
RICE UNIVERSITY

The Axon Ethernet Device

by

Michael Foss

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

Scott Rixner, Chair
Associate Professor of Computer Science
and Electrical & Computer Engineering

LAJL/tTw- tA Coy^

Alan L. Cox
Associate Professor of Computer Science
and Electrical &3«Computer Engineering

T. S. Eugene Ng
Assistant Professor of Computer Science
and Electrical & Computer Engineering

HOUSTON, TEXAS

MAY, 2010

UMI Number: 1486560

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 1486560
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

The Axon Ethernet Device

by

Michael Foss

Data centers are growing in importance since computation is moving from personal

computers to the Internet. Data centers often use Ethernet as the network fabric;

however Ethernet presents fundamental limitations to scalability.

This work examines the design, implementation, and characterization of the Axon,

a network device that overcomes Ethernet's scalability limitations while maintaining

the simplicity of such devices. Axons use cut-through routing to reduce the latency

of communication and source-routing both to eliminate the the spanning tree and to

reduce state within the network.

Using just one redundant link in small network has been shown to give a 96%

increase to UDP bandwidth and a 63% increase to TCP bandwidth. Experiments

confirm that an Axon's latency is an order of magnitude faster than that of a store-

and-forward switch in an uncongested network, thereby increasing the potential di­

ameter and improving the scalability of an Ethernet network.

Acknowledgments

First I would like to thank my advisor, Scott Rixner for all of his patience and guidance

throughout my studies at Rice. I would not have been able to complete this work

without his support and insights.

I would also like to thank the other members of my thesis committee, Alan Cox

and Eugene Ng, for their helpful suggestions and support for this work.

I am grateful to my colleague Jeff Shafer for all of his help throughout the pro­

cess of developing the Axon and especially for his feedback and help throughout my

graduate studies at Rice. Thanks to Brent Stephens for his work on the CAM in the

Axon and for his insights into the Axon design and development.

If it weren't for my family, I would never have had the opportunity to be at Rice.

I thank them for all their support throughout my tenure at Rice.

Finally I would especially like to thank my fiancee Susan White for her help and

support throughout graduate school.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vii

List of Tables viii

1 Introduction 1

1.1 The Axon 2

1.2 Contributions 6

1.3 Organization 7

2 Background 8

2.1 Ethernet 8

2.1.1 Link Aggregation Control Protocol 11

2.2 Broadcast Packets in the Data Center 12

2.2.1 Dynamic Host Configuration Protocol 12

2.2.2 Address Resolution Protocol (ARP) 13

2.3 IP 14

2.4 Data Centers and Ethernet 16

2.5 Related Work 17

3 Axon Network Device 19

3.1 Axon Design 19

3.1.1 Axon Packet Format 19

3.1.2 Axon Packet Routing 21

V

3.1.3 Interface with Conventional Ethernet Devices 22

3.2 Axon Device Architecture 23

3.2.1 Axon Data Plane 24

3.2.2 Probe Packets 30

3.2.3 Axon Control Plane 31

3.3 Other Ethernet Concerns 37

3.3.1 Link Error Detection 37

3.3.2 LACP 37

3.3.3 Self-Congestion 39

3.4 Axon Limitations 40

3.4.1 Lack of Flooding 40

3.4.2 Fault Tolerance 40

3.4.3 Dependence on ARP/IP 40

3.5 Axon Benefits 41

3.5.1 Local Route Lookup 41

3.5.2 Arbitrary Paths 42

3.5.3 Security 42

3.5.4 Virtual Machine Migration 43

3.5.5 Efficient Use of Redundant Links 43

3.5.6 Manageability 44

3.5.7 Benefits Over Myrinet 44

4 Axon Performance 45

4.1 Implementation 45

4.1.1 Why Use a Prototype? 46

4.2 Functionality 47

4.3 Bandwidth 48

4.3.1 Axon Header Overhead 48

vi

4.3.2 Improvement Over Spanning Tree 49

4.4 Latency 51

4.4.1 Data Plane 51

4.4.2 Control Plane 53

4.4.3 Cut-through vs. Store-and-Forward 56

4.5 Route Memory 61

4.6 Application Benefit 62

5 Conclusions 64

5.1 Future Work 65

Bibliography 67

Illustrations

1.1 Prototype of the Axon Ethernet Device 5

2.1 Ethernet packet format 9

3.1 Axon Packet Format 20

3.2 Axon Architecture 24

3.3 Axon Data Plane Ethernet Port 25

4.1 Maximum TCP Bandwidth for Axon and Ethernet Packets 48

4.2 Line topology and flows used in Table 4.1 49

4.3 Ring topology and flows used in Table 4.1 50

4.4 Network latency of small and large probe packets 57

4.5 Network latency of small and large ping packets 58

4.6 Experimental Setup for measuring impact of cut-through with

congestion 59

4.7 Average round trip time of small packets (64 bytes) under different

congestion loads 59

4.8 Average round trip time of large packets (1514 bytes) under different

congestion loads 60

4.9 Size of CAM needed to route packets from different traces 61

4.10 PostMark Performance 63

Tables

1.1 Key benefits of an Axon network over a standard Ethernet network. . 4

4.1 Bandwidths seen on different topologies, measured in Mb/s 51

4.2 Forwarding latency of a packet through the Axon device 52

4.3 Control plane latency breakdown for an ARP request 54

1

Chapter 1

Introduction

Data centers are becoming increasingly more important to the utility of Internet.

Users expect that a query searching the entire Internet responds on the order of one

second. Users expect to be able to browse shops and purchase products online without

any noticeable delay. As netbooks become more common, users are performing more

compute-intensive tasks on the Internet that they had previously done locally (e.g.

word processing, photo editing, and gaming among others). Data centers are typically

the place where these tasks are physically computed.

The network architecture is a critical component of the data center. In order

to reduce costs, data centers are typically composed of many commodity computers

connected to each other. The communication between these computers is what gives

the data center its power to handle high loads of computation. In order to reduce the

amount of time to process a request from a user outside the data center, a request

may become highly parallelized, as in the case of map/reduce. Hosts inside the data

center need high bandwidth to other hosts inside the data center in order to fulfill

these requests most efficiently.

Indeed there are specialized network fabrics for data center networking; however,

these come at a high cost. One major goal of the data center is to maximize the

2

computing power to cost ratio. Since Ethernet is so widespread, it has become cheap

relative to other network fabrics and is thus the most commonly used data center

network fabric.

It is well known that switched Ethernet does not scale well to large numbers of

hosts [1]. In fact, the very mechanisms that make switched Ethernet easy to manage

also hinder its scalability. As the network size increases, dynamic address and location

discovery using broadcast packets and packet flooding become prohibitively expensive

for both switches and hosts connected to the network.

As a consequence of switched Ethernet's limitations, the current practice is to

break the network into subnets and use IP routing between the subnets. Each subnet

can then be its own independent Ethernet network. In effect, IP routers, which

originally existed at the edge of the data center network, now form the core. However,

this creates additional management overhead. Furthermore, the route computation

and storage needs of a network device in this architecture scale with the amount and

type of traffic that traverses the device.

1.1 The Axon

This thesis introduces the Axon, an Ethernet-compatible device for creating large-

scale, local-area networks. Specifically, an Axon is an inexpensive, practical device

that replaces an Ethernet switch. In fact, to a directly connected host, an Axon

appears to be an Ethernet switch because the Axon and host communicate using the

3

standard Ethernet datalink and physical layer protocols. Moreover, Axons provide

the same ease of management as Ethernet switches. A host can be connected to an

Axon without manual network configuration. However, among themselves, Axons use

source-routed Ethernet, a new datalink layer protocol.

Source-routed Ethernet has two advantages over switched Ethernet. First, it stores

all network and routing state needed by a host in the local Axon—the Axon to which

the host is directly connected. Therefore, regardless of the network's scale, the route

computation and storage needs of a single Axon are proportional to the demands

of its locally connected hosts. Axons in the core of the network can thus handle a

much larger number of traffic flows, as no routing computation or storage resources

are necessary for flows that traverse the Axon. Second, source-routing allows for

arbitrary network topologies. Switched Ethernet requires that the network topology

have no cycles, thus limiting the bandwidth between hosts. Because no cycles are

allowed, switched Ethernet also creates the conditions for oversubscription of links

at the root of the tree. By definition, source-routing allows a packet to take any

available path to reach its destination.

Others have proposed architectural modifications to Ethernet switches to enable

large-scale Ethernet networks [2, 3, 1, 4, 5, 6, 7, 8, 9]. These prior techniques move the

responsibility for routing among hosts from the IP routers to the Ethernet switches.

This requires the switches to maintain routing tables and other network state for all

traffic flows that traverse the switch. This effectively replaces lightweight Ethernet

4

Route

Storage

Topology

Redundant

Links

Standard Ethernet

Since this network uses destination-

based routing, switches must have

state for each flow that uses the

switch.

The only active topology is a tree.

Redundant links are used only for

protection from network failure.

Axon Network

Since a source route needs only to

be determined initially, Axons only

need state for flows originating from

hosts directly connected

Axons may employ arbitrary topolo­

gies

All redundant links in the network

may be used.

Table 1.1 : Key benefits of an Axon network over a standard Ethernet network.

switches with heavyweight "Ethernet routers". While these techniques do reduce

the management overhead of IP routing and subnetting, they do not consider the

practicality, complexity, and cost of the required network devices.

An Axon is a simple, practical device because it uses source-routing to forward

network traffic. As a consequence, Axons only need to store routing state for locally

connected hosts. Source-routing has the additional benefit beyond other scalable

Ethernet approaches in that it allows much more control over bandwidth provisioning.

Moreover, by using source-routing, the initial Axon along a path is the only Axon

that needs to consult a large hardware table to determinescalability a route through

the network. In contrast, every Ethernet switch and IP router must always perform

a route lookup in a large hardware table for every packet that traverses the switch or

5

Figure 1.1 : Prototype of the Axon Ethernet Device

router. Furthermore, the switching fabric inside the Axon uses cut-through routing to

minimize latency. These key features of the Axon device—local resource management,

source-routing, and cut-through routing—combine to create a powerful building block

for future Ethernet networks.

A prototype Axon device, shown in Figure 1.1 demonstrates the practicality of

source-routed Ethernet. Table 1.1 shows some of the key benefits given by the Axon

architecture. The prototype Axon achieves latencies of less than lus per hop, com­

pared with 7-28ifS per hop in switched Ethernet. Furthermore, the prototype Axon is

able to saturate lGbps Ethernet links and fairly distribute bandwidth among compet­

ing traffic flows in the face of congestion. These characteristics result in demonstrable

improvements in performance for network-intensive applications. For example, Axon

devices improve the performance of PostMark, a file server benchmark, by 20-77%

6

for clients connecting to an NFS file server over the network.

1.2 Contributions

This thesis makes the following contributions.

• The first contribution of this thesis is the design of the Axon network device.

The design proposes using transparent source routing to set up source routes

in the Axon network. By using transparent source routing, redundant links

in the network may be utilized in the network topology, and no host needs

to be modified. Furthermore, routes are stored on the local Axon, which is an

improvement over standard Ethernet where each Ethernet switch must maintain

the state of all flows using the switch.

• The second contribution of this thesis is the implementation of the Axon. This

implementation verifies that the design is functional and hosts can indeed take

advantage of source routing without modification. We verify that the Axon can

transparently replace an Ethernet switch.

• The third contribution is the characterization of the Axon based on the proto­

type implementation. We show that a user application on a host can benefit

from the reduced latency of cut-through routing. Furthermore, we show that an

Axon network can take advantage of redundant links in the network and give

a bandwidth increase of 96% for UDP traffic and 63% for TCP traffic. These

7

measurements show that the Axon is indeed well-suited for being the substrate

of a data center network.

1.3 Organization

This thesis is organized in the following way. Chapter 2 gives the relevant background

information on the operation of Ethernet and IP, with particular emphasis on the scal­

ability limitations of Ethernet in the data center. Some of the related work on scaling

Ethernet and the limitations of these approaches are discussed. Chapter 3 describes

the Axon's design and architecture. The following chapter compares the performance

of Axon networks to that of standard Ethernet networks. Finally, chapter 5 concludes

this thesis.

8

Chapter 2

Background

This chapter will present an overview of the operation of Ethernet and how it is used

in the data center. It also points out some of the problems with scaling Ethernet.

Section 2.1 explains how Ethernet works and gives some of its problems with scaling.

Section 2.2 explains how the DHCP and ARP protocols use broadcast packets to

communicate with other IP hosts on the same subnet. Section 2.3 explains some of the

drawbacks of using the IP layer to solve the scalability problems of Ethernet. Section

2.4 explains how Ethernet is typically used in the data center. Finally, section 2.5

presents some of the work others have done to combat Ethernet's scalability problems.

2.1 Ethernet

Switched Ethernet is a truly ubiquitous technology. Ethernet interfaces are stan­

dard equipment in a wide range of computer systems, from embedded devices to

mainframes. Moreover, switched Ethernet is deployed in a variety of environments,

including home networks, office networks, data center networks, and campus net­

works.

A key reason for switched Ethernet's wide-spread deployment is its ease of oper­

ation. First, Ethernet equipment will operate with little or no manual configuration.

9

Bytes: (6) (6) (2) (4)

DstAddr SrcAddr Type Data CRC

Figure 2.1 : Ethernet packet format.

Interface addresses, known as Media Access Control (MAC) addresses, are simple

globally unique identifiers that are assigned by hardware manufacturers, and packet

forwarding is set up automatically. Second, switched Ethernet is self healing. It

can automatically take advantage of redundant network connectivity to recover from

network failures.

Switched Ethernet's ease of operation derives in large part from its ability to flood

packets throughout the network. Specifically, flooding enables a packet to reach the

destination host's interface without any configuration of that interface or the network,

regardless of the interface's location in the network topology. However, since Ethernet

packets do not have a time-to-live (TTL) field (see Figure 2.1), the network topology

must not have any cycles. Otherwise, flooded packets will circulate endlessly inside

network cycles. Even worse, flooded packets will be duplicated at the intersection of

two network cycles.

Prohibiting cycles in the network topology does, in principle, eliminate the pos­

sibility of redundant links in the network. However, switched Ethernet permits re­

dundant links because their use is severely restricted. Specifically, they are only used

to heal the network after a failure. They are never used to provide additional band-

10

width. Ethernet switches employ a distributed algorithm, such as the Rapid Spanning

Tree Protocol (RSTP), to reach agreement among the switches on a cycle-free active

topology that is a spanning tree for the network topology. Furthermore, the Ethernet

switches only use the active topology when forwarding packets to their destination.

In effect, redundant network links are disabled. However, in the event of a network

failure, the switches may selectively reactivate one or more disabled links and re­

configure the active topology to use those these links, thereby healing the network.

Under ideal conditions, RSTP achieves a reconfiguration time that is on the order of

the maximum communication delay across the network. During this time, packets

may be lost, duplicated, or otherwise routed incorrectly.

Because Ethernet does not allow an active topology with cycles, the cross-section

bandwidth is effectively limited to that of one link. Furthermore, even though two

hosts may be connected by a physically shorter path through the network, packets

are restricted to travel along the active topology.

The Ethernet packet format, as shown in Figure 2.1, is very simple. The header

contains the destination address of the target host, the source address of the origi­

nating host, and a protocol type field, which describes the encapsulated data. The

remainder of the packet is the encapsulated data, such as a TCP/IP packet, and a

CRC for verifying the integrity of the packet.

To reduce packet flooding, Ethernet switches automatically perform address learn­

ing, which is the process of mapping the locations of interface addresses within the

11

active topology. Specifically, whenever a packet is received by a switch port p, a

mapping is created from the packet's source address a to the port p. Typically this

mapping is stored in a content-addressable memory (CAM). Later, if a packet with a

destination address a is received on a port other than p, instead of flooding the packet

on all ports it is forwarded only to port p. Eventually, if the mapping of address a to

port p is not reused, it will be discarded. Thus the number of hosts on an Ethernet

segment is effectively limited to the size of the Ethernet switch's CAM; segments with

more hosts may see excessive flooding due to packets overflowing the switch's CAM.

2.1.1 Link Aggregation Control Protocol

Link Aggregation Control Protocol (LACP) [10] is often used in Ethernet networks

to increase the bandwidth between two devices by connecting them together with

multiple Ethernet links. However, LACP's original intent was to provide additional

network redundancy rather than additional bandwidth. One MAC address is chosen

as the logical source MAC of all aggregated links. A conversation is some set of frames

to be transmitted from one device to another where it is important that ordering

between the frames remains consistent, as in a single TCP flow. The definition of a

conversation is purposely vague to allow for different implementations.

The distribution function is in charge of assigning which output port a packet takes

when it leaves on one of the aggregated links. Typically, network devices implement

the distribution function as a hash of several fields within the network packet. The

12

main requirement is that within a conversation no packets are duplicated or reordered.

In this way, the link aggregation is transparent to the higher network protocols. A

single conversation, however, is still limited by the maximum throughput of a single

link. While LACP can help increase the bandwidth over a busy link in the Ethernet

network, it is generally limited in that it must use a hash for the distribution function,

which is not guaranteed to disseminate the traffic optimally.

2.2 Broadcast Packets in the Data Center

For hosts communicating via IP, the main two types of packets that are broadcast

over an Ethernet segment are DHCP and ARP packets. These comprise the Ethernet

broadcast traffic most relevant to the data center.

2.2.1 Dynamic Host Configuration Protocol

The Dynamic Host Configuration Protocol (DHCP) allows hosts to join a network

without any manual configuration. For example, a host can use DHCP to learn its

IP address and its default IP router.

In the general C8LS6, BJ host will broadcast a DHCP discovery message over the Eth­

ernet network. This message will therefore be received by all of the DHCP servers

in the network. Any number of these servers may respond with a DHCP offer mes­

sage, which is unicast to the host. The host chooses one of these DHCP offers and

broadcasts a DHCP request message indicating its choice, thereby simultaneously

13

informing all of the servers. Finally, only the chosen server responds with a DHCP

acknowledge message, which is unicast to the host.

The host's "lease" on the configuration provided by the DHCP server also has

an expiration time. Before the lease expires, the host will attempt to renew its

configuration lease with the server from which it came. In this case, the host will

skip the first phase of the protocol, and begin with a unicast DHCP request to the

server. If the host does not receive a DHCP acknowledgement renewing the lease

before its expiration, the host falls back to the general case and broadcasts a new

DHCP discovery message.

2.2.2 Address Resolution Protocol (ARP)

When an IP host sends an IP message to another IP host residing on the same

Ethernet network, it sends the message directly without the involvement of a router.

However, before the message can be sent, the sending host must discover the receiving

host's MAC address. To discover the receiving host's MAC address, the sending host

uses the Address Resolution Protocol (ARP). In this case, the sending host broadcasts

a message containing an ARP request on the Ethernet network. The ARP request

specifies the IP address of the host whose MAC address is sought. Since the ARP

request is broadcast, every host on the Ethernet network will receive it; hosts residing

on large Ethernet segments will see much irrelevant ARP traffic. When a host receives

an ARP request specifying its IP address, it responds with an ARP reply specifying

14

its MAC address. The ARP reply is unicast to the requester. When the ARP reply is

received by the requester, the translation from IP address to MAC address is cached,

and the IP message is unicast using the discovered MAC address.

In addition, all hosts in the network take advantage of the fact that ARP requests

are broadcast to avoid future ARP requests of their own. Specifically, the receiver

of an ARP request learns the mapping from the requester's IP address to its MAC

address, and caches this information. In fact, a host may spontaneously send an ARP

request specifying its own IP address as a way of announcing its MAC address. In

this case, no host is expected to respond.

2.3 IP

As mentioned in the previous section, Ethernet has several inherent limitations to

scalability. Because of this, often the internet protocol (IP) layer is used to scale

networks. Each host in an IP network has a unique IP address (which may be

assigned by a DHCP server). Unlike Ethernet addresses, IP addresses are related

to the host's location in a network. Therefore, network architects must carefully plan

the network IP topology (in data centers, campus networks, etc.) in order to allow

for future growth and the most efficient communication between active hosts.

IP routers are responsible for moving incoming IP packets closer to their ultimate

destination in the IP network. Assuming that the IP network is layered on top

of multiple Ethernet networks, each port of the IP router connects to a different

15

Ethernet segment and performs the routing required to transfer packets from one

Ethernet segment to another. When a packet arrives at a router, its IP address is

inspected against a routing table. This table maps a given range of IP addresses to

a specific port on the router. The range of IP addresses is specified by the most

significant bits in the IP address, or, the prefix. The router examines the destination

IP address of an incoming packet and determines the output port based on the longest

matching prefix of its routing table. Typically this lookup is performed by a ternary

CAM (TCAM), which takes up a larger area and more power than the CAM that is

found on an Ethernet switch.

The operation of the routing table is what ties an IP address to a host's location in

the network. Routing tables in an IP network must be globally coordinated in order

for packets may reach all available destinations on the network. Thus, IP networks

require further management in a way that Ethernet networks do not. Furthermore,

routing tables must be modified each time a change is made to the network topology.

Several protocols exist in order to automatically update the routing tables in a net­

work, but enforcing network policies (such as a firewall) may increase the complexity

required to maintain consistent routing tables across the IP network or even require

setting the routing tables manually.

16

2.4 Data Centers and Ethernet

A data center is an aggregation of thousands or even hundreds of thousands of servers.

These are particularly beneficial for cloud computing, where one uses an Internet

service to do work as opposed to one's own host machine. The applications of interest

here are office-type documents, Internet search, or cloud computing services, such as

Amazon's EC2. These services require extensive network communication within the

data center.

It is desirable to use Ethernet in the data center because it is ubiquitous and is thus

cheaper than other technologies. Also, using Ethernet allows servers from different

generations to be used side by side. Finally, as previously discussed, Ethernet is a

simple protocol and needs little or no management.

Data centers would benefit in many different ways if it were possible to have

one large, flat Ethernet network connecting all hosts. First, the network architects

would not need to segment the IP address space. This would make it easier for

data centers to construct and to grow . Second, the data center's network would be

cheaper to build, as it would not require IP routers to handle internal traffic. IP

routers are generally more expensive than Ethernet switches due to their additional

capabilities and more expensive route lookup function. Third, any virtual machine

on the network could migrate to any physical host while maintaining the same IP

address. This capability would allow data centers to run more efficiently as it enables

arbitrary virtual machine migration. Fourth, the management overheads of managing

17

the IP network would be reduced or even diminished.

2.5 Related Work

The benefits of Ethernet networking are widely recognized, which is why it is so

popular today. However, the scalability limitations of Ethernet are also well known.

These previous observations have all led to novel approaches to scaling Ethernet.

Many of them, however, still involve network-wide dissemination of topology and/or

routing information [4, 5, 8, 9]. More recent approaches have further reduced the

overhead of scaling Ethernet [2, 3, 6]. However, in these schemes, each device still

must provide storage and computation resources for all flows that traverse the device.

The computation, but not storage, requirements can be reduced by offloading the

route calculation to either a distributed control plane [1] or a wafer-thin control

plane [7].

Identity-based routing can also be used to improve the scalability of local area

networks [11, 12, 13]. These prior techniques, however, do not route directly to the

destination. Instead, they determine paths using a hash of the destination identifier.

These paths limit the route that a packet may take to reach a destination in the

network.

OpenFlow switches can be programmed to identify flows, process packets, and

forward packets in a flexible manner [14]. While OpenFlow switches allow modifi­

cations to the Ethernet protocol, they are still closely tied to the existing switched

18

Ethernet architecture. This means that flow data must be disseminated to all Open-

Flow switches in order to forward packets correctly, thus limiting the scalability of

an OpenFlow network.

Others have recognized that there are many redundant links that Ethernet switches

never use. Many have proposed new ways to manipulate the spanning tree [4, 9]. How­

ever, [9] requires software to be run on each host in the network. [4] does not allow

for arbitray paths to be taken via the redundant links in the network.

Section 3.5 will revisit some of the above proposed solutions to scaling Ethernet

and will show how the Axon overcomes many of the problems that these techniques

introduce.

19

Chapter 3

Axon Network Device

3.1 Axon Design

The Axon device is a direct replacement for Ethernet switches that can be used

to create a highly-efficient local-area network. Hosts* can be directly connected to

an Axon without modification. Hosts continue to transfer packets as if connected

to a traditional Ethernet switch. Axons transparently use source-routed Ethernet

to transfer data through a network of Axons. In order to implement source-routed

Ethernet, Axons utilize a different packet format and different routing mechanisms

than conventional switched Ethernet.

3.1.1 Axon Packet Format

Axon packets are transmitted over conventional Ethernet cables using standard Eth­

ernet media access control and physical transceivers. However, within a network of

Axons, packets have their own header type, as shown in Figure 3.1. The Axon header

includes a type, length, and source-routing information. Although Axon packets do

*In this thesis, the term host means any non-Axon device that communicates via the Ethernet

protocol, including a standard Ethernet switch, an IP router, or a host computer. Switch means a

device that strictly adheres to the layer 2 Ethernet protocol

20

Bytes: (0.5) (2) (1.5) (1.5) (0.5perhop) (O.Sperhop) (0-0.5) (4)

Type Length Fwd Hop Count Rev Hop Count Fwd Hops Rev Hops Padding Data CRC

Figure 3.1 : Axon Packet Format

not have an Ethernet header at the beginning of the packet, standard Ethernet phys­

ical transceivers are still able to send and receive them.

The type field in the header indicates the type of packet that is encapsulated in

the Axon packet. For normal traffic between hosts, Ethernet packets are encapsu­

lated in Axon packets. For traffic between Axons, non-Ethernet control messages are

encapsulated in Axon packets. The type field can also indicate other special packet

types. The length field contains the length of the Axon header.

The forward and reverse hop counts indicate the number of remaining forward hops

and the number of hops the packet has already taken. The forward path indicates

the port numbers that should be followed for subsequent hops and the reverse path

indicates the port numbers that should be followed to return to the packet's source.

Each hop in the path is a 4-bit value that indicates an output port number. A hop

with the value 'Oxf indicates the packet should be forwarded to the control plane,

rather than an Ethernet output port. If there are an even number of hops, the header

will be padded with 4 bits so that it ends on a byte boundary.

In order for commodity Ethernet MACs and PHYs to transmit and receive Axon

frames, they must support frames larger than standard Ethernet frames and they

must not reject frames based on MAC address. Fortunately, modern Ethernet MACs

21

support both of these features. First, Ethernet MACs support jumbo frames, which,

as the name implies, are oversized Ethernet frames. With this feature enabled on

the Axon MAC units, a maximum-sized Ethernet frame can safely be encapsulated

within an Axon packet. Second, Ethernet MACs support promiscuous mode, which

disables any checking of the destination MAC address. With this feature enabled,

the receiving MAC will accept frames whose first 6 bytes do not match the receiver's

MAC address, allowing the first 6 bytes to be part of the Axon header.

Finally, from the perspective of the Ethernet MACs and PHYs, an Axon packet

is just an oversized Ethernet frame, the Ethernet CRC can be used to detect trans­

mission errors. As with conventional Ethernet frames, the transmitting MAC will

compute and append a CRC to every Axon packet and the receiving MAC will com­

pute and verify the CRC of every Axon packet.

3.1.2 Axon Packet Routing

The source-route in the Axon header allows an Axon to determine the output port

for an Axon packet after receiving the sixth byte of any Axon packet, as the sixth

byte of the header contains the next forward hop. At this point, the packet can

immediately be forwarded to the appropriate output port. The paths in the Axon

header are updated for the next hop as the packet is forwarded to the output port.

Axons perform cut-through routing, but its implementation differs from conven­

tional high performance interconnection networks. An Ethernet network has two key

22

differences from a conventional interconnection network. First, Ethernet MACs and

PHYs only allow entire Ethernet packets to be transmitted over a wire. No backpres­

sure can be applied for flow control in the middle of a packet transmission. This means

that buffering for entire packets must be provided in order to deal with collisions and

congestion. Second, unlike most interconnection networks, Ethernet networks do not

guarantee packet delivery. This means that once the buffers fill up, the Axon can

safely drop packets. If necessary, higher level network protocols will then throttle

their transmission rate and properly resend these packets.

3.1.3 Interface with Conventional Ethernet Devices

Axons present themselves as a conventional Ethernet switch to conventional Ethernet

devices. Hosts that are connected to an Axon send and receive normal Ethernet

frames, not Axon packets. In order to present this interface, all packets that are

transferred between an Axon and a conventional Ethernet device must be converted

between Axon packets and Ethernet frames.

Axons use a bootstrap protocol to determine whether each port is connected

to another Axon or to a traditional Ethernet device. When connected to another

Axon, packets are simply forwarded as described in Section 3.1.2. Otherwise, packets

received from an Ethernet device are encapsulated in an Axon header and packets

sent to an Ethernet device are stripped of their Axon packet header.

Locally connected hosts will broadcast DHCP and ARP requests and expect

23

replies from the appropriate hosts. The local Axon intercepts these address and

location discovery messages. An Axon can respond to DHCP requests directly with

lease offers, or the requests can be forwarded to a known DHCP server. Once the host

has been configured with an IP address, it will use ARP to find other hosts. The local

Axon is responsible for collaborating with the Axon connected to the target host in

order to set up routes to allow communication in both directions between the hosts

(further described in section 3.2.3).

When the next forward hop of an Axon packet indicates a port which is connected

to a traditional Ethernet device, such as a host, the Axon header will be stripped

from the packet, leaving a normal Ethernet packet. The packet is then forwarded to

the host, which will never know that the packet had previously been encapsulated in

an Axon packet.

3.2 Axon Device Architecture

Figure 3.2 shows the overall architecture of the Axon Ethernet device. An Axon

includes both a hardware switching fabric—the data plane—and a processing element

to perform control operations for locally connected hosts—the control plane. As

the figure shows, the data plane is implemented in hardware for performance and

the control plane is implemented in software for flexibility. While IP routers bear

some similarity to this high-level architecture, the Axon device is much simpler, and

therefore can be faster and more cost effective. This section describes the data and

24

Data Plane

Switch

A

V

Output
Port

Input
Port

1 t
MAC

)

PHY

I nGigabil

• • •

• • •

• • •

t Etheri

A

V

Output
Port

Input
Port

1 t
MAC

(

PHY

let Ports X

V

Output
Port

A

Input
Port

A

Memory -<

(;onfn

H-^

olPla

Processor

ne

Figure 3.2 : Axon Architecture

control plane architecture in detail.

3.2.1 Axon Data Plane

Each Ethernet link is connected to the Axon via an Ethernet port in the Axon data

plane. Figure 3.3 shows the architecture of an Ethernet port, which consists of an

input port and an output port. The input and output ports are all interconnected

via a switch.

The control plane configures each Ethernet port as an Axon port or a host port.

A host port is connected to a conventional Ethernet device, so all packets crossing its

Switch Interface

25

Output Port

r'\
n Fall-Through Queues

per input port)

I I
Queue Selector

Input Port

Header
Processing

I
Route

Lookup

No

Port connected to host?

YesJ

MAC Interface

Figure 3.3 : Axon Data Plane Ethernet Port

Ethernet link are standard Ethernet frames. In contrast, an Axon port is connected

to another Axon, so all packets crossing its Ethernet link are Axon packets. The

control plane is also connected to the data plane as if it were an Ethernet link. The

control plane configures its port as an Axon port and injects and receives only Axon

packets.

Input Port

When a packet is received over an Ethernet link, the packet is first processed by the

input port connected to that link. As Figure 3.3 shows, packets received on a host port

26

are processed by the route lookup module and then the header processing module.

Packets received on an Axon port are only processed by the header processing module.

Route Lookup. Packets sent by a host connected to an Axon will always be Eth­

ernet frames. These frames cannot be routed through the Axon network. Instead,

they must first be encapsulated in an Axon packet. The route lookup module uses the

destination MAC address of the received Ethernet packet in order to find the correct

route in route memory.

The Axon uses one of two mechanisms to determine the source route to be

prepended to incoming data packets. In the first case, the destination MAC ad­

dress maps to a source route via a content-addressable memory (CAM) entry in the

Axon. If the CAM is not large enough to store all the mappings for active routes,

the Axon may provide the host a fake destination MAC address when it first sends

an ARP request for the destination. The host then maps the destination's IP address

to this masqueraded MAC address, which is a direct index into route memory. The

Axon sets the locally administered bit in the masqueraded MAC address returned to

the host. In this way the mapping function is pushed to the host as opposed to the

Axon when the Axon's CAM is exhausted.

Each Ethernet port has its own private route memory that is only used by host

ports. This route memory contains Axon headers with source-routes that have been

configured by the control plane in response to ARP requests made by the host. Each

Ethernet port has its own route memory in order to allow network security policies

27

that require isolation among the hosts.

The route lookup module therefore uses the destination MAC address of the in­

coming packet to determine the address of the Axon header in route memory. If the

locally administered bit is set, then the Axon uses the MAC address as the index

directly; otherwise it looks up the address by using the CAM. The header is then re­

trieved from route memory and prepended to the Ethernet frame, creating an Axon

packet. Since the destination may be expecting the source to have a different MAC

address (in case it was given a masqueraded MAC address),the source and destination

addresses of the Ethernet packet are also replaced with the MAC addresses that the

target is expecting-these are are stored in the route memory immediately following

the Axon header. If the CAM lookup fails or if the locally administered bit is set

but the destination MAC address does not encode a valid route index, then a default

Axon header is prepended to the frame with a single forward hop that targets the

local control plane. A lookup failure which causes a packet to be forwarded to the

control plane is not necessarily an error. This is how broadcast traffic is captured and

sent to the control plane, for instance.

Once an Ethernet frame has been processed by the route lookup module, it has

become a valid Axon packet like any other Axon packet and can be processed by the

header processing module. Note that regardless of the length of the route a packet

must traverse, this initial route lookup on a host's local Axon is the only time any

route lookup will be performed. For all subsequent hops, the packet will arrive at an

28

Axon port and skip the route lookup module.

Header Processing. Packets arriving on an Axon port or packets that have been

processed by the route lookup module are processed by the header processing mod­

ule. This module uses the source-routing information to determine to which port to

forward the packet and then modifies the header appropriately.

The header processing module first reads the next forward hop to determine the

correct output port to which the packet should be forwarded. If there are no remaining

forward hops, the packet type is changed to an error packet and it is forwarded to

the control plane.

If the output port is an Axon port, the header is then modified for the next hop

through the network. First, the forward hop count is decremented and the reverse

hop count is incremented. Second, the first forward hop is removed from the header,

and subsequent hops are shifted forward. Finally, the input port number is inserted

as the first reverse hop. These modifications to the header can be made as it is sent

to the output port over the switch.

If the output port is a host port, the Axon header is completely removed from the

packet, leaving a valid Ethernet packet. However, if the packet type is not encapsu­

lated Ethernet, then the packet type is changed to an error packet and it is forwarded

to the control plane.

Axon packets that are destined for the control plane are treated as any other

packet. In their source-routes, their next forward hop will be 'Oxf'. They will be sent

29

over the switch to the control plane's output port, which will then "send" the packet

to the control plane.

Switch

The non-blocking switch within the Axon data plane provides connectivity between

all of the input ports and all of the output ports. Each input port can inject a packet

into the switch at any time. Before injecting a packet into the switch, the input port

prepends a one byte header which indicates the type of packet and the destination

output port. Each output port can simultaneously receive a packet from every input

port. The output port must either accept packets that are sent to it or it must send a

negative acknowledgement (NACK) back to the input port. An output port will only

NACK a packet if the output port is not able to buffer the packet or immediately

transmit it over the Ethernet link. When an input port receives a NACK, it can either

drop the packet, retry sending it to the output port later, and/or send a congestion

message back to the previous Axon in the path to slow down the incoming packet

stream.

Output Port

The output port receives packets that have already been processed by the header

processing module in an input port. This means that packets received by the output

port are immediately ready to be sent out over the Ethernet link with no further

modifications.

30

The output port contains one buffer per input port in the data plane. This allows

the output port to simultaneously receive packets from an arbitrary number of input

ports. This eliminates head-of-line blocking problems at the input ports and simplifies

the task of fair bandwidth allocation of each outbound link among input ports. Even

though all packets received by the output port are buffered, the buffers all support

fall-through operation. So, the entire packet does not need to arrive at the output port

before it can be sent over the Ethernet link. When the output port is not congested,

packets are sent immediately from the switch to the Ethernet link. This allows the

Axon to operate as a cut-through router, where the Ethernet packet can begin to

leave the output port before it has even been fully received on the input port.

3.2.2 Probe Packets

In order to determine the best source route for a flow, an Axon may wish to test out

different candidate routes. In order to do this, an Axon can send a probe packet out

along an arbitrary path that ends at the Axon that originally sent the probe packet

(forming a circuit). Probe packets are transmitted like other Axon packets except

that Axons along the path add data to the tail of these packets depending on which

probe option bits are set in the packet. A probe unit sits on both the input port and

the output port in each Axon. If a probe packet is seen and the timestamp options are

set, then the input and output units will attach to the end of the packet the time that

the packet was first seen by that unit. Timestamps cannot be synchronized across

31

devices, but the timestamp from when a probe packet is received by a device can be

compared to the timestamp from when that probe packet was originally sent by the

same device to compute the intervening latency. In this way, Axons can determine

the raw latency of different paths across the Axon network and possibly determine

which Axons may be congested since timestamps are attached both at the input and

output ports of each Axon on the path. In general, probe packets offer a way for one

Axon to gather data about another Axon's hardware status.

While in the above scenario probe packets are used to gather latency and con­

gestion data about different paths within an Axon network, a probe packet may also

measure the latency of external Ethernet networks. This kind of probe packet is re­

ferred to as an ether probe. In this case a single Axon specifies an source port and

a destination port, which are both assumed to be connected to the same external

Ethernet network. First, the Axon sends a packet from the destination port to the

source port to ensure that the external network performs address learning. Next, it

sends a packet from the source port to the destination port, and the timestamps on

the Axon from when it left and returned are compared to determine the amount of

time the packet spent in the external network.

3.2.3 Axon Control Plane

The primary responsibility of the Axon control plane is to handle packets that cannot

be directly switched by the hardware data plane. To allow flexibility, the control

32

plane is implemented in software running on a low-power embedded processor in the

Axon. The control plane has a port into the switching fabric of the data plane, as

shown in Figure 3.2. This allows the control plane to receive packets from and inject

packets into the data plane seamlessly. The data plane forwards to the control plane

all Ethernet packets from a host with a destination address that does not indicate

a valid source-route in that host port's route memory. This includes all broadcast

traffic. The most common task of the control plane is to handle Ethernet broadcast

packets transmitted by local hosts, such as DHCP and ARP.

DHCP

As described in Section 2.2.1, DHCP enables a host to dynamically discover its IP

address. The initial DHCP discovery message is broadcast onto the Ethernet by

the host. As with all Ethernet broadcast traffic, DHCP discovery messages will be

forwarded to the control plane. The control plane can then either forward the DHCP

traffic to a conventional DHCP server or act as a DHCP server itself and respond

to the host directly. In the latter case, each Axon can immediately assign any of its

local hosts an IP address from a locally reserved pool.

All communication between the host and the DHCP server is guaranteed to be

forwarded to the control plane. The broadcast DHCP discovery and request messages

from the host will always be sent to the control plane. The Axon will use a source

Ethernet address that will never correspond to a valid source-route in the DHCP offer

33

and acknowledgement messages it returns to the host. When the host subsequently

tries to renew its lease with a unicast message, it will use that Ethernet MAC address.

The data plane will then forward the message to the control plane, as the address

does not correspond to a valid source-route.

Transparent Route Creation

As described in Section 2.2.2, hosts use the ARP protocol to determine the location

of other hosts on the Ethernet network. The control plane then uses the Axon-ARP

protocol to satisfy the request. The Axon-ARP protocol involves two Axons: the

source Axon, which is connected to the source host making the request, and the

target Axon, which is connected to the host that is the target of the request. The

source and target Axons must communicate in order to setup routes in both directions

between the source and target hosts.

Upon receiving an ARP request, the source Axon first reserves sufficient space

in the source host's input port's route memory to hold an Axon header containing

a route from the source host to the target host. Then the source Axon sends an

"Axon-ARP request" to the control plane of the target Axon. This request includes

the source host's real MAC address (taken from the ARP request), the MAC address

corresponding to the allocated route memory in the source host's input port, the IP

address of the source and target hosts, and the Axon ports to which the source and

target hosts are connected.

34

Note that the Axon cannot reserve space in the route memory or send an Axon-

ARP request if it does not already know of a path to the target host and target Axon.

Therefore, additional communication may be required to determine such a route. For

the prototype Axon implementation, the network topology and route selection is set

statically via a configuration file. This allows the exploration of other aspects of the

Axon architecture, but is clearly not reasonable for a realistic deployment. Others

have already proposed mechanisms to more realistically determine routes. The two

main ideas are to use a distributed hash table [6] or a central controller [15]. In

principle, the Axon control plane architecture can support either method.

When the target Axon receives an Axon-ARP request, it also reserves space in the

target host's input port's route memory to hold an Axon header containing a route

back from the target host to the source host. Note that the target Axon will always

know a route back to the source because it is encoded in the reverse path of the Axon

header of the request. The target Axon then sends a standard ARP request to the

target host. The source MAC address used in this request depends on whether there

is room in the CAM on the target Axon. If there is enough room, then the source

host's real MAC address is given as the source MAC address; otherwise, the source

MAC is masqueraded and corresponds to the allocated route memory in the target

host's input port. The masqueraded MAC address has the locally administered bit

set. Regardless of whether the real MAC or masqueraded MAC is used, when the

target host sends back an ARP reply to the MAC address, the data plane will forward

35

it to the control plane, since the reserved route memory is not yet marked as valid.

When the target Axon receives the ARP reply from the target host, it can then

install a route to the source host. The route's Axon header will include the route

back to the source host, which is a combination of two paths: 1) the reverse path

from the Axon-ARP request header (to get to the source Axon) and 2) the source

host port in the Axon-ARP message (to make the final hop to the source host). The

control plane also stores destination and source Ethernet MAC addresses in the route

memory. These addresses will be used by the input port to modify the Ethernet

header so that it will match what the source host expects when a packet from the

target host arrives at the source host. The destination MAC address is always the

real MAC of the source host, but the source MAC address is real MAC address of

the target host only if the source Axon used the CAM to map to the route in route

memory. Otherwise, the source Ethernet address is the masqueraded MAC address

that directly indexes to the allocated memory in the source host's input port.

After installing a valid route, the target Axon can respond to the control plane of

the source Axon with an "Axon-ARP reply". This reply is similar to the request, in

that it includes the target host's real MAC address (taken from the ARP reply), the

MAC address that corresponds to the allocated route memory in the target host's

input port, and the IP addresses and Axon ports of the source and target hosts.

When the source Axon receives the Axon-ARP reply, it can complete the route

setup for the source host. It uses the MAC addresses in the reply to place the Axon

36

header in the previously allocated source host's route memory. Finally, the source

Axon can respond to the source host with a normal ARP reply. This ARP reply will

use as the source MAC either the real MAC of the target host (if the CAM had room

to store the mapping) or a masqueraded source MAC address that corresponds to the

allocated route memory in the source host's input port. When the host receives the

ARP reply, the source and target can begin sending packets directly between each

other. The input ports will find a valid route in each direction and will therefore

forward the packet along the appropriate path with no further intervention from the

control plane.

The route from the target to the source is valid before the route from the source

to the target is valid. In the unlikely event that the target sends a packet to the

source during that time period (recall that the source is requesting a path to the

target, so is likely the one to initiate any communication), it will arrive correctly at

the source. If the source then responds before the source Axon has validated the

route, the hardware will simply forward that packet to the control plane. At that

point, the control plane can safely drop the packet, as this should affect only a small

amount of traffic until the source Axon installs the correct route, and higher level

network protocols should retransmit those packets.

37

3.3 Other Ethernet Concerns

3.3.1 Link Error Detection

As discussed in Section 2.1, a 4-byte CRC is used to detect Ethernet link errors.

However, this CRC does not protect against errors that occur within a device, as

it is calculated as an Ethernet frame is transmitted over a link and is verified and

discarded when it is received. A conventional store-and-forward Ethernet device will

discard any received packets with an invalid CRC. Since Axons employ cut-through

routing, use of the CRC is a bit more complicated. By the time the receiver is able

to verify the CRC, the head of the packet may already have been transmitted by its

next hop output port. In this case, the output port would already be in the process

of computing a new CRC on the invalid data. So, when the input port receives an

invalid CRC, it must notify the output port so that it can append an invalid CRC to

the end of the frame. This will ensure that the subsequent device will know that it

has received an invalid frame. This may continue on each hop of the path until the

frame is finally fully buffered, either in a congested Axon or a conventional Ethernet

device. At that point, it will then be dropped due to the invalid CRC.

3.3.2 LACP

As mentioned in section 2.1.1, standard Ethernet may increase the bandwidth between

two devices via link aggregation control protocol (LACP). Any network device is

allowed to connect to a single Axon via multiple aggregated links. In fact, one device

38

could even have aggregated links that connect to separate Axons. As long as a

given conversation deterministically enters the Axon network along a single link,

separate Axons (or multiple ports of the same Axon) would be able to continue to

provide the source route for incoming packets within the Axon network. The ability

to transparently split the aggregated links is called multipoint aggregation and is not

possible in a standard Ethernet network.

Increasing the bandwidth between any two Axons within the Axon network is

trivial and does not require LACP. One would simply create the desired topology,

including extra links. Then when assigning source routes, the mechanism could choose

which link to use, perhaps based on the current amount of traffic observed along the

links in common with the two devices.

Similarly, an Axon may send packets to another network device that is connected

to multiple ports via LACP. In this case, the Axon network would be in charge of

the distribution function. Since all source routes are based on source and destination

Ethernet addresses, they would essentially go through the distribution function at the

time of source route creation. Further, the source route could be changed dynamically

by updating the source route on the source Axon.

That the Axon does not require a hash for the distribution function is a funda­

mental advantage of the Axon network over a standard Ethernet network. This allows

the Axon to have arbitrary flexibility in assigning conversations to links, which could

aid in balancing the traffic between the links.

39

3.3.3 Self-Congestion

Since the Axon prepends an Axon header to each packet originating from a host, each

packet that leaves an Axon is larger than when the host sent it. When packets from

a host enter the Axon at the maximum rate for some time, the extra data due to the

new Axon headers may fill up the buffer on the output port, even in an otherwise

quiescent network. If left unchecked, the buffer may eventually drop a packet. We

call this phenomenon self-congestion.

Currently, the Axon solves the self-congestion problem by using pause frames, an

Ethernet-based flow control mechanism. When one device sends a pause frame out

of an Ethernet port, the connected device must refrain from sending any packets on

that port for the duration specified by the pause frame. The Axon currently sends a

pause frame to a host after the host has generated a maximum-sized packet's worth

of Axon header data (which occurs once every several hundred packets when there

are only a few hops to the destination). This pause frame instructs the host to stop

transmitting for as long as it would take to transmit a maximum-sized packet. In

this way, the buffer in the Axon may drain any excess data due to Axon headers and

will not drop a packet due to self-congestion. If the packet were lost, a higher-layer

protocol such as TCP might need to retransmit the packet, but potentially at the

cost of reducing its bandwidth.

40

3.4 Axon Limitations

3.4.1 Lack of Flooding

One way that the Axon combats the challenges of scaling Ethernet is by limiting

the types of packet flooding. The Axon intercepts all packets to be broadcast on

the network, but it only handles ARP requests and DHCP requests. This will take

care of most networks' requirements, including that of typical data centers; but other

networks may need to use Ethernet's broadcast mechanism for different protocols.

The Axon currently does not support this, but if a central controller were to manage

a network of Axons, it could intercept these broadcast packets and perhaps handle

them on a protocol-by-protocol basis.

3.4.2 Fault Tolerance

We envision that a higher-level control system (such as Tesseract [15]) would manage

faults that may occur in an Axon network. When a fault occurs, surrounding Axons

will know either by a link failure or by receiving many packets with invalid CRCs.

Once one Axon detects the fault, it could notify a central controller, which would

then reassign source routes going through the faulty Axon.

3.4.3 Dependence on A R P / I P

As currently designed, the Axon is dependent on intecepting an ARP request in

order to create a source route. It "knows" where the target IP address lives and then

41

handles the Axon-ARP mechanism from there. This works well in a network where

the Axon is responsible for assigning IP addresses, but this may be troublesome when

protocols other than IP are used. One solution would be to wait until a host sends

out a packet, and then the Axon could learn its Ethernet address by examining the

source MAC address, just like a standard switch does. However, if an end host is

silent on this network, another mechanism may need to be developed in order to find

the host.

3.5 Axon Benefits

The following subsections outline some of the benefits that data centers can enjoy by

using an Axon network.

3.5.1 Local Route Lookup

The Axon network architecture represents a fundamental departure from conventional

network architectures as all state is stored at the edge of the network. In current

networking technologies (i.e., Ethernet switches, IP routers, etc.), routing information

is required on all devices along the path from the source to the destination. This often

requires every device to store at least partial routing information for every destination

in the network, and this state is accessed by every packet traversing the device. Even

proposed network devices, such as OpenFlow switches [14], still require access to

routing state on every hop through the network. Storing state on every device for all

42

traffic flows traversing the device is not scalable. In contrast, Axons only store routing

state on behalf of hosts connected directly to that Axon. Therefore, the required state

scales only with the number of hosts that are connected to an Axon, not with the

diversity of traffic that flows through an Axon. An Axon does not need to have any

routing or topology information for traffic that it is forwarding. Fundamentally, this

is a far more scalable network architecture than the state-of-the-art.

3.5.2 Arbitrary Paths

The Axon network is not constrained to use any particular path for a traffic flow.

When necessary, shortest-path routing can be used, but in other instances different

routes could be chosen. For example, a longer path may be chosen if the shortest

path uses a link that is congested. Arbitrary paths are allowed, and they remain

transparent to end hosts.

3.5.3 Security

By controlling access to the network at the source, transparent source routing also

enables efficient network virtualization. The existence, or lack thereof, of a source

route to the intended destination determines whether that host is allowed to com­

municate with that destination. There is no need for inter-VLAN routing. Instead,

the control planes across the network provide distributed access control among hosts

throughout the network.

43

3.5.4 Virtual Machine Migration

That the entire network is one Ethernet segment yields advantages for both manage­

ability and virtual machine (VM) migration. Administrators need not worry about

how the IP address is segmented because any host on the network can have an arbi­

trary IP address and may still communicate with all other hosts. Furthermore, VMs

are usually restricted to migrate within their subnet because otherwise the VM would

need to change its IP address. In an Axon network, any VM can migrate to any host

and retain its IP address, provided that the control plane reconfigures the appropriate

source routes.

3.5.5 Efficient Use of Redundant Links

The use of source routing also frees the network from any topology constraints, unlike

some other approaches to scaling Ethernet [16] [5]. The Ethernet spanning tree dis­

ables all redundant links from the network. These redundant links are only utilized

in response to link failures. Typically, link aggregation is used to prevent band­

width bottlenecks because of the lack of redundancy in the spanning tree. Since flows

are distributed across aggregated links using hashing, link utilization can easily be­

come unbalanced, leaving the available capacity underutilized. In contrast, the use of

source-routing allows an Axon network to exploit redundant links effectively. These

links can be used to easily increase network bandwidth, respond to link failures, and

avoid congestion.

44

3.5.6 Manageability

The Axon device does not in itself make a case for how the network should be man­

aged; rather, it provides a flexible, scalable network primitive: the source route. Other

proposed mechanisms can be used to provide control for the network and set up the

source routes [15].

3.5.7 Benefits Over Myrinet

Similar to the Axon device, Myricom's lOGbps network devices, Myri-lOG, all use

commodity Ethernet physical interfaces [17]. This means that Myri-lOG adaptors and

switches can interoperate with conventional lOGbps Ethernet adaptors and switches.

However, to enable this functionality, the switches must be equipped with special

network processors to convert Ethernet packets into Myricom packets. Furthermore,

Myrinet networks also use source-routing for performance. However, the source-

routing is controlled by the Myri-lOG adaptors, not the Myri-lOG switches. There­

fore, in contrast to the Axon device, which allows commodity systems to obtain

higher network performance, Myri-lOG switches only provide improved network per­

formance when the host systems also use Myri-lOG adaptors. The Axon architecture

will therefore be able to provide better network performance for commodity host

systems.

45

Chapter 4

Axon Performance

In this chapter we evaluate the Axon architecture. This includes a description of the

platform we chose and how the Axon provides better latency and bandwidth efficiency

than standard Ethernet networks.

4.1 Implementation

Figure 1.1 shows the prototype Axon device used to evaluate source-routed Ethernet.

In the prototype, the hardware data plane is implemented on Stanford's NetFPGA

platform [18], and the software control plane runs on an Intel Atom processor in a

D945GCLF mini-ITX motherboard. Communication between the data and control

planes takes place over the PCI bus in the prototype.

The NetFPGA platform is a 32-bit/33MHz PCI card that includes four Gigabit

Ethernet ports, a Virtex-II Pro 50 FPGA connected to those ports, several memories,

and other essential components (Ethernet PHY, PCI interface, etc.). The data plane

is entirely implemented with the Virtex-II Pro FPGA on the prototype. While a true

Axon device would likely have more Ethernet ports, the NetFPGA effectively limits

the prototype to four. However, four Ethernet ports are sufficient to demonstrate the

viability of the Axon device.

46

The Intel Atom is a low-cost, low-power, hyperthreaded x86 processor that is well

suited to embedded network devices. The prototype runs a standard x86 Linux kernel

on the Atom, allowing the control plane to be implemented as a user-level application.

Creating a user-level application as the control plane simplified its development and

ensured its portability. The NetFPGA Linux device driver presents NetFPGA as

four regular Ethernet network interfaces. The control plane software communicates

with the data plane using Linux raw packet sockets over one of these interfaces. The

bandwidth between the control and data planes is limited by the available PCI bus

bandwidth in the prototype. In practice, there is more than enough bandwidth for

the address and location discovery tasks currently performed by the control plane.

4.1.1 Why Use a Prototype?

There are many ways to evaluate the Axon architecture. Some possibilities include

simulating the Axon, implementing it on a software-based routing platform such as

XORP or the Click Router, or implementing it on an FPGA. We chose to implement

the Axon on NetFPGA because we felt that this would be the most convincing way to

demonstrate the viability of the architecture. We have shown that we can manipulate

the Ethernet headers while remaining compatible with all standard Ethernet devices.

It is often easy to overlook subtle problems that may arise in the real hardware when

simulating a device. By creating an actual hardware device that runs in an actual

network, we have proven that it is viable.

47

One unexpected problem that arose in testing the Axon is that a source host will

sometimes send a unicast ARP packet to a target host that it is communicating with.

If, however, the target host believes that the MAC address of the source host is a

different one (due to MAC masquerading), then it will reply to a MAC address that

does not map to a source route in the connected Axon; thus the ARP reply will not be

received by the source host. In order to fix this, we modified the Axon to intercept all

such ARP requests and reply to them. If we had strictly run the Axon in a simulator,

for instance, we may not have discovered this problem.

The main argument against implementing a hardware prototype is that it would

be difficult to investigate the scalability of the Axon network. While it is true that our

Axon network is currently limited by the number of physical Axons we can construct,

we felt it was first more important to persuasively demonstrate that the Axon is a

viable architecture. The rest of this chapter will show that the Axon is indeed viable;

furthermore it could be the substrate for network architectures already demonstrated

to be scalable in simulation (Tesseract, for instance [15]).

4.2 Functionality

After implementing the prototype Axon, we verified its functionality by using it as a

replacement Ethernet switch for different hosts. We connected a Mac host, a Win­

dows host, a FreeBSD host, and a Linux host to verify functionality across different

operating systems. We also connected our Axon to a Cisco router as well as a wireless

48

1000

800

a

^ 600

f 400

°0 200 400 600 800 1000 1200 1400 1600
Packet Size (Bytes)

Figure 4.1 : Maximum TCP Bandwidth for Axon and Ethernet Packets

router to verify that it would work properly when connected to other network devices.

4.3 Bandwidth

4.3.1 Axon Header Overhead

A disadvantage of source-routing is that it reduces the effective bandwidth available

at the physical layer. In effect, application layer data is displaced by the source-route.

Figure 4.1 presents the maximum theoretical TCP bandwidth that can be achieved

over a lGbps physical link with Axon packets of varying sizes containing source-routes

of 1, 10, and 100 hops. The theoretical Ethernet limit shows the effective bandwidth

over an Ethernet link given the Ethernet interframe gap and protocol overhead at

the datalink, IP, and TCP levels. As the figure shows, the overhead of source-routing

on Axon network bandwidth is negligible for packets with routes containing 1 or 10

hops. For 100 hop routes, the maximum bandwidth only decreases by 3% at the

49

Figure 4.2 : Line topology and flows used in Table 4.1

largest packet size.

4.3.2 Improvement Over Spanning Tree

One major advantage of Axons over standard Ethernet networks is that it allows for

arbitrary topologies, which may include cycles. Figure 4.2 shows a network of three

Axons and six hosts connected in a line. This resembles the simplest Ethernet network

that is restricted by using a spanning tree. Figure 4.3 shows a similar network of three

Axons and six hosts connected in a ring. The ring is the simplest network with a

cycle and shows how the Axon network may take advantage of increased bandwidth.

Table 4.1 shows the bandwidths of the six flows between hosts for each topology for

50

To Axon C To Axon A

-Host 4 Host 5 H o s t 6 ^ \

Figure 4.3 : Ring topology and flows used in Table 4.1

the UDP and TCP protocols. These bandwidths were measured using netperf; they

include only the application-perceived bandwidth, so they do not include protocol

overhead. In the line topology, there is network contention over the links connecting

the three Axons because each of the six flows try to produce lGb/s of traffic, but

there are only 4Gb/s available in the network (accounting for the bidirectional rate).

In the ring topology, we can see a dramatic improvement in the bandwidth. Again,

each flow attempts to utilize about lGb/s of bandwidth, but this time the network

can provide 6Gb/s due to the extra link.

All individual flows see a marked improvement when using the ring topology over

the line topology. The ring topology gives a 96% improvement in UDP's aggregate

bandwidth and a 63% improvement in TCP's bandwidth over the line topology. The

improvement in UDP's bandwidth is more pronounced since there is traffic in exactly

51

Flow

Host 1 -> Host 2

Host 2 -> Host 3

Host 3 -+ Host 1

Host 4 -» Host 6

Host 6 —> Host 5

Host 5 - • Host 4

Aggregate

U D P

Line

481

483

476

481

476

509

2906

Ring

952

952

930

952

952

952

5690

TCP

Line

566

598

243

244

397

377

2425

Ring

752

792

815

524

493

575

3951

Table 4.1 : Bandwidths seen on different topologies, measured in Mb/s.

one direction per flow. TCP requires acknowledgement packets to be sent in the

reverse path for a given flow, and these may cause some packet loss, which will throttle

back the TCP bandwidth. These data show that a network can significantly benefit

from using the redundant links that would otherwise be disabled by the spanning tree

protocol.

4.4 Latency

4.4.1 Data Plane

By using source-routing and cut-through routing, the Axon is able to achieve low

switching latencies. The prototype proves this to be possible. Table 4.2 shows a

52

Action

MAC Receive

Cross clock domain

Pre-processing

Header lookup & retrieval

Header processing

Cross the switch and buffer at output

Cross clock domain

MAC Transmit

Total

From Axon

Cycles

11

6

6

0

9

11

5

17

65

Time (ns)

88

48

48

0

72

88

40

136

520

From Host

Cycles

11

6

2

35

9

11

5

17

96

Time (ns)

88

48

16

280

72

88

40

136

768

Table 4.2 : Forwarding latency of a packet through the Axon device

breakdown of the 520 ns uncongested forwarding latency of an Axon packet (from

Axon port to Axon port). This breakdown was determined using ModelSim to sim­

ulate the prototype design. These latencies reflect the use of a Virtex-II Pro FPGA

and commodity soft-core Ethernet MAC units. Asynchronous FIFOs are used to

bridge clock domains between the MACs and the internal Axon logic. While all run

at the same clock frequency, each Ethernet link has an independent clock and is not

guaranteed to be in phase with the rest of the system.

Almost half of the forwarding latency, 224 ns, is spent in the Ethernet MAC

units. Much of this latency is unnecessary in the Axon. For example, the latency of

53

the MAC receive unit is necessary only so that the MAC unit can receive enough of

the Ethernet header to examine the destination MAC address and Ethernet type. In

the Axon, this is unnecessary, as the header processing unit performs these functions

for Axon packets. The remainder of the forwarding latency could be lowered using

an ASIC or a faster FPGA. Regardless, the prototype's overall forwarding latency in

the uncongested case is quite low.

Ethernet packets arriving on host ports have additional forwarding latency, as they

must also be processed by the route lookup module. The latency of the route lookup

module is 35 cycles (280 ns) plus an additional cycle for each 32-bit word (equivalent

to 8 hops) in the Axon header that needs to be retrieved from the route memory. The

smallest route header (a single hop and two Ethernet addresses) that can be stored

in the route memory is 18 bytes. So, the minimum, uncongested forwarding latency

of a packet from a host port is 768 ns.

4.4.2 Control Plane

In this section, we examine whether an Axon network is capable of handling the

demands of hosts since an Axon network introduces a delay due to intercepting ARP

requests and setting up routes between hosts.

Table 4.3 shows the amount of time spent in two Axons participating in the

Axon-ARP protocol described in section 3.2.3. In this case, a source host wishes

to communicate with a target host over an Axon network, and the route must be

54

Phase

I (Axon A)

II (Axon B)

III (Axon B)

IV (Axon A)

Activity

Route Calculation

Route Allocation

Pseudo-ARP Request

Total

Route Determination / Allocation

ARP Request

Total

Route Storage

Pseudo-ARP Reply

Total

Route Storage

ARP Reply

Total

Latency (us) for this many hops

1

38

3

116

157

160

90

250

33

139

172

163

61

224

2

38

4

122

164

106

58

164

35

135

170

91

130

221

3

41

3

100

144

130

102

232

50

102

152

78

93

171

4

42

3

110

155

156

66

222

66

130

196

85

70

155

5

41

9

138

188

122

90

212

27

122

149

117

99

216

AVG

40

4

117

161

135

81

216

42

126

168

107

91

198

Table 4.3 : Control plane latency breakdown for an ARP request

created. The source host is connected to Axon A, and the target host is connected

to Axon B. The following sequence occurs while the ARP request is being processed

by the Axon network.

Phase I Axon A receives an ARP request. The route calculation step is how long it

takes the Axon to determine the route to Axon B along a line. This is done purely in

55

software. The route allocation step begins after the last step ends. It merely allocates

the memory for the route in software, which is why it occurs so quickly. The last step

constructs the pseudo-ARP request and sends it to the data plane to be sent to the

desired Axon B. Axon A is busy for an average of 117'us during this phase.

Phase II Axon B receives the pseudo-ARP request. It first examines the reverse

route and allocates memory for this route to be stored. In the next step, Axon B

constructs the ARP request to be sent to the target host. Axon B is busy for an

average of 216MS during this phase.

Phase III Axon B receives the ARP reply from the target host. The first step is

where the route is actually written to the hardware (route storage). At this point,

the route to the source host from the target host is set up such that the data plane

can handle this on its own from this point forward. The second step is the amount of

time that it takes for the software to construct and send the pseudo-ARP reply back

to Axon A. Axon B is busy for an average of 168us during this phase.

Phase IV Axon A receives the pseudo-ARP reply from Axon B. The first step is

to store this route to the data plane. Finally, Axon A constructs the ARP reply and

sends it to the source host. Axon A is busy for an average of 168MS during this phase.

Phases I and IV occur on Axon A, and phases II and III occur on Axon B. In this

case, Axon A takes 359 us to handle each ARP request, and Axon B takes 384 us for

each ARP request. If we take the greater of these two times, we find that each Axon

56

can set up approximately 2600 routes per second for locally connected hosts. Since

this rate only affects locally connected hosts, it does not necessarily limit network

scalability.

4.4.3 Cut-through vs. Store-and-Forward

Comparison to Ethernet Switch

The latencies given in section 4.4.1 underscore the performance benefits of cut-through

routing. An Ethernet switch would have all of the latencies shown in Table 4.2,

except for the header processing. However, Ethernet switches are generally store-

and-forward, incurring an additional 512-12112 ns delay (depending on packet size)

simply storing the entire packet. There would also be some additional delay to lookup

the destination MAC address in the forwarding table, although this could be done in

parallel with storing the remainder of the packet.

Figure 4.4 shows the latencies of Axons and store-and-forward Ethernet switches,

measured using probe packets (described in Section 3.2.2). A single Axon transmits a

probe packet into the network and then receives that same packet after it has traversed

the Axons or switches. The timestamps were then compared to calculate network

latency. As the figure shows, the latency of a single Axon device is approximately

1 us, regardless of the packet size, and the latency of a single Ethernet switch is

approximately 7 us for a minimum-sized Ethernet frame and is over 28 us for a

maximum-sized frame. These latencies scale roughly linearly, leading to a latency of

57

400

350

^ 3 0 0
CO
T3
c
8 250
a>
CO
2
.9 200
E,

" 1 5 0
CD

T5
- 1 100

50

0

Figure 4.4 : Network latency of small and large probe packets

4.5 us for 5 Axon hops and 137 us for 5 switch hops.

This latency difference is large enough that it is clearly noticeable to the host

system. Figure 4.5 shows the latency of Axons and Ethernet switches as measured

by a host system. This graph shows the round-trip latency of an ICMP ping packet

through 1-5 Axons or switches. Interrupt coalescing in the network interface is turned

off, as interrupt coalescing would delay the received ping given that no other network

traffic is being received by the host. The delays incurred by the host itself are so high

that the network latency of even 5 Axons is barely noticeable in comparison. This

is clearly not the case for Ethernet switches. The ping latency is doubled when the

Axon (60B)
Axon(1514B)
Switch (60B)
Switch (1514B)

Number of Hops

58

Number of Hops

Figure 4.5 : Network latency of small and large ping packets

ping traverses 5 Ethernet switches when compared to traversing only 1. Clearly, a

larger local-area network can be created out of Axon devices than Ethernet switches

before host systems will begin to experience latency-related network problems.

Cut-throuth with Congestion

In order to fairly compare the advantages of cut-through routing versus store-and-

forward routing when the network is congested, we implemented a software-programmable

register in the Axon that allows the control plane to have the data plane switch be­

tween both modes of operation. This way, the only difference between experiments

59

Host Host

TCP round robin flow

iperf congestion flow

Host Host

Figure 4.6 : Experimental Setup for measuring impact of cut-through with congestion

I 60
E

•—• Line rate congestion
H—^ 800 Mb/s congestion
•—• 600 Mb/s congestion
•—• 400 Mb/s congestion
*—• 200 Mb/s congestion
+—* No congestion

Number of Hops

I 60
'E

• Line rate congestion
+ 800 Mb/s congestion
• 600 Mb/s congestion
» 400 Mb/s congestion

• 200 Mb/s congestion
« No congestion

Number of Hops

(a) Cut-through Latency (b) Store-and-forward Latency

Figure 4.7 : Average round trip time of small packets (64 bytes) under different
congestion loads

would be whether the same device implements cut-through or store-and-forward. All

other implementation latencies and functions are identical.

In the following experiment, two hosts are using netperf's TCP round-robin test.

In this test, the source host sends a TCP packet to a target host, and waits to receive

an ACK from the target. Once the source receives the ACK, it immediately sends

out another packet to the target. Figure 4.6 shows the experimental setup for this

60

-

* „ = _

•—» Line rate congestion
J-—i 800 Mb/s congestion
•—• 600 Mb/s congestion
•—• 400 Mb/s congestion
•—» 200 Mb/s congestion
«—« No congestion

•—• Line rate congestion
i—^ 800 Mb/s congestion
•—• 600 Mb/s congestion
•—• 400 Mb/s congestion
»—* 200 Mb/s congestion
*—< No congestion

Number of Hops
3 4

Number of Hops

(a) Cut-through Latency (b) Store-and-forward Latency

Figure 4.8 : Average round trip time of large packets (1514 bytes) under different
congestion loads

test. Figures 4.7 and 4.8 compare the average round-trip-time (RTT) given by netperf

under varying congestion loads on the network. Separate hosts connected to same

Axons create the congestion traffic by each using iperf to send UDP packets across

the network at a configurable rate.

Comparing figure 4.7a to figure 4.7b, it is clear that for 64B packets the benefit

of cut-through is inconsequential because the amount of time taken to store a small

packet is minimal. This remains true whether the network is congested or not. How­

ever, large packets do see significant latency benefits from cut-through as shown in

Figure 4.8.

In all of these cases, congestion affects primarily the first hop of both the outgoing

and incoming paths. In the rest of the hops to the destination, both flows no longer

compete for any output ports since the flows have been merged together.

61

•- -• LBNL
• -« NCAR-I
>- -• CESCA-I |

io 21 22 23 24 25 26 27 28 29 210 211 212 213 214

Size of CAM (number of entries)

Figure 4.9 : Size of CAM needed to route packets from different traces

In practice, a cut-through device will not hurt flows in a network, but the benefit

will vary depending on the number of congested and uncongested links along a path,

the size of the packet, and the mechanism that handles fairness when multiple packets

compete for one port.

4.5 Route Memory

One concern about the Axon architecture is whether it can support enough entries

in each port's CAM. NLANR provides several long traces from gigabit routers that

can help address this concern. CESCA-I is a 3-hour trace that covers a gigabit

2
<
u
>

.Q
•a
CD

4->
3

2
i/i

4->

a; .^
u
<0 a.
^5
0 s

1 U U

80

60

40

20

r»

* ' -* ' <* *> s

• <• *>
/ / / • ' '

" / / /
/ / /

'
, *

'
' ,

A /

/ r 1 /
i '

/
J y

•"

K •

/

y
> _ jr

i i i i i i i i i i

62

link between an Internet-facing router and the scientific ring in Europe. NCAR-I

is a 1-hour gigabit trace covering traffic seen from the Internet to a router in the

National Center for Atmospheric Research. LBNL is a trace from two routers that

route between 22 subnets at Lawrence Berkely National Labs. This trace most closely

resembles that which might be seen in a data center.

Each trace was analyzed to find the number of packets in between two packets

whose destination IP address repeats. The number of packets in between (plus 1)

represents the number of entries in an Axon's CAM that would be needed in order

for an Axon's CAM to support all routes during this trace. Figure 4.9 shows how

many entries in our CAM would be needed to handle these gigabit traces. This shows

that each port of an Axon would need about 4000 entries. To compare, modern

switches are able to support CAMs whose size is even much larger than 4000.

4.6 Application Benefit

The latency benefits of the Axon can translate into performance improvements for

latency-sensitive applications. PostMark is one such representative benchmark. Post-

Mark is a file system benchmark that approximates a large Internet e-mail server [19].

PostMark creates a large pool of continually changing small files. Figure 4.10 shows

the performance of PostMark when a client accesses an NFS server via a network of

Axons or Ethernet switches. The NFS file server was configured to use a RAM disk

to eliminate disk latency, and PostMark was used as a client to perform read and

63

1400

1200

TJIOOO

c

s
$ 800
«s c
o
"§ 600
10

c

^ 400

200

0

Figure 4.10 : PostMark Performance

write accesses on a random set of files of different sizes.

The graph shows that Axons outperform Ethernet switches for 1-5 devices. This

range of devices is a reasonable approximation of the number of network devices likely

to be on the path between a client and server in a campus-sized network. Furthermore,

the trend is clear as the number of devices increases.

The latency of an Ethernet switch, with its store-and-forward design, clearly de­

grades the file system performance as the number of switches increases. When using

an Axon network, however, the additional cut-through latency added by each Axon is

minimal, and thus the file system performance remains nearly constant as the network

size increases. Thus, the performance penalty of using centralized network storage is

significantly reduced with the Axon network device.

» Axon
'Switch

Number of Hops

64

Chapter 5

Conclusions

The Axon network device is an inexpensive, practical device that replaces an Ethernet

switch in the data center. By employing source-routed Ethernet, a new datalink layer

protocol, Axon networks provide lower latency and greater scalability than conven­

tional switched Ethernet networks. The use of transparent source routing is necessary

to enable these improvements. Connected hosts may enjoy increased bandwidth and

scalability of the Axon network without modification. Axons only need to store rout­

ing state for locally connected hosts, and not for the entire network. In addition,

route lookups are only performed at the initial Axon along a path, as opposed to

every switch or router along a path. Dynamic address and location discovery services

are provided by the local Axon, instead of requiring broadcast packets and packet

flooding across the entire network.

The Axon prototype, which consists of an Atom processor and a NetFPGA PCI

card, demonstrates the viability and strengths of the design. Axons can saturate

lGbps Ethernet links and fairly allocate bandwidth among competing traffic flows

when the network is congested. The Axon prototype can forward packets in less

than 1 us per hop by using cut-through routing, in contrast to 7-28 us per hop with

switched Ethernet. The bandwidth increase introduced by using redundant links in

65

the network has shown an improvement of 96% for UDP flows and 63% for TCP

flows.

We believe that the Axon will prove to be an attractive network substrate for the

datacenter. The network can easily be managed, as the complexity of routers has

been removed. It is inexpensive because no special netowrking devices are required of

the hosts. The network can easily be partitioned, as virtual machines are free to move

about the network and access control among virtual networks can easily be managed

directly within the Axon. These properties will enable an Axon network to efficiently

meet the demands of a large-scale, high-performance data center.

5.1 Future Work

Multicast and prioritization are two features of switched Ethernet that are not ad­

dressed by this thesis. Arguably, supporting packet priorities may be simpler within

the Axon than it is within an Ethernet switch. Specifically, with the Axon's lower

latency, it may suffice to account for priority when deciding which packet to drop

on a buffer overflow. Currently, multicast packets are passed to the Axon's control

plane, just like broadcast packets. However, the bandwidth limitations of the 32-bit,

33MHz PCI bus connecting the prototype's data and control planes make it unsuit­

able for exploring the performance of data dissemination applications and different

approaches to multicast.

The Axon device does require a higher-level management system such as Tesseract

66

in order to operate in a production environment. We believe that the Axon and the

source route primitive in particular, provides a suitable substrate for data center

networking. Future work includes adapting an existing network management system

to control a network of Axons.

One functionality that we have not addressed in this work is when hosts physically

move on the network. We expect that this will not happen often in a data center,

but timeout mechanisms should be introduced into the design in order to ensure that

the Axon network recovers properly. In general, a mechanism for eliminating source

routes should be developed.

67

Bibliography

[1] A. Myers, T. S. E. Ng, and H. Zhang, "Rethinking the service model: Scaling

Ethernet to a million nodes," in HotNets, November 2004.

[2] C. Kim, M. Caesar, and J. Rexford, "Floodless in SEATTLE: a scalable Ethernet

architecture for large enterprises," in Proceedings of ACM SIGCOMM, August

2008.

[3] C. Kim and J. Rexford, "Revisiting Ethernet: plug-and-play made scalable and

efficient," in IEEE LANMAN, June 2007.

[4] F. D. Pellegrini, D. Starobinski, M. G. Karpovsky, and L. . Levitin, "Scalable

cycle-breaking algorithms for gigabit Ethernet backbones," in Proceedings of

IEEE Infocom, March 2004.

[5] R. Perlman, "Rbridges: Transparent routing," in Proceedings of IEEE Infocom,,

March 2004.

[6] S. Ray, R. A. Guerin, and R. Sofia, "A distributed hash table based address

resolution scheme for large-scale Ethernet networks," in International Conference

on Communications, June 2007.

68

[7] J. Rexford, A. Greenberg, G. Hjalmtysso, D. Maltz, A. Myers, G. Xie, J. Zhan,

and H. Zhang, "Network-wide decision making: Toward a wafer-thin control

plane," in HotNets, November 2004.

[8] T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson, "SmartBridge: a scalable

bridge architecture," in Proceedings of ACM SIGCOMM, August 2000.

[9] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, "Viking: A multi-spanning-

tree Ethernet architecture for metropolitan area and cluster networks," in Pro­

ceedings of IEEE Infocom, March 2004.

[10] "IEEE standard for local and metropolitan area networks - link aggregation

(IEEE std. 802.lax)," November 2008.

[11] M. Caesar, M. Castro, E. B. Nightingale, G. O'Shea, and A. Rowstron, "Vir­

tual ring routing: Network routing inspired by DHTs," in Proceedings of ACM

SIGCOMM, September 2006.

[12] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and

S. Shenker, "ROFL: Routing on flat labels," in Proceedings of ACM SIGCOMM,

September 2006.

[13] B. Ford, "Unmanaged Internet protocol: Taming the edge network management

crisis," in HotNets, November 2003.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

69

ford, S. Shenker, and J. Turner, "Openflow: Enabling innovation in campus

networks," SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69-74, 2008.

[15] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and Z. Cai, "Tesser-

act: A 4D network control plane," in Proceedings of the Symposium on Network

Systems Design and Implementation, April 2007.

[16] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-

hakrishnan, V. Subramanya, and A. Vahdat, "Portland: a scalable fault-tolerant

layer 2 data center network fabric," SIGCOMM Comput. Commun. Rev., vol. 39,

no. 4, pp. 39-50, 2009.

[17] Myricom, "Myri-lOG NICs and software," August 2008. Product brief.

[18] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and J. Luo, "NetFPGA - an open platform for gigabit-rate

network switching and routing," in IEEE International Conference on Micro­

electronic Systems Education (MSE'2007, June 2007.

[19] J. Katcher, "PostMark: A new file system benchmark," Tech. Rep. TR3022,

Network Appliance, 1997.

