
RICE UNIVERSITY

Efficient Traffic Trajectory Error Detection

by

60 Zhang

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Dr. T. S/Eugene Ng (Chair)r
Assistant Professor,
Computer Science

Dr. Alan L. Cox, ?
Associate Professor,
Computer Science

£T

Dr. Edward W. JMightly,
Professor,
Electrical and Computer Engineering

HOUSTON, TEXAS

MAY, 2010

UMI Number: 3421173

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Dissertation Publishing

UMI 3421173
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Efficient Traffic Trajectory Error Detection

by

Bo Zhang

Our recent survey on publicly reported router bugs shows that many router bugs, once

triggered, can cause various traffic trajectory errors including traffic deviating from its

intended forwarding paths, traffic being mistakenly dropped and unauthorized traffic by

passing packet filters. These traffic trajectory errors are serious problems because they

may cause network applications to fail and create security loopholes for network intruders

to exploit. Therefore, traffic trajectory errors must be quickly and efficiently detected so

that the corrective action can be performed in a timely fashion. Detecting traffic trajectory

errors requires the real-time tracking of the control states (e.g., forwarding tables, packet

filters) of routers and the scalable monitoring of the actual traffic trajectories in the net

work. Traffic trajectory errors can then be detected by efficiently comparing the observed

traffic trajectories against the intended control states. Making such trajectory error detec

tion efficient and practical for large-scale high speed networks requires us to address many

challenges.

First, existing traffic trajectory monitoring algorithms require the simultaneously mon

itoring of all network interfaces in a network for the packets of interest, which will cause

a daunting monitoring overhead. To improve the efficiency of traffic trajectory monitor

ing, we propose the router group monitoring technique that only monitors the periphery

interfaces of a set of selected router groups. We analyze a large number of real network

topologies and show that effective router groups with high trajectory error detection rates

exist in all cases. We then develop an analytical model for quickly and accurately esti

mating the detection rates of different router groups. Based on this model, we propose an

algorithm to select a set of router groups that can achieve complete error detection and low

monitoring overhead.

Second, maintaining the control states of all the routers in the network requires a signifi

cant amount of memory. However, there exist no studies on how to efficiently store multiple

complex packet filters. We propose to store multiple packet filters using a shared Hyper-

Cuts decision tree. To help decide which subset of packet filters should share a HyperCuts

decision tree, we first identify a number of important factors that collectively impact the

efficiency of the resulting shared HyperCuts decision tree. Based on the identified factors,

we then propose to use machine learning techniques to predict whether any pair of packet

filters should share a tree. Given the pair-wise prediction matrix, a greedy heuristic algo

rithm is used to classify packet filters into a number of shared HyperCuts decision trees.

Our experiments using both real packet filters and synthetic packet filters show that our

shared HyperCuts decision trees require considerably less memory while having the same

or a slightly higher average height than separate trees. In addition, the shared HyperCuts

decision trees enable concurrent lookup of multiple packet filters sharing the same tree.

Finally, based on the two proposed techniques, we have implemented a complete pro

totype system that is compatible with Juniper's JUNOS. We have shown in the thesis that,

to detect traffic trajectory errors, it is sufficient to only selectively implement a small set of

key functions of a full-fletched router on our prototype, which makes our prototype simpler

and less error prone. We conduct both Emulab experiments and micro-benchmark exper

iments to show that the system can efficiently track router control states, monitor traffic

trajectories and detect traffic trajectory errors.

Acknowledgment

First and foremost, I would like to thank my advisor, Dr. T. S. Eugene Ng, for his

insights in helping guide the direction of this thesis. I am greatly indebted to him for his

guidance, vision, and the freedom he has given to me to pursue my research interests. He

has been incredibly patient to me from the very beginning of my graduate studies at Rice

University. I feel very fortunate for having the chance to work closely with him. I would

also like to thank Dr. Alan Cox and Dr. Edward Knightly for serving on my committee and

providing me with valuable feedback to significantly improve the quality of this thesis.

I owe a great deal to Guohui Wang for his inspiring discussions on various aspects of

my research. He also helped me a lot in building the prototype detector. I would also like

to thank Charles Laubach for his help in setting up the Emulab testbed using the Juniper

Olive router. Angela Yun Zhu helped formalize the router group selection problem and

then proved that the optimal router group selection problem is NP hard. I am also thankful

to Zheng Cai, Florin Dinu and Jie Zheng for not only helping in my thesis proposal and

defense, but also for making my entire stay at Rice exciting and entertaining.

At last, I would like to thank my wife Angela Yun Zhu and my parents for the advice,

affection, and support they have given me. Without them, this thesis would not exist.

Contents

List of Illustrations viii

List of Tables xii

1 Introduction 1

1.1 Defining Traffic Trajectory Errors 2

1.2 Traffic Trajectory Errors In The Wild 2

1.3 The Need For Detecting Traffic Trajectory Errors 4

1.4 Challenges of Efficient Traffic Trajectory Error Detection 5

1.5 Contributions 7

1.6 Thesis Outline 9

2 Background 10

2.1 Important Assumptions 10

2.2 Limitations of Existing Techniques 11

3 Monitoring Routers In Group 14

3.1 Effectiveness of Router Group Monitoring in Practice 18

3.1.1 Methodologies 20

3.1.2 Detection Rate of Forwarding Errors 22

3.1.3 Detection Rate of Packet Filtering Errors 26

3.2 Analytical Model for Error Detection Rate 28

3.2.1 Contributing Factors of Error Detection Rate 29

3.2.2 Analytical Model 32

3.2.3 Prediction Accuracy of Using Model vs. Sampling 35

VI

3.3 Router Group Selection Algorithm 36

3.3.1 Correctness of Router Group Selection Algorithm 38

3.3.2 Optimality of Router Group Selection Algorithm 39

3.3.3 Heuristic Algorithm for Router Group Selection 44

3.3.4 Performance of Heuristic Router Group Selection Algorithm 47

3.3.5 Discussion 48

3.4 Applications of Router Group Monitoring 49

3.4.1 Applying to Trajectory Sampling 50

3.4.2 Applying to Fatih 52

3.5 Related Work 53

4 Constructing Shared HyperCuts Decision Trees for Multiple

Packet Filters 57

4.1 Background 58

4.1.1 Packet Filter Notations 58

4.1.2 The HyperCuts Data Structure and Algorithm 59

4.1.3 Extend the HyperCuts Data Structure and Algorithm 60

4.1.4 Efficiency Metrics of The HyperCuts Decision Tree 62

4.2 Challenges of Constructing Efficient Shared HyperCuts Decision Tree . . . 63

4.2.1 Filter Data Sets 63

4.2.2 Making Randomly Selected Packet Filters Share HyperCuts Trees? 64

4.3 Clustering Packet Filters to Construct Efficient Shared HyperCuts

Decision Trees 65

4.3.1 Factors Affecting the Efficiency of the Shared Trees 66

4.3.2 Predicting Good Pairs of Packet Filters 82

4.3.3 Clustering Packet Filters Based on Pair-wise Prediction 84

4.4 Performance Evaluation 85

4.4.1 Accuracy of Predicting Good Pairs 85

Vll

4.4.2 Performance of The Filter Clustering Algorithm 90

4.4.3 Computation Time Breakdown 93

4.5 Another Application of the Shared HyperCuts Decision Tree 95

4.5.1 The Need for Multiple Packet Filters on a Single Router 96

4.5.2 Challenges of Deploying Multiple Packet Filters on a Single Router 96

4.6 Related Work 97

5 System Design 99

5.1 Router Control State Collection 99

5.2 Traffic Trajectories Monitoring and Collection 105

5.3 Router Trajectory Error Detector 108

5.3.1 Discussion 112

6 Prototype Evaluation 114

6.1 Prototype System Implementation 114

6.2 Emulab Testbed Setup 114

6.3 Performance of Router Control State Collection 116

6.4 Performance of Traffic Trajectories Collection 117

6.5 Performance of Trajectory Error Detection 118

6.6 Integrated Trajectory Error Detection Demonstration 120

7 Conclusion and Future Work 122

7.1 Summary of Contributions 122

7.2 Future Work 124

Bibliography 126

Illustrations

3.1 Example illustrating router group monitoring, (a) Per-router monitoring is

not the most efficient, (b) Group monitoring is more efficient and can

detect most trajectory errors within the group, (c) Zooming in to a finer

scale to identify the misbehaving router, (d) Two different router groups

with different scales can be concurrently monitored 15

3.2 Illustration of router group monitoring technique 15

3.3 The impact of router group topology on misforwarding detection 23

3.4 Average detection rate of one forwarding error 24

3.5 Average detection rate of two dependent forwarding errors 26

3.6 Average detection rate of three dependent forwarding errors 27

3.7 Overlap ratio between the 10% router groups with highest 1-error

detection rates and the 10% router groups with the highest 2 or 3-error

detection rates 28

3.8 The detection performance for uRPF errors 29

3.9 Illustration of how the number of exiting interfaces impacts the error

detection rate 31

3.10 Analytical formula for estimating error detection rate 33

3.11 Prediction errors comparison of model-based and sampling-based

approaches 37

3.12 Computational speedup of computing error detection rates using model

versus computing error detection rates using full simulation approach. . . . 37

ix

3.13 The model accurately preserves the ranking order among pairs of router

groups 38

3.14 Comparison of average error detection speeds of different router group

selection approaches 42

3.15 Detection speedup when varying the sampling rate and the maximum

number of interfaces concurrently monitored 51

3.16 Percentage of monitored interfaces required to achieve the same detection

speed as the original Trajectory Sampling 52

3.17 Router group monitoring helps Fatih reduce the number of monitored

interfaces 54

3.18 Router group monitoring helps Fatih reduce communication overheads. . . 54

4.1 Example of a shared HyperCuts tree: (a) Two separate HyperCuts trees.

(b) The corresponding shared HyperCuts tree 61

4.2 (a) Memory consumption increases when randomly selected packet niters

share a HyperCuts tree, (b) Average depths of leaf nodes increase when

randomly selected packet filters share a HyperCuts tree 66

4.3 Filter size V.S. memory consumption 68

4.4 Number of internal nodes V.S. number of leaf nodes 69

4.5 Filter size V.S. number of internal nodes 71

4.6 Filter size V.S. number of leaf nodes 72

4.7 Number of unique elements V.S. number of cuts 73

4.8 Filter size V.S. height of trees 74

4.9 Height of trees V.S. average depth of leaf nodes 75

4.10 Size differences: good pairs V.S. bad pairs 76

4.11 Difference of number of internal nodes: good pairs V.S. bad pairs 77

4.12 Difference of number of leaf nodes: good pairs V.S. bad pairs 78

4.13 Difference of memory consumption: good pairs V.S. bad pairs 79

X

4.14 Correlation of number of unique elements in all dimensions: good pairs

V.S. bad pairs 80

4.15 Correlation of number of cuts on all dimensions: good pairs V.S. bad pairs. 81

4.16 Height difference: good pairs V.S. bad pairs 82

4.17 Average leaf nodes depth difference: good pairs V.S. bad pairs 83

4.18 Constructing a graph based on pair-wise prediction 84

4.19 The filter classification algorithm helps alleviate the high false negative

rate of the pair-wise prediction 89

4.20 Performance of decision tree technique: (a) false positive rate (b) false

negative rate 89

4.21 Performance of generalized linear regression: (a) false positive rate (b)

false negative rate 90

4.22 Performance of naive Bayse classifier: (a) false positive rate (b) false

negative rate 90

4.23 Shared HyperCuts trees V.S. separate HyperCuts trees for Purdue data. . . . 92

4.24 The shared HyperCuts trees enable concurrent lookup of multiple packet

filters sharing the same tree 93

4.25 Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Synl-Exp (b)

Synl-100 93

4.26 Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn2-Exp (b)

Syn2-100 94

4.27 Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn3-Exp (b)

Syn3-100 94

5.1 Using a modified Quagga daemon to compute a router's BGP routing state. 100

5.2 Preprocessing and supply of behavioral evidence to traffic trajectory error

detectors 109

XI

5.3 Trajectory error detection mechanisms, (a) The baseline mechanism is to

simulate a monitored router group hop-by-hop based on the routers' state,

(b) By combining the FIBs in a router group, simulating the aggregated

forwarding behavior requires only one longest address prefix match

operation, (c) Advanced router behaviors are specified by packet filters.

By aggregating the filters in a router group and performing an aggregated

match, the detector can efficiently decide whether hop-by-hop simulation

can be avoided 110

6.1 Emulated Internet2 testbed on EmuLab 115

6.2 The performance of OSPF and BGP control state collection, (a) OSPF. (b)

BGP. 116

6.3 The performance of detector components, (a) Trie lookup time, (b)

Decision tree lookup time, (c) Flow hash table lookup time 119

6.4 The overall performance of trajectory error detection, (a) Average

processing time for each flow, (b) Peak memory usage during the detection. 119

Tables

3.1 Summary of 12 real network topologies used in our experiment. The three

numbers in the Degree column are (minimum degree, average degree and

maximum degree) 22

4.1 A simple packet filter example with 10 rules defined on five packet header

fields 59

4.2 Summary of basic statistics about the seven filter data sets 64

4.3 Computation time breakdown (in seconds) for each step in the proposed

approach 95

6.1 Timestamp of each trajectory error first detected 121

1

Chapter 1

Introduction

The network topology and routing policy of an operation network are carefully designed so

that the routers forward traffic along the chosen trajectories. In addition, different packet

niters serving various functions are also carefully placed on routers to enforce the desired

traffic reachability.

In the ideal case, routers should process traffic as intended so that the traffic always

follows the chosen paths. However, routers are complex systems. They typically run an

operating system (e.g., Cisco IOS and Juniper JUNOS), and a collection of protocol dae

mons which implement the various tasks associated with protocol operations. Like any

complex software, routing software is prone to implementation bugs. The implementation

bugs can affect routers in different ways. One class of bugs causes a router to crash or re

boot. Fortunately, router crash or reboot is relatively easy for an operator to notice. Another

class of bugs causes non-critical effects (e.g., a slow memory leak) that does not affect net

work services. However, a large number of router bugs, once triggered, can cause various

traffic trajectory errors including forwarding error (i.e., traffic deviating from its intended

forwarding paths), dropping error (i.e., traffic being mistakenly dropped) and filter-bypass

error (i.e., unauthorized traffic bypassing packet filters). These traffic trajectory errors are

serious problems because they may cause network applications to fail and create security

loopholes for network intruders to exploit. Worse, traffic trajectory errors can be subtle

and hard to detect during development or deployment. Note that static router configuration

correctness checking tools [FR01, FB05] or control plane monitoring mechanisms [SG04]

do not help here. This is because the bugs may exist even when routers are correctly con

figured by the operator, and the control plane (e.g., OSPF, BGP) of a buggy router may

2

continue to appear to be working correctly.

1.1 Defining Traffic Trajectory Errors

In this section, we define the three types of traffic trajectory errors that we address in this

thesis.

• Packet dropping error - If a router drops legitimate packets that it should continue

to forward along their trajectory, then we call it a packet dropping error. A packet

could be dropped due to an implementation bug related to the forwarding table or the

packet filter.

• Forwarding error - If the intended control state of a router indicates that a packet

should be forwarded to its neighbor Nl but in reality neighbor 7V2 receives it, then

we call it a forwarding error. When a forwarding error happens, the misforwarded

packet could fall into a forwarding loop and never reach its destination, or the packet

could take a different path but eventually still reach its destination. Whichever case

happened, it is still an trajectory error because the packet deviated from its intended

path.

• Filter bypass error - If a packet filter is supposed to drop a certain packet but mistak

enly lets it through, we call it a filter bypass error.

All three types of errors can directly affect the traffic trajectory in the network. In the

next section, we will further explain how these traffic trajectory errors happen in practice.

1.2 Traffic Trajectory Errors In The Wild

A recent study [CR08, KYCR09] manually classified the bugs found in Quagga [quab] and

XORP [xor] open source routers. They found that more than 200 and 500 bugs respectively

have been reported for Quagga since 2006 and for XORP since 2003. Cisco and Juniper

are the current leaders in the IP router market. Cisco has extensively documented over

3

200 bugs in their products since 1995. Details of these bugs are publicly available [cisb].

Juniper also documents bugs in their products. Unfortunately, this information is not pub

licly available, only registered customers are allowed to access [Jund]. Here we cite several

recently reported Quagga and Cisco router bugs that can cause traffic trajectory errors to

illustrate two points:

1. Real-world router bugs could lead to a wide range of traffic trajectory errors.

2. These bugs may only affect a specific subset of data packets and may leave no gross

evidence. Therefore, they are difficult to detect.

Multiple reported Quagga bugs can result in incorrect routing tables such as new routes

being ignored (Quagga Bugzilla [quaa] bug ID: 298, 464, 518), expired routes being used

(Quagga Bugzilla bug ID: 85, 134), incorrect routes being installed (Quagga Bugzilla bug

ID: 238, 546), and routers stop adapting to topology change (Quagga Bugzilla bug ID:

107). For Cisco routers, multiple reported bugs can cause a network interface to drop all fu

ture packets (Cisco Advisory IDs [cisb]: cisco-sa-20080326-IPv4IPv6, cisco-sa-20090325-

udp). Another bug may cause the firewall module of Cisco routers to stop forwarding

traffic (Advisory ID: cisco-sa-20090819-fwsm). Another bug may change the forwarding

table of a router (Advisory ID: cisco-sa-20080326-mvpn). Yet another bug may invalidate

control-plane access control lists (Advisory ID: cisco-sa-20080604-asa). Multiple bugs

can stop access control list from working, so that unauthorized traffic can go through the

affected routers (Advisory IDs: cisco-sa-20090923-acl, cisco-sa-20071017-fwsm, cisco-

sa-20011114-gsr-acl, cisco-sa-20000803-grs-acl-bypass-dos). Another bug (Advisory ID:

cisco-sa-20070412-wlc) could allow packet filters to be inserted so that some packets may

be dropped silently.

According to Cisco advisory [cisb] and Quagga Bugzilla [quaa], the reported Cisco and

Quagga router bugs exist in multiple versions of Cisco IOS and Quagga routing software,

thus, many deployed routers may be affected by those bugs. Worse, there are likely many

more bugs yet to be discovered.

4

1.3 The Need For Detecting Traffic Trajectory Errors

Eliminating router bugs during development is hard in practice. Ideally, all router bugs

should be discovered through rigorous testings and design verifications during the devel

opment stage and should be corrected prior to deployment. Unfortunately, router hardware

and software are highly complex systems, so no vendor can test all network designs, config

urations and traffic patterns that can exist in the real world. That is, realistically routers may

never be bug-free. Therefore, many bugs will remain undiscovered in deployed routers.

Although it helps to have vendors provide patches for the subset of bugs that they have

discovered, it is doubtful that network operators always keep their routers up-to-date. Net

work operators must cope with these bugs when they are eventually triggered in the field.

Therefore, it would be very beneficial for the network operator to have the ability to detect

traffic trajectory errors quickly and efficiently.

In this thesis, we consider the traffic trajectory error detection problem in the con

text of a single autonomous system (e.g., one ISP, one campus network, one enter

prise network, etc.). To address this problem, two classes of trajectory error detec

tion techniques have been proposed by other researchers. The first class of techniques

(e.g., [AKWK04] [HKOO] [Per88] [WAAR06] [ZGC03]) relies on routers sending some

form of packet arrival acknowledgments towards the packet source to confirm that a

packet is making correct progress in the network. The second class of techniques

(e.g.,WATCHERS [BCP+98, HABOO], Fatih [MCMS05, MCMS06], SATS [LWK06], Tra

jectory Sampling [DGOO], etc) relies on nodes to collect some form of network behavioral

evidence and then processes such evidence to detect trajectory errors. More detailed dis

cussions of these trajectory error detection techniques can be found in Section 2.2.

Although the two classes of techniques employ different approaches to detecting tra

jectory errors, we find that they share two common building blocks:

• Tracking and maintaining routers' control states: The control states of routers in

clude the forwarding tables, packet filters and so on. The control states of routers de

termine the routers' behaviors, i.e., how routers should process packets. Knowing the

5

intended behaviors of routers is essential for correct trajectory error detection. The

network control states that governs the various network functions can be obtained

from control protocol messages, network operators, as well as router configuration

files.

• Collecting the actual traffic trajectories: To obtain the actual trajectories of the

traffic, we need to monitor how traffic flows through the network. The first class

of techniques relies on the acknowledgments to learn the actual traffic trajectories,

while the second class of techniques uses either counters to record the traffic statistics

or the packet sampling techniques to monitor the trajectories of packets.

Once we obtain the intended control states and the actual traffic trajectories, traffic

trajectory errors can then be detected by comparing the observed traffic trajectories against

the intended trajectories according to the control states. If the observed traffic trajectories

contradict the intended trajectories, a trajectory error is detected. Detected trajectory errors

may be cross-validated by active probing facilities such as Cisco IPSLA [ips] to minimize

false detections.

1.4 Challenges of Efficient Traffic Trajectory Error Detection

Although the basic idea of the trajectory error detection is straight-forward, it is actually

challenging to design and implement an efficient and scalable trajectory error detection

system, especially when the network is composed of a large number of routers and high

speed links. Specifically, to enable efficient and scalable traffic trajectory error detection,

the following challenges need to be addressed first:

• Efficiency of trajectory monitoring: The first challenge we have to address is how

to efficiently observe the network-wide traffic trajectories while incurring as little

monitoring overhead as possible. To monitor how the traffic flows through a net

work, the existing techniques need to enable the traffic monitoring function on all

the network interfaces in a network. Ideally, each interface should monitor all traffic

6

that is going through it. However, monitoring all traffic at full rate will incur a high

monitoring and reporting overhead on routers and the network, so in practice only

a certain fraction of traffic is sampled for each monitoring period. Specifically, dur

ing each monitoring period, all monitoring devices deterministically choose a certain

subset of the packets, typically by a packet header hashing technique [MND05], to

be sampled by all interfaces. Different subsets of packets are then monitored during

different monitoring periods.] Once the actual traffic trajectories are obtained, traffic

trajectory errors can then be detected by comparing the observed traffic trajectories

against the intended trajectories according to the obtained control states. Although

the traffic sampling can help reduce the monitoring overhead, existing approaches

still require concurrent monitoring of all the network interfaces. In this thesis, we

propose a novel technique to improve the efficiency of the trajectory monitoring by

only monitoring a subset of interfaces during each monitoring period. The proposed

technique is generic and can be adopted by multiple trajectory error detection sys

tems to improve their efficiency.

Efficiency of maintaining control states: Secondly, the detector needs to maintain

control states of multiple routers to know their intended behaviors. Maintaining the

control states of multiple routers in the network usually requires significant amount

of memory. Efficient data structure for maintaining multiple forwarding tables has

been studied by Fu and Rexford [FR08a]. How to efficiently store multiple packet

filters has not been studied yet. Due to the complexities of the network services,

each packet filter may be large and complex as well. For example, recent studies

have shown that a complex packet filter on modern routers or firewalls can have as

many as 50,000 rules [ZWG07]. Therefore, a large amount of memory is required

'Trajectory errors may be persistent or not. Persistent errors are guaranteed to be eventually detected as

long as the packet sampling method eventually covers the affected packets. On the other hand, rare, temporary

trajectory errors may be detectable with a certain probability depending on the sampling method, the affected

packets, and the duration of the error. The rest of this thesis assumes we are dealing with persistent errors.

7

to hold a large number of complex packet filters. Given the limited memory on the

detector, it is critical for the detector to employ efficient data structures to store the

multiple packet filters.

1.5 Contributions

This thesis makes the following contributions to enable more efficient and scalable traffic

trajectory error detection:

1. Router group monitoring: We propose the router group monitoring technique,

which only monitors the periphery interfaces of a group of routers. Because only

a subset of interfaces in the network are monitored for each monitoring period, the

monitoring overhead can be significantly reduced. Router group monitoring intro

duces a new spatial dimension to traffic trajectory error detection. That is, in addition

to the dimension of varying the packet sampling rate to adjust the monitoring over

head, a new dimension to be considered is which network interfaces are to be moni

tored. To study whether the router group monitoring can be effective in practice, we

perform extensive simulation based experiments on a large number of real network

topologies. Our experiments show that the vast majority of the traffic trajectory errors

within a router group can still be detected by only monitoring the periphery interfaces

of the router group. To better understand what can affect the effectiveness of differ

ent router groups, we explore different factors. We show that the router group size,

the average router degree inside a group, and the number of exits leaving the group

are the key factors that influence a router group's detection rate. Based on the iden

tified factors, we develop an analytical model for quickly and accurately estimating

the detection rates of different router groups so that we do not need to use computa

tionally expensive simulation to calculate the detection rate of a router group. This

model makes it possible to identify effective router groups very efficiently. We pro

pose a novel algorithm to select a set of router groups that can achieve guaranteed

error detection and low monitoring overhead. Furthermore, this approach achieves

8

faster error detection than other monitoring algorithms. Finally, by only monitoring

a group of routers at a time, the computation overhead for generating the necessary

router states and for processing the behavioral evidence is reduced. We show that the

efficiency of trajectory error detection based on Trajectory Sampling or Fatih can be

significantly improved by applying the router group monitoring idea to them.

2. Efficient shared data structure for multiple packet filters:

To efficiently store multiple packet niters at the detector, we propose to use a shared

data structure based on the HyperCuts decision tree, which is widely adopted by com

mercial routers. We first extend the original HyperCuts decision tree data structure

and the tree construction algorithm to support multiple packet filters on a shared Hy

perCuts decision tree. We then experimentally show that naively classifying packet

filters into shared HyperCuts decision trees may significantly increase memory con

sumptions and search time. To help decide which subset of packet filters should

share a HyperCuts decision tree, we first identify a number of important factors that

collectively impact the efficiency of the resulting shared HyperCuts decision tree.

Based on the identified factors, we then propose to use machine learning techniques

to predict whether any pair of packet filters should share a tree. Given the pair-wise

prediction matrix, a greedy heuristic algorithm is used to classify packet filters into

a number of shared HyperCuts decision trees. Our evaluation shows that the false

positive rate of the pair-wise prediction algorithm is low. Though the false negative

rate of the pair-wise prediction is relatively higher, we show that the classification

algorithm can help alleviate the high false negative problem. Our experiments us

ing both real packet filters and synthetic packet filters show that the resulting shared

HyperCuts decision trees require considerably less memory while having the same

or a slightly higher average height than the separate trees. In addition, the shared

HyperCuts decision trees enable concurrent lookup of multiple packet filters sharing

the same tree.

9

3. Prototype detector compatible with Juniper JUNOS:

We have implemented a complete prototype system based on the above two novel

techniques. In addition, as opposed to some existing error detection techniques (e.g.,

Fatih, WATCHERS, Trajectory Sampling, etc) that require new router features, our

prototype does not require any router modification and is completely compatible with

Juniper's JUNOS [juna] version 8.5 running onFreeBSD (aka Olive [oli]). Our pro

totype leverages widely available traffic flow monitoring capabilities in routers (e.g.

NetFlow [sne], Flexible NetFlow [fie], IPFIX [ipf]) to distributedly collect trajecto

ries of packets in the network. As we will show in Section 5, to detect traffic trajec

tory errors, it is sufficient to only selectively implement a small set of key functions of

a full-fletched router on our prototype, which makes our prototype implementation

simpler and less error prone. Consequently, the detector can efficiently detect real

world traffic trajectory errors. We conduct micro-benchmark experiments to show

that the prototype can efficiently compute and maintain the routers' control states on

demand, and efficiently monitor actual traffic trajectories to detect traffic trajectory

errors. We also demonstrate the overall behavior of the complete system working on

a realistically emulated Internet2 backbone network in Emulab.

1.6 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we discuss the assumptions we

make, and explain the previous work and why they fall short. In Chapter 3, we present our

router group monitoring approach and demonstrate its benefits. In Chapter 4, we present

our efficient shared data structure for representing multiple packet filters. In Chapter 5, we

present the design of our prototype system. We evaluate the performance of our system and

demonstrate its capability in Chapter 6 using the Emulab testbed. Finally, we conclude in

Chapter 7.

10

Chapter 2

Background

Important Assumptions

• Single autonomous system: We consider the problem in the context of a single

autonomous system. That is, the network operator knows the intended configuration

(e.g., link weights, packet filters) of each router.

• Trusted control plane: Control plane security is an orthogonal problem that this

thesis will not focus on. We assume that the control plane of a network is trusted.

Therefore, all information contained in control protocol messages (e.g., OSPF LSAs,

BGP updates, IGMP messages, etc.), in direct configuration commands from net

work controllers (e.g. SNMP SET commands), and in router configuration files from

the operator are assumed to be correct. While control plane security may not be a

solved problem, many mechanisms do exist for securing the control plane and for de

tecting control plane misbehaviors (e.g., [HKD07, HARD09, SG04, PerOO, Kum93,

SMGLA97, ZH99, BHBR01, PST+02, Che97, HPT97, HJP03, SRS+04, RMR07,

CR08, KYCR09, MB96, WWV+97, PSS+01, WEO04, KLMS00, Whi03]). For ex

ample, [SG04] can be used to monitor the link weights of the OSPF protocol. If

the weight of any link is changed without the knowledge of the operator, the opera

tor will be alerted. While accountability protocols such as PeerReview ([HARD09]

[HKD07]) can help detect the misbehaving BGP routers.

• Observability of trajectory errors: A fundamental requirement for traffic trajec

tory error detection in any approach is that the evidence of a trajectory error must

be observable by good evidence-collecting nodes. This thesis does not address tra-

11

jectory errors that are not observable. For example, if one router mistakenly drops

a packet destined to itself, then this trajectory error cannot be detected because it is

not observable from outside. Another example is: a group of colluding routers that

changes die forwarding path of a packet within the colluding group and reports forged

forwarding evidence is generally not detectable. Fortunately, forging evidence that is

globally consistent will be quite hard in practice. Trajectory errors exhibited by edge

routers (e.g., ingress/egress routers dropping inbound/outbound packets) can be ob

served by dedicated evidence collecting nodes (such as commercial NetFlow-based

network monitoring devices [flob]) that tap the edge connections.

2.2 Limitations of Existing Techniques

We separate the discussion of existing techniques into primary techniques, which aim di

rectly at detecting traffic trajectory errors, and secondary techniques, which may indirectly

catch traffic trajectory errors.

Primary techniques: The are two classes of primary techniques. The first class of tech

niques relies on nodes sending some form of packet arrival acknowledgments towards the

source to confirm that a packet is making correct progress in the network. The second class

of techniques relies on nodes to collect some form of network behavioral evidence and

processes such evidence to detect trajectory errors.

The first common limitation of all existing techniques in these two classes is that they

assume destination address-based packet forwarding is the only network function. Conse

quently, they will falsely detect many ordinary scenarios as malicious. For example, access

control list (ACL) filtering will be detected as malicious packet drop; marking of a packet's

Type-of-Service (TOS) byte for QoS differentiation will be detected as malicious packet

modification; tunneling of packets for VPN services will be detected as malicious packet

redirection. Note that our proposed approach is an instance of the second class of tech

niques, but our proposed approach is unique in that it is control state-aware. The second

12

limitation is that the existing techniques need to enable the traffic monitoring function on

all the network interfaces in a network, which will incur a high monitoring and reporting

overhead on routers and the network. In contrast, our approach uses a novel router group

monitoring technique to improves the efficiency of the traffic trajectory monitoring by only

monitoring a subset of interfaces during each monitoring period.

The following is a brief summary of the first class of techniques: Avramopoulos et.

al. [AKWK04] use secure source routing and end-to-end acknowledgments to detect mis

behaving forwarders; Herzberg and Kutten [HKOO] describe different techniques based on

end-to-end, hop-by-hop, or intermediate node acknowledgments to detect misbehaving for

warders; Perlman [Per88] uses end-to-end acknowledgments to identify unreliable network

paths; Availability Centric Routing [WAAR06] and Feedback Based Routing [ZGC03] also

use end-to-end acknowledgments but monitor the reliability of inter-domain paths.

The following is a brief summary of the second class of techniques: WATCH

ERS [BCP+98, HABOO] maintains several packet counters at routers and uses inconsis

tencies found in these counters among different routers to detect forwarding errors; Packet

Obituaries [AMCS04] uses accountability boxes on inter-AS border links to record traffic

information and exchanges traffic information among accountability boxes to identify un

reliable inter-domain paths; Stealth Probing [AR06] hides end-to-end probe traffic among

regular data traffic inside a secure tunnel and monitors the end-to-end probe traffic to deter

mine the reliability of a network path; Secure Traceroute [PS03] compares traffic informa

tion collected at the source router and different intermediate routers to discover which inter

mediate router is misbehaving; Awerbuch et. al. [AHNRR02] is similar to Secure Tracer

oute but uses a binary search strategy for locating the misbehaving router; SATS [LWK06],

PepperProbing [GXT+08], and SaltProbing [GXT+08] extend the idea of Trajectory Sam

pling [DGOO] to securely monitor network paths for faulty forwarding behavior; Mizrak et.

al. [MCMS05, MCMS06, MSM08, Miz07] propose a system called Fatih that uses traffic

information to detect trajectory errors, including packet loss, fabrication, modification, re

ordering, delaying, and also provide mechanisms to distinguish congestive packet losses

13

from malicious packet drops.

Finally, many of the above techniques require specialized router support such as packet-

by-packet fingerprinting and logging that are not currently available in commercial IP

routers. In contrast, our goal is to design a solution that leverages existing router support

for NetFlow and does not need specialized router support.

Secondary techniques: There is a large number of statistical network anomaly detection

techniques in the literature (e.g., [Den87, LX01, FSBK03, LCD04, LCD05, ibm, cisd]).

These techniques monitor traffic aggregates and aim to identify network problems such

as DoS attacks, network outages, etc. While these techniques are not designed to catch

specific traffic trajectory errors, they could potentially detect a traffic trajectory error if it

results in a significant impact on the network's overall traffic. However, the limitation is that

a localized error is very likely to evade statistical detection. For example, a misbehaving

router that changes the forwarding behavior of a single /28 destination address prefix is

unlikely to cause a gross detectable anomaly. Therefore, while statistical anomaly detection

techniques can potentially be helpful in the fight against traffic trajectory errors, their use

is limited and so we consider these techniques secondary.

14

Chapter 3

Monitoring Routers In Group

To monitor the behavior of a router, the basic idea is to monitor the traffic being sent to and

received from this router by its neighbors. For example, consider the illustrative network in

Figure 3.1(a). To monitor one of the middle routers requires the monitoring of six neighbor

router interfaces. Monitoring all four middle routers will thus require the monitoring of 24

interfaces. At the extreme, if every router is to be monitored, then every network interface

needs to be monitored. The overall processing overhead in trajectory error monitoring

depends on both the sampling rate and the number of concurrently monitored interfaces.

However, an important observation is that to detect a traffic trajectory error, it is in general

unnecessary to monitor all network interfaces concurrently because it is sufficient to have

just one monitored interface detect the error. In other words, monitoring all interfaces

concurrently is overkill for trajectory error detection. Take Figure 3.2 as an example, if all

interfaces are monitored, then routers R4, R5, and R$ can all detect the same forwarding

error, which creates unnecessary monitoring overheads.

This observation leads to the following question: Compared to the straight-forward

setting of monitoring all interfaces concurrently, is it possible to detect the same trajectory

errors in fewer sampling periods (i.e. faster) on average, without increasing the overall pro

cessing overhead, by monitoring fewer interfaces concurrently but each at a higher packet

sampling rate? Conversely, is it possible to maintain the same detection speed, but reduce

the overall processing overhead by monitoring fewer interfaces at the same packet sampling

rate?

This chapter studies these questions under a particular interface monitoring strategy we

call router group monitoring. Suppose we model a network as a graph G(V, E) where V

15

T\
TM/TX

(a) Per-router monitoring of the
four middle routers requires
24 interfaces to be monitored

(b) Group monitoring of the four
middle routers requires only
14 interfaces to be monitored

(c) When a misbehavior is delected
the system can zoom in to
identify the misbehaving router

(d) Different router groups of
different scales could be
dynamically chosen

Figure 3.1 : Example illustrating router group monitoring, (a) Per-router monitoring is not
the most efficient, (b) Group monitoring is more efficient and can detect most trajectory
errors within the group, (c) Zooming in to a finer scale to identify the misbehaving router,
(d) Two different router groups with different scales can be concurrently monitored.

Correcl forwarding path for flowl

Wrong forwarding path for flowl

Periphery interfaces for router group 1

Flowl

f^-.. Correct router

Misforwarding router

Figure 3.2 : Illustration of router group monitoring technique.

is the set of vertices (routers) and E is the set of edges (links). A router group RGi is a

set of connected vertices such that RGi C V. When monitoring a router group RGt, every

16

cut edge (u, v) G E with u G RGi and v G V \ RGi is monitored. We informally refer to

these interfaces as the periphery interfaces of a router group. The overhead of monitoring

a router group thus depends on the number of periphery interfaces and the packet sampling

rate used. The potential overhead saving comes from not monitoring those edges (u, v)

with u, v G RGi.

The idea of router group monitoring is illustrated in Figure 3.1(b). A subset of con

nected routers are chosen to form a router group for monitoring. A router group represents

a network region that is being monitored by neighbor routers outside of the region. The

router group monitoring provides a trade-off between overhead and trajectory error detec

tion time. In the example, to monitor the four middle routers as a group requires only

14 interfaces to be monitored. Yet, most trajectory errors exhibited by the four routers

can already be detected. For simplicity, consider the transit traffic that enters and then

leaves the monitored region (to consider non-transit traffic simply requires additional Net-

Flow agents not shown in the figure to monitor the ingress and egress links as discussed

in section 2.1). Packets that are maliciously dropped, fabricated, tunneled to a third-party,

let-through against ACL policies, TOS-marked, etc. can be detected from outside the re

gion. Furthermore, a mis-forwarded packet can be detected if it leaves the region on an

unexpected interface. For example, Figure 3.2 illustrates how the router group monitoring

approach can detect a mis-forwarding error. Router group 1 is a singleton router group.

To monitor router group 1, we only need to monitor the three periphery interfaces repre

sented by the black circles. By monitoring the router group 1, we can detect the forwarding

error immediately because the flow 1 is leaving the group from a wrong periphery inter

face. When monitoring the router group 2, we can still detect this forwarding error. How

ever, monitoring the router group 3 will not detect this specific error because it has been

self-corrected inside the group. This tells us that a router group may not detect all errors

originated from the inside of the group.

Once a trajectory error is detected in a router group, the group can be divided up

into finer scale groups to "zoom in" on the specific misbehaving router as shown in Fig-

17

ure 3.1(c). Multiple router groups can be concurrently monitored as long as the total overall

processing overhead is below the desired ceiling. Note that concurrently monitored router

groups RGi and RGj need not be disjoint. Figure 3.1(d) shows that two router groups are

monitored concurrently. It is possible to choose router groups that guarantee to detect all

persistent trajectory errors. A sufficient condition is presented in Section 3.3. This result

is intuitive because one can always choose N router groups where N is the number of

routers and each group corresponds to a unique router in the network; this strategy simply

degenerates into the monitoring of all network interfaces.

However, to determine whether router group monitoring improves efficiency, a number

of questions must be addressed. First, how likely is a trajectory error inside a router group

detectable at the periphery interfaces? Second, what factors affect the detection rate of a

router group and how can we efficiently identify router groups that have high detection

rates? Third, how can we choose a set of router groups that can guarantee error detection

while achieving a low monitoring overhead? This thesis systematically addresses each of

these questions and show that router group monitoring has significant efficiency benefits

for trajectory error detection.

In summary, in this chapter, we have made the following important contributions:

• We propose router group monitoring, which introduces a new spatial dimension to

traffic trajectory error detection. That is, in addition to the dimension of varying

the packet sampling rate to adjust the monitoring overhead, a new dimension to be

considered is which network interfaces are to be monitored.

• To show that router group monitoring can be effective in practice, we analyze a large

number of real network topologies by brute-force computations and show that effec

tive router groups with high trajectory error detection rates exist in all cases.

• We show that the router group size, the average router degree inside a group, and the

number of exits leaving the group are the key factors that influence a router group's

detection rate. We develop an analytical model for quickly and accurately estimating

18

the detection rates of different router groups. This model makes it possible to identify

effective router groups efficiently.

• We propose an algorithm to select a set of router groups that can achieve guaranteed

error detection and low monitoring overhead. We show that applying this algorithm

to select router groups to be monitored can significantly improve the efficiency of

trajectory error detection based on Trajectory Sampling or Fatih.

The rest of this chapter is organized as follows. In Section 3.1, we study the effective

ness of router group monitoring in real topologies. In Section 3.2, we derive an analytical

model for predicting the effectiveness of a router group. In Section 3.3, we formulate

the router group selection problem and present an efficient heuristic algorithm for router

group selection. In Section 3.4, we show the benefits of applying router group selection to

Trajectory Sampling and Fatih. We discuss the related work in Section 3.5.

3.1 Effectiveness of Router Group Monitoring in Practice

A trajectory error represents a deviation from the intended network path and thus can po

tentially be detected at many interfaces in the network. Router group monitoring is a way to

exploit this observation. Specifically, even if the trajectory of a packet starts to deviate from

its intended path at a router inside a router group, the error may still be observable at the

periphery interfaces of the router group.The effectiveness of the router group monitoring

on detecting the three types of trajectory errors is discussed as follows:

• Dropping error - A dropping error simply drops all packets in the affected flow. Be

cause a packet that is simply dropped in the middle of its trajectory will never leave

the router group, by consistently observing packets missing from the intended exit

ing periphery interface, the error is easily detected. Thus, this thesis will not focus

on dropping errors. Please note that a packet could be dropped due to a bug in the

forwarding table implementation or in the packet filter implementation.

19

• Filter-bypass error - A filter-bypass error causes a flow to bypass a packet filter that

should drop it. When a filter-bypass error occurs inside a router group, whether it

will be detected by monitoring the periphery interfaces depends on the distribution

of packet filters inside the group. If the flow encounters another packet filter that is

designed to drop it as well before it leaves the group, then the specific filter-bypass

error will not be detected. On the other hand, if the flow leaves the group, then a

periphery interface will see the unexpected flow so that the error will be detected.

• Forwarding error - A forwarding error misforwards a flow to a wrong next-hop. A

forwarding error can lead to two possible outcomes:

1) Forwarding loop error: If a forwarding loop keeps a packet inside the router group,

the packet will never leave the router group and can be detected just like a dropping

error. If the forwarding loop takes the packet outside of the router group, if the

exiting periphery interface is wrong, the error is detected. On the other hand, if the

exiting periphery interface happens to be correct, the error is not detected by this

router group.

2) Detour error (no loop is formed): If the detour takes the packet outside of the

router group via an incorrect exiting periphery interface, the error is detected. On the

other hand, if the exiting periphery interface happens to be correct, the error is not

detected by this router group.

Therefore, a router group does not guarantee the detection of all errors that start in

side the group. Different router groups can also have different error detection rates.

Ultimately, multiple router groups must be chosen carefully to guarantee the detec

tion of all trajectory errors and achieve low monitoring overhead. Our evaluation will

show that the router group monitoring approach is effective in detecting all types of

trajectory errors.

A router at which an error occurs is called a misbehaving router. The misbehaving

router's erroneous action such as dropping traffic, misforwarding traffic and allowing traffic

20

to bypass filters is called a trajectory error. More formally, a misbehaving router is said to

have one trajectory error with respect to a flow i denoted as F» if the error affects all packets

belonging to Fj. We perform a series of empirical experiments to understand the impact of

router group monitoring on trajectory error detection.

3.1.1 Methodologies

3.1.1.1 Static Analysis Methodology

We first consider the case where only one forwarding error exists inside a router group.

Given a router group and a forwarding error inside the group, whether the forwarding

error will be detected by monitoring the periphery interfaces of the router group can be

decided using the following static analysis approach: starting from the misbehaving router,

a hop-by-hop forwarding table lookup is used to decide the exiting interface where the

mis-forwarded packet leaves the router group. If the exiting interface is the same as the

original correct interface, then this error cannot be detected by using this router group.

Otherwise, it can be detected because either the packet leaves from a wrong interface or a

routing loop is formed. Similarly, if we want to know the overall effectiveness of one router

group in detecting single forwarding error, we can calculate the detection rate of the router

group as follows: for each router inside the group and for each possible destination in the

network and for each possible wrong next hop interface for each destination, we introduce

one forwarding error. Then a hop-by-hop forwarding table lookup is performed to decide

whether the forwarding error can be detected. Thus, the detection rate can be calculated

by dividing the number of detected errors by the number of total errors. Basically, given

a network with N nodes and a router group with \RG\ nodes, 0(\RG\ x N x (d — 1))

errors will be analyzed, where d is the average node degree and accordingly d — 1 is the

average number of wrong next hop interfaces. Because \RG\ = O(N) and d = O(N), the

complexity of exhaustively calculating the detection rate of one router group is 0(N3) in

the worse case.

Next, we consider the case where multiple forwarding errors exist in the router group.

21

When two forwarding errors are independent from each other (i.e., they affect different

flows), the detection rate for these errors is the same as in the single error case. On

the other hand, if multiple forwarding errors do affect the same flow, we call them "de

pendent forwarding errors". We only study the detection rate of multiple dependent for

warding errors. Given a network with N nodes and a router group with \RG\ nodes,

in order to analyze K dependent forwarding errors (K <= \RG\), K distinct routers

from the group will be selected, each of which will exhibit one forwarding error affect

ing the same flow. Each selected misbehaving router will mis-forward the flow to one

wrong next hop interface. Similarly, a hop-by-hop forwarding table lookup is used to test

whether the mis-forwarded packet can leave the router group from the original correct in

terface. The complexity of exhaustively analyzing all possible multiple forwarding errors

is 0(C(\RG\, K)xNx (d-l)K), where C(\RG\, K) = \RG\\ / K\{\RG\ - K)\. Suppose

K = 2, then the worse case complexity is already 0(N5).

For each network topology, we randomly choose router groups with different sizes and

introduce forwarding errors as described above. We then can calculate an average detection

rate for all the router groups. In Section 3.1.2, for each topology, we calculate average

detection rates for router groups with different sizes. For each router group size, we choose

up to 500 random router groups in order to limit the computation time. We implement our

analysis tool using Matlab scripts.

3.1.1.2 Topologies

To show the real-world detection performance of router group monitoring, we conduct for

warding error detection rate experiments using a large number of real network topologies,

including Internet2, TEIN2 (Trans-Eurasia Information Network), iLight (Indiana's Optical

Network), GEANT (European research network), SUNET (Swedish University Network),

Sprint North America backbone network composed of only Sprint global IP nodes, and six

Rocketfuel [SMW02] topologies. Table 3.1 summarizes the basic properties of each topol

ogy. For those topologies whose link weights are not available, we set all link weights as 1

22

Topologies:

Internet2

TEIN2

iLight

GEANT

SUNET

Sprint (US)

RF-1

RF-2

RF-3

RF-4

RF-5

RF-6

of nodes

9

11

19

22

25

28

79

87

104

138

161

315

of edges

13

11

21

37

28

46

147

161

151

372

328

972

Degree

(2, 2.9, 4)

(1 ,2 ,7)

(1,2.2,4)

(2, 3.4, 9)

(1,2.2,4)

(1,3.2,9)

(1,3.7, 12)

(1,3.7,11)

(1,2.9, 18)

(1,5.4,20)

(1,4.1,29)

(1,6.2,45)

Link weight?

Yes

No

No

Yes

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Table 3.1: Summary of 12 real network topologies used in our experiment. The three num
bers in the Degree column are (minimum degree, average degree and maximum degree).

to compute their routing tables.

In addition to real network topologies, we have also conducted the same experiments on

some representative synthetic topologies, such as power-law topologies (PLRG [ACL00]

and INET [WJ02]), Hierarchical topologies (Transit-stub [ZCB96]) and random graphs.

The results obtained from synthetic topologies are similar to those based on real network

topologies shown in Section 3.1.2.

3.1.2 Detection Rate of Forwarding Errors

3.1.2.1 Single Forwarding Error

In this section, we first consider the simple case where only one single forwarding error

exists inside a router group. Whether or not one forwarding error inside the router group

can be detected depends on the network topology and routing. To illustrate, Figure 3.3(a)

shows a router group with 5 routers, and the topology inside the router group has a cycle.

There are two potential paths Pi and P2 between periphery interfaces J/ j and If3. Let's

assume path Px is the correct path for a particular flow F. Flow F should enter the router

23

If, in

(a) Route group with loop topology (b) Router group with tree topology

Figure 3.3 : The impact of router group topology on misforwarding detection.

group at the interface I f\ and leave at interface If3, following path Pi inside the router

group. However, if the router RB has a forwarding error, it may forward the flow to router

RD as opposed to router RB- The flow F will take path P% inside the router group, but it

still leaves the group at interface If3. In this case, we cannot detect router RB's forwarding

error by only monitoring the periphery interfaces. Generally, given a router group, if there

are more than one paths between an ingress interface and an egress interface, it is possible

that some forwarding errors inside a particular router group cannot be detected from the

periphery interfaces. Note that the same forwarding error may be detectable by using a

different router group.

In contrast, as shown in Figure 3.3(b), if a group of routers are connected in a tree

topology, there is only one path between each ingress interface and egress interface. If

the router RB misforwards the flow F to the wrong path P2, the flow F will either leave

the router group at the wrong interface If±, or be stuck between RB and RD. Therefore,

in a tree topology router group, any single forwarding error is guaranteed to be detected

by monitoring the periphery interfaces. Also, if a network has a full-mesh topology with

all links having equal link weight, a misforwarding inside any router group is guaranteed

24

1

03
CO

C
_o
o tl>
<i>

T3

m k _

>
<

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1 -

0 I . 1 , 1 1
0 0.1 0.2 0.3 0.4 0.5

Size of router groups / size of network

Figure 3.4 : Average detection rate of one forwarding error.

to be detected. This is because all nodes have a one-hop path to any destination in the

network, and so any misforwarding will result in the packet leaving the group from the

wrong interface.

Generalizing these observations, intuitively, router groups in networks with tree-like

topologies or full-mesh-like topologies will tend to have excellent error detection perfor

mance.

Now we continue to study how effectively the router group monitoring approach can

detect single forwarding error in real network topologies. Figure 3.4 shows the results. We

can make two observations from this graph. First, as the router group size increases, the

fraction of detectable mis-forwarding cases decreases but only slowly. When the group size

increases to 50% of the network size, the detection rates are still as high as 80% for most

of the topologies. These results based on real topologies demonstrate that router group

monitoring can be highly effective in practice.

—

— I —

„

— 9 -

—V-

-Internt2

-TEIN2

• iLight

GEANT

-SUNET

- Sprint

-RF-1

-RF-2

-RF-3

-RF-4

-RF-5

-RF-6

25

3.1.2.2 Multiple Forwarding Errors

Next, we consider the case where multiple dependent forwarding errors exist in the net

work. It is hard to predict the detection rate of multiple dependent forwarding errors be

cause they can interact with each other. For example, after one router forwards a flow to a

wrong path, the second misbehaving router on the wrong path might forward the flow back

to the correct path. On the other hand, if the first misbehaving router fails to direct the flow

to a wrong exiting interface, the second misbehaving router may increase the chance of

the flow leaving from a wrong exiting interface by mis-forwarding it again. Therefore, the

overall detection rate when having multiple dependent errors depends both on the network

topology and the locations of the errors.

To better understand the detection rate for multiple dependent forwarding errors, we

conduct the static analysis on the same set of real topologies. Specifically, we introduce

2 and 3 dependent forwarding errors on distinct routers inside each router group. The

results are shown in Figure 3.5 and Figure 3.6. We can see that some topologies have

higher detection rates than the 1-error case, while the other topologies have lower detection

rates. Results based on synthetic topologies also confirm that the detection rate of two

dependent errors is not consistently better or worse than the one error case. However, it is

worth noting that even multiple dependent errors co-exist and even if we use 50% of the

nodes in the network as the router group, for most of the networks (except RF-3) we have

studied, the average detection rate is still higher than 65%. Another interesting observation

is that when the number of dependent errors increases from 2 to 3, the detection rates for

all topologies also increase.

3.1.2.3 Relation Between 1-Error Detection Rate and Multi-Error Detection Rate

In this section, we ask the question: If a router group is effective in detecting one forward

ing error, will it also be effective in detecting multiple forwarding errors?

To answer the above question, we first define the overlap ratio metric as the percentage

of the 10% router groups with highest 1-error detection rates that also belong to the 10%

26

1

0.9

0.8

5> 0.7

£ 0.6

0) 0.5

0)0.4

£ 0.3
<

0.2

0.1

—
—

,
rt

— I —

B—

—e-

v

- Internt2

-TEIN2

iLight

GEANT

-SUNET

- Sprint

-RF-1

-RF-2

-RF-3

-RF-4

-RF-5

-RF-6

0.1 0.2 0.3 0.4
Size of router groups / size of network

0.5

Figure 3.5 : Average detection rate of two dependent forwarding errors.

router groups with the highest 2 or 3-error detection rates. Figure 3.7 shows the result for

all topologies. All topologies have high overlap ratios. Let us take the RF-6 topology as an

example, the result shows that for the 10% router groups having highest 1-error detection

rates, 89% of them are also among the 10% router groups having highest 2-error detection

rates, and 88% of them are also among the 10% router groups having the highest 3-error

detection rates.

In the rest of this thesis, we use the 1 -error detection rate to characterize the effective

ness of a router group.

3.1.3 Detection Rate of Packet Filtering Errors

There are two types of packet filtering errors. The first type packet filtering error drops

packets mistakenly, which is equivalent to the packet dropping error. If a packet filter drops

a packet by mistake, the system can detect that the packet is missing from a periphery

interface. Therefore, the first type of packet filtering error can be easily detected. The

27

1

0.9

0.8

EJ 0.7

• I 0.6
o
CD
"S 0.5

S,0.4h
CO

3> 0.3

<

0.2

0.1

—
—

— J _

D

— 0 -

-Internt2

-TEIN2

iLight

GEANT

-SUNET

- Sprint

-RF-1

-RF-2

-RF-3

-RF-4

-RF-5

-RF-6

0.1 0.2 0.3 0.4
Size of router groups / size of network

0.5

Figure 3.6 : Average detection rate of three dependent forwarding errors.

second type of packet filtering error fails to drop certain packets that are supposed to be

dropped. We call the second type of packet filtering error as the filter-bypass error. When

a filter-bypass error occurs inside a router group, whether it will be detected by monitoring

the periphery interfaces depends on the distribution of packet filters inside the group. If the

flow encounters another packet filter that is designed to drop it as well before it leaves the

group, then the specific filter-bypass error will not be detected. On the other hand, if the

flow leaves the group, then a periphery interface will see the unexpected flow so that the

error will be detected. Since it is hard to obtain sensitive filter configurations used in real

networks and the state-of-the-art synthetic filter generators (e.g., using [TT05a]) cannot

capture certain critical characteristics we need (e.g., filter rules placement throughout the

network), we decide to conduct the detection performance study on a particular kind of

filter: Unicast Reverse Path Forwarding (uRPF). uRPF is a simple technique available on

most Cisco and Juniper routers to block bogus packets. It assume symmetrical routing.

Basically, if the reply to a packet would not go out the interface this packet came in from,

28

Overlap ratio between best 10% groups for detecting different numbers of errors

0.9- —BFJ | T | mi ~~-

0.8-

Q O . 7 -

2 0.6 -
Q.
-2 0.5 -

o 0 - 4 - -
0.3- -

0.2- -

0.1 - -

0I—ILI—HJ—IJJ—iLI—UJ—ILI—ILI—iu—UJ—m—iiU—lU—
lnternet2TEIN2 iLight GEANTSUNET Sprint RF-1 RF-2 RF-3 RF-4 RF-5 RF-6

Topologies

Figure 3.7 : Overlap ratio between the 10% router groups with highest 1-error detection
rates and the 10% router groups with the highest 2 or 3-error detection rates.

then this is a bogus packet and should be dropped. For the seven real network topologies,

we randomly introduce one forwarding error and two uRPF errors into the network, and

then compute the detection rate for random router groups with up to 8 routers. The results

are shown in Figure 3.8. As can be seen, the detection rate of uRPF filter errors is very high

for all the network topologies. Even for groups with 8 routers, we can still detect 99.9% of

uRPF errors in all the networks.

3.2 Analytical Model for Error Detection Rate

As we have shown in Section 3.1, router group monitoring can be highly effective in de

tecting trajectory errors in real topologies. However, for router group monitoring to be

practical, those effective router groups with high trajectory error detection rates must be

identified more efficiently than using the exhaustive hop-by-hop analysis approach.

One straight-forward way to avoid exhaustive analysis is to use sampling. For example,

29

0.8

2 0.6

I 0.4

0.2

(1 • . I 1^1 I ^ ' ^ U l J j f r - 1 . ^ ^ _ l ^ Lll ^M ^ I f ^ ^ ^ ^ '-^

1 1

Intemet2

TEIN2

iLight

GEANT

—*- SUNET

i

4 5 6
Size of router groups

Figure 3.8 : The detection performance for uRPF errors.

given a router group, instead of analyzing all errors, we only analyze a small subset of

randomly selected errors to estimate the overall detection rate of the router group. Another

approach is to develop an analytical model for quickly estimating the detection rates of dif

ferent router groups. The analytical model should require much less computation than the

static analysis approach. In this section, we will first present our analytical model, which

only depends on some simple structural and routing metrics of router groups, and then

we will compare the prediction accuracy of both the sampling approach and the analytic

approach in Section 3.2.2.

3.2.1 Contributing Factors of Error Detection Rate

Three major contributing factors affecting the forwarding error detection rate have been

identified as follows:

Router group size: As shown in Figure 3.4, the size of a router group is an important

factor affecting its detection rate. Specifically, the average detection rate decreases with

the increase of router group sizes. Given a router group, its size is easy to calculate. It is

30

also not surprising that the size of a router group is important to its error detection rate. In

a singleton router group with only one router, any error will be detected immediately. On

the other hand, given a larger router group, a mis-forwarded packet is more likely to be

self-corrected, i.e., it might fall back to its original routing path and leaves the router group

from the original correct interface, thus the trajectory error might not be detected by this

particular router group.

Number of exiting interfaces: Given a destination dst outside of the router group, a

periphery interface Ifc is called an exiting interface for dst if the interface's host router

uses Ifi as its direct next hop interface to route to dst. The router is called an exiting router

accordingly. Given a particular destination, we can count how many periphery interfaces

are exiting interfaces by scanning routing tables of routers having at least one periphery

interface. The average number of exiting interfaces can be determined across all possible

destinations. Intuitively, this factor characterizes how "diverse" the routing paths from

inside the router group to a particular destination outside are. Please note that this metric is

not the same thing as the number of periphery interfaces. One router group can have many

periphery interfaces, but all the routers inside the group may only use a small number of

periphery interfaces to route to any particular destination.

To illustrate why the number of exiting interfaces is important to a router group's error

detection rate, Figure 3.9 (a) shows a router group with only one exiting interface Ifi

with respect to the destination Ftp. Since Ifi is the only exiting interface to RF, when a

forwarding error occurs (say RB), it will be self-corrected by the router group (i.e., mis-

forwarded packets end up leaving from the only exiting interface) unless a routing loop is

formed. On the other hand, Figure 3.9 (b) shows a router group with two exiting interfaces

(Ifi and If2) for destination RF, then a mis-forwarded packet is more likely to leave from

the wrong exiting interface (J/2 in this example), allowing the error to be detected.

Connectivity of a router group: Given a router group, its connectivity is related to

many topological characteristics of this group, such as average node degree, average out

going degree (i.e., for each node, how many of its edges are connecting itself to nodes

31

Destination router Misbehaving router Correct forwarding path Wrong forwarding

/

(a) Only one exiting interface: If,
=> Error not detected.

(b) Two exiting interfaces: If, and lf2

=> Error detected.

Figure 3.9 : Illustration of how the number of exiting interfaces impacts the error detection
rate.

outside of the group), average internal degree (i.e., for each node, how many of its edges

are connecting itself to other nodes inside the group). All these metrics are very easy to

calculate. Intuitively, the connectivity can impact how likely a mis-forwarded packet will

be self-corrected inside the group and how likely a forwarding loop will be formed.

To illustrate why connectivity can impact forwarding error detection rate, Figure 3.3(a)

shows a router group with 5 routers, and the topology inside the router group has a cycle.

There are two potential paths Pi and P2 between periphery interfaces Ifi and J/3 . Let's

assume path Pi is the correct path for a particular flow F. Flow F should enter the router

group at the interface Ifi and leave at interface If3, following path Pi inside the router

group. However, if the router RB has a forwarding error, it may forward the flow to router

RD as opposed to router RB- The flow F will take path P2 inside the router group, but it still

leaves the group at interface If3. In this case, this router group cannot detect router P B ' s

forwarding error. Generally, given a router group, if there are more than one paths between

an ingress interface and an egress interface, it is possible that some forwarding errors inside

32

a particular router group cannot be detected from the periphery interfaces. Note that the

same forwarding error may be detectable by using a different router group. In contrast, as

shown in Figure 3.3(b), if a group of routers are connected in a tree topology, there is only

one path between each ingress interface and egress interface. If the router RB misforwards

the flow F to the wrong path P2, the flow F will either leave the router group at the wrong

interface Ifi, or be stuck between RB and Rp (assuming RB consistently misforwards

the packet to RD)- Therefore, in a tree topology router group, any single forwarding error

is guaranteed to be detected by monitoring the periphery interfaces because there are no

redundant routing paths for a misforwarded packet to go back to the original correct path..

Also, if a network has a full-mesh topology with all links having equal link weight, a

misforwarding inside any router group is guaranteed to be detected. This is because all

nodes have a one-hop path to any destination in the network, and so any misforwarding

will result in the packet leaving the group from the wrong interface.

Generalizing these observations, intuitively, router groups in networks with tree-like

topologies or full-mesh-like topologies will tend to have excellent error detection perfor

mance.

3.2.2 Analytical Model

Based on the three important factors identified above, we have developed an analytical

model for accurately and quickly estimating the 1-error detection rate of a router group. We

first define some notations we will use in our discussion. A router group's size is denoted

as \RG\. The average number of exiting interfaces is e, which is also the number of exiting

routers. The average outgoing degree and internal degree are dout and din respectively. The

average node degree d = dout + din. In deriving the model, we assume that each router

has an equal chance to be the misbehaving one, and the misbehaving router will forward

the affected flow to one random incorrect next-hop. This assumption is made to make sure

that the errors analyzed in our model do not have a biased distribution. We also assume

that any two routers inside a router group are equally likely to have a link connecting them.

33

Detection rate = p,x1 + (1-p1)x(p2 + (1-p2)x(p3 + (1-p3)x(p4+(1-p4)x(1-p5))))

Figure 3.10 : Analytical formula for estimating error detection rate.

In addition, we assume that all links have equal weight and the correct trajectories follow

shortest path routing. These assumptions are made to facilitate our model derivation. In a

real network, these assumptions may not always accurately hold. However, our evaluation

using 12 real network topologies in Section 3.2.3 shows that the derived model is robust and

it can accurately estimate the detection rates of router groups even if those real topologies

have different connectivity and non-uniform links weights.

We denote the misforwarding router as Rm. To accurately model the error detection

rate of a router group, the first thing to note is that if Rm is an exiting router with respect to

destination dst and is misforwarding packets destined to dst, then the error is guaranteed

to be detected. Recall that an exiting router for dst is supposed to forward packets destined

to dst directly out of the router group using its exiting interface. If it fails to forward the

packet using its own exiting interface and assuming this is persistent, then the misforwarded

34

packets will not leave the router group on the correct interface. Therefore, the forwarding

error by an exiting router can always be detected. The probability that a router inside a

router group is an exiting router is p\ = e/\RG\.

However, if Rm is not an exiting router, its misforwarded packets may or may not leave

the group from the correct exiting interface. When the non-exiting router Rm misforwards

packets, it has the probability p2 = d0ut/(d — 1) to misforward packets directly out of the

group using one of its outgoing edges, where d — 1 is the number of all possible wrong

next hops. In this case, the error will be caught by the device that is monitoring the cor

responding periphery interface because the packets are observed from incorrect interfaces.

On the other hand, Rm could misforward to a wrong next hop (also the first hop router)

FH inside the router group. Since we assume only Rm in the router group is misbehaving,

FH is a well-behaved router. Now we have two possibilities. The first possibility is that

FH is an exiting router. The probability that FH is an exiting router is p3 = e/(|i?G| — 1),

where \RG\ — 1 is the number of correct routers inside the router group. If this is the case,

then FH will use its own exiting interface to route the packets out of the group. These

packets therefore leave the group from an incorrect interface and will be caught because

the correct trajectory follows the shortest path implies that FH does not lie on the correct

trajectory. The other possibility is that FH is a non-exiting router. We model the length

of the path PathpH from FH to its exiting router as L = logd(\RG\/e), where \RG\/e

is simply the average number of nodes using one particular exiting interfaces. If PathpH

does not contain Rm, then the probability of PathpH leaves from the same exiting in

terface as Rm should have used is modeled as p5 = 1/e, in which case the error cannot

be detected by this router group. On the other hand, if PathpH does contain Rm, then a

loop is formed, which will cause the error to be detected since the packet is missing from

its expected exiting interface. We estimate the probability of PathpH containing Rm as

p4 = \/d + (1 — 1/d) x L/\RG\, where l/d estimates the probability of FH sending the

packet directly back to Rm forming a 1-hop loop and L/\RG\ estimates the probability of

a path of length L contains a node Rm out of \RG\ possible nodes in total.

35

Figure 3.10 gives a summary of the model and the final analytical formula for estimating

detection rates.

3.2.3 Prediction Accuracy of Using Model vs. Sampling

We now evaluate the accuracy of both model-based and sampling-based detection rate pre

diction as follows: Up to 100 router groups of each size are randomly chosen from each

topology. We first use static analysis to calculate the exact detection rate for each chosen

router group. Then we use our model to predict the detection rate for each router group

and record the computation time required. For the sampling based approach, we sample

different percentages (up to 50%) of errors and then predict the overall detection rate by

analyzing only the sampled errors. We also record the computation time used for different

sampling percentages. Figure 3.11 compares the average prediction errors (defined as the

absolute difference between the predicted detection rate and the correct detection rate) of

both approaches when they use the same amount of computation time. As can be seen,

first of all, the model's average prediction error is smaller than 0.05 on most topologies.

Therefore, the model successfully captures the important characteristics of the error detec

tion. Second of all, given the same amount of computation time, the model can predict

the detection rates more accurately for most topologies. On iLight and RF-2, the sampling

based approach works only slightly better than the model based approach. Then for the ten

topologies where our model works better than sampling, we study how much more time

is needed to generate results as accurate as the model. Our results show that the sampling

based approach generally needs a few times more computation time to have the same ac

curacy as the model-based approach. For some topologies such as Sprint and GEANT, the

sampling based approach needs 9 and 10 times more computation time to get the same

prediction accuracy as the model.

The computation required by the model for computing the detection rate is significantly

reduced compared against with the static analysis approach. Figure 3.12 shows the compu

tation speedup comparison between the model based approach and the static analysis based

36

approach. For all topologies except TEIN2, the speedup is over 20 times when a router

group contains 50% of the nodes in the network. For some large router groups in the large

topologies, the speedup is up to 153 times. For example, given a desktop computer with

an Intel Pentium 4 3.0 GHz CPU, 9 hours of computation time is used to compute the de

tection rates of 1000 random router groups in RF-6 topology by analyzing all errors inside

each group, while it only costs 5 minutes of computation time for our analytical model. As

expected, the computation saving of using our model increases when the network becomes

larger.

Another useful property of our model is that the pair-wise ranking order among router

groups is mostly preserved, which is very important to our router group selection algorithm

in Section 3.3, where we use predicted detection rates to help select the most effective

router groups. Specifically, for each pair of router groups, we will predict which one has a

larger detection rate using our model and then validate the results using the detection rate

calculated by the static analysis approach. Figure 3.13 shows the percentage of router group

pairs whose order is preserved by the model. For example, the model correctly predicts the

ranking order for 89.2% of router group pairs in the Sprint topology.

3.3 Router Group Selection Algorithm

We have demonstrated that router group monitoring is effective in detecting traffic trajec

tory errors. We have also proposed a model to predict the detection rates of router groups.

The next problem is to design an algorithm to choose a suitable set of router groups for the

system to monitor for each monitoring period.

As explained in Section 1, existing traffic trajectory monitoring algorithms monitor

different subsets of packets during different monitoring periods. If during each monitoring

period, x% of packets are monitored, then ĵp monitoring periods are needed to cover

all traffic. Similarly, router group monitoring can also be performed period by period.

However, in order to reduce monitoring overhead, in router group monitoring, only up to

M interfaces are monitored during each monitoring period, where M is no larger than the

37

0.18

0.16

0.14
g
<5 0.12

c
o
t5 o.i
• o
0)
Q-0.08
<D
O)
to
S 006 > <

0.04

0.02

0

In • n

I
1

m Sampling based analysis

[| Model

1 1 1
•

1 -

Internet2 TEIN2 iLight GEANTSUNET Sprint RF-1 RF-2 RF-3 RF-4 RF-5 RF-6
Topologies

Figure 3.11 : Prediction errors comparison of model-based and sampling-based ap
proaches.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Size of router groups / size of network

Figure 3.12: Computational speedup of computing error detection rates using model versus
computing error detection rates using full simulation approach.

total number of interfaces of the network and the M interfaces are periphery interfaces of

the set of monitored router groups.

A good router group selection algorithm should (1) provide complete trajectory error

38

Internet TEIN2 ILight GEANT SUNET Sprint RF-1 RF-2 RF-3 RF-4 RF-5 RF-6
Topologies

Figure 3.13 : The model accurately preserves the ranking order among pairs of router
groups.

detection coverage, which is the correctness requirement elaborated in Section 3.3.1, and

(2) detect errors as quickly as possible, which is essentially the optimality requirement

discussed in Section 3.3.2.

3.3.1 Correctness of Router Group Selection Algorithm

As we explained, when using router group monitoring, some interfaces (M) are moni

tored during each monitoring period. Thus, the first concern of the router group selection

algorithm is whether it can guarantee complete trajectory error detection coverage. One

straight-forward way to satisfy this requirement is to treat each single router as a router

group and then always include all the singleton router groups for monitoring. This is how

ever unnecessary. We give a more general sufficient condition as follows.

Lemma 1. To guarantee that all observable trajectory errors1 are eventually detected, it

'A fundamental requirement for trajectory error detection in any approach is that the evidence of an

trajectory error must be observable by otfier monitoring nodes. This thesis does not address errors that are

39

is sufficient to select a set of router groups such that every router interface fij on a node vt

connecting to a node Vj is an end of a cut edge (vi, vf) G E of a selected router group RG,

with Vi G RG and Vj G V \ RG. Intuitively, /y- is a periphery interface of a router group

RG facing outward.

Every error, whether it is a mis-forwarding, or a packet dropping or a filter-bypass

exhibits itself in one of two ways: (1) a packet that should have been observed on an

interface is not observed; (2) a packet that should not have been observed on an interface is

observed. If a router interface is a periphery interface of a router group RG facing outward,

then that interface's behavior is monitored when router group RG is monitored. Therefore,

any error involving that interface will be caught.

3.3.2 Optimality of Router Group Selection Algorithm

Given the sufficient condition, we can now easily tell whether a set of router groups can

provide complete error coverage. The next question is: how should we select router groups

to monitor during each monitoring period so that we can not only achieve complete error

coverage but also only iteratively monitor the smallest number of monitoring periods? This

is the optimality requirement of the router group selection problem.

Minimizing the total number of monitoring periods while providing complete error

coverage is a hard problem. The reason can be intuitively explained as follows. Suppose

each interface /y- is involved in some number of errors. When the interface /y- is inside (i.e.

not on the periphery of) a router group RGk, those errors involving /y- can be detected with

some probability w(RGk, fij) G [0 1]. Therefore, once RGk is selected for monitoring, the

usefulness of monitoring other router groups that also contain /„• will decrease accordingly.

This interdependence makes it hard to determine an optimal selection of router groups.

not observable. For example, if one router mistakenly drops a packet destined to itself, then this error cannot

be detected because it is not observable from outside.

40

3.3.2.1 Definition of the monitoring problem

We now formalize the router group selection problem as follows.

Notations:

• Let G = (V, E) be a graph, where V is a set of nodes

V = {V1,V2,--- ,Vn}

and E is a set of edges E C V x V.

• Each node v, is associated with a set of interfaces

Fvi = {fa : (vi,Vj) eE}

The set of all the interfaces in the graph G = (V, E) is F = [J FVi
 2. For any subset

ACV,

FA = {fij • (Vi, Vj) £EK(VieA)A (VJ £ A)}

• Given function a, for any subset A C V the monitoring weight function is defined

as3: for each /^ G F,

' 1 iffijeFA

W(A fij) = < a(A, i, j) € [0,1] if Vi £ A A Vj G A

I 0 ifvigA/WjgA

• A Monitoring is defined as a multiset of sets of subsets of V4:

A = {A1,A2,..-,Am}

= {{An, • • • ,Aini},{A2i,-• •) - ^ 2 n 2 }) - - - i

{^mli ' ' " ,Amnm\\ (Aij C V)

where m > 1 and nv > 1.

2The set of interfaces is decided by the set E

intuitively, the weight w(A, f^) means that the errors involved with the interface fij can be detected

using group A with probability of w(A, fij). Trajectory errors on periphery interfaces can always be imme

diately detected, while errors on other interfaces may or may not be detected.
4(1) Nodes in Aij may not necessarily be connected. (2) A^ and Aik may have overlapped nodes.

41

Optimization objective:

Find the smallest Monitoring A such that for any A' we have \A\ < \A'\, where A and

A' satisfy the following two constraints:

• Given a Monitoring A = {A\, A2, • • •, Am}, for each 1 < i < m, Ai G A,

\\J FA\<M
AeAi

Where M > 1.

• Given a Monitoring A = {A\, A2, • • •, Am} and a constant 0 < (3 < 1, for each

fijeF(l<i,j<\V\),5:

i- n n^-^^/v))^^
l<k<m AeAk

We generally want to find the smallest Monitoring given (3=1 and a small constant

M.

In the above problem formulation, during monitoring period i, a set of router groups

Ai = Aa,Ai2,..., AiTli are monitored concurrently, where A^ and Aik could overlap with

each other. We have studied a special case of the above problem, where for any j , k €

[1 n j and j ^ k, Aij and Aij always have no overlap. We have proved that as long as

M < |F | , the above special case is a NP hard optimization problem [Kre92]. Please refer

to Section 3.3.2.2 for the complete proof. We believe the general case is also NP hard and

we are currently working on the proof.

3.3.2.2 The complexity of the monitoring problem

Definition 1 (optimization problems). An optimization problem V is characterized by

the following quadruple of objects (I-p, SOL-p), m-p, goal-p, where:

intuitively, this means that after m groups of monitoring, all the error involved on the interface /y have

been detected with a probability of at least /?.

42

Internet2 TEIN2 iLight GEANT

o f
5 10 15 6 8 10 12 14 1

interfaces monitordtlof interfaces monitor*fc>f
10 20 10 20 30

interfaces monitordtbf interfaces monitored

SUNET Sprint RF-3 RF-6

o
k_
fe
ll}
CD
£=
o
o <D
•*•* <D
•a
o

•*—

a>
E
en

> <

10

8

6

4

2

\
\

? \
A \

V \
l (0 \

^ ^ ^ S e W ^ —

O 30

t~ 4 <U 1
<D 25' j
c
o
»- 20
o
<D

I 15
o
<D 1 0

£
ro 5

> <

\\
* C \

0 \J 20 40 60 80100120140 200 400 600 800
o f

5 10 15 20 25
interfaces monitordfcbf interfaces monitordfcbf interfaces monitordfcbf interfaces monitored

Figure 3.14: Comparison of average error detection speeds of different router group selec
tion approaches.

1. I-p is the set of instances ofV;

2. SOL-p is a function that associates to any input instance x G I-p the set of feasible

solutions of x;

3. m-p is the measure function, defined for pairs (x, y) such that x £ I-p and y € SOL-p.

For every such pair (x, y), m-p(x, y) provides a positive integer which is the value of

the feasible solution y;

4. goal-p £ {MIN, MAX} specifies whether V is a maximization or a minimization

problem.

43

It is worth noting that any optimization problem V has an associated decision problem

VD- In the case that V is a minimization problem, VD asks, for some k > 0, for the exis

tence of a feasible solution y of instance x with value m(x, y) < k. For any optimization

problem V, the corresponding decision problem VD is not harder than the problem V. If

an optimization problem V has its associated decision problem VD be NP-hard, then V is

an NP-hard optimization problem [add the citation here].

For a graph G = (V, E), given function a € [0,1], number /? € [0,1], and a positive

integer M, the problem of finding an optimized /^-complete M-monitoring A is trivial if

M is sufficiently big. This is because we can have A = {Ai} and A\ = V, which leads

to optimal solution with \A\ — 1. However, for a reasonably small M, it is not easy to find

an efficient algorithm to find a solution. In what follows, we look at a special case of the

problem, and prove that it belongs to the family of NP-hard optimization problem. We thus

conclude that the optimal monitoring problem can be generally very complicated.

Consider a graph G = (V, E), let (3=1, and function a(A, i, j) = 0 for any A C V,

1 < i,j < \V\. If the graph and a number M satisfies that \FA\ < M for all A C V

and \FAl U • • • U ^Am I > M for any m > 2, Ai C V, then each M-monitoring A =

{>4.i, -4.2, • • •, At} must satisfies \Ai\ = 1 (1 < i < t). Thus we can equivalently write any

M-monitoring as A = {A\, A2,..., At}, Ai C V. We denote this problem of finding an

optimized /^-complete M-monitoring of G in this special case as V. We have:

Theorem 1. The problem V defined above is an NP-hard Optimization Problem.

Proof. The problem V has an associated decision problem VD'- IS there a /3-complete

M-monitoring A = {Au A2, • • • ,At}of G, such that t < kl

To show V is a NP-hard optimization problem, we only need to show VD is NP-hard.

The decision problem VD can be equivalently restated as:

For an integer k, find k subsets of V such that every edge is a cut edge for at least one

of the subsets.

44

We show that 2fc-colorability problem Vc^&n be Turning reduce to VD in polynomial

time.

A polynomial reduction has two parts: converting the problem and converting the solu

tion. Converting the problem is a no-op, where the graph G = (V, E) is kept unchanged.

Conversion of the solution is as follows.

Suppose you have subsets AQ, A\,..., Ak-i of V satisfy that every edge is a cut edge

for at least one of the subsets. Then color each vertex « e V with color bk-ibk-2 • • • &i&o>

where bt is the i-th bit of the color written in binary notation, and bi = 1 iff v G Ai. Then

for every edge (v, u), for some i, At contains exactly one of u and v. So the colors of u and

v differ at bit i. Therefore this is a 2k -coloring of the given graph.

Suppose contrariwise that a given graph is 2fc-colorable. Then write out the colors in

binary notation as above. For each j , form Aj so that it contains a vertex Vi iff its color

has bi = 1. Then for any edge (u, v), their colors differ at some bit i, and so At contains

exactly one of u and v.

The reduction takes 0(fc|V|) time.

Since n-colorability is NP-complete for any n > = 3, it follows that VD is NP-hard for

any k > 2.

3.3.3 Heuristic Algorithm for Router Group Selection

Given the above definition, we now give a heuristic algorithm for selecting a set of router

groups that achieves complete coverage, has bounded concurrent monitoring overhead, and

in practice provides timely error detection.

Input of the algorithm: A positive integer M, a set of n router group candidates

denoted as RGcandidates = RG\, RG2, ••-, RGn, and the w(RGk, fij) function defined in

Section 3.3.2.1.

M is the maximum number of interfaces that the system can concurrently monitor and

it should be determined by the operator based on resource constraints. We assume that

the maximum degree of any router in the network is no larger than M. RGcan(adates should

45

contain a large number of diverse router groups of different sizes in order to provide enough

opportunity for the selection algorithm to explore. We cannot include all possible router

groups into RGcanfndates f° r large networks. Thus, we first randomly generate a number of

router groups of each size, and then select up to K router groups from each size with the

highest predicted detection rates. All singleton routers are always included in RGcandidates,

which is important for guaranteeing that the selection algorithm eventually terminates. The

w(RGk, fij) function specifies that if RGk is monitored, then the errors involving interface

fij can be detected with a probability of w{RGk, fij).

Output of the algorithm: Given M, function w(-) and RGcandidates, the output of the

algorithm should be m sets of router groups, 7\, T2,.., Tm, where T» C RGcandidates- Then

we can iteratively monitor all m sets of router groups one by one. If we can sample x%

packets at each moment, then ^2 periods are needed for each T,. That is, in total, m x ™

monitoring periods are needed to cover all traffic.

Algorithm's intuition: The main idea of our heuristic algorithm is to keep greedily

selecting a set of router groups that have the potential to detect most uncovered errors to

form a new set of router groups 7] until the sufficient condition is satisfied. We define an

uncovered error function E(fij) G[0 1] on each interface fa to represent the fraction of

uncovered errors on /y at the current moment. At the beginning of the algorithm, none of

interface fa's errors have been covered by any selected router group, so E(fij) = 1. Once

a router group RGk containing fij has been selected for monitoring, we update E(fij) as

follows: E(fij) = E(fij) x (1 - w(RGk, f{j)).

Suppose RGselected is the set of selected router groups at this moment. Now we can

define the selection weight of a router group RGk as follows:

W(RGk)

0 if RGk £ RGselected

Y^ w(RGk, fij) x E(fi3) if RGk i RG
selected

Jij

The router group selection algorithm is as follows:

01: RGcandidates = {All singleton routers};

02: FORm = 2 : \V\ - 1

46

03: Randomly generate up to T router groups containing

TO routers and < M periphery interfaces

and then select up to K < T router groups with highest

predicted detection rates and put into RG™andidates;

U4: JrCUcandidates = JtC*candidates U ULrcon(^dates'

05: END-FOR

06: RGgelected = {}'<

07:A = { };

OS: E(f^ = 1, for Vfy e F;

09: period = 1;

1 0 : W H I L E (^ £ (/ y) > 0)

11: AvailablelFs = M ;

12: ^-period — \ />

13: WHILE AvailableIFs>0 AND ^ E{fij) > 0

14: Find Rd e RGcandidates with largest W(RGi)

and with < AvailablelFs periphery interfaces,

if multiple choices exist, pick the largest group,

if no such choice exits, break the WHILE loop;

1 J : rtOcandidates = ft*-'candidates \\m~'i/»

16: RG selected = RG selected U {.RGi};

1 / . -^period = ^-period ^ l - ^ ^ i / i

18: Vfi^Etfij) = (1 - w(RGi,fij)) x E (/ y) ;

19: Update VK(tfGj) for VflGj e RGcandidates;

20: AvailablelFs -= # periphery interfaces of .RGJ;

21: END-WHILE

•22: / l = / l U -riper^0rfj

23: period = period + 1;

24: END-WHILE

25: RETURN A:

Algorithm termination and correctness: Since we assume M is no smaller than the

largest router degree in the network, each router is eligible to form a singleton router group

while not violating the resource constraint. Since RG candidates includes all singleton router

47

groups, the selection algorithm can always return the singleton router groups. Therefore,

the algorithm is guaranteed to terminate and return a set of router groups that has complete

coverage.

3.3.4 Performance of Heuristic Router Group Selection Algorithm

In this section, we evaluate the performance of our heuristic algorithm. In the experiments,

we use K = 10 to initialize RGcan<ndates- We study the performance of the algorithm using

various M, as long as M is no smaller than the maximum degree of the network topology.

We use two different approaches of estimating function w(RGk, fij). The first approach

is based on static analysis, so we can accurately know the a(RGk,i,j) function. The

second approach is based on our detection rate model. Given a router group RGk, suppose

its predicted detection rate is detectiorik £ [0 1] and suppose the router group RGk contains

Pfc G [0 1] fraction of periphery interfaces and accordingly (1—pk) faction of non-periphery

interfaces. If we assume all internal non-periphery interfaces in RGk have the same a(k)

values, then we have detectiorik = p/c x 1 + (1 — pf.) x a(k), i.e., a(k) = (detectiorik —

Pk)/{1-Pk)-

As a baseline for comparison, we also include the performance of singleton router based

selection algorithm, whose RGcan(adates only contains all singleton router groups. In order

to estimate how close our heuristic algorithm is to the real optimal group selection, we also

compare with a bounded random search based approach. Specifically, given a topology

and its RGcandidates, we will randomly select a multiset of sets of router groups for mon

itoring and then we can compute a corresponding average detection speed by introducing

10,000 random forwarding errors uniformly distributed across all nodes for all possible

destinations. We repeat this random group selection process 10, 000 times and keep the

best detection speed we found. Please note that performing 10, 000 random search is very

expensive. For example, given the RF-6 topology, 66 hours of computation time is used to

finish on a desktop computer with an Intel Pentium 4 3.0 GHz CPU. On the other hand, it

only costs 16 minutes of computation time for our algorithm.

48

For each topology, we introduce up to 10,000 forwarding errors uniformly distributed

across all routers for all possible destinations one by one. We then statically analyze to

see how many monitoring periods it will take for each approach to detect each introduced

error. We then present the average detection speed of all four approaches on different

topologies in Figure 3.14. We omit the results forRF-1, RF-2, RF-5 as they are qualitatively

similar to those of RF-3. The results for RF-4 is qualitatively similar to those of RF-6 and

are also omitted. As we can observe, first of all, the detection speeds of the approach

based on the model predicted detection rates are very close to the one using static analysis

across all topologies. Secondly, the detection speeds of our approach are also very close

to the bounded random search based approach, though our approach requires much less

computation time. For some topologies such as RF-3, our heuristic algorithm is better for

some M. This indicates our heuristic algorithm is effective in quickly selecting a good set

of router groups for monitoring. Thirdly, our algorithm outperforms the singleton router

groups based approach for all topologies. Especially when M is a small value, our approach

can detect an error a few times faster than the singleton router group based approach. This

performance gain comes from the fact that we are covering much more routers at any

moment, though both approaches monitor the same number of interfaces and have the same

overhead.

3.3.5 Discussion

In our problem formulation, we assume no constraints on which routers can be used for

monitoring, that is, all routers are assumed to be homogeneously powerful. However,

routers in real networks might be very heterogeneous. For example, some routers may

even not have the monitoring capability. Fortunately, we can always use standalone passive

traffic monitoring devices (e.g., [flob]) to tap on the corresponding network links to per

form the monitoring function. In addition, some low-end routers might only afford up to a

certain sampling rate due to resource constraints in hardware or software. In this case, we

can either use standalone passive traffic monitoring devices for monitoring or we need to

49

carefully set the sampling rate on all periphery interfaces to not to exceed the the required

resource constraints on the slowest monitoring device. If certain routers need to be taken

offline for the scheduled maintenance, then the operator should plan ahead and calculate

a new set of router groups for monitoring according to the specific topology change. If

topology change is caused by other dynamic network events such as link failures, it can

be learned from the dynamic routing protocol messages such as OSPF LSAs. To quickly

respond to the dynamic topology change, different sets of router groups with respect to

different potential network events should be computed in advance as well. How to incre

mentally update the set of monitored router group to efficiently accommodate unexpected

dynamic events is one of our future work.

3.4 Applications of Router Group Monitoring

In this section, we show how the router group monitoring technique can improve the ef

ficiency of trajectory error detection based on Trajectory Sampling and Fatih. The basic

Trajectory Sampling algorithm monitors all interfaces in the network and samples the same

subset of packets at the same time. Then, information about sampled packets is sent to a

centralized collector for analysis. The basic Fatih algorithm, on the other hand, monitors

all interfaces that are used in forwarding packets, although as we shall see this is nearly the

same as monitoring all interfaces in practice. Fatih also samples the same subset of packets

at the same time. The fingerprints of the sampled traffic belonging to each network path

will be exchanged among the monitors along that path for analysis.

The router group monitoring technique can be used to select a subset of network in

terfaces to be monitored under Trajectory Sampling or Fatih. This translates into reduced

monitoring overhead and/or faster trajectory error detection without sacrificing the com

pleteness of coverage.

50

3.4.1 Applying to Trajectory Sampling

In Trajectory Sampling, all network interfaces in the network will sample the same subset

of packets (say, 1 % of all traffic) during the same monitoring period. Different subsets of

packets will be sampled for different monitoring periods to achieve complete coverage.

3.4.1.1 Scenario One: Improve Detection Speed While Keeping the Reporting Traf

fic Overhead Constant

In this scenario, we want to keep the reporting overhead (i.e., how many messages are sent

to the collector per period) constant so that we do not overwhelm the collector.

Suppose we can vary the sampling rate in a small range from 1% to 5%. Can router

group monitoring improve the trajectory error detection speed while keeping the report

ing overhead constant? To maintain the same reporting overhead, when we increase the

sampling rate m times, we decrease the number of concurrently monitored interfaces by

m times accordingly. The overall reporting overhead is maintained at the same level as

sampling all interfaces in the network with a 1 % rate.

Figure 3.15 shows the result. If we use a 5% sampling rate and allow the concurrent

monitoring of 20% of the interfaces, the detection speedup over baseline Trajectory Sam

pling (i.e., sampling 1% on all interfaces) is at least 2 times and for some topologies the

detection speedups are more than 4 times. The detection speedup comes from the fact that

when we increase the sampling rate, we can rotate the set of monitored router groups more

quickly. For example, if we use a 5% sampling rate, we only need to monitor each set of

router groups 20 periods then we can rotate to a new set of router groups that can detect

another set of errors. Specifically, taking SUNET as an example. If we assume that each

monitoring period lasts one minute and the router group monitoring approach monitors

20% of all the interfaces with a sampling rate of 5%, then it will take the router group

monitoring approach 25 minutes to detect all errors, while it will take 105 minutes for the

original Trajectory Sampling.

51

5

4.5

4
Q.

•a 3.5
a>
<D
Q . o
03 J

c
•B 2.5
o
a>
a> 2
a

1.5

1

0.5

0 0.01(100%) 0.02(50%) 0.03(33%) 0.04(25%) 0.05(20%) 0.06
Sampling rate (percentage of monitored interfaces)

Figure 3.15 : Detection speedup when varying the sampling rate and the maximum number
of interfaces concurrently monitored.

3.4.1.2 Scenario Two: Reduce Reporting Overhead While Keeping Same Detection

Speed

In this scenario, we assume a fixed 1% sampling rate. Then we want to study what fraction

of interfaces we have to monitor to keep the same detection speed as monitoring all inter

faces simultaneously. Figure 3.16 shows the result. As can be seen, for certain topologies

such as iLight, concurrent monitoring of 33% of the interfaces are enough to provide the

same detection speed as baseline Trajectory Sampling. For most of the topologies, mon

itoring roughly 50% of the interfaces concurrently is enough to detect errors as quickly

as baseline Trajectory Sampling. Specifically, taking RF-6 as an example. Assuming that

each interface forwards 13,000 active flows per second on average [spr]. Given a 5% sam

pling rate, each interface can sample 650 active flows per second on average. Because each

NetFlow record is 64 bytes, each interface will generate 332.8 Kbps of traffic. Since there

are a total of 1944 interfaces in RF-6 topology, 646.9 Mbps of reporting traffic will be gen

erated. On the other hand, the router group monitoring approach will only generate about

329.9 Mbps of reporting traffic while having the same detection speed.

52

1UU

lnternet2TEIN2 iLight GEANTSUNET Sprint RF-1 RF-2 RF-3 RF-4 RF-5 RF-6
Topologies

Figure 3.16 : Percentage of monitored interfaces required to achieve the same detection
speed as the original Trajectory Sampling.

3.4.2 Applying to Fatih

In Fatih, each router r, needs to maintain certain traffic information for each 3-path-

segment containing itself. A 3-path-segment is a subpath with length 3. The traffic in

formation Fatih maintains for each path segment is the fingerprints (e.g., hash values of

the packets) of all the packets J-J forwarded along the monitored path segment. Periodi

cally, router r, exchanges the fingerprints information with other routers on the same 3-

path-segment. Because all 3-path segments ri:r^Tk are monitored, then if rj dropped or

misforwarded packets, r, and r^ can detect this error when they exchange traffic informa

tion.

For the purpose of trajectory error detection, we can use the router group monitoring

technique to reduce the monitoring overhead by only having each periphery router to main

tain information about what traffic it will forward to other periphery routers in the same

router group. Therefore, while in baseline Fatih each router keeps a set of information for

each path segment, in contrast, with router group monitoring, only periphery routers need

to maintain information for other periphery routers.

53

We evaluate the benefits of applying router group monitoring to Fatih. First of all, we

compare the number of interfaces monitored with and without router group monitoring

while keeping the detection speed the same in Figure 3.17. Since Fatih needs to moni

tor every 3-path segments, for many topologies, all interfaces need to be monitored. The

interfaces will not be monitored if the corresponding link is not used or only used in an end-

to-end path with length 2. Applying router group monitoring allows much fewer interfaces

to be monitored while having the same detection speed and detection accuracy.

Next we evaluate the fingerprints communication overhead saving after using router

group monitoring. In this experiment, we assume the same amount of traffic is sent be

tween each pair of nodes in the network, and we study the fingerprint exchanging overhead

with and without router group monitoring. The results are shown in Figure 3.18. The com

munication overhead of the baseline Fatih is normalized to 100 units. As can be observed,

applying router group monitoring can reduce dramatically the fingerprint communication

overhead for all topologies. For certain topologies, the overhead reduction is more than

80%. To understand the absolute reporting overhead reduction, we first take RF-6 as an

example. Following the same assumption in Section 3.4.1, we assume that ten packets on

average will be sampled for each flow. If each hash value is 8 bytes, then a total of 808

Mbps of traffic will be sent to the collector by all links. By employing router group moni

toring approach, the reporting overhead can be reduced from 808 Mbps to 266 Mbps while

keeping the same detection speed.

3.5 Related Work

Network measurement and monitoring are important for many network management ap

plications. However, measurement and monitoring often incur high overhead. Therefore, a

constant theme in many related research is to improve the efficiency of measurement and

monitoring techniques. The goal of our technique is to specifically improve the efficiency

of trajectory error detection. In the following, we discuss some previous work on improving

the efficiency of monitoring and measurement for other important applications.

54

120

O 100
CO

CD

<D

o
E 60
o
E
"5 40
0)
D)
2
O 20
o
l _
Q)
0.

• • Original Fatih
I :• I With router group monitoring

lnternet2TEIN2 iLight GEANTSUNET Sprint RF-1 RF-2 RF-3 RF-4 RF-5 RF-6
Topologies

Figure 3.17 : Router group monitoring helps Fatih reduce the number of monitored inter
faces.

120
CO
CD

.C
0 100
>
o
w
.2 80

« _o
§ 60
E
E
o
" 40
in

20

h In In In

• • O r i g i n a l Faith
I I With router group monitornig

lnternet2TEIN2 iLight GEANTSUNET Sprint RF-1 RF-2 RF-3 RF-4 RF-5 RF-6
Topologies

Figure 3.18 : Router group monitoring helps Fatih reduce communication overheads.

WATCHERS [BCP+98, HAB00] maintains several packet counters at routers and uses

inconsistencies found in these counters among different routers to detect forwarding errors.

Because it only uses course-grained counters, it is only capable of detecting dropping er-

55

rors. Sekar et al [SRW+08] presented a new flow monitoring system, cSamp. cSamp

can improve the flow monitoring coverage by enabling routers to coordinate and to sample

different flows. Their goal is however not to identify the trajectory errors in flows. There

fore, cSamp can only tell which flows are in the network, but it does not know the actual

trajectories of the monitored flows. Lee et al [LWK06] presented a secure split assignment

trajectory sampling (SATS) technique. The idea is to enhance trajectory sampling by letting

each pair of routers to sample different subsets of packets to improve monitoring coverage.

However, SATS cannot detect forwarding error unless a forwarding loop is formed causing

some packet loss. In addition, it only detects packet dropping error with a certain proba

bility. On the other hand, our approach can detect both forwarding and dropping errors.

Like our router group monitoring technique, cSamp and SATS also introduce a spatial di

mension to their solution in the sense that different parts of the network perform different

heterogeneous tasks to improve the overall efficiency of traffic monitoring. At the interface

traffic sampling level, Estan et al [EKMV04] proposed a set of efficient techniques to adapt

the NetFlow sampling rate in order to better control resources consumption. Kompella

and Estan [KE05] proposed an efficient flow measurement solution called Flow Slices to

control and reduce CPU usage, memory usage and reporting bandwidth of flow measure

ments. Our router group monitoring technique currently assumes packet level monitoring.

Applying these flow based monitoring techniques can potentially improve the efficiency of

trajectory error detection further. These efficient interface-level sampling techniques are

orthogonal and complementary to our work.

Router group monitoring could also be viewed as a sort of traffic monitor placement

technique because it identifies interfaces that need or need not be monitored for trajectory

error detection. However, our technique is only designed for the trajectory error detection

problem. The selected interfaces always form a boundary around a group of routers, so

we can track how the traffic flows through the network. The more general monitor place

ment problem has been extensively studied for various problem settings. However, all these

monitor placement techniques aim to sample more flows, instead of learning the actual spa-

56

tial trajectories of flows. That is, they are designed to sample different flows at different

locations while our approach is designed to sample the same flow at different locations so

that we can infer their complete trajectories. Horton and Lopez-Ortiz [HLO03] addressed

the monitor placement problem in an active monitoring infrastructure to efficiently measure

delays and detect link failures. Suh et al [SGKT05] used optimization techniques to place

monitors and set the sampling rates in order to maximize the fraction of IP flows being

monitored. They first find the links that should be monitored and then run another opti

mization algorithm to set sampling rates. Chaudet et al [CFR05] not only studied the tap

device placement problem for passive monitoring but also the beacon placement problem

for active monitoring. Their goal is to minimize the number of tap devices used for passive

monitoring and to find the optimal locations for placing the beacons. Similarly, Cantieni

et al [CIB+06] proposed mechanisms to optimally select links to be monitored and select

sampling rates in order to achieve specific measurement tasks with high accuracy and low

overhead. Jackson et al [JMS+07] studied the monitor placement problem using the cur

rent Internet topology. Their goal is to choose a set of locations to maximize the chance of

covering all possible communication pairs in the Internet. Note that in general, how to op

timally choose interfaces to monitor for trajectory error detection is still an open problem.

Zang et al [ZN05] investigates the problem of deploying NefFlow with optimized cover

age and cost in an IP network. It aims to solve the Optimal NetFlow Location Problem

(ONLP) for a given coverage ratio. However, it only samples flows at fixed points instead

of monitoring their actual spatial trajectories.

57

Chapter 4

Constructing Shared HyperCuts Decision Trees for
Multiple Packet Filters

As explained in the introduction, the detector needs to maintain control states (e.g., for

warding tables and packet filters) of multiple routers. To hold the control states of multiple

routers, a large amount of memory is required. Therefore, one research challenge is how to

efficiently store the control states of multiple routers in the detector. Efficient data structure

for maintaining multiple forwarding tables has been proposed by Fu and Rexford [FR08a].

In this thesis, we propose to efficiently store multiple packet filters using a shared data

structure based on the HyperCuts decision tree [SBVW03a], which is widely adopted by

commercial routers and firewalls such as Nevis Networks [nev], Cisco Systems [cisc] and

NewBridge Networks [new]. We experimentally show that naively classifying packet filters

into shared HyperCuts decision trees may significantly increase memory consumptions and

heights of trees. To help decide which subset of packet filters should share a HyperCuts

decision tree, we first identify a number of important factors that collectively impact the

efficiency of the resulting shared HyperCuts decision tree. Based on the identified factors,

we then propose to use machine learning techniques to predict whether any pair of packet

filters should share a tree. Given the pair-wise prediction matrix, a greedy heuristic algo

rithm is used to classify packet filters into a number of shared HyperCuts decision trees.

Our experiments using both real packet filters and synthetic filters show that our shared

HyperCuts decision trees require considerably less memory while having the same or a

slightly higher average height than the separate trees. In addition, the shared HyperCuts

decision trees enable concurrent lookup of multiple packet filters sharing the same tree.

The rest of the chapter is organized as follows: In Section 4.1, we briefly introduce

58

the HyperCuts data structure and then extend the original HyperCuts data structure to sup

port multiple packet filters. Section 4.2 first uses a simple experiment to show that naively

clustering packet filters to shared HyperCuts decision trees may result in significantly in

creased memory consumption and heights of trees. Section 4.3 presents our approach of

clustering packet filters into multiple shared HyperCuts decision trees. The idea is to first

identify some important factors that can affect the efficiency of the constructed shared Hy

perCuts decision tree. Based on the identified factors, we then leverage machine learning

techniques to predict which pairs of packet filters should share a tree. Given the pair-wise

prediction, a heuristic clustering algorithm is used to cluster all packet filters into a number

of shared HyperCuts decision trees. We evaluate the accuracy of the pair-wise prediction

and the performance of the constructed shared trees in Section 4.4. Another application of

using the proposed shared decision trees is discussed in Section 4.5. We discuss related

work in Section 4.6.

4.1 Background

4.1.1 Packet Filter Notations

Informally, a packet filter of size n is a list of n ordered rules {Ri, R2,..., Rn} that col

lectively define a packet classification policy. Each rule Rt is composed of two parts: a

combination of D values, one for each selected packet header field, and an associated ac

tion. The most commonly used five packet header fields are: source IP address, destination

IP address, source port, destination port, and protocol type. Each of the D values specified

in Ri could be a single value or an interval of values or the special value ANY used to

specify all possible legitimate values for that field. Typical actions associated with a rule

include permit, deny, marking the ToS bit, etc. A packet P is considered to match the rule

Ri if all the D header fields of P match the corresponding values in R^. If P matches more

than one rule, then the rule with the smallest index in the packet filter is returned. The

associated action of the returned rule will be performed on P accordingly.

59

Rule ID

Ro

Ri

fl2

R3

R4

Rs

Re

R?

Rs

R9

Source IP

104.253.26.143/31

103.11.193.196/31

51.109.218.92/30

133.202.88.44/30

137.180.89.7/32

201.130.210.90/31

119.10.210.90/31

119.67.166.172/31

71.252.162.33/32

209.137.112.252/31

Destination IP

151.217.12.0/23

151.193.40.150/32

243.82.86.0/23

78.87.20.226/31

243.82.125.14/32

6.92.31.0/25

6.92.31.0/25

151.143.84.75/32

151.166.64.162/32

151.248.122.158/32

Source port

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

Destination port

1489

27000

135

[1300-1349]

6789

1533

1526

1521

[1300-1349]

[61200-61209]

Protocol

TCP

TCP

TCP

TCP

TCP

TCP

UDP

TCP

TCP

TCP

Action

actO

actO

a c t l

act2

ac t l

actO

actO

acf.3

acti

act2

Table 4.1 : A simple packet filter example with 10 rules defined on five packet header fields.

A simple packet filter with 10 rules defined on five packet header fields is shown in

Table 4.1.

4.1.2 The HyperCuts Data Structure and Algorithm

Decision trees have been shown to be a powerful data structure for performing packet

classification by using geometric cutting [Tay05]. Several different variants of decision

tree based packet classification algorithms (e.g., [WooOO] [GM99] [SBVW03a]) have been

proposed. HyperCuts [SBVW03a] is considered to be one of the most efficient decision

tree based packet classification algorithms. In this section, we will briefly introduce the

HyperCuts data structure and algorithm. A more detailed discussion can be found in

[SBVW03a].

A HyperCuts decision tree is composed of two types of nodes: internal nodes and leaf

nodes. Each leaf node contains less than BucketSize number of rules, where BucketSize

is a small constant (e.g., 4). The small number of rules stored in a leaf node will be linearly

traversed to find the matched rule with the smallest index in the original packet filter. By

contrast, an internal node contains more than BucketSize rules, so rules stored in the

internal node have to further split to its child nodes.

The HyperCuts decision tree is efficient because it splits rules in internal nodes using the

60

information from multiple packet header fields. In contrast to HyperCuts, HiCuts [GM99]

only splits rules on one packet header field at a time. In order to decide which subset of

packet header fields to use to split rules on an internal node, the HyperCuts algorithm will

first count the number of unique elements on each field for all rules stored on the node.

Let us take the 10 rules in Table 4.1 as an example, the number of unique elements in

all five fields is 10, 10, 1, 9, 2 respectively. The HyperCuts algorithm will then consider

the set of fields for which the number of unique elements is greater than the mean of the

number of unique elements for all the fields. For example, given a node holding the 10

rules in Table 4.1, the three fields of source IP, destination IP and destination port should

be considered for cutting. After determining which set of fields to cut, the HyperCuts

algorithm uses several heuristics to decide how many cuts should be performed on each

field. More detailed discussions of those heuristics can be found in [SBVW03a]. However,

it is worth noting that the number of child nodes that an internal node can be split into is

limited by a factor of the number of rules stored in the node. The function is defined as

f(N) = spfac x y/N, where N is the number of rules in the internal node and spfac is a

small constant with a default value of 2. This technique is used by both the HiCuts and the

HyperCuts algorithms to reduce the memory consumption.

4.1.3 Extend the HyperCuts Data Structure and Algorithm

To allow multiple packet filters to share a HyperCuts tree, the original HyperCuts data

structure and tree building algorithm need to be extended. Figure 4.1 (a) shows two sep

arate HyperCuts trees, each of which only has one internal node (its root) and four leaf

nodes. Figure 4.1 (b) shows the corresponding shared HyperCuts tree. As can be seen, the

internal node on shared HyperCuts tree is the same as the one in the original HyperCuts

tree. Each internal node only records the number of cuts performed on each field and a list

of pointers to its child nodes. On the other hand, leaf nodes have to be slightly extended to

support multiple packet filters sharing the tree. In the original HyperCuts tree, a leaf node

is composed of a header (indicating the node is a leaf node) and a pointer to the set of rules

Root of HyperCut tree 1

Fields 2 cuts
Field^ 2 cuts

hdr

Pi

hdr

P4

Root of HyperCut tree 2

Fieldj: 2 cuts
Fields 2 cuts

hdr

Pi'

hdr

P '

(a)

61

Root of shared HyperCut tree

hdr

P,

Pi'

Field!: 2 cuts
Field^ 2 cuts

\

hdr

P2

P2 '

1
hdr

P3

P3 '

hdr

P4

P4 '

(b)

Figure 4.1 : Example of a shared HyperCuts tree: (a) Two separate HyperCuts trees, (b)
The corresponding shared HyperCuts tree.

stored in this leaf node. In the shared HyperCuts tree of two packet filters, a leaf node is

composed of the same header and two pointers, one for each packet filter. When a packet

reaches a leaf node when searching the shared HyperCuts tree, since it knows which packet

filter this packet is being matched, it will directly calculate which pointer it should access

next. Therefore, the time to access a leaf node on the shared HyperCuts tree is still the

same as in the original HyperCuts tree. In this simple example, by making the two packet

filters share a tree, we saved one internal node and 4 headers of leaf nodes.

Now we continue to explain how we extend the original HyperCuts tree construction

algorithm. The idea is to use a corresponding average value across all packet filters to

62

replace the value used in the original algorithm. For example, suppose that the two packet

filters F\ and F2 are sharing a HyperCuts decision tree. Given an internal node on the

shared tree, if the number of stored rules from each packet filter is N\ and N2, then the

number of child nodes this internal node can have is bounded by spfac x ^(Ni + N2)/2.

Similarly, to decide the subset of fields for cutting on each internal node, we will first

calculate the number of unique elements in each field on a per packet filter basis. Let us

denote the number of unique elements for rules from F\ and F2 as u\j and u2j respectively,

where 1 < j < D. Then the number of unique elements on each field Uj for the current

internal node is denned as Uj = (uy + u2j)/2. The rest of the algorithm is just the same as

the original HyperCuts algorithm.

4.1.4 Efficiency Metrics of The HyperCuts Decision Tree

Given a constructed HyperCuts tree, we wish it consumes as little memory as possible.

Thus, a natural metric of interest is memory consumption. In addition, we wish to do fast

packet classification using the shared HyperCuts tree, so the tree search time (i.e., from the

root to leaf nodes) is also important. We use the following two metrics to characterize the

tree search time:

Average depth of leaf nodes: The depth of a leaf node is just the length of the shortest

path from itself to the root. Assuming each leaf node has the same probability to be reached

during a packet matching, then the average depth of all leaf nodes reflects on average how

many internal nodes need to be accessed to terminate this tree search.

Height of the tree: This metric characterizes the largest number of internal nodes needed

to be accessed for a packet to reach a leaf node. It corresponds to the worst case search

time.

63

4.2 Challenges of Constructing Efficient Shared HyperCuts Decision

Tree

To construct efficient shared HyperCuts decision trees, one key question to answer is:

which subset of packet filters should share a HyperCuts decision tree so that the resulting

shared tree is more efficient than a set of separate trees? In this section, we first introduce

the filter data sets used in the thesis. We then experimentally show that naively letting mul

tiple packet filters share a HyperCuts decision tree will significantly increase the memory

consumption and height of the shared trees.

4.2.1 Filter Data Sets

We extracted a set of real packet filters from the configuration files of routers in a large-

scale campus network [SRXM08] at Purdue University. We did not include the 260 packet

filters that contain no more than BucketSize number of rules, because their corresponding

HyperCuts decision trees just contain one root node. In our experiment throughout the

thesis, we always set BucketSize as 4.

Because it is hard to obtain other real packet filters, a synthetic filter generator Class-

Bench [TT05b] is used to generate some synthetic filters. The ClassBench tool takes a

parameter file as the input and then generates synthetic filters using the information stored

in the input parameter file. We used three parameter files provided by ClassBench and

they were originally generated from three real access control lists (ACLs) on Cisco routers.

Given each parameter file, we generate two sets of 1,000 synthetic filters. The first set of

1,000 synthetic filters all contains 100 rules, while the size distribution of the second set

of 1,000 synthetic filters follows an exponential distribution with the average value of 100.

Please note that when generating synthetic filters with exponential size distribution, we also

discard the filters containing no more than BucketSize rules.

Some basic statistics about the set of real packet filters and the six sets of synthetic

filters are summarized in Table 4.2.

64

Data Set Name

Purdue

Synl-Exp

Synl-100

Syn2-Exp

Syn2-100

Syn3-Exp

Syn3-100

Parameter File

N/A

ACL1

ACL1

ACL3

ACL3

ACM

ACL4

Number of Filters

140

1000

1000

1000

1000

1000

1000

Size Distribution

N/A

Exponential

Uniform size: 100

Exponential

Uniform size: 100

Exponential

Uniform size: 100

Average Size

21.5

98.21

100

101.9

100

106.3

100

Minimum Size

5

5

100

5

100

5

100

Maximum Size

763

1002

100

910

100

874

100

Table 4.2 : Summary of basic statistics about the seven filter data sets.

4.2.2 Making Randomly Selected Packet Filters Share HyperCuts Trees?

In this section, we will use a simple experiment to show that extra care has to be taken in

deciding which set of packet filters should share a tree. Naively making a set of randomly

selected packet filters share a tree will significantly degrade the performance.

In our experiment, for each filter data set, we randomly choose n distinct filters, where

n is a small number. Given the n selected filters, we first build a separate tree for each

selected filter. Let us denote the memory consumption of the n trees as m ,̂ the average

depths of leaf nodes of the n trees as d;, and the heights of the n trees as hi, where 1 <

i < n. Then we construct a shared HyperCuts decision tree to represent the selected n

filters. Let us denote the memory of the shared tree, the average depth of leaf nodes in the

shared tree and the height of the shared tree as mshared, dshared and hshared- Now we can

define the memory consumption ratio as mshared/ Y27=i mi>tne average leaf depth ratio

as dshared/(Y^=i di/n), and the tree height ratio as hshared/'(E"=i hi/n)- T h e smaller

the ratios are, the more benefits we obtain by making the n packet filters share a single

HyperCuts tree. A ratio larger than 1 means that the shared tree has worse performance

than n separate trees. Given each fixed n, we repeat the experiment 1000 times, i.e., we

randomly select 1000 sets of n distinct filters for our experiment. We also vary n from 2 to

10.

Figure 4.2 (a) shows the average memory consumption ratio across 1000 runs for all 7

data sets. As can be seen, when the number of randomly selected filters increases, the mem-

65

ory consumption ratio becomes higher for all 7 data sets. This is because the more packet

filters are randomly selected to shared a tree, the harder it is to construct a HyperCuts tree

suitable for all packet filters. When 10 randomly selected packet filters share a HyperCuts

decision tree, it will consume 2 to 20 times more memory than simply using 10 separate

trees. Figure 4.2 (b) shows the average of the average leaf depth ratios across 1000 runs.

Similarly, the more packet filters are randomly selected to share a tree, the larger the ratios

are. The tree height ratio results are very similar to the average leaf depth ratio results, so

they are not shown here.

By comparing the memory consumption ratio and average leaf depth ratio, we can also

observe that the average leaf depth ratio increases more rapidly with the increase of n

than the memory consumption ratio does. The reason is that the sizes of all internal nodes

in a HyperCuts tree are not the same. Please recall that the number of child nodes that

an internal node can have is related to the number of rules stored in the node. Because

those nodes closer to the root usually contain more rules, they accordingly have more child

pointers (4 bytes for each pointer). Thus, internal nodes closer to the root are much larger

than the internal nodes far from the root. This explains why a HyperCuts tree with doubled

height consumes less than doubled memory.

4.3 Clustering Packet Filters to Construct Efficient Shared Hyper

Cuts Decision Trees

As shown in Section 4.2, letting a set of randomly selected filters share a HyperCuts tree

leads to increased memory consumption and average height of trees. In this section, we

propose a novel approach to clustering packet filters to form efficient shared HyperCuts

decision trees. In our approach, to help decide which subset of packet filters should share a

tree, we first identify a number of important factors that collectively impact the efficiency

of the resulting shared tree. Based on the identified factors, we then propose to use machine

learning techniques to predict whether any pair of packet filters should share a HyperCuts

decision tree. Given the pair-wise prediction on all possible pairs, a greedy heuristic algo-

66

(a) (b)

Figure 4.2 : (a) Memory consumption increases when randomly selected packet filters
share a HyperCuts tree, (b) Average depths of leaf nodes increase when randomly selected
packet filters share a HyperCuts tree.

rithm is used to classify packet filters into a number of shared HyperCuts decision trees.

4.3.1 Factors Affecting the Efficiency of the Shared Trees

In Section 4.3.1.1, we first present some important factors that can characterize each indi

vidual packet filter. We then study the relationships among those factors in Section 4.3.1.2.

We found that some factors are highly correlated to each other. Finally, we show that

the identified factors can all help decide whether any pair of packet filters should share a

HyperCuts decision tree or not in Section 4.3.1.3.

4.3.1.1 Important Factors for Characterizing Individual Filter

According to our analysis, there are two different classes of factors that can characterize

each individual packet filter:

Class-1 factors include some simple statistical properties of a packet filter itself. They

67

include the size of the packet filter and the number of unique elements in each field. To ob

tain the Class-1 factors, we do not need to build the HyperCuts decision tree for the packet

filter. These factors are important because they are used in the HyperCuts tree construction

algorithm. Thus, they can affect the structure of the final HyperCuts tree. However, only

Class-1 factors are not enough to determine the structure or memory consumption of the

final HyperCuts decision tree. Two packet filters with identical Class-1 factors may have

very different tree structures. Therefore, we identify the second class of factors as follows.

Class-2 factors represent the characteristics of the constructed HyperCuts decision tree.

That is, the HyperCuts tree must be constructed to obtain the Class-2 factors of a packet

filter. Because we want the final shared tree to have good performance, the memory con

sumption of the tree, the average depth of leaf nodes and the height of the tree are one

part of the Class-2 factors. In addition, the number of leaf nodes, the number of internal

nodes and the total number of cuts on each field are also included into the Class-2 factors,

because they can more accurately reflect the actual structure and memory consumption of

the HyperCuts tree. For example, the more nodes a tree has, the more memory it will gen

erally consume. In addition, the total number of cuts performed on each field can reflect

the relative importance of each field so it can impact the structure of the constructed tree.

4.3.1.2 Relationship Among Factors

The factors identified in Section 4.3.1.1 are not independent to each other. In fact, some

factors are highly correlated to each other in the common case. We identify the following

correlated pairs of factors:

Size V.S. Memory consumption: In the common case, the HyperCuts decision tree of

a bigger packet filter tends to consume more memory. The reason is that the more rules

a packet filter contains, the more times of splittings are needed to reduce the number of

rules contained in nodes to BucketSize. Accordingly, more internal nodes and leaf nodes

will be created, which will generally consume more memory. Please note that this is by

no means a universal rule, i.e., a bigger packet filter could consume less memory than a

68

18000

16000

14000

12000

c
q
o.
| 10000
CO
c o o

CD

2

8000-

6000-

4000-

2000

_

-

- 1

:

.

L

i 1

Purdue

Syn1-Exp

—6— Syn2-Exp

-^*— Syn3-Exp

i i

/ 'i
/ ' i

/ ' i
/ / , _^r?'

I . (>*"—+ ^^
I A.' jS I

A A / L A /

1 1 1 1 1

i i

A. ,<y
^ f l " /-

i i

. 1

ry

'

_

/ A
/ A

1 TC) I ~

/

1

0 100 200 300 400 500 600 700 800 900 1000

Sizes of filters

Figure 4.3 : Filter size V.S. memory consumption.

smaller packet filter does. For example, one bigger packet filter with more dissimilar rules

may consume less memory than a smaller packet filter with similar rules. Figure 4.3 shows

the relationship between the memory consumption and the packet filter size. As you can

see, the memory consumption is generally increasing with the increase of sizes of packet

filters.

The number of internal nodes V.S. The number of leaf nodes: Usually, the number of

internal nodes on a tree is highly correlated with the number of leaf nodes. This is because

69

900

800

700 h

O 600
T3
O
C
"co 500
CD

CD

E
3

400

300

200

100

Purdue

Syn1-Exp

0 Syn2-Exp

—*— Syn3-Exp

100 200 300 400 500
Number of internal nodes

600 700

Figure 4.4 : Number of internal nodes V.S. number of leaf nodes.

that generally the more internal nodes a tree has, then the more distinct paths from the root

to the bottom of the tree exist. Please note that each path will end at a leaf node, so more

internal nodes will generally lead to more leaf nodes. Figure 4.4 shows the relationship

between the number of internal nodes and the number of leaf nodes. As can be observed,

the number of internal nodes generally increases with the increase of the number of leaf

nodes.

Please note that a special tree such as a chain-like tree may have many internal nodes

but very few number of leaf nodes. However, we consider those highly unbalanced trees as

the non-common case.

70

Size V.S. The number of internal/leaf nodes: We have shown that the bigger a packet

filter is, the more memory is generally consumed. The major reason is that the bigger the

packet filter is, the more nodes the tree will generally have. Figure 4.5 shows the correlation

between the filter sizes and the number of internal nodes. As can be seen, the number of

internal nodes on a tree increases generally with the increase of the size of a packet filter.

Since we have shown that the number of internal nodes is also correlated with the number

of leaf nodes, the filter size is also correlated to the number of leaf nodes. Figure 4.6 shows

the relationship between the filter sizes and the number of leaf nodes.

However, the number of nodes on a tree is just one important factor that can impact

the memory consumption. The size of each internal node is also important. The size of an

internal node depends on the number of children pointers it contains. The more children

pointers a node contains, the bigger the node is.That is to say, not all internal nodes have the

same size. Please note that some children pointers will be empty, so the number of children

pointers on an internal node is usually smaller than the the number of children nodes.

Number of unique elements in each field V.S. Number of cuts in each field: The num

ber of unique elements in a field is generally highly correlated with the number of cuts

performed in the same field. The more unique elements there are in a field, the more rules

are defined using this field, then the more important this field generally is. To quickly split

rules in the packet filter, the fields with more unique elements will be more likely to be

selected for cutting according to the HyperCuts algorithm. Therefore, the number of cuts

in one field is generally well correlated with the number of unique elements in that field.

Figure 4.7 shows the correlation between the number of unique elements in field 1 and the

number of cuts in field 1.

Height of the tree V.S. The average depth of leaf nodes: The height of a tree is the

maximum depth of all leaf nodes in the tree. In the common case, the higher a tree is,

the larger the average depth of all leaf nodes is. However, the height of the tree is purely

determined by the depth of the deepest leaf node, so the height of the tree is not as reliable

as the average depth of all leaf nodes. One outlier leaf node with large depth will make the

71

7001 1 1 1 1 1 ; 1 r

0 100 200 300 400 500 600 700 800 900 1000

Sizes of filters

Figure 4.5 : Filter size V.S. number of internal nodes.

height of the tree big, however the average depth of all leaf nodes may be much smaller than

the height. Figure 4.9 shows the correlation between the heights of trees and the average

depths of trees.

Although we have shown that in the common case some factors are highly correlated

with each other, it is worth noting that they are not identical factors, i.e., they can not

be replaced by each other. Therefore, we still need to use all factors to more accurately

characterize each packet filter. Another difference between the Class-1 factors and the

Class-2 factors is that the Class-1 factors are much cheaper to calculate than the Class-2

factors.

72

600

500

400
0)
CD

73
O
C

"«
Z 300
o
1 _

CD
JD

E
3
Z 200

100

~i r

- Purdue

-Syn1-Exp

-Syn2-Exp

-Syn3-Exp

100 200 300 400 500 600 700 800 900 1000
Sizes of filters

Figure 4.6 : Filter size V.S. number of leaf nodes.

4.3.1.3 Factors Relevant to the Goodness of Packet Filter Pairs

We have identified a set of factors that can characterize each individual filter. Now we

continue to show that these factors are also important for determining whether a set of

packet filters should share a tree or not. To make this problem simpler, in the following

section, we will first study why these factors are important to decide whether any pair

packet filters should share a tree or not.

73

200

180

160

140

T3
•5 120

O 100

O

E
3

80-

60

40

20-

-

-

I

fr--*-"

I I I I

I

A
/ *

/ t / \
/ \

/ ~
/

/
/

/

/
/ -̂̂ ^̂ '̂ ~̂~~"

/ J&**^*^ y
/ ^_———* "

— qf 1 1 1 1

1 1 1

Purdue

Syn1-Exp

—A— Syn2-Exp

—0— Syn3-Exp

i

/ \ -
_ • A \

/ N / \ / V ^

1 1 I 1

20 40 60 80 100 120 140 160 180 200

Number of unique elements (field 1)

Figure 4.7 : Number of unique elements V.S. number of cuts.

Let us first define a pair of packet filters as a good pair if and only if the shared tree of

the two packet filters consumes less memory than the two separate trees and the height of

the shared tree is no bigger than the average height of the two separate trees. Since both

the memory consumption and the height of the tree are important performance metrics,

a factor should be considered to be an important one as long as it can affect at least one

performance metric of the shared tree.

Size difference: Assume that the size difference of two packet filters is big, i.e., one packet

filter Fi is much smaller than the other packet filter F2. Let us denote the size of F\ and

F2 as si and s2, the decision tree memory consumption of Fi, F2 and the shared tree as

74

30

25

20

o>
CD
CD

5 15
5>
0)
X

10

5

"0 100 200 300 400 500 600 700 800 900 1000

Sizes of filters

Figure 4.8 : Filter size V.S. height of trees.

mi, m2 and ms, the height of F\, F2 and the shared tree as hi, h2 and hs. Recall that the

average number of rules in internal nodes of the shared tree and the average number of

unique elements on each field in internal nodes on the shared tree are determined by both

packet filters. In addition, the number of children pointers an internal node can have is

bounded by the average number of rules in the node. Therefore, the number of children

pointers in the root node of the shared tree is generally smaller than the number of children

pointers in the root node of the decision tree of F2. Consequently, it will take more times of

75

16

14

12
CO
CD

T 3
O

"cO
CD

10

8h
Q .
CD

T3
CD
D)
CO
k_

CD > <

Purdue

— S y n 1 - E x p

- *— Syn2-Exp

-0— Syn3-Exp

10 15 20 25
Height of tree

30 35 40

Figure 4.9 : Height of trees V.S. average depth of leaf nodes.

splitting to reduce the number of rules in nodes down to Bucket Size. Thus, hs should be

larger than h2. hi should be similar to h2 according to Figure 4.8. Therefore, after letting

Fi and F2 shared a decision tree, the height of the shared tree will generally be bigger than

{hi + h2)/2.

As for the memory consumption, F2 should have a larger number of unique elements

on each field, so which fields to cut on each internal node will be mainly determined by F2.

Therefore, the structure of the shared tree will be more similar to the decision tree of F2.

Since the shared tree will be taller than decision tree of F2, more internal nodes and leaf

76

100

90

80

70

8 60
c
CD
i_
CD
i£ 50
T3
Hi

CO 40

30 h

20

10

I Good pairs
I Bad pairs

Purdue Syn1-Exp Syn1-100 Syn2-Exp
Data sets

Syn2-100 Syn3- Syn3-100

Figure 4.10 : Size differences: good pairs V.S. bad pairs.

nodes will be needed generally. On the other hand, the internal nodes from the decision tree

of F\ can be saved, so it is hard to say whether ms will be smaller or bigger than mi + m2.

Figure 4.10 compares the size difference of good pairs and bad pairs for all data sets.

As you can see, good pairs tend to have smaller size difference as expected.

Number of internal/leaf nodes difference: Since there is a high correlation between the

number of internal/leaf nodes and the packet filter sizes, if two packet filters differ greatly

on the number of internal or leaf nodes, then their size difference should be big as well in

general. Therefore, a big difference on the number of internal or leaf nodes usually implies

that these two packet filters should not be sharing a HyperCuts decision tree. Figure 4.11

77

Purdue Syn1-Exp Syn1-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100
Data sets

Figure 4.11: Difference of number of internal nodes: good pairs V.S. bad pairs.

and Figure 4.12 compare the difference of the number of internal nodes and the difference

of number of the leaf nodes between good pairs and bad pairs respectively. As expected,

good pairs tend to have smaller differences.

Memory consumption difference: Since there is a strong correlation between memory

consumption and packet filter sizes, if two packet filters differ greatly on memory con

sumption, then their size difference should be also big in general. Therefore, big memory

consumption difference usually implies that these two packet filters should not share a Hy-

perCuts decision tree in general. Figure 4.13 compares the memory difference of good

pairs and bad pairs. As can be seen, good pairs tend to have closer memory consumptions.

78

120

Purdue Syn1-Exp Syn1-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100
Data sets

Figure 4.12 : Difference of number of leaf nodes: good pairs V.S. bad pairs.

Correlation of the vectors of the number of unique elements on each field: For each

packet filter, we can calculate the number of unique elements on each field. The number of

unique elements from all fields can form a vector. Given two packet filters Fi and F2, we

can calculate one vector for each filter, then we can calculate the linear correlation between

the two vectors. If the correlation is high, then it means that they share the same subset of

important fields (i.e., the fields with more unique elements). Therefore, the tree structures

of the two packet filters should be similar. Consequently, it is easier to construct a shared

tree for the two packet filters with good performance.

On the other hand, if the correlation between the two vectors is low, then it generally

79

1600

1400

1200

1000

q

E
CO c o o
£>
o
E

800

600

400 h

200

Purdue Syn1-Exp Syn1-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100

Data sets

Figure 4.13 : Difference of memory consumption: good pairs V.S. bad pairs.

means that the two packet filters have different subsets of important fields. When the tree

construction algorithm has to decide which fields to cut for an internal node, rules from both

packet filters will be considered. Consequently, the structure of the shared decision tree will

not be similar to either of the separate trees. This will generally lead to increased memory

consumption and increased tree height. Figure 4.14 compares the average correlation rate

of vectors from good pairs and bad pairs.

Correlation of vectors of the number of cuts on each field: Since there is a high cor

relation between the number of unique elements and the number of cuts on each field, if

two packet filters have a low correlation for the vectors of the number of cuts on each field,

80

Purdue Syn1-Exp Syn1-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100
Data sets

Figure 4.14 : Correlation of number of unique elements in all dimensions: good pairs V.S.
bad pairs.

then their correlation for the vectors of the number of unique elements on each field will

also be low generally. Therefore, a low correlation of number of cuts usually implies that

these two packet filters should not be merged together in general. Figure 4.15 compares the

average correlation rate of vectors from good pairs and bad pairs.

Height difference: Given two packet filters F\ and F2, let us denote the heights of F1? F2

and the shared tree as hi, h2 and hs respectively. Assume that hi is much larger than h2.

hs will be similar to hi. Thus, after making the two packet filters share a HyperCuts tree,

the height of the shared thee will generally become larger than the average height of the

Purdue Syn1- •Exp Syn1-100 Syn2-
Data

-Exp Syn2-100 Syn3-Exp Syn3-100
sets

Figure 4.15 : Correlation of number of cuts on all dimensions: good pairs V.S. bad pairs.

two separate trees. Therefore, if the height difference of two packet filters is big, then they

should not share a tree in general. Figure 4.16 compares the height difference of good pairs

and bad pairs for all data sets.

Difference of average depth of leaf nodes: Since there is a correlation between the height

of the tree and the average depth of leaf nodes, if the average depths of leaf nodes of the

two packet filters are very different, then their height difference will also be large generally.

Therefore, a big difference on average depth of leaf nodes generally implies that the two

packet filters should not be sharing a decision tree. Figure 4.17 compares the average leaf

node depth difference of good pairs and bad pairs for all data sets.

82

7 -

CD

X3

.c

2> 3

I

Jl II h

^ ^ | Good pairs

| H Bad Pairs

lib
Purdue Syn1-Exp Syn1-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100

Data sets

Figure 4.16 : Height difference: good pairs V.S. bad pairs.

4.3.2 Predicting Good Pairs of Packet Filters

Two packet filters are defined to be a "good" pair if their shared HyperCuts tree has de

creased memory usage and decreased average depth of leaf nodes compared to the two

separate HyperCuts trees. This problem is clearly a classification problem, i.e., we need to

classify all pairs of packet filters into either good pairs or bad pairs. However, it is non-

trivial to manually derive some effective rules for us to accurately decide whether a pair

of packet filters should share a tree or not. Luckily, some effective supervised machine

learning techniques [Mit97] can help perform this classification task. We will study a few

representative supervised machine learning techniques in Section 4.4.

83

Purdue Syn1-Exp Syn1-100 Syn2-Exp
Data sets

Syn2-100 Syn3-Exp Syn3-100

Figure 4.17 : Average leaf nodes depth difference: good pairs V.S. bad pairs.

To use machine learning techniques to predict whether a pair of filters is good, we need

to first prepare some training data to train a model. Given a filter data set with N distinct

packet filters, we can randomly select M pairs of filters out of all possible N x (N — l) /2

pairs as the training data. For each selected pair of filters, we can decide whether they are

a good pair by constructing two separate trees and one shared tree. For each selected pair

of filters, we can also calculate their factors. By feeding all these information to certain

machine learning technique, a model can be learned to predict whether any new pair of

packet filter is good or bad. We will evaluate the prediction accuracy of different machine

learning techniques in Section 4.4.

84

Good pair

o Packet filter

Figure 4.18 : Constructing a graph based on pair-wise prediction.

4.3.3 Clustering Packet Filters Based on Pair-wise Prediction

By using the model learned from a small amount of training pairs, we can now predict

whether any pair of filters is good or not. Based on the pair-wise prediction for all possible

pairs of all filters, an undirected graph G can be constructed as illustrated in Figure 4.18.

In the graph G, each node represents a distinct packet filter. Two nodes in G are connected

with an edge if and only if the two corresponding packet filters are predicted to be a good

pair. Given the constructed graph G, the following clustering algorithm is proposed to

determine which subset of packet filters should share a HyperCuts decision tree:

INPUT OF ALGORITHM: G and a e[0 1]

OUTPUT OF ALGORITHM: A set of packet filter clusters: Sciusters

01

02

03

04

05

06

07

08

09

Sfilters = {All packet filters};

^clusters I J '

WHILE(|5/i;ter.,|>0)

clusteri = { };

Find fm £ Sfitters who has most neighbors from Sfilters in G;

clusteri = cluster U {/m};

& filters = ^filtersxxfmj'y

WHILE TRUE

Find /„ e Sfuters with most neighbors from clusteri in G

85

if multiple choices exist, pick the one with largest degree in G,

let us assume fn has k neighbors from cluster^ in G,

IF(fc > a x \clusteri\)

clusteri = clusteri U {/„};

^filters == ^filter$\\JnS »

ELSE break the WHILE loop;

END-IF

END-WHILE

^clusters =z ^clusters —̂' \ClUSZGTij,

END-WHILE

RETURN Sciusters\

In the above algorithm, a is a constant value between 0 and 1. Intuitively, the higher

the a value is, the more difficult that a packet filter can join an existing cluster. For ex

ample, if a is set to 0, then all packet filters in the same connected component in G will

share a HyperCuts decision tree. On the other hand, if a is set to 1, then a set of packet

filters will be clustered together if and only if the corresponding nodes in G form a clique.

We will evaluate the performance of the clustering algorithm with different a values in

Section 4.4.2.

4.4 Performance Evaluation

In Section 4.4.1, we first evaluate how accurately we can predict whether a pair of packet

filters should share a tree. We then study the performance of the packet filter clustering

algorithm in Section 4.4.2. Finally, we show the detailed breakdown of the time spent on

each step of our approach in Section 4.4.3.

4.4.1 Accuracy of Predicting Good Pairs

As introduced in Section 4.3, we want to apply supervised machine learning techniques to

address this classification problem. A supervised machine learning technique can automat-

11

12:

13:

14:

15:

16

17:

18:

file:///ClUSZGTij

86

ically learn a model from some training data. The training data consists of pairs of input

vectors, and desired outputs. After a model is learned, it can then be used to predict an

output value for any valid input vectors. We discuss how we define the input vectors, the

output values and three classification techniques we studied in detail as follows.

4.4.1.1 Three Types of Input Vectors

Based on the two classes of factors introduced in Section 4.3.1, we can define three types

of input vectors for each pair of packet niters. The first type of input vectors is composed

of only the Class-1 factors from both filters. The second type of input vectors is composed

of only the Class-2 factors of both filters. The third type of input vectors includes both the

Class-1 and Class-2 factors of the two filters. We evaluate the impact of using different

types of input vectors in Section 4.4.1.4.

4.4.1.2 Defining Output Values

The output of our classification problem should be a label indicating whether the input

vectors correspond to a good pair or not. That is, there are only two possible output values:

good or bad. In this section, we define two packet niters as a good pair if their shared

HyperCuts tree's memory consumption ratio and average leaf depth ratio are both smaller

than 1. That is, the shared HyperCuts tree must have decreased memory consumption

and deceased average depth of leaf nodes compared against two separate HyperCuts trees.

Please note that in the above definition, if we replace the average depth of leaf nodes with

the height of the tree, the prediction accuracy is a little worse according to our study. The

reason is that the heights of trees are determined by the leaf node with largest depth, so it

is not as stable as the average depth of all the leaf nodes.

We studied the percentage of good pairs by examining 10,000 randomly selected pairs

from each data set. The fractions of good pairs vary from 8% to 16% across all 7 data sets.

Since the fractions of good pairs are relatively small, any classification technique that can

accurately identify good pairs will be very useful in practice.

87

4.4.1.3 Three Classification Techniques

We studied three representative classification techniques including the decision tree

(DT)1, the generalized linear regression (GLR) [Mit97] and the naive Bayse classifier

(NBC) [Mit97]. We plan to study more classification techniques such as the neural net

work in the future.

It is straightforward to apply the DT technique to perform classification here. For GLR

technique, if we use the output values 1 and 0 to represent the good pair and the bad pair

respectively in the training data, then given a new pair of filters, GLR will output a value

between 0 and 1. In our experiment, if the returned value by GLR is larger than 0.5 then we

predict the pair as good. Otherwise, the pair is predicted to be bad. As for NBC, we cannot

directly feed the input vectors defined in Section 4.4.1.1 to NBC technique. NBC requires

a set of features instead. In our experiment, we simply define a corresponding feature from

each factor. For example, the size of the first packet filter in the pair is a factor. We can

define its corresponding feature as follows: we first calculate the 10th percentile and 90th

percentile of the sizes of the first packet filter from all good pairs in the training data. A

pair of testing packet filters is then said to have this feature if the size of its first packet filter

falls into the above 10th and 90th percentile range. After we convert factors into features,

the NBC can be used directly to perform classification.

4.4.1.4 Accuracy of Pair-Wise Prediction

For each data set, we randomly select 10,000 pairs and then calculate both Class-1 and

Class-2 factors for those selected pairs. We also need to determine whether each selected

pair is good or bad. To evaluate the prediction accuracy using different types of input

vectors, we randomly choose 1,000 pairs (i.e., 10%) out of the 10,000 pairs as the training

data. We then use the rest 9,000 pairs as the testing data to test the prediction accuracy

"To avoid ambiguity, we always use "HyperCuts decision tree" to refer the packet classification technique,

while using "decision tree" or "DT" in this section to represent the machine learning techniques used

88

of the learned model. We repeat this experiment 10 times, each of which uses a different

1,000 pairs as the training data. Figure 4.20, 4.21 and 4.22 show the average false positive

rate and the average false negative rate of the three classification techniques using different

input vectors across 10 runs.

First of all, different types of input vectors have a significant impact on the false positive

and false negative rate for all three techniques. Only using Class-1 factors as input gives

the worst prediction accuracy for both DT and GLR. Including Class-2 factors in the input

vectors help improve the performance of both DT and GLR. This is expected because Class-

1 factors are relatively simple and they are not sufficient to predict the final HyperCuts

decision tree. However, including more factors as input does not help NBC. Instead, when

more and more factors are included as input, the performance of NBC is getting worse. The

NBC technique assumes that all the input variables are independent to each other, while in

our case, those input factors may not be completely independent. When having more and

more dependent variables into the input vectors, the performance may get worse.

Secondly, among the three techniques we have studied, DT technique has the best over

all performance. GLR does not work well because its linear model simply can not accu

rately capture the complex relationships among those factors. NBC falls short because it

assumes that all factors are independent while they are actually not. If both Class-1 and

Class-2 factors are used in the input vectors to train the decision tree, then the false positive

rates will vary from 3% to 8%. In addition, the average false negative rate across the 7

data sets is 23%. A low false positive rate is important because it means that only a small

percentage of bad pairs will be misclassified to be good ones. A 23% false negative rate

means that 23% of all good pairs will be misclassified as bad pairs. Fortunately, the high

false negative rate can be alleviated by the filter classification algorithm discussed in Sec

tion 4.3.3. Please recall that each misclassified good pair represents a missing edge in the

graph as illustrated in Figure 4.19. Our study shows that the two packet filters on a missing

edge are 1.7 hops away from each other on average, so it is still very likely that they will be

classified into the same cluster by our classification algorithm. On the other hand, for those

89

Good pair

o Packet filter

— - Missing good pair

— ' Bad pair

Figure 4.19 : The filter classification algorithm helps alleviate the high false negative rate
of the pair-wise prediction.

Decision Tree

^ ^ | Class-1 factors as input

L;. ICIas5-2 factors as input

I | Class-1 & Class-2 factors as input

Inn Man K ELI JDOC
Purdue Synl-Exp Synl-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100

DecisionTree

CO

.>
CT0.5
O

| 0.4
CO

LL
0.3

B B Class-1 (actors as input

\:. ' j Class-2 (actors as input

| | Class-1 & Class-2 factors as input

Purdue Syn1-Exp Synl-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100

(a) (b)

Figure 4.20 : Performance of decision tree technique: (a) false positive rate (b) false nega
tive rate.

truly bad pairs, 70% of them are not even connected on the graph. The rest of the 30% of

bad pairs are 3 hops away from each other on average, which makes it much harder for the

classification algorithm to classify them into the same cluster.

90

Generalized Linear Regression Generalized Linear Regression

^ ^ | Class-1 factors as input

I • I Class-2 factors as input •

| | Class-1 & Class-2 factors as input

. | in
•m Ln - Inn Ln inn In

(0
0,0-6

1,0.5
ID
C

j/J 0.4
(Q

li_
0.3

UOLLA
^ | C ! a s 5 ' 1 factors as input

lV : ;- l Class-2 factors as input

I | Class-1 & Class-2 (actors as input

Purdue Syn1-Exp Syn1-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100 Purdue Synl-Exp Synl-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100

(a) (b)

Figure 4.21 : Performance of generalized linear regression: (a) false positive rate (b) false
negative rate.

Naive Bayse Classifier Naive Bayse Classifier

•- 0.6
<D _>
| 0.5
Q .
Q>
v± 0.4
«J

U.
0.3

...
^ ^ | Class-1 factors as input

|; "I J Class-2 factors as input

[| Class-1 & Class-2 factors as input

J i -nn __ nn _n nH

H Class-1 factors as input

[.".,-•-J Class-2 factors as input

| | Class-1 & Class-2 factors as input

Purdue Synl-Exp Synl-100 Syn2-Exp Syn2-100 Syn3-Exp Syn3-100 Purdue Syn1-Exp Synl-100 Syn2-Exp Syn2~l0X) Syn3-Exp Syn3-100

(a) (b)

Figure 4.22 : Performance of naive Bayse classifier: (a) false positive rate (b) false negative
rate.

4.4.2 Performance of The Filter Clustering Algorithm

Since we have shown that the DT technique using both Class-1 and Class-2 factors as input

has the best prediction accuracy among the three techniques we studied, in this section we

91

will use DT to predict the goodness of all pairs of packet filters in a data set. Based on the

pair-wise prediction provided by DT, we can construct a graph G for each filter data set. We

can then apply our filter clustering algorithm to cluster nodes in G to decide which subset of

packet filters should share a HyperCuts decision tree. DT is trained by using a training data

set of 1,000 random pairs, and the results presented in this section are the average values

across 10 runs. Recall that in addition to G, the proposed clustering heuristic algorithm

also needs a constant a. In our experiment, we vary a from 0.25 to 1.

Figure 4.23 shows the performance of the final constructed shared trees for 140 Purdue

filters. When a = 0.25, the shared trees actually have much worse performance than the

140 separate trees. Please recall that a smaller a value means that a packet filter can more

easily join an existing cluster. When a packet filter is mistakenly classified into a wrong

filter cluster, the overall performance of the cluster will significantly degrade. When a

larger a such as 0.5 is used, the performance becomes better. The overall memory saving

is over 40%. In the meantime, the average height of the shared trees and the average depth

of leaf nodes in shared trees slightly decrease.

Figure 4.25, Figure 4.26 and Figure 4.27 show the overall performance of the 6 syn

thetic data sets. As can be observed, when a increases, the memory consumption ratio

generally increases while the average leaf depth ratio and tree height ratio decrease. If

we fix a as 1, then we can reduce memory consumption over 20% on average while only

increasing average leaf depth by 3% on average across all 6 synthetic data sets.

In our algorithm, the parameter a plays a vital role in determining the filter cluster

ing results and also the performance of the constructed shared HyperCuts decision trees.

However, determining the optimal a value for a specific packet filter data set is beyond the

scope of this thesis. We will continue to study this problem as our future work.

In addition, the shared HyperCuts trees enable concurrent lookup of multiple packet

filters sharing the same tree. Therefore, if multiple packet filters lie on a path inside a

router group, then by using the shared HyperCuts trees, the total tree heights along the path

may be reduced. Recall that the tree height represent the worse case tree traversal time. We

92

8

7

6h

CO

OC 4

0.25

Purdue

[Memory consumption

] Height of tree

; Average depth of leaf nodes

0.5 0.75
a

Figure 4.23 : Shared HyperCuts trees V.S. separate HyperCuts trees for Purdue data.

use the Purdue network in our experiment. For each random path in the Purdue network, we

first determine how many filters are lying on the path. Then we compare the total heights of

the separate HyperCuts trees and the shared HyperCuts trees. Figure 4.24 shows the result.

As you can see from Figure 4.24, the shared HyperCuts trees can help reduce the worst

case tree traversal time if multiple packet filters lie on the same path. When the number of

packet filters lying on a path increases, the benefits of using the proposed shared HyperCuts

tree also increase.

93

Purdue network

S ° 3 4
Number of filters on a path

Figure 4.24 : The shared HyperCuts trees enable concurrent lookup of multiple packet
filters sharing the same tree.

^ ^ | Memory consumption
I I B H Height of tree

I | Average depth of leaf nodes

(a) (b)

Figure 4.25 : Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Synl-Exp (b)
Synl-100.

4.4.3 Computation Time Breakdown

In this section, we want to study the computation time spent on each step in our approach.

We break our approach into 7 steps: (1) calculating Class-1 factors, (2) calculating Class-2

94

Syn2-Exp

1 1
^^M Memory consumption
• • H e i g h t of tree
| 1 Average depth of leaf nodes

1
•

....

0.25 0.5 0.75

(a) (b)

Figure 4.26 : Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn2-Exp (b)
Syn2-100.

Syn3 -Exp Syn3-100

Memory consumption
Height of tree
Average depth of leaf nodes

1
^ ^ | Memory consumption
^ ^ | Height of tree
| | Average depth of leaf nodes

0.25 0.5 0.75

(a) (b)

Figure 4.27 : Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn3-Exp (b)
Syn3-100.

factors, (3) generating 1,000 training pairs, (4) training the DT, (5) predicting the goodness

of all pairs to construct G, (6) clustering packet filters and (7) constructing the shared

HyperCuts decision trees. As for implementation, steps (4)-(6) are implemented in Matlab

and the other steps are implemented in the C++ language. The desktop machine used in

our experiment has a 2.6 GHz AMD Opteron processor and 4 GB of main memory.

95

Data Sets

Purdue

Synl-Exp

Synl-100

Syn2-Exp

Syn2-100

Syn3-Exp

Syn3-100

Class 1

1.7

28.2

24.7

28.7

23.5

23.9

24.5

Class 2

4.9

86.4

69.3

86.9

74.5

72.3

74.2

Generate training pairs

6.9

298.9

138.6

315.0

143.9

312.0

141.1

Train

0.29

0.1

0.3

0.31

0.15

0.51

0.41

Predict G

0.01

0.33

0.7

0.78

0.33

0.88

0.75

Cluster

0.52

57.6

62.0

46.6

7.7

36.9

31.7

Construct shared trees

2.6

51.3

21.1

26.7

48.6

65.8

35.3

Total

16.92

522.83

316.7

504.99

298.68

512.29

307.96

Table 4.3 : Computation time breakdown (in seconds) for each step in the proposed ap
proach.

Table 4.3 shows the detailed breakdown of time (in seconds) spent on each step for all 7

data sets. When performing the packet filter clustering step, we set a = 0.5. As can be seen,

the step of preparing the training data takes the most time for all 7 data sets. The reason

is that we need to construct 2,000 separate HyperCuts tree and 1,000 shared HyperCuts

trees. The time spent in clustering packet filters and constructing shared HyperCuts trees is

relatively modest. Therefore, a network operator may want to run the filter clustering and

shared tree construction steps a few times with different a values to select one a offering

best performance. In summary, it takes our approach about 17 seconds to construct shared

HyperCuts trees for 140 real packet filters and about 6.8 minutes on average to construct a

set of shared HyperCuts trees for 1,000 synthetic packet filters.

4.5 Another Application of the Shared HyperCuts Decision Tree

Packet filters are widely used on network devices such as routers to perform various ser

vices including firewalling, quality of service (QoS), virtual private networks (VPNs), load

balancing, traffic engineering, etc. Therefore, multiple packet filters serving different pur

poses may be deployed on a single physical router. With the emergence of virtual routers

as a promising technology to provide network services, more packet filters belonging to

different virtual routers need to be stored on a single physical host router. So far, we have

shown that by using a shared HyperCuts tree to represent multiple packet filters, mem-

96

ory consumption can be considerably reduced while not increasing the height of the trees.

Consequently, more packet niters can be deployed and more virtual routers can be more

efficiently supported on a single physical router.

4.5.1 The Need for Multiple Packet Filters on a Single Router

Multiple packet filters may be deployed on a single router to support different network

services such as firewalling, QoS, VPNs, load balancing and traffic engineering. Due to the

complexity of the network services, each packet filter may be large and complex as well.

For example, recent studies have shown that a complex packet filter on modern routers or

firewalls can have as many as 50,000 rules [ZWG07].

Today router virtualization is already available in commercial routers from both

Cisco [cisa] and Juniper [junb]. It is quickly emerging as a promising technology to

support new network services such as router consolidation [June], customer-specific rout

ing, policy-based routing [Cise], multi-topology routing [P.] [T.] and network virtualiza

tion [APST05] [BFH+06]. For example, with the help of router virtualization, network

operators can now consolidate a large number of existing routers onto a newly-purchased

router by running one virtual router instance for each existing router. When performing

router consolidation, all the packet filters deployed on existing routers will be exported

to the new router. A Juniper router today can be configured with as many as 128 virtual

routers. Therefore, a modern router may need to support a large number of packet filters.

4.5.2 Challenges of Deploying Multiple Packet Filters on a Single Router

One key challenge of holding a large number of packet filters on a single physical router is

memory consumption. As more packet filters are deployed, the memory requirement will

also increase accordingly.

Ternary content addressable memory (TCAM) is the de facto industry standard for

hardware-based fast packet classification. However, TCAM has a few limitations. Firstly,

TCAM consumes lots of power. Secondly, TCAM chips are expensive. They are often

97

more expensive than network processors [Lek03]. Thirdly, due to its high power con

sumption and high cost, the capacity of TCAM on each router is usually restricted by

system designers. What is worse, in order to represent a packet filter in TCAM, the packet

filter rules have to be converted to die ternary format, which will lead to the range ex

pansion problem. For example, Cisco 12000, a high-end Gigabit switch router designed

for large service providers and enterprise networks, can only hold up to 20,000 rules in

its TCAM. Although some recently proposed TCAM-based packet classifiers compression

techniques [MLT09] [Cha09] may help alleviate this problem, the amount of memory re

quired to store a large number of packet filters can still easily exceed the capacity of the

installed TCAM on a physical router.

Therefore, software based packet classification using fast memory such as SRAM is

still widely used on many routers including both edge routers such as Cisco 7200 series

and core routers such as Cisco 12000 series. Although SRAM consumes less power and

occupies smaller space, it is still costly. Therefore, the proposed shared HyperCuts decision

tree can be applied here to help considerably reduce the memory consumption of storing

multiple packet filters. The saved memory can be used to more efficiently hold more packet

filters and to support more virtual routers.

4.6 Related Work

To the best of our knowledge, this thesis is the first to study how to construct efficient shared

data structures for multiple packet filters. The HyperCuts [SBVW03a] decision tree is used

in our study because it is one of the most efficient packet classification data structures.

Our work is inspired by Fu and Rexford [FR08a], who observed that the forwarding in

formation bases (FIBs) of different virtual routers on the same physical router share a large

number of common prefixes. They proposed to use a shared trie data structure to hold mul

tiple FIBs. They also proposed a corresponding lookup algorithm to search the shared trie

data structure. Their evaluation results show that by sharing a trie data structure, the mem

ory requirement can be greatly reduced and the IP lookup time also decreases. However,

98

their work only focused on merging forwarding tables. How to construct efficient shared

data structures for multiple packet filters is not studied. In addition, in their approach, all

FIBs are always merged into a single shared FIB, while our approach can automatically

classify packet filters into multiple shared HyperCuts decision trees.

Several packet classifier compression techniques

(e.g., [MLT09] [Cha09] [DBW+06] [AGJ+07] [LMZ08]) for TCAM-based packet

classification systems have been proposed. However, these techniques are specifically

designed for optimizing TCAM-based systems. In addition, they all try to reduce TCAM

memory usage by compressing each individual packet classifier, while the key idea of our

approach is to save memory by allowing multiple packet filters to efficiently share data

structures.

99

Chapter 5

System Design

5.1 Router Control State Collection

The control state of a router depends on three classes of information: the configuration

file of the router (e.g., ACL filtering rules), the direct configuration commands from a

controller (e.g. SNMP SET commands), and the dynamic control protocol messages (e.g.,

OSPF LSA updates) exchanged among routers. The methods for obtaining this information

are described below.

Configuration file and configuration commands - Many router functions such as

ACL filtering, TOS byte marking, tunneling, ingress filtering and Unicast Reverse Path

Forwarding (uRPF) are specified in routers' configuration files. We assume routers' initial

configuration files are provided to the state collector by the operator. However, a router's

configuration may be updated either by the network operator or by other network manage

ment software. In order to enable accurate trajectory error detection, the state collector

must know the up-to-date configuration of each router in a timely manner. Therefore, we

require any entity that may dynamically change the configurations of routers to immedi

ately notify the state collector about any changes made to a router's configuration. This

requirement presents some engineering challenges but is certainly feasible.

Routing control messages - We first illustrate how the control messages of OSPF and

BGP can be collected. Then, we extend the discussion to other protocols such as PIM,

IGMP, RSVP, etc. In this section, we illustrate how the control message of OSPF and BGP

can be collected.

OSPF uses a reliable link state announcement (LSAs) flooding mechanism to exchange

LSAs among routers. In order to reduce the flooding overhead, the operator may divide the

100

P(B, A, out) EBGP
Router B

P(A,B,in) State
Collector

EBGP
Router A

EBGP
Router C

IBGP peer connection

IBGP peer connection to route server

Policy RS client A

If match peer A
accept

If match peer B
P(B, A, out)
P(A, B, in)

If match peer C
P(C, A, out)
P(A. C, in)

: RS client A i

I

A's BGP RIB

Dest

d1/16

d1/24

d2/16

Next

C

B

B

P(X, Y, in): X's import policy for updates from Y
P(X, Y, out): X's export policy for updates to Y
RS: Route Server

Figure 5.1 : Using a modified Quagga daemon to compute a router's BGP routing state.

whole network into a number of areas. Each OSPF area is an LSA flooding domain and

all routers belonging to the same area will receive an identical link state database for that

area. For routers belonging to multiple areas, their OSPF routing states are determined by

all link state databases they receive. Therefore, in order to obtain the link state databases of

each area, the state collector needs to establish an OSPF neighbor adjacency with at least

one router from each OSPF area. This adjacency can be established through a virtual tunnel

interface. The state collector needs to "speak just enough OSPF" to passively collect all

OSPF LSAs. It will neither originate nor flood any LSAs. Once the collector has obtained

all link state databases, it can calculate the OSPF routing tables for all routers. A similar

approach can be applied to other link state routing protocols such as IS-IS [Cal90].

Collecting BGP updates can be easily accomplished by setting up an IBGP connection

between each BGP router in the AS and the collector. However, just collecting all the

updates is not enough to reproduce the BGP routing state for an individual router. Because

of the import and export policies configured on the IBGP connections among routers, a

router may not receive or accept all BGP updates. Therefore, the state collector needs to

extract those import and export policies from BGP configuration files and apply them when

101

computing the BGP routing state of a router.

We have developed a convenient and practical way to do this computation by leveraging

a modified version of the open source Quagga BGP daemon software. The basic idea

is illustrated in Figure 5.1. First, the state collector runs our modified Quagga daemon

configured as a route server.1. We set up peering relations between the daemon and all the

BGP routers in the AS so that the BGP routers will export all BGP updates to the daemon.

Then, as shown in the figure, to compute the BGP routing state of a router A, we configure

a virtual route server client A. This client is virtual because router A will never actually

receive BGP updates from the daemon. The import policy of virtual client A is configured

to simply duplicate all the policies between router A and its IBGP neighbors in the network

as shown in the figure. Therefore, the virtual client A accepts the same BGP updates as

router A. Now, by invoking Quagga's built-in BGP decision process on virtual client A, we

can conveniently compute the BGP routing state of router A.

However, in a large network, it is very expensive to track the routing tables for all the

routers all the time. For OSPF, when there is a link failure, it takes a significant amount of

time to recompute the routing tables for all the routers. For BGP, one router's BGP table can

be updated very frequently. To make our state collector scalable enough for large networks,

we use an on-demand generation strategy to maintain routing tables. Specifically, in OSPF,

the system maintains the most updated copy of the link state database in memory, and

only computes the OSPF routing tables for the monitored router group when the trajectory

error detector requests for them. In BGP, the BGP route server uses a master BGP table

structure to maintain the latest updates received from BGP neighbors. Only when the

detector requests for the BGP tables of the current router group, the route server generates

all the requested BGP tables from the master BGP table in memory. By doing this, the

state collector can track the routing state of a large network and efficiently generate the

necessary routing tables for trajectory error detection. Once the needed routing tables are

'The original purpose of a route server is to remove the need for full mesh peering among BGP routers at

Internet exchange points.

102

generated, the shared data structure proposed in [FR08b] can be used to efficiently store

them in the memory.

While OSPF and BGP are arguably the most widely used and critical control protocols

in the Internet, there are other protocols of interest. For example, to detect multicast for

warding errors, the state collector must learn the multicast forwarding state of routers via

multicast control protocol messages such as PIM and IGMP messages. However, unlike

OSPF and BGP, PIM and IGMP provide no built-in mechanism for the state collector to

reliably obtain a router's multicast state. Fortunately, by configuring the appropriate Net-

Flow input filters, Cisco's Flexible NetFlow capability [fie] can export the contents of PIM

and IGMP messages received by routers (up to the first 1200 bytes of each packet, more

than sufficient for PIM and IGMP messages) to an external collector. With copies of PIM

and IGMP messages, it is feasible for the state collector to compute the multicast state of

routers. Furthermore, since PIM and IGMP messages are periodic in nature (i.e. soft state),

even if some messages are lost, the state collector will eventually receive refreshed copies

to bring the router state up-to-date.

A similar Flexible NetFlow-based strategy could be applied to other soft state control

protocols, for instance, DVMRP, RIP, RSVP, etc. To limit the processing overhead, the

state collector can collect these control messages only from the subset of routers whose

behavior is being monitored.

Although collecting router control state is feasible, maintaining all the changing control

state is challenging. Ideally, we want to maintain a history of state instances for each type

of state (e.g., OSPF RIB, BGP RIB, configuration file) on a per router basis. Each state

instance is associated with an ideal accurate timestamp, indicating when this state instance

started taking effect on the corresponding router. Whenever a new event (e.g., a new OSPF

LSA) is received by the state collector, the collector should compute new state instances

efficiently and append them to the history. Although the basic idea is conceptually clear,

there are challenges to be addressed.

103

Deciding when a state instance took effect: We assume that routers' clocks are loosely

synchronized. Synchronization accuracy of 100ms or better is achievable with NTP. The

accuracy of the timestamp associated with a state instance will significantly affect the false

trajectory error detection rate of the system. Calculating timestamps of state instances

involves multiple factors such as the network topology, propagation delays of links, proto

col specific parameters (e.g., Minimum Route Advertisement Interval timer in BGP, LSA

hold down timer in OSPF), router software and hardware speed (e.g., how fast the router

can write one entry to the forwarding table), packet loss and retransmission (e.g., the re

transmission of one lost BGP update will delay BGP convergence). Therefore, it is very

challenging to precisely model the above process and calculate an accurate timestamp for

each state instance.

Our approach is to associate each state instance with an uncertainty period. We use the

uncertainty period to specify a time interval during which the state might be in transition

from the old instance to the new one on the router. Therefore, during its uncertainty period,

a state instance will not be used for any trajectory error detection because it may produce a

false detection with a high probability. Similarly, all collected behavioral evidence for that

router within the uncertainty period will not be used either.

Take OSPF control state as an example, it is necessary to estimate different uncertainty

periods for LSA updates originating from different routers. For example, given one update

originated at router i?,, we may first determine the farthest router Rj that needs to receive

the update. Assume the round-trip delay of the path between R4 and Rj is d^ and there

are m routers (including Ri and Rj) on the path from R4 to Rj. Then a rough estimate of

the length of the uncertainty period P is: P = a x dij• + m x Max Router Processing +

m x ProtocolTimers, where MaxRouterProcessing stands for the estimated maximum

processing time for the corresponding update and ProtocolTimers stands for the protocol

specific timer such as the LSA hold-down timer in OSPF. a coarsely represents the effect

of packet losses.

Observe that some false detections may exist if the uncertainty period is estimated

104

poorly. However, we can always cross validate and confirm a detected trajectory error

by actively probing the network using, for instance, Cisco IOS IP Service Level Agree

ments (IPSLA) [ips]. Instances of false detections can thus provide a source of feedback

for adapting the uncertainty period estimation algorithm. We will continue to investigate

how to leverage such feedback information to improve the estimation of the uncertainty

period as our future work.

Efficiently maintaining state instances: We investigated several directions for improv

ing state maintenance efficiency. Recall that a new state instance is inserted to the state

history. However, some protocols such as BGP feature frequent updates. Specifically, BGP

is in charge of learning routes to all destinations outside of the network, so it typically re

ceives updates from its neighbors frequently. Therefore, it is possible that the BGP routing

table will always be in the uncertainty period due to frequent updates. What is worse, the

BGP table on a backbone router could be as big as a few megabytes. Thus, generating a new

table for every update will consume a lot of resources. Fortunately, one useful observation

is that BGP may receive update messages frequently but actual changes to BGP tables are

narrow (i.e., only updating a small number of prefixes). Therefore, one optimization is to

associate the uncertainty period to a finer-grained object, an IP prefix, instead of the whole

BGP table. Then we do not need to generate a new BGP table every time a new update

is adopted, instead we only append the new update associated with its uncertainty period

to the current BGP table. By doing this, we can minimize the uncertainty period of the

whole BGP table and improve the memory utilization. The next problem is that every time

when we need to supply the BGP table to the trajectory error detector, we have to start from

the initial table and process all update logs to generate an up-to-date table, which could be

very inefficient if the trajectory error detector requests BGP tables frequently. Therefore,

we propose to periodically process the logged updates to produce a new table, and then we

only keep the new table in memory and store all the old processed updates to disk.

When a complete history for each state is maintained by the detector, there might exist

105

a lot of redundancies in those states across different routers. For example, BGP RIBs of

different routers may be very similar. Another example is that routers within the same

network may use similar firewall policies. In order to minimize resource consumption,

we propose to classify the same type of states from different routers into a small number

of groups, where each group contains a set of similar states of the same type. We can

then compress the storage of states in the same group by exploiting their similarity. To

be specific, let us again take BGP as an example. We first extract all the same BGP table

entries from all BGP tables in the same group and store these common entries in a base

table. Then for each BGP table, we can create a delta table storing the rest of its BGP

table entries that are not in the base table. When one BGP table is updated afterward, we

only update the corresponding delta table while still keeping all the same entries in the base

table. Periodically, we may need to run the classification algorithm again to re-group the

BGP tables in the network. For the multiple delta tables, the shared forwarding table data

structure can be used to more efficiently store them.

All the packet filters and access control lists stored on the detector can be efficiently

represented using the shared HyperCuts decision trees proposed in Section 4.

5.2 Traffic Trajectories Monitoring and Collection

We leverage NetFlow or its equivalents such as Flexible NetFlow and IPFIX to collect

network behavioral evidence from routers. NetFlow or its equivalents are widely supported

by commercial routers from Cisco, Juniper, and other vendors for network traffic analysis

and monitoring purpose.The NetFlow facility on a router can generate records for traffic

flows that go through the router's interfaces in both the inbound and outbound directions.

Furthermore, it has the necessary property that inbound flows are recorded before inbound

ACL filtering is applied, and outbound flows are recorded after outbound ACL filtering is

applied. The collected flow records can be exported to a NetFlow collector host.

A TCP or a UDP flow is denned by the source IP address, destination IP address, source

port number, destination port number, and protocol number. Other flows, such as ICMP

106

flows, are defined by source, destination DP addresses and protocol number. A NetFlow

flow record contains a wide variety of accounting information about a flow, such as flow

timestamps, number of bytes and packets observed in the flow, D? layer header of packets

and TCP flags. Therefore, by analyzing the NetFlow records collected at a target router's

neighbors' interfaces, it is possible to determine whether the target router has maliciously

dropped a flow, let a flow bypass ACL filtering, mis-forwarded the flow, marked the TOS

byte of a flow to steal higher quality service or degrade the flow's service, initiated a new

unwanted flow, etc.

NetFlow's filter based sampling feature further allows us to record the full flow in

formation for specific kinds of flows (e.g. specific protocol, specific source, specific port

number, etc.). However, we must be careful about how to set up the sampling filters and

coordinate these filters on different routers. On one hand, we want the sampling filters to

cover all flows going through the routers so that we can detect trajectory errors that affect

any flow. On the other hand, if a sampling filter samples a large fraction of traffic on a

router, it will bring significant computation overhead on the router. Our strategy to handle

this is to set up the sampling filters to cover only a small range of destination port numbers.

For destination port numbers that are extremely popular, such as 80 for HTTP traffic, we

further use a source port number and destination port number pair to set up the sampling

range. By doing this, we can make sure that a sampling filter only cover a small fraction of

flows. We then vary the range of port numbers to eventually cover all flows in the network.

We have analyzed the Internet2 NetFlow traces. Based on this analysis, we find that it

is easy to restrict the percentage of flows sampled. To give some examples, for unpopular

port numbers, specifying the destination port number range from 6000 to 8000 will cover

about 1 % of all the traffic. On the other hand, pairing a popular destination port number 80

together with source port number range from 3000 to 4200 will also cover 1 % of the total

traffic. Furthermore, we find that flows that do not have port numbers (e.g. ICMP) account

for only a very small fraction (0.23% in our analysis) of the flows. Therefore, our strategy

is to sample all such flows.

107

NetFlow records assembly - Another issue we want to point out here is the need for

flow record assembly. The NetFlow facility on routers uses a flow cache to store temporary

flow records before exporting them to collectors. When a flow is complete, the record

will be exported. NetFlow will also export partial records of active flows to the collector

when the cache becomes full to make room for new flows. NetFlow also has an active

timer and an inactive timer to control the exporting of flow records. A flow record will

be exported if the flow is inactive for a certain time, or if the flow is long lived and lasts

greater than the active timer. The consequence is that, a router can export several partial

flow records for a network flow. Different routers can export the partial flow records at

different time. Furthermore, NetFlow can only provide best-effort service for exporting

traffic information. NetFlow supports both UDP and SCTP [Ste07] for the transport of

flow records to collectors. However, a flow record can be lost due to packet loss (in case

of UDP) or a connection failure (in case of SCTP). The unaligned partial flow records and

potential missing records make it a challenging problem to maintain behavioral evidence.

For connection-oriented TCP flows, flows start from SYN packets and finish at FIN

or RST packets. Since NetFlow records contain TCP flow flags, a complete flow record

for a TCP flow will have both SYN and FESf/RST bit set in TCP flow flags. Partial flow

records may only have SYN bit, or FIN/RST bit, or neither of them set. To provide be

havioral evidence for TCP flows, the collector must assemble all the related partial flow

records into complete flow records. So, given a TCP flow, we can detect whether or not any

router misbehaves on this flow by matching complete flow records collected from different

routers.

On the other hand, connection-less flows do not have special packets to determine the

start and end of flows. Given a UDP flow, what the collector receives is just a sequence

of flow records with timestamps. The problem is that, given a flow record at an upstream

router, how can we determine which downstream flow record represents the same set of

packets? Since different routers may export its flow records at very different time, the

alignment of flow records from routers is a challenging problem.

108

We use the following strategy to address the problems. First, to prevent missing flow

records caused by accidental packet loss, we use SCTP to transport NetFlow records. In

this case, flow records can only be lost when the SCTP connections between routers and the

collector fail. When a connection fails, the flow records from the corresponding router are

potentially lost. The collector therefore discards all the partial TCP flow records received

from this router. Under normal circumstances, the collector buffers all the partial TCP

flow records and assemble them into a complete record after it sees a flow record with the

FIN/RST bit set. For connection-less flows, we propose the following heuristic mechanism

to align flow records on different routers. The basic idea is that, assuming the network delay

jitter is bounded, if the flow experiences a long idle period at an upstream router, it will also

experience a long idle period at a downstream router. We can use these long idle periods

to align flow records. More specifically, we set both the active timer and the inactive timer

to T seconds (e.g. 30 seconds). In this case, as long as a flow is active, NetFlow will

export a flow record for it every T seconds. If the collector keeps receiving records for a

flow from both the upstream and the downstream routers every T seconds, it will assemble

them. If it does not receive records from both upstream and downstream routers for IT

seconds, this means the flow has been idle for at least T seconds on both upstream and

downstream routers. In this case, the collector will stop assembling and make available

the accumulated records for trajectory error detection. Finally, for connection-less flows

that are continuously active for a long time, the collector periodically (period > > 2T)

stop assembling and make available the accumulated records. In this case, because of

the potential misalignment, a difference between the upstream record and the downstream

record may not indicate any actual trajectory errors. Instead, we will monitor whether the

difference is diverging over multiple detection periods to identify a trajectory error.

5.3 Router Trajectory Error Detector

With the collected router state and the network behavioral evidence observed for a moni

tored router group, the trajectory error detector's task is to periodically process the accu-

109

Inbound NetFlow records

i.3 i.2 i.1

l .

Outbound NetFlow records

i.1 i.2 i.3

J^J^Preprocess

Flow spec 1

Flow spec 2

Flow spec 3

Observed by i.3

Observed by i.2

Observed by i.9

Error
Detector

A • ~ ^

Error
Detector

Flow spec 4

Flow spec 5

Observed by i.4

Observed by i.8

loo

7T

^ k c/> 3 -

SB
CT
ID

3
CD
CT inn

CD
a.
** —*»
o ?

-a CD
o

Figure 5.2 : Preprocessing and supply of behavioral evidence to traffic trajectory error
detectors.

mulated evidence and report discovered trajectory errors. The main challenge is to design

the detector to achieve a high processing throughput. This challenge can be decomposed

into two parts. First, the detector must be able to efficiently search through the NetFlow

records in the evidence to find out what in reality happened to a particular flow. Second,

the detector must be able to efficiently compute based on router state what should have

happened to that flow.

We address the first part by preprocessing the outbound NetFlow records into an ef

ficient searchable data structure and by parallelizing the processing of inbound NetFlow

records. The high level organization of this approach is presented in Figure 5.2. In the

illustrative example, 10 interfaces, i.1 to i.10, are monitored. Each interface reports Net-

Flow records for both inbound flows (i.e. flows heading into the monitored region) and

outbound flows (i.e. flows leaving from the monitored region). Outbound NetFlow records

from all monitored interfaces are then gathered and sorted by their timestamps (we assume

110

Incoming flow
recorded here

Correct fate

Outgoing flow
recorded here

Dest

dl/16
d1/24

d2/16

Next
C
B
B

Dest

d1/16

d2/1B

d3/16

Next

D
C
D

m
4 .

0}

Dest

d1/16

d1/24

d2/16

d3/16

Nexl
- J C I D I

—J B I nil I

- J B I C I
—J nil 1 n 1

(a) Using hop-by-hop simulation
to determine a flow's correct fate

(b) Speeding up forwarding
simulation by combining FIBs

Speculative aggregated
forwarding simulation

(c) Hop-by-hop simulation is performed only if
aggregated filter matching yields a match

Figure 5.3 : Trajectory error detection mechanisms, (a) The baseline mechanism is to sim
ulate a monitored router group hop-by-hop based on the routers' state, (b) By combining
the FIBs in a router group, simulating the aggregated forwarding behavior requires only
one longest address prefix match operation, (c) Advanced router behaviors are specified
by packet filters. By aggregating the filters in a router group and performing an aggregated
match, the detector can efficiently decide whether hop-by-hop simulation can be avoided.

router clocks are loosely synchronized). Those records that belong to the same time period

[U, U+i =U + constant) are grouped together into a bin. Then, the records in each bin are

inserted into a hash table to facilitate the search operation.

In contrast, the processing of the inbound NetFlow records needs no special precom-

putation. Also, since the processing of each inbound NetFlow record is independent, the

computations can be highly parallelized to increase throughput. In the illustrative example,

one detector instance is responsible for processing the inbound records from one interface.

With the outbound records preprocessed, given an observed inbound NetFlow record at

time tj, the detector simply needs to index into the corresponding time bin (and also the

adjacent time bin if tj is too close to the bin boundary) and search the data structure for the

flow specification of the expected outbound flow to determine what happened to the flow.

Note that the outbound flow specification may be different from that of the inbound flow

if the routers inside the region are configured to modify the flow (e.g. mark the TOS byte,

tunnel the flow, etc.). Finally, the detectors can gather all the outbound flow records that

are not matched to any inbound flow record and check whether those outbound flows were

maliciously fabricated.

To address the second part of the challenge, we add several detector performance im-

I l l

provement mechanisms as illustrated in Figure 5.3. First of all, observe that since most

network traffic is simply best-effort forwarded, in the majority of the cases, the fate of a

flow only depends on routers' FIBs. In the minority of the cases where a flow is specially

processed by a router (e.g. filtering, tunneling, TOS marking etc.), the flow must match a

certain configured filter of the router. Therefore, in general, filter matching and FIB lookup

are two fundamental steps in computing the fate of a flow.

As illustrated in Figure 5.3(a), the baseline mechanism the detector relies on to compute

the correct fate of an inbound flow is a hop-by-hop full simulation of the routers' behaviors.

However, our goal is to minimize the need for such hop-by-hop simulation to improve

performance. Since most flows only require hop-by-hop FIB lookups to determine their

fates, it is important to improve the performance of such repeated FIB lookups. We can

improve the performance of the FIB lookups by preprocessing the FIBs of routers in a

monitored region into a combined FIB as outlined in Figure 5.3(b). The combined FIB

makes it possible to determine the outbound interface of a flow by performing only one

address prefix match operation, which is the most costly step in a FIB lookup. For instance,

suppose an inbound flow with destination address dl arrives at router A. A prefix match in

the combined FIB will yield two matching entries dl/16 and dl/24. As usual, the longest

prefix matched is considered first and only if the corresponding FIB entry is "nil" then the

shorter prefix matched is considered. Thus, the path of this flow A, B,D can be determined

efficiently. Existing FIB aggregation techniques proposed by Fu and Rexford [FR08b] can

be directly applied.

A hop-by-hop simulation may still be required if the routers in the region need to apply

complex processing to the flow. Operationally, a router matches a received packet against

its packet filters to decide whether it needs complex processing. To determine whether

such complex processing is necessary in a monitored region, we preprocess all filters of

routers in the monitored region into one aggregated filter. Then, for each inbound flow, we

perform one filter matching operation against the aggregated filter while at the same time

speculatively perform a forwarding lookup in the combined FIB. If the flow does not match

112

the aggregated filter, then the fate of the flow is determined by the result of the combined

FIB lookup. Otherwise, we will fall back on hop-by-hop simulation to determine the fate

of the flow.

5.3.1 Discussion

In our design, the detector is composed of a number of key components including collecting

control states, collecting traffic trajectories and trajectory error detection logic. Obviously,

the implementation of the detector must be more bug-free as possible. Now let us compare

the implementations of the detector and a full-fletched router.

A full-fletched router is a complex system composed of a control plane and a data plane.

The control plane is responsible for learning how to process data packets and it consists of a

large number of complex software modules including routing protocols (e.g., OSPF, IS-IS,

RIP, BGP, PIM), signaling protocols (e.g., RSVP, LDP), route management utilities (e.g.,

route filter, route redistribution), router management interface (e.g., SNMP, router config

uration utilities, packet filter configuration) and so on. On the other hand, the data plane is

responsible for actual packet processing and it is usually a combination of complex soft

ware and hardware. The data plane performs many functions such as forwarding, filtering,

NAT, IP option handling, TTL decrement, checksum computation, etc. The control plane

and data plane together determine the observable packet processing behavior of a router.

Therefore, the implementation of a router is really complex.

Fortunately, implementing the detector is easier and less error-prone than implementing

a full router because of the following reasons: Firstly, the detector only handles sampled

flow records so it does not need to run at line speed. Thus, instead of using sophisticated

algorithms, it can employ simpler and less error-prone algorithms to reduce the number

of bugs. For example, in order to check whether the target router filters packets correctly,

the verifier controller needs to implement packet classification. Router vendors usually use

complex algorithms or even specialized hardware such as TCAMs to achieve high classi

fication speed. However, the detector can just implement the simple HyperCuts algorithm

113

which is very unlikely to introduce many bugs. Secondly, the detector does not handle data

packets directly, instead it only receives the aggregated flow records. As we have shown

in the Introduction, a lot of bugs are triggered by data packets. By avoiding handling data

packets, the detector is safer. Thirdly, to detect traffic trajectory errors, it is sufficient for

the detector to only selectively implement a small set of key packet processing functions,

which also helps minimize the implementation complexity of the detector. For example,

our detector only detects three types of typical trajectory errors. Fourthly, the detector may

only implement the needed protocols instead of all possible protocols in the full-fletched

router. Even for each supported, protocol, the detector only needs to implement the re

quired components. For example, to obtain OSPF control messages, the detector only acts

as a passive neighbor, it does not need to announce any LSAs nor forward LSAs. Fifthly,

the detector is just an application level program and it can run on commodity hardware. It

does not require customized fancy hardware and software support. Due to wide availability

of the commodity hardware, it is less likely that they have many bugs. Lastly, because

the code base of the detector is much smaller than the full implementation of a full-fletched

router, it is more feasible for us to apply software testing and formal verification techniques

to more thoroughly test and verify the correctness of the implementation of the detector.

114

Chapter 6

Prototype Evaluation

6.1 Prototype System Implementation

We have implemented a complete prototype system. It has three major parts: control state

collector, the NetFlow evidence collector and the trajectory error detector. We leverage

the open source Quagga routing software (version 0.98.6) [quab] to implement the control

state collector. We modify the Quagga ospfd and bgpd route server code to support on-

demand OSPF and BGP table generation. We use the open source flow-tools [ftoa] collector

as our NetFlow evidence collector. The flow-tools collector will receive NetFlow record

packets from routers' NetFlow sampling facility and manage them in the flow record files.

The trajectory error detector requests the control state data and NetFlow records from the

state collector and the evidence collector, and checks routers' behaviors. The detector uses

a HyperCuts decision tree [SBVW03b] based packet classification algorithm to encode

filters and a trie data structure to encode forwarding tables to speed up the filter match and

forwarding table lookup procedures. Our current prototype implementation only supports

hop-by-hop simulation to determine a router group's behavior.

6.2 Emulab Testbed Setup

We set up a testbed with the Internet2 topology on Emulab. As shown in Figure 6.1, there

are 9 routers in the testbed emulating the 9 core routers in Internet2. To closely emulate

the real Internet2 routers, we set up these routers using Juniper JUNOS [juna] version 8.5

running on FreeBSD. This use of JUNOS is also widely known as Olive [oli]. Olive can

precisely emulate a Juniper router. The only difference between an Olive and a Juniper

115

Figure 6.1 : Emulated Internet2 testbed on EmuLab.

router is that, a real router runs JUNOS on a special hardware packet forwarding engine,

while Olive runs JUNOS on a commodity PC. We use Emulab PC3000 machines to set

up the Olive routers. PC3000 are the machines with Intel Xeon 3.0GHz 64bit CPU, 2GB

RAM and 5 Ethernet NICs. We first set up the QEMU (version 0.9.1) [qem] virtualization

environment on the PC3000 to provide the particular NIC models required by Olive, and

install the Olive software router inside QEMU virtual environment. QEMU men runs on

top of a host Linux system.

The configurations of these 9 Olive routers are based on the real configuration files

of Internet2 routers. Since Quagga does not support IS-IS, we translate Internet2's IS-IS

configuration into an equivalent OSPF configuration. We use one PC directly connected

with each Olive router to emulate its EBGP neighbor and inject BGP routes into it. To

inject BGP routes, we built a simple tool to load BGP update messages from real routers'

116

(A

"ST
E

c
o

v
c
V
(5

.a

:RF7(1347):

:RF1(79)\

RF5T161J'

MM::RF4(13s)

::RF3(lP4]k::

RF4(B7)I' " " \

iLighl(19\
TElNZdA V

Intemet2(9\ \ ^

Al.lpE(lA ^
NLR(8) m

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Topologies

(a)

0.1 0.5 1 1.5 2 2.7

BGP Table Size (entries) x 10
5

(b)

Figure 6.2 : The performance of OSPF and BGP control state collection, (a) OSPF. (b)
BGP.

BGP updates trace, set up a BGP connection with the Olive router, and announce these up

date messages to it. We tested the forwarding performance of Olive routers. For an Olive

router with 270k routing table entries and no packet filter, it can forward 5300 packets/s

without packet loss. After we enable filters on the router, its throughput drops to 4700

packets/s. Since Olive routers do not support NetFlow sampling, we use the IPCAD (ver

sion 3.7.3) [ipc] tool to sample packets on the QEMU interfaces to emulate the NetFlow

on routers. We deploy our detection system on a PC3000 machine connected to the HOUS

router.

6.3 Performance of Router Control State Collection

To evaluate the performance of our router control state collector, we measure the time it

takes to generate OSPF and BGP routing tables of different sizes. For OSPF routing tables,

117

we use a simulation experiment to inject LSAs for networks with different topologies and

sizes into the Quagga based OSPF state collector. These topologies include the real network

topologies we have used for previous experiments. To study the OSPF table computation

time for larger networks, we also include Rocketfuel (RF) topologies [SMW02] in this

experiment. Figure 6.2(a) shows the average time it takes to compute an OSPF table with

different sizes of networks. The sizes of these networks are shown in the label text. We

can see that the state collector can compute OSPF tables quickly. Even in a large network

with 1347 routers and 6225 links, it only takes 700 ms to generate the OSPF table for one

router. For the Internet2 network, it only takes 0.02 ms to generate the OSPF routing tables

of all the 9 routers.

To evaluate the performance of the BGP routing state collector, we inject different

numbers of BGP routes into the Internet2 routers in our testbed. The BGP update messages

are from the Route Views router traces. We use our BGP route server to collect all the

updates from the Internet2 routers, and reproduce the BGP tables of all the 9 Internet2

routers. Based on our experiment, the BGP route server can process BGP update messages

very efficiently. Even after the route server has collected the whole 270,000 BGP routes, it

can still process an update message in 76 ^s on average. Figure 6.2(b) shows the average

time for the route server to generate one BGP table at different sizes. We can see that, the

BGP route server can generate BGP tables very quickly. Even for a BGP table with all the

270,000 entries for the whole Internet, it takes 690 ms to generate one table on average.

The Internet2 BGP table has only 12000 entries, and it only takes 275 ms to generate the

BGP tables for all the 9 Internet2 routers.

6.4 Performance of Traffic Trajectories Collection

We use the open source flow-tools (version 0.68) software as the behavioral evidence col

lector. We design the following experiment to test how many flow records the flow-tools

collector can handle in one second. First we run the flow-capture daemon as a collector in

our testbed. We use the flow-send daemon to load flow records from the Internet2 NetFlow

118

traces and send the flow records to the collector. To test the limit of the flow collector,

we simultaneously run the flow-send daemon on 9 nodes. All the nodes keep loading flow

records from trace files and send them to the collector. We found that each node can send

700 flow report packets per second without packet loss, where each packet contains 22

flow records. This means the collector can handle 138,600 flow records per second from

all 9 senders and manage them in the disk archives without flow record loss. Considering

in reality, all the 9 Internet2 routers only generate 1,200 flow records per second together

(Internet2 routers enable random NetFlow sampling at the rate of one out of 100 packets),

our results show that the flow-tools collector can easily handle a large volume of NetFlow

record data and effectively collect behavioral evidence from large networks.

6.5 Performance of Trajectory Error Detection

Three major components in the trajectory error detector are critical to the detection per

formance. The forwarding table trie and filter decision tree components decide how fast

the detector can compute the expected behavior of a flow. The flow hash table component

decides how fast the detector can find out the flow's real behavior from a large number

of NetFlow records. To understand the performance of the detector, we first evaluate the

performance of each major component individually. We first test how much time it takes

to build a large trie, a large decision tree and a flow hash table. We found that it takes 2.3s

to build a trie with 260K prefixes, and it takes 3.3s to build a HyperCuts decision tree for

a filter with 10,000 rules generated by ClassBench [TT05a]. Building a flow hash table is

much faster. Even for a flow hash table with 100K records, it only takes 0.14s to build the

hash table. Note that building these data structures is a one time operation before a router

group is monitored. We expect a router group is monitored for several minutes before the

system switches to a different router group. Thus, needing tens of seconds of preparation

time is still acceptable.

Figure 6.3 shows the average lookup time of the trie, the decision tree and the flow hash

table. We can see that it is very efficient to perform lookup operations on them. Even for

119

2flK 52K 78KlMK130K156K1B2K208K234K2eOK
Number of prefixes in the trie

(a) (b) (c)

Figure 6.3 : The performance of detector components, (a) Trie lookup time, (b) Decision
tree lookup time, (c) Flow hash table lookup time.

35

3
o
•; 25
c
o
v>
8 20
o
o
Q.

o 15

!

10J
1400

1200

S-1000
©
O)
(0
" 800

600 o
E
o>
E
IS 400
v
Q.

200

•lllll
2 3 4 5 6 7 8

Size of router groups

(a)

2 3 4 5 6 7 8
Size of router groups

(b)

Figure 6.4 : The overall performance of trajectory error detection, (a) Average processing
time for each flow, (b) Peak memory usage during the detection.

a trie with 260K prefixes, it only takes 3.7/xs to lookup a prefix on average. For a filter

decision tree with 10,000 rules, it only takes 5.5 /LXS to classify a packet on average. It takes

4.8 /̂ s to lookup a flow record from 100K records.

120

We conduct a complete experiment in our testbed to evaluate the overall performance of

the detector. In the experiment, each router has 270K prefixes in its routing table. A simple

synthetic 10-rule filter generated by [TT05a] is enabled as the input filter on each interface.

Real Internet2 traces are used to generate flows. We vary the router group size and measure

the average time for processing each flow record for trajectory error detection and the peak

memory usage. The results are shown in Figure 6.4. As can be seen, the detector can

process a large number of flows quickly. For example, even if each router group contains

8 routers, the average processing time for each flow is around 34 //s, i.e., 30,000 flows per

second. For comparison, currently the 9 real Internet2 routers only generate a total of 1200

flow records per second.

6.6 Integrated Trajectory Error Detection Demonstration

We set up an integrated experiment to demonstrate the use of our system to monitor our em

ulated Internet2 network. Based on the Internet2 network topology, we select router groups

using the group selection algorithm described in Section 3.3 with Maxlnterface = 10,

MaxRouter = 8, and a — 0.5. Four router groups are returned by the selection algo

rithm: Gl = {CHIC, HOUS, LOSA, SEAT, KANS, WASH}, G2 = {CHIC, HOUS, LOSA,

SALT, NEWY, ATLA}, G3 = {HOUS, SEAT, SALT, KANS, NEWY, WASH, ATLA} and

G4 = {CHIC, LOSA, SEAT, SALT, KANS, NEWY, WASH, ATLA}. We monitor each

router group for 150 seconds. All four router groups are monitored repeatedly. We inject

traffic from a host connecting to ATLA by playing back real Internet2 traces. We artifi

cially introduce 15 forwarding errors across all routers by adding static routes in the Olive

routers while not informing the detector about these configuration changes. We selectively

add those static routes to only affect long-lived flows so that we can simulate persistent

trajectory errors.

The four router groups can detect 6, 2, 7 and 2 of the 15 trajectory errors respectively.

All 15 trajectory errors are detected eventually. Some trajectory errors are detected by more

than one router group. Table 6.1 shows the time when each trajectory error is detected for

121

Trajectory error:

Time(s):

Trajectory error:

Time(s):

Trajectory error:

Time(s):

1

152.10

6

152.86

11

456.04

2

152.11

7

304.03

12

456.12

3

152.12

8

304.03

13

456.13

4

152.22

9

456.01

14

608.52

5

152.33

10

456.02

15

608.53

Table 6.1 : Times tamp of each trajectory error first detected.

the first time since the detector started. In the current implementation, the detector only

starts detection when one monitoring period is completed. In a future version, we will

eliminate this limitation and perform live detection so that the detection times will all be

reduced by 150s.

In addition to quickly detecting artificially introduced trajectory errors, our system also

detected a trajectory error that was caused by bugs in our BGP update injector and our

router configuration. Specifically, because we are emulating Internet2 on Emulab, in order

to avoid confusion, we do not allow the BGP update injectors to announce any IP prefixes

belonging to the University of Utah and the real Internet!. However, a bug in our BGP up

date injector caused one Internet! prefix 64.57.8.1/31 to be announced into the testbed. In

addition, in the Olive configuration, we accidentally gave routes learned from BGP a higher

preference. Consequently, this BGP route was chosen by the Olive routers, and all traffic

destined to that prefix was routed to the BGP update injector running on a host connecting

to SALT, creating a trajectory error. On the other hand, the detector correctly calculated its

route to this prefix based on LSAs flooded by OSPF. The detector accurately detected this

routing inconsistency and helped us discover the bug in our BGP update injector and router

configuration!

122

Chapter 7

Conclusion and Future Work

Traffic trajectory errors are serious problems to an operational network because they may

disrupt network services, cause network applications to fail and create security loopholes

for network intruders to exploit. Therefore, traffic trajectory errors must be detected quickly

and efficiently when they are triggered in the field. There has been recent work on design

ing efficient traffic trajectory error detection systems; nonetheless they have seen limited

deployment in operational networks. This thesis presents important contributions towards

making traffic trajectory error detection systems more efficient and more attractive to net

work operators. First, we present an efficient trajectory monitoring technique called router

group monitoring. The proposed technique can greatly reduce the monitoring overhead

and increase the error detection speed. Second, we propose a novel shared data structure to

efficiently store and lookup a large number of packet filters inside a router group. Third, we

have built a complete prototype system based on the first two contributions. Unlike many

existing trajectory error detection systems that require modifications to existing routers'

hardware and software, our prototype is completely compatible with Juniper's JUNOS,

which makes it immediately deployable in a real network.

We now present a summary of the main results of this thesis and directions for future

work.

7.1 Summary of Contributions

Our first contribution is the router group monitoring technique. The idea started with a

simple observation: To detect a traffic trajectory error in a network, it is unnecessary to

monitor all network interfaces. However, how to exploit this observation was not entirely

123

obvious. This thesis has explored one class of strategy called router group monitoring. To

understand the potential of this strategy, we have studied numerous real network topolo

gies and found that router group monitoring is surprisingly effective. To make this idea

practical, we have derived an analytical model to predict the effectiveness of a router group

based on three identified important factors that affect router groups' error detection perfor

mance. In addition, we have also designed an efficient algorithm for selecting sets of router

groups with complete error coverage and fast error detection under monitoring resource

constraints. The analytical model provides key insights on the factors that determine the

error detection rate. Our router group selection algorithm, when applied to Trajectory Sam

pling, can improve detection speed by up to a factor of 4, and when applied to Fatih, can

reduce the communication overhead by up to 85%. Interestingly, router group monitoring

is just one of possibly many interface selection strategies that remain to be explored.

The second contribution of the thesis is to exploit the feasibility of efficiently represent

ing multiple packet filters using a shared data structure. Concretely, our thesis is the first

to study how to construct an efficient shared data structure based on the HyperCuts tree

for multiple packet filters. We have identified a set of important factors that can affect the

performance of the constructed shared HyperCuts decision trees. We then propose a novel

approach to clustering packet filters into shared HyperCuts decision trees. Our evaluation

using both real packet filters and synthetic packet filters shows that our shared HyperCuts

decision trees can reduce up to 50% of the memory consumption while keeping the average

height of trees the same as the separate trees. In addition, the shared HyperCuts decision

trees enable concurrent lookup of multiple packet filters sharing the same tree. We also

show that the proposed approach is practical. It only takes a few minutes to finish clus

tering 1,000 packet filters and to construct the corresponding shared HyperCuts decision

trees.

The third contribution is the proof-of-concept implementation of a prototype trajec

tory error detection system. The prototype system is completely compatible with Juniper's

JUNOS. Our micro-benchmark experiments show that the system can monitor a real net-

124

work with ease. Our live system demonstration shows that the system is realistic and im

mediately deployable.

7.2 Future Work

We have shown that the router group monitoring is a powerful technique to improve the

efficiency of the traffic trajectory monitoring. However, our heuristic router group selec

tion algorithm is by no means an optimal solution. Instead, it only serves as the first step

towards designing an optimal router group selection algorithm. To continue to improve

the efficiency of traffic trajectory monitoring, more efforts are needed to find the optimal

router group selection algorithm that provides both full coverage and fastest error detec

tion. In addition, the current router group selection algorithm still lacks of flexibility to

cope with some practical constraints. For example, it implicitly assumes that each link

carries the same traffic volume, so we always assume the detector cannot monitor more

than Maxlnterface interfaces simultaneously. However, in a real network, links could be

carrying very different traffic volumes. Thus, the router group selection algorithm needs

to incorporate this constraint. In addition, the current selection algorithm tends to use

interfaces on high-degree nodes to monitor multiple router groups simultaneously. There

fore, those high-degree nodes might need to monitor many of its interfaces simultaneously,

which may potentially overload high-degree nodes. It would be important to develop a

more general router group selection algorithm that can cope with as many practical con

straints as possible.

After a trajectory error is detected inside a router group, how to quickly determine the

actual misbehaving router remains a problem. Some straight-forward approaches do exist.

For example, we can randomly split the router group into two halves and then monitor each

half respectively to determine which half contains the misbehaving router and then continue

the binary search on the half containing the misbehaving router. We can also monitor all the

routers along the expected forwarding path one by one. It would be important to determine

the optimal strategy for localizing the misbehaving router. One potential first step is to

125

leverage the forwarding states and router configurations inside the router group to more

quickly narrow down the list of suspicious routers. Given different types of router errors,

different fault localization algorithms may be needed.

The shared HyperCuts tree is shown to be effective in efficiently maintaining multiple

packet filters. However, in practice, packet filters may be updated frequently. Therefore,

how to efficiently cope with the dynamics of packet filters is a problem that needs to be

carefully studied. That is, there is a need for efficient mechanisms for incrementally updat

ing the shared decision trees when some packet filters are changed. It would be also very

useful to study whether our proposed technique can be applied to other data structures that

can represent packet filters (e.g., the decision diagram [GL04]).

126

Bibliography

[ACLOO] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs.

In Proceedings of ACM Symposium on Theory of Computing, pages 171-180,

2000.

[AGJ+07] D. Applegate, G. Galinescu, D. Johnson, H. Karloff, K. Ligett, and J. Wang.

Compressing Rectilinear Pictures and Minimizing Access Control Lists. In

ACM SODA, 2007.

[AHNRR02] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. An on-demand

secure routing protocol resilient to byzantine failures. In Proceedings of

ACM Workshop on Wireless Secure, 2002.

[AKWK04] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly

secure and efficient routing. In Proc. IEEE INFOCOM, March 2004.

[AMCS04] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing packet obit

uaries. In Proc. ACM SIGCOMM Workshop on Hot Topics in Networking,

November 2004.

[APST05] T. Anderson, L. Peterson, S. Shenker, and T. Turner. Overcoming the Internet

Impasse Through Virtualization. In IEEE Computer, vol. 38, no. 4, May 2005.

[AR06] I. Avramopoulos and J. Rexford. Stealth probing: Efficient data-plane secu

rity for IP routing. In USENIX Annual Technical Conference, 2006.

[BCP+98] K. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. Olsson. Detecting

Disruptive Routers: A Distributed Network Monitoring Approach. In IEEE

Network, 1998.

127

[BFH+06] Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rex-

ford. In vini Veritas: realistic and controlled network experimentation. In

Proc. ACM SIGCOMM, September 2006.

[BHBR01] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti. Secure pebblenets. In

Proceedings of the 2nd ACM international symposium on Mobile ad hoc

networking & computing, pages 156-163. ACM New York, NY, USA, 2001.

[Cal90] R. Callon. RFC 1195 - Use of OSIIS-IS for routing in TCP/IP and dual

environments, 1990.

[CFR05] C. Chaudet, E. Fleury, and H. Rivano. Optimal Positioning of Active and

Passive Monitoring Devices. In ACM CoNEXT, October 2005.

[Cha09] Chad R. Meiners and Alex X. Liu and Eric Torng. Topological Transforma

tion Approaches to Optimizing TCAM-Based Packet Processing System. In

ACM SIGMETRICS, 2009.

[Che97] S. Cheung. An efficient message authentication scheme for link state routing.

In 13th Annual Computer Security Applications Conference, pages 90-98.

IEEE Computer Society, 1997.

[CIB+06] G. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran. Reformu

lating the monitor placement problem: optimal network-wide sampling. In

ACM CoNEXT, December 2006.

[cisa] Cisco Logical Routers. h t t p : / / w w w . c i s c o . c o m / e n / U S /

d o c s / i o s _ x r _ s w / i o s x r _ r 3 . 2 / i n t e r f a c e s / c o m m a n d %

/ r e f e r e n c e / h r 3 2 1 r . h t m l .

[cisb] Cisco Security Advisories and Notices, h t t p : / /www. c i s c o . c o m / e n /

U S / p r o d u c t s / p r o d u c t s _ s e c u r i t y _ a d v i s o r i e s _ l i s t i n % g .

h t m l .

http://www.cisco.com/en/US/

128

[cisc] Cisco Systems Inc. h t t p : / / w w w . c i s c o . c o m / .

[cisd] Cisco Traffic Anomaly Detection and Mitigation Solutions, h t t p : / /www.

c i s c o . c o m / e n / U S / p r o d / c o l l a t e r a l / v p n d e v c / p s 5 8 7 9 /

p s 6 2 6 4 / p s 5 8 8 7 % / p r o d _ b u l l e t i n 0 9 0 0 a e c d 8 0 0 f d l 2 4 _

p s 5 8 8 8 _ P r o d u c t s _ B u l l e t i n . h t m l .

[Cise] Cisco, Inc. Policy-based routing, white paper, h t t p : / / w w w . c i s c o .

c o m / w a r p / p u b l i c / 7 3 2 / T e c h / p l i c y _ w p . p d f .

[CR08] M. Caesar and J. Rexford. Building Bug-tolerant Routers with Virtualization.

Proceedings ofPRESTO'08, 2008.

[DBW+06] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet Classi

fiers in Ternary CAMs Can Be Smaller. In ACM SIGMETRICS, 2006.

[Den87] D. Denning. An intrusion detection model. IEEE Transaction on Software

Engineering, February 1987.

[DGOO] Nick G. Duffield and Matthias Grossglauser. Trajectory sampling for direct

traffic observation. In Proc. ACM SIGCOMM, pages 271-282, 2000.

[EKMV04] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a Better NetFlow.

In ACM SIGCOMM 2004, August 2004.

[FB05] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with

Static Analysis. NSDI, 2005.

[fie] Cisco IOS Flexible NetFlow Technology White Paper. h t t p :

/ / w w w . c i s c o . c o m / e n / U S / p r o d / c o l l a t e r a l / i o s s w r e l /

p s 6 5 3 7 / p s 6 5 5 5 / p s 6 6 0 % l / p s 6 9 6 5 / p r o d _ w h i t e _

p a p e r 0 9 0 0 a e c d 8 0 4 b e l c c . h t m l .

[floa] Flow-tools, h t t p : //www. s p l i n t e r e d . n e t / s w / f l o w - t o o l s / .

http://www.cisco.com/
http://www
http://www.cisco.com/en/US/prod/collateral/iosswrel/
http://splintered.net/sw/flow-tools/

129

[flob] FlowMon Probe. h t t p : / / w w w . i n v e a - t e c h . c o m / p r o d u c t s /

f l o w m o n - p r o b e s .

[FR01] A. Feldmann and J. Rexford. IP Network Configuration for Intradomain

Traffic Engineering. IEEE Network, 2001.

[FR08a] J. Fu and J. Rexford. Efficient IP-Address Lookup with a Shared Forwarding

Table For Multiple Virtual Routers. In ACM CoNEXT, 2008.

[FR08b] J. Fu and J. Rexford. Efficient ip-address lookup with a shared forwarding

table for multiple virtual routers. In Proceedings of CoNEXT'08, 2008.

[FSBK03] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred. Statistical

approaches to ddos attack detection and response. Proceedings of DARPA

Information Survivability Conference and Exposition, 2003.

[GL04] M. G. Gouda and A. X. Liu. Firewall Design: Consistency, Completeness

and Compactness. In Proceedings of 24th IEEE International Conference on

Distributed Computing Systems (ICDCS), 2004.

[GM99] P. Gupta and N. McKeown. Packet Classification Using Hierarchical Intelli

gent Cuttings. In Hot Interconnects, 1999.

[GXT+08] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford. Path quality

monitoring in the presence of adversaries. In Proc. ACM SIGMETRICS,

June 2008.

[HAB00] J. Hughes, T. Aura, and M. Bishop. Using conservation of flow as a secu

rity mechanism in network protocols. In IEEE Symposium on Security and

Privacy, May 2000.

[HARD09] Andreas Haeberlen, Ioannis Avramopoulos, Jennifer Rexford, and Peter Dr-

uschel. Netreview: Detecting when interdomain routing goes wrong. In

NSDI2009, April 2009.

http://www.invea-tech.com/products/

130

[HJP03] Y.C. Hu, D.B. Johnson, and A. Perrig. SEAD: secure efficient distance vector

routing for mobile wireless ad hoc networks. Ad Hoc Networks, 1(1): 175-

192, 2003.

[HK00] A. Herzberg and S. Kutten. Early detection of message forwarding faults.

SIAMJ. Comput., (4), 2000.

[HKD07] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Prac

tical accountability for distributed systems. In ACM SOSP 2007, October

2007.

[HLO03] J. Horton and A. Lopez-Ortiz. On the number of distributed measurement

points for network tomography. In USENIX IMC, November 2003.

[HPT97] R. Hauser, A. Przygienda, and G. Tsudik. Reducing the Cost of Security

in Link State Routing. In Symposium on Network and Distributed Systems

Security (NDSS 97), pages 93-99, 1997.

[ibm] IBM ISS Network Anomaly Detection and Behavior Analy

sis, h t t p : / / w w w - 9 3 5 . i b m . c o m / s e r v i c e s / u s / i s s / p d f /

p r o v e n t i a - n e t w o r k - a n o m a l y - d e % t e c t i o n - s y s t e r n - s s . p d f .

[ipc] IPCAD: IP accounting daemon, h t t p : / / l i o n e t . i n f o / i p c a d / .

[ipf] IP Flow Information Export (ipfix). h t t p : / /www. i e t f . o r g / h t m l .

c h a r t e r s / i p f i x - c h a r t e r . h t m l .

[ips] Cisco IOS IP Service Level Agreements, h t t p : //www. c i s c o . c o m /

e n / U S / t e c h n o l o g i e s / t k 6 4 8 / t k 3 6 2 / t k 9 2 0 / t e c h n o l o g i e s _

% w h i t e _ p a p e r 0 9 0 0 a e c d 8 0 1 7 f 8 c 9 . h t m l .

[JMS+07] A. Jackson, W. Milliken, C. A. Santivanez, M. Condell, and W. Strayer. A

Topological Analysis of Monitor Placement. In IEEE Sixth International

Symposium on Network Computing and Applications, July 2007.

http://www-935.ibm.com/services/us/iss/pdf/
http://cisco.com/

131

[juna] Juniper JUNOS Software: Network Operating System. h t t p : / / w w w .

j u n i p e r . n e t / p r o d u c t s _ a n d _ s e r v i c e s / j u n o s / .

[junb] Juniper Logical Routers. h t t p : / / w w w . j u n i p e r . n e t /

t e c h p u b s / s o f t w a r e / j u n o s / j u n o s 8 5 / f e a t u r e - g u i d e - 8 5 %

/ i d - 1 1 1 3 9 2 1 2 . h t r a l .

[June] Juniper Networks, Inc. Intelligent Logical Router Service, www. j u n i p e r .

n e t / s o l u t i o n s / l i t e r a t u r e / w h i t e _ p a p e r s / 2 0 0 0 9 7 . p d f .

[Jund] Juniper Networks, Inc. Security Notices, h t t p : / /www. j u n i p e r . n e t /

s u p p o r t / s e c u r i t y / s e c u r i t y _ n o t i c e s . h t m l .

[KE05] R. Kompella and C. Estan. The Power of Slicing in Internet Flow Measure

ment. In USENIX IMC2005, October 2005.

[KLMS00] S. Kent, C. Lynn, J. Mikkelson, and K. Sen. Secure border gateway protocol

(secure-bgp). IEEE J. Selected Areas in Communications, (4), April 2000.

[Kre92] M. Krentel. Generalizations of opt p to the polynomial hierarchy. In Theor.

Compu. Sci. 97 (2): 183-198, 1992.

[Kum93] B. Kumar. Integration of security in network routing protocols. ACM

SIGSAC Review, ll(2):18-25, 1993.

[KYCR09] Eric Keller, Minlan Yu, Matthew Caesar, and Jennifer Rexford. Virtually

eliminating router bugs. Proceedings of ACM CoNext'09, 2009.

[LCD04] A. Lakhina, M. Crovella, and C. Diot. Diagonosing network-wide traffic

anomalies. In SIGCOMM, 2004.

[LCD05] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature

distributions. In SIGCOMM, 2005.

http://www
http://juniper.net/products_and_services/junos/
http://www.juniper.net/

132

[Lek03] Panos Lekkas. Network Processors - Architectures, Protocols, and Plat

forms. 2003.

[LMZ08] Alex X. Liu, Chad R. Meiners, and Yun Zhou. All-match based complete

redundancy removal for packet classifiers in TCAMs. In IEEE INFOCOM,

2008.

[LWK06] S. Lee, T. Wong, and H. S. Kim. Secure split assignment trajectory sampling:

a malicious router detection system. In IEEE DSN'06, 2006.

[LX01] W. Lee and D. Xiang. Information theoretic measure for anomaly detection.

IEEE Symposium on Security and Privacy, May 2001.

[MB96] S. L. Murphy and M. R. Badger. Digital signature protection of the ospf rout

ing protocol. In Proceedings of the Symposium on Network and Distributed

System Security (NDSS'96), February 1996.

[MCMS05] A. Mizrak, Y. Cheng, K. Marzullo, and S. Savage. Fatih: Detecting and

Isolating Malicious Routers. In DSN, 2005.

[MCMS06] A. Mizrak, Y. Cheng, K. Marzullo, and S. Savage. Detecting and Isolating

Malicious Routers. In IEEE Transaction on Dependable and Secure Com

puting, 2006.

[Mit97] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[Miz07] Alper T. Mizrak. Detecting Malicious Routers. PhD thesis, University of

California, San Diego, September 2007.

[MLT09] Chad R. Meiners, Alex X. Liu, and Eric Torng. Bit Weaving: A Non-prefix

Approach to Compressing Packet Classifiers in TCAMs. In IEEE ICNP,

2009.

133

[MND05] M. Molina, S. Niccolini, and N.G. Duffield. A Comparative Experimental

Study of Hash Functions Applied to Packet Sampling. In Proc. of Interna

tional Teletraffic Congress (ITC), 2005.

[MSM08] A. Mizrak, S. Savage, and K. Marzullo. Detecting compromised routers via

packet forwarding behavior. IEEE Network Magazine, March/April 2008.

[nev] Nevis Networks, h t t p : / /www. n e v i s n e t w o r k s . com/.

[new] NewBridgeNetworks, h t t p : / / w w w . a l c a t e l - l u c e n t . c o m / .

[oli] Juniper Olive Router. h t t p : / / j u n i p e r . c l u e p o n . n e t / i n d e x .

p h p / O l i v e .

[P.] P. Psenak and S. Mirtorabi and A. Roy and L. Nguyen and P. Pillay-Esnault.

Multi-Topology (MT) Routing in OSPF. IETF RFC 4915, 2007.

[Per88] R. Perlman. Network Layer Protocols with Byzantine Robustness. PhD the

sis, Dept. of EECS, MIT, 1988.

[PerOO] R. Perlman. Interconnections: Bridges, Routers, Switches, and Internet

working Protocols. Addison-Wesley Professional, 2000.

[PS03] V. Padmanabhan and D. Simon. Secure Traceroute to Detect Faulty or Mali

cious Routing. In CCR, 2003.

[PSS+01] C. Patridge, A. C. Snoeren, W. T. Strayer, B. Schwartz, M. Condell, and

I. Castineyra. Fire: Flexible intra-as routing environment. IEEE J. Selected

Areas in Communications, 19(3), 2001.

[PST+02] A. Perrig, R. Szewczyk, JD Tygar, V. Wen, and D.E. Culler. SPINS: Security

Protocols for Sensor Networks. Wireless Networks, 8(5):521-534, 2002.

[qem] QEMU: Open Source Processor Emulator, h t t p : / / b e l l a r d . o r g /

qemu/ .

http://www.alcatel-lucent.com/
http://juniper.cluepon.net/index
http://bellard.org/

134

[quaa] QuaggaBugzilla. h t t p : / / b u g z i l l a . q u a g g a . n e t / .

[quab] Quagga Software Routing Suite, h t t p : //www. q u a g g a . n e t / .

[RMR07] R. K. Rajendran, V. Misra, and D. Rubenstein. Theoretical Bounds on

Control-plane Self-monitoring in routing protocols. Proceedings of SIG-

METRICS'07, 2007.

[SBVW03a] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet Classification Using

Multidimensional Cutting. In ACM SIGCOMM, 2003.

[SBVW03b] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet

classification using multidimensional cutting. In ACM SIGCOMM 2003, Au

gust 2003.

[SG04] A. Shaikh and A. Greenberg. OSPF Monitoring: Architecture, Design and

Deployment Experience. In USENIXNSDI, 2004.

[SGKT05] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating network monitors:

Complexity, heuristics and coverage. March 2005.

[SMGLA97] B.R. Smith, S. Murthy, and JJ Garcia-Luna-Aceves. Securing Distance-

Vector Routing Protocols. In NDSS, February 1997.

[SMW02] Neil Spring, Ratul Mahajan, and David Wetheral. Measuring ISP topologies

with RocketFuel. In SIGCOMM, August 2002.

[sne] Sampled Netflow. h t t p : / / w w w . c i s c o . c o m / u n i v e r c d / c c / t d /

d o c / p r o d u c t / s o f t w a r e / i o s 1 2 0 / 1 2 O n e w f % t / 1 2 0 l i m i t /

1 2 0 s / 1 2 0 s l l / 1 2 s _ s a n f . h t m .

[spr] Sprint IP Data Analysis Research Project. h t t p s : / / r e s e a r c h ,

s p r i n t l a b s . c o m / p a c k s t a t / p a c k e t o v e r v i e w . p h p .

http://www.cisco.com/univercd/cc/td/
https://research

135

[SRS+04] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz. Listen and

whisper: Security mechanisms for bgp. In Proc. Networked Systems Design

and Implementation, March 2004.

[SRW+08] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ramana Rao

Kompella, and David G. Andersen. cSAMP: A System for Network-Wide

Flow Monitoring. In USENIXNSDI, 2008.

[SRXM08] Y. Sung, S. Rao, G. Xie, and D. Maltz. Towards Systematic Design of En

terprise Networks. In ACM CoNEXT, 2008.

[Ste07] R. Stewart. Stream Control Transmission Protocol. Internet Engineering

Task Force, Sep 2007. RFC 4960.

[T.] T. Przygienda and N. Shen and N. Sheth. Multi-Topology (MT) Routing

in Intermediate System to Intermediate Systems (IS-ISs). IETF RFC 5120,

2008.

[Tay05] David E. Taylor. Survey and Taxonomy of Packet Classification Techniques.

In ACM Computing Surveys, vol. 37, no 3, 2005.

[TT05a] David Taylor and Jonathan Turner. Classbench: A packet classification

benchmark. In INFOCOM 2005, March 2005.

[TT05b] David E. Taylor and Jonathan S. Turner. ClassBench: A Packeet Classifica

tion Benchmark. In IEEE INFOCOM, 2005.

[WAAR06] Dan Wendlandt, Ioannis Avramopoulos, David Andersen, and Jennifer Rex-

ford. Don't Secure Routing Protocols, Secure Data Delivery. In Proc. 5th

ACM Workshop on Hot Topics in Networks (Hotnets-V), Irvine, CA, Novem

ber 2006.

136

[WEO04] T. Wan, K. Evangelos, and P. C. Van Oorschot. S-rip: A secure distance

vector routing protocol. Applied Croptography and Network Security (ANCS

2004), 2004.

[Whi03] R. White. Securing bgp through secure origin bgp. The Internet Protocol

Journal, (3), 2003.

[WJ02] J. Winick and S. Jamin. Inet-3.0: Internet topology generator. Technical

Report UM-CSE-TR-456-02, University of Michigan, 2002.

[WooOO] T. Woo. A Modular Approach to Packet Classification: Algorithms and Re

sults. InlEEEINFOCOM, 2000.

[WWV+97] S. F. WU, F. Wang, B. M. Vetter, R. Cleaveland, Y. F. Jou, F. Gong, and

C. Sargor. Intrusion detection for link-state routing protocols. IEEE Sympo

sium on Security and Privacy, May 1997.

[xor] XORP. h t t p : / / w w w . x o r p . o r g / .

[ZCB96] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to Model an Inter

network. In Proceedings of IEEE INFOCOM, March 1996.

[ZGC03] D. Zhu, M. Gritter, and D. R. Cheriton. Feedback based routing. In ACM

SIGCOMM Computer Communication Review, 2003.

[ZH99] L. Zhou and ZJ Haas. Securing ad hoc networks. Network, IEEE, 13(6): 24-

30, 1999.

[ZN05] Hui Zang and Antonio Nucci. Optimal NetFlow Deployment in IP Networks.

In Proc. of International Teletraffic Congress (ITC), Aug 2005.

[ZWG07] Charles Zhang, Marianne Winslett, and Carl Gunter. On the Safety and Effi

ciency of Firewall Policy Deployment. In IEEE Symposium on Security and

Privacy, May 2007.

http://www.xorp

