj> r e p h a s c

*• BO r e p h a s e

• BO c l e a r _ l a t v e c

• B!> c i e a r _ l a t v e c

(• g> raninora

&• S> g _ m e a s u r e

t» K> f _ m e a s _ i n p

!S> K> f _ m c a s _ i m p

? g|> r e p h a s c

& g{> r e p h a s e

• |g> r o a d i n

*> | g > m a k e _ i o o p _ t a b l e

• K> s e t u p

7 . 5 7 e + 0 8

7 . 57e+©8

6 . 31e+Q8

6 . 3 1 e + 0 8

6 . 3 1 e * Q 8

5 . 7 8 e * 0 8

5 . 7 7 e + 0 8

4 . 1 5 e * 0 8

5 . 5 0 e + 0 7

4 . 0 S e + Q 7

4 . 0 4 e * 0 7

1 . S 3 e + 0 7

2 . 4 7 e + Q 6

2 . 4 6 c * 0 6

2 . 4 6 e + 0 6

2 . 4 6 e * 0 6

4 . 7 0 e + 0 5

1 . 7 0 e + 0 5

1 . 60O-S-05

l . S 0 e + 0 4

1 . 5 0 e * 0 4

9 . 4 0 e # 0 5

2 . 7 9 e # 0 7

2 . 2 3 e + 0 7

2 . 3 9 e + 0 6

9 . 0 0 e * 0 4

8 . 5 0 e * 0 4

6 . 1 5 e * 0 5

5 . G 0 e + 0 3

1 . 2 6 e + 0 8

(usXD.ir % scaling loss (11..,
100 %

100 %

8 3 . 3 %

8 3 . 3 %

8 3 . 3 %

7 6 . 3 %

7 6 . 2 %

5 4 . 8 %

7 . 3 %

5 .3%

5 . 3 %

2.0%

0 . 3 %

0 . 3 %

0 . 3 %

0 . 3 %

0 . 1 %

0 .0%

0.0%

0 .0%

0.0%

0 . 1 %

3.7%

2 .9%

0 . 3 %

0.0%

0.0%

0 . 1 %

0 .0%

1 6 . 7 %

1 . 3 3 e + 0 1

1 . 8 3 e + 0 1

2 . 8 6 0 + 0 0

2 . 8 5 e + 0 0

2 . 8 5 e + 0 0

1 . 1 3 e + 0 0

1 . 1 3 e + 0 0

6 . 9 3 e - 0 1

1 . 5 8 e - 0 1

1 . 1 2 e - 0 1

9 . 4 4 e - 0 2

7 . 2 0 e - 0 2

6 . 6 0 C - 0 4

6 . 6 0 e - 0 4

6 . 6 0 e - 0 4

6 . 6 0 e - 0 4

1 . 6 5 e + 0 0

6 . 3 4 C - 0 2

8 . 5 a e - 0 3

6 . 6 0 e - 0 4

6 . 6 0 0 - 0 4

1 . 5 5 e + 0 1

100 %

100 %

15 .6%

15 .6%

15 .6%

6 .2%

6.2%

3.8%

0 .9%

0.6%

0 .5%

0.4%

0.0%

0.0%

0.0%

0.0%

9.0%

0 . 3 %

0.0%

0 .0%

0 .0%

8 4 . 4 %

*>
j

i

t

'!

I

:

i

!

!
A ;

TJ

Figure 7.16: hpeviewer's Calling Context view of scaling losses (cycles) for MILC
on a BG/P.

216

n O O hpcviewer: MILC BG/P 256, S12, 8192

T5L roakejattice.c S3 " ^ com_mpi.c ™^ update.c *? lavout_hyper_tstr.„ B

M
35 f o r (t = 0 ; t < n t ; t + 4) f o r (z = 0 j z < n z ; z 4 +) f o r (y = 0 ; y < n y ; y + +) f o r C x = ® ; x < n x ; x 4 +) { J

Ab i f (n o d e _ n u m b e r (x , y , z , t) = = J l Y N Q D E O) {
37 i = n o d e _ i n d e x (x , y , z , t) ;
'i& lattice[i].x=x; lattice[i].y=y; tattuce[i].z=z; latt ice[i].t=t;
'i'i' l o t t i c e [i] . i n d e x = X 4 n x * (y 4 n y * (z + n z * t)) ;
43 u f ((x + y 4 Z 4 t) * 2 == a > i a t t i c e [i] . p a r i t y = E V E N ;
41 e l s e t a t t i c e [i] . p a r i t y ^ O D D ;
4 2 # i f d e f SITERAMD
4;. i n i t i a l i z e _ p r n C & (l a t t i c e [i] . s i t e _ p r n) , i s e e d , l a t t i c e [i] . i n d e x) ;
4 4 # e n d i f
41;, J

0

% Calling Context View | ̂ Callers View [}%, Flat View |

J <h -> !6«Ml l t i 1 lS^* -
Scope

Experiment Aggregate Metrics

v main

T g*> setup

W g{>ma3ce_lattice

w loop at make_lat t ice.ci

6*. g*» mynode

g> g{> nodo_riumber

ma3ce_lattice.cj 35

ma3ie_lattice.Ci 36

iriaStc_lattice.ct 37

[9> EO in i t i a l i z e_p rn

$> g{> node_index

k> g*> libc_malloc

^ gj> libc_malloc

&> gj> ma3te_nn_gathers

£> in l incd from setup.cr 292

£> g{> phaseset

g> loop at cont ro l .c t 34

3S

... 8192 cores (
7.S7O+08

7.S?e*0S

1.26e*08

l,.23e*0S

1.23O+08

6,90e+07

S.02e+07

1.880*06

1.700*06

6.000*05

l .S0e+04

S.OOe+03

S.Q0e*03

2.06O+06

7.00e*0S

l.SQe+04

6.31e*08

JS) ())...
100 *

100 *

16.7%

16 .3*

16.3%

9 . 1 *
6.6*

0 .2*

0 .2*

0 . 1 *

0 .0*

0 .0*

0 .0*

0 . 3 *

0 . 1 *
0 .0*

8 3 . 3 *

% scaling loss t\).f,
1.830*01 100 *

1.830*01

l .SSe+01

1.S3O+01

l .S3e+01

8.S0O+00

6.26O+00

2.32O-01

2.07O-01

7.46e-Q2

•6.60O-04

•6.60O-04

6.600-04

1.76O-01

6.60O-03

2.860*00

100 %

84 .4*

83 .4* 1

83 .4*

46 .4*

34 .2*

1.3*

1 .1*

0 .4*

0 .0*

0 .0% I
0 .0*

1.0*

0 .0*

15 .6*

«*

1 A i
• i

i

1
Figure 7.17: A closer look at scaling losses for MILC on a BG/P.

217

of the execution time. Within the update phase, execution time is distributed among

routines called from the loop on line 32 in update and routines they call.

The total inclusive scaling loss for the application is shown in the yellow high

lighted line as a percentage written in scientific notation. As shown in both figures,

MILC has 18.3% total scaling loss on a BG/P. The lattice update phase scales rela

tively well and only has a 6.2% scaling loss. Most of the scaling losses in the update

phase are due to waiting for scatter-gather communication to complete. For the short

execution studied, Figure 7.17 shows that MILC's setup phase accounts for most of

the scaling losses.

In Figure 7.17, the highlighted loop on line 35 in make_lattice accounts for 83.4%

of the scaling loss and 16.3% of the run time. The reason that this loop causes a scaling

loss is that it initializes local data for an MPI process by having each processor iterate

over the entire lattice (all possible x, y, z, and t values), test each lattice point to

see if it belongs to the current process, and then perform initialization only when the

test succeeds. To avoid this kind of scaling loss, the application would need to be

reworked to iterate only over a process's local lattice points rather than over the entire

domain. Without a deeper understanding of the application, it is unclear whether

this is feasible. Furthermore, it is not clear that losses due to initialization will be

significant for production executions. The point of this example is not to focus on a

shortcoming of the MILC code; rather, it is to show that HPCTOOLKIT is capable of

pinpointing and quantifying losses of this nature. Scaling losses need not be caused

by communication.

218

7.4 Related Work

Most studies of application scaling on petascale systems have relied on man

ual analysis rather than sophisticated performance tools to understand scalabil

ity [4-6,72]. Usually the analysis consists of (1) measuring key system performance

characteristics using micro-benchmarks; (2) isolating scaling bottlenecks by creating

scaling curves for different phases or procedures within the application; and (3) de

termining causes of bottlenecks by comparing an application's expected performance

with its actual performance. Oliker et al. performed an early and insightful evaluation

of application scaling on candidate petascale systems [111]. Even though they invested

considerable effort in manual analysis, they had difficulty pinpointing and quantify

ing bottlenecks, and were only able to offer educated guesses such as "[the scalability

loss] is probably due to the increase in [Allreduce operations]." H P C T O O L K I T could

could directly pinpoint which operations were problematic and quantify the scaling

loss for each. While the focus of these prior studies was to characterize system per

formance rather than advocate a method for pinpointing scaling bottlenecks, it was

still necessary to understand such bottlenecks as part of their work.

Current performance tools for petascale systems identify scaling bottlenecks at

the procedure level at best. The most important reason for this is that it is not

feasible to make fine-grained measurements using instrumentation. Moreover, most

of these tools require additional effort to analyze scaling. For example, Wright et

al. used IPM [131] to distinguish between scaling bottlenecks in the communication

or computation portions of an application [152]. To achieve low overhead (< 5%),

they collected profiles of instrumented MPI routines. These coarse measurements —

only at the (MPI) procedure level, and without calling context — resulted in two

deficiencies. First, because the application's computational component was not di-

219

rectly measured, the authors had to manually correct for communication-computation

overlap to understand computational scaling. Second, to achieve further insight, the

authors supplemented the measurements with labor-intensive analytical analysis.

mpiP [149] synchronously monitors MPI routines and collects a stack trace for each

call. It qualitatively evaluates MPI scaling problems by using a rank-based correlation

strategy. Because of this selective instrumentation, it incurs low overhead. However,

it misses scaling problems in computational and non-MPI code.

Although other tools measure more comprehensively than IPM and mpiP, their

measurements are still relatively coarse, typically at the procedure level. For example,

tools such as TAU [90,129], SCALASCA [151,154], Cray's CrayPAT [48] and IBM's

HPC Toolkit [74] collect the calling context of procedures rather than of statements.

Because these tools collect calling context information using procedure-level instru

mentation, their measurements are subject to distortion from measurement overhead

associated with small procedures. By using asynchronous sampling, H P C T O O L K I T

is able to attribute costs to their full static and dynamic context with overhead of

only a few percent [141], which in most cases is significantly less than procedure-level

instrumentation [60]. HPCTOOLKIT has the ability to collect the full calling con

text of any sample point, even exposing layers of calls in communication and math

libraries for which source code is unavailable.

H P C T O O L K I T ' S approach to computing scalability losses is similar to differential

profiling support in other systems, e.g. [133]. However H P C T O O L K I T is unique in

its capability to attribute scalability losses to their full calling context, including

inlined functions, loops and even individual statements. Furthermore, by providing

Calling Context (top-down), Callers (bottom-up), and Flat views of scalability losses

in context, HPCTOOLKIT offers several different ways of analyzing the data. Different

220

views provide different perspectives on bottlenecks that can make them easier to

understand.

Although application traces can be very valuable (e.g., for identifying load imbal

ance), the volume of trace information makes scaling difficult. SCALASCA [154] se

lectively traces based on information from a prior profile. Others have explored (man

ual) selective tracing based on application characteristics [39]. Gamblin et al. have

explored techniques for dynamically reducing the volume of trace information [63,64].

They report impressively low overheads, but they also, in part, use selective instru

mentation that results in coarse measurements.

The STAT tool has been used on BG/L to sample call paths to aid parallel de

bugging at scale [83]. This tool uses third-party sampling mechanism that relies on

daemons, running on I/O nodes, to periodically collect trace samples. In contrast,

we use first-party sampling (in which the application samples itself), which requires

no communication and permits much higher sampling rates.

7.5 Discussion

The key metric for parallel performance is scalability, either weak or strong. This

is especially true at the petascale. Consequently, there is an acute need for application

scientists to understand and address scaling bottlenecks in codes targeted for petascale

systems. We have shown that it is possible, for minimal overhead, to pinpoint and

quantify scaling bottlenecks on petascale systems to source code lines, in their full

static and dynamic context using H P C T O O L K I T . The analysis is rapid and its results

are actionable.

Our results depend upon (1) accurate and precise asynchronous-sampling-based

call path profiles — a form of measurement that until now has been unavailable on

221

petascale systems; and (2) scalable analysis and presentation of those call path pro

files. These two things enable us to apply Coarfa et al.'s powerful and elegant method

for rapidly pinpointing and quantifying scaling bottlenecks [41] to emerging petascale

applications. Past scaling analyses for petascale systems are either laborious, inaccu

rate (with respect to measurement), imprecise (with respect to bottleneck detection),

or, in the case of the analysis we adopted, relied on tools that did not yet exist (i.e.,

tools for scalably analyzing and presenting asynchronous-sampling-based call path

profiles).

It is a truism that a microkernel for a petascale platform should include what is

necessary but dispense with excess: "just enough, but not too much!" The difficulty is

in deciding what actually is necessary. We believe our results provide strong evidence

that asynchronous-sampling-based performance analysis is so useful on these systems,

that future microkernels for large-scale parallel systems should find a way to support

it. Because petascale systems are designed for performance, it makes little sense to

invest in computing resources that are powerful on paper but that cannot be exploited

in practice.

H P C T O O L K I T ' S support for sample-based performance analysis can provide in

sight into scalability and performance problems both within and across nodes. Gain

ing insight into node performance bottlenecks on large-scale parallel systems is a

problem of growing importance. Today, parallel systems typically have between 4-

16 cores per node. In emerging systems, we expect the core count per node to be

higher. By sampling on hardware performance counters, one can distinguish between

node performance bottlenecks caused by a variety of factors including inadequate

instruction-level parallelism, memory latency, memory bandwidth, and contention.

In the near future, we plan to address a likely impediment to measuring full-

system executions on petascale platforms. The file systems on petascale machines

222

usually restrict the number of files per directory to less than the potential number

of cores, which means that H P C T O O L K I T cannot open one file per thread to record

its profiling data. We plan to address this by using a parallel I/O library such as

SIONlib [59]. We also plan to rework H P C T O O L K I T ' S presentation tool to provide

not only summary statistics for overall system performance, but also to preserve the

ability to drill down into the details of performance on individual nodes. This will

require managing thread-level metric data out-of-core.

223

Chapter 8

Conclusions

We claimed that it was possible to achieve unique, accurate, and actionable in

sight into the performance of fully optimized parallel programs by (1) measuring

them with asynchronous-sampling-based call path profiles; (2) attributing the result

ing binary-level measurements to source code structure; (3) analyzing measurements

on-the-fiy and post-mortem to highlight performance inefficiencies; and (4) presenting

the resulting context-sensitive metrics in three complementary views. By actionable

insight, we meant insight into an application's performance that justifies concrete

actions such as determining how to resolve a performance bottleneck or deciding that

there are no significant and worthwhile opportunities for performance improvement.

To support this claim, we described several techniques for pinpointing performance

problems in fully optimized serial, multithreaded and petascale programs. First, we

provided a coherent framework for these techniques by sketching a unique and com

prehensive performance analysis methodology. Second, we described the process of

attributing very precise (instruction-level) measurements to full source-level static

and dynamic calling contexts in two important execution environments — fully opti

mized applications and work-stealing run times — all for a run-time overhead of less

than a few percent. Third, we described techniques for pinpointing and quantifying

parallel inefficiencies such as parallel idleness, parallel overhead and lock contention in

multithreaded executions. Finally, we showed how to diagnose scalability bottlenecks

224

in petascale applications by scaling our measurement, analysis and presentation tools

to support large-scale executions.

Measurement. Our work has striven to provide novel and actionable insight into

the performance of parallel programs. To enable such insight, we have argued that it

is essential to focus on accurate and precise performance measurements, because with

out such measurements analysis is unproductive. However, there is a natural tension

between accuracy and precision: more precise measurements usually generate more

overhead; and high overhead nearly always translates into high distortion and less

accuracy. We observed that this trade-off is particularly acute for instrumentation-

based strategies. For example, the dynamic-binary-instrumentation-based tool within

Intel's Performance Tuning Utility toolkit collects less precise information than HPC-

TOOLKIT but for an average overhead of over 400% on the SPEC 2006 integer bench

marks. We also noted that source code instrumentation, even when inducing low

overhead through low precision, can introduce unintended blind spots that can ob

scure problems and interfere with compiler optimizations. Consequently, we grounded

our work upon asynchronous-sampling-based measurement with controllable sampling

rates.

To provide a theoretical foundation for our work, Appendix A shows how sampling-

based measurement relates to standard statistical theory. We derive a simple formula

to compute bounds for the measurement error within any particular code context

and provided guidelines for choosing reasonable sampling periods. With reasonable

sample periods, important regions of code receive enough samples to yield tight error

bounds. For instance, it only takes 20 samples within a context over the course of an

execution to obtain an error bound of ±5% for the cost of that context.

225

Because contextual measurements are often necessary for actionable insight into

modular programs and because we are interested in the performance of real applica

tions, we developed techniques for enabling asynchronous-sampling-based call path

profiling on fully optimized parallel programs. Achieving both highly accurate and

highly precise measurements for fully optimized binaries is a challenging problem.

Nevertheless, by using novel on-the-fly binary analysis to enable stack unwinding,

we demonstrated a capable call stack unwinder for fully optimized applications that

induced average run-time overheads of 1-2%.

Thus, we have shown that it is possible to obtain highly precise call path profiles —

statements in their full static and dynamic context — for very low overhead. Without

extenuating circumstances, low overhead results in low distortion. For this reason, we

argue that our techniques enable both highly accurate and highly precise contextual

measurement. Our work shows that asynchronous sampling is an extremely useful

measurement technique that can significantly mitigate the inelastic tension between

accuracy and precision that instrumentation-based measurement approaches face.

To obtain the same quality of measurements for Cilk computations as we obtained

for standard C, C++ and Fortran applications, we generalized call path profiling to

recover logical call paths. We showed how to use logical call path profiling to relate

an execution of a work-stealing-based multithreaded program back to its source-level

representation. Although we focused on Cilk, logical call path profiling is applicable to

any execution model for which native stack frames cannot serve as a proxy for a source-

level call path. Such measurement capability will become imperative as programming

models based on managed dynamic parallelism become more widespread.

Attribution. Once accurate measurements have been obtained, it is necessary to

attribute them to source code. We desired an effective mechanism for projecting

226

measurements at the level of machine code to higher levels of abstraction. Because

we could not rely on standard compiler-generated information, we developed a binary

analysis tool to recover static program structure directly from an application's binary.

With this mapping from object code to source code, we correlated call path profiles to

source code and enriched procedure instances with static context such as loop nests

and inlined procedure instances. Because this process occurs post-mortem, it induces

no run-time overhead.

Our binary analyses for enabling call path profiling and for recovering program

structure uniquely complement asynchronous-sampling-based profiling of fully opti

mized binaries. Asynchronous-sampling-based profiling naturally observes any por

tion of the (user-level) execution. Indeed, this very property made unwinding diffi

cult, motivating our binary analysis for stack unwinding. By joining both of these

binary analyses with sampling-based profiling, we have demonstrated the ability to

observe the behavior of vendor-only math and communication libraries and important

compiler-inserted copy loops, in their full calling context. In other words, we have

been able to measure what actually executes — as opposed to what one might assume

executes given source code — and have then correlated those binary-level execution

details as much as possible with source code structure.

Analysis & Presentation. To effectively understand the performance of multi

threaded and petascale executions, we grounded our analysis and presentation upon

our call path profiling technology.

For multithreaded applications, we focused on developing techniques for what

we call blame shifting. That is, rather than pinpointing source-level contexts that

simply exhibit parallel idleness (victims), we identified those that are responsible for

causing it (perpetrators). We showed how to quantify and pinpoint idleness blame for

227

applications based on both work-stealing and locks. We also showed how to quantify

and pinpoint parallel overhead using a post-mortem analysis that induces no run-time

overhead. For work-stealing-based applications, we showed that attributing parallel

idleness and overhead to logical calling contexts enables one to quickly obtain unique

insight into the run-time performance of Cilk programs. Our techniques demonstrated

the importance of third-party metrics, i.e., metrics that reflect information about the

execution state of other threads. To maintain the integrity of our measurements,

we developed techniques that did not cause HPCTOOLKIT itself to become a non-

negligible source of contention and overhead.

For petascale executions, we showed how to apply the powerful technique of dif

ferencing call path profiles to petascale applications. Doing this required solving two

problems. First, we demonstrated the ability to collect asynchronous-sampling-based

call path profiles on petascale architectures. Second, we showed how to scalably an

alyze and present H P C T O O L K I T ' S performance data. We argued that our results

provide a compelling argument that because sampling-based measurement is so use

ful, petascale microkernels should support it.

Actionable Insight. We claim that these measurement, attribution, analysis, and

presentation techniques result in novel and actionable insight into the performance of

real-world applications executing on real architectures. With respect to applications,

we have demonstrated insight across several different parallel programming models

such as explicit threading (Pthreads), work stealing (Cilk), and distributed-memofy

Single Program Multiple Data (MPI). Moreover, we have focused on techniques that

obtain precise measurements, incur low overhead, and which usually result in very

high accuracy, even on fully optimized unmodified applications. With respect to

architectures, we have developed techniques that can be applied to both multicore

228

and petascale platforms. The fact that there are significant differences between these

applications and architectures shows that our work has broad application.

Our techniques apply not only to current programming models but should adapt

to the more dynamic models of parallelism that will likely become dominant in the

future. For example, besides developing techniques for pinpointing parallel idleness

in applications that use locks, we also targeted high-level programming models based

on work stealing, an influential and practical dynamic scheduler.

Influence. Although H P C T O O L K I T is an academic research project, it has been

the recipient of growing interest and use by research groups, national labs and even

industry. This is in large part due to the publication and dissemination of the various

results described in this dissertation. Given the wide availability of other tools, both

vendor-supplied and open source, this usage provides evidence that we are achieving

our goal of providing unique and actionable insight.

For instance, within industry, the French computer company Bull is now shipping

H P C T O O L K I T as part of its software stack [30]. Samara Technology Group, like

SiCortex before it, has adopted H P C T O O L K I T as part of its core performance tool

stack [108]. A group within IBM is currently evaluating HPCTOOLKIT and, through

personal communication, has provided very positive reviews. A group within West-

ernGeco (a division of Schlumberger) has used HPCTOOLKIT to assess the perfor

mance of their proprietary software for analyzing seismic waves. They, also, through

personal communication, were impressed with its feedback.

H P C T O O L K I T is being actively used in other research projects. Researchers at

the University of Texas are using H P C T O O L K I T ' S performance data as input to

an expert system that automatically diagnoses performance bottlenecks [31]. Rice

University's Platform-Aware Compilation Environment (PACE) project [121] is using

229

H P C T O O L K I T ' S performance data for automatically partitioning application source

code and for feedback-directed optimization.

The H P C T O O L K I T group has recently helped train HPC application scientists,

both from national labs and from industry, in analyzing their applications using H P C

TOOLKIT. Examples of workshops include the 2009 Rice HPC Summer Institute [120],

the 2009 CScADS Workshop on Leadership-class Machines, Petascale Applications,

and Performance Strategies [35], and a 2010 workshop at Argonne National Labo

ratory [15]. The comments of a participant of this last workshop illustrate positive

reception to the work we described in Chapters 3 and 7. This participant, a researcher

in the area of computational molecular dynamics, commented that the overhead of

H P C T O O L K I T was very low. When asked how he knew, he responded that he saw no

noticeable difference between a monitored and unmonitored run of his application.

He added that he had been using a well-known instrumentation-based tool. With

that tool, he had seen overheads of about 1000%. When he had tried to reduce this

overhead by using selective instrumentation and throttling, he had found it to be

labor intensive and ineffective.

In addition, the HPCTOOLKIT group has recently been in contact with repre

sentatives from the National Renewable Energy Laboratory, STFC Daresbury Lab

oratory (UK) and the Swiss National Supercomputing Centre, among others. The

University of Texas has independently included HPCTOOLKIT in one of its own

workshops [146].

Looking Forward. To obtain actionable insight into an application's performance,

we have striven to make accurate and precise measurements. It is difficult to overesti

mate the importance of such measurements for systems that depend on performance

analysis. For instance, accurate and detailed measurements are prerequisites for both

230

successful feedback-directed optimization and automatic performance tuning. Sim

ilarly, although modeling can be extremely useful for performance prediction, it is

necessary to validate a model's accuracy at small and large scales. Accurate fine-

grain measurement provides this capability.

Despite the foundational nature of accurate and precise measurements, there is

still a large and important gap that must be bridged to realize the goal of making

performance tools widely useful to those who are not performance analysis experts.

From the perspective of an application scientist, obtaining actionable performance

insight currently requires wielding performance tools with expert control. We believe

there are many ways to reduce the effort of performance analysis and tuning. We

briefly discuss some ideas and open problems within the context of two very broad

categories.

The first broad category is that of automatically presenting an insightful descrip

tion of an execution's performance. Although our present work has fallen exclusively

into this category, there are still many ways in which H P C T O O L K I T is insufficient

for making insightful high-level conclusions. One important area that our work does

not address is transient behavior. To achieve low-overhead measurement, we have

exclusively focused on profiling-based measurements — precisely because call path

profiles do not grow with time but only with the number of unique contexts that a

sample reveals. However, in large-scale parallel applications, some scalability prob

lems are related to patterns of waiting that are not readily distinguishable with only

a profile. To distinguish between different types of temporal bottlenecks, it is nec

essary to incorporate time into H P C T O O L K I T ' S measurements. One approach we

are investigating is collecting asynchronous-sampling-based call path traces [1]. To

collect such a trace, one simply maintains both a calling context tree and a series

of small (12 bytes) time-stamped records representing samples. We expect this to

231

enable H P C T O O L K I T to collect extremely rich trace information at large scales for

much less overhead than instrumentation-based approaches.

Scale introduces many challenging problems. As a simple example, to scale HPC-

TOOLKIT'S measurement ability to hundreds of thousands of cores, it will be neces

sary to write profiles using a parallel I/O library such as SIONlib [59]. As another, to

effectively present performance data, it will be necessary to develop ways to insight

fully present more data than fits on computer displays. Currently, we are reworking

H P C T O O L K I T ' S presentation tool to provide not only summary statistics for overall

system performance, but also to preserve the ability to drill down into the details of

performance on individual nodes. In addition, very large-scale executions will proba

bly cause problems for the sampling-based tracing described above. To address this,

it will almost certainly be necessary to find ways to effectively compress temporal

measurements. We expect that to effectively analyze the performance of very large-

scale executions, tools will need to exploit statistical techniques more thoroughly.

One possible approach is to employ statistical sampling at several levels instead of

just within a thread.

Another challenge to automatically describing an execution's performance is that

of node-level architecture. Multicore processors share many resources. For instance,

most contemporary processors share at least one level of cache and a memory con

troller; some use hardware multithreading to share pipeline resources and hide latency;

and a BlueGene/P chip contains shared network controllers. With shared caches and

network controllers, assigning blame for resource contention difficult. For instance,

frequent demand for a shared L3 cache by one thread may cause idling in another

thread — a thread that might not be idling if located on another socket. With hard

ware multithreading, all functional units can be operating at peak efficiency even

232

though one thread is stalled. In other words, certain types of contention may not be

a problem!

Recently, there has been a surge of interest in heterogeneous architectures, pri

marily as a way to improve a node's performance per watt. With NVIDIA's recent

introduction of Fermi, much more attention has focused on general purpose GPUs.

With improved double-precision floating point support and ECC memory, Fermi ad

dresses many of the drawbacks of prior GPU accelerators [110]. We are exploring

ways to extend H P C T O O L K I T ' S performance analysis to cover applications that use

GPU accelerators.

Whereas the first set of open problems related to automatically describing a com

plete picture of an execution's performance, the second broad category is that of

translating this basically descriptive information into prescriptive recommendations.

In other words, if this dissertation has primarily focused on obtaining insight, then

we would like to develop techniques that move toward automatically applying that

insight. As an example, we would like a tool to highlight an important bottleneck and

provide an explicit and targeted list of suggestions for resolving it. Such functionality

is exactly what is needed to enable average developers to resolve most bottlenecks

without the assistance of an expert performance analyst.

With the microprocessor industry's increasing reliance on parallel architectures,

performance analysis is becoming more important outside the realm of high perfor

mance computing. Since processor-core clocks are not becoming appreciably faster

— and even slowing — there are essentially two ways to improve an application's

performance: create additional parallelism and optimize serial code regions. Both

ways currently require manual performance tuning. This dissertation advances the

performance analysis state-of-the-art to support both of these activities.

233

Appendix A

Theory of Sampling-Based Measurement

Since the the act of measuring an application's performance usually interferes

with its execution and since interference usually distorts measurements, it is critical

to minimize measurement interference. When instrumentation is applied to frequently

executed program constructs, it often induces a proportionally large amount of over

head. In contrast, the overhead of sampling is proportional to the sampling frequency

and not to execution frequency. Because overhead is nearly always combined with

distortion, our methodology uses sampling to minimize measurement overhead.

This appendix, which especially complements Chapter 2, develops a foundation

for our methodology by relating sampling-based measurement to statistical theory. In

particular, it formalizes the concept of a profile gathered using statistical sampling.

It also provides more than an intuitive justification for the claim that in most cases,

sampling-based measurement can yield both high accuracy and precision.

The intention of this appendix is to set the practice of sampling-based measure

ment in an appropriate theoretical context. Consequently, it merely summarizes some

complicating details of current hardware. For instance, one issue that often arises in

current practice is the imprecision of hardware that assists in collecting sampling-

based measurements. Therefore, a valuable question to ask is, given a particular

set of hardware characteristics, can we make precise statements about the expected

result or error of projecting low-level measurements to higher levels of source-level ab-

234

straction? This appendix leaves these questions to future work. However, it is worth

noting that because there are commercial hardware solutions for the most important

aspects of this imprecision, there is a possibility that the practical importance of these

open questions will diminish in the future.

A.l A Sampling-based Measurement Strategy

Perhaps the most well-known use of statistical sampling is for surveys and opin

ion polling. In this context, sampling is used to estimate general characteristics of a

population from a small sample. The primary motivation for sampling is usually that

working with a small sample is much less costly and time-consuming than canvassing

an entire population. One difference between surveys and program measurement is

that in the latter, measurement directly and immediately changes the target popula

tion by interrupting program execution and thereby increasing execution time.1 We

hope to use sampling to interrupt a program relatively infrequently and to collect a

relatively samll amount of representative data.

We state our goal precisely as follows. Given program thread P with input / , use

statistical sampling to estimate resource metrics for resource R over the important

static and dynamic calling contexts of P's execution. We will focus on profiling, but

our discussion also applies to sampling-based tracing.

Sampling theory is concerned with describing how well a sample characterizes

the population from which it was drawn. Therefore, we first define two relevant

populations:

• VR: X\,X2, • • • ,XNR. Given a resource R, this population represents monoton-

ically increasing values for R, quantized into discrete units, where each unit is

1 Opinion surveyors using tendentious questions may also wish to nudge a respondent's opinions,
but this seems to be less direct and immediate.

235

1R. For instance, the population 1,2,3,4,5 could represent an execution that

consumes 5 units of resource R. This population is finite but NR cannot be

known until P's execution completes.

• Vp: yi,V2, • • • ,UN- This population represents the consumption of resource

R for each instruction in the (dynamic) instruction stream of P's execution.

Thus, yj gives the the number of units of R that the j t h instruction in the

dynamic stream consumes. For example, the population 0, 4,1 could represent

an execution of three instructions that consumes a total of 5 units of resource

R. This population is finite but cannot be known until after P's execution.

This population is stratified by dynamic calling context. Thus, each yj G Vp

belongs to exactly one dynamic calling context given by C(j). At times, it will

be useful to speak only of the instruction instance indices within Vp. We can

think of this as a projection and represent it as Vp\x-

Now, based on these populations, we define metric values for resource R over P's

execution. Let Y be the total resource usage of R during P's execution. We have

N

3=1

where each yj is from population Vp. To define total resource usage Yc for any context

c during P's execution, we let yc = {yj\C(j) = c}. Then,

yjSyc

We can now restate our goal more precisely, which is to derive an estimator Yc of

the actual resource metric total Yc for any given static or dynamic context c that is

part of P's execution. To compute these estimates, we need a sample of population

236

Vp. We can obtain this sample in two ways. The first is to directly obtain a sample

using instruction-based sampling. The second is to indirectly obtain a sample by

using event-based sampling of VR and then mapping that to population Vp.

A.1.1 Instruction-based sampling

To use instruction-based sampling, we systematically sample population Vp with

period p to obtain a simple random sample. We pick a random starting point yi

(where 1 < i < p) and then select every pth item thereafter to obtain the sample

y = {Vii Vi+pi Ui+2P, • • •, Vn}, where subscripts are relative to population Vp. Assume

that there is no correlation between the sample period p and the sample points within

population Vp. Since each sampled instruction tracks resource usage of the sampled

instruction j , we can directly compute its consumption yj. To obtain an estimate Y

for the total resource consumption Y of the program, we sum every yj in the sample

y, and scale the result by p, the ratio of unsampled to sampled instruction instances:

Y^pJ^yj (A.1)

Similarly, to estimate Yc for a given program context c, we let yc refer to all the yj in

context c, sum the result, and scale by p:

Yc=pJ2 Vj (A.2)
2/j-eyc

For small contexts, p may not be an accurate estimate of the ratio of unsampled

to sampled instruction instances. We will address the concern in more detail in the

context of event-based sampling.

237

A.1.2 Event-based sampling

For event-based sampling, we first systematically sample population VR with pe

riod p to obtain a simple random sample. We pick a random starting point Xi

(where 1 < % < p) and then select every pth item thereafter to obtain the sample

Xi, Xi+P, Xi+2P, • • •, xnR, where subscripts are relative to population VR. Observe that

nR = i + (n — l)p < NR, where n is the number of samples.

To obtain a sample of population Vp, we rely on a mapping M. : VR I—> Vp\x that

associates any given member of population VR with its corresponding instruction

instance in Vp. Thus, for each x^ in the sample, we obtain a corresponding yj E

VP such that Mfa) = j . This yields a sample y = {yM{kxi),yM{xi+v), • • • ,VM{xnR)}

of population Vp, where subscripts are relative to Vp. Assume that there is no

correlation between the sample period p and the sample points within population

VP.

The next step is to define the value of each yj in the sample y. In theory, with

a very precise and exhaustive mapping M. we could obtain a very precise value for

each yj, as with instruction-based sampling. For example, given any yj E Vp, we

would precisely know the set of resource units Xj that were consumed during the

execution of instruction instance j : Xj = {xi\M.{xi) — j}. Then, to compute the

value yj — the total number of resource units consumed during instruction instance

j's execution — we say yj = (max(xj) — min(xj)) + 1^, where 1R represents 1 unit

of resource R. However, this is not practical because it would require that some

combination of hardware and software ensure that M. is exhaustive. Consequently,

we use the sampling period p as an estimator for the value of each yj in the sample

y. That is, when we sample population VR and use the mapping M. to obtain the

associated instruction instance j , we assign p units of resource R to yj. This results

in the following resource metric total estimator Y for the sample y with n sample

238

points:

n n

Similarly, the estimator Yc for context c is

nc nc

Yc= J2yj = J2p=pYl1=pnc (A-4)
yjtyc i i

where yc = {yj\C(yj) = c} represents the sample points in context c and nc = |yc|.

It may initially appear that this estimator is inaccurate because any given instruc

tion may not have consumed p units of the resource under consideration. Although

this may be true at the precision of an instruction, recall that our primary goal is ob

taining an accurate estimator Yc for the resource metric total Yc of a program context

c, where c is a statement, loop or procedure in its calling context. In addition, we are

usually interested in aggregating multiple instances of the same context to create a

profile, which naturally tends to improve the estimator Yc. Finally, although we defer

the details to Section A.2, we can regard p as yielding an unbiased estimator, which

means that there is no difference between the expected value of the estimator Yc and

the value of Yc (the value being estimated).

A.1.3 Practical considerations

In practice, although there is currently little support for instruction-based sam

pling, most microprocessors and operating systems support thread-level event-based

sampling. In particular, the performance monitoring unit (PMU) for most micro

processors of interest is powerful enough to measure a wide range of resources at

the thread level and to generate interrupts. To use a typical microprocessor's PMU

239

to collect an event-based sample, we program the PMU to monitor resource R and

generate a per-thread sampling interrupt with period p.2 When a sampling interrupt

is generated, the PMU associates it with an instruction in the executing program.

Thus, the PMU implements the mapping M. relating VR and Vp\%-

Unfortunately, this mapping Ai is often imprecise because of the difficulty of

pinpointing the instruction that consumed the pth resource unit in the context of

superscalar, out-of-order, pipelined execution. This effect is called PMU skid. Our

methodology effectively copes with skid by aggregating metrics at the loop and pro

cedure level, where the effects of imprecision are minimal. For instance consider an

out-of-order pipeline, the source of most of these troubles. As long the number of

instructions in the pipeline's reorder buffer is small compared to the total number of

instruction instances in the loop is small (the number of loop iterations multiplied by

the static instruction count), loop-level attribution is very precise. We can be more

precise if we have a distribution that models the PMU's skid. In this case we can

compare the expected value of the PMU's skid with the total number of instruction

instances in the loop.

Some PMU designs have attempted to address the problem of imprecise map

pings. For instance, some PMUs support precise attribution, though with important

caveats [135]. Others have used instruction-based sampling, where the PMU directly

associates a sampled instruction j with its resource usage yj [47, 54]. We welcome

these improved designs, but currently cannot rely on their wide availability.

One potential problem of systematic sampling is that a correlation may exist be

tween the sample period and the sample points of population Vp. For example, when

sampling cycles with period p, it may be the case that a loop has a trip count of p

2Note that it may not be possible to measure all resources at the thread level; notable examples
of this in recent multicore processors are 'uncore' events that monitor shared chip-level resources.

240

cycles. In this case, the sample can no longer be considered a simple random sample.

Fortunately, in practice this is a minor concern. The complexity of binary code (be

cause of compiler optimizations), operating systems, and of architectures (because of

superscalar, out-of-order, pipelined execution) makes it difficult to establish extensive

periodic behavior. Moreover, randomizing the period's low order bits both makes cor

relations extremely unlikely and has negligible effect on the quality of the estimators

Y and Yc.

A.2 Analyzing the Strategy

We would like to answer several questions about this strategy. For a given program

context c, how accurate is the estimator Ycl How many samples does one need in

context c to provide a certain confidence in the value of Ycl How does one select a

good sample period? In answering these questions, we focus on event-based sampling

because it is so dominant, though the results naturally extend to instruction-based

sampling.

Our analysis is related to the method used to estimate totals over subpopulations

when neither the resource metric total Y = NR nor the actual number of instruction

instances Nc in context c is known [42, §2.13]; cf. [42, §8.12, §5A.14]. However, we

have adapted several aspects of it to the particulars of using sampling to gather

performance profiles.

We emphasize again that our intention here is to set the practice of sampling-based

measurement in an appropriate theoretical context, though we comment on how this

analysis can be appropriately extended to account for things like PMU skid.

241

%i X. i+p X. i+2p

P 2p 3p

%i+(n—l)p

(n - \)p Y

Figure A. l : A systematic sample drawn from resource population VR using period
p, where sample points are represented with bullets (•).

A.2.1 Error bounds for Yc

Recall that when taking a systematic sample of population VR using period p,

we pick a random starting point Xi (where 1 < i < p) to obtain the simple random

sample Xj, Xi+P, %i+2p, • • • > XnR, where nR = i+(n — l)p and n is the number of samples.

While we cannot initialize a sample source exactly as the program begins execution,

initialization occurs early enough during process initialization that bounding % by

1 < i < p is a good estimate. Assume n > 1. Figure A.l represents such a sample of

a population VR for resource R. At the start of the execution, 0 units of resource R

have been consumed; at the end, the total is Y = NR. Consequently, we have

Y = i + (n-l)p + j = NR where 1 < i < p and 0 < j < p. (A.5)

Assuming that samples can be handled instantaneously, the sample period p divides

the entire execution into n regions, where the first n — 1 regions are of size p and the

last region is of size i + j .

Although the assumption of instantaneous handling of a sample may sound un

realistic, it is often reasonable in practice. This may be seen in two ways. First, by

using reasonable sampling periods such as hundreds to thousands of samples/second,

242

the overhead of profiling is extremely low (a few percent). In comparison, the Digital

Continuous Profiling Infrastructure, which collected (system-wide) flat profiles, sam

pled at a rate of 5200 samples/second for an overhead of 0.5-3.0% [10]. Second, it is

possible to self-correct for most of the resources consumed while processing a sample

by resetting the sample source just before the sample handler returns control to the

application thread.3

From Equation A.3, we know that the total estimator for Y is Y = pn. Rearrang

ing Equation A.5, we obtain:

Y = pn + (i + j - p) = Y + (i + j - p) (A.6)

Clearly, if n is large, then Y ^> (i + j' — p) and the estimator Y is very good.

To derive error bounds for estimator Y, we use Equation A.6 to compute the

minimum and maximum values of Y with respect to Y and period p:

Ymin=pn-(p-l) = Y-(p-l) i = l and j = 0 (A.7)

y"max = pn + (p - 1) = Y + {p - 1) % = p and j = p - 1 (A.8)

Joining Equations A.7 and A.8 yields the following bounds for Y in terms of Y and

p:

Y - {p - 1) < Y < Y + (p - 1) (A.9)

This result says that given the total estimator Y and period p, we can compute

an upper and lower bound for the actual total Y. An alternative way to derive

3Of course, processing a sample will have some side effects, such as a certain amount of cache
pollution. We have attempted to minimize these effects in H P C T O O L K I T .

243

Equation A.9 is to observe that by the pigeonhole principle, there cannot be more

than p — 1 resource units before the first sample or after the last sample — or there

would have been another sample.

To bound the error of estimator Yc for any context c, we make an argument

analogous to the derivation of Equation A.9. Recall from Equation A.4 that Yc = pnc,

where nc is the number of samples in c. Then, we have:

Yc-(p-l)<Yc<Yc + (p-1) (A.10)

A.2.2 Accuracy of Yc

We would like to know how many samples within a context c are necessary to

produce an accurate estimator Yc for the true value Yc. Equation A. 10 implies that

given Yc and period p, Yc is somewhere within Yc ± (p — 1). Thus, we want to know

when Yc is large relative to (p — 1). To estimate the accuracy of Yc in terms of samples,

we express one side of the magnitude of YcS potential error as a percentage:

^ - ^ (1 0 0 %) < -£-(100%) = — % (A.ll)
Yc pnc nc

Equation A.ll implies that given nc samples within context c, estimator Yc has an

accuracy of ±™%. In other words, 20 samples within context c yields an error bound

of ±5%; similarly, 10 samples yields a bound of ±10%.

We might conclude from the above that we should be worried if we do not have

more than, say, 10 samples in any given context c. Indeed, if our goal is a specified

accuracy for the context's estimator Yc, we would probably have reason for concern.

However, for the purpose of performance analysis, as long as there are sufficient sam

ples in important contexts, often we do not care if the number of samples in other

244

contexts is low. To see this, observe that our main concern in performance analysis

is to pinpoint bottlenecks. This means that it is only necessary to obtain reliable

estimates for important contexts. Often, many contexts in an application are unim

portant and there is no problem if they receive only a handful of samples. Another

way to state this observation is that, in contrast with instrumentation, sampling nat

urally elides unimportant data. Moreover, our stress on top-down analysis naturally

highlights the important contexts with very accurate metric values.

To finish our our analysis of the accuracy of Yc, we consider whether Yc is an

unbiased estimator for context c. Recall that when a sample point is generated by

resource R and associated with instruction instance j , we assign p units of resource R

to i/j. A method of estimation is unbiased if the average value of the estimate, taken

over all possible samples of a given size nc is exactly equal to the true population

value [42, p. 22]. Assume nc > 1. By extension of Equation A.5, context c has

resource metric total Yc = i + (nc — l)p + j . Figure A.l illustrated how the sample

period p divides the execution of context c into nc regions. Assume that Yc = pnc,

meaning that i + j = p. By systematic sampling, there are p possible samples of size

nc within c. Because for each sample we have Yc = pnc = Yc, clearly p is an unbiased

estimator.

In general, however, Yc ^ pnc. By the pigeonhole principle, the first nc — 1 sample

points must fall into the first nc — 1 regions of Figure A.l. The last region is of size

i + j and ranges from 1 to 2p — 1 units. Therefore, depending on the location of the

first sample, the last region could hold 0, 1 or 2 sample points. Consequently, the

number of sample points varies from nc by ±1 . By Equation A. 10, the estimator Yc of

each possible sample is bounded by Yc ± (p — 1). The average of Yc over all p samples

245

within c is
P p p

~ / J Yc,i = / . ~ = / . nc,i ~ Yc
y i = l i = l ^ i = l

Since some samples are underestimates and some are overestimates, the approxima

tion is very close in practice and we can consider p to be an unbiased estimator.

When using a PMU with a high skid factor, the'analysis becomes more compli

cated. For example, because of skid, a sample in small procedure (context) could be

attributed to either a callee or caller of that procedure. However, we noted earlier that

the effects of skid are greatly diminished for code that appears within a long-running

loop.

To more fully account for skid, we could perform the following two-part process.

First, we obtain a distribution of a PMU's skid, possibly by using microbenchmarks.

Then, using this distribution, we could describe program characteristics that allow

us to make precise statements about accuracy. For instance, if the total instruction

instances of a context c are large relative to the expected value of the PMU's skid,

then the results of the above analysis should apply.

A.2.3 Choosing sampling periods

Finally, we consider the question of choosing good sampling periods. For most

programs, a sampling frequency of hundreds to thousands of samples/second yields

high accuracy and low overheads. In extreme cases, such as for very long- or short-

running applications, it may be desirable to customize the sampling frequency. With

time-based events, one can easily derive a sampling period by estimating program

run time and the desired total number of sample points.

A powerful use of a PMU is to determine an application's rate-limiting resource

by sampling on events that are not related to time. The simple approach above is

246

insufficient for non-time events. To compute good periods for event-based sampling

of a non-time event, we modify the approach just outlined. There are three steps.

Assume we wish to sample on an event that monitors a specific resource. The first

step is to determine both a saturation request rate and maximum request rate for

that resource. The saturation request rate is the request rate that creates contention

for usage of that resource. The maximum request rate is the maximum rate that

the resource can be requested by a single program thread. (Typically, the saturation

request rate is less than maximum request rate, though this is not necessary.) This

information can be computed with knowledge of a platform's architecture and ABI.

For example, consider an architecture where L3 misses access main memory. Given

information on the bandwidth between L3 and main memory and L3 line size, one

can estimate the L3 cache miss rate that saturates the memory bus. A result of this

analysis might be that rsat L3 miss events per cycle results in memory bus saturation.

To determine the maximum request rate for the resource, one can use information

such as maximum number of operands per instruction, number of hardware contexts,

and the issue width for each context. The result is a maximum request rate of rmax

events per cycle.

The next step is to obtain an initial sampling period by converting the saturation

request rate into a sampling period using a target sampling frequency. Suppose we

wish to sample at 1000 samples/second on a processor core running at 1 GHz. This

translates into a target frequency of 1 sample for every 1M cycles. To convert the

saturation rate of rsat events/cycle to a sampling period, we scale the rate by 1M

cycles to obtain a period of 1M x rsat events. Thus, a program execution that uses

the given resource exactly at the saturation threshold generates sampling signals at

the target frequency of 1000 samples/second. On the other hand, an execution that

247

consumes the resource far below the saturation point generates samples at a much

lower frequency, which is not a problem.

The final step is only relevant if applications typically exceed the saturation re

quest rate by large amounts. For instance, suppose we have computed a period for

an L3-cache-miss event, where L3 misses per second multiplied by L3 line size is di

rectly related to memory bandwidth. When the hardware's memory bandwidth is

exceeded, the application will generate L3 misses at a rate between the saturation

and maximum request rates. When this happens, the period derived from the sat

uration request rate may result in sampling frequencies that are much higher than

the target frequency. Such excessive sampling frequencies are undesirable because

we do not want a performance tool to significantly contribute to overhead even if

an application contains a severe bottleneck. Clearly, the relative magnitudes of the

maximum and saturation request rates indicates the degree to which this could be

an issue. To resolve this problem, experimentation is needed to choose a sampling

period such that resource saturation is reliably detected without an excessively high

sampling frequency.

Once good periods are chosen, it is easy to analyze an application's performance

with respect to the resource in question. To do this, we sample both the resource

event and a time-relative metric such as processor cycles. Then, we create a derived

metric that converts events back into resource usage rates. If relatively few samples

occur in any given context, the usage rate will be low and we can safely conclude the

resource is not a rate limiter. Conversely, if the saturation rate is frequently exceeded,

that resource contributes to a program bottleneck.

248

Appendix B

Efficiently Represent ing Logical CCTs

This appendix complements Chapter 4 by discussing the details of how to effi

ciently represent logical calling context trees.

Recall tha t Section 4.3.2 defined a logical calling context tree (L-CCT) as a tree

of bichords. Accordingly, two distinct call paths in the tree may be partially shared if

and only if they they share a common prefix of bichords. (All paths share a common

root.) One issue that arises during a straight-forward implementation of L-CCTs

is that common notes between multiple bichords are unnecessarily duplicated. We

illustrate this problem with an example.

Suppose over the course of several samples, we obtain several logical unwinds of

the forms below (where inner frames are on the left and a sample point, if relevant,

is underlined):

• • • ((Pi,a)

<(pU>Pi,a)

((Pi£>Pi,b.Pt,a)

•••,((Pi,c,Pi,b>P*,a)

<(py

•••,((Pi,e,Pi,f,Pi,a)

, ((Pi,c), (k,l)), ((Pi,b), (h,l)), ((Pi,a)

kl)),---

kl)),...

kl)),...

kl)),...

kl)),...

kl)),...

kl)),...

(B.l)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

249

...{(ft,,), (/,•,!)>>••• (B.8)

. . . ((Pi,a),(Wi,l)>,. .- (B-9)

Unwinds (B.1)-(B.6), with bichords of association M «-> 1 and 1 <-> 1, could represent

an interpreter implementing a high-level logical operation, signified by Z-note l^\.

Although none of these bichords are equal, all share ky, and all but (B.5) share pii3.

However, a L-CCT treats each bichord as an atomic unit, thereby requiring that any

common notes be duplicated when the corresponding call paths are inserted into the

L-CCT. (Even the bichords in Unwinds (B.3) and (B.4) must be distinct because the

former contains a sample and should therefore be a leaf node.) In general, if the

M-portion of these bichords is long, samples occur in most of the unique prefixes. An

analogous situation occurs in our Cilk profiler, where the root bichord of (almost) all

call paths has association 1 <-» M. As a result, several seemingly unnecessary p-notes

exist with the L-CCT. For compact representation of an L-CCT, it is desirable to

know when it is both possible and profitable to share the notes of two bichords.

B.l Terminology

Observe that some associations are naturally related. For example, 1 <-> 0 is the

natural 'base case' of M <-> 0. Similarly, 1 <->• 1 is the natural 'base case' of both

1 <->• M and M <-> 1. We therefore define three association classes, which group

related associations:

• .A<->1 = {1 ^ l,M<-> 1}

• 1 <-> .A = { 1 <-• 1 ,1 <-> M }

250

In this notation, 'A' acts like a variable that can take a different value for each member

in a set of associations.

Let the functions ip and lip return the physical and logical instruction pointers

given a p-note or Z-note, respectively. The functions assoc and assoc-class return the

association and association-class of a bichord, respectively. For convenience, we also

define assoc-class= to test whether two bichords have identical association classes,

respectively.

B.2 Sharing Within Bichords

We first consider the limits of sharing within bichords. Sharing between any two

bichords may either be full or partial. If two paths partially share a bichord, they

may still be able to partially share another bichord (cf. Unwinds (B.4) and (B.7)).

However, partially sharing either bichord requires that the paths diverge in some

fashion (otherwise they would be equal). Additional sharing requires that paths

merge again, turning the tree into a graph and creating ambiguous calling contexts.

Therefore, two bichords may be partially shared only if they are both roots of their

respective call paths or their respective call path predecessors are fully shared. After

partial sharing, paths must diverge.

The next task is to clearly define when partial sharing may occur between two

bichords Bx = (Px, Lx) and By = (Py, Ly). We divide the analysis into two cases.

Case 1. Px = Py or Lx = Ly. Without loss of generality assume the latter.

• assoc-c\ass=(Bx, By): Compare Unwinds (B.l)-(B.6). Although these bichords

represent at least three fully distinct contexts and two different associations,

they have identical association classes. Each p-chord (except (B.5)) has a com

mon prefix beginning with p-note piia. In general, several other types of non-

251

prefix sharing are possible (e.g., suffixes). However, prefix sharing naturally

corresponds to tree structure whereas non-prefix sharing effectively requires

that a path diverges, skips one or more p-notes, and then re-merges.

Therefore we formulate the prefix condition for partially sharing two bichords

Bx and By:

- {(Px \Z Py) V (Py E Px)) and Lx = Ly

- Px = Py and ({Lx C Ly) V (Ly \Z Lx)) (by symmetry)

where = and iZ ('strict prefix') are defined with respect to the sequence of notes

that form a chord.

The one issue is that Bx and By may have different associations; prefix sharing

is not effective if associations must be duplicated. However, because we know

the bichord's association classes are identical, we know that if their associations

are different, one association must be the 'base case' of the other. For example,

Unwinds (B.l) and (B.2) have associations 1 <->• 1 and M <-> 1, respectively. We

show below how to implement an implicit 'base-case flag' that preserves this

information.

It turns out that the prefix condition can be relaxed slightly. Consider Un

winds (B.2) and (B.3), which may share p-note p,ia by the above condition.

Observe that p\ b represents a sample point while Piib represents a call site.

Although in general ip(p- b) ^ ipfe.b), a sample can be taken at a call site (tech

nically, a return address), meaning that it is possible that ip(p- b) = ip(Pi,t>)- We

show below how to implement an implicit 'sample-point flag' that enables us

to extend the prefix condition to allow sharing in this case. The flag indicates

that the note both is and is not a sample point.

252

• assoc-c\ass^(Bx, By): An enumeration of the possibilities for By for each of

the five possible associations for Bx shows that this case is impossible (by the

assumption Lx = Ly).

Case 2. Px ^ Py and Lx ^ Ly.

• assoc-class=(.Ri;, By): Note that neither association may be in association class

A •*-> 0; otherwise Lx = Ly.

We now consider the two other association classes and focus, without loss of

generality, on A <-> 1. There are three cases. First, both bichords may have

association 1 <-» 1. Second, one bichord has association 1 <-»• 1 and the other

M <-> 1. Third, both bichords have association M <-» 1.

In the first case, no sharing is possible (since neither chord is equal). In the

second and third cases, prefix sharing among p-notes may be possible. How

ever, Z-notes must be duplicated to maintain distinct logical calling contexts (cf.

Unwinds (B.2) and (B.8)). Therefore, partial sharing is not profitable.

• assoc-class^i?!, By): Since association classes are fully distinct, partial sharing

is not possible without duplicating association information (cf. Unwinds (B.2)

and (B.9)).

B.3 Implementation

We now translate the above conclusions into a practical implementation for the

L-CCT.

We maintain the two-level distinction between bichords and notes implicitly. A

bichord is represented by a list of Node-structures. Each Node contains an association

(assoc) and a physical and logical instruction pointer (ip and lip, respectively). Given

253

a bichord {Px, Lx), we need n Nodes Xi,..., Xn where n = max(|Px|, \LX\) and where

X\ represents the outermost portion of the bichord. Let the function note-id return the

index of a Node-structure within a bichord: note-id(Xj) = j . 1 Note that ip(X,) = NIL

if |JPX| < j <n; similarly for \\p(Xk).

Given this representation, a logical call path is simply a list of Node-structures

Xi,... ,Xn. A bichord begins at every Xi where note-idpQ) = 1. A L-CCT is a tree

of Node-structures. Each Node in the L-CCT may have a vector of metric values. A

non-zero metric count naturally implements the 'sample-point flag' mentioned above.

To implement the 'base-case flag', we simply ensure that when a 1 <-> 1 bichord shares

the root of, say, an M *-* 1 bichord, the root Node has association 1 <-» 1. Thus, the

bichords in Unwinds (B.l) and (B.2) would be represented as two Nodes . . . X\, X2 •. •

where assoc(Xi) = 1 <-> 1, assoc(X2) = M <-> 1; where X2 has a non-zero metric

value; and where X\ is an interior node.

The final item is to describe an efficient way to insert a logical call path into

the L-CCT in a way that corresponds to the full and partial sharing of bichords

described above. To ensure the L-CCT is rooted, we prefix a synthetic root node to

the beginning of every call path, implying that every call path has a length of at least

two. Inserting a path into the L-CCT therefore turns into the following problem:

Given the call path fragment / ' —•» g' (as Node-structures) and given a node / in

the L-CCT such that / ' = / , is it the case that 3# such that g is a child of / and

sharable?(g, </) holds? If the answer is yes, g may be shared and insertion proceeds

to the children of g and g'. Otherwise, a new path for g is spliced into the tree.

To define sharable?, we first consider a physical calling context tree where Node-

structures only contain a physical instruction pointer (ip). In this case we simply

1In implementation, assoc and note-id may be combined into one bit-field, since the former only
needs 3 bits; we use 8 and pre-compute association classes.

254

have:

sharable?(/,/'):ip=(/,/')

To extend this definition to a L-CCT, we observe that both ips and lips should be

equal if bichords are equal or if one is a prefix of the other. To properly compute

a prefix, bichords must be demarcated and aligned which we can ensure by also

testing note-id (). Consulting note-id() also forces path divergence after partial sharing.

Finally, we need to ensure that sharing is only permitted when at least one of cases

from above, Px = Py and Lx = Ly, holds. We can check this by additionally examining

assoc-class. This results in the following simple test:

sharable?(/, / ') : ip=(/, / ') A lip=(/, / ') A

assoc-class=(/, / ') A note-id=(/, / ')

255

Appendix C

Definitions of Atomic Primitives

The swap primitive takes a memory location m and a new value newval for m. It

atomically performs the following operation, written as C pseudo-code:

l type swap(void* m, type newval)

3 type myold = *m;
4 *m = newval;
5 return myold;
6 }

The CAS (compare-and-swap) primitive takes a memory location m and an old

and new value for m, oldval and newval, respectively. It atomically performs the

following operation, written as C pseudo-code:

l type CAS (void* m, type oldval, type newval)

3 type myold = *m;
4 if (myold == oldval) *m = newval;
5 return myold;
6 }

256

Bibliography

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,

and N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized

parallel programs. Concurrency and Computation: Practice and Experience,

22(6):685-701, 2010.

[2] L. Adhianto, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R.

Tallent. HPCToolkit: Performance measurement and analysis for supercom

puters with node-level parallelism. In Workshop on Node Level Parallelism

for Large Scale Supercomputers, in conduction with ACM/IEEE Conference on

Super computing, November 2008.

[3] V. S. Adve, J. Mellor-Crummey, M. Anderson, J.-C. Wang, D. A. Reed, and

K. Kennedy. An integrated compilation and performance analysis environment

for data parallel programs. In Proc. of the 1995 ACM/IEEE Conference on

Supercomputing, page 50, New York, NY, USA, 1995. ACM.

[4] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. Rogers,

P. Roth, R. Sankaran, J. S. Vetter, P. Worley, and W. Yu. Early evaluation of

IBM BlueGene/P. In Proc. of the 2008 ACM/IEEE Conference on Supercom

puting, pages 1-12, Piscataway, NJ, USA, 2008. IEEE Press.

[5] S. R. Alam, R. F. Barrett, M. R. Fahey, J. A. Kuehn, O. B. Messer, R. T. Mills,

P. C. Roth, J. S. Vetter, and P. H. Worley. An evaluation of the Oak Ridge

National Laboratory Cray XT3. International Journal of High Performance

Computing Applications, 22(l):52-80, 2008.

257

[6] S. R. Alam, J. A. Kuehn, R. F. Barrett, J. M. Larkin, M. R. Fahey, R. Sankaran,

and P. H. Worley. Cray XT4: An early evaluation for petascale scientific simu

lation. In Proc. of the 2007 ACM/IEEE Conference on Supercomputing, pages

1-12, New York, NY, USA, 2007. ACM.

[7] A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin, and

D. Ryabtsev. Parallelization made easier with Intel Performance-Tuning Utility.

Intel Technology Journal, 11 (4):275-286, November 2007.

[8] AMD. CodeAnalyst performance analyzer, http://developer.amd.com/cpu/

codeanalyst, January 2010.

[9] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance

counters with flow and context sensitive profiling. In Proc. of the 1997 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 85-96, New York, NY, USA, 1997. ACM.

[10] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A.

Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl.

Continuous profiling: Where have all the cycles gone? ACM Trans. Comput.

Syst, 15(4):357-390, 1997.

[11] T. Anderson. The performance of spin lock alternatives for shared-memory

multiprocessors. IEEE Transactions on Parallel Distributed Systems, 1(1):6-

16, 1990.

[12] T. E. Anderson and E. D. Lazowska. Quartz: A tool for tuning parallel program

performance. SIGMETRICS Perform. Eval. Rev., 18(1):115-125, 1990.

[13] Apple Computer. Shark, h t tp : / /developer .apple .com/tools /sharkopt

imize.html, November 2004.

258

http://developer.amd.com/cpu/
http://developer.apple.com/tools/sharkopt

[14] J. H. Applegate, M. R. Douglas, Y. Giirsel, P. Hunter, C. L. Seitz, and G. J.

Sussman. Detecting application load imbalance on high end massively parallel

systems. Lecture Notes in Physics, 267/1986:86-95, 1986.

[15] Argonne Leadership Computing Facility. INCITE Getting Started Workshop.

ht tp: / /workshops.alcf .anl .gov/gslO/agenda/ , January 2010.

[16] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mclnnes,

S. Parker, and B. Smolinski. Toward a common component architecture for

high-performance scientific computing. Proc. of the 8th International Sympo

sium on High Performance Distributed Computing, pages 115-124, 1999.

[17] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented

code. In Proc. of the 2001 ACM SIGPLAN Conference on Programming Lan

guage Design and Implementation, pages 168-179, New York, NY, USA, 2001.

ACM.

[18] R. Azimi, M. Stumm, and R. W. Wisniewski. Online performance analysis by

statistical sampling of microprocessor performance counters. In Proc. of the

19th International Conference on Supercomputing, pages 101-110, New York,

NY, USA, 2005. ACM.

[19] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: Featherweight

synchronization for Java. In Proc. of the 1998 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 258-268, New York,

NY, USA, 1998. ACM.

[20] D. A. Bader and K. Madduri. Design and implementation of the HPCS graph

analysis benchmark on symmetric multiprocessors. Lecture Notes in Computer

Science, 3769/2005:465-476, 2005.

259

http://workshops.alcf.anl.gov/gslO/agenda/

[21] T. Ball and J. R. Larus. Optimally profiling and tracing programs. ACM

Transactions on Programming Language Systems, 16(4):1319-1360, 1994.

[22] C. Bernard, T. Burch, C. DeTar, S. Gottlieb, E. Gregory, U. Heller, J. Os-

born, R. Sugar, and D. Toussaint. QCD thermodynamics with three flavors of

improved staggered quarks. Phys. Rev., D71:034504, 2005.

[23] W. Binder. Portable and accurate sampling profiling for Java. Softw. Pract.

Exper., 36(6):615-650, 2006.

[24] J. D. Bratt. Abraham Kuyper: A Centennial Reader. Eerdmans, Grand Rapids,

1998.

[25] D. Breazeal. A new direction for PGI performance profiling. PGI Insider,

August 2009. ht tp: / /www.pgroup.com/l i t /ar t ic les / insider /vln2a2.htm.

[26] C. P. Breshears. Using Intel Thread Profiler for Win32 threads: Philosophy and

theory, h t t p : / / so f twa re . i n t e l . com/en -us / a r t i c l e s /u s ing - in t e l - t h r ead

-prof i l e r - f or-win32-threads-philosophy-and-theory, August 2007.

[27] G. Brooks, G. J. Hansen, and S. Simmons. A new approach to debugging opti

mized code. In Proc. of the 1992 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 1-11, New York, NY, USA, 1992.

ACM.

[28] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable program

ming interface for performance evaluation on modern processors. The Inter

national Journal of High Performance Computing Applications, 14(3): 189-204,

Fall 2000.

260

http://www.pgroup.com/lit/articles/insider/vln2a2.htm
http://software.intel.com/en-us/articles/using-intel-thread

[29] B. Buck and J. K. Hollingsworth. An API for runtime code patching. The

International Journal of High Performance Computing Applications, 14(4) :317-

329, Winter 2000.

[30] Bull SAS. Bullx Cluster Suite Product Specifications, http://www.bull.com/

hpc/download/S-bullxCSUITE-enl.pdf, July 2009.

[31] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and

J. Browne. PerfExpert: An automated HPC performance measurement and

analysis tool with optimization recommendations. (Under review), January

2010.

[32] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1997.

[33] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic instrumentation

of production systems. In Proc. of the USENIX Annual Technical Conference,

Berkeley, CA, USA, 2004. USENIX Association.

[34] J. Caubet, J. Gimenez, J. Labarta, L. D. Rose, and J. S. Vetter. A dynamic

tracing mechanism for performance analysis of OpenMP applications. In Proc.

of the Intl. Workshop on OpenMP Appl. and Tools, pages 53-67, London, UK,

2001. Springer-Verlag.

[35] Center for Scalable Application Development Software. Workshop on

Leadership-class Machines, Petascale Applications, and Performance Strategies,

http://cscads.rice.edu/workshops/summer09/leadership-computing,

July 2009.

[36] S. Cepeda. Performance analysis and Intel Parallel Amplifier, http://www.

ddj . com/architect/217700473, May 27, 2009.

261

http://www.bull.com/
http://cscads.rice.edu/workshops/summer09/leadership-computing
http://www

[37] K. Chand, B. Fix, T. Dahlgren, L. F. Diachin, X. Li, C. OllivierGooch,

E. S. Seol, M. S. Shephard, T. Tautges, and H. Trease. The ITAPS iMesh

interface, http://www.tstt-scidac.org/software/documentation/iMesh_

userguide.pdf, June 2007.

[38] M. Charney. XED2 user guide. http://www.pintool.org/docs/24110/Xed/

html, January 2009.

[39] I.-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu. MPI performance anal

ysis tools on Blue Gene/L. In Proc. of the 2006 ACM/IEEE Conference on

Supercomputing, page 123, New York, NY, USA, 2006. ACM.

[40] M. Chung. Monitoring and managing Java SE 6 platform applications, h t t p :

/ / java.sun.com/developer/ technicalArticles/J2SE/monitoring, August

2006.

[41] C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko. Scalability analysis

of SPMD codes using expectations. In Proc. of the 21st International Conference

on Supercomputing, pages 13-22, New York, NY, USA, 2007. ACM.

[42] W. G. Cochran. Sampling Techniques. John Wiley &; Sons, Inc., New York,

third edition edition, 1977.

[43] R. Cohn and P. G. Lowney. Hot cold optimization of large Windows/NT appli

cations. In Proc. of the 29th Annual ACM/IEEE International Symposium on

Microarchitecture, pages 80-89, Washington, DC, USA, 1996. IEEE Computer

Society.

[44] D. Cortesi, J. Fier, J. Wilson, and J. Boney. Origin 2000 and Onyx2 perfor

mance tuning and optimization guide. Technical Report 007-3430-003, Silicon

Graphics, Inc., 2001.

262

http://www.tstt-scidac.org/software/documentation/iMesh_
http://www.pintool.org/docs/24110/Xed/

[45] M. E. Crovella and T. J. LeBlanc. Parallel performance using lost cycles anal

ysis. In Proc. of the 1994 ACM/IEEE Conference on Supercomputing, pages

600-609, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[46] DARPA High Productivity Computing Program. Scalable Synthetic Compact

Application benchmarks. h t t p : //www. highproduct ivi ty . org/SSCABmks.

htm, 2007.

[47] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos. Pro-

fileMe: Hardware support for instruction-level profiling on out-of-order proces

sors. In Proc. of the 30th Annual ACM/IEEE International Symposium on Mi

croarchitecture, pages 292-302, Washington, DC, USA, 1997. IEEE Computer

Society.

[48] L. DeRose, B. Homer, D. Johnson, S. Kaufmann, and H. Poxon. Cray perfor

mance analysis tools. In Tools for High Performance Computing, pages 191-199.

Springer Berlin Heidelberg, 2008.

[49] L. DeRose, J. Ted Hoover, and J. K. Hollingsworth. The dynamic probe class

library - an infrastructure for developing instrumentation for performance tools.

Proc. of the International Parallel and Distributed Processing Symposium, April

2001.

[50] D. Dice and N. Shavit. Understanding tradeoffs in software transactional mem

ory. In Proc. of the International Symposium on Code Generation and Opti

mization, pages 21-33, Washington, DC, USA, 2007. IEEE Computer Society.

[51] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha.

Scalable work stealing. In Proc. of the 2009 ACM/IEEE Conference on Super-

computing, pages 1-11, New York, NY, USA, 2009. ACM.

263

[52] A. Dubey, L. B. Reid, and R. Fisher. Introduction to FLASH 3.0, with appli

cation to supersonic turbulence. Physica Scripta, 132:014046, 2008.

[53] E. Duesterwald and V. Bala. Software profiling for hot path prediction: Less is

more. SIGARCH Comput. Archit. News, 28(5):202-211, 2000.

[54] S. Eranian. What can performance counters do for memory subsystem anal

ysis? In Proc. of the 2008 ACM SIGPLAN Workshop on Memory Systems

Performance and Correctness, pages 26-30, New York, NY, USA, 2008. ACM.

[55] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A performance

counter architecture for computing accurate CPI components. SIGPLAN Not,

41(11):175-184, 2006.

[56] R. Fowler, L. Adhianto, B. de Supinski, M. Fagan, T. Gamblin, M. Krentel,

J. Mellor-Crummey, M. Schulz, and N. Tallent. Frontiers of performance anal

ysis on leadership class systems. Journal of Physics: Conference Series, 2009.

[57] Free Standards Group. DWARF debugging information format, version 3.

h t tp : / /dwarf . f rees tandards .org , December 2005.

[58] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Gilk-5

multithreaded language. In Proc. of the 1998 ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 212-223, New York,

NY, USA, 1998. ACM.

[59] W. Frings, F. Wolf, and V. Petkov. Scalable massively parallel i/o to task-local

files. In Proc. of the 2009 ACM/IEEE Conference on Supercomputing, pages

1-11, New York, NY, USA, 2009. ACM.

264

http://dwarf.freestandards.org

[60] N. Proyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call path profiling

of unmodified, optimized code. In Proc. of the 19th International Conference

on Supercomputing, pages 81-90, New York, NY, USA, 2005. ACM.

[61] N. Proyd, N. Tallent, J. Mellor-Crummey, and R. Fowler. Call path profiling

for unmodified, optimized binaries. In Proc. of the GCC Developers' Summit,

2006, pages 21-36, 2006.

[62] K. Fiirlinger and M. Gerndt. ompP: A profiling tool for OpenMP. In Proc.

of the First and Second International Workshops on OpenMP, pages 15-23,

Eugene, Oregon, USA, May 2005. LNCS 4315.

[63] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and D. A. Reed. Scalable

load-balance measurement for SPMD codes. In Proc. of the 2008 ACM/IEEE

Conference on Supercomputing, pages 1-12, Piscataway, NJ, USA, 2008. IEEE

Press.

[64] T. Gamblin, R. Fowler, and D. A. Reed. Scalable methods for monitoring and

detecting behavioral equivalence classes in scientific codes. In Proc. of the 2008

IEEE International Symposium on Parallel and Distributed Processing, pages

1-12, April 2008.

[65] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A call graph exe

cution profiler. In Proc. of the 1982 ACM SIGPLAN Symposium on Compiler

Construction, pages 120-126, New York, NY, USA, 1982. ACM.

[66] S. L. Graham, P. B. Kessler, and M. K. McKusick. An execution profiler for

modular programs. Software: Practice and Experience, 13(8):671-685, August

1983.

265

[67] R. J. Hall. Call path profiling. In Proc. of the 14th International Conference

on Software Engineering, pages 296-306, New York, NY, USA, 1992. ACM.

[68] G. J. Hansen, C. A. Linthicum, and G. Brooks. Experience with a performance

analyzer for multithreaded applications. In Proc. of the 1990 ACM/IEEE Con

ference on Supercomputing, pages 124-131, Washington, DC, USA, 1990. IEEE

Computer Society.

[69] R. J. Harrison, G. I. Fann, T. Yanai, and G. Beylkin. Multiresolution quan

tum chemistry in multiwavelet bases.' Lecture Notes in Computer Science,

2660/2003:103-110, 2003.

[70] P. Havlak. Nesting of reducible and irreducible loops. ACM Trans. Program.

Lang. Syst, 19(4):557-567, 1997.

[71] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low-overhead

temporal profiling. In Proc. of the Jf.th ACM Workshop on Feedback-Directed

and Dynamic Optimization, pages 117-126, 2001.

[72] A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. Pakin. A performance

comparison through benchmarking and modeling of three leading supercomput

ers: Blue Gene/L, Red Storm, and Purple. In Proc. of the 2006 ACM/IEEE

Conference on Supercomputing, page 74, New York, NY, USA, 2006. ACM.

[73] IBM. IBM lock analyzer for Java, http://www.alphaworks.ibm.com/tech/

j l a , September 2007.

[74] IBM. IBM system Blue Gene solution: Performance analysis tools. Redpaper

REDP-4256-01, November 2008.

266

http://www.alphaworks.ibm.com/tech/

[75] Intel Corporation. Intel Performance Tuning Utility, h t t p : / / sof tware . i n t e l .

com/en-us /a r t i c l e s / in te l -pe r f ormance-tuning-ut i l i ty , April 2009.

[76] Intel Corporation. Intel Thread Profiler, http:/ /www.intel .com/software/

products/tpwin, January 2010.

[77] Intel Corporation. Intel VTune performance analyzer, h t tp : / /www.inte l .

com/software/products/vtune, January 2010.

[78] M. Itzkowitz and Y. Maruyama. HPC Profiling with the Sun Studio Per

formance Tools, ht tp:/ /developers.sun.com/sunstudio/documentation/

techart/hpc_prof i l ing.pdf, October 2009.

[79] M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin. An OpenMP runtime API

for profiling, http://www.compunity.org/futures/omp-api.html, October

2007.

[80] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing language depen

dencies from a scientific software library. In 10th SI AM Conference on Parallel

Processing, March 2001.

[81] R. Kufrin. PerfSuite: An accessible, open source performance analysis environ

ment for Linux. In Proc. of the 6th International Conference on Linux Clusters,

April 2005.

[82] J. Larus and C. Kozyrakis. Transactional memory. Commun. ACM, 51(7):80-

88, 2008.

[83] G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. de Supinski, M. Legendre, B. P. Miller,

M. Schulz, and B. Liblit. Lessons learned at 208k: Towards debugging millions

267

http://www.intel.com/software/
http://www.intel
http://developers.sun.com/sunstudio/documentation/
http://www.compunity.org/futures/omp-api.html

of cores. In Proc. of the 2008 ACM/IEEE Conference on Supercomputing, pages

1-9, Piscataway, NJ, USA, 2008. IEEE Press.

[84] D. Levinthal. Cycle accounting analysis on Intel Core2 processors, h t t p : / /

assets.devx.com/goparallel/18027.pdf.

[85] J. Levon et al. OProfile. h t tp : / /op ro f i l e . sourcef orge.net, November 2009.

[86] P. Lichtner et al. PFLOTRAN project web site, h t t p s : / / s o f t w a r e . l a n l .

gov/pflotran, 2009.

[87] J. C. Linford, M.-A. Hermanns, M. Geimer, D. Boehme, and F. Wolf. Detecting

load imbalance in massively parallel applications. Technical Report FZJ-JSC-

IB-2008-09, Forschungszentrum Julich, December 2008.

[88] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis

tools with dynamic instrumentation. In Proc. of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 190-

200, New York, NY, USA, 2005. ACM.

[89] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, and C. Packer.

PARAMESH : A parallel adaptive mesh refinement community toolkit. Com

puter Physics Communications, 126:330-354, 2000.

[90] A. D. Malony, S. Shende, A. Morris, S. Biersdorff, W. Spear, K. Huck, and

A. Nataraj. Evolution of a parallel performance system. In Tools for High

Performance Computing, pages 169-190. Springer Berlin Heidelberg, 2008.

[91] M. E. Maxwell, P. J. Teller, and L. Salay. Accuracy of performance monitoring

hardware. In Proc. of LACSI Symposium, 2002.

268

http://
http://oprof
https://software.lanl

[92] P. E. McKenney. Differential profiling. Software: Practice and Experience,

29(3):219-234, 1999.

[93] J. Mellor-Crummey, R. Fowler, G. Marin, and N. Tallent. HPCView: A tool

for top-down analysis of node performance. The Journal of Supercomputing,

23(1):81-104, 2002.

[94] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization

on shared-memory multiprocessors. A CM Transactions on Computer Systems,

9(l):21-65, 1991.

[95] J. Mellor-Crummey and N. R. Tallent. A methodology for accurate, effective

and scalable performance analysis of application programs. In Workshop on

Tools, Infrastructures and Methodologies for the Evaluation of Research Sys

tems, in conjuction with the 2008 IEEE International Symposium on Perfor

mance Analysis of Systems and Software, pages 4-11, February 2008.

[96] J. Mellor-Crummey, N. R. Tallent, M. Fagan, and J. Odegard. Application

performance profiling on the Cray XD1 using HPCToolkit. In Proc. of the Cray

User's Group, May 2007.

[97] C. L. Mendes and D. A. Reed. Monitoring Large Systems Via Statistical Sam

pling. International Journal of High Performance Computing Applications,

18(2):267-277, 2004.

[98] Message Passing Interface Forum. MPI: A Message Passing Interface Standard,

June 1999. http://www.mpi-forum.org/docs/mpi-ll .ps.

[99] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,

K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel

performance measurement tool. IEEE Computer, 28(ll):37-46, 1995.

269

http://www.mpi-forum.org/docs/mpi-ll.ps

[100] R. T. Mills, C. Lu, P. C. Lichtner, and G. E. Hammond. Simulating subsurface

flow and transport on ultrascale computers using PFLOTRAN. Journal of

Physics Conference Series, 78(012051), 2007.

[101] B. Mohr, A. D. Malony, H.-C. Hoppe, F. Schlimbach, G. Haab, J. Hoeflinger,

and S. Shah. A performance monitoring interface for OpenMP. In Proc. of the

Fourth European Workshop on OpenMP, Rome, Italy, 2002.

[102] B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Design and prototype of a

performance tool interface for OpenMP. In Proc. of the Los Alamos Computer

Science Institute Second Annual Symposium, Santa Fe, NM, Oct. 2001.

[103] M. Monchiero, R. Canal, and A. Gonzalez. Power/performance/thermal design-

space exploration for multicore architectures. IEEE Transactions on Parallel

and Distributed Systems, 19(5):666-681, May 2008.

[104] D. Monroe. ENERGY Science with DIGITAL Combustors. http://www.

scidacreview.org/0602/html/combustion.html, 2006.

[105] D. Mosberger-Tang. libunwind. http://www.nongnu.org/libunwind, May

2009.

[106] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri. Identifying potential

parallelism via loop-centric profiling. In Proc. of the 4th International Con

ference on Computing Frontiers, pages 143-152, New York, NY, USA, 2007.

ACM.

[107] P. J. Mucci. PapiEx: Execute arbitrary application and measure hardware

performance counters with PAPI. h t tp : / / i c l . cs .u tk .edu/~mucci /papiex ,

July 2008.

270

http://www
http://scidacreview.org/0602/html/combustion.html
http://www.nongnu.org/libunwind
http://icl.cs.utk.edu/~mucci/papiex

[108] P. J. Mucci and T. Mohan. An open source performance tools software suite for

scientific computing. Concurrency and Computation: Practice and Experience,

22(2):206-216, 2009.

[109] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing wrong

data without doing anything obviously wrong! In Proc. of the 14th international

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 265-276, New York, NY, USA, 2009. ACM.

[110] NVIDIA. Fermi: NVIDIA's Next Generation CUDA Compute Architecture

(Version 1.1). http://www.nvidia.com/content/PDF/fermi_white_papers/

NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 2009.

[Ill] L. Oliker, A. Canning, J. Carter, C. Iancu, M. Lijewski, S. Kamil, J. Shalf,

H. Shan, E. Strohmaier, S. Ethier, and T. Goodale. Scientific application perfor

mance on candidate petascale platforms. International Parallel and Distributed

Processing Symposium, 0:69, 2007.

[112] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan, and C.-W.

Tseng. UTS: An unbalanced tree search benchmark. Lecture Notes in Computer

Science, 4382/2007:235-250, 2007.

[113] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing supercomputer

performance: Achieving optimal performance on the 8,192 processors of ASCI

Q. In Proc. of the 2003 ACM/IEEE Conference on Super computing, page 55,

Washington, DC, USA, 2003. IEEE Computer Society.

[114] PETSc Team. KSPIBCGS solver. In PETSc: Portable, Extensible Toolkit

for Scientific Computation. ht tp: / /www.mcs.anl .gov/petsc/petsc-as/

271

http://www.nvidia.com/content/PDF/fermi_white_papers/
http://www.mcs.anl.gov/petsc/petsc-as/

snapshots/petsc-current/docs/manualpages/KSP/KSPIBCGS.html, Decem

ber 2008.

[115] G. F. Pfister and V. A. Norton. Hot-spot contention and combining in

multistage interconnection networks. IEEE Transactions on Computers, C-

34(10):943-948, October 1985.

[116] K. B. Pierce. Forward walking through binary code to determine offsets for

stack walking. United States Patent 7,178,132 B2, February 2007.

[117] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz,

and L. F. Tavera. Scalable performance analysis: The Pablo performance anal

ysis environment. In Proc. of the Scalable Parallel Libraries Conference, pages

104-113. IEEE Computer Society, 1993.

[118] J. Reinders. Intel Threading Building Blocks. O'Reilly, Sebastopol, CA, 2007.

[119] Rice University. HPCToolkit performance tools, h t t p : / / h p c t o o l k i t . o r g .

[120] Rice University. Rice HPC Summer Institute, h t t p : / / k 2 i . r i c e . e d u / e v e n t s /

HPC2009Institute, May 2009.

[121] Rice University. PACE: Platform-Aware Compilation Environment, h t t p :

/ /dev .pace . r ice .edu, January 2010.

[122] N. Rosenblum, X. Zhu, B. Miller, and K. Hunt. Learning to analyze binary

computer code. In Proc. of the Twenty-Third AAAI Conference on Artificial

Intelligence (2008), pages 798-804, 2008.

[123] S. Sandmann. Sysprof. http://www.daimi.au.dk/~sandmann/sysprof, Jan

uary 2010.

272

http://hpctoolkit.org
http://k2i.rice.edu/events/
http://rice.edu
http://www.daimi.au.dk/~sandmann/sysprof

[124] S. S. Sastry, R. Bodfk, and J. E. Smith. Rapid profiling via stratified sampling.

In Proc. of the 28th Annual International Symposium on Computer Architec

ture, pages 278-289, New York, NY, USA, 2001. ACM.

[125] W. N. Scherer III and M. L. Scott. Advanced contention management for

dynamic software transactional memory. In Proc. of the 24th Annual ACM

Symposium on Principles of Distributed Computing, pages 240-248, New York,

NY, USA, 2005. ACM.

[126] M. Schulz and B. R. de Supinski. P^MPI tools: A whole lot greater than the

sum of their parts. In Proc. of the 2007 ACM/IEEE Conference on Supercom-

puting, pages 1-10, New York, NY, USA, 2007. ACM.

[127] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya, and S. Cran-

ford. Open|SpeedShop: An open source infrastructure for parallel performance

analysis. Sci. Program., 16(2-3):105-121, 2008.

[128] S. Shende, A. Malony, and A. Morris. Optimization of Instrumentation in

Parallel Performance Evaluation Tools, volume 4699 of LNCS, pages 440-449.

Springer, 2008.

[129] S. S. Shende and A. D. Malony. The TAU parallel performance system. Int. J.

High Perform. Comput. Appl, 20(2):287-311, 2006.

[130] Silicon Graphics, Inc. (SGI). SpeedShop User's Guide. Technical Report 007-

3311-011, SGI, 2003.

[131] D. Skinner et al. IPM: Integrated performance monitoring, h t tp : / / ipm-hpc .

sourceforge.net/ , Octobert 2009.

273

http://ipm-hpc
http://sourceforge.net/

[132] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. ACM,

32(3):652-686, 1985.

[133] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An algebra for cross-

experiment performance analysis. In Proc. of the 2004 International Conference

on Parallel Processing, pages 63-72, Washington, DC, USA, 2004. IEEE Com

puter Society.

[134] SPEC Corporation. SPEC CPU2006 benchmark suite, http://www.spec. org/

cpu2006, August 2008.

[135] B. Sprunt. Pentium 4 performance-monitoring features. IEEE Micro, 22(4):72-

82, 2002.

[136] Standard Performance Evaluation Corporation. SPEC CPU2000 benchmark

suite, http://www.spec.org/cpu2000/, June 2007.

[137] H.-H. Su, D. Bonachea, A. Leko, H. Sherburne, M. B. Ill, and A. D. George.

GASP! A standardized performance analysis tool interface for global address

space programming models. Technical Report LBNL-61659, Lawrence Berkeley

National Laboratory, 2006.

[138] N. Tallent, J. Mellor-Crummey, L. Adhianto, M. Fagan, and M. Krentel. HPC-

Toolkit: Performance tools for scientific computing. Journal of Physics: Con

ference Series, 125:012088 (5pp), 2008.

[139] N. R. Tallent. Binary analysis for attribution and interpretation of performance

measurements on fully-optimized code. M.S. thesis, Department of Computer

Science, Rice University, May 2007.

274

http://www.spec
http://www.spec.org/cpu2000/

[140] N. R. Tallent and J. Mellor-Crummey. Effective performance measurement and

analysis of multithreaded applications. In Proc. of the IJ^th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 229-240,

New York, NY, USA, 2009. ACM.

[141] N. R. Tallent, J. Mellor-Crummey, and M. W. Fagan. Binary analysis for mea

surement and attribution of program performance. In Proc. of the 2009 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

pages 441-452, New York, NY, USA, 2009. ACM.

[142] N. R. Tallent and J. M. Mellor-Crummey. Identifying performance bottlenecks

in work-stealing computations. Computer, 42(12):44-50, 2009.

[143] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M. W. Fagan, and

M. Krentel. Diagnosing performance bottlenecks in emerging petascale ap

plications. In Proc. of the 2009 ACM/IEEE Conference on Supercomputing,

pages 1-11, New York, NY, USA, 2009. ACM.

[144] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing lock con

tention in multithreaded applications. In Proc. of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 269-

280, New York, NY, USA, 2010. ACM.

[145] T. J. Tautges. MOAB-SD: Integrated structured and unstructured mesh rep

resentation. Eng. Comput. (Lond.), 20(3):286-293, 2004.

[146] Texas Advanced Computing Center. TACC Summer Supercomputing Institute

(2009). ht tp: / /www.tacc.utexas.edu/summerinst i tute/ , August 2009.

[147] O. Traub, S. Schechter, and M. D. Smith. Ephemeral instrumentation for

lightweight program profiling. Technical report, Harvard University, 1999.

275

http://www.tacc.utexas.edu/summerinstitute/

[148] J. Vetter. Dynamic statistical profiling of communication activity in distributed

applications. In Proc. of the ACM SIGMETRICS Intl. Conf. on Measurement

and Modeling of Computer Systems, pages 240-250, New York, NY, USA, 2002.

ACM.

[149] J. S. Vetter and M. 0 . McCracken. Statistical scalability analysis of communica

tion operations in distributed applications. In Proc. of the 8th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, Snowbird, UT,

2001.

[150] O. Waddell and J. M. Ashley. Visualizing the performance of higher-order pro

grams. In Proc. of the 1998 ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering, pages 75-82. ACM, 1998.

[151] F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, W. Frings, K. Fiirlinger,

M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and Z. Szebenyi.

Usage of the SCALASCA toolset for scalable performance analysis of large-

scale parallel applications. In Tools for High Performance Computing, pages

157-167. Springer Berlin Heidelberg, 2008.

[152] N. J. Wright, W. Pfeiffer, and A. Snavely. Characterizing parallel scaling of

scientific applications using IPM. In Proc. of the 10th LCI International Con

ference on High-Performance Clustered Computing, 2009.

[153] C. E. Wu, A. Bolmarcich, M. Snir, D. Wootton, F. Parpia, A. Chan, E. Lusk,

and W. Gropp. From trace generation to visualization: A performance frame

work for distributed parallel systems. In Proc. of the 2000 ACM/IEEE Confer

ence on Supercomputing, Washington, DC, USA, 2000. IEEE Computer Society.

276

[154] B. J. N. Wylie, M. Geimer, and F. Wolf. Performance measurement and anal

ysis of large-scale parallel applications on leadership computing systems. Sci.

Program., 16(2-3):167-181, 2008.

[155] L. Yang and R. Brent. The improved BiCGStab method for large and sparse

unsymmetric linear systems on parallel distributed memory architectures. In

Proc. of the Fifth International Conference on Algorithms and Architectures for

Parallel Processing, pages 324-328, 2002.

[156] T. Yasue, T. Suganuma, H. Komatsu, and T. Nakatani. An efficient online

path profiling framework for Java just-in-time compilers. Proc. of the 12th

International Conference on Parallel Architectures and Compilation Techniques,

0:148, 2003.

[157] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance analysis us

ing the MIPS rlOOOO performance counters. In Proc. of the 1996 ACM/IEEE

Conference on Supercomputing, page 16. ACM, 1996.

[158] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient,

and adaptive calling context profiling. In Proc. of the 2006 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages 263-

271, New York, NY, USA, 2006. ACM.

277

