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ABSTRACT 

Lung Carcinogenesis Modeling: Resampling and Simulation Approach to Model Fitting, 

Validation, and Prediction 

by 

Millennia Foy 

Because of serious health implications, lung cancer is the leading cancer killer for 

both men and women. It is well known that smoking is the major risk factor for lung 

cancer. I propose to use a two-stage clonal expansion (TSCE) model to evaluate the 

effects of smoking on initiation and promotion of lung carcinogenesis. 

The TSCE model is traditionally fit to prospective cohort data. A new method has 

been developed that allows reconstruction of cohort data from the combination of risk 

factor data from a case-control study, and tabled incidence/mortality rate data. A 

simulation study of the method shows that it is accurate in estimating the parameters of 

the TSCE model. 

The method is then applied to fit a TSCE model based on smoking history. The 

fitted model is then validated in two ways. First the model is used to predict lung cancer 

deaths in the non-asbestos exposed control arm of the CARET study, where the model 

predicts 366.8 lung cancer deaths while there were 364 observed. Second, the model is 

used to simulate LC mortality in the US population and reasonably reproduced observed 

US mortality rates. 
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The model is also applied to a study of CT screening for lung cancer. The study is 

a single arm CT screening study lacking a control arm for comparison. The model is used 

to simulate LC mortality in the absence of screening to serve as a surrogate control arm 

for comparison. Based on the model there is a statistically significant mortality reduction 

of 36% due to CT screening. 
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Chapter 1 

Background and Significance 

1.1 Introduction 

Lung cancer is the second leading cancer in terms of incidence for both men and 

women, second to prostate cancer for men and breast cancer for women. However, 

because of its serious health implications, lung cancer is the leading cancer killer for both 

men and women worldwide (Coleman et al 1993, NIH 2007). Once a patient is 

diagnosed, the prognosis is so poor that incidence data are often assumed to be equivalent 

to mortality data. Less than half of newly diagnosed cases live 1 more year. The 1-year 

survival rate increased from 37% in 1975 to 42% in 2000 while the 5-year survival rate 

for newly diagnosed cases is only 15% (Cancer Facts and Figures (CFF) 2009). The 

modest increase in 1-year survival could be due to advances in treatment such as surgical 

techniques, or the implementation of screening in some individuals. Although, screening 

for lung cancer is not yet recommended, some doctors are using chest x-ray or CT to 

screen for lung conditions in their patients. Lung cancer is a serious public health issue 

that needs to be studied in order to prevent lung cancer in those who do not have it, and 

improve survival in those who have been diagnosed 
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The goal of this project is to use carcinogenesis modeling, specifically the two-

stage clonal expansion (TSCE) model in conjunction with maximum likelihood methods 

to estimate the effects of different risk factors on the development of lung cancer. Since 

the TSCE model is incidence based, it is normally fit to prospective cohort data. For this 

study, cohort data is unavailable but case-control data on risk factor exposure and tabled 

age-specific mortality rates are available. This prompted the development of a new 

method of fitting this model by reconstructing cohort data using re-sampling. A 

simulation study reveals that the proposed method is accurate in fitting the parameters of 

the TSCE model in the case where there are no known exposures. 

Risk factors for lung cancer have been extensively researched. The main risk for 

lung cancer comes from tobacco smoke, including smoking but also to a lesser extent 

exposure to second-hand smoke. Other risk factors for lung cancer include exposure to 

radon, asbestos, and air pollution. Also, genetics plays a role as having a family history of 

lung cancer increases risk for lung cancer (NIH 2007). Findings from epidemiological 

studies on risk factors will be discussed in the background section. 

In this thesis, I use a new resampling based method to reconstruct time to event 

data from the combination of case-control data and incidence/mortality rate data. Using 

the method, I fit a TSCE model based on smoking history. Using simulation, I validate 

the model against the heavy-smokers control arm of CARET. Also, using the CISNET 

smoking history generator, the model is able to simulate US LC mortality rates. 

In 2006 as part of Li Deng's thesis and later published (Deng et al. 2009), the 

TSCE model was fit to MD Anderson case-control data on lung cancer using least 

squares estimation. Deng used the model to examine the effects of smoking and DRC on 
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lung carcinogenesis in current and never smokers exclusively. My model will differ not 

only in the method used for fitting, but on the risk factors included and the inclusion of 

former smokers. 

Background information on lung cancer mortality trends, and known risk factors 

for lung cancer follow in the remainder of this chapter. The following chapter details the 

history of carcinogenesis models as well as describes the model for this study. It also 

describes the two-stage clonal expansion (TSCE) model and introduces a new method 

allowing for the model to be fit to case-control data instead of the traditional prospective 

cohort data. This thesis also includes simulation studies used to validate the accuracy of 

the method in fitting the parameters of the TSCE model. A fitted smoking based TSCE 

model is presented along with model validations. The model is then applied to a study of 

CT screening for lung cancer to determine the effectiveness in reducing lung cancer 

mortality. Discussion and future considerations are included in the final chapter. 

1.2 Epidemiology of Lung Cancer 

There are 2 major cytological types of lung cancer: non-small cell lung cancer 

(NSCLC) and small cell lung cancer (SCLC). NSCLC makes up 87% of newly diagnosed 

lung cancers and is classified according to three different types. Squamous cell 

carcinoma makes up about 25% to 30% of all lung cancer diagnoses. This type of lung 

cancer tends to be located in the middle of the lungs near the bronchus. Adenocarcinoma 

accounts for 40% of lung cancer diagnoses and develops in the mucus producing glands 

of the lungs. It is the most common lung cancer among women and never smokers. 

Large-cell undifferentiated carcinoma tends to grow rapidly and can start in any part of 
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the lung. This type of lung cancer accounts for 10% to 15% of lung caner diagnoses. 

SCLC makes up 13% of lung cancers and is characterized by small cells that multiply 

quickly forming large tumors that spread throughout the body quickly (NIH 2007). 

1.3 Temporal Trends in Lung Cancer Mortality 

As shown below the age-adjusted lung cancer mortality rates for men have been 

decreasing for almost 20 years while the women's rates have just stabilized. Women's 

rates of lung cancer are expected to also decline because their prevalence of smoking has 

been decreasing. African-American and white females have similar lung cancer mortality 

while African-American males have about a 50% increased mortality when compared to 

white males (Ries et al 1991). However, other races observed including: Hispanics, 

Native Americans, Alaska Natives and Pacific Islanders, have a significantly lower lung 

cancer mortality than whites and African-Americans. Mortality is chosen so that 

comparisons can be made between SEER and the Texas Cancer Information Center, 

which as of now only provides rates for mortality. 

Surveillance Epidemiology and End Results (SEER) (National Cancer Institute) is 

a comprehensive database on cancer incidence in the United States. SEER provides data 

on cancer incidence, mortality and survival from 15 population-based cancer registries in 

the United States. SEER currently includes information on approximately 26% of the US 

population. 

The Texas Cancer Information Center (Texas Cancer Registry), formerly known 

as the Texas Cancer Data Center tracks mortality on the different types of cancer in 

Texas. From this data center, Texas lung cancer mortality for selected years by age, sex, 
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race, and geographic area can be obtained. As of now, Texas is not included in SEER. 

One major difference between the Texas Registry and SEER is that the race Hispanic is 

defined as a separate race class in the Texas Cancer Registry. This resource will also be 

providing cancer incidence information in the near future. 

As seen in the graphs on the next page, overall Texas and SEER mortality rates 

are similar in both men and women. 

Age-Adjusted Lung Cancer Mortality- Males 
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Figure 1.1 Age-adjusted lung cancer mortality rates for males 
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Age-Adjusted Lung Cancer Mortality Rates- Females 
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Figure 1.2 Age-adjusted lung cancer mortality rates for females 

Although data is collected on Hispanics, data on Hispanic heritage is collected separately 

from race. So, Hispanics can be included in any of the race assignments, whites, blacks, 

and other. Other races in SEER include American Indians, Alaska Natives, and Pacific 

Islanders. 

1.4 Risk Factors for Lung Cancer 

The primary risk factor for lung cancer is smoking but there are other known risk 

factors including exposure to asbestos, radon, and secondhand smoke. There is also 

known to be a genetic risk effect because relatives of individuals with lung cancer have a 

higher risk of developing lung cancer themselves. 
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1.4.1 Smoking Tobacco 

Tobacco has been used for centuries all over the world. However, following the 

introduction of manufactured cigarettes with addictive properties the incidence of lung 

cancer has risen rapidly. Scientist in Nazi-era Germany carried out the first studies on the 

relationship between smoking and lung cancer (Proctor 1999). By the 1950's case-control 

trials in both the United States and Britain showed a strong association between cigarette 

smoking and lung cancer (Doll and Hill 1950, Levin et al. 1950, Wynder and Graham 

1950). The causal relationship between smoking and lung cancer was confirmed by large 

cohort studies including the British Physicians' Study, and the American cancer society's 

Cancer Prevention Study (US DHEW 1964). As lung cancer incidence is tracked over 

time it has been shown to follow cigarette consumption trends (Wingo et al. 1999). Cigar 

and pipe smoking has also been shown to be a risk factor for lung cancer, but on a much 

lower scale than cigarette smoking (Boffetta et al. 1999). The lower risk associated with 

smoking tobacco in these forms can be explained by the increased amount of 

carcinogenic additives in manufactured cigarettes (Alberg and Samet 2003) and by 

inhaling cigarettes' smoke deep into the lung as opposed to just the mouth and throat 

when smoking pipes and cigars (Alberg and Samet 2003). 

1.4.2 Secondhand Smoke 

Exposure to secondhand smoke (SHS) has been shown to be a risk factor for lung 

cancer (Brennan et al. 2004, Gorlova et al. 2006, Vineis et al. 2005, Surgeon General's 
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Report 2001 and 1986, NIH 1999, National Research Council (NRC) 1986, EPA 1992, 

I ARC 2002). 

An EPA report published in 1992 indicated that SHS was causally associated with 

increased lung cancer risk (Brown 1992) resulting in an additional 3,000 deaths from 

lung cancer per year. This was determined through a meta-analysis of 30 spousal 

exposure studies where never-smokers that lived with smokers were compared with those 

that did not. Further studies concluded that there was an increased risk of 20-25% of LC 

for never smokers that were exposed to SHS through their spouse or workplace. 

1.4.3 Environmental Exposures 

Workplace or residential exposures such as radon, asbestos, arsenic, silica, and 

chromium have also been shown to increase risk of LC (International Agency for 

Research on Cancer 1986, Alberg et al. 2005, Gottschall 2002, Neuberger and Field 

2003). Many of the workplace exposure risk factors have been shown to have a 

synergistic effect when combined with smoking, meaning that the risk for smokers is 

increased more than additively for each risk factor. 

Radon is a radioactive gas that is produced when uranium from rocks and soil 

decays. Underground mines contain high levels of radon gas. Studies of uranium miners 

(Lubin et al. 1994) and animal studies (Cross 1994) have established a causal relationship 

between radon gas and LC. Although radon is a major exposure for uranium miners, it 

has also been found to be present in people's homes. 

Asbestos is a substance made of long thin fibers used by manufacturers in the late 

19th century due to its resistance to heat, electricity and chemical damage. Inhalation of 
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asbestos fibers has been causally linked to many respiratory illnesses including LC 

(Selikoff et al. 1964). 

There is some belief that air pollution may cause lung cancer because of all the 

known carcinogens that are in the air. Taking into account the large daily human 

consumption of air, even low levels of carcinogens can be a health concern. Extrapolation 

about the known risks of lung cancer by the occupational exposures gives evidence to the 

conclusion that air pollution may be a risk factor for lung cancer (Doll and Peto 1981, 

Friberg and Cederlof 1978, Doll 1978). 

1.4.4 Pre-existing Lung Disease 

There are two main categories of lung disease. The first includes disorders that 

obstruct airflow such as chronic obstructive pulmonary disease (COPD), and in its most 

severe from, emphysema. The second group includes disorders where lung capacity is 

restricted due to inhaled fibrous substances as in black lung disease. Having obstructive 

lung disease such as COPD has been shown to increase risk for lung cancer in numerous 

studies (Littman et al. 2004, Mayne et al. 1999, Tockman 1994, Wu et al 1995). 

1.4.5 Family History of Cancer 

Although smoking is the single most important risk factor for lung cancer, genetic 

factors also play a role in lung cancer development. After accounting for smoking, 

several studies have found an increased risk in relatives of lung cancer cases compared to 

relatives of lung cancer controls (Sellers et al. 1987, Schwartz et al. 1996, Schwartz et al. 
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1999; Etzel et al. 2003, Cote et al. 2005). It has also been shown that 1st degree relatives 

(parents, siblings, and offspring) of never smokers with lung cancer have an increased 

risk of LC (Gorlova et al. 2006, Wu et al. 1996, Brownson et al. 1997). 

A recent analysis of 11 studies on never smokers concluded that there was a 1.5 

fold increase of LC for those with family history of LC (Matakidou et al. 2005). This 

result has also been shown for the relatives of smokers previously diagnosed with lung 

cancer (Etzel et al. 2003, Bromen et al. 2000, Mayne et al. 1999). 

1.4.6 Genetic Susceptibility of lung cancer, DNA repair capacity 

In a recent linkage analysis, a lung cancer susceptibility region 6q23-25 was 

identified (Bailey-Wilson et al. 2004). A more recent study found evidence of association 

of lung cancer with SNPs located in 15q region spanning CHRNA3, CHRNA5, and 

PSMA4 genes (Amos et al. 2007). Also, molecular epidemiological studies have 

documented a substantially increased risk for lung cancer associated with poor DNA 

repair capacity following exposure to mutagens (Wei et al. 2000, Shen et al. 2003). In 

these studies DNA repair capacity was evaluated by a host-cell reactivation assay that 

measures cellular ability to remove adducts from plasmids transfected into lymphocyte 

cultures in vitro, by expression of damaged reporter genes. A dose-response relationship 

has been demonstrated with increasing risk associated with poorer repair capacity (Shen 

et al. 2003). DRC is modulated by polymorphisms in genes in the nucleotide excision 

repair pathway (Qiao et al. 2002), which suggest its genetic determination. However, not 

only genetic factors but also smoking tends to modulate DRC: It is highest in current 
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smokers, followed by former and never smokers (Shen et al. 2003). This can be explained 

by the cells' need for increased repair in the presence of carcinogen/mutagen exposure. 

1.5 Attributable Risks 

Attributable risks are studied to determine the estimated percentage of lung cancer 

cases caused by certain risk factors. Below is a table of the estimated attributable risks for 

some of the risk factors mentioned previously. Data is taken from Alberg and Samet 

2003. 

Table 1.1 Attributable risk to lung cancer in the US population 

Risk Factor Attributable Risk 
Smoking 90% 
Occupation exposures 9 to 15% 
Radon 10% 
Outdoor air pollution 1 to 2% 

1.6 Gender Differences in Lung Cancer 

Lung cancer may differ in women and men with respect to several characteristics 

not necessarily caused by gender differences in smoking habits. Whether there is a gender 

difference in lung cancer susceptibility remains a controversial issue. Some case-control 

studies concluded that the risk of developing lung cancer due to smoking is higher for 

women than for men (Risch et al. 1993, Zang and Wynder 1996), whereas other case-

control as well as cohort studies show that the risks are similar (Bain et al. 2004, Prescott 

et al.l 998, Sobue et al. 2002). 
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Among never smokers, it has been shown that women are disproportionately more 

affected by lung cancer than men (Subramanian et al. 2007). Even after adjusting for the 

fact that there is a larger proportion of never smoking females than never smoking males, 

there is still a small increased risk for female never smokers as compared to male never 

smokers. Wakelee et al. (2007) in the analysis of several cohorts have shown that lung 

cancer incidence in never smoking women was higher than in never smoking men for 

most of the cohorts analyzed. 

A recent finding by IELCAP investigators Henschke and Miettinen (2006) 

showed that females, with tobacco exposure similar to that in men, had a higher risk to be 

diagnosed with lung cancer on CT screen, indicating that women are more susceptible to 

tobacco carcinogens. However, an analysis by Bain et al. (2004) comparing the Nurses 

Health Study and the Health Professionals Study showed that there were no lung cancer 

incidence differences for men and women with similar smoking histories. This study also 

noted a non-statistically significant increase in the lung cancer incidence for female 

smokers above the age of 60 compared to male smokers. 

The progression rate of the disease also shows gender differences. It was 

suggested that women have slower growing tumors than men (Hasegawa et al. 2002, 

Usuda et al. 1994,). SEER data suggest that females tend to be diagnosed with a less 

advanced stage of lung cancer compared to men. However, the age at diagnosis over all 

cell types combined is slightly earlier in women than in men. SEER data show that 

postmenopausal women (older than 50) had better lung cancer survival than men in the 

same age group while there was no difference for younger females vs. males (Moore et 

al. 2003). To what extent these differences are caused by differences in smoking patterns 
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between females and males, which are substantial (Patel et al. 2004), is not clear because 

SEER data on smoking histories is not available. A TSCE model fitted to the gender-

specific data from the MDACC case-control study, the Nurses Health Study, the Health 

Professional Study and CPS-I, all of which provide information on smoking, will help 

answer these questions related to the gender differences in lung cancer progression at its 

early stages. 

1.7 Lung Cancer in Never Smokers 

Many differences between lung cancers in smokers compared to lung cancers in 

never smokers have been shown (Sun et al. 2007). First, as noted in the previous section 

women never smokers are more often affected than men. Also, there is an increased 

incidence of the adenocarcinoma histological type of lung cancer in never smokers. 

Studies from Asia including data from Japan, Hong Kong, and Singapore show that there 

is an earlier age at diagnosis for never smokers with lung cancer than smokers with lung 

cancer (Toh et al. 2006, Shimizu et al. 1984, Koo et al. 1985). However, many studies 

from the United States and Europe show that the age at diagnosis for never smokers with 

lung cancer is the same or older than that for current smokers (Dibble et al. 2005, 

Brownson et al. 1998, Muscat and Wynder 1995, Wakelee et al. 2007, Nordquist et al. 

2006). The Wakelee study included data on 9 gender specific never smokers cohorts all 

of which showed a same or later age at onset for never smokers lung cancer as seen in the 

following table. 
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Table 1.1 Median age at LC diagnosis by smoking status (Wakelee et al. 2007) 

Cohort Never 
Smoking Status 

Former Current 

Nurses Health Study, 
female 64 68 64 

Health Professionals' 
Follow-up Study, male 67 71 68 

California Teachers' 
Study, female 67 70 67 

Multiethinic Cohort 
Study, male 72 72 69 

Multiethinic Cohort 
Study, female 72 70 67 

Swedish 
Uppsala/Orebro Lung 
Cancer Registry, male 64 71 64 

Swedish 
Uppsala/Orebro Lung 
Cancer Registry, female 67 66 63 

First National Health 
and Nutrition 
Examination Survey 
Epidemiological Follow-
up Study, male 78 72 69 

First National Health 
and Nutrition 
Examination Survey 
Epidemiological Follow-
up Study, female 71 67 62 

The lower ages at diagnosis seen in the Asia studies may be explained by more exposures 

to other risk factors including exposure to poorly ventilated fumes from cooking and the 

burning of coal. Studies have shown that cooking oil fumes, common in Asia, are a risk 

factor for lung cancer (Boffetta and Nyberg 2003). 
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1.8 Screening for Lung Cancer 

Screening for lung cancer is currently a very controversial topic. There are 3 

widely cited studies from the 1970's that all failed to show a benefit from x-ray screening 

for lung cancer (Early lung cancer detection 1984). However, advances in technology 

specifically CT, gives some hope for a screening tool for lung cancer. The 5-yr survival 

for rate for stage I lung cancer is 70% while the 5-yr survival rate for stage IV is only 5% 

(Unger 2006). If lung cancer can be diagnosed earlier when survival is better, then there 

may be hope in lowering lung cancer mortality. 

Some studies indicate a possible benefit for CT screening in Lung Cancer 

(IELCAP 2006) in terms of increased survival for stage I screen-detected lung cancers. 

However, this study is missing a control arm for comparison, and other studies dispute 

any significant mortality reduction (Bach 2007). 

1.8.1 CT Screening for LC 

The first published American study on CT screening for lung cancer was the 

Early Lung Cancer Action Program (Henschke et al. 1999, Henschke et al. 2001). 

IELCAP recently reported among participants with screened detected stage I lung cancer 

that underwent resection within 1 month of diagnosis the 10-year survival was 92% 

(IELCAP 2006) while 8 patients who declined surgery all died within the next 5 years. 

The authors argue that screening detects lung cancer at an earlier stage where curability is 
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higher leading to more lives saved. However, there is no control arm in this study with 

which to compare survival and mortality. 

Also, a measure such as survival in this type of study can be biased (Aberle 

2008). One type of bias is lead-time bias. This type of bias suggests that survival is 

increased simply because the cancer is diagnosed earlier but the diagnosis did not delay 

death from lung cancer at all. In essence, the individual discovered they were going to die 

sooner than they would have without screening, but treatment did not do anything to 

change the overall outcome. So, the time between lung cancer diagnosis and death was 

increased just because the cancer was diagnosed earlier and there was no effect on 

delaying the death. Another possible bias is length bias where screening is more likely to 

pick up slowly progressing cancers than faster growing cancers. The third bias which is 

the extreme case of length bias, is termed "overdiagnosis". The overdiagnosis argument 

is that screening mostly detects very slow-growing cancers that would not have 

progressed anyway leading to "overdiagnosis" of lung cancer in the screened group. 

Comparing the mortality in screened arm to that in a control arm is the only way to adjust 

for these possible biases. 

A recent study by Bach et al. used a previously validated model for lung cancer 

risk (Bach et al. 2004, Cronin et al. 2006) in order to simulate a control arm for 3 small 

CT screening trials. Using this method it was found that there was no reduction in 

mortality between the observed screened arm and the expected mortality from the model 

(Bach et al 2007). One major criticism of this study is that it is sensitive to the 

assumptions used in order to fit the model, and the fact that the follow-up time in the 

screening studies was too short. 
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These two studies with opposing viewpoints (IELCAP 2006, and Bach 2007) 

were published within 6 months of each other. A nice discussion comparing the 2 studies 

and their strengths and weakness was written by Black and Baron (2007). In this paper 

Black and Baron state that the best way to avoid the problems associated with these 2 

studies is using a randomized control trial (RCT) to determine if lung cancer screening is 

effective. There is an ongoing RCT of screening for lung cancer comparing CT screen 

with x-ray screen being conducted in the United States, National Lung Screening Trial 

(NLST) but there are concerns that it may not be powered to detect a difference in 

mortality because the control group is not receiving standard of care (no recommended 

screening) but is in fact being screened as well using chest x-ray. 
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Chapter 2 

Carcinogenesis Modeling 

2.1 Review of Carcinogenesis Models 

In the 1950's Armitage and Doll (1954) introduced a multi-stage model to 

describe carcinogenesis. The Armitage-Doll model described the process of 

carcinogenesis as a finite number of mutations turning a normal cell into a malignant cell. 

Normal cells undergo k distinct transformations to become malignant. This model was 

developed through the observations that for many caners, the log of incidence was linear 

in log of age. Incidence was modeled as: I(t) = ax tk~l, where t is age. This was derived 

from the following. The probability that mutation i occurs in [0,/] is ptt. Then by time t, 

k-1 
the probability that k-1, mutations occurred is (/?,/). There are (k -1)! possible 

;=1 

combinations of the mutations, only one of which is in the right order to produce the 

1 k~l 

malignant transformation. This gives the density function f ( t ) = ]~T(/?,)^ 1, 
( * - l ) ! <=i 

which leads to an incidence function of the form: I(t) = ax tk~l. 

In their 1954 paper, the model was successfully fit to English data on the 

incidence of esophageal, stomach, pancreas, and colon cancers. However, the model did 
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not seem to fit incidence data on lung, bladder, prostate, and female reproductive cancers. 

The authors suggested that these cancers did not fit because of the involvement of other 

risk factors such as smoking, and hormonal fluctuations. 

2.1.1 Two-stage Carcinogenesis Models 

It was then theorized that the poor fit could result from the fact that the Armitage-

Doll model ignores the fact that many cancers develop from the proliferation of pre-

malignant abnormal cells. In response to this Armitage and Doll (1957) introduced a 

model with two stages, the first step involving the mutation of a normal cell (NC) into an 

intermediate cell (IC), and the second step involving the further mutation of the 

intermediate cell into a malignant cell (MC). This newer model allowed for the 

proliferation of the intermediate cells by modeling it as exponential growth of the 

intermediate cells in the first stage and malignant cells escape from control in the second 

stage. 

In 1960, Kendall introduced a two-stage model in which 1st stage involved a 

subcritical birth and death process (birth rate < death rate) of the intermediate cells. The 

second stage involved a supercritical birth and death process of malignant cells. Neyman 

and Scott (1967) introduced a two-stage model where the IC's generate clones according 

to a subcritical birth and death process. 
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2.2 Two-stage clonal expansion (TSCE) Model 

With the advance of molecular biology, clonal expansion was recognized as an 

essential stage in carcinogenesis (Marks et al. 2007, Sikkink et al. 2003). Motivated by 

the idea of clonal expansion, Moolgavkar et al. (1979) established a two-stage clonal 

expansion (TSCE) model. This model is depicted as follows: 

a{t) 

lag-time 

I m 

Figure 2.1 Depiction of the TSCE model 

The TSCE model assumes that a normal cell (NC) mutates into an initiated cell (IC) 

in the first transition, according to a Poisson process with intensity v(0, where t denotes 

the age. There are X normal cells in the tissue at birth or maturity, depending on the 

tissue. Then the initiated cell duplicates or dies according to a birth-death process with 

parameters a(t) and fi{t) and forms a clone of initiated cells. Each initiated cell can also 

mutate into a malignant cell (MC) for the second transition according to a Poisson 

process with parameter ju(t). After a lag time, this malignant cell is assumed to develop 

into a cancerous tumor with probability one. The distribution of the lag-time can be 

specified and the parameters of the lag-time distribution can be fitted simultaneously with 

the parameters of the TSCE model. This model also allows for the growth of the number 

of NC's (X) through a deterministic model. 
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This modeling framework allows for evaluating the effects of different lung cancer 

risk factors on the model parameters and ultimately on cancer incidence, by making the 

model parameters dependent on the risk factors through response functions. 

2.2.1 Non-identifiability in the TSCE Model 

The TSCE model is an incidence-based model, meaning that it is set up to fit 

incidence data. One deficiency with the model is that only 4k-l of the 4k biological 

parameters v, pi, a, and /? are identifiable when fitting to data in the piecewise-constant 

parameters over k distinct time intervals. There are two widely accepted approaches to 

dealing with the non-identifiability problem. The first approach is to set the background 

mutations rates equal to each other, VO = JUQ, and assume a reasonable number of normal 

cells such as, X= 107. This approach makes use of the fact that the only the product (vju) 

appears in the survival and hazard functions. So, using this assumption will not affect 

estimates of incidence rates and risk. 

Another possible approach to the non-identifiability problem is to use a new set of 

parameters. Heidenreich et al. (1997) found that the following 4 parameters are 

identifiable when fitting the TSCE model to incidence data in the piecewise constant 

case: 

y, = v,M0 

m, Mo 

r, 
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The parameters, Y, m, y, and q have biological interpretations, yet they are less 

straightforward than the original biological based ones. Y can be interpreted as the 

initiation rate, m as the malignant transformation rate, and y as the net proliferation rate of 

the ICs. The q parameter is related to the asymptotic height of the hazard function but is 

more difficult to interpret. All of these parameters are identifiable when the model is 

fitted to incidence data. 

2.2.2 Evolution of the TSCE model 

As mentioned in the previous section, Moolgavkar et al introduced the TSCE 

model in 1979. Since then there have been many discoveries regarding this model. In the 

early 1990s Tan derived a general formula to calculate the hazard and survival functions 

of the time to first malignant cell under the TSCE model with piece-wise constant 

parameters (Tan 1991). These formulas were derived using probability generating 

functions but required a numerical approximation to solve partial differential equations. 

In 1994 the closed form solutions to the hazard and survival function of time to 

the first malignant cell were derived independently by Kopp-Schneider et al. (1994) and 

Zheng (1994) under the constant parameter setting. Then in 1996 Heidenreich showed 

that only three of the four parameters were identifiable when fitting to incidence data and 

suggested alternative identifiable parameters. 

Finally in 1997, Heidenreich was able to derive the exact hazard and survival 

functions for the TSCE model under piecewise constant parameters. This paper included 

easily programmable recursion formulas for the exact calculations and made it easier to 

use the model because it did not require numerical approximations. In this paper, 
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Heidenreich argued that in the piecewise constant setting over k subintervals of time, only 

4k-l parameters out of 4k are identifiable. This was mathematically proved in Deng's 

thesis (Deng 2006). 

2.2.3 TSCE Models Applied to Lung Cancer 

The TSCE model is widely used in risk analysis and has been used before in the 

estimation of the effects of smoking and other risk factors on transition rates and 

incidence of lung cancer. 

In 1990 Moolgavkar and Luebeck fit the TSCE model with time dependent 

parameters to data on radon induced lung tumors in rats. This model required the 

numerical approximation to calculate the survival and hazard functions. Later 

Heidenreich et al. (1999) fit the same data to the TSCE model using the exact formulas. 

This analysis also differed from the previous in that it defined two types of lung tumors in 

the radon exposed rats, incidental and fatal. 

The model has been fit to many cohorts to estimate the effects of different risk 

factors on lung carcinogenesis. In 1997 atomic bomb survivors were used to estimate the 

risk of large exposures to radiation (Heidenreich et al. 1997). Data on Colorado uranium 

miners were modeled to estimate the effects of smoking and radon exposure on lung 

cancer risk (Luebeck et al. 1999). A cohort of Chinese tin miners was used to estimate the 

effects of tobacco, arsenic, and radon on the incidence of lung cancer (Hazelton et al. 

2001). In 2006 a Canadian cohort was fit to estimate the effects of whole body radiation 

on lung carcinogenesis (Hazelton et al. 2006). More recently, the model has been applied 

to cohorts from CPS-I, CPS-II, the British Doctors Study, the Health Professionals 
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Follow-up Study, and the Nurses Health Study to estimate the effects of smoking on lung 

carcinogenesis (Hazelton et al. 2005, Meza et al. 2007). 

In this section we outline the traditional maximum likelihood approach used to fit 

the TSCE model to prospective cohort data. Then we introduce a new resampling based 

method of reconstructing cohort data from the combination of case-control data on risk 

factor dependencies and tabled incidence/mortality rate data. This method is then applied 

to a simple model. 

2.3.1 Prospective Cohort-based Likelihood 

The TSCE model is usually fit to prospective cohort data using maximum 

likelihood. The cohort likelihood is defined as the product of the individual likelihoods, 

L = Y\L j. For a fixed lag-time tiag, each Lj depends on the time of entry into the study, Sj 

2.3 Fitting the TSCE Model 

, censoring or failure time, t j , and the individual's exposure history. 

h(t j - tlag )S(tj - tlag) / S(sj - tlag) if diagnosed with cancer 

- t,m) / S(s, -1. ) otherwise 

2.3.2 Re-sampling Based Method of Reconstructing Cohort Data 

In order to fit the TSCE model to case-control data a new method was developed 

to reconstruct cohort data using the combination of case-control data and tabled 
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incidence/mortality data using re-sampling. The goal of the method is to re-sample cases 

and controls in proportions reflected in the mortality data to recreate cohort data. The 

main assumption of this method is that given all matching stratam, cases and controls 

represent a random sample from the population. Each re-sampled cohort is referred to as 

a pseudo-cohort and is created by sampling individuals. Each individual is sampled as 

follows: 

1. For each individual, the age bin (5year) in which the person 

belongs is sampled based on the number of individuals in each age 

bin of the case-control study. 

2. Based on the age bin generated above, randomly sample whether 

the individual gets cancer or not based on the estimated probability 

of an individual within the sampled age bin getting cancer within 

the 5 years spanning the age bin. 

3. Once we have an age bin, and cancer status we then sample an 

individual from the case-control dataset with the same 

characteristics and use information on their risk factor exposures. 

4. The censoring or failure time of the individual is assigned as their 

age at enrollment from the case-control dataset and the age at entry 

is assigned as 5 years prior for controls and at a randomly 

distributed age in the previous 5 years for cases. 

Ages of enrollment and exit were done this way because the cancer status was sampled 

from the probability of getting cancer over a 5-year interval. If the individual does get 

cancer during the interval the timing is sampled as uniform over the interval. 
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25,000 individuals are re-sampled from the case-control dataset for each pseudo-

cohort created. Then each pseudo-cohort is fit to the TSCE model by maximizing the 

cohort likelihood in the usual way. Two hundred pseudo-cohorts are created and fitted. 

This provides 200 joint estimates of the parameters for each simulated case-control trial. 

The overall fit is assumed to be the mean estimates over the 200 runs. 

2.3.3 Re-sampling Method Applied to a Simple Model 

To further explore this method, a simpler model was assumed. For this simpler 

model, individuals go from normal to lung cancer as a simple poisson process with 

parameter, L Under this model, we can look at the likelihood in terms of only one 

parameter. 

Under the exponential model, case-control data was simulated as outlined in the 

next section. The parameter of the exponential, A, was set as 1.5 x 10~4to approximate the 

lifetime risk of cancer as 1.5% which is comparable to the lifetime risk of lung cancer in 

never smokers. Using this new method outlined above the following negative log-

likelihood was calculated for a simulated reconstructed cohort using the simple 

exponential model. 
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Simulated Cohort, true lambda=1.5 

lambda 

Figure 2.2 Cohort likelihood applied to reconstructed pseudo-cohort data 

Using the fitting regime outlined the following results were obtained for fitting the simple 

exponential model: 

Table 2.1 Results of fitting the exponential model using the resampling method 

parameter true value mean fit LCL95% UCL 95% 

k x 104 1.5 1.507 0.978 1.943 

The accurate results for fitting the simple exponential model using the new re-sampling 

method indicated that the method has promise for fitting the TSCE model to case-control 

data and prompted further simulation studies. 
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Chapter 3 

Simulation Studies 

Simulation studies were conducted on the accuracy of fitting the TSCE model 

using the resampling based method of reconstructing time to event data from the 

combination of case-control data and incidence/mortality rate data. This was compared to 

the accuracy in fitting traditional prospective cohort time to event data. 

3.1 Simulation Methods 

Simulations studies to examine the efficacy in fitting the background rates (in the 

absence of risk factors) of the TSCE model to simulated data were carried out using the 2 

different parameterizations to both traditional cohort data and using the new re-sampling 

method on case-control data. The background rates were used because they are often the 

hardest to estimate particularly in the case-control setting. 

First, individuals were simulated using the following simulation routine suggested 

by Kaiser and Heidenreich (2004). 

1. For each individual a death of other causes time, td , distributed as 

N(80,152) was simulated. 
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2. Then the probability of not developing cancer by age td was 

calculated according to the TSCE model: pTSCE = S (td). 

3. Then a uniform(0,l) random variable, u, was drawn. 

a. If u < pTSCE then time of censoring is td and no cancer 

develops during the individual's lifetime. 

b. If u > pTSCE then cancer develops during the 

individual's lifetime and is diagnosed at age, t, computed 

by inverting the survival function, u = S(t). 

Simulating 1,000,000 individuals creates a population. The population is then truncated 

to only include individuals aged 30-84. The tabled age-specific (5 year bins) incidence 

rates are then calculated from the simulated population for use in the resampling method. 

The simulation of cohorts is done by randomly sampling 25,000 individuals from the 

simulated population. For simplicity, the age at entry to the study is assumed to be birth 

for all individuals, and the lag-time from birth of the first malignant cell to lung caner is 

assumed to be zero. 

The simulation of each case-control study is done by randomly sampling cancer 

cases from the simulated population with ages of diagnosis in the range 30-80, 

comparable to entry criteria. Then an age at enrollment is simulated as N(55,10 ) for the 

controls (all the individuals in the simulated population that did not get cancer). This age 

at enrollment is reflective of the ages of unmatched controls in the MD Anderson case-

control data. The controls are then sampled from the population with ages of enrollment 

within 5yrs of the ages at diagnoses of the cases sampled previously. Each simulated 

case-control study consists of 1,500 cases and 1,500 controls. 
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3.2 Simulated TSCE Parameters 

The following sets of parameters were used to simulate the populations based on 

the 2 methods of dealing with non-identifiability. The values chosen come from two 

studies fitting the TSCE model. The biological parameters come from a study by 

Hazelton that fit to the males of the CPS-I study and the identifiable parameters come 

from a study by Heidenreich fitting males in a large German case-control study. 

Biological parameters with constraints (Hazelton 2005): 

a0 = 22.65 

Vo = ao ~ Po - Mo = °-075 

ju0=v0= 1.4 xlO"7 

X = \07 

Identifiable parameters (Heidenreich 2002): 

^o =VoMo = 0.1 lx 10~7 

So = « o " A ) -Mo =0.134 

= ("So + Vso + 4 a 0 y " o ) / 2 
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Simulated Background Incidence 

Age 

— Biological (Hazelton 2005) — Identifiable (Heidenreich 2002) 

Figure 3.1 Simulated age-specific incidence rates 

3.3 Results for Traditional Prospective Cohort Method 

As described earlier, cohort data were simulated according to the TSCE model 

and then parameters were estimated using maximum likelihood. The following table 

shows the results of the simulation study. 

Table 3.1 Results of fitting simulated data using traditional prospective cohort method 

true Mean LCL UCL 
Type parameters value fit 95% 95% 

a 22.65 23.400 7.327 40.499 
Biological r 0.075 0.0759 0.0660 0.0857 

/^xlO7 1.4 1.3784 1.0541 1.7233 
yxlO1 

0.11 0.1125 0.0603 0.1788 
Identifiable g 0.134 0.1343 0.1257 0.1443 

q x 106 
1.2 1.2128 0.7255 1.8943 
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The following plots contain the actual and average predicted incidence from the 200 

simulated studies as well as predicted incidence for 20 random runs. 

Simulated incidence from fits- Biological Parameters 

age 

mean A actual Individual fit 

Figure 3.2 Predicted incidence rates- traditional cohort method with biological parameters 

Simulated incidence from fits- Identifiable Parameters 

age 

mean A actual Individual fit 

Figure 3.3 Predicted incidence rates - traditional cohort method with identifiable parameters 
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The top graph is for the biological parameters while the lower graph is for the identifiable 

parameters. Both sets of parameters can be accurately fit using the traditional cohort 

likelihood as expected. 

3.4 Results for Resampling Method 

As mentioned previously, a simulation study was conducted on the effectiveness 

of reconstructing cohort data using resampling to fit the TSCE model. This method seeks 

to use case-control data on risk factors and mortality rate data to reconstruct time-to-

event data as would be seen in a prospective cohort study. The following table shows the 

simulated fits as compared to the actual parameters. 

Table 3.2 Results of fitting simulated data using the resampling method 

Type parameters 
True 
value mean fit LCL95% UCL95% 

a 22.65 25.271 65.487 
Biological r 0.075 0.0787 0.0612 0.1032 

/ /x lO 7 
1.4 1.3301 0.7028 2.0042 

^ x l O 7 
0.11 0.1086 0.0189 0.2630 

Identifiable g 0.134 0.1372 0.1186 0.1600 

q x 106 
1.2 1.1462 0.2888 2.7148 

The method appears to be accurate in fitting the baseline parameters of the TSCE model 

but not as precise as using traditional cohort data resulting in wider confidence intervals. 

The overall procedure was then repeated 200 times and average parameter fits were 

calculated. The results are depicted in the following graphs. 
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Simulated incidence from fits- Biological Parameters 
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4> 
- Individual fit 

Figure 3.4 Predicted incidence rates- resampling method with biological parameters 

Simulated incidence from fits- Identifiable Parameters 

350 

£ 
age 

-actual -Individual fit 

Figure 3.5 Predicted incidence rates- resampling method with identifiable parameters 

The mean incidence rate was calculated as the average parameter fit over the 200 

simulations. The identifiable parameters seem to produce some bias when averaging. 

Therefore, we chose the biological parameters for fitting the model to the MDA case-
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control data because they provide a better fit and are easily interpretable. 
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Chapter 4 

Smoking Based TSCE Model and Validation 

A smoking based TSCE model was fit using the resampling based method. A 

model based of smoking alone was chosen so that it could be used in CISNET's Smoking 

Base Case, as well as, to simulate LC mortality in the absence of screening for a single 

arm CT screening trial. The data used to fit the model, the method of reconstructing 

cohort data, and the final fitted model are presented in this chapter. Also, simulation is 

used to validate the model as a predictor of lung cancer mortality in the non-asbestos 

exposed control arm of CARET. The model is also used as part of the CISNET Smoking 

Base Case Project. 

4.1 MD Anderson Case-Control Data 

An important component to this project is to determine the effect of different risk 

factors on the process of cancer development. Datasets such as SEER contain information 

about overall lung cancer incidence and mortality but do not provide information about 

individual risk factors such as smoking. A case-control study is currently underway in the 

M.D. Anderson Cancer Center Department of Epidemiology under the direction of Dr. 

Spitz. In this study, measurements of DNA repair capacity, as well as data on other risk 

factors such as smoking are being recorded. Cases of lung cancer are matched with 
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cancer-free controls on age (within 5yrs), gender, ethnicity, and smoking status. The MD 

Anderson case-control data contains information on over 6,000 matched cases and 

controls. 

Table 4.1 Characteristics of cases (n=3433) and controls (n=3132) available from the lung cancer case-
control study (R01 CA55769, Spitz, PI) 

Characteristic Cases Controls 
Mean Age (SD) 62.3(11.1) 59.4 (10.9) 
Race/Ethnicity n (%) n (%) 

White 2744 (79.9) 2488 (79.4) 
Black 488 (14.2) 411 (13.1) 

Hispanic 173 (5.0) 210 (6.7) 
Other 28 (0.8) 23 (0.7) 

Sex 
Male 1848 (53.8) 1587 (50.7) 

Female 1585 (46.2) 1545 (49.3) 
Smoking Status 

Current 1371 (39.9) 1120 (35.8) 
Former 1453 (42.3) 1274 (40.7) 
Never 556(16.2) 702 (22.4) 

Analyses in this study will be based on a subset of whites, 992 males and 919 females, 

because of the low sample sizes of the other races. Even though cases and controls were 

matched on smoking status, the cases smoked more than the controls as seen in terms of 

average pack-years. 
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Table 4.2 Pack-year histories for 992 white males and 919 white females included in analysis 

Smoking Avg Pack 
Character ist ics Status Number Yrs 

Males Cases Current 214 58.7 
Former 259 53.1 
Never 28 0.0 
Total 501 55.3 

Contro ls Current 168 54.5 
Former 287 43.4 
Never 36 0.0 
Total 491 44.0 

Females Cases Current 211 50.1 
Former 183 41.1 
Never 58 0.0 
Total 452 40.0 

Contro ls Current 181 36.7 
Former 197 36.2 
Never 99 0.0 
Total 467 29.7 

A family history analysis was done to determine the effects of family history on 

lung cancer risk. Logistic regression analysis was performed to test the association of 

cancer family history with lung cancer risk. Three definitions of a positive family history 

were considered. The first definition was 2 or more first degree relatives diagnosed with 

any cancer (FH1). The second was at least one relative diagnosed with lung cancer (FH2) 

and finally the third was any relative with an early onset cancer (FH3), diagnosed before 

the age of 50. The following chart shows the results of this analysis. 

Table 4.3 Results o f family history analysis 

FH1 FH2 FH3 
Males Males males 
p=0.0008 p=0.0113 p=0.3051 
Females Females females 

Number p=0.0254 p=0.0005 p=0.0302 
Males Cases 501 350 (69.9) 103 (20.6) 94(18.8) 

Controls 491 292 (59.5) 70 (14.3) 79(16.1) 
Total 992 642 (64.7) 173(17.4) 173 (17.4) 

Females Cases 452 305 (67.5) 89 (19.7) 115 (25.4) 
Controls 467 281 (60.2) 52 (11.1) 90(19.3) 
Total 919 586 (63.8) 141 (15.3) 205 (22.3) 
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From this analysis seems that the second family history definition provides the most 

significant information about lung cancer risk for both males and females in the MD 

Anderson case-control study. Although, this information is not incorporated into the 

smoking based model it shows that a family history component should be added in the 

future. 

4.2 Sources of Age-specific Mortality 

The goal of this project is to use a combination of MD Anderson case-control data 

and external mortality data to fit a carcinogenesis model and estimate the effects of 

different risk factors on lung cancer development. In order to adjust for the fact that the 

MD Anderson cases and controls are matched by both age (within 5 years) and smoking 

status (current, former, and never smokers), data on age-specific mortality by smoking 

status are needed to adjust for the biases introduced by matching. There are several 

prospective cohort studies that can provide this information including the American 

Cancer Society's Cancer Prevention Study I (CPS-I), the Health Professionals Follow-up 

Study (HPFS) and the Nurses Health Study (NHS). First, the CPS-I study includes tabled 

mortality data by race and gender. An examination of these studies, as well as, the age-

specific incidence estimates by smoking status will provide clues about which dataset is 

most reflective of the MD Anderson study participants. 

4.2.1 Cancer Prevention Study 1 

The Cancer Prevention Study I (CPS-I) is a prospective cohort study conducted 

by the American Cancer Society. There were over 1 million individuals enrolled between 
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1959 and 1960. Enrollment required participants to be over age 30 and have at least one 

family member over the age of 45. Study participants completed a baseline survey at 

enrollment and follow-up questionnaires in years 1961, 1963, 1965, and 1972 allowing 

for 12 years of follow-up. The baseline questionnaire asked information about health 

status such as height, weight, demographics, personal and family history of cancer, 

occupation, diet, alcohol and tobacco use, and physical activity. Follow-up surveys 

addressed changes in smoking and vital status. The CPS-I study contains information on 

456,491 males with known death rates for 117,199, and 594,551 females with known 

death rates for 88,353 (Thun et al in Smoking and Tobacco Monograph 8). Mortality for 

5-year age groups stratified by race, gender, and smoking status for this study is available 

in Appendix C of Chapter 3 of the Smoking and Tobacco Control Monograph 8. 

4.2.2 Nurses Health Study and Health Professionals Follow-up Study 

The Nurses Health Study (NHS) is a cohort study on females that began in 1976. 

Married registered nurses between the ages of 30 and 55 were asked to enroll. The cohort 

consists of 121,700 female nurses. Every 2 years the participants respond to 

questionnaires on a wide variety of risk factors of disease including, smoking status, 

hormone use, and diet, as well as about any health conditions with which they have been 

diagnosed. Less than 10% of participants have been lost to follow-up. 

The Health Professionals' Follow-up study (HPFS) is a cohort study on males that 

began in 1986. The cohort consists of 51,529 men employed in health professions aged 

40-75. As in NHS, the participants fill out questionnaires every 2 years about diseases 
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and health-related factors such as smoking, and physical activity. Less than 7% of 

participants have been lost to follow-up. 

4.2.3 Comparisons of Mortality Datasets 

The table below describes some characteristics of datasets that provide table 

mortality/incidence rate data stratified by age, gender, ethnicity, and smoking status. 

Table 4.4 Cohort characteristics of mortality/incidence rate data 

Smoking Status 
Study Total Never Former Current 
CPS-I males 

Subjects 134,532 92,307 42,225 174,997 
Lung Cancer Cases 4,202 215 331 3,656 

10.28 
Avg. follow-up years 

CPS-I females 
Subjects 398,459 375,649 22,810 158,727 
Lung Cancer Cases 602 573 29 621 

10.82 
Avg. follow-up years 

HPFS 
Subjects 46,050 22,431 19,632 3,987 
Lung Cancer Cases 461 58 247 156 

14.93 
Avg. follow-up years 

NHS 
Subjects 104,493 51,121 24,474 28,898 
Lung Cancer Cases 1,165 130 134 901 

23.15 
Avg. follow-up years 
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White Males Lung Cancer Mortality 
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Figure 4.1 Comparison of age-specific mortality rates for white males 

White Females Lung Cancer Mortality 
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Figure 4.2 Comparison of age-specific mortality rates for white females 
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The Texas and SEER 2002 mortality rates for lung cancer are similar for both 

sexes. The SEER 2002 rate is similar to the overall male rate for 1969 through 2004 

while for females the 2002 rate is much higher. The increase in female rates is due 

mainly to the increases in smoking among women and is reflective of the large increase 

in incidence for females over that time period. 

CPS-I rates are consistently lower in females, with the rate for current smokers in 

females comparable to the overall rate for Texas and SEER in 2002. However, the rates 

for males are consistent with HPFS, TX and SEER. The overall rate in the HPFS is much 

lower than both SEER and Texas but this could be accounted for by the lower rates of 

smoking among the HPFS participants. The never and former smoking rates for both 

CPS-I and HPFS in males indicates that both studies have comparable rates. However, 

CPS-I has a higher sample size for smokers indicating that it may be better suited for 

fitting the model to the data on males. 

For females all CPS-I rates are lower than the SEER and Texas rates. The overall 

rate for CPS-I females is similar to that of the never smokers in that study. This indicates 

that the CPS-I study rates may not be reflective of current female rates of lung cancer 

mortality most likely due to the changes in females smoking that have occured. The 

overall rates in the Nurses Health Study seems to be similar to the overall SEER and 

Texas rates indicating that the NHS would be better for fitting the model to the data on 

females. 
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4.2.4 National Health Interview Survey 

The MD Anderson cases and controls are matched by gender, race, age (within 5 

years), and smoking status. CPS-I and NHS provide age-specific incidence/mortality 

rates stratified by gender, race, and smoking status and provide the needed information to 

adjust for the matching. However, we still require one more piece of information to re-

create populational data, namely the proportion of current, former, and never smokers in 

the population by race and gender. 

The National Health Interview Survey (NHIS) is a survey study run by the US 

Department of Health and Human Services. For this study, annual surveys are conducted 

in 35,000 to 40,000 households including 75,000 to 100,000 individuals. The survey asks 

participants about a range of topics including smoking, diet and nutrition, and many other 

health and wellness related topics. More information on this study can be found at 

www.cdc.gov/nchs/nhis.htm. This study provides data on the proportion of individuals of 

each smoking status (current, former, and never) in the population in the year 2000 

stratified by gender and race. 

4.3 TSCE Model based on Smoking History 

Developing a model based on smoking as the only risk exposure allows for 

comparisons to other smoking based models in the smoking base case project of the 

CISNET lung group. The MDA case-control data, as well as the LC mortality rates by 

age and smoking status from CPS-I for males and NHS for females were used to fit the 

model. A parameterization of 5 fitted parameters with a fixed lag-time is chosen to allow 

http://www.cdc.gov/nchs/nhis.htm
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for the inclusion of other risk variables later and minimize the effects of non-

identifiability. The biological parameters of the TSCE model are used for the ease of 

biological inferences based on the fit. Since the TSCE model is insensitive to choice of 

lag-time, i.e. the parameters shift in response to changes in lag-time assumptions, a fixed 

lag-time of 6 years between birth of first malignant cell and death from lung cancer is 

assumed and is similar to assumed lag-times in other studies (Hazelton 2005) and is in 

accordance with disease progression models (Flehinger 1987). The following are the 

response functions that relate the parameters of the TSCE model depending on smoking 

intensity, ppd, measured in packs per day. 

X = \01 

v(t) = v0X(l + u ,x tJ ppd) 

a(t) - a0(1 + a2 x ^ppd) 

y(t) = a(t)~ Pit) - = y0 (1 + a2
 x 4l>Pd ) 

The resampling routine needed to be modified because the further matching of the 

MD Anderson study including smoking status, as well as, age (within 5 years), gender, 

and race. The routine was modified to include the sampling of smoking status based on 

rates obtained from the National Health Interview Survey (NHIS) for the year 2000. The 

following routine outlines the resampling method applied to the MD Anderson case-

control data, and incidence/mortality rate data from CPS-I and NHS. 

1. The smoking status (Current, Former, Never) is sampled based on 

rates for the year 2000 from the NHIS. For males: (27.56%, 

30.41%, 42.03%) and for females (22.81%, 21.65%, 55.54%) 

respectively. 
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2. For each individual, the age bin (5year) in which the person 

belongs is sampled based on the number of individuals in each age 

bin of the case-control data for the previously sampled smoking 

status. 

3. Based on the age bin and smoking status generated above, it is 

randomly sampled whether the individual gets cancer or not based 

on the estimated probability of an individual within the sampled 

age bin to get cancer within the 5 years spanning the age bin. This 

estimate is based on the tabled smoking-status-specific incidence 

data. 

4. Once the age bin, smoking status and cancer status are determined, 

an individual is sampled from the case-control dataset with the 

same characteristics and information is used concerning his/her 

risk factor exposures. 

The censoring or age at onset (operationally, the age at LC diagnosis) of the individual is 

assigned as their age at enrollment from the case-control dataset and the age at entry is 

assigned as 5 years prior for controls and at a randomly (uniformly) distributed age in the 

previous 5 years for cases. The resulting fit for a fixed lag-time of 6 years is shown in the 

following table. 

Table 4.5 Parameter fit for the TSCE model based on smoking 

Parameter ao Yo a\ ai 
Males (CPS-I) 2.99 (~10"4,12.54) 0.069(0.064,0.074) 2.17(1.88,2.50) 2.66(0.78,4.86) 0.35(0.08,0.66) 
Females (NHS) 4.60(~10"4,20.65) 0.071(0.065,0.080) 1.93(1.56,2.19) 2.30(0.36,4.56) 0.35(0.02,0.72) 
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The parameter estimates for males and females show no statistically significant 

differences. As expected the smoking related variables are statistically significantly 

positive, showing that smoking does in fact speed carcinogenesis and increase risk for 

lung cancer. The parameter estimates indicate that smoking one pack-per-day more than 

triples the mutation rates, and increases the net proliferation rate of initiated cells by 35%. 

The following graphs show predicted incidence curves for given smoking 

histories, lifetime smokers starting at age 18, former smokers starting at age 18 and 

quitting at age 40, and never smokers. The smoking intensity is assumed to be 1 pack per 

day. 

Predicted Incidence Rates 

age 

—•—Current Smoker- males —o— Former Smoker- males 
—•— Never Smoker-males —•— Current Smoker- females 
—•— Former Smoker- females —•— Never Smoker- females 

Figure 4.3 Model predicted incidence rates 
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The predicted incidence rates for former and never smokers are similar in both men and 

women. However, for life long smokers, males have a slightly higher predicted incidence. 

Since the parameters don't differ significantly by gender, the predicted incidence can not 

be shown to differ, which is in agreement with a study of the NHS and HPFS cohorts that 

showed no statistically significant difference in lung cancer risk in men and women with 

comparable smoking histories (Bain et al. 2004). However, there was a study based on a 

CT screened cohort that showed that women have a higher incidence of lung cancer and 

also higher lung cancer survival (IELCAP investigators 2006). Women are known to 

have a disproportionately higher percentage of never smokers with lung cancer when 

compared to men (Subramanian and Govindan 2007) but this may be due to exposures to 

secondary risk factors. 

4.4 Predicting LC Mortality in the CARET study 

The estimates were validated by applying the resulting model to data on smoking 

histories from the non-asbestos exposed control arm of the CARET trial for validation 

purposes. The smoking based model was used to predict cumulative LC deaths in the 

non-asbestos exposed control arm of the CARET (Carotene and Retinol Efficacy Trial) 

study for comparison against the observed LC deaths. The CARET study was a double 

blind, placebo control trial on the effect of beta-carotene and retinol in the prevention of 

lung cancer. The non-asbestos exposed group included 7965 men and 6289 women with 

at least a 20 pack-year smoking history, were aged 50-69 and were current smokers or 

had quit within the previous 6 years. The study was stopped early when it showed that 

use of the supplement provided no reduction in cancer. Prior to randomization all 
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participants were given placebos for 3 months to determine their adherence to taking the 

vitamins. For this study, data was obtained on the non-asbestos exposed placebo-control 

arm of the CARET study including data on 6877 individuals (3797 males and 3080 

females). 

Expected Lung Cancer mortality is calculated based on the individual-level data 

on smoking history, dk, and age at enrollment,. For each year of follow-up, j, the 

probability that individual, k, will die from lung cancer is calculated using the following 

formula where lk y denotes the length of time that individual k was followed up through 

year j and tk . is that individual's age at the start of follow-up year j. The probabilities are 

conditioned on the fact that participants have not died of lung cancer by age at 

enrollment, tk,. 

_S(tkJ+lkJ;dk)-S(tkJ;dk) 
Pk'J S(tky,dk) 

If an individual was not followed up during the follow-up year j, then pkj = 0 . 

Then total expected lung cancer deaths, E, in follow-up year j is Ej = ̂  pkJ and the 
k 

j 

cumulative expected deaths, D, by follow-up year j is then Dj = ̂  En . 
n = l 

The calculated probabilities pk J , determined the simulation of lung cancer mortality in 

the CARET study based on the model. The simulation was conducted using the 

probability of never dying of lung cancer during the study for each individual, 

1 - ^ pk j , and the individual follow-up year probabilities of lung cancer death, pk J . 
j 
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In a single simulated study, whether or not lung cancer death occurs is simulated 

for each individual. If an individual does die from lung cancer then the year of follow-up 

at which the individual dies is simulated according to the probabilities. The cumulative 

number of lung cancer deaths per follow-up year is calculated for each simulated study. 

The simulation is repeated 5,000 times to compare expected lung cancer mortality and 

produce confidence intervals. 

The mean predicted cumulative LC mortality as well as confidence limits are 

depicted in the following figures. The model produces accurate predictions for overall 

lung cancer mortality in the CARET study. There were 364 LC deaths in the course of 

the CARET study and the model predicted 366.8 (CI 331-402). The model was also able 

to predict LC deaths for males and females within confidence limits as shown in the 

following chart. 

Table 4.6 CARET study predicted and observed LC deaths 

Overall Males Females 
Observed 
Predicted 

364 
366.8(331,402) 

225 
236.8(208,266) 

139 
130.0(109,152) 
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LC Mortality by year 

— — Upper Confidence Limit 
— - • — Lower Confidence Limit 

"Expected Deaths 
"Observed deaths 

Figure 4.4 Yearly predicted and observed LC deaths- CARET 

Overall Cumulative LC Mortality 

year of follow-up 

— • • — Upper Confidence Limit • Expected Deaths — - • — Lower Confidence Limit Observed deaths 

Figure 4.5 Cumulative predicted and observed LC deaths- CARET 
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Figure 4.6 Yearly predicted and observed LC deaths- CARET males 
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Figure 4.7 Cumulative predicted and observed LC deaths- CARET males 
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LC Mortality-Females 
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Figure 4.8 Yearly predicted and observed LC deaths- CARET females 

"Observed deaths 

Cumulative LC deaths- females 

— — Upper Confidence Limit' "Expected Deaths — — Lower Confidence Limit ' "Observed 

Figure 4.9 Cumulative predicted and observed LC deahts- CARET females 
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The yearly number of LC deaths predicted and observed suggest that there may be 

some healthy volunteer bias in the participants of CARET. Observed LC mortality was 

lower than predicted for the first year in females and in years 1-3. However, at about year 

10 of follow-up we start to see the opposite trend. After about year 10, there are some 

years with more observed LC mortality than predicted. This effect could be seen when 

healthier participants are lost to follow-up more often than unhealthy participants. Less 

healthy who know that they are at high risk may be more inclined to remain in the study 

than participants who feel healthy. Those who feel healthy later may not see the benefit 

of remaining in the study and thus be more likely to drop out. These effects seem to 

balance each other by the completion of follow-up. 

Removing these effects to determine the models ability to predict LC deaths is 

important. In order to fully remove healthy volunteer effect the first 3 years are removed. 

The model is used to predict LC mortality in years 4-10 for comparison against the 

observed. This time interval is used because it removes any possible healthy volunteer 

effect as well as any underestimation in the later years. It is also the same interval that 

will be used in the CT screening simulation. The following graphs show the observed and 

predicted LC deaths in years 4-10. The model seems to do very well in predicting lung 

cancer mortality in these years. 

Table 4.7 CARET predicted and observed LC deaths (years 4-10) 

Overall Males Females 
Observed 
Predicted 

212 
207.0(180,235) 

142 
133.6(112,156) 

70 
73.4(57,91) 
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Cumulative LC Deaths Adjusted for Healthy Cohort Bias (years 4-10) 

year of follow-up 

— - • — Upper Confidence Limit • Expected Deaths 
— - • — Lower Confidence Limit Ml Observed Deaths 

Figure 4.10 Predicted and observed cumulative LC deaths- CARET (years 4-10) 

Cumulative LC Mortality adjusted- Males (years 4-10) 

year of follow-up 

— • • — Upper Confidence Limit • Expected Deaths — - • — Lower Confidence Limit * Observed 

Figure 4.11 Predicted and observed cumulative LC deaths- CARET males (years 4-10) 
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Cumulative LC mortality Adjusted- Females 

year of follow-up 

— - • — Upper Confidence Limit • Expected Deaths — - • — Lower Confidence Limit <K Observed 

Figure 4.12 Predicted and observed cumulative LC deaths- CARET females (years 4-10) 

4.5 Simulating US LC mortality 

The smoking history generator provided by CISNET and the model based on 

smoking, are used to simulate LC mortality in the US population for comparison against 

the observed. Given year of birth, gender and race, the smoking history generator 

provides a smoking history and age of death td from causes other than lung cancer. Using 

each individual's unique smoking history and death of other cause times, LC mortality is 

simulated according to the model based on the parameter estimates obtained by the 

resampling method, using the following simulation routine suggested by Kaiser and 

Heidenreich (2004). 
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1. Then the probability of not developing cancer by the age at death 

from any other cause td was calculated according to the TSCE 

model: pTSCE = S{td). 

2. Then a uniform(0,l) random variable, u, was drawn. 

a. If u < pTSCE then time of censoring is td and no cancer 

develops during the individual's lifetime. 

b. If u > pTSCE then cancer develops during the individual's lifetime 

and is diagnosed at age, t, computed by inverting the survival 

function, u = S(t). 

50,000 individuals were simulated per birth cohort 1891-1970. After the birth 

cohorts are combined the year-by-year age distributions are adjusted using re-weighting 

to match the observed US population. LC mortality for males and females were simulated 

separately. The following graphs show the observed and simulated LC mortality for years 

1985-2000. 

Simulated US Mortality Rate (ages 30-84)- Males 

year 

> Simulated Observed 

Figure 4.13 Simulated and observed US LC mortality rates- males 
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Simulated US Mortality Rate (ages 30-84)- Females 

year 

• Simulated Observed 

Figure 4.14 Simulated and observed US LC mortality rates- females 

The results from this simulation show that the model can reasonably re-create US LC 

mortality. Simulation of LC mortality in the US population shows an acceptable 

prediction of US LC mortality in the period 1985-2000. However, if the mortality is 

simulated for years 1975-1985 we find that the model predicts higher than observed LC 

mortality. This could be reflective of the changes in cigarettes and smoking behaviors 

that occurred in the period 1950 through the mid 1980s, while the model was fit to more 

contemporary data. For women, the higher predictions persist through the year 1992 after 

which the predictions are accurate. 

Starting in the 1950s changes were made to cigarettes and tobacco that included 

the introduction of filters, changes in the method of curing tobacco, and marketing of low 

tar cigarettes with reduced nicotine levels. Reduced tar and nicotine cigarettes sought to 

lower the carcinogen exposure produced by cigarette smoking. While the changes did 

reduce levels of tar and some carcinogens other carcinogens were increased (Hoffman 
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1997). Also, there were observed smoking behavior changes in smokers of lower yield 

cigarettes including smoking more cigarettes per day, taking more puffs from each 

cigarette, and inhaling more deeply (Thun 2001) referred to as compensatory smoking. 

Compensatory smoking is driven by the need to maintain nicotine levels to satisfy the 

nicotine addiction. By smoking more and inhaling further into the lungs, nicotine levels 

are increased and exposures to the carcinogens in cigarettes are higher. In the mid 1960s 

a new method of curing tobacco was employed that lead to a marked increase in tobacco-

specific N-Nitrosamines. These changes in cigarettes that started in 1950 and continued 

through the mid 1980s increased the carcinogenicity of modern day cigarettes. Thus, one 

of the limitations of our model is that it does not capture the effect of changes in 

cigarettes and smoking behaviors over time. 

4.6 CISNET Smoking Base Case Project 

The CISNET lung group's smoking base case projects uses simulation to estimate 

the number of LC deaths that were averted by tobacco control policies that were initiated 

after the surgeon general's report of 1964 warning on the dangers of tobacco use. The 

project also simulates the deaths that would have been averted if smoking had been 

banned. 

The smoking history generator can be used to simulate population smoking trends 

based on 3 different scenarios. The first is based on the NHIS, referred to as the Actual 

scenario, and re-creates observed trends in smoking and mortality. The second is based 

on what would the expected smoking would be if there were no public health information 

about the dangers of smoking. It attempts to simulate smoking histories as if there were 
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no known information about the dangers of smoking and individuals continued smoking 

along the patterns observed before the 1964 surgeon general's report (US Department of 

Health, Education, and Welfare 1964). The last scenario is based on the premise that 

smoking is banned in 1965 after the surgeon general's report came out. For this scenario 

all individuals quit smoking in 1965 and there is no smoking from that point on. The goal 

of having the 3 scenarios is to quantify the effect of the tobacco control programs that 

were initiated after the surgeon general's report as compared to what would have 

happened if individuals were forced to quit. 

The following graphs show the simulated LC mortality under these 3 scenarios 

based on the smoking history generator. 

Simulated US Mortality Rate (ages 30-84)- Males 

250 -, 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

year 

I —•—Actual — N o Tobacco Control -»-Complete Tobacco Control Qberved | 

F i g u r e 4 . 1 5 C I S N E T S m o k i n g B a s e C a s e S i m u l a t i o n - m a l e s 
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Simulated US Mortality Rates (ages 30-84)- Females 

year 

—•—Actual No Tobacco Control - • -Comp le te Tobacco Control Observed 

F i g u r e 4 . 1 6 C I S N E T S m o k i n g B a s e C a s e S i m u l a t i o n - f e m a l e s 

The difference between the No Tobacco Control and Complete Tobacco Control 

lines provides a measure of the potential number of LC deaths that could have been 

avoided if all smokers were forced to quit. The difference between the No Tobacco 

Control and simulated Actual LC deaths provides a measure of the realized reduction in 

LC deaths accomplished through tobacco control policy. As seen from the graph below, 

the tobacco control policies only met 40% of the total potential lung cancer death 

reduction in the years 1985-2000. 



62 

Proportion of LC Deaths Averted 

year 

Males -3K- Females Total 

Figure 4.17 Proportion of LC deaths averted through tobacco control policies 



63 

Chapter 5 

Implications for Screening 

5.1 Single-arm CT Screening Trial for LC 

The model is used to predict LC mortality in the absence of screening to use as a 

surrogate control arm for comparison against observed LC mortality in a single-arm trial 

on CT screening. The main criticism of the ongoing ELCAP CT screening study is that it 

lacks a control arm. The model is used to simulate the expected LC mortality in the 

absence of the CT screening intervention. Using data on gender, age, and detailed 

smoking history from participants in the ELCAP study, LC mortality is simulated for the 

individuals as done in the CARET study analysis. 

5.2 NY LC Screening Study 

The New York study uses CT scans as a screening tool for Lung Cancer. Study 

participants are aged 55 or older, have at least a 10 pack-year smoking history, and have 

no symptoms of LC at time of enrollment. Detailed smoking histories including age at 

initiation, age at cessation, and number of cigarettes per day smoked, were obtained from 

questionnaires at the time of enrollment. The final data set includes 7994 individuals. 
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10 

Figure 5.1 Person-years in the NY cohort per year of follow-up 

5.3 Simulating Mortality in the Absence of Screening 

The model used predicts the risk of an individual dying from lung cancer in a 

given time interval based on individual's unique smoking history and age. The 

probability that an individual will not die of lung cancer by age t, is defined as the 

survival probability and the function as S(t). In this model S(t) depends on the individuals 

smoking history with age at initiation of smoking, i, age at cessation of smoking, c, and 

number of cigarettes smoked per day, s, and will be referred to as S(t;i,c,s). 

Expected lung cancer mortality for the study is calculated based on the individual-

level data on smoking histories and ages at enrollment provided for the NYC cohort. For 

each year of follow-up, j, the probability that individual, k, will die from lung cancer is 

calculated using the following formula where l k j denotes the length of time that 

individual k was followed up through year j and tk ] is that individual's age at the start of 
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follow-up year j. The probabilities are conditioned on the fact that participants have not 

died of lung cancer by age at enrollment, tk x. 

p _ S(?kj + hj'->h>ck>sk)~'•>h>ck->sk) 

S(tk,\>h>Ck>Sk) 

For individuals not followed up during the follow-up year j, pkj = 0 . 

Then total expected lung cancer deaths, E, in follow-up year j is Ej = ̂  pk, and the 
k 

j 

cumulative expected deaths, D, by follow-up year j is then Dj - ^ En . 
n=1 

The calculated probabilities pk j, allowed for the simulation of expected lung cancer 

mortality in the NYC cohort based on the model. The simulation was conducted using the 

10 

probability of &-th individual not dying of lung cancer during the study, pk j , and 
j=i 

the individual's follow-up year probabilities of lung cancer death, pk . ,j = 1,..., 10, over 

the 10 years of total follow-up time. 

Using the probabilities defined above, lung cancer mortality is simulated for each 

individual. If the simulated individual does die from lung cancer then the year of follow-

up at which the individual dies is simulated. The cumulative number of lung cancer 

deaths per follow-up year is then calculated for each simulated study. The simulation is 

repeated 5,000 times to compare expected lung cancer mortality and produce confidence 

intervals. The confidence intervals are estimated using the 2.5% and 97.5% of the 5,000 

simulated studies. 
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5.4 Results of Screening Simulation 

The following figure provides the yearly number of expected and observed deaths 

from lung cancer in the NYC cohort together with the 95% confidence interval. The 

yearly predicted and observed LC deaths are also provided in the following table to show 

the magnitude of any healthy volunteer bias. It appears that the healthy volunteer effects 

through year 3, decreasing in magnitude from year 1 to year 3. For the main analysis the 

first 3 years of follow-up are removed to conservatively adjust for any possible healthy 

volunteer effect. 

Table 5.1 Observed and predicted LC deaths in years 1-4 in the NYC cohort 

Year of follow-up Observed Predicted 95% CI 
1 6 36.3 (25,48) 
2 13 36.7 (25,49) 
3 16 24.3 (15,35) 
4 12 14.5 (7,23) 
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0 

Figure 5.2 Yearly simulated and observed LC deaths in the NYC CT screening cohort 
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The following graphs show the observed and predicted cumulative LC deaths starting in 

year 4 and ending at the end of follow-up (year 10). 
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Figure 5.3 Predicted and observed cumulative LC deaths in the NYC cohort (years 4-10) 

The expected number of LC deaths for years 4-10 (first 3 years are excluded to adjust for 

healthy volunteer bias) is 45.1 and the 95% confidence interval ranges from a lower 

bound of 33 to an upper bound of 58. The observed number of LC deaths for follow-up 

years 3-10 in the screened cohort was 29. 

Another approach to determining the mortality reduction is to calculate the SMR. 

The SMR was significant for years 4-10 when the deaths of participants who dropped out 

of screening were included, 29/45.1 = 0.64, showing a mortality reduction of 36% (95% 

CI: 0.12, 0.50, P< 0.001). If the first 2 years of follow-up are removed, there is still a 

statistically significant estimated mortality reduction of 35% (95% CI: 0.17, 0.48, 

Cumulative Observed and Predicted LC Deaths- years 4-10 



68 

p<0.001), which is very close to the estimated mortality reduction if the first 3 years are 

excluded, indicating that healthy volunteer effect is fully removed by year 3. 

For the NYC cohort, the model predicts 45.1 LC deaths over the years 4 through 

10 of follow-up after adjusting for healthy volunteer bias in the first 3 years, compared to 

the 29 observed deaths in those years. Even conservatively dealing with healthy volunteer 

effect it appears that CT screening for lung cancer does provide a mortality benefit. 

5.5 CT Screening Controversy 

There was recently a similar analysis conducted by Bach et al (2007) on 3 

different CT screening cohorts including Instituto Tumori, the Mayo Clinic, and the 

Moffit Center which showed contradictory results to what we found in this study, 

showing no mortality benefit to CT screening for lung cancer. However, the confidence 

limits showed there could be as much as a 30% reduction in LC mortality. Some of the 

reasons for discrepancies between this study and our study could include that this 

previous study contained mortality data on only 3,210 individuals who had a median 

follow-up time of 3.7 years as compared to this analysis containing data on 7,995 

individuals with a slightly longer median follow-up time of 4.4 years. The Bach study 

also included more outcomes such as LC diagnosis and surgical resections, while this 

study focuses on LC mortality alone. The studies also differ in the modeling used to 

estimate risk of lung cancer death. 

The efficacy of CT scanning as a screening tool for lung cancer remains a 

controversial topic. As more data comes in, it should become apparent whether it can be 

reliably used to lower LC mortality. If it is proven effective then more analysis will be 
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needed to determine which individuals should be screened, how often they should be 

screened, and how should the nodules found be managed. The results from the 

randomized National Lung Screening Trial are anticipated but may not fully answer 

questions about efficacy because instead of having standard care (no recommended 

screening) the control group is being screened with x-ray, which will bias results towards 

underestimating any observed mortality benefit. 
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Chapter 6 

Discussion and Future Directions 

6.1 Summary 

In this thesis, a new method of reconstructing time to event data from the 

combination of case-control data on risk factors and tabled age-specific 

incidence/mortality rate data. This method is based on the assumption that given the 

matching stratum and cancer status, cases and controls are randomly sampled from the 

population. This method is applied to fit a two-stage clonal expansion model for lung 

carcinogenesis. Simulation studies showed that the method resulted in reasonable fits for 

this model. 

A smoking based TSCE model was fit to MD Anderson case-control data on 

smoking histories and tabled age-specific mortality rate data stratified by smoking status 

from CPS-I for males, and NHS for females. The model was fit separately for males and 

females, and the resulting parameter estimates do not statistically differ by gender. 

The model was then validated against the control group of the non-asbestos 

exposed, also known as the heavy smoker cohort of CARET. The model predicted 366.6 

LC deaths over the course of the study compared to the observed 364 resulting in an 

accurate fit. The model was able to reasonably reproduce US mortality rate trends for the 
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years 1985-2000 using simulation. The model was also applied to the CISNET Lung 

Group's smoking base case project. 

The model was then used to simulate LC mortality in the absence of screening, 

for use as a comparison control for a single arm trial of CT screening for lung cancer. The 

results of this effort show a 36% reduction in mortality resulting from CT screening 

intervention. 

6.2 Future Considerations 

The model can be further expanded in a number of ways. Most basically, by 

including other known risk factors for LC including family history, presence of lung 

disease such as COPD, exposures to dusts and asbestos, and genetic factors. Also, within 

the TSCE model framework the lag-time from appearance of first malignant cell to lung 

cancer diagnosis/death is assumed and the model is fit. The model itself is insensitive to 

choice of lag-times as the fitted parameters will adjust based on the assumptions. A 

TSCE model fit based on no lag-time will produce similar incidence and risk predictions 

to a TSCE model fit with different lag-time assumptions fit to the same data. In this 

study the lag-time is assumed to be a fixed length of 6 years. This is a reasonable 

assumption when compared to other studies. However, the lag-time itself could be 

modeled independently based on what is known about tumor growth and progression 

rates. Modeling the lag-time separately could also provide a framework for predicting the 

tumor size, growth rate, and histological sub-type and thus provide a more encompassing 

modeling framework. 
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Healthy volunteer bias is a well documented effect (Austin et al. 1981, Benfante 

et al. 1989, Bisgard et al. 1994, Lindsted et al. 1996, Chou et al. 1997, Etter et al. 1997, 

Froom et al. 1999, and Hara et al. 2002) in cohort studies enrolling volunteers. 

Volunteers for the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 

(PLCO) tend to be more physically active, have higher education, and are less likely to be 

overweight than the general population (Pinksy et al. 2007). Also, a study involved in 

recruiting smokers still showed significant healthy volunteer effect (Thomson et al. 

2005). The recruited smokers had on average 15.45 hours of physical activity compared 

to the national average of less than 1 hour per week. Volunteer of this study also were 

less likely to be overweight, drank less alcohol, and had lower rates of hypertension and 

diabetes than the US national average. Every cohort is different with regards to 

recruitment, but studies involving volunteers are likely to suffer from the healthy 

volunteer effect. Although, the effect is well documented there is no current method 

designed for adjusting or removing the effect in analyses. Development of a method that 

could adjust for the healthy volunteer effect, perhaps by removing proportions of 

predicted deaths decreasing in magnitude over the first few years for a study, would help 

improve the predictions of models as well as estimate the effectiveness. 

Primary tumors can be located in different parts of the lung. Detection of more 

than one lesion is relatively common. The number and localization of the tumors is an 

important clinicopathological feature; depending on the location, a tumor of the same size 

can produce very different symptoms and outcomes. Factors affecting the spatial 

distribution of lung lesions are poorly understood. A study of these factors can shed light 

on lung cancer risk and outcomes. Using information on risk factors and tumor sizes and 
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locations, it is possible to model the spatial distribution and sizes of the tumors. It is also 

possible to further study how tumor characteristics (location, size, and number of 

lesions), influence lung cancer symptoms and prognosis. A complication of this analysis 

is that the presence of multiple tumors currently affects the stage classification and 

recommended treatment which in turn affects outcomes. Having knowledge about where 

a tumor is likely to develop and how fast it is likely to grow, based on a patient's risk 

factor history would be valuable in developing LC screening programs. 

In 1953, Slaughter et al introduced field cancerization as a theory about the spread 

of pre-malignant "fields" which give rise to tumors in oral cancers. Using data on lung 

cancer patients including data on epidemiological risk factors as well as tumor sizes and 

locations it is possible study the evidence for field cancerization in the lung by studying 

the locations of synchronous primary lung cancers. The field cancerization process has 

been in more accessible cancer cites (Braakhuis et al. 2003, 2004) including oral cancer 

(Copper et al. 1993). Genetic studies of the lung are split on whether the field exists in 

lung cancer (Franklin et al. 1997, Sozzi et al. 1995). Evidence of field cancerization may 

explain the presence of multiple lesions, and may also provide insight on the mechanism 

of recurrence for lung tumors. 



74 

References 

Aberle DR, Brown K: Lung cancer screening with CT. Clin Chest Med 29: 1-14, 2008 

Alberg AJ, Samet JM: Epidemiology of Lung Cancer. Chest 123(1 supplement): 21S-
49S,2003 

Alberg AJ, Brock MV, Samet JM: Epidemiology of lung cancer: Looking into the future. 
J Clin Oncol 23: 3175-3185, 2005 

Armitage P, Doll R: The age distribution of cancer and a multi-stage theory of 
carcinogenesis. British Journal of Cancer 8: 1-12, 1954 

Armitage P, Doll R: The two-stage theory of carcinogenesis in relation to the age 
distribution of human cancer. British Journal of Cancer 11: 161-169, 1957 

Austin MA, Criqui MH, Barrett-Conner E, Holdbrook MJ: The effect of response bias on 
the odds ratio. Am J Epidemiology 114:137-43, 1981 

Bach PB, Jett JR, Pastorino U, et al: Computed tomography screening and lung cancer 
outcomes. JAMA 297: 953-961, 2007 

Bach PB, Elkin EB, Pastorino U, et al: Benchmarking lung cancer mortality rates in 
current and former smokers. Chest 126: 1742-1749, 2004 

Bailey-Wilson JE, Amos CI, Pinney SM, Peterson GM, et al: A major susceptibility locus 
maps to chromosome 6q23-25. Am J Hum Genet 75(3): 460-474, 2004 

Bain C, Feskanich D, Speizer FE, Thun M, Hertzmark E, Rosner BA, Colditz GA: Lung 
cancer rates in men and women with comparable histories of smoking. J Natl Cancer Inst, 
96: 826-34, 2004 

Bartoszynski R, et al: Modeling cancer detection: tumor size as a source of information 
on unobservable stages of carcinogenesis. Math Biosci 171: 113-142, 2002 

Benfante R, Reed D, MacLean C, Kagan A. Response bias in the Honolulu Heart 
Program. Am J Epidemiol 130:1088-100, 1989 

Bisgard KM, Folsom AR, Hong C, Sellers TA. Mortality and cancer rates in 
nonrespondants to a prospective study of older women: 5-year follow-up. Am J 
Epidemiol 139:990-1, 1994 

Black WC, Baron JA: CT screening for lung cancer: Spiraling into confusion? JAMA 
297(9): 995-997, 2007 



75 

Boffetta P, Pershagen G, Jockel KH, et al: Cigar and pipe smoking and lung cancer risk: 
a multicenter study from Europe. J Natl Cancer Inst 91: 679-701, 1999 

Boffetta P, Nyberg F: Contribution of environmental factors to cancer risk. Br Med Bull 
68: 71-94, 2003 

Braakhuis BJM, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH: A genetic 
explantation of Slaughter's concept of field cancerization: evidence and clinical 
implications. Cancer Research 63: 1727-1730, 2003 

Braakhuis BJM, Leemans CR, Brakenhoff RH: A genetic progression model of oral 
cancer: current evidence and clinical implications. J Oral Pathol Med 33:317-22, 2004 

Brennan P, Buffler PA, REnolds P, et al: Secondhand smoke exposure in adulthood and 
risk of lung cancer among never smokers: A pooled analysis of two large studies. Int J 
Cancer 109: 125-131,2004 

Bromen K, Pohlabeln H, Jahn I, Ahrens W, Jockel KH: Aggregation of lung cancer 
families: Results from a population-based case-control study in Germany. Am J 
Epidemiol 152: 497-505, 2000 

Brown K: Respiratory Health Effects of Passive Smoking: Lung Caner and Other 
Disorders (eds Beyard S, Jinot J, Koppikar AM) Chpt 6, 1-29 (Environmental Protection 
Agency, Washington DC, USA 1992) 

Brownson RC, Alavanja MC, Caporaso N, et al: Family history of cancer and risk of lung 
cancer in lifetime non-smokers and long-term ex-smokers. Int J Epidemiol 26: 256-263, 
1997 

Brownson RC, Alavanja MC, Caporaso N, Simoes EJ, Chang JC. Epidemiology and 
prevention of lung cancer in nonsmokers. Epidemiol Rev 20: 218-236, 1998 

Cancer Facts and Figures 2009, American Cancer Society, Inc. 2009 

Chou P, Kuo HS, Chen CH, Lin HC: Characteristics of non-participants and reasons for 
non-participation in a population survey in Kin-Hu Kinmen. Eur J Epidemiol 13:195-200, 
1997 

Coleman MP, Esteve J, Demieka P, et al: Trends in cancer incidence and mortality. Lyon, 
France: International Agency for Research on Cancer, 1993 

Copper MP, Braakhuis BJ, de Vries N, van Dongen GA, Nauta JJ, Snow GB: A panel of 
biomarkers of carcinogenesis of the upper aerodigestive tract as potential intermediate 
endpoints in chemoprevention trials. Cancer (Phila.) 71: 825-830, 1993 



76 

Cote ML, Kardia SL, Wenzlaff AS, Ruckdeschel JC, Schwartz AG: Risk of lung cancer 
among white and black relatives of individuals with early-onset lung cancer. JAMA 
293(24): 3036-3042, 2005 

Cronin K, Gail MH, Zou Z, et al: Validation of a model of lung cancer risk prediction 
among smokers. J Natl Cancer Inst 98: 637-640, 2006 

Cross FT: Invited Commentary: residential radon risks from the perspective of 
experimental animal studies. Am J Epidemiol 140: 333-339, 1994 

Deng L, Kimmel M, Foy M, Spitz M, Wei Q, Gorlova O: Estimation of the effects of 
smoking and DNA repair capacity on the coefficients of a carcinogenesis model for lung 
cancer. Int J Cancer 124: 2152-8, 2009 

Deng L: Modelling Carcinogenesis in Lung Cancer: Taking Genetic Factors and 
Smoking Factor into Account. Doctoral Dissertation. Houston: Rice University, 2005 

Dibble R, Langeburg W, Blair S, Ward J, Akerly W: Natural history of non-small cell 
lung cancer in non-smokers. J Clin Oncol 23: 7252, 2005 

Doll R: Atmospheric pollution and lung cancer. Environ Health Perspect 22:23-31, 1978 

Doll R, Hill AB: Smoking and carcinoma of the lung. BMJ 2: 739-748, 1950 

Doll R, Peto R: The causes of cancer: quantitative estimates of avoidable risks of cancer 
in the United States today. J Natl Cancer Inst 334: 1150-1155, 1981 

Early lung cancer detection: summary and conclusions. Am Rev Respir Dis 130: 565-
570, 1984 

Etter JF, Perneger TV: Analysis of non-response bias in a mailed health survey. J Clin 
Epidemiol 50:1123-8, 1997 

Etzel CJ, Amos CI, Spitz MR: Risk for smoking-related cancer among relatives of lung 
cancer patients. Cancer Research 63: 8531-8535, 2003 

Flehinger BJ, Kimmel M: The natural history of lung cancer in a periodically screened 
population. Biometrics: 43:127-44, 1987 

Franklin WA, Gazdar AF, Haney J, Wistuba II, La Rosa FG, Kennedy T, Ritchey DM, 
Miller YE: Widely dispersed p53 mutations in respiratory epithelium. A novel 
mechanism for field carcinogenesis. J Clin Invest. 100:2133-2137, 1997 

Friberg L, Cederlof R: Late effects of air pollution with special reference to lung cancer. 
Environ Health Perspect 22: 45-66, 1978 



77 

Froom P, Melamed S, Kristal-Boneh E, Benbassat J, Ribak J: Healthy volunteer effect in 
industrial workers. J Clin Epidemiol 52:731-5, 1999 

Gorlova OY, Zhang Y, Schabath MB, et al: Never smokers and lung cancer risk: A case-
control study of epidemiological factors. Int J Cancer 118: 1798-1804, 2006 

Gottschall EB: Occupational and environmental exposures. J Thorac Imaging 17: 189-
197, 2002 

Hara M, Sasaki S, Sobue T, Yamamoto S, Tsugane S: Comparison of cause-specific 
mortality between respondants and nonrespondants in a population-based prospective 
study: ten-year follow-up of JPHC Study Cohort I. Japan Public Health Cneter. J Clin 
Epidemiol 55:150-6, 2002 

Hasegawa M, Sone S, Takashima S, Li F, Yang ZG, Maruyama Y, Watanbe T: Growth 
rate of small lung cancers detected on mass screening. British Journal of Radiology 73: 
1252-1259, 2000 

Hazelton WD, Luebeck EG, Heidenreich WF, Moolgavkar SH: Analysis of a historical 
cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke 
exposures using the biologically based two-stage clonal expansion model. Radiation 
Research 156: 78-94, 2001 

Hazelton WD, Clements MS, Moolgavkar SH: Multistage carcinogenesis and lung cancer 
mortality in three cohorts. Cancer Epidemiology, Biomarkers, and Prevention 14(5): 
1171-1181,2005 

Hazelton WD, Moolgavkar SH, Curtis SB, Zielinski JM, Ashmore JP, Krewski D: 
Biologically based analysis of lung cancer incidence in a large Canadian occupational 
cohort with low-dose ionizing radiation exposure, and comparison with Japanese atomic 
bomb survivors. Journal of Toxicology and Environmental Health, Part A 69: 1013-1038, 
2006 

Heidenreich WF, Luebeck EG, Moolgavkar SH: Some properties of the two-mutation 
clonal expansion model. Risk Analysis 17(3): 391-399, 1997 

Heidenreich WF, Jacob P, Paretzke HG: Exact solution of the clonal expansion model 
and their application to the incidence of solid tumors of atomic bomb survivors. Radiat 
Environ Biophys 36: 45-58, 1997 

Heidenreich WF, Luebeck EG, Moolgavkar SH: Some Properties of the Hazard Function 
of the Two-Mutation Clonal Expansion Model. Risk Analysis 17(3): 391-399, 1979 

Heidenreich WF, Jacob P, Paretzke HG, Cross FT, Dagle GE: Two-step model for the 
risk of fatal and incidental tumors in rats exposed to radon. Radiation Research 151: 209-
217,1999 



78 

Heidenreich WF, Wellmann J, Jacob P, Wichmann HE: Mechanistic modeling in large 
case-control studies of lung cancer risk from smoking. Statistics in Medicine 21: 3055-
3070, 2002 

Henschke CI, McCaulery DI, Yankelovitiz DF, et al: Early lung cancer action program: 
overall design and findings from baseline screening. Lancet 354: 99-105, 1999 

Henschke CI, Naidich DP, Yankelovitz DF et al: Early lung cancer action project: initial 
findings on repeat screening. Cancer 92: 153-159, 2001 

Hudmon KS, et al: Identifying and recruiting health control subjects from a managed care 
organization: a methodolody for molecular epidemiological case control studies of 
cancer. Cancer Epidemiol Biomarkers Prev 6: 565-571, 1997 

International Agency for Research on Cancer (IARC). IARC Monographs on the 
Evaluation of Carcinogenic Risks to Humans and their Supplements: A complete list: 
Tobacco Smoking Volume 38. 1986 

International Agency for Research on Cancer (IARC). IARC Monographs on the 
Evaluation of Carcinogenic Risks to Humans and their Supplements: A complete list: 
Involuntary Smoking Volume 83. 2002 

The International Early Lung Cancer Action Program Investigators. Survival of patients 
with stage I lung cancer detected on CT screening. N Engl J Med 355: 1763-1771, 2006 

International Early Lung Cancer Action Program Investigators (IELCAP): Henshke CI, 
Miettinen YR: Women's susceptibility to tobacco carcinogens and survival after 
diagnosis of lung cancer. JAMA 296(2): 180-184, 2006 

Kendall DG: Birth and death processes and the theory of carcinogenesis. Biometrika 47: 
13-21, 1960 

Koo LC, Ho JH, Lee N: An analysis of some risk factors for lung cancer in Hong Kong. 
Int J Cancer 35: 149-155, 1985 

Kopp-Shneider A, Portier CJ, Sherman CD: The exact formula for tumour incidence in 
the two-stage model. Risk Analysis 14: 1079-1080, 1994 

Levin ML, Goldstein H, Gerhardt PR. Cancer and tobacco smoking: a preliminary report. 
JAMA 143: 336-338, 1950 

Lindsted KD, Fraser GE, Steinkohl M, Beeson WL: Healthy volunteer effect in a cohort 
study: temporal resolution in the Adventist Health Study. J Clin Epidemiol 49:783-90, 
1996 



79 

Littman AJ, Thornquist MD, White E, et al: Prior lung disease and risk of lung cancer in 
a large prospective study. Cancer Causes Control 15: 819-827, 2004 

Lubin JH et al: A Joint Analysis of 11 Underground Miner Studies. National Institutes of 
Health, Bethesda, MD, USA, 1994 

Luebeck EG, Heidenreich WF, Hazelton WF, Paretzke HG, Moolgavkar SH: 
Biologically based analysis of the data for the Colorado Uranium Miners Cohort: age, 
dose and dose-rate effects. Radiation Research 152: 339-351, 1999 

Marks F, et al: Tumor promotion as a target of cancer prevention. Recent Results Cancer 
Res 174: 37-47, 2007 

Matakidou A, Eisen T, Houlston RS: Systematic review of the relationship between 
family history and lung cancer risk. Br J Cancer 93(7): 825-833, 2005 

Mayne ST, Buenconsejo J, Janerich DT: Familial cancer history and lung cancer risk in 
United States nonsmoking men and women. Cancer Epidemiology, Biomarkers, and 
Prevention 8: 1065-1069, 1999 

Mayne ST, Buenconsejo J, Jenerich DT: Previous lung disease and risk of lung cancer 
among men and women nonsmokers. Am J Epidemiol 149: 13-20, 1999 

Meza R, Hazelton WD, Colditz GA, Moolgavkar SH: Analysis of lung cancer incidence 
in the nurses' health and health professionals' follow-up studies using a multistage 
carcinogenesis model. Cancer Causes Control: Epub December 2007 

Moolgavkar SH, Venzon DJ: Two-event models for carcinogenesis: Incidence curves for 
childhood and adult tumours. Mathematical Biosciences 47: 55-77, 1979 

Moolgavkar SH, LuebeckG: Two-event model for carcinogenesis: Biological, 
mathematical, and statistical considerations. Risk Analysis 10(2): 323-341, 1990 

Moore KA, Mery CM, Jaklitsch MT, Estocin AP, Bueno R, Swanson SJ, Sugarbaker DJ, 
Lukanich JM: Menopausal effects on presentation, treatment, and survival of women 
with non-small cell lung cancer. Ann Thorac Surg 76: 1789-1795, 2003 

Muscat JE, Wynder L: Lung cancer pathology in smokers, ex-smokers and never 
smokers. Cancer 88: 1-5, 1995 

National Cancer Institute (NCI): Surveillance Epidemiology and End Results (SEER). 
Division of Cancer Control and Population Sciences, www.seer.cancer.gov 

National Institutes of Health (NIH), National Cancer Institute: Smoking and Tobacco 
Monograph 10: Health Effects of Exposure to Environmental Tobacco Smoke. 1999 

http://www.seer.cancer.gov


80 

National Institutes of Health (NIH): What you need to know about lung cancer. 
Publication No. 07-1553 

National Research Council (NRC), Committee on Passive Smoking: Environmental 
Tobacco Smoke: Measuring Exposures and Assessing Health Effects. 1986 

Neuberger JS, Field RW: Occupation and lung cancer in nonsmokers. Rev Environ 
Health 18: 251-267, 2003 

Neyman J, Scott EL: Statistical aspects of the problem of carcinogenesis. Proceedings of 
the fifth Berkeley Symposium on Mathematical Statistics, and Probability 4: 707-719, 
1967 

Nordquist LT, Simon GR, Cantor A, Alberts WM, Bepler G: Improved survival in never 
smokers vs current smokers with primary adenocarcinoma of the lung. Chest 126: 347-
351,2004 

Patel JD, Bach PB, Kris MG: Lung cancer in US women: a contemporary epidemic. 
JAMA 291: 1763-1768, 2004 

Pinsky PF, Miller A, Kramer BS, Church T, Reding D, Prorok P, Gelmann E, Schoen 
RE, Buys S, Hayes RB, Berg CD: Evidence of a healthy volunteer effect in the Prostate, 
Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Epidemiol 164: 874-881, 
2007 

Prescott E, Olser M, Anderson PK, Hein HO, Borch-Johnsen K, Lange P, Schnohr P, 
Vestbo J: Mortality in women and men in relation to smoking. Int J Epidemiol 27: 27-32, 
1998 

Proctor RN: The nazi war on cancer. Princeton, NJ: Princeton University Press, 1999 

Qiao Y, Spitz MR, Guo Z, Hadeyati M, Grossman L, Kramer KH, Wei Q: Rapid 
assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation 
assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair 
genes in normal human lymphocytes. Mutat Res 509: 165-174, 2002 

Ries LAG, Miller BA, Hankey BF, et al: Cancer statistics review, 1973-1988. Bethesda, 
MD: US Government Printing Office, 1991 

Risch HA, Howe GR, Jain M, Burch JD, Holowaty EJ, Miller AB: Are female smokers at 
higher risk for lung cancer than male smokers? A case-control analysis by histological 
type. Am J Epidemiol 138: 281-293, 1993 

Schwartz AG, Siegfried JM, Weiss L: Familial aggregation of breast cancer with early 
onset lung cancer. Genet Epidemiol 17(4): 274-284, 1999 



81 

Schwartz AG, Yang P, Swanson GM: Familial risk of lung cancer among nonsmokers 
and their relatives. Am J Epidemiol 144(6): 554-562, 1996 

Selikoff IJ, Churg J, Hammond EC: Asbestos exposure and neoplasia. JAMA 188: 22-26, 
1964 

Sellers TA, Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H: Increased 
familial risk for non-lung cancer among relatives of lung cancer patients. Am J Epidemiol 
126(2): 237-246, 1987 

Shen H, Spitz MR, Qiao Y, Guo Z, Wang LE, Bosken CH, Amos CI, Wei Q: Smoking, 
DNA repair capacity and risk of non-small cell lung cancer. Int J Cancer 107: 84-88, 
2003 

Shimizu H, Tominaga S, Nishimura M, Urata A: Comparison of clinico-epidemiological 
features of lung cancer patients with and without a history of smoking. Jpn J Clin Oncol 
14:595-600, 1984 

Sikkink SK, et al: In-depth analysis of molecular alterations within normal and tumour 
tissue from an entire bronchial tree. Int J Oncol 22: 589-559, 2003 

Slaughter DP: The multiplicity of origin of malignant tumors. Internation Abstracts of 
Surgery 79(2): 89-98, 1944 

Slaughter DP, Southwick HW, Smejkal W: "Field Cancerization" in oral stratified 
squamous epithelium. Cancer (Phila.) 6: 963-968, 1959 

Sobue T, Yamamoto S, Hara M, Sasazuki S, Sasaki S, Tsugane S: JPHC Study Group. 
Japanese Public Health Center: Cigarette smoking and subsequent risk of lung cancer by 
histological type in middle-aged Japanese mend and women: the JPHC study. Int J 
Cancer 99:245-251,2002 

Sozzi G, Miozzo M, Pastorini U, Pilotti S, Donghi R, Giarola M, De Gregorio L, Manenti 
G, Radice P, Minoletti F, Delia Porta G, Pierotti MA: Genetic evidence for an 
independent origin of multiple preneoplastic and neoplastic lung lesions. Cancer 
Research 55: 135-140, 1995 

Subramanian J, Govindan R: Lung cancer in never smokers: a review. Journal of Clinical 
Oncology 25(5): 561-570, 2007 

Subramanian J, Velcheti V, Gao F, Govindan R: Presentation and stage-specific 
outcomes of lifelong never-smokers with non-small cell lung cancer (NSCLC). Journal of 
Thoracic Oncology 2(9): 827-830, 2007 

Sun S, Schiller JH, Gazdar AF: Lung caner in never smokers- a different disease. Nature 
7: 778-789, 2007 



82 

Tan WY: Stochastic models of carcinogenesis. Marcel Decker. New York 1991 

Texas Cancer Registry: Texas Cancer Information. Cancer Epidemiology and 
Surveillance Branch, www.texascancer.info 

Thomson CA, Harris RB, Craft NE, Hakim IA: A cross-sectional analysis demonstrated 
the healthy volunteer effect in smokers. Journal of Clinical Epidemiology 58: 378-382, 
2005 

Thun MJ, Myers DG, Day-Lally C, Myers D, Calle EE, et al: Trends in tobacco smoking 
and mortality from cigarette use in Cancer Prevention Studies I (1959 through 1965) and 
II (1982 through 1988). In: National Cancer Institute, Smoking and Tobacco control, 
monograph 8: Changes in cigarette-related disease risks and their implication for 
prevention and control, 1997 

Tockman MS: Other host factors and lung cancer susceptibility. In: Samet JM, ed. 
Epidemiology of lung cancer. New York, NY: Marcel Dekker: 397-412, 1994 

Toh CK et al: Never-smokers with lung cancer: epidemiological evidence of a distinct 
disease entity. J Clin Oncol 24: 2245-2251, 2006 

Unger M: A pause, progress and reassessment in lung cancer screening: N Engl J Med 
355: 17, 2006 

U.S. Department of Health and Human Services: The Health Consequences of 
Involuntary Smoking: A Report of the Surgeon General, 1979 

U.S. Department of Health and Human Services: Women and Smoking: A Report of the 
Surgeon General, 2001 

U.S. Department of Health Education, and Welfare (DHEW): Smoking and health: a 
report of the Advisory Committee to the Surgeon General. DHEW-Public Health Service 
Publication No. 1103. Washington, DC: US Government Printing Office, 1964 

U.S. Environmental Protection Agency. Respiratory Health Effects of Passive Smoking. 
1992 

Usuda K, Saito Y, Sagawa M, Soto M, Kanma K, Takahashi S, Endo C, Chen Y, Sakurda 
A, Fujimura S: Tumor doubling time and prognostic assessment of patients with primary 
lung cancer. Cancer 74: 2239-2244, 1994 

Vineis P, Airoldi L, Vegelia P, et al: Environmental tobacco smoke and risk of 
respiratory cancer and chronic obstructive pulmonary disease in former smokers and 
never smokers in the EPIC prospective study. BMJ 330: 277, 2005 

http://www.texascancer.info


83 

Wakelee HA, Chang ET, Gomez SL, Keegan TH, Feskanich D, Clarke CA, et al: Lung 
cancer incidence in never smokers. J Clin Oncol 25(5): 472-478, 2007 

Wei Q, Cheng L, Amos CI, Wang LE, Guo Z, Hong WK, Spitz MR: Repair of tobacco 
carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. 
J Natl Cancer Inst 92(21): 1764-1772, 2000 

Wingo PA, Ries LA, Giovino GA, et al: Annual report to the nation on the status of 
cancer, 1973-1996, with a special section on lung cancer and tobacco smoking. J Natl 
Cancer Inst 91: 675-690, 1999 

Wu AH, Fontham ET Reynolds P, et al: Previous lung disease and risk of lung cancer 
among lifetime nonsmoking women in the United States. Am J Epidemiol 141: 1023-
1032, 1995 

Wu AH, Fontham ET, Reynolds P, et al: Family history of cancer and risk of lung cancer 
among lifetime nonsmoking women in the United States. Am J Epidemiol 143: 535-542, 
1996 

Wu X, et al: p53 Genotypes and Haplotypes Associated with Lung Cancer Susceptibility 
and Ethnicity. J Natl Cancer Inst 94: 681-690, 2002 

Wynder EL, Graham EA: Tobacco smoking as a possible etiological factor in 
bronchiogenic carcinoma: a study of six hundred and eighty-four proven cases. JAMA 
143:329-336, 1950 

Zang EA, Wynder EL: Difference in lung cancer risk between men and women: 
examination of the evidence. J Natl Cancer Inst 88: 183-192, 1996 

Zheng Q: On the exact hazard and survival functions of the MVK model. Risk Analysis 
14: 1081-1084, 1994 


