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Abstract 

Democracy in Action: Quantization, Saturation, 

and Compressive Sensing 

by 

Jason N. Laska 

We explore and exploit a heretofore relatively unexplored hallmark of compressive 

sensing (CS), the fact that certain CS measurement systems are democratic, which 

means that each measurement carries roughly the same amount of information about 

the signal being acquired. Using this property, we re-think how to quantize the 

compressive measurements. In Shannon-Nyquist sampling, we scale down the analog 

signal amplitude (and therefore increase the quantization error) to avoid the gross 

saturation errors. In stark contrast, we demonstrate a CS system achieves the best 

performance when we operate at a significantly nonzero saturation rate. We develop 

two methods to recover signals from saturated CS measurements. The first directly 

exploits the democracy property by simply discarding the saturated measurements. 

The second integrates saturated measurements as constraints into standard linear 

programming and greedy recovery techniques. Finally, we develop a simple automatic 

gain control system that uses the saturation rate to optimize the input gain. 
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Chapter 1 

Introduction 

Analog-to-digital converters (ADCs) are an essential component in digital sensing 

and communications systems. They interface the analog physical world, where many 

signals originate, with the digital world, where they can be efficiently processed and 

analyzed. As digital processors have become smaller and more powerful, their in­

creased capabilities have inspired applications that require the sampling of ever-higher 

bandwidth signals. This demand has placed a growing burden on ADCs [1]. As ADC 

sampling rates push higher, they move toward a physical barrier, beyond which their 

design becomes increasingly difficult and costly [2]. 

Fortunately, recent theoretical developments in the area of compressive sensing 

(CS) have the potential to significantly extend the capabilities of current ADCs to 

keep pace with demand [3,4]. CS provides a framework for sampling signals at a 

rate proportional to their information content rather than their bandwidth, as in 

Shannon-Nyquist systems. In CS, the information content of a signal is quantified 

as the number of non-zero coefficients in a known transform basis over a fixed time 

interval [5]. Signals that have few non-zero coefficients are called sparse signals. 

More generally, signals with coefficient magnitudes that decay rapidly are called com­

pressible, because they can be well-approximated by sparse signals. By exploiting 

sparse and compressible signal models, CS provides a methodology for simultane-
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ously acquiring and compressing signals. This leads to lower sampling rates and thus 

simplified hardware designs. The CS measurements can be used to reconstruct the 

signal or can can be directly processed to extract other kinds of information. 

The CS framework employs non-adaptive, linear measurement systems and non­

linear reconstruction algorithms. In most cases, CS systems exploit a degree of ran­

domness in order to provide theoretical guarantees on the performance of the system. 

Such systems exhibit additional desirable properties beyond lower sampling rates. In 

particular, the measurements are democratic, meaning that each measurement con­

tributes an equal amount of information to the compressed representation. This is in 

contrast to both conventional sampling systems and conventional compression algo­

rithms, where the removal of some samples or bits can lead to high distortion, whereas 

the removal of others will have negligible effect. 

Several CS-inspired hardware architectures for acquiring signals, images, and 

videos have been proposed, analyzed, and in some cases implemented [6-12]. The 

common element in each of these acquisition systems is that the measurements are 

ultimately quantized, i.e., mapped from real-values to a set of countable values, before 

they are stored or transmitted. In this work, we focus on this quantization step. 

While the effect of quantization on the CS framework has been previously ex­

plored [13,14], prior work has ignored saturation. Saturation occurs when measure­

ment values exceed the saturation level, i.e., the dynamic range of a quantizer. These 

measurements take on the value of the saturation level. All practical quantizers have 

a finite dynamic range for one of two reasons, or both: (i) physical limitations allow 
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only a finite range of voltages to be accurately converted to bits and, (ii) only a finite 

number of bits are available to represent each value. Quantization with saturation is 

commonly referred to as finite-range quantization. 

The challenge in dealing with the errors imposed by finite-range quantization is 

that, in the absence of an a priori upper bound on the measurements, saturation 

errors are potentially unbounded. Current CS recovery algorithms only provide guar­

antees for noise that is either bounded or bounded with high probability (for example, 

Gaussian noise) [15]. 

The intuitive approach to dealing with finite-range quantization is to scale the 

measurements so that saturation never or rarely occurs. However, rescaling the signal 

comes at a cost. The signal-to-noise ratio (SNR) is decreased on the measurements 

that do not saturate, and so the SNR of the acquired signal will decrease as well. 

In this work, we present two new approaches for mitigating of unbounded quanti­

zation errors caused by saturation in CS systems. The first approach simply discards 

saturated measurements and performs signal reconstruction without them. The sec­

ond approach is based on a new CS recovery algorithm that treats saturated measure­

ments differently from unsaturated ones. This is achieved by employing a magnitude 

constraint on the indices of the saturated measurements while maintaining the con­

ventional regularization constraint on the indices of the other measurements. We 

analyze both approaches and show that both can recover sparse and compressible 

signals with guarantees similar to those for standard CS recovery algorithms. 

Our proposed methods exploit the democratic nature of CS measurements. Be-
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cause each measurement contributes equally to the compressed representation, we 

can remove some of them and still maintain a sufficient amount of information about 

the signal to enable recovery. We prove this fact and show that necessary recovery 

properties of the measurements hold for any fixed rejection rate as the initial number 

of measurements becomes large. 

When characterizing our methods, we find that in order to maximize the ac­

quisition SNR, the optimal strategy is to allow the quantizer to saturate at some 

non-zero rate. This is due to the inverse relationship between quantization error and 

saturation rate: as the saturation rate increases, the distortion of remaining measure­

ments decreases. Our experimental results show that on average, the optimal SNR is 

achieved at non-zero saturation rates. This demonstrates that just as CS challenges 

the conventional wisdom of how to sample a signal, it also challenges the conventional 

wisdom of avoiding saturation events. 

Since the optimal signal recovery performance occurs at a non-zero saturation 

rate, we present a simple automatic gain control (AGC) that adjusts the gain of the 

analog input signal so that the desired saturation rate is achieved. This AGC uses 

only the saturation rate to determine the gain, unlike conventional AGCs, since such 

systems require the saturation rate to be very close to zero. 

The organization of this thesis is as follows. In Section 2, we review quantization 

with saturation and the key concepts of the CS framework. In Section 3, we discuss 

the problem of unbounded saturation error in CS and define our proposed solutions. 

In Section 4 we provide theoretical analysis to show that CS measurements are demo-
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cratic and that our solutions solve the stated problem. In Section 5, we validate our 

claims experimentally and show that in many scenarios, we achieve improved perfor­

mance. In Section 6 we derive a simple AGC for CS systems and in Section 7 we 

discuss how the democracy property can be useful in other applications. Appendix D 

contains the proof of democracy for Gaussian matrices. For completeness, we provide 

additional analysis on the mean squared error of quantized and saturated measure­

ments and the preservation of inner products between two measurement vectors in 

Appendix A and B, respectively. The main text provides a greedy algorithm for our 

approach and in Appendix C, we supplement this with an optimization algorithm. 
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Chapter 2 

Background 

2.1 Analog-to-digital conversion 

ADC consists of two discretization steps: sampling, which converts a continuous-

time signal to a discrete-time set of measurements, followed by quantization, which 

converts the continuous value of each measurement to a discrete one chosen from a 

pre-determined, finite set. Although both steps are necessary to represent a signal in 

the discrete digital world, classical results due to Shannon and Nyquist demonstrate 

that the sampling step induces no loss of information provided that the signal is 

bandlimited and a sufficient number of measurements (or samples) are obtained. On 

the other hand, quantization results in an irreversible loss of information unless the 

signal amplitudes belong in the discrete set defined by the quantizer. A central ADC 

system design goal is to minimize the distortion due to quantization. 

2.2 Scalar quantization 

Scalar quantization is the process of converting the continuous value of individual 

measurements to one of several discrete values through a non-invertible function R(-)-

Practical quantizers introduce two kinds of distortion: bounded quantization error and 

unbounded saturation error. 
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In this work, we focus on uniform quantizers with quantization interval A. Thus, 

the quantized values become qk = Qo + kA, for k G Z, and every measurement g 

is quantized to the nearest quantization point Rig) = argmin^ \g — q^\. This im­

plies that the quantization error per measurement, \g — R(q)\, is bounded by A/2. 

Figure 2.1(a) depicts the mapping performed by a midrise quantizer. 

In practice, quantizers have a finite dynamic range, dictated by hardware con­

straints such as the voltage limits of the devices and the finite number of bits per 

measurement of the quantized representation. Thus, a finite-range quantizer repre-
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sents a symmetric range of values \g\ < G, where G > 0 is known as the saturation 

level [16]. Values of g between — G and G will not saturate, thus, the quantization 

interval is defined by these parameters as A = 2~B+1G. Without loss of generality 

we assume a midrise 5-bit quantizer, i.e., the quantization points are (& = A/2 + kA, 

where k = — 2 B _ 1 , . . . , 2 B _ 1 — 1. Any measurement with magnitude greater than 

G saturates the quantizer, i.e., it quantizes to the quantization point G — A/2, im­

plying an unbounded error. Figure 2.1(b) depicts the mapping performed by a finite 

range midrise quantizer with saturation level G and Table 2.1 summarizes the param­

eters defined with respect to quantization. An analysis of the average error due to 

quantization and saturation for Gaussian signals can be found in Appendix A. This 

analysis demonstrates that on average, saturation error dominates the total error in 

finite-range quantization. 

2.3 Compressive sensing (CS) 

In the CS framework, we acquire a signal x G M.N via the linear measurements 

y = $ x + e, (2.1) 

where $ is an M x N measurement matrix modeling the sampling system, y G RM is 

the vector of samples acquired, and e is an M x 1 vector that represents measurement 

errors. If x is if-sparse when represented in the sparsity basis \&, i.e., x = ^ x with 

||xllo < K* then one can acquire only M = 0(Klog(N/K)) measurements and still 

* || • || o denotes the £Q quasi-norm, which simply counts the number of non-zero entries of a vector. 
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recover the signal x [3,4]. A similar guarantee can be obtained for approximately 

sparse, or compressible, signals. Observe that if K is small, then the number of 

measurements required can be significantly smaller than the Shannon-Nyquist rate. 

In [17], Candes and Tao introduced the restricted isometry property (RIP) of a 

matrix $ and established its important role in CS. Slightly adapted from [17], we say 

that a matrix $ satisfies the RIP of order K if there exist constants, 0 < a < b < oo, 

such that 

a||x||I < USxIliJ < 6||x||;, (2.2) 

holds for all x with x = ^9 and ||0||o < K. In words, $ acts as an approximate 

isometry on the set of vectors that are if-sparse in the basis \&. An important 

result is that for any given \I/, if we draw a random matrix $ whose entries (j>ij are 

independent realizations from a sub-Gaussian distribution, then $\I/ will satisfy the 

RIP of order K with high probability provided that M = 0(K\og{N/K)) [18]. In 

this paper, without the loss of generality, we fix \& = I, the identity matrix, implying 

that x = 0. 

The RIP is a necessary condition if we wish to be able to recover all sparse signals 

x from the measurements y. Specifically, if ||x||0 = K, then $ must satisfy the RIP 

of order 2K with a > 0 in order to ensure that any algorithm can recover x from 

the measurements y. Furthermore, the RIP also suffices to ensure that a variety of 

practical algorithms can successfully recover any sparse or compressible signal from 

noisy measurements. In particular, for bounded errors of the form ||e||2 < e, the 
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convex program 

x = argmin ||x||i s.t. | |$x - y||2 < e (2.3) 
X 

can recover a sparse or compressible signal x. The following theorem, a slight modi­

fication of Theorem 1.2 from [19], makes this precise by bounding the recovery error 

of x with respect to the measurement noise norm, denoted by e, and with respect the 

best approximation of x by its largest K terms, denoted using x#. 

Theorem 1. Suppose that $ ^ satisfies the RIP of order 2K with b/a < 1 + \[2. 

Given measurements of the form y = <&\l/x + e, where ||e||2 < e, then the solution to 

(2.3) obeys 

M~ II ^ n , / o X — xK\\l 

||x - x||2 < C0e + d j=—, 
y/K 

where 

c _ *V2b = (y/2-l)a + b 

° (v^+l)a-6' X (V2 + l)a-b 

While convex optimization techniques like (2.3) are a powerful method for CS 

signal recovery, there also exist a variety of alternative algorithms that are commonly 

used in practice and for which performance guarantees comparable to that of Theorem 

1 can be established. In particular, iterative algorithms such as CoSaMP and itera­

tive hard thresholding (IHT) are known to satisfy similar guarantees under slightly 

stronger assumptions on the RIP constants [20, 21]. Furthermore, alternative recovery 

strategies based on (2.3) have been analyzed in [15,22]. These methods replace the 

constraint in (2.3) with an alternative constraint that is motivated by the assumption 

that the measurement noise is Gaussian in the case of [15] and that is agnostic to the 

value of e in [22]. 
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Figure 2.2 : Random demodulator compressive ADC. 

2.4 CS in practice 

Several hardware architectures have been proposed and implemented that allow CS 

to be used in practical settings with analog signals. Examples include the random 

demodulator, random filtering, and random convolution for signals [7-9], and several 

compressive imaging architectures [10-12]. 

We briefly describe the random demodulator as an example of such a system [7]. 

Figure 2.2 depicts the block diagram of the random demodulator. The four key com­

ponents are a pseudo-random ±1 "chipping sequence" pc(t) operating at the Nyquist 

rate or higher, a low pass filter, often represented by an ideal integrator with reset, 

a low-rate ADC, and a quantizer. An input analog signal x(t) is modulated by the 

chipping sequence and integrated. The output of the integrator is sampled, and the 

integrator is reset after each sample. The output measurements from the ADC are 

then quantized. 

Before quantization, systems such as these represent a linear operator mapping the 

analog input signal to a discrete output vector. It is possible to relate this operator to 

integrator ADC quantizer 

J 
•y[n] 
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a discrete measurement matrix $ which maps, for example, the Nyquist-rate samples 

of the input signal to the discrete output vector. 
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Chapter 3 

Signal recovery from saturated measurements 

3.1 Unbounded saturation error 

A standard CS recovery approach like the program (2.3) assumes that the measure­

ment error is bounded. However, when quantizing the measurements y, the error 

on saturated measurements is unbounded. Thus, conventional wisdom would sug­

gest that the measurements should first be scaled down appropriately so that none 

saturate. 

This approach has two main drawbacks. First, rescaling the measurements re­

duces the saturation rate at the cost of increasing the quantization error on each 

measurement that does not saturate. Saturation events may be quite rare, but the 

additional quantization error will affect every measurement and induce a higher re­

construction error than if the signal had not been scaled and no saturation occurred. 

Second, in practice, saturation events may be impossible to avoid completely. 

However, unlike conventional sampling systems that employ linear sinc-interpolation-

based reconstruction, where each sample contains information for only a localized 

portion of the signal, CS measurements contain information for a larger portion of 

the signal. This is due to both the democracy of CS measurements and the non-linear 

nature of CS reconstruction. 
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In this section, we propose two approaches for handling saturated measurements 

in CS systems: 

1. saturation rejection: simply discard saturated measurements and then perform 

signal recovery on those that remain; 

2. constrained optimization: incorporate saturated measurements in the recovery 

algorithm by enforcing consistency on the saturated measurements. 

While both of these approaches are intuitive modifications of standard CS recovery 

algorithms, it is not obvious that they are guaranteed to work. This is because 

in each approach, recovery from the measurements that did not saturate must be 

possible. This implies that the signal-dependent submatrix of $, made up of rows 

corresponding to the measurements that did not saturate, must satisfy RIP. A main 

result of this work, that we prove below, is that there exists a class of matrices $ 

such that an arbitrary subset of their rows will indeed satisfy the RIP. 

3.2 Recovery via saturation rejection 

An intuitive way to handle saturated measurements is to simply discard them [23]. 

Denote the vector of the measurements that did not saturate as y with length M. 

The matrix $ is created by selecting the rows of $ that correspond to the elements 

of y. Then, as an example, using (2.3) for reconstruction yields the program: 

x = argminHxlli s.t. ||$x — y||2 < e. (3.1) 
X 
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There are several advantages to this approach. Any fast or specialized recovery al­

gorithm can be employed without modification. In addition, the speed of most algo­

rithms will be increased since fewer measurements are used. 

The saturation rejection approach can also be applied in conjunction with process­

ing and inference techniques such as the smashed filter [24] for detection, which utilizes 

the inner products (<&u, $v) between the measurement of vectors u, v. Such tech­

niques depend on ($u, $v) being close to (u, v). Saturation can induce unbounded 

errors in ($u, $v) , making it arbitrarily far away from (u, v). Thus, by discard­

ing saturated measurements, the error between these inner products is bounded. A 

specific bound on these inner products is derived in Appendix B. 

3.3 Recovery via convex optimization with consistency con­

straints 

Clearly saturation rejection discards potentially useful information. Thus, in our sec­

ond approach, we include saturated measurements, but treat them differently from 

the others by enforcing consistency. Consistency means that we constrain the re­

covered signal x so that the magnitudes of the values of <5x corresponding to the 

saturated measurements are greater than G. 

Specifically, let S+ and S~ correspond be the sets of indices of the positive sat­

urated measurements, and negative saturated measurements, respectively. Let $ 5 + 

and $ 5 denote the submatrices of $ obtained by keeping only the rows of <& indexed 
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by S+ and S . Form a new matrix $ as 

We obtain an estimate x via the program, 

$ ^ (3.2) 

x = argmin ||x||i s.t. ||<frx — y||2 < e (3.3) 
X 

and $x > G • 1, (3.4) 

where 1 denotes an (M — M) x 1 vector of ones. In words, we are looking for 

the x with the minimum t\ norm such that the measurements that do not saturate 

have bounded £2 error, and the measurements that do saturate are consistent with 

the saturation constraint. An algorithm that solves this formulation is presented 

in Appendix C. Alternative regularization terms that reduce the space of solutions 

for quantized measurements can be used on y, such as those proposed in [13,14]. 

In some hardware systems, the measurements that immediately follow a saturation 

event can have higher distortion than the other unsaturated measurements. In this 

case, an additional £2 constraint, ||$*x — y*||2 < ei, can be applied where * denotes 

the indices of the measurements immediately following a saturation event and where 

€1 > e. 

3.4 Recovery via greedy algorithms with consistency con­

straints 

Greedy algorithms can also be modified to include a saturation constraint. One exam­

ple of a greedy algorithm that is typically used for sparse recovery is CoSaMP [20]. 
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In this subsection, we introduce Saturation Consistent CoSaMP (SC-CoSaMP), a 

modified version of CoSaMP that performs consistent reconstruction with saturated 

measurements. 

CoSaMP estimates the signal x by finding a coefficient support set Q, and esti­

mating the signal coefficients over that support. The support is found in part by first 

computing a vector p = $ T ( $ x — y), that allows us to infer large signal coefficients, 

and hence is called the proxy vector [20], and second, by choosing the support of the 

largest 2K elements of p. These 2K support locations are merged with the support 

corresponding to the largest K coefficients of x to produce Q.. Given Q, CoSaMP 

estimates the signal coefficients by solving the least squares problem: 

x = m i n | | $ n x - y | | 2 . (3.5) 

These steps are done successively until the algorithm converges. 

We modify two steps of CoSaMP to produce SC-CoSaMP; the proxy step and the 

coefficient estimate step. When computing the proxy vector, SC-CoSaMP enforces 

consistency from the contribution of the saturated measurements. When estimating 

the coefficients, a constraint on the saturated measurements is added to (3.5). 

The steps of SC-CoSaMP are displayed in Algorithm 1. In steps 1 and 2, the 

algorithm initializes by choosing an estimate x'0' = 0, an iV-dimensional vector of 

zeros, and where the superscript [•] denotes iteration. To recover K coefficients, the 

algorithm loops until a condition in step 3 is met. For each iteration n, the algorithm 

proceeds as follows: 

The proxy vector is computed in step 4. This is accomplished by computing the 
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sum of two proxy vectors; a proxy from y and a proxy that uses the supports of 

the saturated measurements. To compute the proxy from y, we repeat the same 

computation as in CoSaMP, <&T(y — $ x ^ ) , where the superscript T denotes the 

matrix transpose. To compute the proxy from the support of the measurements that 

saturated, we introduce the saturation residual, denoted as G • 1 — $xt"l. This vector 

measures how close the elements of $ x are to G. In consistent reconstruction, the 

magnitude of the elements of $ x should be greater than or equal to G, however, once 

these are greater than G, the magnitude given by the saturation residual cannot be 

effectively interpreted. 

Thus, consistency is achieved by applying a function that selects the positive 

elements of the saturation residual, 

[ 0, Vi<0 
Kyi) = < (3.6) 

[ Vi, Vi > 0. 

This function is applied element-wise to a vector as h(y) = ]T\ h(yi)ei where ej is the 

ith canonical vector. 

By combining the proxies from y and the saturated measurement supports, the 

proxy vector of step 4 is 

p = $ T (y - $xM) + $Th (G • 1 - $xW) . (3.7) 

In this arrangement, the elements of <&x that are below G will contribute new informa­

tion to p, however, elements that are greater than G will be set to zero, and therefore 

do not contribute additional information to p. We note that a similar computation 

can be made in the IHT algorithm [21]. 
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In step 5, the new coefficient support Q is found by taking the union of the support 

of the largest 2K coefficients of p and the support of x'n '. This results in a support 

set fi with at most 3K elements. This step ensures that if coefficients were incorrectly 

chosen in a previous iteration, they can be replaced. 

In step 6 new coefficient values are estimated by finding the x that minimizes 

||$nx — y||i where $n denotes a submatrix of $ restricted to columns indexed by 

Q. Thus in CoSaMP, new coefficient values are estimated via ^ y , where f denotes 

the Moore-Penrose pseudo-inverse. However, this can be reformulated to include the 

saturation constraint. Specifically, step 6 of SC-CoSaMP finds the solution to 

£[n+i] = a r g m i n || J n X _ ~||2 g t $ n X > G . x. (3.8) 
x 

This can be achieved via gradient descent or other optimization techniques by em­

ploying a one-sided quadratic to the constraint [25]. 

In step 7, we keep the largest K coefficients of the signal estimate. The algorithm 

repeats until a convergence condition is met. 

As demonstrated, SC-CoSaMP is different from CoSaMP in steps 4 and 6. In 

practice, we have found that applying step 4 of SC-CoSaMP to compute p provides a 

significant increase in performance over the equivalent step in CoSaMP, while applying 

step 6 for coefficient estimation provides only a marginal performance increase. 
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Algorithm 1 SC-CoSaMP greedy algorithm 
1: Input: y, $, and K 

2: Initialize: x ^ <- 0, n <- 0 

3: while not converged do 

4: Compute proxy: 

P «- $ T (y - $X[n]) + $Tjj ^ . ! _ $£[nA 

5: Update coefficient support: 

Q <— union of 

• support of largest 2K coefficients from p 

• support of xt"l 

6: Estimate new coefficient values: 

x(n+i] <_ argminx | |$QX - y\\l s.t. &nx > G • 1 

7: Prune: 

x^+i] <— keep largest K coefficients of x'n+1l 

8: n <— n + 1 

9: end while 
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Chapter 4 

Random measurements and democracy 

4.1 Democracy and recovery 

In this section, we demonstrate that CS measurements have the democracy property, 

i.e., each measurement contributes a similar amount of information about the signal 

x to the compressed representation y [26-28].* 

In this work, we say that $ is M-democratic if all M x N submatrices $ r of $ 

have the RIP. Thus, the matrix $ as defined in the Section 3 is a specific example of 

<&r. We note that this condition on $ is significantly stronger than drawing a new 

M x N RIP matrix: the democracy property implies that once $ is drawn, any M 

rows of $ will have RIP. 

If $ is M-democratic, then both approaches described in Section 3 will recover 

sparse and compressible signals. It directly follows from [19] and the fact that the 

democracy property implies that any M x N submatrix of $ has RIP, that the 

rejection approach (3.1) recovers sparse and compressible signals. Note that the 

two approaches will not necessarily produce the same solution. This is because the 

"The original introduction of this term was with respect to quantization [26,27], i.e., a democratic 

quantizer would ensure that each bit is given "equal weight." As the CS framework developed, it 

became empirically clear that CS systems exhibited this property with respect to compression [28]. 
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solution from the rejection approach may not lie in the feasible set of solutions of the 

consistent approach (3.3). However, the reverse is true. The solution to the consistent 

approach does lie in the feasible set of solutions to the rejection approach. Because 

of this, the consistent approach recovers sparse and compressible signals as well. 

In general, since the consistent approach is merely incorporating additional knowl­

edge about the signal, we expect that it will perform no worse than the rejection 

approach. 

4.2 Random measurements are democratic 

We now demonstrate that if $ is generated according to a Gaussian distribution, 

then the measurements are M-democratic. We begin by analyzing the concentration 

properties of $ r x . 

Lemma 1. Suppose that $ is an M x N matrix whose entries faj ~ A/"(0,1). Let 

a e (0,1), (3 e (1, oo), and 0 < M < M be given. Then for any x G RN, we have 

that 

aM||x||;j < ||$rx||2 < pM\\x\\2
2 (4.1) 

holds for all sets T with \T\ = M that index the rows o / $ with probability exceeding 

1 — Pa — P/3, where 

r°(i-2QKTT^))M
e_„, /2 

Jo ( l - 2Q(u ) ) M +i 

x Bjf(M, 1 - 2Q{u))du, 
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for all X > 0 and 

p*^M-M)\IKw^mT (4-4> 
X 

r{Q{wi-2X)) c_t2/2 

Jo Q(t)M(l - 2Q(t)) Q(t)«(l - 2Q(t)) 

x Bfi(M,2Q(t))dt, 

for all A G (0, \). In each bound 

Bd(n,p)=(^pd(l-p)n-d (4.6) 

is the Binomial distribution function and Q(z) = -A= Jz °° e_ t /2dt is the tail integral 

of the standard Gaussian distribution. 

The proof of this lemma can be found in Appendix D.l. Our approach determines 

the upper and lower bounds by analyzing the case where the smallest measurements 

are selected and the case where the largest measurements are selected respectively. 

For the lower bound, we condition the probability that the norm of the M small­

est measurements is less than «M on the value of the M-th largest element u, i.e., 

P(||C/(y)||2 < aM\u) where U(y) denotes the M smallest entries of y. This probabil­

ity is then bounded using Markov's inequality and other standard concentration of 

measure techniques. A similar proof is conducted for the upper bound. 

For these results to be useful, we require that the bounds approach zero as M 

grows. The integrals (D.3) and (D.5) cannot be solved in closed form; thus, we 

demonstrate that the bounds on Pa and Pp are meaningful by analyzing the behavior 

of each bound for a fixed ratio | | as M —* oo. 
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We begin by examining the part of the bound on Pa given by (D.2). For a fixed 

ratio H and for any a < 1, the parameter A > 0 can be chosen such that 

~ Pi ( eXa \™ 
lim M\ - . = 0. (4.7) 

M-OO V 7T V\/TT2Ay 

This can be achieved by choosing A such that 

e2\a < ! + 2A, (4.8) 

thus, if W(X) = {w : A = wew}, the Lambert W-function, then the valid range of A 

is 

n x 1 W(-ae-a) ,4n. 
0 < X < - 2 - ^ l ^ (4'9) 

For a fixed ratio | | , A can be chosen so that as M —>• oo, the integral (D.3) of the 

bound on Pa evaluates to a finite number. The integral will be finite if A is chosen to 

be a function of M that decays fast, such as A = (1/M)M. Thus, the bound on Pa 

converges to 0 as M —> oo. 

For Pp, we first note that when M = M, the bound is trivially 0. For M < M, 

we have similar results as for Pa. For instance, for a fixed ratio | | and for any (3 > 1, 

the parameter A G (0,1/2) can be chosen such that 

i i n L ( M - M ) ^ ( 7 = = j = 0 . (4.10) 

The valid A lie in the range 

0 < > < i + ^ . («!, 
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Additionally, if A decays quickly as M grows, the integral (D.5) is finite; thus the 

bound converges to 0 for large M and some A. 

We have shown that the concentration property holds for all $ r with high prob­

ability for any a < 1, (3 > 1, as M —> oo. Using this result, we now show that all 

submatrices <&r will satisfy the RIP with high probability. 

Theorem 2. [Democracy] Suppose that $ is an M x N matrix with entries <pij ~ 

A/"(0,1/M), where 0 < M < M. Let a > 0 and b > a be given. Then with probability 

at least 1 — Pp, we have that all M x N submatrices $ r o / $ satisfy 

o||x||2 < ||$x||2 < 6||x||l (4.12) 

for all x G Y>K, where 

PF<(jPjK(Pa + P0), (413) 

for 0 < e < (Vb - y/a)/2y/b. 

The proof of this Theorem can be found in Appendix D.2. It uses the results of 

Lemma 1 with the procedure found in [18] to obtain the result. 

This bound implies that for large enough N, CK\og(N/K) < M < N can be 

chosen such that for a fixed ratio M/M, the RIP will hold for any of the M measure­

ments. This is because Pa and Pp are not dependent on AT and go to zero for large 

M. 
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Chapter 5 

Experimental validation 

In the previous sections, we discussed three approaches for recovering sparse signals 

from finite-range, quantized CS measurements; 

1. the conventional approach, scaling the signal so that the saturation rate is zero 

and reconstructing with the program (2.3); 

2. the rejection approach, discarding saturated measurements before reconstruc­

tion with (3.1); and 

3. the consistent approach, incorporating saturated measurements as a constraint 

in the program (3.3), (3.4). 

In this section we compare these approaches via a suite of simulations to demonstrate 

that, on average, using the saturation constraint outperforms the other approaches 

for a given saturation level G. Our main findings include: 

• In many cases the optimal performance for the consistent and rejection ap­

proaches is superior to the optimal performance for the conventional approach 

and occurs when the saturation rate is non-zero. 

• The difference in optimal performance between the consistent and rejection 

approaches is small for a given ratio of M/N. 
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• The consistent reconstruction approach is more robust to saturation than the 

rejection approach. Also, for a large range of saturation rates, consistent recon­

struction outperforms the conventional approach even if the latter is evaluated 

under optimal conditions. 

We find these behaviors for both sparse and compressible signals and for both opti­

mization and greedy recovery algorithms. 

5.1 Experimental setup 

Signal model: We study the performance of our approaches using two signal classes: 

• if-sparse: in each trial, K non-zero elements drawn from an i.i.d. Gaus­

sian distribution and where the locations n are randomly chosen; 

• weak £p-compressible: in each trial, elements first generated according to 

xn = vnn~1/p, (5.1) 

for p < 1 where vn is a ±1 Rademacher random variable. The positions n are 

then permuted randomly. 

Once a signal is drawn, it is normalized to have unit £2 norm. Aside from quantization 

we do not add any additional noise sources. 

Measurement matrix: For each trial a measurement matrix is generated using 

an i.i.d. Gaussian distribution with variance 1/M. Our extended experimentation, 

not shown here in the interest of space, shows that our results are robust to large 
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variety of measurement matrix classes such as i.i.d. ±1 Rademacher matrices and 

other sub-Gaussian matrices, as well as the random demodulator and random time-

sampling. 

Reconstruction metric: We report the reconstruction signal-to-noise ratio (SNR) 

in decibels (dB): 

SNR=101og1 0f. . Ml..2), (5.2) 
\IIX — Xll2/ 

where x denotes the reconstructed signal. 

5.2 Reconstruction SNR: i^-sparse signals 

We compare the reconstruction performance of the three approaches by applying 

each to the same set of measurements. We fix the parameters, N = 1024, K = 20, 

and 5 = 4 and vary the saturation level parameter G over the range [0,0.4]. We 

varied the ratio M/N in the range [1/16,1] but plot results for only the three ratios 

M/N = 2/16, 6/16, and 15/16 that exhibit typical behavior for their regime. For 

each parameter combination, we performed 100 trials, and computed the average 

performance. The results were similar for other parameters, thus those experiments 

are not displayed here. 

The experiments were performed as follows. For each trial we draw a new sparse 

signal x and a new matrix $ according to the details in Section 5.1 and compute 

y = $x. We quantize the measurements using a quantizer with saturation level G 

and then use them to reconstruct the signal using the three approaches described 

above. The reconstructions were performed using CVX [29,30], a general purpose 
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Figure 5.1 : Comparison of reconstruction approaches using CVX for if-sparse sig­
nals with N = 1024, K = 20, and B = 4. Solid line depicts reconstruction for 
the conventional approach. Dotted line depicts reconstruction for the consistent ap­
proach. Dashed line depicts reconstruction for the rejection approach. The left y-axis 
corresponds to each of these lines. The dashed-circled line represents the average 
saturation rate and corresponds to the right y-axis. Each plot represents a different 
measurement regime: (a) low M/N = 2/16, (b) medium M/N = 6/16, and (c) high 
M/N = 15/16. 

optimization package. 

Figures 5.1(a), 5.1(b), and 5.1(c) display the reconstruction SNR performance of 

the three approaches in dB for M/N = 2/16, M/N = 6/16, M/N = 15/16, respec­

tively. The solid line depicts the conventional approach, the dashed line depicts the 
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Figure 5.2 : Comparison of reconstruction approaches using CVX for weak £p com­
pressible signals with N = 1024, M/N = 6/16, and B = 4. Solid line depicts recon­
struction for the conventional approach. Dotted line depicts reconstruction for the 
consistent approach. Dashed line depicts reconstruction for the rejection approach. 
The left y-axis corresponds to each of these lines. The dashed-circled line represents 
the average saturation rate and corresponds to the right y-axis. Each plot represents 
different rate of decay for the coefficients: (a) fast decay p = 0.4, (b) medium decay 
p = 0.8, and (c) slow decay p = 1. 

rejection approach, and the dotted line depicts the consistent approach. Each of these 

lines follow the scale on the left y-axis. The dashed-circled line denotes the average 

saturation rate, (M — M)/M, and correspond to the right y-axis. In Figure 5.1(a), the 

three lines meet at G = 0.25, as expected, because the saturation rate is effectively 
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zero at this point. This is the operating point for the conventional approach and is 

the largest SNR value for the solid line. In this case, only the consistent approach 

obtains SNRs greater than the conventional approach. In Figure 5.1(b), the three 

lines meet at G = 0.15. Both the consistent and the rejection approaches achieve 

their optimal performance at around G = 0.09, where the saturation rate is 0.2. In 

Figure 5.1(c), the three lines meet at G = 0.1 and both the consistent and rejection 

approaches achieve their optimal performance at G = 0.06. 

The implications of this experiment are threefold: First, the saturation constraint 

offers the best approach for reconstruction. Second, if the signal is very sparse or 

there is an excess of measurements, then saturated measurements can be rejected 

with negligible loss in performance. Third, if given control over the parameter G, 

then the quantizer should be tuned to operate with a positive saturation rate. 

5.3 Reconstruction SNR: Compressible signals 

In addition to sparse signals, we also compare the reconstruction performance of the 

three approaches with compressible signals. As in the strictly sparse experiments, 

we use CVX for reconstruction. Similar to the sparse reconstruction experiments, we 

choose the parameters, N = 1024, M/N = 6/16, and B = 4 and vary the saturation 

level parameter G over the range [0,0.4]. The decay parameter p is varied in the range 

[0.4,1], but we will discuss only three decays p = 0.4, 0.8, and 1. Some signals are 

known exhibit p in (5.1) in this range, for instance, it has been shown that the wavelet 

coefficients of natural images have decay rates between p = 0.3 and p = 0.7 [31]. 
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For each parameter combination, we perform 100 trials, and compute the average 

performance. The experiments are performed in the same fashion as with the sparse 

signals. 

For signals with smaller p, fewer coefficients are needed to approximate the signals 

with low error. This also implies that fewer measurements are needed for these signals. 

The plots in Figure 5.2 reflect this intuition. Figures 5.2(a), 5.2(b), and 5.2(c) depict 

the results for p = 0.4, p = 0.8, and p = 1, respectively. The highest SNR for p = 0.4 

is achieved at a saturation rate of 25%, while for p = 0.8 the saturation rate can 

only be 22%, and for p = 1 the highest SNR occurs at a saturation rate of 10%. 

This means that the smaller the p, the more the measurements should be allowed to 

saturate. 

5.4 Robustness to saturation 

We also compare the optimal performance between the rejection and consistent re­

construction approaches. First, we find the maximum SNR versus M/N for these 

approaches and demonstrate that their difference is small. Second, we determine the 

robustness to saturation of each approach. Because these experiments require many 

more trials than in the previous experiments, we use SC-CoSaMP from Section 3.4 

Algorithm 1. 

We experimentally measure, by tuning G, the best SNR achieved on average for the 

three strategies. The experiment is performed as follows. Using the same parameters 

as in the /C-sparse experiments, for each value of M and for each approach, we search 
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Figure 5.3 : SNR performance using SC-CoSaMP for N = 1024, K = 20, and B = 4. 
(a) Best-achieved average SNR vs. M/N. (b) Maximum saturation rate such that 
average SNR performance is as good or better than the best average performance 
of the conventional approach. For best-case saturation-level parameters, the rejec­
tion and constraint approaches can achieve SNRs exceeding the conventional SNR 
performance by 20dB. The best performance between the reject and consistent ap­
proaches is similar, differing only by 3dB, but the range of saturation rates for which 
they achieve high performance is much larger for the consistent approach. Thus, the 
consistent approach is more robust to saturation. 

for the saturation level G that yields the highest average SNR and report this SNR. 

This is equivalent to finding the maximum point on each of the curves of each plot 

in Figure 5.1 but for a larger range of M. 

Figure 5.3(a) depicts the results of this experiment. The solid curve denotes 

the best performance for the conventional approach; the dashed curve denotes the 

performance with saturation rejection; and the dotted curve denotes the performance 

with the constraint. For these parameters, in the best case, saturation rejection can 

improve performance by 20dB, and the saturation constraint can improve performance 

over the conventional case by 23dB. 

There are two important implications from this experiment. First, when the num-

1UU 

80-
m •o 

03 

I 
60 

40 

20 

, • • < • ' 

• 

^E 
—Conventional 
---Reject 

Consistent 

0.8 

2 0.6 

o 0.4 

10.2 



34 

ber of measurements exceeds the minimum required number of measurements, then 

intentionally saturating measurements can greatly improve performance. Second, in 

terms of the maximum SNR, the consistent approach performs only marginally better 

than the rejection approach, assuming that the quantizer operates under the optimal 

saturation conditions for each approach. 

Usually, in practice the saturation level that achieves the maximum SNR can­

not be efficiently determined or maintained. In those cases, it is beneficial to know 

the robustness of each approach to changes in the saturation rate. Specifically, we 

compare the range of saturation rates for which the two approaches outperform the 

conventional approach when the latter is operating under optimal conditions. 

This experiment first determines the maximum SNR achieved by the conventional 

approach (i.e., the solid curve in Figure 5.3(a)). Then, for the other approaches, we 

increase the saturation rate by tuning the saturation level. We continue to increase 

the saturation rate until the SNR is lower than the best SNR of the conventional 

approach. 

The results of this experiment are depicted in Figure 5.3(b). The dashed line 

denotes the range of saturation rates for the rejection approach and the dotted line 

denotes the range of saturation rates for the consistent approach. At best, the rejec­

tion approach achieves a range of [0,0.55] while the consistent approach achieves a 

range of [0,0.8]. Thus, these experiments show that the consistent approach is more 

robust to saturation rate. 
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Chapter 6 

Extensions 

6.1 Automatic gain control (AGC) for CS 

Most CS reconstruction approaches (with the exception of [32]) consider finite-length 

signals x. However, in many applications of CS the measured signal is a streaming 

signal of length unknown in advance. To apply CS methods to such applications, a 

blocking approach is usually pursued. The signal is split into blocks and each block 

is compressively sampled and reconstructed separately from the other blocks. In 

such streaming applications, the signal power does not remain constant but changes 

throughout the operation of the system and from block to block. Such changes 

affect the performance, especially in terms of Signal-to-Quantization noise level and 

saturation rate. 

To adapt to changes in signal power and to avoid saturation events, modern sam­

pling systems employ automatic gain control (AGC). These AGC's typically target 

saturation rates that are close to zero. In this case, saturation events can be used 

to detect high signal strength; however detecting low signal strength is more diffi­

cult. Thus, in conventional systems, saturation rate alone does not provide sufficient 

feedback to perform automatic gain control. Other measures, such as measured sig­

nal power are used in addition to saturation rate to ensure that the signal gain is 
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Figure 6.1 : Automatic gain control (AGC) for tuning to nonzero saturation rates in 
CS systems. 

sufficiently low but not too low. 

In this section we demonstrate that in a CS system, where a positive saturation 

rate is desirable, the saturation rate can by itself provide sufficient feedback to the 

AGC circuit. Since the desired rate is significantly greater than zero, deviation from 

the desired rate can be used to both increase and decrease the gain in an AGC circuit 

to maintain a target saturation rate. Saturation events can be detected easier and in 

earlier stages of the signal acquisition systems, compared to other measures such as 

the signal variance. Thus the effectiveness of AGC increases and the cost decreases. 

Our setup is as follows. The signal x is split into consecutive blocks of length N, 

and $ is applied to each block separately such that there are M measurements per 

block. We index each successive block of measurements by w and denote this with 

the superscript [•]. In this example we apply a boxcar window to each block of x, 

but in general any window can be applied. For each block, a gain 0M is applied to 

the measurements and then quantized, resulting in a set of M output measurements 

i?{0MyM}. Note that in different hardware implementations, the gain might be 
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applied before, after, or within the measurement matrix $; this change does not 

fundamentally affect our design. Our goal is to tune the gain so that it produces a 

desired measurement saturation rate s. We also assume that the signal energy does 

not deviate significantly between consecutive blocks. 

A simple AGC that uses saturation rate to tune the gain is depicted in Figure 6.1 

and operates as follows. We compute the saturation rate of the previous block of 

measurements, 's^w~1\ after quantization. The new gain is then computed by adding 

the error between s and sfw_1l to the previous gain, i.e., 

0 N = ^ - i ] + ^ ( s _ ^ - i ] ) ) ( 6 - 1 ) 

where v > 0 is constant. This negative feedback system is BIBO stable under fairly 

general conditions on v [33]. 

To demonstrate that this AGC is sensitive to both increases in signal strength as 

well as decreases, we perform an experiment where the signal strength drops suddenly 

and significantly. The experiment is depicted in Figure 6.2 and was performed as 

follows. We generated a signal such that the parameters per block were N = 512, 

K = 5, and M = 32. We generated 63 blocks resulting in approximately 2000 

measurements in total. The example measurements before the AGC is applied are 

depicted in Figure 6.2(a). The dashed lines represent the quantizer range [—1,1]. We 

have generated the measurements so that the saturation rate is zero, and starting at 

measurement 900, the signal strength drops by 90%. These measurements are input 

into the AGC previously described with v = 12 and we set a desired saturation rate 

of s = 0.2. 
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Figure 6.2(b) shows the gain that the AGC applies as it receives each measure­

ment. Figure 6.2(c) shows the resulting output signal with quantizer range, and 

Figure 6.2(d) shows the estimated output saturation rate. Initially, we achieve the 

desired saturation rate of 0.2 within approximately 10 iterations. The system adapts 

to the sudden change in signal strength after measurement 900 within approximately 

500 iterations. This experiment demonstrates that the saturation rate is by itself 

sufficient to tune the gain of CS systems. 

Of course more elaborate gain update loops can be considered to provide better 

adaptability and more rapid updates to the gain from block to block. Such methods 

are beyond the scope of this work. 
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Figure 6.2 : CS AGC in practice, (a) CS measurements with no saturation. Signal 
strength drops by 90% at measurement 900. (b) Output gain from AGC. (c) Measure­
ments scaled by gain from AGC. (d) Saturation rate of scaled measurements. This 
figure demonstrates that the CS AGC is sensitive to decreases in signal strength. 
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Chapter 7 

Discussion 

In this work, we have presented two new approaches for handling unbounded satu­

ration errors on compressive measurements; rejecting saturated measurements and 

applying consistency constraints to saturated measurements. We also proposed a 

greedy algorithm for the latter approach. Both approaches exploit the democracy 

property of measurements from randomized measurement systems. 

In our experimental results, we find that the given enough initial measurements, 

the rejection and consistent approaches outperform the conventional approach for 

quantization with saturation. We also find that best performance in these new meth­

ods occurs when the saturation rate is nonzero, implying that the gain for CS systems 

should be tuned to allow some saturation. 

Our reconstruction approaches are not limited to quantization with saturation. 

Any application where highly corrupted measurements can be easily detected can 

employ similar techniques to those described in this paper. For instance, some sensors 

such as the photo-diode used in the CS camera [10], have a linear regime that produces 

low distortion measurements and a non-linear regime that produces high distortion 

measurements. 

Beyond proposing and demonstrating the benefits of our approaches, we also 

proved the claim that CS measurements are M-democratic for a large class of random 
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matrices. This means that once a M x N matrix is drawn, every M x N submatrix 

has the RIP. 

The democracy property can be used in additional applications. For instance, it 

can be used to show that CS measurements are robust to erasure channels when using 

a similar transmission methodology as fountain codes [34] or when applying CS as an 

multiple description coding (MDC) [35] code. 
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Appendix A 

The expected error of quantized and saturated 
measurements 

In this Appendix, we analyze the mean squared error of Gaussian measurements due 

to quantization and saturation. Although the CS measurements described in this 

work are technically not Gaussian, since both the signal x and the matrix $ are 

deterministic, if we were to suppose that the coefficients of the input signal x are 

drawn from a random distribution, then by the Lapuyanov variant of the central 

limit theorem [36], for large enough K, the measurements will be Gaussian. Thus, to 

motivate why saturation is undesirable, we demonstrate that the expected error on 

the saturated measurements quickly becomes large for decreasing saturation levels. 

The setup is as follows. Let each measurement y be drawn according to J\f(0, a) 

and set the saturation level to be G. We denote the error on the measurements that 

are below the saturation level as €Q, the error above the saturation level as 65, and 

the total measurement error as e = €Q + es- Without loss of generality, we choose 

a = l. 

We now compute the error on quantized measurements below and above the sat­

uration level. Using the quantization interval A = 2~B+1G, the distribution of the 
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error of the quantized measurements can be written as: 

a wrapped truncated Gaussian random variable, and bounded by ±A/2 . For small 

quantization intervals the distribution can be well approximated by a uniform distri­

bution in the same interval, with variance A2/12 [37]. Applying this assumption, and 

the fact that the expected saturation rate is 2MQ(G), the expected squared norm of 

the quantization error on the measurements that do not saturate is 

E\\e~Q\\2 = M(l-2Q(G))A2/12 (A.2) 

= 2~2BMa2(l - 2Q(G))G2/3. (A.3) 

If we keep the saturated measurements, the expected measurement error is equal 

to: 

where 

E\\4t = M ((1 - 2Q(G))G2^ + 2Q(G)o(j , (A.4) 

/ 2~2B \ 
= MU1- 2 Q ( G ) ) G 2 — + 2Q(G)4j (A.5) 

a2 = -gLxp j ^ } + (1 + G2)Q(G), (A.6) 

the variance of the tail distribution for a standard Normal random variable, as trun­

cated by the saturation. This result can can be found in [16] and the explicit derivation 

of this is given by the Proposition at the end of this appendix. 

In Figure A.l, the dash-dotted line depicts the expected error per measurement 

due to both saturation and quantization and given by (A.4). The dashed line rep-
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Figure A.l : Measurement error. Dash-dotted line: Expected measurement error due 
to quantization and saturation (A.4). Dashed line: Expected measurement error due 
to quantization only (A.2). 

resents the expected error per measurement for the unsaturated quantized measure­

ments only, given by (A.2). Both quantities are depicted as a function of G. We see 

that as the saturation rate increases, the expected measurement error increases sig­

nificantly, however, the expected error for just the measurements that do not saturate 

decreases steadily. 

Proposition 1. Let each element yi of y be drawn from a Gaussian distribution 

with mean zero and variance a2. Let S+ and S— correspond to the indices of the 

positive and negative saturated measurements, respectively, with magnitude above the 

saturation level G and let ys+ and ys~ denote those measurements. We define the 

vector 

(A.7) 

and denote the cardinality ofy as £. Then the expected squared error due to saturation 

o 0.03 
LU 

" 0.02 o 
E 

CO 
CO 
CD 

0.01 

rs+ 

-y s-



IS 

B {II*-Gig}- Co»[̂ g«xp { # } + ( ! + $)«(?)] ' <A-8) 

Proof. 

E{\\y-G\\2
2} = (E{(y-G)2}, y>G 

/•oo 

= < / (v - Tfv(y)dy 

_ r *-•*% + 0 ^ 
JG o-y/2-K 

= C[(A15) + (A18) + (A19)] 

= C*2 

Where the first term from (A.11) is, 

7\/2TT 
(-a2yexp{f£\}\ 

-2G 

IOO 

^JJ\G 

+ IG '~a% exP {^S} dv\ 
n a'U {-G2\ 2„{G 

the second term from (A. 11) is, 

-2G 

a\/2n [yeA^ ^i\dX = 

^ 

-2G 

aV2~TT 
2Ga2 t 

V2n 
-2Ga2 f -G' 

I —a2exp 

0 — exp 

m: oo 

-G2 

2a2 

and the third term from (A. 11) is, 

G>:r«"{^}*-cj«(: 
aV2TT a . 

(A.9) 

(A.10) 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

, (A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 
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Appendix B 

Preservation of inner products 

Theorem 3. Given an M x N matrix $ with K-RIP and vectors u and v of length 

N such that u — v is K-sparse, then the difference of the inner products is bounded 

as 

2 
•($u, $v) - (u,v) < £T7H|2 | |V| |2 . (B.l) 

b + a \b + a 

Proof. The derivation of (B.l) is as follows. Consider the following property of $ 

applied to vectors u, v: 

o||u - v||l < | |$u - $v||2 < 6||u - v| | | . (B.2) 

By the RIP of $, this is true for z that are /^-sparse, where z = u — v. We assume 

that | |u| |2=||v| |2 = l. Additionally, we have the property 

| |u±v | |2 = ||u||2 + | |v | |2±2(u,v) , (B.3) 

and thus from (B.2) we have 

a < ll»»±*v|IS < ,. (B.4) 
- 2 ± 2 ( u , v ) ~ v ' 

The parallelogram identity states that, 

| ($u ,$v) | < - | | | $u + $ v | | ^ - | | $ u - $ v | | ^ | (B.5) 

< -|26 + 2 6 ( u , v ) - 2 a + 2a(u,v))| (B.6) 

^ b — a b + a . . /r, ^ 
< ^ ^ + ^ r - ( u , v ) . (B.7) 
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By replacing | |$u + $v | | | with | |$u — ^>v||| and vice versa in (B.5), we can also find 

that 

i/-, , 1 1 b — a b + a . . 
| <$u ,$v ) |< — =-(u,v>, (B.8) 

and thus, achieve the bound: 

b + a 
($u, $v) - (u, v) < 

b — a 
b + a' 

Since u and v are unit norm, we can write this expression as 

u v 
b + a \ u 2 v||2 

u 
U 2 V 2 

and thus, from the bilinearity of the inner product we obtain the result: 

b + a 
($u, <3>v) - (u, v) < 

b — a. 
b + a1 |U | | 2 | |V | | 2 . 

(B.9) 

(B.10) 

(B.11) 

D 

Corollary 1. If the elements of the $ u and $v are uniformly quantized with quan­

tization width A, denoted by i?($u) and i?($v), then the difference of the inner 

products is bounded by 

b + a 

b — a 

{R(*u),R(pv))-{u,v) < 

b + a 

I U A 2 \ 

|u||2||v||2 + ( 6A\/MH — ] ||U||2||V||2. •) IN 

Proof The derivation of (B.12) is as follows. We will show that 

A2 

|(fl($u),f2($,v))| < ( $ U , $ V ) + 6 A V M + M — , 

(B.12) 

(B.13) 



48 

and thus, 

b + a 
(R($u),R($v))-(u,v) < 

b + a 
($u, $v) — (u,v) i— A 2 

4 

(B.14) 

(B.15) 

We then obtain the stated result by applying (B.l) to (B.14). 

Without the loss of generality, assume that ||u||2 = ||v||2 = 1. The quantized 

measurements can be written as R($u) = $ u + ei and i?($v) = $v + e2 where ex 

and e2 are error vectors with each element bounded between —A/2 and A/2. Thus, 

we can write 

(i2($u),jR($v)) = ($u + e 1 ,$v + e2) 

= ($u, $v) + ($u, e2) 

+($v,e 1 ) + (ei,e2). 

(B.16) 

(B.17) 

(B.18) 

The magnitude of the cross term ($u, e2) can be bounded as 

| ( $ u , e 2 ) | < 6 | | u | | 2 | v / M = ^ v / M , (B.19) 

and from (<3>v, ei) we can obtain the same upper bound. Finally, we can bound the 

inner product of the two errors as 

A2 

< e i , e 2 > | < M T . (B.20) 

and thus, our claim in (B.13) holds and we achieve the desired result. • 
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Appendix C 

Consistent recovery via fixed point continuation 

The algorithm fixed point continuation (FPC) [38,39] has been used for recovery of 

sparse signals within the CS framework. In this appendix, we demonstrate how this 

algorithm can be modified for consistent recovery with saturated measurements. Our 

approach closely follows that of [25] by employing a one-sided quadratic function to 

ensure consistent reconstruction. We define $ , 1 , and elements with (•) as in Section 3. 

To solve the program defined by (3.3), saturation consistent FPC (SC-FPC) finds 

the solution to 

x = argmin ||x||i + ^ | | $ x - y||^ + fih ( 4 x - G • l ) (C.l) 

where h(-) is a one-sided quadratic penalty defined as 

{ f, Vi < 0 
(C.2) 

0, yi>0. 

This function is applied element-wise to a vector as h(y) = ]TV My0ej where ej is the 

ith canonical vector. Thus, in words, this program seeks find the x with minimum 

i\ norm, with a quadratic penalty on the measurements that did not saturate and a 

one-sided element-wise quadratic penalty on those that did. 

The steps of the SC-FPC are enumerated in Algorithm 2. The initialization and 

stopping criteria are taken from [39]. The latter rely on proven FPC convergence 
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results. The algorithm consists of two loops, the outer loop which serves to update 

the parameter //, used in an £i gradient descent, and the inner loop which performs a 

gradient descent on the quadratic penalties. The primary modification to the original 

FPC is in the calculation of the gradient step, but we provide the details of each step 

of the algorithm for completeness. A detailed analysis of this algorithm is given in 

[38]. The inner loop steps are as follows. 

Step 5 computes the gradient of the quadratic components of the cost function 

with respect to x. Specifically, this is 

^ Q | | S x - y||ij + h ( $ x - G • l)\ = $ r ( $ x - y ) + $Th' ( $ x - G • l ) , (C.3) 

where the each element of the derivative of the one-sided quadratic is 

y%, Vi<0 
h (y)i = { (C.4) 

0, 3/i > 0. 

Step 6 performs gradient descent on the current estimate x'™' with respect to 

the cost function to produce an intermediate vector b = x'nl — rg. We choose the 

parameter r to be the same as the heuristics given for the original FPC. 

Step 7 performs the descent on lx component of the cost function by finding the 

solution to 

x = nun||x||1 + | : | | x - b | | * . (C.5) 

This can be efficiently computed via the shrinkage function, 

shrink(b,T/JJ) = sign((b)j) -maxj |(b)j| ,0 L (C.6) 
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applied to each element (b)j of the vector b. 

These steps are repeated until the convergence criteria are satisfied. 
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Algorithm 2 Saturation consistent FPC 
1: Input:y, <&,G,p,,xtol, and gtol 

2: Initialize: r <— 2 - e, 77 <— 4 x ^ <— r • $ T y , // <— ..^j 1 , , , n <— 0 

3: while /u < /Z do 

4: w h i l f l ^ - ^ ' ^ r i o i or /* • HglU > stof do 

5: Compute gradient: 

g <- $ T ($xH - y) + $Th' ($xN - G • l ) 

6: Gradient descent: 

b <- xW - r • g 

7: Shrinkage: 

X[n+U ^_ signCCb),) • maxJKb)^ - £,0} 

8: Update iteration: 

n <— n + 1 

9: end while 

10: Update ix: 

fi <— min{r7 • //, p,} 

11: end while 
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Appendix D 

Proof of the democracy of Gaussian matrices 

D . l Concent ra t ion of measure 

In the proof of Lemma 1 we make use of order statistics. Given a sequence of i.i.d. 

random variables that have been sorted from smallest to largest, an order statistic is 

the distribution of the variable at a particular position. To make use of this, we first 

present the formal definition with notation of an order statistic and then the proof. 

Definition 1. Letyi fori = 1 , . . . , M be a sequence of i.i.d. random variables. Denote 

VM-M t° be the M-th largest element when the sequence is ordered from smallest to 

largest. Then yj^.M is called the M-th order statistic of the M variables. 

Lemma 1. Suppose that & is an M x N matrix whose entries <pij ~ A/"(0,1). Let 

a G (0,1), (3 6 (1, oo), and 0 < M < M be given. Then for any x G RN, we have 

that 

aMMl < ||$rx||^ < (3MM\ (D.l) 

holds for all sets T with \T\ = M that index the rows o / $ with probability exceeding 
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1 — Pa — Pp, where 

2 / eAa ^M p^MM^m (D-2) 
r(i-2Q(UVT+2X)) c_u2/2 

Jo (1 - 2Q(u))M+i 

for all A > 0 and 

(1 - 2Q(u))M+1 

x % ( M , 1 - 2Q(u))du, 

~ Pi ( e~xli \M 

X 
h Q(t)"(l-2Q(t)) Q(t)M{l-2Q(t)) 

x Btf(M,2Q(t))dt, 

for all A G (0, \). In each bound 

Mn,P)=(%d(l-p)n-d (D.6) 

is i/ie Binomial distribution function and Q(z) = -4= £ °° e_ t /2dt is the tail integral 

of the standard Gaussian distribution. 

Proof: First observe that it suffices to prove the lemma for the case where 

||x||2 = 1 since both the norm and submatrices of $ are linear. Thus, assume without 

loss of generality that ||x||2 = 1. We now wish to obtain upper and lower bounds on 

||$rx||2 where <&r is an arbitrary M x N submatrix of $. A key observation is that 

in order to establish (D.l) we do not need to consider every possible submatrix, since 

any submatrix can be bounded by two special cases. For the lower bound we need 

only consider the matrix obtained by selecting the M rows of $ corresponding to the 
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M entries of $ x with smallest magnitude, since by removing the largest entries we 

decrease the norm by the maximum amount possible. Similarly, for the upper bound 

we need only consider the matrix obtained by selecting the M rows of $ corresponding 

to the entries of $x with largest magnitude. We will let y = $ x denote the random 

vector obtained by retaining all rows of $. 

We begin by deriving the lower bound. Let the function U(y) map y to the M 

smallest magnitude elements of y and let f^.M(u) be the PDF of |z/i|j^.M, the order 

statistic of the M-th largest magnitude element of y. If for a particular instance 

of y, u is the value of M-th largest magnitude element of y, then we have that 

U(y) = {.Vi '• \Vi\ ^ u}- We begin by considering 

Pa = F(\\U(y)\\2
2<aM) (D.7) 

/•oo 

= / n\\y\\l <aM\u)fM.M(u)du. (D.8) 
Jo 

We will estimate P(| |y| | | ^ aM\u) using Markov's inequality, from which we observe 

that for any A > 0 

P(||y||l < aM\u) (D.9) 

= P (>IWIi < eXa^\u) 

< 
E ( e - « | « ) 

g—XaM 

n£iE(e-^|u) 
Q-XaM 

E(e-^\u\ 
M 

e—\aM 
(D.10) 

where the last two steps follow since the yi\u are independent and identically dis-
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tributed. We now wish to compute E(e_Ayi \u). In order to do so, we must determine 

the distribution of yi\u. We begin by observing that since fcj ~ JV(0,1) and ||£||2 = 1, 

we have that yi ~ A/"(0,1). Thus, the PDF of yi\u is given by 

f(yi\u)= (D.n) 

(D.12) 
_ _ — I e

_ 2 / i / 2 Ir/i I < u 
V^F-(l-2Q(u)) C ' | y i 1 - " 

o, \yi\>u, 

where Q(z) = -A= fz °° e~l /2dt is the tail integral of the standard Gaussian distribu­

tion. 

Returning to (D.10), we can now write that 

/

oo 
e-Xylf(yi\u)dyi 

-oo —oo 
2 

2 e -V?/2 

2TT(1 - 2Q{u)) 
= [\-W^=^———-dyi 

J —u 

1 - 2Q(uVT+2X) 

(1 - 2g(«))Vl + 2A 

V1T2 
^ ( 1 - 2Q(«V1 + 2A)) 

r v /TT2Ae-^(1+2A)/2 , 
X / —r^T. T^Z, u . „ ^ ^ J / 1 

J—u 

1 - 2Q(uy/l + 2A) 

( l -2Q( i i ) )VTT2A' 

for any A > 0, where the last equality follows since the integrand is the PDF of a 

truncated Gaussian random variable, and hence integrates to 1. 

Thus, by substituting the bound (D.9) we obtain 

/ l-2Q(uVT+2X) \ M 

r>*l f ' " y J &«(«)*- (D.13) 
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We complete the proof of the bound on Pa by applying the expression for JMM(U)I 

'2 Ml 

T ( M - 1 ) ! ( M - M ) ! 

x (1 - 2Q{u)f-\2Q{u))M-^e-u2/2. (D.14) 

We derive this PDF using the fact that the magnitudes of the elements are distributed 

a s \Vi\ ~ Xi> a standard chi distribution, and the standard formula for the PDF of an 

order statistic [40]. 

In order to establish Pp, we define T(y) to be a function that maps y to the M 

greatest magnitude elements of y and f{M_M):M(t) to be the PDF of \yi\{M_M):M, 

the order statistic of the (M — M)-th largest magnitude element of y. To find Pp = 

P(||T(y)||2 > /3M), we again apply Markov's inequality to obtain that for any A > 0 

_ E (eA^ | t) 
n\\y\\l >PM\t)< V

 gA/?~
 J (D.15) 

where t denotes the value of the M — M-th largest (or M-th smallest) magnitude 

element of y. This bound follows from the same argument used to establish (D.10). 

In this case, y\ has the PDF given by 

{ 0, lyil < t 

(D.16) 
* e

_ 2 / i / 2 |«i I > t 
One can now use the same approach as before to establish that 

E ( e * | 0 = 2 £ ^ , (D .17) 
for all A G (0, \). Thus, Pp is bounded as 

P^J0 I ^ P ) f(M-My.M(t)dt. (D.18) 
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We substitute the expression for / (M-MVMW> 

<~2 M l 

*(M-M-1)\M\ 

x (l-2Q(t))M-M-1(2Q{t))Me-t2/2, (D.19) 

and use the identity 

BM_M(M, 1 - 2Q(t)) = BS(M, 2Q(t)), (D.20) 

to complete the proof. • 

D.2 Democracy 

Theorem 2. [Democracy] Suppose that <& is an M x N matrix with entries faj ~ 

A/"(0,1/M), where 0 < M < M. Let a > 0 and b > a be given. Then with probability 

at least 1 — PF, we have that all M x N submatrices <3>r of $ satisfy 

a||x||l < ||$x||2 < 6||x||| (D.21) 

/or all x G E/^, where 
jr 

P F < ( ^ Y (Pa + P/j), (D.22) 

/or 0 < e < (Vb - y/a)/2y/b. 

Proof: First note that it is enough to prove (D.21) in the case ||x||2 = 1, since 

all submatrices of <E> are linear. Next, fix an index set / C {1 ,2 , . . . , N} with | / | = K, 

and let Xj denote the if-dimensional subspace spanned by the columns of $ indexed 

by / . We choose a finite set of points Si such that Si C X / ; ||s||2 < 1 for all s G Si, 
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and for all x G Xj with ||x||2 < 1 we have 

m i n | | x - s | | 2 < e. (D.23) 
se5/ 

One can show (see Ch. 15 of [41]) that such a set Si exists with \Si\ < (3/e)K. 

We then repeat this process for each possible index set 7, and collect all the sets Si 

together 

S = |J Si. (D.24) 
I:\I\=K 

There are (£) < (eN/K)K possible index sets I, and hence \S\ < (3eN/eK)K. We 

now use the union bound to apply Lemma 1 to this set of points with a = (^/o+eVo)2 

and P = 6(1 — e)2, with the result that, with probability exceeding (D.22) we have 

a||s||2 < | |$ rs | |2 < p\\s\\l, for all s G S. 

One can easily check that provided that e < (Vb — -v/a)/2-\A, a and /3 satisfy 

fVb-^EY a a<{-^—) </?-
We now define B as the smallest number such that 

H^xH2. < B||x||^, for all x G Y.K, ||x||2 < 1. (D.25) 

Our goal is to show that B <b. For this, we recall that for any x G T,K with ||x||2 < 1, 

we can pick a s G S such that ||x — s||2 < e and such that x — s G £#- (since if x G Xi, 

we can pick s G Si C Xi satisfying ||x — s||2 < e). In this case we have 

| |$ rx| |2 < | |$ rs | |2 + | |$ r (x - s)||2 < v ^ + y/Be. 
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Since by definition B is the smallest number for which (D.25) holds, we obtain y/~B < 

y/]3 + y/Be, which upon rearranging yields y/B < y/]3/(l — e) = \/6 as desired. We 

have thus proven the upper inequality in (D.21). The lower inequality follows from 

this since 

| |$ rx| |2 > | |$ rs | |2 - | |$ r (x - s)||2 > yfc - Vie = yfa, 

which completes the proof. • 
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