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ABSTRACT 

Influence of Uncertainties in Vertical Mixing Algorithms on an Air Quality Model 

by 

Wei Tang 

Vertical diffusion of trace pollutants is a very important physical process that 

influences pollutant concentrations. However, there are large uncertainties in the 

numerical modeling of this process, which could affect model predictions of pollutant 

levels and their responsiveness to emission controls. Uncertainties could result from the 

formulation of vertical diffusion schemes or from errors in eddy diffusivity and dry 

deposition velocity parameters associated with this process. Inter-comparisons between 

different model configurations and sensitivity analysis of model parameters can be used to 

help quantify these uncertainties. In this study, a comprehensive evaluation of two vertical 

diffusion schemes, EDDY and ACM2, was performed by comparing ground-level 

concentrations and vertical profiles generated using the CMAQ model with measurement 

data from the Texas Air Quality Study II. In addition, new capabilities of conducting 

sensitivity analysis to dry deposition velocity and eddy diffusivity were implemented into 

the CMAQ-DDM model. The results show that the ACM2 scheme tends to predict larger 

secondary pollutant concentrations and smaller primary pollutant concentrations at the 

surface compared to the EDDY scheme. Differences between the two vertical diffusion 

schemes and uncertainties in dry deposition velocity may cause temporal variations in the 

responsiveness of ozone to both NOx and VOC control respectively. 
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CHAPTER 1 

Introduction 

Air quality models are very useful tools in air quality management and atmospheric 

science studies. They are applied by scientists and policy makers to get a better 

understanding of the fate and transport of air pollutants and to develop emission control 

strategies in order to protect human health and mitigate environmental impacts 

(Carmichael et al., 1991; McKeen et al., 1991; Lu et al., 1997; Bouchet et al., 1999; 

Kasibhatla and Chameides, 2000). However, due to physical parameterizations, large data 

requirements, and numerical approximations in air quality modeling, uncertainties cannot 

be eliminated and may have a significant impact on model performance (Pinder et al., 2009; 

Zhang et al., 2007; Mallet and Sportisse, 2006). Hence, quantifying the effects of these 

uncertainties on the model predicted results is essential not only for model validation but 

also for scientific research and air quality policy analysis. In order to do so, uncertainty 

analysis is required (Cacuci, 2003). 

Structural uncertainty and parametric uncertainty are two types of uncertainties in air 

quality models. Structural uncertainty results from a lack basic knowledge of fundamental 

mechanisms in model configurations, such as chemical mechanisms, transport 

mechanisms, or planetary boundary layer mechanisms. Parametric uncertainty is from 

measurement error, statistical sampling error, or parameterization error in the model inputs 

and parameters, such as emission inventories, dry deposition velocities, or eddy diffusivity 
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(Pinder et al., 2009; Mallet and Sportisse, 2006; Ozkaynak et al., 2009). These 

uncertainties would be problematic for the model simulation and policy decision making 

because they may cause variations and inaccuracies in model outputs. To assess structural 

uncertainties, an ensemble approach, which includes multiple model runs of a single event 

through inter-comparisons between varied model configurations, typically is used (Pinder 

et al., 2009; Mallet and Sportisse, 2006). To estimate parametric uncertainties, sensitivity 

analysis can be used to help characterize the response of concentrations to model input 

errors and model parameter errors (Pinder et al., 2009). 

Sensitivity analysis is a method used to evaluate the impact of parameter variations on 

calculated results (Cacuci, 2003). Sensitivity coefficients calculated via sensitivity analysis 

are used to determine quantitatively the response of model prediction to the input 

parameter's variation. Numerous methods, such as Brute Force, Green's Function Method 

(GFM), Automatic Differentiation in Fortran (ADIFOR), and Decoupled Direct Method 

(DDM) have been developed and used to calculate sensitivity coefficients. Compared to 

the other methods, DDM is more direct, efficient and stable, and is less subject to 

numerical noise. It has been used for many years and has been implemented into many 

models for sensitivity analysis (e.g., Yang et al., 1997; Hakami et al, 2003, 2004). 

Vertical diffusion is a very important physical process in atmospheric models. 

However, studies by Pleim (2006a, 2006b) indicated that large uncertainties still remain 

in the numerical modeling of vertical transport of atmospheric properties and chemical 
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species, especially under the convective boundary layer in both meteorology and air 

quality models. Uncertainties could come from lack of knowledge in vertical transport 

mechanisms (structural) and/or from physical parameterization error in dry deposition 

velocity and eddy diffusivity (parametric), which are two very important parameters 

associated with vertical diffusion process (Hicks and Wesely, 2000; Wilson 2004). 

The Community Multiscale Air Quality Modeling System (CMAQ) model is a third 

generation, three-dimensional Eulerian air quality model that simulates ozone, acid 

deposition, visibility, and fine particulate matter in the troposphere (Byun and Schere, 

2006). It can simulate multiple pollutants simultaneously in various scales and was 

designated by the U.S. Environmental Protection Agency (U.S.EPA) for regulatory, policy 

analysis, and scientific investigation (CMAS 2009). The eddy diffusion scheme (EDDY) 

and a newly developed asymmetric convective model scheme (ACM2) are the two options 

for simulating vertical turbulent mixing in CMAQ. The EDDY scheme deals with 

turbulent mixing only in a sub-grid-scale, and the original ACM scheme considers 

turbulent mixing only in a super-grid-scale. The ACM2 scheme combines the above two 

turbulent mixing schemes, enabling the model to simulate vertical transport in both small 

and large scales (Pleim 2006a). In addition, the ACM2 scheme has recently replaced 

EDDY as default option in CMAQ. To evaluate the uncertainty in model configurations 

from using different vertical mixing schemes, comparisons between the modeling results 

from the two schemes as well as with observation data are required. Although a few 
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comparisons between EDDY and ACM2 schemes have been conducted previously (Pleim 

2006, 2009), more comprehensive evaluations with different scenarios are still highly 

desirable. 

Currently, the sensitivity of pollutant concentrations to initial conditions, boundary 

conditions, emissions, and reaction rate constants has been determined in CMAQ using 

DDM technique (Cohan et al., 2005; Jin et a l , 2008). However, DDM has not been 

implemented previously into the newly developed ACM2 scheme, and capabilities of 

analyzing sensitivities to dry deposition velocity and eddy diffusivity have not been added 

into CMAQ-DDM. Hence, this model development work has enabled the CMAQ-DDM 

model to perform sensitivity analysis with the ACM2 scheme and also to calculate 

sensitivity coefficients for dry deposition velocity and eddy diffusivity in order to 

qualitatively and quantitatively investigate the parametric uncertainties in the model. 

The major accomplishments of this study are: first, DDM was implemented into the 

ACM2 scheme; second, new features for calculating sensitivities to dry deposition velocity 

and to eddy diffusivity have been added into CMAQ-DDM; third, EDDY and ACM2 

vertical diffusion schemes in CMAQ model were evaluated comprehensively using Texas 

Air Quality Study II field measurement data; fourth, sensitivity analysis was performed to 

investigate the effect of uncertainty in dry deposition velocity on predictions of pollutant 

concentrations and their sensitivities to emission change. Based on this study, the relative 

strengths of ACM2 and EDDY can be demonstrated, the effect of uncertainty in dry 
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deposition velocity on CMAQ model simulation can be examined, and the effect of 

uncertainty in dry deposition velocity on emission controls can be quantified. 

In this thesis, Chapter Two reviews current knowledge and literature related to this study; 

Chapter Three demonstrates the methodology of this study. Chapter Four discusses finding 

and results from this study, and Chapter Five draws conclusions and recommends future 

work. 
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CHAPTER2 

Background and Literature Review 

This chapter reviews the current knowledge and scientific literature regarding air quality 

in Houston, the CMAQ model, vertical diffusion algorithms in CMAQ, vertical eddy 

diffusivity, dry deposition velocity, and the DDM-3D method for sensitivity calculation. 

2.1 Tropospheric ozone pollution in Houston 

Ozone in troposphere is formed through the reactions between nitrogen oxides (NOx) and 

volatile organic compounds (VOCs) in the presence of sunlight (Seinfeld and Pandis, 

2002). The Houston-Galveston-Brazoria (HGB) region located in southeast Texas and in 

proximity to Gulf of Mexico has five million inhabitants and the largest concentration of 

petrochemical facilities in the United States. The large sources of NOx and VOC emissions 

and the meteorological conditions such as extended heat and humidity, and intense solar 

radiation makes HGB one of the worst ozone pollution region in the US; it has been 

classified by the U.S.EPA as an ozone non-attainment area (Kleinman et al., 2002; Ryerson 

et al., 2003; Daum et al., 2004; Rappengluck et al., 2008). Two intensive air quality study 

field campaigns were conducted in eastern Texas, as shown in Figure 2.1, to investigate the 

sources and the causes of ozone and aerosol formation in the atmosphere (Parrish et al., 

2009). In addition to field measurements, air quality modeling studies also are performed 

to better understand atmospheric processes and air pollutants transport and to help the 

Texas Commission on Environmental Quality (TCEQ) establish the state implementation 



plan (SIP) for complying with U.S. EPA National Ambient Air Quality Standards 

(NAAQS) (Byun et al. 2007). 

ri 
5 ^ 

Prottcong Tntas by 
Reducing and 
PnvtnOng Po Mutton 

TCEQ 

TexAQS h 
Field Study Area 

TexAQS 2000 
Fisld Study 

Area 

- TexAQS II Study 

.._ Green Shaded Area 

Figure 2.1: TexAQS 2000 and TexAQS II field studies area. (Source: TCEQ, 2009) 

The Community Multiscale Air Quality Modeling System (CMAQ) model was used in 

this study to simulate an air pollution episode during August 30th to September 5th 2006 

associated with TexAQS II air quality field study in eastern Texas. 
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2.2 Community Multiscale Air Quality Modeling System (CMAQ) 

Community Multiscale Air Quality Modeling System (CMAQ) is an Eulerian air quality 

model and has been used to simulate ozone, acid deposition, visibility, and fine particulate 

matter in the troposphere for regulatory, policy analysis and scientific investigation (Byun 

and Schere, 2006). CMAQ separates a modeling domain into many grid cells and 

calculates the species concentrations affected by different atmospheric processes using 

operator splitting in each grid cell. The processes that were considered as main factors 

influencing the species concentrations include emissions from sources, horizontal and 

vertical advection, horizontal and vertical diffusion, chemical reaction, and deposition. The 

general governing equation for these processes is shown in equation 2.1. 

= [advection] + [diffusion] + [deposition] + [chemistry] + [emission] (2.1) 

The concentration calculations are conducted by the chemistry-transport model component 

of CMAQ (CCTM), which is the last program in CMAQ modeling sequence. The 

advection and emission terms as shown in equation 2.1 were calculated using input data 

generated by meteorology and emission models, and the deposition, chemical reaction, and 

diffusion terms were calculated inside the CCTM (CMAS, 2009). The model framework is 

shown in Figure 2.2. 
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Models-3 
Computational 

Framework 

Meteorological 
Model Ouput 

ICON/ BOON 
initial/ boundary 
conditions 

JPROC 

Photolysis rates 

Emissions 
Processing 

SMOKE Tool 

IE 
(MEPPS*) 

Chemistry Transport Model 

Figure 2.2: Science process modules in Model-3 CMAQ. (Source: Byun and Schere, 

2006) 

To solve the continuity equation 2.1, initial and boundary condition are required. The 

initial and boundary conditions for the CMAQ model simulation were generated by the 

initial condition preprocessor, ICON, and boundary condition preprocessor, BCON, as 

shown in Figure 2.2. In Figure 2.2, the photolysis rate preprocessor, JPROC, calculates 

photolysis rate constants that can be used by CCTM to simulate photolysis reactions; the 

Meteorology-Chemistry interface preprocessor, MCIP, converts meteorology data 

generated by a meteorology model such as Fifth Generation Mesoscale Meteorological 

Model, MM5, and Weather Research Forecasting Model, WRF, to a CMAQ-ready 
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meteorology field. The Sparse Matrix Operator Kernel Emission Model, SMOKE, 

generates CMAQ-ready emission files (Byun and Schere, 2006; CMAS 2009). 

As shown in Figure 2.2, diffusion is one of physical processes simulated by CMAQ 

that affects concentration fields. In CMAQ, diffusion processes were treated separately as 

horizontal diffusion and vertical diffusion. Vertical Diffusion generated by heat, 

momentum, and moisture fluxes is an important component of vertical transport in the 

atmosphere (Byun and Ching. 1999). However, large source of uncertainties which either 

come from lack of fundamental knowledge in vertical diffusion mechanisms, or come from 

the physical parameterization errors in dry deposition velocity and eddy diffusivity 

associated with vertical diffusion process could reduce the accuracy of numerical modeling 

in vertical diffusion of atmospheric properties and chemical species under the convective 

boundary layer in air quality models (Pleim 2006a, 2006b; Wesely and Hicks, 2000; 

Wilson 2004). 

2.3 Vertical diffusion schemes in CMAQ 

Eddy diffusion scheme (EDDY) and the newly developed Asymmetric convective model 

scheme (ACM2) are two options of vertical diffusion mechanisms in CMAQ to simulate 

vertical transport of atmospheric properties and chemical species. The EDDY scheme 

interprets turbulent mixing only in sub-grid-scale (local) considering symmetrical vertical 

mixing based on concentration gradient between adjacent model layers. The original ACM 

scheme interprets turbulent mixing only in super-grid-scale (non-local) considering 
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asymmetrical vertical mixing with fast upward buoyant plume and slow broad 

compensatory subsidence. The thickness of arrows indicates the quantity of mass flux, 

reflecting that the mass fluxes increase during the downward transport. The ACM2 scheme 

combines the above two turbulent mixing schemes enabling the model to simulate vertical 

transport in both small and large scales. Hence, ACM2 scheme is more realistic in 

representing vertical mixing process than the other two schemes (Byun and Ching 1999; 

Pleim 2006). The schematic of three types of vertical transport is shown in Figure 2.3. 

EDDY ACM ACM2 

Figure 2.3: Schematic representation of the exchange among model layers in three 

schemes, (left) EDDY, (middle) ACM, (right) ACM2 
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The model formulation for EDDY scheme is shown in equation 2.2 

dt 
J_ 
Az, 

KMn(CM~Ci) , Kj-miCj-Ci-x) 

Az, i+l/2 Az.. •1/2 

(2.2) 

where Q is the concentration at layer i; AZJ is the thickness of layer i; K is the eddy 

diffusivity (Kz); i represents the center of the layer; i+l/2 represents the layer interface. 

In addition to local mixing, the ACM2 scheme also contains a non-local mixing 

component. The model formulation of ACM2 is shown in equation 2.3 (Pleim 2006a) 

dt ' ' ' ,+1 '+1 Az, 

J_ 
Az, 

Ki+i/2(.CM~Ci) , K,-\nXC,-C,-\) 

teMI2 tei-m 

(2.3) 

The first three terms in equation 2.3 represent the asymmetric convective mixing (ACM) 

as shown in the middle plot of Figure 2.3. The upward and downward mixing rates are 

shown in equation 2.4a and 2.4b, respectively. 

M2u=fconvKM+V2) 

tex(h-zx+V2) 

M2dt =M2w(/z-z/_1/2)/Az/ 

(2.4a) 

(2.4b) 

The K used in local mixing (the fourth term in equation 2.3) is different than that used in 

equation 2.2 and is defined as in equation 2.5. The fconv in the equation 2.4a and 2.5 is a 

partitioning factor used to control the degree of local and non-local mixing in ACM2 

scheme. 

^ (z) = ^ ( z ) ( l - / _ ) (2.5) 
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f = 1 + 
r2/Y h^m 

0.1a V ^J 
a = 7.2 (2.6) 

In equation 2.6, k is the von Karman constant (k = 0.4), h is PBL height, and L is the 

Monin-Obukov Length. When fconv
 = 1, the ACM2 scheme converges to original ACM 

scheme; when fconv = 0, the ACM2 will return to EDDY scheme. Under stable or neutral 

conditions, fconv needs to be zero for pure eddy diffusion. 

Using EDDY or ACM2 likely will predict different results in otherwise identical model 

simulations. Therefore, one type of structural uncertainty will be generated by choosing 

either EDDY or ACM2 in the model configuration. To quantify this uncertainty, 

inter-comparisons between modeling results generated from two schemes of a single 

process and comparison with observed data are required (Pinder et al. 2009). Pleim (2006b; 

2009) have conducted a few modeling comparisons between EDDY and ACM2 schemes in 

the CMAQ model, including modeled ground level ozone concentration from two schemes 

compared with surface observation data and modeled gas species vertical profiles from two 

schemes compared with NOAA P-3 aircraft spiral data. The results indicated that the 

ACM2 scheme tends to predict larger concentrations of secondary pollutants and smaller 

concentrations of primary pollutants at surface. The ACM2 scheme has a more well-mixed 

profile under the PBL than the EDDY scheme. However, the differences between 

simulated results from two schemes are not significant. In order to better quantify these two 

schemes, more comprehensive evaluations with different scenarios are still highly 

desirable. 
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2.4 Vertical eddy diffusivity (Kz) 

Vertical eddy diffusivity, Kz, also called vertical eddy diffusion coefficient is used to 

calculate the diffusion rate in the vertical diffusion process. In the lower troposphere, Kz 

depends on wind speed, surface roughness, heating of surface, and altitude (Jacob 1999). 

Many methods have been developed to estimate Kz, but results lack consistency (Wilson 

2004). In the CMAQ model, PBL similarity theory is used to parameterize the vertical eddy 

diffusivity (Byun and Ching, 1999). For the surface layer, the non-dimensional profile 

functions, (/>, of the vertical gradient of potential temperature are expressed in equation 2.7 

as follows: 

0 = ?rQ(\ + /3hy
/
L) \>z/L>0 moderately stable (2.7a) 

(/> = ̂ -rh
z/L)~XI2 zlL<0 unstable (2.7b) 

(/> = Vr0(/3h +
 z/I) zlL>\ stable (2.7c) 

In equation 2.7, Pro is the Prandtl number of neutral stability, (3h and yh are the coefficients 

of profile functions obtained from field measurements, and L is Monin-Obukhov length. 

Parameterization for eddy diffusivity at surface layer is shown in equation 2.8. 

K{z) = kUtZ (2.8) 

<j>{zlL) 

The eddy diffusivity parameterization equation for EDDY and ACM2 schemes are 

different in the PBL. For the EDDY scheme, the eddy diffusivity is parameterized with the 

expressions as shown in equation 2.9 (Byun and Ching, 1999) 
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= kua{\ z/hf2
 z / L > ( ) 

^(z/I) v y 

^ z(z) = kwa{\-zlh) z/L<0 (unstable) (2.9b) 

An integration method was used to parameterize equations 2.8 and 2.9 at model layer 

interfaces in order to get more accurate results (Byun and Dennis, 1995). For the ACM2 

scheme, the parameterization expressions for eddy diffusivity are shown in equation 2.10 

based on the Holtslag and Boville method (Pleim 2006a). 

KXz) = k-^z(\-zlhf zs = min(z, O.lh) zs/L<0 (unstable) (2.10a) 

K,(z) = k-^z(l-z/h)2 zs = z zs/L>0 (stable) (2.10b) 

In the above equations, u* is the friction velocity, w* is the convective velocity, and the 

values could be obtained by the field measurements. By comparing equation 2.9 and 2.10, 

we can see that the EDDY scheme uses a quadratic height function to calculate eddy 

diffusivity and the ACM2 scheme uses a cubic height function. Therefore, EDDY could 

predict a deeper effective mixing depth than ACM2 (Pleim 2009). 

Kz is an empirical quantity. Therefore, uncertainties in eddy diffusivity are unavoidable. 

Hence, Kz may give parametric uncertainty in the model simulations. 

2.5 Dry deposition velocity (Vj) 

Dry deposition is the atmospheric process of removing gaseous and particulate species 

from the atmosphere to the surface of the Earth without precipitation. The dry deposition 
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rate depends on atmospheric stability, chemical properties of species themselves, and the 

surface roughness (Seinfeld and Pandis, 2002). The dry deposition flux at some reference 

height, for example 10m above the surface, can be expressed as an equation shown in 2.11. 

F = -VdC (2.11) 

The process of dry deposition consists three steps: first, aerodynamic transport to a very 

thin layer called the quasi-laminar sublayer over the surface with stagnant air; second, 

transport through the quasi-laminar sublayer by molecular diffusion; third, uptake by the 

Earth surface (Seinfeld and Pandis, 2002). This process is illustrated by analogy to an 

electrical resistance analogy as shown in Figure 2.4, with three resistances in series 

c, 

Surface layer Aerodynamic resistance ra 

C, 

Quasi-laminar 
layer 

Quasi-laminar layer 
resistance r. 

Canopy resistance rt 

c„ = o 

Figure 2.4: Resistance model for dry deposition. (Source: Seinfeld and Pandis, 2002) 
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In Figure 2.4, aerodynamic resistance, Ra, quasi-laminar layer resistance, Rb, and canopy 

resistance, Re are shown. The dry deposition velocity is expressed as the inverse of the sum 

of the resistances as shown in equation 2.12 

Vd=(Ra+Rb+Rcy
l (2.12) 

The dry deposition velocities of chemical species can be modeled by using surface 

information, surface layer meteorology data, and the dry deposition flux measured in field 

observations. However, due to the difficulties associated with long-term dry deposition 

flux measurements in various terrain and the inaccuracies in model inputs, as large as 

±30% uncertainty in modeled dry deposition velocity is commonly observed between 

measured and modeled data (Brook et al., 1999; Wesely and Hicks, 2000). Therefore, the 

dry deposition velocity may also give parametric uncertainty in the model simulations. A 

recent uncertainty analysis study conducted by Bergin et al. (1999) indicated that besides 

the effects of uncertainties in emissions and reaction rate constants of dominant chemical 

reactions, the effect of uncertainty in ozone dry deposition velocity on ozone concentration 

simulation is considerable. The uncertainty in NO2 dry deposition velocity also may have 

significant impact on simulated HNO3 formation and responses to NOx emission 

reductions. 

In CMAQ, dry deposition takes place only at the surface layer. The dry deposition 

velocities were calculated in MCIP preprocessor and were used by CCTM as inputs. 

There are two methods, RADM and M3DDEP, used in MCIP to estimate the dry 

deposition velocity (Byun and Ching, 1999). RADM was developed by Wesely (1989) and 
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estimates dry deposition velocity from horizontal wind components, temperature, and 

humidity profiles (Wesely, 1989). The schematic of pathway resistances used in RADM is 

shown in Figure 2.5. 

Ambient Concentration 

R„ 

*> 

> + 

'lax 

kwercanoDv ground, wier, cuticle, leaf 
" snow stem tissue 

Vegetation 

Figure 2.5: Schematic diagram of pathway resistances used in RADM method. (Source: 

Byun and Ching, 1999) 

Resistances Ra, Rb,and Rc in Figure 2.5 are shown in equations 2.13-2.15 (Byun and 

Ching, 1999). 

D _ f1 dz _ FSI. dz v., 
a ~ k K,(z) ~ *« K,(z) + k 

dz 

Kz{z) *«. K:(z) 
K-aSI. + ^aPBL (2.13) 

Kz(z) is eddy diffusivity, ZSL represents surface layer height, and Zdep represents deposition 

height. 



23 

Rhh = — Sc2n for heat (2.14a) 
ku, 

2 
Rbx Sc]/3 for trace gas species (2.14b) 

ku, 

k is von Karman constant, u* is friction velocity, and Sc is Schmidt number. 

R 
' i l l 1 ^ 

+ — + + 
\y ' i* ' ' ffj.r ' lux ' dc ' ' c/r ' ac l ' gsx J 

(2.15) 

In equation 2.15, rsx is the stomatal resistance, rmx is the mesophyl resistance, rjux is the 

resistance of the outer surface of leaves in the upper canopy, rdC is the resistance for the gas 

transfer affected by buoyant convection in canopy, rcixthe lower canopy resistance, rac is the 

resistance that depends on the canopy height, and rgsx is the resistance of soil, leaf litter, and 

other ground materials. 

The M3DDEP method was developed by Pleim (2001), and it uses the same resistance 

components to estimate the dry deposition velocity but with a new land-surface model 

(Pleim et al., 2001). The schematic of pathway resistances used in M3DDEP is shown in 

Figure 2.6. 
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Ambient Concentration 

* 

* 

ground, water, ground, water, 
snow snow 

Leaf 

cuticle, leaf 
stem tissue 

. » 

Figure 2.6: Schematic diagram of pathway resistances used in M3DDEP method. 

(Source: Byun and Ching, 1999) 

In the M3DDEP method, the expression of quasi laminar layer resistances Rb is still the 

same as equation 2.14; the new expressions for Ra and Rs (surface resistance) are shown in 

equations 2.16-2.17 (Byun and Ching, 1999). 

Ra=pCp{®g-®x)IH-Ri bh (2.16a) 

Pr 

kut 

( _ A 

\zoJ 
for small sensible heat flux \H/(pCp )|<10"15 [Kins'1] (2.16b) 

In equation 2.16, 0 g and @i are the potential temperature in the air and at the ground 

surface, respectively in the lowest model layer, zi is the height of model layer 1, and ZQ is 

roughness length. 
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(2.17) 

In equation 2.17, rstb is the bulk stomatal resistance including the stomatal resistance on a 

leaf area rst and the mesophyl resistance rm as shown in Figure 2.6, rcut is the dry cuticle 

resistance, rcw is the wet cuticle resistance, rg is the ground resistance, and ric is the 

in-canopy aerodynamic resistance. The vegetation fractional coverage is given by fv, fw is 

the fractional leaf area wetness, and LAI is the leaf area index. 

In order to estimate the effects of parametric uncertainties from eddy diffusivity and dry 

deposition velocity on model performance, sensitivity analysis associated with random 

sampling technique such as Monte Carlo method could be conducted (Hanna et al., 2001; 

Pinder et al., 2009). In this study, DDM-3D method was used to calculate the sensitivity 

coefficients via sensitivity analysis. 

2.6 DDM-3D sensitivity analysis 

Sensitivity coefficients calculated via sensitivity analysis have been used to determine 

quantitatively the response of model predictions to variations in the model input and 

parameters. Numerous methods such as Brute Force, Coupled Direct Method, Green's 

Function Method (GFM), Automatic Differentiation in Fortran (ADIFOR), and Decoupled 

Direct Method (DDM) have been developed and used to calculate sensitivity coefficients. 

Compared to the other methods, sensitivity equations in DDM are derived directly from 

concentration equations in the base model, and sensitivity coefficients are computed by 

R. = ^ + LAI J v\ J w/ i J vJ w 

V cut rcw J 
+ 

l - / v , I 
+ -r*c + rg 
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DDM at the same time as concentrations. Hence, DDM is more direct, efficient, and stable, 

and it suffers from less numerical noise than the other methods. It has been used for many 

years and has been implemented into many models for sensitivity analysis (e.g., Yang et al., 

1997; Hakami et al , 2003, 2004). 

The methodology for calculation of sensitivity coefficients in DDM is shown below 

(Hakami et al, 2003). 

Equation 2.1 can be rewritten as shown in equation 2.18 

dC 
—*- = - V(«C,.) + V(tfVC, ) + Ri+ E, (2.18) 
dt 

The initial and boundary conditions used to solve equation 2.18 are shown in equation 2.19 

in below. 

IC: C^C^ (2.19a) 

BCs: uCi -KVCi = uCh horizontal inflow (2.19b) 

-VC,=0 horizontal outflow (2.19c) 

VgCi-K„^- = E0 z=0 (2.19d) 
oz 

'- = 0 z=H (top of model domain) (2.19d) 
dz 

In equation 2.19, u represents wind field, K represents a second-order turbulent sensor, 

C0 andCA are the initial and boundary concentrations respectively, Vg is dry deposition 

velocity, E0 is ground level emission rate, and i represents species i. 

The local sensitivity of a model output to a parameter can be calculated as shown in 

equation 2.20 
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Sv=^~ (2.20) 
dPj 

where pj represents a model parameter. However, due to the variety in magnitudes and units 

of different parameters, semi-normalized sensitivity coefficients are defined as in equation 

2.21 

S^=PJ^ = P l - ^ = ̂  (2.21) 

where p} represents a unperturbed field and e . is a scaling valuable with a nominal 

value of 1. 

Hence, more intuitively, the first order sensitivity coefficients calculations in the 

expression of differentiating equation 2.1 can be written as in equation 2.22 

— - = [advection] H \diffusion\ -\ {deposition] 
dt ae 5e 8e ( 2 2 2 ) 

H f chemistry 1H [e7wm7'owl 
8e de 

Meanwhile, equation 2.22 can also be rewritten in the expression of differentiating 

equation 2.18 as shown in equation 2.23 

-|=-VKV^'W? As„ + (2 23) 

V i A -^"C.V,, +V(KVC,)SU 

The initial and boundary conditions used to solve equation 2.23 are shown in equation 2.24 

in below. 

IC: Sy=C0S0jS02 (2.24a) 

BCs: uS^-KS7Sp=uChS2JSiJ2+uCbS3Ji -uC,S3ji+KVC,S7ji (2.24b) 
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-VSf = 0 (2.24c) 

dSm 

'^ = 0 (2.24e) 
dz 

In equation 2.23, Jj is the ith row vector in the Jacobian matrix of the reaction rates. Sji is 

the Kronecker delta function used in DDM to control the sensitivity to input parameters 

that will be calculated during the simulation process, ji could be a number from 0 to 6 

referring to initial condition, boundary condition, wind field, diffusivity, dry deposition 

velocity, and reaction rate respectively. 5j2 is used to determine which species will be 

chosen for sensitivity calculation. 

From equation 2.22, we can see that the first order sensitivity considers only the linear 

model response to input perturbations, as the 'slope' shown in Figure 2.7. In order to 

evaluate the nonlinearity of model response to input perturbations, as the 'curvature' 

shown in Figure 2.7, second order sensitivity coefficients need to be computed. 
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Ozone 

[OJ; 

[OJE 

2nd order DDM: 
Local curvature at A 

EB EA Emissions 

Figure 2.7: Schematic ozone responses to emissions, and brute force and DDM-3D 

sensitivities. (Source: Cohan, 2004) 

Differentiating equation 2.23 for the same parameter results in the DDM equation for the 

second order sensitivity coefficients shown in equation 2.25 

8t 
: -V(i*S<2)) + V(*VS}2)) + J,S? + J S?> + 

( lb -•Ob 
(2.25) 

2-~{J^)S5h -2V(«SJ'>)^ + V ( * V ^ " ) £ 
8e ~ih 

The initial and boundary conditions used to solve equation 2.25 are shown in equation 2.26 

IC: Sj2 )=0 (2.26a) 

BCs: uS?} - KVS™ = -2uS™S,, + 2KVS^S7, (2.26b) 

-VS<2) = 0 (2.26c) 

as<2) ,„ . as? 
ft <; = & a u *A <h dz 7„ (2.26d) 



30 

In equation 2.25, J*m is an augmented Jacobian matrix of reaction rate constants; it has 

the same structure as J-. but without all first order reactions. 

The cross sensitivity, second order sensitivity in regards to two different sensitivity 

parameters, could also be calculated in the same way by differentiating equation 2.23 with 

respect to a different parameter, but additional terms may be required. 

DDM-3D has been implemented into CMAQ successfully for gaseous species by 

Cohan (2004), and expanded to inorganic particulate matter by Napelenok et al, (2006). 

CMAQ-DDM can compute the initial condition sensitivity, boundary condition sensitivity, 

reaction rate constant sensitivity, and emission rate sensitivity. In this study, new features 

of computing the eddy diffusivity sensitivity and dry deposition velocity sensitivity were 

also added into CMAQ-DDM. The method of numerical implementation of these two 

sensitivity parameters in CMAQ-DDM is discussed in chapter 3. 
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CHAPTER 3 

Methodology 

The methodology of this modeling work is described in this chapter. The following 

description includes three subsections: Model development, Model evaluation, and 

Sensitivity and uncertainty analysis. In the model development part, the Crank-Nicolson 

method that is used to solve the advection-diffusion equation in CMAQ is demonstrated; 

the numerical implementation of dry deposition velocity and eddy diffusivity sensitivities 

into the CMAQ-DDM model, and the accuracy test method for the newly implemented 

code are described. In the model evaluation part, the CMAQ configurations in this study 

and the data comparison methods are introduced. In the sensitivity and uncertainty analysis 

part, the sensitivity coefficient calculations and the Taylor expansion equations used in 

uncertainty analysis are illustrated. 

3.1 Model development 

3.1.1 Crank-Nicolson scheme 

The model formulation of two vertical diffusion schemes, EDDY and ACM2, was 

described in Chapter Two. To solve the vertical advection-diffusion equation, as shown in 

equation 3.1, the Crank-Nicolson finite-difference approximation was applied to these two 

vertical diffusion schemes in CMAQ. Compared to the Forward Euler and Implicit 

finite-difference methods, which are commonly used in solving differential equations, the 
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Crank-Nicolson method, as shown in equation 3.2, has second order approximations in 

both time and space, and it is unconditionally stable for all values of u and K (Jacobson 

2005). 

8N d(wN) 8 . v SAT „ 
— + — (K„—) = 0 
dt dz dz " dz 

(3.1) 

Nu-Nu_h 
• + 

(wN)l+u-(wN),_u AwN)l+u_h-(wN),^_h 
Mc ~ -+0-/O 

2Az 2Az 

-K 
AT _2N +N N -2N +N 

Mc—•—ri - + 0-/O-Az2 
Az' 

= 0 

(3.2) 

In equation 3.2, jxc is the Crank-Nicolson parameter. When uc equals 0, the equation 

reduces to the forward Euler method; when p,c equals 1, the equation reduces to the implicit 

method. In our case, \xc equals 0.5. The jxc term enables this method to evaluate some terms 

at time t and the others at time t-h. Hence, it improves the order of approximation in time to 

second order. The matrix corresponded to equation 3.2 could be written as follows: 

B, £>, 0 0 

A, B1 D2 0 
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E^d-MM^-hl-i Ft=\-(l-Mc)h^f), G,=-{\-vM-^--r^M 
2Az Az Az 2Az Az~ 

Due to the operator splitting method used in the model, the EDDY and ACM2 codes only 

simulate vertical diffusion, that is, the K^/Az2 term. The vertical advection term, w/2Az, is 

being simulated by another code called ZADV. Both schemes discretized their diffusion 

equations into a tridiagonal matrix system, as shown in equation 3.3, and use the Thomas 

algorithm (tridiagonal solver) to solve the matrix. 

3.1.2 Numerical implementation 

As described in Chapter Two, the DDM equation for the time evolution of first order 

sensitivity coefficients is given by equation 3.4 (Hakami et al. 2003) 

PCO a n 

- ^ = - v ( 0 + v ( j r e O + 4 * ; > + | ^ +
 (3.4) 

EAA, -V(f ic ,^ +V(KVC,)SVi 

Equation 3.5 is one of the boundary conditions required to solve the first order sensitivity 

coefficients, and it is also the equation used to calculate the sensitivity to emission, dry 

deposition velocity, and eddy diffusivity. 

POO) -a/^ 

v ^ _ ^ _ ^ = _ ~ g M A +Kal±Su + M A (3.5) 

Vg, Kzz and E represent the dry deposition velocity, eddy diffusivity and emission, 

respectively. The Kronecker delta function, 5ji, is used in DDM to control the sensitivity to 

input parameters that will be calculated during the simulation process. In this work, 6ji and 

7j i refer to dry deposition velocity and eddy diffusivity, respectively. 5j2 is used to 
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determine which species will be chosen for sensitivity calculation. The dry deposition 

velocities, like emission rates, have different values for different species; hence, the term 

5j2 needs to be applied to the dry deposition velocity sensitivity calculation. However, 8j2 is 

not necessary for calculating the eddy diffusivity sensitivity because eddy diffusivity does 

not depend on the properties of species. The DDM code for calculating the emission, dry 

deposition velocity, and eddy diffusivity sensitivities in equation 3.5 can be implemented 

into the code that is used to simulate the vertical diffusion process in CMAQ by following 

the logic of calculating concentrations. The DDM code already has been implemented into 

the EDDY scheme for emission sensitivity calculation only, but it has not been 

implemented yet into the newly developed ACM2 scheme. Hence, by analogy to the DDM 

implementation in the EDDY scheme, the DDM also could be added to the ACM2 scheme. 

Meanwhile, the first order sensitivities to dry deposition velocity and eddy diffusivity also 

could be added to the CMAQ-DDM model similarly. 

In equation 3.5, for the first order sensitivity, there are three terms on the right hand 

side. The Et term already has been added to DDM in the EDDY scheme as mentioned 

above. Hence, by following the same logic, the other two terms, vg Cl8b) Sih and 

K—LS4j , are included directly after the Et term in the code. The capability of calculating 
dz 

dry deposition velocity sensitivity for different species at a particular time and in a given 

region and the capability of calculating eddy diffusivity sensitivity for different layers at a 

particular time and in a given region were also added to the DDM code. 

After differentiating equation 3.4 for the same parameter, the DDM equation for the 
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second order sensitivity coefficients is shown in equation 3.6 

it -V(M^2)) + V(KVSf >) + J,S? + f^Sf + 
dt

 d ' „ (3-6) 
2 ^ ^ X -2V«)^ + VCJCVSJ'X 

Equation 3.7, as one of the boundary condition for 3.6, can be used as guidance for the 

implementation of the second order sensitivities to dry deposition velocity and eddy 

diffusivity. 

dsi2) as (1 ) 

The emission term in equation 3.5 does not appear in equation 3.7, because it has 

concentration term (C,) for dry deposition and eddy diffusion in the first order sensitivity 

calculation, the additional terms with first order sensitivities appear in equation 3.7 for 

second order sensitivities to dry deposition velocity and eddy diffusivity calculation. 

Similarly, second order terms also could be added into DDM by following the same 

protocol that has been used in the first order sensitivity implementation. 

For the second order sensitivity, two additional terms were required for HDDM, 

-2v SJPS6j 8H and 2K —^-S, , as shown on the right hand side of equation 3.7. The 

" dz J] 

implementation of second order terms is very similar to that for the first order terms. The 

only difference is that the concentration terms in first order sensitivities calculations were 

replaced by the corresponding first order sensitivity terms. Notice that the logic in equation 

3.7 is only for the same sensitivity parameter. For second order of different sensitivity 

parameters, such as cross sensitivity of dry deposition with emission, the term on the right 
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hand side of equation 3.7 should be replaced by - v S6J S^S^, where SJP indicates the 

other sensitivity parameter, here referring to emission. 

For the DDM implementation of the first order and second order sensitivities to dry 

deposition velocity and eddy diffusivity, the logic and the way of coding are almost 

identical for the EDDY and ACM2 schemes. The only difference is that the non-local 

turbulence diffusion terms under the convective boundary layer also need to be considered 

in the DDM for eddy diffusivity sensitivity calculation for the ACM2 scheme. 

3.1.3 Accuracy test 

After new code is implemented into DDM, an accuracy test is essential for model 

validation. Commonly, the sensitivity coefficients calculated by DDM are compared with a 

Brute Force approximation to evaluate the accuracy (Hakami et al., 2004). Sensitivity 

coefficients calculated by a Brute Force approximation are derived from Taylor series 

expansion and are shown in equations 3.8-3.10. Equation 3.8 can be used for first order 

sensitivity comparison, equation 3.9 can be used for second order sensitivity comparison, 

and equation 3.10 can be used for cross sensitivity comparison 

W * ^ ' C"Aej (3.8) 
1 2Ae, 

C -2C +C 

C -C -C +C 
n(2) ^ ( + A e ; Pi .+ A e< Pi) ( + A e ; p , , - A e t P t ) ( -A 6 j P] ,+Aet pt) (-AeJ pt-,-Aet pk) . - .. „ , 
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A e in above equations indicates the perturbation of model input parameters in the Brute 

Force approximation. In this study, ±10% perturbation was chosen for the first order 

sensitivity coefficients calculation by the Brute Force approximation, and ±50% 

perturbation was chosen for the second order and cross sensitivity coefficients calculation. 

3.2 Model evaluation 

3.2.1 Model configurations 

CMAQ model version 4.5 was used in this study to simulate a seven-day episode from 

August 30th to September 5th in eastern Texas at a resolution of 4km grid cell. All model 

inputs were provided by University of Houston. The model configurations are shown in 

Figure 3.1 (University of Houston IMAQS. 2009): 

( 
) 

• i J . - i ^ " 

Figure 3.1: Modeling domain of East Texas (source: IMAQS 2009) 
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The NCAR/Penn State (National Center for Atmospheric Research/Pennsylvania State 

University) Mesoscale Model, Version 5, release 3.6.1 (MM5V3.6.1), was used to generate 

the meteorological field in this study, and a 43-layer vertical structure was set up in MM5. 

The Meteorology-Chemistry Interface Processor Version 2.3 (MCIP2.3) was used to create 

CMAQ-ready meteorology data from the files generated by MM5, and the 43 vertical 

layers used in MM5 were reduced to 23 for CMAQ by MCIP. The Sparse Matrix Operator 

Kernel Emissions (SMOKE) model, version 2.1 was used for emission processing as 

shown in Figure 3.2. The projected air quality forecast emissions inventory including Point, 

Mobile, and Area sources at level of year 2005 based on year 2000 and 2007 emissions 

from TCEQ was used in this study. The biogenic emission inventory is taken from TCEQ's 

Land Use and Land Cover (LULC) data after processed by the GloBEIS 3.1 model for 

emission normalizing and by BEIS3 model for meteorology conditions adjustment. 

. . « „ „ „ „ , „ 

Point |—• 

Mobile — * 

Area —» 

Biogenic j — • 

Texas El preparation 

Format conversion 
•AMS/AFS -»IDA 

—* Internal database —» 
•Surrogates 
•Split factors 
•Temporal profiles 

Normalized emissions — • 

Giofi£fS3 

SMOKE processing 

Spatial allocation 
: 34km. 12km t 4km 

Temporal allocation — 
; hourly emissions 

Chemical speciation 
; CM, SAPRC*11 RADM2 

Plume rise 

Met. adjustment • 
BE/S3 

jM>ftA * *«V 

* L M A U 

Figure 3.2: SMOKE emissions processing (source: IMAQS 2009) 
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The CMAQ model configuration is shown in Table 3.1. 

Table 3.1: CMAQ science options (source: IMAQS 2009) 

Options 

Domain 

CMAQ 

MCIP 

SMOKE 

Chemical Mechanism 

Emissions 

Boundary Condition 

Advection Scheme 

Horizontal Diffusion 

Vertical Diffusion 

Cloud Scheme 

Forecasting hours 

Parameters 

Eastern Texas 4-km 

Version 4.5 

Version 2.3 

Version 2.1 

CB4 (cb4_aq_ae4) 

Texas Emissions Inventory 
(TCEQ) projected for 2005 + NEI99 

Downscale linkage from GEOS-CHEM 

Piecewise Parabolic Method (PPM) 

Multiscale 

Eddy 

RADM 

48 hours (+ 6-hr spin-up) 

3.2.2 Data comparisons 

In this study, the modeling results generated by using different vertical diffusion 

schemes, EDDY and ACM2, were compared with the field measurement data from a 

TexAQS 2006/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) 
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field campaign conducted from August to October 2006. The measurement sites located in 

our modeling domain are shown in Figure 3.3. 

Figure 3.3: Field measurement locations (top) and surface sites (bottom) inside modeling 

domain. 
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Comparisons in this study include those with surface data, ozonesonde data, and aircraft 

data. As shown in Figure 3.3, the red rectangle represents ground site measurements, and 

the data were downloaded from TECQ website 

(http://www.tceq.state.tx.us/compliance/monitoring/air/monops/hourly data.htmD. The 

green circle and blue ship sign represent the ozonesonde measurements conducted at 

University of Houston and the Houston Ship Channel, respectively, and the data were 

downloaded from World Ozone Data Centre website 

(ftp://ftp.tor.ec.gc.ca/Proiects-Campaigns/ions06/'). The air plane sign represents NOAA 

P-3 Aircraft measurements, and the data were downloaded from NOAA website 

(http://www.esrl.noaa.gov/csd/tropchem/2006TexAQS/). 

The measurement data were compared to the modeling results from CMAQ extracted 

from output netCDF files for the corresponding grid cell, hour, and layer. 

3.3 Sensitivity and Uncertainty analysis 

In this study, the sensitivity analysis and the uncertainty analysis in dry deposition 

velocity for both EDDY and ACM2 schemes were investigated. However, the uncertainty 

analysis in eddy diffusivity was not performed, because Kz is a meteorological parameter, 

and if only considers the variation in CMAQ alone, it may cause model inconsistency error 

between MM5 and CMAQ. 

http://www.tceq.state.tx.us/compliance/monitoring/air/monops/hourly
http://ftp.tor.ec.gc.ca/Proiects-Campaigns/ions06/'
http://www.esrl.noaa.gov/csd/tropchem/2006TexAQS/
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3.3.1 Sensitivity analysis 

As described in Chapter Two, the semi-normalized first order sensitivity coefficients 

can be written as equation 3.11. Similarly, the semi-normalized second order sensitivity 

coefficients for the same and different parameters can be also defined as equation 3.12 

and 3.13, respectively. 

W=pKp-?C—=°C- (3.11) 
1 JdPj 'diejPj) deJ 

opj opj o e ." 

dp j 8pk 8 e , 8 ek 

The Pj and Pk in above equations represent the input or model parameters such as emission 

rate, dry deposition velocity, or boundary condition. The pj and pk represent the variations 

of model parameters such as Pj and Pk, and are defined asp = eP. e is a scaling variable 

with nominal value 0 to 1. 

The first order sensitivity coefficients evaluate the responsiveness of pollutant 

concentration to infinitesimal perturbations of model parameters; the second order 

sensitivity coefficients quantify the nonlinearity of the pollutant concentration response; 

the cross sensitivity coefficients analyze the effectiveness of pollutant concentration 

response to one sensitivity parameter influenced by the other sensitivity parameter 

(Cohan et al., 2005). In this study, the first order and second order ozone sensitivities to 

anthropogenic NOx emission, to anthropogenic VOC emission and to dry deposition 
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velocity of all species were analyzed. 

By looking at the first order ozone sensitivities to anthropogenic NOX; d[03]/deF , 

and to anthropogenic VOC, d[03]/deE , the different emission control beneficial 

regions could be determined for policy applications. For example, where 

d[03]/deE < 0, controlling VOC will be effective for ozone reduction; where 

d[03]/d eE > d[03]/deH > 0, controlling NOx will be effective for ozone 

reduction; where d[03]/deE > d[03]/deE > 0, controlling VOC will be more 

beneficial than controlling NOx for ozone reduction (Jin et al., 2008). 

By looking at the second order ozone sensitivities to NOx, d2 [03 ] I d e2
E , to VOC , 

d2 [03 ] I d e2
E , and to dry deposition velocity, d2 [03 ] / d e], , the nonlinear response in 

ozone concentration to these sensitivity parameters can be quantified. By looking at the 

cross sensitivity of ozone to emission crossed with dry deposition velocity, 

d( *- 3-*) / d e,. > the effect of variation in dry deposition velocity on emission control can be 
d & E •"' 

evaluated. 

3.3.2 Uncertainty in dry deposition velocity 

Based on the sensitivity coefficients calculated by DDM, the pollutant concentration 

with any fractional perturbation can be projected from the base case scenario via Taylor 

expansion (Hakami et al., 2004; Cohan et al., 2005). The expression of Taylor expansion 

in this study can be written as equation 3.14 

Cj U+ A e , ,y*Q \Prl) +Ae, S?+Ue) S^ (3.14) 
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Hence, the effect of uncertainty in dry deposition velocity on model simulation results 

can be evaluated via Taylor expansion. In this analysis, equation 3.14 was revised and 

expressed as shown in equation 3.15. 

C A ^ * C 0 + A ^ X S £ (3.15) 

CAV in equation 3.15 is the adjusted concentration by considering the effect of 

uncertainty in dry deposition velocity. Acp represents uncertainty in dry deposition velocity, 

a value of ±30% (Wesely and Hicks 2000) will be used in this study. 

In addition, the effect of uncertainty in dry deposition velocity on emission control 

strategies also can be quantified via Taylor series expansion. 

C(x 0 +Ae p ^ 0 +Aff 2 )*C(^^ 0 ) + Aff15i1)(jc0^0) + ̂ | £ 5 2 J ( X o ^ 0 ) (3.16) 

In equation 3.16, xo can be considered as emission rate, yo can be considered as dry 

deposition velocity, Asx can be considered as control percentage in emission, and Ae2 

can be considered as uncertainty in dry deposition velocity. In equation 3.16, As7 equals 

to 0. However, if the parameter yo varies (As2 >0), then more terms must be accounted 

for equation 3.16 as shown in equation 3.17. 

C(x0 + Asl,y0 + Ae2) * C(x0, y0) + AsxS^(x0, y0) + As2S^(x0,y0) 

+ ^ ^ : K , > ' O ) + ^ C 2 K ^ O ) + ( A ^ X A ^ ) ^ ( X 0 , J O ) 

In order to make the left hand side of equation 3.16 equals to that of equation 3.17, the 

term, S^} (x0, yQ), in equation 3.16 needs to be updated to the term as in equation 3.18 

5<i
,)(x0,^0) = ^1)(x0,>;0) + A ^ 2 ^ ( x 0 ^ 0 ) (3.18) 
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Therefore, analog to equation 3.18, we could get the mathematical expressions for 

quantifying the effect of uncertainty in dry deposition velocity on NOx and VOC controls 

as shown in equations 3.19 and 3.20, respectively. 

'• ASOx '• AXOf A\Ox
 rikp 

'•-roc V a ^ J»ew \~ /old rVdep- - \ / 5 ' new v ~, ' om r v, - -

e, 3e, p oer. a 
r-Aim fi.iroc '-AIVC 
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CHAPTER 4 

Results and Discussions 

In this chapter, modeling results will be illustrated and discussed. It includes four parts: 

accuracy test, vertical diffusion scheme evaluation, sensitivity analysis, and effect of 

uncertainty in dry deposition velocity. 

4.1 Accuracy test results 

As described in Chapter Three, sensitivity coefficients calculated by a Brute Force 

approximation are used as a benchmark of DDM accuracy. The equations for sensitivity 

coefficients calculation from the Brute Force approximation are shown in equation 

3.8-3.10 in Chapter Three. The comparisons of sensitivity coefficient calculation between 

DDM and the Brute Force approximation approach are presented in this section. The first 

order sensitivity coefficients of ozone to ozone dry deposition velocity, ozone to eddy 

diffusivity, and ozone to NOx dry deposition velocity, the second order sensitivity 

coefficient of ozone to NOx dry deposition velocity, and the cross sensitivity coefficient 

between NOx dry deposition velocity and NOx emission are tested for both EDDY (Figure 

4.1a) and ACM2 (Figure 4.1b) schemes. 
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d[03 ] I d ev (ozone sensitivity to ozone dry deposition velocity) 
"Oykp 

3[03]/S< 
"SOJep 

(ozone sensitivity to NOx dry deposition velocity) 

d[Os ] / d GK (ozone sensitivity to eddy diffusivity) 

d2[03]/3< 
'XO^ep 

(second order ozone sensitivity to NOx dry deposition velocity) 
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d2 \0? 1 / d e,. 3 e r / (cross sensitivity to NOx emission and NOx dry deposition velocity) 

Figure 4.1a: Sensitivity coefficients from DDM (left) and Brute Force (right) of EDDY 

scheme at the time of peak ozone (4:00PM CST) on August 31st, 2006. 

3[0 3 ] / d Gv (ozone sensitivity to ozone dry deposition velocity) 
^Oytep 

d[03]/d (ozone sensitivity to NOx dry deposition velocity) 



d[03 ] / d GK (ozone sensitivity to eddy diffusivity) 

d [0 3 ] / d Ey (second order ozone sensitivity to NOx dry deposition velocity) 
XO^lep 

d~ [ 0 3 ] / d eF d e.v (cross sensitivity to NOx emission and NOx dry deposition velocity) 

Figure 4.1b: Sensitivity coefficients from DDM (left) and Brute Force (right) of ACM2 

scheme at the time of peak ozone (4:00PM CST) on August 31st, 2006. 



56 

Table 4.1. Sensitivity coefficients of 1-hour ozone with respect to dry deposition velocity, 
eddy diffusivity, and emission, and statistical consistency of Brute Force and DDM-3D 
results 

Sensitivity Parameters 

O3 dry deposition velocity13'0 

NOx dry deposition velocity5'*1 

Eddy diffusivitybe 

1st order domain wide NOx 
b 

emission 
2nd order dry deposition velocityd'h 

Cross sensitivity (ENOX and VJNOX)1 

DDM 

R2 

0.9991 

0.9953 

0.9932 

0.9975 

0.9595 

0.9676 

' vs. Brute Force 
(EDDY)3 

Bias%f 

-0.19 

2.17 

-1.72 

-1.60 

0.59 

16.64 

1 

Error%g 

0.94 

3.02 

3.91 

3.22 

6.77 

13.74 

DDM vs. Brute Force 

R2 

0.9989 

0.9955 

0.9911 

0.9975 

0.9046 

0.845 

(ACM2)a 

Bias%f Error%g 

-0.72 

2.04 

3.3 

-1.39 

10.58 

21.25 

1.2 

3.05 

5.91 

3.1 

17.99 

33.1 

Note: a Comparing for each day and grid cell. Averaged over domain for Aug. 31 -Sep 5 episode, 

b Calculated using ±10% perturbation 

c O; sensitivity to 0 3 dry deposition velocity 

d 0 3 sensitivity to NOx dry deposition velocity 

e O] sensitivity to eddy diffusivity in all layers 

f Normalized mean bias S(DDM-Brute force)/S(Brute force) 

g Normalized mean error £|(DDM-Brute force)|/S|(Brute force)| 

h Calculated using ±50% perturbation 

i Calculated using ±10% perturbation for emission, ±50% perturbation for dry deposition velocity 

The first order sensitivity coefficients calculated by DDM and the Brute Force method 

are almost identical for both schemes. The second order sensitivity and cross sensitivity 

coefficients calculated by DDM seem to be less accurate but still have good agreement 

compared with Brute Force (Figure 4.1). The statistical analysis results (Table 4.1) show 

the same conclusions as those illustrated in Figure 4.1. The statistical comparisons between 

DDM and BF in Table 4.1 were calculated cell-by-cell for each hour in a day and were 

averaged over six days of the episode. A ±50% perturbation was used in the Brute Force 

approximation for second order sensitivity to dry deposition velocity in order to reduce the 
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numerical noise from model simulations. The first day statistical results were excluded in 

the calculations to minimize influence of the initial conditions. The statistical results show 

R2 close to one and very small values of normalized mean bias (NMB) and normalized 

mean error (NME) for the first order sensitivity coefficients comparisons. However, the 

second order and cross sensitivity coefficients have slightly less statistical consistency than 

the first order coefficients, most probably due to truncation error and model inconsistency 

error from the Brute Force approximation (Hakami et al., 2004). Notice that the second 

order and cross sensitivity coefficients from ACM2 scheme showed remarkable inaccuracy. 

Hence, the HDDM code for the second order and cross sensitivity of dry deposition 

velocity in ACM2 requires further investigation. Additionally, weak consistency was 

observed in modeling cases with a grid size larger than 8km because of the convective 

cloud process during the simulation. Scientists at U.S. EPA are addressing this weakness 

(Sergey, N.L, personal communications, 2009). 

4.2 Vertical diffusion schemes evaluation 

The CMAQ model simulation results with two different vertical diffusion schemes for 

the same episode are evaluated in this section. The data comparisons between modeling 

and measurements include those with surface, ozonesonde, and regional aircraft data. 
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4.2.1 Regional ozone modeling 

Ozone formation and transport in eastern Texas from August 30 to September 5 were 

simulated by CMAQ 4.5. The maximum 1-hr average simulated ozone in the episode 

occurs downwind of the Houston Ship Channel at 4:00PM (CST) on August 31st, 2006, and 

the predicted ozone concentration reaches 133ppb in EDDY scheme and 147 ppb in ACM2 

scheme. The eastern Texas county map and HGB ozone non-attainment area are shown in 

Figure 4.2. The wind conditions and PBL height over the study domain at the time of peak 

ozone are shown in Figure 4.3. 
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Figure 4.2: Eastern Texas county map (left) and HGB ozone non-attainment area (right). 

(Source: TCEQ 2009) 
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137 

Figure 4.3: Wind conditions (left) and PBL height (right) at ozone peak time (4:00PM 

CST), August 31st, 2006. 

The domain ozone distribution at the time of peak ozone for the episode for both EDDY 

and ACM2 schemes is shown in Figure 4.4. 

Figure 4.4: Ozone concentration at peak time (4:00PM CST), August 31st, 2006. (left) 

EDDY scheme; (middle) ACM2 scheme; (right) Difference (ACM2-EDDY) 

The maximum ozone occurs downwind of Houston in Fort Bend County at 4:00pm 

(Figure 4.2, 4.4) most probably due to the meteorological conditions at that time. The wind 

plot (Figure 4.3) indicates that at 4:00pm, the northeasterly wind transports the pollutants 
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from the Houston Ship Channel, where one of the largest petroleum industries in the US 

located, to the downwind area. It also indicates that the sea breeze transports the ozone 

from the sea to inland at that time and that the low wind speed in Fort Bend County causes 

pollutant accumulation. The high temperature and humidity in the afternoon also enhances 

the ozone formation. The difference of predicted ozone concentrations from two vertical 

diffusion schemes (Figure 4.4) also illustrates that the ACM2 scheme tends to predict more 

surface ozone than the EDDY scheme. 

4.2.2 EDDY and ACM2 modeling data comparisons 

The pollutant concentrations simulated by CMAQ with two different schemes are 

analyzed here. Figure 4.5 shows the comparisons of simulated ground level primary and 

secondary pollutants when using the EDDY or ACM2 schemes. Figure 4.6 shows the 

corresponding comparisons of vertical profiles. 

The EDDY scheme tends to predict large concentrations of primary pollutants (CO, NOx) 

but smaller concentrations of secondary pollutants (O3) at the surface compared to the 

ACM2 scheme (Figure 4.5). One possible reason is that the ACM2 scheme has faster 

vertical mixing under the convective boundary layer, leading to enhanced vertical transport 

of emitted primary pollutants. However, the EDDY scheme tends to predict smaller O3 

concentration near the surface than the ACM2 scheme, most probably due to more NOx 

(NO+NO2) being predicted at surface, leading to increased O3 titration (Pleim 2009). 
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Figure 4.5: Regression between 1-hr average pollutant concentrations for all days in the 

episode modeled using EDDY and those modeled using ACM2. 

Figure 4.6 shows the comparisons of vertical profiles produced by the EDDY and ACM2 

schemes for NOx and O3 mixing ratios averaged over 4pm to 10pm on August 31st, 2006, in 

Houston. The ACM2 scheme has a more well-mixed profile under a convective PBL than 

EDDY because ACM2 considers turbulent diffusion under the PBL, making mixing more 

rapid than EDDY. The EDDY scheme has a deeper mixing depth than ACM2 because the 

EDDY scheme uses a quadratic height function to calculate eddy diffusivity, while the 
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ACM2 scheme uses a cubic height function (Pleim, 2009). In addition, EDDY tends to 

predict more NOx near the surface, but less NOx aloft than ACM2, most probably due to the 

faster upward mixing feature in ACM2 scheme causing smaller mixing ratios at surface but 

larger mixing ratios aloft. Again, the ACM2 scheme produces more O3 than EDDY scheme 

under the PBL. In addition to the NOx titration reason discussed above, another possible 

reason is that NOx in ACM2 is better mixed than EDDY under the PBL, making more 

ozone yields. 
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ACM2 
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Figure 4.6: Vertical profiles produced by the EDDY and ACM2 schemes for NOx (top) and 

O3 (bottom) mixing ratios averaged over 4pm to 10pm on August 31st, 2006 in Houston. 

4.2.3 Comparison with surface measurements 

The comparisons of modeled O3, NOx and CO concentration with surface measurement 

data are presented in this section. Figure 4.7 shows the scatter plots of modeled ground 

level 1 -hr average ozone versus measured 1 -hr surface ozone for the whole episode at all 

ground measurement sites shown in Figure 3.3, in the domain. 
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Figure 4.7: Scatter diagram of modeled 1-hr O3 versus observed data, (top) EDDY, 

(bottom) ACM2. 
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Both vertical diffusion schemes simulated O3 quite well generally, as correlation 

coefficients approach 0.7 (Figure 4.7). However, Figure 4.7 shows that the model 

performed weakly in predicting both very small and very large O3 concentration in this 

case. The mean normalized bias (MNB) and mean normalized error (MNE) also have been 

calculated for the O3 concentration value greater than 60 ppb. It shows that the simulation 

results from ACM2 and EDDY are virtually identical. 
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Figure 4.8: Time series (UTC) of predicted and observed ozone at four sites. 
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The temporal profiles of 1-hr average predicted and observed ozone at four measurement 

sites which have very high observed ozone concentration and inside the model domain, 

over seven days episode are shown in Figure 4.8, which indicate that the model mostly 

underpredicted the large daytime ozone concentrations (later afternoon) and overpredicted 

small nighttime ozone concentrations. The ACM2 scheme predicts larger ozone 

concentrations than the EDDY scheme, but the difference between the two schemes is 

small, averaging 2ppb and with a maximum value of 6ppb. 
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Figure 4.9: Time series (UTC) of predicted and observed NOx at four sites. 



67 

The 1-hr average predicted and observed NOx(NO+N02) at four measurement sites 

inside the model domain over seven days are shown in Figure 4.9, which indicate that both 

schemes simulated small NOx concentration at nighttime very well, but significantly 

overpredicted peak daytime NOx (early morning) at most sites. The ACM2 scheme 

predicts smaller NOx concentration than the EDDY scheme, but the difference between 

two schemes is small, averaging lppb, with a maximum value of 3ppb. 
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Figure 4.10: Time series (UTC) of predicted and observed CO at four sites. 
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Due to data availability, four measurement sites inside the model domain are chosen for 

the 1-hr average predicted and observed CO comparison (Figure 4.10), which indicates that 

both schemes performed poorly in simulating CO concentration. It shows that CO was 

significantly underpredicted at Deer Park and Nederland High School sites and that the 

simulations did not capture the largest and the smallest CO concentration at the Park Place 

and Lang sites. The ACM2 scheme predicts smaller CO concentration than the EDDY 

scheme, and the difference of simulated values between two schemes averages 30ppb, with 

a maximum value of lOOppb. 

4.2.4 Comparison with ozonesonde measurements 

Ten ozonesonde measurements made within the model domain were chosen for the 

vertical profiles comparisons. The data were obtained from Intercontinental Transport 

Experiment Ozonesonde Network Study 2006 (ION-6) campaign (Parrish et al., 2009). Six 

ozonesondes were launched at the University of Houston (UH), and four ozonesondes were 

launched from the NOAA R.H Brown vessel. Figure 4.1 la shows measured and modeled 

data for six ozonesondes launched from UH. Figure 4.1 lb shows the corresponding 

information for the four ozonesondes launched from R.H Brown vessel. 
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Figure 4.11a: Measured and modeled data for ozonesondes launched from University of 

Houston. 
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Figure 4.11b: Measured and modeled data for ozonesondes launched from R.H Brown. 

Figure 4.11 shows that both vertical diffusion schemes in the model were capable of 

capturing the qualitative features of ozone vertical profiles measured by ozonesondes in 

each case. The ACM2 scheme continuously shows larger predicted ozone mixing ratios 

under the PBL, and the simulated vertical profiles by two schemes do not have significant 

difference above 3km. In Figure 4.1 lb, there are large discrepancies between modeled and 

observed profiles in the R.H Brown ozonesonde data. One possible reason is surface losses 

caused by measurement uncertainty (G.A. Morris, personal communication, 2009). In 
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addition, sudden increase of measured ozone concentration under the PBL shown in Figure 

4.11a on August 31st and September 1st likely resulted from background ozone transported 

from both the continental and the sea (Rappengluck et al. 2008). 

4.2.5 Comparison with regional aircraft measurements 

Aircraft measurements conducted by the NOAA WP-3D aircraft (Parrish et al., 2009) 

also are compared to modeling results. A part of the P-3 aircraft track measurement data 

collected at 3:00pm (CST) on August 31st, 2006, (Figure 4.12) from 500 meters to 3000 

meters height were used for comparison. The chemical species 03, NO, NO2, and CO 

measured by aircraft during 20 minute periods from 3:00pm to 4:00pm with 1 second 

resolution were compared with the extracted 1 -hr average modeling data from each grid 

cell that the aircraft passed through at the corresponding time. 
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Figure 4.12: P-3 Aircraft track at 3:00pm on August 31st, 2006. (Color represents 
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Figure 4.13: Modeled and P-3 aircraft data for 0 3 (top), NOx (NO+N02) (middle), and CO 

(bottom). 
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The modeled vertical profiles from both schemes virtually matched the observed ones 

quite well, especially for NOx and CO modeling (Figure 4.13). The ACM2 scheme 

predicted larger concentrations of pollutant from 500m to the height of the PBL and 

predicted smaller concentrations of pollutant from the height of the PBL to 3km, and above 

3km, there is no significant difference for the predicted concentrations between the EDDY 

and ACM2 schemes. The results are quite similar to those in Figure 4.6. 

The discrepancies between modeled and observed data are much more significant than 

the differences between predicted concentrations using the two different vertical mixing 

schemes. Hence, the discrepancy between modeled and observed data cannot be rectified 

by changing the vertical mixing scheme. It is also not possible to determine which scheme 

is better on the basis of comparing modeling and observations. 

4.3 Sensitivity analysis 

The results of the analysis to determine the sensitivity of ozone to model input 

parameters are presented here. The first and second order ozone sensitivities to dry 

deposition velocity, to anthropogenic NOX; and to anthropogenic VOC and the cross 

sensitivity of ozone to anthropogenic NOx and anthropogenic VOC emission with dry 

deposition velocity were calculated by CMAQ-DDM. The DDM results are illustrated 

below. 
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Figure 4.14a: Ozone sensitivity to dry deposition velcoity at 4:00pm CST on August 31st, 

2006. (left) EDDY, (middle) ACM2, (right) difference (ACM2-EDDY) 

C
on

e 
(p

pb
) 

O 

120-

115-

110-

105-

100-

95-

90-

85-

80-

\ EDDY 

\^ 

^ v 

\ 

.a0 ,\Q°|0 Q0|° <^a 7?°'° i0°|0 a.0"'0 ^ 
Perturbation in V 

ffr jtfr #&• #fr jfr & , ^ ° #fr ^ ^ offr 
Perturbation in V 

Figure 4.14b: Responsiveness of ozone to dry deposition velocity at 4:00pm CST. 
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The first order ozone sensitivity to dry deposition velocity (Figure 4.14a) is negative 

because enhanced dry deposition velocity decreases atmospheric concentrations. The 

second order ozone sensitivity to dry deposition velocity (Figure 4.14a) is positive because 

of the convex response of ozone to dry deposition velocity at that time (Figure 4.14b). It 

also indicates that the nonlinearity in ozone response caused by dry deposition velocity is 

small. 

Figure 4.15a: Ozone concentration at peak time (4:00PM CST), August 31st, 2006. (left) 

EDDY scheme; (middle) ACM2 scheme; (right) Difference (ACM2-EDDY) 
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Figure 4.15b: Ozone sensitivities to anthropogenic NOx and VOC at peak time (4:00PM 

CST), August 31st, 2006. (left) EDDY scheme; (middle) ACM2 scheme; (right) Difference 

(ACM2-EDDY) 
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The maximum ozone concentration occurs downwind of Houston in Fort Bend County at 

4:00pm (Figure 4.15a). From the Figure 4.15b, the first order ozone sensitivity to 

anthropogenic NOx, d[03]IdeE , is negative indicating that VOC control will be 

effective for ozone reduction in that area and at that time (how to distinct control region has 

already been discussed in Chapter Three). The response of ozone calculated from the 

ACM2 scheme (Figure 4.15b) seems to be more sensitive to anthropogenic NOx and VOC 

than the EDDY scheme, indicating that different emission controls may be designed as 

different vertical diffusion schemes are used. Compared with the first order sensitivities, 

the second order sensitivities become more localized. The second order ozone sensitivity to 

anthropogenic NOx> 82 [03 ] / 8 e2
E , shows predominantly negative value indicating large 

nonlinear and concave response of ozone. The second order ozone sensitivity to 

anthropogenic VOC, d2[03]/d e2
E , shows a much smaller magnitude than 

d2 [03 ] / d e2
E indicating less degree of nonlinearity in ozone response (Hakami et al, 

2004; Cohan et al., 2005). 
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Figure 4.16: Cross sensitivity coefficients of ozone to dry deposition velocity and 

anthropogenic NOx (left), and anthropogenic VOC (right) at 4:00pm on August 31st, 2006. 

The cross sensitivity coefficients calculated by the EDDY scheme are shown in Figure 

4.16. The result from the ACM2 scheme is not shown because it was not reliable as 

discussed in Section 4.1. The cross sensitivity of ozone to anthropogenic NOx emission and 

dry deposition velocity shows negative value at that time, indicating that if dry deposition 

velocities for all species are underpredicted, ozone becomes more sensitive to ANOx. In 

contrast, the cross sensitivity of ozone to anthropogenic VOC emission and dry deposition 

velocity shows positive value at that time, indicating that if dry deposition velocities for all 

species are underpredicted, ozone becomes less sensitive to AVOC. The magnitude of 

cross sensitivity coefficients are much smaller than the first order and second order 

sensitivities as showed above, but these terms will become much important in uncertainty 

analysis as discussed below. 
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4.4 Uncertainty analysis in dry deposition velocity 

As described in Chapter Two, recent studies indicate that the uncertainty in dry 

deposition velocities could be as large as ±30% (Wesely and Hicks 2000). Therefore, it is 

essential to analyze the impact of uncertainty in dry deposition velocity on model 

performance. The effects of uncertainty in dry deposition velocity on model simulation and 

on emission control are discussed here. 

4.4.1 Effect on model simulations 

Based on equation 3.15, the effect of ±30% uncertainty in dry deposition velocity for 

all depositing species on model simulation results can be quantified. The effects of 

uncertainty in dry deposition velocities on surface ozone modeling and on ozone, sulfur 

dioxide, and nitric acid simulated vertical profiles are evaluated in Figure 4.17 and 4.18, 

respectively. 



81 

120 

100 -̂  
Wallisville Observ 

EDDY 
ACM2 

aSF* *** ̂  ~^V^ ̂  ^ <gP> ^ ^ ^ ' ^P"- ^ ^- 0 *? 

140 

120-^ 

West Houston 
Observ 
EDDY 
ACM2 

oP fe # 

0%\ *& ^ y ^ y y1 y- y fF 

Figure 4.17: Effect of uncertainty in O3 dry deposition velocity on surface O3 modeling. 
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As discussed above, when the dry deposition velocities decrease, the species 

concentrations increase. The higher and lower error bars in Figure 4.17 represent ozone 

concentration adjusted by -30% and +30% uncertainties in dry deposition velocity. The 

results indicate that compared to the discrepancy between modeled and observed results, 

the effect of uncertainty in dry deposition velocity on simulated surface O3 is small. 
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Figure 4.18a: Effect of uncertainty in dry deposition velocity on O3 vertical profile. 
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Figure 4.18b: Effects of uncertainty in dry deposition velocities on HNO3 (left) and SO2 

(right) vertical profiles. 

However, Figure 4.18a illustrates that considering the uncertainty in O3 dry deposition 

velocity may make the modeled O3 vertical profile closer to the observed values after 

adjusting the profile, but the uncertainty in O3 dry deposition velocity is certainly not the 

driving force causing the discrepancy between modeled and observed profile in this case. 

However, Figure 4.18b demonstrates that for species with larger dry deposition velocity, 

such as HNO3 or SO2, the effect of uncertainty in dry deposition velocity on modeled 

results at lower layer is more significant. 

4.4.2 Effect on emission control strategy 

As discussed in chapter 3, uncertainties in inputs such as dry deposition velocities can 

influence the sensitivity of ozone to NOx and VOC emission controls. Based on the 

equations 3.19 and 3.20 derived in chapter 3, the effect of dry deposition velocity on 
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emission control strategy can be evaluated. Figure 4.19 shows the effect of uncertainty in 

choosing different vertical mixing schemes on both NOx and VOC emission controls, and 

Figure 4.20 shows the effect of uncertainty in dry deposition velocity on both NOx and 

VOC emission controls, at the Bayland Park and Deer Park ozone monitoring sites in 

Houston. The Bayland Park site is in a suburban area in the west of Houston, and the Deer 

Park site is in the Ship Channel area in the east of Houston. Both sites have predicted future 

ozone designed values that exceed 84 ppb (TCEQ 2009). The average hourly sensitivity 

coefficients of ozone to NOx and VOC emission were calculated for the 7-day episode in 

this case. 

Local Time 
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Figure 4.20: Effects of uncertainty in dry deposition velocity on O3 sensitivity to 

anthropogenic N0X (top) and to anthropogenic VOC (bottom) emissions. 

Table 4.2: Effects of uncertainties on emission control (Deer Park) 

Emission 
Control 

S ' (03 toNOx) 

(ppb) 
S '(03 toVOC) 

(Ppb) 

EDDY scheme 

-3.97 

4.96 

ACM2 scheme 

-5.05 

5.62 

EDDY with Vd 
+30% 

-4.23 

4.88 

EDDY with Vd 
-30% 

-3.71 

5.03 

Note: averaged over 10am-5pm (local time) 



87 

Table 4.3: Effects of uncertainties on emission control (Bayland Park) 

Emission 
Control 

S^OstoNOx) 

(ppb) 
S1 (03 to VOC) 

(ppb) 

EDDY scheme 

-3.4 

4.37 

ACM2 scheme 

-1.2 

4.57 

EDDY with Vd 
+30% 

-3.72 

4.18 

EDDY with Vd 
-30% 

-3.17 

4.57 

Note: averaged over 10am-5pm (local time) 

The first order sensitivity coefficients of ozone to anthropogenic NOx and 

anthropogenic VOC used here can be considered as emission control factors. For example, 

if the first order ozone sensitivity to anthropogenic NOx equals to 12ppb, then 1.2ppb 

ozone can be reduced by controlling 10% anthropogenic NOx emission. Figure 4.19 

indicates that the ANOx and AVOC emission controls may vary significantly by using 

different vertical diffusion schemes, especially from 10am to 5pm. At both sites, generally, 

the ozone sensitivities calculated with the ACM2 scheme to anthropogenic NOx and to 

anthropogenic VOC are more sensitive than those using the EDDY scheme (Table 4.2,4.3), 

reflecting that at certain times, controlling the same amount of ANOx and AVOC emissions 

may have less effect on predicted ozone reductions when the EDDY scheme is used in the 

model. 

Figure 4.20 also indicates that the response of ozone to ANOx and AVOC may vary 

temporally due to the uncertainty in dry deposition velocity. The average values of 

responses of ozone to ANOx and AVOC with ±30% uncertainty in dry deposition velocity 
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showed in Table 4.2 and 4.3 indicate that, at the Bayland Park and Deer Park sites, the 

effect of uncertainty in dry deposition velocity on AVOC emission control is smaller than 

that on ANOx emission control. The variation in ozone response to ANOx could reach 

approximately 14% at Deer Park, and 17% at Bayland Park, and the variation in ozone 

response to AVOC could reach approximately 3% at Deer Park, and 9% at Bayland Park. 
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CHAPTER 5 

Conclusions and Recommendations 

A study on the influence of uncertainties in vertical mixing algorithms on photochemical 

air quality model was carried out in this thesis. It includes three major parts: model 

development, model evaluation, and model application. In the model development part, the 

first and second order of dry deposition velocity and eddy diffusivity sensitivities were 

implemented into CMAQ-DDM for both EDDY and ACM2 vertical diffusion schemes. In 

the model evaluation part, the performance of two vertical diffusion schemes was 

evaluated by comparing with field campaign measurement data. In the model application 

part, the sensitivity and uncertainty analysis by using the newly implemented code were 

conducted. 

5.1 Conclusions 

Seven main conclusions could be drawn from this study: 

1. DDM was successfully implemented into ACM2 scheme in CMAQ. 

2. The first and second order dry deposition velocity and eddy diffusivity sensitivities 

were implemented into DDM for both EDDY and ACM2 schemes in CMAQ 

successfully. Comparison with Brute Force approximation approach shows that the 

results from two methods are in very good agreement. The cross sensitivity term in 

ACM2 scheme was not reliable and needs further investigation. 
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3. Comparisons between modeling results from two schemes indicated that the ACM2 

scheme tends to predict larger concentrations of secondary pollutants and smaller 

concentrations of primary pollutants at the surface compared to the EDDY scheme; the 

ACM2 scheme has a more well-mixed profile under the PBL, and the EDDY scheme 

has a deeper mixing depth. 

4. Based on comparisons between modeled and observed data, both schemes performed 

well in simulating surface ozone concentration but performed poorly in simulating 

surface NOx and CO concentrations. They both are capable of capturing the qualitative 

features of vertical profiles measured by ozonesonde and aircraft. However, at the 

surface level, the model performed weakly in simulating the very large and very small 

pollutant concentrations in this case. The discrepancies between modeled and observed 

data are much more significant than the differences of predicted concentrations 

between the two vertical mixing schemes. Hence, the discrepancy between modeled 

and observed data cannot be explained by changing the vertical mixing schemes. It is 

also not possible to determine which scheme is better on the basis of comparing 

modeled and observed data. 

5. Sensitivity analysis results show that the chemical processes dominate the nonlinearity 

in the ozone responsiveness and that the largest nonlinear responsiveness of ozone was 

produced by anthropogenic NOx. The responsiveness of ozone to dry deposition 

velocity and to anthropogenic VOC is less nonlinear than that to the anthropogenic 
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N0X emission. 

6. The effect of uncertainty in dry deposition velocities on ozone simulation results is 

small compared to the discrepancy between modeled and observed O3 concentrations 

in this case. It may have significant impact on the modeling of pollutants with large dry 

deposition velocity, such as HNO3 and SO2. 

7. The uncertainty in dry deposition velocity may cause as large as 60% variation in 

responsiveness of ozone to emission control. Different vertical diffusion schemes could 

have even more impact on emission control strategy. 

5.2 Recommendations for future work 

A few recommendations are suggested for future work. 

1. As mentioned in Chapter Four, the newly implemented DDM code for calculating dry 

deposition velocity and eddy diffusivity sensitivities only had accurate results in fine 

resolution model grids (less than 8km) with convective cloud process turned off. Hence, 

the convective cloud process in the CMAQ-DDM model needs to be improved for 

better accuracy in DDM calculation of dry deposition velocity and eddy diffusivity 

sensitivities. 

2. Further investigations and evaluations are needed for the second order sensitivity 

coefficients of dry deposition velocity calculations in the ACM2 scheme. The second 

order term for eddy diffusivity also needs to be tested and evaluated. 
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3. As mentioned in Chapter Three, the uncertainty analysis in eddy diffusivity was not 

performed in this study because a model inconsistency error between MM5 and CMAQ 

may occur in the simulation. Therefore, the sensitivity code also may need to be 

implemented into the meteorological model in order to investigate the effect of 

uncertainty in eddy diffusivity on model performance more realistically. 

4. The evaluations of the uncertainty in choosing different vertical diffusion schemes and 

in dry deposition velocity on emission controls were only performed for two sites and 

the results are different. Hence, more evaluations need to be conducted. For example, 

more sites under different control regions can be investigated, including considering 

the effect on 8-hr ozone control strategy. 

5. The results from this study showed that the uncertainties in dry deposition velocity and 

eddy diffusivity in the simulations cannot be ignored. Hence, the inverse modeling 

technique could be used in the future work to adjust the dry deposition velocity and 

eddy diffusivity in the simulation. For example, we can use the calculated sensitivity 

coefficients of dry deposition velocity and eddy diffusivity by DDM in the inverse 

modeling framework to minimize the difference between modeled and observed data, 

and therefore to optimize the input dry deposition velocity and eddy diffusivity values. 


