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Abstract 

Transport Properties of a Bose-Einstein Condensate with 
Tunable Interactions in the Presence of a Disordered or 

Single Defect Potential 

by 

Daniel Franklin Dries 

Bose-Einstein condensates (BECs) have proven to be remarkable systems with 

which to study some of the foundational models of condensed matter physics. The 

observation of a critical velocity for the breakdown of superfluidity in a BEC and 

the superfluid to Mott insulator transition observed in a BEC trapped by an optical 

lattice are but two examples of the, by now, dozens of exciting results in this field, 

which combines theoretical tools from condensed matter physics with state-of-the-art 

experimental techniques from ultra-cold atomic physics. However, any real condensed 

matter system has to contend with the effects of disorder, a phenomena notably 

absent in the inherently clean BEC systems. We have developed and implemented 

a way to add well characterized disorder in a controlled way to the otherwise clean 

BEC system using the light field from a laser speckle pattern. Using this system, we 

have investigated the effects of disorder or a single Gaussian defect, on the collective 

dipole motion of a BEC of 7Li in an optical trap. In addition, we perform transport 



experiments on a weakly interacting BEC expanding in a disordered one-dimensional 

atom wave-guide. We have observed that in such a system, the wave nature of 

matter can lead to spectacular and counterintuitive phenomena. Specifically, we 

verify that this system exhibits Anderson localization, a phenomena fundamentally 

resulting from the interference of multiply scattered matter waves. In such a state, 

the localized gas behaves as an insulator in a regime where it is classically expected 

to be conducting. 

We also present results of experiments regarding a repulsive BEC scattering from 

a semi-permeable, single defect potential. We investigate the transport properties of 

such a system with special emphasis on the velocity and defect strength dependent 

dissipation of the collective dipole motion of the BEC. Finally, we present the results 

of our experiments on the scattering properties of bright matter wave solitons. We 

have observed fragmentation of the soliton in a disordered potential as well as both 

splitting and recombination of a soliton after interacting with a single repulsive defect 

potential. 



Bear in mind that the wonderful things you learn in your schools 
arc the work of many generations, produced by enthusiastic: effort 
and infinite labor in every country of the world. All this is put into 
your hands as your inheritance in order that you may receive it, 
honor it, add to it, and one day faithfully hand it to your children. 
Thus do we mortals achieve immortality in the permanent things 
which we create in common. 

Albert Einstein 
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And, therefore, the problem is, how can we simulate quantum 
mechanics?...We can give up on our rule about what the computer 
[is], we can say: Let the computer itself be built of quantum 
mechanical elements which obey quantum mechanical laws... 

Richard Feynman 1981 

Chapter 2 

Introduction 

When I began my journey in graduate school, I was expecting to learn how to 

build a system for trapping and cooling atoms and then how to use said system 

simply for the sake of elucidating the nature of trapped and cooled atoms. However, 

no sooner after we finished our first experiment studying the fundamental physics of 

ultra-cold molecule formation [1], did we set out on a wholly different path. This path 

was to be more concerned with using ultra-cold atoms, particularly Bose-Einstein 

condensates to learn about the physics of systems completely outside the realm of 

ultra-cold atoms, particularly the realm of condensed matter physics.1 

On some level, the atomic system we study forced this choice on us. As our 

measurements reported in Ch. 4 show, a BEC of 7Li is a wonderfully versatile system. 

In fact, our system possesses many of the required characteristics that Feynman's 
l I should disclaim that historically the BEC community had actively pushed this "crossover" 

idea long before I began working in the lab. However, I did not grasp the full implications of this 
concept until I became personally involved in the experiments. 

1 
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quantum simulator would need. If one is to use any quantum system to study or 

simulate another, the components composing the simulator must first and foremost 

be versatile and programmable. Also of primary importance, is the necessity that 

the system be fully characterizable. Only after a fully characterized and versatile 

system is found can one then engineer the experiment in such a way as to directly 

mimic the environment of a more complex, less well understood quantum system 

in the hopes that the results of such experiments will shed some light on the more 

complicated system. 

So even though as a young student I did not set out to do so, what we ended up 

implementing is, in fact, the nascent stages of an analog quantum simulator. What 

do I mean by an "analog simulator?" For example, in the classical world, one could 

set up an electronic circuit to study the nonlinear mechanical oscillator, thereby 

bypassing all of the technical difficulties associated with actually building a compli-

cated mechanical oscillator system. These elements would be replaced with off the 

shelf electronic components that have far superior performance characteristics. The 

key is that the electronic system obeys exactly the same mathematical laws that the 

mechanical system obeys. Said another way, if one mathematical model serves to 

describe two systems one can choose to use either system to study the implication 

of those laws; and of course, the clever experimentalist will always choose the more 

controllable system with which to do his experiments. This thesis serves to chronicle 

the steps we have gone through to create a controllable and well characterized quan-
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turn system that we then used to investigate the physics of a completely analogous 

system; in short, an analog quantum simulator. 

Chapter 3 describes in detail the technical parts of the apparatus we built. To 

put it succinctly, we have designed and built an apparatus for trapping and cooling 

7Li to quantum degeneracy. This system was designed with versatility in mind: 

we have the ability to conduct experiments using a single or cross beam trap, at 

an arbitrary magnetic field (0-1000 G) and varying temperature. We can conduct 

experiments using 3D or ID trapping geometries. In addition, the static (equilibrium) 

properties or dynamic (transport) properties can be investigated using this system. 

We can also add, in a controlled way, well characterized disorder to the system, in the 

form of a disordered optical dipole trap based on the phenomena of optical speckle. 

Finally, we have implemented a detailed diagnostic system that allows for the full 

characterization of the atomic sample, from the "hot" cloud in the magneto-optical 

trap (MOT) to the "ultra-cold" BEC in the optical trap. 

Chapter 4 discusses our detailed measurements characterizing the magnetic field 

dependence of the interatomic interactions (the so-called Feshbach resonance). It 

is perhaps the existence of this phenomena that makes ultra-cold atomic systems 

so attractive as quantum simulators. For 7Li in particular, we show that one can 

tune the interatomic interaction over an unprecedented range; the s-wave scattering 

length a can be tuned nearly 7 decades over a modest field range from 544 G to 

737 G. We conclude the chapter by exploiting this tunability to more fully understand 
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interactions in 7Li. demonstrating our ability to observe subtle effects due to the 

extremely weak magnetic dipole interaction between atoms. We also show that by 

tuning the interactions we can create a quasi-one dimensional (quasi-ID) system 

and an ideal gas. We prove this through measurements of the frequency of the 

collective quadrupole mode of the BEC as the interatomic interactions are tuned via 

the Feshbach resonance. For a BEC with weakly attractive interactions in the quasi-

1D geometry, we demonstrate our ability to controllably create a single matter-wave 

soliton, a wave packet that propagates without dispersion (spreading). 

In Chapter 5, we revisit perhaps the first phenomena where BEC was used to 

study a concept traditionally thought of as living solely in the realm of condensed 

matter: superfluid transport. We present, our results on superfiuid transport of a 

BEC with tunable interactions in a disordered harmonic trap. We also present our 

results regarding the transport properties of a BEC flowing through a single attractive 

or repulsive, semipermeable defect at the center of the harmonic trap. In this study, 

we demonstrate the ability to create dark solitons in a BEC with weak attractive 

interactions. 

In Chapter 6, armed with with a fully characterized system in which we under-

stand the basic transport phenomena, we attack a well known condensed matter 

transport phenomenon, Anderson localization. We present our observations of ID 

Anderson localization in a BEC. These observations lay a foundation for more com-

plex quantum simulations of disordered condensed matter systems using BEC in 
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more realistic geometries, hopefully opening the door for new discoveries to be made 

in the BEC field that have implications for the broader physics community. 



Chapter 3 

A Versatile Apparatus for Studying a 
Bose-Einstein Condensate of 7Li 

3.1 Introduction 

Experimental atomic physicists have taken the notion of being "control freaks" and 

elevated it to an art form. It has, in fact, been the phenomenal degree of controlla-

bility in BEC experiments that have led to some of the most important results in the 

field. In order to fully exploit the inherent controllability in BEC systems, we have 

designed and built an extremely versatile apparatus for trapping and cooling atomic 

7Li with the primary goal of studying the Bose-Einstein condensed state of 7Li. 

Of central importance is the ability to control the effective interatomic inter-

actions via the so-called magnetic Feshbach resonance. We have, therefore, imple-

mented an external magnetic field control and stabilization system that produces 

stable magnetic fields up to ~1000 G in addition to easy programmability of arbi-

trary field ramps. Another benefit of ultra-cold atom systems is the ability to tune 

the confinement geometry. To allow for this possibility, we have implemented a ver-

satile optical dipole plus magnetic trap to produce a variety of trap aspect ratios. 

This dipole trap setup includes the option of using a cross beam or single beam 

configuration at the user's choosing. 

Of course, the ability to exquisitely control the system parameters is useless 
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without the necessary diagnostics for actually making measurements on the system. 

To this end we have designed and built a tunable diode laser system for optical 

imaging of the trapped atomic cloud. 

For a detailed overview of the complete apparatus, including the vacuum system, 

the interested reader is directed to the Ph.D. thesis of M. Junker [2], Dr. Junker's 

thesis contains many of the "nuts and bolts" details of the apparatus, so I will not 

attempt to repeat all those details here. However, many changes have been made to 

the system since the writing of [2], In what follows, we discuss the technical details 

of these changes with additional discussion of the various technical problems (and 

solutions!) we found along the way. We conclude by highlighting the existing limits 

of the system and propose possible options for future improvement. 

3.2 Atom Cooling Primer 

To aid in the following description of the apparatus, it is useful to begin by tracing 

the path of an atom in its journey to become one of the coldest atoms in the known 

universe. 1 

As shown in Fig. 3.1 the atoms begin in an oven with T ~ 800 K. They are 

collimated by a nozzle before entering the high vacuum (P ~ 10 - 9 torr) source cube. 

This hot atomic beam then enters the first cooling stage of the apparatus, the Zeeman 
1 The lowest natural temperature ever recorded (indirectly, of course) is ~ 1 K , found in the 

Boomerang nebula, a protoplanetary nebula located 5,000 light-years away from Earth in the Cen-
taurus constellation. We routinely create atomic clouds with temperatures in the 100's of nK, 10 
million times colder. 
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Figure 3.1 : Schematic diagram of our apparatus for trapping and cooling 7Li. 

slower [3, 4] where it is laser cooled to mK as it travels through the length (~0.5 m) 

of the slower. As it leaves the slower, it is collimated and deflected toward the center 

of the ultra-high vacuum (UHV) chamber (P < 10~u torr) by a 2-D magneto-optical 

trap. Once in the UHV chamber, the pre-cooled atoms are trapped and cooled further 

in a six beam magneto-optical trap (MOT) [5] as shown in Fig. 3.2. 

After a short cooling and compression sequence [6] we are left with roughly 108 

atoms at 600 fiK. This cloud of atoms is then magnetically polarized by optically 

pumping the atoms into the magnetically trappable \F = 2, mF = 2) internal state. 



Figure 3.2 : "Naked eye" view of our 7Li MOT. 

The lasers are then switched off and a system of electromagnets is energized [7, 8]. 

Through the interaction of the atomic magnetic moment with the magnetic field, 

U = —jl • B, the field configuration created by the electromagnet forms the trapping 

potential landscape shown in Fig. 3.3. 

Over the next 45 s, the gas is cooled further using an optimized forced evaporation 

technique [9], relying on the selective absorption of microwave photons by the hottest 

atoms, followed by the subsequent ejection of these hot atoms from the trap. The 

remaining atoms then rethermalize to a colder temperature. This process is repeated 

millions of times until we are left with a sample of ~107 atoms at a temperature of 

~20 fiK. 

At this stage we shut off the magnetic trap and turn on an optical dipole trap 

consisting of a single 5 W focused IR laser beam with A = 1030 nm (ELS Versadisk 



10 

200 -
oj 
c 150 — 3 
ri 
co 100 -
"N" 

so -

• -
o 01s 

Figure 3.3 : Top panel shows the potential energy landscape due to the magnetic 
trap. Bottom panel shows fluorescence images of the magnetically trapped cloud at 
different times throughout the forced evaporation process. We use the size of the 
atom cloud to measure the temperature, just as one uses the size of a column of 
mercury as a measure of temperature in a thermometer. 

Model VD 1030-50) and a focused beam waist of 24 /im.2 A microwave sweep is then 

applied to transfer the atoms to the \F = l. rriF = 1) internal state. In this state, 

the interactions between the atoms are widely tunable from attractive through non-

interacting to repulsive by applying an external magnetic field created by energizing 

a set of Helmholtz coils. We then apply a 720 G bias field resulting in large enough 

interactions to allow for the rapid thermalization required for evaporative cooling in 

the optical trap. This evaporation takes place over ~ 2 s as the depth of the trap 
2We observe that the transfer efficiency from the magnetic trap to optical trap does not strongly 

depend on the optical trap beam waist over the range of 24 /em-33 /em. 

Axial Distance (mm) 
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Figure 3.4 : Top panel: Schematic diagram of the single beam optical trap. We use 
a single lens to focus the beam down to a waist of 24 //in. Bottom panel: Axial cuts 
through the cloud at various times throughout the ~ 2 s optical trap evaporation. 
Given for each sub-panel is the total atom number N, cloud temperature T, trap 
depth U and condensate fraction found from the bimodal fits. Figure adapted from 
[2]-
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is continuously reduced, thereby allowing the hottest atoms to escape. At the end 

of this evaporation process we are left with about 3 x 105 atoms in a nearly pure 

Bose-Einstein condensate, as shown in Fig. 3.4. Finally we are ready to begin the 

experiment! 3 

3.3 The Red Diode Laser System 

In order to accomplish the trapping and cooling scheme described above, we must 

have a system that will generate the multiple frequencies needed for proper operation 

of the MOT, Zeeman slower, optical pump, and imaging beams. This system has gone 

through at least three main overhauls since our initial designs were implemented, 

but the main design and functionality of the system remains unaltered from that 

described within [6] and so will only briefly be outlined here. We have, however, 

made several incremental improvements since the writing of [6] and these will be 

described in detail below. 

The laser system is designed to produce light that will drive both sub-lines of the 

D 2 transition in 7Li: the 2 2 S I / 2 F = 2 —Y 2 2 P 3 / 2 F = 3 (trapping transition) and 

the 2 2 S I / 2 F = 1 —> 2 2 P 3 / 2 F = 2 (repump transition) as shown in Fig. 3 .5 . The 

presence of both the trapping and repump light is necessary to avoid optical pumping 

into the dark ground state hyperfine manifold resulting in catastrophic loss of atoms 

from the MOT. Shown in Fig. 3.6 is a diagram of the diode laser system used to 
3It should be noted that this extremely cold sample is still extremely dilute. The highest densities 

we work with are ~10 1 4 cm ;i, over 4 million times less dense than room temperature air. This is, 
in fact, why the BEC does not condense back into a solid form. 



Figure 3.5 : Energy level structure for the D1 and D2 lines of 7Li at zero field, 
including the hyperfine structure. The primary frequencies used in our experiment 
are the D2 lines which we designate as the "trapping" and "repump." 

generate the red light used for the experiment. We derive all of the laser frequencies 

from a single external cavity diode laser (Master ECDL) in Littrow configuration. 

This laser is first locked to a Fabry-Perot cavity that is subsequently locked to a heat 

pipe via a modified Pound-Drever-Hall technique [10]. 4 The stabilized light from 

this laser is then split, beam-shaped, and frequency shifted to produce the beams 

that are necessary to injection lock the various amplification stages that produce the 

MOT, Zeeman, slower, and optical pump (mF-pump) as is shown in the diagram. 

4For a good pedagogical review of this technique refer to E. Black [11], Our particular imple-
mentation is based on that described in C. A. Sackett's Ph.D. [12], 



Probe ECDL 

To Zeeman Slower MF Pump To MOT 

Figure 3.6 : The 7Li diode laser system. For simplicity, AOM frequencies shown in the diagram will produce a MOT 
beam that is on resonance. During MOT operation, the repump and trapping double pass AOMs are set to give a net 
detuning of A « - 6 T where T = (2TT) 5.9 Mliz. 



15 

Consulting Fig. 3.6 we can trace the paths of each of these beams. Immediately 

following the Master ECDL (Bluesky Research Circulaser, PN: PSl 10-00), the power 

is split and a small fraction is sent to the Fabry-Perot lock and the heat pipe (not 

shown). The remaining power is directed through the 1.1 GHz Zeeman AOM. The 

first order diffracted (red) beam is then used to create the Zeeman slower beam by 

first injecting low power Zeeman Slave 1 (Mitsubishi Laser, PN: ML101J8). The 

output of Zeeman Slave 1 is then used to inject the high power Zeeman Slave 2 

(Hitachi Laser, PN: HL6555G). The output from this laser is then sent though an 

812 MHz EOM to generate a small repumping sideband. This beam is subsequently 

beam shaped and sent to the chamber. The undiffracted order that passes through 

the Zeeman AOM is then directed to the optical system used to generate the MOT 

and optical pump beams. We first amplify this beam by injection locking high 

power Master Slave 1 (Hitachi Laser, PN: HL6555G). The output of Master Slave 

1 is then redirected to inject the Trapping (Mitsubishi Laser, PN: ML101J8) and 

Repump Slaves (Roithner Laser, PN: RLT6720MG). These injection beams are first 

sent through double pass AOMs to allow for independent tuning of the trapping and 

repump frequencies. This functionality is absolutely essential for optimized MOT 

cooling and compression, mF pumping, and to allow for easy tuning of the imaging 

laser. The output of the trapping and repump slaves is then combined and set to 

a roughly 2:1 trapping to repump power balance using the 1/4-wave plate and two 

polarizing beam splitting cubes. This beam is then amplified by injection locking 
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Figure 3.7 : (a) Zeeman structure of the 22Si/2 and 22P3/2 states of 7Li. For all 
imaging done in this thesis, we probe the <x~ transition between the two sates shown 
in red. (b) Detuning of the imaging transition from the Master ECDL (which is 
locked to the trapping transition). We primarily image in the 500G — 1000G range, 
requiring a minimum of 700 MHz tunability of the probe laser. The thin red line is 
the high filed shift of = —1.41MHz/G for comparison. Data in these figures is 
the result of a numerical diagonalization of the Hamiltonian described in [13]. 

an AR coated widestripe. Finally this high power beam is directed to the MOT 

Switch AOM and the first order (blue) diffracted beam is sent to the MOT fiber. 

The mF-pump is also fiber coupled (not shown) and is derived from the main MOT 

beam. During mF-pumping, the MOT Switch AOM is off and the Optical Pump 

Switch AOM is on thereby directing all the MOT power to the optical pump fiber. 

The leakage light from the injection port of the repump slave isolator is sent 

across the table to provide a reference for the Probe ECDL frequency offset lock. 

This versatile probe laser is designed to allow for imaging of the |2, 2) state in both 

the magnetic trap and low field optical trap and for also imaging the |1,1) state over 

a large range of magnetic fields. 

The Zeeman shifts for the cr~ transition used for probing is shown in Fig. 3.7. 

The stabilization and tunability of the probe laser is accomplished through the use of 
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a frequency offset lock using a side-of-filter technique (SOFT lock) [14]. This locking 

technique uses the beat note between the probe and the Master laser created by 

overlapping the two beams on a high speed photodetector as shown in Fig. 3.6. A 

frequency dependent error signal is then electronically derived by mixing down this 

beat note to a frequency near the 3 dB point of an electronic high pass filter. The 

probe laser detuning is then varied by sweeping the local oscillator signal provided 

to the mixer. This technique has proved very robust with a large capture range 

and high bandwidth. The technical details of our implementation are detailed in 

Appendix B. 

3.3.1 The IR Laser System for Optical Dipole Trapping 

We have designed and implemented an optical trapping scheme based on a Yb:YAG 

thin disk laser manufactured by ELS (now serviced by Laser Nanotechnology). This 

system was derived from the free space system described in [2] but improvements have 

been made to improve versatility and stability. The existing optical setup is shown 

in Fig. 3.8. This system consists of a main beam with a beam waist wq ~ 24 //m and 

a cross beam with a much larger beam waist of ivq ~ 250 //rn. The main beam may 

be operated as single beam trap without the cross beam. Typical full trap depth 

characteristics of the main beam are P = 5 W, uiz = (2TT) 75 HZ, ur = (2tt) 7.8 kHz, 

and U = 290 //K. At the end of the optical trap evaporation, typical characteristics 

are P ~ 11 mW, uz = (2TT)3.5HZ, ur = (2^) 360 Hz, and U = 640 nK. The cross 
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beam can be added to turn the trap into a "dimple trap'" where the radial confinement 

of the cross beam serves to squeeze the trap axially at low trap depths.5 Typical 

radial trap frequency and depth of the cross beam are ~60Hz and U ~ 2 /iK for 

P ~ 3W, allowing for the tuning of the aspect ratio of the combined trap from 

~100:1 (no cross beam) to ~6:1 (full cross beam). This system also allows for the 

capability of studying ID transport by abruptly switching off the cross beam after 

the evaporation in the dimple trap, causing the cloud to expand in the single beam 

trap. 

sRecent studies have found that evaporation into tight dimple traps can be used to quickly 
and efficiently create large BECs. Such a technique could conceivably be implemented in our 
system in the future to enhance the efficient:}- of the magnetic t rap evaporation [15]. A slightly 
more complicated transfer technique based on spatial mode matching has also produced impressive 
results [16]. 
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One of the primary concerns this new setup, the fiber coupling in particular, was 

meant to address was any pointing instabilities and focal drift that were present in 

the original free space beam setup. Axial trap movement was particularly nefarious 

for our ID expansion experiments as any change in the focal position of the trap 

would move the axial position of the trap during the expansion, giving the BEC a 

random "kick." In the single beam trap of u , ~ (2ir) 4 Hz, we would see as much as 

100 //m shot to shot variation in the central position of the condensate. 

Of course, in any fiber coupled system, pointing instabilities are transformed into 

power instabilities due to the extremely sensitive dependence of the fiber coupling 

efficiency on the input beam position. We found that most of this problem is caused 

by thermal beam drift induced by the switching AOMs and would lead to a factor 

of two or more drift in the output power of the fibers on the time scale of several 

hundred ms after the AOM was switched on. At high trap depths, we solve this 

problem by an improved switching scheme that leaves the AOM's in the on state for 

most of the time. In the "oft"' configuration, rather than switching the RF power 

to the AO's off, we only quickly pulse the power off. During the short time the 

beam is off, the drive frequency of the AOM is swept a small amount and the power 

is switched back on. This deflected beam is then picked off and dumped as shown 

in Fig. 3.8.6 This method can reduce the full trap depth drifts to under 10% but 

unfortunately does not help the thermal drifts after an optical trap evaporation, 
6Care must be taken when using this technique to choose an "off" frequency that produces 

nearly the same VSWR as the "on" frequency, otherwise the AOM will slowly cool off as if the RF 
were off. 
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since the act of evaporating is practically the same as switching the AOM off. The 

subsequent cooling of the AOM crystal after evaporation leads to pointing drifts 

on the imput to the fiber as described above. To alleviate this problem, we have 

implemented an active AOM stabilizing system developed by S. E. Pollack. This 

system monitors the output power of the fiber with a photodetector (e.g. PD2 in 

Fig. 3.8) and compares the power to a set point derived from an analog out from 

the control computer. When the optical power drops below a user defined threshold 

power, the feedback circuit takes control and creates an error signal which is then fed 

back to the variable attenuator used to control the AOM RF drive power, thereby 

adjusting the input optical power to the fiber to keep the intensity at PD2 constant. 

A detailed schematic of this circuit along with more technical detail can be found in 

Appendix A. 

Preliminary measurements showed that simple switching to a fiber coupled system 

did not significantly affect the shot to shot fluctuations in the central position of the 

BEC's. The redesign did, however, eliminate the free space setup as the source of 

the problem. Further tests revealed a drift in the focus of the optical trap in the low 

field, full trap configuration. The focal drift manifested as a drift in the axial position 

of the trapped thermal cloud vs. time. Examples of this drift are shown in Fig. 3.9. 

The; majority of this drift appeared to be; due to thermal effects in the focusing 

optics. In the original system, the fiber was initially collimated with a PAF-X-11 

OFR fiber port with an output beam waist of WQ = 600 //m. This was immediately 
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time (s) 

Figure 3.9 : Full trap depth focal drift. Red circles show the thermal focal drift in the 
original setup. Blue triangles show the drift with all lenses replaced with fused silica 
singlets. Black squares show the beam drift for the system shown in Fig. 3.8 (i.e. 
fused silica lenses and Micro Laser output coupler). The improvement in the focal 
drift is attributed to the improved optical components. Power drift over the course 
of these measurements was less than 10%. The large scatter reflects the uncertainty 
in the fitted centers of the large thermal clouds (1/e radii of ~1.5mm) due primarily 
to noise in the images. 
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followed by a 5:1 telescope using BK7 doublets of / = 50 mm and / = 250 mm, 

respectively. Finally, the beam was focused onto the atoms using a BK7 doublet 

with f — 400 mm. The drift in this system was significant: nearly 200 /im in 10 s. 

Replacing all the doublets with fused silica singlets helped significantly, reducing the 

drift to ~80 /im. Finally, we replaced the OFR fiber port with a large diameter, high 

numerical aperture, multi-element fiber collimator from MicroLaser. This collimator 

has an output beam waist of 5.3 mm, nearly 9 times larger than the OFR fiber 

port, resulting in nearly 80 times lower intensity on the collimating optics. This 

collimator also allowed us to remove all of the telescoping optics, greatly simplifying 

the system. This new optical system seemed to push the drift below our measurement 

accuracy. Unfortunately this accuracy is limited to ±50 /xm for thermal clouds, due 

to our ability to resolve the center of the large clouds (1/e radii of --1.5 mm) in the 

somewhat noisy images. 

We have also characterized the beam in steady state at high (6.2 W) and low 

(30 mW) powers. Using a CCD camera, we measured the transmitted power through 

the final dichroic beam splitter used to reflect the beam into the chamber as shown 

in Fig. 3.8. Two cuts through the beam along orthogonal directions on the CCD are 

shown in in Fig. 3.10 and are horizontally offset on the graph for clarity. Comparing 

the high (red points) and low (blue points) power beam waist locations gives an 

average shift of 130(40) /im. Since the system experiences a similar power change 

during an evaporative cooling cycle, this could indeed impart some axial motion to 
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Figure 3.10 : Focal position of the optical trap at high and low power. Red data 
points are for 6.20 W and blue data points are for 30 mW. The two sets of curves are 
for two orthogonal directions imaged using a CCD camera (See text). A small focal 
shift is seen between the two different powers of ~130(30) ^m. 

the BECs. Incidentally, since the final viewport was not present in the beam path 

during the above measurement, we can safely eliminate it as a source of the problem. 

Fig. 3.11 shows the location of the center of the cloud as a function of time 

before, during and after the evaporation. The solid circles indicate that for short 

evaporations, the cloud does appear to drift nearly 150 //m, consistent with the CCD 

measurements. In the improved system, it is hard to imagine any thermal lensing due 

to the low intensity (~13 W/cm2) on all of the optics. However, the large magnifica-

tion in our system (M = 6) makes the focal position of the trap extremely sensitive 

to any changes in position of the front face of the fiber. It is straightforward to show 
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Figure 3.11 : Location of the cloud during optical trap evaporation. The end of the 
optical trap evaporation is defined to be t = 0, while the first points plotted occur at 
the start of the evaporation. For short evaporations (filled circles) the cloud appears 
to drift toward increasing coordinate as the power in the optical trap is reduced. After 
the evaporation, the cloud then appears to drift back towards its initial position. This 
drift is discussed in detail in Sec 3.4 below. For the slower evaporation, the cloud 
does not appear to drift significantly during the evaporation. Note also the 50/im 
shot-to-shot fluctuation in the cloud. This is above our measurement error of 10 /tm. 
This movement appears to be present in both the slow and fast evaporations. 



that in our two lens system, any axial shift in the position of the fiber tip gets mag-

nified by M 2 = 36 at the focal position of the trap. In order to explain the observed 

movement, a minuscule 3.25 fim. of fiber tip movement is all that is required over the 

full heating cycle. Visual inspection of the OZ fibers reveals approximately 4 mm of 

bare fiber cantilevered out of the FC/APC connector. Assuming the thermal expan-

sion of ordinary glass of 9ppm/°C, this requires a temperature increase of ~100°C 

to produce the required 3.25 //m of thermal expansion. Given that at full power, 

the intensity at the fiber tip is a hefty 24MW/cm2, this amount of heating does not 

seem out of the question. A possible design improvement that would minimize this 

effect would be to implement a large mode area photonic band gap fiber, such as the 

LMA-25 from NKT Photonics. Efforts to test this fiber are currently underway. 

3.4 Magnetic Fields 

This apparatus consists of many sets of electromagnetic coils: the MOT, 2D-MOT, 

bias, curves, quads, axial bias cage, push cage, and the x and y nulling cages. In the 

description that follows, we outline only the aspects of the system that have changed 

since the writing of [2] and [6]. In particular, we will discuss the added capability of 

energizing the curvature coils while in the high field, the feed forward system for the 

bias voltage set point, and the current control and stabilization scheme used for the 

push cage. 

Figure 3.12 shows the coils responsible for generating both the magnetic trap and 
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Figure 3.12 : Electromagnetic Trap Coils. In the magnetic trap configuration, all of 
the coils are energized. While in the optical trap, the bias coils provide a uniform 
bias field for tuning a via the Feshbach resonance. The curvature coils can also be 
independently energized while in the optical trap to add to or null out the axial 
confinement provided by the optical trap. 

the high field. In magnetic trap configuration, all coils are energized: the curvature 

coils produce a harmonic axial confinement, the quadrupole coils produce a radial 

gradient that serves to confine the atoms along the radial direction, and the bias 

coils produce a uniform offset field that cancels the large bias field generated by the 

curvature coils. In the case of the high field optical trap, the bias coils are energized 

to produce the field necessary for tuning a via the Feshbach resonance. In addition, 

the curvature coils can be energized independently of the bias to produce additional 

axial confinement, or to null out the confinement due to the optical trap, if preferred. 

Shown in Fig. 3.13 is a schematic diagram with the relevant coils and control elec-

tronics used during the magnetic trap and high field configurations. The interested 
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Figure 3.13 : Schematic diagram showing the control and diagnostic electronics for 
the electromagnetic coils used in the experiment 
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reader is directed to C. Welford's masters thesis [6] for detailed technical background. 

As described in [6] during the high field configuration. FET F1 is nonconducting and 

F2 is conducting. The current through the bias coils is then controlled by the mod-

ulation of FET F3 accomplished by the Control Circuit. This circuit compares the 

current measured by the Ultrastab 866 sensor with a set point provided by an ar-

bitrary waveform generator (not shown). Shown in green is the circuitry used to 

energize the curvature coils while in the high field. Figure C.l shows the circuitry 

used for switching the high current relays via TTL. This circuit allows for switching 

of the curvature coils out of the main (ESS supply) circuit and into a secondary 

circuit powered by a low current Kikusui power supply. The power supply is then 

controlled via an analog input from the control computer for ramping of the current 

in the curvature coils. Also note the many transducers in the system. These devices 

allow for the independent measurement of the current in the bias and curvature coils 

for diagnostic purposes. 

One of the primary reasons for using F3 to control the current through the bias 

coils is to take full advantage of the ability to change the field using a preprogrammed 

arbitrary waveform. However, such arbitrary control is not possible without damag-

ing the control FETs unless the voltage set point of the ESS power supply is set to 

move in tandem with the current through the coils. The reason for this is shown in 

Figure 3.14 that shows the dissipated power in F3 as a function of current through 

the coils, for a fixed voltage set point. The FETS must dissipate a power given by 
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Figure 3.14 : Power dissipated in matched FET pair used as F3. The dashed line 
shows twice the power rating for a single FET, part number IXFN230N10. 

P = IVESS — I2R-bias where Rbias = 360 mf! is the resistance of the pair of bias coils 

and VESS = 50 V is the high field set point on the power supply. Currently, two 

matched high power FETs (PN: IXFN230N10), each having a power rating of 700 W 

are wired up in parallel, the pair functioning as F3. According to Fig. 3.14, the FETs 

will begin to fail if the current is ramped below 100A (~630G), consistent with our 

observations.7 The design in Fig. 3.13 solves this problem by setting the voltage set 

point on the supply in two different ways. In the magnetic trap and initial high field 

configurations, the voltage is manually set by a pot on the front panel as described in 
7One of the skills one acquires very early as an experimentalist is the uncanny ability to quickly 

distinguish the sweet smell of fried FET, burned resistor, or the always spectacular popped transient 
voltage suppressor. 
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[6]. However, shortly after the ramp to high field, the voltage control is switched over 

to "transducer control." In this configuration, a transducer is used to measure the 

current and to set the voltage of the ESS proportionally. This functionality is accom-

plished by the transducer/manual control circuit shown in Fig. 3.13 and described 

in the Appendix, Fig. C.2. 

3.4.1 Non-ideality of the Bias Coils 

The bias coils are not perfectly Helmholtz and consequently produce a small amount 

of magnetic curvature and gradient. The presence of this gradient and curvature 

makes evaporation in the optical trap impossible due to displacements of the trap 

center as a function of trap depth. Sometimes, the curvature induced by the bias 

coils may even be anti-trapping and this displacement will be accompanied by a 

severe loss of atoms out of the sides of the trap. The trapping frequency induced by 

a magnetic field curvature can be found from a simple energy consideration and is 

given by 

For 7Li atoms in the |1,1) state with a magnetic moment of -- /ib- the trap 

frequency induced by a moderate magnetic curvature of 0.714 G/cm2 produced by a 

fi • B = -71luJ2Z2 1 
(3.1) 

(3.2) 
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127 /im separation error in the bias coils is coBias = (2TT) 3.8 HZ. 8 Our measurements 

show that the residual trap frequency from the curvature in the bias coils can vary 

but is usually about 4 Hz or less if one wraps the coils properly. We often shim 

the coils to "fine tune" this residual curvature. In addition, to compensate for the 

curvature created by the bias coils, we can energize the curvature coils as described 

above. 

The stray gradient seen in the high field also varies from one coil build to another 

but is typically anywhere from 0.5 — l.OG/cm. The shift in trap position due to a 

stray gradient can be found by using Eqn. 3.1 and completing the square, resulting 

in 

Zshift = J" 3>3) 

Typical optical trap frequencies at the end of the evaporation in the single beam 

trap are about 3Hz (but can be as low a 1Hz for the ID transport experiments), 

so we can see that without external compensation this effect would lead to 10's 

of mm of axial movement during the evaporation. This effect always keeps us from 

creating BECs without external compensation. To compensate for the stray gradient 

we introduce an equal and opposite gradient by energizing a single coil. We call this 

coil the push coil, because as proven above, altering the field gradient can have the 
8This curvature was calculated using the Biot-Savart code written by A. Truscott. 
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Figure 3.15 : Push coil correction for field ramp. Solid black line shows the magnetic 
field ramp. Filled blue circles show the center of the BEC during this ramp for a 
fixed push cage current. The open circles show the center of the cloud during the 
ramp using our push cage stabilization scheme. See text and Appendix C for details. 

effect of "pushing" the cloud around.9 As mentioned above, many of our experiments 

require the ability to sweep the field during a run in order to tune a using the Feshbach 

resonance. This ramp is another source of motion for the BEC. As the total current 

changes in the coils, the stray gradient and curvature change causing the center of 

the BEC to shift in position. To counteract this effect we must change the current 

in the push cage accordingly. The current in the push cage is controlled via feedback 

to a FET, similar to the high field control [6]. The set point is derived by measuring 

the current going through the bias coils using a transducer as shown in Fig. 3.13. 
9 The ability to push the cloud around is in fact very useful. For example, a quick "kick" from 

this coil made by briefly switching it off, can be used to drive the collective dipole mode of the 
BEC. 
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0 0.5 1 1.5 2 2.5 3 3.5 

Time after Field Ramp Down (s) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 
Time After Field Ramp Up (s) 

Figure 3.16 : Hysteretic drift the cloud position, (a) Central position of the cloud as 
a function of time after a bias ramp of ramp from 717 G to 545 G showing a positive 
drift, (b) Central position of the cloud as a function of time after a bias ramp of 
ramp from 545 G to 717 G showing a negative drift. Both data sets were taken using 
a fixed push coil current of 6.15 A. 

The set point is therefore proportional to the bias field, resulting in a stable cloud 

position as illustrated in Fig. 3.15. A schematic showing the details of the push coil 

control circuit is shown in Fig. C.3. 

Figure 3.15 shows that the push stabilization circuit does a reasonable job at 

eliminating the movement of the cloud induced by the field ramp. However, close 

inspection of the movement of both the corrected system and uncorrected system 

after the ramp down shows an additional slow drift, not directly caused by the ramp. 

Figure 3.16(a) shows a zoom-in of the stabilized data shown in Fig. 3.15 for times 

after the ramp down of the field. It can immediately be seen that the cloud drifts 

toward increasing position ~80//m over 2 s. Shown in Figure 3.16(b) is a similar 

measurement but this time, the center of the cloud is tracked after a ramp up of 

the field. Here we find that the cloud center drifts toward decreasing position. It 
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therefore appears that the direction of this long time drift depends on the initial 

value of the field, before the ramp. Such an effect could be explained by a slow drift 

in the push cage somehow induced by the ramp. However, we see the drift even 

for a constant push current (i.e. not ramping the push cage). For the particular 

trap parameters used here, the push cage current would have to drift by about 2% 

or nearly 120 mA. 10 It is unlikely that this drift is caused by the push since the 

stability specification for the power supply is ±0.1% + 1 mA. Even if the supply was 

not performing up to specification, it is hard to reason that any drift in the supply 

would be correlated with the sense of the bias field ramp, since in constant current 

mode, the push cage and bias field circuitry are completely decoupled. 

Therefore, assuming that the gradient from the push cage is not the source of 

this drift, another possibility could be a slow drift of the trap frequency, however 

this interpretation is not consistent with our observations. During the optical trap 

evaporation, with I = 6.15 A on the push coil, the cloud moves less than 100 /im for a 

Acu ~ 70 Hz. Equation 3.3 then tells us that we have canceled any external gradients 

to the .01 G/cm level. We measure the drift in trap frequency to be negligible after 

the evaporation so this possibility is ruled out. 11 

Due to the hysteretic nature of the drift (i.e. the direction of the drift depends 
1 0The axial trap frequency was u z ~ (27r) 5 Hz for this data. For this trap we measure a shift of 

0 . 9 m m / A of push current. The push current for this data was set to 6.15 A. 
11 For reference, we do observe a slight change in trap frequency vs. field of 2.5mHz/G due to the 

non-Helmholtz nature of the bias coils. However, we have used RF spectroscopy to show that the 
field drifts by less than 200 mG over the duration reported in Fig. 3.16. Such a small drift therefore 
does not contribute significantly to the observed shift in center position of the cloud. 
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on the historical value of the field), one suspects a magnetization of the chamber due 

to the bias field as a possible explanation. If this magnetization resulted in a stray 

gradient on the order of 0.01 G/cm it could possibly explain the effect. While the 

chamber itself is made from non-magnetic 304 stainless steel, the Kovar seals on the 

reentrant windows could conceivably magnetize. 

3.5 A Widely Tunable Probe Laser for Imaging Ultra-Cold 

Quantum Gases 

3.5.1 Dispersive Imaging 

Imaging ultra-cold quantum gases is by now a mature subject, with both absorption 

and phase contrast imaging techniques widely employed throughout the world. A 

particularly instructive discussion of the relevant physics can be found in the Ph.D. 

of Curtis Bradley [17]. In addition, the master's thesis of R. Kamar [18] has an exten-

sive discussion of absorption imaging, a method frequently used to image ultra-cold 

quantum gases. The interested reader is also encouraged to consult the Proceedings 

of the Enrico Fermi School on BEC [19]. In the following section, I will briefly review 

the physics of dispersive imaging in ultra-cold gases with a focus on the details of 

our implementation of polarization phase contrast imaging (PPCI). 

When a laser passes through a gas of ultracold atoms the result is just as one 

would expect: the beam gets both attenuated and phase shifted. By measuring both 

the absorption and phase shift due to the atomic cloud, a wealth of information 
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Figure 3.17 : Shown here is a cartoon of a generic system that would allow for the 
phase retardation and absorption properties of an object to be measured. 

can be obtained about the gas. To concisely account for both the absorptive and 

retardation effects of an object on an electromagnetic (EM) wave it is convenient to 

introduce the idea of the complex phase (3 = cf> + ia/2 where a is the absorption 

coefficient and 0 is the induced phase shift. Figure 3.17 shows how one would design 

a simple system to measure both the absorption and induced phase shift of an object. 

The electromagnetic wave of amplitude EQ is split on the 50/50 beam splitter and 

the portion traveling along path 1 encounters the object and acquires a complex 

phase p. The resulting field is E\e1'3. The field from path 2 encounters a retardation 

plate that introduces an additional relative phase shift between the two beams of 0. 

The two fields are then recombined on the output beam splitter and imaged on the 

CCD detector. Assuming E\ and E2 are the same polarization, the resulting field 
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and intensity distributions are 

(3.4) 

Isig — = E\e-a + E\ + 2 E1E2e~a/2 cos(</> - 7) (3.5) 

E(iuation 3.5 clearly shows that the field imaged on the lower CCD depends 011 both 

a and o. It can also be clearly seen that if o is small, as it is in most cases for our 

experiments, the sensitivity to 0 in the final term is maximized when 7 = 7r/2. 

In the specific case of a gas of atoms with the laser tuned near an atomic 

transition, one can show that the complex phase is related to the column density 

nx{y, z) = f n(x, y, z)dx with a. and & given by [20]: 

a = 
aQnxr2 

4A2 + r2 + 29? 
(3.6) 

4> = —A a (3.7) 

with r being the natural linewidth of the transition and A the detuning of the laser 

from resonance. The cross section, a0 is given by 

1 

Ju 1 Jl 

-w.u q m,i 

, \ 
J 

(3.8) 

where the subscripts u and I denote the upper and lower energy levels of the transition 
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Polarizer 

Figure 3.18 : Shown here is the specific PPCI set used for our experiment. We use 
circularly polarized light that propagates perpendicular to the magnetic field. 

being driven, £ denotes the unit vector describing the polarization of the probe field, 

and the index q runs over all possible transition polarizations. It is important to note 

that the form of cr0 leads to birefringence, with both <t> and a strongly dependent on 

the polarization and the propagation direction of the probe field. In fact, in some 

cases one can find two orthogonal polarizations: one that interacts with the atoms 

and one that does not (called the bystander field). In our experiment we use this 

fact to our advantage and simplify the optical setup in 3.17. Rather than using a 

two leg interferometer, one can use a single elliptically polarized beam and treat 

the two orthogonal polarizations as independent beams. After this probe passes 

through the atoms, one polarization will have /? encoded on it while the orthogonal 

polarization passes through unaffected. Subsequently, a polarizer is used to project 

the two components of the probe field onto the same polarization and observe the 

resulting interference on the CCD. The geometry of our imaging setup is shown in 

Fig. 3.18. 



We choose our quantization axis to be the z-axis and also the direction of the 

applied magnetic field. The probe beam propagates along the +x direction and 

to start we will keep the polarization arbitrary describing it in terms of the real 

parameters a i and 7. 

With cii £ {0,1} and 7 e {0, 2tt}. With light propagating along x as we have, the 

y-component can couple to both 0+ and <r__ transitions with equal strength. For all 

the data in this thesis, we drive the 22Si/2r77,j = 3/2, nij = —1/2 —>• 22P3/2 m/ = 

3/2, rrij = —3/2. This transition is considered <r_ since Aw,j = —1 and therefore due 

to the symmetry properties of the 3-j symbols, the only term in the sum over q in in 

Eq. 3.8 that survives is for q — —1. We then immediately see that the y-component of 

the probe couples to the atoms with a cross section of 3A2/(47r) and the z-component 

serves as the bystander light. The probe field after it passes through the atoms is 

then 

E0 = Eop (3.9) 

(3.10) 

(3.11) 

The polarizer only passes light with polarization that is parallel to the 1/ axis de-

scribed by the unit vector y'. The final probe amplitude is then Esig = E(y. z) • y' 
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with given by 

E(y, z) • y' = ^/•;„</ir'' sin(0) + E0y/l- a\el~< cos(0)^ (3.12) 

Substituting for /3 and taking the square gives the measured intensity 

/sig = Ela\ s in 2 (0)e" a +£ o
2 ( l -a 2 ) cos2(0)+2£2ai sin{9)^l-a2 cos(6)e~a/2 cos(0+7) 

(3.13) 

Comparison with Eq. 3.5 reveals the immediate similarity. As before, maximizing 

sensitivity to <p in the third term suggests 7 = 7r/2 but now a\ = 1 /a/2 is required 

to maximize the third term, i.e. circularly polarized light. In addition, the polarizer 

should be set to 45° to maximize the phase sensitive signal. Further inspection of 

Eq. 3.13 reveals that this method of imaging is quite versatile due to the fact that 

one can switch between purely absorptive imaging and polarization phase contrast 

imaging with a simple movement of the polarizer from 45° to 90°. For the case of 

polarization phase contrast imaging one now has 

/sig = f + ^ - f e - / 2 sin(0) (3.14) 

In practice, to improve signal to noise, we take two pictures: one with atoms and 
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one without, then subtract the two and divide by the no atoms shot 

r, âtoms — n̂oatoms 1 1 _a —a/2 • / /o 1 er\ S = - = —- + -e + e ' sm(0) (3.15) 
noatoms ^ ^ 

This equation is then solved numerically to get the column density nz. 

3.5.2 Non-destructive P P C I 

For large detuning, i.e. (zX/T)2 / / / s a t . the off' resonant scattering rate from the 

probe beam is negligible, and PPCI can be very useful for nondestructive in situ 

imaging. By operating the Andor camera in "fast kinetics" mode, multiple pictures 

may be taken of the same cloud in a single run for time steps as fast as 400 us (See 

Appendix D for details). This capability (multipic) is an extreme time saver for 

various diagnostic measurements. We find that at 10 T detuning and / / / s a t ~ 0.2 

we can take 10 pictures of the same cloud on a single run without significant loss of 

atoms, as shown in Fig. 3.20. For example, trap frequencies can now be made in a 

single 45 s run, whereas before it would have taken ten times that long. Multipic has 

also proved useful in diagnosing problems with residual movement of the cloud after 

evaporation. Whereas before we could only deduce that the cloud was in a different 

positions on every shot, multipic allowed us to know that the cloud was undergoing 

a random phase small amplitude dipole oscillation at the end of the evaporation. 

Examples of multipic results are shown in Fig. 3.19. 



(a) (b) (c) 

Figure 3.19 : (a) A trap frequency measurement, At = 20 ms per shot, (b) Movement 
of the cloud during the fast evaporation shown in Fig. 3.11, At = 100ms per shot, 
(c) Evaporation from a displaced optical trap into a tight axially confining trap 
dominated by the curvature coils, At = 100 ms per shot. 

3.6 External Potentials for the Study of Transport in BEC 

3.6.1 Disordered Potential from Laser Speckle 

Historically, the study of BEC has been limited to "ideal" potentials, e.g. harmonic 

traps and optical lattices. These traps are the work horses of the field and have 

been used to prove that BECs can be useful for studying some of the most funda-

mental concepts of condensed matter physics. Several of the paradigmatic results of 

condensed matter physics have been observed to date including: superfluidity and 

vortex lattices, the superfluid to Mott insulator transition, and Cooper pairing of 

fermions. In particular, there has been a recent push to use atomic BEC to emulate 
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Figure 3.20 : (a) The result of 10 consecutive phase contrast images with A / r = 10 
and / / / s a t = 0.2. Separation between shots is Ait = 10 ms with a probe pulse duration 
of 5 /is per shot. These shots were taken at full trap depth in the single beam optical 
trap at a = 200 ao where the lifetime is dominated by three body loss with a 1/e 
decay time of r ~ Is . (b) Number of atoms in each shot in (a). The solid line is 
not a fit but rather a guide showing the expected 1/e lifetime of r ~ 1 s cloud in the 
trap. The excellent agreement with the data suggests that the imaging process does 
not contribute significantly to the loss. 

real, less perfect condensed matter systems, i.e. systems with disorder. One of the 

most attractive aspects of atomic systems is that starting from the simple harmoni-

cally trapped BEC, one can controllably add disorder to the system thereby making 

it more like a "real" condensed matter system albeit with a well characterized dis-

order. What follows in this section are the technical details outlining how we create 

disordered potentials for atoms from optical speckle patterns. 

When a diffusing surface is illuminated by a coherent, monochromatic source of 

radiation, what results from the scattered radiation is a grainy, noisy, spatially fluc-

tuating intensity profile, a so-called speckle pattern. Physically, one can understand 

the formation of a speckle pattern as the result of the coherent superposition, in 
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Coherent Light .o 

Figure 3.21 : A speckle pattern results from the transmission of coherent light 
through a rough surface. The correlation length of the speckle pattern is deter-
mined by the limiting numerical aperture (NA = sin(0)) of the imaging system used 
to create the pattern. 

the far field, of a large number of randomly phased point sources originating from 

the scattering plane. Mathematically one can understand the process of speckle 

formation by applying the Huygens-Fresnel principle in the far field approximation 

where Ei(x, y) and E^ix, y) are the field amplitudes on the diffuser and at a distance 

z away, respectively. If one make the substitution 

[21] 

E2{x,y) J dx\dy\E\ (xuyi) (3.16) 

E[ = El(x,y)e~i^(x2+y2) (3.17) 

E>=E2(x,y)e-^2+y2) (3.18) 
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one immediately sees that 

(3.19) 

where ^ " _ 1 ( / ( x , y)) is the 2D inverse Fourier transform of f(x, y). Adding the effect 

of an arbitrary aperture on the final distribution is then as simple as multiplying 

E[(x, y) by a windowing function W(x, y) describing the aperture before propagating 

the field via the Fourier transform. To theoretically construct the speckle pattern all 

one does is to let E\(x. y) consist of a set of phasors whose amplitude is determined 

by an aperture function W(x, y) (for example a Gaussian or a rectangle function) and 

whose phases are uniformly distributed random numbers over the interval [0,27T].12 

Armed with Eq. 3.16 one can derive the characteristic statistical properties of 

the speckle intensity pattern (i.e. the disordered potential) [21]. For example, the 

probability density for the intensity follows the decaying exponential: 

From this knowledge one can immediately show that (I) = £ / where E/ is the 

standard deviation of the speckle. The "strength" of the disorder VD is related to 

the average height of the intensity fluctuations and therefore Vb oc £ / = (I). In 

practice it is easier to measure (/) using a calibrated photodetector rather than 
1 2The above equations then give a straightforward way to numerically generate speckle. First 

create E'2(x, y) by populating a 2D grid with random complex numbers of unit amplitude (e.g. the 
ordered pair (cos(27rx), i sin(27rx)) with the uniformly distributed random number x £ [0,1].). Then 
Fourier transform back to E[(x,y), apply the aperture function and then inverse Fourier transform 
to the final E'2(x,y). 

1 
(3.20) 
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imaging the speckle potential on each shot ancl calculating £/ . Specifically, the 

average value of the speckle intensity (I) determines the disorder strength through 

the relation VD = hT2 (I) / (4/ s a tA), where the transition linewidth F = (27r) 5.9 MHz, 

the saturation intensity / sa t = 5.1 mW/cm2 , and the detuning from the 7Li 2S —> 2P 

transition A = (2TT) 300GHZ (blue). 13 

Another useful statistical property of the disorder potential is the autocorrelation 

function, c(Az) = {I(z)I(z + Az)). This function, which is intimately related to the 

Fourier transform of the aperture function \V(x, y)u determines the minimum length 

scale over which the speckle pattern has any spatial structure. Since the speckle 

pattern originates from the scattering of light, the power spectrum (as well as the 

autocorrelation) has finite support, determined by the diffraction limit of the optical 

system used to create the speckle, that is to say the minimum spatial frequency found 

in the signal is given by aD ~ A/(2NA).15 By engineering W{x.y) one can affect 

the functional form of c{Az). For example, for a non-apertured Gaussian beam, the 

Fourier transform of W(x, y) is simply the Gaussian envelope of the beam, leading 
13For the strongest disorder used in these studies, off-resonant scattering from the disorder occurs 

at a rate of ~ 0 . 1 s _ 1 . 
1 4By the Wiener-Khinchin theorem, the autocorrelation of a signal is the inverse Fourier transform 

of the power spectrum. 
1 5 One remarkable fact about fully developed speckle is tha t the cutoff in c(Az) is always given 

by the diffraction limit, even if the optical system used to generate the speckle introduces a large 
amount of aberration onto the wavefront. One way to understand this is that the diffuser already 
maximally aberrates the wavefront by completely randomizing the phase over a length scale on 
the order of the distance between scattering centers. Any additional aberrations induced on this 
already randomized wavefront are of little consequence. One can therefore measure the numerical 
aperture of a distant scatterer (i.e. the angular size of the source, say a star) by looking at the 
correlation length of the speckle potential scattered from the object regardless of the aberration 
picked up along the way from source to object! This is purely classical way of understanding the 
robustness of the Hanbury Brown-Twiss interferometer [22]. 



48 

N <1 + 
M 

kj ' 1 ' 1 

- . . . . 1 
0 0.5 

Distance (mm) 
5 

Az (|rm) 
10 

1/(1) 

Figure 3.22 : Disordered potential created from laser speckle, (a) Cut through an 
image of the speckle potential. The disorder strength VD is proportional to the 
average value of the intensity (I) (dashed line), (b) The autocorrelation of the 
intensity distribution is well fit by a Gaussian with 1/e2 radius ctd = 5.5 /jm. (c) 
Measured intensity probability distribution P( I ) showing a negative exponential as 
expected for fully developed speckle. 

to 

c(Az) oc e (3.21) 

Much of the data in this thesis was taken using a disorder potential with a correlation 

function described by Eq. 3.21, as this resulted from the second generation optical 

setup described in J. M. Hitchcock's M.S. thesis [23]. A detailed characterization of 

this disorder is also shown in Fig. 5.1. This design was a compromise solution for 

obtaining both a high intensity at the atoms (i.e. minimize clipping of the beam on 

the optics) and a small correlation length. However, to avoid clipping of the beam, 

we did not take full advantage of the numerical aperture of the chamber leading to 

<td = 5.5 //.m, a value slightly larger than the fundamental limit corresponding to 

the chamber view port acting as the limiting aperture, (j"]m = 3.0 //.m. We have 

since implemented an improved system for taking full advantage of the numerical 
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aperture afforded to us at the expense of dumping some power by clipping some of 

the Gaussian beam. A schematic diagram of this new system is shown in Fig. 3.23. 
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There were two main changes in the design relative to that laid out in Ref. [23]. 

The first change was to increase the numerical aperture of the system. This was 

accomplished through the addition of the "Lens of Unusual Size" (LOUS).16 In the 

old system it would have been the smaller cousin of this lens that would have been 

limiting the NA of the system, not the UHV view port. The new lens, as its name 

suggests, is comically large with a 3 in diameter. As mentioned earlier, in the previous 

design, due to our desire to have the maximum amount of light hitting the atoms, 

we were very careful not to clip the beam to within ~2 beam waists, anywhere in 

the system. This led to the old system not even taking full advantage of the NA 

available given the geometry of the chamber. The new system was designed with the 

prospect of investigating the localization of a BEC in a weak disorder, and as such, 

optical power was not our main design constraint. Rather, we wished to created 

as small of disorder as possible. To this end, we blew up the beam relative to the 

old design, with the result of clipping the beam at the LOUS at roughly 50% of 

the beamwaist. This ensured that it was indeed the vacuum viewport that was the 

limiting aperature not the Gaussian envelope of the beam. Because the beam on the 

limiting aperture is so big in the new system, the windowing function of the highly 

elongated beam at the diffuser approximates more of a rectangle. By Eq. 3.16, the 

envelope of the intensity distribution at the atoms is therefore a sine2 function. By 

the Wiener-Khinchin theorem this then makes the power spectrum of the disorder a 
16It is alleged that this optic was manufactured in the bowels of the fire swamp by Prince 

Humperdinck and his menacing six-fingered assistant, Count Tyrone Rugen. 
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Figure 3.24 : (a) A ID cut along the z-axis (long axis of the trap) of the disorder 
potential created by the setup shown in Fig. 3.23. (b) Average of 512 power spectra 
of ID cuts like that shown in (a). Solid line is fit to the linear function P(k) = 
0.6 (1.78 ^ m - 1 - k). 

triangle function. As shown in Fig. 3.24 this power spectrum fits well to the form: 

with the correlation length lc sa 1.1(2) /im. The normalized correlation function is 

then given by the inverse Fourier transform of Eq. 3.22 

1 - klc/2 if klc < 2, 
(3.22) 

otherwise. 

c( Ax) 
lc sin2 (Ax / l c ) 

(3.23) 

For ease of comparison with the previous disorder potential we fit the experimentally 

measured autocorrelation of many different cuts through the disorder to Eq. 3.21 
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rather than Eq. 3.23 with the result of <j£> = 3.2(2) /.tm. The error bar reflects the 

maximum deviation seen over measuring several hundred autocorrelations taken at 

different vertical positions in the disorder potential (covering a total vertical distance 

of ~ 500 //.rri.). The new system therefore shows ~40% smaller disorder. Fitting 

the autocorrealtion functions to Eq. 3.23 simply inflates the size by ~36% so that 

A'D = 4 . 4 ( 4 ) //,m with the natural speckle size now taken to be the location of the 

first zero of the sine2, a'D = irlc. This implies lc = 1 . 4 ( 1 ) / I M , a value slightly larger 

than that obtained from the fit to the power spectrum. We take the average of these 

two measurements, lc = 1.3(2) /.tm, for the remainder of this thesis. We will see later 

that the parameter lc is extremely important for ID transport in speckle potentials 

as it defines an effective mobility edge [24, 25]. 



Chapter 4 

Physics Near a Feshbach Resonance 

4.1 Introduction 

Ever since the early days of atom trapping, characterization of the scattering proper-

ties of cold atomic gases has been of central importance. Particularly, knowledge of 

the s-wave scattering length a is key. Remarkably, in low energy collisions, this single 

parameter characterizes a wide range of physics. For example, the scattering length 

determines the rate for both elastic and inelastic scattering processes within an ul-

tracold gas. In addition, the scattering length plays a pivotal role as the parameter 

describing the strength of the effective interaction between atoms. For a < 0 atoms 

behave as if they attract one another and for a > 0 effective repulsive interactions 

are present. For a BEC. the strength and sign of these effective interactions can have 

dramatic consequences. A high density BEC with attractive interactions, is unstable 

to collapse, leading to the playfully termed "bose-nova" phenomena. In addition, for 

BEC in a quasi-ID geometry attractive interactions allow for the creation of matter 

wave solitons, atomic wave-packets that, due to the self focusing properties of the 

attractive interactions, can propagate without dispersion. For a BEC with repulsive 

interactions large stable condensates can be created. Such systems have proven ideal 

for studying a variety of phenomena such as collective modes, sound propagation 
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and superfluidity in BEC. 

In the case of ultracold Li, Nature has been particularly kind, providing us with 

broad Feshbach resonances at readily accessible magnetic fields. These resonances 

give us the ability to tune a over a huge range through the simple application of an 

external magnetic field. This chapter begins with a brief introduction to low energy 

scattering and the phenomena of Feshbach resonances in general. We then present 

our results characterizing the Feshbach resonance in the |1,1) state of 7Li. We then 

present results regarding soliton creation and the behavior of the quadrupole mode 

as a function of a. 

4.2 Feshbach Basics 

4.2.1 Introduction to Low Energy Scattering 

In order to understand the physics of Feshbach resonances one must first understand 

the physics of low energy scattering. The quantum theory of scattering is a vast 

subject and has been treated exhaustively in countless articles, reviews and textbooks 

so I will only briefly review some of the fundamental results of the theory with special 

emphasis on those having relevance to the subject of Bose-Einstein condensation. 1 

In any low energy scattering problem, one typically begins by writing down the 

canonical form for the asymptotic wave function in the center of mass frame, de-

scribing the two particle scattering state as the sum of an incident plane wave and 
1For a more detailed treatment focused on cold atoms see Pethick and Smith [26], A very 

accessible introductory review can also be found in [27]. 
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an outgoing scattered spherical wave: 

ip = eikz + iyscat(r) (4.1) 

For scattering from spherically symmetric potentials, xb can be written as a su-

perposition of Legendre polynomials Pi (cos 0) (the so-called partial wave expansion) 

i=o 

Plugging this function into the time independent Schrodinger equation (in the 

center of mass frame) and then applying separation of variables, one obtains for the 

radial portion 

where //, is the reduced mass. Since we are considering only spherically symmetric 

potentials, U(r) does not appear in the angular equation and Eq. 4.3 contains all 

the scattering physics. For the work in this thesis, we consider only very low energy 

scattering (the limit k —> 0) and therefore I = 0 is the only important term in the 

partial wave expansion.2 To more clearly visualize the physics, it is convenient to 
2 The angular momentum of two colliding particles is given by dimensional arguments to be 

I L j = 7'o/?,/At where r0 is the length scale of the scattering potential ( ~ 3 0 a o for Li), At is the 
thermal de Broglie wavelength, and | L | = h\Jl{l + 1). Taking I = 1 leads to Ax ~ 4r 0 = 120 a0. 
Using AT = h/\J2nmkT, one then finds Tj=i ~ 3mK. It is therefore reasonable to assume only 
s-wave scattering in our experiments since T is usually /(K or even nK. 

oo 
(4.2) 

(4.3) 
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make a change of variables to x(r) = rR(r) leading to the equation 

. 2 i ^ ( r ) W r ) = 0. (4.4) 

For r r0, where r0 is the length scale associated with the interaction potential3, 

U(r) — 0 and the solution to Eq. 4.4 takes the form of a plane wave 

We therefore see that the result of the scattering process is simply a phase shift in the 

asymptotic scattering state, with the phase shift <)0 = —ak. One also immediately 

sees that for small k, a is simply the x-intercept of ,\(r). For small r one must 

solve Eq. 4.4 to obtain x(r). Examples of such wave functions characterized by three 

different values of a are shown in Fig. 4.1. The problem of low energy scattering 

thus reduces to problem of finding the scattering phase shift d0 or equivalently the 

scattering length a. From a theoretical perspective, once the potential is known, 

the scattering lengths can then be found by the calculation of the scattering wave 

functions \ ( r ) . For attractive potentials, it can be shown that a < 0, while for 

repulsive potentials a > 0. This result, however, is only true if the potential does 

not support bound states. In general, the magnitude of a is extremely sensitive to 
3For alkali atoms, the long range potential is dominated by the van der Waals interaction, 

with a length scale given by Rvdw = 1/2 (CQm/me)1^4 a0. For 7Li, C6 = 1393 A.U. resulting in 
Rvdw = 32.5 a0 [26]. 

X(r) a - sin(k(r - a)). (4.5) 
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Figure 4.1 : Short range scattering wave functions for 7Li in the |1,1) state at 
three three different interaction strengths. Panels (a), (b), and (c) are a = —40ao> 
a = Oao, and a = 50 no, respectively. These results were obtained via a numerical 
coupled channels calculation for three different magnetic fields near the Feshbach 
resonance at 737G. (See detailed discussion below). They are shown here simply as 
examples of how the scattering length behaves like a virtual node in the asymptotic 
wave function. The solid green line denotes the van der Waals length. 

the short range portion of the potential, and in particular the presence of bound 

states (or virtual bound states) in the potential near the continuum can alter the 

scattering length dramatically by way of near resonant threshold scattering. 4 This is 

the essence of the tunabilitv of the effective interactions in our system. By tuning the 

location of a bound state relative to the continuum we can modify a (or equivalently 

50). As seen in Fig. 4.1 the asymptotic wave function then appears to have a node at 

r = a. The consequence of this apparent node on the energetics of the gas is subtle 

but of primary significance [27]. It can be most easily understood by likening the 

behavior of the r —> 0 wave function to that of a pair of atoms trapped in a box of 

width r0 . The energy of such a state is given by E = /rV2/(2//Tq). Changing the 
4For example, the triplet scattering length of 6Li is a whopping —2160 ± 250 ao, nearly 70 

times larger than the van der Waals length! This fact has been attributed to the presence of a 
near-threshold bound state in the scattering potential [28]. 
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Figure 4.2 : Cartoon of the main aspects of threshold scattering. The scattering 
length a for free atoms in the continuum can be greatly modified by the presence of 
a bound state (blue circles) near threshold. In fact, a diverges when the bound state 
is tuned to resonance with the threshold (A = 0). 

position of the leftmost node, say by compressing the box a small amount a, raises the 

ground state energy of the pair with the new energy given by E = h2ir2 / (2fi(ro — a)2). 

If a < < r0 , then the shift in energy SE « h2n2a/(2//7q). A gas of N atoms will then 

experience a total shift U oc h2n2na/(2m) where n = N/TQ. Thus this simple toy 

model suggests that the energetics of the ground state are greatly influenced by the 

apparent position of the node of the scattering wave function, resulting in profound 

consequences for the BEC. 
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4.3 Feshbach Basics 

Shown in Fig. 4.2 is a simplified diagram describing threshold scattering [27]. In 

the most general description of threshold scattering, the scattering properties of 

a pair of free atoms in the continuum are influenced by the presence of a bound 

state (either virtual or real) near the so-called threshold energy of the continuum. 

In principle, the coupling between the free and bound states can be provided by 

many different means. For example, in the case of an optical Feshabch resonance 

(OFR), the bound states are electronically excited state molecules and the coupling is 

provided by a laser. The energy difference between the continuum and bound state, 

known as the detuning A, can be tuned by adjusting the frequency of the laser, and 

the strength of the coupling can be tuned via the intensity of the laser. For OFR, the 

lifetime T of the excited state, profoundly influences the inelastic losses associated 

with the resonance. Another important aspect present in ultra-cold atomic physics 

experiments is that the thermal width of the atoms in the continuum is narrow 

(kT/h = 21 kHz/'/fK). This often makes threshold scattering experiments extremely 

accurate probes of scattering properties [29, 30, 27], 

For the case of the magnetic Feshbach resonance [31] used in our experiments, the 

coupling between the continuum and the bound state is provided by the hyperfine 

interaction and the detuning is adjusted by an external magnetic field. Shown in Fig. 

4.3 is the potential energy between two 7Li atoms as a function of the interatomic 

distance for the interaction potentials responsible for the Feshbach resonance we 



exploit in our experiments. Two atoms, each in the |1,1) state, collide along the 

shallow entrance channel potential (mainly triplet at high fields). It is the asymptotic 

energy of two atoms colliding along this potential that defines the threshold energy. 

The deeper closed channel (mostly singlet) potential results from the collision of two 

atoms, one with the spin of its valence electron flipped. Shown also in this diagram 

is the least bound vibrational level of the closed channel. It is this state that strongly 

effects the scattering properties of atoms near threshold. As a result of the differing 

magnetic moments of the two scattering states of 8/x ~ 2 the detuning between 

the states can be adjusted via a magnetic field. The Feshbach resonance occurs at 

a field where the least bound state of the closed channel potential becomes resonant 

with the threshold energy of the entrance channel potential.5 

4.4 BEC and the Scattering Length 

The importance of the scattering length for ultra-cold atom experiments cannot 

be overestimated, particularly for experiments involving BEC. Often, the starting 

point for understanding the physics in any BEC experiment is the Gross-Pitaevskii 

equation 

fr2 y r 4:irh2a . . ., 
// <• V <' + V tb -| n ( r ) r (4.6) 

2 m m 
5In 7Li the hyperfine interaction of course mixes the singlet and triplet character of both of these 

potentials and a rigorous calculation must take this into account. We therefore prefer to use the 
terminology entrance channel and closed channel rather than singlet and triplet to avoid confusion. 
Interested readers should consult McAlexander's thesis [32] and citations therein. 
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Figure 4.3 : Feshbach resonance as magnetically tuned threshold scattering, (a) 
Interaction potentials responsible for the creation of the Feshbach resonance. The 
energy of two free atoms colliding along the entrance channel potential (red and blue 
line). The energy of this potential is tuned via the magnetic field. Black line is 
the closed channel potential whose least bound molecular state is responsible for the 
resonance scattering behavior, (b) Divergence of a as the position of the the entrance 
channel threshold states are tuned through the closed channel bound state (A = 0). 
This curve was produced from a numerical solution to a coupled channels calculation 
using the potentials shown in (a). 

with f \tjj(r)\2dr = N, and therefore n(r) = |?/»(r)j2. In the Gross-Pitaevskii for-

malism, the atomic system is subject to a mean-field energy density defined by 

U = 4irh2an/m. For a > 0 (repulsive effective interactions) the mean field energy is 

positive, whereas for a < 0 (attractive effective interactions) the mean field energy 

is negative. Therefore, relative to the noninteracting case the mean field leads to an 

expansion or contraction of the cloud. In addition to the s-wave contact interaction, 

alkali atoms also have a weak magnetic dipole interaction (MDI), due to the pres-

ence of the unpaired spin of the 2s1 electron. For 7Li in the | F = 1 , m F = 1) state, 

the atomic magnetic moment is very weak with // ~ //g. This interaction, like the 
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contact interaction can be treated as a mean field 

/in//2 f 1 — 3 cos2 0. , ... 9 . ., / — r=— M O (4.7) 
4tt J |r — r'|3 1 v ; 

where r is the distance between the dipoles and 9 is the angle between r and the 

direction (z) of the polarizing magnetic field. To get a feel for the relative strength 

between the contact and MDI interactions, it is useful to parameterize the MDI in a 

units of length using [33] 

m<-2m , . 
aMDi = (4-8) 

For our system this yields a M DI = 0.6 o0. much weaker than other systems in which 

this effect has been observed, e.g. atomic Cr, where aMDI = 15 a0 [34]. Nevertheless, 

due to the presence of the shallow zero crossing in our system, the effects of MDI are 

observable as discussed later. 

Equation 4.8 suggests that in order to obtain accurate scattering lengths down 

to values less than «MDI using the size of the BEC as a proxy, we have to include 

the effect of MDI in Eq. E.13. The size of the cloud as a function of a can be 

found through solving Eq. E.13 using a variational method with 3D, cylindrically 

symmetric, trial wave functions of Gaussian shape. Minimizing the energy functional 

corresponding to Eq. E.13 produces the axial and radial sizes of the condensate as a 

function of a [35]. The results of such a calculation for the axial size of the condensate 

are shown in Fig. 4.4 (with and without MDI) along with the solution of Eq. E.13 
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Scattering Length (a0) 

Figure 4.4 : Mapping functions of axial size to a using a Gaussian trial wave function 
in a variational solution to Eq. (E.13), including (solid) and neglecting (dashed) the 
MDI; also shown is the Thomas-Fermi approximation (dotted) for the axial size. 
These mappings were computed for N = 3 x 105, ujr/2it = 193Hz and ujz/2i: = 3 Hz. 
In practice, we compute the mapping individually for each imaged condensate to 
account for variations in N and a field dependent variation in u z . The mapping shows 
a smooth crossover between the Thomas-Fermi and Gaussian regimes. The Gaussian 
solution neglecting the MDI asymptotically approaches lz at zero interactions, while 
their inclusion causes the solution to asymptotically approach a value smaller than 
lz due to the attractive nature of the MDI in our geometry. The inset shows the 
zero-crossing in a on a linear scale. 

obtained using the Thomas-Fermi approximation. As expected, the effects of MDI 

become evident for a < 0.6 a0. In our system, the BEC is spin polarized along the long 

axis of the trap, parallel to the prevailing magnetic field direction. Thus, individual 

atomic dipoles are approximately stacked end to end. In this configuration, the 

mean field from the MDI produces a weak saddle potential with the axial direction 

providing a slight attractive potential. This is particularly evident for a = 0 where 
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the effect of the MDI serves to reduce the size of the cloud to below the harmonic 

oscillator size lz = y/h/rrnoz expected for a noninteracting gas. The opposite effect 

was used in the Cr experiments, where repulsive MDI in an oblate trap was used 

to stabilize an attractive condensate against collapse [33]. In cases where dipolar 

collapse has been observed, spectacular d-wave symmetric patterns emerge from the 

exploding density distributions [36]. 

4.5 Measuring the Scattering Length in a BEC 

Atoms in the j F = 1. nip = 1) state are confined in an optical trap formed from 

a single focused laser beam with wavelength of 1.03 /xm. A bias magnetic field, 

directed along the trap axis, is used to tune a via the Feshbach resonance. We 

create condensates at a field where a is large to facilitate rapid rethermalization 

of the atoms during evaporation from the optical dipole trap. After a condensate 

is formed we slowly (~4s) ramp the field to the desired value and determine the 

scattering length, as described below. There is no discernible thermal part to the 

density distributions and we estimate that T/Tc < 0.5, where Tc is the condensation 

temperature. The final trapping potential is a combination of the optical field and 

a residual axial magnetic curvature from the bias field. The trap is cylindrically 

symmetric with measured radial and axial trapping frequencies of Lur/2ir = 193 Hz 

and loz/2tt = 3 Hz, respectively. Due to the small residual curvature of the bias field, 

the axial frequency changes by ~5% over the relevant magnetic field range, which is 
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accounted for in the analysis. 

We use in situ polarization phase-contrast imaging [37] to acquire the column 

density distribution of the condensate at the desired magnetic field. When the s-

wave interactions are large and repulsive they inflate the size of the condensate well 

above the harmonic oscillator size. As the interactions decrease, the size of the 

condensate becomes smaller, approaching the harmonic oscillator ground state near 

zero interactions. Figure 4.5 shows representative images of condensates with various 

repulsive or attractive interaction strengths. Solitons form when a < 0, either a single 

one for a slow magnetic field ramp or multiple solitons for ramps fast compared to 

the axial trap period. Figure 4.5 shows 2D images of column densities for different 

values of the magnetic field and therefore different values of a. Full exploitation 

of the Feshbach resonance allows us to create cloud sizes ranging from a few mm 

down to a few 10's of /urn, in addition to weak attractive condensates and matter 

wave solitons. As can be seen from the images, the axial size of the cloud is a very 

sensitive proxy for the measurement of a in a BEC. 

Armed with the results from Fig. 4.4, we can map measured axial sizes to scat-

tering lengths. Shown in Fig. 4.6 is the axial size of BECs as function of magnetic 

field for a region from 535G-737G. Each point shows the average size obtained 

from approximately 10 independent runs. The average number of atoms per point 

is Ar
0 = 3 x 105 atoms, with a shot-to-shot variation of 20%. The inset of Fig. 4.6 

shows the axial size scaled by (Ar/Ar
0)1//5. This scaling, accurate for the Thomas-
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100 ium 

Figure 4.5 : Representative in situ polarization phase-contrast images of condensates 
with various interaction strengths, (a) B = 719.1 G, a = 396 ao, N = 1.7 x 10s; (b) 
B = 597.4G, a = 8a0 , N = 2.9 x 105; (c) B = 544.7G, a = 0.1 ao, N = 2.0 x 105; 
(d) B = 542.4 G, a = - 0 . 1 a0, N = 1.2 x 10s; (e) similar to (d) but with a faster field 
ramp from 710 G to 542.4 G, resulting in multiple solitons with N ~ 104 per soliton. 
The probe laser detuning from resonance is adjusted to keep a nearly constant signal 
level, and varies between 20 7 for large a to 150 7 for small a, where j/2-tr ~ 5.9 MHz 
is the excited state linewidth. The color map is adjusted to maximize contrast for 
each image. 

Fermi regime, removes the fluctuations in the size due to fluctuations in shot-to-shot 

number N. 

Figure 4.7 shows the derived scattering lengths found by applying the mapping 

shown in Fig. 4.4 to the axial size data in Fig. 4.6. The general shape follows that 
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Figure 4.6 : Axial size of the condensate as a function of magnetic field. The axial 
size is defined as the 1/e point in the axial density profile and is scaled by the axial 
harmonic oscillator size lz = \Jh/rauz & 22 /im. The resolution of the optical imag-
ing system is ~3.3/xm (dotted line). The dashed line is the size of the condensate 
(Id « 0.62 lz) found by solving Eq. (E.13) with a = 0. The zero-crossing in a occurs 
when the size of the condensate equals Id and is found to be at 543.6(1) G (arrow) 
[38]. Neglecting dipolar effects results in a zero-crossing about 0.5 G higher, where 
the axial size equals lz. Individual data points and error bars are the average and 
standard error of approximately 10 shots taken at each field. Systematic uncertainty 
in the axial size is ~3% from uncertainty in temperature and the uncertainty in 
magnification of our CCD. The systematic uncertainty in magnetic field due to cali-
bration (via radio frequency transitions from the |2, 2} to the |1,1) state) is ~0.1 G. 
We have binned our data into intervals of this size. The inset shows the axial size 
corrected for number variation as described in the text. 
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Figure 4.7 : Axial size data of Fig. 4.6 mapped onto a. Results of a coupled-channels 
calculation are shown by the solid line. The Feshbach resonance fit (dashed line), as 
described in the text, underestimates the data both above 700 G and below 570 G, 
and overestimates it slightly in between. The inset shows the extracted values of a 
near the zero-crossing. A linear fit in this regime, also described in the text, matches 
the coupled-channels calculation. The mean and standard error of approximately 10 
shots taken at each field is shown. In addition, we estimate a systematic uncertainty 
of ~20% in a as described in the text. 
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of a typical Feshbach resonance 6 

a = aBG[l + A/(B-B00)], (4.9) 

where aBG = -24.5±g;!j a0, A = 192.3(3) G, and B^ = 736.8(2) G. The uncertainties 

in these derived values are a result of the systematic uncertainty in field calibration 

of 0.1 G and a systematic uncertainty in a of —20%, primarily due to uncertainty in 

measuring the axial size and determination of UJz. For a detailed accounting of these 

uncertainties please refer to Appendix E. A linear fit to the data for B < 550 G gives 

a slope of 0.08(1) fl0/G and a zero-crossing at B0 = 543.6(1) G. The smallest mean 

positive scattering length of a collection of shots was 0.01(2) a0 at 543.6(1) G with 

—3 x 105 atoms. Under these conditions the peak density is 3 x 1014 cm"3 and the 

corresponding condensate healing length is comparable to the length of the conden-

sate itself. The largest mean positive scattering length was x 105 CIQ at 736.9(1) G 

with ~2 x 104 atoms. At this field, the BEC has a peak density of n « 5 x 1010 cm - 3 

with na3 ~ 50. The comparatively smaller number of atoms close to resonance is due 

to large inelastic collisional losses in this regime [39, 40]. The loss is dominated by 

three body recombination with A'3 > 2 x 10~20 cm6/s. Although Eq. (E.13) assumes 

the mean field approximation, beyond mean field corrections are expected to be im-
6Remarkably, in regime of large scattering length, Eq. 4.9 universally describes the magnetic 

field dependence of the scattering length in any atomic system. The universal regime is defined to be 
a a and a > 4/?*, where a is related to the van der Waals length scale by a = 0.955978...i?vdW 
and R* = a/sres where sres is a unitless paramter characterizing the strength of the Feshbach 
resonance [31]. For 7Li a = 31.1 aQ and R* = 40.6 a0. 
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portant when na3 > 1 [41, 42, 43]. The leading order correction to the interaction 

term in Eq. (E.13), the Lee-Huang-Yang parameter, is a = no? ~ 40 

for the strongly interacting condensate described above. We have accounted for this 

correction in extraction of a for data where a < 1, but exclude the four data points 

with a > 1 in the Feshbach resonance fit.7 

Figure 4.7 also shows a comparison between a coupled-channels calculation and 

the experimentally extracted values of a. The coupled-channels calculation requires 

the ground-state singlet and triplet potentials of 7Li2 as input, as described previ-

ously [44, 45]. We have updated the potentials to be consistent with the new mea-

surements of B^ and B0 reported here, as well as the previously measured binding 

energy of the least bound triplet vibrational level [44, 46]. The updates involve ad-

justing the singlet and triplet dissociation energies to De(Xl£+) = 8516.68(10) cm"1 

and .De(a3£+) = 333.714(40) cm"1, where the stated uncertainties account for un-

certainties in the remaining portions of the model potentials. These values agree 

with previous determinations [45, 47]. The agreement between the calculated and 

measured values of a, while not perfect over the entire range of fields, is reasonably 

accurate over a range spanning ~6 decades. Shown in Fig. 4.8 is a comparison of the 

coupled channels prediction to the experimentally extracted values of a. The effects 
7We should highlight the fact that due to the high inelastic losses at large scattering lengths, 

complicated dynamical issues become prevalent making the atomic density profiles hard to interpret. 
Not only are the majority of the atoms lost in the first few ms, making the signal weak, these 
clouds may not have had enough time to equilibrate. A more careful study of the dynamics of the 
condensate is necessary to prove whether or not these strongly interacting BECs can be useful to 
study beyond mean field effects. 
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Figure 4.8 : (a) Plot of 100[(aexp — acch)/«cch] versus B, where aexp is the experi-
mentally determined scattering length and acch the coupled channels result. Dashed 
lines located on the left and right right side of the plot denote the experimentally 
determined location of the zero-crossing and Feshbach resonance, respectively, (b) 
Same as (a) but plotted against acch-

of the MDI are strongly dependent on geometry. To better distinguish their role, we 

increased the axial trapping frequency from 3 Hz to 16 Hz by applying magnetic cur-

vature. Figure 4.9 compares the extracted values of a for both trap geometries when 

the MDI is included or neglected in the mapping function. As expected, neglecting 

the MDI in the analysis systematically lowers the extracted values of a. This effect is 

most noticeable in the zero-crossing where a systematic geometry-dependent discrep-

ancy appears in the derived values of a. Including the MDI results in a consistent 

value of a for a given magnetic field regardless of the trapping potential. The data 

show that the effect of the MDI is indeed discernible in 7Li despite the weak atomic 

magnetic moment of only fj,B. 
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Figure 4.9 : Extracted values of a near the zero-crossing for trapping potentials with 
wz/27r = 3 Hz (filled squares) or o>2/27r = 16 Hz (unfilled squares), when (a) neglect-
ing or (b) including the MDI in the mapping function. The MDI has a negligible 
effect on the extracted values of a for the 16 Hz trap, but neglecting the MDI in 
analysis of the 3 Hz trap systematically lowers the mapped values of a, especially for 
a < 0.15 ao-

4.6 Dimensional Reduction by Tunable Interactions 

Armed with the precise knowledge of the location of the zero-crossing at BQ = 

543.6(1) G, the interactions of the gas can be effectively turned off at will. For a 

small enough, the gas behaves as if it was one dimensional; a scenario that occurs 

because /i < hwr resulting in a "freezing out" of the radial dynamics. Figure 4.10 

shows a plot of /J vs. a produced from a numerical solution to Eq. E.13 including 

the MDI, as described in Sec. 4.4 for typical experimental parameters. This calcu-

lation shows that // = Hur at a ~ 10 ao- In addition, for attractive interactions the 

calculation shows that /i diverges when the scattering length becomes too negative, 

signaling a collapse of the BEC. 

The phenomena of BEC collapse has been extensively studied in several atomic 
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Figure 4.10 : Result of the numerical solution to the GP equation with the MDI 
included. Parameters used were N = 3 x 105, ur = (2tt) 240 HZ, and ujz = (2TT) 5 HZ. 
y-axis values are scaled to huir. Insets show zoomed in ranges including the region 
where jj, = hujr and the region near the zero crossing. 

systems including bosons [48, 49, 50], Bose-Fermi mixtures [51, 52], and most recently 

dipolar BECs of Cr [36]. One of the most interesting consequences of this collapse 

is the formation of bright matter-wave solitons as collapse remnants [53, 54, 55]. 

As shown in Fig. 4.5, these structures can be created by slowfy ramping the field 

through the zero crossing, but often with the result being a soliton train. We have 

found that by starting in a cross beam trap, more repeatable single solitons can be 

created. Figure 4.12 shows a comparison between a weakly repulsive BEC and a 

weakly attractive soliton that have been created in the cross beam trap. When the 
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Figure 4.11 : Shown here is a typical magnetic field ramp used to create single 
solitons in the cross beam trap. This ramp is triggered immediately after the optical 
trap evaporation finishes. Images are typically taken soon after the ramp ends at 
t, ~ 4.25 s. 

cross beam is turned off and the clouds allowed to expand in the weakly confining 

single beam trap, the repulsive BEC expands but the soliton does not; rather, it 

behaves like a self trapped BEC "droplet." 

The formation process in the cross beam seems to be more repeatable than for 

the more elongated clouds in the single beam trap. Figure 4.6 shows a typical ramp 

used to create solitons in the cross beam trap. Immediately after the optical trap 

evaporation, the field is ramped down during ~4s according the the functional form 

B(t) oc 
- t a n h (271 (t — 1/2)) 

tanh (7r) 
(4.10) 

We have found that once the field is ramped through the zero crossing, the number 
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Figure 4.12 : (a) and (c): Expansion of a weakly repulsive BEC with a ~ 0.1 o0 after 
being released from the cross beam trap into the weakly trapping single beam trap, 
(a) and (c) are for 50 ms and 100 ms after the cross beam is switched off. (b) and (d): 
The identical procedure but with a weakly attractive BEC with a ~ 0.5 ao showing 
absolutely no expansion, proving that this object is indeed a soliton. 
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stays roughly constant until the critical scattering length for collapse is reached. 

This occurs roughly where the attractive mean field energy overtakes the repulsion 

induced by the confinement due to the Heisenberg uncertainty principle. A more 

precise mathematical form for the critical number Nc has been derived for the case 

of cylindrically symmetric traps [56] 

where k is a geometry dependent constant ~0.4 for elongated traps, and the aspect 

ratio A = ojz/cur.8 When A" = Nc, further reduction of a results in a loss of atoms with 

subsequent formation of a single soliton containing very nearly the critical number 

of atoms, as shown in Fig. 4.13. 

The frequencies of collective oscillations are also affected by the dimensionality 

of the system. The full dynamical behavior of a weakly interacting BEC is captured 

in the time dependent GP equation 

The frequencies of the low energy collective modes of the trapped BEC can be found 

by solving Eq. 4.12 via a variational technique [57]. Of particular interest for our 

experiment is the frequency of the lowest lying (out of phase) quadrupole mode given 

8 A n equivalent form for the critical number is Nc — A / r A - 1 / 6 / | « | which for our typical aspect 
ratios of A = 0.02 reduces to Nc « 0.7lr/\a\. 

dt 
(4.12) 
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Figure 4.13 : Number of atoms remaining after a field ramp through the zero crossing 
that stops at a negative value of a (plotted as |a| on the .x-axis log scale). The 
condensate begins the ramp in the cross beam trap with N ~ 5 x 104 (dashed 
horizontal line). As the scattering length becomes more negative, an abrupt decrease 
in the number occurs close to where the predicted critical number JVC = 5 x 104. As 
the scattering length is increased further, N oc l/\a\ as expected. The green line is 
Eq. 4.11 using the measured parameters of ujz = (2ir) 9 Hz and uir = (2n) 360 Hz, in 
addition to k = 0.42 calculated as described in [56]. 
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Figure 4.14 : Plotted here is the prediction of Eq. 4.13 for N = 2 x 105 atoms and 
ujr = (2TT) 235 Hz. The aspect ratios were varied by adjusting the axial trap frequency 
(a) (ujqlujz)2 vs. a. The quasi-lD regimes (see text) are evident for traps with large 
aspect ratio, (b) (uiq/uiz)2 vs. the dimensionless interaction parameter Na/lr scaled 
by the aspect ratio A. This particular scaling elucidates the universal behavior of 
highly elongated traps from the ID mean field regime into the Thomas-Fermi regime. 
The highly elongated traps all begin going quasi-lD when XNa/lr ~ 1. As expected 
more highly elongated traps exhibit quasi-lD over a larger range of parameter space. 

by 

U)7, 
1 

A2 2 (l + A2 - P2,3) - 2a/(1 - A2 + P2i3)2 + 8P3
2
2 (4.13) 

where Pitj = Pj (LWrbi) and the dimensionless width parameters wr/lr = br and 

wz/lr = bz are the 1/e sizes of the Gaussian variational solution to the time inde-

pendent GPE as described above. The interaction parameter P = y/2Na/(y/nlr), 

where lr = y/h/(rnur). Shown in Fig. 4.14 is a plot of Eq. 4.13 for a range of scat-

tering lengths and trap aspect ratios. For traps with large anisotropy we observe 

three distinct regions. For large scattering lengths we see that UJQ/UIZ -> \ /5/2 con-

sistent with the prediction based on the Thomas-Fermi approximation9 [58]. For 
9This is somewhat surprising since Eq. 4.13 assumes a Gaussian wave function rather than the 

inverted parabola given by the Thomas-Fermi approximation. 
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Figure 4.15 : Quadrupole frequency vs. a for a < 0 as predicted by Eq. 4.13. 

a —> 0, UJQ/UJZ —>• 2 as predicted for the noninteracting gas. In the region between 

the noninteracting and Thomas-Fermi regimes, a plateau at UQ/UZ = \/3 can be 

seen, consistent with predictions based on ID mean field theory [59] and the ID 

non-polynomial Schrodinger equation [60]. Equation 4.13 is also valid for a < 0 . As 

seen in Fig. 4.15, for all traps UJQ rises before dramatically dropping to zero at the 

point of collapse. 

We have investigated the frequency of the low lying quadrupole mode as function 

of a. To drive the oscillation, we take advantage of the Feshbach resonance and 

oscillate the bias field (using the bias coils) sinusoidally in time. The drive frequency 

is chosen to be close to the expected oscillation frequency, but we have found that 

off resonant driving can also be used [61]. The condensate dynamics are shown 

in Fig. 4.16 both during and after a modulation drive. Note that the oscillation 
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Figure 4.16 : We drive the quadrupole mode by sinusoidally oscillating the magnetic 
field and therefore a. Shown here is a short duration drive of 2.5 periods with u = 
(27r) 3 Hz and an amplitude of 2.3 a0 applied to a BEC with a = 3 a0. After the drive 
is shut off (t = 0) the cloud begins its free undamped quadrupole oscillation. Both 
the drive and the free oscillation fit well to sinusoidal motion with the free oscillation 
frequency OJQ = (2TT) 8.2(2)HZ. For this data u)z = (2TT) 4.7Hz and UIR = (2it) 235 Hz 

frequency is measured after the drive is turned off. We have found that, as expected, 

the drive frequency does not affect the free oscillation frequency. The drive simply 

serves to "stretch the spring" so to speak and send the cloud into free motion at the 

quadrupole frequency. 

We extract the axial size of the cloud vs. time by fitting the axial densities 

obtained from in situ phase contrast images to Thomas-Fermi profiles. The mea-

surement of R(t) is then fit to the form 

R{t) = Rtf + Rq COS(uqt + (p) (4.14) 
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Figure 4.17 : COQ/UIZ VS. B near the Feshbach resonance at 737G. The frequency 
of the mode appears to diverge near the zero crossing at 544G (solid line). Error 
bars signify the uncertainty in fit parameter UIQ in Eq. 4.14 and is determined by 
the deviation in LOQ that produces Ax2 = 1 in the fit to Eq. 4.14 letting all other 
parameters float. The uncertainty in B is 0.1 G as described in detail in Appendix E.l. 

The result of several such measurements for different values of the magnetic field is 

shown in Fig. 4.17. 

As expected, there is a dramatic rise in the frequency as B approaches the zero-

crossing. In order to compare more directly to Eq. 4.13, we convert the magnetic field 

to scattering length using Eq. 4.9 for B > 550 G and a(B) = 0 .08a 0 /G(£ - 543.6) 

for B < 550 G. A plot of UQ/(JJz vs. \Na/lr is shown in Fig. 4.18. Panel (a) shows 

a disturbing systematic shift in much of the data. This is likely a manifestation of 

the predicted nonlinear frequency shift in UIQ VS. oscillation amplitude [62, 63]. In 

BEC systems, the nonlinear interaction can give rise to a weak coupling between 

collective modes, causing a shift in the mode frequency given by 8uj/oj ~ O.IA2 



where Az = RQ/R^Y- In panel (b) the measured frequencies are corrected by this 

factor (of order 5% or less), resulting in much better agreement with the theoretical 

prediction. The remaining deviation at weak interactions is perhaps evidence of 

physics not encompassed by the theory. One immediately questions whether dipolar 

effects are playing a role in this deviation [64]. A more systematic study of this shift 

and in particular its dependence on trap geometry would help determine if the weak 

dipolar interaction is important. Extending the theoretical prediction to include this 

interaction would also prove illuminating. 
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Figure 4.18 : (a) Comparison of measured UIQ/UIz with the theoretical prediction of 
Eq. 4.13 calculated using the measured parameters of iV = 3 x 105, ur = (2ir) 235 ± 
20 Hz, and ujz = (2tt) 4.8 HZ as input. The red line is for uir = (2ir) 235 Hz and the 
cyan lines indicate 255 Hz and 215 Hz. The green line indicates LOQ/UJZ for a < 0. 
Blue circles are for data above the zero crossing while the violet circle was taken 
just below the zero crossing with B = 543.4(4) G. Vertical error bars are as defined 
in Fig. 4.17. Horizontal error bars are dominated by the shot-to-shot fluctuations 
in N for the collection of shots making up each oscillation. A detailed accounting 
of all the uncertainties involved in this measurement is given in Appendix F. (b) 
Data in (a) corrected for the amplitude dependent nonlinear frequency shift, (see 
text.) The vertical error bars are determined from the errors in the fit parameters 
Z ? T F and R0 determined using the A X 2 = 1 method described in Fig. 4.17. Black 
dashed lines show expected frequencies for the ID mean field UJQ/UJZ = Y / 3 , and 
3D elongated Thomas-Fermi ujq/uz = \J5/2 regimes. The non-interacting gas is 
predicted to oscillate at LOQ/UJZ = 2. 



Chapter 5 

Dissipative Transport of a Bose-Einstein 
Condensate 

5.1 Introduction 

The observation of Bose-Einstein condensates (BECs) of ultracold atomic gases 

[65, 66, 67] has enabled investigations of some of the most fundamental concepts 

of condensed matter physics [68]. One of the most fruitful avenues of research has 

involved the use of BECs to probe the nature of superfluidity itself. Early studies 

led to observations of the critical velocity for the onset of dissipation [69, 70, 71] and 

quantized vortices [72, 73, 74, 75]. 

Recently, there has been much interest in using BECs to emulate disordered 

superfluids. Results from such experiments have wide ranging implications, from 

the transport of superfluid He in porous media [76] to the motion of atomic BECs 

in microchip traps or matter waveguides [77, 78, 79, 80]. Of particular interest 

is how disorder can disrupt, or even destroy, superfluidity. Due to their exquisite 

controllability, atomic BECs are ideal physical systems with which to systematically 

study the interplay between superfluidity, disorder, and interatomic interactions. 

In this chapter, we report measurements of the dissipation of the superfluid flow 

of an elongated BEC subject to either a disordered potential or a single Gaussian 

defect. We characterize the superfluid nature of the harmonically trapped cloud 
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through detailed measurements of the velocity dependent damping of the collective 

dipole mode. We use a BEC of 7Li in the \F = 1, m.F = 1) internal state, where the 

interactions may be tuned via a wide Feshbach resonance located at 737 G [53, 1, 81]. 

This resonance includes a shallow zero-crossing that enables the .s-wave scattering 

length a to be tuned over a range of nearly 7 decades, with a as small as 0.01 o0, 

where «0 is the Bohr radius [81]. The gas may be made nearly ideal with transport 

properties strikingly different from the more strongly interacting case. Furthermore, 

the healing length £ = 1/^/8TTn0a, where n0 is the peak density of the condensate, 

may be made as large as the condensate itself. In this regime, effects due to the 

fundamental wave nature of individual atoms become important. For example, if £ 

is on the order of the disorder grain size or larger, a BEC can become an Anderson 

localized insulator [82, 83]. In addition, the chemical potential // in this weakly in-

teracting regime may be less than the radial harmonic oscillator ground state energy, 

effectively "freezing out" the radial dynamics and leading to qnasi-one-dimensional 

behavior. 

5.1.1 Supe r f lu id i ty of a B E C 

One of the seminal theoretical results originating from the theory of superfluid 4He is 

Landau's criterion. According to this criterion, elementary excitations can be created 
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only if the fluid velocity v is greater than Landau's critical velocity vL [84, 85] 

i>L = m i n ^ . (5.1) 
P 

where e(p) is the energy of an elementary excitation of momentum p. For the case 

of a weakly interacting BEC with uniform density n, Bogoliubov theory gives the 

excitation energy as [26] 

= A & + c 2 ' a <5-2) 

where m is the atomic mass and c is the bulk speed of sound. For small p, this 

spectrum reduces to the well known relation e(p) — cp describing phonon excitations 

with 

where U = Anh2a/m. Application of Eq. 5.1 using e(p) = cp gives vL — c, implying 

that only supersonic flow can dissipate energy through the creation of elementary 

excitations; conversely, if the flow is subsonic, excitations are energetically forbidden, 

and the flow is superfluid. Application of Eq. 5.1 to the case of a non-interacting 

condensate implies that VL = 0, suggesting that superfluidity cannot exist in an ideal 

gas. 

The dynamics of highly elongated BECs can be accurately modeled using an 

effective one-dimensional (ID) nonlinear Sehrodinger equation (NLSE) [86, 87. 88, 

89]. In such a treatment, one starts from the 3D Gross-Pitaevskii equation (GPE), 
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and integrates out the radial dimension. The effect of this integration is a reduction 

in c relative to Eq. 5.3 due to the average over the nonuniform radial density. For the 

case of a harmonically trapped BEC in the Thomas-Fermi regime, the bulk density 

n is replaced with the average density no/2. Therefore, the speed of sound becomes 

A theoretical description of an elongated BEC beyond the standard ID NLSE leads 

to a reduction (on the order of 10%) to the speed of sound relative to Eq. 5.4 [90]. In 

addition, the spectrum of axially propagating excitations in a cylindrical BEC can 

differ dramatically from Eq. 5.2 when fx » hjj r ) leading to an additional reduction in 

vl [91]. The highest // condensates created in our system have /.i/h~cr ~ 13, resulting 

in a predicted 20% reduction [91]. 

When attempting to explain the onset of dissipation in any particular experimen-

tal situation, care must be taken to apply Landau's criterion locally, by using the 

local density n(r = 0, z) instead of n0 = n(r = 0. z = 0) in Eq. 5.4 [92], For arbitrary 

trapping potentials, excitations will be nucleated first in regions of low density where 

the local speed of sound is small, and the critical velocity is reduced relative to the 

bulk. As a consequence of this effect, experimentally observed critical velocities are 

often much lower than the bulk speed of sound [69, 70, 71]. 

The remainder of this chapter is organized as follows: In Sec. 5.2 we describe our 
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experimental methods for creating a BEC in either a disordered harmonic potential 

or a harmonic potential with a single Gaussian defect; in Sees. 5.3 and 5.4 we discuss 

our results for the induced dissipation for these two scenarios, where both the 3D 

Thomas-Fermi and the quasi-ID weakly interacting regimes are discussed for each 

case. 

5.2 Experimental Method 

We create a BEC of 7Li in a highly elongated, cylindrically symmetric, hybrid 

magnetic-optical dipole trap [93, 81] with radial and axial trapping frequencies in 

the ranges of ur/(2ir) ~ 220-460 Hz and uz/ (2TT) ~ 4-5.5 Hz, respectively. The 

radial confinement is dominated by the optical trapping potential formed by a single 

focused laser beam with wavelength 1030 nm and a 1/e2 Gaussian radius of 33 //m. 

while the axial confinement is dominated by an adjustable, harmonically confining 

magnetic field. A set of Helmlioltz coils provides a uniform bias field along the 

long (z) axis of the trap, allowing for the tuning of a via a Feshbach resonance at 

737 G [53, 1, 81]. The BEC is created at a field of 717 G where a is positive and 

large enough (~200ao) to allow for efficient evaporative cooling in the optical trap, 

but small enough to avoid substantial three-body losses. At this field, the trap life-

time is limited to ~10s due to three-body recombination with a loss coefficient of 

L3 ~ 10~26cm6/s [40]. After evaporation, the BEC has no discernible thermal com-

ponent from which we estimate that the temperature T < 0.5 Tc, where Tc is the 



BEC transition temperature. The bias field is then ramped over a timescale on the 

order of seconds to achieve the desired value for a. 

We excite the collective dipole mode of the condensate by pulsing on an axially 

oriented magnetic gradient, thereby abruptly shifting the center of the harmonic trap. 

After 1/4 of an oscillation period, the condensate is at the peak of an oscillation and 

we abruptly switch on either a disordered potential with an extent exceeding the 

oscillation amplitude of the condensate, or a single, narrow Gaussian defect located 

near the trap center. By varying the duration of the gradient pulse we precisely vary 

the amplitude A of the oscillation, and therefore the initial peak velocity i'o of the 

condensate center of mass, where v0 = Au z . At various times thereafter we image 

the cloud to track the center of mass location as well as the shape of the density 

distribution. We investigate the dependence of the damped dipole motion on t'0, the 

strength of the disordered potential or single Gaussian defect, and on the value of a. 

The disordered potential is an optical speckle pattern created by passing a laser 

beam through a diffuser plate in a manner similar to previous studies [93, 94, 95, 

96], This beam is directed perpendicular to the trap z-axis. Figure 5.1 shows a 

characteristic intensity slice of the disorder. The disorder speckle size ctd is defined to 

be the 1/e2 radius of a Gaussian fit to the autocorrelation of the intensity pattern and 

is measured to be (jD = 5.5 /tm. In the radial direction, the speckle size is much larger 

than the radial Thomas-Fermi radius i?T F~10/mi, making the disorder effectively 

ID. We have verified that the intensity distribution of the disorder follows a decaying 
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Figure 5.1 : Disordered potential created from laser speckle, (a) Cut through an 
image of the speckle potential. The disorder strength VD is proportional to the 
average value of the intensity (I) (dashed line), (b) The autocorrelation of the 
intensity distribution is well fit by a Gaussian with 1/e2 radius crD = 5.5 yum. For 
some of the data in this chapter (Figs. 5.6, 5.8, and 5.10) CTd = 3.4/im. 

exponential P(I) = as expected for fully developed speckle [21]. The 

average value of the speckle intensity (I) determines the disorder strength through 

the relation VD = hT2 (I) / (4/ s a tA), where the transition linewidth T = (2TT) 5.9MHz 

and the saturation intensity / sa t = 5.1 mW/cm2 . The detuning from the 7Li 25 — 2 P 

transition A = (2ir) 300 GHz, producing a repulsive disorder potential. For the 

strongest disorder used in these studies, off-resonant scattering from the disorder 

occurs at a rate of ~ 0.1 s'~l. The statistical properties of the speckle pattern are 

measured by direct imaging with a CCD camera before the optical system is installed 

onto the experimental apparatus. 

A cylindrically focused laser beam is used for the studies involving a single Gaus-

sian defect. This beam has a Gaussian intensity distribution I (z, r) = I0e~2(r2/w2+z2/w*\ 

with beam waists wr = 5 mm and wz = 12 /iin. The radial size of the defect wr is 
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much larger than -RTF, ensuring that flow around the defect is suppressed. We 

conduct experiments using both a repulsive (blue detuned) and an attractive (red 

detuned) defect with |A| = 300 GHz. 

We adjust the healing length through an approximate range 0.5 /xm < £ < 20 / /m 

by tuning a. Thus, a wide range of values are achievable for the relevant dimensionless 

quantities, 0.1 < £/rrD < 3.6 and 0.04 < £/wz < 1.7. 

5.3 Disorder Induced Dissipation 

5.3.1 Thomas-Fermi Regime 

Figure 5.2 shows the position of the center of a condensate at various times during 

a dipole oscillation in a disordered potential. The dipole oscillation is initiated by 

a kick that produces an initial peak velocity of i>o = 20mm/s when the condensate 

passes through the center of the trap. For this data, the condensate begins its 

motion well into the supersonic regime with ~ 4CQ. The resulting oscillation is 

characterized by a time-dependent damping, suggesting that the damping depends 

on t'o. The damping begins relatively weak, goes through a maximum after about 

3.8 s, and then diminishes at later times. We fit 4-period sections of the data in 

Fig. 5.2 to the form of a damped harmonic oscillator: 

z(t) = .!< cos (u't + 0) , (5.5) 
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Oscillation Time (s) 
Figure 5.2 : Damping of a condensate initially traveling supersonically through a 
disordered potential with V^/h = 280 Hz. The center of the BEC (circles) is ex-
tracted from a Thomas-Fermi fit to the radially integrated column density (the "ax-
ial density"). The thick lines tracing the amplitude are phenomenological guides 
to the eye. The initial amplitude is A = 0.6 mm yielding an initial peak velocity 
of VQ = 20mm/s. For this data, Coz = (27T)5.5HZ, UJt = (27T)260HZ, a = 25 AO, 

and jj, = — A (1.1 kHz). In addition, c0 = 5.6mm/s, £ = 0.8//rri, and 
£/CD = 0.2. The insets show details of the oscillation at early and late times. 
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Figure 5.3 : Velocity dependent damping. Results of fitting the data of Fig. 5.2 to 
Eq. 5.5 using a traveling 4-period window. The peak velocity VQ is obtained from 
vo = A ojz. The solid line is a square-root function convolved with an exponential 
decay and is meant as a guide to the eye. The inset shows the same data on a semi-
log plot, emphasizing the nearly exponential decay of B/LUz for large VQ/CQ. Vertical 
error bars correspond to the range in j3 for which A\2 = 1 for the fit to Eq. 5.5 while 
simultaneously adjusting all other parameters to minimize %2. Horizontal error bars 
are determined using an identical process for A in Eq. 5.5 and are typically ~15%. 
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where w' = (cJ2 — /32)1/2. The peak velocity v0 is then computed from the fitted A 

for each data subset to obtain the damping coefficient ft as a function of v0, with the 

results shown in Fig. 5.3. The damping monotonically increases for small v0, peaking 

near r0 — 1.1 c0, followed by a nearly exponential decay of ft for c0 > r0. 

A perturbative theoretical treatment has produced a closed form solution for 

the velocity-dependent damping, resulting in good quantitative agreement with our 

measurements [97]. For weak disorder the qualitative behavior shown in Fig. 5.3 can 

be understood through a local Landau critical velocity argument. At low velocities, 

Bogoliubov quasiparticles are only created within a thin shell at the surface of the 

condensate, where the low density leads to a low local speed of sound, and therefore 

a low local rL . As the velocity of the condensate increases, a larger condensate 

volume can support excitations because a larger fraction of the atoms violate the 

local Landau criterion. The maximum damping occurs near the point where the 

velocity of the BEC reaches the peak speed of sound C.Q in the condensate. At even 

larger velocities the excitation volume cannot increase further, but the Bogoliubov 

density of states decreases, resulting in the observed exponential decrease of the 

damping. 

Except for the absence of a critical velocity, the qualitative behavior of the velocity 

dependent damping shown in Fig. 5.3 is remarkably similar to that predicted by ID 

NLSE simulations of a uniform, repulsive BEC in the presence of an oscillating 

Gaussian obstacle [98, 99]. In these simulations, above a certain impurity strength-



dependent critical velocity, the impurity moving at a velocity v deposits energy 

into the BEC in the form of density fluctuations. The average rate of condensate 

energy growth ( d E / d t ) increases nearly linearly with v, to a peak at v ~ c as the 

defect excites dark solitons and linear sound waves. As the velocity of the defect 

is increased further, the density fluctuations decrease significantly, accompanied by 

an exponential decrease of (dE/dt), similar to our experimental observations. In 

contrast to a single impurity in a uniform condensate, a defect is always present in 

a low density region of a condensate in a disordered harmonic trap. Consequently, 

r'o is always greater than the local speed of sound at the edge of the condensate and 

excitations are always present. Previous experimental [94, 100, 93] and numerical 

[101] studies of the damping of collective modes and the damping of Bloch oscillations 

in a disordered lattice potential [102, 103] have found qualitatively similar results. 

Figure 5.4 shows in situ polarization phase-contrast images [104] of the BEC 

at various times in the oscillation shown in Fig. 5.2. The damping clearly does not 

result from a loss of collectivity as predicted by ID NLSE numerical simulations [101]. 

Rather, the BEC nearly maintains its original shape throughout the oscillation. Close 

inspection of the density distributions in Fig. 5.4 reveals a "tail" of non-condensed 

atoms that appears to oscillate slightly out-of-phase with the central Thomas-Fermi 

distribution. At early times, these non-condensed atoms appear to lag behind the 

BEC, while at later times they oscillate in-phase with it. This two-component out-

of-phase oscillation is reminiscent of the second sound-like oscillation reported in 
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Figure 5.4 : Characteristic in situ polarization phase-contrast images of the data 
shown in Fig. 5.2 at various times. The images are nearly equally spaced in time 
between the time labels. 

Ref. [105]. In that work, the initial temperature was high enough that damping 

occurred due to the interaction between a BEC and a thermal component. In contrast 

to those results, we observe that the dipole oscillation is undamped in the absence 

of the disordered potential. Furthermore, there is no observable heating due to 

the quick switch on of the disorder. In our experiment, therefore, the presence 

of the non-condensed component seems to be linked to the motion of the BEC in 

the disordered potential. A recent numerical simulation using a truncated Wigner 

method predicts the emission of incoherent atoms from a BEC moving supersonically 

through a disordered potential [106], consistent with our observations. 

We have investigated this effect in further detail using in situ absorption imag-

ing, which allows for determination of the low density non-condensed wings of the 
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Figure 5.5 : Generation of a non-condensed component, (a) Squares show the cen-
ter of the Thomas-Fermi (condensed) component and circles show the center of 
the Gaussian (non-condensed) component. The Gaussian center trails behind the 
Thomas-Fermi center and has a lower amplitude of oscillation. Within experimental 
uncertainty, aiz = (2ir) 5.1(2) Hz for both components. For this data, a = 200 ao, 
N = 3 x 105, n/h = 1.8kHz, VD/fx = 0.22, v0 = 28mm/s, c0 = 7.2mm/s, and 
u r = (27r)220Hz. (b-d) Axial density distributions with bimodal fits (solid lines) 
and a single component Thomas-Fermi fit (dashed lines) at various times during the 
oscillation: (b) 28 ms, (c) 100 ms, (d) 190 ms. The condensates in (b) and (d) are 
traveling in the positive direction whereas the condensate in (c) is traveling in the 
negative direction. 
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distributions. Figure 5.5 shows that by fitting the cloud to a bimodal Thomas-Fermi 

plus Gaussian profile, a phase difference of A<p = 0.23 between the condensed and 

non-condensed cloud centers is found. Note that the interaction strength is different 

for this data than that shown in Figs. 5.2-5.4. 

We have systematically investigated the dependence of 8 on the disorder strength 

VD- Figure 5.6 shows the normalized damping parameter 8/uiz plotted against the 

normalized disorder strength Vb/yu, where // is the chemical potential of the conden-

sate prior to the kick and before the disorder is switched on. We find the data fits 

well to a power law 

for all measured velocities. The precise value of p, however, depends weakly on u0 

across the range of velocities 0 < V$/CQ < 5 , with a mean value of p = 2 . 1 ( 5 ) (see 

Fig. 5.6 inset). 

Figure 5.7 presents the measured values of 8 as a function of both VB and 'Q. AS 

expected, a vertical trace through this plot shows a qualitative similarity to Fig. 5.3. 

We observe two distinct regimes of reduced damping: one where v0/c0 -C 1 and 

the other when vq/cq y>> 1, with the damping reaching a maximum at v0 ~ c0. A 

numerical simulation using an effective ID NLSE has produced qualitatively similar 

results [101]. 

( 5 . 6 ) 
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Figure 5.6 : Damping vs. Vb- Open circles correspond to the data shown in Fig. 5.7 
(a = 200a0) in the range 0.7 < VQ/CQ < 0.9; filled circles correspond to a = 200a0, 
i/0/c0 = 1.2, \xjh = 2.2 kHz; squares correspond to a = 25 a0, vq/cq = 1.2, ji/h = 
750 Hz. The damping parameter (3 follows a power law with p ~ 2 (solid and dashed 
lines), independent of //, or a. To minimize systematic effects associated with the 
velocity dependence of 3 (e.g., Figs. 5.2 and 5.3), we fit, a 4-period window for which 
the data is described well by Eq. 5.5. Vertical error bars are as defined in Fig. 5.3. 
The inset shows the fit values of p as a function of VQ/CO for a collection of data 
sets at a = 200do- The dashed lines indicate the plus-and-minus one standard 
deviation extent for the collection of measured velocities. Vertical error bars for p 
are determined as in Fig. 5.3 using a fit to Eq. 5.6 for each oscillation at a given 
VQ/CQ. Data corresponding to filled circles and squares was taken using an optical 
trap setup different from that described in Sec. 5.2 with A — 1064 nm and a beam 
waist of 24/im resulting in ujz = (27r)4.9Hz, u r = (27r)460Hz, and N = 3 x 105. 
Also, for these data sets a^ = 3.4 /im. 
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Figure 5.7 : Transport regimes of a BEC traveling through a disordered harmonic 
potential. Black squares show the values of disorder strength Vn//t and initial peak 
center of mass velocity VQ/CQ for the data used to extract 3 from a fit to Eq. 5.5 using 
4-6 periods of oscillation. The interpolated color map (and contour lines) for /3/uiz is 
derived from the measured results. These measurements have a = 200 ao, N = 2 x 105 

atoms, n/h = 1.5 kHz, c0 = 6.5mm/s,WR = (27r)260Hz, and uz = (27T)5.5HZ. Due 
to small shot-to-shot fluctuations in the position of the center of mass of the cloud, 
measurements with v0 < 0.2 c0 are not reliable. Data with (3 < 2 x 10~3 is consistent 
with undamped motion. 
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5.3.2 Variation wi th Interaction Strength 

We observe nearly universal behavior for ft as a function of both I'D//', and VQ/CQ 

for BECs in the Thomas-Fermi regime. As already shown in Fig. 5.6, ft oc (Vb//i)2 

for condensates with /t differing by a factor of 2 (corresponding to a factor of 8 in 

a). Shown in Fig. 5.8 is a comparison between the damping at interaction strengths 

a = 200 a0 and a = 28 a0, with constant I b,//'- Although the respective values of c0 

differ by nearly a factor of 2 between the two data sets, the peak damping occurs at 

VQ/CQ ~ 1 for both, demonstrating the nearly universal behavior of ft vs. VQ/CQ. On 

the other hand, the peak damping rate between the two data sets differs by nearly a 

factor of 5, showing that while the general shape of the damping curve is universal, 

the magnitude of the damping is not. 

An investigation of the effect of interatomic interactions on the peak damping 

{VQJCQ ~ 1) at fixed Vb//x is shown in Fig. 5.9. We find that ft scales linearly with a, 

going to zero with decreasing interactions, consistent with the disappearance of the 

low energy phonon portion of the excitation spectrum as U —> 0. 

The elongated confinement geometry in our system facilitates the investigation 

of the dimensional crossover from the 3D to the quasi-ID regime where /x <C luj,. 

[107, 108]. Shown in Fig. 5.10 are measurements of ft vs. fi at constant Vb and r(). 

When /i > hujr and i'0 is comparable to c0, we find 8 oc with p ~ 1.4. By reference 

to Fig. 5.7, one can gain a qualitative understanding of this behavior going from high 

to low /u: starting subsonically (open and filled circles), the system travels along a 
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Figure 5.8 : Universal damping vs. VQ/CQ. The disorder strength was adjusted to 
keep 0.30 < Vd/)U < 0.35 for all of the data. Squares correspond to a — 28 ao, N = 
2.5 x 105, njh = 550 Hz, c0 = 4.0mm/s, UZ = (2TT) 5.5 HZ, andw r = (27T) 260 HZ; open 
circles correspond to a = 200a0, N = 3 x 105, fi/h = 2.4kHz, c0 = 8.3mm/s, cuz = 
(27r) 4.5 Hz, and uir = (2ir) 460 Hz; filled circles correspond to the same parameters 
as Fig. 5.7. Error bars are as defined in Fig. 5.3. 
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Figure 5.9 : Peak damping vs. a with fixed Vb/jU and v0/c0. For this data, Vb and 
Vo were adjusted to keep 0.3 < Vb//i < 0.4 and 0.6 < vo/co < 1.4 with all other 
parameters as in Fig. 5.7. The upper horizontal axis shows values for //, obtained 
from a variational solution of the GPE [81]; note that the upper tick marks are not 
strictly logarithmically spaced. The linear fit has a slope 0.002 Oq1. Vertical error 
bars are as defined in Fig. 5.3. 
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Figure 5.10 : Damping vs. ji with fixed VQ and t>0. Squares and filled circles corre-
spond to V^/h = 370 Hz with v0 = l l m m / s and 6mm/s, respectively. Open circles 
correspond to Vv/h = 140 Hz and = 6mm/s . The vertical dashed line denotes 
/i = fojjr. We varied // by adjusting a, shown on the upper horizontal axis; note 
that the upper tick marks are not strictly logarithmically spaced. Values for fi are 
obtained from a variational solution of the GPE [81] using the following measured 
experimental parameters: UR = (27T)460HZ, OJz = (27r)4.5Hz, and Â  = 4 x 105 

atoms. For this data a D = 3.4 /im. Vertical error bars are as defined in Fig. 5.3. 
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trajectory from the weakly damped regime (lower left corner of Fig. 5.7) towards the 

regime of strong damping (middle right region). However, starting supersonically 

(squares) allows the BEC to roughly trace a contour of constant ft as // is reduced, 

resulting in only a weak dependence of ft on //. When // < /key, and consequentially 

vQ Co, we also observe a weak dependence of 6 on /i. In this quasi-lD regime, 3 

is affected only by changing VD or v0, consistent with the behavior expected for a 

nearly ideal, classical fluid. This may be understood by reference to Eq. 5.2 where 

for v c. the first term in the Bogoliubov excitation spectrum dominates making 

the system "quasi-ideal" with e(p) independent of p. 

Figure 5.11 shows damping of a weakly interacting gas with a = 0.4 a0, deep into 

the quasi-lD regime, where p,/fkj r ~~ 0.1. We find that V'D = 4/x produces the same 

damping (ft/uz = 0.07) as that for a BEC with a = 200 a0 and l b = 0.25/i. The na-

ture of the damped motion of a weakly interacting gas in strong disorder is strikingly 

different from the damped motion of a strongly interacting gas in weak disorder, even 

though the timescale of the damping in both cases is comparable. Figure 5.11 shows 

that the damping in the weakly interacting regime is caused by the loss of coher-

ence of the collective dipole mode brought on by extensive fragmentation. Because 

Vb > /J, it is perhaps not surprising that the condensate quickly fragments. While 

the center of mass of the cloud damps after about 5 oscillation periods, examina-

tion of shot-to-shot differences in the damped density distributions reveal that the 

position of the fragments are highly non-repeatable, suggesting that some fragments 
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Figure 5.11 : Damping of a nearly non-interacting gas. For this data a = 0.4ao, 
N = 2 x 105, n/h = 26Hz, c = 1.2mm/s, VD = 4//, Ajr = (2TT)240HZ, and 
uiz = (27T) 5.3 Hz. (a) Center of mass position (circles) and radius (squares) of the con-
densate as a function of time. Here we use statistically determined values for the cen-
ter of mass zcm = j z n(z)dz/N and radius R, given by R2 = 4 j(z — zcm)2 n(z)dz/N. 
(b-d) Axial density traces at various times in the oscillation: (b) 40 ms (c) 100 ms, 
(d) 960 ms. After two full oscillations, the cloud has fragmented and spread to a size 
comparable with the initial oscillation amplitude. 
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remain in motion. This residual motion is consistent with the long thermalization 

time expected from weak two-body interactions. It is interesting to note that the 

maximum single particle kinetic energy, EK = ^m<jj2A2 = h (295Hz), is 2.8 times 

larger than the average height of the disordered potential. The observed dephasing is 

therefore consistent with the expected behavior of a gas of non-interacting particles 

interacting with a disordered potential where the disorder strength is smaller than 

the kinetic energy of the individual particles. 

5.3.3 Dipole Oscillations of Bright Solitons in Disorder 

As alluded to in the introduction, our system can be used to create bright matter-

wave solitons. Figure 5.12(a) and (b) shows a comparison between BECs with 

a = 0.4 a0 and a single soliton at a = —OAa0 both undergoing dipole oscillation 

without disorder. For both BECs the E K m / h = 300 Hz. As expected, the attractive 

interactions modify the shape of the soliton such that it is axially much smaller than 

the slightly repulsive BEC but the axial oscillation frequency remains unchanged. 

Figure 5.12(c) shows the result of turning on the disorder to VQ = 500 Hz right at 

the peak of the oscillation. In this scenario, the soliton becomes pinned as expected 

for a classical single particle in strong disorder. However, the disorder appears to 

induce fragmentation of the soliton. For weaker disorder, we observe damped oscilla-

tion of the soliton with a time scale identical to that found for the weakly attractive 

gas. As for the weakly repulsive case, the damping results from a fragmentation 
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and dephasing of the dipole mode. Shown in Fig. 5.13 is a comparison between 

a = 0.4 ao and a = —0.4a0 under identical oscillation conditions as Fig. 5.12 except 

with a weaker disorder of I D = 103 Hz. As the strength of the disorder is much 

weaker than ERIN pinning of the cloud is avoided. 

5.4 Dissipation Induced by a Single Gaussian Defect 

5.4.1 Thomas-Fermi Regime 

In an effort to better understand the mechanisms responsible for the damping in 

our disorder experiments, we have investigated the dissipation induced by a single 

Gaussian defect. The defect potential is described by V(z) = Voe~2z2, where wz = 

12 //.m. The static effect of either an attractive or repulsive defect on a repulsively 

interacting BEC in the Thomas-Fermi regime is shown in Fig. 5.14. As expected, 

the attractive defect leads to an increase of the density in the region of the defect, 

accompanied by a small decrease of the density in the wings of the distribution, while 

the opposite is true for the case of a repulsive defect. 

The dynamical distributions can differ dramatically from the static case, as shown 

in Fig. 5.15 where in situ axial densities are displayed for various times throughout 

the dipole oscillation. In the following discussion we refer to the upstream side of 

the condensate as the portion of the BEC that reaches the barrier after the leading 

or downstream portion. The interaction of the BEC with the repulsive defect, shown 

in Fig. 5.15(b), produces a deep downstream density rarefication as well as a large 
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Figure 5.12 : (a) Dipole oscillation of a bright matter wave soliton with N ~ 70 x 103 

and a — —0.42ao. Note N is very close to the critical number for collapse of Nc = 
80 x 103 given by Nc = 0.35/zA1/3/o where A = uiz/ujr and lz = y/h/(mwz)[56}. 
Therefore, occasional shots with slightly larger numbers will produce two solitons, 
as in the second frame, (b) Free dipole oscillation of a weakly repulsive BEC with 
parameters as described in Fig. 5.11. (c) Pinning and fragmentation of the soliton 
in (a) but under the influence of a disorder potential of strength VD = 500 Hz. Trap 
parameters are the same as in Fig. 5.11. 
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Figure 5.13 : (a) 2D images of the weakly repulsive gas shown in Fig. 5.11. (b) 
Damping of a soliton with identical parameters to Fig. 5.12(a) but with Vb = 100 Hz. 
(c) Cloud center of mass (as defined in Fig. 5.11) as a function of time for the soliton 
(solid circles) and weakly repulsive gas (open squares) with VB = 100 Hz and trap 
parameters as in Fig. 5.11. Solid lines show fits to data of corresponding color. 
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Figure 5.14 : BEC in a harmonic trap with a single Gaussian defect, (a c) correspond 
to a repulsive defect, while (d-f) to an attractive one. (a) and (d) in situ polarization 
phase-contrast images, (b) and (e) axial densities corresponding to the images, and 
(c) and (f) numerical solutions to the GPE with the dashed lines showing the solution 
in absence of a defect. The inset trace shows the characteristic shape of the potential. 
For all panels, a = 200a0, N = 4 x 105, uz = (2TT) 5.0HZ, and cur = (2ir) 360Hz. 
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Figure 5.15 : Axial densities at various times during a supersonic oscillation in the 
presence of an (a) attractive or (b) repulsive defect. The arrows are proportional 
to the instantaneous velocity of the condensate. The vertical dashed lines denote 
location of the defect. For this data, a = 200 a0 and v0 = 13mm/s; (a) corresponds 
to N = 4 x 105, // = 1.5kHz, v0/c0 = 2, VD = -0 .8/ / , uz = (2TT)4.7HZ, and 
UR = (2TT) 360 HZ; (b) corresponds to AT = lx lO 6 , // = 3kHz, VQ/Cq = 1.4, Vb = 0.4//, 

= (27R) 5.0 Hz, and u z = (2TT) 360 Hz. 
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Figure 5.16 : Density fluctuations produced crossing a repulsive defect. Absorption 
images after 4 ms time-of-flight. The vertical dashed line denotes the location of the 
defect. For this data, parameters are as stated in Fig. 5.15(b). 

upstream density compression bearing a qualitative similarity to a dispersive shock 

wave. Such shocks have been theoretically studied in the context of BEC with 

repulsive interactions in one [89, 109, 110], two [90, 111], and three dimensions [112], 

and have been experimentally observed in both BEC systems [113, 114, 112, 115, 

105] and in nonlinear optical media [116], Rather than dissipating energy through 

interparticle collisions, as in classical fluids, the dynamical behavior of shocks in 

superfluids is dominated by dispersion. This "quantum pressure" is a direct result 

of the governing dynamics of the quantum analog of the hydrodynamic equations for 
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a perfect fluid [26].1 

In contrast, the the interaction of the BEC with the attractive defect, shown in 

Fig. 5.15(a), produces no such shock waves. However, the cloud is slightly compressed 

near the defect simply due to the attractive defect potential. Because I>O > CQ, 

phonon excitations cannot be emitted in the upstream direction as they would have 

to propagate faster than the speed of sound. Close inspection of Fig. 5.15(a) reveals 

minimal density modulation of the upstream side, while more modulation is evident 

on the downstream side. 

Several ID theoretical studies predict the formation of downstream propagating 

dark solitons in addition to upstream propagating phonons as a repulsive or attractive 

defect is swept through a condensate [118, 119, 99, 120, 121, 101], which is consistent 

with the density fluctuations visible in Fig. 5.15. However, the size of the dark 

solitons will be on the order of the healing length, £ = 0.5 //m for these condensates, 

which is a factor of 6 smaller than our imaging resolution. 

Figure- 5.16 shows time-of-flight images of the BEC oscillating in the presence1 

of a single repulsive defect. In contrast to the in situ images of Fig. 5.15(b), after 

time-of-flight additional short length scale structures emerge which were not previ-

ously visible. These structures are consistent with dark solitons that form from short 
1 The fact that BEC dynamics is described well by hydrodynamics is quite remarkable given 

the fact that for typical ultra-cold samples, densities are low enough and interactions are weak 
enough that the system is far from what one normally considers to be hydrodynamic [117]. In 
the macroscopically occupied groud state, however, the dynamics are described nearly perfectly by 
the hydrodynamic theory found by recasting the Gross-Pitaevskii equation in terms of the super-
fluid density |0(r) | 2 and supefluid velocity v = h /mVo. This fact is one of the many fascinating 
implications of the phase coherence of BEC. 
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Figure 5.17 : Velocity dependence of {3 induced by a single Gaussian defect, (a) 
Attractive defect with (squares) Vb/V = —0.8 or (circles) Vb//' = —0.3 and other 
parameters as stated in Fig. 5.15(a) except with N = 8 x 105 and fi/h = 2 kHz. 
(b) Repulsive defect wth (squares) Vn/fi = 0.4 or (circles) Vb/// = 0.2 and other 
parameters as stated in Fig. 5.15(b). Both types of impurities show critical behavior 
at low velocities as well as undamped motion at large VQ/CQ. Note the difference in 
scale between damping induced by an attractive versus a repulsive impurity. Vertical 
and horizontal error bars are as described in Fig. 5.3. 

length scale in situ phase fluctuations that map onto larger scale density modula-

tions after time-of-flight. However, in situ phase fluctuations may also arise from 

thermal excitations in highly elongated BECs, and these can also manifest as density 

fluctuations after time-of-flight [122], Close inspection of Fig. 5.16 reveals that deep 

density modulations are present only in the downstream portion of the BEC (after 

the first pass through the defect), consistent with the dark soliton interpretation. 

Similar density fluctuations have been interpreted as dark solitons in an experiment 

using a moving defect and a stationary BEC [123]. 

We have measured /3 as a function of both Vb and vq , with characteristic results 
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Defect strength V^/n 

Figure 5.18 : Transport regimes of a BEC traveling through a harmonic potential 
with a central Gaussian defect. Coordinates of the black squares are the values 
of VD/JJ , and VQ/CQ for the data sets used to extract j3/LJz from a fit to Eq. 5.5. 
The color map (and contour lines) for j3/<jjz is derived from an interpolation using 
the measured results. Dashed white lines show the local Landau critical velocity 
as given by Eqs. 5.7 and 5.9. The attractive and repulsive cases are qualitatively 
similar: superfluidity for VQ/CQ 1, increased damping as T>0/CQ —>• 1, and reduced 
damping for v0/c0 1. Damping induced by an attractive impurity is an order of 
magnitude weaker than for a repulsive one. Data with VD < 0 and VD > 0 correspond 
to parameters in Figs. 5.15(a) and (b), respectively. 
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presented in Fig. 5.17. Contrary to what was observed for a disordered potential, 

we observe a critical velocity vc below which the motion is undamped, for both the 

attractive and repulsive defects. We find that the peak damping for an attractive 

defect is significantly weaker than for a repulsive one. The results of a thorough study 

of 3 as a function of both Vb and r0 are presented in Fig. 5.18. For an attractive 

defect, we find that v c /r0 ~ 0.6 with vc depending only weakly on Vb- However, for 

a moderately strong repulsive defect, vc/c0 occurs significantly below 1 and depends 

strongly on Vb- For both attractive and repulsive defects, however, vc tends to CQ as 

|Vb//i| is reduced to zero. 

Once again, a model based on a local Landau criterion is sufficient to explain the 

dependence of vc on Vb- For simplicity, consider a uniform density flow impinging on 

either a repulsive or attractive Gaussian potential [119]. With the assumption that 

the superfluid flow pattern is stationary, the local density of the condensate near 

the defect must be modified in a similar way to that shown in Fig. 5.14 for a static 

defect. For the repulsive (attractive) case, the local density is reduced (increased) 

near the defect, resulting in a lower (higher) local speed of sound. In addition, flux 

conservation requires that the local condensate velocity increase (decrease) in the 

low (high) density region near the repulsive (attractive) impurity to preserve the 

stationary flow pattern. These effects serve to increase the local value of v(z)/c(z) 

near a repulsive defect and decrease it for an attractive one. As a result, excitations 

can be created near the peak of the repulsive defect in a BEC with a center of mass 
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velocity that is significantly lower than the bulk speed of sound. For the case of an 

attractive impurity, on the other hand, one expects excitations to occur in the bulk 

condensate first, rather than near the impurity, and therefore at a flow velocity near 

the bulk speed of sound, as observed. 

We quantify this picture, in the case of a repulsive defect, by applying the local 

Landau criterion at the instant the center of the BEC crosses the defect. Using 

an effective ID NLSE in the high density regime, the locus of points where the 

local condensate velocity v(z) is equal to the local speed of sound c(z) defines the 

curve [101] 

where Vb/ju = dn0/no is the fractional change in the peak density at the peak of 

the repulsive defect. When v0/c0 < 1, we can ignore effects of the axial Thomas-

Fermi profile; of the condensate because1 A <C i?Tp for our trap, where /?TF is the 

axial Thomas-Fermi radius. Equation 5.7 is plotted in Fig. 5.18 when VD > 0 and 

is found to agree with the measured vc for the range of Vq used in this experiment. 

Therefore, the observed reduction of the critical velocity below c0 is consistent with 

the local Landau critical velocity without invoking more exotic mechanisms, such as 

vortex nucleation. This is in contrast with several experiments involving BECs in 

less elongated configurations [70, 71], as well as in superfluid 4He where nucleation 

of vortex lines and rings can result in VC < VL [85]. 

(5.7) 



120 

In the case of the attractive defect, the density, and therefore c(z), is enhanced 

at the location of the defect and reduced only slightly elsewhere. We find that the 

reduction in density in the bulk due to the enhancement at the defect is less than 1% 

for the strongest barriers used, leading to an essentially unperturbed speed of sound 

in the bulk. The ratio of the local fluid velocity to the local speed of sound can then 

be found by considering only the bare Thomas-Fermi profile, and is given by 

where, using Eq. 5.4, VQ/C.Q = 2.4/ / i t f - Therefore, if 2A < BTF then r 0 / r 0 < 1 and 

the local Landau criterion is satisfied everywhere inside the condensate. This model 

predicts 

implying that vc is independent of Vb. Our measurements, however, show a weak 

dependence on Vb with Vc/CQ = 1 only for very weak impurities. Our experimental 

results are consistent with numerical simulations using a ID NLSE [101] for which the 

local Landau criterion accurately describes the repulsive impurity case, but slightly 

overestimates vc in the attractive case. 

Figures 5.17 and 5.18 demonstrate that the damping is significantly suppressed 

deep into the supersonic regime. We observe undamped motion when VQ is greater 

(5.8) 

- = 1, V b < 0 , (5.9) 
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than a Vb-dependent upper critical velocity v+ . Numerical simulations [124, 99, 

101] have shown that for "wide and smooth" barriers (£ <C wz) the emission of 

radiation from the defect in the form of phonons and solitons can be very small 

for supersonic velocities. In fact, it has been shown analytically that the radiation 

emission rate resulting from a defect moving supersonically through a condensate 

decreases exponentially with the ratio £;/wz [125]. Without emission of radiation, 

energy dissipation is inhibited and the flow persists, even though Landau's criterion 

is violated. For the data presented in Figs. 5.14-5.19, £/iuz 0.04, well within the 

regime where supersonic non-dissipative flow is predicted. Experiments similar to 

ours have also shown a reduction in soliton emission from a barrier moving through 

a condensate in the supersonic regime [123]. 

We therefore observe three distinct regimes of flow in the single defect sys-

tem: subsonic superfluid (V0/C0 < 1), dissipative (VQ/CQ ~ 1), and supersonic non-

dissipative (i!o/co > r + ) • Figure 5.19 shows axial densities from in situ polarization 

phase-contrast images at the instant the defect passes through the peak of the con-

densate for the three different velocity regimes. As expected, for the superfluid 

flow regime the axial density profiles look very much like the equilibrium profiles 

of Fig. 5.14: there is an increase (decrease) in the density at the location of the 

attractive1 (repulsive) defect. In the dissipative flow regime, on the other hand, the 

flow patterns for Vb > 0 show significant distortion, while for Vb < 0 there is little 

distortion, as discussed in detail above. Finally, in the supersonic non-dissipative 
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Figure 5.19 : In situ density distributions of a condensate passing through a Gaussian 
defect. These images were taken at the instant the center of the BEC first crossed the 
defect. Rows correspond to the three flow regimes: subsonic superfluid (VQ/CQ < 1), 
dissipative {VQ/CQ ~ 1), and supersonic non-dissipative (VQ/CQ > 1). (a c) Attractive 
defect with Vb/yu = —0.85 and VQ/CQ = 0.31, VQ/CQ = 1.0, and VQ/CQ = 3.0, respec-
tively. (d-f) Repulsive defect with Vn /n = 0.65 and VQ/CQ = 0.15, v0/c0 = 0.90, and 
VQ/CQ = 2.0, respectively. The arrows indicate the direction and relative speed of the 
condensate. For this data, all other parameters are as described in Fig. 5.15. 
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flow regime, we observe a counter-intuitive density inversion with respect to the 

v0/c0 < 1 superfluid flow, where the attractive defect produces a density depression 

while the repulsive defect causes a density peak. 

The physical origin of this counter-intuitive density inversion can be understood 

by considering the behavior of the gas at large v0. In this regime, as in the disor-

dered case, the Bogoliubov excitation spectrum, given by Eq. 5.2, is dominated by 

the p2/2m term. For this "quasi-ideal" gas, the drag should be determined by the 

scattering of linear waves off of the defect [119]. Accordingly, one expects vanishing 

dissipation at high velocities because these waves will not reflect from the barrier. 

If we extend this argument further and consider the atoms to be classical particles, 

one expects the atoms to slow down in the presence of the repulsive defect, resulting 

in a density increase near the defect, while the opposite is expected for an attractive 

defect. 

Density inversions similar to the ones presented here have also been discussed 

in the context of dissipationless stationary states at supersonic velocities [126, 125, 

127, 118] as well as sonic black holes [128]. Under our experimental conditions, when 

VQ/CQ ~ 1 the edge of the barrier can serve as a sonic event horizon. Such systems have 

been proposed as possible candidates with which to study "table top" astrophysics, 

where exotic effects, such as Hawking radiation, should be observable. Interestingly, 

in this system the experimenter plays the role of the so-called super-observer, having 

access to the regions both outside and inside the event horizon [129, 130, 131, 128]. 
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5.4.2 Weakly Interacting Regime 

Figure 5.20 shows the result of a weakly interacting condensate (a = 0.6 a0) oscillating 

in a trap with a repulsive defect. Under these conditions the condensate is in the 

quasi-ID regime with ft/hcj r = 0.15. We find that the axial density profile of the 

condensate becomes increasingly modulated during the damped oscillation [99, 120]. 

Results of measurements of the velocity-dependence of the damping by a repulsive 

defect with a = 0.6 a0 are shown in Fig. 5.21. As was the case with disordered 

potent ials, we find that the timescale for damping in the1 quasi-ID regime with a 

strong impurity strength is much longer than that observed in the Thomas-Fermi 

regime with a weak impurity strength. 

5.4.3 Dark Soliton Production in the Weakly Interacting Regime 

Of particular interest in the quasi-ID regime is the ability to create and observe 

long-lived dark solitons. These nonlinear excitations have been previously created in 

BECs with repulsive interatomic interactions through a variety of means, including 

direct phase imprinting [132, 133], spatially selective microwave transfer [134], slow 

light [113], two condensate interference [135, 115], and, similar to the work presented 

here, as a result of a BEC crossing a semi-permeable defect [123]. 

In general, the decay of dark solitons occurs as a result of dynamical instability 

or as a result of dissipative dynamics associated with the interaction of the soliton 

with quasiparticle excitations of the BEC. However, it is known that dark solitons 
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Figure 5.20 : Oscillation of a weakly interacting BEC in the presence of a repulsive 
defect, with a = 0.6 a0, N = 2.5 x 105, n/h = 44Hz, VD/n = 0.8, = (2TT)4.7HZ, 
lor ~ (27T)300HZ, Vq/cq = 1.6 and j3/uoz = 0.03. (a) Center of mass position as a 
function of time (computed as in Fig. 5.11); (b-d) In situ axial density traces at 
various oscillation times: (b) 0 ms; (c) 140 ms, at the second crossing of the defect; 
and (d) 1260 ms, after several crossings of the defect. At large times we find that the 
large density modulations are accompanied by only a slight increase of the axial size 
of the condensate. 
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Figure 5.21 : Velocity dependence of damping with a repulsive defect. Circles corre-
spond to a nearly non-interacting BEC with a = 0.6 ao, fi/h = 31 Hz, Co = 0.9mm/s, 
and Vb = 0.9 ju. Shot-to-shot variations in the position of the cloud limit the ex-
traction of (5 to VQ > lmm/s , corresponding to VQ/CQ > 1.1. Squares correspond to 
data from Fig. 5.17(b) for comparison, a = 200 ao, n/h = 3 kHz, c0 = 9.2mm/s, and 
Vb = 0.4 /i. Error bars are as defined in Fig. 5.3. 
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can have very long lifetimes in the quasi-ID regime [136], For the most weakly 

interacting BECs presented here, fi/hujr = 0.13, making our system ideally suited to 

study long-lived dark solitons. 

We have studied the formation of deep in situ density modulations in BECs for 

different values of a, with the results shown in Fig. 5.22. Dipole motion is initiated 

after the field is slowly ramped to a desired value near the scattering length zero-

crossing at 544 G. Panels (a-e) of Fig. 5.22 show the cloud after 3/4 of a complete 

oscillation. The defect is switched off after the first pass of the cloud, and the cloud is 

imaged after it returns to the center of the trap after half a period. Therefore ~100 ms 

elapses between the initial interaction of the cloud with the defect, where the soliton 

is created, and imaging. Deep density modulations, consistent with the formation of 

stable dark solitons, are observed. For comparison, panels (e-h) of Fig. 5.22 show 

the cloud after passing through the defect 4 times. The density modulations in this 

case appear less monochromatic than in the single pass case, suggesting the presence 

of both linear (phonons) and nonlinear (solitons) excitations. We extract the healing 

length the data in Fig. 5.22 by independently fitting each individual soliton to [137] 

where A is the background density, a is the size of the atomic cloud, D is the depth 

of the soliton, z0 is the location of the soliton, and is the healing length. Through 

a variational solution of the GPE, we can independently estimate the healing length 

(5.10) 
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Figure 5.22 : Dark soliton formation. In situ axial densities of BECs during the first 
(a-d) and fourth (e-h) passes through a semi-permeable defect. The defect is located 
at 2 = 0, and its strength was adjusted to keep Vb/V ~ 0.7. Oscillation amplitudes 
were adjusted to keep v0 ~ c0. (a), (e): a = 0.1 a0, AT = 1.0 x 105, [ijh = 5Hz, 
i = 12.5/im, is = 16(6)//m ; (b), (f): a = 0.5 a0, N = 2.2 x 105, n/h = 30 Hz, 
i = 4.9//m, = 6.6(2) //m ; (c), (g): a = 1.7a0, W = 2.6 x 105, ///ft = 77Hz, 
£ = 3.06/xm, f s = 2.8(4) //m ; (d), (h): a = 5.4 a0, N = 2.2 x 105, pt/h = 144 Hz, 
£ = 2.24//m, = 2.5(3) /zm. The trap frequencies for this data are ur = (2ir) 240 Hz 
and uiz = (27T) 4.75 Hz. The thick dashed line in (a) and (b) show the fit to Eq. 5.10. 
For comparison, the thin dashed line in (a) is only the Gaussian portion of the fit. 
Error bars for £s are given by the standard deviation of a collection of images. 
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£ using the measured values of N, a, coz, and jjr. The results of this analysis are 

reported in Fig. 5.22. As expected £s ~ ^ providing further evidence that the deep 

density modulations are indeed dark solitons. 

5.5 Transmission and Reflection of a Bose-Einstein Conden-

sate Through a Single Gaussian Defect 

We have investigated the transmission and reflection properties of a weakly inter-

acting Bose-Einstein condensate impinging on a repulsive Gaussian defect. In the 

regime where c and // are both small, £/w z can be of order 1 or larger. As described 

above, we expect the dynamics to be governed mainly by the ratio £KIN < ^ B with 

internal excitations of the BEC suppressed due to the superfluid motion. Classically, 

one would expect complete reflection for -ERIN < Vb or complete transmission for 

£KIN > VD- However, we observe a very different result. As shown in Figs. 5.23-

5.25, even for barriers as strong as Vb/-fikiN ~ 3 we observe that a significant fraction 

of the BEC tunnels through the barrier. For Vd/Skin ~ 1 we observe nearly complete 

transmission while for Vb /£KIN ~ 17 we observe perfect reflection. 
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We have also investigated the transmission properties of a matter wave soliton 

interacting with the potential barrier. For this study, we create a single soliton by a 

slow field ramp to a = —0.3 a0. This soliton is very near collapse, with N ~ Nc, where 

Nc = 100, 000. Unlike the repulsive condensate, Fig. 5.26(a) shows that Vd/^kin ~ 3 

leads to a complete classical reflection of the soliton. Figure 5.26(b) shows that 

for Vd/^kin 1 nearly complete transmission through the barrier occurs, with a 

potential fragmentation of the soliton occurring as it crosses the barrier. 

Finally, Fig. 5.27 shows the almost equal splitting of a soliton when VD/-EKIN ~ 

1.8. Half the soliton appears to tunnel through the barrier with the two fragments re-

combining after a second pass through the barrier. Unfortunately we had to disman-

tle the barrier setup soon after this data was taken to pursue the Anderson localiza-

tion experiment. However, current efforts are underway to repeat this measurement 

with the prospect of making a soliton matter wave interferometer. 



134 

Figure 5.26 : A time sequence with At = 10 ms showing in situ axial densities 
of a soliton interacting with a potential barrier (red line) of VQ/EKW ~ 3(a) and 
VD/EKM ~ 1(b). For this data, a = - 0 . 3 a 0 and N ~ 1.0 x 105 with NC ~ 1 x 105. 
The 1/e radius of this soliton is ~ 10/im with trap parameters are as described 
in Fig. 5.22. The soliton appears to show a reduced tendency to tunnel through the 
barrier as compared to the repulsive case with VD/EKIN ~ 3 shown above. Close 
inspection of (a) reveals that in two of the shots a small fraction of the atoms appear 
to have tunneled through the barrier. The non-repeatability of this weak transmission 
also suggests an experimental fluctuation in Vb/ EKIN a s a possible explanation. The 
fluctuations in £KIN can be see in (a) and (b) as small, random shot-to-shot deviations 
in the trajectory of the cloud, (b) Nearly perfect transmission of the soliton through 
the barrier. 
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Figure 5.27 : Preliminary data showing a time sequence with At = 5 m,s showing in 
situ axial densities of a soliton interacting with a potential barrier (dashed line) of 
VD/EKIN ~ 1-8. Parameters are identical to that described in Fig. 5.26. The soliton 
appears to split in two with half reflecting and half tunneling through the barrier. 
Remarkably, the fragments appear to recombine after the second pass through the 
barrier suggesting phase coherence between the fragments. 



Chapter 6 

ID Anderson Localization in a BEC of 7Li 

6.1 Introduction 

One of the most useful aspects of ultra-cold atomic systems is the high degree of 

controllability over many of the system parameters. The case of disordered BEC 

is no different. All real condensed matter systems have disorder. A crystal lattice 

may have point defects, or edge defects in the form of dislocations. These defects 

often vary from sample to sample in uncontrolled ways. In atomic systems we begin 

with a perfectly clean sample in the sense that the external trapping potential is 

well defined and free of any form of disorder. For example, atoms trapped in an 

optical or magnetic dipole trap will experience a smooth harmonic potential. Once 

the initial trap geometry is chosen, fully characterized disorder can then be added in 

a controlled way to the system. 

To date, optical speckle, bi-chromatic lattices, atomic mixtures and spatially inho-

mogeneous magnetic fields have been proposed and used to create disorder in atomic 

systems [138]. Of particular interest recently has been the use of atomic systems 

to simulate some of the basic foundational models of condensed matter physics, in 

particular the metal insulator transition proposed by Anderson [139]. Even though 

the idea of Anderson localization was proposed now over 50 years ago, it has proven 
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a oc / 

Figure 6.1 : (a) In the simplest classical model of conductivity, the so-called Drude 
model, the conductivity <j of a sample is directly proportional to the mean free 
path I, which is in turn inversely proportional to the density of scatters, (b) When 
dealing with quantum particles (or classical waves) undergoing multiple scattering 
in disordered media, one has to be careful to consider the coherence properties of 
the system. If the wavelength of the wave is on the order of the average distance 
between scattering centers, then one must consider the coherent superposition of all 
possible paths that the particle can take. Anderson was the first to show that such a 
process will result in the formation exponentially localized eigenstates. If the system 
size is much larger than L, then a = 0, even if conduction is expected classically. 

elusive and conclusive observation of this phenomena in any traditional condensed 

matter system remains an open challenge. Since the recognition of the effect as 

fundamentally a wave phenomena [140, 141], experimentalists have over the years 

observed the localization in many classical wave systems. Evidence of localization 

has been made for scattered elastic waves in lucite blocks [142], Localization has also 

been observed with light in disordered bulk materials [143, 144] and photonic lattices 

[145, 146, 147]. In addition, localization has been observed in ultrasound [148, 149] 

and microwaves [150, 151, 152], 

Matter waves have also provided useful systems with which to study localization. 
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First observations were in the field of dynamical localization [153, 154] and recent 

experiments have shown localization in correlated [82] and quasi-periodic disorder 

[83]. Our experiments are designed to investigate localization in a ID expansion of 

a BEC in correlated disorder created from laser speckle, similar to Ref. [82]. 

6.2 I D Transport in a BEC 

We have studied the phenomena of Anderson localization in a BEC of 7Li in the 

\F = 1 ,rnF = 1) internal state, in a ID disordered optical guide. A set of Helmholtz 

coils provides a uniform bias field along the long (z) axis of the guide, allowing for 

the tuning of a via the Feshbach resonance at 737 G [53, 1, 81]. The BEC is created 

through evaporative cooling at a field of 704.3 G (a = 119 ao), precisely where there 

exists a minimum in the three body loss rate coefficient L3 associated with merging 

of an Efimov trimer state with the atom-dimer continuum [40]. This evaporation is 

conducted in a cross beam "dimple" trap, where, at high trap depths, the confinement 

is dominated by the guide beam constructed from a single focused laser beam, while 

near the end of the evaporation the atoms are funneled into the center of the trap 

where a weak cross beam overlaps the guide beam resulting in a final trap with a 

radial trap frequency of ujr = (2Tr) 460 Hz and an axial trap frequency ranging from 

u z = (27r) 2 Hz up to u z = (2TT) 28 Hz, depending on the power in the cross beam. 

The overall bias field is then ramped to achieve the desired a and the cross beam is 

quickly switched off. The expansion dynamics of the condensate are then monitored 
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(b) 

(a) 

Figure 6.2 : (a) BEC is created in a cross beam trap. (b)To initiate the experiment, 
the cross beam is switched off and the cloud is allowed to expand freely in the 
weakly trapping single beam. (c)We use a tunable magnetic curvature to null out 
the axial confinement from the single beam optical trap. To measure the residual trap 
frequency of the nulled "guide," we measure the resulting quadrupole oscillations for 
different values of the residual curvature. Due to residual quartic confinement from 
the bias coils, we are limited to OJz > (2-TT) 1 Hz. 

for a variety of atomic expansion momenta and disorder strengths Vb-

The details of the "flat trap" are in fact very important for interpretation of 

any observed localization phenomena. A calculation showing the details of the axial 

potential of the ID guide is illustrated in Fig. 6.3. For the optical trap, we use the 

typical form for the optical dipole potential of 

opt 2irAw{z)2L 
(6.1) 

sat 

and 

(6.2) 
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where w0 = 33 fj,m, /Bat = 5.1mW/cm2 . T = (2ir) 5.9 MHz,A = 2TTC (1/1030 nm -

1/670.8 nm), and I?L = TT?/?q/A, with A = 1030 nm. The magnetic potentials orig-

inate from two independent sets of coils. The bias coils are in nearly Helmholtz 

configuration and are described by 

+ ( 6 3 ) 

with Rbias = 43 mm, Zl = z - Rbia
2

8+fe, Zl = z + and N = 30. The field from 

the curvature coils, which are significantly smaller than the bias follow a similar form 

B „ w _ Kw™^ I + ^ + + ^ | (6 .4) 

with Rcurve = 18.3 mm and a separation equal to that of the bias coils: z1 = z — 

R ^ + 5 z and zx = 2 + R*»+Sz and N = 35. 

Of course the atoms experience a combined potential from the optical dipole trap 

and the magnetic potentials U = -p. - B. To accurately model the system for various 

curve coil currents, we use a typical bias current of 100 A, optical trap power of 13 mW 

and deviation from Helmholtz of Sz = 45 / tm. We model the potentials for 7Li atoms 

in the | F = 1. rnF = 1} state with |//*| = nB- The slight deviation from Helmholtz 

is a typical experimental situation resulting from small manufacturing errors (or 

sometimes even a shim or two). In this scenario, the separation between the bias 

is slightly larger than in the standard Helmholtz configuration. The result for the 
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Distance (mm) 

Figure 6.3 : Shown here is a calculation including the effects of the optical trap, bias 
and curvature coils. The black line is the quartic term from the bias coils alone (i.e. 
what results from complete nulling of the optical trap). Starting with no current in 
the curve coils produces a potential of the combined optical and bias coils shown in 
red. Adding current to the curve coils progressively flattens the trap until one is left 
with only the quartic term from the bias. Adding more curvature current creates a 
nice harmonic trap. This added flexibility in choosing the overall curvature of the 
combined potential is very handy for optimizing evaporation trajectories. 

combined optical and bias potential is the double well structure shown as the red line 

in Fig. 6.3. While evaporation in this potential alone is impossible, addition of the 

trapping curvature coil potential allows us to tune the full range from a totally nulled 

optical trap (black line) to strong axial confinement (blue line). Note that the flat 

region of the trap in the "nulled" configuration is limited by the quartic potential from 

the bias coils. The field from this component in the simulation shown in Fig. 6.3 is 

BqUartic{z) = 300 G/mm 4 z4. Therefore, care must be taken in interpreting expansion 

measurements in such a trap as clouds will always undergo quadrupole oscillations. 
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The key for successfully observing localization due to disorder is to assure that the 

localization length is much shorter than the amplitude of the quadrupole oscillation. 

The presence of the wide Feshbach resonance at 737 G allows for precise tuning 

of the cutoff in the atomic momentum distribution kmax. We measure fcmax directly 

by measuring the expansion rate of the cloud in the guide without disorder. The 

slope of the linear portion of a Thomas-Fermi radius RTF VS. t plot then yields 

an accurate measure of fcmax as shown in Fig. 6.2. The presence of the shallow 

0.1 r/0/G) zero crossing in a near 544 G facilitates the tuning of a over nearly a 

range of 7 decades which, coupled with the tunability in the initial confinement by 

varying the intensity of cross beam, allows for a wide range of expansion momenta 

with 0.1 / im - 1 < A'max < 2 /mi"1. Thus, we have the convenient ability to tune A;max 

two independent ways: through a change in a or through a change in ujz at a 0. 

A plot of fcmax vs. a is shown in Fig 6.4. 

6.3 Correlated Disorder from Laser Speckle 

The disordered potential used in our experiment is an optical speckle pattern created 

by passing a laser beam through a diffuser plate in a manner similar to previous 

studies [93, 94, 95, 96]. Our particular implementation is described in detail in 

Chapter 3.6.1, so the following description will be brief. The disorder laser beam 

propagates perpendicular to the z-axis of the ID optical guide. We use the average 

intensity of the speckle pattern as a convenient measure of the disorder strength Vb 



143 

Scattering Length (a„) 

Figure 6.4 : Tunability of km;ix vs. A and UJz. Shown here is A:max extracted from the 
slope of the linear portion of plots of RTF v s- t for various values of the scattering 
length. Red circles are for an initial confinement of uz = (2ir) 11 Hz and the green 
squares are for uiz = (27T)30HZ. The dashed line indicates l / l c ~ 0.8/im_1 , the 
location of the effective mobility edge for localization. See Sec. 6.5 below. 
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Mum"1) 
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Figure 6.5 : Optical disorder produced from laser speckle, (a) false color CCD image 
of the elongated disorder potential, (b) Plot of the average of several power spectra 
for single pixel axial cuts through the data in (a). This average power spectrum 
shows a cutoff of 2kD ~ 1.7^m_1, a consequence of the diffraction limit of the optical 
system used to create the speckle potential. See Chap. 3.6.1 for more technical detail 
on the setup used to create the disorder. 

[155, 21]. The correlation length of the disorder in the direction along the long axis 

of the guide is lc = 1.3(2) fxm. In the orthogonal direction, the correlation length 

is much larger than the size of the trap and therefore this highly elongated speckle 

pattern approximates a ID correlated disorder potential. 

6.4 Disorder Induced Trapping Scenario 

Localization, or more precisely the inhibition of expansion of the BEC due to a 

disorder potential does not always imply Anderson localization. In fact, a phenomena 

known as disorder induced trapping can occur for systems where the healing length 

£ < < lc. In this situation, fast atoms expand freely while slow atoms classically 

reflect from the occasional, strong disorder site eventually resulting in a halting 

of the expansion [156, 95]. Shown in Fig. 6.6 is exactly this situation for a BEC 
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in a repulsive disorder potential. While the expansion clearly halts as shown in 

Fig. 6.6(d) we see that this is not due to Anderson localization. The localized cloud 

is not described well by an exponential distribution. Rather, it has sharp edges, 

indicative of the disorder induced trapping scenario. We see how the cloud evolves 

into this trapped state in Fig. 6.6(a)-(c). Initially the cloud is trapped in the cross 

beam (a). A short time after release from the cross beam we begin to see two 

lobes of fast atoms expanding out to either side (b). This is the direct result of the 

BEC fragmenting into two portions: one portion is a trapped BEC with a chemical 

potential that is less than two spatially separated strong disorder sites; the other 

portion is the small fraction of atoms that have enough energy to expand freely in 

the + and - z-direetions. These atoms may eventually reflect, as well but only after 

a much longer excursion. At t = 150 ms, we are only left with the trapped BEC 

and since £//c ~ 0.1, tunneling is greatly suppressed and this state does not evolve 

further. 

6.5 Anderson Localization in Expanding BEC 

In the regime where £ ~ lc the phenomena becomes much richer. In this regime, 

the finite extent of the power spectrum for the disorder has dramatic consequences 

for the localization properties of the BEC. In the case of the ID Bose condensate 

expanding in the presence of a disorder potential, the ground state wave function for 
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an atom with wave-number k is predicted to be a decaying exponential 

(pk{z) (X e \z\/Lloc(k) (6.5) 

The localization lengths L\oc(k) has been calculated in the Born approximation [25], 

This result implies that L\oc(k) —> oc for k > kD where kp = 1 /lc- Thus, the Born 

approximation implies that correlated disorder produced by laser speckle possesses 

an effective mobility edge (EME) in ID: atoms with k < AD will be localized while 

atoms with k > A;D will not. For accurate descriptions of the gas above the EME, 

a perturbative treatment beyond the Born approximation is necessary [24]. Such 

an analysis reveals a series of EME's at integer values of kmax joined by regions of 

decreasing exponential localization. The amount the localization length changes at 

each mobility edge is highly dependent on the strength of the disorder, but for weak 

disorder1 the Born approximation result is expected to be valid [24]. One can then 

assume that the zeroth order ground state density distribution n(z) of a collection 

of noninteracting particles described by the momentum distribution D(k) is simply 

the superposition of many localized states (pk{z), each with a L\oc given by Eq. 6.6 
1 Defined as e « 1 where e = 2 m l \ V o j f ? = VD/430HZ for our system. 

nm2 
(6.6) 
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/•oo 
n(2)M|vI/(,~)|2)oc / dkD(k)(\ok(z)\2}. 

Jo 
(6.7) 

Shown in Fig. 6.7 is the expansion behavior of a BEC under the influence of a 

weak disorder potential for kmax/k.D = 0.4. One can see that the expansion of the 

gas is strongly inhibited by the presence of the disorder. Also clear from the images 

of the axial density distributions is the presence of exponential wings, the hallmark 

of Anderson localization. 

We have examined the dependence of L\oc on Vb for clouds with kmgx/k£> = 0.45, 

with the results presented in Fig 6.8. The clouds are all exponentially localized thus 

allowing the wings to be fit to the functional form n(z) = Ae~2z/Lloc. 

We have also investigated the nature of the localization across the EME, fully 

exploiting the tunability of kmax. These results are shown in Fig. 6.9. We find that 

the cloud fits reasonably well to a generalized exponential function of the form [83] 

for all expansion velocities. We observe a smooth crossover in the shape of the cloud 

from exponential to Gaussian as we cross the EME. We believe the flattening of the L 

vs. kmax curve to be due primarily to the residual trapping frequency of the ID guide 

of Hz. Invoking conservation of energy and setting h2k2 /(2 m) = (l/2)rnuj2z2 and 

solving for z for kmax = l / t m - 1 , gives the maximum classical excursion of such a 

(6.8) 
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particle to be ~ 0.7/an, very close to the observed plateau. 
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Figure 6.6 : Panels (a)-(c) axial densities showing the fast expansion of a BEC with 
kmaxh = 2.2 expanding in the ID guide with Vb = 0.2 n where n / h = 3.5 kHz is the 
chemical potential in the cross beam trap, (a) t = 0 (In the cross beam), (b) after 
t = 50 ms of expansion in the disordered guide, (c) 150 ms of expansion, (d) Shows 
the statistical width of the cloud as defined in Fig. 5.11. In this regime, £ ~ 0.5 /xm, 
much smaller that the speckle size of irlc ~ 4 /mi and the gas behaves "classically." 
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0.4 
Expansion Time (s) 

Figure 6.7 : Anderson localization for a BEC with kmaxjkr, = 0.4. As shown in (c), 
transport is strongly inhibited, even for the weak disorder of Vb = 15 Hz. (a) and 
(b) show the axial densities obtained from absorption imaging on a linear and log 
scale, respectively. Solid lines show fits to the exponential tails. 

25 50 
Disorder Strength VD (Hz) 

Figure 6.8 : Lloc vs. Vb for atoms below the EME with kmilx/kD = 0.45. Shaded area 
is the prediction of Eqn. 6.6 reflecting our uncertainty in A;D and kmax. The residual 
trapping potential in the ID guide was ujz ~ 1 Hz for this data. 
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Figure 6.9 : (a) L\oc vs. kmax for Vb = 40 Hz. For fcmax < hp the atoms appear 
exponentially localized while for large k the cloud takes a Gaussian shape. Note that 
data for L\oc > 0.5 //,m the shape of the cloud is heavily influenced by the residual 
harmonic trap. Shown in (b) is the power for the generalized exponential fitting 
function described in the text. For this data, the residual trapping frequency was 
u z = (2TT) 2 Hz. 



Chapter 7 

Conclusion and Future Directions 

This project has been both immensely challenging and extremely gratifying. We 

set out to build a versatile apparatus for trapping and cooling 7Li and to that end 

we have certainly succeeded. I am proud to say that I have been a part of it from 

the first day of building, when we decommissioned the legendary permanent mag-

net trap, leaving a 10'x 4' slab of empty floor for us to fill. This quest is now fully 

chronicled in [2],[157],[6],[158], and finally this document. The system we have im-

plemented fully exploits the tunability of the effective interatomic interaction in 

allowing the experimenter to tune a over nearly 7 decades. In addition, we have 

implemented a versatile optical trapping scheme that allows for a seamless transition 

from single beam to cross beam configurations, even within a single run. We have 

also implemented a cheme with which to add or subtract an additional harmonic 

trapping potential through the use of the curve coils in the high field. This allows 

for traps with a wide range of aspect ratio to be implemented almost trivially. Our 

apparatus allows for detailed diagnostics of the trapped atom cloud at any stage in 

the cooling cycle, from MOT to BEC. For the purposes of imaging, we have imple-

mented a system that can use fluorescence, phase contrast, or absorption imaging 

over a large range of magnetic fields. Through a frame transfer technique called 

fast kinetics, we have implemented non-destructive phase contrast imaging, allowing 
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more than a dozen consecutive images to be taken in quick succession of the same 

trapped cloud. 

In has not, however, been all "nuts and bolts." We have fully characterized the 

s-wave interactions in the |1,1) state of 7Li. By tuning the magnetic field to near the 

zero crossing at 544 G, we were able to conclusively demonstrate the effects of the 

weak magnetic dipole interaction (MDI) in 7Li. We also characterized the frequency 

shift of the collective quadrupole oscillation, showing a shift consistent with the a 

quasi-lD description of the dynamics of the gas. Near the zero crossing, we observed 

an anomalously high quadrupole frequency. More work is needed to deduce the cause 

of this shift, but a prime candidate is the MDI. Tuning the interactions slightly neg-

ative has allowed us to repeatably and controllably create single or multiple matter 

wave solitons. 

Through the design and implementation of an optical system that creates fine 

grained laser speckle or a single Gaussian defect, we have studied the effects of 

impurities on the transport properties of a BEC. We revisited perhaps the first 

phenomena where BEC was used to study a concept traditionally thought of as 

living solely in the realm of condensed matter: superfluid transport. Our data largely 

support the validity of the Landau criterion for a critical velocity above which the 

superfluid motion is damped, as long as the criterion is applied locally. The local 

criterion accounts for the inherent inhomogeneity of trapped gases, as well as density 

modifications produced by large defects. The only exception is for attractive defects 
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of relatively large strength, where we find that vc decreases to vc ~ 0.6 c0 for Vb//i < 

—0.5. Dissipation is also found to diminish for velocities greater than v+, which we 

associate with reduced excitation of dark solitons and phonons. 

Throughout the 3D Thomas-Fermi regime, the damping is found to be well de-

scribed by a universal relation depending on the dimensionless defect strength Vb / n 

and velocity v0/c0. The universal damping peaks at r0 / r0 ~ 1 for any Vb//' and 

scales as (Vb//i)2 for all /i. As /i, decreases, the peak damping rate decreases as well, 

consistent with the disappearance of the phonon portion of the excitation spectrum 

as c0 —>• 0. Damping in the quasi-ID regime is qualitatively different. In this case, we 

find for fixed absolute Vb and vq that 8 is independent of //. In this regime, damp-

ing is accompanied by fragmentation and spreading of the cloud, with the damping 

monotonically increasing with Vb / EK • 

While we have exhaustively mapped out the dynamical properties of the system, 

the equilibrium properties of the disordered BEC are still a "low hanging fruit." 

Through the tunability in the interactions, future work should be able to characterize 

the equilibrium phase diagram of a disordered Bose gas, perhaps shedding light in 

the nature of the elusive Bose-glass state [138, 159]. 

For the case of a weakly interacting condensate expanding in a ID guide, we have 

verified that this system can undergo Anderson localization. Further study of this 

phenomena provides a golden opportunity for the study of the effect of interactions on 

the Anderson localized state, a long standing open question in the field of condensed 
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matter physics. Experiments in higher dimensions could also provide measurements 

of the critical exponents describing the superfluid to insulator transition [160, 161]. 

Exciting opportunities also abound for extending the work on soliton scattering. 

We have to date observed tunneling, splitting and recombination of solitons that 

have scattered off of a single barrier and also have observed destruction of a soltion 

due to a disordered potential. In the case of a disordered potential there exists the 

opportunity to study the transport properties of bright matter-wave solitons [162] 

with the prospect of observing Anderson localization in such systems [163, 164]. For 

a single defect, there is also a possibility for the creation of coherently split solitons 

or solitonic Schrodinger's cat states [165, 166, 167]. 

The future looks bright! 
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Appendix B 

Side-of-Filter Lock 
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Figure B.2 : Output of the error signal circuit for a power of 4dBm a the input to 
the splitter ZMSC-2-1. This signal is sent to a PI controller that feeds back to both 
the current and the grating of the probe ECDL. 

Frequency (Hz) 

Figure B.3 : Power spectrum of the error signal locked (green) vs. unlocked (red). 



Appendix C 

Magnetic Field Control Circuit Diagrams 

Figure C.l : TTL buffer for alt. supply curve control. Relays are KEST KAR1260, 
12V, 60A rated automotive relays purchased from EPO. 
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Appendix D 

Andor Multi-Pic Script 

//rem Auto Data Strip 
rem For 6Li and 7Li this script: 
rem subtracts a reference, 
rem normalizes atoms and no atoms with a user defined patch, 
rem displays normalized, subtracted signal, 
rem saves atoms and noatoms for 6 and 7 (.fit) !ref is already subtracted...mi 
rem optionally saves a log file of parameters 
rem optionally logs summed patch values 

rem Fast Kinetics Mode Settings: trigger= external; rows=170 (currently); 
rem exposure t=100 us; number in series=2; shift speed=4us; 

rem Optional User input, they are strings...so words ok. 
logfile$="log2.txt"; 
atom$="13 " 
sixdet$="cmot " 
sevendetl = "0.6 " 
opt$ = "1 " 
dop$ = "100ms " 
rf3dbm$ = "0.0 " 

rem output log? (1 or 0) 
out = 0 

wl=activeWindow() 
rem 7atoms minus ref 

//rem CloseWindow (#1) 
//load(#l, "L:\data\emt2\2008\jul\atomsbgnd.fit") 
//MoveWindow(#l,300,420,500,200) 

run$="\\10.97.67.106\\data\\.runNumber"; 



164 

read(run$,folder$) 
read(run$,date$) 
read(run$,f$) 
read(run$,new_npic$) 
nnpic=val(new_npic$) 
error=close () 
if Cerror<0) then print "Error closing .runNumber" 
run$="C:\data\emt2\junk.txt"; 
re ad(run$,j unk$) 

npic = nnpic 
npix = 512 / (npic + 1) - mod(512, (npic+1)) / (npic+1) 
expTime=100 
print ("Now "jnpic," pictures of ",npix," pixels") 
SetFastKinetics(expTime, npic, npix) 

counter=0 

while (counter<100) 

Run() 
run$="\\10.97.67.106\\data\\.runNumber"; 
read(run$,folder$) 
read(run$,date$) 
read(run$,f$) 
read(run$,new_npic$) 
nnpic=val(new_npic$) 
error=close () 
if (error<0) then print "Error closing .runNumber" 
run$="C:\data\emt2\junk.txt"; 
read(run$,junk$) 
print (folder$,date$,f$,new_npic$) 

dfolder$="C:\data\emt2"+date$; 
folder$=folder$+date$; 

for pic=l to npic step 1 
#pic=#0_sig{l} [1«2,1«2] 
TopWindow(#pic) 
CloseWindow(#pic) 
#pic=#0_sig{pic> [1«512, l«npix] 
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filename$="\atoms"+f$+"_"+str$(pic) 
if (npic == 2) then filename$="\atoms"+f$ 
if (pic == npic) then filename$=M\noatoms"+f$ 
print (f$, filenames, folder$, dfolder$) 

saveFITS(#pic,dfolder$+filename$+".fit") 
saveFITS(#pic,folder$+filename$+".fit") 

TopWindow(#pic) 
MoveWindow(#pic,260,380,1000,500) 

next 
for pic=npic-l to 1 step -1 

// Save noatoms shots 
f ilename$="\noatoms"+f $+"_"+str$(pic) 
saveFITS(#npic,dfolder$+filename$+".fit") 
saveFITS(#npic,folder$+filename$+".fit") 
//print filenames 

ps = npic + pic 
#ps=#0_sig{l> [1«2,1«2] 
TopWindow(#ps) 
CloseWindow(#ps) 
#ps = (#npic - #pic) / (topic - 705.5) 
TopWindow(#ps) 
MoveWindow(#ps,260,0,1000,500) 
ScaleData(#ps,-.2,.2) 

next 

if (nnpic != npic) then 
npic = nnpic 
npix = 512 / (npic + 1) - mod(512, (npic+1)) / (npic+1) 
print ("Now ",npic," pictures of ",npix," pixels") 
SetFastKinetics(expTime, npic, npix) 

endif 
wend 

rem End of Program 



Appendix E 

Discussion of Experimental Uncertainty in 
Measurement of a 

E. l Discussion Relating to measurments in PRL 102 090402 

(2009) 

The following is adapted from an internal manuscript written by S.E. Pollack in May 

of 2009. I have corrected some errors and changed certain notations for consistency 

with this thesis, however large portions of the text remain unchanged. 

For the meaurements found in Ch. 4.5 of this thesis and in Ref. [81], we used 

polarization phase-contrast imaging (PPCI) to extract the in situ density and size 

of the BEC. See Ch. 3.5.1 of this thesis, Bradley et al., Phys. Rev. Lett. 78 985 

(1997) and Curtis Bradley's thesis for more information on this imaging technique. 

Starting from Eq. 3.13, 

/s ig = E^a2
lsm2(0)e-Q+E2(l-a2

1)cos2(9)+2E2a1 sin(0)^/l - a \ cos (0)e~a/2 cos(<p+7) 

(E.l) 

We take circularly polarized light with <ii = 1/a/2 and = tt/2. Maximal sensitivity 

occurs when the output polarizer angle is 6 = 7t/2 (See Fig. 3.18). In practice, to 

improve signal to noise, we take two pictures: one with atoms and one without, then 

subtract the two and divide by the no atoms shot. We also subtract a dark image 
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from each shot, resulting in 

0 ^atoms ^noatoms /r-, 6 = — — — {hj.2) 
noatoms dark 

For the purposes of this discussion we set 7 = 7' — TT/2 and keep the first order 

corrections to 5 for small 7' 

5 = ^ ( e"Q - 1) - ~ (1 + e~a) + [sin ( 0 ) (1 - < / ) + 7 ' cos ( 0 ) ] . (E.3) 

with 4> and a given by 

c P = - ~ a (E.4) 

a = 
o-0nx(y, z) 

l + 4 ( f ) a + 2 £ 
(E.5) 

In practice Eq. (E.3) is numerically inverted to determine a for a given value of S. 

With a solution for o we determine the column density by inverting Eq. (E.5). 

Errors in Determination of a 

The systematic parameters involved in a determination are «i, 9, 7, and A/T. These 

will yield some systematic uncertainty in the final number of atoms. Systematic 

uncertainty in the camera magnification in (~1%) and efficiency 7/ = 1.29(10) x 

10"15 mJ/count come into the determination of the measured intensity of light. Sta-

tistical camera noise 5C is a combination of read noise and dark current noise, which 
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have been measured to be less than 5 and 30 counts respectively. Photon counting 

also contributes to the error in I: 

SI2 = I + 6C2 + I2 Sn \ 2 , / dmx 2 
+ 4 ~ 

7] J \ m 
(E.6) 

For completeness, the error in the signal is 

r r>2 I ^-^atoms \ , / ^atoms^-^noatoms \ /-,-, d S
 = ( 7 + 72 ' 

v
 1 noatoms / \ 1 noatoms / 

The first order corrections in S due to the light field angles can be directly 

determined by variation of Eq. (E.l). The first order correction in 7 was found to be 

relatively large (SS ~ .5' ), which is why it is directly included in Eq. (E.3). The 

first order corrections to S in 9 and ai are: 

I « <E8> 
— « -y/2(-l + e~a) (E.9) 
da 1 

For small values of cv these effects are 1% or less. The error in detuning is fractionally 

small ( A / r ~ 10—100 with d(A/T) ~ 0( 1)) and does not contribute much in the 

determination of a from S. For example, for small a we find from Eq. (E.3) 

Q = S . 2 <552 + A 2 D " ( F ) = (E.10) 
1 A 1 1 _ 1 I A 2 r 2 r 
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A maximal value of SS is 0.1 (in general we keep S < 0.4 by adjusting A); for A/T = 

10 we determine a ~ 0.06 reducing the contribution from the error in detuning by 

a considerable amount below the error in the signal. Although errors in detuning 

are not important in determination of a, they are in the determination of column 

density ny from 

Errors in Determination of ny 

The error in ny is given by the variation of Eq. (E.5) 

Note that the error in the density is computed for each pixel. We typically measure 

the detuning with an accuracy as large as 0.5 MHz. Typically SI/Isat ~ 0.1 so that 

the last term is negligible for large detunings. In general the resulting fractional error 

Sn/ri is less than 5%, with the error growing towards the edge of the condensate. 

Determination of N 

N is found by integrating over the condensate. Therefore the error in N is 

(E.ll) 

(E.12) 
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where the sum spans the condensate. For the contribution from the first term we 

almost always find SN/N < 10~2 and typically SN/N « 2 x 10 :i. Therefore the 

second term dominates and SN/N ~ 2%. 

Determination of Axial Size 

We fit the integrated axial density profile nxy(z) = J2x
mny(x< z ) a Gaussian 

function and determine the 1/e width, which is used as the axial size of the condensate 

R. The fit is weighted (i.e., we use Srixy in the fitting routine) and the resulting 

parameter uncertainty is determined from the correlation matrix of the data set. 

Given the large numbers of data points, and the typical noise level in nxy, the fit 

value contributes a fractional error of ~0.1%. Therefore the systematic error in rn 

dominates: SR./ R RJ 1%. 

T e m p e r a t u r e Effects 

There is some uncertainty of the axial size due to being at non-zero temperature. 

We have estimated this effect by simulating clouds with non-zero temperature and 

fitting to a single distribution. The results of this calculation are shown in Fig. E.l. 

We measure accurate values for T/Tc when there is a good thermal component in 

the cloud (i.e., for T/Tc > 0.5), below this the measurement error becomes large due 

to the small thermal contribution making it difficult to estimate T. After measuring 

T/Tc as a function trap power we extrapolate and determine that T/Tc is typically 

0.3 or smaller. 
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Figure E. l : Simulated data at a = 123 ao with non-zero temperature fit with either 
a Thomas-Fermi or a Gaussian distribution. Top: Measured sizes using either fit, 
the horizontal line is the equivalent Thomas-Fermi radius in axial size. Bottom: The 
fractional deviation of the measured size from the actual size. We typically operate 
at T/Tc ~ 0.3 and in practice fit with a Gaussian distribution. 

Determinat ion of a for a Condensate 

We model the system using the Gross-Pitaevskii equation 

W = 
ft2 r-,9 , T r I 4:irh2a. , ,o , 
2m m 

47T 

r 1 - 3 c o s 2 f l 
J |r — r' 

(E.13) 
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where we have included the magnetic dipole interaction (MDI). A variational method 

is used with a 3D cylindrically symmetric Gaussian wavefunction as a trial. We 

obtain coupled equations for the radial and axial sizes of the Gaussian as functions 

of N and a. These equations are inverted to find a numerical function with N and 

R (and trap frequencies) as inputs and a as output. 

Thomas-Fermi Limit 

A closed form equation for a is available in the Thomas-Fermi regime [26], 

m 2 u jR^ F n ? -m 

Here the Thomas-Fermi radius RTF oc (Na)1/S. The error in a in the large interacting 

regime is 

The radial frequency is measured by oscillating the power in the optical trap after a 

condensate has been formed. Loss in the trap is maximal at the radial trapping fre-

quency and harmonics. We fit the center of the loss to better than 5% precision. The 

axial frequency is measured with dipole oscillations by displacing the condensate us-

ing a magnetic field gradient. The asymptotic standard errors in the axial frequency 

measurement are typically 0.5% or less. However, realistically the actual error in 

the determination of these frequencies is much larger since there is some variation in 
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the position for each image and timing jitter. A more reasonable estimation for the 

uncertainty might be l / ( the total oscillation time), which yields ~ 1 % for the best 

axial measurements and 3% as a more typical value. Collecting the fractional errors 

it is clear that uncertainty in the axial trap frequency provides the largest source of 

error in determination of a. For these values 8a/a ~ 0.20. 

Numerical Estimation of Error 

There is no closed-form solution in the weakly interacting regime for a. However, we 

can numerically estimate the contributions of uncertainties in the various parameters 

by numerical error propagation. The form of the uncertainty in a is similar to that 

expressed in Eq. (E.15) however the prefactors will be functions of N, R, and the trap 

frequencies. What is relatively easy to present is the response of a to the inputs at 

particular values of the inputs. For example, for fr = 200 Hz, fz = 3 Hz, R = 50 um, 

and N = 3 x 105 we find 

Sa SN 'N 8a 5fr 5Ji 
f z 

(E.16) 
a N' a fr

1 a 

The remaining quantity is a strong function of R, but the prefactor remains below 

5 for a > 0.02 (and outside the T F regime) as shown in Fig. E.2. Again, using the 

values above we find typically find 8a/a ~ 0.1 or better. 
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Figure E.2 : Numerically computed coefficient in front of 8R/R in Eq. (E.15) us-
ing the variational approach. We have chosen to plot against a rather than R for 
convenience. Parameters: fr = 200 Hz, fz = 3Hz, and N = 3 x 105. 

Magnetic Field Uncertainty 

We use radio frequency transitions between the |2, 2) and |1,1) states along with 

the Breit-Rabbi formula to determine the magnetic field for a particular current, 

measured by a voltage drop across a shunt resistor V, running through the bias 

magnetic field coils. The location of the RF transfer (and therefore the magnetic 

field) is determined with a width of typically 0.3 MHz which corresponds to 0.1 G. 

Note that the uncertainty in the location is by far smaller than this and we could 
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use a smaller error here. A collection of field values are measured and a straight line 

fit is formed. As an example with typical errors. 

B « -5.00(8) + 25.000(2) V/mV (E.17) 

6B2 = (0.08)2 + (0.002 V)2 + (25 SV) 2 (E.18) 

We measure SV < 0.001 mV within a shot, making this contribution small. Using 

an average value of V = 28 mV we find SB ~ 0.1 G, with an additional systematic 

uncertainty of 0.1 G. 

Scattering Length vs. Magnetic Field 

For each value of B we take on order 10 shots. Values of a and B are recorded 

for each shot along with the errors in these values as describe above. The weighted 

mean and standard deviation of each collection is used as the value and la error for 

each data point we plot in Fig. E.3. In general, da/a for an individual collection is 

between 10% and 30%. 

E.2 Discussion from Pollack et al. Science (2009) 

This following is an excerpt from the SOM in Pollack et. al [40]. It is reprinted here 

for the sake of completeness. It should be noted that the field calibration in Ref. [81] 

was limited to ~ 0.100 G. fundamentally by the arbitrary waveform generator we 
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Figure E.3 : Axial size data mapped onto a. Results of a coupled-channels calcu-
lation are shown by the solid line, and a Feshbach resonance fit by the dashed line. 
The inset shows the extracted values of a near the zero-crossing. A linear fit in this 
regime matches the coupled-channels calculation. 

used to program the current. For the data near resonance, in Ref. [40], a stable 

voltage reference was used that provided ~ 0.020 G as discussed below. 
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E.3 Comparison of Measured a with Coupled Channels Cal-

culation 

The s-wave scattering length a is controlled via a magnetic Feshbach resonance. 

We extract a (for a > 0) as a function of magnetic field B from the axial size of 

a Bose-Einstein condensate {Si). The measured functional form of a vs. B is well 

described by a Feshbach resonance fit a(B) = a S c [ l + A/(i? — B^)}, where the values 

aBG = -24.5+o:° A = 192.3(3) G, and B^ = 736.8(2) G were previously reported 

(ST). We find that axial size measurements agree with the Feshbach resonance fit to 

within 25% over the interval 10 < a/a0 < 103, and < 50% for a > 103a0, as shown 

in Fig. SI. 

To repeatably achieve very large values of a it is necessary to have both high 

field stability and accurate knowledge of the location of Bx,. We determine the 

shot-to-shot stability of the magnetic field from radio frequency spectroscopy on the 

|2.2) —> |1,1) transition. We have improved the control of the current in the coils 

that provide the magnetic bias field in our experiment such that a Lorentzian charac-

terizing the shot-to-shot field stability has a full width at half maximum of 115 kHz, 

corresponding to 21 uiG instability at a bias field of 717 G, shown in Fig. S2C. With 

this improved field stability we have increased the precision in the determination of 

the resonance location to B ^ = 736.97(7) G. In addition, we can use the measured 

values of L$(B) to determine the location of the resonance. This method is consistent 

with our determination of B00 from the a.(B) fit. The uncertainty in the determina-
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tion of a is given by da = aBGA(SB2 + SB2
00)l/2(B - B^)'2 « 2 x 1(T5 a2/a0, where 

SB is the shot-to-shot field stability and SB^ is the uncertainty in the resonance 

location. 

Since we have only measured a for a > 0, we have no direct knowledge of a < 0. 

However, a coupled-channels calculation (S8) agrees with the Feshbach resonance fit 

to within 10% over the range of 10 < a/a0 < 3 x 104, shown in Fig. S2, which gives 

us confidence that the Feshbach resonance fit is equally reliable on the a < 0 side of 

the resonance. 
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Figure E.4 : (A) a extracted from the axial size of Bose-Einstein condensates as a 
function of magnetic field. Results of a coupled-channels calculation are shown by 
the solid red line. The dashed black line is the Feshbach resonance fit. ( • ) Data 
previously reported with trapping frequencies u r = (27r) 193 HZ and u z = (2rr) 3 Hz 
(ST). Data with ur = (2TT) 236 HZ and uz = (2?R) 4.6Hz (•) or uz = (2TT) 16HZ ( • ) . 
(B) Full range of data spanning nearly 7 decades in a. (C) Fractional difference 
between the extracted values of a and the Feshbach resonance fit. 
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Appendix F 

Discussion of Uncertainty for Quadrupole 
Oscillations 

The uncertainty in the scaled interaction parameter 

= ^ (F.l) 

is given by 

with 

W ( t H f ) 2 

and 

dlr 1 Sujr (F.4) 

The uncertainties in ujz and ujr are typically 3% and 5%, respectively as discussed 

above in Appendix E.l . This then yeilds ^ = 6%. ^ is dominated by shot to shot 

fluctuations in N and is typically 20%. (As discussed above in Appendix E.l, for 

PPCI the single shot uncertainty in N is comparatively small at 5N/N ~ 2%.) Near 

the zero crossing, we must account for the uncertainty caused by both the field error 

and our error in the calibration of a(B). Near the zero crossing, we fit the measured 
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a to the form 

a(B) = m(B — B0) (F.5) 

with m = 0.08(1) and B0 = 543.6(1) G (see chapter 4.5). The uncertainty in a is 

therefore 

When calculating the error bars, for consistency accross all fields, we replace the 

prefactor in the first term Eq. F.8 of with 0.2 which is a more accurate estimate 

of the uncertainty in a for fields away from the zero crossing, as described above 

in Appendix. E.l . This will however, slightly overestimate the error near the zero 

crossing with a deminishing effect as a 0. Combining the errors in A, N, and the 

trap frequencies gives ~20% error. Including the error from the scattering length 

gives for the final uncertainty in P' 

(F.6) 

As described in Appendix E.l, SB = 0.1 G. This then implies 

(F.7) 

(F.8) 

(F.9) 

(F.10) 
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