
RICE UNIVERSITY

On the Application of Graphics Processor to Wireless
Receiver Design

by

Michael Wu

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

MASTER OF SCIENCE

APPROVED, THESIS COMMITTEE:

k<ML~
JosfciJh R. Cavallaro, Chair
Professor of Electrical and Computer
Engineering A

rMWWXL
Behnaam Aazhang
J.S. Abercrombie Professor of Electrical
and Computer Engineering

Lkf^hong
^ ^ s s i s t a n t Professor of Electrical and

Computer Engineering

Houston, Texas

April, 2010

UMI Number: 1486053

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 1486053
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

On the Application of Graphics Processor to Wireless
Receiver Design

by

Michael Wu

In many wireless systems, a Turbo decoder is often combined with a soft-output

multiple-input and multiple-output (MIMO) detector at the receiver to maximize per

formance in many 4G and beyond wireless standards. Although custom application

specific designs are usually used to meet this challenge, programmable graphics pro

cessing units (GPU) has become an alternative to the traditional ASIC and FPGA

solution for wireless applications. However, careful architecture-aware algorithm de

sign and mapping are required to maximize performance of a communication block

on GPU. For MIMO soft detection, we implemented a new MIMO soft detection al

gorithm, multi-pass trellis traversal (MTT). For Turbo decoding, we used a parallel

window algorithm. We showed that our implementations can achieve high through

put while maintaining good performance. This work will allow us to implement a

complete iterative MIMO receiver in software on GPU in the future.

Acknowledgments

I would like to thank my advisor, Professor Joseph R. Cavallaro, for his thoughtful

comments and support for the last three years. I would also like to thank other

members of my committee, Professor Behnaam Aazhang and Professor Lin Zhong for

their constructive comments.

I would also like to thank my family. First, to my parents, Youfeng and Jane, I

could not have accomplished this without your support. Second, to my sisters, Susan

and Catherine, for being supportive and helpful as always.

Last but not least, I would like to thank Sid Gupta, Kia Amiri, Guohui Wang,

and Bei Yin for their useful feedback and comments.

Contents

Abstract ii

Acknowledgments iii

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Contribution 3

1.2 Thesis Overview 4

2 Overview of C U D A 5

2.1 Compute Unified Device Architecture 5

2.2 Alternative Platforms 8

3 MIMO Detection and Turbo Decoder 12

3.1 MIMO Detection 12

3.2 Multi-pass trellis traversal MIMO Detection 15

3.2.1 Soft MIMO Detection 17

3.2.2 Candidate List Generation 17

3.3 Overview of Turbo Decoder 19

4 MIMO Detector on G P U 24

V

4.1 Proposed Implementation on GPU 24

4.1.1 Extension 26

4.1.2 Reduction 27

4.1.3 LLR Computation 29

4.1.4 Additional Optimizations 31

4.2 Performance Results 31

4.2.1 MTT Detector Performance 33

4.2.2 MTT Detector Throughput 34

4.2.3 Detector Instruction Throughput Ratio 40

4.2.4 Detector Instruction Mix 42

4.2.5 Compared to ASIC/FPGA/ASIP 44

5 Turbo Decoder on G P U 46

5.1 Proposed Implementation on GPU 46

5.1.1 Shared Memory Allocation 48

5.1.2 Forward Traversal 48

5.1.3 Backward Traversal and LLR Computation 50

5.1.4 Interleaver 52

5.1.5 max* Function 55

5.2 Performance Results 55

5.2.1 Decoder Performance 56

vi

5.2.2 Decoder Throughput 58

5.2.3 Architecture Comparison 59

6 Conclusion and Future Work 61

References 64

List of Figures

2.1 CUDA architecture model 6

3.1 MIMO detection flow graph 16

3.2 Data flow at vertex v(t,i) 17

3.3 Search process for generating £<*, 20

3.4 Data-flow diagram for generating candidate lists 20

3.5 Overview of Turbo decoding 21

3.6 3GPP LTE Turbo code trellis with 8 states 22

4.1 CUDA MIMO detector data flow 25

4.2 Simulation results for a LDPC-coded 2 x 2 4-QAM MIMO system. . . 35

4.3 Simulation results for a LDPC-coded 2 x 2 16-QAM MIMO system. . 35

4.4 Simulation results for a LDPC-coded 2 x 2 64-QAM MIMO system. . 36

4.5 Simulation results for a LDPC-coded 4 x 4 4-QAM MIMO system. . . 36

4.6 Simulation results for a LDPC-coded 4 x 4 16-QAM MIMO system. . 37

4.7 Simulation results for a LDPC-coded 4 x 4 64-QAM MIMO system. . 37

4.8 Performance compared to 5 MHz LTE 2 x 2 MIMO 39

4.9 Performance compared to 5 MHz LTE 4 x 4 MIMO 40

5.1 Overview of our MAP decoder implementation 47

viii

5.2 BER performance (BPSK, full-log-MAP) 57

5.3 BER performance (BPSK, max-log-MAP) 57

List of Tables

2.1 Available resources for each memory 7

4.1 Average Runtime for 2 x 2 38

4.2 Average runtime for 4 x 4 39

4.3 Instruction Throughput Ratio for 2 x 2 , 16800 subcarriers 41

4.4 Number of Instructions Per Threadblock 44

4.5 Throughput comparison with ASIC/FPGA/ASIP solutions for 4 x 4

system 45

5.1 Operands for a^ computation 49

5.2 Operands for /3k computation 51

5.3 Throughput vs W 59

5.4 Our decoder vs other programmable Turbo decoders 60

Chapter 1
Introduction

In many wireless systems, a channel decoder such as Turbo codes is combined with

a soft output multiple-input and multiple-output (MIMO) detector at the receiver

to maximize performance gain. The combination of MIMO and Turbo decoder is

used in many 4G and beyond wireless standards such as IEEE 802.16e WiMax, and

3GPP LTE (long term evolution). Although the combination of MIMO detector and

Turbo decoder improves performance of a MIMO system dramatically, both MIMO

detector and Turbo decoder are very computation intensive blocks. In the case of

MIMO detector, as an exhaustive search based MIMO detector's complexity would be

prohibitive, implementations are suboptimal MIMO detectors which can provide close

to optimal performance with significantly lower complexity. Nevertheless, typical

suboptimal MIMO detectors are ASIC designs [1, 2, 3], other implementations include

FPGAs [4, 5] and application-specific instruction set processors (ASIPs) [6]. In the

case of Turbo decoder, the inherently large decoding latency and a complex iterative

decoding algorithm have made it very difficult to achieve high throughput in general

purpose processors or digital signal processors. As a result, Turbo decoders are often

implemented in ASIC or FPGA [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

To accelerate 3D visual effects that are moving toward photorealism, programmable

2

graphics processing units (GPU) delivers extremely high computation throughput by

employing many cores working a large set of data in parallel. The GPU as an alterna

tive to the traditional ASIC and FPGA solution for wireless applications is attractive

for several reasons. As GPUs becomes increasingly more flexible, it can handle general

purpose computations and can accelerate other tasks beyond the realm of graphics.

Communication algorithms typically are very parallel and can take advantage of the

inherently parallel structure of the GPU. For example, researchers have found GPUs

can perform low density parity code (LDPC) decoding as well as ASICs [19]. Fur

thermore, an implementation on GPU can be reconfigured easily to handle different

workloads as it is done completely in software. Finally these type of processors are

extremely cost-effective and ubiquitous in mobile and desktop devices, communica

tion algorithms in the future can be offloaded onto this type of processor in place of

custom ASICs or FPGAs.

However, the underlaying hardware of GPU is fixed. Careful architecture-aware

algorithm design and mapping are required to achieve good performance. Much of the

mapping and optimizations are left to the programmer. For example, the programmer

needs to specify how to use the limited amount of resources on GPU, such as on-chip

shared memory. In addition, the programmer needs to specify how computation is

partitioned on GPU by partitioning threads among the cores to handle the workload.

An implementation that scales well, while keeping the cores fully utilized to achieve

3

peak throughput across different configurations, is a difficult to achieve.

1.1 Contribution

Our goal is to design and implement MIMO detection and Turbo detector effi

ciently on GPU to maximize performance. To the best of our knowledge, there are

no existing implementations of soft MIMO detector or Turbo decoder on GPU. For

MIMO soft detection, we implement a new MIMO soft detection algorithm, multi

pass trellis traversal (MTT), which is well suited for this architecture. We show that

this MIMO detector implementation can achieve good performance while maintain

ing flexibility offered by programmable hardware. We also compare the performance

of MMT against K-best and a suboptimal one-pass trellis traversal implementation.

Furthermore, we measure the efficiency of our implementation by measuring how well

the hardware executes our code as well as the quality of the compiled code. For Turbo

decoder, our implementation partitions the decoding workload across cores and pre

fetch data to reduce memory stalls. As parallelization of the decoding algorithm can

improve throughput of a decoder at the expense of decoder performance, we provide

both throughput and performance of the decoder and show that we can parallelize the

workload on GPU while maintaining reasonable performance. This work will allow

us to implement a complete iterative MIMO receiver in software, which includes both

MIMO detector and Turbo decoder on GPU in the future.

4

1.2 Thesis Overview

The organization of the thesis is as follows. Chapter 2 give an overview of the

CUDA architecture. Chapter 3 gives an overview of the MIMO detection and Turbo

decoding algorithms. Chapter 4 discusses the implementation of MIMO detector

on GPU, as well as the performance results and analyses. Chapter 5 discusses the

implementation of Turbo detector on GPU, as well as the performance results and

analysis. Finally, we will conclude in chapter 6.

Chapter 2
Overview of CUDA

2.1 Compute Unified Device Architecture

Compute Unified Device Architecture [20] is a software programming model that

allows the programmer to harness the massive computation potential offered by the

programmable GPU. The programming model is explicitly parallel. The programmer

explicitly specifies the parallelism, i.e. how operations are applied to a set of data, in a

kernel. At runtime, multiple threads are spawned, where each thread can select a set of

data using its own unique ID and runs the operations defined by the kernel on the data

set. Each thread block contains multiple threads, up to a 512 threads per thread block.

In this programming model, threads are completely independent. However, threads

within a block can share computation through barrier synchronization and shared

memory. Thread blocks are completely independent and only can be synchronized

through writing to the global memory and terminating the kernel.

Compared to traditional general purpose processors, programmable GPU has

much higher peak computation throughput. The overall architecture is shown in

figure 2.1. The computation power is enabled by many stream multiprocessors (SM)

on the GPU, where each SM is 8 ALU single instruction multiple data (SIMD) core.

During runtime, a kernel is mapped onto the device by mapping each thread block

to an SM. Threads within a thread block are divided into blocks of 32 threads. If

6

all 32 threads are doing the same set of operation, these 32 threads, also known as

a WARP, are executed as a group on an SM over 4 cycles. Otherwise, threads are

executed serially. There are a number of reasons for stalls to occur. As data is not

cached, SM can stall waiting for data. Furthermore, floating point pipeline is long

and register to register dependency can cause a stall in the pipeline. To keep cores

utilized, multiple thread blocks, or concurrent thread blocks, are mapped onto an

SM and executed on an SM at the same time. Since the GPU can switch between

WARP instructions with zero-overhead, GPU can minimize stalls by switching over

to another independent WARP instruction on a stall.

Figure 2.1 CUDA architecture model

Computation throughput can still become I/O limited if memory bandwidth is

low. Fortunately, fast on-chip resources, such as registers, shared memory and con

stant memory, can be used in place of off-chip device memory to keep the computation

7

throughput high. Shared memory is especially useful. It can reduce memory access

time by keeping data on-chip and reduce redundant calculations by allowing data

sharing among independent threads. However, shared memory on each SM has 16

access ports. It takes one cycle if 16 consecutive threads access the same port (broad

cast) or none of the threads access the same port (one to one). However, random

layout with some broadcast and some one-to-one accesses will be serialized and cause

a stall. There are several other limitations with shared memory. First, only threads

within block can share data among themselves and threads between blocks can not

share data through shared memory. Second, there are only (16KB) of shared memory

on each stream multiprocessor and share memory is divided among the concurrent

thread blocks on a SM. Using too much shared memory can reduce the number of

concurrent thread blocks mapped onto a SM.

Table 2.1 Available resources for each memory

Type

Register

Shared Memory

Constant Memory

Texture Memory

Global Memory

Speed

fast

fast

fast

fast

slow

Access

RW

RW

RO

RO

RW

Size

8192 per multiprocessor

16 KB per multiprocessor

8 KB per multiprocessor

8 KB per multiprocessor

> 512 MB per device

There are several other limitations with shared memory. First, only threads within

8

block can share data among themselves and threads between blocks can not share data

through share memory. Second, there are only (16 KB) of shared memory on each

stream multiprocessor and share memory is divided among the thread blocks on a

SM. Using too much shared memory can reduce the number of concurrent thread

blocks mapped onto a SM.

As a result, to keep the multiprocessor from idling, designing an algorithm that

effectively partition shared memory, has an efficient memory access pattern, does

not require synchronization between blocks and needs few global memory access is

non-trivial task.

2.2 Alternative Platforms

There are other many-core architectures other than CUDA. We investigate CUDA

as a software wireless receiver platform for several reasons. As GPU is a high vol

ume consumer device, an efficient software wireless receiver will lead to extremely

cost-effective accelerator, which can accelerate software defined radio platforms and

simulations. In addition, compared to alternative platforms, Nvidia provides a mature

development platform, which includes a robust set of tools and good documentation.

For example, Nvidia provides documentation for the user to interface the software

written in CUDA to Matlab. Furthermore, the software blocks described in this the

sis could be ported to other many-core architectures as they are similar to CUDA.

We will now describe several other many-core architectures.

9

Imagine stream processor [21, 22], in particular, shares many similarities to a

stream multiprocessors on CUDA. Like CUDA, Imagine stream processor exploits

data level parallelism (DLP) by providing several ALU lanes that share the same in

struction stream. Unlike CUDA, Imagine stream processor exploits instruction level

parallelism (ILP) by using VLIW instructions. Each ALU lane, in this case, has

multiple parallel ALUs controlled by an VLIW instruction. Imagine stream processor

also has a multi-level memory subsystem that tries to reduce memory I/O bandwidth

to external device memory. There is a set of registers, Local Registers File (LSR), per

ALU lane. There is also a SRAM block, Stream Register File (SRF), which serves as

the intermediate buffer between external device memory and LSR. Furthermore, there

is a communication network which allows the lanes to exchange data. In CUDA, regis

ters function both as LSR and SRF, serve as the intermediate buffer between external

device memory and ALUs. However, registers on CUDA are still local to each ALU.

Therefore, there is a dedicated shared memory which allows the ALUs to shared data

by reading and writing to shared memory. Finally, the Imagine Stream Processor has

more memory on-die than a CUDA stream multiprocessor. However, CUDA exploits

task level parallelism (TLP) by supporting fast thread-switching between different

instruction streams. By interleaving computation from different tasks, CUDA can

hide potential stalls. Finally, CUDA supports branch, which make it more flexible

than Imagine stream processor.

10

AMD [23] also provides graphics processor units for general purpose comput

ing. CUDA and AMD graphics processors are very similar-both are essentially many

SIMD cores on the same die. The overall architecture is very similar with different

terminology and slight different hardware configuration. For example, a wavefront

is the same as WARP. However, a wavefront consists of 64 threads. A group is the

same as a thread-block. Global data share has the same functionality as shared mem

ory. However, shared registers can be used to shared data between wavefronts on an

AMD graphics processor. The biggest difference between these two processors how

ALUs are arranged. First, there are more ALU lanes per core on AMD graphics pro

cessor. Like Imagine stream processor, each ALU lane on AMD graphics processor

is VLIW-up to 5 ALU instructions can be issued per VLIW instruction. Although

the instruction issue width is wider for AMD graphics processors, this adds another

level of complexity. The compiler will try to extract ILP by vectorizing a thread's

instructions. However, the programmer need to vectorize code explicitly to maximize

performance [23]. Nevertheless, receiver algorithms described can be implemented

on this platform, although code need to be optimized for this hardware's specific

parameters to maximize performance.

A more general many-core model is multiple instruction multiple data (MIMD).

In this model, each core is completely independent and does not need to share the

same set of instructions. There are several examples of upcoming MIMD proces-

11

sors, for example, Tilera Tile-Gx, Intel 48-core single-core cloud computer, Larrabee,

and Siliconhive HiveFlex Processors. The overall architecture of these processors is

similar-many cores with local data cache connected by network. The specific ar

chitecture for each core is different for each architecture. For example, Larrabee is

arranged into SIMD clusters while HiveFlex is arranged into VLIW clusters. Simi

larly, the specific arrangement of local data cache and interconnect differs between

these processors. However, unlike Graphic processors, where each thread-block is

independent and can be scheduled on any SIMD core by hardware, the programmer

may need to distribute the work and balance the workload across on MIMD proces

sors as cores can be executing different set of instructions. Nevertheless, a MIMD

model can be used to pipeline and/or implement different communication blocks on

the same die. Hence, these upcoming platforms that may lead to even more flexible

software receivers in the future.

Chapter 3
MIMO Detection and Turbo Decoder

In section 3.1 of this chapter, we will first describe the soft-decision MIMO detec

tion problem. We will give a brief summary of different MIMO detection algorithms

and describe a trellis MIMO detection algorithm which we implemented on GPU. In

section 3.3 of this chapter, we will describe the Turbo decoding algorithm and then

describe parallel Turbo decoding techniques.

3.1 MIMO Detection

For an M x N MIMO configuration, the transmitter transmits different signals

on the M antennas and the receiver receives N different signals, one per receiver

antenna. An M x N MIMO system can be modeled as:

y - Hs + w (3.1)

where y = [yo,yi, - , y M - i] T is the received vector. H is the M x N channel

matrix, where each element, hitj, is an independent zero mean circularly symmet

ric complex Gaussian random variables with unit variance. Noise at the receiver is

w = [wo, Wi, ...wisr-i]T, where io, is an independent zero mean circularly symmetric

complex Gaussian random variables with a2 variance per dimension. The transmit

vector is s = [so,Si, . . . , S M - I] , where Si is drawn from a finite complex constellation

alphabet, 17, of cardinality Q. For example, the constellation alphabet for QPSK is

13

{—l—j,—l+j,l—j,l-\-j} and Q = 4 for this particular case.

After complex QR decomposition of the channel matrix, H, we can model the

M x N MIMO system with an equivalent model:

y = QRs + w (3.2)

y = Rs + w (3.3)

where R i s a M x J V complex upper triangular matrix. The vector y = [yQ, r/i,..., y^-i]

is the effective complex receive vector.

Each symbol sm is obtained using the mapping function sm = map(x), where x =

{x0, Xi,..., X M C - I } , a Mc x 1 vector (block) of transmitted binary bits. Mc — log2 Q

is the number of bits per constellation symbol.

The soft decision MIMO detector calculates the a posteriori probability (APP) in

term of log likelihood ratio (LLR) for each transmitted bit, Xk- Assuming no extrinsic

probability, using max-log approximation, LLR can be expressed as [24]:

L{xk\y) « =-» (min A (s , y) - min A (s , y) j , (3.4)
Zo" yxexkj_i xexki+1 j

where the set Xk,+i = {x\xk = +1} and set Xk,-i = {x\xk — —1} and

A(s,y) = | | y - R s | | 2 (3.5)

One way we can solve this problem is through exhaustive search. For a 4 x 4

MIMO point to point link, if the transmitter is utilizing 16 QAM,the total number

14

of possible transmit vectors is 164 = 66534.If the transmitter is utilizing 64QAM,the

total number of possible transmit vectors is 644 = 16777216. In either case,searching

through all possible transmit vectors is an time intensive process. To reduce com

plexity, there are two algorithms of searching through find list of candidates, the set

of Xk,+i and Xk,-i, for the soft decision MIMO detector, K-best MIMO detection[25]

and depth-first sphere detection[2]. In both cases, the algorithms view the search

space, the set of all possible transmit vectors, as a tree. K-best detection algorithm is

a breath-first tree search algorithm, a greedy MIMO detection algorithm. It reduces

the number of candidate we search through in the detection process by detecting in

put symbols antenna by antenna, keeping at most k-vectors per level. There are quite

few drawback for this algorithm. An initial implementation we used K-best detection

algorithm, we found sorting takes up to 70% of the run time and requires many reads

from and writes to memory. Sphere-detection is a depth-first tree search algorithm.

In this case, we traverse the tree depth first. Each time we reach the last level of the

tree of a transmit vector, we use the euclidean distance to prune all nodes with partial

distance bigger than the current euclidean distance. The drawback of this algorithm

is that it is essentially sequential, we search for candidates depth first one at a time.

We can parallelize the workload by splitting up the tree. However, the runtime of the

tree paritions will be not deterministic and performance of the detector will be bound

by the parition that takes longest to complete. As such, we search for an alternative

15

search algorithm-an sort-free algorithm that is very data parallel.

3.2 Multi-pass trellis traversal MIMO Detection

Multi-pass trellis traversal MIMO detector is first proposed by Yang Sun for cus

tom ASIC design [26, 27]. The algorithm is well suited for GPU architecture for

several reasons. The algorithm is very regular, data parallel and completely sort-free.

In addition, the multi-pass trellis traversal MIMO detector improves the reliability of

the LLR values to improve the performance of the detector.

Without loss of generality, we will now use a 3 x 3 QPSK system to explain our

proposed algorithm in this section.

MIMO Trellis

To generate LLR value for each transmitted bit Xk based on (3.4), the soft MIMO

detector needs to compute the minimum Euclidean distance

A

r

yo

Vi

h

—

Roo

0

0

-Roi

R\\

0

_

RQ2

R\2

2 2

so

«1

S2

(3.6)

16

over sets {Xk,+i and {Xkt-i. The calculation of A can be decomposed as: A =

w<0> + w<1> + w<2>, where w<l> is the 1-D Euclidean distance and is calculated as

w
<o>

\y2 - .R22S2I

w
< i >

w
<2> = llyo - (-R00S0 + -Roisi + -R02S2) (3.7)

This process can be illustrated using a MIMO flow graph as shown in Figure 3.1.

There are 3 trellis stages, one stage per antenna. In each stage, there are Q vertices,

one per constellation point. The edge between v(t — l,i) and v(t,j) has a weight of

wff*. the weight function depends on its current stage and all its predecessors. For

example, wf2> depends on the vertices in stages 2, 1, and 0.

Weight wf*
\ J

Weightw^0>

CO
c
o

JS
~S <n
o

O

(Antenna 2) (Antenna 1) (Antenna 0)
Stage 0 Stage 1 Stage 2

Number of Antenna

Figure 3.1 MIMO detection flow graph

17

3.2.1 Soft MIMO Detection

To compute the LLR value for each transmitted bit x^, we first generate a can

didate list for each trellis stage. For each vertex i (0 < i < Q — l) i n the stage t

(0 <t < M — 1), the detector finds the shortest path, which must contain this vertex,

from the root to the toor. The Q conditioning shortest paths found at every stage t

make a candidate list Cu- We then use the lists to compute the LLR for each bit in

a straight forward manner

W*|y) = o^ (j?in A - ™in A) • M
la' \xecu,-oo xe£u,+oo /

3.2.2 Candidate List Generation

In this section, we introduce a trellis based shortest path algorithm to approxi

mately solve the soft detection problem. There are two ways of reducing the number

of paths in the trellis. We can either prune the incoming paths or outgoing paths at

each vertex.

(a) Edge reduction (b) Path extension

Figure 3.2 Data flow at vertex v(t, i)

18

Edge Reduction

Edge reduction reduces the number of paths by pruning incoming paths. Figure

3.2(a) shows that each vertex i at each stage t has Q incoming subpaths h0,...,/IQ_I.

Let the partial distance be dk, which is the cumulative weight of the subpath hk

from the root to this vertex i. Among the Q incoming subpaths, we select the best

subpath hm with the the smallest partial distance.

m = argmin dm, (3.9)
m€{0,...,Q-l}

and discard the other Q — 1 subpaths.

Path Extension

Given one incoming path and multiple outgoing paths, path extension reduces the

number of path by pruning outgoing paths. Figure 3.2(b) shows that each node i at

each stage t has Q outgoing subpaths. The outgoing path weight from node v(t, i) to

node v(t + l,k) is updated as

<?k = dm + <fc + 1 > , 0<k<Q-l, (3.10)

Among the Q outgoing subpaths we find the shortest outgoing subpath h'n where

n•= argmin d'n. (3-H)
n€{0,...,Q-l}

19

Shortest Path Algorithm

The goal is finding the shortest path through the trellis for each node i. The

search process can be expressed as edge reductions followed by path extensions. To

generate the candidate list for Cu, we perform edge reductions until there is one path

per trellis stage at level t. If we perform edge reductions after this level, we can not

guarantee each path in candidate list has a vertex from trellis level t. Therefore, after

this trellis level t, we perform path extensions until we have completely traversed the

trellis. Figure 3.3 shows each stage of the search process for C^. We do two rounds

of edge reduction followed by one round of path extension. There are common steps

when generating candidate lists for each trellis level. For example, all search processes

starts with a path reduction at stage 0. The search processes can be represent with

a data flow diagram, shown by figure 3.4.

3.3 Overview of Turbo Decoder

The principle of Turbo decoding is based on the BCJR or MAP (maximum a

posteriori) algorithms [28]. The structure of a MAP decoder is shown in Figure 3.5.

One iteration of the decoding process consists of one pass through both decoders.

Although both decoders perform the same set of computations, the two decoders

have different inputs. The inputs of the first decoder are the deinterleaved extrinsic

log-likelihood ratios (LLRs) from the second decoder and the input LLRs from the

20

Toor

3

Stage 0 Stage 1 Stage 2

(a) Result after two stages of edge reduction

Toor

Stage 0 Stage 1 Stage 2

(b) Result after one stage of path extension

Figure 3.3 Search process for generating C0

y,R, D E

R

F

E

R

Lo

£1

£2

Figure 3.4 Data-flow diagram for generating candidate lists

21

channel. The inputs of the second decoder are the interleaved extrinsic LLRs from

the first decoder and the input LLRs from the channel.

IT1

Lc(y
s) Decoder 0

L»+Lci

n
La+Lcl

Decoder 1

Lc(yp0)

W)
Figure 3.5 Overview of Turbo decoding

To decode a codeword with N information bits, each decoder performs a forward

traversal followed by a backward traversal through an JV-stage trellis to compute an

extrinsic LLR for each bit. The trellis structure, or the connections between two

stages of the trellis, is defined by the encoder. Figure 3.6 shows the trellis structure

for the 3GPP LTE Turbo code, where each state has two incoming paths, one path

for Ub — 0 and one path for Ub = 1. Let Sk be a state at stage k, the branch metric

(or transition probability) is defined as:

7fe(sfe_i, sk) = (Lc(y
s
k) + La(y

s
k))uk + Lc(y

p
k)pk (3.12)

where uk, the information bit, and pk, the parity bit, are dependent on the path

taken (sk+i,sk). Lc(yk) is the systematic channel LLR, La(y
s
k) is the a-priori LLR,

and Lc(yl) is the parity bit channel LLR at stage k.

22

stage k stage k+1

U b=0

U„=l

Figure 3.6 3GPP LTE Turbo code trellis with 8 states

The decoder first performs a forward traversal to compute ctk, the forward state

metrics for the trellis state in stage k. The state metrics ak are computed recursively

as the computation depends on aifc_i. The forward state metric for a state s& at stage

k, afe(sfc), is defined as:

afc(sfc) = max (afc_i(sfc_i) + 7(*fc-i,Sfc)) (3-13)

where K is the set of paths that connect a state in stage k — 1 to state Sfc in stage k.

After the decoder performs a forward traversal, the decoder performs a backward

traversal to compute fa, the backward state metrics for the trellis state in stage k.

The backward state metric for state Sfc at stage k, fa{sk), is defined as:

fa(sk)= max (fa+i(sk+i) + jisk+i,sk)) (3.14)
sk+i€K

Although the computation is the same as the computation for a*, the state transitions

are different. In this case, K is the set of paths that connect a state in stage k + 1 to

state Sfc in stage k.

23

After computing /?&, the state metrics for all states in stage k, we compute two

LLRs per trellis state. We compute one state LLR per state Sk, A(sk\uk — 0), for the

incoming path that is connected to state Sk which corresponds to uk = 0. In addition,

we also compute one state LLR per state Sk, A(sk\ub = 1), for the incoming path that

is connected to state Sk which corresponds to Uk = 1. The state LLR, A(sfc|u(, = 0),

is defined as:

A(sk\ub = 0) = afc_i(sfe_i) + 7(sfe_i, sk) + (3k(sk) (3.15)

where the path from Sk-\ to Sk with u& = 0 is used in the computation. Similarly,

the state LLR, A(sk\ub = 1), is defined as:

A(sk\ub = 1) = Ofc_i(sfc_i) + 7(«fc-i, sk) + Pk(sk) (3.16)

where the path from Sk-\ to Sk with ub = 1 is used in the computation.

To compute the extrinsic LLR for Uk, we perform the following computation:

Le(k) = max.*k€K(A(sk\ub = 0) - A(sk\ub = 1))

-LM) ~ Lcivt) (3-17)

where K is the set of all possible states and max*() is defined as max* (S) = ln(^2s€S es)

Chapter 4
MIMO Detector on GPU

4.1 Proposed Implementation on GPU

A single kernel generates the candidate lists and computes LLRs for a large number

of problems at a time. At runtime, the kernel spawns a large number of independent

soft MIMO detector thread blocks, one thread block for each channel matrix and the

corresponding receive vector. Each thread block generates a candidate list for each

trellis level and calculates the LLR for each bit using the candidate lists. Effectively

the kernel creates a large array of soft MIMO detectors that operates on an array of

data in parallel. This reduces overhead since synchronization across different stream

multiprocessor is not needed.

Given a receive vector, the corresponding channel matrix and the complex con

stellation alphabet, a soft MIMO detector block generates the candidate lists through

a combination of edge reductions and path extension steps. Given the incoming sub-

paths and the associated partial distances, each step prunes the number of possible

subpaths and outputs the updated subpaths and path partial distances. Both reduc

tion and extension are extremely regular and can be efficiently implemented on the

GPU. At each stage, the detector does either Q path reductions or Q edge extensions.

Therefore, we can handle the computation by spawning Q threads per thread block,

one per each vertex. We use log2(Q) threads out of Q threads to perform LLR com-

25

putation. This section is less parallel than path reduction and path extension. This

method does not require terminating a kernel, and reading and writing from slower

global memory.

We attempt to keep our detector operating at peak utilization by minimizing stall

time. Penalty to due to memory access is low since this algorithm has a regular

memory access pattern. Furthermore, by using an efficient traversal, we reduce the

amount of memory required and allow more concurrent thread blocks to mask stalls.

We also improve the performance the detector by reducing the number of instructions

required to perform MIMO detection through sharing computation across threads

within a thread block. We unroll loops when possible to reduce instruction count.

y - K , R — • • E — • • E — • • A LLR,

LLR!

LLR,

Figure 4.1 CUDA MIMO detector data flow

We took several additional steps to reduce the overall complexity of algorithm.

Since both a reduction step and the edge reduction directly above prune the edges

between stage i and stage i + 1 and have the same set of incoming subpaths, both

steps compute the same Q2 weights. Computation can be reduced by allowing these

26

two steps share computation.

Figure 4.1 illustrates the steps for a 4 x 4 MIMO detector. The algorithm generates

£,, £oo, £ e and £ 3 using a series of path reduction and path extension steps followed

by APP computation. We will now describe implementation of each step of the

detection algorithm, path extension, path reduction and LLR computation.

4.1.1 Extension

The inputs to the extension step are the outputs from the previous step. There

are Q incoming subpath and Q incoming path partial distances, one subpaths and

path partial distance per vertex. Since we have Q threads, each thread handles one

incoming path by searching for the best path among Q outgoing paths. Particularly,

thread k, assigned to vertex k, evaluates all Q outgoing path for path k. For the path

extension corresponding to stage t, the computation for the path weight between

vertex k (in stage t — 1) and vertex q (in stage t) is:

Wk,q —

N-l

VN-t-1 — J_^ R(N-k-l,j)Sj

2

(4.1)

where h'k is kth subpath and Sj is the j t h element of {h'k, q}.

The calculation above is done in two steps to reduce required computation. Thread

k first calculates 5k, the kth. intermediate partial distance vector:

AT-2

4 = ^2 R(N-i-k,j)Sj (4.2)
j=M-l-k

where Sj is the j t h element of a kth subpath h'k.

27

Thread k now evaluates Q outgoing paths by evaluating each q^ in our complex

constellation alphabet fl.

wk^ = \\yN-t-i - Sk - R{N-i,N-i)qk\\2 (4.3)

Thread k picks the smallest outgoing path by evaluating the outgoing paths one

by one. The path selected is the new kth path. And we update the partial distances

as well.

Algorithm 1 summarizes steps taken to find the path with the smallest partial

distances. Line 2 calculates Sk using equation(4.2). Lines 4-17 evaluate Q outgoing

paths by evaluating all constellation points in our complex constellation alphabet Q.

Line 12 first computes edge weight iujf'> and line 13 computes the partial distance,

dk- Lines 14-17 search outgoing paths with the smallest partial distance serially. The

path selected is the new kth path.

For the extension step right above a reduction step, thread k also saves Sk into

shared memory to speed up the next reduction step.

4.1.2 Reduction

For each iteration of the edge reduction, thread q needs to pick the best path out

of Q paths connected to vertex q. For the iteration corresponding to stage t, the path

weight between vertex k in stage t — 1 and vertex q in stage t also can be computed

using equation(4.1).

file:////yN-t-i

28

Algorithm 1 The k thread searches for the best outgoing path

1: //Calculate intermediate PD vectors

2: Calculate 5k

3: //Search for the path with minimum partial distance serially

4: w = 0

5: Fetch d'k from shared memory

6: Fetch Cl0 from shared memory

7: Calculate w^ using 5k and VLQ

8: Update dk

y : QJW — Q*k

10: for q = 1 to Q - 1 do

11: Fetch Qq from constant memory

12: Calculate w^ using 5k and ilg

13: Update dk

14: if (rffc) < (dw) then

15: (iu, = dk

16: end if

17: end for

18: Store wth path into kth path history in shared memory

19: Store wth path's partial distance in shared memory

20: SYNC

29

Similar to path extension, each weight calculation can be done in two steps to

reduce complexity. However, the extension step above each reduction step already

computed all 8k, which reduces complexity significantly. The search process is similar

to path extension except each thread evaluates incoming path, not each outgoing

path. Each thread computes Q partial distances serially and finds the best incoming

path with the minimum partial distance. At the end of the iteration, there are Q

paths, one path per thread. The paths are written to the shared memory for the next

iteration.

The steps in the algorithm are summarized in Algorithm 2. The algorithm works

as follows. Each thread calculates Q partial distances serially and finds the path with

the minimum partial distance. At the end of the iteration, there are Q paths, one

path per thread. The paths are written to the shared memory for the next iteration.

4.1.3 LLR C o m p u t a t i o n

The algorithm generates a LLR for each bit. There are log2(Q) parallel LLR

computations for each candidate list. The thread block spawns Q threads for the

reduction steps and extension steps. The complexity of LLR computation is smaller

than the reduction and the extension step. Therefore, we propose a simple linear

search-thread k computes LLR for bit k, where k < log2(Q). This method is less

efficient than path extension or path reduction as only log2(<5) threads are doing

30

Algorithm 2 The qth thread searches for the best incoming path

1: //Search for the path with minimum partial distance serially

2: w = 0

3: Fetch 5o from shared memory

4: Fetch d'0 from shared memory

5: Fetch Q,q from constant memory

6: Calculate w^ using 50 and Qq

7: Update cfo

8: dw = Ufc

9: for k = 1 to Q - 1 do

10: Fetch d'k from shared memory

11: Fetch 5k from shared memory

12: Calculate W£*> using 5k and Q.q

13: Update dk

14: if (dk) < (dw) then

15: G^ = rffc

16: end if

17: end for

18: SYNC

19: Store toth path into qth path history in shared memory

20: Store iwth path's partial distance in shared memory

21: SYNC

31

useful work. However, each thread does computation independently and does not

require any synchronization.

The candidate lists are the Q path partial distances. To compute LLR for kih bit,

the kth thread looks at kth bit, search for two smallest partial distances, one minimal

partial distances where kth bit is 0 and one minimal partial distances where kth bit

is 1. The difference between the two partial distances is the LLR. The steps in LLR

computation are summarized in algorithm 3.

4.1.4 Additional Optimizations

Since GPU is connected to the host through the PCI-express bus, transport time

results in measurable penalty. GPU supports asynchronous memory copy which al

lows global memory access to overlap with kernel execution. This is accomplished by

breaking data into chucks and creating a stream per data chuck. While the kernel is

preforming computation for one stream, memory operations, both reading from host

memory to global memory as well as writing from global memory to host memory

can happen in parallel. This minimizes the performance penalty due to transport

overhead.

4.2 Performance Results

In the rest of the paper we will refer to our configurable multi-pass trellis traversal

real-time MIMO detector on GPU simply the "MTT". To evaluate the performance

Algorithm 3 The kth thread compute the kth LLR

1: m0 = 999

2: mi = 999

3: if k < log2(<2) then

4: for k = 0 to Q - 1 do

5: if kth bit is 0 and m0 > <4 then

6: m0 = dk

7: else if kth bit is 1 and m\ > dk then

8: mi = dk

9: end if

10: end for

11: LLRk = (m o ' m i)

12: end if

13: SYNC

33

of "MTT detector", we tested our detector on a Linux platform with 8GB DDR2

memory running 800 MHz and an Intel Core 2 Quad Q6600 running at 2.4Ghz. The

GPU used in our experiment is a Nvidia Telsa C1060 graphic card, which has 240

stream processors running at 1.3GHz and 4GB of GDDR3 memory running at 1600

MHz. The host computer first generates the random input symbols and a random

channel. After passing the input symbols through the random channel, the host

performs QR-decomposition on the channel matrix H to generate R and y, which

are fed into the detection kernel running on GPU.

4.2.1 M T T Detector Performance

We first evaluate the performance of this detector by comparing the bit error

rate (BER) performance against other detectors. We compare MTT against the

optimal solution which is exhaustive search. In addition, we compare MTT against

the performance of K-Best, a well-known breadth-first algorithm. Finally, to measure

how multiple passes through the trellis improves performance, we compared MTT

against our first GPU MIMO detector, one-pass trellis detector (OT), which does

only one-pass through the trellis. To mitigate inaccuracies in LLR computation due

to the small list, we apply the LLR clipping technique to the K-Best detector [29] and

OT. It should be noted that in the K-Best and one-pass trellis detector algorithm the

Euclidean distance for hypothesis-0 or hypothesis-1 can be missing due to the small

list, so the LLR clipping is necessary in the K-Best algorithm. The LLR clipping is

34

not needed in MTT because each node in the trellis has an associated full Euclidean

path. Thus, we can always find a partial distance for hypothesis-0 and hypothesis-l

required in the bit LLR computation.

We run BER simulations using 2 x 2 and 4 x 4 4-QAM/16-QAM/64-QAM MIMO

systems. The soft output of the detector is fed to a length 2304, rate 1/2 WiMAX

layered LDPC decoder [30], which performs up to 15 LDPC iterations. Figures 4.2,

4.3, and 4.4 compare the BER performance of the MMT with the K-Best detectors.

Figures 4.5, 4.6, and 4.7 compare the BER performance of the proposed 4 x 4 detec

tor with the K-Best detectors. As can be seen, MTT performs better than K-Best

detector with K = M and OT for 2 x 2 MIMO receiver. This is expected as MTT

is the optimal detector for 2 x 2 as MTT enumerates all possible paths through each

trellis vertex. For 4 x 4 MIMO receiver, MTT performs close to K-Best detector

with K — M. Compared to BER performance of the simple one-pass trellis detector

where the trellis is only visited once from left to right, MTT performs better since it

evaluates more path per trellis vertice and hence able to compute more accurate LLR

for the decoder.

4.2.2 M T T Detector Throughput

We now look at the throughput of this detector on the GPU. To keep utilization

high, a thread block detects multiple symbols in parallel - each thread block detects

8 symbols for 4-QAM, 2 symbols for 16-QAM, and 1 symbol for 64-QAM. In our

35

° Trellis, Onepass
- KBest, K=4
• Trellis, Multipass (Optimal)

4.5

W 6 '

Figure 4.2 Simulation results for a LDPC-coded 2 x 2 4-QAM MIMO system.

Figure 4.3 Simulation results for a LDPC-coded 2 x 2 16-QAM MIMO system.

36

10

10"'

Of
LU
m

t
UJ

10

10

:4L.---: ••::••; y : : : : : : :

W_ .
*tw

" V ^L

—B— KBest, K=64
—**"* Trellis, Onepass
—•— Trellis, Multipass (Optimal) •

\ : \ x
ĉ ^OSi

' > i \ , \

N^ ^V \
\ '• \ \

\j \Y
::::::::: :::::' : ^C ^:lfc::::::::::::::::::::::':::::

j*. lb \
\ \ si

. \ V ^v

\ *%

10 10.5 11 11.5 12 12.5 13

WdB>

Figure 4.4 Simulation results for a LDPC-coded 2 x 2 64-QAM MIMO system.

W B >

Figure 4.5 Simulation results for a LDPC-coded 4 x 4 4-QAM MIMO system.

37

Figure 4.6 Simulation results for a LDPC-coded 4 x 4 16-QAM MIMO system.

•""#*™ Trellis, Onepass
- » - KBest, K=48
~4— Trellis, Multipass
-#— KBest, K=64
* ® - Exhaustive-search

Figure 4.7 Simulation results for a LDPC-coded 4 x 4 64-QAM MIMO system.

38

benchmark, both 2 x 2 and 4 x 4 MIMO configurations are tested. The detector

kernel detects 8 streams of 16384 symbols for 2 x 2 and 8 streams of 8192 symbols

for 4 x 4 . Execution time of the detector is averaged over 1000 runs. We compared

both asynchronous and synchronous implementations of this MIMO detector.

Table 4.1 shows the execution time and the throughput performance for 2 x 2

MIMO detector. Table 4.2 shows the execution time and the throughput perfor

mance for 4 x 4 MIMO detector. The table includes performance of our synchronous

implementation, our asynchronous implementation, as well as performance of the

kernel of the MIMO detector.

Table 4.1 Average Runtime for 2 x 2

Q

4

16

64

Runtime(ms)/Throughput(Mbps)

synchronous

5.05/99.10

9.49/105.27

46.85/37.35

asynchronous

0.75/663.65

3.70/269.89

39.97/43.91

kernel

0.61/822.59

3.57/280.08

39.80/43.86

For both 2 x 2 and 4 x 4 MIMO configurations, asynchronous memory transfer is

an effective way of hiding data transfer latency. By breaking incoming data into eights

stream and overlapping transfer and computation, our MIMO detector performs very

close to kernel running time.

39

Q

4

16

64

Table 4.2 Average runtime for 4 x 4

Runtime (ms) /Throughput (Mbps)

synchronous

12.52/39.90

19.85/50.35

138.17/10.85

asynchronous

1.76/284.75

8.31/120.25

124.62/12.04

kernel

1.62/308.40

8.19/122.03

124.52/12.05

MIMO-OFDM is used to achieve high data rate in a real time system such as 3GPP

LTE and WiMAX. Figure 4.8 and figure 4.9 compares the throughput of the proposed

detector with asynchronous memory transfer to the performance requirement of a 5

MHz LTE MIMO configuration.

Figure 4.8 Performance compared to 5 MHz LTE 2 x 2 MIMO

Our detector can handle 4-QAM, 16-QAM, 64-QAM for 2 x 2 and 4 x 4 5 MHz LTE

MIMO system. Since our detector can achieve more than four times the performance

40

350 "|

300 4-

250 • - -

200 +- -

150 ••

100 ••
[I j M l l

50 i- '"WW i l l l l l l
I * 111111

4QAM 16QAM 64QAM

Figure 4.9 Performance compared to 5 MHz LTE 4 x 4 MIMO

requirement of 5 MHz LTE MIMO configuration for 4-QAM, 16-QAM for 2 x 2 and

for 4-QAM 4 x 4 LTE MIMO system, our detector can also handle larger 20 MHz

LTE MIMO configuration for these cases. Category 1 to category 4 devices are 2 x 2

devices, while category 5 devices are 4 x 4 devices [31]. To support 4 x 4, we need

7 times number of cores to support the workload. However, the number of cores in

GPU is growing rapidly [31]. Assuming the number of cores continue to double after

Fermi, we expect to meet the performance requirement by using two next generation

graphic cards.

4.2.3 Detector Instruction Throughput Ratio

The current implementation attempts to maximize efficiency by ensuring each

thread block is a multiple of 32 threads. By employing a regular algorithm with

allows for regular memory access, stall time can be reduced. CUDA Visual Profiler

provides instruction throughput ratio in the summary table. This metric measures

1LTE

• GPU

41

efficiency of the mapping as it is the ratio of achieved instruction rate to peak single

issue instruction rate. Accordingly, the achieved instruction rate is I/T, where / is

the number of executed warp instructions and T is the actual time it takes to run the

algorithm. The peak single instruction rate is FC/CPI, where Fc is clock frequency

and CPI is the average number of cycles per instruction, Therefore, the instruction

throughput ratio can be calculated as:

R =
I/T I x CPI x F-1

FJCPI
(4.4)

In CUDA, the average CPI is 4 cycles per instruction and each SM is clocked at

1.3GHz. The estimated runtime is shown in Table 4.3.

Table 4.3 Instruction Throughput Ratio for 2 x 2 , 16800 subcarriers

Modulation

4-QAM

16-QAM

64-QAM

I

13894

137712

1601220

T

0.08

0.45

4.98

R

0.549

0.940

0.996

The ratio is smaller than 1 since instruction throughput ratio of 1 corresponds

to the maximum instruction throughput. Instruction throughput ratio is lowest for

4-QAM since the detector does smaller number of computations per global memory

fetch. Conversely, instruction throughput ratio is close to 1 for 16-QAM and 64-QAM

42

as stall due to long device memory access for the computation intensive cases as the

detector does more computations for each global memory fetch.

4.2.4 Detector Instruction Mix

Instruction throughput ratio measures how well instructions for our MIMO de

tector executes on the hardware. However, it does not measure how well these in

structions solve our problem. We use decuda, a disassembler, to study the quality of

detector code generated by the CUDA compiler. The main steps of the algorithm are

edge reductions, path extensions and APP computations. We measure quality of the

instructions that make up our detector by looking at the loop body within these three

functions. Using the disassembler, we see that path extensions, path reductions, and

APP computations are completely unrolled. Particularly, path extension and path

reduction are essentially the same. Each loop iteration consists of two add, two abs,

two add, which is the minimum number of instructions needed to compute the par

tial distance of each incoming path. The if statement within these loops consists of

three instructions, one compare instruction that sets the predication register, another

instruction stores the minimum partial distance for the next iteration. For both path

extension and reduction, there are a total of 8 instruction per loop iteration. For

4 x 4 , there is an additional store to save the index of the best path. For the APP

computation, each loop iteration consists of one compare, one shared memory load

and two stores.

43

For 2 x 2 configuration, there are one reduction step, one extension step and two

APP computation steps. After counting the number of instructions outside of the

loop, the number of instruction (N) required for our MIMO detector is modeled as

the following:

N=113 + 16Q + 8Q (4.5)

For 4 x 4 configuration, there are three path reductions, six path extensions and

four APP computations. After counting the number of instructions outside of the

loop, the number of instruction(A^) required for our MIMO detector is modeled as

the following:

N = 600 + 81Q + 16Q (4.6)

Table 4.4 compares our model against the number of instructions reported by

Nvidia Profiler for one thread block. Note that compiled code are strip-mined into

32 wide WARP instructions during execution. Therefore we divide the number of

instruction reported by the profiler by 2 for 64QAM. Furthermore, the result reported

by profiler is approximate as it varies by a few instructions from run to run.

When Q is large, most instructions are loop iterations. For example, for 2 x 2

MIMO configuration, 74 percent of the instructions are in loops for 16-QAM. Similarly

93 percent of the time are loop iterations for 64-QAM. Since each iteration of the loop

consists of reasonable number of instructions, performance of this MIMO detector

44

Table 4.4 Number of Instructions Per Threadblock

4

16

64

2 x 2

Model

209

497

1649

Profiler

209

496

1780

4 x 4

Model

988

2152

6808

Profiler

1014

2137

9749

for 16-QAM and 64-QAM will not improve significantly more without changing the

underlying algorithm.

4.2.5 Compared to A S I C / F P G A / A S I P

Although a conventional MIMO ASIC detector could achieve higher throughput

with fewer silicon resources, it lacks the necessary flexibility to support different mod

ulation orders and different number of antennas. Moreover, the fixed-point arithmetic

employed by the ASIC has to be designed very carefully to avoid large performance

degradation. For example, the internal bit width could be large due to the correlation

of the channel matrices and the "colored noise". The GPU, on the other hand, will

never encounter performance loss due to its floating point computation capability.

Table 4.5 compares our GPU design with state-of-the-art ASIC/FPGA/ASIP de

signs in terms of throughput. Compared to our previous work [32], this work is a

better comparison since it is also a soft detector. In [33], a depth-first search detector

45

with 256 searches per level is implemented. In [3], a K-best detector with K = 5 and

real decomposition is implemented. In [34], a relaxed K-best detector with K = 48

is implemented. In [6], a K-best with K = 7 detector is implemented. We also list

our early ASIC design [26] based on the same trellis detection algorithm described

above. As can be seen, the proposed detection algorithm is not only suitable for

parallel ASIC implementation but also suitable for GPU-based parallel software im

plementation. Compared to ASIC/FPGA/ASIP solutions from [33, 3, 34, 6] for 4 x 4

MIMO systems, our GPU design can achieve comparable or even higher throughput.

In summary, the GPU design has more flexibility to support different MIMO sys

tem configurations and has the capability to support floating-point signal processing

which can eliminate the need for fixed-point design analysis.

Table 4.5 Throughput comparison with ASIC/FPGA/ASIP solutions for 4 x 4 system.

GPU

FPGA [34]

ASIP [6]

ASIC [33]

ASIC [3]

4x4 QPSK

284.7 Mbps

N/A

N/A

19.2 Mbps

N/A

4x4 16-QAM

120.0Mbps

N/A

5.3 Mbps

38.4 Mbps

53.3 Mbps

4x4 64-QAM

12.0Mbps

8.57 Mbps

N/A

N/A

N/A

ASIC [26] 300 Mbps 600 Mbps N/A

Chapter 5
Turbo Decoder on GPU

5.1 Proposed Implementation on GPU

A straight-forward implementation of the decoding algorithm requires the comple

tion of N stages of ctk computation before the start of /?& computation. Throughput

of such a decoder would be low on GPU. First, the parallelism of this decoder would

be low; since we would spawn only one thread block with 8 threads to traverse the

trellis in parallel. Second, memory required to save N stages of a*, is significantly

larger than the shared memory size. Finally, a traversal from stage 0 to stage N — 1

takes many cycles to complete and leads to very long decoding delay.

Figure 5.1 provides an overview of our implementation. At the beginning of the

decoding process, the inputs of the decoder, LLRs from the channel, are copied from

the host memory to device memory. Instead of spawning only one thread-block per

codeword to perform decoding, a codeword is split into P sub-blocks and uses P

independent thread blocks in parallel. We still assign 8 threads per each thread

block as there are only 8 trellis states. However, both the amount of shared memory

required and the decoding latency are reduced as a thread-block only needs to traverse

through y stages. After each half decoding iteration, thread blocks are synchronized

by writing extrinsic LLRs to device memory and terminating the kernel. In the device

memory, we allocate memory for both extrinsic LLRs from the first half iteration and

47

extrinsic LLRs from the second half iteration. During the first half iteration, the P

thread blocks read from extrinsic LLRs from the second half iteration. During the

second half of the iteration, the direction is reversed. The a and j3 values between

neighboring thread-blocks are exchanged to improve performance.

Host Memory
KS: ^ S K

1 Lc(ys),
' 1

Device Memory
•m ^

ir

Do J[

n

'

D,

\

n

'

D2

•M

Lc(p°), Lc(p>)

n

"

DP.,

Figure 5.1 Overview of our MAP decoder implementation

Only one MAP kernel is needed as each half iteration of the MAP decoding algo

rithm performs the same sequence of computations. However, since the input changes

and the output changes between each half iteration, the kernel needs to be reconfig-

urable. Specifically, the first half iteration reads a-priori LLRs and writes extrinsic

LLRs without any interleaving or deinterleaving. The second half iteration reads a-

priori LLRs interleaved and writes extrinsic LLRs deinterleaved. The kernel handles

reconfiguration easily with a couple of simple conditional reads and writes at the be

ginning and the end of the kernel. Therefore, this kernel executes twice per iteration.

The implementation details of the reconfigurable MAP kernel are described in the

48

following subsections.

5.1.1 Shared Memory Allocation

To increase locality of the data, our implementation attempts to prefetch data

from device memory into shared memory and keep intermediate results on die. Since

the backward traversal depends on the results from the forward traversal, we save ^

stages of afe values in shared memory from the forward traversal. Since there are 8

threads, one per trellis state, each thread block requires ^r floats for a. Similarly, we

need to save /3k to compute /3fe_i, which requires 8 floats. In order to increase thread

utilization during extrinsic LLR computation, we save up to 8 stages of Ak(sk\ub = 0)

and Afc(sfc|«t = 1), which requires 128 floats. In addition, at the start of the kernel,

we prefetch ^ LLRs from the channel and ^ a-priori LLRs into shared memory for

more efficient access. A total of - ^ + 196 floats is allocated per thread-block. Since

we only have 16KB of shared memory which is divided among concurrent executing

thread blocks, small P increases the amount of shared memory required per thread

block which reduces the number of concurrent executing thread blocks significantly.

5.1.2 Forward Traversal

During the forward traversal, each thread block first traverses through the trellis

to compute a. We assign one thread to each trellis level; each thread evaluates two

incoming paths and updates ak(sj) for the current trellis stage using ctk-i, the for-

49

ward metrics from the previous trellis stage k — 1. The decoder use Equation (3.13)

to compute «fc. The computation, however, depends on the path taken (sk-i,Sk).

The two incoming paths are known a-priori since the connections are defined by the

trellis structure as shown in Figure 3.6. Table 5.1 summarizes operands needed for

a computation. The indices of the a^ are stored in constant memory. Each thread

Table 5.1 Operands for a^ computation

Thread id {%)

0

1

2

3

4

5

6

7

ub = 0

Sk-l

0

3

4

5

1

2

5

6

Pk

0

1

1

0

0

1

1

0

ub = 1

Sk-l

1

2

5

6

0

3

4

7

Pk

1

0

0

1

0

1

1

0

loads the indices and the values Pk\ut, — 0 and Pk\ut, = 1 at the start of the kernel.

The pseudo-code for one iteration of <%k computation is shown in Algorithm 4:

The memory access pattern is very regular for the forward traversal. Threads access

50

Algorithm 4 thread i computes ctk(i)

1: a0 *- afc_i(sfc_i|u6 = 0) + Lc(y
s
k) * {pk\ub = 0)

2: oi <- afc_i(sfc_i|u6 = 1) + (ZfC(j/g) + L0(fc))

3: +Lc(p
s
k)(pk\ub = 1)

4: afc(i) = max*(a0,ai)

5: SYNC

values of ak-i in different memory banks. Since all threads access the same a-priori

LLR and parity LLR in each iteration, memory accesses are broadcast reads. There

fore, there are no shared memory conflicts in either case, that is memory reads and

writes are handled efficiently by shared memory.

5.1.3 Backward Traversal and LLR Computation

After the forward traversal, each thread block traverses through the trellis back

ward to compute /?. We assign one thread to each trellis level to compute (3, followed

by computing A0 and Ai shown in Algorithm 5. The indices of (3k+i and value of pk

are summarized in Table 5.2. Similar to the forward traversal, there are no shared

memory bank conflicts since each thread accesses an element of a or /3 in a different

bank.

After computing A0 and Ai for stage k, we can compute the extrinsic LLR for

stage k. However, there are 8 threads available to compute the single LLR, which

introduces parallelism overhead. Instead of computing one extrinsic LLR for stage

51

Table 5.2 Operands for (3k computation

Thread id (i)

0

1

2

3

4

5

6

7

ub = 0

Sfc+l

0

4

5

1

2

6

7

3

Pk

0

1

1

0

0

1

1

0

ub = l

Sfc+l

4

0

1

5

6

2

3

7

Pfc

0

0

1

1

1

1

0

0

Algorithm 5 thread i computes /?&(«) and Ao(i) and Ai(i)

1: 60 <- afc+i(sfe+1|u6 = 0) + £c(y£) * (pfcK = 0)

2: 6i <- afc+i(5fc+1|ufc = 1) + (Lc(i/fc) + La{k))

3: +Lc(p|)(pfc|u6 = 1)

4: /3fc(«) = max*(60,6i)

5: SYNC

6: A0(i) = afc(i) + Lp(i)pfe + /?fc+i(0

7: Ai(t) - ak{i) + (Lc(fc) + La(k)) + Lp(sfc)pfc + /3k{i)

52

k as soon as the decoder computes pk, we allow the threads to traverse through the

trellis and save 8 stages of Ao and Ai before performing extrinsic LLR computations.

By saving eight stages of Ao and Ai, we allows all 8 threads to compute LLRs in

parallel efficiently. Each thread handles one stage of A0 and Ax to compute an LLR.

Although this increases thread utilization, threads need to avoid accessing the same

bank when computing extrinsic LLR. For example, 8 elements of A0 for each stage is

stored in 8 consecutive addresses. Since there are 16 memory banks, elements of even

stages Ao or Ai with the same index would share the same memory bank. Likewise,

this is true for even stages of A0. Hence, sequential accesses to Ao or Aj to compute

extrinsic LLR will result in four way memory bank conflicts. To alleviate this problem,

we permute the access pattern based on thread ID as shown in Algorithm 6.

5.1.4 Inter leaver

The inter leaver is used in the second half iteration of the MAP decoding algorithm.

In our implementation, a quadratic permutation polynomial (QPP) interleaver [35],

which is proposed in the 3GPP LTE standard was used. Although the QPP inter

leaver is contention free since it can guarantee bank free memory access, where each

subblock accesses a different memory bank. However, the memory access pattern is

still random. Since the inputs are shared in device memory, memory accesses are

not necessarily coalesced. We reduce latency by pre-fetching data into the shared

53

Algorithm 6 thread i computes Le(i)

1: A0 = Ao(»)

2: Ai = Ai(«)

3: for j' = 1 to 7 do

4: index = (i + j)&7

5: A0 = max* (Ao,A0 (index))

6: Ai — max* (Ai, Ai (index))

7: Le = Ai — Ao

8: Compute write address

9: Write Le to device memory

10: end for

54

memory. The QPP interleaver is defined as:

II(x) = fa + f2x
2 (mod N). (5.1)

Direct computation of II(a;) using Equation (5.1) can cause overflow. For example,

61432 can not be represented as a 32-bit integer. The following equation is used to

compute II(x) instead:

U(x) = (A + f2x (mod N)) • x (mod N) (5.2)

Another alternative is to compute H(x) recursively [13], which requires II(x) to be

computed before we can compute n (x + 1). This is not efficient for our design as

we need to compute several interleaved addresses in parallel. For example, during

the second half of the iteration to store extrinsic LLR, 8 threads need to compute 8

interleaved address in parallel. Equation (5.2) allows efficient address computation

in parallel.

Although our decoder is configured for the 3GPP LTE standard, one can replace

the current interleaver function with another function to support other standards.

Furthermore, we can define multiple interleavers and switch between them on-the-fly

since the interleaver is defined in software in our GPU implementation.

55

5.1.5 max* Function

Both natural logarithm and natural exponential are supported on CUDA. We

support full-log-MAP as well as max-log-MAP [36]. We compute full-log-MAP by:

m*ax(a, b) = max(a, b) + ln{\ + e_|fc~a|) (5.3)

and max-log-MAP is defined as:

max(a, b) = max(a,b). (5.4)

Throughput of full-log-MAP will be slower than the throughput of max-log-MAP.

Not only is the number of instructions required for full-log-MAP greater than the

number of instructions required for max-log-MAP, but also the natural logarithm

and natural exponential instructions takes longer to execute on GPU compared to

common floating operations, e.g. multiply and add. An alternative is using a lookup

table in constant memory. However, this is even less efficient as multiple threads

access different entries in the lookup table simultaneously, only the first entry will be

a cached read.

5.2 Performance Results

To evaluate the performance of our Turbo decoder, we tested our Turbo decoder

on a Linux platform with 8GB DDR2 memory running at 800 MHz and an Intel

Core 2 Quad Q6600 running at 2.4Ghz. The GPU used in our experiment is a Nvidia

56

TESLA C1060 graphic card, which has 240 stream processors running at 1.3GHz with

4GB of GDDR3 memory running at 1600 MHz.

5.2.1 Decoder Performance

Since our decoder can change P, which is the number of sub-blocks to be decoded

in parallel, we first look at how the number of parallel sub-blocks affects the overall

decoder performance. In our setup, the host computer first generates the random

bits and encodes the random bits using a 3GPP LTE Turbo encoder. After passing

the input symbols through the channel with AWGN noise, the host generates LLR

values which are fed into the decoding kernel running on GPU. For this experiment,

we tested our decoder with P = 32,64,96,128 for a 3GPP LTE Turbo code with

N = 6144. In addition, we tested both full-log-MAP as well as max-log-MAP with

the decoder performing 6 decoding iterations.

Figure 5.2 shows the bit error rate (BER) performance of the our decoder using

full-log-MAP, while Figure 5.3 shows the BER performance of our decoder using

max-log-MAP. In both cases, performance of the decoder decreases as we increase

P. The performance of the decoder is significantly better when full-log-MAP is used.

Furthermore, we see that even with parallelism of 96, where each sub-block is only

64 stages long, provides performance that is within O.ldB of the performance of the

optimal case (P — 1).

10", f******
10"

~ 10
LLI

5 io"4

HI

m 10-s

10^

10"

- * -
- © .
- A ™
-> a -
- + -

p=i
P=32
P=64
P=96
P=128

0.1 0.2 0.3 0.4 0.5 0.6 0.7
E„/No[dB]

Figure 5.2 BER performance (BPSK, full-log-MAP)

57

10"

io"'C

10"

a.
LU

B 10"

HI

10"

10

10"

-*-
-©-
~ JL~
** i ^ ™

- + -

p=i
P=32
P=64
P=96
P=128

0.1 0.2 0.3 0.4
W<JB]

0.5 0.6 0.7

Figure 5.3 BER performance (BPSK, max-log-MAP)

58

5.2.2 Decoder Throughput

In this case, we measure the time it takes the decoder to decode a batch of

100 codewords. Since our decoder can support various code sizes, we can decode

TV = 64,1024,2048,6144 with various numbers of decoding iterations and parallelism

P. However, we noticed that performance of the decoder is only dependent on W —

p. This is expected as decoding time is linearly dependent with the number of

trellis stages that the decoder needs to traverse. Therefore, we report the decoder

throughput as a function of W which can be used to find the throughput of different

decoder configurations. For example, if N = 6144, P = 64, and the decoder performs

1 iteration, the throughput of the decoder is the throughput when W = 96. The

throughput of the decoder is summarized in Table 5.3.

Throughput of the decoder is inversely proportional to the number iterations

performed. The throughput of the decoder after m iterations can be approximated

as T0/m, where T0 is the throughput of the decoder after 1 iteration.

Although throughput of full-log-MAP is slower than max-log-MAP as expected,

the difference is small while full-log-MAP improves performance of the decoder sig

nificantly. Therefore, full-log-MAP is a better choice for this architecture.

59

Table 5.3 Throughput vs W

I t e r

1

2

3

4

5

6

Max-log-MAP throughput/ Full-log-MAP throughput (Mbps)

W - 3 2

49.02/36.59

24.14/18.09

16.01/12.00

11.98/9.01

9.57/7.19

7.97/5.99

W=64

34.75/23.87

17.09/12.72

11.34/8.45

8.48/6.51

6.77/5.2

5.64/4.33

W=96

26.32/19.50

12.98/9.62

8.57/6.39

6.41/4.78

5.12/3.82

4.26/3.18

W=128

17.95/12.19

8.82/5.59

5.85/3.97

4.37/2.97

3.49/2.37

2.91/1.97

5.2.3 Arch i tec tu re Compar i son

Table 5.4 compares our proposed decoder with other programmable Turbo decoder

solutions. As can be seen, our decoder with W = 64 compares favorably in terms of

throughput and performance. We can support both the full-log-MAP (FLM) algo

rithm and the simplified max-log-MAP(MLM) algorithm while most other solutions

only support the sub-optimal max-log-MAP algorithm.

60

Tal

Work

[37]

[38]

[38]

[39]

[40]

[12]

ours

ale 5.4 Our decoder

Architecture

Intel Pentium 3

Motorola 56603

STM VLIW DSP

TigerSHARC DSP

TMS320C6201 DSP

32-wide SIMD

Nvidia C1060

vs other programmable Turbo decoders

MAP Algorithm

MLM

MLM

FLM

MLM

MLM

MLM

MLM/FLM

Throughput

366 Kbps

48.6 Kbps

200 Kbps

2.399 Mbps

500 Kbps

2.08 Mbps

6.77/5.2Mbps

Iter.

1

5

5

4

4

5

5

Chapter 6
Conclusion and Future Work

Both MIMO detector and Turbo decoders are used in current and upcoming stan

dards to improve performance of the wireless systems. The inherently large decoding

latency and a complex iterative decoding algorithm have made it very difficult to

achieve high throughput in general purpose processors or digital signal processors.

As a result, these communication blocks are implemented in ASIC or FPGA. In this

thesis, we aim to show that GPUs, homogeneous multi-core processors, can handle

the workload and achieve high throughput. Since not all algorithms map well on

this architecture, we showed how to implement these processing blocks efficiently on

GPU. Particularly, we presented a reconfigurable soft MIMO detector and a 3GPP

LTE compliant Turbo decoder on GPU. In the case of MIMO detector, we showed the

performance of multi-pass trellis traversal performs similar to K-best MIMO detector

with clipping and out-performs one-pass trellis traversal with LLR clipping. By using

the Nvidia profiler to measure how well the compiled code runs on GPU and the

disassembler to study the quality of detector code generated by the CUDA compiler,

we showed that this algorithm is well-suited to the GPU. In addition, we showed

our detector's throughput compared well with the conventional fixed-point VLSI and

FPGA implementations. In the case of Turbo decoder, we implemented a parallel

62

window algorithm. By dividing the codeword into many sub-blocks to be decoded in

parallel, workload was partitioned across cores on GPU. We also presented how both

performance and throughput was affected by sub-block size and faster throughput

than other programmable devices even though the full-log-MAP algorithm is used.

Since both MIMO detection and the decoder is done in software, we can reconfigure

the detector and decoder to support different MIMO configuration and different code

standards.

The architecture of GPU is driven by the demand for graphics toward photo

realism, and graphics processors are becoming more powerful with each revision. The

next generation Nvidia graphics processor, Fermi [41], will increase performance while

reducing programming complexity by offering the following changes. First the amount

of shared memory is increased and a LI cache and L2 cache are added. Each SIMD

core now has 64KB of memory which can be partitioned between LI cache and shared

memory by the programmer. All SIMD cores are now connected to a unified L2 cache.

The cache hierarchy will improve performance in several ways. For example, the

increased amount of shared memory will improve the performance of Turbo decoder

as we can prefetch more data on-die and decrease parallelism required to achieve

good throughput. The unified L2 cache will reduce performance loss of the Turbo

decoder by allowing the thread blocks to share data across cache instead of external

device memory. Furthermore, although the architecture remains SIMD, Fermi allows

63

multiple kernels to execute concurrently. For example, MIMO detection kernel and

Turbo decoding kernel execute concurrently with the decoding block. The advance

in the GPU architecture will allow us to improve the current decoder by evaluating

other partitioning and memory strategies to improve performance and throughput.

Furthermore, this will allow us to implement a completely iterative MIMO receiver

by combining this decoder with MIMO detector on GPU.

64

References

1. A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei,

"VLSI Implementation of MIMO Detection Using the Sphere Decoding Algo

rithm," IEEE J. Solid-State Circuit, vol. 40, pp. 1566-1577, July 2005.

2. K. Wong, C. Tsui, R. Cheng, and W. Mow, "A VLSI architecture of a K-best

lattice decoding algorithm for MIMO channels," in IEEE Int. Symp. on Circuits

and Syst, vol. 3, May 2002, pp. 273-276.

3. Z. Guo and P. Nilsson, "Algorithm and implementation of the K-best sphere

decoding for MIMO detection," IEEE J. Selected Areas in Commun., vol. 24,

pp. 491-503, Mar 2006.

4. X. Huang, C. Liang, and J. Ma, "System Architecture and Implementation of

MIMO Sphere Decoders on FPGA," IEEE Tran. VLSI, vol. 2, pp. 188-197, Feb

2008.

5. K. Amiri, C. Dick, R. Rao and J. R. Cavallaro, "A High Throughput Configurable

SDR Detector for Multi-user MIMO Wireless Systems," Springer Journal of

Signal Processing Systems, 2009.

6. J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala, and M. Myllyla,

65

"Application-Specific Instruction Set Processor Implementation of List Sphere

Detector," EURASIP Journal on Embedded Systems, 2007.

7. D. Garrett, B. Xu, and C. Nicol, "Energy efficient turbo decoding for 3G mobile,"

in International symposium on Low power electronics and design. ACM, 2001,

pp. 328-333.

8. C. Chaikalis and J. Noras, "Reconfigurable turbo decoding for 3G applications,"

Elsevier Signal Processing, vol. 84, pp. 1957-1972, Oct. 2004.

9. M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, "A 24Mb/s

radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wireless," in IEEE Int.

Solid-State Circuit Conf. (ISSCC), Feb. 2003.

10. M. Martina, M. Nicola, and G. Masera, "A Flexible UMTS-WiMax Turbo De

coder Architecture," IEEE Transactions on Circuits and Systems II, vol. 55,

April 2008.

11. M. Shin and I. Park, "SIMD processor-based turbo decoder supporting multi

ple third-generation wireless standards," IEEE Trans, on VLSI, vol. vol.15, pp.

pp.801-810, Jun. 2007.

12. Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, A. Reid, and K. Flautner, "De-

66

sign and implementation of turbo decoders for software defined radio," in IEEE

Workshop on Signal Processing Design and Implementation (SIPS), Oct. 2006.

13. Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, "Configurable and Scalable High

Throughput Turbo Decoder Architecture for Multiple 4G Wireless Standards,"

in IEEE International Conference on Application-Specific Systems, Architectures

and Processors (ASAP), July 2008, pp. 209-214.

14. P. Salmela, H. Sorokin, and J. Takala, "A Programmable Max-Log-MAP Turbo

Decoder Implementation," Hindawi VLSI Design, vol. vol.2008, pp. pp. 636-640,

2008.

15. C.-C. Wong, Y.-Y. Lee, and H.-C. Chang, "A 188-size 2.1mm2 reconfigurable

turbo decoder chip with parallel architecture for 3GPP LTE system," in 2009

Symposium on VLSI Circuits, June 2009, pp. 288-289.

16. D.-S. Cho, H.-J. Park, and H.-C. Park, "Implementation of an efficient UE de

coder for 3G LTE system," in International Conference on Telecommunications,

June 2008.

17. J. Berkmann, C. Carbonelli, F. Dietrich, C. Drewes, and W. Xu, "On 3G

LTE Terminal Implementation - Standard, Algorithms, Complexities and Chal

lenges," in International Wireless Communications and Mobile Computing Con

ference, Aug. 2008.

67

18. J.-H. Kim and I.-C. Park, "A unified parallel radix-4 turbo decoder for mobile

WiMAX and 3GPP-LTE," in IEEE Custom Integrated Circuits Conference, Sept.

2009, pp. 487-490.

19. G. Falcao, V. Silva, and L. Sousa, "How GPUs Can Outperform ASICs for Fast

LDPC Decoding," in ICS '09: Proceedings of the 23rd International Conference

on Super computing, pp. 390-399.

20. NVIDIA Corporation, CUDA Compute Unified Device Ar

chitecture Programming Guide, 2008. [Online]. Available:

http://www.nvidia.com/object/cuda_develop.html

21. U. Kapasi, W. J. Dally, S. Rixner, J. D. Owens, and B. Khailany, "The Imag

ine stream processor," in Proceedings 2002 IEEE International Conference on

Computer Design, Sep. 2002, pp. 282-288.

22. W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, and A. Das, "Stream pro

cessors: Progammability and efficiency," ACM Queue, vol. 2, no. 1, pp. 52-62,

2004.

23. Advanced Micro Devices, ATI Compute Abstraction Layer

(CAL) Programming Guide (v2.0), 2010. [Online]. Available:

http://developer.amd.com/documentation

http://www.nvidia.com/object/cuda_develop.html
http://developer.amd.com/documentation

68

24. B. Hochwald and S. Brink, "Achieving Near-Capacity on a Multiple-Antenna

Channel," IEEE Tran. Commun., vol. 51, pp. 389-399, Mar. 2003.

25. U. Fincke and M. Pohst, "Improved Methods for Calculating Vectors of Short

Length in a Lattice, Including a Complexity Analysis," Mathematics of Compu

tation, vol. 44, no. 170, pp. 463-471, April 1985.

26. Y. Sun and J. R. Cavallaro, "High throughput vlsi architecture for soft-output

mimo detection based on a greedy graph algorithm," in GLSVLSI '09: Proceed

ings of the 19th ACM Great Lakes symposium on VLSI. New York, NY, USA:

ACM, 2009, pp. 445-450.

27. , "A new mimo detector architecture based on a forward-backward trellis

algorithm," in IEEE 42nd Asilomar Conference on Signals, Systems and Com

puters (ASILOMAR'08), Oct. 2008.

28. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Linear Codes

for Minimizing Symbol Error Rate," IEEE Transactions on Information Theory,

vol. IT-20, pp. 284-287, Mar. 1974.

29. Y. L. C. de Jong and T. J. Willink, "Iterative tree search detection for mimo

wireless systems," IEEE Tran. on Comm., vol. 53, no. 6, pp. 930-935, 2005.

30. Y. Sun and J. R. Cavallaro, "A low-power 1-Gbps reconfigurable LDPC decoder

69

design for multiple 4G wireless standards," in IEEE International SOC Confer

ence, Spet. 2008, pp. 367-370.

31. "Evolved Universal Terrestrial Radio Access (EUTRA) and Evolved Universal

Terrestrial Radio Access Network (EUTRAN), 3GPP TS 36.300."

32. Y. Sun and J. R. Cavallaro, "Reconfigurable real-time mimo detector on gpu," in

IEEE 43rd Asilomar Conference on Signals, Systems and Computers (ASILO-

MAR'09), Nov. 2009.

33. D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge, "Silicon Com

plexity for Maximum Likelihood MIMO Detection Using Spherical Decoding,"

IEEE J. Solid-State Circuit, vol. 39, pp. 1544-1552, Sep 2004.

34. S. Chen, T. Zhang, and Y. Xin, "Relaxed K-Best MIMO Signal Detector Design

and VLSI Implementation," IEEE Tran. VLSI, vol. 15, pp. 328-337, Mar. 2007.

35. J. Sun and O. Takeshita, "Interleavers for turbo codes using permutation polyno

mials over integer rings," IEEE Trans. Inform. Theory, vol. vol.51, pp. 101-119,

Jan. 2005.

36. P. Robertson, E. Villebrun, and P. Hoeher, "A comparison of optimal and sub-

optimal MAP decoding algorithm operating in the log domain," in IEEE Int.

Conf. Commun., 1995, pp. 1009-1013.

70

37. M. Valenti and J. Sun, "The UMTS Turbo Code and a Efficient Decoder Im

plementation Suitable for Software-Defined Radios," International Journal of

Wireless Information Networks, vol. 8, no. 4, pp. 203-215, Oct. 2001.

38. H. Michel, A. Worm, M. Munch, and N. Wehn, "Hardware software trade-offs for

advanced 3G channel coding," in Proceedings of Design, Automation and Test

in Europe, 2002.

39. K. Loo, T. Alukaidey, and S. Jimaa, "High performance parallelised 3GPP turbo

decoder," in IEEE Personal Mobile Communications Conference, April 2003, pp.

337-342.

40. Y. Song, G. Liu, and Huiyang, "The implementation of turbo decoder on DSP in

W-CDMA system," in International Conference on Wireless Communications,

Networking and Mobile Computing, Dec. 2005, pp. 1281-1283.

41. NVIDIA Corporation, Fermi Compute Architecture White Paper, 2010. [Online].

Available: http://www.nvidia.com/object/fermi_architecture.html

http://www.nvidia.com/object/fermi_architecture.html

