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ABSTRACT 

The Axon Ethernet Device 

by 

Michael Foss 

Data centers are growing in importance since computation is moving from personal 

computers to the Internet. Data centers often use Ethernet as the network fabric; 

however Ethernet presents fundamental limitations to scalability. 

This work examines the design, implementation, and characterization of the Axon, 

a network device that overcomes Ethernet's scalability limitations while maintaining 

the simplicity of such devices. Axons use cut-through routing to reduce the latency 

of communication and source-routing both to eliminate the the spanning tree and to 

reduce state within the network. 

Using just one redundant link in small network has been shown to give a 96% 

increase to UDP bandwidth and a 63% increase to TCP bandwidth. Experiments 

confirm that an Axon's latency is an order of magnitude faster than that of a store-

and-forward switch in an uncongested network, thereby increasing the potential di­

ameter and improving the scalability of an Ethernet network. 
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Chapter 1 

Introduction 

Data centers are becoming increasingly more important to the utility of Internet. 

Users expect that a query searching the entire Internet responds on the order of one 

second. Users expect to be able to browse shops and purchase products online without 

any noticeable delay. As netbooks become more common, users are performing more 

compute-intensive tasks on the Internet that they had previously done locally (e.g. 

word processing, photo editing, and gaming among others). Data centers are typically 

the place where these tasks are physically computed. 

The network architecture is a critical component of the data center. In order 

to reduce costs, data centers are typically composed of many commodity computers 

connected to each other. The communication between these computers is what gives 

the data center its power to handle high loads of computation. In order to reduce the 

amount of time to process a request from a user outside the data center, a request 

may become highly parallelized, as in the case of map/reduce. Hosts inside the data 

center need high bandwidth to other hosts inside the data center in order to fulfill 

these requests most efficiently. 

Indeed there are specialized network fabrics for data center networking; however, 

these come at a high cost. One major goal of the data center is to maximize the 
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computing power to cost ratio. Since Ethernet is so widespread, it has become cheap 

relative to other network fabrics and is thus the most commonly used data center 

network fabric. 

It is well known that switched Ethernet does not scale well to large numbers of 

hosts [1]. In fact, the very mechanisms that make switched Ethernet easy to manage 

also hinder its scalability. As the network size increases, dynamic address and location 

discovery using broadcast packets and packet flooding become prohibitively expensive 

for both switches and hosts connected to the network. 

As a consequence of switched Ethernet's limitations, the current practice is to 

break the network into subnets and use IP routing between the subnets. Each subnet 

can then be its own independent Ethernet network. In effect, IP routers, which 

originally existed at the edge of the data center network, now form the core. However, 

this creates additional management overhead. Furthermore, the route computation 

and storage needs of a network device in this architecture scale with the amount and 

type of traffic that traverses the device. 

1.1 The Axon 

This thesis introduces the Axon, an Ethernet-compatible device for creating large-

scale, local-area networks. Specifically, an Axon is an inexpensive, practical device 

that replaces an Ethernet switch. In fact, to a directly connected host, an Axon 

appears to be an Ethernet switch because the Axon and host communicate using the 
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standard Ethernet datalink and physical layer protocols. Moreover, Axons provide 

the same ease of management as Ethernet switches. A host can be connected to an 

Axon without manual network configuration. However, among themselves, Axons use 

source-routed Ethernet, a new datalink layer protocol. 

Source-routed Ethernet has two advantages over switched Ethernet. First, it stores 

all network and routing state needed by a host in the local Axon—the Axon to which 

the host is directly connected. Therefore, regardless of the network's scale, the route 

computation and storage needs of a single Axon are proportional to the demands 

of its locally connected hosts. Axons in the core of the network can thus handle a 

much larger number of traffic flows, as no routing computation or storage resources 

are necessary for flows that traverse the Axon. Second, source-routing allows for 

arbitrary network topologies. Switched Ethernet requires that the network topology 

have no cycles, thus limiting the bandwidth between hosts. Because no cycles are 

allowed, switched Ethernet also creates the conditions for oversubscription of links 

at the root of the tree. By definition, source-routing allows a packet to take any 

available path to reach its destination. 

Others have proposed architectural modifications to Ethernet switches to enable 

large-scale Ethernet networks [2, 3, 1, 4, 5, 6, 7, 8, 9]. These prior techniques move the 

responsibility for routing among hosts from the IP routers to the Ethernet switches. 

This requires the switches to maintain routing tables and other network state for all 

traffic flows that traverse the switch. This effectively replaces lightweight Ethernet 
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Route 

Storage 

Topology 

Redundant 

Links 

Standard Ethernet 

Since this network uses destination-

based routing, switches must have 

state for each flow that uses the 

switch. 

The only active topology is a tree. 

Redundant links are used only for 

protection from network failure. 

Axon Network 

Since a source route needs only to 

be determined initially, Axons only 

need state for flows originating from 

hosts directly connected 

Axons may employ arbitrary topolo­

gies 

All redundant links in the network 

may be used. 

Table 1.1 : Key benefits of an Axon network over a standard Ethernet network. 

switches with heavyweight "Ethernet routers". While these techniques do reduce 

the management overhead of IP routing and subnetting, they do not consider the 

practicality, complexity, and cost of the required network devices. 

An Axon is a simple, practical device because it uses source-routing to forward 

network traffic. As a consequence, Axons only need to store routing state for locally 

connected hosts. Source-routing has the additional benefit beyond other scalable 

Ethernet approaches in that it allows much more control over bandwidth provisioning. 

Moreover, by using source-routing, the initial Axon along a path is the only Axon 

that needs to consult a large hardware table to determinescalability a route through 

the network. In contrast, every Ethernet switch and IP router must always perform 

a route lookup in a large hardware table for every packet that traverses the switch or 
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Figure 1.1 : Prototype of the Axon Ethernet Device 

router. Furthermore, the switching fabric inside the Axon uses cut-through routing to 

minimize latency. These key features of the Axon device—local resource management, 

source-routing, and cut-through routing—combine to create a powerful building block 

for future Ethernet networks. 

A prototype Axon device, shown in Figure 1.1 demonstrates the practicality of 

source-routed Ethernet. Table 1.1 shows some of the key benefits given by the Axon 

architecture. The prototype Axon achieves latencies of less than lus per hop, com­

pared with 7-28ifS per hop in switched Ethernet. Furthermore, the prototype Axon is 

able to saturate lGbps Ethernet links and fairly distribute bandwidth among compet­

ing traffic flows in the face of congestion. These characteristics result in demonstrable 

improvements in performance for network-intensive applications. For example, Axon 

devices improve the performance of PostMark, a file server benchmark, by 20-77% 
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for clients connecting to an NFS file server over the network. 

1.2 Contributions 

This thesis makes the following contributions. 

• The first contribution of this thesis is the design of the Axon network device. 

The design proposes using transparent source routing to set up source routes 

in the Axon network. By using transparent source routing, redundant links 

in the network may be utilized in the network topology, and no host needs 

to be modified. Furthermore, routes are stored on the local Axon, which is an 

improvement over standard Ethernet where each Ethernet switch must maintain 

the state of all flows using the switch. 

• The second contribution of this thesis is the implementation of the Axon. This 

implementation verifies that the design is functional and hosts can indeed take 

advantage of source routing without modification. We verify that the Axon can 

transparently replace an Ethernet switch. 

• The third contribution is the characterization of the Axon based on the proto­

type implementation. We show that a user application on a host can benefit 

from the reduced latency of cut-through routing. Furthermore, we show that an 

Axon network can take advantage of redundant links in the network and give 

a bandwidth increase of 96% for UDP traffic and 63% for TCP traffic. These 
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measurements show that the Axon is indeed well-suited for being the substrate 

of a data center network. 

1.3 Organization 

This thesis is organized in the following way. Chapter 2 gives the relevant background 

information on the operation of Ethernet and IP, with particular emphasis on the scal­

ability limitations of Ethernet in the data center. Some of the related work on scaling 

Ethernet and the limitations of these approaches are discussed. Chapter 3 describes 

the Axon's design and architecture. The following chapter compares the performance 

of Axon networks to that of standard Ethernet networks. Finally, chapter 5 concludes 

this thesis. 



8 

Chapter 2 

Background 

This chapter will present an overview of the operation of Ethernet and how it is used 

in the data center. It also points out some of the problems with scaling Ethernet. 

Section 2.1 explains how Ethernet works and gives some of its problems with scaling. 

Section 2.2 explains how the DHCP and ARP protocols use broadcast packets to 

communicate with other IP hosts on the same subnet. Section 2.3 explains some of the 

drawbacks of using the IP layer to solve the scalability problems of Ethernet. Section 

2.4 explains how Ethernet is typically used in the data center. Finally, section 2.5 

presents some of the work others have done to combat Ethernet's scalability problems. 

2.1 Ethernet 

Switched Ethernet is a truly ubiquitous technology. Ethernet interfaces are stan­

dard equipment in a wide range of computer systems, from embedded devices to 

mainframes. Moreover, switched Ethernet is deployed in a variety of environments, 

including home networks, office networks, data center networks, and campus net­

works. 

A key reason for switched Ethernet's wide-spread deployment is its ease of oper­

ation. First, Ethernet equipment will operate with little or no manual configuration. 
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Bytes: (6) (6) (2) (4) 

DstAddr SrcAddr Type Data CRC 

Figure 2.1 : Ethernet packet format. 

Interface addresses, known as Media Access Control (MAC) addresses, are simple 

globally unique identifiers that are assigned by hardware manufacturers, and packet 

forwarding is set up automatically. Second, switched Ethernet is self healing. It 

can automatically take advantage of redundant network connectivity to recover from 

network failures. 

Switched Ethernet's ease of operation derives in large part from its ability to flood 

packets throughout the network. Specifically, flooding enables a packet to reach the 

destination host's interface without any configuration of that interface or the network, 

regardless of the interface's location in the network topology. However, since Ethernet 

packets do not have a time-to-live (TTL) field (see Figure 2.1), the network topology 

must not have any cycles. Otherwise, flooded packets will circulate endlessly inside 

network cycles. Even worse, flooded packets will be duplicated at the intersection of 

two network cycles. 

Prohibiting cycles in the network topology does, in principle, eliminate the pos­

sibility of redundant links in the network. However, switched Ethernet permits re­

dundant links because their use is severely restricted. Specifically, they are only used 

to heal the network after a failure. They are never used to provide additional band-
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width. Ethernet switches employ a distributed algorithm, such as the Rapid Spanning 

Tree Protocol (RSTP), to reach agreement among the switches on a cycle-free active 

topology that is a spanning tree for the network topology. Furthermore, the Ethernet 

switches only use the active topology when forwarding packets to their destination. 

In effect, redundant network links are disabled. However, in the event of a network 

failure, the switches may selectively reactivate one or more disabled links and re­

configure the active topology to use those these links, thereby healing the network. 

Under ideal conditions, RSTP achieves a reconfiguration time that is on the order of 

the maximum communication delay across the network. During this time, packets 

may be lost, duplicated, or otherwise routed incorrectly. 

Because Ethernet does not allow an active topology with cycles, the cross-section 

bandwidth is effectively limited to that of one link. Furthermore, even though two 

hosts may be connected by a physically shorter path through the network, packets 

are restricted to travel along the active topology. 

The Ethernet packet format, as shown in Figure 2.1, is very simple. The header 

contains the destination address of the target host, the source address of the origi­

nating host, and a protocol type field, which describes the encapsulated data. The 

remainder of the packet is the encapsulated data, such as a TCP/IP packet, and a 

CRC for verifying the integrity of the packet. 

To reduce packet flooding, Ethernet switches automatically perform address learn­

ing, which is the process of mapping the locations of interface addresses within the 
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active topology. Specifically, whenever a packet is received by a switch port p, a 

mapping is created from the packet's source address a to the port p. Typically this 

mapping is stored in a content-addressable memory (CAM). Later, if a packet with a 

destination address a is received on a port other than p, instead of flooding the packet 

on all ports it is forwarded only to port p. Eventually, if the mapping of address a to 

port p is not reused, it will be discarded. Thus the number of hosts on an Ethernet 

segment is effectively limited to the size of the Ethernet switch's CAM; segments with 

more hosts may see excessive flooding due to packets overflowing the switch's CAM. 

2.1.1 Link Aggregation Control Protocol 

Link Aggregation Control Protocol (LACP) [10] is often used in Ethernet networks 

to increase the bandwidth between two devices by connecting them together with 

multiple Ethernet links. However, LACP's original intent was to provide additional 

network redundancy rather than additional bandwidth. One MAC address is chosen 

as the logical source MAC of all aggregated links. A conversation is some set of frames 

to be transmitted from one device to another where it is important that ordering 

between the frames remains consistent, as in a single TCP flow. The definition of a 

conversation is purposely vague to allow for different implementations. 

The distribution function is in charge of assigning which output port a packet takes 

when it leaves on one of the aggregated links. Typically, network devices implement 

the distribution function as a hash of several fields within the network packet. The 
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main requirement is that within a conversation no packets are duplicated or reordered. 

In this way, the link aggregation is transparent to the higher network protocols. A 

single conversation, however, is still limited by the maximum throughput of a single 

link. While LACP can help increase the bandwidth over a busy link in the Ethernet 

network, it is generally limited in that it must use a hash for the distribution function, 

which is not guaranteed to disseminate the traffic optimally. 

2.2 Broadcast Packets in the Data Center 

For hosts communicating via IP, the main two types of packets that are broadcast 

over an Ethernet segment are DHCP and ARP packets. These comprise the Ethernet 

broadcast traffic most relevant to the data center. 

2.2.1 Dynamic Host Configuration Protocol 

The Dynamic Host Configuration Protocol (DHCP) allows hosts to join a network 

without any manual configuration. For example, a host can use DHCP to learn its 

IP address and its default IP router. 

In the general C8LS6, BJ host will broadcast a DHCP discovery message over the Eth­

ernet network. This message will therefore be received by all of the DHCP servers 

in the network. Any number of these servers may respond with a DHCP offer mes­

sage, which is unicast to the host. The host chooses one of these DHCP offers and 

broadcasts a DHCP request message indicating its choice, thereby simultaneously 
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informing all of the servers. Finally, only the chosen server responds with a DHCP 

acknowledge message, which is unicast to the host. 

The host's "lease" on the configuration provided by the DHCP server also has 

an expiration time. Before the lease expires, the host will attempt to renew its 

configuration lease with the server from which it came. In this case, the host will 

skip the first phase of the protocol, and begin with a unicast DHCP request to the 

server. If the host does not receive a DHCP acknowledgement renewing the lease 

before its expiration, the host falls back to the general case and broadcasts a new 

DHCP discovery message. 

2.2.2 Address Resolution Protocol (ARP) 

When an IP host sends an IP message to another IP host residing on the same 

Ethernet network, it sends the message directly without the involvement of a router. 

However, before the message can be sent, the sending host must discover the receiving 

host's MAC address. To discover the receiving host's MAC address, the sending host 

uses the Address Resolution Protocol (ARP). In this case, the sending host broadcasts 

a message containing an ARP request on the Ethernet network. The ARP request 

specifies the IP address of the host whose MAC address is sought. Since the ARP 

request is broadcast, every host on the Ethernet network will receive it; hosts residing 

on large Ethernet segments will see much irrelevant ARP traffic. When a host receives 

an ARP request specifying its IP address, it responds with an ARP reply specifying 
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its MAC address. The ARP reply is unicast to the requester. When the ARP reply is 

received by the requester, the translation from IP address to MAC address is cached, 

and the IP message is unicast using the discovered MAC address. 

In addition, all hosts in the network take advantage of the fact that ARP requests 

are broadcast to avoid future ARP requests of their own. Specifically, the receiver 

of an ARP request learns the mapping from the requester's IP address to its MAC 

address, and caches this information. In fact, a host may spontaneously send an ARP 

request specifying its own IP address as a way of announcing its MAC address. In 

this case, no host is expected to respond. 

2.3 IP 

As mentioned in the previous section, Ethernet has several inherent limitations to 

scalability. Because of this, often the internet protocol (IP) layer is used to scale 

networks. Each host in an IP network has a unique IP address (which may be 

assigned by a DHCP server). Unlike Ethernet addresses, IP addresses are related 

to the host's location in a network. Therefore, network architects must carefully plan 

the network IP topology (in data centers, campus networks, etc.) in order to allow 

for future growth and the most efficient communication between active hosts. 

IP routers are responsible for moving incoming IP packets closer to their ultimate 

destination in the IP network. Assuming that the IP network is layered on top 

of multiple Ethernet networks, each port of the IP router connects to a different 
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Ethernet segment and performs the routing required to transfer packets from one 

Ethernet segment to another. When a packet arrives at a router, its IP address is 

inspected against a routing table. This table maps a given range of IP addresses to 

a specific port on the router. The range of IP addresses is specified by the most 

significant bits in the IP address, or, the prefix. The router examines the destination 

IP address of an incoming packet and determines the output port based on the longest 

matching prefix of its routing table. Typically this lookup is performed by a ternary 

CAM (TCAM), which takes up a larger area and more power than the CAM that is 

found on an Ethernet switch. 

The operation of the routing table is what ties an IP address to a host's location in 

the network. Routing tables in an IP network must be globally coordinated in order 

for packets may reach all available destinations on the network. Thus, IP networks 

require further management in a way that Ethernet networks do not. Furthermore, 

routing tables must be modified each time a change is made to the network topology. 

Several protocols exist in order to automatically update the routing tables in a net­

work, but enforcing network policies (such as a firewall) may increase the complexity 

required to maintain consistent routing tables across the IP network or even require 

setting the routing tables manually. 
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2.4 Data Centers and Ethernet 

A data center is an aggregation of thousands or even hundreds of thousands of servers. 

These are particularly beneficial for cloud computing, where one uses an Internet 

service to do work as opposed to one's own host machine. The applications of interest 

here are office-type documents, Internet search, or cloud computing services, such as 

Amazon's EC2. These services require extensive network communication within the 

data center. 

It is desirable to use Ethernet in the data center because it is ubiquitous and is thus 

cheaper than other technologies. Also, using Ethernet allows servers from different 

generations to be used side by side. Finally, as previously discussed, Ethernet is a 

simple protocol and needs little or no management. 

Data centers would benefit in many different ways if it were possible to have 

one large, flat Ethernet network connecting all hosts. First, the network architects 

would not need to segment the IP address space. This would make it easier for 

data centers to construct and to grow . Second, the data center's network would be 

cheaper to build, as it would not require IP routers to handle internal traffic. IP 

routers are generally more expensive than Ethernet switches due to their additional 

capabilities and more expensive route lookup function. Third, any virtual machine 

on the network could migrate to any physical host while maintaining the same IP 

address. This capability would allow data centers to run more efficiently as it enables 

arbitrary virtual machine migration. Fourth, the management overheads of managing 
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the IP network would be reduced or even diminished. 

2.5 Related Work 

The benefits of Ethernet networking are widely recognized, which is why it is so 

popular today. However, the scalability limitations of Ethernet are also well known. 

These previous observations have all led to novel approaches to scaling Ethernet. 

Many of them, however, still involve network-wide dissemination of topology and/or 

routing information [4, 5, 8, 9]. More recent approaches have further reduced the 

overhead of scaling Ethernet [2, 3, 6]. However, in these schemes, each device still 

must provide storage and computation resources for all flows that traverse the device. 

The computation, but not storage, requirements can be reduced by offloading the 

route calculation to either a distributed control plane [1] or a wafer-thin control 

plane [7]. 

Identity-based routing can also be used to improve the scalability of local area 

networks [11, 12, 13]. These prior techniques, however, do not route directly to the 

destination. Instead, they determine paths using a hash of the destination identifier. 

These paths limit the route that a packet may take to reach a destination in the 

network. 

OpenFlow switches can be programmed to identify flows, process packets, and 

forward packets in a flexible manner [14]. While OpenFlow switches allow modifi­

cations to the Ethernet protocol, they are still closely tied to the existing switched 
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Ethernet architecture. This means that flow data must be disseminated to all Open-

Flow switches in order to forward packets correctly, thus limiting the scalability of 

an OpenFlow network. 

Others have recognized that there are many redundant links that Ethernet switches 

never use. Many have proposed new ways to manipulate the spanning tree [4, 9]. How­

ever, [9] requires software to be run on each host in the network. [4] does not allow 

for arbitray paths to be taken via the redundant links in the network. 

Section 3.5 will revisit some of the above proposed solutions to scaling Ethernet 

and will show how the Axon overcomes many of the problems that these techniques 

introduce. 
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Chapter 3 

Axon Network Device 

3.1 Axon Design 

The Axon device is a direct replacement for Ethernet switches that can be used 

to create a highly-efficient local-area network. Hosts* can be directly connected to 

an Axon without modification. Hosts continue to transfer packets as if connected 

to a traditional Ethernet switch. Axons transparently use source-routed Ethernet 

to transfer data through a network of Axons. In order to implement source-routed 

Ethernet, Axons utilize a different packet format and different routing mechanisms 

than conventional switched Ethernet. 

3.1.1 Axon Packet Format 

Axon packets are transmitted over conventional Ethernet cables using standard Eth­

ernet media access control and physical transceivers. However, within a network of 

Axons, packets have their own header type, as shown in Figure 3.1. The Axon header 

includes a type, length, and source-routing information. Although Axon packets do 

*In this thesis, the term host means any non-Axon device that communicates via the Ethernet 

protocol, including a standard Ethernet switch, an IP router, or a host computer. Switch means a 

device that strictly adheres to the layer 2 Ethernet protocol 
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Bytes: (0.5) (2) (1.5) (1.5) (0.5perhop) (O.Sperhop) (0-0.5) (4) 

Type Length Fwd Hop Count Rev Hop Count Fwd Hops Rev Hops Padding Data CRC 

Figure 3.1 : Axon Packet Format 

not have an Ethernet header at the beginning of the packet, standard Ethernet phys­

ical transceivers are still able to send and receive them. 

The type field in the header indicates the type of packet that is encapsulated in 

the Axon packet. For normal traffic between hosts, Ethernet packets are encapsu­

lated in Axon packets. For traffic between Axons, non-Ethernet control messages are 

encapsulated in Axon packets. The type field can also indicate other special packet 

types. The length field contains the length of the Axon header. 

The forward and reverse hop counts indicate the number of remaining forward hops 

and the number of hops the packet has already taken. The forward path indicates 

the port numbers that should be followed for subsequent hops and the reverse path 

indicates the port numbers that should be followed to return to the packet's source. 

Each hop in the path is a 4-bit value that indicates an output port number. A hop 

with the value 'Oxf indicates the packet should be forwarded to the control plane, 

rather than an Ethernet output port. If there are an even number of hops, the header 

will be padded with 4 bits so that it ends on a byte boundary. 

In order for commodity Ethernet MACs and PHYs to transmit and receive Axon 

frames, they must support frames larger than standard Ethernet frames and they 

must not reject frames based on MAC address. Fortunately, modern Ethernet MACs 
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support both of these features. First, Ethernet MACs support jumbo frames, which, 

as the name implies, are oversized Ethernet frames. With this feature enabled on 

the Axon MAC units, a maximum-sized Ethernet frame can safely be encapsulated 

within an Axon packet. Second, Ethernet MACs support promiscuous mode, which 

disables any checking of the destination MAC address. With this feature enabled, 

the receiving MAC will accept frames whose first 6 bytes do not match the receiver's 

MAC address, allowing the first 6 bytes to be part of the Axon header. 

Finally, from the perspective of the Ethernet MACs and PHYs, an Axon packet 

is just an oversized Ethernet frame, the Ethernet CRC can be used to detect trans­

mission errors. As with conventional Ethernet frames, the transmitting MAC will 

compute and append a CRC to every Axon packet and the receiving MAC will com­

pute and verify the CRC of every Axon packet. 

3.1.2 Axon Packet Routing 

The source-route in the Axon header allows an Axon to determine the output port 

for an Axon packet after receiving the sixth byte of any Axon packet, as the sixth 

byte of the header contains the next forward hop. At this point, the packet can 

immediately be forwarded to the appropriate output port. The paths in the Axon 

header are updated for the next hop as the packet is forwarded to the output port. 

Axons perform cut-through routing, but its implementation differs from conven­

tional high performance interconnection networks. An Ethernet network has two key 
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differences from a conventional interconnection network. First, Ethernet MACs and 

PHYs only allow entire Ethernet packets to be transmitted over a wire. No backpres­

sure can be applied for flow control in the middle of a packet transmission. This means 

that buffering for entire packets must be provided in order to deal with collisions and 

congestion. Second, unlike most interconnection networks, Ethernet networks do not 

guarantee packet delivery. This means that once the buffers fill up, the Axon can 

safely drop packets. If necessary, higher level network protocols will then throttle 

their transmission rate and properly resend these packets. 

3.1.3 Interface with Conventional Ethernet Devices 

Axons present themselves as a conventional Ethernet switch to conventional Ethernet 

devices. Hosts that are connected to an Axon send and receive normal Ethernet 

frames, not Axon packets. In order to present this interface, all packets that are 

transferred between an Axon and a conventional Ethernet device must be converted 

between Axon packets and Ethernet frames. 

Axons use a bootstrap protocol to determine whether each port is connected 

to another Axon or to a traditional Ethernet device. When connected to another 

Axon, packets are simply forwarded as described in Section 3.1.2. Otherwise, packets 

received from an Ethernet device are encapsulated in an Axon header and packets 

sent to an Ethernet device are stripped of their Axon packet header. 

Locally connected hosts will broadcast DHCP and ARP requests and expect 
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replies from the appropriate hosts. The local Axon intercepts these address and 

location discovery messages. An Axon can respond to DHCP requests directly with 

lease offers, or the requests can be forwarded to a known DHCP server. Once the host 

has been configured with an IP address, it will use ARP to find other hosts. The local 

Axon is responsible for collaborating with the Axon connected to the target host in 

order to set up routes to allow communication in both directions between the hosts 

(further described in section 3.2.3). 

When the next forward hop of an Axon packet indicates a port which is connected 

to a traditional Ethernet device, such as a host, the Axon header will be stripped 

from the packet, leaving a normal Ethernet packet. The packet is then forwarded to 

the host, which will never know that the packet had previously been encapsulated in 

an Axon packet. 

3.2 Axon Device Architecture 

Figure 3.2 shows the overall architecture of the Axon Ethernet device. An Axon 

includes both a hardware switching fabric—the data plane—and a processing element 

to perform control operations for locally connected hosts—the control plane. As 

the figure shows, the data plane is implemented in hardware for performance and 

the control plane is implemented in software for flexibility. While IP routers bear 

some similarity to this high-level architecture, the Axon device is much simpler, and 

therefore can be faster and more cost effective. This section describes the data and 
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Figure 3.2 : Axon Architecture 

control plane architecture in detail. 

3.2.1 Axon Data Plane 

Each Ethernet link is connected to the Axon via an Ethernet port in the Axon data 

plane. Figure 3.3 shows the architecture of an Ethernet port, which consists of an 

input port and an output port. The input and output ports are all interconnected 

via a switch. 

The control plane configures each Ethernet port as an Axon port or a host port. 

A host port is connected to a conventional Ethernet device, so all packets crossing its 
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Ethernet link are standard Ethernet frames. In contrast, an Axon port is connected 

to another Axon, so all packets crossing its Ethernet link are Axon packets. The 

control plane is also connected to the data plane as if it were an Ethernet link. The 

control plane configures its port as an Axon port and injects and receives only Axon 

packets. 

Input Port 

When a packet is received over an Ethernet link, the packet is first processed by the 

input port connected to that link. As Figure 3.3 shows, packets received on a host port 
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are processed by the route lookup module and then the header processing module. 

Packets received on an Axon port are only processed by the header processing module. 

Route Lookup. Packets sent by a host connected to an Axon will always be Eth­

ernet frames. These frames cannot be routed through the Axon network. Instead, 

they must first be encapsulated in an Axon packet. The route lookup module uses the 

destination MAC address of the received Ethernet packet in order to find the correct 

route in route memory. 

The Axon uses one of two mechanisms to determine the source route to be 

prepended to incoming data packets. In the first case, the destination MAC ad­

dress maps to a source route via a content-addressable memory (CAM) entry in the 

Axon. If the CAM is not large enough to store all the mappings for active routes, 

the Axon may provide the host a fake destination MAC address when it first sends 

an ARP request for the destination. The host then maps the destination's IP address 

to this masqueraded MAC address, which is a direct index into route memory. The 

Axon sets the locally administered bit in the masqueraded MAC address returned to 

the host. In this way the mapping function is pushed to the host as opposed to the 

Axon when the Axon's CAM is exhausted. 

Each Ethernet port has its own private route memory that is only used by host 

ports. This route memory contains Axon headers with source-routes that have been 

configured by the control plane in response to ARP requests made by the host. Each 

Ethernet port has its own route memory in order to allow network security policies 
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that require isolation among the hosts. 

The route lookup module therefore uses the destination MAC address of the in­

coming packet to determine the address of the Axon header in route memory. If the 

locally administered bit is set, then the Axon uses the MAC address as the index 

directly; otherwise it looks up the address by using the CAM. The header is then re­

trieved from route memory and prepended to the Ethernet frame, creating an Axon 

packet. Since the destination may be expecting the source to have a different MAC 

address (in case it was given a masqueraded MAC address),the source and destination 

addresses of the Ethernet packet are also replaced with the MAC addresses that the 

target is expecting-these are are stored in the route memory immediately following 

the Axon header. If the CAM lookup fails or if the locally administered bit is set 

but the destination MAC address does not encode a valid route index, then a default 

Axon header is prepended to the frame with a single forward hop that targets the 

local control plane. A lookup failure which causes a packet to be forwarded to the 

control plane is not necessarily an error. This is how broadcast traffic is captured and 

sent to the control plane, for instance. 

Once an Ethernet frame has been processed by the route lookup module, it has 

become a valid Axon packet like any other Axon packet and can be processed by the 

header processing module. Note that regardless of the length of the route a packet 

must traverse, this initial route lookup on a host's local Axon is the only time any 

route lookup will be performed. For all subsequent hops, the packet will arrive at an 
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Axon port and skip the route lookup module. 

Header Processing. Packets arriving on an Axon port or packets that have been 

processed by the route lookup module are processed by the header processing mod­

ule. This module uses the source-routing information to determine to which port to 

forward the packet and then modifies the header appropriately. 

The header processing module first reads the next forward hop to determine the 

correct output port to which the packet should be forwarded. If there are no remaining 

forward hops, the packet type is changed to an error packet and it is forwarded to 

the control plane. 

If the output port is an Axon port, the header is then modified for the next hop 

through the network. First, the forward hop count is decremented and the reverse 

hop count is incremented. Second, the first forward hop is removed from the header, 

and subsequent hops are shifted forward. Finally, the input port number is inserted 

as the first reverse hop. These modifications to the header can be made as it is sent 

to the output port over the switch. 

If the output port is a host port, the Axon header is completely removed from the 

packet, leaving a valid Ethernet packet. However, if the packet type is not encapsu­

lated Ethernet, then the packet type is changed to an error packet and it is forwarded 

to the control plane. 

Axon packets that are destined for the control plane are treated as any other 

packet. In their source-routes, their next forward hop will be 'Oxf'. They will be sent 



29 

over the switch to the control plane's output port, which will then "send" the packet 

to the control plane. 

Switch 

The non-blocking switch within the Axon data plane provides connectivity between 

all of the input ports and all of the output ports. Each input port can inject a packet 

into the switch at any time. Before injecting a packet into the switch, the input port 

prepends a one byte header which indicates the type of packet and the destination 

output port. Each output port can simultaneously receive a packet from every input 

port. The output port must either accept packets that are sent to it or it must send a 

negative acknowledgement (NACK) back to the input port. An output port will only 

NACK a packet if the output port is not able to buffer the packet or immediately 

transmit it over the Ethernet link. When an input port receives a NACK, it can either 

drop the packet, retry sending it to the output port later, and/or send a congestion 

message back to the previous Axon in the path to slow down the incoming packet 

stream. 

Output Port 

The output port receives packets that have already been processed by the header 

processing module in an input port. This means that packets received by the output 

port are immediately ready to be sent out over the Ethernet link with no further 

modifications. 
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The output port contains one buffer per input port in the data plane. This allows 

the output port to simultaneously receive packets from an arbitrary number of input 

ports. This eliminates head-of-line blocking problems at the input ports and simplifies 

the task of fair bandwidth allocation of each outbound link among input ports. Even 

though all packets received by the output port are buffered, the buffers all support 

fall-through operation. So, the entire packet does not need to arrive at the output port 

before it can be sent over the Ethernet link. When the output port is not congested, 

packets are sent immediately from the switch to the Ethernet link. This allows the 

Axon to operate as a cut-through router, where the Ethernet packet can begin to 

leave the output port before it has even been fully received on the input port. 

3.2.2 Probe Packets 

In order to determine the best source route for a flow, an Axon may wish to test out 

different candidate routes. In order to do this, an Axon can send a probe packet out 

along an arbitrary path that ends at the Axon that originally sent the probe packet 

(forming a circuit). Probe packets are transmitted like other Axon packets except 

that Axons along the path add data to the tail of these packets depending on which 

probe option bits are set in the packet. A probe unit sits on both the input port and 

the output port in each Axon. If a probe packet is seen and the timestamp options are 

set, then the input and output units will attach to the end of the packet the time that 

the packet was first seen by that unit. Timestamps cannot be synchronized across 
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devices, but the timestamp from when a probe packet is received by a device can be 

compared to the timestamp from when that probe packet was originally sent by the 

same device to compute the intervening latency. In this way, Axons can determine 

the raw latency of different paths across the Axon network and possibly determine 

which Axons may be congested since timestamps are attached both at the input and 

output ports of each Axon on the path. In general, probe packets offer a way for one 

Axon to gather data about another Axon's hardware status. 

While in the above scenario probe packets are used to gather latency and con­

gestion data about different paths within an Axon network, a probe packet may also 

measure the latency of external Ethernet networks. This kind of probe packet is re­

ferred to as an ether probe. In this case a single Axon specifies an source port and 

a destination port, which are both assumed to be connected to the same external 

Ethernet network. First, the Axon sends a packet from the destination port to the 

source port to ensure that the external network performs address learning. Next, it 

sends a packet from the source port to the destination port, and the timestamps on 

the Axon from when it left and returned are compared to determine the amount of 

time the packet spent in the external network. 

3.2.3 Axon Control Plane 

The primary responsibility of the Axon control plane is to handle packets that cannot 

be directly switched by the hardware data plane. To allow flexibility, the control 
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plane is implemented in software running on a low-power embedded processor in the 

Axon. The control plane has a port into the switching fabric of the data plane, as 

shown in Figure 3.2. This allows the control plane to receive packets from and inject 

packets into the data plane seamlessly. The data plane forwards to the control plane 

all Ethernet packets from a host with a destination address that does not indicate 

a valid source-route in that host port's route memory. This includes all broadcast 

traffic. The most common task of the control plane is to handle Ethernet broadcast 

packets transmitted by local hosts, such as DHCP and ARP. 

DHCP 

As described in Section 2.2.1, DHCP enables a host to dynamically discover its IP 

address. The initial DHCP discovery message is broadcast onto the Ethernet by 

the host. As with all Ethernet broadcast traffic, DHCP discovery messages will be 

forwarded to the control plane. The control plane can then either forward the DHCP 

traffic to a conventional DHCP server or act as a DHCP server itself and respond 

to the host directly. In the latter case, each Axon can immediately assign any of its 

local hosts an IP address from a locally reserved pool. 

All communication between the host and the DHCP server is guaranteed to be 

forwarded to the control plane. The broadcast DHCP discovery and request messages 

from the host will always be sent to the control plane. The Axon will use a source 

Ethernet address that will never correspond to a valid source-route in the DHCP offer 
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and acknowledgement messages it returns to the host. When the host subsequently 

tries to renew its lease with a unicast message, it will use that Ethernet MAC address. 

The data plane will then forward the message to the control plane, as the address 

does not correspond to a valid source-route. 

Transparent Route Creation 

As described in Section 2.2.2, hosts use the ARP protocol to determine the location 

of other hosts on the Ethernet network. The control plane then uses the Axon-ARP 

protocol to satisfy the request. The Axon-ARP protocol involves two Axons: the 

source Axon, which is connected to the source host making the request, and the 

target Axon, which is connected to the host that is the target of the request. The 

source and target Axons must communicate in order to setup routes in both directions 

between the source and target hosts. 

Upon receiving an ARP request, the source Axon first reserves sufficient space 

in the source host's input port's route memory to hold an Axon header containing 

a route from the source host to the target host. Then the source Axon sends an 

"Axon-ARP request" to the control plane of the target Axon. This request includes 

the source host's real MAC address (taken from the ARP request), the MAC address 

corresponding to the allocated route memory in the source host's input port, the IP 

address of the source and target hosts, and the Axon ports to which the source and 

target hosts are connected. 
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Note that the Axon cannot reserve space in the route memory or send an Axon-

ARP request if it does not already know of a path to the target host and target Axon. 

Therefore, additional communication may be required to determine such a route. For 

the prototype Axon implementation, the network topology and route selection is set 

statically via a configuration file. This allows the exploration of other aspects of the 

Axon architecture, but is clearly not reasonable for a realistic deployment. Others 

have already proposed mechanisms to more realistically determine routes. The two 

main ideas are to use a distributed hash table [6] or a central controller [15]. In 

principle, the Axon control plane architecture can support either method. 

When the target Axon receives an Axon-ARP request, it also reserves space in the 

target host's input port's route memory to hold an Axon header containing a route 

back from the target host to the source host. Note that the target Axon will always 

know a route back to the source because it is encoded in the reverse path of the Axon 

header of the request. The target Axon then sends a standard ARP request to the 

target host. The source MAC address used in this request depends on whether there 

is room in the CAM on the target Axon. If there is enough room, then the source 

host's real MAC address is given as the source MAC address; otherwise, the source 

MAC is masqueraded and corresponds to the allocated route memory in the target 

host's input port. The masqueraded MAC address has the locally administered bit 

set. Regardless of whether the real MAC or masqueraded MAC is used, when the 

target host sends back an ARP reply to the MAC address, the data plane will forward 



35 

it to the control plane, since the reserved route memory is not yet marked as valid. 

When the target Axon receives the ARP reply from the target host, it can then 

install a route to the source host. The route's Axon header will include the route 

back to the source host, which is a combination of two paths: 1) the reverse path 

from the Axon-ARP request header (to get to the source Axon) and 2) the source 

host port in the Axon-ARP message (to make the final hop to the source host). The 

control plane also stores destination and source Ethernet MAC addresses in the route 

memory. These addresses will be used by the input port to modify the Ethernet 

header so that it will match what the source host expects when a packet from the 

target host arrives at the source host. The destination MAC address is always the 

real MAC of the source host, but the source MAC address is real MAC address of 

the target host only if the source Axon used the CAM to map to the route in route 

memory. Otherwise, the source Ethernet address is the masqueraded MAC address 

that directly indexes to the allocated memory in the source host's input port. 

After installing a valid route, the target Axon can respond to the control plane of 

the source Axon with an "Axon-ARP reply". This reply is similar to the request, in 

that it includes the target host's real MAC address (taken from the ARP reply), the 

MAC address that corresponds to the allocated route memory in the target host's 

input port, and the IP addresses and Axon ports of the source and target hosts. 

When the source Axon receives the Axon-ARP reply, it can complete the route 

setup for the source host. It uses the MAC addresses in the reply to place the Axon 
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header in the previously allocated source host's route memory. Finally, the source 

Axon can respond to the source host with a normal ARP reply. This ARP reply will 

use as the source MAC either the real MAC of the target host (if the CAM had room 

to store the mapping) or a masqueraded source MAC address that corresponds to the 

allocated route memory in the source host's input port. When the host receives the 

ARP reply, the source and target can begin sending packets directly between each 

other. The input ports will find a valid route in each direction and will therefore 

forward the packet along the appropriate path with no further intervention from the 

control plane. 

The route from the target to the source is valid before the route from the source 

to the target is valid. In the unlikely event that the target sends a packet to the 

source during that time period (recall that the source is requesting a path to the 

target, so is likely the one to initiate any communication), it will arrive correctly at 

the source. If the source then responds before the source Axon has validated the 

route, the hardware will simply forward that packet to the control plane. At that 

point, the control plane can safely drop the packet, as this should affect only a small 

amount of traffic until the source Axon installs the correct route, and higher level 

network protocols should retransmit those packets. 
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3.3 Other Ethernet Concerns 

3.3.1 Link Error Detection 

As discussed in Section 2.1, a 4-byte CRC is used to detect Ethernet link errors. 

However, this CRC does not protect against errors that occur within a device, as 

it is calculated as an Ethernet frame is transmitted over a link and is verified and 

discarded when it is received. A conventional store-and-forward Ethernet device will 

discard any received packets with an invalid CRC. Since Axons employ cut-through 

routing, use of the CRC is a bit more complicated. By the time the receiver is able 

to verify the CRC, the head of the packet may already have been transmitted by its 

next hop output port. In this case, the output port would already be in the process 

of computing a new CRC on the invalid data. So, when the input port receives an 

invalid CRC, it must notify the output port so that it can append an invalid CRC to 

the end of the frame. This will ensure that the subsequent device will know that it 

has received an invalid frame. This may continue on each hop of the path until the 

frame is finally fully buffered, either in a congested Axon or a conventional Ethernet 

device. At that point, it will then be dropped due to the invalid CRC. 

3.3.2 LACP 

As mentioned in section 2.1.1, standard Ethernet may increase the bandwidth between 

two devices via link aggregation control protocol (LACP). Any network device is 

allowed to connect to a single Axon via multiple aggregated links. In fact, one device 
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could even have aggregated links that connect to separate Axons. As long as a 

given conversation deterministically enters the Axon network along a single link, 

separate Axons (or multiple ports of the same Axon) would be able to continue to 

provide the source route for incoming packets within the Axon network. The ability 

to transparently split the aggregated links is called multipoint aggregation and is not 

possible in a standard Ethernet network. 

Increasing the bandwidth between any two Axons within the Axon network is 

trivial and does not require LACP. One would simply create the desired topology, 

including extra links. Then when assigning source routes, the mechanism could choose 

which link to use, perhaps based on the current amount of traffic observed along the 

links in common with the two devices. 

Similarly, an Axon may send packets to another network device that is connected 

to multiple ports via LACP. In this case, the Axon network would be in charge of 

the distribution function. Since all source routes are based on source and destination 

Ethernet addresses, they would essentially go through the distribution function at the 

time of source route creation. Further, the source route could be changed dynamically 

by updating the source route on the source Axon. 

That the Axon does not require a hash for the distribution function is a funda­

mental advantage of the Axon network over a standard Ethernet network. This allows 

the Axon to have arbitrary flexibility in assigning conversations to links, which could 

aid in balancing the traffic between the links. 
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3.3.3 Self-Congestion 

Since the Axon prepends an Axon header to each packet originating from a host, each 

packet that leaves an Axon is larger than when the host sent it. When packets from 

a host enter the Axon at the maximum rate for some time, the extra data due to the 

new Axon headers may fill up the buffer on the output port, even in an otherwise 

quiescent network. If left unchecked, the buffer may eventually drop a packet. We 

call this phenomenon self-congestion. 

Currently, the Axon solves the self-congestion problem by using pause frames, an 

Ethernet-based flow control mechanism. When one device sends a pause frame out 

of an Ethernet port, the connected device must refrain from sending any packets on 

that port for the duration specified by the pause frame. The Axon currently sends a 

pause frame to a host after the host has generated a maximum-sized packet's worth 

of Axon header data (which occurs once every several hundred packets when there 

are only a few hops to the destination). This pause frame instructs the host to stop 

transmitting for as long as it would take to transmit a maximum-sized packet. In 

this way, the buffer in the Axon may drain any excess data due to Axon headers and 

will not drop a packet due to self-congestion. If the packet were lost, a higher-layer 

protocol such as TCP might need to retransmit the packet, but potentially at the 

cost of reducing its bandwidth. 
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3.4 Axon Limitations 

3.4.1 Lack of Flooding 

One way that the Axon combats the challenges of scaling Ethernet is by limiting 

the types of packet flooding. The Axon intercepts all packets to be broadcast on 

the network, but it only handles ARP requests and DHCP requests. This will take 

care of most networks' requirements, including that of typical data centers; but other 

networks may need to use Ethernet's broadcast mechanism for different protocols. 

The Axon currently does not support this, but if a central controller were to manage 

a network of Axons, it could intercept these broadcast packets and perhaps handle 

them on a protocol-by-protocol basis. 

3.4.2 Fault Tolerance 

We envision that a higher-level control system (such as Tesseract [15]) would manage 

faults that may occur in an Axon network. When a fault occurs, surrounding Axons 

will know either by a link failure or by receiving many packets with invalid CRCs. 

Once one Axon detects the fault, it could notify a central controller, which would 

then reassign source routes going through the faulty Axon. 

3.4.3 Dependence on A R P / I P 

As currently designed, the Axon is dependent on intecepting an ARP request in 

order to create a source route. It "knows" where the target IP address lives and then 
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handles the Axon-ARP mechanism from there. This works well in a network where 

the Axon is responsible for assigning IP addresses, but this may be troublesome when 

protocols other than IP are used. One solution would be to wait until a host sends 

out a packet, and then the Axon could learn its Ethernet address by examining the 

source MAC address, just like a standard switch does. However, if an end host is 

silent on this network, another mechanism may need to be developed in order to find 

the host. 

3.5 Axon Benefits 

The following subsections outline some of the benefits that data centers can enjoy by 

using an Axon network. 

3.5.1 Local Route Lookup 

The Axon network architecture represents a fundamental departure from conventional 

network architectures as all state is stored at the edge of the network. In current 

networking technologies (i.e., Ethernet switches, IP routers, etc.), routing information 

is required on all devices along the path from the source to the destination. This often 

requires every device to store at least partial routing information for every destination 

in the network, and this state is accessed by every packet traversing the device. Even 

proposed network devices, such as OpenFlow switches [14], still require access to 

routing state on every hop through the network. Storing state on every device for all 
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traffic flows traversing the device is not scalable. In contrast, Axons only store routing 

state on behalf of hosts connected directly to that Axon. Therefore, the required state 

scales only with the number of hosts that are connected to an Axon, not with the 

diversity of traffic that flows through an Axon. An Axon does not need to have any 

routing or topology information for traffic that it is forwarding. Fundamentally, this 

is a far more scalable network architecture than the state-of-the-art. 

3.5.2 Arbitrary Paths 

The Axon network is not constrained to use any particular path for a traffic flow. 

When necessary, shortest-path routing can be used, but in other instances different 

routes could be chosen. For example, a longer path may be chosen if the shortest 

path uses a link that is congested. Arbitrary paths are allowed, and they remain 

transparent to end hosts. 

3.5.3 Security 

By controlling access to the network at the source, transparent source routing also 

enables efficient network virtualization. The existence, or lack thereof, of a source 

route to the intended destination determines whether that host is allowed to com­

municate with that destination. There is no need for inter-VLAN routing. Instead, 

the control planes across the network provide distributed access control among hosts 

throughout the network. 
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3.5.4 Virtual Machine Migration 

That the entire network is one Ethernet segment yields advantages for both manage­

ability and virtual machine (VM) migration. Administrators need not worry about 

how the IP address is segmented because any host on the network can have an arbi­

trary IP address and may still communicate with all other hosts. Furthermore, VMs 

are usually restricted to migrate within their subnet because otherwise the VM would 

need to change its IP address. In an Axon network, any VM can migrate to any host 

and retain its IP address, provided that the control plane reconfigures the appropriate 

source routes. 

3.5.5 Efficient Use of Redundant Links 

The use of source routing also frees the network from any topology constraints, unlike 

some other approaches to scaling Ethernet [16] [5]. The Ethernet spanning tree dis­

ables all redundant links from the network. These redundant links are only utilized 

in response to link failures. Typically, link aggregation is used to prevent band­

width bottlenecks because of the lack of redundancy in the spanning tree. Since flows 

are distributed across aggregated links using hashing, link utilization can easily be­

come unbalanced, leaving the available capacity underutilized. In contrast, the use of 

source-routing allows an Axon network to exploit redundant links effectively. These 

links can be used to easily increase network bandwidth, respond to link failures, and 

avoid congestion. 
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3.5.6 Manageability 

The Axon device does not in itself make a case for how the network should be man­

aged; rather, it provides a flexible, scalable network primitive: the source route. Other 

proposed mechanisms can be used to provide control for the network and set up the 

source routes [15]. 

3.5.7 Benefits Over Myrinet 

Similar to the Axon device, Myricom's lOGbps network devices, Myri-lOG, all use 

commodity Ethernet physical interfaces [17]. This means that Myri-lOG adaptors and 

switches can interoperate with conventional lOGbps Ethernet adaptors and switches. 

However, to enable this functionality, the switches must be equipped with special 

network processors to convert Ethernet packets into Myricom packets. Furthermore, 

Myrinet networks also use source-routing for performance. However, the source-

routing is controlled by the Myri-lOG adaptors, not the Myri-lOG switches. There­

fore, in contrast to the Axon device, which allows commodity systems to obtain 

higher network performance, Myri-lOG switches only provide improved network per­

formance when the host systems also use Myri-lOG adaptors. The Axon architecture 

will therefore be able to provide better network performance for commodity host 

systems. 
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Chapter 4 

Axon Performance 

In this chapter we evaluate the Axon architecture. This includes a description of the 

platform we chose and how the Axon provides better latency and bandwidth efficiency 

than standard Ethernet networks. 

4.1 Implementation 

Figure 1.1 shows the prototype Axon device used to evaluate source-routed Ethernet. 

In the prototype, the hardware data plane is implemented on Stanford's NetFPGA 

platform [18], and the software control plane runs on an Intel Atom processor in a 

D945GCLF mini-ITX motherboard. Communication between the data and control 

planes takes place over the PCI bus in the prototype. 

The NetFPGA platform is a 32-bit/33MHz PCI card that includes four Gigabit 

Ethernet ports, a Virtex-II Pro 50 FPGA connected to those ports, several memories, 

and other essential components (Ethernet PHY, PCI interface, etc.). The data plane 

is entirely implemented with the Virtex-II Pro FPGA on the prototype. While a true 

Axon device would likely have more Ethernet ports, the NetFPGA effectively limits 

the prototype to four. However, four Ethernet ports are sufficient to demonstrate the 

viability of the Axon device. 
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The Intel Atom is a low-cost, low-power, hyperthreaded x86 processor that is well 

suited to embedded network devices. The prototype runs a standard x86 Linux kernel 

on the Atom, allowing the control plane to be implemented as a user-level application. 

Creating a user-level application as the control plane simplified its development and 

ensured its portability. The NetFPGA Linux device driver presents NetFPGA as 

four regular Ethernet network interfaces. The control plane software communicates 

with the data plane using Linux raw packet sockets over one of these interfaces. The 

bandwidth between the control and data planes is limited by the available PCI bus 

bandwidth in the prototype. In practice, there is more than enough bandwidth for 

the address and location discovery tasks currently performed by the control plane. 

4.1.1 Why Use a Prototype? 

There are many ways to evaluate the Axon architecture. Some possibilities include 

simulating the Axon, implementing it on a software-based routing platform such as 

XORP or the Click Router, or implementing it on an FPGA. We chose to implement 

the Axon on NetFPGA because we felt that this would be the most convincing way to 

demonstrate the viability of the architecture. We have shown that we can manipulate 

the Ethernet headers while remaining compatible with all standard Ethernet devices. 

It is often easy to overlook subtle problems that may arise in the real hardware when 

simulating a device. By creating an actual hardware device that runs in an actual 

network, we have proven that it is viable. 
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One unexpected problem that arose in testing the Axon is that a source host will 

sometimes send a unicast ARP packet to a target host that it is communicating with. 

If, however, the target host believes that the MAC address of the source host is a 

different one (due to MAC masquerading), then it will reply to a MAC address that 

does not map to a source route in the connected Axon; thus the ARP reply will not be 

received by the source host. In order to fix this, we modified the Axon to intercept all 

such ARP requests and reply to them. If we had strictly run the Axon in a simulator, 

for instance, we may not have discovered this problem. 

The main argument against implementing a hardware prototype is that it would 

be difficult to investigate the scalability of the Axon network. While it is true that our 

Axon network is currently limited by the number of physical Axons we can construct, 

we felt it was first more important to persuasively demonstrate that the Axon is a 

viable architecture. The rest of this chapter will show that the Axon is indeed viable; 

furthermore it could be the substrate for network architectures already demonstrated 

to be scalable in simulation (Tesseract, for instance [15]). 

4.2 Functionality 

After implementing the prototype Axon, we verified its functionality by using it as a 

replacement Ethernet switch for different hosts. We connected a Mac host, a Win­

dows host, a FreeBSD host, and a Linux host to verify functionality across different 

operating systems. We also connected our Axon to a Cisco router as well as a wireless 
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Figure 4.1 : Maximum TCP Bandwidth for Axon and Ethernet Packets 

router to verify that it would work properly when connected to other network devices. 

4.3 Bandwidth 

4.3.1 Axon Header Overhead 

A disadvantage of source-routing is that it reduces the effective bandwidth available 

at the physical layer. In effect, application layer data is displaced by the source-route. 

Figure 4.1 presents the maximum theoretical TCP bandwidth that can be achieved 

over a lGbps physical link with Axon packets of varying sizes containing source-routes 

of 1, 10, and 100 hops. The theoretical Ethernet limit shows the effective bandwidth 

over an Ethernet link given the Ethernet interframe gap and protocol overhead at 

the datalink, IP, and TCP levels. As the figure shows, the overhead of source-routing 

on Axon network bandwidth is negligible for packets with routes containing 1 or 10 

hops. For 100 hop routes, the maximum bandwidth only decreases by 3% at the 
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Figure 4.2 : Line topology and flows used in Table 4.1 

largest packet size. 

4.3.2 Improvement Over Spanning Tree 

One major advantage of Axons over standard Ethernet networks is that it allows for 

arbitrary topologies, which may include cycles. Figure 4.2 shows a network of three 

Axons and six hosts connected in a line. This resembles the simplest Ethernet network 

that is restricted by using a spanning tree. Figure 4.3 shows a similar network of three 

Axons and six hosts connected in a ring. The ring is the simplest network with a 

cycle and shows how the Axon network may take advantage of increased bandwidth. 

Table 4.1 shows the bandwidths of the six flows between hosts for each topology for 
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Figure 4.3 : Ring topology and flows used in Table 4.1 

the UDP and TCP protocols. These bandwidths were measured using netperf; they 

include only the application-perceived bandwidth, so they do not include protocol 

overhead. In the line topology, there is network contention over the links connecting 

the three Axons because each of the six flows try to produce lGb/s of traffic, but 

there are only 4Gb/s available in the network (accounting for the bidirectional rate). 

In the ring topology, we can see a dramatic improvement in the bandwidth. Again, 

each flow attempts to utilize about lGb/s of bandwidth, but this time the network 

can provide 6Gb/s due to the extra link. 

All individual flows see a marked improvement when using the ring topology over 

the line topology. The ring topology gives a 96% improvement in UDP's aggregate 

bandwidth and a 63% improvement in TCP's bandwidth over the line topology. The 

improvement in UDP's bandwidth is more pronounced since there is traffic in exactly 
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Flow 

Host 1 -> Host 2 

Host 2 -> Host 3 

Host 3 -+ Host 1 

Host 4 -» Host 6 

Host 6 —> Host 5 

Host 5 - • Host 4 

Aggregate 

U D P 

Line 

481 

483 

476 

481 

476 

509 

2906 

Ring 

952 

952 

930 

952 

952 

952 

5690 

TCP 

Line 

566 

598 

243 

244 

397 

377 

2425 

Ring 

752 

792 

815 

524 

493 

575 

3951 

Table 4.1 : Bandwidths seen on different topologies, measured in Mb/s. 

one direction per flow. TCP requires acknowledgement packets to be sent in the 

reverse path for a given flow, and these may cause some packet loss, which will throttle 

back the TCP bandwidth. These data show that a network can significantly benefit 

from using the redundant links that would otherwise be disabled by the spanning tree 

protocol. 

4.4 Latency 

4.4.1 Data Plane 

By using source-routing and cut-through routing, the Axon is able to achieve low 

switching latencies. The prototype proves this to be possible. Table 4.2 shows a 
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Action 

MAC Receive 

Cross clock domain 

Pre-processing 

Header lookup & retrieval 

Header processing 

Cross the switch and buffer at output 

Cross clock domain 

MAC Transmit 

Total 

From Axon 

Cycles 

11 

6 

6 

0 

9 

11 

5 

17 

65 

Time (ns) 

88 

48 

48 

0 

72 

88 

40 

136 

520 

From Host 

Cycles 

11 

6 

2 

35 

9 

11 

5 

17 

96 

Time (ns) 

88 

48 

16 

280 

72 

88 

40 

136 

768 

Table 4.2 : Forwarding latency of a packet through the Axon device 

breakdown of the 520 ns uncongested forwarding latency of an Axon packet (from 

Axon port to Axon port). This breakdown was determined using ModelSim to sim­

ulate the prototype design. These latencies reflect the use of a Virtex-II Pro FPGA 

and commodity soft-core Ethernet MAC units. Asynchronous FIFOs are used to 

bridge clock domains between the MACs and the internal Axon logic. While all run 

at the same clock frequency, each Ethernet link has an independent clock and is not 

guaranteed to be in phase with the rest of the system. 

Almost half of the forwarding latency, 224 ns, is spent in the Ethernet MAC 

units. Much of this latency is unnecessary in the Axon. For example, the latency of 
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the MAC receive unit is necessary only so that the MAC unit can receive enough of 

the Ethernet header to examine the destination MAC address and Ethernet type. In 

the Axon, this is unnecessary, as the header processing unit performs these functions 

for Axon packets. The remainder of the forwarding latency could be lowered using 

an ASIC or a faster FPGA. Regardless, the prototype's overall forwarding latency in 

the uncongested case is quite low. 

Ethernet packets arriving on host ports have additional forwarding latency, as they 

must also be processed by the route lookup module. The latency of the route lookup 

module is 35 cycles (280 ns) plus an additional cycle for each 32-bit word (equivalent 

to 8 hops) in the Axon header that needs to be retrieved from the route memory. The 

smallest route header (a single hop and two Ethernet addresses) that can be stored 

in the route memory is 18 bytes. So, the minimum, uncongested forwarding latency 

of a packet from a host port is 768 ns. 

4.4.2 Control Plane 

In this section, we examine whether an Axon network is capable of handling the 

demands of hosts since an Axon network introduces a delay due to intercepting ARP 

requests and setting up routes between hosts. 

Table 4.3 shows the amount of time spent in two Axons participating in the 

Axon-ARP protocol described in section 3.2.3. In this case, a source host wishes 

to communicate with a target host over an Axon network, and the route must be 
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Phase 

I (Axon A) 

II (Axon B) 

III (Axon B) 

IV (Axon A) 

Activity 

Route Calculation 

Route Allocation 

Pseudo-ARP Request 

Total 

Route Determination / Allocation 

ARP Request 

Total 

Route Storage 

Pseudo-ARP Reply 

Total 

Route Storage 

ARP Reply 

Total 

Latency (us) for this many hops 

1 

38 

3 

116 

157 

160 

90 

250 

33 

139 

172 

163 

61 

224 

2 

38 

4 

122 

164 

106 

58 

164 

35 

135 

170 

91 

130 

221 

3 

41 

3 

100 

144 

130 

102 

232 

50 

102 

152 

78 

93 

171 

4 

42 

3 

110 

155 

156 

66 

222 

66 

130 

196 

85 

70 

155 

5 

41 

9 

138 

188 

122 

90 

212 

27 

122 

149 

117 

99 

216 

AVG 

40 

4 

117 

161 

135 

81 

216 

42 

126 

168 

107 

91 

198 

Table 4.3 : Control plane latency breakdown for an ARP request 

created. The source host is connected to Axon A, and the target host is connected 

to Axon B. The following sequence occurs while the ARP request is being processed 

by the Axon network. 

Phase I Axon A receives an ARP request. The route calculation step is how long it 

takes the Axon to determine the route to Axon B along a line. This is done purely in 
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software. The route allocation step begins after the last step ends. It merely allocates 

the memory for the route in software, which is why it occurs so quickly. The last step 

constructs the pseudo-ARP request and sends it to the data plane to be sent to the 

desired Axon B. Axon A is busy for an average of 117'us during this phase. 

Phase II Axon B receives the pseudo-ARP request. It first examines the reverse 

route and allocates memory for this route to be stored. In the next step, Axon B 

constructs the ARP request to be sent to the target host. Axon B is busy for an 

average of 216MS during this phase. 

Phase III Axon B receives the ARP reply from the target host. The first step is 

where the route is actually written to the hardware (route storage). At this point, 

the route to the source host from the target host is set up such that the data plane 

can handle this on its own from this point forward. The second step is the amount of 

time that it takes for the software to construct and send the pseudo-ARP reply back 

to Axon A. Axon B is busy for an average of 168us during this phase. 

Phase IV Axon A receives the pseudo-ARP reply from Axon B. The first step is 

to store this route to the data plane. Finally, Axon A constructs the ARP reply and 

sends it to the source host. Axon A is busy for an average of 168MS during this phase. 

Phases I and IV occur on Axon A, and phases II and III occur on Axon B. In this 

case, Axon A takes 359 us to handle each ARP request, and Axon B takes 384 us for 

each ARP request. If we take the greater of these two times, we find that each Axon 
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can set up approximately 2600 routes per second for locally connected hosts. Since 

this rate only affects locally connected hosts, it does not necessarily limit network 

scalability. 

4.4.3 Cut-through vs. Store-and-Forward 

Comparison to Ethernet Switch 

The latencies given in section 4.4.1 underscore the performance benefits of cut-through 

routing. An Ethernet switch would have all of the latencies shown in Table 4.2, 

except for the header processing. However, Ethernet switches are generally store-

and-forward, incurring an additional 512-12112 ns delay (depending on packet size) 

simply storing the entire packet. There would also be some additional delay to lookup 

the destination MAC address in the forwarding table, although this could be done in 

parallel with storing the remainder of the packet. 

Figure 4.4 shows the latencies of Axons and store-and-forward Ethernet switches, 

measured using probe packets (described in Section 3.2.2). A single Axon transmits a 

probe packet into the network and then receives that same packet after it has traversed 

the Axons or switches. The timestamps were then compared to calculate network 

latency. As the figure shows, the latency of a single Axon device is approximately 

1 us, regardless of the packet size, and the latency of a single Ethernet switch is 

approximately 7 us for a minimum-sized Ethernet frame and is over 28 us for a 

maximum-sized frame. These latencies scale roughly linearly, leading to a latency of 
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Figure 4.4 : Network latency of small and large probe packets 

4.5 us for 5 Axon hops and 137 us for 5 switch hops. 

This latency difference is large enough that it is clearly noticeable to the host 

system. Figure 4.5 shows the latency of Axons and Ethernet switches as measured 

by a host system. This graph shows the round-trip latency of an ICMP ping packet 

through 1-5 Axons or switches. Interrupt coalescing in the network interface is turned 

off, as interrupt coalescing would delay the received ping given that no other network 

traffic is being received by the host. The delays incurred by the host itself are so high 

that the network latency of even 5 Axons is barely noticeable in comparison. This 

is clearly not the case for Ethernet switches. The ping latency is doubled when the 

Axon (60B) 
Axon(1514B) 
Switch (60B) 
Switch (1514B) 

Number of Hops 



58 

Number of Hops 

Figure 4.5 : Network latency of small and large ping packets 

ping traverses 5 Ethernet switches when compared to traversing only 1. Clearly, a 

larger local-area network can be created out of Axon devices than Ethernet switches 

before host systems will begin to experience latency-related network problems. 

Cut-throuth with Congestion 

In order to fairly compare the advantages of cut-through routing versus store-and-

forward routing when the network is congested, we implemented a software-programmable 

register in the Axon that allows the control plane to have the data plane switch be­

tween both modes of operation. This way, the only difference between experiments 
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Figure 4.7 : Average round trip time of small packets (64 bytes) under different 
congestion loads 

would be whether the same device implements cut-through or store-and-forward. All 

other implementation latencies and functions are identical. 

In the following experiment, two hosts are using netperf's TCP round-robin test. 

In this test, the source host sends a TCP packet to a target host, and waits to receive 

an ACK from the target. Once the source receives the ACK, it immediately sends 

out another packet to the target. Figure 4.6 shows the experimental setup for this 
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Figure 4.8 : Average round trip time of large packets (1514 bytes) under different 
congestion loads 

test. Figures 4.7 and 4.8 compare the average round-trip-time (RTT) given by netperf 

under varying congestion loads on the network. Separate hosts connected to same 

Axons create the congestion traffic by each using iperf to send UDP packets across 

the network at a configurable rate. 

Comparing figure 4.7a to figure 4.7b, it is clear that for 64B packets the benefit 

of cut-through is inconsequential because the amount of time taken to store a small 

packet is minimal. This remains true whether the network is congested or not. How­

ever, large packets do see significant latency benefits from cut-through as shown in 

Figure 4.8. 

In all of these cases, congestion affects primarily the first hop of both the outgoing 

and incoming paths. In the rest of the hops to the destination, both flows no longer 

compete for any output ports since the flows have been merged together. 
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In practice, a cut-through device will not hurt flows in a network, but the benefit 

will vary depending on the number of congested and uncongested links along a path, 

the size of the packet, and the mechanism that handles fairness when multiple packets 

compete for one port. 

4.5 Route Memory 

One concern about the Axon architecture is whether it can support enough entries 

in each port's CAM. NLANR provides several long traces from gigabit routers that 

can help address this concern. CESCA-I is a 3-hour trace that covers a gigabit 
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link between an Internet-facing router and the scientific ring in Europe. NCAR-I 

is a 1-hour gigabit trace covering traffic seen from the Internet to a router in the 

National Center for Atmospheric Research. LBNL is a trace from two routers that 

route between 22 subnets at Lawrence Berkely National Labs. This trace most closely 

resembles that which might be seen in a data center. 

Each trace was analyzed to find the number of packets in between two packets 

whose destination IP address repeats. The number of packets in between (plus 1) 

represents the number of entries in an Axon's CAM that would be needed in order 

for an Axon's CAM to support all routes during this trace. Figure 4.9 shows how 

many entries in our CAM would be needed to handle these gigabit traces. This shows 

that each port of an Axon would need about 4000 entries. To compare, modern 

switches are able to support CAMs whose size is even much larger than 4000. 

4.6 Application Benefit 

The latency benefits of the Axon can translate into performance improvements for 

latency-sensitive applications. PostMark is one such representative benchmark. Post-

Mark is a file system benchmark that approximates a large Internet e-mail server [19]. 

PostMark creates a large pool of continually changing small files. Figure 4.10 shows 

the performance of PostMark when a client accesses an NFS server via a network of 

Axons or Ethernet switches. The NFS file server was configured to use a RAM disk 

to eliminate disk latency, and PostMark was used as a client to perform read and 



63 

1400 

1200 

TJIOOO 

c 

s 
$ 800 
«s c 
o 
"§ 600 
10 

c 

^ 400 

200 

0 

Figure 4.10 : PostMark Performance 

write accesses on a random set of files of different sizes. 

The graph shows that Axons outperform Ethernet switches for 1-5 devices. This 

range of devices is a reasonable approximation of the number of network devices likely 

to be on the path between a client and server in a campus-sized network. Furthermore, 

the trend is clear as the number of devices increases. 

The latency of an Ethernet switch, with its store-and-forward design, clearly de­

grades the file system performance as the number of switches increases. When using 

an Axon network, however, the additional cut-through latency added by each Axon is 

minimal, and thus the file system performance remains nearly constant as the network 

size increases. Thus, the performance penalty of using centralized network storage is 

significantly reduced with the Axon network device. 

» Axon 
'Switch 

Number of Hops 
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Chapter 5 

Conclusions 

The Axon network device is an inexpensive, practical device that replaces an Ethernet 

switch in the data center. By employing source-routed Ethernet, a new datalink layer 

protocol, Axon networks provide lower latency and greater scalability than conven­

tional switched Ethernet networks. The use of transparent source routing is necessary 

to enable these improvements. Connected hosts may enjoy increased bandwidth and 

scalability of the Axon network without modification. Axons only need to store rout­

ing state for locally connected hosts, and not for the entire network. In addition, 

route lookups are only performed at the initial Axon along a path, as opposed to 

every switch or router along a path. Dynamic address and location discovery services 

are provided by the local Axon, instead of requiring broadcast packets and packet 

flooding across the entire network. 

The Axon prototype, which consists of an Atom processor and a NetFPGA PCI 

card, demonstrates the viability and strengths of the design. Axons can saturate 

lGbps Ethernet links and fairly allocate bandwidth among competing traffic flows 

when the network is congested. The Axon prototype can forward packets in less 

than 1 us per hop by using cut-through routing, in contrast to 7-28 us per hop with 

switched Ethernet. The bandwidth increase introduced by using redundant links in 
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the network has shown an improvement of 96% for UDP flows and 63% for TCP 

flows. 

We believe that the Axon will prove to be an attractive network substrate for the 

datacenter. The network can easily be managed, as the complexity of routers has 

been removed. It is inexpensive because no special netowrking devices are required of 

the hosts. The network can easily be partitioned, as virtual machines are free to move 

about the network and access control among virtual networks can easily be managed 

directly within the Axon. These properties will enable an Axon network to efficiently 

meet the demands of a large-scale, high-performance data center. 

5.1 Future Work 

Multicast and prioritization are two features of switched Ethernet that are not ad­

dressed by this thesis. Arguably, supporting packet priorities may be simpler within 

the Axon than it is within an Ethernet switch. Specifically, with the Axon's lower 

latency, it may suffice to account for priority when deciding which packet to drop 

on a buffer overflow. Currently, multicast packets are passed to the Axon's control 

plane, just like broadcast packets. However, the bandwidth limitations of the 32-bit, 

33MHz PCI bus connecting the prototype's data and control planes make it unsuit­

able for exploring the performance of data dissemination applications and different 

approaches to multicast. 

The Axon device does require a higher-level management system such as Tesseract 
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in order to operate in a production environment. We believe that the Axon and the 

source route primitive in particular, provides a suitable substrate for data center 

networking. Future work includes adapting an existing network management system 

to control a network of Axons. 

One functionality that we have not addressed in this work is when hosts physically 

move on the network. We expect that this will not happen often in a data center, 

but timeout mechanisms should be introduced into the design in order to ensure that 

the Axon network recovers properly. In general, a mechanism for eliminating source 

routes should be developed. 
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