
RICE UNIVERSITY

Workload-Aware Live Storage Migration for Clouds

by

Jie Zheng

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED/THESIS COMMITTEE:

Dr. T. S./ugene Ng (Chair),
Assistant Professor,
Computer Science

ai^^y^
Dr. Alan L. Cox,
Associate Professor,
Computer Science

Dr. Edward WTXnightly
Professor,
Electrical and Computer Engineering

Dr. kunwad«f Sripanidkulchai
Research Staff Member,
IBM T.J. Watson Research Center

HOUSTON, TEXAS

MARCH, 2010

UMI Number: 1485979

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 1485979
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Workload-Aware Live Storage Migration for Clouds

by

Jie Zheng

The emerging open cloud computing model will provide users with great freedom to

dynamically migrate virtualized computing services to, from, and between clouds over

the wide-area. While this freedom leads to many potential benefits, the running services

must be minimally disrupted by the migration. Unfortunately, current solutions for wide-

area migration incur too much disruption as they will significantly slow down storage I/O

operations during migration. The resulting increase in service latency could be very costly

to a business. This thesis presents a novel storage migration scheduling algorithm that

can greatly improve storage I/O performance during wide-area migration. Our algorithm

is unique in that it considers individual virtual machine's storage I/O workload such as

temporal locality, spatial locality and popularity characteristics to compute an efficient data

transfer schedule. Using a trace-driven framework, we show that our algorithm provides

large performance benefits across a wide range of popular virtual machine workloads.

I l l

Acknowledgments

My foremost thank goes to my advisor Professor T. S. Eugene Ng. I thank him for all of

his help, inspiration and guidance in my graduate study. He is the best advisor I can ever

imagine. I thank him for his patience and encouragement that always earned me through

difficult times, and for his insights and suggestions that helped to shape my research skills.

His passion for science has influenced me a lot. His valuable feedback contributed greatly

to this thesis.

I wish to express my sincere gratitude to my mentor Dr. Kunwadee (Kay) Sripanid-

kulchai at IBM Research. I had the fortune to work with Kay during my summer internship

at IBM. She helped me on every aspect of the research related to this thesis. She taught me

a vast amount of knowledge in the areas of cloud computing and machine virtualization and

introduced me to many advanced techniques. I really appreciate her sound advice, good

company, interesting ideas and suggestions. Without the help from Eugene and Kay, this

thesis would not have been possible.

I wish to thank Professor Alan L. Cox who helped me setup the experiment environment

and suggested me to use VMmark to explore the I/O patterns. Before this thesis, I had

the opportunity to work with Alan on another project. Alan is a very knowledgeable and

friendly professor. I am often impressed by his logical thoughts and wise solutions to

difficult research questions.

I want to thank Professor Edward W. Knightly for serving on my M.S. thesis committee

and asking many insightful questions that helped to shape this thesis.

I also want to thank many friends in our research group. They are Bo Zhang, Guohui

Wang, Zheng Cai and Florin Dinu. I enjoyed all the vivid discussions we had on various

topics and had lots of fun being a member of this fantastic group. They always gave me

instant help when I asked.

Last but not the least, I would like to thank my parents and my best friends who have

supported me spiritually throughout my life.

Contents

List of Illustrations vii

1 Introduction 1

2 Background 4

2.1 Challenges in Wide Area Migration 4

2.2 Storage Migration Models 5

2.3 Performance Degradation from Migration 7

3 Workload Trace Collection 9

4 Workload Characteristics 12

4.1 Methodology 12

4.2 Temporal Locality Characteristics 13

4.3 Spatial Locality Characteristics 14

4.4 Popularity Characteristics 16

4.5 Effects of File System on Workload Characteristics 16

4.6 Effects of Virtual Disk Format on Workload Characteristics 19

5 Scheduling Algorithm 22

5.1 History of I/O Accesses 22

5.2 Scheduling Based on Access Frequency of Chunks 24

5.3 Chunk Size Selection 31

5.4 Potential Robustness Improvements 34

6 Evaluation 36

6.1 Simulation Methodology 36

6.2 Performance Metrics 38

6.3 Benefits Under Pre-Copy 39

6.3.1 Reduction in Extra Traffic 39

6.3.2 Reduction in Postponed Operations 42

6.4 Benefits Under Post-Copy 44

6.5 Benefits Under Pre+Post-Copy 46

6.6 Optimality of Chunk Size 47

6.7 Sensitivity to History Size 49

7 Summary and Future Work 50

Bibliography 52

Illustrations

1 Models of live storage migration 6

1 The temporal locality of I/O accesses as measured by the percentage of

accesses in the migration that was also previously accessed in the history.

The block size is 512 B and the chunk size is 1MB. Temporal locality

exists in all of the workloads, but is stronger at the chunk level. The Java

server has very few read accesses resulting in no measurable locality 13

2 The percentage of storage accessed. The block size is 512 B and the

chunk size is 1 MB 14

3 File server spatial locality. The fresh written blocks in migration are

located very close to the written blocks in history, suggesting strong

spatial locality. 15

4 The rank correlation of the chunk popularity in history vs. in migration. . . 17

5 A simple example of the flat disk format and the sparse disk format 20

1 Models of live storage migration with scheduling 23

2 A simple example of the scheduling algorithm applied to the pre-copy

model 25

3 A simple example of the scheduling algorithm applied to the post-copy

model 26

4 A peak in balanced coverage determines the appropriate chunk size for a

given workload 32

6.1 The improvement in extra traffic under the pre-copy model 41

6.2 The improvement of number of postponed operations under the pre-copy

model (ds-160 workload). The postponed operations are reduced from

millions to less than 800 when scheduling is used 42

6.3 The improvement of postponed time under the pre-copy model (ds-160

workload). The average postponed time are reduced from thousands of

seconds to less than 0.5 second when scheduling is used 43

6.4 The improvement of remote reads under the post-copy model 45

6.5 The improvement of extra traffic under the pre+post-copy model 46

6.6 The improvement of remote reads under the pre+post-copy model 47

6.7 Sensitivity of algorithm to history size. Using a longer history results in

bigger gains, but even a short history is already useful 49

1

Chapter 1

Introduction

Cloud computing has recently attracted significant attention from both industry and

academia for its ability to deliver IT services at a lower barrier to entry in terms of cost,

risk, and expertise, with higher flexibility and better scaling on-demand. Many cloud early

adopters have had great successes in leveraging these capabilities to deliver services much

faster than any of these users could have achieved if they had to build out their own in

frastructure [1,2]. While these successes have been realized through using a single cloud

provider, using multiple clouds to deliver services and having the flexibility to move freely

among different providers is an emerging requirement [3]. The Open Cloud Manifesto is an

example of how users and vendors are coming together to support and establish principles

in opening up choices in cloud computing [4]. A key barrier to cloud adoption identified in

the manifesto is data and application portability, particularly once users have implemented

their applications using one cloud provider, they ought to be able to migrate that system

back in-house or to other cloud providers. Flexibility in migration allows users to have

control over business continuity and avoid fate-sharing with specific providers.

In addition to avoiding single-provider lock-in, there are other availability and eco

nomic reasons driving the requirement for migration across clouds. To maintain high per

formance and availability, migrations could be used to move virtual machines from one

cloud to another cloud that has better resource availability, to avoid hardware or network

maintenance down-times, or to avoid power limitations in the source cloud. Also, moving

work out of providers that could be shut down by anticipated natural disasters such as hur

ricanes or winter storms prior to such disasters is also useful for maintaining high service

availability. Furthermore, cloud users may want to move work to clouds that provide lower-

2

cost. The current practice for migration causes significant transitional down time. In order

for users to realize the benefits of migration between clouds, we need both open interfaces

and mechanisms to enable such migration while the services are running with as minimal

service disruption as possible. While providers are working towards open interfaces, in

this thesis we look at the enabling mechanisms without which migrations would remain a

costly effort.

Live migration provides the capability to move virtual machines from one physical lo

cation to another while still running without any perceived degradation. Many hypervisors

support live migration within the LAN [5, 6, 7, 8, 9, 10]. However, migrating across the

wide area presents more challenges specifically because of the large amount of data that

needs to be migrated over limited network bandwidth. In order to enable live migration

over the wide area, three capabilities are needed: (i) the running state of the virtual ma

chine must be migrated (i.e., memory migration), (ii) the storage or virtual disks used by

the virtual machine must be migrated, and (iii) existing client connections must be mi

grated while new client connections are directed to the new location. Memory migration

techniques have been extensively used in the local area and can be extended to work well in

the wide area [11]. Existing client connections can be seamlessly migrated through the use

of LAN extension technologies such as L2TP, VPLS and VPNs [12], or layer 3 solutions

such as tunneling, MobilelP, and IPv6. New clients can be quickly redirected to the new

location using DNS. Neither wide area memory nor network connection migration will re

sult in significant performance degradation. However, storage migration inherently faces

significant performance challenges because of its much larger size compared to memory.

The contributions of this thesis are as follows:

• Current solutions for wide-area storage migration incur too much disruption, because

they are agnostic to I/O workload. We identify this problem and use quantitative

experiment results to show the existence of significant performance degradation in

the existing storage migration approaches.

• We diverge from the existing work in storage migration that treats storage as one

3

large chunk that needs to be transferred sequentially. In this thesis, the notion of stor

age migration scheduling is introduced to orchestrate the sequence in which storage

is transferred. Scheduling allows us to take advantage of inherent access patterns

such as temporal locality, spatial locality, and access popularity that are found in a

wide range of I/O workloads to significantly optimize the data transfer and reduce

performance degradation. We develop a novel workload-aware storage migration

scheduling algorithm. Our algorithm uses only simple records of a limited number

of past I/O operations for workload characteristic inference. It automatically decides

proper storage granularity and migration schedule to leverage I/O locality and popu

larity characteristics while minimizing overhead.

• We use a trace-driven framework to demonstrate how our scheduling algorithm can

be leveraged by all proposed migration models to greatly improve storage I/O perfor

mance during migration. The benefits are substantial across a wide variety of virtual

machine workloads and migration scenarios.

The rest of this thesis is organized as follows. Chapter 2 provides an overview of the

existing storage migration technologies and the challenges that they face. Chapter 3 ex

plains how we collect virtual machine storage workload traces for this study. We quantify

the locality and popularity characteristics we found in the traces in Chapter 4. Motivated

by these characteristics, we present in Chapter 5 a novel storage migration scheduling al

gorithm that leverages these characteristics to make storage migration much more efficient.

In Chapter 6, we explain our evaluation methodology and present results to show that our

algorithm is able to provide large performance benefits. Finally, we summarize our findings

and discuss future work in Chapter 7.

4

Chapter 2

Background

2.1 Challenges in Wide Area Migration

A virtual machine (VM) consists of virtual hardware devices such as CPU, memory and

disk that are used to run an operating system. Live migration of VMs is a common operation

in the local area that involves transferring the running state or memory migration of the

VM from one hypervisor to another. However, live migration across the wide area entails

a few more steps including transferring the running state, persistent storage and network

connections associated with a VM.

Migration of the running state, or memory migration, starts with the source hypervisor

taking a snapshot of the memory and CPU state. While the snapshot is copied over to

the destination hypervisor, the VM continues to run. The source hypervisor tracks and

transfers dirty memory pages and CPU state until it freezes the VM for a short time to

finish the transfer. The VM is then re-continued at the destination hypervisor. Memory

migration across the wide area has been shown to have no impact on running services [11].

To maintain liveness, network connections must also be maintained. Commercially

available LAN extension technologies (L2TP, VPLS, VPN) allow the same IP address space

to be used across the wide area so the relocated VM can use the same IP address even in

its new location [12]. Alternatively, if an IP address change is required, tunneling traffic

from the source to the destination or MobileIP/IPv6 can be used to provide seamless hand-

off [11, 13, 14].

While wide area memory and network connection migration work well, storage migra

tion inherently faces significant performance challenges. Migration of persistent storage,

or storage migration, is required because the VM needs access to its disk in its new loca-

5

tion. The VM's disk is implemented as a (set of) file(s) stored on the physical disk. Live

migration in the LAN may not require storage migration because the virtual disks are often

located on shared storage accessible at high speed by both source and destination hypervi-

sors. However, sharing storage across the wide area will bring unacceptable performance.

Because of the larger storage size compared to memory, and the limitations in wide area

bandwidth, storage migration could impact VM performance if not migrated efficiently.

2.2 Storage Migration Models

Previous work in storage migration can be classified into three migration models: pre-copy,

post-copy and pre+post-copy. In the pre-copy model, storage migration is performed prior

to memory migration whereas in the post-copy model, the storage migration is performed

after memory migration. The pre+post-copy model is a hybrid of the first two models.

Figure 2.1 depicts the three models. In the pre-copy model [11], the entire virtual disk

file is copied block-by-block from beginning to end prior to memory migration. During

the virtual disk copy and memory migration, all write operations to the disk are logged and

the dirty blocks are retransmitted as necessary. The strength of the pre-copy model is that

blocks are copied over prior to when the VM runs in the destination. However, there are two

scenarios in which the pre-copy model has weaknesses. First, pre-copying may introduce

excessive extra traffic. If we had an oracle that told us when disk blocks are updated, we

could come up with an ideal schedule to send only the latest copy of disk blocks rather than

transmitting stale copies. Thus, the total number of disk bytes transferred over the network

would be the minimum possible which is the total size of the virtual disk1. Without an

oracle, we will need to transmit some stale blocks resulting in extra traffic beyond the

size of the virtual disk. Second, if the I/O workload on the VM is write-intensive, write-

throttling is employed to slow down I/O to ensure that storage migration can complete.

While throttling is useful, it can degrade application I/O performance. We discuss how to

'For simplicity, we assume no data compression is performed.

Pre-copy Model without Scheduling

Image File Transfer
(Head to end)

Memory
Migration

Intercept, record and transfer written blocks

Post-copy Model without Scheduling

Memory
Migration

Background Copy (Head to end)

On-demand Fetching

Pre + post-copy Model without Scheduling

Image File Transfer
(Head to End)

Memory
Migration

Background
For dirty blocks

ID sequence

On-demand

Figure 2.1 : Models of live storage migration.

improve both weaknesses using our scheduling approach in Chapter 5.

In the post-copy model [15, 16] depicted in Figure 2.1, storage migration is executed

after memory migration completes and the VM is running at the destination. Two mecha

nisms are used to copy disk blocks over: background copying and on-demand fetching. All

of the virtual disk blocks are copied in the background from beginning to end. However,

during this time if the VM issues an I/O request, it is handled immediately. If the VM is

sues a write operation, the blocks are directly updated at the destination storage. If the VM

issues a read operation and the blocks have yet to arrive at the destination, then on-demand

7

fetching is employed to request those blocks from the source. We call such operations re

mote reads. With the combination of background copying and on-demand fetching, each

block is transferred only once ensuring that the total amount of data transferred for storage

migration is the minimum which is the virtual disk size. However, remote reads incur extra

wide-area delays, resulting in I/O performance degradation.

In the hybrid pre+post-copy model [17], the virtual disk is copied to the destination

prior to memory migration. During disk copy and memory migration, a bit-map of dirty

disk blocks is maintained. After memory migration completes, the bit-map is sent to the

destination where a background copying and on-demand fetching model is employed for

the dirty blocks. This model combines the previous two models. While it still incurs extra

traffic and remote read penalties, the amount of extra traffic is smaller compared to the pre-

copy model and the number of remote reads is smaller compared to the post-copy model.

Table 2.1 summarizes these three models.

2.3 Performance Degradation from Migration

While migration is a powerful capability, any performance degradation caused by wide area

migration could be damaging. Users are extremely sensitive to latency. For example, every

100 ms of latency costs Amazon 1% in sales and an extra 500 ms page generation time

dropped 20% of Google's traffic [18].

In order to better understand the impact of migration on performance, we look at an

example migration of a 10 GB MySQL database server that has 160 clients over a 10 Mbps

wide area link. The details of the experimental set up are described in Chapter 6. If we were

to migrate the server using pre-copying, we would see half of the write I/O operations dur

ing the migration postponed due to throttling for an average duration of around 75 minutes.

On the other hand, if we were to migrate the server using post-copying, 2 millions blocks

requested in the read operations during storage migration would be remote reads across the

wide area. I/O performance degradation during migration can be significant. As a result,

applications running on the migrated VMs also see degraded performance. Improving the

8

Model

Granularity

Application

Performance

Impact

Write Operation Degradation

Read Operation Degradation

Degradation Time

I/O Operations Throttled

Total Migration Time

Amount of Migrated Data

Prc-copy [11]

I/O Operations

Yes

No

Long

Yes

> > > Baseline

> > > Baseline

Pre+post-copy [17]

Blocks

No

Medium

Medium

No

> > Baseline

> > Baseline

Post-copy [15. 16]

Blocks

No

Heavy

Long

No

Baseline

Baseline

w/ Scheduling

Chunks

No

Small

Small

No

Slightly> Baseline

Slightly> Baseline

Table 2.1 : Comparison of VM storage migration methods.

performance degradation is key to making live migration an attractive mechanism to move

applications across clouds.

Our approach to improve storage migration relies on the notion of workload-aware

storage scheduling. Rather than copying the storage from beginning to end, we compute

a schedule to transfer storage at the appropriate granularity which we call chunks at the

appropriate time to minimize performance degradation. Our schedule is computed to take

advantage of the individual I/O locality characteristics of the particular workload to be

migrated and can be applied to improve any of the three storage migration models as de

picted on the right-hand side of Figure 2.1. To improve the pre-copy model, scheduling

is used to group the storage blocks into chunks and send the chunks to the destination in

an improved order instead of just blindly sending from beginning to end. Similarly, to im

prove the post-copy model, scheduling is used to group and order the scheduling of storage

blocks sent over using background copying. In the hybrid pre+post-copy model, scheduling

is used for both the pre-copy phase and the post-copy phase. The benefits of scheduling are

summarized in Table 2.1.

9

Chapter 3

Workload Trace Collection

To investigate the storage migration scheduling problem, we collect and study a modest

set of VM I/O traces. These traces are based on the workloads in the VMware VMmark

virtualization benchmark [19] widely used by major computer system vendors to measure

system performance.

VMmark includes five types of servers that are representative of the applications run

by VMware users, including mail server, file server, web server, Java server, and database

server listed in Table 3.1. VMmark also includes a "standby" server which is not included

in our study as it has no associated I/O workload. For each server type, we collect traces for

multiple client workload intensities by varying the number of VMmark client threads. We

refer to the specific traces collected by the workload name and number of client threads,

for example, "fs-45" refers to the file server workload with 45 client threads. The default

number of client threads specified by VMmark are listed in the table.

Our trace collection platform consists of two physical machines, each configured with

a 3GHz Quadcore AMD Phenom II945 processor and 8GB of DRAM. One machine runs

the server application while the other runs the VMmark client. The server is run as a VM

on a VMware ESXi 4.0 hypervisor. The configuration of the server VM and the client is as

specified by VMmark.

In order to collect the trace of I/O operations, we run an NFS server as a VM on the

application server physical machine and mount it on the ESXi hypervisor. The application

server's virtual disk is then placed on the NFS storage as a VMDK flat format file. Sub

sequently, we use tcpdump to log the NFS requests that correspond to virtual disk I/O

accesses. NFS-based tracing has been used in past studies of storage workload [20, 21] and

10

Workload

Name

File

Server (fs)

Mail

Server (ms)

Java

Server (js)

Web

Server (ws)

Database

Server (ds)

VM Configuration

SLES 10 32-bit

1 CPU,256MB RAM,8GB disk

Windows 2003 32-bit

2 CPU, 1GB RAM,24GB disk

Windows 2003 64-bit

2 CPU, 1GB RAM,8GB disk

SLES 10 64-bit

2 CPU,512MB RAM,8GB disk

SLES 10 64-bit

2 CPU,2GB RAM, 10GB disk

Server

Application

dbench

Exchange

2003

SPECjbb

@2005-based

SPECweb

@2005-based

MySQL

Clients

45

1000

8

100

16

Table 3.1 : VMmark workload summary.

has the advantage of not requiring any special operating system instrumentation. Note that

the I/O requests do not actually go over the network since the NFS server and application

server are VMs running on the same physical machine. We trace I/O operations at the disk

sector level, which has a granularity of 512 bytes. For convenience, we call each 512 byte

sector a block. This is, however, not to be confused with the file system block size, which

could vary depending on user configuration.

In the trace file, each I/O access entry includes the time of the access, the offset in

the VMDK file, and the data length for read or write operations. In each experiment, we

trace the I/O operations for 12 hours. We do not use the first 10 minutes and the last 10

minutes of each trace to avoid effects relating to the ramp up and ramp down stages of the

benchmarks.

To confirm that the NFS indirection and tracing does not degrade the application

server's performance, we perform each experiment twice, once with the virtual disk lo-

11

cated on NFS and once with the virtual disk located on the hypervisor's locally attached

disk. We compare the average throughput reported by the application server. We find

that by allocating all the DRAM left over by the application server VM to the NFS server

VM, the average throughput of the NFS case becomes comparable to or better than the

locally-attached disk case. Therefore, no major performance degradation is introduced by

the methodology.

12

Chapter 4

Workload Characteristics

This chapter reports the temporal locality, spatial locality, and popularity characteristics

we find in the collected traces. At a high level, our observations corroborate similar ob

servations made in previous studies of other storage workloads [22, 23, 24]. This gives us

confidence that the observations are quite general rather than being unique to our traces.

What is different is that our analysis is tailored specifically to the time-scales and conditions

relevant to storage migration.

4.1 Methodology

In order to understand if the history of past I/O accesses are useful at predicting future

accesses, specifically leveraging various types of locality, we analyze the first three hours of

our collected traces. Let t denote the start time for the migration. Accesses prior to t can be

used as history. Accesses from t onwards up to a maximum migration time are considered

as accesses that happen during migration. The maximum migration time is defined as

the amount of time to copy the VM to the destination assuming the worst case scenario

when during the copy, all the blocks were written to and the entire image needs to be

retransmitted, maxjmigrationJbime = (2 x im.agesize + memory size) / bandwidth.

We use the image sizes and default number of client threads specified in Table 3.1 and a

bandwidth of 100 Mbps throughout this chapter. Note that to simulate complete migrations

within the 3 hour segment, the migration start time t is randomly selected from [3000, 5000]

seconds. Each analysis is performed 20 times with different migration starting time t. We

also use a fixed history period of 3000 seconds before migration starts.

13

2- 100 h

f

<D
O
O
TO

CD
O -

80

60

40

B 20

£3

1

Read blocks K X X X I
Written blocks BKESS
Read chunks • • • •

Written chunks EZ.33J

Fileserver Mailserver Javaserver Webserver DB server

Workload

Figure 4.1 : The temporal locality of I/O accesses as measured by the percentage of ac
cesses in the migration that was also previously accessed in the history. The block size
is 512 B and the chunk size is 1MB. Temporal locality exists in all of the workloads, but
is stronger at the chunk level. The Java server has very few read accesses resulting in no
measurable locality.

4.2 Temporal Locality Characteristics

Figure 4.1 shows that, across all workloads, blocks that are read during the migration are

often also the blocks that were read in the history. Take the file server as an example, 72%

of the blocks that are read in the migration were also read in the history. Among these

blocks, 96% of them are blocks whose read access frequencies were > 3 in the history.

These figures are significant because the file server does not actually read that much data

in the disk. As shown in Figure 4.2, less than 15% of the overall storage blocks are read in

history and less than 10% of the overall storage blocks are read in the migration. Thus, it is

possible to predict which blocks are more likely to be read in the near future by analyzing

the recent past history.

However, write accesses do not behave like the read accesses. Write operations tend

14

ra

35

30

H 25

20

5 15

10

£ 5

a.

Read blocks in history
Written blocks in history

Read blocks in migration
Written blocks in migration

Read chunks in history
Written chunks in history

Read chunks in migration
Written chunks in migration

Fileserver Mailserver Javaserver Webserver DB server

Workload

Figure 4.2 : The percentage of storage accessed. The block size is 512 B and the chunk
size is 1 MB.

to access new blocks that have not been written before. Again, take the file server as an

example. Only 32% of the blocks that are written in the migration were written in history.

Therefore, simply counting the write accesses in history is not enough to predict the write

accesses in migration.

Note that the temporal locality improves dramatically when 1MB chunk is used as the

basic unit of counting accesses. We will explain this finding next.

4.3 Spatial Locality Characteristics

Although many written blocks during migration were not written in history, we find that

most of them are located near the written blocks in history. That is, strong spatial locality

exists for write accesses.

Again, take the file server as an example. For the 68% of the blocks that are freshly

written in migration but not in history, we compute the distance between each of these

15

1

u>
-* o o

Q)

*-.•ti C

5
.c
w Q>

•i=

a>
.c • ^ J

o
0)

CO
"c

Q)

°"

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Distance / Storage size

Figure 4.3 : File server spatial locality. The fresh written blocks in migration are located
very close to the written blocks in history, suggesting strong spatial locality.

blocks and its closest neighbor block that was written in history. The distance is defined

as (block Jd-dif ference * blocksize). Figure 4.3 plots, for the file server, the cumulative

percentage of the fresh written blocks versus the closest neighbor distance normalized by

the storage size (8GB). For all the fresh written blocks, their closest neighbors can be found

within a distance of 0.0045*8GB=36.8MB. For 90% of the cases, the closest neighbor can

be found within a short distance of 0.0001 *8GB=839KB. For comparison, we also plot

the results for simulated random write accesses, and as can be seen, the spatial locality

found in the real trace is far stronger. The 90th percentile is 0.0035, which is 35 times

farther than the 90th percentile of the real trace. Taken together, in the file server example,

32% + 68% * 90% = 93.2% of the written blocks in the migration are found within a range

of 839KB of the written blocks in history.

This spatial locality explains why, across all workloads, the temporal locality of write

accesses increases dramatically in Figure 4.1 when we consider 1MB chunk instead of

from trace

16

512B block as the basic unit of counting accesses. Also, as can be seen, the temporal

locality of read accesses also increases.

The caveat is that as the chunk size increases, the percentage of covered accessed blocks

in migration will no doubt increase, but each chunk will also cover more unaccessed blocks.

In the extreme case, the whole virtual disk becomes a single chunk. Therefore, to provide

useful read and write access prediction, a balanced chunk size is necessary and will depend

on the workload. We will return to this chunk size selection issue in Chapter 5.

4.4 Popularity Characteristics

Another useful property we find is that if a particular chunk is popular in history, it is likely

to be popular in migration. To illustrate this, we count the read/write access frequency

for each chunk in history and in migration and rank the chunks based on the read/write

frequencies. Then, we compute the rank correlation between the ranking in history and

the ranking in migration. Figure 4.4 shows that a positive correlation exists for most cases

except for the Java server read accesses at 1MB and 4MB chunk sizes. This is because

the Java server has extremely few read accesses and little read locality. As the chunk size

increases, the rank correlation increases. This increase is expected since if the chunk size is

set to the size of the whole storage, the rank correlation will become 1 by definition. Again,

a balanced chunk size is required to exploit this popularity characteristic effectively.

4.5 Effects of File System on Workload Characteristics

When we explored the workload characteristics, we treated the virtual disk as a sequence of

blocks, no matter what kind of file system the virtual machines run on. The methodology

is not specific for certain types of file system. However, we know that some aspects of the

file systems, such as block allocation mechanism and caching mechanism, may affect the

characteristics.

Temporal locality and popularity are not affected by the block allocation mechanism.

17

I

o
to

ra
CD

H

1.2

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Chunk Size 1MB K X X X I
Chunk Size 4MB eseszs

Chunk Size 16MB • •
Chunk Size 64MB s i s

Fileserver Mailserver Javaserver

Workload

Webserver DB server

(a) Read Access

Chunk Size 1MB K X X X I
Chunk Size 4MB Essssa

Chunk Size 16MB mmmm
Chunk Size 64MB 0 3 3 J

I

o

1

0.8

0.6

0.4

0.2

1
J

L>
, ; • •

>•
\
- . . ' • •

, " ; ; • •

. . ' • •

o
. . * •

s
\
. ._'••

•,/
• . , ' •

\
."••••

:':;

Fileserver Mailserver Javaserver

Workload

Webserver DB server

(b) Write Access

Figure 4.4 : The rank correlation of the chunk popularity in history vs. in migration.

18

The frequently accessed blocks and their access frequency are mostly decided by the appli

cations' behavior. For example, disk blocks that store the source code files and the invoked

libraries of the applications are generally the frequently read blocks. No matter what the

block allocation mechanism is, the timing and the number of the accesses to these blocks

remain the same.

Spatial locality is related to the block allocation mechanism in the file system. Spatial

locality exists in most file systems for two reasons. First, the applications often tend to

access a particular region of a file or tend to access a file sequentially. Second, file systems

tend to allocate contiguous blocks to a file. These mechanisms help improve I/O perfor

mance. ReiserFS and NTFS, which are the file systems used in the VMmark, leverage

different approaches to achieve the goal of local grouping. ReiserFS assigns each file or

directory a unique key. The files or directories whose key values lie closely together are

assigned block numbers that are also close together [25]. NTFS manages block storage in

clusters. Each cluster is a group of consecutive sectors. When NTFS wants to create a new

file, it will look into its Master File Table(MFT) for free clusters and run a best-fit algorithm

to allocate contiguous blocks to the file to minimize the file system fragmentation [26].

Besides ReiserFS and NTFS, many popular file systems have the similar mechanisms to

achieve local grouping. For example, the EXT2 and EXT3 [27] file systems are divided

into a number of fixed size block groups. Each block group manages a fixed set of inodes

and data blocks and contains a copy of the superblock. All the related metadata blocks and

real data blocks are allocated close to each other. In addition, most file systems include

journaling as an add-on feature to help recovery from a system failure [25] [26] [27]. File

systems usually have a separate pool of disk blocks used for journaling. Journal blocks are

organized as a circular buffer to log the changes for data blocks. Write accesses on journal

blocks are always sequential. Therefore, spatial locality exhibited by journal blocks is dif

ferent from data blocks. Fortunately, it does not greatly affect the workload characteristics,

because the journal blocks represent only a small portion of the total blocks in most file

systems. In the extreme case, the journal is the only structure on a disk in some special

19

file systems, such as Sprite LFS [28] which is a log-structured file system. It is easy to log

and predict the future access pattern for this kind of file systems. The log-structured file

system is not in common commercial use. We may include the sequential access pattern in

the future work.

File system caching mechanism may influence the temporal locality, spatial locality

and the popularity. Caching can significantly help improve performance. For example, it

can reduce the number of disk read operations when the same block is accessed by multiple

times. If the users aggressively utilize caching, such as caching both real data and metadata,

fewer operations will be observed at the disk level and the number of operations recorded

in the traces will be reduced. However, since the cache size is limited, cache misses are still

very common. Caching will not change the relative locality and popularity characteristics.

In summary, the workload characteristics that we explore in this chapter exist in most

file systems. However, we also understand that different file systems may slightly alter the

traces we observed. Leveraging the file system information and customizing the algorithm

to adapt to the different file systems could be the future work.

4.6 Effects of Virtual Disk Format on Workload Characteristics

There are two format options for a VM's virtual disk: flat and sparse. Flat format virtual

disk file owns a pre-allocated storage space that is equal to the virtual disk size. Sparse

format virtual disk file is designed to save physical disk space [29]. The saving is achieved

by describing a large empty region of the virtual disk using metadata instead of allocating

the actual disk space for empty region. The number of contiguous empty blocks must be

larger than a threshold which is described by the metadata. Figure 4.5 shows a simple

example of the physical disk layout of the flat format and sparse format.

No matter what kind of disk format is used, the workload characteristics are similar. The

guest OS is unaware of the underlying disk format. Its logical view of the virtual disk is

like a physical disk. When a disk I/O operation is issued from the guest OS, the hypervisor

will translate it into an access to an image file. The access offset on the disk is different

20

Block with real data

Occupy physical disk space

Empty block

Not occupy physical disk space in the sparse format

Offset: 6

Flat Disk Format

Sparse Disk Format

Offs et: 3

Figure 4.5 : A simple example of the flat disk format and the sparse disk format.

for the two formats because of their different physical disk layout. However, the difference

does not affect the workload characteristics. The VM virtual disk in our experiments is a

VMDK flat format file. Our observation on locality and popularity has been made in an

environment where the disk is representative in the flat format. We believe that even if we

use a sparse format virtual disk file, we do not imagine a major change for the workload

characteristics. First, for the sparse disk format, the temporal locality and popularity are

not affected, because they are more related to applications' behavior. Second, the allocation

policy for the sparse disk format also attempts to minimize the file system fragmentation.

When the file system need more space, it allocates an extent on the virtual disk. The extent

21

is designed to best fit the new files or directories that belong together. Related files are

allocated in the nearby regions. Therefore, the workload characteristics are independent on

virtual disk format.

22

Chapter 5

Scheduling Algorithm

The main idea of the algorithm is to exploit locality to compute a more optimized storage

migration schedule. We intercept and record a short history of the recent disk I/O operations

of the VM, then use this history to predict the temporal locality, spatial locality, and popu

larity characteristics of the I/O workload during migration. Based on these predictions, we

compute a storage transfer schedule that reduces the amount of extra migration traffic in

the pre-copy model, the number of remote reads in the post-copy model, and reduces both

extra migration traffic and remote reads in the pre+post-copy model. The net result is that

storage I/O performance during migration is greatly improved. Figure 5.1 shows the three

models with scheduling algorithm. We will describe the details in the following sections.

5.1 History of I/O Accesses

To collect history, we record the most recent N I/O operations in a FIFO queue. We will

show that the performance improvement is significant even with a small N in Chapter 6.

Therefore the memory overhead for maintaining this history is very small. Different mi

gration models are sensitive to different types of I/O accesses as discussed in Chapter 2.

This is related to the cause of the performance degradation. The extra migration traffic in

the pre-copy model is caused by the write operations during the migration, while the re

mote reads in the post-copy model are caused by the read operations before certain blocks

have been migrated. Therefore, when the pre-copy model is used, we collect only a history

of write operations; when the post-copy model is used, we collect only a history of read

operations; and when the pre+post-copy model is used, both read and write operations are

collected. For each operation, a four-tuple, < flag, offset, length, time >, is recorded,

23

Pre-copy Model with Scheduling

History
(Log

Write
Op)

Non-written chunks
Sorted

Written chunks
Low->High

Memory
Migration

Intercept, record and transfer written blocks

Post-copy Model with Scheduling

History
(Log

Read Op)
Memory
Migration

Sorted
Read chunks

High->Low
Non-read chunks

On-demand Fetching

Pre + post-copy Model with Scheduling

History
(Read/

Write Op)
Non-written

chunks

Sorted
Written chunks

Low->High

Memory
Migration

Sorted Read
dirty blocks
High->Low

On-demand

Figure 5.1 : Models of live storage migration with scheduling

where flag indicates whether this is a read or write operation, offset indicates the block

number being accessed, length indicates the size of the operation, and time indicates the

time the operation is performed. The recording of each operation therefore only requires

a few memory accesses which adds negligible processing overhead to the I/O operation.

These actions are summarized in pseudo-code as follows. The time and space complexities

are 0(1).

INPUT OF ALGORITHM: iV and model Jlag

OUTPUT OF ALGORITHM: A queue of access operations: Qhist0ry

24

^&history \ }»

WHILE TRUE

receive an OP = < flag, offset, length, time >;

IF ((modeLflag == PRE„COPY)&&(OP.flag = = WRITE)

\\(modeLflag == POST „COPY)&k(OP. flag == READ)

\\(model.flag = = PRE + POST.COPY))

IF (Qhistory-length == N)

QhistarydequeueQ;

Q history-enqueue(OP);

ELSE Qhistoryenqueue(OP);

END-IF

END-IF

receive migration starting signal

break the WHILE loop;

END-WHILE

RETURN Qhiat0ry;

5.2 Scheduling Based on Access Frequency of Chunks

In this section, we discuss how we use I/O access history to compute a storage transfer

schedule. Figure 5.2 and 5.3 illustrate how the migration and the I/O access sequence

interact to cause the extra migration traffic and remote reads for the pre-copy and post-

copy models. The pre+post-copy model combines these two scenarios but the problems are

similar. Without scheduling, the migration controller will simply transfer the blocks of the

virtual disk sequentially from the beginning to the end. In the example, there are only 10

blocks for migration and several I/O accesses denoted as either the write or read sequence.

With no scheduling, under pre-copy, the total extra traffic is 31 blocks as all the blocks

\J Migrated Block (J Written Block f Blocks written after it was migrated

4

1

—Block Sequence i n .

2 3 4 5

Storage Migration —

6 7 8 9

•

10 MEMORY
MIGRATION

Write
Sequence

341 2341 2344 21 21 21 2322

YY YmYYYtYtYtYYtYtYtYtYt't
34

(a) No scheduling. Extra traffic = 31 blocks

History No write access in history Sorted by write frequency

time

Frequency
Of Block

3<1<2

JZ

8 10 1 MEMORY
MIGRATION

121232 34

I
2341 2344

n
21 21 21 2322 34

time

(b) Scheduling on the access frequency of blocks.
Extra traffic = 8 blocks

History No write access in history Sorted by write frequency

Frequency
Of Chunk
3,4<1,2

JX

5 6 7 8 9 10 3 4 1 2 MEMORY
MIGRATION

121232 2 3412 11 12341 E 4123441 212121212322 B4

O
time

25

(c) Scheduling on the access frequency of chunks.
Extra traffic = 3 blocks

Figure 5.2 : A simple example of the scheduling algorithm applied to the pre-copy model.

that were written to during migration had to be resent. If we had an oracle that knew in

advance the exact I/O sequence during the migration, then we could have waited to transmit

U Migrated Block (J Read Block | Blocks read before it is migrated

MEMORY
MIGRATION

« Block Sequence in,

1 2 3 4 5

Storage Migration —

6 7 8 9

*

10

Access
Sequence 3)@® © 0(3)0® ©0 @(9) Q

(a) No scheduling. Remote read = 6 times t ime

History Sorted by read frequency No read access in history

Frequency
Of Block

9<7<3

MEMORY
MIGRATION 1 8 10

tr
® @ (D ® 000®(l§0(9) 0 1 m

time

(b) Scheduling on the access frequency of blocks.

Remote read = 3 times

History

Frequency
Of Chunk

9,10<7,8<3,4

Sorted by read frequency No read access in history

MEMORY
MIGRATION 3 4 7 8 9 10 1 2 5 6

mm 0 ® 0 ® 0 0 0 0 00 0® 0
time

26

(c) Scheduling on the access frequency of chunks.

Remote read = 0 times

Figure 5.3 : A simple example of the scheduling algorithm applied to the post-copy model.

the blocks that were written to during migration after the write operations were completed

resulting in no extra traffic. Similarly, under post-copy, there are 6 remote read operations

where the block needed to be read before it was transferred to the destination. Again, with

27

an oracle, we could schedule those blocks to be transferred prior to when the read operation

would have been issued to improve performance.

In reality we do not have an oracle. Our scheduling algorithm exploits the temporal

locality and popularity characteristics and uses the information in the history to perform

predictions. That is, the block with a higher write frequency in Qhistory 0-e-> more likely

to be written to again) should be migrated later in the pre-copy model, and the block with

a higher read frequency (i.e., more likely to be read again) should be migrated earlier in

the post-copy model. In the illustrative example in Figures 5.2 and 5.3, when we schedule

the blocks according to their access frequencies, the extra traffic and remote reads can be

reduced from 31 to 8 and from 6 to 3.

In the example, block 4 in the pre-copy model and the blocks {4,8,10} in the post-

copy model are not found in the history, but they are accessed a lot during the migration

due to spatial locality. The scheduling algorithm exploits spatial locality by scheduling

the migration based on chunks. Each chunk is a cluster of n contiguous blocks. We call

the number n the chunk size. The chunk size in the simple example is 2 blocks. We note

that different workloads may have different effective chunk sizes and present a chunk size

selection algorithm later in Section 5.3.

The access frequency of a chunk is defined as the sum of the access frequencies of

the blocks in that chunk. The scheduling algorithm for the pre-copy model migrates the

chunks that have not been written to in history first as those chunks are unlikely to be

written to during migration and then followed by the written chunks. The written chunks

are further sorted by their access frequencies to exploit the popularity characteristics. For

the post-copy model, the read chunks are migrated in decreasing order of chunk read access

frequencies, and then followed by the non-read chunks. The scheduling ensures that chunks

that have been read frequently in history are sent to the destination first as they are more

likely to be accessed. In the example, by performing chunk scheduling, the extra traffic and

remote reads are further reduced to 3 and 0.

The scheduling algorithm is summarized in pseudo-code as follows. The time com-

28

plexity is 0(n • log(n)), the space complexity is 0(n), where n is the number of blocks in

the disk.

DATA STRUCTURE IN ALGORITHM:

-Lbw: A block write access list of < blockid, time >

-Lhr: A block read access list of < blockid, time >

-Lcwfreq: A chunk write frequency list of < chunky, frequency >

-Lcrfreq: A chunk read frequency list of < chunkid, frequency >

-Lsorted-wchunk- A list of chunkid sorted by write frequency

-Lgorted-rchunk- A list of chunkid sorted by read frequency

-LnwChunk'- A list of chunkid which are not written in history

-Lnrchunk- A list of chunked which are not read in history

INPUT OF ALGORITHM: Qhistory, model-flag and a e[0, 1]

OUTPUT OF ALGORITHM: migration schedule SmigraUon

Emigration \ J '

IF {{model.flag == PRE_COPY)

\\(modeLflag = = PRE + POST.COPY))

Lbw = Convert \/OP € Qhistory whose flag == WRITE

into < blockid, time >;

c/mnfcs'i2e=ChunkSizeEstimation(L()U,,a');

Divide the storage into chunks;

Sail = {All chunks};

FOR EACH chunk,, e SaU

frequencyl=Y, frequencyhi0ckk

where blockk G chunki and blockk € Lbw;

frequencyuocku =# of times blockk appearing in Lbw;

END FOR

29

Lcwfreq = {(chunki, f requencyi)] frequency { > 0};

Lsorted.wchv.nk =Sort Lcwfreq by frequency low^high and

chunks with the same frequency are sorted by id low —> high;

Lriwchunk = Sall ~ Lsorted-wchunk w i t h id lOW —> h igh;

^migration \-'-/nw chunki ^sorted.wchunkJ'>

ELSE W(modeLflag = = POST.COPY)

Lbr = Convert VOP G Qhistory whose / /ap = = READ

into < blocks, time >;

c/mn/cs'ize=ChunkSizeEstimation(Lj>,r,a:);

Divide the storage into chunks;

iSa// = {̂ 4i/ chunks};

FOR EACH c/iunfci G 5nH

frequenciji=J2 frequencyblockk

where blocks E chunki and blocks G Lfrr;

frequencybiockk = # of times blockk appearing in L\„.\

END FOR

Lcrfreq = {(chunki, frequency^ frequency^ > 0};

LSorted.rchunk =Sort Lc r / r eg by frequency high-»low and

chunks with the same frequency are sorted by id low—>high;

Lnrchunk = Sall ~ Lsorted.rchunk With id lOW —> high;

Jmigration--> sortedjr chunki J-'nrchunkJ>

END IF

K E I U K I N Emigrations

Note that a is an input value for the chunk size estimation algorithm and will be ex

plained later. The pre+post-copy model is a special case which has two migration stages.

The above algorithm works for its first stage. The second stage begins when the VM mem

ory migration has finished. In this second stage, the remaining dirty blocks are scheduled.

http://Lsorted.wchv.nk

30

The algorithm works as follows. The time complexity is 0(n-log(n)), the space complexity

is 0(n), where n is the number of dirty blocks.

DATA STRUCTURE IN ALGORITHM:

-Ldirtybiock- A dirty block list of blockid

-L))r: A block read access list of < blocks, time >

-Ldbrfreq'- A dirty block read frequency list of < blockici, frequency >

-LsortedJbiock'- A dirty block list of blocks sorted by read frequency

INPUT OF ALGORITHM: Qhistory, Ldirtyblock

OUTPUT OF ALGORITHM: migration schedule Smtgratl0n

'-'migration l / '

Lbr = Convert VOP e Qhistory whose flag = = READ

into < blockici, time >'.

FOR EACH blocki e LdirtyUock

find blocki in Lhr

IF found

frequencyi= # of times blocki appearing in Ly.;

ELSE frequencyi = 0;

END IF

END FOR

Ldbrfreq = {(blocki, frequency\)\blocki E Ldirtybiock}\

LSorted.dbi,ock =Sort Ldhrfreq by frequency high-+low and

blocks with the same frequency are sorted by id low—>high;

^migration \-^-/sorted-dblock J '

K H 1 UKIN ornigration,

31

5.3 Chunk Size Selection

The chunk size used in the scheduling algorithm needs to be judiciously selected. It

needs to be sufficiently large to cover the likely future accesses near the previously ac

cessed blocks, but not so large as to cover many irrelevant blocks that will not be ac

cessed. To balance these factors, for a neighborhood size n, we define a metric called

Balanced-coverage = Access.cover age + (1 — Storage-coverage). Consider splitting

the access history into two parts based on some reference point. Then, Access-cover age is

the percentage of the accessed blocks (either read or write) in the second part that are within

the neighborhood size n around the accessed blocks in the first part. Storage-coverage is

simply the percentage of the overall storage within the neighborhood size n around the ac

cessed blocks in the first part. The neighborhood size that maximizes Balanced-coverage

is then chosen as the chunk size by our algorithm.

Figure 5.4 shows the Balanced-coverage metric for different neighborhood sizes for

different server workloads. As can be seen, the best neighborhood size will depend on the

workload itself.

In the scheduling algorithm, we divide the access list LH in the history into two parts,

SHI consists of the accesses in the first a fraction of the history period, where a is a

configurable parameter, and Sm consists of the remaining accesses. If all of the blocks

accessed in the second part are also accessed in the first part, the optimal neighborhood

size becomes zero. Therefore, we set the lower bound of the chunk size to the block size.

The algorithm also bounds the maximum selected chunk size. In the evaluation, we set this

bound to 1GB.

The algorithm pseudo-code is shown below. The time complexity of this algorithm is

0(n • log(n)) and the space complexity is 0(n), where n is the number of blocks in the

disk.

DATA STRUCTURE IN ALGORITHM:

-LH: the access list from the history.

-a: the fraction of simulated history.

1e-06

/ - - i \
>, .

Fileserver
Mailserver

Javaserver
Webserver

DBserver

1e-05 0.0001 0.001 0.01
Distance / Storage Size

Figure 5.4 : A peak in balanced coverage determines the appropriate chunk size for
workload.

-totalMock: the number of total blocks in the storage.

-upper Jbound: the maximum allowed chunk size, e.g. 1GB.

-lower.bound: the minimum allowed chunk size, e.g. 512B.

-SHI: A set of blocks accessed in the first part.

-SH2'- A set of blocks accessed in the second part.

-distance: The storage size between the locations of two blocks.

-ND: Normalized distance computed by distance!storage.size.

-SNormDistance'- A set of normalized distances for blocks that are

in SH2 DUt not accessed in SHI-

-SNarmDistanceCDF- A set of pair < ND, % >. The percentage

is the cumulative distribution of ND in the set SNormDistance-

-ESm. '• A set of blocks obtained by expanding every block in SHx

by covering its neighborhood range.

-BalanceCoveragernax: the maximum value of BalanceCover

-NDscmax- the neighborhood size (a normalized distance) that

maximizes BalanceCover age

INPUT OF ALGORITHM: LH, a, total Jblock,

lower-bound, upper -bound, block size

OUTPUT OF ALGORITHM: chunksize

maxJime= the duration of LH]

FOR EACH < blockuutime >e LH

IF time < max-time * a

Add blockjd into SHU

ELSE ADD blockid into SH2;

END IF

END FOR

FOR EACH blockid e SH<i

IF blockid ^ SHI

NormDistance={min (\blockii-m\)vmeSH1}.
l\OI UlUlbiailLC— total-block

Add NormDistance into SNormDistance,

END IF

END FOR

SNormDistanceCDF = compute the cumulative distribution

f u n c t i o n Of SNormDistanee,

BalancedC overagemax = 0;

NDBcmax = 0;

NDmin= the minimal ND in SNormDisto,nceCDF\

the maximal ND in SNormDistanceCDF;

AT]~) NDmax — NDmin •
1 v ^step 1000 '

34

FOR ND = NDmm; ND < NDmax; ND+ = ND8tep

distance = ND * total-block;

ESm = { }

FOR EACH m G Sm

add blockid from (m — distance) to (m + distance) to ESm\

END FOR

storage-coverage = *°'%*£k
ES™-,

access_coverage =the percentage of ND in S^ormDistanceCDF\

balanced-coverage = access-cover age + (1 — storage-coverage);

IF balanced-coverage > BalancedCoveragemax

BalancedC overagemax = balanced-coverage;

NDBCmax = 7VD;

END IF

END FOR

chunk size = NDscmax * total-block * blocksize;

IF (chunksize == 0)

chunksize = lower -bound;

ELSE IF chunksize > upper bound

chunksize = upper-bound;

END IF

RETURN chunksize;

5.4 Potential Robustness Improvements

The scheduling algorithm relies on the precondition that the access history can help predict

the future accesses during migration, and our analysis has shown this to be the case for

a wide range of workloads. However, an actual implementation might want to include

certain safeguards to ensure that even in the rare case that the access characteristics are

35

turned upside down during the migration, any negative impact is contained. First, a test can

be performed on the history itself, to see if the first half of the history does provide good

prediction for the second half. Second, during the migration, newly issued I/O operations

can be tested against the expected access patterns to find out whether they are consistent.

If either one of these tests fails, a simple solution is to revert to the basic non-scheduling

migration approach.

36

Chapter 6

Evaluation

To estimate the performance of all three different storage migration models with and with

out scheduling, we perform trace-based simulations. Although we cannot simulate all

nuances of a fully implemented system, our estimates are sufficiently accurate, and the

observed benefits are significant enough to provide reliable guidance to system designers.

6.1 Simulation Methodology

We assume the network has a fixed bandwidth and a fixed delay. We assume there is no

network congestion and no packet loss. Thus, once the migration of a piece of data is

started at the source, the data arrives at the destination after b°^width + delay seconds. In

our experiments, we simulate a delay of 50ms and use different values of fixed bandwidths

for different experiments.

For the following discussion, it may be helpful to refer to Figure 5.1. Each experiment

is run 10 times using different random migration start times t chosen from [3000,5000]

seconds. When the simulation begins at time t, we assume the scheduling algorithm has

already produced a queue of block IDs ordered according to the computed chunk schedule

to be migrated across the network in the specified order. Let us call this the primary queue.

The schedule is computed based on using a portion of the trace prior to time t as history.

The default history size is 50,000 operations. We configure the parameter a in the chunk

size selection algorithm with different values and find that it is not sensitive, a is 0.7

in all the following experiments. In addition, there is an auxiliary queue which serves

different purposes for different migration models. As we simulate the storage and memory

migrations, we also playback the I/O accesses in the trace starting at time t, simulating

37

the continuing execution of the virtual machine in parallel. We assume each I/O access

is independent. In other words, one delayed operation does not affect the issuance of the

subsequent operations in the trace.

We do not simulate disk access performance characteristics such as seek time or read

and write bandwidth. The reason is that, under the concurrent disk operations simulated

from the trace, the block migration process, remote read requests, and operations issued

by other virtual machines sharing the same physical disk, it is impossible to simulate the

effects that disk characteristics will have in a convincing manner. Thus, disk read and write

operations are treated to be instantaneous in all scenarios. However, under our scheduling

approach, blocks might be migrated in an arbitrary order. To be conservative, we do add a

performance penalty to our scheduling approach. Specifically, the start of the migration of a

primary queue block is delayed by 10ms if the previous migrated block did not immediately

precede this block.

In the pre-copy model, dirty blocks that need to be retransmitted are enqueued to the

auxiliary queue. The primary queue and the auxiliary queue receive service in round robin.

Thus, when both queues are backlogged, each queue gets an equal share of the network

bandwidth. When a queue is serviced, the transfer of the head of queue block is simulated.

When the primary queue is empty, the memory migration begins, which simply completes

in mTT'^r + delay seconds.
bandwidth a

In the post-copy model, the memory migration is simulated first and starts at time t.

When it is completed, storage migration begins according to the order in the primary queue.

Subsequently, when a read operation for a block that has not yet arrived at the destination

is played back from the trace, the desired block ID is enqueued to the auxiliary queue

after a network delay (unless the transfer of that block has already started), simulating the

remote read request. The auxiliary queue is serviced with strict priority over the primary

queue. When a block is migrated through the auxiliary queue, the corresponding block in

the primary queue is removed. Note that when a block is written to at the destination, we

assume the source is not notified, so the corresponding block in the primary queue remains.

38

In the pre+post-copy model, in the pre-copy phase, the storage is migrated according

to the primary queue; the auxiliary queue is not used in this phase. At the end of the

memory migration, the dirty blocks' migration schedule is computed and stored in the

primary queue. Subsequently, the simulation in the post-copy phase proceeds identically

to the post-copy model.

Finally, when scheduling is not used, the simulation methodology is still the same,

except that the blocks are ordered sequentially in the primary queue.

6.2 Performance Metrics

We use the following performance metrics for evaluation.

• Extra traffic in number of blocks: In the pre-copy and the pre+post-copy models,

this is the number of retransmitted blocks. A large amount of extra traffic in the pre-

copy model could lead to write operation throttling, which will dramatically degrade

VM performance.

• Number of postponed operations: In the pre-copy model, if no write throttling is

performed, then by the end of the memory migration, there could still be dirty blocks

left in the auxiliary queue. A perfect throttling mechanism must therefore work in a

way such that the issuance of the write operations corresponding to these dirty blocks

are postponed until after the memory migration is finished. We call these operations

the postponed operations. Any postponed operation obviously will negatively impact

the VM performance. Note that this metric is very conservative as it assumes the

throttling is performed perfectly, and the read operations are unaffected.

• Postponed time: For each postponed operation, we compute a metric called post

poned time. It is the difference between the time at which memory migration finishes

(which is the first opportunity for the postponed operation to be issued) and the orig

inal issue time of the operation in the trace (i.e. the natural issue time had there been

39

no throttling). Note that this metric is very conservative as it assumes all the post

poned operations can be issued instantaneously after memory migration is finished.

• Number of remote reads: In the post-copy and pre+post-copy models, a remote read

will be delayed by at least one network round trip delay. Therefore, a large number of

remote reads is detrimental to VM performance. We measure the number of remote

read blocks.

6.3 Benefits Under Pre-Copy

A pre-copy-based system was proposed in [11]. Its implementation is at the I/O operation

level. Specifically, it records the write operations during migration. These recorded write

operations are then transmitted to the destination as they are and replayed at the destination.

Note that each recorded operation can write to multiple underlying disk blocks. In other

words, it does not try to eliminate unnecessary transmissions at the block granularity. A

block level implementation could be more efficient. For example, a block may be written to

in two consecutive write operations. Then the second operation overwrites the first. Thus,

only the data in the second operation for the block needs to be transmitted. We compare

results for the operation level implementation, block level implementation, and block level

implementation with scheduling.

6.3.1 Reduction in Extra Traffic

Figure 6.1(a) shows that compared to the existing operation-level implementation, the

scheduling algorithm can reduce the extra traffic in the file server, mail server, Java server,

web server and database server by 82%, 68%, 88%, 91% and 84% respectively. Compared

to the block level implementation without scheduling, the improvement is 66%, 39%, 82%,

88% and 43% respectively. We can see that the scheduling algorithm is very effective at

reducing traffic for both operation-level and block-level implementations of pre-copy.

When the network bandwidth decreases, we expect the extra traffic to increase. How-

40

ever, Figure 6.1(b) shows that, for the file server fs-45 workload, with the scheduling al

gorithm, the rate at which extra traffic increases is much lower. At a network bandwidth

of 10 Mbps, the extra traffic is reduced by 79% compared to the operation level imple

mentation, and 61 % compared to the block level implementation. The results for the other

workloads are similar. Compared to the operation level implementation, the extra traffic in

the mail server, Java server, web server and database server is reduced by 69%, 83%, 92%,

and 89% respectively when the network bandwidth is 10 Mbps. Compared to the block

level implementation without scheduling, the improvement is 34%, 73%, 88% and 41%

respectively.

When the number of clients increases, I/O rates increase, and the extra traffic is also

expected to increase. Figure 6.1(c) shows that the operation level implementation incurs

over 2 million blocks of extra traffic under the database server ds-160 workload. The

CO
J* o

B

I

2e+06

1.5e+06

r 1e+06

500000 h

@

1 1 1 1 — — - — — —

OP Level Implementation exxxa
Block Level Implementation w/o Scheduling sssss
Block Level Implementation with Scheduling HMMH

fs-45 ms-1000 js-8 ws-100

Workload on 100Mbps network

I
ds-16

(a) Different Workload

41

2e+06

1.8e+06

1.6e+06

1.4e+06 -

1.2e+06

1e+06

800000

600000

400000

200000

0
0

T 1 1 1
fs-45: OP Level Implementation —>—

fs-45: Block Level Implementation w/o Scheduling — *--
fs-45: Block Level Implementation with Scheduling e-

20

- * • „
X . * _

' f B B B-

40 60

Bandwidth (Mbps)

80 100

(b) Different Bandwidth

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

OP Level Implementation KXXXX
Block Level Implementation w/o Scheduling ssssss
Block Level Implementation with Scheduling • • • • •

1
m hv4

m •

1
m I

ds-16 ds-64 ds-160

Workload on 100Mbps network

(c) Different Number of Clients

gure 6.1 : The improvement in extra traffic under the pre-copy model.

42

1 1 1 1 —
OP Level Implementation —*•---

Block Level Implementation with Scheduling ••-•&—

X"

X

X

x
X

-a—ta'-"6 o o1 o o •—e e — ' e >—e ^e
1 1.2 1.4 1.6 1.8 2

Write Rate/Available Bandwidth

Figure 6.2 : The improvement of number of postponed operations under the pre-copy model
(ds-160 workload). The postponed operations are reduced from millions to less than 800
when scheduling is used.

scheduling algorithm is able to reduce 83% of this extra traffic. For the file server, when

the number of clients increases to 70, the extra traffic is reduced by 73% compared to the

operation level implementation and by 53% compared to the block level implementation.

6.3.2 Reduction in Postponed Operations

When a workload is write-intensive relative to the available bandwidth for block retrans

mission (which is 50% of the network bandwidth in our simulation), write throttling

becomes necessary in the pre-copy model, resulting in postponed operations. Take the

database server ds-160 workload for example. The write data rate is 10.08 Mbps on aver

age.

As Figure 6.2 shows when the available bandwidth drops to 5 Mbps, without schedul

ing, more than 1 million operations are postponed in the operation level implementation.

Q)
a.
O
T3
<D
C o
Q.
U)
O

Q.

"5

1.2e+06

1e+06

800000

600000

400000

200000

-

-

-

43

0)

E

s.

ouuu

4500

4000

3500

3000

2500

2000

1500

1000

500

n

-

i

—e—ten-^C

• I 1 • • 1 " • ' • 1

Ave Postponed Time in OP Level Implementation
Ave Postponed Time in Block Level with Scheduling

x'

x'

rx'

x
0 0 ' O 0

x
X

x'

,x'

x

-i—o o—i e >—e—

- • - • © - • -

i

yx

-J-e—

-

-

-

-

-

-

-

-

-

1.2 1.4 1.6

Write Rate/Available Bandwidth

1.8

Figure 6.3 : The improvement of postponed time under the pre-copy model (ds-160 work
load). The average postponed time are reduced from thousands of seconds to less than 0.5
second when scheduling is used.

In contrast, with scheduling, only 800 operations are postponed. Furthermore, from Fig

ure 6.3, we can see that the average postponed time is reduced from thousands of seconds to

less than 0.5 second. Note that under the ds-160 workload, the basic block level implemen

tation incurs low enough extra traffic (though still significantly higher than with schedul

ing) that the number of postponed operations is also very low. The average postponed time

is almost the same as the scheduling algorithm when the available bandwidth is 5Mbps.

However, when the available bandwidth decreases, the average postponed time is expected

to increase. With the scheduling algorithm, the rate at which the average postponed time

increases is lower. At an available bandwidth of 1 Mbps, the average postponed time is

reduced by 10 seconds compared to the block level implementation without scheduling.

44

6.4 Benefits Under Post-Copy

Figure 6.4 shows the benefits of scheduling in terms of the number of remote reads un

der the various server types, bandwidths, and workload intensities. The reductions in the

number of remote reads are 44%, 74%, 96% and 89% in the file server, mail server, web

server and database server respectively when the network bandwidth is 100 Mbps. The

Java server performs very few read operations, so there is no remote read. When the net

work bandwidth is low, the file server (fs-45) suffers from more remote reads because the

migration time is longer. At 10 Mbps, 0.6 million (or 24%) remote reads are eliminated

by scheduling in the file server. For the mail server, web server and database server, their

remote reads are reduced by 41%, 92% and 86% respectively when the network bandwidth

is 10Mbps.

When the number of clients increases, the read rate becomes more intensive. For exam

ple, the ds-160 workload results in 0.9 million remote reads when scheduling is not used.

With scheduling, remote read is reduced by 85%-89% under the ds-16, ds-64, and ds-160

1.2e+06

1e+06

-D 800000
cd
CD

rr
£
| 600000
0}

tr
"o
* 400000

200000

0
fs-45 ms-1000 js-8 ws-100 ds-16

Workload on 100Mbps network

(a) Different Workload

i
!

Without Scheduling exxxa
With Scheduling sssszs

T3
ra
CD

DC
£ o
E
<u
cc

2.6e+06

2.4e+06

2.2e+06 -

2e+06

1.8e+06

1.6e+06

1.4e+06

1.2e+06

1e+06

800000

600000

400000

fs-45: Without Scheduling —<-
fs-45: With Scheduling a

V

20 40 60

Bandwidth (Mbps)

80 100

(b) Different Bandwidth

le+06

900000

800000

700000

& 600000

| 500000

S 400000 o

300000

200000 -

100000 -

0

Without Scheduling
With Scheduling

. !**:
ds-16 ds-64 ds-160

Workload on 100Mbps network

(c) Different Number of Clients

ure 6.4 : The improvement of remote reads under the post-copy model.

46

500000

450000

400000

«[350000
o
.g
£ 300000
"o

~ 250000

S 200000
CO

2 150000

100000

50000

0
fs-45 ms-1000 js-8 ws-100 ds-16

Workload on 100Mbps network

Figure 6.5 : The improvement of extra traffic under the pre+post-copy model.

workloads. When the number of the clients in the file server is increased to 70, there is over

1 million remote reads. With scheduling, it can be reduced by 41 %.

6.5 Benefits Under Pre+Post-Copy

In the pre+post-copy model, the extra traffic consists of only the final dirty blocks at the

end of memory migration. As Figure 6.5 shows, the scheduling algorithm reduces the extra

traffic in the five workloads by 76%, 50%, 58%, 87% and 64% respectively.

In the pre+post-copy model, remote reads exist only during the retransmission of the

dirty blocks. Since the amount of dirty data is much smaller than the virtual disk size, the

problem is not as serious as in the post-copy model. Figure 6.6 shows that the Java server,

web server and database server have no remote read because their amount of dirty data is

small. But the file server and mail server suffer from remote reads, and applying scheduling

can reduce them by 97% and 88% respectively.

1 \— •

Without Scheduling KXXXX
With Scheduling ssssss

JZLi i bJ&L

II
u
i li i I

iM.

47

0)
DC
Q)
O
E
DC

"o
=*

1600

1400

1200

1000

800

600

400

200

0 jJS

Without Scheduling KXXXX
With Scheduling ssssa

m_
fs-45 ms-1000 js-8 ws-100

Workload on 100Mbps network

ds-16

Figure 6.6 : The improvement of remote reads under the pre+post-copy model.

Worst chunk size

performance gain

Optimal chunk size

performance gain

Algorithm selected

chunk size

performance gain

fs-45

49%

77%

76%

ms-1000

43%

70%

50%

js-8

49%

64%

58%

ws-100

74%

90%

87%

ds-16

54%

66%

64%

Table 6.1 : Comparison between selected chunk size and measured optimal chunk size
(extra traffic under pre+post-copy).

6.6 Optimality of Chunk Size

In order to understand how optimal is the chunk size selected by the algorithm, we conduct

experiments with various manually selected chunk sizes, ranging from 512KB to 1GB in

48

factor of 2 increments, to measure the performance gain achieved at these different chunk

sizes. The chunk size that results in the biggest performance gain is considered the mea

sured optimal chunk size. The one with the least gain is considered the measured worst

chunk size. Table 6.1 compares the selected chunk size against the optimal and worst

chunk sizes in terms of extra traffic under the pre+post-copy model. As can be seen, the

gain achieved by the selected chunk size is greater than the measured worst chunk size

across the 5 workloads. Most of them are very close to the measured optimal chunk size

except the mail server. There are two reasons that explain why the selected chunk size of the

mail server is not as good as the chunk size of the other workloads. First, the default history

period configured in the algorithm is not long enough and that may affect the performance.

For the following discussion, it is helpful to refer to the Figure 5.4 in the Section 5.3. It

shows the relationship between the Balanced-coverage and the neighborhood size. In

order to explore the characteristics, we use a long enough history period which is 3000

seconds in that experiment. However, the history period of 3000 seconds requires a huge

space in the memory to store all the operations during that period. It is not acceptable in the

real use, so a default history size of 50,000 operations is used instead. For the mail server,

the history buffer holds the operations issued over only 500 seconds. It shows the trade

off between the memory space used by the history buffer and the performance achieved

by the algorithm. The second reason is related to the spatial locality characteristics of the

mail server. For other servers, the blocks which are closer to the accessed blocks during

the history have a higher possibility to be accessed. For the mail server, the future accessed

blocks tend to be much farther away from the accessed blocks during the history. As the

Figure 5.4 shows, when the neighborhood size increases, the Balanced-coverage does not

increase until the neighborhood size reaches 0.0004 * Storage-Size. Then it increases

sharply from 0.0004 * Storage-Size to 0.00275 * Storage-Size. The selected chunk size

in the algorithm is around 0.0004 * Storage Size due to the short history. That is why the

performance is not close to the measured optimal chunk size.

49

c
a>
E
>
2
a.
E

100

80

60

S 40 f

"><
LU

20

o

fs-45 —-*-
ms-1000 —•«-

j s - 8 ••••*•
ws-100 a

ds-16 —••-

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

History Buffer Size

Figure 6.7 : Sensitivity of algorithm to history size. Using a longer history results in bigger
gains, but even a short history is already useful.

6.7 Sensitivity to History Size

We conduct experiments varying the history size to see how it affects the resulting perfor

mance improvements over the block level implementation without scheduling. Figure 6.7

shows that when the history size is reduced to 1000 operations, the improvement is reduced

compared to using a longer history. However, even such a short history can provide signifi

cant performance benefits. The Java server and web server perform fewer write operations

than the other servers. From the trace starting time to the migration starting time, the Java

server issues roughly 1000 write operations and the web server issues roughly 6000 write

operations. Therefore, their history buffer is not full when the buffer size is large.

50

Chapter 7

Summary and Future Work

Migrating virtual machines between clouds is an emerging requirement to support open

clouds and to enable better service availability. While there are several existing solutions

for wide-area migration, they all share one common goal which is to minimize disruption

on the running services undergoing migration. Although existing solutions each have their

strengths for certain types of I/O workloads, we show that they also have weaknesses that

end up significantly degrading performance. In this thesis, we demonstrate that their weak

nesses can be mitigated by taking a workload-aware approach to storage migration. We

collect traces of I/O workloads of five representative applications and establish insights on

the temporal locality, spatial locality and access popularity that widely exists. Based on

these insights, we design a scheduling algorithm that exploits individual virtual machine's

workload to compute an efficient schedule for transferring storage at the appropriate gran

ularity in terms of chunks rather than blocks. In order to evaluate our scheduling algorithm,

we use a trace-driven framework. Under a wide range of I/O workloads and network condi

tions, we show that workload-aware scheduling can effectively reduce the amount of extra

traffic and I/O throttling for the pre-copy model of storage migration. In addition, for the

post-copy model, we can also significantly reduce the number of remote reads to improve

the performance. Our scheduling algorithm can be incorporated into the existing work to

enable them to work well under challenging environments with higher I/O intensity, more

client requests, or lower available bandwidth. Our work has applicability for migration

across clouds as well as across virtualized data centers which are also increasingly popular.

Up to now, the most widely used open source virtualization platforms are Xen [30] and

KVM [31]. The VM live migration operation on Xen still requires shared storage [32].

51

In other words, it does not support storage migration. KVM added the storage migration

feature in January of 2010 [33]. It uses the pre-copy model without scheduling and has

the problems we discussed in Section 2.2. In the future, we will apply our scheduling

algorithm in existing open source platforms to minimize the disruption of virtual machine

I/O performance when performing live migration.

There are also some other potential directions for VM live migration research. For

example, we are interested in understanding what is the most efficient way to migrate hun

dreds or even thousands of virtual machines. Simply migrating the virtual machines one

by one may not be a good solution. First, the total amount of data that need to be migrated

is huge. Some of them may be redundant and unnecessary to be migrated. Second, virtual

machines that will be migrated may cooperate with each other to provide services. When a

portion of them has been migrated to the remote destination, they may suffer a long latency

when communicating across WAN with each other. Third, migrating a cluster of virtual

machines may affect the resource allocation of the source and destination clouds. For ex

ample, the bandwidth in the cloud may be occupied by the migration for a long time and it

may affect other services that coexist in the same cloud. All of these challenges should be

taken into account when we schedule the large scale migration in the future.

52

Bibliography

[1] A. W. S. Blog, "Animoto - scaling through viral growth."

http://aws.typepad.com/aws/2008/04/animoto—scali.html, Apr. 2008.

[2] D. Gottfrid, "The New York Times Archives + Amazon Web Services = Times-

Machine." http://open.blogs.nytimes.com/ 2008/05/21/the-new-york-times-archives-

amazon-web- services-timesmachine/, May 2008.

[3] M. Armbrust, A. Fox, R. Griffith, and et. al, "Above the clouds: A berkeley view of

cloud computing," Tech. Rep. UCB/EECS-2009-28, EECS Department, University

of California, Berkeley, Feb 2009.

[4] O. C. Manifesto, "Open Cloud Manifesto." http://www.opencloudmanifesto.org/, Jan.

2010.

[5] M. Nelson, B.-H. Lim, and G. Hutchins, "Fast transparent migration for virtual ma

chines," in USENIX'05: Proceedings of the 2005 Usenix Annual Technical Confer

ence, (Berkeley, CA, USA), USENIX Association, 2005.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield, "Live migration of virtual machines," in NSDI'05: Proceedings of the

2nd conference on Symposium on Networked Systems Design & Implementation,

(Berkeley, CA, USA), pp. 273-286, USENIX Association, 2005.

[7] I. Redbooks, IBM Powervm Live Partition Mobility IBM International Technical Sup

port Organization. Vervante, 2009.

[8] T. Wood, R Shenoy, A. Venkataramani, and M. Yousif, "Black-box and gray-box

strategies for virtual machine migration," in NSDI, 2007.

http://aws.typepad.com/aws/2008/04/animoto
http://open.blogs.nytimes.com/
http://www.opencloudmanifesto.org/

53

[9] H. Jin, L. Deng, S. Wu, and X. Shi, "Live virtual machine migration integrating mem

ory compression with precopy," in IEEE International Conference on Cluster Com

puting, 2009.

[10] M. R. Hines and K. Gopalan, "Post-copy based live virtual machine migration using

adaptive pre-paging and dynamic self-ballooning," in VEE '09: Proceedings of the

2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution environ

ments, 2009.

[11] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg, "Live wide-area migra

tion of virtual machines including local persistent state," in ACM/Usenix VEE, June

2007.

[12] T. Wood, P. Shenoy, A. Gerber, K. Ramakrishnan, and J. V. der Merwe, "The Case

for Enterprise-Ready Virtual Private Clouds," in Proc. of HotCloud Workshop, 2009.

[13] K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, "Live data center migration

across wans: A robust cooperative context aware approach," in ACM SIGCOMM

Workshop on Internet Network Management (INM), (Kyoto, Japan), aug 2007.

[14] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J. Mambretti, I. Monga,

B. van Oudenaarde, S. Raghunath, and P. Y. Wang, "Seamless live migration of virtual

machines over the man/wan," Future Gener. Comput. Syst., vol. 22, no. 8, pp. 901-

907, 2006.

[15] T. Hirofuchi, H. Nakada, H. Ogawa, S. Itoh, and S. Sekiguchi, "A live storage migra

tion mechanism over wan and its performance evaluation," in VIDC'09: Proceedings

of the 3rd International Workshop on Virtualization Technologies in Distributed Com

puting, (Barcelona, Spain), ACM, 2009.

[16] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi, "A live storage mi

gration mechanism over wan for relocatable virtual machine services on clouds," in

54

CCGRID'09: Proceedings of the 2009 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, (Shanghai, China), IEEE Computer Society, 2009.

[17] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and H. Chen, "Live and Incremental

Whole-System Migration of Virtual Machines Using Block-Bitmap," in IEEE Inter

national Conference on Cluster Computing, 2008.

[18] J. Hamilton, "The Cost of Latency." http://perspectives.mvdirona.com/2009/10/31/

TheCostOfLatency.aspx, Oct. 2009.

[19] VMWare, "VMmark Virtualization Benchmarks."

http://www.vmware.com/products/vmmark/, Jan. 2010.

[20] M. Blaze, "NFS tracing by passive network monitoring," in Proceedings of the

USENIX Winter 1992 Technical Conference, pp. 333-343, 1992.

[21] M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. Patterson, "A quantitative anal

ysis of cache policies for scalable network file systems," ACM SIGMETRICS Perfor

mance Evaluation Review, vol. 22, no. 1, pp. 150-160, 1994.

[22] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson, "A

trace-driven analysis of the UNIX 4.2 BSD file system," ACM SIGOPS Operating

Systems Review, vol. 19, no. 5, p. 24, 1985.

[23] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W Shirriff, and J. K. Ousterhout,

"Measurements of a distributed file system," ACM SIGOPS Operating Systems Re

view, vol. 25, no. 5, p. 212, 1991.

[24] D. Roselli, J. R. Lorch, and T. E. Anderson, "A comparison of file system workloads,"

in Proceedings of the annual conference on USENIX Annual Technical Conference,

p. 4, USENIX Association, 2000.

[25] F. Buchholz, "The structure of the Reiser file system."

http://homes.cerias.purdue.edu/ florian/reiser/reiserfs.php, Jan. 2006.

http://perspectives.mvdirona.com/2009/10/31/
http://www.vmware.com/products/vmmark/
http://homes.cerias.purdue.edu/

55

[26] Microsoft, "How NTFS Works." http://technet.microsoft.com/en-

us/library/cc781134(WS.10).aspx, 2003.

[27] S. D.Pate, UNIX Filesystems: Evolution, Design and Implementation. WILEY, 2003.

[28] M. Rosenblum and J. K. Ousterhout, "The Design and Implementation of a Log-

Structured File System," ACM Transactions on Computer Systems, vol. 10, no. 1,

pp. 26-52, 1992.

[29] VMWare, "Virtual Disk Format 1.1." http://www.vmware.com/app/vmdk/?src=vmdk,

Nov. 2007.

[30] Xen. http://www.xen.org.

[31] KVM, "Kernal Based Virtual Machine." http://www.linux-kvm.org.

[32] Xen, "Xen Users' Manual." http://bits.xensource.com/Xen/docs/user.pdf, 2008.

[33] KVM, "qemu-kvm-0.12 adds block migration feature." http://www.Unux-

kvm.com/content/qemu-kvm-012-adds-block-migration-feature, Jan. 2010.

http://technet.microsoft.com/en-
http://www.vmware.com/app/vmdk/?src=vmdk
http://www.xen.org
http://www.linux-kvm.org
http://bits.xensource.com/Xen/docs/user.pdf
http://www.Unux-
http://kvm.com/content/qemu-kvm-012-adds-block-migration-feature

