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ABSTRACT 

Efficient Traffic Trajectory Error Detection 

by 

Bo Zhang 

Our recent survey on publicly reported router bugs shows that many router bugs, once 

triggered, can cause various traffic trajectory errors including traffic deviating from its 

intended forwarding paths, traffic being mistakenly dropped and unauthorized traffic by­

passing packet filters. These traffic trajectory errors are serious problems because they 

may cause network applications to fail and create security loopholes for network intruders 

to exploit. Therefore, traffic trajectory errors must be quickly and efficiently detected so 

that the corrective action can be performed in a timely fashion. Detecting traffic trajectory 

errors requires the real-time tracking of the control states (e.g., forwarding tables, packet 

filters) of routers and the scalable monitoring of the actual traffic trajectories in the net­

work. Traffic trajectory errors can then be detected by efficiently comparing the observed 

traffic trajectories against the intended control states. Making such trajectory error detec­

tion efficient and practical for large-scale high speed networks requires us to address many 

challenges. 

First, existing traffic trajectory monitoring algorithms require the simultaneously mon­

itoring of all network interfaces in a network for the packets of interest, which will cause 

a daunting monitoring overhead. To improve the efficiency of traffic trajectory monitor­

ing, we propose the router group monitoring technique that only monitors the periphery 

interfaces of a set of selected router groups. We analyze a large number of real network 

topologies and show that effective router groups with high trajectory error detection rates 

exist in all cases. We then develop an analytical model for quickly and accurately esti­

mating the detection rates of different router groups. Based on this model, we propose an 



algorithm to select a set of router groups that can achieve complete error detection and low 

monitoring overhead. 

Second, maintaining the control states of all the routers in the network requires a signifi­

cant amount of memory. However, there exist no studies on how to efficiently store multiple 

complex packet filters. We propose to store multiple packet filters using a shared Hyper-

Cuts decision tree. To help decide which subset of packet filters should share a HyperCuts 

decision tree, we first identify a number of important factors that collectively impact the 

efficiency of the resulting shared HyperCuts decision tree. Based on the identified factors, 

we then propose to use machine learning techniques to predict whether any pair of packet 

filters should share a tree. Given the pair-wise prediction matrix, a greedy heuristic algo­

rithm is used to classify packet filters into a number of shared HyperCuts decision trees. 

Our experiments using both real packet filters and synthetic packet filters show that our 

shared HyperCuts decision trees require considerably less memory while having the same 

or a slightly higher average height than separate trees. In addition, the shared HyperCuts 

decision trees enable concurrent lookup of multiple packet filters sharing the same tree. 

Finally, based on the two proposed techniques, we have implemented a complete pro­

totype system that is compatible with Juniper's JUNOS. We have shown in the thesis that, 

to detect traffic trajectory errors, it is sufficient to only selectively implement a small set of 

key functions of a full-fletched router on our prototype, which makes our prototype simpler 

and less error prone. We conduct both Emulab experiments and micro-benchmark exper­

iments to show that the system can efficiently track router control states, monitor traffic 

trajectories and detect traffic trajectory errors. 
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Chapter 1 

Introduction 

The network topology and routing policy of an operation network are carefully designed so 

that the routers forward traffic along the chosen trajectories. In addition, different packet 

niters serving various functions are also carefully placed on routers to enforce the desired 

traffic reachability. 

In the ideal case, routers should process traffic as intended so that the traffic always 

follows the chosen paths. However, routers are complex systems. They typically run an 

operating system (e.g., Cisco IOS and Juniper JUNOS), and a collection of protocol dae­

mons which implement the various tasks associated with protocol operations. Like any 

complex software, routing software is prone to implementation bugs. The implementation 

bugs can affect routers in different ways. One class of bugs causes a router to crash or re­

boot. Fortunately, router crash or reboot is relatively easy for an operator to notice. Another 

class of bugs causes non-critical effects (e.g., a slow memory leak) that does not affect net­

work services. However, a large number of router bugs, once triggered, can cause various 

traffic trajectory errors including forwarding error (i.e., traffic deviating from its intended 

forwarding paths), dropping error (i.e., traffic being mistakenly dropped) and filter-bypass 

error (i.e., unauthorized traffic bypassing packet filters). These traffic trajectory errors are 

serious problems because they may cause network applications to fail and create security 

loopholes for network intruders to exploit. Worse, traffic trajectory errors can be subtle 

and hard to detect during development or deployment. Note that static router configuration 

correctness checking tools [FR01, FB05] or control plane monitoring mechanisms [SG04] 

do not help here. This is because the bugs may exist even when routers are correctly con­

figured by the operator, and the control plane (e.g., OSPF, BGP) of a buggy router may 
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continue to appear to be working correctly. 

1.1 Defining Traffic Trajectory Errors 

In this section, we define the three types of traffic trajectory errors that we address in this 

thesis. 

• Packet dropping error - If a router drops legitimate packets that it should continue 

to forward along their trajectory, then we call it a packet dropping error. A packet 

could be dropped due to an implementation bug related to the forwarding table or the 

packet filter. 

• Forwarding error - If the intended control state of a router indicates that a packet 

should be forwarded to its neighbor Nl but in reality neighbor 7V2 receives it, then 

we call it a forwarding error. When a forwarding error happens, the misforwarded 

packet could fall into a forwarding loop and never reach its destination, or the packet 

could take a different path but eventually still reach its destination. Whichever case 

happened, it is still an trajectory error because the packet deviated from its intended 

path. 

• Filter bypass error - If a packet filter is supposed to drop a certain packet but mistak­

enly lets it through, we call it a filter bypass error. 

All three types of errors can directly affect the traffic trajectory in the network. In the 

next section, we will further explain how these traffic trajectory errors happen in practice. 

1.2 Traffic Trajectory Errors In The Wild 

A recent study [CR08, KYCR09] manually classified the bugs found in Quagga [quab] and 

XORP [xor] open source routers. They found that more than 200 and 500 bugs respectively 

have been reported for Quagga since 2006 and for XORP since 2003. Cisco and Juniper 

are the current leaders in the IP router market. Cisco has extensively documented over 
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200 bugs in their products since 1995. Details of these bugs are publicly available [cisb]. 

Juniper also documents bugs in their products. Unfortunately, this information is not pub­

licly available, only registered customers are allowed to access [Jund]. Here we cite several 

recently reported Quagga and Cisco router bugs that can cause traffic trajectory errors to 

illustrate two points: 

1. Real-world router bugs could lead to a wide range of traffic trajectory errors. 

2. These bugs may only affect a specific subset of data packets and may leave no gross 

evidence. Therefore, they are difficult to detect. 

Multiple reported Quagga bugs can result in incorrect routing tables such as new routes 

being ignored (Quagga Bugzilla [quaa] bug ID: 298, 464, 518), expired routes being used 

(Quagga Bugzilla bug ID: 85, 134), incorrect routes being installed (Quagga Bugzilla bug 

ID: 238, 546), and routers stop adapting to topology change (Quagga Bugzilla bug ID: 

107). For Cisco routers, multiple reported bugs can cause a network interface to drop all fu­

ture packets (Cisco Advisory IDs [cisb]: cisco-sa-20080326-IPv4IPv6, cisco-sa-20090325-

udp). Another bug may cause the firewall module of Cisco routers to stop forwarding 

traffic (Advisory ID: cisco-sa-20090819-fwsm). Another bug may change the forwarding 

table of a router (Advisory ID: cisco-sa-20080326-mvpn). Yet another bug may invalidate 

control-plane access control lists (Advisory ID: cisco-sa-20080604-asa). Multiple bugs 

can stop access control list from working, so that unauthorized traffic can go through the 

affected routers (Advisory IDs: cisco-sa-20090923-acl, cisco-sa-20071017-fwsm, cisco-

sa-20011114-gsr-acl, cisco-sa-20000803-grs-acl-bypass-dos). Another bug (Advisory ID: 

cisco-sa-20070412-wlc) could allow packet filters to be inserted so that some packets may 

be dropped silently. 

According to Cisco advisory [cisb] and Quagga Bugzilla [quaa], the reported Cisco and 

Quagga router bugs exist in multiple versions of Cisco IOS and Quagga routing software, 

thus, many deployed routers may be affected by those bugs. Worse, there are likely many 

more bugs yet to be discovered. 
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1.3 The Need For Detecting Traffic Trajectory Errors 

Eliminating router bugs during development is hard in practice. Ideally, all router bugs 

should be discovered through rigorous testings and design verifications during the devel­

opment stage and should be corrected prior to deployment. Unfortunately, router hardware 

and software are highly complex systems, so no vendor can test all network designs, config­

urations and traffic patterns that can exist in the real world. That is, realistically routers may 

never be bug-free. Therefore, many bugs will remain undiscovered in deployed routers. 

Although it helps to have vendors provide patches for the subset of bugs that they have 

discovered, it is doubtful that network operators always keep their routers up-to-date. Net­

work operators must cope with these bugs when they are eventually triggered in the field. 

Therefore, it would be very beneficial for the network operator to have the ability to detect 

traffic trajectory errors quickly and efficiently. 

In this thesis, we consider the traffic trajectory error detection problem in the con­

text of a single autonomous system (e.g., one ISP, one campus network, one enter­

prise network, etc.). To address this problem, two classes of trajectory error detec­

tion techniques have been proposed by other researchers. The first class of techniques 

(e.g., [AKWK04] [HKOO] [Per88] [WAAR06] [ZGC03]) relies on routers sending some 

form of packet arrival acknowledgments towards the packet source to confirm that a 

packet is making correct progress in the network. The second class of techniques 

(e.g.,WATCHERS [BCP+98, HABOO], Fatih [MCMS05, MCMS06], SATS [LWK06], Tra­

jectory Sampling [DGOO], etc) relies on nodes to collect some form of network behavioral 

evidence and then processes such evidence to detect trajectory errors. More detailed dis­

cussions of these trajectory error detection techniques can be found in Section 2.2. 

Although the two classes of techniques employ different approaches to detecting tra­

jectory errors, we find that they share two common building blocks: 

• Tracking and maintaining routers' control states: The control states of routers in­

clude the forwarding tables, packet filters and so on. The control states of routers de­

termine the routers' behaviors, i.e., how routers should process packets. Knowing the 
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intended behaviors of routers is essential for correct trajectory error detection. The 

network control states that governs the various network functions can be obtained 

from control protocol messages, network operators, as well as router configuration 

files. 

• Collecting the actual traffic trajectories: To obtain the actual trajectories of the 

traffic, we need to monitor how traffic flows through the network. The first class 

of techniques relies on the acknowledgments to learn the actual traffic trajectories, 

while the second class of techniques uses either counters to record the traffic statistics 

or the packet sampling techniques to monitor the trajectories of packets. 

Once we obtain the intended control states and the actual traffic trajectories, traffic 

trajectory errors can then be detected by comparing the observed traffic trajectories against 

the intended trajectories according to the control states. If the observed traffic trajectories 

contradict the intended trajectories, a trajectory error is detected. Detected trajectory errors 

may be cross-validated by active probing facilities such as Cisco IPSLA [ips] to minimize 

false detections. 

1.4 Challenges of Efficient Traffic Trajectory Error Detection 

Although the basic idea of the trajectory error detection is straight-forward, it is actually 

challenging to design and implement an efficient and scalable trajectory error detection 

system, especially when the network is composed of a large number of routers and high­

speed links. Specifically, to enable efficient and scalable traffic trajectory error detection, 

the following challenges need to be addressed first: 

• Efficiency of trajectory monitoring: The first challenge we have to address is how 

to efficiently observe the network-wide traffic trajectories while incurring as little 

monitoring overhead as possible. To monitor how the traffic flows through a net­

work, the existing techniques need to enable the traffic monitoring function on all 

the network interfaces in a network. Ideally, each interface should monitor all traffic 
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that is going through it. However, monitoring all traffic at full rate will incur a high 

monitoring and reporting overhead on routers and the network, so in practice only 

a certain fraction of traffic is sampled for each monitoring period. Specifically, dur­

ing each monitoring period, all monitoring devices deterministically choose a certain 

subset of the packets, typically by a packet header hashing technique [MND05], to 

be sampled by all interfaces. Different subsets of packets are then monitored during 

different monitoring periods. ] Once the actual traffic trajectories are obtained, traffic 

trajectory errors can then be detected by comparing the observed traffic trajectories 

against the intended trajectories according to the obtained control states. Although 

the traffic sampling can help reduce the monitoring overhead, existing approaches 

still require concurrent monitoring of all the network interfaces. In this thesis, we 

propose a novel technique to improve the efficiency of the trajectory monitoring by 

only monitoring a subset of interfaces during each monitoring period. The proposed 

technique is generic and can be adopted by multiple trajectory error detection sys­

tems to improve their efficiency. 

Efficiency of maintaining control states: Secondly, the detector needs to maintain 

control states of multiple routers to know their intended behaviors. Maintaining the 

control states of multiple routers in the network usually requires significant amount 

of memory. Efficient data structure for maintaining multiple forwarding tables has 

been studied by Fu and Rexford [FR08a]. How to efficiently store multiple packet 

filters has not been studied yet. Due to the complexities of the network services, 

each packet filter may be large and complex as well. For example, recent studies 

have shown that a complex packet filter on modern routers or firewalls can have as 

many as 50,000 rules [ZWG07]. Therefore, a large amount of memory is required 

'Trajectory errors may be persistent or not. Persistent errors are guaranteed to be eventually detected as 

long as the packet sampling method eventually covers the affected packets. On the other hand, rare, temporary 

trajectory errors may be detectable with a certain probability depending on the sampling method, the affected 

packets, and the duration of the error. The rest of this thesis assumes we are dealing with persistent errors. 
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to hold a large number of complex packet filters. Given the limited memory on the 

detector, it is critical for the detector to employ efficient data structures to store the 

multiple packet filters. 

1.5 Contributions 

This thesis makes the following contributions to enable more efficient and scalable traffic 

trajectory error detection: 

1. Router group monitoring: We propose the router group monitoring technique, 

which only monitors the periphery interfaces of a group of routers. Because only 

a subset of interfaces in the network are monitored for each monitoring period, the 

monitoring overhead can be significantly reduced. Router group monitoring intro­

duces a new spatial dimension to traffic trajectory error detection. That is, in addition 

to the dimension of varying the packet sampling rate to adjust the monitoring over­

head, a new dimension to be considered is which network interfaces are to be moni­

tored. To study whether the router group monitoring can be effective in practice, we 

perform extensive simulation based experiments on a large number of real network 

topologies. Our experiments show that the vast majority of the traffic trajectory errors 

within a router group can still be detected by only monitoring the periphery interfaces 

of the router group. To better understand what can affect the effectiveness of differ­

ent router groups, we explore different factors. We show that the router group size, 

the average router degree inside a group, and the number of exits leaving the group 

are the key factors that influence a router group's detection rate. Based on the iden­

tified factors, we develop an analytical model for quickly and accurately estimating 

the detection rates of different router groups so that we do not need to use computa­

tionally expensive simulation to calculate the detection rate of a router group. This 

model makes it possible to identify effective router groups very efficiently. We pro­

pose a novel algorithm to select a set of router groups that can achieve guaranteed 

error detection and low monitoring overhead. Furthermore, this approach achieves 
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faster error detection than other monitoring algorithms. Finally, by only monitoring 

a group of routers at a time, the computation overhead for generating the necessary 

router states and for processing the behavioral evidence is reduced. We show that the 

efficiency of trajectory error detection based on Trajectory Sampling or Fatih can be 

significantly improved by applying the router group monitoring idea to them. 

2. Efficient shared data structure for multiple packet filters: 

To efficiently store multiple packet niters at the detector, we propose to use a shared 

data structure based on the HyperCuts decision tree, which is widely adopted by com­

mercial routers. We first extend the original HyperCuts decision tree data structure 

and the tree construction algorithm to support multiple packet filters on a shared Hy­

perCuts decision tree. We then experimentally show that naively classifying packet 

filters into shared HyperCuts decision trees may significantly increase memory con­

sumptions and search time. To help decide which subset of packet filters should 

share a HyperCuts decision tree, we first identify a number of important factors that 

collectively impact the efficiency of the resulting shared HyperCuts decision tree. 

Based on the identified factors, we then propose to use machine learning techniques 

to predict whether any pair of packet filters should share a tree. Given the pair-wise 

prediction matrix, a greedy heuristic algorithm is used to classify packet filters into 

a number of shared HyperCuts decision trees. Our evaluation shows that the false 

positive rate of the pair-wise prediction algorithm is low. Though the false negative 

rate of the pair-wise prediction is relatively higher, we show that the classification 

algorithm can help alleviate the high false negative problem. Our experiments us­

ing both real packet filters and synthetic packet filters show that the resulting shared 

HyperCuts decision trees require considerably less memory while having the same 

or a slightly higher average height than the separate trees. In addition, the shared 

HyperCuts decision trees enable concurrent lookup of multiple packet filters sharing 

the same tree. 
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3. Prototype detector compatible with Juniper JUNOS: 

We have implemented a complete prototype system based on the above two novel 

techniques. In addition, as opposed to some existing error detection techniques (e.g., 

Fatih, WATCHERS, Trajectory Sampling, etc) that require new router features, our 

prototype does not require any router modification and is completely compatible with 

Juniper's JUNOS [juna] version 8.5 running onFreeBSD (aka Olive [oli]). Our pro­

totype leverages widely available traffic flow monitoring capabilities in routers (e.g. 

NetFlow [sne], Flexible NetFlow [fie], IPFIX [ipf]) to distributedly collect trajecto­

ries of packets in the network. As we will show in Section 5, to detect traffic trajec­

tory errors, it is sufficient to only selectively implement a small set of key functions of 

a full-fletched router on our prototype, which makes our prototype implementation 

simpler and less error prone. Consequently, the detector can efficiently detect real 

world traffic trajectory errors. We conduct micro-benchmark experiments to show 

that the prototype can efficiently compute and maintain the routers' control states on 

demand, and efficiently monitor actual traffic trajectories to detect traffic trajectory 

errors. We also demonstrate the overall behavior of the complete system working on 

a realistically emulated Internet2 backbone network in Emulab. 

1.6 Thesis Outline 

The rest of this thesis is organized as follows. In Chapter 2, we discuss the assumptions we 

make, and explain the previous work and why they fall short. In Chapter 3, we present our 

router group monitoring approach and demonstrate its benefits. In Chapter 4, we present 

our efficient shared data structure for representing multiple packet filters. In Chapter 5, we 

present the design of our prototype system. We evaluate the performance of our system and 

demonstrate its capability in Chapter 6 using the Emulab testbed. Finally, we conclude in 

Chapter 7. 
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Chapter 2 

Background 

Important Assumptions 

• Single autonomous system: We consider the problem in the context of a single 

autonomous system. That is, the network operator knows the intended configuration 

(e.g., link weights, packet filters) of each router. 

• Trusted control plane: Control plane security is an orthogonal problem that this 

thesis will not focus on. We assume that the control plane of a network is trusted. 

Therefore, all information contained in control protocol messages (e.g., OSPF LSAs, 

BGP updates, IGMP messages, etc.), in direct configuration commands from net­

work controllers (e.g. SNMP SET commands), and in router configuration files from 

the operator are assumed to be correct. While control plane security may not be a 

solved problem, many mechanisms do exist for securing the control plane and for de­

tecting control plane misbehaviors (e.g., [HKD07, HARD09, SG04, PerOO, Kum93, 

SMGLA97, ZH99, BHBR01, PST+02, Che97, HPT97, HJP03, SRS+04, RMR07, 

CR08, KYCR09, MB96, WWV+97, PSS+01, WEO04, KLMS00, Whi03]). For ex­

ample, [SG04] can be used to monitor the link weights of the OSPF protocol. If 

the weight of any link is changed without the knowledge of the operator, the opera­

tor will be alerted. While accountability protocols such as PeerReview ( [HARD09] 

[HKD07]) can help detect the misbehaving BGP routers. 

• Observability of trajectory errors: A fundamental requirement for traffic trajec­

tory error detection in any approach is that the evidence of a trajectory error must 

be observable by good evidence-collecting nodes. This thesis does not address tra-
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jectory errors that are not observable. For example, if one router mistakenly drops 

a packet destined to itself, then this trajectory error cannot be detected because it is 

not observable from outside. Another example is: a group of colluding routers that 

changes die forwarding path of a packet within the colluding group and reports forged 

forwarding evidence is generally not detectable. Fortunately, forging evidence that is 

globally consistent will be quite hard in practice. Trajectory errors exhibited by edge 

routers (e.g., ingress/egress routers dropping inbound/outbound packets) can be ob­

served by dedicated evidence collecting nodes (such as commercial NetFlow-based 

network monitoring devices [flob]) that tap the edge connections. 

2.2 Limitations of Existing Techniques 

We separate the discussion of existing techniques into primary techniques, which aim di­

rectly at detecting traffic trajectory errors, and secondary techniques, which may indirectly 

catch traffic trajectory errors. 

Primary techniques: The are two classes of primary techniques. The first class of tech­

niques relies on nodes sending some form of packet arrival acknowledgments towards the 

source to confirm that a packet is making correct progress in the network. The second class 

of techniques relies on nodes to collect some form of network behavioral evidence and 

processes such evidence to detect trajectory errors. 

The first common limitation of all existing techniques in these two classes is that they 

assume destination address-based packet forwarding is the only network function. Conse­

quently, they will falsely detect many ordinary scenarios as malicious. For example, access 

control list (ACL) filtering will be detected as malicious packet drop; marking of a packet's 

Type-of-Service (TOS) byte for QoS differentiation will be detected as malicious packet 

modification; tunneling of packets for VPN services will be detected as malicious packet 

redirection. Note that our proposed approach is an instance of the second class of tech­

niques, but our proposed approach is unique in that it is control state-aware. The second 
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limitation is that the existing techniques need to enable the traffic monitoring function on 

all the network interfaces in a network, which will incur a high monitoring and reporting 

overhead on routers and the network. In contrast, our approach uses a novel router group 

monitoring technique to improves the efficiency of the traffic trajectory monitoring by only 

monitoring a subset of interfaces during each monitoring period. 

The following is a brief summary of the first class of techniques: Avramopoulos et. 

al. [AKWK04] use secure source routing and end-to-end acknowledgments to detect mis­

behaving forwarders; Herzberg and Kutten [HKOO] describe different techniques based on 

end-to-end, hop-by-hop, or intermediate node acknowledgments to detect misbehaving for­

warders; Perlman [Per88] uses end-to-end acknowledgments to identify unreliable network 

paths; Availability Centric Routing [WAAR06] and Feedback Based Routing [ZGC03] also 

use end-to-end acknowledgments but monitor the reliability of inter-domain paths. 

The following is a brief summary of the second class of techniques: WATCH­

ERS [BCP+98, HABOO] maintains several packet counters at routers and uses inconsis­

tencies found in these counters among different routers to detect forwarding errors; Packet 

Obituaries [AMCS04] uses accountability boxes on inter-AS border links to record traffic 

information and exchanges traffic information among accountability boxes to identify un­

reliable inter-domain paths; Stealth Probing [AR06] hides end-to-end probe traffic among 

regular data traffic inside a secure tunnel and monitors the end-to-end probe traffic to deter­

mine the reliability of a network path; Secure Traceroute [PS03] compares traffic informa­

tion collected at the source router and different intermediate routers to discover which inter­

mediate router is misbehaving; Awerbuch et. al. [AHNRR02] is similar to Secure Tracer­

oute but uses a binary search strategy for locating the misbehaving router; SATS [LWK06], 

PepperProbing [GXT+08], and SaltProbing [GXT+08] extend the idea of Trajectory Sam­

pling [DGOO] to securely monitor network paths for faulty forwarding behavior; Mizrak et. 

al. [MCMS05, MCMS06, MSM08, Miz07] propose a system called Fatih that uses traffic 

information to detect trajectory errors, including packet loss, fabrication, modification, re­

ordering, delaying, and also provide mechanisms to distinguish congestive packet losses 
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from malicious packet drops. 

Finally, many of the above techniques require specialized router support such as packet-

by-packet fingerprinting and logging that are not currently available in commercial IP 

routers. In contrast, our goal is to design a solution that leverages existing router support 

for NetFlow and does not need specialized router support. 

Secondary techniques: There is a large number of statistical network anomaly detection 

techniques in the literature (e.g., [Den87, LX01, FSBK03, LCD04, LCD05, ibm, cisd]). 

These techniques monitor traffic aggregates and aim to identify network problems such 

as DoS attacks, network outages, etc. While these techniques are not designed to catch 

specific traffic trajectory errors, they could potentially detect a traffic trajectory error if it 

results in a significant impact on the network's overall traffic. However, the limitation is that 

a localized error is very likely to evade statistical detection. For example, a misbehaving 

router that changes the forwarding behavior of a single /28 destination address prefix is 

unlikely to cause a gross detectable anomaly. Therefore, while statistical anomaly detection 

techniques can potentially be helpful in the fight against traffic trajectory errors, their use 

is limited and so we consider these techniques secondary. 
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Chapter 3 

Monitoring Routers In Group 

To monitor the behavior of a router, the basic idea is to monitor the traffic being sent to and 

received from this router by its neighbors. For example, consider the illustrative network in 

Figure 3.1(a). To monitor one of the middle routers requires the monitoring of six neighbor 

router interfaces. Monitoring all four middle routers will thus require the monitoring of 24 

interfaces. At the extreme, if every router is to be monitored, then every network interface 

needs to be monitored. The overall processing overhead in trajectory error monitoring 

depends on both the sampling rate and the number of concurrently monitored interfaces. 

However, an important observation is that to detect a traffic trajectory error, it is in general 

unnecessary to monitor all network interfaces concurrently because it is sufficient to have 

just one monitored interface detect the error. In other words, monitoring all interfaces 

concurrently is overkill for trajectory error detection. Take Figure 3.2 as an example, if all 

interfaces are monitored, then routers R4, R5, and R$ can all detect the same forwarding 

error, which creates unnecessary monitoring overheads. 

This observation leads to the following question: Compared to the straight-forward 

setting of monitoring all interfaces concurrently, is it possible to detect the same trajectory 

errors in fewer sampling periods (i.e. faster) on average, without increasing the overall pro­

cessing overhead, by monitoring fewer interfaces concurrently but each at a higher packet 

sampling rate? Conversely, is it possible to maintain the same detection speed, but reduce 

the overall processing overhead by monitoring fewer interfaces at the same packet sampling 

rate? 

This chapter studies these questions under a particular interface monitoring strategy we 

call router group monitoring. Suppose we model a network as a graph G(V, E) where V 
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(a) Per-router monitoring of the 
four middle routers requires 
24 interfaces to be monitored 

(b) Group monitoring of the four 
middle routers requires only 
14 interfaces to be monitored 

(c) When a misbehavior is delected 
the system can zoom in to 
identify the misbehaving router 

(d) Different router groups of 
different scales could be 
dynamically chosen 

Figure 3.1 : Example illustrating router group monitoring, (a) Per-router monitoring is not 
the most efficient, (b) Group monitoring is more efficient and can detect most trajectory 
errors within the group, (c) Zooming in to a finer scale to identify the misbehaving router, 
(d) Two different router groups with different scales can be concurrently monitored. 

Correcl forwarding path for flowl 

Wrong forwarding path for flowl 

Periphery interfaces for router group 1 

Flowl 

f^-.. Correct router 

Misforwarding router 

Figure 3.2 : Illustration of router group monitoring technique. 

is the set of vertices (routers) and E is the set of edges (links). A router group RGi is a 

set of connected vertices such that RGi C V. When monitoring a router group RGt, every 
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cut edge (u, v) G E with u G RGi and v G V \ RGi is monitored. We informally refer to 

these interfaces as the periphery interfaces of a router group. The overhead of monitoring 

a router group thus depends on the number of periphery interfaces and the packet sampling 

rate used. The potential overhead saving comes from not monitoring those edges (u, v) 

with u, v G RGi. 

The idea of router group monitoring is illustrated in Figure 3.1(b). A subset of con­

nected routers are chosen to form a router group for monitoring. A router group represents 

a network region that is being monitored by neighbor routers outside of the region. The 

router group monitoring provides a trade-off between overhead and trajectory error detec­

tion time. In the example, to monitor the four middle routers as a group requires only 

14 interfaces to be monitored. Yet, most trajectory errors exhibited by the four routers 

can already be detected. For simplicity, consider the transit traffic that enters and then 

leaves the monitored region (to consider non-transit traffic simply requires additional Net-

Flow agents not shown in the figure to monitor the ingress and egress links as discussed 

in section 2.1). Packets that are maliciously dropped, fabricated, tunneled to a third-party, 

let-through against ACL policies, TOS-marked, etc. can be detected from outside the re­

gion. Furthermore, a mis-forwarded packet can be detected if it leaves the region on an 

unexpected interface. For example, Figure 3.2 illustrates how the router group monitoring 

approach can detect a mis-forwarding error. Router group 1 is a singleton router group. 

To monitor router group 1, we only need to monitor the three periphery interfaces repre­

sented by the black circles. By monitoring the router group 1, we can detect the forwarding 

error immediately because the flow 1 is leaving the group from a wrong periphery inter­

face. When monitoring the router group 2, we can still detect this forwarding error. How­

ever, monitoring the router group 3 will not detect this specific error because it has been 

self-corrected inside the group. This tells us that a router group may not detect all errors 

originated from the inside of the group. 

Once a trajectory error is detected in a router group, the group can be divided up 

into finer scale groups to "zoom in" on the specific misbehaving router as shown in Fig-
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ure 3.1(c). Multiple router groups can be concurrently monitored as long as the total overall 

processing overhead is below the desired ceiling. Note that concurrently monitored router 

groups RGi and RGj need not be disjoint. Figure 3.1(d) shows that two router groups are 

monitored concurrently. It is possible to choose router groups that guarantee to detect all 

persistent trajectory errors. A sufficient condition is presented in Section 3.3. This result 

is intuitive because one can always choose N router groups where N is the number of 

routers and each group corresponds to a unique router in the network; this strategy simply 

degenerates into the monitoring of all network interfaces. 

However, to determine whether router group monitoring improves efficiency, a number 

of questions must be addressed. First, how likely is a trajectory error inside a router group 

detectable at the periphery interfaces? Second, what factors affect the detection rate of a 

router group and how can we efficiently identify router groups that have high detection 

rates? Third, how can we choose a set of router groups that can guarantee error detection 

while achieving a low monitoring overhead? This thesis systematically addresses each of 

these questions and show that router group monitoring has significant efficiency benefits 

for trajectory error detection. 

In summary, in this chapter, we have made the following important contributions: 

• We propose router group monitoring, which introduces a new spatial dimension to 

traffic trajectory error detection. That is, in addition to the dimension of varying 

the packet sampling rate to adjust the monitoring overhead, a new dimension to be 

considered is which network interfaces are to be monitored. 

• To show that router group monitoring can be effective in practice, we analyze a large 

number of real network topologies by brute-force computations and show that effec­

tive router groups with high trajectory error detection rates exist in all cases. 

• We show that the router group size, the average router degree inside a group, and the 

number of exits leaving the group are the key factors that influence a router group's 

detection rate. We develop an analytical model for quickly and accurately estimating 



18 

the detection rates of different router groups. This model makes it possible to identify 

effective router groups efficiently. 

• We propose an algorithm to select a set of router groups that can achieve guaranteed 

error detection and low monitoring overhead. We show that applying this algorithm 

to select router groups to be monitored can significantly improve the efficiency of 

trajectory error detection based on Trajectory Sampling or Fatih. 

The rest of this chapter is organized as follows. In Section 3.1, we study the effective­

ness of router group monitoring in real topologies. In Section 3.2, we derive an analytical 

model for predicting the effectiveness of a router group. In Section 3.3, we formulate 

the router group selection problem and present an efficient heuristic algorithm for router 

group selection. In Section 3.4, we show the benefits of applying router group selection to 

Trajectory Sampling and Fatih. We discuss the related work in Section 3.5. 

3.1 Effectiveness of Router Group Monitoring in Practice 

A trajectory error represents a deviation from the intended network path and thus can po­

tentially be detected at many interfaces in the network. Router group monitoring is a way to 

exploit this observation. Specifically, even if the trajectory of a packet starts to deviate from 

its intended path at a router inside a router group, the error may still be observable at the 

periphery interfaces of the router group.The effectiveness of the router group monitoring 

on detecting the three types of trajectory errors is discussed as follows: 

• Dropping error - A dropping error simply drops all packets in the affected flow. Be­

cause a packet that is simply dropped in the middle of its trajectory will never leave 

the router group, by consistently observing packets missing from the intended exit­

ing periphery interface, the error is easily detected. Thus, this thesis will not focus 

on dropping errors. Please note that a packet could be dropped due to a bug in the 

forwarding table implementation or in the packet filter implementation. 
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• Filter-bypass error - A filter-bypass error causes a flow to bypass a packet filter that 

should drop it. When a filter-bypass error occurs inside a router group, whether it 

will be detected by monitoring the periphery interfaces depends on the distribution 

of packet filters inside the group. If the flow encounters another packet filter that is 

designed to drop it as well before it leaves the group, then the specific filter-bypass 

error will not be detected. On the other hand, if the flow leaves the group, then a 

periphery interface will see the unexpected flow so that the error will be detected. 

• Forwarding error - A forwarding error misforwards a flow to a wrong next-hop. A 

forwarding error can lead to two possible outcomes: 

1) Forwarding loop error: If a forwarding loop keeps a packet inside the router group, 

the packet will never leave the router group and can be detected just like a dropping 

error. If the forwarding loop takes the packet outside of the router group, if the 

exiting periphery interface is wrong, the error is detected. On the other hand, if the 

exiting periphery interface happens to be correct, the error is not detected by this 

router group. 

2) Detour error (no loop is formed): If the detour takes the packet outside of the 

router group via an incorrect exiting periphery interface, the error is detected. On the 

other hand, if the exiting periphery interface happens to be correct, the error is not 

detected by this router group. 

Therefore, a router group does not guarantee the detection of all errors that start in­

side the group. Different router groups can also have different error detection rates. 

Ultimately, multiple router groups must be chosen carefully to guarantee the detec­

tion of all trajectory errors and achieve low monitoring overhead. Our evaluation will 

show that the router group monitoring approach is effective in detecting all types of 

trajectory errors. 

A router at which an error occurs is called a misbehaving router. The misbehaving 

router's erroneous action such as dropping traffic, misforwarding traffic and allowing traffic 
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to bypass filters is called a trajectory error. More formally, a misbehaving router is said to 

have one trajectory error with respect to a flow i denoted as F» if the error affects all packets 

belonging to Fj. We perform a series of empirical experiments to understand the impact of 

router group monitoring on trajectory error detection. 

3.1.1 Methodologies 

3.1.1.1 Static Analysis Methodology 

We first consider the case where only one forwarding error exists inside a router group. 

Given a router group and a forwarding error inside the group, whether the forwarding 

error will be detected by monitoring the periphery interfaces of the router group can be 

decided using the following static analysis approach: starting from the misbehaving router, 

a hop-by-hop forwarding table lookup is used to decide the exiting interface where the 

mis-forwarded packet leaves the router group. If the exiting interface is the same as the 

original correct interface, then this error cannot be detected by using this router group. 

Otherwise, it can be detected because either the packet leaves from a wrong interface or a 

routing loop is formed. Similarly, if we want to know the overall effectiveness of one router 

group in detecting single forwarding error, we can calculate the detection rate of the router 

group as follows: for each router inside the group and for each possible destination in the 

network and for each possible wrong next hop interface for each destination, we introduce 

one forwarding error. Then a hop-by-hop forwarding table lookup is performed to decide 

whether the forwarding error can be detected. Thus, the detection rate can be calculated 

by dividing the number of detected errors by the number of total errors. Basically, given 

a network with N nodes and a router group with \RG\ nodes, 0(\RG\ x N x (d — 1)) 

errors will be analyzed, where d is the average node degree and accordingly d — 1 is the 

average number of wrong next hop interfaces. Because \RG\ = O(N) and d = O(N), the 

complexity of exhaustively calculating the detection rate of one router group is 0(N3) in 

the worse case. 

Next, we consider the case where multiple forwarding errors exist in the router group. 
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When two forwarding errors are independent from each other (i.e., they affect different 

flows), the detection rate for these errors is the same as in the single error case. On 

the other hand, if multiple forwarding errors do affect the same flow, we call them "de­

pendent forwarding errors". We only study the detection rate of multiple dependent for­

warding errors. Given a network with N nodes and a router group with \RG\ nodes, 

in order to analyze K dependent forwarding errors (K <= \RG\), K distinct routers 

from the group will be selected, each of which will exhibit one forwarding error affect­

ing the same flow. Each selected misbehaving router will mis-forward the flow to one 

wrong next hop interface. Similarly, a hop-by-hop forwarding table lookup is used to test 

whether the mis-forwarded packet can leave the router group from the original correct in­

terface. The complexity of exhaustively analyzing all possible multiple forwarding errors 

is 0(C(\RG\, K)xNx (d-l)K), where C(\RG\, K) = \RG\\ / K\{\RG\ - K)\. Suppose 

K = 2, then the worse case complexity is already 0(N5). 

For each network topology, we randomly choose router groups with different sizes and 

introduce forwarding errors as described above. We then can calculate an average detection 

rate for all the router groups. In Section 3.1.2, for each topology, we calculate average 

detection rates for router groups with different sizes. For each router group size, we choose 

up to 500 random router groups in order to limit the computation time. We implement our 

analysis tool using Matlab scripts. 

3.1.1.2 Topologies 

To show the real-world detection performance of router group monitoring, we conduct for­

warding error detection rate experiments using a large number of real network topologies, 

including Internet2, TEIN2 (Trans-Eurasia Information Network), iLight (Indiana's Optical 

Network), GEANT (European research network), SUNET (Swedish University Network), 

Sprint North America backbone network composed of only Sprint global IP nodes, and six 

Rocketfuel [SMW02] topologies. Table 3.1 summarizes the basic properties of each topol­

ogy. For those topologies whose link weights are not available, we set all link weights as 1 
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Topologies: 

Internet2 

TEIN2 

iLight 

GEANT 

SUNET 

Sprint (US) 

RF-1 

RF-2 

RF-3 

RF-4 

RF-5 

RF-6 

# of nodes 

9 

11 

19 

22 

25 

28 

79 

87 

104 

138 

161 

315 

# of edges 

13 

11 

21 

37 

28 

46 

147 

161 

151 

372 

328 

972 

Degree 

(2, 2.9, 4) 

(1 ,2 ,7) 

(1,2.2,4) 

(2, 3.4, 9) 

(1,2.2,4) 

(1,3.2,9) 

(1,3.7, 12) 

(1,3.7,11) 

(1,2.9, 18) 

(1,5.4,20) 

(1,4.1,29) 

(1,6.2,45) 

Link weight? 

Yes 

No 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Table 3.1: Summary of 12 real network topologies used in our experiment. The three num­
bers in the Degree column are (minimum degree, average degree and maximum degree). 

to compute their routing tables. 

In addition to real network topologies, we have also conducted the same experiments on 

some representative synthetic topologies, such as power-law topologies (PLRG [ACL00] 

and INET [WJ02]), Hierarchical topologies (Transit-stub [ZCB96]) and random graphs. 

The results obtained from synthetic topologies are similar to those based on real network 

topologies shown in Section 3.1.2. 

3.1.2 Detection Rate of Forwarding Errors 

3.1.2.1 Single Forwarding Error 

In this section, we first consider the simple case where only one single forwarding error 

exists inside a router group. Whether or not one forwarding error inside the router group 

can be detected depends on the network topology and routing. To illustrate, Figure 3.3(a) 

shows a router group with 5 routers, and the topology inside the router group has a cycle. 

There are two potential paths Pi and P2 between periphery interfaces J/ j and If3. Let's 

assume path Px is the correct path for a particular flow F. Flow F should enter the router 
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If, in 

(a) Route group with loop topology (b) Router group with tree topology 

Figure 3.3 : The impact of router group topology on misforwarding detection. 

group at the interface I f\ and leave at interface If3, following path Pi inside the router 

group. However, if the router RB has a forwarding error, it may forward the flow to router 

RD as opposed to router RB- The flow F will take path P% inside the router group, but it 

still leaves the group at interface If3. In this case, we cannot detect router RB's forwarding 

error by only monitoring the periphery interfaces. Generally, given a router group, if there 

are more than one paths between an ingress interface and an egress interface, it is possible 

that some forwarding errors inside a particular router group cannot be detected from the 

periphery interfaces. Note that the same forwarding error may be detectable by using a 

different router group. 

In contrast, as shown in Figure 3.3(b), if a group of routers are connected in a tree 

topology, there is only one path between each ingress interface and egress interface. If 

the router RB misforwards the flow F to the wrong path P2, the flow F will either leave 

the router group at the wrong interface If±, or be stuck between RB and RD. Therefore, 

in a tree topology router group, any single forwarding error is guaranteed to be detected 

by monitoring the periphery interfaces. Also, if a network has a full-mesh topology with 

all links having equal link weight, a misforwarding inside any router group is guaranteed 
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Figure 3.4 : Average detection rate of one forwarding error. 

to be detected. This is because all nodes have a one-hop path to any destination in the 

network, and so any misforwarding will result in the packet leaving the group from the 

wrong interface. 

Generalizing these observations, intuitively, router groups in networks with tree-like 

topologies or full-mesh-like topologies will tend to have excellent error detection perfor­

mance. 

Now we continue to study how effectively the router group monitoring approach can 

detect single forwarding error in real network topologies. Figure 3.4 shows the results. We 

can make two observations from this graph. First, as the router group size increases, the 

fraction of detectable mis-forwarding cases decreases but only slowly. When the group size 

increases to 50% of the network size, the detection rates are still as high as 80% for most 

of the topologies. These results based on real topologies demonstrate that router group 

monitoring can be highly effective in practice. 
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3.1.2.2 Multiple Forwarding Errors 

Next, we consider the case where multiple dependent forwarding errors exist in the net­

work. It is hard to predict the detection rate of multiple dependent forwarding errors be­

cause they can interact with each other. For example, after one router forwards a flow to a 

wrong path, the second misbehaving router on the wrong path might forward the flow back 

to the correct path. On the other hand, if the first misbehaving router fails to direct the flow 

to a wrong exiting interface, the second misbehaving router may increase the chance of 

the flow leaving from a wrong exiting interface by mis-forwarding it again. Therefore, the 

overall detection rate when having multiple dependent errors depends both on the network 

topology and the locations of the errors. 

To better understand the detection rate for multiple dependent forwarding errors, we 

conduct the static analysis on the same set of real topologies. Specifically, we introduce 

2 and 3 dependent forwarding errors on distinct routers inside each router group. The 

results are shown in Figure 3.5 and Figure 3.6. We can see that some topologies have 

higher detection rates than the 1-error case, while the other topologies have lower detection 

rates. Results based on synthetic topologies also confirm that the detection rate of two 

dependent errors is not consistently better or worse than the one error case. However, it is 

worth noting that even multiple dependent errors co-exist and even if we use 50% of the 

nodes in the network as the router group, for most of the networks (except RF-3) we have 

studied, the average detection rate is still higher than 65%. Another interesting observation 

is that when the number of dependent errors increases from 2 to 3, the detection rates for 

all topologies also increase. 

3.1.2.3 Relation Between 1-Error Detection Rate and Multi-Error Detection Rate 

In this section, we ask the question: If a router group is effective in detecting one forward­

ing error, will it also be effective in detecting multiple forwarding errors? 

To answer the above question, we first define the overlap ratio metric as the percentage 

of the 10% router groups with highest 1-error detection rates that also belong to the 10% 
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Figure 3.5 : Average detection rate of two dependent forwarding errors. 

router groups with the highest 2 or 3-error detection rates. Figure 3.7 shows the result for 

all topologies. All topologies have high overlap ratios. Let us take the RF-6 topology as an 

example, the result shows that for the 10% router groups having highest 1-error detection 

rates, 89% of them are also among the 10% router groups having highest 2-error detection 

rates, and 88% of them are also among the 10% router groups having the highest 3-error 

detection rates. 

In the rest of this thesis, we use the 1 -error detection rate to characterize the effective­

ness of a router group. 

3.1.3 Detection Rate of Packet Filtering Errors 

There are two types of packet filtering errors. The first type packet filtering error drops 

packets mistakenly, which is equivalent to the packet dropping error. If a packet filter drops 

a packet by mistake, the system can detect that the packet is missing from a periphery 

interface. Therefore, the first type of packet filtering error can be easily detected. The 
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Figure 3.6 : Average detection rate of three dependent forwarding errors. 

second type of packet filtering error fails to drop certain packets that are supposed to be 

dropped. We call the second type of packet filtering error as the filter-bypass error. When 

a filter-bypass error occurs inside a router group, whether it will be detected by monitoring 

the periphery interfaces depends on the distribution of packet filters inside the group. If the 

flow encounters another packet filter that is designed to drop it as well before it leaves the 

group, then the specific filter-bypass error will not be detected. On the other hand, if the 

flow leaves the group, then a periphery interface will see the unexpected flow so that the 

error will be detected. Since it is hard to obtain sensitive filter configurations used in real 

networks and the state-of-the-art synthetic filter generators (e.g., using [TT05a]) cannot 

capture certain critical characteristics we need (e.g., filter rules placement throughout the 

network), we decide to conduct the detection performance study on a particular kind of 

filter: Unicast Reverse Path Forwarding (uRPF). uRPF is a simple technique available on 

most Cisco and Juniper routers to block bogus packets. It assume symmetrical routing. 

Basically, if the reply to a packet would not go out the interface this packet came in from, 
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Figure 3.7 : Overlap ratio between the 10% router groups with highest 1-error detection 
rates and the 10% router groups with the highest 2 or 3-error detection rates. 

then this is a bogus packet and should be dropped. For the seven real network topologies, 

we randomly introduce one forwarding error and two uRPF errors into the network, and 

then compute the detection rate for random router groups with up to 8 routers. The results 

are shown in Figure 3.8. As can be seen, the detection rate of uRPF filter errors is very high 

for all the network topologies. Even for groups with 8 routers, we can still detect 99.9% of 

uRPF errors in all the networks. 

3.2 Analytical Model for Error Detection Rate 

As we have shown in Section 3.1, router group monitoring can be highly effective in de­

tecting trajectory errors in real topologies. However, for router group monitoring to be 

practical, those effective router groups with high trajectory error detection rates must be 

identified more efficiently than using the exhaustive hop-by-hop analysis approach. 

One straight-forward way to avoid exhaustive analysis is to use sampling. For example, 
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Figure 3.8 : The detection performance for uRPF errors. 

given a router group, instead of analyzing all errors, we only analyze a small subset of 

randomly selected errors to estimate the overall detection rate of the router group. Another 

approach is to develop an analytical model for quickly estimating the detection rates of dif­

ferent router groups. The analytical model should require much less computation than the 

static analysis approach. In this section, we will first present our analytical model, which 

only depends on some simple structural and routing metrics of router groups, and then 

we will compare the prediction accuracy of both the sampling approach and the analytic 

approach in Section 3.2.2. 

3.2.1 Contributing Factors of Error Detection Rate 

Three major contributing factors affecting the forwarding error detection rate have been 

identified as follows: 

Router group size: As shown in Figure 3.4, the size of a router group is an important 

factor affecting its detection rate. Specifically, the average detection rate decreases with 

the increase of router group sizes. Given a router group, its size is easy to calculate. It is 
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also not surprising that the size of a router group is important to its error detection rate. In 

a singleton router group with only one router, any error will be detected immediately. On 

the other hand, given a larger router group, a mis-forwarded packet is more likely to be 

self-corrected, i.e., it might fall back to its original routing path and leaves the router group 

from the original correct interface, thus the trajectory error might not be detected by this 

particular router group. 

Number of exiting interfaces: Given a destination dst outside of the router group, a 

periphery interface Ifc is called an exiting interface for dst if the interface's host router 

uses Ifi as its direct next hop interface to route to dst. The router is called an exiting router 

accordingly. Given a particular destination, we can count how many periphery interfaces 

are exiting interfaces by scanning routing tables of routers having at least one periphery 

interface. The average number of exiting interfaces can be determined across all possible 

destinations. Intuitively, this factor characterizes how "diverse" the routing paths from 

inside the router group to a particular destination outside are. Please note that this metric is 

not the same thing as the number of periphery interfaces. One router group can have many 

periphery interfaces, but all the routers inside the group may only use a small number of 

periphery interfaces to route to any particular destination. 

To illustrate why the number of exiting interfaces is important to a router group's error 

detection rate, Figure 3.9 (a) shows a router group with only one exiting interface Ifi 

with respect to the destination Ftp. Since Ifi is the only exiting interface to RF, when a 

forwarding error occurs (say RB), it will be self-corrected by the router group (i.e., mis-

forwarded packets end up leaving from the only exiting interface) unless a routing loop is 

formed. On the other hand, Figure 3.9 (b) shows a router group with two exiting interfaces 

(Ifi and If2) for destination RF, then a mis-forwarded packet is more likely to leave from 

the wrong exiting interface (J/2 in this example), allowing the error to be detected. 

Connectivity of a router group: Given a router group, its connectivity is related to 

many topological characteristics of this group, such as average node degree, average out­

going degree (i.e., for each node, how many of its edges are connecting itself to nodes 
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=> Error not detected. 
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=> Error detected. 

Figure 3.9 : Illustration of how the number of exiting interfaces impacts the error detection 
rate. 

outside of the group), average internal degree (i.e., for each node, how many of its edges 

are connecting itself to other nodes inside the group). All these metrics are very easy to 

calculate. Intuitively, the connectivity can impact how likely a mis-forwarded packet will 

be self-corrected inside the group and how likely a forwarding loop will be formed. 

To illustrate why connectivity can impact forwarding error detection rate, Figure 3.3(a) 

shows a router group with 5 routers, and the topology inside the router group has a cycle. 

There are two potential paths Pi and P2 between periphery interfaces Ifi and J/3 . Let's 

assume path Pi is the correct path for a particular flow F. Flow F should enter the router 

group at the interface Ifi and leave at interface If3, following path Pi inside the router 

group. However, if the router RB has a forwarding error, it may forward the flow to router 

RD as opposed to router RB- The flow F will take path P2 inside the router group, but it still 

leaves the group at interface If3. In this case, this router group cannot detect router P B ' s 

forwarding error. Generally, given a router group, if there are more than one paths between 

an ingress interface and an egress interface, it is possible that some forwarding errors inside 
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a particular router group cannot be detected from the periphery interfaces. Note that the 

same forwarding error may be detectable by using a different router group. In contrast, as 

shown in Figure 3.3(b), if a group of routers are connected in a tree topology, there is only 

one path between each ingress interface and egress interface. If the router RB misforwards 

the flow F to the wrong path P2, the flow F will either leave the router group at the wrong 

interface Ifi, or be stuck between RB and Rp (assuming RB consistently misforwards 

the packet to RD)- Therefore, in a tree topology router group, any single forwarding error 

is guaranteed to be detected by monitoring the periphery interfaces because there are no 

redundant routing paths for a misforwarded packet to go back to the original correct path.. 

Also, if a network has a full-mesh topology with all links having equal link weight, a 

misforwarding inside any router group is guaranteed to be detected. This is because all 

nodes have a one-hop path to any destination in the network, and so any misforwarding 

will result in the packet leaving the group from the wrong interface. 

Generalizing these observations, intuitively, router groups in networks with tree-like 

topologies or full-mesh-like topologies will tend to have excellent error detection perfor­

mance. 

3.2.2 Analytical Model 

Based on the three important factors identified above, we have developed an analytical 

model for accurately and quickly estimating the 1-error detection rate of a router group. We 

first define some notations we will use in our discussion. A router group's size is denoted 

as \RG\. The average number of exiting interfaces is e, which is also the number of exiting 

routers. The average outgoing degree and internal degree are dout and din respectively. The 

average node degree d = dout + din. In deriving the model, we assume that each router 

has an equal chance to be the misbehaving one, and the misbehaving router will forward 

the affected flow to one random incorrect next-hop. This assumption is made to make sure 

that the errors analyzed in our model do not have a biased distribution. We also assume 

that any two routers inside a router group are equally likely to have a link connecting them. 
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Detection rate = p,x1 + (1-p1)x(p2 + (1-p2)x(p3 + (1-p3)x(p4+(1-p4)x(1-p5)))) 

Figure 3.10 : Analytical formula for estimating error detection rate. 

In addition, we assume that all links have equal weight and the correct trajectories follow 

shortest path routing. These assumptions are made to facilitate our model derivation. In a 

real network, these assumptions may not always accurately hold. However, our evaluation 

using 12 real network topologies in Section 3.2.3 shows that the derived model is robust and 

it can accurately estimate the detection rates of router groups even if those real topologies 

have different connectivity and non-uniform links weights. 

We denote the misforwarding router as Rm. To accurately model the error detection 

rate of a router group, the first thing to note is that if Rm is an exiting router with respect to 

destination dst and is misforwarding packets destined to dst, then the error is guaranteed 

to be detected. Recall that an exiting router for dst is supposed to forward packets destined 

to dst directly out of the router group using its exiting interface. If it fails to forward the 

packet using its own exiting interface and assuming this is persistent, then the misforwarded 



34 

packets will not leave the router group on the correct interface. Therefore, the forwarding 

error by an exiting router can always be detected. The probability that a router inside a 

router group is an exiting router is p\ = e/\RG\. 

However, if Rm is not an exiting router, its misforwarded packets may or may not leave 

the group from the correct exiting interface. When the non-exiting router Rm misforwards 

packets, it has the probability p2 = d0ut/(d — 1) to misforward packets directly out of the 

group using one of its outgoing edges, where d — 1 is the number of all possible wrong 

next hops. In this case, the error will be caught by the device that is monitoring the cor­

responding periphery interface because the packets are observed from incorrect interfaces. 

On the other hand, Rm could misforward to a wrong next hop (also the first hop router) 

FH inside the router group. Since we assume only Rm in the router group is misbehaving, 

FH is a well-behaved router. Now we have two possibilities. The first possibility is that 

FH is an exiting router. The probability that FH is an exiting router is p3 = e/(|i?G| — 1), 

where \RG\ — 1 is the number of correct routers inside the router group. If this is the case, 

then FH will use its own exiting interface to route the packets out of the group. These 

packets therefore leave the group from an incorrect interface and will be caught because 

the correct trajectory follows the shortest path implies that FH does not lie on the correct 

trajectory. The other possibility is that FH is a non-exiting router. We model the length 

of the path PathpH from FH to its exiting router as L = logd(\RG\/e), where \RG\/e 

is simply the average number of nodes using one particular exiting interfaces. If PathpH 

does not contain Rm, then the probability of PathpH leaves from the same exiting in­

terface as Rm should have used is modeled as p5 = 1/e, in which case the error cannot 

be detected by this router group. On the other hand, if PathpH does contain Rm, then a 

loop is formed, which will cause the error to be detected since the packet is missing from 

its expected exiting interface. We estimate the probability of PathpH containing Rm as 

p4 = \/d + (1 — 1/d) x L/\RG\, where l/d estimates the probability of FH sending the 

packet directly back to Rm forming a 1-hop loop and L/\RG\ estimates the probability of 

a path of length L contains a node Rm out of \RG\ possible nodes in total. 
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Figure 3.10 gives a summary of the model and the final analytical formula for estimating 

detection rates. 

3.2.3 Prediction Accuracy of Using Model vs. Sampling 

We now evaluate the accuracy of both model-based and sampling-based detection rate pre­

diction as follows: Up to 100 router groups of each size are randomly chosen from each 

topology. We first use static analysis to calculate the exact detection rate for each chosen 

router group. Then we use our model to predict the detection rate for each router group 

and record the computation time required. For the sampling based approach, we sample 

different percentages (up to 50%) of errors and then predict the overall detection rate by 

analyzing only the sampled errors. We also record the computation time used for different 

sampling percentages. Figure 3.11 compares the average prediction errors (defined as the 

absolute difference between the predicted detection rate and the correct detection rate) of 

both approaches when they use the same amount of computation time. As can be seen, 

first of all, the model's average prediction error is smaller than 0.05 on most topologies. 

Therefore, the model successfully captures the important characteristics of the error detec­

tion. Second of all, given the same amount of computation time, the model can predict 

the detection rates more accurately for most topologies. On iLight and RF-2, the sampling 

based approach works only slightly better than the model based approach. Then for the ten 

topologies where our model works better than sampling, we study how much more time 

is needed to generate results as accurate as the model. Our results show that the sampling 

based approach generally needs a few times more computation time to have the same ac­

curacy as the model-based approach. For some topologies such as Sprint and GEANT, the 

sampling based approach needs 9 and 10 times more computation time to get the same 

prediction accuracy as the model. 

The computation required by the model for computing the detection rate is significantly 

reduced compared against with the static analysis approach. Figure 3.12 shows the compu­

tation speedup comparison between the model based approach and the static analysis based 
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approach. For all topologies except TEIN2, the speedup is over 20 times when a router 

group contains 50% of the nodes in the network. For some large router groups in the large 

topologies, the speedup is up to 153 times. For example, given a desktop computer with 

an Intel Pentium 4 3.0 GHz CPU, 9 hours of computation time is used to compute the de­

tection rates of 1000 random router groups in RF-6 topology by analyzing all errors inside 

each group, while it only costs 5 minutes of computation time for our analytical model. As 

expected, the computation saving of using our model increases when the network becomes 

larger. 

Another useful property of our model is that the pair-wise ranking order among router 

groups is mostly preserved, which is very important to our router group selection algorithm 

in Section 3.3, where we use predicted detection rates to help select the most effective 

router groups. Specifically, for each pair of router groups, we will predict which one has a 

larger detection rate using our model and then validate the results using the detection rate 

calculated by the static analysis approach. Figure 3.13 shows the percentage of router group 

pairs whose order is preserved by the model. For example, the model correctly predicts the 

ranking order for 89.2% of router group pairs in the Sprint topology. 

3.3 Router Group Selection Algorithm 

We have demonstrated that router group monitoring is effective in detecting traffic trajec­

tory errors. We have also proposed a model to predict the detection rates of router groups. 

The next problem is to design an algorithm to choose a suitable set of router groups for the 

system to monitor for each monitoring period. 

As explained in Section 1, existing traffic trajectory monitoring algorithms monitor 

different subsets of packets during different monitoring periods. If during each monitoring 

period, x% of packets are monitored, then ĵp monitoring periods are needed to cover 

all traffic. Similarly, router group monitoring can also be performed period by period. 

However, in order to reduce monitoring overhead, in router group monitoring, only up to 

M interfaces are monitored during each monitoring period, where M is no larger than the 
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Figure 3.12: Computational speedup of computing error detection rates using model versus 
computing error detection rates using full simulation approach. 

total number of interfaces of the network and the M interfaces are periphery interfaces of 

the set of monitored router groups. 

A good router group selection algorithm should (1) provide complete trajectory error 
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Figure 3.13 : The model accurately preserves the ranking order among pairs of router 
groups. 

detection coverage, which is the correctness requirement elaborated in Section 3.3.1, and 

(2) detect errors as quickly as possible, which is essentially the optimality requirement 

discussed in Section 3.3.2. 

3.3.1 Correctness of Router Group Selection Algorithm 

As we explained, when using router group monitoring, some interfaces (M) are moni­

tored during each monitoring period. Thus, the first concern of the router group selection 

algorithm is whether it can guarantee complete trajectory error detection coverage. One 

straight-forward way to satisfy this requirement is to treat each single router as a router 

group and then always include all the singleton router groups for monitoring. This is how­

ever unnecessary. We give a more general sufficient condition as follows. 

Lemma 1. To guarantee that all observable trajectory errors1 are eventually detected, it 

'A fundamental requirement for trajectory error detection in any approach is that the evidence of an 

trajectory error must be observable by otfier monitoring nodes. This thesis does not address errors that are 
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is sufficient to select a set of router groups such that every router interface fij on a node vt 

connecting to a node Vj is an end of a cut edge (vi, vf) G E of a selected router group RG, 

with Vi G RG and Vj G V \ RG. Intuitively, /y- is a periphery interface of a router group 

RG facing outward. 

Every error, whether it is a mis-forwarding, or a packet dropping or a filter-bypass 

exhibits itself in one of two ways: (1) a packet that should have been observed on an 

interface is not observed; (2) a packet that should not have been observed on an interface is 

observed. If a router interface is a periphery interface of a router group RG facing outward, 

then that interface's behavior is monitored when router group RG is monitored. Therefore, 

any error involving that interface will be caught. 

3.3.2 Optimality of Router Group Selection Algorithm 

Given the sufficient condition, we can now easily tell whether a set of router groups can 

provide complete error coverage. The next question is: how should we select router groups 

to monitor during each monitoring period so that we can not only achieve complete error 

coverage but also only iteratively monitor the smallest number of monitoring periods? This 

is the optimality requirement of the router group selection problem. 

Minimizing the total number of monitoring periods while providing complete error 

coverage is a hard problem. The reason can be intuitively explained as follows. Suppose 

each interface /y- is involved in some number of errors. When the interface /y- is inside (i.e. 

not on the periphery of) a router group RGk, those errors involving /y- can be detected with 

some probability w(RGk, fij) G [0 1]. Therefore, once RGk is selected for monitoring, the 

usefulness of monitoring other router groups that also contain /„• will decrease accordingly. 

This interdependence makes it hard to determine an optimal selection of router groups. 

not observable. For example, if one router mistakenly drops a packet destined to itself, then this error cannot 

be detected because it is not observable from outside. 
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3.3.2.1 Definition of the monitoring problem 

We now formalize the router group selection problem as follows. 

Notations: 

• Let G = (V, E) be a graph, where V is a set of nodes 

V = {V1,V2,--- ,Vn} 

and E is a set of edges E C V x V. 

• Each node v, is associated with a set of interfaces 

Fvi = {fa : (vi,Vj) eE} 

The set of all the interfaces in the graph G = (V, E) is F = [J FVi
 2. For any subset 

ACV, 

FA = {fij • (Vi, Vj) £EK(VieA)A (VJ £ A)} 

• Given function a, for any subset A C V the monitoring weight function is defined 

as3: for each /^ G F, 

' 1 iffijeFA 

W(A fij) = < a(A, i, j) € [0,1] if Vi £ A A Vj G A 

I 0 ifvigA/WjgA 

• A Monitoring is defined as a multiset of sets of subsets of V4: 

A = {A1,A2,..-,Am} 

= {{An, • • • ,Aini},{A2i,-• • ) - ^ 2 n 2 } ) - - - i 

{^mli ' ' " ,Amnm\\ (Aij C V) 

where m > 1 and nv > 1. 

2The set of interfaces is decided by the set E 

intuitively, the weight w(A, f^) means that the errors involved with the interface fij can be detected 

using group A with probability of w(A, fij). Trajectory errors on periphery interfaces can always be imme­

diately detected, while errors on other interfaces may or may not be detected. 
4(1) Nodes in Aij may not necessarily be connected. (2) A^ and Aik may have overlapped nodes. 
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Optimization objective: 

Find the smallest Monitoring A such that for any A' we have \A\ < \A'\, where A and 

A' satisfy the following two constraints: 

• Given a Monitoring A = {A\, A2, • • •, Am}, for each 1 < i < m, Ai G A, 

\\J FA\<M 
AeAi 

Where M > 1. 

• Given a Monitoring A = {A\, A2, • • •, Am} and a constant 0 < (3 < 1, for each 

fijeF(l<i,j<\V\),5: 

i- n n^-^^/v))^^ 
l<k<m AeAk 

We generally want to find the smallest Monitoring given (3=1 and a small constant 

M. 

In the above problem formulation, during monitoring period i, a set of router groups 

Ai = Aa,Ai2,..., AiTli are monitored concurrently, where A^ and Aik could overlap with 

each other. We have studied a special case of the above problem, where for any j , k € 

[1 n j and j ^ k, Aij and Aij always have no overlap. We have proved that as long as 

M < |F | , the above special case is a NP hard optimization problem [Kre92]. Please refer 

to Section 3.3.2.2 for the complete proof. We believe the general case is also NP hard and 

we are currently working on the proof. 

3.3.2.2 The complexity of the monitoring problem 

Definition 1 (optimization problems). An optimization problem V is characterized by 

the following quadruple of objects (I-p, SOL-p), m-p, goal-p, where: 

intuitively, this means that after m groups of monitoring, all the error involved on the interface /y have 

been detected with a probability of at least /?. 
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Figure 3.14: Comparison of average error detection speeds of different router group selec­
tion approaches. 

1. I-p is the set of instances ofV; 

2. SOL-p is a function that associates to any input instance x G I-p the set of feasible 

solutions of x; 

3. m-p is the measure function, defined for pairs (x, y) such that x £ I-p and y € SOL-p. 

For every such pair (x, y), m-p(x, y) provides a positive integer which is the value of 

the feasible solution y; 

4. goal-p £ {MIN, MAX} specifies whether V is a maximization or a minimization 

problem. 
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It is worth noting that any optimization problem V has an associated decision problem 

VD- In the case that V is a minimization problem, VD asks, for some k > 0, for the exis­

tence of a feasible solution y of instance x with value m(x, y) < k. For any optimization 

problem V, the corresponding decision problem VD is not harder than the problem V. If 

an optimization problem V has its associated decision problem VD be NP-hard, then V is 

an NP-hard optimization problem [add the citation here]. 

For a graph G = (V, E), given function a € [0,1], number /? € [0,1], and a positive 

integer M, the problem of finding an optimized /^-complete M-monitoring A is trivial if 

M is sufficiently big. This is because we can have A = {Ai} and A\ = V, which leads 

to optimal solution with \A\ — 1. However, for a reasonably small M, it is not easy to find 

an efficient algorithm to find a solution. In what follows, we look at a special case of the 

problem, and prove that it belongs to the family of NP-hard optimization problem. We thus 

conclude that the optimal monitoring problem can be generally very complicated. 

Consider a graph G = (V, E), let (3=1, and function a(A, i, j) = 0 for any A C V, 

1 < i,j < \V\. If the graph and a number M satisfies that \FA\ < M for all A C V 

and \FAl U • • • U ^Am I > M for any m > 2, Ai C V, then each M-monitoring A = 

{>4.i, -4.2, • • •, At} must satisfies \Ai\ = 1 (1 < i < t). Thus we can equivalently write any 

M-monitoring as A = {A\, A2,..., At}, Ai C V. We denote this problem of finding an 

optimized /^-complete M-monitoring of G in this special case as V. We have: 

Theorem 1. The problem V defined above is an NP-hard Optimization Problem. 

Proof. The problem V has an associated decision problem VD'- IS there a /3-complete 

M-monitoring A = {Au A2, • • • ,At}of G, such that t < kl 

To show V is a NP-hard optimization problem, we only need to show VD is NP-hard. 

The decision problem VD can be equivalently restated as: 

For an integer k, find k subsets of V such that every edge is a cut edge for at least one 

of the subsets. 
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We show that 2fc-colorability problem Vc^&n be Turning reduce to VD in polynomial 

time. 

A polynomial reduction has two parts: converting the problem and converting the solu­

tion. Converting the problem is a no-op, where the graph G = (V, E) is kept unchanged. 

Conversion of the solution is as follows. 

Suppose you have subsets AQ, A\,..., Ak-i of V satisfy that every edge is a cut edge 

for at least one of the subsets. Then color each vertex « e V with color bk-ibk-2 • • • &i&o> 

where bt is the i-th bit of the color written in binary notation, and bi = 1 iff v G Ai. Then 

for every edge (v, u), for some i, At contains exactly one of u and v. So the colors of u and 

v differ at bit i. Therefore this is a 2k -coloring of the given graph. 

Suppose contrariwise that a given graph is 2fc-colorable. Then write out the colors in 

binary notation as above. For each j , form Aj so that it contains a vertex Vi iff its color 

has bi = 1. Then for any edge (u, v), their colors differ at some bit i, and so At contains 

exactly one of u and v. 

The reduction takes 0(fc|V|) time. 

Since n-colorability is NP-complete for any n > = 3, it follows that VD is NP-hard for 

any k > 2. 

3.3.3 Heuristic Algorithm for Router Group Selection 

Given the above definition, we now give a heuristic algorithm for selecting a set of router 

groups that achieves complete coverage, has bounded concurrent monitoring overhead, and 

in practice provides timely error detection. 

Input of the algorithm: A positive integer M, a set of n router group candidates 

denoted as RGcandidates = RG\, RG2, ••-, RGn, and the w(RGk, fij) function defined in 

Section 3.3.2.1. 

M is the maximum number of interfaces that the system can concurrently monitor and 

it should be determined by the operator based on resource constraints. We assume that 

the maximum degree of any router in the network is no larger than M. RGcan(adates should 



45 

contain a large number of diverse router groups of different sizes in order to provide enough 

opportunity for the selection algorithm to explore. We cannot include all possible router 

groups into RGcanfndates f° r large networks. Thus, we first randomly generate a number of 

router groups of each size, and then select up to K router groups from each size with the 

highest predicted detection rates. All singleton routers are always included in RGcandidates, 

which is important for guaranteeing that the selection algorithm eventually terminates. The 

w(RGk, fij) function specifies that if RGk is monitored, then the errors involving interface 

fij can be detected with a probability of w{RGk, fij). 

Output of the algorithm: Given M, function w(-) and RGcandidates, the output of the 

algorithm should be m sets of router groups, 7\, T2,.., Tm, where T» C RGcandidates- Then 

we can iteratively monitor all m sets of router groups one by one. If we can sample x% 

packets at each moment, then ^2 periods are needed for each T,. That is, in total, m x ™ 

monitoring periods are needed to cover all traffic. 

Algorithm's intuition: The main idea of our heuristic algorithm is to keep greedily 

selecting a set of router groups that have the potential to detect most uncovered errors to 

form a new set of router groups 7] until the sufficient condition is satisfied. We define an 

uncovered error function E(fij) G[0 1] on each interface fa to represent the fraction of 

uncovered errors on /y at the current moment. At the beginning of the algorithm, none of 

interface fa's errors have been covered by any selected router group, so E(fij) = 1. Once 

a router group RGk containing fij has been selected for monitoring, we update E(fij) as 

follows: E(fij) = E(fij) x (1 - w(RGk, f{j)). 

Suppose RGselected is the set of selected router groups at this moment. Now we can 

define the selection weight of a router group RGk as follows: 

W(RGk) 

0 if RGk £ RGselected 

Y^ w(RGk, fij) x E(fi3) if RGk i RG 
selected 

Jij 

The router group selection algorithm is as follows: 

01: RGcandidates = {All singleton routers}; 

02: FORm = 2 : \V\ - 1 
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03: Randomly generate up to T router groups containing 

TO routers and < M periphery interfaces 

and then select up to K < T router groups with highest 

predicted detection rates and put into RG™andidates; 

U4: JrCUcandidates = JtC*candidates U ULrcon(^dates' 

05: END-FOR 

06: RGgelected = {}'< 

07:A = { }; 

OS: E(f^ = 1, for Vfy e F; 

09: period = 1; 

1 0 : W H I L E ( ^ £ ( / y ) > 0 ) 

11: AvailablelFs = M ; 

12: ^-period — \ /> 

13: WHILE AvailableIFs>0 AND ^ E{fij) > 0 

14: Find Rd e RGcandidates with largest W(RGi) 

and with < AvailablelFs periphery interfaces, 

if multiple choices exist, pick the largest group, 

if no such choice exits, break the WHILE loop; 

1 J : rtOcandidates = ft*-'candidates \\m~'i/» 

16: RG selected = RG selected U {.RGi}; 

1 / . -^period = ^-period ^ l - ^ ^ i / i 

18: Vfi^Etfij) = (1 - w(RGi,fij)) x E ( / y ) ; 

19: Update VK(tfGj) for VflGj e RGcandidates; 

20: AvailablelFs -= # periphery interfaces of .RGJ; 

21: END-WHILE 

•22: / l = / l U -riper^0rfj 

23: period = period + 1; 

24: END-WHILE 

25: RETURN A: 

Algorithm termination and correctness: Since we assume M is no smaller than the 

largest router degree in the network, each router is eligible to form a singleton router group 

while not violating the resource constraint. Since RG candidates includes all singleton router 
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groups, the selection algorithm can always return the singleton router groups. Therefore, 

the algorithm is guaranteed to terminate and return a set of router groups that has complete 

coverage. 

3.3.4 Performance of Heuristic Router Group Selection Algorithm 

In this section, we evaluate the performance of our heuristic algorithm. In the experiments, 

we use K = 10 to initialize RGcan<ndates- We study the performance of the algorithm using 

various M, as long as M is no smaller than the maximum degree of the network topology. 

We use two different approaches of estimating function w(RGk, fij). The first approach 

is based on static analysis, so we can accurately know the a(RGk,i,j) function. The 

second approach is based on our detection rate model. Given a router group RGk, suppose 

its predicted detection rate is detectiorik £ [0 1] and suppose the router group RGk contains 

Pfc G [0 1] fraction of periphery interfaces and accordingly (1—pk) faction of non-periphery 

interfaces. If we assume all internal non-periphery interfaces in RGk have the same a(k) 

values, then we have detectiorik = p/c x 1 + (1 — pf.) x a(k), i.e., a(k) = (detectiorik — 

Pk)/{1-Pk)-

As a baseline for comparison, we also include the performance of singleton router based 

selection algorithm, whose RGcan(adates only contains all singleton router groups. In order 

to estimate how close our heuristic algorithm is to the real optimal group selection, we also 

compare with a bounded random search based approach. Specifically, given a topology 

and its RGcandidates, we will randomly select a multiset of sets of router groups for mon­

itoring and then we can compute a corresponding average detection speed by introducing 

10,000 random forwarding errors uniformly distributed across all nodes for all possible 

destinations. We repeat this random group selection process 10, 000 times and keep the 

best detection speed we found. Please note that performing 10, 000 random search is very 

expensive. For example, given the RF-6 topology, 66 hours of computation time is used to 

finish on a desktop computer with an Intel Pentium 4 3.0 GHz CPU. On the other hand, it 

only costs 16 minutes of computation time for our algorithm. 
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For each topology, we introduce up to 10,000 forwarding errors uniformly distributed 

across all routers for all possible destinations one by one. We then statically analyze to 

see how many monitoring periods it will take for each approach to detect each introduced 

error. We then present the average detection speed of all four approaches on different 

topologies in Figure 3.14. We omit the results forRF-1, RF-2, RF-5 as they are qualitatively 

similar to those of RF-3. The results for RF-4 is qualitatively similar to those of RF-6 and 

are also omitted. As we can observe, first of all, the detection speeds of the approach 

based on the model predicted detection rates are very close to the one using static analysis 

across all topologies. Secondly, the detection speeds of our approach are also very close 

to the bounded random search based approach, though our approach requires much less 

computation time. For some topologies such as RF-3, our heuristic algorithm is better for 

some M. This indicates our heuristic algorithm is effective in quickly selecting a good set 

of router groups for monitoring. Thirdly, our algorithm outperforms the singleton router 

groups based approach for all topologies. Especially when M is a small value, our approach 

can detect an error a few times faster than the singleton router group based approach. This 

performance gain comes from the fact that we are covering much more routers at any 

moment, though both approaches monitor the same number of interfaces and have the same 

overhead. 

3.3.5 Discussion 

In our problem formulation, we assume no constraints on which routers can be used for 

monitoring, that is, all routers are assumed to be homogeneously powerful. However, 

routers in real networks might be very heterogeneous. For example, some routers may 

even not have the monitoring capability. Fortunately, we can always use standalone passive 

traffic monitoring devices (e.g., [flob]) to tap on the corresponding network links to per­

form the monitoring function. In addition, some low-end routers might only afford up to a 

certain sampling rate due to resource constraints in hardware or software. In this case, we 

can either use standalone passive traffic monitoring devices for monitoring or we need to 
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carefully set the sampling rate on all periphery interfaces to not to exceed the the required 

resource constraints on the slowest monitoring device. If certain routers need to be taken 

offline for the scheduled maintenance, then the operator should plan ahead and calculate 

a new set of router groups for monitoring according to the specific topology change. If 

topology change is caused by other dynamic network events such as link failures, it can 

be learned from the dynamic routing protocol messages such as OSPF LSAs. To quickly 

respond to the dynamic topology change, different sets of router groups with respect to 

different potential network events should be computed in advance as well. How to incre­

mentally update the set of monitored router group to efficiently accommodate unexpected 

dynamic events is one of our future work. 

3.4 Applications of Router Group Monitoring 

In this section, we show how the router group monitoring technique can improve the ef­

ficiency of trajectory error detection based on Trajectory Sampling and Fatih. The basic 

Trajectory Sampling algorithm monitors all interfaces in the network and samples the same 

subset of packets at the same time. Then, information about sampled packets is sent to a 

centralized collector for analysis. The basic Fatih algorithm, on the other hand, monitors 

all interfaces that are used in forwarding packets, although as we shall see this is nearly the 

same as monitoring all interfaces in practice. Fatih also samples the same subset of packets 

at the same time. The fingerprints of the sampled traffic belonging to each network path 

will be exchanged among the monitors along that path for analysis. 

The router group monitoring technique can be used to select a subset of network in­

terfaces to be monitored under Trajectory Sampling or Fatih. This translates into reduced 

monitoring overhead and/or faster trajectory error detection without sacrificing the com­

pleteness of coverage. 
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3.4.1 Applying to Trajectory Sampling 

In Trajectory Sampling, all network interfaces in the network will sample the same subset 

of packets (say, 1 % of all traffic) during the same monitoring period. Different subsets of 

packets will be sampled for different monitoring periods to achieve complete coverage. 

3.4.1.1 Scenario One: Improve Detection Speed While Keeping the Reporting Traf­

fic Overhead Constant 

In this scenario, we want to keep the reporting overhead (i.e., how many messages are sent 

to the collector per period) constant so that we do not overwhelm the collector. 

Suppose we can vary the sampling rate in a small range from 1% to 5%. Can router 

group monitoring improve the trajectory error detection speed while keeping the report­

ing overhead constant? To maintain the same reporting overhead, when we increase the 

sampling rate m times, we decrease the number of concurrently monitored interfaces by 

m times accordingly. The overall reporting overhead is maintained at the same level as 

sampling all interfaces in the network with a 1 % rate. 

Figure 3.15 shows the result. If we use a 5% sampling rate and allow the concurrent 

monitoring of 20% of the interfaces, the detection speedup over baseline Trajectory Sam­

pling (i.e., sampling 1% on all interfaces) is at least 2 times and for some topologies the 

detection speedups are more than 4 times. The detection speedup comes from the fact that 

when we increase the sampling rate, we can rotate the set of monitored router groups more 

quickly. For example, if we use a 5% sampling rate, we only need to monitor each set of 

router groups 20 periods then we can rotate to a new set of router groups that can detect 

another set of errors. Specifically, taking SUNET as an example. If we assume that each 

monitoring period lasts one minute and the router group monitoring approach monitors 

20% of all the interfaces with a sampling rate of 5%, then it will take the router group 

monitoring approach 25 minutes to detect all errors, while it will take 105 minutes for the 

original Trajectory Sampling. 
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Figure 3.15 : Detection speedup when varying the sampling rate and the maximum number 
of interfaces concurrently monitored. 

3.4.1.2 Scenario Two: Reduce Reporting Overhead While Keeping Same Detection 

Speed 

In this scenario, we assume a fixed 1% sampling rate. Then we want to study what fraction 

of interfaces we have to monitor to keep the same detection speed as monitoring all inter­

faces simultaneously. Figure 3.16 shows the result. As can be seen, for certain topologies 

such as iLight, concurrent monitoring of 33% of the interfaces are enough to provide the 

same detection speed as baseline Trajectory Sampling. For most of the topologies, mon­

itoring roughly 50% of the interfaces concurrently is enough to detect errors as quickly 

as baseline Trajectory Sampling. Specifically, taking RF-6 as an example. Assuming that 

each interface forwards 13,000 active flows per second on average [spr]. Given a 5% sam­

pling rate, each interface can sample 650 active flows per second on average. Because each 

NetFlow record is 64 bytes, each interface will generate 332.8 Kbps of traffic. Since there 

are a total of 1944 interfaces in RF-6 topology, 646.9 Mbps of reporting traffic will be gen­

erated. On the other hand, the router group monitoring approach will only generate about 

329.9 Mbps of reporting traffic while having the same detection speed. 
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Figure 3.16 : Percentage of monitored interfaces required to achieve the same detection 
speed as the original Trajectory Sampling. 

3.4.2 Applying to Fatih 

In Fatih, each router r, needs to maintain certain traffic information for each 3-path-

segment containing itself. A 3-path-segment is a subpath with length 3. The traffic in­

formation Fatih maintains for each path segment is the fingerprints (e.g., hash values of 

the packets) of all the packets J-J forwarded along the monitored path segment. Periodi­

cally, router r, exchanges the fingerprints information with other routers on the same 3-

path-segment. Because all 3-path segments ri:r^Tk are monitored, then if rj dropped or 

misforwarded packets, r, and r^ can detect this error when they exchange traffic informa­

tion. 

For the purpose of trajectory error detection, we can use the router group monitoring 

technique to reduce the monitoring overhead by only having each periphery router to main­

tain information about what traffic it will forward to other periphery routers in the same 

router group. Therefore, while in baseline Fatih each router keeps a set of information for 

each path segment, in contrast, with router group monitoring, only periphery routers need 

to maintain information for other periphery routers. 
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We evaluate the benefits of applying router group monitoring to Fatih. First of all, we 

compare the number of interfaces monitored with and without router group monitoring 

while keeping the detection speed the same in Figure 3.17. Since Fatih needs to moni­

tor every 3-path segments, for many topologies, all interfaces need to be monitored. The 

interfaces will not be monitored if the corresponding link is not used or only used in an end-

to-end path with length 2. Applying router group monitoring allows much fewer interfaces 

to be monitored while having the same detection speed and detection accuracy. 

Next we evaluate the fingerprints communication overhead saving after using router 

group monitoring. In this experiment, we assume the same amount of traffic is sent be­

tween each pair of nodes in the network, and we study the fingerprint exchanging overhead 

with and without router group monitoring. The results are shown in Figure 3.18. The com­

munication overhead of the baseline Fatih is normalized to 100 units. As can be observed, 

applying router group monitoring can reduce dramatically the fingerprint communication 

overhead for all topologies. For certain topologies, the overhead reduction is more than 

80%. To understand the absolute reporting overhead reduction, we first take RF-6 as an 

example. Following the same assumption in Section 3.4.1, we assume that ten packets on 

average will be sampled for each flow. If each hash value is 8 bytes, then a total of 808 

Mbps of traffic will be sent to the collector by all links. By employing router group moni­

toring approach, the reporting overhead can be reduced from 808 Mbps to 266 Mbps while 

keeping the same detection speed. 

3.5 Related Work 

Network measurement and monitoring are important for many network management ap­

plications. However, measurement and monitoring often incur high overhead. Therefore, a 

constant theme in many related research is to improve the efficiency of measurement and 

monitoring techniques. The goal of our technique is to specifically improve the efficiency 

of trajectory error detection. In the following, we discuss some previous work on improving 

the efficiency of monitoring and measurement for other important applications. 
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Figure 3.17 : Router group monitoring helps Fatih reduce the number of monitored inter­
faces. 
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Figure 3.18 : Router group monitoring helps Fatih reduce communication overheads. 

WATCHERS [BCP+98, HAB00] maintains several packet counters at routers and uses 

inconsistencies found in these counters among different routers to detect forwarding errors. 

Because it only uses course-grained counters, it is only capable of detecting dropping er-
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rors. Sekar et al [SRW+08] presented a new flow monitoring system, cSamp. cSamp 

can improve the flow monitoring coverage by enabling routers to coordinate and to sample 

different flows. Their goal is however not to identify the trajectory errors in flows. There­

fore, cSamp can only tell which flows are in the network, but it does not know the actual 

trajectories of the monitored flows. Lee et al [LWK06] presented a secure split assignment 

trajectory sampling (SATS) technique. The idea is to enhance trajectory sampling by letting 

each pair of routers to sample different subsets of packets to improve monitoring coverage. 

However, SATS cannot detect forwarding error unless a forwarding loop is formed causing 

some packet loss. In addition, it only detects packet dropping error with a certain proba­

bility. On the other hand, our approach can detect both forwarding and dropping errors. 

Like our router group monitoring technique, cSamp and SATS also introduce a spatial di­

mension to their solution in the sense that different parts of the network perform different 

heterogeneous tasks to improve the overall efficiency of traffic monitoring. At the interface 

traffic sampling level, Estan et al [EKMV04] proposed a set of efficient techniques to adapt 

the NetFlow sampling rate in order to better control resources consumption. Kompella 

and Estan [KE05] proposed an efficient flow measurement solution called Flow Slices to 

control and reduce CPU usage, memory usage and reporting bandwidth of flow measure­

ments. Our router group monitoring technique currently assumes packet level monitoring. 

Applying these flow based monitoring techniques can potentially improve the efficiency of 

trajectory error detection further. These efficient interface-level sampling techniques are 

orthogonal and complementary to our work. 

Router group monitoring could also be viewed as a sort of traffic monitor placement 

technique because it identifies interfaces that need or need not be monitored for trajectory 

error detection. However, our technique is only designed for the trajectory error detection 

problem. The selected interfaces always form a boundary around a group of routers, so 

we can track how the traffic flows through the network. The more general monitor place­

ment problem has been extensively studied for various problem settings. However, all these 

monitor placement techniques aim to sample more flows, instead of learning the actual spa-
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tial trajectories of flows. That is, they are designed to sample different flows at different 

locations while our approach is designed to sample the same flow at different locations so 

that we can infer their complete trajectories. Horton and Lopez-Ortiz [HLO03] addressed 

the monitor placement problem in an active monitoring infrastructure to efficiently measure 

delays and detect link failures. Suh et al [SGKT05] used optimization techniques to place 

monitors and set the sampling rates in order to maximize the fraction of IP flows being 

monitored. They first find the links that should be monitored and then run another opti­

mization algorithm to set sampling rates. Chaudet et al [CFR05] not only studied the tap 

device placement problem for passive monitoring but also the beacon placement problem 

for active monitoring. Their goal is to minimize the number of tap devices used for passive 

monitoring and to find the optimal locations for placing the beacons. Similarly, Cantieni 

et al [CIB+06] proposed mechanisms to optimally select links to be monitored and select 

sampling rates in order to achieve specific measurement tasks with high accuracy and low 

overhead. Jackson et al [JMS+07] studied the monitor placement problem using the cur­

rent Internet topology. Their goal is to choose a set of locations to maximize the chance of 

covering all possible communication pairs in the Internet. Note that in general, how to op­

timally choose interfaces to monitor for trajectory error detection is still an open problem. 

Zang et al [ZN05] investigates the problem of deploying NefFlow with optimized cover­

age and cost in an IP network. It aims to solve the Optimal NetFlow Location Problem 

(ONLP) for a given coverage ratio. However, it only samples flows at fixed points instead 

of monitoring their actual spatial trajectories. 
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Chapter 4 

Constructing Shared HyperCuts Decision Trees for 
Multiple Packet Filters 

As explained in the introduction, the detector needs to maintain control states (e.g., for­

warding tables and packet filters) of multiple routers. To hold the control states of multiple 

routers, a large amount of memory is required. Therefore, one research challenge is how to 

efficiently store the control states of multiple routers in the detector. Efficient data structure 

for maintaining multiple forwarding tables has been proposed by Fu and Rexford [FR08a]. 

In this thesis, we propose to efficiently store multiple packet filters using a shared data 

structure based on the HyperCuts decision tree [SBVW03a], which is widely adopted by 

commercial routers and firewalls such as Nevis Networks [nev], Cisco Systems [cisc] and 

NewBridge Networks [new]. We experimentally show that naively classifying packet filters 

into shared HyperCuts decision trees may significantly increase memory consumptions and 

heights of trees. To help decide which subset of packet filters should share a HyperCuts 

decision tree, we first identify a number of important factors that collectively impact the 

efficiency of the resulting shared HyperCuts decision tree. Based on the identified factors, 

we then propose to use machine learning techniques to predict whether any pair of packet 

filters should share a tree. Given the pair-wise prediction matrix, a greedy heuristic algo­

rithm is used to classify packet filters into a number of shared HyperCuts decision trees. 

Our experiments using both real packet filters and synthetic filters show that our shared 

HyperCuts decision trees require considerably less memory while having the same or a 

slightly higher average height than the separate trees. In addition, the shared HyperCuts 

decision trees enable concurrent lookup of multiple packet filters sharing the same tree. 

The rest of the chapter is organized as follows: In Section 4.1, we briefly introduce 
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the HyperCuts data structure and then extend the original HyperCuts data structure to sup­

port multiple packet filters. Section 4.2 first uses a simple experiment to show that naively 

clustering packet filters to shared HyperCuts decision trees may result in significantly in­

creased memory consumption and heights of trees. Section 4.3 presents our approach of 

clustering packet filters into multiple shared HyperCuts decision trees. The idea is to first 

identify some important factors that can affect the efficiency of the constructed shared Hy­

perCuts decision tree. Based on the identified factors, we then leverage machine learning 

techniques to predict which pairs of packet filters should share a tree. Given the pair-wise 

prediction, a heuristic clustering algorithm is used to cluster all packet filters into a number 

of shared HyperCuts decision trees. We evaluate the accuracy of the pair-wise prediction 

and the performance of the constructed shared trees in Section 4.4. Another application of 

using the proposed shared decision trees is discussed in Section 4.5. We discuss related 

work in Section 4.6. 

4.1 Background 

4.1.1 Packet Filter Notations 

Informally, a packet filter of size n is a list of n ordered rules {Ri, R2,..., Rn} that col­

lectively define a packet classification policy. Each rule Rt is composed of two parts: a 

combination of D values, one for each selected packet header field, and an associated ac­

tion. The most commonly used five packet header fields are: source IP address, destination 

IP address, source port, destination port, and protocol type. Each of the D values specified 

in Ri could be a single value or an interval of values or the special value ANY used to 

specify all possible legitimate values for that field. Typical actions associated with a rule 

include permit, deny, marking the ToS bit, etc. A packet P is considered to match the rule 

Ri if all the D header fields of P match the corresponding values in R^. If P matches more 

than one rule, then the rule with the smallest index in the packet filter is returned. The 

associated action of the returned rule will be performed on P accordingly. 



59 

Rule ID 

Ro 

Ri 

fl2 

R3 

R4 

Rs 

Re 

R? 

Rs 

R9 

Source IP 

104.253.26.143/31 

103.11.193.196/31 

51.109.218.92/30 

133.202.88.44/30 

137.180.89.7/32 

201.130.210.90/31 

119.10.210.90/31 

119.67.166.172/31 

71.252.162.33/32 

209.137.112.252/31 

Destination IP 

151.217.12.0/23 

151.193.40.150/32 

243.82.86.0/23 

78.87.20.226/31 

243.82.125.14/32 

6.92.31.0/25 

6.92.31.0/25 

151.143.84.75/32 

151.166.64.162/32 

151.248.122.158/32 

Source port 

ANY 

ANY 

ANY 

ANY 

ANY 

ANY 

ANY 

ANY 

ANY 

ANY 

Destination port 

1489 

27000 

135 

[1300-1349] 

6789 

1533 

1526 

1521 

[1300-1349] 

[61200-61209] 

Protocol 

TCP 

TCP 

TCP 

TCP 

TCP 

TCP 

UDP 

TCP 

TCP 

TCP 

Action 

actO 

actO 

a c t l 

act2 

ac t l 

actO 

actO 

acf.3 

acti 

act2 

Table 4.1 : A simple packet filter example with 10 rules defined on five packet header fields. 

A simple packet filter with 10 rules defined on five packet header fields is shown in 

Table 4.1. 

4.1.2 The HyperCuts Data Structure and Algorithm 

Decision trees have been shown to be a powerful data structure for performing packet 

classification by using geometric cutting [Tay05]. Several different variants of decision 

tree based packet classification algorithms (e.g., [WooOO] [GM99] [SBVW03a]) have been 

proposed. HyperCuts [SBVW03a] is considered to be one of the most efficient decision 

tree based packet classification algorithms. In this section, we will briefly introduce the 

HyperCuts data structure and algorithm. A more detailed discussion can be found in 

[SBVW03a]. 

A HyperCuts decision tree is composed of two types of nodes: internal nodes and leaf 

nodes. Each leaf node contains less than BucketSize number of rules, where BucketSize 

is a small constant (e.g., 4). The small number of rules stored in a leaf node will be linearly 

traversed to find the matched rule with the smallest index in the original packet filter. By 

contrast, an internal node contains more than BucketSize rules, so rules stored in the 

internal node have to further split to its child nodes. 

The HyperCuts decision tree is efficient because it splits rules in internal nodes using the 
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information from multiple packet header fields. In contrast to HyperCuts, HiCuts [GM99] 

only splits rules on one packet header field at a time. In order to decide which subset of 

packet header fields to use to split rules on an internal node, the HyperCuts algorithm will 

first count the number of unique elements on each field for all rules stored on the node. 

Let us take the 10 rules in Table 4.1 as an example, the number of unique elements in 

all five fields is 10, 10, 1, 9, 2 respectively. The HyperCuts algorithm will then consider 

the set of fields for which the number of unique elements is greater than the mean of the 

number of unique elements for all the fields. For example, given a node holding the 10 

rules in Table 4.1, the three fields of source IP, destination IP and destination port should 

be considered for cutting. After determining which set of fields to cut, the HyperCuts 

algorithm uses several heuristics to decide how many cuts should be performed on each 

field. More detailed discussions of those heuristics can be found in [SBVW03a]. However, 

it is worth noting that the number of child nodes that an internal node can be split into is 

limited by a factor of the number of rules stored in the node. The function is defined as 

f(N) = spfac x y/N, where N is the number of rules in the internal node and spfac is a 

small constant with a default value of 2. This technique is used by both the HiCuts and the 

HyperCuts algorithms to reduce the memory consumption. 

4.1.3 Extend the HyperCuts Data Structure and Algorithm 

To allow multiple packet filters to share a HyperCuts tree, the original HyperCuts data 

structure and tree building algorithm need to be extended. Figure 4.1 (a) shows two sep­

arate HyperCuts trees, each of which only has one internal node (its root) and four leaf 

nodes. Figure 4.1 (b) shows the corresponding shared HyperCuts tree. As can be seen, the 

internal node on shared HyperCuts tree is the same as the one in the original HyperCuts 

tree. Each internal node only records the number of cuts performed on each field and a list 

of pointers to its child nodes. On the other hand, leaf nodes have to be slightly extended to 

support multiple packet filters sharing the tree. In the original HyperCuts tree, a leaf node 

is composed of a header (indicating the node is a leaf node) and a pointer to the set of rules 
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Figure 4.1 : Example of a shared HyperCuts tree: (a) Two separate HyperCuts trees, (b) 
The corresponding shared HyperCuts tree. 

stored in this leaf node. In the shared HyperCuts tree of two packet filters, a leaf node is 

composed of the same header and two pointers, one for each packet filter. When a packet 

reaches a leaf node when searching the shared HyperCuts tree, since it knows which packet 

filter this packet is being matched, it will directly calculate which pointer it should access 

next. Therefore, the time to access a leaf node on the shared HyperCuts tree is still the 

same as in the original HyperCuts tree. In this simple example, by making the two packet 

filters share a tree, we saved one internal node and 4 headers of leaf nodes. 

Now we continue to explain how we extend the original HyperCuts tree construction 

algorithm. The idea is to use a corresponding average value across all packet filters to 
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replace the value used in the original algorithm. For example, suppose that the two packet 

filters F\ and F2 are sharing a HyperCuts decision tree. Given an internal node on the 

shared tree, if the number of stored rules from each packet filter is N\ and N2, then the 

number of child nodes this internal node can have is bounded by spfac x ^(Ni + N2)/2. 

Similarly, to decide the subset of fields for cutting on each internal node, we will first 

calculate the number of unique elements in each field on a per packet filter basis. Let us 

denote the number of unique elements for rules from F\ and F2 as u\j and u2j respectively, 

where 1 < j < D. Then the number of unique elements on each field Uj for the current 

internal node is denned as Uj = (uy + u2j)/2. The rest of the algorithm is just the same as 

the original HyperCuts algorithm. 

4.1.4 Efficiency Metrics of The HyperCuts Decision Tree 

Given a constructed HyperCuts tree, we wish it consumes as little memory as possible. 

Thus, a natural metric of interest is memory consumption. In addition, we wish to do fast 

packet classification using the shared HyperCuts tree, so the tree search time (i.e., from the 

root to leaf nodes) is also important. We use the following two metrics to characterize the 

tree search time: 

Average depth of leaf nodes: The depth of a leaf node is just the length of the shortest 

path from itself to the root. Assuming each leaf node has the same probability to be reached 

during a packet matching, then the average depth of all leaf nodes reflects on average how 

many internal nodes need to be accessed to terminate this tree search. 

Height of the tree: This metric characterizes the largest number of internal nodes needed 

to be accessed for a packet to reach a leaf node. It corresponds to the worst case search 

time. 
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4.2 Challenges of Constructing Efficient Shared HyperCuts Decision 

Tree 

To construct efficient shared HyperCuts decision trees, one key question to answer is: 

which subset of packet filters should share a HyperCuts decision tree so that the resulting 

shared tree is more efficient than a set of separate trees? In this section, we first introduce 

the filter data sets used in the thesis. We then experimentally show that naively letting mul­

tiple packet filters share a HyperCuts decision tree will significantly increase the memory 

consumption and height of the shared trees. 

4.2.1 Filter Data Sets 

We extracted a set of real packet filters from the configuration files of routers in a large-

scale campus network [SRXM08] at Purdue University. We did not include the 260 packet 

filters that contain no more than BucketSize number of rules, because their corresponding 

HyperCuts decision trees just contain one root node. In our experiment throughout the 

thesis, we always set BucketSize as 4. 

Because it is hard to obtain other real packet filters, a synthetic filter generator Class-

Bench [TT05b] is used to generate some synthetic filters. The ClassBench tool takes a 

parameter file as the input and then generates synthetic filters using the information stored 

in the input parameter file. We used three parameter files provided by ClassBench and 

they were originally generated from three real access control lists (ACLs) on Cisco routers. 

Given each parameter file, we generate two sets of 1,000 synthetic filters. The first set of 

1,000 synthetic filters all contains 100 rules, while the size distribution of the second set 

of 1,000 synthetic filters follows an exponential distribution with the average value of 100. 

Please note that when generating synthetic filters with exponential size distribution, we also 

discard the filters containing no more than BucketSize rules. 

Some basic statistics about the set of real packet filters and the six sets of synthetic 

filters are summarized in Table 4.2. 
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Data Set Name 

Purdue 

Synl-Exp 

Synl-100 

Syn2-Exp 

Syn2-100 

Syn3-Exp 

Syn3-100 

Parameter File 

N/A 

ACL1 

ACL1 

ACL3 

ACL3 

ACM 

ACL4 

Number of Filters 

140 

1000 

1000 

1000 

1000 

1000 

1000 

Size Distribution 

N/A 

Exponential 

Uniform size: 100 

Exponential 

Uniform size: 100 

Exponential 

Uniform size: 100 

Average Size 

21.5 

98.21 

100 

101.9 

100 

106.3 

100 

Minimum Size 

5 

5 

100 

5 

100 

5 

100 

Maximum Size 

763 

1002 

100 

910 

100 

874 

100 

Table 4.2 : Summary of basic statistics about the seven filter data sets. 

4.2.2 Making Randomly Selected Packet Filters Share HyperCuts Trees? 

In this section, we will use a simple experiment to show that extra care has to be taken in 

deciding which set of packet filters should share a tree. Naively making a set of randomly 

selected packet filters share a tree will significantly degrade the performance. 

In our experiment, for each filter data set, we randomly choose n distinct filters, where 

n is a small number. Given the n selected filters, we first build a separate tree for each 

selected filter. Let us denote the memory consumption of the n trees as m ,̂ the average 

depths of leaf nodes of the n trees as d;, and the heights of the n trees as hi, where 1 < 

i < n. Then we construct a shared HyperCuts decision tree to represent the selected n 

filters. Let us denote the memory of the shared tree, the average depth of leaf nodes in the 

shared tree and the height of the shared tree as mshared, dshared and hshared- Now we can 

define the memory consumption ratio as mshared/ Y27=i mi>tne average leaf depth ratio 

as dshared/(Y^=i di/n), and the tree height ratio as hshared/'(E"=i hi/n)- T h e smaller 

the ratios are, the more benefits we obtain by making the n packet filters share a single 

HyperCuts tree. A ratio larger than 1 means that the shared tree has worse performance 

than n separate trees. Given each fixed n, we repeat the experiment 1000 times, i.e., we 

randomly select 1000 sets of n distinct filters for our experiment. We also vary n from 2 to 

10. 

Figure 4.2 (a) shows the average memory consumption ratio across 1000 runs for all 7 

data sets. As can be seen, when the number of randomly selected filters increases, the mem-
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ory consumption ratio becomes higher for all 7 data sets. This is because the more packet 

filters are randomly selected to shared a tree, the harder it is to construct a HyperCuts tree 

suitable for all packet filters. When 10 randomly selected packet filters share a HyperCuts 

decision tree, it will consume 2 to 20 times more memory than simply using 10 separate 

trees. Figure 4.2 (b) shows the average of the average leaf depth ratios across 1000 runs. 

Similarly, the more packet filters are randomly selected to share a tree, the larger the ratios 

are. The tree height ratio results are very similar to the average leaf depth ratio results, so 

they are not shown here. 

By comparing the memory consumption ratio and average leaf depth ratio, we can also 

observe that the average leaf depth ratio increases more rapidly with the increase of n 

than the memory consumption ratio does. The reason is that the sizes of all internal nodes 

in a HyperCuts tree are not the same. Please recall that the number of child nodes that 

an internal node can have is related to the number of rules stored in the node. Because 

those nodes closer to the root usually contain more rules, they accordingly have more child 

pointers (4 bytes for each pointer). Thus, internal nodes closer to the root are much larger 

than the internal nodes far from the root. This explains why a HyperCuts tree with doubled 

height consumes less than doubled memory. 

4.3 Clustering Packet Filters to Construct Efficient Shared Hyper­

Cuts Decision Trees 

As shown in Section 4.2, letting a set of randomly selected filters share a HyperCuts tree 

leads to increased memory consumption and average height of trees. In this section, we 

propose a novel approach to clustering packet filters to form efficient shared HyperCuts 

decision trees. In our approach, to help decide which subset of packet filters should share a 

tree, we first identify a number of important factors that collectively impact the efficiency 

of the resulting shared tree. Based on the identified factors, we then propose to use machine 

learning techniques to predict whether any pair of packet filters should share a HyperCuts 

decision tree. Given the pair-wise prediction on all possible pairs, a greedy heuristic algo-
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(a) (b) 

Figure 4.2 : (a) Memory consumption increases when randomly selected packet filters 
share a HyperCuts tree, (b) Average depths of leaf nodes increase when randomly selected 
packet filters share a HyperCuts tree. 

rithm is used to classify packet filters into a number of shared HyperCuts decision trees. 

4.3.1 Factors Affecting the Efficiency of the Shared Trees 

In Section 4.3.1.1, we first present some important factors that can characterize each indi­

vidual packet filter. We then study the relationships among those factors in Section 4.3.1.2. 

We found that some factors are highly correlated to each other. Finally, we show that 

the identified factors can all help decide whether any pair of packet filters should share a 

HyperCuts decision tree or not in Section 4.3.1.3. 

4.3.1.1 Important Factors for Characterizing Individual Filter 

According to our analysis, there are two different classes of factors that can characterize 

each individual packet filter: 

Class-1 factors include some simple statistical properties of a packet filter itself. They 



67 

include the size of the packet filter and the number of unique elements in each field. To ob­

tain the Class-1 factors, we do not need to build the HyperCuts decision tree for the packet 

filter. These factors are important because they are used in the HyperCuts tree construction 

algorithm. Thus, they can affect the structure of the final HyperCuts tree. However, only 

Class-1 factors are not enough to determine the structure or memory consumption of the 

final HyperCuts decision tree. Two packet filters with identical Class-1 factors may have 

very different tree structures. Therefore, we identify the second class of factors as follows. 

Class-2 factors represent the characteristics of the constructed HyperCuts decision tree. 

That is, the HyperCuts tree must be constructed to obtain the Class-2 factors of a packet 

filter. Because we want the final shared tree to have good performance, the memory con­

sumption of the tree, the average depth of leaf nodes and the height of the tree are one 

part of the Class-2 factors. In addition, the number of leaf nodes, the number of internal 

nodes and the total number of cuts on each field are also included into the Class-2 factors, 

because they can more accurately reflect the actual structure and memory consumption of 

the HyperCuts tree. For example, the more nodes a tree has, the more memory it will gen­

erally consume. In addition, the total number of cuts performed on each field can reflect 

the relative importance of each field so it can impact the structure of the constructed tree. 

4.3.1.2 Relationship Among Factors 

The factors identified in Section 4.3.1.1 are not independent to each other. In fact, some 

factors are highly correlated to each other in the common case. We identify the following 

correlated pairs of factors: 

Size V.S. Memory consumption: In the common case, the HyperCuts decision tree of 

a bigger packet filter tends to consume more memory. The reason is that the more rules 

a packet filter contains, the more times of splittings are needed to reduce the number of 

rules contained in nodes to BucketSize. Accordingly, more internal nodes and leaf nodes 

will be created, which will generally consume more memory. Please note that this is by 

no means a universal rule, i.e., a bigger packet filter could consume less memory than a 
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Figure 4.3 : Filter size V.S. memory consumption. 

smaller packet filter does. For example, one bigger packet filter with more dissimilar rules 

may consume less memory than a smaller packet filter with similar rules. Figure 4.3 shows 

the relationship between the memory consumption and the packet filter size. As you can 

see, the memory consumption is generally increasing with the increase of sizes of packet 

filters. 

The number of internal nodes V.S. The number of leaf nodes: Usually, the number of 

internal nodes on a tree is highly correlated with the number of leaf nodes. This is because 
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Figure 4.4 : Number of internal nodes V.S. number of leaf nodes. 

that generally the more internal nodes a tree has, then the more distinct paths from the root 

to the bottom of the tree exist. Please note that each path will end at a leaf node, so more 

internal nodes will generally lead to more leaf nodes. Figure 4.4 shows the relationship 

between the number of internal nodes and the number of leaf nodes. As can be observed, 

the number of internal nodes generally increases with the increase of the number of leaf 

nodes. 

Please note that a special tree such as a chain-like tree may have many internal nodes 

but very few number of leaf nodes. However, we consider those highly unbalanced trees as 

the non-common case. 
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Size V.S. The number of internal/leaf nodes: We have shown that the bigger a packet 

filter is, the more memory is generally consumed. The major reason is that the bigger the 

packet filter is, the more nodes the tree will generally have. Figure 4.5 shows the correlation 

between the filter sizes and the number of internal nodes. As can be seen, the number of 

internal nodes on a tree increases generally with the increase of the size of a packet filter. 

Since we have shown that the number of internal nodes is also correlated with the number 

of leaf nodes, the filter size is also correlated to the number of leaf nodes. Figure 4.6 shows 

the relationship between the filter sizes and the number of leaf nodes. 

However, the number of nodes on a tree is just one important factor that can impact 

the memory consumption. The size of each internal node is also important. The size of an 

internal node depends on the number of children pointers it contains. The more children 

pointers a node contains, the bigger the node is.That is to say, not all internal nodes have the 

same size. Please note that some children pointers will be empty, so the number of children 

pointers on an internal node is usually smaller than the the number of children nodes. 

Number of unique elements in each field V.S. Number of cuts in each field: The num­

ber of unique elements in a field is generally highly correlated with the number of cuts 

performed in the same field. The more unique elements there are in a field, the more rules 

are defined using this field, then the more important this field generally is. To quickly split 

rules in the packet filter, the fields with more unique elements will be more likely to be 

selected for cutting according to the HyperCuts algorithm. Therefore, the number of cuts 

in one field is generally well correlated with the number of unique elements in that field. 

Figure 4.7 shows the correlation between the number of unique elements in field 1 and the 

number of cuts in field 1. 

Height of the tree V.S. The average depth of leaf nodes: The height of a tree is the 

maximum depth of all leaf nodes in the tree. In the common case, the higher a tree is, 

the larger the average depth of all leaf nodes is. However, the height of the tree is purely 

determined by the depth of the deepest leaf node, so the height of the tree is not as reliable 

as the average depth of all leaf nodes. One outlier leaf node with large depth will make the 
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Figure 4.5 : Filter size V.S. number of internal nodes. 

height of the tree big, however the average depth of all leaf nodes may be much smaller than 

the height. Figure 4.9 shows the correlation between the heights of trees and the average 

depths of trees. 

Although we have shown that in the common case some factors are highly correlated 

with each other, it is worth noting that they are not identical factors, i.e., they can not 

be replaced by each other. Therefore, we still need to use all factors to more accurately 

characterize each packet filter. Another difference between the Class-1 factors and the 

Class-2 factors is that the Class-1 factors are much cheaper to calculate than the Class-2 

factors. 
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Figure 4.6 : Filter size V.S. number of leaf nodes. 

4.3.1.3 Factors Relevant to the Goodness of Packet Filter Pairs 

We have identified a set of factors that can characterize each individual filter. Now we 

continue to show that these factors are also important for determining whether a set of 

packet filters should share a tree or not. To make this problem simpler, in the following 

section, we will first study why these factors are important to decide whether any pair 

packet filters should share a tree or not. 
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Figure 4.7 : Number of unique elements V.S. number of cuts. 

Let us first define a pair of packet filters as a good pair if and only if the shared tree of 

the two packet filters consumes less memory than the two separate trees and the height of 

the shared tree is no bigger than the average height of the two separate trees. Since both 

the memory consumption and the height of the tree are important performance metrics, 

a factor should be considered to be an important one as long as it can affect at least one 

performance metric of the shared tree. 

Size difference: Assume that the size difference of two packet filters is big, i.e., one packet 

filter Fi is much smaller than the other packet filter F2. Let us denote the size of F\ and 

F2 as si and s2, the decision tree memory consumption of Fi, F2 and the shared tree as 
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Figure 4.8 : Filter size V.S. height of trees. 

mi, m2 and ms, the height of F\, F2 and the shared tree as hi, h2 and hs. Recall that the 

average number of rules in internal nodes of the shared tree and the average number of 

unique elements on each field in internal nodes on the shared tree are determined by both 

packet filters. In addition, the number of children pointers an internal node can have is 

bounded by the average number of rules in the node. Therefore, the number of children 

pointers in the root node of the shared tree is generally smaller than the number of children 

pointers in the root node of the decision tree of F2. Consequently, it will take more times of 
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Figure 4.9 : Height of trees V.S. average depth of leaf nodes. 

splitting to reduce the number of rules in nodes down to Bucket Size. Thus, hs should be 

larger than h2. hi should be similar to h2 according to Figure 4.8. Therefore, after letting 

Fi and F2 shared a decision tree, the height of the shared tree will generally be bigger than 

{hi + h2)/2. 

As for the memory consumption, F2 should have a larger number of unique elements 

on each field, so which fields to cut on each internal node will be mainly determined by F2. 

Therefore, the structure of the shared tree will be more similar to the decision tree of F2. 

Since the shared tree will be taller than decision tree of F2, more internal nodes and leaf 
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nodes will be needed generally. On the other hand, the internal nodes from the decision tree 

of F\ can be saved, so it is hard to say whether ms will be smaller or bigger than mi + m2. 

Figure 4.10 compares the size difference of good pairs and bad pairs for all data sets. 

As you can see, good pairs tend to have smaller size difference as expected. 

Number of internal/leaf nodes difference: Since there is a high correlation between the 

number of internal/leaf nodes and the packet filter sizes, if two packet filters differ greatly 

on the number of internal or leaf nodes, then their size difference should be big as well in 

general. Therefore, a big difference on the number of internal or leaf nodes usually implies 

that these two packet filters should not be sharing a HyperCuts decision tree. Figure 4.11 
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Figure 4.11: Difference of number of internal nodes: good pairs V.S. bad pairs. 

and Figure 4.12 compare the difference of the number of internal nodes and the difference 

of number of the leaf nodes between good pairs and bad pairs respectively. As expected, 

good pairs tend to have smaller differences. 

Memory consumption difference: Since there is a strong correlation between memory 

consumption and packet filter sizes, if two packet filters differ greatly on memory con­

sumption, then their size difference should be also big in general. Therefore, big memory 

consumption difference usually implies that these two packet filters should not share a Hy-

perCuts decision tree in general. Figure 4.13 compares the memory difference of good 

pairs and bad pairs. As can be seen, good pairs tend to have closer memory consumptions. 
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Figure 4.12 : Difference of number of leaf nodes: good pairs V.S. bad pairs. 

Correlation of the vectors of the number of unique elements on each field: For each 

packet filter, we can calculate the number of unique elements on each field. The number of 

unique elements from all fields can form a vector. Given two packet filters Fi and F2, we 

can calculate one vector for each filter, then we can calculate the linear correlation between 

the two vectors. If the correlation is high, then it means that they share the same subset of 

important fields (i.e., the fields with more unique elements). Therefore, the tree structures 

of the two packet filters should be similar. Consequently, it is easier to construct a shared 

tree for the two packet filters with good performance. 

On the other hand, if the correlation between the two vectors is low, then it generally 
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Figure 4.13 : Difference of memory consumption: good pairs V.S. bad pairs. 

means that the two packet filters have different subsets of important fields. When the tree 

construction algorithm has to decide which fields to cut for an internal node, rules from both 

packet filters will be considered. Consequently, the structure of the shared decision tree will 

not be similar to either of the separate trees. This will generally lead to increased memory 

consumption and increased tree height. Figure 4.14 compares the average correlation rate 

of vectors from good pairs and bad pairs. 

Correlation of vectors of the number of cuts on each field: Since there is a high cor­

relation between the number of unique elements and the number of cuts on each field, if 

two packet filters have a low correlation for the vectors of the number of cuts on each field, 
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Figure 4.14 : Correlation of number of unique elements in all dimensions: good pairs V.S. 
bad pairs. 

then their correlation for the vectors of the number of unique elements on each field will 

also be low generally. Therefore, a low correlation of number of cuts usually implies that 

these two packet filters should not be merged together in general. Figure 4.15 compares the 

average correlation rate of vectors from good pairs and bad pairs. 

Height difference: Given two packet filters F\ and F2, let us denote the heights of F1? F2 

and the shared tree as hi, h2 and hs respectively. Assume that hi is much larger than h2. 

hs will be similar to hi. Thus, after making the two packet filters share a HyperCuts tree, 

the height of the shared thee will generally become larger than the average height of the 
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Figure 4.15 : Correlation of number of cuts on all dimensions: good pairs V.S. bad pairs. 

two separate trees. Therefore, if the height difference of two packet filters is big, then they 

should not share a tree in general. Figure 4.16 compares the height difference of good pairs 

and bad pairs for all data sets. 

Difference of average depth of leaf nodes: Since there is a correlation between the height 

of the tree and the average depth of leaf nodes, if the average depths of leaf nodes of the 

two packet filters are very different, then their height difference will also be large generally. 

Therefore, a big difference on average depth of leaf nodes generally implies that the two 

packet filters should not be sharing a decision tree. Figure 4.17 compares the average leaf 

node depth difference of good pairs and bad pairs for all data sets. 
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Figure 4.16 : Height difference: good pairs V.S. bad pairs. 

4.3.2 Predicting Good Pairs of Packet Filters 

Two packet filters are defined to be a "good" pair if their shared HyperCuts tree has de­

creased memory usage and decreased average depth of leaf nodes compared to the two 

separate HyperCuts trees. This problem is clearly a classification problem, i.e., we need to 

classify all pairs of packet filters into either good pairs or bad pairs. However, it is non-

trivial to manually derive some effective rules for us to accurately decide whether a pair 

of packet filters should share a tree or not. Luckily, some effective supervised machine 

learning techniques [Mit97] can help perform this classification task. We will study a few 

representative supervised machine learning techniques in Section 4.4. 
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Figure 4.17 : Average leaf nodes depth difference: good pairs V.S. bad pairs. 

To use machine learning techniques to predict whether a pair of filters is good, we need 

to first prepare some training data to train a model. Given a filter data set with N distinct 

packet filters, we can randomly select M pairs of filters out of all possible N x (N — l) /2 

pairs as the training data. For each selected pair of filters, we can decide whether they are 

a good pair by constructing two separate trees and one shared tree. For each selected pair 

of filters, we can also calculate their factors. By feeding all these information to certain 

machine learning technique, a model can be learned to predict whether any new pair of 

packet filter is good or bad. We will evaluate the prediction accuracy of different machine 

learning techniques in Section 4.4. 



84 

Good pair 

o Packet filter 

Figure 4.18 : Constructing a graph based on pair-wise prediction. 

4.3.3 Clustering Packet Filters Based on Pair-wise Prediction 

By using the model learned from a small amount of training pairs, we can now predict 

whether any pair of filters is good or not. Based on the pair-wise prediction for all possible 

pairs of all filters, an undirected graph G can be constructed as illustrated in Figure 4.18. 

In the graph G, each node represents a distinct packet filter. Two nodes in G are connected 

with an edge if and only if the two corresponding packet filters are predicted to be a good 

pair. Given the constructed graph G, the following clustering algorithm is proposed to 

determine which subset of packet filters should share a HyperCuts decision tree: 

INPUT OF ALGORITHM: G and a e[0 1] 

OUTPUT OF ALGORITHM: A set of packet filter clusters: Sciusters 

01 

02 

03 

04 

05 

06 

07 

08 

09 

Sfilters = {All packet filters}; 

^clusters I J ' 

WHILE(|5/i;ter.,|>0) 

clusteri = { }; 

Find fm £ Sfitters who has most neighbors from Sfilters in G; 

clusteri = cluster U {/m}; 

& filters = ^filtersxxfmj'y 

WHILE TRUE 

Find /„ e Sfuters with most neighbors from clusteri in G 
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if multiple choices exist, pick the one with largest degree in G, 

let us assume fn has k neighbors from cluster^ in G, 

IF(fc > a x \clusteri\) 

clusteri = clusteri U {/„}; 

^filters == ^filter$\\JnS » 

ELSE break the WHILE loop; 

END-IF 

END-WHILE 

^clusters =z ^clusters —̂' \ClUSZGTij, 

END-WHILE 

RETURN Sciusters\ 

In the above algorithm, a is a constant value between 0 and 1. Intuitively, the higher 

the a value is, the more difficult that a packet filter can join an existing cluster. For ex­

ample, if a is set to 0, then all packet filters in the same connected component in G will 

share a HyperCuts decision tree. On the other hand, if a is set to 1, then a set of packet 

filters will be clustered together if and only if the corresponding nodes in G form a clique. 

We will evaluate the performance of the clustering algorithm with different a values in 

Section 4.4.2. 

4.4 Performance Evaluation 

In Section 4.4.1, we first evaluate how accurately we can predict whether a pair of packet 

filters should share a tree. We then study the performance of the packet filter clustering 

algorithm in Section 4.4.2. Finally, we show the detailed breakdown of the time spent on 

each step of our approach in Section 4.4.3. 

4.4.1 Accuracy of Predicting Good Pairs 

As introduced in Section 4.3, we want to apply supervised machine learning techniques to 

address this classification problem. A supervised machine learning technique can automat-
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ically learn a model from some training data. The training data consists of pairs of input 

vectors, and desired outputs. After a model is learned, it can then be used to predict an 

output value for any valid input vectors. We discuss how we define the input vectors, the 

output values and three classification techniques we studied in detail as follows. 

4.4.1.1 Three Types of Input Vectors 

Based on the two classes of factors introduced in Section 4.3.1, we can define three types 

of input vectors for each pair of packet niters. The first type of input vectors is composed 

of only the Class-1 factors from both filters. The second type of input vectors is composed 

of only the Class-2 factors of both filters. The third type of input vectors includes both the 

Class-1 and Class-2 factors of the two filters. We evaluate the impact of using different 

types of input vectors in Section 4.4.1.4. 

4.4.1.2 Defining Output Values 

The output of our classification problem should be a label indicating whether the input 

vectors correspond to a good pair or not. That is, there are only two possible output values: 

good or bad. In this section, we define two packet niters as a good pair if their shared 

HyperCuts tree's memory consumption ratio and average leaf depth ratio are both smaller 

than 1. That is, the shared HyperCuts tree must have decreased memory consumption 

and deceased average depth of leaf nodes compared against two separate HyperCuts trees. 

Please note that in the above definition, if we replace the average depth of leaf nodes with 

the height of the tree, the prediction accuracy is a little worse according to our study. The 

reason is that the heights of trees are determined by the leaf node with largest depth, so it 

is not as stable as the average depth of all the leaf nodes. 

We studied the percentage of good pairs by examining 10,000 randomly selected pairs 

from each data set. The fractions of good pairs vary from 8% to 16% across all 7 data sets. 

Since the fractions of good pairs are relatively small, any classification technique that can 

accurately identify good pairs will be very useful in practice. 
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4.4.1.3 Three Classification Techniques 

We studied three representative classification techniques including the decision tree 

(DT)1, the generalized linear regression (GLR) [Mit97] and the naive Bayse classifier 

(NBC) [Mit97]. We plan to study more classification techniques such as the neural net­

work in the future. 

It is straightforward to apply the DT technique to perform classification here. For GLR 

technique, if we use the output values 1 and 0 to represent the good pair and the bad pair 

respectively in the training data, then given a new pair of filters, GLR will output a value 

between 0 and 1. In our experiment, if the returned value by GLR is larger than 0.5 then we 

predict the pair as good. Otherwise, the pair is predicted to be bad. As for NBC, we cannot 

directly feed the input vectors defined in Section 4.4.1.1 to NBC technique. NBC requires 

a set of features instead. In our experiment, we simply define a corresponding feature from 

each factor. For example, the size of the first packet filter in the pair is a factor. We can 

define its corresponding feature as follows: we first calculate the 10th percentile and 90th 

percentile of the sizes of the first packet filter from all good pairs in the training data. A 

pair of testing packet filters is then said to have this feature if the size of its first packet filter 

falls into the above 10th and 90th percentile range. After we convert factors into features, 

the NBC can be used directly to perform classification. 

4.4.1.4 Accuracy of Pair-Wise Prediction 

For each data set, we randomly select 10,000 pairs and then calculate both Class-1 and 

Class-2 factors for those selected pairs. We also need to determine whether each selected 

pair is good or bad. To evaluate the prediction accuracy using different types of input 

vectors, we randomly choose 1,000 pairs (i.e., 10%) out of the 10,000 pairs as the training 

data. We then use the rest 9,000 pairs as the testing data to test the prediction accuracy 

"To avoid ambiguity, we always use "HyperCuts decision tree" to refer the packet classification technique, 

while using "decision tree" or "DT" in this section to represent the machine learning techniques used 
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of the learned model. We repeat this experiment 10 times, each of which uses a different 

1,000 pairs as the training data. Figure 4.20, 4.21 and 4.22 show the average false positive 

rate and the average false negative rate of the three classification techniques using different 

input vectors across 10 runs. 

First of all, different types of input vectors have a significant impact on the false positive 

and false negative rate for all three techniques. Only using Class-1 factors as input gives 

the worst prediction accuracy for both DT and GLR. Including Class-2 factors in the input 

vectors help improve the performance of both DT and GLR. This is expected because Class-

1 factors are relatively simple and they are not sufficient to predict the final HyperCuts 

decision tree. However, including more factors as input does not help NBC. Instead, when 

more and more factors are included as input, the performance of NBC is getting worse. The 

NBC technique assumes that all the input variables are independent to each other, while in 

our case, those input factors may not be completely independent. When having more and 

more dependent variables into the input vectors, the performance may get worse. 

Secondly, among the three techniques we have studied, DT technique has the best over­

all performance. GLR does not work well because its linear model simply can not accu­

rately capture the complex relationships among those factors. NBC falls short because it 

assumes that all factors are independent while they are actually not. If both Class-1 and 

Class-2 factors are used in the input vectors to train the decision tree, then the false positive 

rates will vary from 3% to 8%. In addition, the average false negative rate across the 7 

data sets is 23%. A low false positive rate is important because it means that only a small 

percentage of bad pairs will be misclassified to be good ones. A 23% false negative rate 

means that 23% of all good pairs will be misclassified as bad pairs. Fortunately, the high 

false negative rate can be alleviated by the filter classification algorithm discussed in Sec­

tion 4.3.3. Please recall that each misclassified good pair represents a missing edge in the 

graph as illustrated in Figure 4.19. Our study shows that the two packet filters on a missing 

edge are 1.7 hops away from each other on average, so it is still very likely that they will be 

classified into the same cluster by our classification algorithm. On the other hand, for those 
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Figure 4.19 : The filter classification algorithm helps alleviate the high false negative rate 
of the pair-wise prediction. 
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Figure 4.20 : Performance of decision tree technique: (a) false positive rate (b) false nega­
tive rate. 

truly bad pairs, 70% of them are not even connected on the graph. The rest of the 30% of 

bad pairs are 3 hops away from each other on average, which makes it much harder for the 

classification algorithm to classify them into the same cluster. 
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Figure 4.21 : Performance of generalized linear regression: (a) false positive rate (b) false 
negative rate. 
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Figure 4.22 : Performance of naive Bayse classifier: (a) false positive rate (b) false negative 
rate. 

4.4.2 Performance of The Filter Clustering Algorithm 

Since we have shown that the DT technique using both Class-1 and Class-2 factors as input 

has the best prediction accuracy among the three techniques we studied, in this section we 
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will use DT to predict the goodness of all pairs of packet filters in a data set. Based on the 

pair-wise prediction provided by DT, we can construct a graph G for each filter data set. We 

can then apply our filter clustering algorithm to cluster nodes in G to decide which subset of 

packet filters should share a HyperCuts decision tree. DT is trained by using a training data 

set of 1,000 random pairs, and the results presented in this section are the average values 

across 10 runs. Recall that in addition to G, the proposed clustering heuristic algorithm 

also needs a constant a. In our experiment, we vary a from 0.25 to 1. 

Figure 4.23 shows the performance of the final constructed shared trees for 140 Purdue 

filters. When a = 0.25, the shared trees actually have much worse performance than the 

140 separate trees. Please recall that a smaller a value means that a packet filter can more 

easily join an existing cluster. When a packet filter is mistakenly classified into a wrong 

filter cluster, the overall performance of the cluster will significantly degrade. When a 

larger a such as 0.5 is used, the performance becomes better. The overall memory saving 

is over 40%. In the meantime, the average height of the shared trees and the average depth 

of leaf nodes in shared trees slightly decrease. 

Figure 4.25, Figure 4.26 and Figure 4.27 show the overall performance of the 6 syn­

thetic data sets. As can be observed, when a increases, the memory consumption ratio 

generally increases while the average leaf depth ratio and tree height ratio decrease. If 

we fix a as 1, then we can reduce memory consumption over 20% on average while only 

increasing average leaf depth by 3% on average across all 6 synthetic data sets. 

In our algorithm, the parameter a plays a vital role in determining the filter cluster­

ing results and also the performance of the constructed shared HyperCuts decision trees. 

However, determining the optimal a value for a specific packet filter data set is beyond the 

scope of this thesis. We will continue to study this problem as our future work. 

In addition, the shared HyperCuts trees enable concurrent lookup of multiple packet 

filters sharing the same tree. Therefore, if multiple packet filters lie on a path inside a 

router group, then by using the shared HyperCuts trees, the total tree heights along the path 

may be reduced. Recall that the tree height represent the worse case tree traversal time. We 
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Figure 4.23 : Shared HyperCuts trees V.S. separate HyperCuts trees for Purdue data. 

use the Purdue network in our experiment. For each random path in the Purdue network, we 

first determine how many filters are lying on the path. Then we compare the total heights of 

the separate HyperCuts trees and the shared HyperCuts trees. Figure 4.24 shows the result. 

As you can see from Figure 4.24, the shared HyperCuts trees can help reduce the worst 

case tree traversal time if multiple packet filters lie on the same path. When the number of 

packet filters lying on a path increases, the benefits of using the proposed shared HyperCuts 

tree also increase. 
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Figure 4.24 : The shared HyperCuts trees enable concurrent lookup of multiple packet 
filters sharing the same tree. 
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Figure 4.25 : Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Synl-Exp (b) 
Synl-100. 

4.4.3 Computation Time Breakdown 

In this section, we want to study the computation time spent on each step in our approach. 

We break our approach into 7 steps: (1) calculating Class-1 factors, (2) calculating Class-2 
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Figure 4.26 : Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn2-Exp (b) 
Syn2-100. 
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Figure 4.27 : Shared HyperCuts trees V.S. separate HyperCuts trees: (a) Syn3-Exp (b) 
Syn3-100. 

factors, (3) generating 1,000 training pairs, (4) training the DT, (5) predicting the goodness 

of all pairs to construct G, (6) clustering packet filters and (7) constructing the shared 

HyperCuts decision trees. As for implementation, steps (4)-(6) are implemented in Matlab 

and the other steps are implemented in the C++ language. The desktop machine used in 

our experiment has a 2.6 GHz AMD Opteron processor and 4 GB of main memory. 
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Data Sets 

Purdue 

Synl-Exp 

Synl-100 

Syn2-Exp 

Syn2-100 

Syn3-Exp 

Syn3-100 

Class 1 

1.7 

28.2 

24.7 

28.7 

23.5 

23.9 

24.5 

Class 2 

4.9 

86.4 

69.3 

86.9 

74.5 

72.3 

74.2 

Generate training pairs 

6.9 

298.9 

138.6 

315.0 

143.9 

312.0 

141.1 

Train 

0.29 

0.1 

0.3 

0.31 

0.15 

0.51 

0.41 

Predict G 

0.01 

0.33 

0.7 

0.78 

0.33 

0.88 

0.75 

Cluster 

0.52 

57.6 

62.0 

46.6 

7.7 

36.9 

31.7 

Construct shared trees 

2.6 

51.3 

21.1 

26.7 

48.6 

65.8 

35.3 

Total 

16.92 

522.83 

316.7 

504.99 

298.68 

512.29 

307.96 

Table 4.3 : Computation time breakdown (in seconds) for each step in the proposed ap­
proach. 

Table 4.3 shows the detailed breakdown of time (in seconds) spent on each step for all 7 

data sets. When performing the packet filter clustering step, we set a = 0.5. As can be seen, 

the step of preparing the training data takes the most time for all 7 data sets. The reason 

is that we need to construct 2,000 separate HyperCuts tree and 1,000 shared HyperCuts 

trees. The time spent in clustering packet filters and constructing shared HyperCuts trees is 

relatively modest. Therefore, a network operator may want to run the filter clustering and 

shared tree construction steps a few times with different a values to select one a offering 

best performance. In summary, it takes our approach about 17 seconds to construct shared 

HyperCuts trees for 140 real packet filters and about 6.8 minutes on average to construct a 

set of shared HyperCuts trees for 1,000 synthetic packet filters. 

4.5 Another Application of the Shared HyperCuts Decision Tree 

Packet filters are widely used on network devices such as routers to perform various ser­

vices including firewalling, quality of service (QoS), virtual private networks (VPNs), load 

balancing, traffic engineering, etc. Therefore, multiple packet filters serving different pur­

poses may be deployed on a single physical router. With the emergence of virtual routers 

as a promising technology to provide network services, more packet filters belonging to 

different virtual routers need to be stored on a single physical host router. So far, we have 

shown that by using a shared HyperCuts tree to represent multiple packet filters, mem-
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ory consumption can be considerably reduced while not increasing the height of the trees. 

Consequently, more packet niters can be deployed and more virtual routers can be more 

efficiently supported on a single physical router. 

4.5.1 The Need for Multiple Packet Filters on a Single Router 

Multiple packet filters may be deployed on a single router to support different network 

services such as firewalling, QoS, VPNs, load balancing and traffic engineering. Due to the 

complexity of the network services, each packet filter may be large and complex as well. 

For example, recent studies have shown that a complex packet filter on modern routers or 

firewalls can have as many as 50,000 rules [ZWG07]. 

Today router virtualization is already available in commercial routers from both 

Cisco [cisa] and Juniper [junb]. It is quickly emerging as a promising technology to 

support new network services such as router consolidation [June], customer-specific rout­

ing, policy-based routing [Cise], multi-topology routing [P. ] [T. ] and network virtualiza­

tion [APST05] [BFH+06]. For example, with the help of router virtualization, network 

operators can now consolidate a large number of existing routers onto a newly-purchased 

router by running one virtual router instance for each existing router. When performing 

router consolidation, all the packet filters deployed on existing routers will be exported 

to the new router. A Juniper router today can be configured with as many as 128 virtual 

routers. Therefore, a modern router may need to support a large number of packet filters. 

4.5.2 Challenges of Deploying Multiple Packet Filters on a Single Router 

One key challenge of holding a large number of packet filters on a single physical router is 

memory consumption. As more packet filters are deployed, the memory requirement will 

also increase accordingly. 

Ternary content addressable memory (TCAM) is the de facto industry standard for 

hardware-based fast packet classification. However, TCAM has a few limitations. Firstly, 

TCAM consumes lots of power. Secondly, TCAM chips are expensive. They are often 
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more expensive than network processors [Lek03]. Thirdly, due to its high power con­

sumption and high cost, the capacity of TCAM on each router is usually restricted by 

system designers. What is worse, in order to represent a packet filter in TCAM, the packet 

filter rules have to be converted to die ternary format, which will lead to the range ex­

pansion problem. For example, Cisco 12000, a high-end Gigabit switch router designed 

for large service providers and enterprise networks, can only hold up to 20,000 rules in 

its TCAM. Although some recently proposed TCAM-based packet classifiers compression 

techniques [MLT09] [Cha09] may help alleviate this problem, the amount of memory re­

quired to store a large number of packet filters can still easily exceed the capacity of the 

installed TCAM on a physical router. 

Therefore, software based packet classification using fast memory such as SRAM is 

still widely used on many routers including both edge routers such as Cisco 7200 series 

and core routers such as Cisco 12000 series. Although SRAM consumes less power and 

occupies smaller space, it is still costly. Therefore, the proposed shared HyperCuts decision 

tree can be applied here to help considerably reduce the memory consumption of storing 

multiple packet filters. The saved memory can be used to more efficiently hold more packet 

filters and to support more virtual routers. 

4.6 Related Work 

To the best of our knowledge, this thesis is the first to study how to construct efficient shared 

data structures for multiple packet filters. The HyperCuts [SBVW03a] decision tree is used 

in our study because it is one of the most efficient packet classification data structures. 

Our work is inspired by Fu and Rexford [FR08a], who observed that the forwarding in­

formation bases (FIBs) of different virtual routers on the same physical router share a large 

number of common prefixes. They proposed to use a shared trie data structure to hold mul­

tiple FIBs. They also proposed a corresponding lookup algorithm to search the shared trie 

data structure. Their evaluation results show that by sharing a trie data structure, the mem­

ory requirement can be greatly reduced and the IP lookup time also decreases. However, 
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their work only focused on merging forwarding tables. How to construct efficient shared 

data structures for multiple packet filters is not studied. In addition, in their approach, all 

FIBs are always merged into a single shared FIB, while our approach can automatically 

classify packet filters into multiple shared HyperCuts decision trees. 

Several packet classifier compression techniques 

(e.g., [MLT09] [Cha09] [DBW+06] [AGJ+07] [LMZ08]) for TCAM-based packet 

classification systems have been proposed. However, these techniques are specifically 

designed for optimizing TCAM-based systems. In addition, they all try to reduce TCAM 

memory usage by compressing each individual packet classifier, while the key idea of our 

approach is to save memory by allowing multiple packet filters to efficiently share data 

structures. 
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Chapter 5 

System Design 

5.1 Router Control State Collection 

The control state of a router depends on three classes of information: the configuration 

file of the router (e.g., ACL filtering rules), the direct configuration commands from a 

controller (e.g. SNMP SET commands), and the dynamic control protocol messages (e.g., 

OSPF LSA updates) exchanged among routers. The methods for obtaining this information 

are described below. 

Configuration file and configuration commands - Many router functions such as 

ACL filtering, TOS byte marking, tunneling, ingress filtering and Unicast Reverse Path 

Forwarding (uRPF) are specified in routers' configuration files. We assume routers' initial 

configuration files are provided to the state collector by the operator. However, a router's 

configuration may be updated either by the network operator or by other network manage­

ment software. In order to enable accurate trajectory error detection, the state collector 

must know the up-to-date configuration of each router in a timely manner. Therefore, we 

require any entity that may dynamically change the configurations of routers to immedi­

ately notify the state collector about any changes made to a router's configuration. This 

requirement presents some engineering challenges but is certainly feasible. 

Routing control messages - We first illustrate how the control messages of OSPF and 

BGP can be collected. Then, we extend the discussion to other protocols such as PIM, 

IGMP, RSVP, etc. In this section, we illustrate how the control message of OSPF and BGP 

can be collected. 

OSPF uses a reliable link state announcement (LSAs) flooding mechanism to exchange 

LSAs among routers. In order to reduce the flooding overhead, the operator may divide the 



100 

P(B, A, out) EBGP 
Router B 

P(A,B,in) State 
Collector 

EBGP 
Router A 

EBGP 
Router C 

IBGP peer connection 

IBGP peer connection to route server 

Policy RS client A 

If match peer A 
accept 

If match peer B 
P(B, A, out) 
P(A, B, in) 

If match peer C 
P(C, A, out) 
P(A. C, in) 

: RS client A i 

I 

A's BGP RIB 

Dest 

d1/16 

d1/24 

d2/16 

Next 

C 

B 

B 

P(X, Y, in): X's import policy for updates from Y 
P(X, Y, out): X's export policy for updates to Y 
RS: Route Server 

Figure 5.1 : Using a modified Quagga daemon to compute a router's BGP routing state. 

whole network into a number of areas. Each OSPF area is an LSA flooding domain and 

all routers belonging to the same area will receive an identical link state database for that 

area. For routers belonging to multiple areas, their OSPF routing states are determined by 

all link state databases they receive. Therefore, in order to obtain the link state databases of 

each area, the state collector needs to establish an OSPF neighbor adjacency with at least 

one router from each OSPF area. This adjacency can be established through a virtual tunnel 

interface. The state collector needs to "speak just enough OSPF" to passively collect all 

OSPF LSAs. It will neither originate nor flood any LSAs. Once the collector has obtained 

all link state databases, it can calculate the OSPF routing tables for all routers. A similar 

approach can be applied to other link state routing protocols such as IS-IS [Cal90]. 

Collecting BGP updates can be easily accomplished by setting up an IBGP connection 

between each BGP router in the AS and the collector. However, just collecting all the 

updates is not enough to reproduce the BGP routing state for an individual router. Because 

of the import and export policies configured on the IBGP connections among routers, a 

router may not receive or accept all BGP updates. Therefore, the state collector needs to 

extract those import and export policies from BGP configuration files and apply them when 
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computing the BGP routing state of a router. 

We have developed a convenient and practical way to do this computation by leveraging 

a modified version of the open source Quagga BGP daemon software. The basic idea 

is illustrated in Figure 5.1. First, the state collector runs our modified Quagga daemon 

configured as a route server.1. We set up peering relations between the daemon and all the 

BGP routers in the AS so that the BGP routers will export all BGP updates to the daemon. 

Then, as shown in the figure, to compute the BGP routing state of a router A, we configure 

a virtual route server client A. This client is virtual because router A will never actually 

receive BGP updates from the daemon. The import policy of virtual client A is configured 

to simply duplicate all the policies between router A and its IBGP neighbors in the network 

as shown in the figure. Therefore, the virtual client A accepts the same BGP updates as 

router A. Now, by invoking Quagga's built-in BGP decision process on virtual client A, we 

can conveniently compute the BGP routing state of router A. 

However, in a large network, it is very expensive to track the routing tables for all the 

routers all the time. For OSPF, when there is a link failure, it takes a significant amount of 

time to recompute the routing tables for all the routers. For BGP, one router's BGP table can 

be updated very frequently. To make our state collector scalable enough for large networks, 

we use an on-demand generation strategy to maintain routing tables. Specifically, in OSPF, 

the system maintains the most updated copy of the link state database in memory, and 

only computes the OSPF routing tables for the monitored router group when the trajectory 

error detector requests for them. In BGP, the BGP route server uses a master BGP table 

structure to maintain the latest updates received from BGP neighbors. Only when the 

detector requests for the BGP tables of the current router group, the route server generates 

all the requested BGP tables from the master BGP table in memory. By doing this, the 

state collector can track the routing state of a large network and efficiently generate the 

necessary routing tables for trajectory error detection. Once the needed routing tables are 

'The original purpose of a route server is to remove the need for full mesh peering among BGP routers at 

Internet exchange points. 
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generated, the shared data structure proposed in [FR08b] can be used to efficiently store 

them in the memory. 

While OSPF and BGP are arguably the most widely used and critical control protocols 

in the Internet, there are other protocols of interest. For example, to detect multicast for­

warding errors, the state collector must learn the multicast forwarding state of routers via 

multicast control protocol messages such as PIM and IGMP messages. However, unlike 

OSPF and BGP, PIM and IGMP provide no built-in mechanism for the state collector to 

reliably obtain a router's multicast state. Fortunately, by configuring the appropriate Net-

Flow input filters, Cisco's Flexible NetFlow capability [fie] can export the contents of PIM 

and IGMP messages received by routers (up to the first 1200 bytes of each packet, more 

than sufficient for PIM and IGMP messages) to an external collector. With copies of PIM 

and IGMP messages, it is feasible for the state collector to compute the multicast state of 

routers. Furthermore, since PIM and IGMP messages are periodic in nature (i.e. soft state), 

even if some messages are lost, the state collector will eventually receive refreshed copies 

to bring the router state up-to-date. 

A similar Flexible NetFlow-based strategy could be applied to other soft state control 

protocols, for instance, DVMRP, RIP, RSVP, etc. To limit the processing overhead, the 

state collector can collect these control messages only from the subset of routers whose 

behavior is being monitored. 

Although collecting router control state is feasible, maintaining all the changing control 

state is challenging. Ideally, we want to maintain a history of state instances for each type 

of state (e.g., OSPF RIB, BGP RIB, configuration file) on a per router basis. Each state 

instance is associated with an ideal accurate timestamp, indicating when this state instance 

started taking effect on the corresponding router. Whenever a new event (e.g., a new OSPF 

LSA) is received by the state collector, the collector should compute new state instances 

efficiently and append them to the history. Although the basic idea is conceptually clear, 

there are challenges to be addressed. 
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Deciding when a state instance took effect: We assume that routers' clocks are loosely 

synchronized. Synchronization accuracy of 100ms or better is achievable with NTP. The 

accuracy of the timestamp associated with a state instance will significantly affect the false 

trajectory error detection rate of the system. Calculating timestamps of state instances 

involves multiple factors such as the network topology, propagation delays of links, proto­

col specific parameters (e.g., Minimum Route Advertisement Interval timer in BGP, LSA 

hold down timer in OSPF), router software and hardware speed (e.g., how fast the router 

can write one entry to the forwarding table), packet loss and retransmission (e.g., the re­

transmission of one lost BGP update will delay BGP convergence). Therefore, it is very 

challenging to precisely model the above process and calculate an accurate timestamp for 

each state instance. 

Our approach is to associate each state instance with an uncertainty period. We use the 

uncertainty period to specify a time interval during which the state might be in transition 

from the old instance to the new one on the router. Therefore, during its uncertainty period, 

a state instance will not be used for any trajectory error detection because it may produce a 

false detection with a high probability. Similarly, all collected behavioral evidence for that 

router within the uncertainty period will not be used either. 

Take OSPF control state as an example, it is necessary to estimate different uncertainty 

periods for LSA updates originating from different routers. For example, given one update 

originated at router i?,, we may first determine the farthest router Rj that needs to receive 

the update. Assume the round-trip delay of the path between R4 and Rj is d^ and there 

are m routers (including Ri and Rj) on the path from R4 to Rj. Then a rough estimate of 

the length of the uncertainty period P is: P = a x dij• + m x Max Router Processing + 

m x ProtocolTimers, where MaxRouterProcessing stands for the estimated maximum 

processing time for the corresponding update and ProtocolTimers stands for the protocol 

specific timer such as the LSA hold-down timer in OSPF. a coarsely represents the effect 

of packet losses. 

Observe that some false detections may exist if the uncertainty period is estimated 
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poorly. However, we can always cross validate and confirm a detected trajectory error 

by actively probing the network using, for instance, Cisco IOS IP Service Level Agree­

ments (IPSLA) [ips]. Instances of false detections can thus provide a source of feedback 

for adapting the uncertainty period estimation algorithm. We will continue to investigate 

how to leverage such feedback information to improve the estimation of the uncertainty 

period as our future work. 

Efficiently maintaining state instances: We investigated several directions for improv­

ing state maintenance efficiency. Recall that a new state instance is inserted to the state 

history. However, some protocols such as BGP feature frequent updates. Specifically, BGP 

is in charge of learning routes to all destinations outside of the network, so it typically re­

ceives updates from its neighbors frequently. Therefore, it is possible that the BGP routing 

table will always be in the uncertainty period due to frequent updates. What is worse, the 

BGP table on a backbone router could be as big as a few megabytes. Thus, generating a new 

table for every update will consume a lot of resources. Fortunately, one useful observation 

is that BGP may receive update messages frequently but actual changes to BGP tables are 

narrow (i.e., only updating a small number of prefixes). Therefore, one optimization is to 

associate the uncertainty period to a finer-grained object, an IP prefix, instead of the whole 

BGP table. Then we do not need to generate a new BGP table every time a new update 

is adopted, instead we only append the new update associated with its uncertainty period 

to the current BGP table. By doing this, we can minimize the uncertainty period of the 

whole BGP table and improve the memory utilization. The next problem is that every time 

when we need to supply the BGP table to the trajectory error detector, we have to start from 

the initial table and process all update logs to generate an up-to-date table, which could be 

very inefficient if the trajectory error detector requests BGP tables frequently. Therefore, 

we propose to periodically process the logged updates to produce a new table, and then we 

only keep the new table in memory and store all the old processed updates to disk. 

When a complete history for each state is maintained by the detector, there might exist 
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a lot of redundancies in those states across different routers. For example, BGP RIBs of 

different routers may be very similar. Another example is that routers within the same 

network may use similar firewall policies. In order to minimize resource consumption, 

we propose to classify the same type of states from different routers into a small number 

of groups, where each group contains a set of similar states of the same type. We can 

then compress the storage of states in the same group by exploiting their similarity. To 

be specific, let us again take BGP as an example. We first extract all the same BGP table 

entries from all BGP tables in the same group and store these common entries in a base 

table. Then for each BGP table, we can create a delta table storing the rest of its BGP 

table entries that are not in the base table. When one BGP table is updated afterward, we 

only update the corresponding delta table while still keeping all the same entries in the base 

table. Periodically, we may need to run the classification algorithm again to re-group the 

BGP tables in the network. For the multiple delta tables, the shared forwarding table data 

structure can be used to more efficiently store them. 

All the packet filters and access control lists stored on the detector can be efficiently 

represented using the shared HyperCuts decision trees proposed in Section 4. 

5.2 Traffic Trajectories Monitoring and Collection 

We leverage NetFlow or its equivalents such as Flexible NetFlow and IPFIX to collect 

network behavioral evidence from routers. NetFlow or its equivalents are widely supported 

by commercial routers from Cisco, Juniper, and other vendors for network traffic analysis 

and monitoring purpose.The NetFlow facility on a router can generate records for traffic 

flows that go through the router's interfaces in both the inbound and outbound directions. 

Furthermore, it has the necessary property that inbound flows are recorded before inbound 

ACL filtering is applied, and outbound flows are recorded after outbound ACL filtering is 

applied. The collected flow records can be exported to a NetFlow collector host. 

A TCP or a UDP flow is denned by the source IP address, destination IP address, source 

port number, destination port number, and protocol number. Other flows, such as ICMP 
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flows, are defined by source, destination DP addresses and protocol number. A NetFlow 

flow record contains a wide variety of accounting information about a flow, such as flow 

timestamps, number of bytes and packets observed in the flow, D? layer header of packets 

and TCP flags. Therefore, by analyzing the NetFlow records collected at a target router's 

neighbors' interfaces, it is possible to determine whether the target router has maliciously 

dropped a flow, let a flow bypass ACL filtering, mis-forwarded the flow, marked the TOS 

byte of a flow to steal higher quality service or degrade the flow's service, initiated a new 

unwanted flow, etc. 

NetFlow's filter based sampling feature further allows us to record the full flow in­

formation for specific kinds of flows (e.g. specific protocol, specific source, specific port 

number, etc.). However, we must be careful about how to set up the sampling filters and 

coordinate these filters on different routers. On one hand, we want the sampling filters to 

cover all flows going through the routers so that we can detect trajectory errors that affect 

any flow. On the other hand, if a sampling filter samples a large fraction of traffic on a 

router, it will bring significant computation overhead on the router. Our strategy to handle 

this is to set up the sampling filters to cover only a small range of destination port numbers. 

For destination port numbers that are extremely popular, such as 80 for HTTP traffic, we 

further use a source port number and destination port number pair to set up the sampling 

range. By doing this, we can make sure that a sampling filter only cover a small fraction of 

flows. We then vary the range of port numbers to eventually cover all flows in the network. 

We have analyzed the Internet2 NetFlow traces. Based on this analysis, we find that it 

is easy to restrict the percentage of flows sampled. To give some examples, for unpopular 

port numbers, specifying the destination port number range from 6000 to 8000 will cover 

about 1 % of all the traffic. On the other hand, pairing a popular destination port number 80 

together with source port number range from 3000 to 4200 will also cover 1 % of the total 

traffic. Furthermore, we find that flows that do not have port numbers (e.g. ICMP) account 

for only a very small fraction (0.23% in our analysis) of the flows. Therefore, our strategy 

is to sample all such flows. 
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NetFlow records assembly - Another issue we want to point out here is the need for 

flow record assembly. The NetFlow facility on routers uses a flow cache to store temporary 

flow records before exporting them to collectors. When a flow is complete, the record 

will be exported. NetFlow will also export partial records of active flows to the collector 

when the cache becomes full to make room for new flows. NetFlow also has an active 

timer and an inactive timer to control the exporting of flow records. A flow record will 

be exported if the flow is inactive for a certain time, or if the flow is long lived and lasts 

greater than the active timer. The consequence is that, a router can export several partial 

flow records for a network flow. Different routers can export the partial flow records at 

different time. Furthermore, NetFlow can only provide best-effort service for exporting 

traffic information. NetFlow supports both UDP and SCTP [Ste07] for the transport of 

flow records to collectors. However, a flow record can be lost due to packet loss (in case 

of UDP) or a connection failure (in case of SCTP). The unaligned partial flow records and 

potential missing records make it a challenging problem to maintain behavioral evidence. 

For connection-oriented TCP flows, flows start from SYN packets and finish at FIN 

or RST packets. Since NetFlow records contain TCP flow flags, a complete flow record 

for a TCP flow will have both SYN and FESf/RST bit set in TCP flow flags. Partial flow 

records may only have SYN bit, or FIN/RST bit, or neither of them set. To provide be­

havioral evidence for TCP flows, the collector must assemble all the related partial flow 

records into complete flow records. So, given a TCP flow, we can detect whether or not any 

router misbehaves on this flow by matching complete flow records collected from different 

routers. 

On the other hand, connection-less flows do not have special packets to determine the 

start and end of flows. Given a UDP flow, what the collector receives is just a sequence 

of flow records with timestamps. The problem is that, given a flow record at an upstream 

router, how can we determine which downstream flow record represents the same set of 

packets? Since different routers may export its flow records at very different time, the 

alignment of flow records from routers is a challenging problem. 
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We use the following strategy to address the problems. First, to prevent missing flow 

records caused by accidental packet loss, we use SCTP to transport NetFlow records. In 

this case, flow records can only be lost when the SCTP connections between routers and the 

collector fail. When a connection fails, the flow records from the corresponding router are 

potentially lost. The collector therefore discards all the partial TCP flow records received 

from this router. Under normal circumstances, the collector buffers all the partial TCP 

flow records and assemble them into a complete record after it sees a flow record with the 

FIN/RST bit set. For connection-less flows, we propose the following heuristic mechanism 

to align flow records on different routers. The basic idea is that, assuming the network delay 

jitter is bounded, if the flow experiences a long idle period at an upstream router, it will also 

experience a long idle period at a downstream router. We can use these long idle periods 

to align flow records. More specifically, we set both the active timer and the inactive timer 

to T seconds (e.g. 30 seconds). In this case, as long as a flow is active, NetFlow will 

export a flow record for it every T seconds. If the collector keeps receiving records for a 

flow from both the upstream and the downstream routers every T seconds, it will assemble 

them. If it does not receive records from both upstream and downstream routers for IT 

seconds, this means the flow has been idle for at least T seconds on both upstream and 

downstream routers. In this case, the collector will stop assembling and make available 

the accumulated records for trajectory error detection. Finally, for connection-less flows 

that are continuously active for a long time, the collector periodically (period > > 2T) 

stop assembling and make available the accumulated records. In this case, because of 

the potential misalignment, a difference between the upstream record and the downstream 

record may not indicate any actual trajectory errors. Instead, we will monitor whether the 

difference is diverging over multiple detection periods to identify a trajectory error. 

5.3 Router Trajectory Error Detector 

With the collected router state and the network behavioral evidence observed for a moni­

tored router group, the trajectory error detector's task is to periodically process the accu-
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Figure 5.2 : Preprocessing and supply of behavioral evidence to traffic trajectory error 
detectors. 

mulated evidence and report discovered trajectory errors. The main challenge is to design 

the detector to achieve a high processing throughput. This challenge can be decomposed 

into two parts. First, the detector must be able to efficiently search through the NetFlow 

records in the evidence to find out what in reality happened to a particular flow. Second, 

the detector must be able to efficiently compute based on router state what should have 

happened to that flow. 

We address the first part by preprocessing the outbound NetFlow records into an ef­

ficient searchable data structure and by parallelizing the processing of inbound NetFlow 

records. The high level organization of this approach is presented in Figure 5.2. In the 

illustrative example, 10 interfaces, i.1 to i.10, are monitored. Each interface reports Net-

Flow records for both inbound flows (i.e. flows heading into the monitored region) and 

outbound flows (i.e. flows leaving from the monitored region). Outbound NetFlow records 

from all monitored interfaces are then gathered and sorted by their timestamps (we assume 
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router clocks are loosely synchronized). Those records that belong to the same time period 

[U, U+i =U + constant) are grouped together into a bin. Then, the records in each bin are 

inserted into a hash table to facilitate the search operation. 

In contrast, the processing of the inbound NetFlow records needs no special precom-

putation. Also, since the processing of each inbound NetFlow record is independent, the 

computations can be highly parallelized to increase throughput. In the illustrative example, 

one detector instance is responsible for processing the inbound records from one interface. 

With the outbound records preprocessed, given an observed inbound NetFlow record at 

time tj, the detector simply needs to index into the corresponding time bin (and also the 

adjacent time bin if tj is too close to the bin boundary) and search the data structure for the 

flow specification of the expected outbound flow to determine what happened to the flow. 

Note that the outbound flow specification may be different from that of the inbound flow 

if the routers inside the region are configured to modify the flow (e.g. mark the TOS byte, 

tunnel the flow, etc.). Finally, the detectors can gather all the outbound flow records that 

are not matched to any inbound flow record and check whether those outbound flows were 

maliciously fabricated. 

To address the second part of the challenge, we add several detector performance im-
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provement mechanisms as illustrated in Figure 5.3. First of all, observe that since most 

network traffic is simply best-effort forwarded, in the majority of the cases, the fate of a 

flow only depends on routers' FIBs. In the minority of the cases where a flow is specially 

processed by a router (e.g. filtering, tunneling, TOS marking etc.), the flow must match a 

certain configured filter of the router. Therefore, in general, filter matching and FIB lookup 

are two fundamental steps in computing the fate of a flow. 

As illustrated in Figure 5.3(a), the baseline mechanism the detector relies on to compute 

the correct fate of an inbound flow is a hop-by-hop full simulation of the routers' behaviors. 

However, our goal is to minimize the need for such hop-by-hop simulation to improve 

performance. Since most flows only require hop-by-hop FIB lookups to determine their 

fates, it is important to improve the performance of such repeated FIB lookups. We can 

improve the performance of the FIB lookups by preprocessing the FIBs of routers in a 

monitored region into a combined FIB as outlined in Figure 5.3(b). The combined FIB 

makes it possible to determine the outbound interface of a flow by performing only one 

address prefix match operation, which is the most costly step in a FIB lookup. For instance, 

suppose an inbound flow with destination address dl arrives at router A. A prefix match in 

the combined FIB will yield two matching entries dl/16 and dl/24. As usual, the longest 

prefix matched is considered first and only if the corresponding FIB entry is "nil" then the 

shorter prefix matched is considered. Thus, the path of this flow A, B,D can be determined 

efficiently. Existing FIB aggregation techniques proposed by Fu and Rexford [FR08b] can 

be directly applied. 

A hop-by-hop simulation may still be required if the routers in the region need to apply 

complex processing to the flow. Operationally, a router matches a received packet against 

its packet filters to decide whether it needs complex processing. To determine whether 

such complex processing is necessary in a monitored region, we preprocess all filters of 

routers in the monitored region into one aggregated filter. Then, for each inbound flow, we 

perform one filter matching operation against the aggregated filter while at the same time 

speculatively perform a forwarding lookup in the combined FIB. If the flow does not match 



112 

the aggregated filter, then the fate of the flow is determined by the result of the combined 

FIB lookup. Otherwise, we will fall back on hop-by-hop simulation to determine the fate 

of the flow. 

5.3.1 Discussion 

In our design, the detector is composed of a number of key components including collecting 

control states, collecting traffic trajectories and trajectory error detection logic. Obviously, 

the implementation of the detector must be more bug-free as possible. Now let us compare 

the implementations of the detector and a full-fletched router. 

A full-fletched router is a complex system composed of a control plane and a data plane. 

The control plane is responsible for learning how to process data packets and it consists of a 

large number of complex software modules including routing protocols (e.g., OSPF, IS-IS, 

RIP, BGP, PIM), signaling protocols (e.g., RSVP, LDP), route management utilities (e.g., 

route filter, route redistribution), router management interface (e.g., SNMP, router config­

uration utilities, packet filter configuration) and so on. On the other hand, the data plane is 

responsible for actual packet processing and it is usually a combination of complex soft­

ware and hardware. The data plane performs many functions such as forwarding, filtering, 

NAT, IP option handling, TTL decrement, checksum computation, etc. The control plane 

and data plane together determine the observable packet processing behavior of a router. 

Therefore, the implementation of a router is really complex. 

Fortunately, implementing the detector is easier and less error-prone than implementing 

a full router because of the following reasons: Firstly, the detector only handles sampled 

flow records so it does not need to run at line speed. Thus, instead of using sophisticated 

algorithms, it can employ simpler and less error-prone algorithms to reduce the number 

of bugs. For example, in order to check whether the target router filters packets correctly, 

the verifier controller needs to implement packet classification. Router vendors usually use 

complex algorithms or even specialized hardware such as TCAMs to achieve high classi­

fication speed. However, the detector can just implement the simple HyperCuts algorithm 
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which is very unlikely to introduce many bugs. Secondly, the detector does not handle data 

packets directly, instead it only receives the aggregated flow records. As we have shown 

in the Introduction, a lot of bugs are triggered by data packets. By avoiding handling data 

packets, the detector is safer. Thirdly, to detect traffic trajectory errors, it is sufficient for 

the detector to only selectively implement a small set of key packet processing functions, 

which also helps minimize the implementation complexity of the detector. For example, 

our detector only detects three types of typical trajectory errors. Fourthly, the detector may 

only implement the needed protocols instead of all possible protocols in the full-fletched 

router. Even for each supported, protocol, the detector only needs to implement the re­

quired components. For example, to obtain OSPF control messages, the detector only acts 

as a passive neighbor, it does not need to announce any LSAs nor forward LSAs. Fifthly, 

the detector is just an application level program and it can run on commodity hardware. It 

does not require customized fancy hardware and software support. Due to wide availability 

of the commodity hardware, it is less likely that they have many bugs. Lastly, because 

the code base of the detector is much smaller than the full implementation of a full-fletched 

router, it is more feasible for us to apply software testing and formal verification techniques 

to more thoroughly test and verify the correctness of the implementation of the detector. 
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Chapter 6 

Prototype Evaluation 

6.1 Prototype System Implementation 

We have implemented a complete prototype system. It has three major parts: control state 

collector, the NetFlow evidence collector and the trajectory error detector. We leverage 

the open source Quagga routing software (version 0.98.6) [quab] to implement the control 

state collector. We modify the Quagga ospfd and bgpd route server code to support on-

demand OSPF and BGP table generation. We use the open source flow-tools [ftoa] collector 

as our NetFlow evidence collector. The flow-tools collector will receive NetFlow record 

packets from routers' NetFlow sampling facility and manage them in the flow record files. 

The trajectory error detector requests the control state data and NetFlow records from the 

state collector and the evidence collector, and checks routers' behaviors. The detector uses 

a HyperCuts decision tree [SBVW03b] based packet classification algorithm to encode 

filters and a trie data structure to encode forwarding tables to speed up the filter match and 

forwarding table lookup procedures. Our current prototype implementation only supports 

hop-by-hop simulation to determine a router group's behavior. 

6.2 Emulab Testbed Setup 

We set up a testbed with the Internet2 topology on Emulab. As shown in Figure 6.1, there 

are 9 routers in the testbed emulating the 9 core routers in Internet2. To closely emulate 

the real Internet2 routers, we set up these routers using Juniper JUNOS [juna] version 8.5 

running on FreeBSD. This use of JUNOS is also widely known as Olive [oli]. Olive can 

precisely emulate a Juniper router. The only difference between an Olive and a Juniper 
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Figure 6.1 : Emulated Internet2 testbed on EmuLab. 

router is that, a real router runs JUNOS on a special hardware packet forwarding engine, 

while Olive runs JUNOS on a commodity PC. We use Emulab PC3000 machines to set 

up the Olive routers. PC3000 are the machines with Intel Xeon 3.0GHz 64bit CPU, 2GB 

RAM and 5 Ethernet NICs. We first set up the QEMU (version 0.9.1) [qem] virtualization 

environment on the PC3000 to provide the particular NIC models required by Olive, and 

install the Olive software router inside QEMU virtual environment. QEMU men runs on 

top of a host Linux system. 

The configurations of these 9 Olive routers are based on the real configuration files 

of Internet2 routers. Since Quagga does not support IS-IS, we translate Internet2's IS-IS 

configuration into an equivalent OSPF configuration. We use one PC directly connected 

with each Olive router to emulate its EBGP neighbor and inject BGP routes into it. To 

inject BGP routes, we built a simple tool to load BGP update messages from real routers' 
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Figure 6.2 : The performance of OSPF and BGP control state collection, (a) OSPF. (b) 
BGP. 

BGP updates trace, set up a BGP connection with the Olive router, and announce these up­

date messages to it. We tested the forwarding performance of Olive routers. For an Olive 

router with 270k routing table entries and no packet filter, it can forward 5300 packets/s 

without packet loss. After we enable filters on the router, its throughput drops to 4700 

packets/s. Since Olive routers do not support NetFlow sampling, we use the IPCAD (ver­

sion 3.7.3) [ipc] tool to sample packets on the QEMU interfaces to emulate the NetFlow 

on routers. We deploy our detection system on a PC3000 machine connected to the HOUS 

router. 

6.3 Performance of Router Control State Collection 

To evaluate the performance of our router control state collector, we measure the time it 

takes to generate OSPF and BGP routing tables of different sizes. For OSPF routing tables, 
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we use a simulation experiment to inject LSAs for networks with different topologies and 

sizes into the Quagga based OSPF state collector. These topologies include the real network 

topologies we have used for previous experiments. To study the OSPF table computation 

time for larger networks, we also include Rocketfuel (RF) topologies [SMW02] in this 

experiment. Figure 6.2(a) shows the average time it takes to compute an OSPF table with 

different sizes of networks. The sizes of these networks are shown in the label text. We 

can see that the state collector can compute OSPF tables quickly. Even in a large network 

with 1347 routers and 6225 links, it only takes 700 ms to generate the OSPF table for one 

router. For the Internet2 network, it only takes 0.02 ms to generate the OSPF routing tables 

of all the 9 routers. 

To evaluate the performance of the BGP routing state collector, we inject different 

numbers of BGP routes into the Internet2 routers in our testbed. The BGP update messages 

are from the Route Views router traces. We use our BGP route server to collect all the 

updates from the Internet2 routers, and reproduce the BGP tables of all the 9 Internet2 

routers. Based on our experiment, the BGP route server can process BGP update messages 

very efficiently. Even after the route server has collected the whole 270,000 BGP routes, it 

can still process an update message in 76 ^s on average. Figure 6.2(b) shows the average 

time for the route server to generate one BGP table at different sizes. We can see that, the 

BGP route server can generate BGP tables very quickly. Even for a BGP table with all the 

270,000 entries for the whole Internet, it takes 690 ms to generate one table on average. 

The Internet2 BGP table has only 12000 entries, and it only takes 275 ms to generate the 

BGP tables for all the 9 Internet2 routers. 

6.4 Performance of Traffic Trajectories Collection 

We use the open source flow-tools (version 0.68) software as the behavioral evidence col­

lector. We design the following experiment to test how many flow records the flow-tools 

collector can handle in one second. First we run the flow-capture daemon as a collector in 

our testbed. We use the flow-send daemon to load flow records from the Internet2 NetFlow 
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traces and send the flow records to the collector. To test the limit of the flow collector, 

we simultaneously run the flow-send daemon on 9 nodes. All the nodes keep loading flow 

records from trace files and send them to the collector. We found that each node can send 

700 flow report packets per second without packet loss, where each packet contains 22 

flow records. This means the collector can handle 138,600 flow records per second from 

all 9 senders and manage them in the disk archives without flow record loss. Considering 

in reality, all the 9 Internet2 routers only generate 1,200 flow records per second together 

(Internet2 routers enable random NetFlow sampling at the rate of one out of 100 packets), 

our results show that the flow-tools collector can easily handle a large volume of NetFlow 

record data and effectively collect behavioral evidence from large networks. 

6.5 Performance of Trajectory Error Detection 

Three major components in the trajectory error detector are critical to the detection per­

formance. The forwarding table trie and filter decision tree components decide how fast 

the detector can compute the expected behavior of a flow. The flow hash table component 

decides how fast the detector can find out the flow's real behavior from a large number 

of NetFlow records. To understand the performance of the detector, we first evaluate the 

performance of each major component individually. We first test how much time it takes 

to build a large trie, a large decision tree and a flow hash table. We found that it takes 2.3s 

to build a trie with 260K prefixes, and it takes 3.3s to build a HyperCuts decision tree for 

a filter with 10,000 rules generated by ClassBench [TT05a]. Building a flow hash table is 

much faster. Even for a flow hash table with 100K records, it only takes 0.14s to build the 

hash table. Note that building these data structures is a one time operation before a router 

group is monitored. We expect a router group is monitored for several minutes before the 

system switches to a different router group. Thus, needing tens of seconds of preparation 

time is still acceptable. 

Figure 6.3 shows the average lookup time of the trie, the decision tree and the flow hash 

table. We can see that it is very efficient to perform lookup operations on them. Even for 
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Figure 6.3 : The performance of detector components, (a) Trie lookup time, (b) Decision 
tree lookup time, (c) Flow hash table lookup time. 
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Figure 6.4 : The overall performance of trajectory error detection, (a) Average processing 
time for each flow, (b) Peak memory usage during the detection. 

a trie with 260K prefixes, it only takes 3.7/xs to lookup a prefix on average. For a filter 

decision tree with 10,000 rules, it only takes 5.5 /LXS to classify a packet on average. It takes 

4.8 /̂ s to lookup a flow record from 100K records. 
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We conduct a complete experiment in our testbed to evaluate the overall performance of 

the detector. In the experiment, each router has 270K prefixes in its routing table. A simple 

synthetic 10-rule filter generated by [TT05a] is enabled as the input filter on each interface. 

Real Internet2 traces are used to generate flows. We vary the router group size and measure 

the average time for processing each flow record for trajectory error detection and the peak 

memory usage. The results are shown in Figure 6.4. As can be seen, the detector can 

process a large number of flows quickly. For example, even if each router group contains 

8 routers, the average processing time for each flow is around 34 //s, i.e., 30,000 flows per 

second. For comparison, currently the 9 real Internet2 routers only generate a total of 1200 

flow records per second. 

6.6 Integrated Trajectory Error Detection Demonstration 

We set up an integrated experiment to demonstrate the use of our system to monitor our em­

ulated Internet2 network. Based on the Internet2 network topology, we select router groups 

using the group selection algorithm described in Section 3.3 with Maxlnterface = 10, 

MaxRouter = 8, and a — 0.5. Four router groups are returned by the selection algo­

rithm: Gl = {CHIC, HOUS, LOSA, SEAT, KANS, WASH}, G2 = {CHIC, HOUS, LOSA, 

SALT, NEWY, ATLA}, G3 = {HOUS, SEAT, SALT, KANS, NEWY, WASH, ATLA} and 

G4 = {CHIC, LOSA, SEAT, SALT, KANS, NEWY, WASH, ATLA}. We monitor each 

router group for 150 seconds. All four router groups are monitored repeatedly. We inject 

traffic from a host connecting to ATLA by playing back real Internet2 traces. We artifi­

cially introduce 15 forwarding errors across all routers by adding static routes in the Olive 

routers while not informing the detector about these configuration changes. We selectively 

add those static routes to only affect long-lived flows so that we can simulate persistent 

trajectory errors. 

The four router groups can detect 6, 2, 7 and 2 of the 15 trajectory errors respectively. 

All 15 trajectory errors are detected eventually. Some trajectory errors are detected by more 

than one router group. Table 6.1 shows the time when each trajectory error is detected for 
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Trajectory error: 

Time(s): 

Trajectory error: 

Time(s): 

Trajectory error: 

Time(s): 

1 

152.10 

6 

152.86 

11 

456.04 

2 

152.11 

7 

304.03 

12 

456.12 

3 

152.12 

8 

304.03 

13 

456.13 

4 

152.22 

9 

456.01 

14 

608.52 

5 

152.33 

10 

456.02 

15 

608.53 

Table 6.1 : Times tamp of each trajectory error first detected. 

the first time since the detector started. In the current implementation, the detector only 

starts detection when one monitoring period is completed. In a future version, we will 

eliminate this limitation and perform live detection so that the detection times will all be 

reduced by 150s. 

In addition to quickly detecting artificially introduced trajectory errors, our system also 

detected a trajectory error that was caused by bugs in our BGP update injector and our 

router configuration. Specifically, because we are emulating Internet2 on Emulab, in order 

to avoid confusion, we do not allow the BGP update injectors to announce any IP prefixes 

belonging to the University of Utah and the real Internet!. However, a bug in our BGP up­

date injector caused one Internet! prefix 64.57.8.1/31 to be announced into the testbed. In 

addition, in the Olive configuration, we accidentally gave routes learned from BGP a higher 

preference. Consequently, this BGP route was chosen by the Olive routers, and all traffic 

destined to that prefix was routed to the BGP update injector running on a host connecting 

to SALT, creating a trajectory error. On the other hand, the detector correctly calculated its 

route to this prefix based on LSAs flooded by OSPF. The detector accurately detected this 

routing inconsistency and helped us discover the bug in our BGP update injector and router 

configuration! 
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Chapter 7 

Conclusion and Future Work 

Traffic trajectory errors are serious problems to an operational network because they may 

disrupt network services, cause network applications to fail and create security loopholes 

for network intruders to exploit. Therefore, traffic trajectory errors must be detected quickly 

and efficiently when they are triggered in the field. There has been recent work on design­

ing efficient traffic trajectory error detection systems; nonetheless they have seen limited 

deployment in operational networks. This thesis presents important contributions towards 

making traffic trajectory error detection systems more efficient and more attractive to net­

work operators. First, we present an efficient trajectory monitoring technique called router 

group monitoring. The proposed technique can greatly reduce the monitoring overhead 

and increase the error detection speed. Second, we propose a novel shared data structure to 

efficiently store and lookup a large number of packet filters inside a router group. Third, we 

have built a complete prototype system based on the first two contributions. Unlike many 

existing trajectory error detection systems that require modifications to existing routers' 

hardware and software, our prototype is completely compatible with Juniper's JUNOS, 

which makes it immediately deployable in a real network. 

We now present a summary of the main results of this thesis and directions for future 

work. 

7.1 Summary of Contributions 

Our first contribution is the router group monitoring technique. The idea started with a 

simple observation: To detect a traffic trajectory error in a network, it is unnecessary to 

monitor all network interfaces. However, how to exploit this observation was not entirely 
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obvious. This thesis has explored one class of strategy called router group monitoring. To 

understand the potential of this strategy, we have studied numerous real network topolo­

gies and found that router group monitoring is surprisingly effective. To make this idea 

practical, we have derived an analytical model to predict the effectiveness of a router group 

based on three identified important factors that affect router groups' error detection perfor­

mance. In addition, we have also designed an efficient algorithm for selecting sets of router 

groups with complete error coverage and fast error detection under monitoring resource 

constraints. The analytical model provides key insights on the factors that determine the 

error detection rate. Our router group selection algorithm, when applied to Trajectory Sam­

pling, can improve detection speed by up to a factor of 4, and when applied to Fatih, can 

reduce the communication overhead by up to 85%. Interestingly, router group monitoring 

is just one of possibly many interface selection strategies that remain to be explored. 

The second contribution of the thesis is to exploit the feasibility of efficiently represent­

ing multiple packet filters using a shared data structure. Concretely, our thesis is the first 

to study how to construct an efficient shared data structure based on the HyperCuts tree 

for multiple packet filters. We have identified a set of important factors that can affect the 

performance of the constructed shared HyperCuts decision trees. We then propose a novel 

approach to clustering packet filters into shared HyperCuts decision trees. Our evaluation 

using both real packet filters and synthetic packet filters shows that our shared HyperCuts 

decision trees can reduce up to 50% of the memory consumption while keeping the average 

height of trees the same as the separate trees. In addition, the shared HyperCuts decision 

trees enable concurrent lookup of multiple packet filters sharing the same tree. We also 

show that the proposed approach is practical. It only takes a few minutes to finish clus­

tering 1,000 packet filters and to construct the corresponding shared HyperCuts decision 

trees. 

The third contribution is the proof-of-concept implementation of a prototype trajec­

tory error detection system. The prototype system is completely compatible with Juniper's 

JUNOS. Our micro-benchmark experiments show that the system can monitor a real net-
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work with ease. Our live system demonstration shows that the system is realistic and im­

mediately deployable. 

7.2 Future Work 

We have shown that the router group monitoring is a powerful technique to improve the 

efficiency of the traffic trajectory monitoring. However, our heuristic router group selec­

tion algorithm is by no means an optimal solution. Instead, it only serves as the first step 

towards designing an optimal router group selection algorithm. To continue to improve 

the efficiency of traffic trajectory monitoring, more efforts are needed to find the optimal 

router group selection algorithm that provides both full coverage and fastest error detec­

tion. In addition, the current router group selection algorithm still lacks of flexibility to 

cope with some practical constraints. For example, it implicitly assumes that each link 

carries the same traffic volume, so we always assume the detector cannot monitor more 

than Maxlnterface interfaces simultaneously. However, in a real network, links could be 

carrying very different traffic volumes. Thus, the router group selection algorithm needs 

to incorporate this constraint. In addition, the current selection algorithm tends to use 

interfaces on high-degree nodes to monitor multiple router groups simultaneously. There­

fore, those high-degree nodes might need to monitor many of its interfaces simultaneously, 

which may potentially overload high-degree nodes. It would be important to develop a 

more general router group selection algorithm that can cope with as many practical con­

straints as possible. 

After a trajectory error is detected inside a router group, how to quickly determine the 

actual misbehaving router remains a problem. Some straight-forward approaches do exist. 

For example, we can randomly split the router group into two halves and then monitor each 

half respectively to determine which half contains the misbehaving router and then continue 

the binary search on the half containing the misbehaving router. We can also monitor all the 

routers along the expected forwarding path one by one. It would be important to determine 

the optimal strategy for localizing the misbehaving router. One potential first step is to 
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leverage the forwarding states and router configurations inside the router group to more 

quickly narrow down the list of suspicious routers. Given different types of router errors, 

different fault localization algorithms may be needed. 

The shared HyperCuts tree is shown to be effective in efficiently maintaining multiple 

packet filters. However, in practice, packet filters may be updated frequently. Therefore, 

how to efficiently cope with the dynamics of packet filters is a problem that needs to be 

carefully studied. That is, there is a need for efficient mechanisms for incrementally updat­

ing the shared decision trees when some packet filters are changed. It would be also very 

useful to study whether our proposed technique can be applied to other data structures that 

can represent packet filters (e.g., the decision diagram [GL04]). 
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