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ABSTRACT

WARPnet: A Platform for Clean-Slate Deployed Wireless Networks

by

Siddharth Gupta

There has been a recent paradigm shift within the wireless communica-
tions academic community towards implementation-based algorithm vali-
dation. In the past, this task was left to industrial affiliates but in order to
close the theory to implementation loop faster research groups are actively
developing proof-of-concept demonstrations of their theoretical protocols.
In this work we present the Wireless Open-Access Research Platform for
Networks (WARPnet) that provides all the computational power and data
resources needed to prototype novel physical and MAC layers for emerg-
ing technologies. The platform is built to be deployed enabling large-scale
network-wide experiments. Scheduling experiments and gathering data
can be accomplished with a central server connected to the nodes. We
characterize the dedicated control channel built for remote control and
statistics aggregation, present frameworks for data transfer and imple-
ment example applications that show the methodology for benchmarking

distributed wireless experiments.
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CHAPTER 1

Introduction

There has been a recent paradigm shift in wireless communications research towards
hands-on proof-of-concept implementation. In the past, academic institutions pri-
marily focussed on the theoretical aspects of research by advancing the bounds to
performance. Companies on the other hand relied on this research to implement
next-generation algorithms. Through industry partnerships, the theorists would ad-
vance and refine their models. However, an increasingly larger number of institutions
want to implement the proof-of-concept design themselves, allowing them to close the
theory — implementation loop faster.

In this work we present a new wireless communication platform that not only
enables implementation of novel wireless algorithms but also provides all the func-

tionality needed to prototype algorithms at a network-scale.

1.1 Wireless Experimentation

There are two schools of thought for validating algorithm performance: (1) model-
based simulations and (2) real-time hardware implementations. While model-based
simulations work well in checking the feasibility of implementing a theoretical frame-

work, it has its limitations as not all real-world effects can be accurately represented



in these models. Thus the protocol implementations cannot be thoroughly validated.

Real-time validation of the algorithm requires that it be implemented on a testbed
targeted at wireless communication. As a testbed will exhibit all real-world effects
such as channel variability and RF behavior the real performance of the algorithm
can be determined along with its sensitivity to such effects. Mass produced hardware
fabricate their designs using the latest ASIC technology as this maximizes perfor-
mance while reducing power usage. However, the time-to-market for an ASIC is on
the order of years which is not ideal for prototyping a novel, previously untested
algorithm. Therefore there is a need for a quick turn-around prototyping platform
that presents real channel characteristics and environment effects to the algorithm
designer.

Thus, we can break down the needs of the platform into three primary categories:

(1) flexibility, (2) observability and (3) control.

o Flexibility: The most important ability of the platform must be the flexibility
to realize novel algorithms. As new and emerging technologies like cognitive
radio are developed, the platform should not limit the possibilities that the
technologies enable. Also, as cross-layer algorithms are gaining traction, the
platform must enable prototyping at all layers, from the physical layers to the

application layer.

e Observability: As with the development of any new protocol, there is a need
to gather large quantities of data to verify the performance and to minimize
inefficiencies. To debug the algorithm data generated at the bit-level, packet-
level or application-level must be accessible. Real-time aggregation of statistics
will also assist the designer in tracking down the bugs. Finally, this data must

be available for download to perform offline analysis.

e Control: Once implemented, most algorithms need to be tweaked in-system.



Modifying system parameters at short timescales, creating heterogenous net-
works by remotely flashing firmware and modifying the network layout are con-
trol abilities that must be enabled by the platform. Additionally, these functions
should be available in real-time. Once stable, stress-testing the implementation
by conducting long-term experiments is crucial. Therefore, the platform must

have the ability to schedule experiments and gather the results.

Many of the objectives above can claim have been met by other platforms, but
we must accomplish these at a network-scale. Thus, a deployed network of nodes
must maintain the same functionality that is often desired in a laboratory setting.
An algorithm designer must have remote control of the full network of nodes from
a central location including the abilities to modify parameters, gather performance

numbers and update the firmware.

1.2 WARPnet

In this work we present the Wireless Open-Access Research Platform for Networks
(WARPnet), a platform that enables network-scale wireless experimentation. Our
contribution is developing the hardware platform and software frameworks to fulfill
the requirements described above. To support the needs of wireless networks the plat-
form is based around a Field Programmable Gate Array (FPGA), a reprogrammable
and flexible device, that supports custom physical and MAC layers. Flexibility en-
tails customization at every layer of the network stack, a feature that is enabled by
the FPGA. The RF interfaces are added as daughtercards to the FPGA Board intro-
ducing modularity for future upgrades. Sharing observed data and sending control
information require a reliable control channel; in-band and out-of-band dedicated
control channels are enabled by the Backdoor Board. Additionally, a central server

connecting to every node via the Backdoor Board can accomplish the experimentation



functions.

Chapter 2 describes the hardware in detail. We validate the performance of the
platform and characterize the backdoor control channels in Chapter 3. In Chapter 4
we explore a cognitive radio experiment that exercises all the features of WARPnet

with a real-time implementation. Finally, we conclude in Chapter 5.

1.3 Related Work

There are several platforms currently being used by researchers for the purposes of
evaluating wireless algorithms. GNU Radio [1] is an open-source effort that imple-
ments the key components of a wireless stack on a host PC. The platform itself is
responsible for filtering and transferring the raw filtered samples up to the PC for
processing. While this platform does support custom physical and MAC layers, the
latency from the antenna to the PC is significant; hence the node will not able to
return an acknowledgement in the time required by wireless standards. Therefore,
unidirectional high bandwidth flows are possible but building networks of the nodes
to perform real-time random access experiments is not feasible.

ORBIT [2] is another experimental testbed that uses a large number of indoor
nodes to recreate several realistic scenarios. The nodes are based on a Linux PC and
hence OSI stack layers 3 and above are flexible. The platform uses an off-the-shelf
wireless card restricting user access to lower layers. While users can modify certain
limited MAC parameters, evaluation of novel algorithms at the physical and MAC
layers is not possible — a key to enabling future technologies. CogNet [3] is software
protocol implementation for cognitive radio implemented for the GNU Radio platform
and hence inherits its drawbacks. KUAR [4] is a hardware-based project but have
not published results of their development work.

Rice University partnered with Technology For All to deploy a multi-hop wireless



network [5] in Houston hence it is capable of network-wide experiments. However, it
is built using off-the-shelf hardware and thus the protocols and algorithms are fixed
to the wireless cards installed. Another project at Rice University is the Wireless
Open-Access Research Platform (WARP) [6] which was the forerunner to this work.
While it has much of the capability that is needed for custom wireless algorithms, it
does not have the functionality to monitor and control a deployed network of nodes.

There are a few European projects also focussed on testbed development. Caban
et. al. [7] decouple the algorithm from the antenna where all the processing is done
offline in MATLAB while using generic wireless interfaces to capture actual channel
effects. While this allows for deployments, the latency between the antenna and offline
processor is too large to enable real-time network-level communication. The WIN-
NER project [8] does hardware development but its primary thrust is development of

channel models related various standards.

Inflexible MAC and PHY  Lack of Remote Management

KUAR

WARP

GNU Radio

Rupp et. al.

Insufficient Network Data Rates

Figure 1.1: Characterization of Other Platforms

Figure 1.1 graphically illustrates the shortcomings of the various platforms dis-
cussed above. The three categories are: (1) the inability to implement novel physical
and MAC layers, (2) the lack of remote control and observation and (3) the data rates

sustained in real-time are not comparable to current generation wireless systems.



Much research has been done comparing protocols where a single radio is used [9]
for the control and data communication or a dedicated radio interface is used [10].
WARPnet is designed with a dedicated control channel that is on an orthogonal
frequency channel (900 MHz) and does not utilize the FPGA for communication.
There are two advantages to this: (1) the physical and MAC layers are not interrupted
by transmitting or receiving control information and (2) the FPGA is not required
to implement a second physical layer in the same logic resources as the experimental

physical layer.



CHAPTER 2

Hardware Platform

To support our goals of an experiment-capable network-wide wireless communica-
tions platform, we have developed a new hardware platform, Wireless Open-Access
Research Platform for Networks (WARPnet). This highly reconfigurable and flexible
system is modular and supports a myriad of setups, each tailored to user needs. In
this chapter we showcase the architectural details of the WARPnet hardware.
WARPnet is built around three major boards. The Virtex-4 FPGA Board provides
the processing horsepower to implement novel wireless physical and MAC layers.
Up to 4 RF interfaces or Radio Boards can be installed on the FPGA Board to
provide the RF upconverters etc. The Radio Boards developed for the first generation
WARP project [6] are compatible with this platform and hence not described here.
Finally, the Backdoor Board enables remote control and observation functionality
and provides the hooks for extracting experiment information. The Backdoor Board
has its own processor, allowing it to run independently of the FPGA Board while

maintaining reliable communication channels.



2.1 Virtex-4 FPGA Board

Field Programmable Gate Array (FPGA) technology is well suited to prototype plat-
forms. Implemented algorithms can take advantage of hardware parallelism that is
commonly available in ASIC designs. The FPGA affords a short design cycle as its
logic blocks are reconfigurable speeding up prototype iteration time. This reconfigura-
bility also lowers long-term cost as the same hardware can perform multiple functions
without need to recreate a physical chip. The key to maximizing the flexibility is
building a modular system where the FPGA has access to multiple and selectable
off-chip resources. Thus, WARPnet is based around a large FPGA, while the RF
and experimentation hardware connect as daughtercards to the main board. Future

upgrades of RF chips does not require a redesign of the FPGA Board itself.

2.1.1 Xilinx Virtex-4 FPGA

The foundation of WARPnet is an FPGA from Xilinx. It belongs to the Virtex-4
FX series [11] and is one of the largest Virtex-4 devices available on the market.
FPGAs provide direct access to a large number of I/O pins, have reprogrammable

logic resources and an onboard processor to implement OS functionality.

Logic Slices 42,176
XtremeDSP Slices 160
Block RAM 376
PowerPCs 2
Ethernet MACs 2
RocketlO Transceivers 20
User 1/0 768

Table 2.1: Resources available on Virtex-4 FX100

The key resources available on the Virtex-4 are shown in Table 2.1. The flexibility
of the FPGA is realized in the slice resources. Each slice is composed of two 4-

input look-up tables (LUTs) and associated logic. These can implement arithmetic



functions or act as distributed RAM. The slices are laid out in an array-like structure
and each can be reconfigured to form larger complex systems. FPGA logic design is
controlled at the bit level, giving the user the power to decide what resources to use,
placement of the design in hardware and the maximum sustainable clock frequency.

Other resources such as XtremeDSP slices, Block RAM, Ethernet MACs and
RocketIO Transceivers are hardened logic for specific functions. For example, the
XtremeDSP slice is an 18 bit x 18 bit multiplier followed by an accumulator. If a
design requires the use of a multiplier, one of these will be instantiated. All these
resources are spread out across the chip, easing the load on the interconnect that
links all the resources.

The FPGA also includes two onboard PowerPC processors. Standard processor
buses allow custom user code to connect with designs implemented in logic. This is
extremely useful in rendering the node as a standalone device, as the physical layer
can use the flexible logic while the MAC can both utilize processor functionality and
be connected to the physical layer. Additionally, embedded operating systems, which
can execute in the PowerPC, provide easy access to all the layers of the OSI network

stack.

SATA

Transceivers
Gigabit Ethernet SFP Interfaces

1

Daughtercard Virtex-4
Headers FPGA

—— Backdoor Board

/ N\
DRAM User I/O

Figure 2.1: Block Diagram of the Virtex-4 FPGA Board

The hardware peripherals attached to the FPGA are shown in the block diagram in

Figure 2.1. The FPGA provides the raw processing power to tackle real-time wireless
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algorithms, while the peripherals are the conduits for the data to be processed. Each

peripheral plays a specific role to create a standalone node.

2.1.2 Daughtercard Headers

To support multiple standards, especially in the evolving portions of spectrum, RF
interfaces are built as modules. A very general daughtercard interface is provided,
which has an open specification to encourage the community to design custom boards
to suit their needs. Four of these slots are present on the board. Currently, several
daughtercards are available, like the Radio Boards and the Analog Board (digital-
to-analog converter board). The interface itself is a 124 bit parallel bus connected
directly to the FPGA general 1/O. Here we take advantage of the flexibility of the
FPGA as the I/O pins can be configured on a per design basis, we let the designer
define the I/O pin functionality based on the daughtercard being used. This is key in
maintaing modular architecture that enables future use and encourages new daugh-
tercard designs. Additionally, the FPGA Board provides dedicated 5 V, -5 V and
common ground to each slot. Up to 18 A can be drawn by the daughtercards in total,
to use as desired. The significant high-speed bypass on the FPGA Board reduces

noise on the power planes generated by the daughtercards.

2.1.3 Gigabit Ethernet

In addition to possessing wireless capability each node needs connectivity to source
and sink real data. The Board is built with the Marvell Alaska 88e1111 gigabit Ether-
net transceiver. This assists in developing higher performance nodes that bridge wired
and wireless domains. The Virtex-4 includes hardened Tri-mode Ethernet MACs that
implement the functionality of Ethernet connectivity for a PowerPC processor in hard
logic. They utilize considerably less logic than if implemented in fabric and reduce

the load on user designs. We also support two additional gigabit Ethernet interfaces
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which will be covered in Section 2.1.5 on Multi- Gigabit Transceivers.

2.1.4 Dynamic RAM

As the two primary goals of the platform are deployment and experimentation, taking
measurements and storing data are important. To sustain such data collection the
FPGA Board has a DDR2 SO-DIMM slot that can support up to 2 GB of dynamic
RAM. Other than data storage, operating systems, such as Linux, can utilize this
RAM for program and data. Traditionally, designing efficient memory controllers has
been a design challenge unto itself, but fortunately Xilinx tools provide the relevant

controllers to make RAM usage seamless.

2.1.5 Multi-Gigabit Transceivers (MGTs)

The MGTs are high-speed serial data links that support several standards of serial
communication. Each transceiver is capable of up to 6.5 Gbps, encompassing links
like SATA, PCI Express, optical fibre, etc. On this board we connect the MGTSs to
three interfaces: SATA, SFP and HSSDC2. To aid in non-volatile data storage such
as hard drives, SATA target and host functionality is built onto the Board. Users
can thus store several streams of data for offline analysis. Two additional gigabit
Ethernet ports can connect via Small Form-factor Pluggable (SFP) jacks. By tripling
the number of Ethernet connections, the system can support router-like functionality
to test more complex wired and wireless networks. And finally, if some user designs
are too big and require two or more FPGAs to split the processing between them,
there needs to be a high-throughput link between them to to transfer the large amount
of data. Four HSSDC2 jacks provide this functionality by allowing a custom design
to transfer information. The latency across this link can be reduced to a few cycles if
the MGT clocks are shared. A flexible clocking scheme is present to fulfill the myriad

demands of MGT usage, and that allows two boards to share their reference clocks.



12

2.1.6 Reconfiguration

We designed the FPGA Board with three methods of reconfiguration for the Virtex-4.
In a lab scenario where computers are easily available, the board can be reprogrammed
using JTAG or USB cables. This allows for quick iterations as designs can be down-
loaded right away. However, if the board is deployed, up to 200 bitstreams can be
saved on a CompactFlash card and downloaded using software calls. Lastly, the Back-
door Board, as we shall see in Section 2.2, can reconfigure the FPGA through the

Slave Serial interface and control the CompactFlash card.

2.1.7 Other Peripherals

While off-the-shelf hardware provides limited visibility into its inner workings, proto-
type hardware needs a low-level access to signals to enable debug of real-time designs.
One of the most commonly used methods for debug purposes is using digital 1/0 to
view signal interactions on an oscilloscope. 16 bits of digital I/O are provided for use.

User LEDs, push buttons and serial ports can provide additional information as well.

2.1.8 Power Considerations

The board is powered by a single 12 V DC input supply. All other voltages are de-
rived from this single source with the use of linear and switching regulators. There
is a central controller that can inhibit all the supplies, effectively shutting down the
board. This functionality is useful for performing remote hard resets of an entire node

as the Backdoor Board (discussed in Section 2.2) has control of the inhibit control.
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2.1.9 Hardware Design

The completed FPGA Board is shown in Figures 2.2 and 2.3. The different pieces of
the system discussed above have been annotated on the figure.

The printed circuit board (PCB) design is 8 in x 8 in and composed of 18 copper
layers — 8 power and ground and 10 signal layers. The stackup of the board is shown
in Appendix B.1. Every signal layer has at least one ground layer adjacent to it. This
improves signal integrity as the ground plane is available for signal return. As all the
FPGA I/0O pins are used, the fanout from the FPGA requires 7 signal layers. There
are 10 different voltages on the board each with multiple drop locations. The power
planes for all but 3.3 V are concentrated in the two central layers (layers 9 and 10)
that are surrounded by ground planes as well. This protects the signals from having
to use the split voltage planes as reference. The vicinity of the ground planes also
provides capacitance augmented by the capacitors already present on the board.

The top and bottom layers are impedance matched to 50 €2 for a 5 mil copper
width providing excellent signal integrity for the high-speed signals on these layers.
Therefore, all the MGT signals and clocks are on placed on the top and bottom. All
I/0O signals are designed with a maximum of two layer crossings (vias). As DDR2
memory controllers have a low delay tolerance, the signals carrying control and data
for the DDR2 memory are within 0.027% (1 mil) of their total etch length.

The board is designed for a RoHS compliant manufacturing process. The internal
dielectric (IT180) supports the higher temperatures and every part used for assembly

is lead free. The complete schematics for the Board are available in Appendix A.1.

2.2 Backdoor Board

The second piece of the platform is the Backdoor Board. As mentioned, it serves two

primary purposes: (1) a dedicated control channel and (2) the control and monitoring
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hub. The control channel problem can be addressed in many ways. One could add an
additional radio to the system and utilize the same band as the primary network [12] or
use a dedicated control channel orthogonal to the experimental network itself [13, 14].
WARPnet supports both, as up to four radios can be connected to the FPGA Board.
The Backdoor Board provides dedicated control channels that are also available to
the FPGA. Next, having the ability to control every board in a network from a
central server is important in scheduling experiments and observing network-level
performance. Physical access to the boards may be difficult in deployed networks
and hence remote reprogramming is an integral part of WARPnet. All the above
functionality is provided by the Backdoor Board.

The block diagram of the Backdoor Board is shown in Figure 2.4. There are
two main processors on the board each serving a different purpose. The first is a
Linux System-on-Chip (SoC), the Axis ETRAX 100LX, and the second is a Xilinx
Spartan-3AN FPGA.

101100 | N Virtex-4
Ethernet i . Axis Bus Generic /0
Axis Etrax Interface Xilinx Spartan
100LX 3AN
MCM4+16 .
UsBlg o Virtex-4
1.1 Reconfiguration
v ,
Long
GPS Range
Radio

Figure 2.4: Block Diagram of Backdoor Board

2.2.1 Axis Etrax 100LX Multi-Chip Module

The design of the board is centered around an embedded Linux device server, the

Axis Etrax 100LX MCM4+16 [15]. This is a multi-chip module with four major com-
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ponents: an Axis Etrax 100LX processor, 4 MB flash memory, 16 MB RAM and an
Ethernet transceiver (discussed in Subsection 2.2.3). The internal flash memory can
store a boot image, which is executed at power up. This has two major benefits: it
eliminates the need for users to reprogram the device every time, and eases deploy-
ment, since a stable image can be saved and used as many times as required without
requiring physical access to the board.

The Etrax uses a custom, well supported, community driven, Linux distribution.
It includes all the tools that are useful for debugging and development. It also re-
duces design cycle time as standard C/C++ programs can be used and no additional
language needs to be learned. Additionally, the development environment is open

source.

2.2.2 Xilinx Spartan-3AN FPGA

Connecting the Axis Etrax chip to the main Virtex-4 on the FPGA Board is a Xilinx
Spartan-3AN (XC3S700AN) FPGA [16]. The resources available on the FPGA are
listed in Table 2.2. Unlike the Virtex-series it has no embedded processor but a
soft processor (e.g. MicroBlaze) can be implemented using the Xilinx design flow.
The Spartan FPGA is set up to act as a translation device between the Axis Etrax
processor and the Virtex-4. As both of those devices do not share common bus
interfaces, some data translation is necessary for seamless transfer of data. The

Spartan FPGA implements this functionality.

Logic Slices | 5,888
Multipliers 20

Block RAM | 360 Kb
User 1/0 372

Table 2.2: Resources available on Spartan-3AN

Another key feature of the Spartan device, that is aimed at deployable networks,

is the presence of non-volatile flash memory. Just like the Axis device, boot images
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can be stored on the Spartan, and at power up can be ready for data transfer. From a
network design perspective this provides additional reliability. If there is loss of power
to the node, even though the Virtex-4 may lose its configuration, the two devices on

the Backdoor Board that allow remote connections will return to a usable state.

2.2.3 Backdoor Interfaces

We have implemented two functional and several potential backdoor communication
interfaces. The type of deployment dictates the interface that is used in the network.

Consider the scenario where the deployment is within a building and wired Eth-
ernet connections are available in the vicinity of each node. Here a wired backdoor
link would be ideal. To fulfill this scenario a 10/100 Ethernet interface is provided
giving direct access to the Etrax chip. As mentioned, the physical layer is part of the
Etrax multi-chip module.

The second and more flexible implementation involves a long-range radio. This is
tailored to outdoor deployments that spread over larger areas without wired connec-
tivity at every node. The implementation uses a 900 MHz radio that can communicate
over long distances with a highly reliable but low data rate link. The use of 900 MHz
for the control channel eliminates all interference between the backdoor interface and
the experimental wireless links.

Other potential backdoor interfaces can utilize the USB or Ethernet interfaces
as supported by Linux. A Wi-Fi card connected to the USB 1.1 port could provide
functionality similar to a laptop’s wireless interface. The user must ensure that the
channel usage is orthogonal to the experimental network. This solution is in between
the long range and wired connection in terms of range and data rate. Any other exter-
nal device connecting over USB or Ethernet can be utilized to provide the backdoor

functionality.
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2.2.4 Other Peripherals

The Backdoor Board has a GPS receiver attached. This is extremely useful for MAC
layer algorithms as it can provide information such as topology and a precise globally-
synchronized time. To perform scheduled access algorithms all the nodes in the
system need a common time reference. The GPS time is accurate enough for this
application [17]. This is also useful when the user is trying to conduct large-scale
experiments where events need to occur at certain precise times.

One requirement that was mentioned previously was data collection. The board
has a standard USB hub enabling users to connect flash drives to collect large amounts
of data. A USB spectrum analyzer could augment the spectrum sensing abilities of

the FPGA Board for certain applications.

2.2.5 Virtex-4 Link

The Backdoor Board is connected to the base Virtex-4 FPGA board using two low-

profile headers. There are four types of signals passed up through them:

e Power Pins: The 12 V that powers the base FPGA Board is available for the
Backdoor Board to use as its own source (discussed further in Power Consider-

ations).

e General I/O Pins: A 22-pin bus is connected directly to the Virtex-4 is presented
at the Spartan FPGA. As the signals are just general I/O they can be configured

either as parallel data and address buses or individual signals.

e Reconfiguration Pins: One of the methods of reprogramming a Virtex-4 the
Slave Serial interface. This is a four pin interface, two of them being clock and
data. The Spartan has direct control of these pins allowing it reconfigure the

Virtex-4 as needed.



20

Additionally, the Board has control over the CompactFlash reset interface. The
user can reprogram the node from one of the many bitstreams stored on the

CompactFlash card.

e Inhibit: Finally, the Board controls the Inhibit pin of the Virtex-4 power sup-
plies. This means that the FPGA Board can be completely power-cycled al-
lowing the user to hard reset. The Backdoor Board does not lose power during
this process as both boards are powered by the 12 V that comes directly from

the off-board source.

2.2.6 Power Considerations

The Board is powered by 12 V DC input. As mentioned above, the Virtex-4 board
makes this available on the auxiliary header. Additionally, in order to facilitate
standalone operation, the board has a 12 V input jack (similar to the base board)
that can be used instead. All other voltages (5 V, 3.3 V, 1.2 V) required to power

devices are derived from this 12 V input.

2.2.7 Board Architecture

The Axis Etrax chip acts as the heart of the design. Given its ease of use and C
programmability, the user’s primary concern is to utilize its resources. Its interface to
the Virtex-4 has been abstracted as a bus transaction (“memory-mapped”) through
the Spartan device. Additionally, the Spartan has control over the Virtex-4 repro-
gramming and power cycling; it can monitor the Etrax bus for certain instructions
enabling these features.

The 900 MHz radio serial interface is connected to both the Etrax as well as the
Spartan chips. This enables two different modes; the Etrax uses the link as the control

and measurement interface or the signals are passed up to the Virtex-4 that can use
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Figure 2.5: Backdoor Board
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it as an additional link to share routing information for example. Similarly, the GPS
is also connected to both the devices.

The Etrax and Spartan have control of the reset and programming interfaces of
each other. This allows both to perform a soft reset of either chip if necessary. As
both chips have non-volatile storage, they always start up in a stable state.

The final key feature is the ability to act as a standalone device. To complete this
network of deployed nodes, a central controller is required with the same interfaces as
the Backdoor Boards. As the Backdoor Board itself is capable of acting in standalone
mode it can be connected to a standard PC to perform all the processing for complex
algorithms.

The Board itself is shown in Figure 2.5 with the various elements highlighted.
The design of the PCB is composed of 8 layers — 4 signal layers and 4 power and
ground layers. The stackup is shown in Appendix B.2. The board dimensions are
5.40 in x 2.58 in and it attaches to the bottom of the FPGA Board over the auxiliary

header.



CHAPTER 3

System Implementation and Characterization

In the previous chapter we presented the hardware details of WARPnet. The FPGA
Board, Backdoor Board and Radio Boards are assembled together to form a complete
WARPnet kit. In this chapter we discuss possible implementation strategies, ways to
partition a wireless communication algorithm and use cases for the hardware. In order
for network designers to efficiently use the hardware, we characterize the following
behavior of the 900 MHz backdoor link: round-trip time, throughput and maximum
range. Finally, we present an example framework that decouples the control and
observation engine and PHY and MAC along with the methodology to remotely

reconfigure and monitor the Virtex-4 FPGA.

3.1 Implementation Strategies

In Chapter 1 we laid our goals to implement a novel wireless communications algo-
rithm on a hardware platform. As we saw, the custom algorithm may modify the
behavior from data type to the bit-level and each layer of abstraction must be modi-
fiable. In the previous chapter we detailed the hardware architecture of the platform
that we developed. The next step is to map the goals of custom wireless on to the

specific hardware described and software frameworks that need to be developed.



24

N r MAC Layer ] <« || Control anﬂ | I
1 ||| Observation H+ 500 MH
Physical Layer J ] ; J y 4
Custom RF||L Y y Engine | Radio
] FPGA | Axis | |
FPGA Board - Backdoor Board |

Figure 3.1: Implementation on Platform

The hardware itself provides several processors and interconnections. While this
can be fairly complicated, each part of the wireless algorithm can be implemented on
a particular processor, creating a decoupled system that provides all the functionality
we need. Consider Figure 3.1 as an example implementation of the full stack where
the corresponding pieces have been mapped onto hardware. As understood, there are
three major pieces of the stack: the physical layer (PHY), the medium access layer

(MAC) and the control and observation engine that must interact with both.

1. Physical Layer: The PHY is the lowest-level algorithm of a wireless network
that deals with bits and waveforms. Off-the-shelf hardware utilize ASICs for the
physical layer itself, but with our goal of being customizable and experimental
the PHY can be implemented in the logic of the FPGA. As we saw in the
previous chapter, the Virtex-4 FPGA is abundant in reprogrammable slices.
Slices are parallel, high-speed and controllable at the bit level. In addition, the

PHY will have access to other memory and I/O resources in real-time.

2. Medium Access Layer: One level above the PHY is the MAC layer that is
responsible for scheduling and medium control. It must have low-level control
of the physical layer to carry out its functionality. The MAC is implemented
in the hardened PowerPC processors available on the Virtex-4 FPGA. There
are two advantages to this: (1) the MAC has visibility into the workings of the

PHY, and (2) it can access any other resources that enabling scheduling e.g.



25

timers.

. Control and Observation Engine: While just an FPGA Board would suffice
for implementing current generation wireless protocols, the control and obser-
vation engine needs the functionality of the Backdoor Board. Using the custom
interface between the FPGA Board and the Backdoor Board, the engine has
visibility into the workings of the PHY and MAC. Parameters and statistics can
be easily extracted to be passed onto other devices over the network of Backdoor
Boards (backdoor network). An example framework is presented in Section 3.3
where control and observation enginer and MAC/PHY are decoupled to avoid
affecting the wireless data performance. The control engine talks to a central
WARPnet controller or other WARPnet nodes over either the wired Ethernet
connection or the long-range 900 MHz radio. As both of these are orthogonal
to the 2.4 GHz and 5 GHz ISM bands, the control channel will not interfere

with the data communication.

All of the ideas presented in Chapter 1 were to apply to network-wide experiments.

This includes scheduling of node behavior and gathering statistics for performance

evaluation. All three ideas of remote control, observation and reprogramming utilize

the backdoor network. The example framework presented in Section 3.3 that decou-

ples the MAC and PHY from the control and observation engine does the same for

the experimentation functionality.

Keeping these possible implementations in mind, let us consider a few realistic

use cases. These will also help in determining the metrics that need characterization

for the evaluation of the platforms.

1. Cognitive Deployment: The first scenario is for the platform to be deployed

as a cognitive radio network. Wireless nodes, including the FPGA and Backdoor

Boards, are spread out and connected in an indoor or outdoor environment. The
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backdoor network is used to share cognitive information. If wired Ethernet is
unavailable, all control packets utilize the 900 MHz radio interface. In such a
scenario, the control data should be limited to short packets so as not to saturate
the limited rate of the long-range radio. Latency of the data from source to
destination will be important as update rate will determine how quickly a system
can adapt to changing conditions. This scenario is tackled is more detail in

Chapter 4.

2. Data Gathering: The second scenario is an algorithm evaluation mode where
nodes are constantly reporting their performance to a central server. Just like
the previous scenario, the nodes can be deployed in an indoor or outdoor envi-
ronment. The data statistics are communicated over wired Ethernet, if avail-
able, else the 900 MHz radio is used. The scalability of such a solution will
depend on the throughput that the 900 MHz radio can sustain in multi-source

to single-destination setups.

3. Centralized Controller: The third use case is equivalent to system simula-
tion. Algorithms implemented for the nodes, can be controlled from a central
WARPnet controller. This amounts to ‘God-mode’ where network-wide infor-
mation is available at all nodes. This is used to test the ideal performance of
an algorithm with perfect knowledge of topology etc. This scenario will require
constant data transfer from the central controller which will overwhelm the lim-
ited rate of the 900 MHz radio. Thus, wired Ethernet is preferred. Tethered
mode is a second example of ‘God-mode’. In this scenario, the primary and sec-
ondary networks are all controlled by the central controller. The controller runs
targeted experiments with specific network conditions to evaluate performance,

similar to the functionality provided by WARPLab [18].

The wired Ethernet connection has been well characterized in practice. It can
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sustain 30+ Mbps with very low latency (order of a millisecond). The interface that
needs characterization is the long range 900 MHz radio. Its data carrying capability
must be compared to wireless medium access time so algorithm designers can take

its performance into account.

3.2 Backdoor Link Performance

An important aspect of the platform is data collection. The control channel to im-
plement this would either be in the same band as the data network or orthogonal in
frequency to it. The first option does not require the use of the Backdoor Board for
communication but would intrude on the experimental spectrum. The second option
is implemented with the 900 MHz radios as the data control channel. However, be-
fore utilizing the radios for sending control information, it is important to understand
its limitations. In a rate-limited wireless link, the factors determining performance
are latency and throughput. In addition, as the hardware is meant to be deployed,
knowledge of the maximum range of communication is a prerequisite for building a

large well-connected network.

The key specifications of the 900 MHz radio [19] are shown in Table 3.1.

Throughput Data Rate
9,600 bps | 115,200 bps
Maximum Transmit Power 1W 1w
Indoor Range 900 m 450 m
Outdoor line-of-sight Range w/ | 40 miles 20 miles
high-gain Antennas
Receiver Sensitivity -110 dBm -100 dBm

Table 3.1: Specifications of the 900 MHz radio
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3.2.1 Latency

An important metric, especially for control information, is the latency from source
to destination. Closed feedback control algorithms rely heavily on the latency of
responses. For example, when deployed as a cognitive network, nodes will collaborate
on parameters and update as necessary. However, the time for communication over
the 900 MHz link would span several wireless data packets. Only if the time to update
parameters on collaborating nodes is deterministic, coordination will be possible.

Therefore, the parameter of interest is the round-trip time from source to destina-
tion and back over the 900 MHz radio. This must not only include the channel usage
time but also the time to update a parameter on the Virtex-4 FPGA Board. This
is exactly the scenario in use case 1, where nodes must update each other on system
parameters.

Our methodology to achieve this is as follows. The source node initiates a trans-
mission with the current time as the data that is sent. The partner node captures
the traffic, updates a parameter and replies with the original timestamp. The source
can calculate the time for the round-trip based on its current time and the time the
transmission was initiated. The clock used on the source is accurate to 10 ns, giving
it high precision in calculating the round-trip time.

Let us consider variable distance as the first measure. Figure 3.2 shows the CDF
of the arrivals with measured round-trip times for different distances. A round-trip
time of 30 ms meant that just the source to destination time is 15 ms. The data from
Figure 3.2 shows that 99+% of the arriving packets return in 52 ms while 98% return
in 42 ms. Also, notice that the number of arrivals does not vary significantly over the
various distances, so any algorithm utilizing the dedicated control channel does not
need to modify its parameters based on the distance of the destination node.

While a point-to-point link is common in small node networks, scaling to any-

thing larger would require the control channel to be point-to-multipoint. Figures 3.3
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Figure 3.2: Round-Trip Time for Two Nodes with Varying Distances

and 3.4 show the round-trip time for a three node setup. First is the latency seen for
two sources to a single destination while the second is for a single source and two des-
tinations. The graphs show the CDF for both the links. Again, the variance between
the two systems is minimal, further supporting the independence of the algorithm
from the size of the network with respect to latency.

This outcome is expected, as the latency test does not stress the limits of medium
usage. The real performance bottleneck will be seen when the number of nodes is
increased and simultaneous throughput is measured.

While the absolute numbers provide an interesting look at the delay, we can
gain perspective by comparing it to wireless data packet times. For the WARP
OFDM Reference Design [20], a wireless OFDM data packet 1500 bytes long using
QPSK modulation for its 48 data subcarriers requires 1.044 ms of medium usage
time. In addition to that is the reply from the receiver node which returns in 17 us

followed by 64 us of medium usage for the acknowledgement. On average the backoff
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Figure 3.3: Round-Trip Time for Two Transmitters Feeding One Destination

window would utilize 8 time slots at 20 us each, adding a further delay of 160 us.
Thus, each wireless data packet requires 1.285 ms between subsequent transmissions.
On the other hand, the round-trip time for a 900 MHz acknowledgement is 42 ms.
Approximately 33 wireless data transmissions can occur between subsequent control
channel parameter updates.

The deterministic parameter update rate of 42 ms or 33 packet transmissions
allows algorithm designers to tailor their feedback loop algorithms to perform at

their peak.

3.2.2 Throughput

The next metric of importance is the throughput that can be sustained by the
900 MHz radio link. We showed use cases where the remote deployed nodes transfer
information back to the central controller. The quantity and rate of that information

will be determined by the Backdoor interface used to communicate that information.
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Figure 3.4: Round-Trip Time for One Transmitter Feeding Two Destinations

The 10/100 wired Ethernet on the Backdoor Board can support upwards of
30 Mbps. The WARP OFDM Reference Design can support up to 15 Mbps [20] while
the maximum achievable physical layer throughput for 802.11a is ~54 Mbps [21]. One
in every two received data packet can trigger an update back to the central controller
and this would be sustainable. For the long-range radio that is not the case. This
radio is built as an alternative serial port, hence the throughput is limited to serial
data rates of 115,200 bps. However, actual data throughput will be lower due to MAC
overhead and retransmission latency. We can then compare this to the quantity of
information that can be sent from source to destination.

Our methodology of characterizing this metric was to generate a constant rate of
traffic from the source to the destination and keep track of the number of packets
received. We used the wired Ethernet to trigger the beginning and end of the data
gathering cycle. Fach packet sent was 512 bits including control information.

Figure 3.5 shows the throughput seen across 5 distances in Duncan Hall. For all
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the distances, the throughput is maintained at around 25 Kbps. Just as we noticed
while characterizing latency, the performance variance is very low across the building.
However, as noted in Table 3.1, the specified maximum range is 450 m while our
measurements could only span 100 m due to the size of the building. Hence, any

significant drop in throughput could not be empirically observed.

Throughput vs. Distance in Duncan Hall
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Figure 3.5: Throughput for Various Distances

Another metric within throughput that is important, especially in the data gath-
ering scenario, is multiple nodes utilizing the same medium. We would expect a
significant throughput loss as the total nodes increase. Figure 3.6 shows the average
throughput for 1, 2 and 3 nodes transmitting to the destination. The graph with
the squares is the ideal scheduled scenario throughput where the medium is perfectly
partitioned amongst the participants. The graph with circles is the throughput in
the implemented random access system. The dashed line shows an upper bound on
potential future throughput. The assumption is that with a further increase in the

number of nodes, the throughput loss remains constant. Thus the loss in throughput
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with three transmitting nodes does not further increase. A factor to consider is that
this test was conducted with the nodes always backlogged with data. If the nodes
scaled down transmitted information based on the number of operating links, the

scenario could be managed better.

Throughput Scaling by Number of Nodes
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Figure 3.6: Throughput Scaling as Number of Transmitters Increases

Let us consider an example to see if 25 Kbps is sufficient for statistics updates
in real-time. Each node keeps track of four counters: good and bad received packets
and total received and transmitted bytes. Each counter is 32 bits long. Thus each
update would require 128 bits. Adding an additional 32 bits for control information

leads to a total of 160 bits to be transmitted.

Transmitting Nodes Updates per second

1 160
2 72
3 41

Table 3.2: Maximum Number of 160 bit Updates per Second

From Figure 3.6 we know the maximum throughput that is sustainable by every
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node. Using this information and the number of bits transmitted in every update,
we can calculate the number of updates that the node is capable of sending to the
central server.

Table 3.2 summarizes the results. We can see that for a three node setup, each
node can send 41 updates per second. This detailed a look into the performance may

not be needed in real-time.

3.2.3 Maximum Range

The hardware is built to be deployed in an indoor or outdoor environment while being
controlled over the backdoor links. While Ethernet may not be available everywhere,
the 900 MHz radio can be utilized to control the network. However, as expected, the
long-range radio will have a finite range. For network designers, this is the key number
in determining node placement. Exceeding this range can render the backdoor link
unreliable, defeating its purpose. As indoor deployment is the primary goal, indoor
range should be characterized.

There are several factors that contribute to the range of the 900 MHz links. The
radio has two parameters that determine range: output power and wireless data rate.
The output power can be controlled from 1 mW to 1 W while the RF data rate
can either be 9,600 bps or 115,200 bps. As we would like to sustain as high a data
rate as possible, we select the faster data rate and 1 W output power to perform
our benchmark tests. Additionally, the module has an extremely sensitive radio that
can receive data up to -110 dBm at 9,600 bps or -100 dBm at 115,200 bps as shown
in Table 3.1. Thus, at 115,200 bps the maximum path loss that can be tolerated is
130 dB.

Our benchmarks are based on an empirical method. Using Duncan Hall as a
representative indoor environment, measurements of path loss were taken across the

building. Using linear regression, the path loss exponent is computed and potential
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maximum range is determined. While the maximum distance is just a prediction, it
matches closely with the expected distance based on the module’s datasheet.

The measurement of the received power is the key to the empirical benchmark.
Each module returns the received signal strength indicator (RSSI) value for every
received packet. While the instantaneous RSSI may vary, its distribution should be
log-normal [22]. The mean RSSI at each transmitter-receiver distance is used for the
regression analysis. In order to provide a varied environment for analysis, the data
was collected across the building, as shown in Figure 3.7, for several minutes. The
coverage was limited to a single floor, but Duncan Hall’s architecture allows for open

access between the floors reducing the effect of floor crossings.
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Figure 3.7: Data Collection Locations for Maximum Range Experiments

Taking into account the log-normal shadowing effects the path loss equation is
given by

PL(d) = PL(dp) + 10nlog (g()—) + X, (3.1)
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where dg is the reference distance where the path loss is known, n is the path loss
exponent and X, is the zero mean random variable representing the shadowing. By
considering just the mean of all measurements at the same location, the random
variable can be dropped. Thus,

PL(d) = PL(dy) + 10nlog (dio) (3.2)

represents is the path loss model of interest.

Path Loss vs. Distance for Duncan Hall at 915 MHz
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Figure 3.8: Path Loss Measurements with Linear Regression

The measured RSSI data is plotted in Figure 3.8 as the black scatter points. The
distance range is limited to ~100 m, as that is the length of the building. Also, the
minimum path loss is around 70 dB as the radio modules can only report received
power less than -40 dBm. Performing linear regression on the data gives the following
equation,

PL(d) = 14.86 + 19.02 - d (3.3)
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yielding a path loss coefficient of 1.90. The path loss coefficient for free space is 2; a
higher number indicates obstructions and attenuation while a lower number indicates
constructive interference. Using empirical data it has been shown [22] that ‘In building
line of sight’ coefficients range between 1.6 and 1.8 and coefficients for retail stores
range between 1.81 and 2.16 [23]. Duncan Hall’s architecture and open top floor do
provide a warehouse-type indoor environment, indicating that the empirical coeflicient
is in the correct range.

Plotting Equation 3.3 on the same graph yields the potential maximum distance
for indoor environments. At a path loss of 130 dB the distance is 424 m, extremely
close to the datasheet mentioned 450 m, again validating our analysis. This maxi-
mum range would be the diameter of a fully connected network of nodes, where data

communication between every module is possible.

3.3 Frameworks

The control and observation engine depends on having access to both the PHY and
MAC layers running in the FPGA. Therefore we need to define a framework for data
access from the FPGA to the central server. We present, one possible implementation

of decoupling the transfer between the Virtex-4 FPGA and the Axis processor.

3.3.1 Data Collection Architecture

In the second use case, the node will be reporting statistics back to a central server.
However, in the process of data collection, the performance of the wireless algorithm
itself must not be affected. The data reporting must not steal any processing resources
from the MAC layer algorithm. This would especially be an issue when using the
900 MHz radio as data transfer to the module is slow. In order to prevent MAC

delays, the FPGA design should be decoupled from the process of transmitting the
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data over to the server. The design in the Axis Etrax should be responsible for sending

the data. Figure 3.9 shows an example architecture that achieves this decoupling.
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Figure 3.9: Data Flow Decoupling

The key to decoupling the architecture is to provide the Axis program direct access
to the memory where the FPGA designs stores its statistics. For the architecture
shown in Figure 3.9 the FPGA stores its data into a local BRAM. As all BRAM blocks
are equipped with two ports, the Axis program gains access to the same memory over
the second port. There is one major constraint to consider; the header between the
Backdoor Board and FPGA Board is limited to 22 bits. Thus the 32 bit bus on the
Axis must be converted to a double rate 16 bit bus. On the FPGA Board side the
16 bit data must be converted to 64 bits for BRAM port access.

The Spartan FPGA does the majority of the work to interface the two buses. It
responds to both reads and writes, enabling bidirectional transfer of data. However,
this transfer must always be initiated by the Axis design. The resource utilization for
the Spartan design is shown in Table 3.3.

The FPGA-side design has to convert the custom bus from over the header to
BRAM compatible transactions. The design must be lean so as to not steal any

resources that the PHY might need. It utilization is shown in Table 3.4.
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Used | Available
Slices 518 5,888
Block RAM 11 20
Slice Flip Flops | 591 11,776

Table 3.3: Resource Utilization for Spartan Design

Used | Available
Slices 487 42,176
Block RAM 3 376
Slice Flip Flops | 408 84,352

Table 3.4: Resource Utilization for FPGA Design

The natural decoupling of data across the BRAM interface is ideal. The MAC
never realizes the presence of the Backdoor Board or that the data is being used
elsewhere. The Etrax interactions are invisible to the MAC or PHY. This structure
can also be used to update MAC and PHY parameters. The WARPnet translator
in the FPGA provides the ability to read from up to 4 separate BRAMs. Thus,
the MAC and PHY can store their statistics in two different BRAMs and the Axis
can periodically gather new information at the rate it wishes to update the central

controller.

3.3.2 Reconfiguration

The next important ability to enable remote control and measurement is the recon-
figuration of the FPGA with updated designs. This will be done over the Backdoor
Board network. The rate at which the boards are reconfigured will depend on the
data transfer interface.

As mentioned in Section 2.2, the Backdoor Board is connected to the Slave Serial
interface of the Virtex-4 FPGA. The Slave Serial interface is one of many ways to
reprogram the FPGA. It is a two-wire serial interface with clock and data. The clock
speed for configuration can be determined by the user application. There are three

major steps to configuring the FPGA: (1) transfer the bitstream from the WARPnet
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server to the Backdoor Board, (2) determine the integrity of the bitstream and (3)
download the bitstream to the FPGA.

In order to perform any integrity checks on the transferred data, the bitstream
needs to be buffered at the Backdoor Board. The Axis device has up to 16 MB
of storage memory where the 4048 bytes bitstream can be stored. Once a cyclic
redundancy check has been performed, the file can be streamed to the Virtex-4 FPGA.
The Slave Serial pins are controlled by the Spartan-3AN, hence a simple state machine

in the Spartan-3AN can implement the bit transfer functionality.

3.3.3 Watchdog

As the Backdoor network is a monitor for the Virtex-4 FPGA, it is important to
have the ability to know the state of the FPGA. A simple watchdog implementation
can be used to assist in this process. As the link between the Backdoor Board and
the Virtex-4 FPGA is custom, we can dedicate one pin for message passing. The
FPGA can indicate that it is operational at regular intervals. In case of an error,
the Backdoor Board can inform the central server and reset the FPGA restoring the

design from a known image.



CHAPTER 4

Cognitive Radio

In this chapter we present the basics of cognitive radio, an emerging wireless com-
munication technology. We elaborate on the functionality required for a cognitive
radio implementation and the resources that WARPnet provides to facilitate such an
implementation. In addition, we present an example cognitive radio application im-
plemented in two different modes to show the flexibility of the platform. In Chapter 3
we showed the capabilities of the 900 MHz radio. Taking these limits into account
we implement a partially distributed cognitive algorithm for channel selection of a
secondary network. The same algorithm is also implemented in a centralized genie-
aided mode where network information is known everywhere. These two examples
intend to show the flexibility of the platform and a methodology for performance
benchmarking. This application is not intended as a novel cognitive algorithm but as
an example of using the functionality that is provided by the hardware and software
of WARPnet.

Cognitive radio is based on current wireless algorithms where the physical and
MAC layers play the paramount role of data transfer itself. It supplements this
technology with the idea of ‘cognition’ that can assist the physical and MAC layers

to perform at peak rate by making intelligent real-time decisions. Cognitive radio
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devices must opportunistically adapt to the existing users of the spectrum. The three

primary mechanisms that form the crux of cognitive radio are sense, adapt and share.

e Sense: The idea of sensing is not unique to cognitive radio; current genera-
tion technologies like CSMA sense the medium prior to transmission to protect
against packet collisions. cognitive radio extends the idea from instantaneous
medium knowledge to long-term information aggregation. For example, the
medium may be sensed over several packet cycles to calculate average busy
air-time, over several minutes to understand user behavior, etc. The local infor-
mation per node is specific to each node due to location dependence of wireless
propagation. As a result, each node has a different view of the network, which
in turn necessitates coordination of measured data from several nodes to make

network-wide decisions.

o Adapt: Once sensed data is available, a node adapts its system settings and
behavior to increase its performance. Just like sensing, adaptation is commonly
employed in current wireless systems. Cognitive radio extends the idea as the
data is distributed and available of fast time-scales. For example, if a node sees
that a particular spectral band is especially occupied over time, it can relocate
itself. Or if it notices that other users have periodic bursts of traffic it can
request less medium usage in that period. As the decision taken by the nodes is
based on the sensed data, only local environmental changes will cause a reaction.
While this may suit that particular node, it may degrade the performance of the
network as whole. Thus, the adaptation has to be performed jointly to ensure

each node can get maximal performance.

e Share: A major limitation of traditional wireless algorithms, that cognitive ra-
dio tackles, is the response to network-wide performance degradation. Thus,

a node must not only gather information about the local medium and take a
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decision on the best method to improve performance but also share this informa-
tion with other nodes. This spread of information helps in iteratively selecting
the ideal system parameters and keeping all nodes abreast of network varia-
tions. Coordination of the nodes helps in maximizing the performance across
the network. For example, two nodes transmitting to each other can decide on

a channel that is mutually agreeable rather than ideal for one particular node.

4.1 Implementation

As discussed in Chapter 3 a wireless implementation would use the FPGA for the
physical and MAC layers. However, a cognitive radio algorithm requires another
layer of intelligence to parse information over the cognitive network as well as gather
information from the physical and MAC layers. Starting with the block diagram from
Chapter 3 we can add in the functionality for the cognitive algorithm. As can be seen
from Figure 4.1 the Backdoor Board can be re-used to not only provide the control

and observation engine hooks but also implement the cognitive algorithm.

Y Cognitive MAC Layer ] || Cognitive I

Cognitive Physical Layer } - Protocol 900 MHz
Custom RF{|L J Radio
FPGA Axis
FPGA Board Backdoor Board |

Figure 4.1: Protocol Implementation on Platform

Hence, we have extended the capabilities of the original platform by utilizing the

hardware in a novel implementation.
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4.2 Primary and Secondary Networks

The system implemented considers the often cited example of a primary and a sec-
ondary network. The primary network is a legacy system whose behavior is well-
defined but has no ability to adapt to other wireless links. Consider the primary
network as the owner of the spectrum and hence not aware of the presence of the
secondary nodes in the same spatial location. The secondary network that is de-
ployed must actively avoid the transmissions of the primary while trying to sustain
the maximum possible throughput. While the algorithm implemented is not per-
fect, it is meant to exercise all the features of the platform and give an example of
implementing distributed and centralized algorithms for benchmarking.

The primary network is a node coordinated frequency hopping system. The net-
work utilizes the 2.4 GHz ISM band covered by the WARP Radio Boards. Every one
second, the transmission hops to a new channel. This channel is randomly selected
but known between the two primary nodes in order to preserve the link.

An example hopping order is shown in Figure 4.2. The primary switching order
is channels 2, 4, 6 and then 8 The experiment does not mandate the need for a
linear switching order; it has been done to visualize the behavior of the primary and
secondary nodes. FEach channel is 10 MHz wide, and since the transmissions are
10 MHz in bandwidth all the selectable channels are frequency orthogonal.

The secondary network is limited to the same four channels to which the primary
has access. Every time-slot it must pick a channel that allows it to continue transmit-
ting without interference and interruption. While ordinarily, the secondary network
could adapt parameters such as bandwidth and subcarriers used, transmission power,

etc., in this particular example just the channel is being actively adjusted.
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4—— Time

Figure 4.2: Channel Access with Primary Only

4.3 Distributed Cognitive Radio Example

As discussed in Chapter 1, every cognitive algorithm is divided up into three actions:
sensing, adapting and sharing. We implemented the cognitive channel selection sec-
ondary network using the same principles.

The system actions are divided on a time-slot basis. The primary link’s actions
are controlled by the central controller at one second intervals. At the same time,
the central server informs the secondary network of the beginning of a time-slot. The
secondary nodes set aside 100 ms for sensing before continuing to transmit their own
data. During this period of sensing, no secondary transmissions are permitted. Once
the new channel has been selected and the information shared, the link returns to
normal. The sensing time can be further divided into three major tasks. Figure 4.3

shows how the 100 ms is divided among these tasks.

e Sensing: In the implementation, a designated secondary node senses the medium
for traffic. As there are four possible frequency bands that can be used by the
primary network, the node scans all four channels in each sensing slot. The most

commonly used metric for channel usage is received signal strength (RSSI). In-
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- 100 ms >
Decide on Share
Sense Sense Sense Sense Channel Information w/
Channel 2 | Channel 4 | Channel 6 | Channel 8 )
Occupation Network
5 ms |5 ms |5 ms 15 ms 20 ms 20 ms

Figure 4.3: Division of Sensing Time

stead of considering instantaneous RSSI, where other traffic or noise can cause
spurious readings, the sensing algorithm averages the RSSI for 7 ms. Within
15 ms two readings can be gathered, eliminating any effects of the channel
switch in the first reading. The sensing utilizes a second radio interface, but
can just as easily be multiplexed with the primary radio. The Virtex-4 FPGA,

with direct access to the RSSI, is used to run the data capture algorithm.

e Adapting: Once the averaged RSSI data is known in the FPGA, the algorithm
running on the Axis device reads in the data using the framework described in
Section 3.3. A total of 60 ms is allocated to sensing the four channels before a
decision is made (4 readings with 15 ms for each). The secondary link assumes
that the primary network is the only traffic on the channel; thus to reduce
interference it selects the channel that is furthest from the primary. When the
primary is transmitting on channels 2 or 4, channel 8 will be selected. If the
primary is on channel 6 or 8, the secondary selects channel 2. The location of

the primary is determined by the averaged RSSI from the sensing stage.

e Sharing: The selected channel is communicated to the other node of the sec-
ondary network using the 900 MHz long range radio. As we showed in Sec-
tion 3.2, 20 ms is needed for one way transmission of a packet. Thus the last

20 ms of the 100 ms is allocated to sharing the information.

Figure 4.4 shows a snapshot of the primary and secondary networks utilizing the

channel. As seen, the secondary link picks a channel that is not occupied by the
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primary. However, it does not always pick the channel furthest away. This is usually
is due to RSSI measurements. Further performance analysis and algorithm extensions

are discussed in Section 4.5.

Secondary
Cognitive

Link

rd

Channels 2 4 6 8

Figure 4.4: Channel Access with Primary and Distributed Secondary Links

4.4 Centralized Example

The distributed algorithm is the future of cognitive applications. However, it may
have performance bottlenecks that have not been observed empirically. Benchmark-
ing it against a perfect information centralized system will help in exposing these
limitations.

We implemented a ‘God-mode’ application where the central server directs all the
nodes. The server already controls the primary network by selecting its next channel;
therefore it is always aware of the primary’s location. In addition to signaling the start
of a time-slot, the server also communicates the primary channel to the secondary
nodes. Despite the knowledge of the primary being available, the secondary network
pauses for 100 ms to make the comparison with the distributed algorithm fair.

Figure 4.5 presents a snapshot of the channel access in centralized server scenario.
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The secondary network always chooses the correct channel without overlap with the

primary.

Channels 2 4 7 6 8

Figure 4.5: Channel Access with Primary and Centralized Secondary Links

4.5 Performance

An important metric for a wireless network is throughput. As expected, the secondary
network is trying to maximize the data pushed through the network and minimize
the disruption of the primary link. Table 4.1 summarizes the throughput achieved in

the centralized and distributed algorithms implemented.

Primary (Mbps) Secondary (Mbps)

Primary Only 5.50 -

Secondary Only - 4.25
Distributed 5.15 4.19
Centralized 5.40 4.20

Table 4.1: Throughput for Cognitive Algorithm

The benchmark for performance of the primary and secondary links is the when
each is the sole user of the channel. The primary network can sustain 5.5 Mbps

while the secondary link can sustain 4.25 Mbps. Both links are using the same
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physical layer and the difference in throughput is because the secondary sets aside
100 ms for sensing. For the distributed implementation, the primary suffers 0.35 Mbps
throughput loss while the secondary only loses 0.06 Mbps. The primary throughput
loss can be attributed to the secondary picking the incorrect channel. As all the
boards constantly report statistics to the central server we can track the number of
time the secondary link picks the incorrect channel; 1.1% of the time the secondary
will use the same channel as the primary channel. The performance of the distributed
algorithm can be compared with the centralized where the perfect channel is always
chosen. Here the primary sees only a 0.10 Mbps drop is throughput. Therefore, there
is scope for improvement for the distributed algorithm.

These two implementation examples were developed to show the flexibility avail-
able on the board and exercise the various features of the hardware and software.
They have not been designed to show a novel cognitive algorithm. Real cognitive
radio algorithms will be mapped to the resources they require, and designers can use

the characterization as a guide to optimizing their system performance.



CHAPTER 5

Conclusion and Future Work

In this work we presented a wireless communications platform that enables network-
wide experimentation. Other platforms in the field are focussed on just laboratory-
based experiments where there is ease of observing the performance of custom al-
gorithms. Our platform not only enables the functionality to implement novel and
custom algorithms, but also scales the system to a deployed network. We incorporate
the frameworks needed achieve such deployments, have a fine-grained temporal view
into system performance and control the behavior for scheduled experiments.

We described the hardware architecture of the platform in detail along with the
software frameworks built to enable the above functionality. The platform has all the
horsepower needed to implement custom physical, MAC and other layers of the net-
working stack. We characterized the backdoor control channel and presented frame-
works for data gathering and controlling network deployments.

In addition, we tackled an emerging wireless technology implementation, cognitive
radio, on the platform itself. We showed that the hardware can be extended beyond

its original purpose and ably support the needs of new technologies.
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APPENDIX A

Schematics

The schematics for the FPGA Board and Backdoor Board are attached in this ap-

pendix. The Cadence Design Entry CIS tool was used to create these schematics.

A.1 FPGA Board

The schematics for FPGA Board v2.2.
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