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ABSTRACT 

Coupling Surface Flow with Porous Media Flow 

by 

Prince Chidyagwai 

This thesis proposes a model for the interaction between ground flow and surface 

flow using a coupled system of the Navier-Stokes and Darcy equations. The coupling 

of surface flow with porous media flow has important applications in science and 

engineering. This work is motivated by applications to geo-sciences. 

This work couples the two flows using interface conditions that incorporate the 

continuity of the normal component, the balance of forces and the Beaver-Joseph-

Saffman Law. The balance of forces condition can be written with or without inertia! 

forces from the free fluid region. This thesis provides both theoretical and numerical 

analysis of the effect of the inertial forces on the model. Flow in porous media is 

often simulated over large domains in which the actual permeability is heterogeneous 

with discontinuities across the domain. The discontinuous Galerkin method is well 

suited to handle this problem. On the other hand, the continuous finite element is 

adequate for the free flow problems considered in this work. As a result this thesis 

proposes coupling the continuous finite element method in the free flow region with 

the discontinuous Galerkin method in the porous medium. 

Existence and uniqueness results of a weak solution and numerical scheme are 

proved. This work also provides derivations of optimal a priori error estimates for the 

numerical scheme. A two-grid approach to solving the coupled problem is analyzed. 
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This method will decouple the problem naturally into two problems, one in the free 

flow domain and other in the porous medium. In applications for this model, it is 

often the case that the areas of interest (faults, kinks) in the porous medium are 

small compared to the rest of the domain. In view of this fact, the rest of the thesis is 

dedicated to a coupling of the Discontinuous Galerkin method in the problem areas 

with a cheaper method on the rest of the domain. The finite volume method will be 

coupled with the Discontinuous Galerkin method on parts of the domain on which 

the permeability field varies gradually to decrease the problem sizes and thus make 

the scheme more efficient. 
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Chapter 1 

Introduction 

Coupling free flow and porous media flow is an important problem because of the wide 

ranging applications in science and engineering. This thesis develops efficient numeri-

cal techniques for solving coupled surface flow and porous media flow by coupling the 

continuous finite element, also refered to as the Continuous Galerkin method (CG) 

in the free flow domain with Discontinuous Galerkin (DG) method in the porous 

medium. The choice of the DG method is suitable because of the difficulties that 

arise due to the heterogeneities and discontinuities in porous media. As the algebraic 

systems from the coupled model are large and time-consuming to solve, this work 

also proposes a decoupling technique based on a two-grid method for more efficient 

computations. 

Motivation for this work is driven by applications of this coupling phenomenon to 

modelling the interaction between groundwater flow and porous media flow. Other 

applications include modelling industrial filtration [17] and modelling filtration of 

blood flow. When coupled with a transport equation, this phenomenon can also be 

used to study the diffusion and propagation of pollutants in water [8j. In this work, 

the free fluid domain is modelled by the Navier-Stokes equations and the flow in 

the porous medium is modeled by Darcy's law. The choice of these models requires 

conditions to be specified on the interface to couple the velocity and pressure variables 

in the two computational domains. To address the issue of coupling the velocity 

variables, Beavers and Joseph [3] perform experiments measuring the mass efflux of 
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Poiseuille flow over a permeable block. They postulate that the difference between 

the slip velocity of the fluid and tangential componenent is proportional to the shear 

rate of the fluid. Saffman [50] provides a theoretical justification of the condition 

proposed by Beavers and Joseph [3, 29]. This interface condition is now a widely 

accepted interface condition know as the Beavers-Joseph-Saffman law. The interface 

conditions were later completed by Payne and Straughan [39] to include the continuity 

of the normal component of the velocity and the balance of forces. 

Early numerical work on coupling Navier-Stokes and Darcy equations can be found 

in the work by Salinger et al. [51] where they couple the Navier-Stokes and Darcy 

equations to study combustion of coal being transported due to exothermic reactions 

with oxygen. Gartling et al. [20] have studied the coupling of viscous and porous 

media flow with applications to alloy solidification. In [51, 20] the porous medium 

is fairly homogeneous and the continuous finite element method is used for numer-

ical simulations. However, in modelling the interaction between surface flow and 

groundwater, the permeability in the porous medium is in practice heterogeneous 

and discontinuous. Kaasschieter [30] has shown that the continuous finite element 

method produces unphysical flow in the case where the porous medium has highly 

discontinuous permeability coefficients. 

This thesis builds upon these previous works by proposing a method that has 

proven capabilities in handling discontinuities that may arise in porous media appli-

cations. This will be achieved by a numerical scheme that couples the DG method for 

the porous media region and the CG method in the free flow region. The DG method 

is well suited for this application as it is locally mass conservative and allows for 

discontinuous basis elements which can easily capture the underlying discontinuous 

rock structure. However, DG methods are computationally expensive as they result 
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in larger linear systems compared to CG methods. The continuous finite element 

method is very effective for simulating surface flow. Therefore the coupling of DG for 

subsurface and CG for surface flow seems to be an efficient scheme. 

Theoretical studies of models of coupling free flow and porous media flow were 

independently studied by Layton et al. [33] and Discacciati et al. [14], Layton et 

al. [33] analyze a mixed finite element formulation for the coupling of the Stokes and 

Darcy equations. In [33] a domain decomposition approach is proposed that imposes 

the interface conditions using Lagrange multipliers. The Stokes equations are best 

suited for modelling laminar flow; however, free flow can be non-linear in a lot of 

applications. As a result this work proposes to model free flow using the Navier-Stokes 

model. Discacciati et al. [14] analyzed the coupled Navier-Stokes and Darcy models in 

the continuous finite element case. Discacciati at el have proved well-posedness results 

and numerical simulations have been done for the Stokes/Darcy model. Cesmelioglu 

and Riviere [9, 10] have studied the time dependent coupled Navier-Stokes and Darcy 

equation using the DG method. In this work I prove existence and uniqueness results 

for a numerical solution for the coupled Navier-Stokes and Darcy equations, and derive 

a priori error estimates. The discontinuous Galerkin method provides robustness to 

the model to handle different conditions simulating a wide range of rock structures in 

the porous medium. In order to illustrate the effectiveness of coupling the continuous 

finite element method with the discontinuous Galerkin method, implementations of 

the coupled scheme using only the continuous finite element method will be compared 

to implementations with DG in the porous medium. 

Obtaining a numerical scheme from the coupled Navier-Stokes/Darcy scheme is 

often time consuming. In particular for the applications that are considered in this 

work the computational domains are very large. It is therefore necessary to develop 
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faster and more efficient ways to solve the coupled problem. One approach that can 

be used is a two-grid approach. The application of two-grid methods was first applied 

to finite element methods by Xu [55, 53, 54]. The method has also been used for the 

linearlization of nonlinear problems in [34, 21, 22], The two-grid method involves 

solving the coupled problem on a coarse grid, then decoupling the problem on finer 

grids by using the coarse mesh solution for the interface in each region on the finer 

grid. This is a useful technique because it allows easy parallel implementation and 

results in solving two relatively smaller problems on the fine grid. Codes that have 

been optimized for solving the Navier-Stokes and Darcy equations separately may 

also be employed to solve the linear systems resulting from the decoupling. Girault 

and Lions [22] have applied a two-grid technique to the Navier-Stokes problem in 

polyhedra in three dimensions. The same technique has also been applied to the 

transient Navier-Stokes problem by Girault and Lions [21]. Xu and Mu [36] have 

solved the coupled Stokes/Darcy problem using the mixed finite element formulation 

using this two-grid approach. The two-grid method will be extended to solve the 

coupled Navier-Stokes/Darcy problem proposed in this thesis. 

A closer look at the numerical examples solved in this work shows that in the 

porous medium it is often the case that the areas of interest (pinches, faults) are 

usually smaller in comparison to the rest of the domain. The finite volume method 

studied in for example [35, 42, 6, 5, 27, 19] is widely used in applications to flow in 

porous media. This method is capable of capturing the flow in parts of the domain 

in which the permeability is well behaved; however, it is not as accurate in fractures, 

faults or areas of high discontinuities. The advantage of the finite volume method is 

that it results in smaller linear systems to solve. With these facts in mind it seems 

that coupling the DG method with the finite volume method would be a natural 
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choice. 

The outline of this thesis is as follows. In Chapter 2 I introduce the partial differ-

ential equations that model fluid flow in the Navier-Stokes and Darcy domains. To 

complete the model, interface conditions are also specified. Existence and unique-

ness proofs of the weak solution are proved in Chapter 3. The coupled problem is 

discretized in Chapter 4 and a numerical scheme is proposed. Chapter 5 presents 

numerical results from simulations of the coupled problem under various parameters 

of the model. Chapter 6 introduces the two-grid decoupling techiniques and presents 

the theoretical framework. The last chapter in this thesis is devoted to the coupling 

of the finite volume method with the DG method. 
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Chapter 2 

Coupled Navier-Stokes/Darcy Model 

Introduction 

In this chapter the partial differential equations that model flow in the free flow 

domain and the porous media domain are introduced. In order to complete the 

model, coupling conditions on the interface are also specified. 

2.1 Numerical Schemes 

Figure 2.1 : Computational domain of surface and subsurface 

The computational domain is assumed to be a bounded domain in R™, n = 2,3 

composed of two disjoint subdomains fij and the free flow and porous media 

domains respectively. The two domains are separated by a an interface 1^2 = <9f2i U 
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dtt2- The interface Ti2 is assumed to be a polygonal line. An example domain is 

shown in Figure (2.1). The fluid flow is described by the Navier-Stokes and Darcy 

equations in the free flow (Qi) and porous medium (Q2) domains respectively. 

2.2 The Navier-Stokes Equations 

The flow in f ^ is incompressible and is characterized by the Navier-Stokes equations. 

The Navier-Stokes equations are used to model fluid flow in which the non-linear 

effects are important but they are balanced by the viscous effects. The resulting flow 

problem will always achieve equilibrium. 

- V • (2 i /D(« i ) -p i l ) + «! • Vui = Si, in Oj, (2.1) 

V «! = 0, in Hi, (2.2) 

til = 0, on afi i \ r i2 = Ti. (2.3) 

The fluid velocity and pressure in fij are denoted by U\ and pi respectively. The 

coefficient v > 0 is the kinematic fluid viscosity, the function Si is an external force 

acting on the fluid, I is the identity tensor and D{u\) is the strain rate: 

D(u1) = ^(Vu1 + Vu1
T). (2.4) 

2.3 Darcy Equations 

The flow in is driven by pressure pushing the fluid through pores in the medium. 

The porous medium is assumed to be saturated by the fluid. This type of flow is 

characterized by Darcy's law. The porous medium boundary r 2 = <9f22 \ Ti2 is the 

union of two disjoint sets T2D and T2N on which Dirichlet and Neumann boundary 
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conditions are imposed respectively. The Dirichlet and Neumann boundary conditions 

correspond to a prescribed pressure and flux respectively. 

- V • KVp2 = /2, in n2, (2.5) 

-K\7p2 = tt2, in n2) (2-6) 

P2 = 9d, on r 2 D , (2.7) 

KSJp2 •na = 5N, on T2N- (2.8) 

The fluid velocity and pressure in fi2 are denoted by u2 and p2 respectively. The 

function f2 is an external force acting on the fluid, the functions g\y and gN are the 

prescribed value and flux respectively, the vector n2 denotes the unit vector normal 

to r 2 and the coefficient K is a symmetric positive definite tensor uniformly bounded 

from above and below. There exist constants Amjn > 0 and Amax > 0 such that: 

a.e. X £ £l2 , AminX • X < Kx • X ^max® ' x. (2.9) 

The hydraulic conductivity may be expressed as 

K = kpg 

v 

were k is the intrinsic permeability of the medium, p is the density of the fluid and g 

is the acceleration due to gravity [38]. 

2.4 Interface Conditions 

The model is completed by specifying coupling conditions on the interface Ti2- The 

mathematical difficulty arises from the fact that the partial differential equations 

governing the flow in each domain are of different orders. The interface conditions 

incorporate three main properties listed below. 
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1. The continuity of the normal component of velocity arising from the incom-

pressibility condition. Let n ^ be the unit normal vector to directed from 

fii to fl2'-

ui • ni2 = KVp2 • n\2- (2-10) 

2. The second condition is on the tangential component of the velocity in the free 

flow region. Let TI2 be the unit tangent vector on the interface V\2 then the 

Beavers-Joseph-Saffman law [3, 28, 50] will be written as 

• r 12 = -2isG(D(Ul)n12) • r12. (2.11) 

The variable G is an experimentally determined constant that depends on the 

nature of the porous medium. 

3. The last condition relates to the balance of forces on the interface, this can be 

achieved in two different ways: 

(a) including inertial forces using one of the following conditions: 

((-2i/Z?(ui)+piJ)n12)-rn2 + ^ (« i -« i ) = P2 (2-12) 

R e m a r k 1. A dimensional analysis will show that: 

((—2i/D(ui) + pil)na 2) • n12 + • ni2)2 = p2 

might be the correct condition to use. In Chapter (5) we study the numer-

ical solution resulting from this condition. 

(b) without inertial forces 

((-2i/D(ui) +pil)nu) • n12 = P2, (2.13) 
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Conclusion 

The partial differential equations of the coupled surface flow and porous media flow 

model have been presented. The Navier-Stokes equations will model free flow and 

Darcy's Law models flow in the porous media. The next chapter establishes the 

mathematical framework of this model. 
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Chapter 3 

Mathematical Analysis 

Introduction 

A mathematical description of fluid flow requires the definition of functional spaces. 

This chapter introduces the function spaces required in order to define the weak 

problem for the coupled Navier-Stokes and Darcy problem. Furthermore, existence 

and uniqueness results for a weak solution will be proved. The work in this chapter 

has been published in [40]. 

3.1 Preliminary Notation and Function Spaces 

The following is a short review of function and notation used in the rest of the chapter. 

A complete presentation of this material can be found for example in [1, 31]. 

3.1.1 Lp Spaces 

Let O denote an open set in Md in the Lebesque measure. Let 1 < p < oo, recall the 

Banach space Lp of measurable functions v such that 

(3.1) 

and in the case p = oo, 

esssup{|v(x)||x € O} < oo. (3.2) 
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In fact Lp is the space of equivalence of measurable functions, satisfying (3.1) or (3.2) 

with respect to the equivalence relation: 

v = w iff meas({x E Ov[x) ^ iu(x)}) = 0 (3.3) 

In the case p = 2 , L2 is a Hilbert Space endowed with the following inner product 

(U,v)L 2(O)= u v , \\v\\LHO) = ( 
Jo Jo 

,1/2 

If 1 < p < oo, the dual space of Lp(0) is L9, where - + - = 1 and for q = oo, p = 1. 
P Q 

Recall that in L?(Q) Holder's inequality holds: 

I / w(x)v(x) dx\ < |M|lp|M|l9(o)- (3.4) 
Jo 

For the case p = 2 the Holder inequality is the Cauchy Schwarz inequality: 

W, w e L2(0), \(v, w)o\ < \\v\\L2io) \\w\\L2(oy (3.5) 

(3.6) 

We also recall Young's inequality: 

Va,6e M,V<5 > 0, ab < d-a2 + ^-b2. (3.7) 
2 2o 

3.1.2 Sobolev Spaces 

Let T>{0) denote the space the space of infinitely differentiable functions with com-

pact support in O. The dual space T>'{0) is a space of distributions. If a. = 

(«!,•• • , a,i), oti > 0, then the distributional derivative Va(0) is defined by 

V0 G V{0), D«v(4>) = (-l)N l o ^ ) d x a f a l ^ d x T -
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The Sobolev space Hk(0), with k > 0 is the space of functions v <G L2(0) such that 

the distributional derivatives of v up to order k are functions of L2(0). 

Hk{0) = {v G L2(0) : VO < |q| < k, Dkv G L2(0)}. 

Hk(0) is a Hilbert space endowed with the norm 

/ \ 1/2 

IMb/*(0)=( E H ^ l l i 2(o)j ' 
0<|c*|<s ' 

and scalar product 

[w,v)Hk{0)= (Daw,Dav)L2(0) 
\a\<k 

Further, the Sobolev seminorm associate with Hk(0) is 

\ 1/2 
MHHO) = LLVFC«LLMO) = ( E H ^ H I H O ) ) 

' | a | = s 

Other important inequalities to recall are Poincare and Korn's inequalities and trace 

and Sobolev inequalities: there exists constants Vi,Ci,C2, C4 and V4 that only de-

pend on the Navier-Stokes domain Qi and V2, C3 depending on the Darcy domain 

such that 

I M I L ^ ) < ^I||VW||L2(NI), ||«||L4(NO < V4\\Vv\\L2{ni), (3.8) 

| |Vt, | | i 2 (n i ) <Ci| |U(«) | |L2 ( n i ) l (3.9) 

\\v\\L2(ri2) < C72||VT;||I2(NI), ||«||L4(RI2) < C4||VT;||L2(NI), (3.10) 

and for all q G M2, 

lkllL2(n2) < ^2||Vg||L2(n2), (3.11) 

ll<7lb(r2N) < C ^ q \ \ m u 2 ) - (3.12) 

moreover, owing to (2.9), for all q G H1(Q2)' 

- ^ W K W V q W v w < ||Vg||L2(n2) < - ± = \ \ K l l 2 V q \ \ L H n 2 ) . (3.13) 
V M̂AX V ^MIN 
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3.2 Variational Formulation 

Let Hs{0) be the usual Sobolev space of order s [1] with norm || • \\H*(0)- We first 

lift the Dirichlet boundary condition (2.7). If gn £ #1/ /2(I^D), there exists a function 

Pd G H1(Q2) satisfying: 

PD=9B, on r 2 D , (3.14) 

PT> — 0, on rj2, (3.15) 

lbD||i/i(n2) < Co||5D||//i/2(r2D), (3.16) 

where Co is a constant that only depends on Q2- The Navier-Stokes velocity and 

pressure belong to the space: 

X i = {i* G ( H 1 ^ ) ) 2 : Vi. = 0 on r i } , 

Mi=L2(Sh), 

respectively, and the Darcy pressure belongs to the space: 

M2 = {q2 6 Hl{n2) : <72 = o on r2D}. 

The first variational form (WA) includes the inertial forces in the balance of forces 

on the interface: 

Find u\ G Xi,pi e M\,p2 = ip2 + pd, with ip2 G M2, s.t. 

(WA){ 

Vwx G X 1 , V g 2 G M 2 , 2 u { D { u 1 ) 1 D { v l ) ) n + («i • V « i , v i ) n - (pi, V • v\)n 

r12 • G v»i - " . - i - w r i 2 - ( « i - n i 2 , 9 2 ) r i a 
+ (ip2 - • ui, vi • ni2)p i2 + • T12, • T12) 

+ {KV<f2,Wq2h2 = (/i.vi) 

V«i G M i , ( V - « i , g i ) n i = 0 . 

(iTVpo, V^2)02 + (aim, 92) T2N' 
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The second variational form (WB) does not include the inertial forces on the balance 

of forces on the interface: 

Find u\ G X\,p\ G M\,p2 — ¥>2 + PD, with ip2 E M2, s.t. 

Vwi G XX.YQ2 G M2, 2V(D{U1),D{V1))QI + («i • Vui,wi)n i - (pi,V-

(WB) (UL • T12, V! • TI2)PI2 - («I • n12, ®)RI2 + (KVip2; VG2)N2 

= (/I>'"0N1 + (/A. 92)122 " (-KVPD, VG2)N2 + (5N,92)R2N, 

Vgi G Mi, (V-u i ,9 i ) n i =0 . 

The problems (WA) and (WB) differ only by the term ( ^ i ' ui> " n i2)r i 2 arising 

from the balance of forces condition. The first step is to show that the variational 

formulations are equivalent to the model problem. 

Lemma 2. If (ui,pi,p2) E X \ x Mi x H1(£l2) satisfies (2.1)-(2.12), then it is also 

a solution to problem (WA)- If (ui,p\,p2) E XI x Mi x H1(Vl2) satisfies (2.1) -

(2.11) and (2.13) then it is also a solution to problem (WB). The converse of both 

statements is also true. 

Proof. First consider the model problem introduced in Chapter (2) (2.1) - (2.12 and 

(2.13) with a solution (t t i ,pi ,p2) E Xi x Mi x H1^). Multiply (2.1), (2.2) and 

(2.5) by test functions vx E X1: qi E Mx and q2 E M2 respectively and use Green's 

theorem and boundary conditions: 

2v(D(u\), D(t;i))ai - (pi, V • + (wi • Vui,vi)ni 

+((-2uD(ux) + p1I)n12,v1)Tl2 = ( / i ,« i )n l s (3.17) 

( V - u 1 ) g i ) = 0, (3.18) 

(KVp2. S7q2)o2 + (KVp2 • n12, q2)r12 = ( / 2 , q2)N2 + (fifN, <72)r2N- (3.19) 

Rewriting Vi = (vi • NI2)N12 + (^I • T12)TI2, adding (3.17) and (3.19) and using the 
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interface conditions (2.11)- (2.13), we obtain: 

2v(D(u1),D{vi))n1 - (pi, V • m ) ^ + (iii • Vtii, + (XVp2, V?2)n2 

+ {P2 ~ ^ui • • «i2) r i2 + " ''"is, • Ti2)p12 - («i • ni2,g2)ri2 

= {fi,v)n! + (/2,®)n2 + (5N,92)r2N, 

(v • u i^Oni = o. 

Due to the lift on the nonhomogeneous boundary condition, ip2 = p2 — pu- The 

choice of test functions (3.15) means that the trace p2 — </?2 on r ^ . We obtain the 

resulting equations: 

2v(D(ui),D(vi))ch - (pu V • + ("l • Vui, vi)ni + (KVip2, Vq2)n2 

+ (<̂ 2 - ^ui • ui, vi • ni2)pi2 + • T\2, V\ • ri2)p i 2 - («i • ni2,92) r i2 

= (fi,vita + (/2,©)n2 + (5Nj92)r2N - (KVpd, Vqf2)n2, 

(V • «i,<?i)na = 0, 

which correspond to problem (WA)- Conversely, assume that (ui,pi,p2) is a solution 

to {WA)- By choosing appropriate test functions, we recover the equations (2.1), (2.2) 

and (2.5) in a distributional sense. First, take vi G (?i = q2 = 0. This yields: 

-V-(2i/D(«i)-pii) + «i-Vui=/i (3.20) 

in a d i s t r i b u t i o n a l sense. Second, take q\ G P(fJi), vi = 0, q2 = 0: 

V • «i = 0. (3.21) 

Third, take q2 G V{Vt2), = 0, = 0: 

- V • KV((f>2 + pd) = h- (3-22) 

To recover the interface conditions, multiply (3.20), (3.22) by functions v\ G X\ and 

q2 G M2 respectively, use Green's theorem, add the two equations and compare with 
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( W A ) : 

(<P2 - ^(ui • iti),i>i • ni2)r12 ~ iui • ^i2,<72)ri2 + • ^ "12 , • Ti2)r12 ~ (5N,<?2)r2N 

= ((-2vD(ui) + pil)nl2,vi)rl2 + (KVp2 • n12,q2)r,2 - (KVp2 • n2,q2)r2N• (3.23) 

By choosing v\ = 0 and either Q2|r12 = 0 we obtain 

(KVp2 • n2, q2)r2JV = (gN, <?2)r2N 

the Neumann boundary condition (2.8). If we choose v\ = 0 and p2\r12
 w e have 

(iti • m2,92)ri2 = ~{KVp2 • n\2,92)12, 

the continuity of the normal component on the interface (2.10). Next, by choosing 

q2 = 0 and V\ = Viriu where v\ is a smooth function defined on each curvilinear 

segment of Ti2 and vanishing in a neighborhood of 9f2i \ Fi2: 

((—2vD(ui) + pil)ni2, vi)r i 2 = (<̂ 2 - • «i), vi • n i 2)r1 2 , 

the interface condition (2.12) by noting that P2 = <p2 on r i 2 due to (3.15). Finally, 

choosing q2 = 0 and V\ = v\T\2 where v\ is a smooth function defined on each 

curvilinear segment of FI2 and vanishing in a neighborhood of Sf^ \ r 1 2 , we recover 

-TI2,V 1 -N2)r12 = {{-2vD{ui))ni2,vi • T12)TI2 

the interface condition (2.11). Similarly problem WB is equivalent to (2.1) - (2.11) 

and (2.13). • 

The next step is to show the existence of a weak solution to the problems WJ4 and 

WB. 
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3.3 Existence of a weak solution 

In this section we prove existence of weak solutions to problems WA and Wg- The 

Navier-Stokes velocity and pressure finite element spaces satisfy a continuous inf-sup 

condition proved in [24]: 

l(V • t ^ g i ) ^ ! 
inf 

(vi,q2)ex1xM2 ( l l ^ i l l ^ m ) + Hv92|||2(n2))1/2||9i|lL2 (ni ) 

The velocity test functions are restricted to the space of weakly divergence free 

functions: 

^ = v •*! = ()}. 

This space is a well defined closed subspace of X\. The variational formulation 

for problem WA becomes: 

> P > 0. (3.24) 

{WA){ 

Find uj £ Vi,p2 = vi +PD, with E M2, s.t. 

Vu! e Vi.V© e M2, 2i/(jD(ui),JD(«i))ni + (ui • Vui,wi)n i 

1 1 
+ (<P2 - 2 U l ' U l ' V l ' n i 2 ) r 1 2

 + •T12>U1 ' r i 2 ) r 1 2 ~ ( "1 • n i 2 ; ® ) p i 2 

+ (KVv27Vq2h2 = ( / i ,« i ) n i + (/2,©)n2 - {KVPD,Vq2)U2 + ( S N , © ^ -

Similarly for problem WB the variational form becomes: 

(WB) 

Find «I E VI,P2 = V2 +PD, WITH <p2 £ M2, s.t. 

Vtn e Vi,V© € M2, 2v(D{u1),D{vl))ai + (Ul • Vuu wi)ni 

+ (ip2, vi - n 1 2 ) r i 2 + ^ ( « i • r i 2 , v i - T i 2 ) F l 2 - ( « i • " 1 2 , 9 2 ) F i 2 

^ +(KV><f2,Vq2)n2 = (f1}v!)NI + (/2,92)N2 - (#VPD, V ® ) ^ + (<7N, <72)^. 

Therefore, for a = A, B we now focus on the existence and uniqueness of the solution 

to (Wa)- The problems (Wa) and (Wa) are equivalent because if (u\,pi,p2) is a 

solution to Wa then (ui,p2) is also a solution to Wa. Conversely if (ui,p2) is a 

solution to (Wa) there exists a unique p\ such that (u\, p\, p2) is a solution to Wa, this 

result follows from the inf-sup condition (3.24). The following corollary of Brouwer's 
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fixed point theorem will be applied to prove existence of a solution to the problems 

Wa and Wa. 

Lemma 3. Let H be a finite dimensional Hilbert space with inner-product (•, -)H and 

norm || • Let T be a continuous mapping from H into H. Assume there is a 

constant 7Z such that 

VveHwith \\v\\H = Tl, (Jr(v),v)H > 0. 

Then, there exists an element VQ G H such that 

Hvo) = I M U < K. 

Theorem 4. There exists a solution to problem WA-

Proof. We use the Galerkin approach. Since the spaces V\ and M2 are separable, they 

contain countable dense sets. Let {(wm,tm)}m>i be a sequence of smooth functions 

that form a basis of Y = V\ x M2. Consider the finite dimensional space Ym — 

span{(it;i, U) : 1 < i < m} equipped with the inner-product: 

((v, q), (w, t))Y = 2u(D(v ) , D(w))ni + (KVq, VT)N2-

We restrict problem (WA) to YM and obtain a finite dimensional problem: 

(WA,m) 

Find <pm) 6 Ym s.t. 

VI < i < m, 2v(D(um), D(wi))Qi + (um • Vu™, wl 

+ - ^UM • VM, WI • «12) r i2 + ' T\2,WI • Tl2)p l2 ~ ( % ' n i 2 , t j ) r i 

+ {KV<pm,Vti)n2 = (/i,«»i)ni + {f2,U)na - V ^ + (gn,U)rM-
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We then define a continuous mapping ^A,M '• —> YM'-

(f/VnO' ?)> (w> t))Y = 2u(D(v), D{w))ni + (v • S7v, w)Qi + (q-^v-v,w- n12)ri2 

+ ^(v- ri2, W • Ti2)pi2 - {v • rii 2, t) pi2 + (ifVg, Vi)n2 

" ( / i . « ) n i " C M n 2 + (^Vpd, - (5N,0r2N-

A zero of ^A,m is a solution to problem (Wm). The proof will proceed by applying 

Lemma (3) to conclude that there is at least one zero of ^A,m is a ball of a certain 

radius centered at the origin. 

q), (v, q))y = 2v(D(v), D{v))ni + (v • S7v, v)Qi + (q - ^v • v, v • «i2) r i2 

{v • T12, v • r i 2 ) r i 2 - (v • n12, q)Tia + (KVq , Vg)n2 

" (/1. w ) n i " (/2.9)n2 + {KVPD, Vg)n2 - {9n,q)r2N-

For v € Vi , V • v = 0 so: 

(«-Vt;,t;)ni = -^(V-t», i ; - t7)n i + ^(T;-ni,t;-t7)ani = ^ (t7 • nu v • v)mi. (3.25) 

Therefore since v = 0 on IV 

(•v • Vv, v)Qi + (q-±vv,v- n12)Pi2 - (v • n12, q)Fi2 = 0, 

which results in 

(*m(v ;q), (v,q))r = 2VIID(V)H2
L2((2I) + • r 1 2 | | | 2 ( r i 2 ) + || *1 / 2V9 | |£2 ( n 2 ) 

- ( / I .« ) N I ~ C M N 2 + ( ^ P D , VG)N2 - (SN,?)^ . (3.26) 

We now bound the terms in the second line of (3.26). Using (3.5), (3.8), (3.9) and 

(3.7), we obtain 

, I i ; I l/l I lz,2(f!i) 11 V\\L2(QI) 

, V\C\ < ViC^DWW^WMv^ < -\\D(v)\\lHni) + - ^ W f . W i ^ . 
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Similarly, using (3.5), (3.11), (3.13) and (3.7), we have 

(/2,9)na < - W K ^ V q W l ^ + J-7?2
2 | | /2 | |2 fi 

Using the bounds (3.16), (3.5) and (3.13), we have 

{KVpD,Vq)n2 < i | | i f1 / 2Vg|| i2 ( s ,2 ) + C0
2Amax | |5D | |^I /2(r2D). 

Finally, using (3.5), (3.12), (3.13) and (3.7), we obtain 

(5N,?) r2N < Jll^1/2V<7|l!2(n2) + ^ | | 5 N | l i 2 ( r 2 N ) . 

Therefore 

(*A,m{v,q), (v,q))y > \(2v\\D{v)\\l,(sll) + ||^1/2V9||2
L2(fi2)) 

-(^^-WflWhiQr) + + ^O^maxllSDll^x/a^) + ||SN I lL(r2N)) ' 

so(^m(t;, q), (v, q))y > 0 provided ||(v, q)||y = ((«, q), (v, q))]f2 = K0 with 

fV2C2 V2 C2 \1/2 
U o = 2 - f e r ' ^ ' W i i ) + + CoAmax||PD||^1/2(r2D) + • 

\ ^ ^min ^mm / 
(3.27) 

Therefore, for any m, there is a solution (um, <pm) of problem (WA,™) satisfying: 

\\(um, (pm)\\Y < nQ. 

We have thus constructed a bounded sequence in the Hilbert space V i x M2. There-

fore, there exists a subsequence, still denoted by {(um, <pm)}m, that converges weakly 

to an element (iti, <p2) 6 V i X M2. Using a standard argument and Sobolev imbed-

dings, we can pass to the limit in the equation of problem (Vt^.m) a s m tends to 

infinity. Denoting p2 = </?2 + po, we then obtain that (tti,p2) is a solution to problem 

(WA,m)- Using the same argument as above, we can show that any solution (u\, ip2) 

to problem (WA) is bounded: 

2i/||£>(u)||£2{ni) + | | ^ 1 / 2 V^ 2 | | 2
2 ( n 2 ) < n 2 . (3.28) 
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This yields the bound: 

2V\\D(u)\\I2(QI) + I I K ^ V P L L 2 ^ < 1L\, (3-29) 

where 

7l2 = ft2 + 2 | | i ^ 2 V p D | | l w (3.30) 

• 

The next theorem proves the existence of a solution to WB under the assumption 

of a small data condition. 

Theorem 5. Let 7ZQ be defined by (3.27). Assume that 

2v3 

NO<CFPT 

Then, there exists a solution to problem WB satisfying (3.28). 

Proof. The problem WB is restricted to Ym defined in the proof of Theorem (4) to 

obtain a finite dimensional problem: 

Find (lbn,<fm) e Ym s.t. 

VI < i < m, 2v(D{um), D{wi))ni + ("ra ' V % , wi)n 

+ (<Pm, Wi • n12)Vi2 + -^{Um • T12, ' Tn)r12 - ( " m • n12, ti)r12 

k + (XV<pTOl VtOn, - ( / i . ^ m + (/2,<i)n2 - (^Vpd,Vii ) n 2 + (sN,ti)raN-

As in the proof of Theorem (4) the finite dimensional problem yields a continuous 

mapping : Ym Ym: 

(v,q),(w,t))Y — 2v(D(v), D(W))Qi + (u • Vv, + (q, w • «i2) r i 2 

+ ^ («• R 12, w • RI2)RI2 - {v • NIA, T)RW + {KVq, VI)N2 - (/I, U>)NI 
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First we bound the term (v • Vv, v)^: 

(V-S7V,V)QI < ||V|||4(NI)||VI;||L2(NI) 

< Clvl\\D{v)\\lH^ 

Bounding the rest of the terms in B^m(v,q),(w,t))Y as in Theorem (4) we note 

that 

>\(\\v,q)\\2y - Til) 

provided: 

2u3 

MDWWbm < C\V\' 

Therefore, if the condition 

2u3 

K < (3.31) 

holds there is a ball of radius 1Z0 on which (^B,m(v, q), (w, t))Y > 0. Thus we obtain 

a solution (um,ipm) of the problem (W^m) that lies inside a ball of radius TZ0, we 

obtain a solution to the problem (WB) by passing to the limit. This solution also 

satisfies (3.28). • 

Having shown existence of weak solutions for problems WA and WB, the next step 

is to prove uniqueness of the solutions. 

3.4 Uniqueness of weak solution 

Theorem 6. Assuming that the data satisfies: 

L(W3 2 V\C2..F..2 4V? 

C*{vl + lcjc2f > iT-^llfilli^n,) + 
4 C2 

+4C^Amax||gD||^1/2( } + —^-IIPNllia^)-

Then problem (WA) has a unique weak solution. 
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Proof. Assume that (u\,p\) and (u\,p^) are two solutions of problem (WA). Their 

difference, say (w i } z 2 ) , belongs to the space V\ x M2 and satisfies: 

V(wi, q2) G Vi x Af2, 2i/(D(«;i), D(«i)) n i + (KVz2, V©)n2 + (t»i • VwJ, wi)m 

+(uf • Vwi.vi)!)! + • T12,VI • Ti2)r12 + (22 - \ ( w i • • n i2)r i 2 

• n12lq2)r12 - ^(uf • w1,v1 • n12)r12 = 0 . 

By choosing (vi,q2) = (w\,z2) € V\ x M2 and applying Green's formula arid the 

boundary condition on the functions of X \ , this equation becomes 

2u\\D(Wl)\\2
L2{ni) + ||K1/2Vz2||22(sl2) + I||Wl . T12\\lHTi2) + (lV\ • Vtil.wOm 

(3.32) 

- ((tui -Wi,u\- ni2)r12 - (t«i • [u\ + u\),wi • ni2)r12) = 0. 

Applying (3.8) and (3.9), the first non-linear term in the second line of (3.32) is 

bounded above by 

Ikill^nJlVuilk^) < ClVl—mwMl^ (^\\D(u\)\\L2{ni)) . 

+ 21 

Similarly, applying formulas (3.8)-(3.10), the second term in the second line of (3.32) 

is bounded above by 

Jll™illW12) (lluilb(r12) + 2||u?||L2(r12)) 

< ~ 2 ^CfaCf-^WDMWl^ {M\D(u\)\\L,[ni] + 2v^||i5(u?)||L2(IJl)) 

Hence, using the a priori estimate (3.29), the second line in (3.32) is bounded above 

by 

(Vi + \C2C2) TlimwJWl,^ . 
Thus if 

{2uf2 > cf (v\ + ^C4
2C2) n,, 

then (w\,z2) = (0,0), which proves the uniqueness of the solution. • 
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Theorem 7. The solution to problem (WB) cannot be shown to be bounded, therefore 

we can only prove uniqueness of the solution inside a certain ball. Assuming that the 

data satisfies the condition: 

2v* ^ 2 V l C l | | 2 , 4 P | | | f | l 2 , ~ ., 1[2 , 4C| | |2 
> ll/ i lL^ni) + T — ||/2||L2(n2) + ^C0\max\\gD\\H1/2(T2D) + y — ||3i\r||L2(r2N) /^6-d4 ^ ,, 11*/ 11 \Lz(\li) 1 x 1 \ ' 4 Amin '•n 

(3.33) 

then the problem W'B has at most one weak solution satisfying: 

Proof. The proof of uniqueness of a solution for WB is similar to Theorem (6). 

• 

Conclusion 

The weak formulations for the coupled Navier-Stokes/Darcy models with or without 

inertial forces have been presented. We have also shown existence and uniqueness 

results for the weak solution for the coupled problem when the balance of forces is 

written with or without the inertial forces. The next step is to show existence and 

uniqueness of a numerical solution to the model. 
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Chapter 4 

Numerical Analysis 

Introduction 

This chapter introduces the discrete spaces that will be used to approximate the 

Navier-Stokes velocity and pressure and the Darcy pressure. Existence and Unique-

ness proofs for the numerical schemes for the problems WA and WB as well as a priori 

error estimates will be presented. Let be a conforming triangulation of the free 

flow domain f^i and let <f2 be a general subdivision of the porous medium domain Q2• 

The parameter h denotes the maximum diameter of the elements. In the case when 

the discontinuous Galerkin method is used to approximate the solution in the porous 

medium, £2 may contain some hanging nodes. The mesh £ h = £['• U £2 is assumed 

to be regular [11]. The free fluid and porous medium domains are separated by an 

interface TI2 a polygonal line with nodes in the mesh £ h . 

4.1 Discrete Spaces for Navier-Stokes Equations 

The Navier-Stokes velocity and pressure is approximated by conforming finite element 

spaces X \ ( Z X V and A/f C Mi respectively that satisfy the discrete inf-sup condition 

with condition independent of h: 

i n f s u p
 | ( , y ' i , i , y ) " 1 1 — > / ? * > o (4.i) 

VteX1; llVt;ill£2(ni)lll?illL2(n1) 

Examples of spaces include the Taylor-Hood element of order 2 in which the velocity 

is approximated by continuous piecewise quadratics and the pressure by continuous 
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piecewise linears [12]. In this work the MINI finite element space [2] of order k = 1 

element space has been implemented to approximate the Navier-Stokes velocity and 

pressure. The Navier-Stokes velocity is approximated by piecewise linear elements 

enhanced by bubble functions and the pressure is approximated by piecewise linear 

functions [2]. More examples of finite element spaces for the Navier-Stokes equations 

can be found in [32, 41]. 

4.2 Discrete Space for Darcy Problem 

The solution for the Darcy problem is obtained by approximating p2, the Darcy 

pressure and numerically differentiating the result to obtain the Darcy velocity. The 

discontinuous Galerkin method is used to approximate the Darcy pressure. Recall 

the broken Sobolev space for any real number s: 

HS(££) = {P2 G L2(TL) : ME G £%,p2\E G HS(E)} 

endowed with broken Sobolev norm: 

lllftlllzr-^) = ( E I H I W ) ) V 2 -

The function space Pk 2 (E) is the space of polynomials of degree less than or equal 

to k2 which can be discontinuous across the edges of the mesh. For the discontinuous 

Galerkin method, the interior edges of S2 are denoted by T2- Each edge is associated 

with a unit normal vector ne. If the function q2 £ Hl(£2), the trace on each element 

is well defined. In the case of interior edges with neighbors E\ and there are two 

traces of q2 along e. For a given ne pointing from Ef to E\ the average and jump for 

P2• 

{92} = \{q2\E{) + \(q2\El), [©] = (92b?) " ( d ^ f ) Ve = dEf n dE\. 
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For an integer k2 > 1, the finite element space for the Darcy pressure is 

= {q2e L2(n2)-,q2\r2D=0 and V E e t f , q2\E e Pk,(E)}, 

equipped with the usual DG norm: 

/ i \ 1 /2 

Vq2 G M2 , l l l^lll = £ \\K1/2Vq2\\lHE) + J ] - | | [ g 2 ] | | | 2 ( e ) . (4.2) 
W 2 * eer I 1 1 7 

The following Lemma is necessary to handle the non-homogeneous Dirichlet bound-

ary conditions on the porous medium domain. 

Lemma 8. Assume that pD G Hk2+1(tt2) is the lift defined m (3.14)-(3.16). Then, 

there exists PD G M2 and a constant C independent of h satisfying: 

P D = 0 , on r12, ( 4 . 3 ) 

IIIPD-PDIII <Chk*\\pD\\Hk2+1{n2). (4.4) 

4.3 Numerical Scheme 

In the rest of the chapter, C a generic constant independent of h and v, that takes 

different values at different places. Discretizations of the viscous term, pressure term 

and nonlinear term in the Navier-Stokes equations will be denoted by: aNs,^NS,CNs 

respectively; an is the discretization of the diffusion term in the Darcy equations; and 
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7a, a = A, B is the form containing terms related to the interface F 12-

\/vi,Wi eJq, aNS(ui, wi) = 2v{D(v1),D(w1))n1, 

VWI G X^yqi G Mi, 6 N S ( W I , 9 I ) = - ( 9 1 , V - W I ) N I , 

1 1 
V z i , Wi, U7I e X J , CNS(2=I, UI , W I ) = ' V V I ' ~~ ' V W I ' 

+ n(zl • "12, Vl • Wi)r12, 

Vg2, t2 e aD(q2, t2) = Y , " E ({^92 • M M ) e 

eer^ eerj 

Vwi,l0l G Vg2 , t2 e 7B(vi,q2;Wi,t2) = (92,^1 • n12)p1 2 + • Tu,W! • T i 2 ) r i 2 

• »»12,i2)ri2, 

V«1,1I>1 <E Vg2,i2 G M%,~fA{vi,q2-,wi,t2) = 75(^1 , <72; u n , ^2) - • v\,Wi • n i 2 ) r 1 2 . 

In the definition of ao the parameter t yields a symmetric bilinear form if e = — 1 

and a non-symmetric bilinear form if e = 0 or e = 1. The parameter cre is a penalty 

parameter that varies with respect to the edge in £2 • The bilinear form aD is coercive 

and corresponds to the Nonsymmetric interior penalty Galerkin method (NIPG) (e = 

1), symmetric interior penalty Galerkin method (SIPG) (e = - 1 ) or the incomplete 

interior penalty Galerkin method (IIPG) (e = 0) methods [52, 25, 13]. There exists 

a constant K > 0 independent of h such that: 

Vg2 G M2, K | | |g2t| |2<aD(g2, (?2). (4.5) 

It has been shown that if e G { — 1,0}, property (4.5) is valid if the penalty parameter 

is large enough [46]. From [16], the lower bound for the penalty parameter is: 

Q\2 
Ve = dE\ n dE2

e, ae > —ES*A;2(A:2 + l)(cot dEi + cot 8El), 
^̂ MIN 
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where Q&. denotes the smallest angle in the triangle El
e. We also define the form L: 

V v ^ X l , V92eM2
k, L(vuq2) = 

- J2 (KVpD,\/q2)E + J2 ( { - K V P D • M , M ) e 

E ££% eer? 

Having defined the bilinear forms the numerical schemes to problem (WA) and prob-

lem (WB) are: 

Find Ui G Pi e M f , P2 = + Pd with G M2
h, s.t 

Vvi G X^,q2 G M2
h : am(Uu vi) + i^NS^i, Pi) + cNs (Uy, UyVl) 

+aD($2,q2) +IA(U\, $2; vi,q2) = L(vi,q2), 

VqieM?,bSs(U1,q1) = 0. 

( W h
A ) { 

(wk) 

Find Ui G X*l, Pi G JWf, P2 = $2 + PD with $ 2 G M2 , s.t 

Wi G X>l ,q 2 eM^qi 

+00(^2,92) + = 

Vgi G M^,bt,s(U1,q1) = 0. 

The following are some important properties of the discrete spaces and the continuity 

property of the bilinear form CNS-

Approximation properties. Assume that (i>i, p\, p2) G x M\ x M2 is smooth enough, 

i.e. V! G Hkl+1(Vl1),p1 G Hkl(Qi) andp 2 G Hk2+1(£l2) for integers h,k2. Then, there 

exists an approximation (vi,fii,p2) G X \ x M* x M2 such that 

l |V(i ; i - t ) i ) | |L 2 ( n i ) <C7x f c*|M|^1 + 1 ( n i ) , 

VgieAff , (V- (vi - w O . g i K = 0, 

LLPI -PIIIL^QI) < C^FELLBI 11^*1(0!). 

i = 0,1, £ ||V*(p2 - P2)||l2(b) < Chk2+1-l\\p2\\Hk2+1{n2). 
Een2 

Approximation (4.9) implies 

|||P2 -P2III < Chk*\\P2\\Hk2+i(na). 

( 4 . 6 ) 

( 4 . 7 ) 

( 4 . 8 ) 

( 4 . 9 ) 

( 4 . 1 0 ) 
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L2 bound. There exists a constant C5 > 0 independent of h such that 

VgaeAf^, \Mmni) < C5\\\q2\\\. (4.11) 

Trace theorem. There exists a constant CQ > 0 independent of h such that 

\/q2 e M2, ||©||L2 (r12)<^6|||ffi|||. (4-12) 

The proof of (4.11) is given in Lemma 6.2 of [25] and the proof of (4.12) is given in 

Theorem 4.4 of [24]. We next show that the form c^g is continuous. 

Lemma 9. The bilinear form cns is continuous. There exists a constant C7 such 

that 

V z \ , v \ , w i e X u CNstzijv^wj) < C7 | |r>(2;1) | | / /2 ( n i ) | |D(i;1) | | i2 ( n i ) | |D(«;1) | | i2 ( n i ) . 

(4.13) 

An expression for the constant C-j is 

C7 = cf(p2 + \c2cl). 

Proof. Using (3.5), we have 

1 1 1 
CNS(-ZI;«I, Wi) = ' _ ' V w i ' V l ) Q i + 2 ' U l 2 ' V l ' w i ) r i2 

< ^INillL^nodlVvillLa^jllwilli^m) + HVwillx.a^llwilli^m)) 

+^l|2i||L2 ( r i 2 ) | |wi||L4 ( r i 2)| |u;1 | | i4 ( r i 2 ) . 

Using (3.8), (3.10) and (3.9) we have 

CNS(«I;WI,«>I) < (^I + ^ACDLLVZILLIA^JLLVNLLIA^JHVWILB^O 

< Cf(P2 + ^C2C|)|[£>(zi)||i2(f!l)||i)(vi)||L2(n1)l|£>(^i)llL2(n1)-

• 

The next task is to show the equivalence between the weak problem and the 

equations of the coupled Navier-Stokes and Darcy problem. 
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4.4 Consistency 

Lemma 10. Let (ui,p\,p2) be the solution to the coupled Navier-Stokes and Darcy 

equations without inertial forces on the balance of forces on the interface (2.1)-(2.11) 

that is smooth enough. Define (fi2 = p2 — PD where pc satisfied (8). Then, we have 

for all Vl G Xj , q2 € M£, qi G Mf : 

aNs(WI, V I ) + &Ns(*>I,pi) + C N S ( U I ; U I , V I ) + aD((p2,q2) ( 4 - 1 4 ) 

+lA{ui,¥2\Vi,q2) = L(vi,q2), ( 4 . 1 5 ) 

bNs(uuqi) = 0. ( 4 . 1 6 ) 

Proof. Equation (4.16) is obtained by multiplying (2.2) by qi G /l/f and integrating 

over fij. Next, we multiply (2.1) by a test function V\ G X f , integrate over Oj and 

use Green's theorem. The resulting equation is: 

2V(D(ui) , D(V1))Q1 - (pi, V • v i ) n i + ( u i • V « i , Vi)0l 

+( ( -2 i / £> (« i ) + p i / ) n i 2 , « i ) r 1 2 = ( / i , « i ) n i , (4-17) 

Finally, we multiply (2.5) by a test function q2 G M2, integrate over one element E, 

apply Green's theorem and sum over all elements in £2 . 

£ (KVp2, Wq2)E - J2 • M , M)e + £ {KVp2 • ma, g2)r12 
Ee£% esr£ eer12 

= (/2,92)n2 + (5N,92)r12-

Using the splitting p2 = + PD, we obtain: 

J2 (KVp2, V © ) ^ - £ • n e } , [q2])e + (KS/P2 • n 1 2 , g2)r12 

= (/2,92)n2 + (5N, © ) r 1 2 - £ (ffVpc, V 9 2 ) i? + £ ( { ^ V P D • n e } , [©])E. ( 4 . 1 8 ) 
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We then add (4.17) and (4.18), and use the fact that [< 2̂]|e = 0 in L2(e) for all 

e G r£. 

2v(D(u\),D(v\))si1 - (pi, V • vi)ni + (wi • V i i i , ^ ) ^ 

+ ^ (KVtp2, Vq2)E ~ E {{KVv2 • M , [©De + £ E ({KWq2 • ne}, [V2])e 
Ee£% eer§ eeri; 

+ Y ( k ^P2 • "12,92)r12 + ((—2l/-D(ui) + pi J)ni2, «i)r12 
esri2 

12 £ (KVp D ,Vg 2 ) i S + ^ ( { K V p d 

(4.19) 

In (4.19), the terms ]Te6r 12(KVp2 • n12, q2)r12 + ((-2I/D(U-L) + pil)n12, Vi)r12 are 

handled by choosing test functions Ui|r12 = 0 and g2|ri2 = 0- The solution u\ G Vi, 

thus we have 

(ui • Vui, ui)s7i = -(ui • Vv l t 1x1)1}! + («i • ni2, vi • ui)ri2, 

which yields easily: 

(ill • V l l l j U l ) ^ = CNS(WI,UI,UI). 

Combining this result with (4.19), we obtain equation (4.15). • 

Lemma (11) is proved in the same way as the only difference is the term 7B which 

has less terms and they have been handled in the proof of (10). 

Lemma 11. Let (ui,p\,p2) be the solution to (2.1)-(2.11) that is smooth enough. 

Define ^>2 = p2 — PD- Then, we have for all i>i G Xj , q2 G M 2 , qi G M^: 

ANS(wi , V I ) + £>NS(I>I,PI) + c N s ( u i ; u i , v x ) + aG(ip2, 92) + 7 S ( U I > ¥>2; u i , 92) = L(vi,q2), 

(4.20) 

& N S ( « I , 9 I ) = 0 . (4.21) 

The next step is to prove existence of a numerical solution for problems (W%) and 

M ) -
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4.5 Existence of Numerical Solution 

Theorem 12. Let IZ2 be defined by 

n 2 = ( m a 4 L ^ i ^ M I H ^ + ^ l l / 2 | l ! 2 ( , 2 ) + ^ \ \ 9 s \ \ W m ) 

2A m a x ,,9 2 C 2 I. 119 \ 1/2 
+ - L l |PD||^i(n i) + ^ T £ M ^ ) • (4-22) 

E e£% 

There exists an unique solution (Ui,Pi,P2) of satisfying 

2u\\D(Ui)\\2
L2{ni) + IIIP2III2 <n\. (4.23) 

If the data satisfies 

32Z/3 

Til < "2 ^ 
2 4 

i/ien i/iere exists a solution (Ui,Px,P2) of(W%) satisfying (7.19). 

Proof. To prove existence of a unique solution to problem (W^), first the velocity test 

functions are restricted to the space of weakly divergence-free functions: 

Vf = {t7! G X'l : V9 1 G Mi, bm(vi,qi) = 0}. 

The solution U\ G yh so that the scheme reduces to: 

Vvi G -X?,Vg2 G Af§, a N s (^ l ,« l ) + ^s(«i , i J i ) + C N s ( ^ i ; t/i,»i) 

+ a D ( P 2 , ® ) + lA{U1,P2;v1,q2) = L(vi, q2). (4.24) 

If (E/i, Pi, P2) is a solution to ( 5 .1 ) - (5 .2 ) , then {U1}P2) is a solution to (4 .24) . 

Conversely, assume that (Ui,P2) is a solution to (4 .24) . Then, the discrete inf-sup 

(4.1) implies that there exists a unique P\ G Mf such that (Ui, Pi, P2) is a solution 

to (5 .1 ) - (5 .2 ) . Based on this equivalence between the two problems, it suffices to show 

that there exists a solution (Ui , P2) G V? x JV4 of (4 .24) . As in the proof of the 



35 

existence of a weak solution an inner product is defined on Yh = x M2 : 

Ee£l eerl 
(4.25) 

Next define : Yh Yh such that: 

(^h(vi,q2),(wi,t2))Yh = aNS('Ui,wi) + cNs(wi; vi, u>i) + 00(92,^2) 

+lA{vi,q2-,wi,t2) - L(w\,t2). 

Using coercivity of the bilinear form ap and the definitions of the bilinear forms, a 

lower bound of (^h
A(vi,q2), ( v i , q 2 ) ) y h is: 

02), («!, q2))yh > {Qi) + K\\\q2\\\2 + i | | v i • T"121112(r 12) - £(«!, ©)• 

From (3.5), (3.7) and (4.11), we have for any S > 0: 

(/2,g2)n2<^|||g2|||2 + ^ | | /2 | | | 2 ( n 2 ) - (4-26) 

Similarly, from (3.5), (3.7) and (4.12), we have for any <5 > 0: 

G?N,©)r12 < ^lll®|||2 + §| |2N|li2 ( F l 2 ) . (4.27) 

Using a trace theorem [48], (3.5), (3.7) and (3.13), we have for any 5 > 0: 

| - Y , (*VPD> V © ) * + £ ({KVp D • ne}, [q2))e\ < S\\\q2\\f + ^ p i M ^ 

E WPoWbw (4-28) 
Ee£% 

Combining the bounds (4.26), (4.27), (4.28) and (3.27), we obtain: 

K ( W I . 9 2 ) , ( « i , 9 2 ) ) y h > f | | I ^ i ) | | | 2 ( n i ) + % i n f i l l 2 + • r 1 2 | | | 2 ( r i 2 ) 

- ( ^ 1 1 f i W h m + ^ W M \ b l t h ) + ^ M £ » < r a N ) + ^ I M I 2 ^ 

E \\Pv\\2H2(E))-
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Therefore, ( ^ ( u j , g2), { v i , q 2 ) ) y h >
 0 provided that ||(vi, g2)||y"' = TL2 with 

= ( m a x £ f ) ) 1 / 2 ( ^ l l / 1 | l l 2 ( f i l ) + ^ l l / 2 | | | 2 ( , 2 ) + ^ l l 5 N | l i 2 ( r 2 N ) 

+ ^ \ \ P D \ \ H L A I ) + ~ £ IIPDIIUMF2- (4-29) 

This concludes the proof of existence of a solution (E/i, P2) of (4.24). The solution 

(UI, P2) of (4.24) is bounded as follows: 

2V\\D{U1)\\L^] + | | | P 2 | | | 2 < N\. (4.30) 

To prove existence of a solution to (Wg), the difficulty arises due to the nonlinear term 

- T I I 2 , ^ R W I ) R 1 2 that remains from the CJVS form. As above, define ^ : YH —> YH 

such that: 

0/>b(ui>92), {wi,t2))yh = aNs{vi,w\) + cNS(vy,vi,wi) + aD(q2,t2) 
+lB{vi,q2;wi,t2) - L(w-i,t2) 

Using the bound 

and 4.26,(4.27),(4.28) and (3.27), q2), (vu q2)) > 0 provided th||(i>i, q2)\\Y» = 
1Z2 and that 

32^3 
2v\\D(v1)\\l2(ni) 

These conditions are compatible if 

_ 2 32i/3 

T& < - n'on^n^' 

The existence of a solution follows from the collorary of Brouwer's fixed point theo-

rem. 

• 
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4.6 Uniqueness of Numerical Solution 

Theorem 13. Let 1Z2 be defined: by (4-29). Under the condition 

i / 3 / 2 > ^ ( 7 , 2 + C 2 C , 2 ) ^ 2 ( 4 3 1 ) 
V 2 

problem (WjJ) admits a unique solution. 

Proof. To prove uniqueness, we assume that ( U\, P.j) and ( C/2, P2
2) are two solutions 

of problem (4.24), and let Wx = U\ - U\ and = P\ - P%-

ans( Wi,ui) + cNS(U\, u l v i ) - cNS(Ul Uf,v1)+aD(x2,q2) + (x2,vi • ni2)Fl2 

~\{ U\ • U\,V1 • n1 2) r i 2 + i (U\ • U\,vi • n1 2) r i 2 + i (W x • r12, t* • t12)Fi2 

- ( W i • n 1 2 , 9 2 ) r i 2 = 0. 

In particular, we choose Vi = W\ and q2 — x2-

aNS(m, W1) + aD(x2,X2) + ^ \ \ W 1 - T 1 2 \ \ l H r 1 2 ) + cNs(Ui, U \ , Wi)-cNS(ul U \ , W i ) 

+ (X2, Wi • n 1 2 ) r i 2 - ±(U\ • U\, Wi • n 1 2 ) r i 2 

+ \ { U j - U \ , W i • n12)ri2 - { W i - n1 2 ,X 2) r i 2 = 0. 

Using continuity of the form CJVS and rewriting the nonlinear terms as 

cNS(U\, U\, Wi) - cm(U2i, Ul Wi) = cN S(Wi, Ul Wi) + cm(Uj, WLT Wi), 

-\(U\ • Ul Wi • n12)rij + \(U\ • Ul Wi • nl2)Ti2 

= -\{WL- Ul WI • n12) p12 ~\{WI- U\, W1 • n12) r12, 

we obtain 

2 v \ \ D { Wi) ||2a(ni) + K|||X2|||2 + ±\\W1- r 1 2 | | | 2 ( r i 12) 

+cNS( W i , U\, W i ) + cNS(Uj, W i , W i ) - ± ( W i - U \ , W i - n 1 2 ) i 

- l - ( W i - U l W i - n i 2 ) T l 2 < 0 . 
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From Lemma (9), we have 

CNS( W V , U\, W{) + C N S ( Z 7 ? ; WU W I ) 

< C7 | |£>(VF1 ) | |L2 ( n i ) ( | |D(f / l ) | |L2 ( n i ) + \\D{U\)\\mni)). 

Similarly, using (3.10) and (3.9), we have 

^(W, -U\, W\ • n12)r12 + U2, ^ • n1 2 )r1 2 

Combining the two bounds above with (7.19), we obtain: 

^ ~ + ^CFC2C2
4))\\D( W,)||22(ni) + k | | | X 2 | | | 2 + W i • r i 2 | | | 2 ( r i 2 ) < 0. 

This clearly implies that W i = 0 and X2 = 0 if the condition 

2v > + -J=CFC2CJ) 

is satisfied. This condition is equivalent to (4.31). • 

The proof of uniqueness for the solution W% involves less terms but is only valid 

in a ball of fixed radius. The result is summarized in the following theorem. 

Theorem 14. Let 1Z2 be defined by 4-29. Under the condition 

Cf 

V2 
c3 ^3/2 > Wp2 + c2cl)n2 (4.32) 

and 

2 32^3 n22 < 
2 

problem (Wg) admits at most one solution satisfying 

2v\\D(U1)\\lHQi) + \\\P2\\\2 <1l2
2. (4.33) 
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4.7 A Priori Error Estimates 

Theorem 15. Assume that the solution to problem (Wa) is smooth enough, i.e. 

U l G ( t f f c l + 1 ( f t i ) ) 2 , p i G H f e l ( f i i ) andp2 = <p2 + pD with <p2 G Hk2+1(VL2). Let Tlx be 

defined by (3.30) and let 1Z2 be defined by (4-29). Assume that the data satisfies: 

u3'2 > + C2Cl)(Th + n2). 

Then, there exists a constant C independent of h and v such that 

v\\D(Ul - TFI)||£A(NI) + 111^2 - F 2 | | | 2 + | | ( U ! - U\) • T 1 2 [ | | 2 ( R I 2 ) < 

c ( i + { n i + / 2 ? ) h 2 H u , f H k l + , ( n i ) + c ( i + + c\h2^ | b ! | | ^ 1 ( n i ) . 

Proof. Let U\,p\,(p2 be approximations to ui,pi,ip2 in the spaces X^M^ and M2 

respectively. Assume that the error bounds (4.6), (4.8) and (4.9) hold. Let 

Xi = Ui - t i i , Ci = Pi - Pi, 6 = $2 - <P2, 

C l = U1 - Vl=Pl~Pl, V2 = P2 - v>2-

Subtracting (4.15)-(4.16) from (5.1)-(5.2), we obtain the error equations: 

Vwi e^,Vg2€M2
k, aNS(Xl,v1) + aD(^2,q2) + bNS(vi,^i) + cm(Ux; U^vx) 

-CNS(«I ; Ml, WI) + 1A(U\, $2]Vi,q2) - lA(u\,(f2-,vi,q2) — O.NS(CI, V i ) + ^ D F E , © ) 

+bm(vi,r]i), 

VgiGAff, 6NS(XI,9I) = &NS(CI,9I)-

Let vi = Xi, Qi = £1,12 = £2, then from (4.5), we have 

MD(xi)\\h{ni) + K|||<E2|||2 + CNs(TFI; ullXi) -CNS(«I;«I,XI) 

+ 7 A ( C / I , $ 2 ; X I , 6 ) - 7A(U\,<P2-,XI,&) < C I N S ( C I , X I ) + A D ( F ? 2 , 6 ) (4-34) 

+F»Ns(XI ,M)-^NS(CI ,CI ) - (4.35) 
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First expand the terms involving the linear form 7,4: 

-Ya{UI,$2;Xi,&) ~ 1A{UI,IP21XI,&) = ' U ^ X \ • «i2)r12 (4-36) 

+ \(ui • u i ' X i ' «i2)r12 + ^IIXi ' ri2lli2(r12) ~ ^(Ci ' TI2,XI • Ti2)r12 

~(V2, Xi • ni2)r12 + ( 6 , Ci • n12)ri2. (4.37) 

The nonlinear terms are rewritten as 

1 1 1 
Ai = ' ^ i - X i ' ^ i 2 ) r i 2 + ' ui,Xi • « i 2 ) r i 2 = ' X i . X i ' ™i2)r12 (4-38) 

+\(Xi • «i,Xi • nu)r12 ~ Ui -Ci,Xi ' "i2)r12 - ^(Ci • «i,Xi ' «i2)r12, 

and bounded by using (3.5), (3.7), (3.10), (3.9), (3.29) and (7.19) 

A\ < ^C 1 3 C 2 C 4 2 | | J D( X l ) | l ! 2 ( n i ) ( | | J D( t / 1 ) | | L 2 ( n i ) + | | D ( W l ) | | i 2 ( n i ) ) 

+C||^(x1)llL2(n1)l|VCil| i2(ni)(||£>(C/i)|| i2(ni) + ||Z?(tx1)||L2(ni)) 

< ^ W D i x J W h w + \ c ! c 2 c l ^ ^ \ \ D ( X l ) \ \ l 2 { n i ) 

c{Ki + n2) 
,,2 

2 
- l i v c i l l i ^ ) -

The linear terms in (4.37) are bounded by (3.5), (3.7), (3.10), (3.9) and (4.12) 

^(CI ' T12, XI • TI2)R12 < ' TI2|||2(RI2) + ^||VCILLIA(NI) 

(V2,Xi • «i2)r12 < ^\\D(xi)\\h(ni) + ~\\\m\\\\ 

(6 ,C 1 -n i2 ) r I 2 <f | | | e2 | | | 2 + C||VC1||!2({2l). 

Rewriting the nonlinear terms involving cns in (4.35) in a similar way as with the 

term Ai defined in (4.7). We obtain a bound by using the continuity of the bilinear 
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from CNS-

CNS{UI; t / i , x i ) - CNS(«I;«I,xi) = CNS (^i ;xi .xi ) + CNS(XI;WI,XI) 

- C M { U I ; C i , X I ) - CNS(Ci;W>XI) 

< ^ ^ ( X i ) ! ! ! . ^ ) + O r ^ ^ m x 

The term a,Ns(Ci,Xi) is bounded using Cauchy-Schwarz and Young's inequalities. 

aNs(Ci,Xi) < ^\\D(Xi)\\hv1) + Cu\\D(Cx)\\h(niy 

The term 6NS(CI,£I) vanishes because of property (4.7). The term (^(772, £2) is 

bounded using standard DG techniques and the approximation property (4.9): 

Finally, the term &NS(Xi,77I) is bounded as: 

Combining the results above, the error equation (4.35) becomes: 

(Y - (\CFC2CI + \\D(X 1 ) | | | 2 ( n i ) + | | | |&| | | 2 + ^ l l x i • r i2 | | | 2 ( r i 2 ) 

< C(1 + (1Zl ^ ) 2 ) | | V C 1 | | | a ( n i ) + c^ l lMl l 2 + Ch^y 2 \ \ l k 2 + 1 { Q 2 ) + cl\\m\\lHni). 

The final result is obtained by using the approximation properties (4.6), (4.8), (4.10), 

a trace theorem and the inequalities: 

||D(UL - L/I)|||2(NI) < C\\D(XL)\\LHNI) + C||£>(CI)|LL2(NI), 

| | («1 - C/I) • R 1 2 | | 2
L 2 ( R I 2 ) < C| | (XL) • T1 2 | |2

L2 ( R I 2 ) + CIKCI) • T 1 2 | | | 2 ( R I 2 ) , 

I I IP2-^IH 2<C| | |6 | | | 2 +CHICHI2. 

• 
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A straight consequence of Lemma (8) and Theorem (15) is a bound on the pressure 

error. 

Corollary 16. Under the assumptions of Theorem (15) and if the function p^ belongs 

to Hk2+1(tt2), there exists a constant C independent of h and u such that 

11 I n - P2III2 < c(i + ^ V - I N l I k ^ ) + c ( i + \)h2k> l l ^ | | ^ 2 + 1 ( n 2 ) 

Theorem 17. Under the assumptions of Theorem (15) and Corollary (16), there 

exists a constant C independent of h such that 

WPI-PIWL^) < C/i^IIjjiII^I(^jH-^^llwilljyfci+i^jH-^^CII^all^a+i^jH-llj^ll^a+x^))-

Proof. Using the same notation as in the proof of Theorem (15), we can rewrite the 

error equation by taking q2 = 0: 

= &Ns(vi ,m) + a N s ( « i - Ui,vi) - ^ ( u i • Ul - Ul • U1,v1 • n 1 2 ) r i 2 

+ c N S ( t t i ; u i , v i ) - c m ( U i ; U i , v i ) + ( p 2 - $2,^1 • ^ i2) r 1 2 

-Ui)- Ti2,Vi • Ti2)r12-

We now bound all terms in the right-hand side. Cauchy-Schwarz's inequality yields 

bNs(vi,m) < C||Vvi||£,2(ni)||77i||L2(ni), 

aNS(wi - Ui,vi) < CV\\Vvi||x,2(ni)||£>(ixi - Ui)\\L2{Ql). 
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The nonlinear terms are handled like the term Ai in (4.7). 

^(ui • u i - U i • Ui,vi - n i 2 ) r 1 2 = \ ( u i ' X i ^ i • ™i2)r12 + • ui,vi • n12)r12 

• C i , f i • " i 2 ) r 1 2 - ^ ( C i • • " i 2 ) r 1 2 

< + I I V C i I I L ^ ) ) -

CNS (U!;ui,VI) - ctqs{Uv,Ui,vi) = c N S ( t / i ; x i , t ' i ) + c N s ( X i ; w i > v i ) 

< ||Vt;i||L2(ni)(||D(xi)|lL2(ni) + llVCillz^))-\JV 

Finally, the last two terms are bounded as: 

[ip2 - • " I 2 ) r 1 2 < C d l l ^ l l l + IM| i 2( r 1 2 ) ) l |V 'U i | |£2 ( n i ) , 

- U{) • r i 2 , u i • r i 2 ) r 1 2 < C | | (u i - Ui) • Ti2||L2(r!l)||Vui||i2(ni). 

Therefore, we obtain: 

&NS(«I,£I) < C e | | V w i | | L 2 ( N I ) , 

with 

© = W'mWmn,) + v\\D(ui - Ui)\\L2(Ql) + ni^2{\\D{xTJLL^TNO + ||VCI ILI^N,)) 

+I I I& I I I + IM lL* ( r 1 2 ) + | | (u i - Ui) • r i 2 | | L 2 ( 0 l ) . 

The inf-sup condition (4.1) then yields 

\MMNX) < R e -

using the approximation results (4.6), (4.8), (4.9) and Theorem (15) yields the 

result. • 

The bounds for WQ are obtained in the same way, the result is stated below. 
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Theorem 18. Assume that the solution to problem (Wg) is smooth enough, i.eux G 

(FIkl+1(n1))2,p1 G IIkl(Qi) andp2 = fa + Pu with fa G //fc2+1(f}2) andpD belongs to 

Hk2+1(Q2)- Let Hi be defined by (3.30) and let1Z2 be defined by (4.29). Assume that 

the data satisfies: 

Let (Ui,Pi,P2) be a solution to problem (Wg). Then, there exists a constant C 

independent of h and u such that 

v\\D{Ul - Ui)\]2
LHni) + |||*2 - P2|||2 + ||(ui - Ui) • r 1 2 | | | 2 ( r i 2 ) 

< c ( i + + c ( i + ^ 2 f c 2 l l ^ | | 2 ^ 2 + 1 ( n 2 ) 

+ch2k> 11pi \\%kl (n0 + Ch2k21 \pd\\h^{u2)• 

In addition, there exists a constant C independent of h such that 

\\Pi - PiWl2^) < C^IIPill^unx) + Chkl\\ui\\Hkl+HQi) 

Conclusion 

This chapter deals with the existence and uniqueness of a numerical solution to the 

problem coupled problems and WB. If the inertial forces are included in the 

balance of forces across the interface, existence of the numerical solutions is obtained 

unconditionally. A small data condition is needed if one does not include inertial 

forces. In addition convergence of the discrete solution has been proved with respect 

to the mesh size. The next step is to verify these results with numerical experiments 

in the following chapter. 
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Chapter 5 

Numerical Results 

Introduction 

This chapter introduces the numerical discretization of the coupled Navier-Stokes 

and Darcy problem. Grid tests are used to check theoretical convergence rates with 

respect grid parameter h. The motivation behind this model is to understand the 

coupling of free flow with flow in porous medial. With this application in mind the 

coupled problem is solved under various conditions that test the robustness of the 

model with respect to the viscosity u and hydraulic conductivity K . This chapter 

also investigates the effect of the balance of forces on the interface. 

5.1 Software 

I have written software in C using the Petsc Libraries for the numerical results pre-

sented in this and subsequent chapters. 

5.2 Numerical Schemes 

The numerical scheme presented in this thesis couples the continuous finite element 

method in the free flow region with the discontinuous Galerkin method in the porous 

media region. To show the effectiveness of this choice, results from an implementation 

with the CG method and DG method in both domains will also be presented for 

comparison.The triangulation £h (h is the maximum diameter of of a mesh element) of 
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the computational domain = f ^ U f ^ is assumed to be regular. The aim is to find an 

approximation U\ of the Navier-Stokes velocity, P/1 of the Navier-Stokes pressure and 

of the Darcy pressure in the finite dimensional spaces , M^, M2 respectively. 

Because the discretization of the different operators will depend on the choice of the 

finite element method, the following is a list of bilinear forms corresponding to various 

discretizations: 

• Assume that the operator — 2i>V • D(U) has been discretized by a bilinear form 

oNS : X j x X j —> R. 

• Assume that the operator Vp has been discretized by a bilinear form 6Ns : 

X \ x Mf -> R. 

• Assume that the operator u • Vu has been discretized by a trilinear form CNS : 

X \ x X \ x XH
X -» R. 

• Assume that the operator —V • KVp has been discretized by a bilinear form 

aD : x R. 

• Assume that the input data (body forces and f2 and boundary conditions) 

are incorporated into a bilinear form L : Xj x M2 —> R. 

The interface conditions are taken into account by a form 7A in the case when in-

ertial forces are included in the balance of forces on the interface ( see (2.12) and 

xrefeq:chl:forces2). We recall the bilinear forms for the interface: 

Vu, w G X V 9 2 , t2 G M2, Ja{V, q2; w, t2) = (q2 - ^vi • vu w • n12)r^ 

+ ̂  (v • r i 2 l w • T 1 2 ) r i 2 - (v • nl2, t2)Ti2. 
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In the case where the inertial forces are included, the interface bilinear form becomes 

The interface term is independent of the discretization that is used. 

Using the operator discretizations as "black boxes", the coupled Navier-Stokes and 

Darcy problem is solved by the general scheme: find Uh G X^, Pf G G M% 

Three algorithms based on the classical continuous finite element method and the 

primal discontinuous Galerkin method will be presented. In each scheme the solution 

for the approximation to the Navier-Stokes velocity is obtained from a Picard iteration 

starting with an initial guess U0 = 0: find U„+1 G Pf G M f , G Mh such 

that 

Vt> G Xh
x, V© G M2, am(U*+1,v) + bm(v, P?) + CNS([/£; Uh

n+1,v) + aD(Pq2) 

Vq2J t2 G M2 , -YB{v,q2;w,t2) = {q2,w- n12) 

+ ^ (v • T12, w • r i 2 ) r i 2 - (t> • ni2, t2)ri2. 

such that 

Vt; G X\, Vg2 G M2ft, aNS(Uh, v) + &NS(t>, P?) + cNS(Uh; Uh, v) + aD(Pf, q2) 

+7a(U\p£;v,q2) = L(v1,q2), a = A,B 

VgiGMf1, 6N S( t / f c ,«i)=0. 

(5.1) 

(5.2) 

+la(Uh,P^,v,q2) = L(vi,q2), a = A,B 

VGI G Mi, bm(U*+i,qi)=0. (5.4) 

(5.3) 

5.2.1 Continuous finite element scheme (CG-CG) 

In the CG-CG scheme the continuous finite element method is used in both flow 

domains. The mesh is assumed to be conforming. Let X\ C {v G Hl(f^)2 : v = 
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0 on Ti} and let M^ C L2(Q) be finite-dimensional subspaces that contain continuous 

piecewise polynomials of a certain degree. The pair ( X f , satisfies an inf-sup 

condition and the order of approximation is one: for a given positive integer k: 

inf ||u - + inf - qh\\mnx) = 0(h) 

In this thesis, the MINI finite element space [2] (with order k = 1), in which the 

Navier-Stokes velocity is approximated by continuous piecewise linears enriched with 

bubbles and the Navier-Stokes pressure by continuous piecewise linear functions has 

been implemented. Another example is the Taylor-Hood elements (with order k = 2) 

in which the velocity is approximated by continuous piecewise quadratics and the 

pressure by continuous piecewise linear functions [12]. The discrete space for the 

Darcy pressure is 

C {q2 G H1^) : q2 = 0 on T2}, 

that contains continuous piecewise polynomials of degree one. We define the following 

bilinear forms: 

Vv,we X*1, aNS{v,w) = 2v(D{v),D(w))n1, 

Mf, bns(v,qi) = -(<71, V • t>)ni, 
1 1 1 Vz,u, w G Xh, cNS(z, v,w) = - (z-Vv, w)Ql - -(z • Vw, v)Ql + -(z- n12,v- w)r12, 

V?2, t2 G Mh, aD{q2, t2) = (KVq2, Vt2)Q2 

Vv G X\,Mq2 G Mh, L{v,q2) = {fi,v)Ql + (/2, q2)n2 + (,gN,q2)v2N 

~(KVgD,Vt2)Q2. 



49 

5.2.2 Discontinuous Galerkin finite element scheme (DG-DG) 

The mesh £ h is allowed to be non-conforming in the interior of each free flow region 

or each porous medium. The mesh £h = Li £2 where is the mesh restricted to 

JV The unknowns are approximated by discontinuous piecewise polynomials. The 

finite-dimensional spaces are defined for any positive integers k^ and k2: 

Xf = {t;e(L2(Q1))2: v\EGFkl(E)}, 

M ? = { q i G L 2 ^ ) : q i \ E G P f c l _ ! ( £ ) } , 

= {<72 e L2(n2) : q2\E G Pfc2(£)}. 

Before defining the bilinear forms, we recall some notation that is standard to the 

DG method. Let T j (resp. r 2 ) denote the set of interior edges to ill (resp. and 

boundary edges that belong to (resp. F2d). For each edge e in T j U r 2 we fix 

a unit normal vector denoted ne. If the edge e is a boundary edge, the vector ne 

coincides with the unit normal vector exterior to Q. For any two triangles Et and Ej 

(with i < j) that share a common edge e, the jump function [t>] and average function 

{i>} of a discontinuous piecewise polynomial v is given by: 

M = \(v\Et) + \{v\Ej), H = H E J - (v\Ej). 
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The trace of v on a boundary edge is denoted by v = [u] = {f}. The bilinear forms 

are defined as follows: 

Vw, w E Xh, aNS(v, W) = 2UJ2 (D(V)> D{W))E + £ H ) e 
eerf 

-2i/ £ ({D(v)ne}, H ) e + 2ve1 £ ({I>(«7)ne}, [wj)e, 
esrf e€r f 

W e Xhyqi eM?, bNS{v,qi) = - £ (<71, V •«)£+ £ ({<7 i}>] -ne)e, 
BefJ1 eerf 

V®, i2 e Mh, 00(92, «2) = £ (XV®, V*2)i? + £ Me 
Ee£% eer2 6 

- £ ({JCV© • n e }N)e + £2 £ ({#V*2 • ne}, fe])e, 
eer£ eerj 

e X^yq2 e Vt2 e M2
fc,Vv e x f , l ( M 2 ) = (/i,t>)ni + (/2,t2)n2 

+e £ (KV<2 • ne:gD)e + £ £ (SN,*2)e 

The length of one edge e is denoted by |e|. The parameter ae > 0 is the penalty 

parameter. The coefficients e1,e2 G { —1,+1} are the symmetrization parameters. 

The DG discretization of the nonlinear operator u • V u is based on an upwinding 

technique [26] and its definition requires additional notation. 

For an element E G nE the outward normal to E, and we denote by v int (resp. 

t;ext) the trace of the function v on a side of E coming from the interior of E (resp. 

the exterior of E). When the side of E belongs to Ti, then by convention we set 

vmt _ v a n c[ ^ext _ 0 Then we define: 

e&r2D eer2D eer2N 

i £ ([*] • ne, • w})e + J2 (l{*> • nE\(v]nt - O , w^)dE_iz)\r 12 > 

where 

dE-(z) = {x G dE; {z(x)} • nE < 0}. 
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5.2.3 Coupled continuous finite element with discontinuous Galerkin method 

scheme (CG-DG) 

The continuous finite element method in f ^ is coupled with the discontinuous Galerkin 

method in Q2 for several reasons. First, the coupled problem has two domains with 

very different kinds of flow, and the continuous finite element method has proven to 

be effective in solving the free flow problem. On the other hand, it was shown that 

continuous finite element method can produce non-physical flow in a fractured porous 

medium [30]. As DG methods are locally mass conservative, they are appropriate for 

flow and transport problems in heterogeneous porous media [46]. The discontinuous 

Galerkin method is thus well suited for solving the part of the coupled problem in 

the porous medium region. Second, there exist legacy codes for solving the Navier-

Stokes equation with the classical finite element method whereas DG software for 

these problems is not readily available. 

In this multinumerics scheme, the forms aNS,frjVS,CNS defined in Section (5.2.1). 

Recall that the spaces C {w £ H1^ 1)2 : v = 0 on Tj} and M^ C L2(n) 

satisfy an inf-sup condition and of order k\. The space M2 consists of discontinuous 

piecewise polynomials of degree k2. In this multi-numerics scheme, Navier-Stokes flow 

is approximated by the MINI finite element, whereas Darcy flow is approximated by 

discontinuous piecewise polynomials. The bilinear forms have been defined in Sections 

(5.2.1) and (5.2.2). 

5.3 Numerical Convergence 

In this section the CG-CG and CG-DG schemes are tested with respect to the grid 

parameter h. The computational domain Q C M2 is divided into f2i = (0, 1) x (1, 2) 



and n 2 = (0,1) x (0,1) with interface Ti2 = (0,1) x {1}. For each example, numerical 

errors and convergence rates are tabulated and discussed for both the CG-CG scheme 

and the CG-DG scheme. The L2 errors for velocity and pressure in both regions, as 

well as the H 1 error for the Navier-Stokes velocity are computed at for each mesh. 

The coarse mesh consists of 8 triangles with a mesh size h = 1/4 and the finest mesh 

contains 4096 triangles with a mesh size h = 1/32. In the first example numerical 

convergence rates are presented for each scheme for both the cases with and without 

the inertial forces on the balance of forces on the interface. 

Example 19. The boundary conditions are chosen in such a way that the exact 

solution to the coupled Navier-Stokes and Darcy problem, is 

Ui = (y2 - 2 y + 2x, x2 - x + 2y), p2 = -x2y + xy + y2 - 4.0, 

P2 = x2y + xy + y2, 

in the case when inertial forces are not included on the interface. The boundary 

conditions are then modified to include inertial forces, and the exact solution becomes 

Ui = (y2 - 2y + 2x, x2 - x + 2y), pi = -x2y + xy + y2, 

p2 = 4.0 - x2y + xy + y2 + 0.5((2x - l)2 + {x2 - x - 2)2). 

Numerical errors for the CG-CG and CG-DG schemes are presented for both 

choices of boundary conditions. Table (5.1) shows optimal convergence rates for the 

Navier-Stokes velocity, Darcy pressure and velocity. For the Navier-Stokes pressure 

we observe a higher than optimal rate of convergence of 1.65. 

Tables (5.1)-(5.4) show optimal convergence rates for all the variables in the model. 

For this particular problem and other problems tested in this chapter, it is clear that 

the solution obtained from including the inertial forces on the interface is comparable 
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l/h II f i ~ "llli^no ll-Pi " Pillion,) ll^C/i -Ui)|| l2([1i) 11̂2 -P2|li2(n3) 11̂2 ~ «2||L2(fl2) 
2 6.906 xltr2 3.308 xlO-1 2.820xl0-1 4.179 x 10~2 3.763 XlO"1 

4 1.719 Xl0~2 6.645 XlO"2 1.391 xlO-1 1.106 x 10-2 1.885 xlO"1 

8 4.300 xlO"3 1.975 x 10-2 6.935 xlO-2 2.985 xlO"3 9.357 xlO"2 

16 1.074 xlO"3 6.254 x 10-3 3.463 xlO-2 8.081 x 10-4 4.664 xlO"2 

32 2.683 xlO"4 2.013 xlO"3 1.615 xl0~4 1.614 x 10~4 2.330 xlO-2 

rate 2.00 1.65 1.00 1.9 1.00 

Table 5.1 : Errors and convergence rates: CG-CG scheme without inertial forces 

(A* = 1, fc2 = 1) 

l/h \\Ul - «l||i2(ni) ll̂ i -Pillion,) mUr -«i)IU2(ni) lift -P2||L2(n2) II u2 - t*2|lz,2(n2) 
2 6.906 xlO"2 3.320 xlO-1 2.820 xlO-1 4.182 xlO-2 3.719 xlO-1 

4 1.720 xlO"2 6.446 XlO"2 1.391 xlO-2 1.136 xlO-2 1.947 xlO-1 

8 4.300 xlO"3 1.900 xlO"2 6.936 xlO~2 2.990 xlO-3 1.140 x 10-1 

16 1.07 xlO-3 6.05X10-3 3.464 XlO"2 7.939 XlO-4 8.258 xlO-2 

32 2.681 xlO-4 1.995 XlO"3 1.731 xlO-2 1.706 xlO-4 7.259 xlO-2 

rate 2.00 1.65 1.00 1.91 1.00 

Table 5.2 : Errors and convergence rates: CG-CG scheme with inertial forces (k 

l M = 1) 

l/h II Cl - "lIlL f̂O!) ll-Pi -Pillz,2(ni) IIPi -P2llz,2(f!2 \\U2 -U2 ||L2(f12) 
2 6.426X10-2 3.345 x 10"1 2.793 xlO"1 1.052 xlO"1 3.507 xlO"1 

4 1.598 xlO"2 6.889 XlO"2 1.366 xlO-1 2.598 xlO"2 1.625 xlO-1 

8 3.998 xlO"3 2.909 xlO"2 6.794 xlO-2 6.418 xlO-3 7.811 xlO"2 

16 9.989 xlO"4 6.754 xlO"3 3.390 xlO-2 1.592 xlO"3 3.841 xlO"2 

32 2.495 xlO"4 2.248 xlO"3 1.694 xlO-2 3.963 xlO"4 1.907xl0"2 

rate 2.00 2.00 1.00 2.00 1.00 

Table 5.3 : Errors and convergence rates: CG-DG scheme without inertial forces 

(fe1 = l,fc2 = l) 



54 

l / h II Ul - «l||L2(ni) IIA -Pilli^no || £>(t/i-«i)||i2(ni) \\P2 - P211L2(fi2) \ \U 2 - U2llL2(n2) 

2 6.426X10"2 3.271 xlO"1 2.793 XlO"1 1.054 x 10"1 3.547 xlO"1 

4 1.598 x 10~2 6.640xl0~2 1.367 xlO"1 2.592 xlO"2 1.643 xlO"1 

8 4.001 xlO"3 2.047x 10~2 6.794 xlO"2 6.417 xlO"3 7.911 xlO"2 

16 1.000 xlO"3 6.658 xlO"3 3.390 xlO"2 1.594 xlO"3 3.896 xlO-2 

32 2.499 xlO"4 2.304 xlO"3 1.594 xlO"2 3.970 x 10~4 1.961 xlO"2 

rate 2.00 1.53 1.00 2.00 1.00 

Table 5.4 : Errors and convergence rates: CG-DG scheme with inertial forces (k1 = 

l,fc2 = 2) 

to the one without. However, as it has been shown in Chapter 3, the problem without 

the inertial forces requires an additional small data condition to prove existence and 

uniqueness of the weak solution. As mentioned earlier, there is no scientific consensus 

on the proper interface conditions. Physical experiments might be able to provide 

better insight as to which condition is better. 

Example 20. The boundary conditions are chosen so that the exact solution to the 

coupled Navier-Stokes/Darcy problem is: 

7T 7T TV IT 
Ui(x,y) = ( - cos ( -y ) s in ( - a : ) + 1.0, sin(-y) cos(-a;) - 1.0 + x), in 

Pi(x, y) = 1 — x, in fii 

Pi{x, y) = - cos(^x) cos(^y) - y(x - 1), in Q2 7T Z I 

From Table (5.5) optimal convergence rates have been obtained for the Navier-

Stokes velocity, pressure and Darcy pressure. The Darcy velocity is obtained through 

numerical differentiation of the pressure variable in the Darcy region. The only draw-

back for the continuous finite element method is that higher order approximations in 

the Darcy region can be obtained only after significant changes to the code. This, 
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l / h IIEA - "IIIL^S"!!) l i f t - P I I I L ^ D O 110(1/! - « i ) | | L 2 ( n i ) | | f t - P2| |L2 ( [ j2) II U2 - «2| |L2 ( r ! 2) 

2 7.173 XlO"2 4.143 xlO0 7.351 x l O " 1 4.080 x l O " 2 2.330 x l O " 1 

4 1.812 x l O " 2 5.429 x l O " 1 2.433 x l O " 1 1.270 x l O " 2 1.405 x l O " 1 

8 4.445 x l O " 3 1.598 x l O " 1 1.135 x l O " 1 3.417 x l O " 3 7.286 x l O " 2 

16 1.097 x l O - 3 5.320 x l O " 2 5.540 x l O - 2 8.959 x l O - 4 3.670 x l O " 2 

32 2.730 x l O " 4 1.885 x l O " 2 2.735 x l O " 2 1.962 x l O " 4 1.838 x l O " 2 

rate 2.00 1.58 1.00 2.00 1.00 

Table 5.5 : Errors and convergence rates: CG-CG scheme (ki = 1, k2 = 1) 

however, is not the case for the discontinuous Galerkin method. 

l / h l l ^ i " uiIIL2(!11) HA - P l l l ^ f f i ! ) \\D(Ui - « i ) | | i 2 ( n 1 ) ft - P2 11^2 - u 2 | L 2 ( n 2 ) 

2 6.058 XlO"2 2.809 xlO0 6.566 x l O " 1 3.479 xlO" 2 2.025 XlO"1 

4 1.615 x l O - 2 3.999 x l O " 1 2.337 x l O - 1 9.361 xlO" 3 1.026 x l O " 2 

8 3.769 x l O " 3 1.201 x l O " 1 1.128 x l O " 1 2.326 xlO" 3 4.948 x l O " 2 

16 9.350 x l O " 4 4.188 x l O " 2 5.557 x l O - 2 5.719 xlO" 4 2.427 x l O - 2 

32 2.335 x l O " 4 1.482 x l O " 2 2.751 x l O " 2 1.412 xlO" 4 1.201 x l O " 2 

rate 2.00 1.50 1.00 2.00 1.00 

Table 5.6 : Errors and convergence rates: CG-DG (kj = 1, k2 = 1) 

Table (5.6) shows the numerical errors and convergence rates if the DG method of 

order one is used for the Darcy region. The resulting rate is of order one as predicted 

by the theory. Next the order of approximation in the Darcy region is increased to 

two for the same problem. The results are presented in Table (5.7). It is clear that 

the order two approximation achieves higher accuracy on coarser meshes compared to 

the order one approximation. A higher convergence rate of two for the Darcy pressure 

in fl2. However, since fii has a lower order approximation there is no improvement in 

the quality of the solution in fii. The implementation of the discontinuous Galerkin 

method for this thesis has been done using monomial basis functions. Due to this 
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fact, the code is very flexible, making it is easy to change the order of approximation 

to an arbitrary degree n to approximate the pressure at any subset of the porous 

medium. 

l/h ll^i " uillL2(n1) II-Pi -PilL^no lirKWi -uOlliacno II-P2 -P2||L2(fi2) IIU2 -""2||L2(ri2) 

2 6.058 x H T 2 2.817 xlO0 6.566 x l O " 1 4.841 x l O - 3 4.254 x l O " 2 

4 1.615 XlO"2 4.015 x l O " 1 2.337 x l O " 1 1.106 x l 0 ~ 3 1.154 x l O " 2 

8 3.770 x l O " 3 1.203 x l O " 1 1.129 x l O - 1 3.041 x l O - 4 2.875 x l 0 ~ 3 

16 9.352 x l O " 4 4.189 x l O " 2 5.557 x l O - 2 7.613 x l O - 5 7.155 x l O - 4 

32 2.334 x l O " 4 1.482 x l O - 2 2.751 x l O - 2 1.915 x 10~5 1.789 XlO"4 

rate 2.00 1.50 1.00 2.00 2.00 

Table 5.7 : Numerical errors and convergence rates: CG-DG (k\ = 1, k2 = 2) 

The optimal convergence rates proved in Chapter 4 have been numerically verified 

for the CG-CG and CG-DG schemes. It is also important to test the numerical 

solution for different ranges of the physical parameters of the model. 

5.4 Effect of Physical Parameters 

5.4.1 Permeability 

The permeability in the porous medium is important in determining the flow charac-

teristics of ground-water. Some difficulties in modeling porous media flow arise due 

to cracks, pinches or faults that occur in the domain. These physical features give 

rise to highly discontinuous permeability fields. First we investigate the effectiveness 

of each numerical scheme on problems with heterogeneous permeability in the porous 

medium. The kinematic viscosity u for all cases is 1.0. 

1. Rock in porous medium 
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The free flow domain f ^ = (0,1) x (1, 2) and the porous medium = (0,1) x 

(0,1). The porous medium has a circular region with permeability 1 x 10 - 1 1 / 

surrounded by a medium with permeability I . A Dirichlet boundary condition 

U\ = (0 , -1) is imposed on = df i i \ r i2 and zero Dirichlet and Neumann 

conditions are imposed on the bottom and lateral boundaries of the domain 

respectively. Figure (5.1)(a) is a plot of the computational domain. Figures 

(5.1)(b),(c) and (d) are plots of the norm velocity obtained from each scheme 

from a mesh with 826 triangular elements in the porous medium and 206 ele-

ments in the free flow region. The CG-CG and CG-DG schemes are of order 

one. The DG-DG scheme is of order two. The CG-CG solution is obtained 

from a system with only 1143 degrees of freedom whereas the CG-DG requires 

3199 degrees of freedom. It is clear that we observe the expected flow pattern 

in both schemes and that the CG-CG scheme is the least expensive method for 

this problem. 

2. Two intersecting fracture zones 

We test the model on a porous medium = (0,1.6) x (0, 1.5), with permeability 

of 10~8I with 2 intersecting faults with a permeability of 10~5I. The free flow 

domain = (0,1.6) x (1.5,2). A Dirichlet boundary condition u\ — (0 , -1) 

is imposed on the Navier-Stokes boundary and zero Neumann and Dirichlet 

boundary conditions are imposed on the porous medial flow boundary. 

Figure (5.2) is a plot of the computational domain adapted from work by Kass-

chieter [30]. Kasschieter has compared the effectiveness of the mixed finite 

element to the classical finite element on particle tracking problems in satu-

rated groundwater flow and concluded that the finite element method gives 
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Figure 5.1 : Computational domain and numerical results 

unphysical flow in fractured porous media. 

Figure (5.3) is a plot of the streamlines and pressure contours of the solution 
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Figure 5.2 : Computational domain adapted from [30] 

obtained from the CG-CG scheme from a mesh consisting of 170 elements in the 

free flow region and 541 elements in the porous medium. It is evident that none 

of the streamlines that approach the fault make it through the fault line. The 

flow pattern exhibited by this solution is unphysical as the fault fracture is an 

area of high permeability compared to the rock surrounding it. This unphysical 

flow generated by the continuous finite element method for this problem has 

also been reported in [30]. Figure (5.4) is a plot of the streamlines and pressure 

contours of the solution obtained from the CG-DG scheme on the same mesh 

used to produce the CG-CG solution in Figure (5.3). It is clear that the CG-DG 

solution shows the expected flow because the majority of streamlines entering 

the relatively high permeable faults exit the fault. 

Upon further refinement, the CG-CG scheme produces the expected flow pat-

tern in Figure ((5.5)) on an adaptively refined mesh with 8146 elements. This 

solution is obtained from a system with 4583 degrees of freedom, while the CG-
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Figure 5.3 : CG-CG: velocity and pressure 

DG solution in Figure (5.4) solves the problem with 2229 degrees of freedom. 

For this example the CG-DG solution is obtained from a smaller linear system 

therefore the scheme is more efficient. 

Figure (5.6) is the solution obtained from the DG-DG scheme of order 2. It is 

clear from these examples that the CG-DG and DG-DG solutions are able to 

capture the underlying permeability well. However the DG-DG scheme in both 

domains is more computationally expensive hence the proposed coupling of the 

CG-DG scheme in this thesis. 
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Figure 5.4 : CG-DG: velocity and pressure 

Figure (5.7) is a plot of the velocity streamlines and the norm of the velocity 

at the intersection of the faults. The larger fault on the right has larger volume 

and therefore it forces the flow moving initially from left to right to move to 

the left. The above experiment shows that the CG-DG scheme is more robust 

under highly discontinuous permeability. The CG-CG solution is unphysical 

on a coarse mesh. The expected flow patterns were observed for the CG-CG 

scheme only after refining the mesh around the region with the fault. From this 

example it is clear that using the CG-DG scheme for problems with a high level 
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Figure 5.5 : CG-CG on refined mesh: velocity and pressure 

of heterogeneity is more efficient than using a CG-CG scheme. 

3. Random Permeability 

In this example, the permeability in the porous medium assumes random values 

on each element between 0.001 and 1.0. The kinematic viscosity in the free 

fluid region u is equal to 1.0. The exact solution of the problem is unknown, 

however we expect the model to show flow favoring areas of low permeability as 

it moves down in the porous medium. Figure (5.8) is a plot of the computational 
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Figure 5.6 : DG-DG scheme of order two: velocity and pressure 

domain consisting of 128 elements in the Navier-Stokes and Darcy domains. The 

underlying values of permeability on each element are also shown. The following 

boundary conditions are imposed: 

ui = (n — 2 s i n ( 7 r y ) , —ny) o n T i 

p2 = 7Txy in f i j 

9D = ^y2 on T2D, Piv = 0 on T2N 
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Figure 5.7 : CG-CG: streamlines and norm of velocity at fracture intersection 

Figure (5.9) shows the norm of the velocity and the pressure of the solution 

obtained from the CG-DG scheme using the NIPG method with piecewise 

quadratic functions approximation the Darcy pressure. The CG-CG and DG-

DG schemes give comparable results. The scheme converges in 8 Picard iter-

ations with a set tolerance of 10~10. The observed streamlines in Figure (5.9) 

(a) are as expected because the fluid particles are seen to avoid regions of the 

porous medium with low permeability. The pressure is lower in the porous 

medium because of the relatively low volume of fluid that makes its way across 

the interface. 
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Figure 5.8 : CG-DG: Computational domain on random permeability field 

5.4.2 Kinematic Fluid Viscosity 

We consider the effect of the kinematic fluid viscosity u on the CG-DG coupling of 

the Navier-Stokes Darcy coupling. One of the conditions needed for the proofs of 

existence of a solution for the coupled model was that the kinematic viscosity u has 

to be large enough for a given set of data values. In this section we check optimal 

convergence rates and errors for decreasing value of v to test the limits of the model. 

Example 21. The boundary conditions are chosen in such a way that the exact 
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(a) (b) 

Figure 5.9 : CG-DG: Random permeability (a) Norm velocity and (b) Pressure 

solution is: 

ui{x, y) = [y2 - 2y + 1 + i/(2x - 1), x2 - x - {y - l)2i/), 

pi(x, y) = 2u(x + y- 1.0) + ^ -

1 w3 

y) = — (s(l - x){y - l ) + ^ - y 2
 + y)+ 2ux. 

For each value of v, numerical errors are computed on successive refinements on 

a coarse mesh with h = 1/4. 
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V N 11^1 — u l | lx . 2 ( f i i ) II-Pi ^ P i l l i o n , ) ||£>(E/I - U l ) l | L 2 ( N I ) | |P2 - P2| IL2(01) \\U-2 ~ 112 11L2 (f2i ) 
1 

0.1 

0.01 

0.001 

8 

10 

18 

23 

6 .183xl0~ 5 (2 .00) 

6.201 x 10~5(2.00) 

6.329 x 10~5(2.00) 

6.462 x l 0 ~ 5 (2.00) 

7.208x 10~4 (1.54) 

8.358 x l 0 " 5 ( 1 . 6 8 ) 

4 .089x l0" 5 (1 .97) 

4.074X10"5(1.98) 

8 .485x l0" 3 (1 .00 ) 

8.485 x l 0 " 3 ( 1 . 0 0 ) 

8.489x 10 - 3 (1 .00) 

8.897x 10 - 3 (1 .00) 

6 .616x l0 - 5 (2 .00 ) 

6.615 X10" 5 (2 .00) 

6.612 X10" 5 (2 .00) 

6.611 X10" 5 (2 .00) 

7.100 Xl0~ 3 (1 .00) 

7.100 x l 0 " 3 ( 1 . 0 0 ) 

7.100 x l 0 " 3 ( 1 . 0 0 ) 

7.101 x l 0 " 3 ( 1 . 0 0 ) 

Table 5.8 : Numerical errors and convergence rates for varying w. CG-CG 

Table (5.8) shows the convergence rates for each variable for different values of 

v and error on a fine mesh consisting of 8192 elements using order 1 polynomials 

in the porous medium. The variable N is the number of Picard iterations required 

for convergence with a tolerance set at 1 x 10~10. The hydraulic conductivity K 

is the identity matrix. We observe optimal convergence rates for Reynolds number 

up to 1000 and an increase in the number of Picard iterations required to achieve 

convergence under the set tolerance. 

5.5 Local Mass Conservation: An Application to Filtration 

Systems 

The coupling of viscous flow and porous media flow that has been presented in this the-

sis can also be found in industrial filtration systems. In [17], a coupled Stokes/Darcy 

model is proposed for industrial filtration systems and solved using a mixed finite el-

ement formulation. Filtration systems play an important role in chemical industries 

in solid-liquid or solid-gas separations. The CG-CG and DG-DG schemes are applied 

to the filtration problem posed in [17]. 

The computational domain is a concentric quarter circular divided into the porous 

and free flow media domains as shown in Figure (5.5). The thickness of the free fluid 
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Figure 5.10 : Filter: Computational domain 

and porous media domain is 0.02. The Navier-Stokes and Darcy domains consists of 

3068 and 1847 triangular elements respectively. We impose Uj = (—§},-50) on the 

circular part of circular part of Tj and = (0, —1.0), Uj = ( — 1.0,0) on the lateral 

and horizontal segments of Ti respectively. We impose zero Dirichlet and Neumann 

boundary conditions for the Darcy pressure on T2D and r2,v respectively. 

The low permeability in the porous medium causes a pressure build up during 

the filtration process. The life span of filtration equipment is heavily dependent on 

the hydrostatic pressure gradient that develops across the porous medium during 

filtration [17], as a result it is important to develop efficient models to determine the 

pressure gradient before any experiments are done. Mass conservation is an important 

component of any numerical model that effectively simulates the filtration process. 

We seek to test mass conservation for the CG-DG and DG-DG schemes. For each 
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numerical scheme we compute the ratio of mass lost between the inflow and outflow 

fluxes: 
£ / ux • ne - £ u2 ne 

Je _ Je eer1-"1 eer2D 

j : U i -n e 
eerj Je 

The flow characteristics in Figure (5.11) are the same as observed in work by Hanspal 

2.0E+05 
1.8E+05 
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8.0E+04 
6.0E*04 
4 0E+04 
2.0E*04 

(a) Norm velocity (b) Pressure 

Figure 5.11 : Dead-end filter: CG-DG norm velocity and pressure 

et al [17]. There is a 90% drop in the pressure from the interface to the Dirichlet 

boundary condition of the porous media flow region. This allows the filtration process 

to occur efficiently. The observed mass loss for the CG-CG scheme is 1.8%, 2.57% for 

the CG-CG scheme and 0.02% for the DG-DG scheme. The local mass conservation 

property of the DG method pays off. The DG-DG scheme outperforms the CG-

CG and CG-DG schemes. From this it is clear that when local mass conservation 

is of great importance we have to pay the computational cost of the DG-DG. All 
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the schemes have a mass loss less than 5% which is very good for most practical 

applications. 

5.6 Comparison of Interface conditions 

In this section we perform a numerical study on the effect of the choice of including the 

inertial forces on the interface. In Chapter (2) we introduced an interface condition 

that relates the balance of forces in two forms, one including intertial forces and 

another without. The interface conditions are recalled below: 

1. including inertial forces 

((-2vD(ui) +piT)n12) • n12 + ~{ui • uj) = p2, (5.5) 

2. without inertial forces 

((-2i /D(ui) + Pil)n12) • n12 = p2, (5.6) 

In consultation with Dr. Matteo Pasquali, the condition with inertial forces can also 

be written in the following manner: 

( ( -2ZAD(UI) +pil)nl2) • n12 + 7,p(v-i • n12)2 = p2, (5.7) 

with p the fluid velocity. The techniques that have been used in this work to prove 

existence and uniqueness do not work with this interface condition. This section 

provides numerical test cases to try to understand the impact of this condition of 

the coupling. The purpose of this study is to compare the numerical solutions ob-

tained from the schemes and resulting from using conditions (5.5) and (5.6) 

respectively and the scheme denoted by WQ using condition (5.7) 
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First we compare the schemes and Wg. Next, we compare these two schemes 

to Wq. It is not clear which condition is the most physical. In my view laboratory 

experiments might shed more light into which is the most suitable condition. These 

experiments are beyond the scope of this work. We start with an example that is 

motivated by the driven cavity flow problem. 

Example 22. We consider the following Dirichlet boundary conditions for the Navier-

Stokes region (Qi = ( 0 , 1 ) x ( 0 , 1 ) / -

ui = (sin(7rx), 0 ) , on ( 0 , 1 ) x { 2 } , 

= ( 0 , 0 ) , on ( { 0 } x (1, 2 ) ) U ( { 1 } x ( 1 , 2 ) ) 

For the Darcy region (^2 = ( 0 , 1 ) x ( 1 , 2 ) ) , we assume zero Neumann boundary con-

dition for the vertical boundaries and zero Dirichlet boundary condition for the hori-

zontal boundary. We use the CG-DG scheme of order one. The kinematic viscosity 

v is chosen to be equal to one. 

First we verify convergence of the numerical scheme for each model. Since the 

exact solution is unknown we compute the difference between solutions between su-

cessive refinements. 

\/h \\Vlh~ OSll^n,) 
4 6.797 xl(T 1 9.397 xlO"1 1.100 xlO"2 

8 2.071 xlO"1 4.633 XlO"1 2.866 xlO"3 

16 9.069 xlO"2 2.392 xlO"1 1.123 xlO"3 

32 4.024 xlO"2 1.241 xlO"1 5.290 XlO"4 

ratio 2.25 1.92 2.12 

Table 5.9 : Relative numerical errors and ratios for model WjJ with choice A;2 = 1. 
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l/h I I P ? " - ^ M f i O \\D(Uih- Of)||ta(ni) 1 1 ^ " - D$llL*(na) 

4 6.797 x lO" 1 9.387 xlO^ 1 1.234 x l 0 ~ 2 

8 2.071 x lO" 1 4.633 x lO" 1 2.947 x l O " 3 

16 9.067 x l O " 2 2.391 x lO" 1 1.066 x l O " 3 

32 4.024 x lO" 2 1.241 x lO" 1 4.790 x lO" 4 

ratio 2.25 1.92 2.22 

Table 5.10 : Relative numerical errors and ratios for model Wq and the choice k-2 = 1. 

From Tables (5.9) and (5.10) we observe the expected convergence rate of 0(h) 

for the Navier-Stokes pressure, velocity and Darcy pressure. 

Further, we analyze the solutions obtained from the two models on a uniform trian-

gulation of the domain consisting of 16384 elements. In Fig. (5.12), we show the veloc-

ity streamlines obtained from the schemes Wfr and Wg. They are almost identical to 

each other. The Euclidean norm of the velocity field is of order one. For a better com-

parison, we compute the difference between the two solutions. Fig. (5.13) (a) shows 

the contours of the difference between the two approximations of the x-component of 

the velocity field. We observe that the difference is very small, of the order 10~5. A 

similar comment can be made about the difference between the two approximations 

of the y-component of the velocity field (see Fig. (5.13)(b)). The difference between 

the two approximations of the pressure is slightly larger, namely of the order 10~3 

(see (5.15)). 

Finally we repeat the same experiment but we set the fluid viscosity equal to 

0.005. Fig. (5.15) shows the difference between the approximations of the two models. 

Overall the difference is small, of the or der 10"5. At some localized areas near the 

interface, the difference increases to 10 -3. 
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(a) (b) 

Figure 5.12 : Streamlines for the numerical velocity for the model without inertial 

forces (a) and with inertial forces (b) for viscosity equal to 1. 

In Example (22) the magnitude of the inertial forces and the inflow through the 

interface are 0(1O~3) and 0 ( 10~2) respectively. In this case we have observed that the 

solutions obtained from the two models are the same. Next we consider an example 

in which the magnitude of the inertial forces and the inflow through the interface are 

0(1). 

Example 23. On the computational domain with Qj = (0,1) x (0,1) and = 

(0,1) x (1,2), we impose the following boundary conditions: 

r2 

- { - } 

U\ = (0.0, —27re k 2 - (x - e - 0.5)2| ) / o r (0.2 < x < 0.8) 

with the parameters e = 10~6 and r = 0.3 + e and a no-slip condition on the rest 
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(a) (b) (c) 

Figure 5.13 : Difference between the solutions obtained from the two models for 

viscosity equal to 1: (a) x-component of velocity, (b) j/-component of velocity and (c) 

pressure. 

of Fi. We also impose Dirichlet and Neumann boundary conditions gD = 1.0 and 

gN = 0.0 on the bottom and lateral boundaries respectively. The external functions 

acting on the fluid in the Navier-Stokes and Darcy d,om,a,ins are set to (0.0, 2.0) and 

zero respectively. The kinematic viscosity u is equal to 1.0 and K = I. 

First we verify convergence rates for the schemes W\ and Wg for the boundary 

conditions stated above. The NIPG method with a penalty parameter set equal to 

one is used for the discontinuous Galerkin method. 
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(a) (b ) 

Figure 5.14 : Streamlines for the numerical velocity for the model without inertial 

forces (a) and with inertial forces for viscosity equal to 0.005. 

l/h \\P?h --Pfll^fno II D f " 
4 1.391 x10° 1.890 xlO0 1.335 x l O " 1 

8 4.983 x 10° 1.132 xlO0 4.067 x l O " 2 

16 2.413 x l O - 1 6.665 x l O " 1 1.888 x l O " 2 

32 1.086 x l O " 1 3.643 x l O - 1 7.570 x l O " 3 

ratio 2.22 1.82 2.00 

Table 5.11 : Relative numerical errors and ratios for model and the choice k2 = 1. 

In Tables (5.11) and (5.12) we list the norms of the differences in the solutions 

from successive refinements. From the ratios computed at each level we obtain the 
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Figure 5.15 : Difference between the solutions obtained from the two models for 

viscosity equal to 0.005: (a) x-component of velocity, (b) y-component of velocity 

and (c) pressure. 

l/h 1 WW - C/f) IL2 ( f ! l ) II ^ - | | L 2 ( n a , 

4 1.395 xlO0 1.893 x 10° 1.379 x l O " 1 

8 4.985 x l O " 1 1.133 x 10° 4.026 x lO" 2 

16 2.417 x l O " 1 6.665 x l O " 1 1.756 x l O - 2 

32 1.087 x l O " 1 3.641 x l O " 1 8.699 x l O " 3 

ratio 2.22 1.83 2.00 

Table 5.12 : Relative numerical errors and ratios for model Wq and the choice /c2 = 1. 
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expected convergence rate 0(H) for the gradient norm of the Navier-Stokes velocity 

and Darcy pressure. Next we study the effect of the kinematic viscosity v on the 

numerical schemes and W . We fix the value of K = I . 

Figure 5.16 : Inertial forces (k) for model W^ and Wg for v = 1.0 and K = I. 

Fig. (5.16) is a plot of k = - u \ • u \ , the inertial forces on the interface for both 

numerical schemes for the boundary conditions outlined above with ^ = 0.1. There 

is a very small difference in the value of the inertial forces obtained from the two 

numerical schemes. The numerical solutions obtained from the two models are the 

same as shown in Fig. (5.17). 

Fig. (5.18) is a plot of the value of the inertial forces for the two models for 

u = 0.1. It is clear that that the scheme W% produces larger values of the inertial 

forces on the interface. A further decrease in the kinematic viscosity results in a larger 

contrast in the value of the inertial forces on the interface from the two solutions (see 

Fig. (5.19)). Fig. (5.20)(a) shows that the solution from model has flow patterns 

concentrated at the center due to large eddies that form near the boundary. On the 
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(a) (b) 

Figure 5.17 : Norm of velocity for model W4 (a) and Wg (b) for u = 1.0 and K = I. 

other hand the solution from model W\ (see Fig. (5.20)(b)) appears less affected 

by the eddies an is less concentrated at the center. It is not clear which solution is 

correct or more physical, further clarification could be obtained through the help of 

physical experiments. Next we analyze the effect of the hydraulic conductivity K 

on the numerical solutions obtained from the schemes. First we set the kinematic 

viscosity equal to 1.0 and then solve the coupled problem for different values of K . 

Fig. (5.21) (a) is a plot of the value of the inertial forces (K) along the interface 

for decreasing hydraulic conductivity starting with a value of 10~2 for model W\. 

Fig. (5.21)(b) is a plot of the flux = (ui • 7x12) which quantifies the amount of flow 

passing through the interface. As the permeability decreases we see that the flux 
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Figure 5.18 : Inertial forces (K) for solution W\ and Wg for u = 0.1 and K = I. 

through the interface decreases on the central part of the domain (see Fig. (5.21)(b)), 

the same pattern is observed for the inertial forces(«:) in Fig. (5.21)(a). The low per-

meability forces the flow towards boundary as a result the value of the inertial forces 

and flux is greater near the boundary. The same flow characteristics are observed in 

the solution from model Wg (see Fig. (5.22)). The solutions obtained from model 

W% and are the same (see for example Fig. (5.23) for the case K = 10~8J). 

We conclude that for v — 1.0 the two models give comparable solutions. At low 

permeability, the numerical solutions obtained from the two schemes are comparable 

even at low kinematic viscosity. From Fig. (5.24) it is evident that the values of the 

inertial forces on both sides of the interface for the solutions from both models are 

identical for K = 10~8 and v — 0.01. The solutions obtained from model W^ and 
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Figure 5.19 : Inertial forces (K) for model and Wg for v = 0.01 and K = I. 

VKg are also the same (see Fig. (5.25)). 
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(a) (b) 

Figure 5.20 : Streamlines and norm velocity for the models a) and Wq (b) for 

v = 0.01 and K = I 

The next example will be used to compare conditions (5.5),(5.6) and (5.7). The 

condition (5.7) takes into account the normal component of the velocity into the 

inertial forces. As we would expect, a flow parallel to the surface of the interface 

should have lower inertial forces compared to the flow orthogonal to the surface. For 

simplicity the fluid density p is equal to one. 

Example 24. Polygonal Interface 

The domain is Q = (0, 2) x (0,1.25) divided into the Navier-Stokes and Darcy region 

by a polygonal line consisting of three forward steps of equal height equal to 1/4 
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(a) (b) 

Figure 5.21 : Inertial forces K (a) and flux (b) for model W\ for different values of K 

and v — 1.0. 

-- 1e-S • - 18-4 
... ie-2 

0.2 0.4 0.6 0.8 1 

(a) (b) 

Figure 5.22 : Inertial forces (a) and flux (b) for model Wg for different values of K 

and v = 1.0. 

(see Figure (5.26)). The porous medium has intrinsic permeability equal to 10 5 J and 
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Figure 5.23 : Norm velocity for models Wh
A (a) and (b) for K = 10~8I and 

v = 1.0. 

is the subregion below the interface. The boundary conditions are set as follows: 

U l = -3(2/ - 5 /4 ) (y - 1/2) on Tj 

gD = 0 on r2D, gN = 0 on T2N, /i = 0, /2 = 0 

The lateral boundary of the porous medium is T2D, the rest of the domain in r2jv. 

Figures (5.28) and (5.27) are plots of the norm of velocity profile for the solutions 

obtained from each scheme. In each plot the solution due to the condition (5.7) 

is plotted with a dotted line. It is clear that in this particular case and in other 



(a) (b) 

Figure 5.24 : Inertial forces on NSE (a) and Darcy (b) sides of interface for and 

for K = 10~8I and v = 0.01. 

profiles extracted the norm of velocity is the same for each scheme. As expected the 

profile show a decrease associated with the interface between the free flow region and 

the porous medium as the fluid slows down. The addition of the normal velocity 

in balance of velocity component in this case does not seem to affect the solution. 

All solutions converge in 4 Picard Iterations with a tolerance set at 10~6. Next we 

repeat the simulation with a smaller value of v. For the same example above the 

kinematic viscosity v is set equal to 0.01. The solutions from schemes and W^ 

have been shown to differ under low viscosity. Figure (5.29) shows the norm velocity 

profiles of the solutions are compared along y = 0.6. From Figure (5.29) we note 

that for 0.0 < x < 0.5, the solution with the condition (5.7) appears to be smaller 

than that due to (5.5), however along x = 0.5 the solution from scheme WQ has a 

slightly larger norm velocity. This small difference can possibly be explained by the 

fact that as expected the condition (5.7) will allow for more flow when the surface is 
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N O R M V E L N O R M V E L 

(a) (b) 

Figure 5.25 : Norm of velocity for models W\ (a) and (b) for K = 1 0 & I and 

v = 0.01. 

0.25 

(a) 

Figure 5.26 : Computational domain with polygonal interface 
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Figure 5.28 : Norm of velocity profiles along y = 0.75 for schemes Wq and Wq. 



87 

u j 0 .3 

S 
a. 
O 0.2 

(a) W l 

Figure 5.29 : Norm of velocity profiles along y = 0.60 for schemes and Wq for 

v = 0.01. 

orthogonal to the direction of the flow. However, the differences are not significant 

enough to conclude that the condition (5.7) add new information to the solution of 

the coupled Navier-Stokes/Darcy problem. To conclude tests with this example we 

run the schemes under high permeability in the porous medium. The velocity profiles 

are shown in Figure (5.30) for K = I. The solution from scheme Wq is shown in 

the dashed line and the one due to W\ has a solid line. We note that there is not 

significant difference in the solutions. 
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Figure 5.30 : Norm of velocity profiles along y = 0.6 for schemes and Wq for 

K = I. 

Conclusion 

Optimal convergence rates have been shown for the CG-CG and CG-DG scheme. The 

CG-CG scheme has a drawback in cases where higher order approximations might 

be needed to better capture the flow as significant modifications need to me made 

to the implementation. The CG-DG scheme is robust under all physical parameters 

that are crucial the model. The CG-CG scheme exhibits unphysical behaviour under 

highly heterogeneous porous medium and requires a larger system to produce the 

expected result. The DG-DG scheme achieves higher order approximations but it is 

relatively computationaly expensive. In view of the problems that the schemes have 

been tested on it is clear that solving the coupled Navier-Stokes and Darcy problem 

using the CG-DG scheme is more efficient than using the continuous Galerkin method. 

A numerical study of the interface conditions concludes that adding inertial forces 

to the model has an impact at low permeability, at this point it is not clear which 
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solution would be correct. The best way to determine the best interface condition is 

to perform physical experiments. 
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Chapter 6 

Two Grid Method 

The coupled Navier-Stokes and Darcy problem analyzed in this thesis results in large 

non-linear coupled systems which maybe time consuming to solve. This chapter 

improves the computational efficiency of the numerical schemes introduced in Chap-

ter 5. We introduce a two-grid technique for both the Stokes/Darcy and Navier-

Stokes/Darcy problems that naturally decouples the coupled model into two rela-

tively smaller problems.The first will be a modified Navier-Stokes problem (or Stokes 

problem) to solve for the fluid velocity and pressure in the free flow domain. The 

second will be a modified Darcy problem to solve for the Darcy pressure in the porous 

medium. The two grid technique has several advantages. First it allows for paral-

lelization of the code. Second, legacy codes exist that have been optimized to solve the 

Stokes, Navier-Stokes or Darcy problems separately. These codes can be used once the 

model has been decoupled. In this chapter we apply the two-grid decoupling method 

to both the coupled Stokes/Darcy and coupled Navier-Stokes/Darcy problems. We 

show that this method results in a more efficient scheme without compromising the 

accuracy of the solution. 

6.1 Coupled Stokes/Darcy Model 

First we briefly state the coupled Stokes/Darcy model. This model has been well stud-

ied for example in [14, 33, 7, 49, 45]. The work in this chapter is an extension of work 

in [4] and [36] in which the two-grid method is applied to the Navier-Stokes/Darcy 
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and Stokes/Darcy couplings respectively for the mixed finite element method. This 

chapter extends this work to the coupled problem with a multi-numerics scheme com-

bining the classical finite element and the discontinuous Galerkin method. The flow 

in is modelled by the Stokes equations: 

- V • (2vD(u\) - pi2) = / i , i n f i i , (6.1) 

V-Wi = 0, infi i , (6.2) 

Ul = 0, on dfli\T12 = r v (6.3) 

The fluid velocity and pressure in f ^ are denoted by ux and p\ respectively. The 

coefficient v > 0 is the kinematic viscosity, the function f1 is an external force acting 

on the fluid, I is the identity tensor and D(u\) is the strain rate: 

U(«i) = i (V«i + Vu1
T). (6.4) 

The flow in fi2 is modeled by Darcy's Law as described in Chapter 2: 

- V • KVp2 = f2, in N2, (6-5) 

-KVp2 = u2, in fl2, (6.6) 

P2 = go, on r2D, (6.7) 

KVp2 • «2 = 5n, on r2 N . (6.8) 

The fluid velocity and pressure in 0 2 are denoted by u2 and p2 respectively. The 

function / 2 is an external force acting on the fluid, the functions go and are the 

prescribed value and flux respectively. The vector n2 denotes the unit vector normal 

to r 2 and the coefficient K is a symmetric positive definite tensor representing the 

hydraulic conductivity of the fluid. As in the case with the Navier-Stokes/Darcy 

coupling, the model is completed by specifying coupling conditions on the interface 

TI2 with the omission of the condition including the inertial forces. The conditions 

are recalled below: 
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1. The continuity of the normal component of velocity arising from the incom-

pressibility condition. Let ni2 be the unit normal vector to P12 directed from 

fij to Vl2 then: 

Ui • n12 = KX7p2 • n12. (6.9) 

2. The second condition is on the tangential component of the velocity in the free 

flow region. Let T\2 be the unit tangent vector on the interface r i 2 then the 

Beavers-Joseph-Saffman law [3, 28, 50] will be written as: 

tti • r i 2 = -2vG(D{Ul)n12) • Ti2. (6.10) 

3. The last condition relates to the balance of forces on the interface: 

( ( -2 i / JD(ui ) + pil)n12) • ni2 = P2- (6.11) 

6.1.1 Variational Formulation for Stokes/Darcy Coupling 

The function spaces for the Stokes velocity and pressure (ui ,pi) and Darcy pressure 

p2 are the same as in Chapter 3 for the Navier-Stokes/ Darcy coupling. We briefly 

recall the function spaces. The Stokes velocity and pressure belong to the spaces: 

X i = {vi G ( H \ S h ) ) 2 : Vi = 0 on Ti} , 

Mi - L 2 ^ ) , 

respectively. The Darcy pressure belongs to the function space 

M2 = {q2 G H\Q.2) : q2 = 0 on r2D}-
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We lift the Dirichlet boundary condition in 6.7. If gD G Hl/2{T 2D) there exists a 

function pD G H1(Q2) satisfying 

PO = 5D, on r 2 n , (6.12) 

pD = 0,onT12, (6.13) 

IMI//i(n2) < Co\\9D\\H^(r2D)- (6-14) 

The variational form for the coupled Stokes/Darcy problem is (Ws): 

Find u\ G Xi,pi € Mi,p2 — tp2 +pd, with <p2 G M2, s.t. 

(WS) 

Vri G Xr,yq2 G M2, 2v(D{ul),D(v1))ni - (Pl,V • n ) ^ 

+ {tP2,Vi • n1 2) r i 2 + ^{u i • Ti2,vi • Ti2) r i 2 - («i • ni2,q2)Ti2 

+ {KVcp2:Vq2)n2 = (/I,»I)NI + C/2,92)^ - {KVpv,Vq2)n2 + (SN,©^, 

V q i G M J , (V • u i , = 0. 

6.1.2 Numerical Scheme: Stokes/Darcy coupling 

As in Chapter 5, we consider a triangulation (£h = U £ 2 ) of the computational 

domain with elements E. The Stokes velocity and pressure are approximated by 

conforming finite element spaces C X\ and M^ C Mi defined in Section 4.2 of 

Chapter 4 satisfying the discrete inf-sup condition (4.1). The Discontinuous Galerkin 

method is used to approximate the Darcy pressure.The finite element space for the 

Darcy pressure is 

M2
h = {q2 G L2(n2) : V£ G q2\E G Pfc2(£)}. 

where P ^ denotes the space of polynomials of total degree less than or equal to k2. 

For the definition of the DG norm 111 • 111 and other DG notation, we refer the reader 

to Section 4.2 in Chapter 4. Recall the space of weakly divergence-free functions: 

V\ = {Vl G X \ : V 9 l G M f , 6 s (v i , 9i) = 0}. 
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Next, we recall the numerical scheme for the fully coupled Stokes/Darcy problem. 

First we define the following bilinear forms: 

Vv.we.Xj, as{v,w) = 2v{D(v),D(w))Ql 

\ /ve Af.Vgi G Mf, bs(v,qi) = ~(qi, V • «)ni ) 

Vz,v,w€Vq2,t2£M£, aD{q2,t2) = ^ (KVq2,Vt2)E + P^MMe 
^ I 

- ]T {{KVq2 • ne}[t2))e + e2 ^ ({KS7t2 • ne}, [q2])e. 
e€r§ eer§ 

Vq2,t2eM$, j{v,q2]W,t2) = (q2,w-n12)ri2- (v-ni2,t2) 

+ -^(v-T12 ,W-Tl2)Tia 

Vt2 G M%yv G X?, L(v,t2) = ( f ^ v h , + (/2,i2)na 

+e (KVt2 • ne,gD)e + ^ r4(5D,^2)e+ ^ (tfN.^e 
eer2D eer2D

 1 ' eer2JV 

The parameters ae and e2 are the penalty and symmetrization parameters respec-

tively. Having defined the bilinear forms, the numerical scheme to problem (Wg) 

is: 

Find t/? G G G s.t 

Vt>i G X?,® G M5,as(C/?,t;i) + 6s(fi,Pi/l) + aD(^>92) 

VqieM? bs(U$,qi)=0. 

The error analysis for the two-grid method applied to the Stokes/Darcy problem 

requires an L2 error estimate on the Stokes velocity proved in the following section. 

(Ws) 

6.1.3 L2 error estimate for Stokes/Darcy problem 

First we recall the of weakly divergence free functions: 

Vi = {ui G Xi, V • = 0} 
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In order to define the dual problem, we consider the following homogeneous Stokes 

and Darcy problems: 

Find a pair ( V I , 6 ) in HQ(SII) X LQ(FII) such that for G L2(£li)2: 

- V • (2uD(iPl) - & J) = gi in fii 

V • Vi = 0 in fii 

<P! — 0 on Ti. 

Find £2 e H l r 2 D (n 2 ) such that for g2 G 

- V • KV& = 92, in SL2, 

£2 — 0, on r 2 D , 

K V & • "2 = 0, on r 2 N -

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

Following the Aubin-Nitsche duality technique, we define a dual problem VFS* : given 

(91,92) £ (L2(Qi))2 x L2(£l2) we introduce the unique solution (<^1,6-^2) € (Vi x 

Mi x M2) such that: 

Vfi G -Xi, <72 G M2 ,as(vi, Vi) + + aD(?2,6) 

(Ws) +7(^1,92; ¥>1,62) = (ffi,vi)ni + (92,q2)n2, 

V91GM1 6s(Vi,9i) = 0. 

The equivalence between the model problem and the form (Wg) is summarized in 

the following lemma. The proof is similar to Lemma 3.2 in Chapter 3. 

Lemma 25. If (ipj,6,6) € (Vi x Mx x M2) satisfies (6.15) - (6.20) with interface 

conditions (6.9) - (6.11), then (Vi^i,^) is a solution to problem (W5). The converse 

is also true under some additional smoothness assumptions. 
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6.1.4 Regularity for the Coupled Stokes /Darcy problem 

Following the argument used in [23] the coupled Stokes-Darcy problem requires the 

following concept of regularity. 

Definition 26. We say the coupled problem (6.15) - (6.20) with interface conditions 

(6.9) - (6.11) is regular if the mapping 

+ Vfi + A£2 

IS an isomorphism from [ / / 2 ( f i i ) 2 nVi ] x [H1^)] x [H2{n2)] onto L 2 ^ ) 2 x L2(fi2). 

This definition implies that (px G H2(Q\), G and £2 G H2(Q2) whenever 

{91,92) e (L2(ni)2 X L2(n2)) and 

+ 11611^(0!) + m\Hi(n2) < C{\\gi\\L2{ni) + | M I L ^ ) ) (6-21) 

6.1.5 Error est imates in L2 

Recalling the equations of the model in each domain, we have the following consistency 

lemma which can be proved in a manner similar to Lemma (10) in Chapter 4. 

Lemma 27. Let U\,p\,p2) be the solution to the coupled Stokes and Darcy equations 

with interface conditions (6.9) - (6.11). Then, for vx G X\,q2 G M%,qx G 

am{ui,vi) + & N S ( " 1 , P I ) + a,n(p2,q2) + "i{ui,p2-,vi,q2) = L(vi,q2), (6.22) 

&Ns(«i,gi) = 0. (6.23) 

Theorem 28. Assume that the solution (u\,p\,p2) to the problem W's is such that 

u\ G (H2(fli))2,pi G Z/1 (Qi) and p2 G H2(Q2). Then there exists a constant C 

independent of h such that: 

II«1 - Ui||L2(ni) + \\P2 - P2
h||i2(n2) < Ch(\\D(Ul - Ui||i2(ni) + |||P2 - III + \\P1 - PC||i2(n2) 

< Ch2. 
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Proof. Let Vi = ui — U\ and q2 = p2 — P2 in Ws then we have: 

(9l,Ul - + (g2,p2 - P£)Q2 = as(Ul -U\, ipx) + bs(Ul - U\, 6) 

+ 7 ( « i " U$,p2 - P t , < P i , b ) + a . D { p 2 - P 2 \ & ) (6.24) 

Then if we let g^ = (m - t / f ) and g2 = (p2 - P£) in 6.24: 

II«1 - UiWlnn,) + \\V2 - P%\\hm = - Ul, Vl) + 6s(«! - uUi) 

+ 7 (« i - U\,p2 - Pt,Vi,b) + aD(P2 - P2
h ,6) (6-25) 

Subtracting the discrete model (Wg) from (6.22) - (6.23) and using the definition of 

7 we have: 

as(«i - U'l), <ph) + bs(<ph,pi - P?) + aD{p2 - P£, qh) + (p2 - P£, <ph • m2)ri2 

((«i " U\) • r12,<Ph • ru)ri2 - ((«i - U\) • m2) qh)Vl2 = 0 

V<ph e Vi, Vqh e Mi 

bs(u! - U\, = 0, v a G M\ (6.26) 

Subtracting the left hand-side of 6.26 from the right-hand side of 6.25 and using the 

fact that tp G V\ we have bs(ipg,pi — P^) = 0 thus we obtain: 

I K - t / i Wbw + IIP2 - p2 lli2(n2) = Till + 7h2 + Tr12 

V<p h eVl V ^ G M i , V ^ G M 2 (6.27) 

with the terms defined as: 

Tn2 = aD{p2-P£,li2-qh) 

Tr12 = ^{{ui-U'l)-Tl2,(lpl-lph)-T12)Vi2-({u1-Uh
l)-nu,^-qh)ri2 

+ {P2 ~ P2 , {ph ~ - n12) 
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Next we use approximation properties (4.6) - (4.9) of the discrete spaces X\,M\ 

and M2 defined in Chapter 4. Assume that ^ XJ X MI x M2 is smooth 

enough, i.e. ip1 G H2(Qi), f i G H1^i) and £2 G H2{Q,2), we can take {<ph,£h,qk) = 

(<Ph,£h,cih) such that: 

l | V ( ^ - V^Wlh^) < C T i H ^ I I ^ ) , (6.28) 

116-I/IIIL^O < ^ 1 1 6 1 1 ^ ) . (6-29) 

1116 < C 7 i | N I * w (6-30) 

Bounding the terms in TQ1 : 

as(«i - t / f , - <fh) < 2v\\D{U-l - Uh
1)\\L2(^]\\D{iPl - ^)||L2(ni), 

bsifi - <Ph,Pi - Pi) < Cx\\D(ipi - iph)\\L2(ni)\\pi - P? ||L2(ni), 

6s(«i - U U i - < C i \ \ D ( u i - J7?)|b(ni)||6 - allien,)-

Bounding the term TQ2 we obtain: 

Tn2 < CDG\\\P2 ~ P2\\\WP2 - qh\\mn2y 

The interface terms can be bounded as follows: 

1 ((«! - Ui) • T i 2 ) (ifi! ~ <ph) • T!,)^ < _ l / f r l ^ H V f o - V/OII^) 

| ( « i - t / ? ) -n i2 , e2 -9 / , ) r 1 2 | < C ^ i W D i u i - U ^ ^ W ^ - q h l W 

Hp2-P£,i<Pi-<Ph)-ni2)ria\ < C6C2\\\<P2 - P£\\\\W<Pi ~ VhMvw 

The error analysis performed in [15, 45] shows that 

\\D{ui-Uhi)\\LHni)<Ch (6.31) 

\ \ p i - P i \ \ L ^ ) < C h (6.32) 

\\\P2 - P2\\\ < Ch (6.33) 
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From the approximation properties (6.28) - (6.30) we obtain: 

IN - UiWhinr) + llv - p2\\hm < ch{\\D(Ul - uDw^iw^w^ + ||6ll^(ni) 

+ l | P 2 l l ^ ( n 2 ) ) + I b i - ^ I l L ^ n o l l ^ l l f f 1 ^ ) + I I I V 2 - ^ l l l l l v j l ^ ) } -

Using 6.21 and recalling that gi — u\ — U^ and g2 = ¥>2 ~ gives: 

ll«i - Ul\\L2(Ql) + Ww - P2
h\\LHn2) < Ch{\\D(Ul - UbWm^) 

+ \\Pl-Plh\\LHn1) + \\\<P2-P2h\\\}-

The constant C depends on constants C\ through CQ defined in Chapter 3 which 

depend on the domains fii and 1)2 • • 

6.1.6 Two Grid Algorithm: Coupled Stokes/Darcy Model 

In this section we present the two-grid algorithm applied to the coupled Stokes/Darcy 

problem. The two-grid method algorithm solves the more expensive fully coupled 

problem on a coarse grid of size H which is assumed to be much bigger than the fine 

grid of size h. We then use the solution from the coarse grid to approximate unknowns 

on the fine grid to solve modified Stokes and Darcy problems. The algorithm is 

summarized in the following steps: 

1. First we solve a coarse grid problem on a grid of size H: 

Find E/f G X f , P(' G G M2" s.t. 

, „ G Xf,\/q2 G 1 as(U?,v1) + bs(v1,P1
H) + aB(P2

H,q2) (W ) < 
+-y(U^,P^-,vltq2) = L{vuqz), 

V91 e M f , &s(t/?,<7i) = 0. 
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2. We then solve a modified fine grid problem on a grid of size h: 

(Wh) 

Find Uh,i G Ph,i e Mf, P M e s.t. 

Vwi e G as(E//,,i,wi) + • T"i2,«i • n 2 ) + &s(vi, Pft.i) 

+aD(P/i,2,^2) = - ( P ^ ^ i ' ™i2)r12 + {Uf • n\2,<72)ri2, 

Vg i eMf , bs(Uh,i,qi) — 0. 

The modified fine grid problem is equivalent to solving modified Stokes and Darcy 

problems in fii and Sl2 respectively. The modified problems can be stated as follows: 

in fii, 

(Wh,s) 

Find t / M e e Mf, s.t. 

Vwi G Xl,\fq2 G M2, as(C/h,i, «i) + f>s(m, P/i,i) + ^ ( ^ M • r i 2 , t>i • r12)r12 

= (/1,vital - (-Pf.^i -«i2)r12, 

VgieAff , 6S(E/M-9I)=0, 

and in 0 2 , 

Find Phfl G s.t. 

(Wh,D) Vg2 £ M2 , oD(P/l)2,92) = (/i, 92)̂ 2 + ( f ^ • "12,92)r12 + (SJV, ©)r2Jv 

+e ^ (KV® • ne,gD)e + ^ rr(9.D,<72)e 
, eer2D eer2£> 

The next section presents the error analysis for the Two grid algorithm defined above. 

6.1.7 Error Analysis: Two Grid Stokes/Darcy Algorithm 

The objective of this section is to show that the modified two-grid algorithm results 

in a solution that is an approximation of the solution from the coupled problem. 

Theorem 29. Let Uh,I, Ph,i, be the solution to the two-grid coupled Stokes-Darcy 

problem and U\, P f , P2 be the solution to the fully coupled Stokes-Darcy problem. 
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Then we have the following error estimates: 

\\\p£- Ph,2\\\ < CH2 (6.34) 

|| D(Ul-Uhil)\\L2m < CH3/2 (6.35) 

\\Pi - PhMlm^) < CH3'2 (6.36) 

Proof. On the fine grid Eh taking the difference between (Wg)(the fully coupled 

scheme) and (H^s) (the modified two-grid scheme) gives: 

' Vt* G X\,^q2 G M.* as(E7* - l / M , V i ) + bsiv^Pf - Ph,i) + {P? " ^.,2,©) 

< +~((Uh
1 - UK1) • n 2 ) « i ) r 1 2 + (P2

h - P?,v! • n 1 2) r i 2 - ((l/f - I / f ) • n12,q2)Tl2 = 0, 

k VgjGMf, bS(U$-Uh,1,q1)=0. 

(6.37) 

In 6.37 if we pick V\ = 0, q2 = P2 — Ph,2 and using the definition of 7 we obtain 

aD(P2
h - Ph,2, P2 - Ph.,2) = [ - -PmX^i - U i ) • "12-

•Ms-

Following the argument in [4, 36] for the mixed Stokes-Darcy case we define 9 a 

harmonic extension of P2 — Ph.2 into the fluid flow region such that: 

-AO = 0 in nf, 

< e = P£-Phi2onT12 

8 = 0 on Ti 

The harmonic extension has the property [36] 

l|0||j/»(n/) < \\P? - Ph,2\\HU2{Ti2) < |HP2" - Ph,2III 



102 

~ Ph,2)(Ul - U?) • ma = / 
Ja ni 

6{Ul ~ t / f ) n 1 2 

= [ V • (E/f - t / f )0 + [ ( t / f - t / f ) - V 0 
ini Vfji 

= [ - ( C / f - t / f ) + / ( t ^ - E / f ) - V 0 •/fh JHi 

The last equality follows from the weakly divergence-free property for CT̂  and U 1 . 

Using the coercivity property of the bilinear form a£> 

[ (9 — • (Ui - + [ {U<{-U»)-V6 
Jnf Jni 

< inf 
SiWf 

< C\\Ul - U?\\HHni) inf \\e- q?||L2(ni + IIUi - U? 
ijjSMj 

< CH2\\\P2 — P/i,2|||-

This proves the result 6.41. Next we pick q2 = 0 in 6.37 we obtain 

as(Ul - UhA,Vl) + M v i . P f " Ph,i) + ^ ( ( f / ? - Uhtl) • t12,vi • r12)r12 

+ ( P 2
/ l - P f , t ; i -n12)r12 = 0 

For the choice v\ = U i — Uh,i we obtain 

6s(J7f - Uh,i,Pi - Ph,i) = 0 

due to the divergence- free property of U \ and U^i- This leads to 

as(Ul - Uhil, Ui - UKl) + i((t/f - Uh,i) • r 12, (t/f - UKl) • r12)r12 

= (P2" - P2
ft, {Ui -UKl)- n12)r12 

(6.38) 

(6.39) 
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i ( ( C ^ - l / / l i i ) - T 1 2 ) ( t / , l , 1 - E / ? ) - T 1 2 ) r 1 2 = ^ W i U l - U ^ - T v W l ^ 

( P 2
h - P ^ ( ( C / f - E / f ) - N I 2 ) r 1 2 < \ \P2-P2H \ \LHr1 2) \Wh

1-Uh ,1) \ \L H r i 2 ] 

< C6\\\P$ - P?\\\C1C2\\D{U,l - Uh!l)\\LHUl) 

Using the above bounds we have 

2u\\D{Ul - f/M||i2(ni) < C6\\\P2
h - PflWC&WDiUl - UKl ||La(ni) 

Using the trace inequality due to J.Xu in [36], 

IIP^ - < C\\P% - P2
H\\LHn2) + H^lWPi - Pi1 HI < CHV\ 

gives 6.42. Finally we prove an error estimate on the Stokes pressure. In 6.37 for the 

choice q2 = 0 we obtain 

ASIU'L - U^UV^ + BSIVUP? - P M ) + i((E7? - t / M ) • T12,VX • r12)r12 

+{P2~P2,vi -ni2)r1 2 = 0 

as (Ut-Uh^V!) I < 2u\\D{Ui-Uh,1\\L2(ai)\\D(v1)\\L2(ni) 

| i ( ( t / f - C 7 M ) - r 1 2 , « i - r i 2 ) r 1 2 | < - I ) l l ^ i 1 ( o 2 ) 

< D{U\ - UhJWvwWDMUvw 

\(P£ - Ph,2,V! • n 1 2 ) r 1 2 b ( r 1 2 ) < l|P2 " Ph^Wmr^CiC^D^W^^ 

(6.40) 

Using the bounds in 6.40 and the inf-sup condition on 

II ph p II bsivuPf-Ph,!) 
Kl - PhM\L2(Q.x) S nn/ v,| , 
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we obtain 

I I ^ - ^ m I I L ^ ) < 
\as(U'l-UhA,v1)\ + \Tr. 12 

< 

< 
I I ^ M I i ^ ) 

C\\D(Uh
x - C/M | |L2 (n i ) + IIP2

h - P M ||L2(ri2) 

Ch3'2 

G 
the proof. • 

In the numerical results section that follows we pick h = H2, the expected con-

vergence rates are summarized in the following corollary. 

Corollary 30. Let Uh,i, Ph,i, Ph,2 be solutions of the two-grid problem applied to the 

In order to theoretically obtain an 0(/i) convergence rate we have to pick h = 

H3/2, this is not practical for the mesh refinement technique used in this chapter. 

6.1.8 Numerical Results: Two Grid Stokes/Darcy problem 

We present examples to verify convergence rates for the two-grid algorithm applied 

to the Stokes/Darcy problem proposed in the previous section. For a given mesh size 

we also compare the accuracy of the two grid method to solving the fully coupled 

problem and the CPU time to solve each problem. The coarse and fine mesh sizes 

coupled Stokes/Darcy model with H = Vh. Then we have 

111^2-^,2111 <Ch 

and 

IID(Ul - UmMIl^o + Ibi -PiMlmnr) < Chz'4 
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will be denoted by H and h respectively. The mesh parameters are chosen such that 

Let £h and £h be regular triangulations [11] of the domain, is obtained 

from £H through mesh refinement (see Fig. 6.1). This condition may be relaxed for 

the Stokes-Darcy case. Let X ^ M ^ and be the velocity and pressure discrete 

spaces defined on £H• Similarly we define 

Mi and M2 on the fine mesh £h. The 

spaces are defined in such a way that X" C X\, M f C Mf and M f C We use 

the continuous finite element method in f2i and the discontinuous Galerkin method 

in The finite element spaces are defined in Section 5.2.3 in Section 6.1.2. 

1.5 

>- 1 

0.5 

0, 

1.5 

>- 1 

0.5 

0 0.2 0.4 0.6 0.8 1 
0, I IX I I I I I I I \ i I I I I 
0 0.2 0.4 0.6 0.8 1 

(a) Coarse Mesh (£H) (b) Fine Mesh (£h) 

Figure 6.1 : Computational meshes H = 0.5, h = 0.25. 
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Convergence Study: Stokes/Darcy Model 

Example 31. The boundary conditions are chosen in such a way that the exact 

solution to the coupled Stokes/Darcy problem is: 

u i = (y2 - 2y + 2x, x2 - x - 2y), Pl = x2y + xy + y2 - 4.0 

P2 = -x2y + xy + y2. 

For simplicity we set 

K = I and v= 1.0. 

The computational domain fii = (0,1) x (0,1) and fl2 = (0,1) x (1, 2). 

Table 6.1 shows the errors and convergence rates for the fully coupled problem on 

the fine mesh Sh- We use the NIPG method with penalty a = 1 with order of ap-

proximation k2 = 1 in the Darcy region. As expected from the theory we observe the 

expected O(h) convergence rate in the Stokes and Darcy velocities. The Stokes pres-

sure has a slightly higher convergence rate than the expected 0(h). Subsequent tables 

show the errors and convergence rates obtained from solving the coupled problem on 

£h using the modified two-grid algorithm. We will compare the order of convergence 

and the errors obtained to judge the effectiveness of the two-grid method. 

h lo 0 \ \ D ( l f l - Ui)||0 \\P%-P2\ 0 l | V ( P 2
h - p 2 ) | | 0 

l 
4 

1.591 xlO" -2 6.346x10--2 1 . 3 6 5 x l 0 _ 1 1.341 xlO -2 1.637 x l O " 1 

1 
1 6 

9.984 xlO - 4 6.645x10- 3 3.390 XlO"2 8.210 xlO -4 3.856 x l O " 2 

1 
6 4 

6.227x10- 5 7.363 xlO -4 8.469 XlO"3 5.150 xlO" - 5 9.552 x l O " 3 

rate(h) 2.00 1.58 1.00 2.00 1.00 

Table 6.1 : Errors and rates for (Wh) (kx = 1, NIPG a = l,k2 = 1). 

The two grid algorithm is done in two steps. First we solve the fully coupled 

problem on a coarse mesh £H and then solve the modified Stokes and Darcy problem 
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on the fine mesh £h- Tables 6.2 and 6.3 show the errors and convergence rates for the 

modified two grid algorithm using the NIPG and SIPG methods in fl2 respectively. 

First we note that the errors obtained from the NIPG and SIPG are comparable. For 

the SIPG method the expected convergence rate is obtained by making the penalty 

parameter large enough. This is expected because the coercivity of the bilinear form 

aD for the SIPG method is obtained by making the penalty parameter large enough. 

We obtain order one convergence in the parameter h for both methods. The errors are 

comparable to solving the fully coupled problem (Table 6.1) for both methods, how-

ever the Stokes pressure error is relatively larger for the two-grid problem compared 

to the fully coupled problem. 

h H \\Uh,i - «i||o l l f t . i - p i l l o \\D(Uh:1 - « i ) | | o l i f t , 2 - P 2 | | 0 l | V ( P h , 2 - p 2 ) | | o 
l 
4 

l 
2 1.599 x l O " 2 6 . 6 4 7 x l 0 " 2 1.364x 1 0 _ 1 1.235 x l O " 2 1.657 x l O " 1 

1 
1 6 

1 
4 

9.984 x l O " 4 1.571 x 10~2 3.397 x l O " 2 1.018 x l O " 3 3.923 x l O - 2 

1 
6 4 

1 
8 

6 . 0 7 3 x l 0 " 5 4.349 x l 0 ~ 3 8.473 x l O - 3 2.699 XlO"4 9.638 x l O - 3 

rate(H) - 4.00 1.85 2.00 1.92 2.00 

rate(h) - 2.00 0.92 1.00 0.95 1.00 

Table 6.2 : Errors and rates for (Wfc,a, a = S,D) (fcx = 1, NIPG a = 1, k2 = 1). 

h H \\UK! - u i l l o l l f t . i — pi No ll-D(£4,i - «i)l |o l i f t ,2 -P2II0 l | V ( P h | 2 - p 2 ) | | 0 

1 4 1 
2 1.594 x l O - 2 7.383x 1 0 - 2 1.363X10-1 8.788 x l O ' 3 1.703 x l O " 1 

1 
16 

1 4 1.002 x l O - 3 1.489x 1 0 - 2 3.397 x l O - 2 1.471 x l O " 3 4.137 x l O - 2 

1 
6 4 

1 
8 6 . 6 1 6 x l 0 " 5 4 . 1 6 6 x l 0 " 3 8.473 x l O - 3 3.115 x l O " 4 1.011 x l O " 2 

rate(H) - 4.00 1.84 2.00 2.24 2.00 

rate(h) 2.00 0.92 1.00 1.12 1.00 

Table 6.3 : Errors and rates for (Whta, a = S,D) (fci = 1, SIPG a = 3,k2 = 1). 

We increase the degree of approximation in Q2 to two. Table 6.4 and 6.5 show 
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the errors and convergence rates for the two grid algorithm of the NIPG method 

with a = 0 and SIPG with a = 18 respectively. On a mesh of size ~ the error 

in the Darcy velocity is almost ten times smaller compared to Tables 6.2 and 6.3. 

The Stokes velocity error is unchanged from the case k2 = 1 to k2 — 2. The Stokes 

pressure error decreases by a factor of four. 

h H II UhA - uillo l i n . , i " P i lo \\D{UK1 - u i ) | | O \\Ph,2 -P2 lo l |V(Ph ,2 - P 2 ) l l 0 

l 
4 

l 
2 1.599 x l O - 2 6.577x10" 2 1 . 3 6 3 X 1 0 - 1 5.134 x 10" - 3 2.556 x lO" 2 

1 
1 6 

l 
4 9.928 x l O " 4 7.708x10" 3 3.396 x lO" 2 1.213 xlO" 3 5.654 x l 0 ~ 3 

1 
6 4 

l 
8 

6 . 2 5 8 X 1 0 " 5 1.304 xlO" - 3 8.470 x l O " 3 2.981 XlO" 4 1.378 XlO"3 

rate(H) - 4.00 2.56 2.00 2.00 2.00 

rate(h) - 2.00 1.28 1.00 1.00 1.00 

Table 6.4 : Errors and rates for {WKa, a = S,D) (/ci = 1, NIPG a = 0, k2 = 2). 

h H II - uillo \\Ph,i -Pi lo \\D(Uh,i - «i)l|o \\Ph,2~P2 lo l | V ( P h l 2 - p 2 ) | | 0 

l 
4 

l 
2 

1.599 x l O " 2 6.470x10- 2 1.364X10"1 4.965 xlO" 3 2.470 x l O " 2 

1 
1 6 

1 
4 

9.927 x l O " 4 7.253x10" 3 3.395 x lO" 2 1.192 xlO" 3 5.585 XlO"3 

1 
6 4 

1 
8 

6.236x 10"5 1.124x10" 3 8.473 x l O " 3 2.968 XlO" 4 1.374 x l O - 3 

rate(H) - 4.00 2.68 2.00 2.00 2.00 

rate(h) - 2.00 1.34 1.00 1.00 1.00 

Table 6.5 : Errors and rates for {Wh>a, a = S,D) (fcj = 1, SIPG cx = 18, k2 = 2). 

However, since the order of approximation remains one in the Stokes domain 

increasing the order to 3 does not have any further improvement in the accuracy of 

the solution in both domains(see Table 6.6). 

The next step is to apply the two-grid method to the fully coupled Navier-

Stokes/Darcy model. This method is particularly attractive for this case because 

it results in a linear system on the fine mesh. 
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h H I | t 4 , i - "illo l i f t . , 1 - P i |o ||D(UhA - U!)||0 l i f t ,2 ~P2 lo l | V ( P h , 2 - p 2 ) | | 0 

1 
4 

1 
2 1.599 x l O " 2 6.417x10" 2 1 . 3 6 3 X 1 0 " 1 4.942 X10" 3 2.328 XlO"2 

1 
1 6 

1 
4 9.926 x l O - 4 7.196x10" 3 3.395 x l 0 ~ 2 1.191 xlO" 3 5.579 x l O - 3 

1 
6 4 

1 
8 

6 .233x l0" 5 1.119 xlO" -3 8.470 x l 0 ~ 3 2.967 x 10" 4 1.375 x l O " 3 

rate(H) - 4.00 2.68 2.00 2.00 2.00 

rate(h) - 2.00 1.34 1.00 1.00 1.00 

T a b l e 6 .6 : E r ro r s a n d r a t e s for {WKa, a = S,D) (fci = 1, N I P G a = 0,k2 = 3). 

6.2 Coupled Navier-Stokes/Darcy Model 

The two grid approach is applied to the non-linear coupled Navier-Stokes/Darcy 

coupling. This approach leads to greater computational efficiency in this case because 

we linearize the modified Navier-Stokes problem. 

6.2.1 Two Grid Algorithm: Coupled Navier-Stokes/Darcy 

We present the two-grid algorithm applied to the coupled Navier-Stokes-Darcy prob-

lem: The bilinear forms are the same as defined in the Stokes-Darcy section. We 

recall an additional bilinear form for the discretization of the non-linear term: 

CNS(z> v, w) = n, ~ ^(z-Vw,v)Ql + ^(z • n12, v • w)r12 

The scheme used for the fully coupled Naver-Stokes/Darcy model is Wg defined in 

Chapter 4 without inertial forces. 

1. First we solve a coarse grid problem on a grid of size H: 

Find Uf G X^P" e Ml1, P^ G M f , s.t. 

, Vvi G Xf,Vq2 G M2 , as(UiI,vi) + bs(v1,P1
H) + cNS(U^;UiI;v1) (W ) 

+ a D ( P f , 92) + 7 ( t f P 2 1 "l . 92) = L(Vl, q2), 

Vgi G Mj 1 , bs(Ui , qi) = 0. 
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The solution (Ux, Px, P2) is obtained using a Picard iteration as described 

in Chapter 5. 

2. We then solve a modified fine grid problem on a grid of size h: 

Find UKl G X$,Ph,i G Mf.Ph,2 G s.t. 

TO 

Vvi G XJ, V92 G M2
h, asiU^.vx) + bs(vx, + cns (^ I i t / f , 

ft.1 • T12,V1 • ri2)r12 + 00(^,2,92) 

= ) - (^2/> ' n)ri2 + ( ^ f " ni2, ®)r12, 

Vgi G Mi, bs(Uh,i,qi) = 0. 

Remark 32. 7?ie modified problem does not require a Picard iteration because the 

non-linear term (CNS) has been linearized. 

The modified fine grid problem is equivalent to solving modified Navier-Stokes and 

Darcy problems in and fl2 respectively. The modified problems can be stated as 

follows: in fii, 

Find Uhtl G X\,PKl G M f , s.t. 

Vvj G Xx,Wq2 G M2 , a s ( [ / M ^ i ) + &s(ui ,PM) + CNs(^f;t/5>i) 
(W/i,Ns) < 

and in fl2 

iWh,D) 

-rl2,vi • ri2)r1 2 = ( / i ,v i )n! - {P2 ,vx • n)r12, 

Viji G Mx, bs(Uh,i,qi) — 0, 

Find PK2 = PK2 + gD, Pht2 G s.t. 

Vg2 G M2 , aD{Ph<2,q2) = {fi,q2)n2 + (Uf • n12,q2)r12 + (SN,92)r2J, 

+e£r$(-ftrv<72 • ne,gD)e + Eeer2D o(<72,SD)e C 
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6.2.2 Error Analysis: Two-grid Navier-Stokes/Darcy Model 

The theory of the two-grid algorithm applied to the Coupled Navier-Stokes/Darcy 

model has been recently published in [4] for the mixed finite element method applied 

to Navier-Stokes/Darcy coupling. In the case of the multi-numerics coupled Navier-

Stokes/Darcy model studied in this work the proofs are similar. As a result, in this 

section we state the results without proof and present numerical results from the 

implementation of this algorithm on the coupling presented in this work. 

Theorem 33. Let Uh,i, Ph,\, P2,h be the solution to the two-grid coupled Navier-

Stokes-Darcy problem and U\, Pjk, P2 be the solution to the fully coupled Stokes-Darcy 

problem. Then under certain regularity conditions [4] and for sufficiently large u we 

have the following error estimates: 

III P2-Ph,2\\\ < CH2 (6.41) 

WDIU^-UHJWVW < CH3/2 (6.42) 

\\Pi - Ph.iWmn,) < CH3/2 (6.43) 

Corollary 34. Let Uh,i, Ph,i, Ph,2 be solutions of the two-grid problem applied to the 

coupled Navier-Stokes/Darcy model with H = \fh. Then we have 

IIIP2-PMIII < CH 

and 

||£>(«i - UKl\\L2[ni) + ||pi - PulU'cno < Ch3/4 

6.2.3 Convergence Study: Two-grid Navier-Stokes/Darcy Model 

We present a numerical example with a known solution to verify theoretical con-

vergence rates and to compare the effectiveness of the two-grid method to the fully 

coupled Navier-Stokes/Darcy model. 
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Example 35. The boundary conditions are chosen in such a way that the exact 

solution to the coupled Stokes/Darcy problem is: 

ui = (y2 - 2y + 2x, x2 - x - 2y),pi = x2y + xy + y2 - 4.0 

P2 = ~x2y + xy + y2. 

For simplicity we set 

K — I and v — 1.0. 

The computational domain f2i = (0,1) x (0,1) and 0.2 = (0,1) x (1, 2). 

First we solve the fully coupled problem ( o n the fine mesh Sh• 

h lo l | P l h - P l | o I W I / f - u O l l o \\P?~P2\ o l | V ( P 2
h - P 2 ) | | 0 

l 
4 1.598 xlO--2 6.889x10" 2 1 . 3 6 6 X 1 0 " 1 2.598 x 10 -2 1.625 x l O " 1 

1 
16 9.988 x 10" -4 6.754x10" 3 3.390 x l O " 2 1.592 xlO - 3 3.841 x l O " 2 

1 
64 6.232x10- 5 7.403 xlO -4 8.467 x l O " 3 9.948 x 10" -5 9.541 x l 0 ~ 3 

r a t e ( h ) 2.00 1.59 1.00 2.00 1.00 

Table 6.7 : Errors and rates for (WhiNS) {h = 1, NIPG a = l,h2 = 1). 

Table 6.7 shows the errors and convergence rates for the solution from the fully 

coupled Navier-Stokes/Darcy model solved using a Picard iteration with a tolerance 

set at 10"7. We observe 0(h) convergence rate in the energy norm for the Navier-

Stokes and Darcy velocities. Next we compare the solution from the fully coupled 

problem to the two-grid algorithm. From Table 6.8 we note that the errors from the 

two-grid method are comparable to the fully coupled problem for the Navier-Stokes 

and Darcy velocities. The convergence rates are 0(h) for the velocity and pressure 

in both domains. This is better than the theoretical result 0(h3/4) for the case 

H = y/h. The objective of this method is to obtain a solution in a quick manner 
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h H \\Uh,i - uillo l l f t . i - p i l l o \\D(VhA - « i ) | | o \\Ph,2~P2\ 0 l | V ( P h , 2 - P 2 ) | | 0 
i 
4 

l 
2 1.594 xlCT 2 9.7277X10-2 1.365 x l O - 1 4.258 x l0~ 2 1.708 x l O - 1 

1 
16 

1 
4 9.696 x 1 0 - 4 1.728X 10~2 3.399 x l O " 2 7.068 x lO- 3 4 . 0 2 9 x l 0 - 2 

1 
64 

1 
8 7.137 x l O - 5 3 .961x l0" 3 8.477 x l O " 3 1.5671 xlO" -3 9.896 x l 0 ~ 3 

r (h) - 2.00 1.00 1.00 1.20 1.20 

r (H) 4.00 2.00 2.00 2.41 2.40 

T a b l e 6.8 : Er rors and ra tes for [WKa, a = NS, D) (kr = 1, N I P G a = 1, k2 = 1). 

>- 1 

0.5 -

SOLX 

1.8 
1.6 
1.4 
1.2 
1.0 
0 .8 
0 . 6 
0.4 
0 . 2 
0.0 

- 0 . 2 
-0.4 
-0 .6 
- 0 . 8 

>• 11 

1.8 
1 . 6 
1.4 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 

- 0 . 2 

-0.4 
- 0 . 6 
-0 .8 

pi ' ' 1 1 1 ' ' 1 1 ' 1 1 ' ' ' 1 1 1 ' 1 

0 0.2 0.4 0.6 0.8 1 
X 

0' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ' 1 1 1 

0 0.2 0.4 0 6 0.8 1 

(a) Fully Coupled (b ) Two Grid 

Figure 6.2 : x- component of velocity H = 0.5, h = 0.25, NIPG, k2 = 2, a = 0. 

that gives enough information about the flow. Figures 6.2 and 6.3 are plots of the x 

and y components of the velocity solutions respectively for the fully coupled Navier-

Stokes/Darcy scheme and the two-grid schemes. It is clear that even for the coarse 

mesh H — 0.5 the two-grid solution from h = 0.25 gives the same information for the 
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Figure 6.3 : y- component of velocity H = 0.5, h = 0.25, NIPG, k2 = 2, a = 0. 

velocity as in the case for the fully coupled problem. We note for the application of 

this work in tracking contaminants the velocity field for the coupled problem is the 

input we seek to couple with the Transport equation [8]. Next, we increase the order 

of approximation in fl2 to k2 = 2. From Tables 6.9 as expected the Darcy solution is 

h IIEtf-U! lo 11^ " P l l 0 \\D(U\ - «i)||0 11̂ 2 ~ P2||0 l|V(P2" - p 2 ) | | 0 
l 
4 1.599 xlO -2 6.687x10" 2 1.366X10"1 7.449 x l O " 3 1.463 x l O " 2 

1 
16 9.994 x 10 - 4 6.685x10" 3 3.390 XlO"2 4.953 x l 0 ~ 4 9.275 x l O " 4 

1 
6 4 

6.232x10" 5 7.379 xlO - 4 8.467 x l O " 3 3.1225 x l O " 5 5.812 x l O " 5 

rate(h) 2.00 1.59 1.00 2.00 2.00 

Table 6.9 : Errors and rates for (Wfc,NS) (Jfei = 1, NIPG a = 0, k2 = 2). 
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h H 11^ ,1 ~ «1 lo l i f t , 1 " P I |o \\D(UhA - u O H o lift.,2 - P2 lo l |V(P h , 2 - p 2 ) | i 0 

l 
4 

l 
2 1.594 XlO" 2 7 .758x10" 2 1.364 x l O - 1 2.562 x'10" 2 1.708 x l O " 1 

1 
16 

1 
4 9.674 x lO" 4 1.278x10" 2 3.397 x l O " 2 6.1307 xlO - 3 1 . 0 5 7 x l 0 " 2 

1 
64 

1 
8 6.698 x lO" 5 2 .882x10" 3 8.474 x l O " 3 1.511 x 10" 5 2.616 x l O " 3 

r (h) - 2.00 1.00 1.00 1.20 1.20 

r ( B ) - 4.00 2.00 2.00 2.41 2.40 

Table 6.10 : Errors and rates for {Wh>a,a = NS, D) (fci = 1, NIPG a = 0, fc2 = 2). 

more accurate compared to the order one approximation, the convergence rate in the 

velocity increases to two. In Table 6.10 we observe that the two grid solution with 

fc2 = 2 is more accurate compared to the one with fc2 = 1 in Table 6.8. The Darcy 

velocity error decreases by a factor of almost 4, this in-turn results in an improvement 

in the Navier-Stokes velocity and pressure solutions in Jlj. However, due to the fact 

that the order of approximation in remains at k\ = 1 the errors in Table 6.10 are 

larger compared to the coupled problem in Table 6.9. The convergence rate for the 

Navier-Stokes velocity and pressure in fii is O (h), the same holds true for the Darcy 

velocity in Q2. We also present results for the SIPG method below. As in the case 

with the Stokes/Darcy, coupling the parameter a has to be chosen to be large enough 

in order to observe the expected convergence rate. Table 6.11 shows the errors and 

h | | U f - u i l o I l ^ - P l l o | | Z ) ( [ / f — « l ) | | o I I ft"-P2| 0 ! | v ( P 2 " - P 2 ) | | o 
i 
4 1.600 x 10 - 2 6.681x10" 2 1.366X10- 1 5.060 xlO - 2 1.612 x l O " 1 

1 
16 1.000 x lO - 3 6.682 xlO" - 3 3.390 x l O " 2 4.000 xlO - 4 3.9791 x l O - 2 

1 
6 4 

6.232x10" 5 7.378 xlO" - 4 8.467 x l O " 3 2.618 xlO" - 5 9.974 x l O " 3 

r a t e ( h ) 2.00 1.59 1.00 2.00 1.00 

Table 6.11 : Errors and rates for (W/i,NS) (fci = 1, SIPG a = 6, fc2 = 1). 

convergence rate for the fully coupled problem with k2 = 1 using the SIPG method in 
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h H II U h , i - « i | | o ll-Ph,i - pi ||o l | f ( t / h , x - « i ) H o \\Ph,2-P2 lo l | V ( P h , 2 - p 2 ) | | o 

l 
4 

1 
2 1.594 x l O " 2 7.931 x 1 0 - 2 1.364X10"1 5.289 Xl0" 2 1.661 x l O " 1 

1 
16 

1 
4 9.747 x l O " 4 1.278x 1 0 - 2 3.397 x l O " 2 5.714 x lO" 3 4.153 x l O - 2 

1 
64 

1 
8 6.350X10"5 2 . 8 4 2 x l 0 " 3 8.474 x l O " 3 1.482 x lO" 3 1.029 x l O " 2 

i(H) - 4.00 2.00 2.00 2.41 2.40 

r(h) - 2.00 1.00 1.00 1.20 1.20 

Table 6.12 : Errors and rates for {WKa,a = NS, D) (/c2 = 1, SIPG cr = 6, k2 = 1). 

In Table 6.12 shows the errors and convergence rate from the two grid method on 

the same meshes. We observe the same trend as in the case with the NIPG method 

above. The errors for the two-grid method algorithm converge with order h and are 

comparable to the fully coupled problem. 

h 0 WPf-pi lo \\P%-P2\ 0 l | V ( P 2 / l - p 2 ) l l o 

l 
4 1.599 x 10" -2 6.604x10 -2 1.366X10-1 6.021 xlO -3 1.301 x 10~2 

1 
16 9.993 xlO" -4 6.668x10" -3 3.390 x lO^ 2 3.759 XlO" -4 8.183X10"4 

1 
64 6.233 x 10" -5 7.373x10" -4 8.469 x l O " 3 2.349 XlO" -5 5.123 x 10" 5 

rate(h) 2.00 1.59 1.00 2.00 1.00 

Table 6.13 : Errors and rates for (WhtNS) (fcx = 1, SIPG cr = 18,fc2 = 2). 

h H II UhA - UJHO l l f l . , 1 " P i l l o \\D{Vhil - u i ) | | o 1 1 ^ , 1 - P 2 I I 0 l | V ( P h , 2 - p 2 ) | | 0 

l 
4 

1 
16 

1 
64 

l 
2 

1 
4 
1 
8 

1.594 x l O " 2 

9.671 XlO" 4 

6.764 x l O " 5 

7 . 7 2 2 x l 0 - 2 

1 . 2 4 9 x l 0 - 2 

2 . 7 8 4 x l 0 - 3 

1.364 x l O " 1 

3.397 x l O " 2 

8.477 x l O " 3 

2.4063 x l O " 2 

6.014 x l O " 3 

1.503 x l O - 3 

4.206 XlO"2 

1.042X10-2 

2.606 x l O " 3 

r (h) - 2.00 1.00 1.00 1.20 1.20 

r (H) - 4.00 2.00 2.00 2.41 2.40 

Table 6.14 : Errors and rates for (Wht0l,a = NS,D) (fci = 1, SIPG a = 18,k2 = 2). 

Tables 6.13 and 6.14 show the errors and convergence rates for the fully coupled 
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Navier-Stokes/Darcy model and the two-grid method respectively. Increasing the 

order of approximation in Q2 improves the quality of the solution in both domains. 

6.2.4 C P U Times: Two-grid Coupled Navier-Stokes/Darcy Model 

The advantage of the two-grid method for the Navier-Stokes/Darcy coupling is that 

it linearizes the problem. This means that on the fine grid we only solve the linear 

system resulting from the modified Navier-Stokes problem in fii once. This results 

in gains in computational time and efficiency of the solver. We first present the CPU 

times for the time it takes to solve the resulting linear systems. 

h H Fully Coupled (twh ) Navier-Stokes (twh NS) Darcy (tWh D) 
1 1 

1.29 XlO 0 6 . 0 0 X 1 0 " 2 1.20 x l O - 1 

Ifi 4 
1 1 

8.731 x l O + 1 1.69 xlO0 7.36 xlO0 

64 s 

Table 6.15 : Direct Solver CPU times (s):W$S, WhtNS, WhiD, (NIPG a = 0,k2 = 2). 

Table 6.15 shows the CPU times for the fully coupled Navier-Stokes/Darcy model 

and the two-grid method. Note that for the times twh NS and twh D includes the time 

taken to solve for solution of the coupled problem on the coarse mesh. It is very 

clear that decoupling the problem makes the resulting linear systems much easier to 

solve as seen by the significant decrease in the time taken to solve them. In most 

finite element computations the bulk of the time is spent during the assembly of the 

matrices for the linear system. We also present the total time taken to assemble and 

solve the system. 

From Table 6.16 it is clear that the decoupling technique cuts down the com-

putational time significantly. In the example shown in Table 6.16 the fully coupled 
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h H Fully Coupled (fwh^) Navier-Stokes (twh NS) Darcy (tWh D) 
1 1 

9.430 x 10° 6 . 8 0 0 X 1 0 " 1 6.900 x l O " 1 

lfi 4 
1 1 

1.042 xlO+ 3 2.443 xlO2 1.198 xlO 1 

64 8 

T a b l e 6 .16 : Assembly and Solve C P U t imes (s):W$S, Wh<NS, WktD, (NIPG o = 0, 

k 2 = 2). 

problem has a linear system of size (77825 x 77825). The two-grid method results in 

two problems of sizes (28673 x 28673) and (49152 x 49152) for the Navier-Stokes and 

Darcy domains respectively. The amount of time it takes to solve the problem is cut 

by a factor of 4. 

6.3 Conclusion 

The two-grid method has been applied to the Stokes/Darcy and Navier-Stokes/Darcy 

coupled models. Theoretically we have shown that the solution obtained from the two-

grid model converges to the true solution with order h3/4 in the case when h = y/H. 

However, numerical simulations show an order h convergence rate. A finer analysis 

will be needed to achieve this convergence rate. The two-grid algorithm achieves the 

goal of obtaining a solution which gives the essential features of the flow in a fraction 

of the time. One can further improve on the gains shown in this chapter by the use 

solvers that have been optimized for each problem in each domain. 
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Chapter 7 

Coupled Discontinuous Galerkin Method with 
Finite Volume Method 

7.1 Introduction 

In previous chapters the Discontinuous Galerkin method has been used to approxi-

mate the flow in the porous medium. We have shown that this method captures the 

flow well for example in heterogeneous media and faults. In practice, these areas are 

a small subset of the computational domain. In the rest of the domain the perme-

ability is well behaved. This means that we could cut down the size of the problem 

by using the Discontinuous Galerkin method only in the problem areas and using a 

low order method in the rest of the domain. In this chapter we propose to couple 

the Discontinuous Galerkin method with the finite volume method on Voronoi cells. 

We show that we are able to obtain an accurate solution by solving relatively smaller 

linear systems. 

7.2 Model Problem And Scheme 

Let ft G Rrf, d = 2, 3, be a bounded polygonal domain subdivided into non overlapping 

subdomains tip and Ql
D and let Qp ~ Ujfi^r and Sip = Uifll

D. The numerical method 

discussed in this chapter uses a finite volume method on flp and a discontinuous 

Galerkin method on flD. Let / G L2(fl) and g G H1/2(dQ,). The solution u of the 
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elliptic problem satisfies 

- V • (KS7u) — f , in n, (7.1) 

u = g, on d f l . (7-2) 

The coefficient K is bounded above and below by positive constants and k0 

respectively. Let ^ (resp. £p) be a subdivision of (resp. Q f ) , made of cells 

V (Voronoi cells in Qp and either triangles/tetrahedra/hexahedra or Voronoi cells in 

fin)- We also denote by hp (resp. hu) the maximum diameter over all cells in Q,p 

(resp. QD) and we let h = ma~^{hp,hD). We assume that the meshes match at the 

interface Tup = dflu H 8 Q f -

The definition of the mesh £p requires further notation. We assume that £p is an 

admissible finite volume mesh, in the following sense: 

1. There is a family of nodes {xy}Ve£h s u c h that xv EV and if an edge 7 is such 

that 7 = dV fl dW with W ^ V, it is assumed that xw xy and that the 

straight line going through xy and xw is orthogonal to 7. 

2. For any boundary edge 7 = dV n dfl with V G £p, it is assumed that xy ^ 7. 

However this condition can be relaxed (see Remark 1 in Section 7.3). Let y1 be 

the (non-empty) intersection between the straight line going through xy and 

orthogonal to 7. 

We denote by Tp1 the set of edges that belong to the interior of ftp and by r^ '9 

the set of boundary edges that belong to dflp fl <9fl Similarly, the sets of edges that 

belong to the interior of flp, and boundary edges that belong to Sf i^f lSf i are denoted 

by and respectively. We also define 

rh •p^i-^' 1 1 r^j^ T^h , , y 
F — I p U l f , l D - yD U I p . 
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There remains the set of edges that belong to the interface r ^ ; this particular set 

is denoted by T^p. 

We now define a parameter c?7 that is associated to each edge in the FV mesh. 

Let V and W be two cells in the FV region such that 7 = dV fl dW is an interior 

edge. We define the parameter d7 to be the Euclidean distance between the nodes 

xy and x w 

If the edge 7 is a boundary edge (i.e. belongs to dV PI dQ) the parameter d1 is the 

distance between the node xy and the edge 7. 

Next, assume that an edge 7 is the intersection of a FV cell V and a DG cell W. 

The parameter d1 is defined to be the distance between the node xy and the point 

y1, which is (as in the boundary case) the intersection between the straight line going 

through xy and orthogonal to 7. Here, we have made the assumption that xy does 

not lie on the interface 7. Assume there is some 9 > 0 such that 

d1 = d(xy,xw)-

dj = d(xv, 7) = c?(xy,y7). 

V7 G Th/, 7 = dV n dW, d7 >6 max(h v , hw) 

V7 g 7 = dV n dfl, d1 > 0hv 

V7 G Vh
DF, 1 = dVC\dW, V G £p, We c?7 > 6hv. 

Finally, we define the harmonic average of the diffusion coefficient: 

V7 G Th
DF, 7 = dV n dW, V G £p, We £\ •h X>, 
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It is easy to see that is also bounded above and below by k\ and ko respectively. 

We denote by |—y| the length of an edge 7. The finite dimensional space consists 

of piecewise polynomials of degree less than or equal to r in the DG region and of 

degree equal to zero in the FV region. 

Xh = {v G L2(n) : v\v € Pr{V) W G v\V G P0(F) W G 

Define the jump of a function in Xh. For any edge 7 we fix a unit normal vector 

n 7 to 7. We assume that if 7 is a boundary edge (belongs to <9f2), then ro7 points 

outward of dQ. If 7 belongs to the interface T^p, then we assume that n 7 points from 

the DG region into the FV region. Let us denote by V and W the mesh elements 

so that the vector ra7 points from dV into dW. We define the jump of a function 

u G Xh. 

7 G Fp1, [U]|7 = u(xv) ~ u(xw), 

7 G [U] | 7 = u\v - u\w, 

7 G Tp)p, [u]|7 = u\ND(y1) - U\Qf{XW), 

7Gr^'9, [u]|7 = u(xv), 

7 G Thjf, M | 7 = u\v. 

We remark that the quantity [it]|7 is a number except for the edges 7 G rh
D. The 

DG method requires additional notation. Let {«} denote the average of a function 

u G Xh. 

7ERJJ I , I = DVC\dW, U|7 = 0.5(U|V + U\W), 

7 G r h f , 7 G dV, M I 7 = u. 

Let a > 0 denote the penalty parameter and e G { — 1,1} be the symmetrization 

parameter. For a given edge 7 shared by two mesh elements V and W, let /i7 = 
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max(diam(V), diam(W)). The DG bilinear form is for all u, v G Xh 

aD(u,v)= E / KVu-Vv- E {KVu-ny}[v} 

+e [{KVv • n7}[U] + E f / N M - (7-3) 

The cell-centered finite volume method is defined by the following bilinear form for 

all u, v G Xh 

aF{u,v)= E I r ^ M H - (7-4) 

Our scheme uses the overall bilinear form for all u,v G Xh 

a(u, v) = ao{u, v) + ap(u, v) + ajjF(u, v), (7.5) 

where OD^ is the coupling form at the interface 

«DH«,»)= E J ^ T M M - ( 7-6) 

7 

The source functions and boundary conditions are taken into account in the form 

Vu e Xh, *(») = [ fv + e Y , f{KWvn1 + ^-v)g+ E (7.7) 

7er^'s 7
 7 e r£ 8 7 

The numerical scheme is: to find U G Xh satisfying 

Wv e a(U, v) = £{v) (7.8) 

We next define some norms, that naturally arise from the bilinear forms above: 

IMIbg = ( E LL^1/2V^|LL2(V) + E >S1/2IIMIIL'(7)) > (7-9) 
\V€££ 7er^ / 

/ x 1/2 

H F V = E > (7-10) 7 / 

N K = (IMI!,G + N I ^ + E ^ M 2 ) • (7.11) d-, 
FD 

7 

We now give some important properties of the bilinear forms. 
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Lemma 36. There exist a, (3 positive constants independent of h, such that 

Vu£X\ aD(v,v)>a\\vfDG, (7.12) 

Vv£Xh, aF(v,v) = IMllv, (7.13) 

\/veXh, a(v,v) > f3\\v\\2
£. (7.14) 

Proof. Inequality (7.12) is well known and requires the penalty parameter a to be 

large enough if e = — 1 [47]. Inequality (7.13) is trivial and the third inequality is a 

straightforward consequence of the first two and the definition (7.5). • 

Lemma 37. There exists a unique solution U G Xh satisfying (7.8). 

Proof. It suffices to show uniqueness of U satisfying (7.8) with / = g = 0. Take 

v = U in (7.8), and use coercivity of a. This implies that ||t/||f = 0 and thus U = 0 

in Xh. • 

7.3 Error Analysis 

For simplicity proofs are given in the case where there are only one DG region and 

one FV region, but the proofs for the general case are similar. For each edge 7 we 

define a subdomain V7 as follows. Assume that 7 6 Tp1 with 7 = dV fl dW. Define 

Vm/,7 = {txv + ( 1 - t ) x , x (E 7 , t e [ 0 , l ] } , 

and let 

V7 = VH/j7 n Vy)7. 

Assume now that 7 e TF
9 with 7 C dW, then V7 = VW,7- Finally if 7 G Vh

DF with 

7 = dVn dW, and W G then V7 = VWn-
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Lemma 38. Define the residuals for any u G H2(fl). 

7 e Th/ Ry(u) = - M K j l u ] - [ KVu • n7, (7.15) 
"7 J 7 

7 = 3 v n a n ^ ^ - ^ x ^ - g W i - j J m - n , , (7.16) 

V7 e i?7(u) = -KVu • n 7 - ^ [ u ] , (7.17) 

Let //(«) denote the Hessian matrix of u. Assume K is a positive constant. Then, 

there exists a constant C independent of h and u, but dependent on 9, such that 

i e rhDF, 

-yerhF, | i ? » | 2 < C ^ M f \H(u)\2, (7.18) 
T J V-y 

(jTl^Wiy < \H(u)\2. (7.19) 

Proof. Inequalities (7.18) and (7.19) can be found in [18]. • 

The following result shows that there is a consistency error only due to the FV 

discretization. In the DG region, there is no consistency error. 

Lemma 39. Let u G H\Q,)nH2(£h) be the solution to problem (7.1)-(7.2). Then u 

satisfies 

Vv G Xh, a(u, v) = £(v) - E #7C")M ~ E M / ^rfa) 
7er£ ^rh

DF
 7 

- E f ^ N H n o ~ vhjy-r)) + E ^ r 1 ^ ( v h M - h r 1 f v h D ) • ( 7 . 2 0 ) 

Proof. Let V G £F and let v G Xh such that v\v = 1 and v — 0 elsewhere. Denote by 

riv the outward unit normal to V. Multiply (7.1) by v and integrate on V by parts: 

- / KVu • nyv — / fv, 
Jav Jv 

or 

E I KVu -nvv= I fv. (7.21) 
1<EdV 
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Summing (7.21) over all FV cells, and using the residual definitions, we obtain for 

all v G Xh: 

aF(u,v) + Y , [ K V u • nivFV + Y P j M M ~ Y T-Ki9(.Vi)v= f fv. (7.22) 

For readibility, we denote by vdg the restriction of v to the DG region and by vpv 

its restriction to the FV region. Next, we consider V G Sp, multiply (7.1) by v G Xh 

and integrate by parts: 

/ KVu • Vv - / KVu • nvv = / fv. 
Jv JdV JV 

Sum over all V in the DG region, add the stabilization terms to obtain 

>(u,v)- Y I KVu • TI^vdg = I fv + e Y I (KVv ' ni + T~v)9- (7.23) 
J i JnD

 h~t 

a D . 
We now add (7.22) and (7.23): 

aF(u,v) + ao(u,v) +T — £(v) - Y , -^M^M* 

~terh
F 

where T corresponds to the terms involving integrals on the interface TDF. We can 

write using the regularity of the solution u (namely the fact that u G H2(Q)): 

T = - Y / ' N-L(vDG - VFv) = - Y / ' - VDg{VI)) 

- Y M / 

Using the definition of the residual in Lemma 38, we obtain 

T= Y i(Ri^) +
 I±l[u]){vDG-vDG{y1))+ Y M / ( ^ M + TrM). 

or 

T = aDF(u,v) + Y M [ Ri(u)+ Z ! [ Ri(u)(vDG~vDG(yj))- Y ^t'-WMvdg), 
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with 

E{VDG) = VDCIY-Y) " Y VDG' 

Thus we can conclude. • 

Theorem 40. Assume that u G I~I2(fl) and that U\QD G HR+1(£P) for r > 1. Under 

the assumptions of Lemma 38, there exists a constant C independent of ho and hp 

such that 

\ \ U - u \ \ £ < C{hr
D + h F ) . 

Proof. We can write 

U - u = x ~ € , X = U - u , Z = u - u . 

The function u G Xh is chosen so that 

VVe££, u\v = u{xv). (7.24) 

On the DG region u is assumed to satisfy the usual approximation properties. Using 

the definition of the scheme (7.8) and Lemma 39, we obtain an error equation: 

+ E ( X \ U d { I H ) - \-y\~1 J X k 
76F h

DF 

Let us estimate the terms in the right hand side. Since f ( av ) = 0 for all nodes xy 

in QF , we have 

X ) = x ) + aF{£, x ) + a D F { £ , x ) = aD{£, x ) + a D F ( £ , x)-

We can use standard techniques to bound aD(£, x)- The other term reduces to 

a D F & x ) = E ^ I x l t h M -
y e r ^ 7 
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We claim that we can choose the approximation u such that nD(y7) = 0. In that 

case we have <IDF(£, X) = 0- The first consistency error term is bounded as follows: 

E ^ re E + 4 £ 

7erJ . 7
 7 e r * 1 " 

Using the bound (7.18) and denoting by H(u) the Hessian matrix of u, we have 

E < ^ E ^ w 2 + ck\ [ \H(u)f. 

7er£. 7 J n F 

The second consistency error term is as: 

£ i*ijf«iw<5 £ ^ f x | 2 + 4 E h \ [ l R M f ' 

7 e r *DF
 J l

 7 e r f e F
 7

 7 6 r * F
 7 

which with the bound (7.19) gives: 

E w / < ^ E ^ m ' + ^ F [ \H{u)\2. 

Finally we have 

E Rii^ixlnn ~ x\nD{y-y)) < E / I ^ M I I x b o - x l n D ( y 7 ) | -

Let us fix an edge 7 G r£>G with 7 = <9V D 3VK, and V G £q. Let us denote by 

V = x\v — x\v(y~t)- Then we have by trace and inverse inequalities: 

BLLL~(7) < Ch~1/2h\\L2{l) < C | |VT ? | | L 2 ( 1 / ) . 

Therefore we obtain 

£ [ R-y(u)(xK-x\aD(y^))<hx\\2DG + C E ( V l ^ M l V 

1(5 JnF 

The last consistency error term is bounded as follows. Fix an edge in Fpp such that 

7 = dV n dW with V G 

x l n M - h r 1 / x |n D ) < C ,||Vx||L2(V)^^2|[«]|-
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Using the density of C1 into H2 and a Taylor expansion, we can prove that: 

N W <rf7 |7 |1 / 2 | |VW . .n | | i 2 ( 7 ) . 

So we have 

£ J x lnD) <^\\x\\2DG + Ch3
F\\Vu-n\\2

LHrhDF) 

<^\\x\\2DG + Ch2
F\\u\\2

H2^F). 

We can then conclude. • 

R e m a r k 1: The results of Theorem 40 are still valid if there are some nodes xy 

located on boundary edges 7 G r^'9. Let denote by T^'0 the set of such edges. The 

coupled scheme is slightly modified. The discrete space is the set Yh of functions 

v G Xh such that v{xy) = 0 for all xy G T^'0. The bilinear form aF and linear form 

t become 

aF(u,v) = £ l-^K,[u][v} 

7er£\r£° 7 

£ ( v ) = [ f v + e Y f { K V v n 1 + ^-v)g+ £ K ^ g ^ v . 
crh,aJ-y n i crh,Svrh, 0 7£r£ i e r F \ r F 

The solution U G Xh is such that U(xv) = g(xy) for all xv G and satisfies 

\/veYh, CL(U,V)=£(V) 

7.4 Numerical Examples 

In the following section we present examples that verify the convergence rates for the 

proposed FV-DG coupling and illustrate cases in which the coupled scheme yields a 

more accurate solution. 
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Example 41. Convergence Study 

First we consider the unit square domain Q, partitioned into two subdomains Qp and 

Clp (see Fig. 7.1). The boundary conditions are chosen so that the exact solution 

u(x,y) = (x2 — x)(y2 — y) and the coefficient K is equal to one. 

Figure 7.1 : Computational mesh with 340 Voronoi cells: f tp is the white region and 

QD is the grey region. 

In order to perform the convergence tests we generate four Delaunay triangula-

tions using the software EasyMesh developed by Bojan Niceno [37]. At each level 

of refinement we ensure that the maximum area of each triangle decreases by a fac-

tor of 4. We then generate the dual Voronoi mesh for each Delaunay triangulation. 

This technique has been used in [35]. Fig. 7.1 shows an example of the mesh for the 

convergence test with 340 Voronoi cells. The shaded subdomain is QD on which the 

solution is approximated using the discontinuous Galerkin method and the rest of the 

domain is QFV, on which the finite volume method is used. The DG parameters are 
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chosen as: a = 1, e = 1. 

(a) Exact Pressure (b) Approximate Pressure 

(c) Exact Pressure (d) Approximate Pressure 

Figure 7.2 : Contours of exact and numerical solutions for example 1. 

Fig. 7.2 shows the exact solution and the numerical solution obtained on the mesh 

shown in Fig. 7.1. We observe the expected clear distinction between the piecewise 

constant solution on Qf and the smoother solution on Up on which the solution is 
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approximated by discontinuous quadratic polynomials. Tables 7.1 and 7.2 show the 

N \\U - "llo.FV \\U-u\\FV \\U ~ «llz,2(nD) \\U-u\\DG | | t / - « | | £ 

31 1.489 x l 0 ~ 3 1.034 x l O " 2 1.147 x l O " 3 3.049 x l O " 2 3.872 x l O " 3 

102 4.010 x l O " 4 2.748 x l O " 3 3.034 x l O " 4 1.503 x l O " 2 1.781 x l O " 3 

340 1.033 x l O " 4 8.143 x l O " 4 8.386x 1 0 " 5 8.031 x l O " 3 9.276 x l O " 4 

1272 2.609 x 10~5 2.722 x l O " 4 2.112 x l O " 5 4.039 x l O " 3 4.653 x l O " 4 

4895 6.496 x l 0 ~ 6 1.016 X l O " 4 5.322 x l O " 6 2.039 XlO" 3 2.313 x l O " 4 

rate 2.00 1.40 2.00 1.00 1.00 

Table 7.1 : Numerical errors and convergence rates for DG scheme of order one 

coupled with FV. 

N l | t / - « | | o , F V \\U~u\\FV W - w\\L2(nD) \ \ U - u \ \ D G \\U-u\\£ 

31 

102 

340 

1272 

4895 

9.479 x l O " 4 

2.593 x l O " 4 

6.578 x l O " 5 

1.744 x l O " 5 

4.766 x l O " 6 

6.592 X l O " 3 

1.872 x l O " 3 

6.148 x l O " 4 

2.389 x l O " 4 

1.012 x l O " 4 

4.881 x l O " 4 

1.176 x l O " 4 

4 . 0 2 8 x l 0 ~ 5 

9.198 x l O " 6 

2.487 x l O " 6 

4.298 XlO" 3 

1.598 x l O " 3 

7.550 x l O " 4 

4.328 XlO" 4 

1.120 XlO" 4 

2.172 XlO" 3 

9.009 x l O " 4 

4.415 x l O " 4 

2.397 x l O " 4 

1.198 x l O " 4 

rate 1.88 1.23 1.89 1.95 1.00 

Table 7.2 : Numerical errors and convergence rates for DG scheme of order two 

coupled with FV. 

expected convergence rate of 0(h) in the energy norm. The error in the L2 norm for 

the DG solution are also given; they are 0(h2) as expected. A discrete L2 error is 

computed for the FV region: 

\\U-u\\0^v= I £ |V|(U(xv)-u(xv))2 

\ V € £ F 

The rates for the discrete L2 errors are also 0(/i2) . 
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The variable N is the total number of Voronoi cells in the domain Q. When we 

increase the degree of approximation in Op to two, the pressure solution is more 

accurate and the local convergence rate increases to two. This feature is important 

because it allows for one to use the Discontinuous Galerkin method to obtain accurate 

solutions on parts of the domain of interest. 

Example 42. Discontinuity in Porous Medium. 

In the next example we consider a square domain f2 = (0, 2) x (0, 2) with an enclosed 

triangular domain (see Fig. 7.3 left). The diffusion coefficient K is equal to 0.01 in 

the triangular subdomain and 1.0 in the rest of the domain. We impose zero Dirichlet 

boundary conditions and the source function 

f(x,y) = -2.0(x2-2x) + (y2-2y). 

(a) FV (b) FV-DG 

Figure 7.3 : Computational meshes in the case of triangular inclusion (grey region in 

left figure). The DG region is a larger rectangular region that contains the triangular 

inclusion (grey region in right figure). 

The challenge for the finite volume method in this case arises from the discontinu-

ity in the permeability of the porous medium that changes rapidly over a small part 
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of the domain. We want to compare the FV solution with the FV-DG solution on the 

domains shown in Fig. 7.3. We first solve the problem on a mesh with 1985 Voronoi 

cells using the finite volume method on the mesh shown in Fig. 7.3(a). The solution 

is shown in Fig. 7.4 (a) and (c). It is clear the the finite volume solution captures the 

low permeability in the triangular domain, however it is difficult to obtain an accurate 

solution as indicated by the three-dimensional plot. Next we solve the problem by 

using the DG method with parameters e = a = 1 and r = 2 in the rectangular shaded 

region that includes the triangular region as shown in Fig. 7.3(b). The mesh is a com-

bination of Voronoi cells and triangular elements. The flexibility of DG easily allows 

the use of hybrid meshes, that can capture the discontinuity interface. The solution is 

shown in Fig. 7.4 (b) and (d). We observe that we are able to obtain a more accurate 

representation of the solution in contrast to the case when the finite volume method 

is used throughout the domain. This is explained partially by the fact that we have 

a higher order approximation in the DG region. The FV-DG solution is obtained by 

solving a problem of size 6509 which as expected is larger than the problem size from 

the FV solution. We note that solving this problem using the discontinuous Galerkin 

method on the whole domain yields a problem of size 13734. In this case we have 

shown that with prior knowledge of the domain, the proposed coupling can be useful 

to obtain an accurate solution of a subdomain of interest and still keep the size of 

the problem small when compared to using the discontinuous Galerkin method on 

the whole domain. We believe that this feature works well for applications to porous 

media flow. Fractures and pinches are often areas of interest in the flow problem. 

Since they occupy often small portions of the domain, the proposed coupling can lead 

to more accurate solutions in these areas at a relatively low computational cost. 

Example 43. Anisotropic Diffusion Problem 
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*65. 

(c) FV: 3D view 

I b m I 

(d) FV-DG: 3D view 

Figure 7.4 : Contours of pressure solution for example 2 

In the following example we consider a domain fl = (0,2) x (0, 2) that contains a 

rectangular subdomain with an anisotropic diffusion matrix (see Fig. 7.5), instead of 

a simple diffusion scalar. This example is motivated by a benchmark problem described 
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in [44J. The diffusion matrix is defined by 

( 
K = Ra 

V 

1 0 • -1 Rd> » 
0 <5 

where R^ is the rotation matrix (with <j> = 30 degrees) and 5 = 10 3 in the shaded 

triangulated region of the domain (see Fig. 7.5) and 5 = 1 on the rest of the domain. 

We solve the problem using the discontinuous Galerkin method in the shaded 

region in Fig. 7.5 with parameters a = e = 1 and r = 2. We note that other types 

of finite volume methods can be used to solve problems with anisotropic diffusion 

coefficients for example [42, 43]. These methods are relatively more complicated to 

implement because they involve the construction of a discrete gradient. In practice for 

the finite volume method discussed in this chapter one can align the computational 

grid to the principal directions the flow. This approach is strenuous and easily gets 

complicated in cases involving changes in the direction of the flow. Fig. 7.6 shows 

Figure 7.5 : Computational mesh for example 3: <5 = 10 3 in the triangulated grey 

region and S = 1 in region partitioned into Voronoi cells. 

the pressure contours obtained from the proposed FV-DG scheme. We also plot some 
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P R E S S U R E 

Figure 7.6 : Contours of pressure solution for example 3. Streamlines are only shown 

in the DG region. 

of the streamlines located in the DG region only. We can clearly see the oblique flow 

in the rectangular subdomain due to the anisotropic diffusion tensor. 

7.5 Conclusions 

The coupling of discontinuous Galerkin and finite volume methods seems natural for 

the porous medium. As we have seen the finite volume method works well in parts 

of the domain where the permeability varies gradually. The Discontinuous Galerkin 

method on the other hand works in all cases but is more expensive. Thus combining 

these two methods allows one to obtain an acurate solution at a lower computational 

cost in the porous medium. This chapter presents both theoretical and numerical 

results that confirm the convergence of the multi-numerics algorithm in the porous 

medium. The multi-numerics scheme in the Darcy domain can easily be coupled with 

the Navier-Stokes flow as shown in previous chapters. The resulting solution is gives 
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us a good solution to the flow problem at a lower cost because we use a lower order 

method on most of the porous medium. 
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Chapter 8 

Conclusion 

8.1 Coupled Navier-Stokes/Darcy Model 

The coupling of Navier-Stokes and Darcy equations remains an interesting problem 

due to its applications in science and engineering. In this thesis we have shown 

existence and uniqueness results for a weak solution to the coupled Navier-Stokes 

Darcy system for two sets of interface conditions. The first case includes inertial 

forces on the balance of forces condition and requires extra restrictions on the data. 

The second condition does not include inertial forces and does not require restrictions 

on the data. There is no consensus in the scientific community on the correct interface 

conditions to incorporate for this problem. We have also done a numerical comparison 

of a third interface condition that includes the normal component on the inertial 

forces. For the particular examples considered in this work there is no significant 

difference in the numerical solutions. In this work we have shown that these two 

conditions differ under low viscosity. On the issue of interface conditions, comparing 

numerical simulations to experimental results my provide better insight as to which 

condition is better. 

Optimal a priori error estimates for numerical schemes for using both continuous 

and Discontinuous Galerkin methods have been shown. The convergence rates for the 

numerical scheme have been throughly verified by grid studies for known continuous 

solutions. This work is motivated by applications to geo-sciences, as a result we have 
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tested the numerical scheme on a wide range of cases that show the robustness of the 

numerical scheme under the parameters of the model. 

The choice of coupling the continuous finite element method with the Discontinu-

ous Galerkin (DG) is due to the fact that the finite element method provides a fairly 

efficient and proven capability of solving free flow problems. The DG method on the 

other hand is more robust to handle the difficulties that arise in porous media flow. 

While we have shown the advantages of using the DG method in the porous medium, 

it is also clear that computationally it leads to large systems which are time consum-

ing to solve. Another important characteristic of porous media flow problems is that 

the areas (for example kinks, faults) which cause difficulties are often a small subset 

of the computational domain. In view of these two problems this work proposes two 

ways of making computations leaner and more efficient. 

8.2 Computational Efficiency 

Improving the coupled Navier-Stokes/Darcy code has been the objective of the second 

half of the thesis. This has been done in two ways. The first approach is a two-grid 

algorithm that involves solving the fully coupled problem on a coarse grid and then 

decoupling the problem on a finer grid. We have shown that this method produces 

a fairly accurate solution in about a quarter of the time it takes the fully coupled 

problem. This is very important especially in the case of large domains and in the 

case of the time dependent problem where a fully non-linear problem would have to 

be solved on each time step. Another way of improving computation comes out of 

the realization that the problem areas are small subsets of the domain. This has lead 

to the idea of coupling the finite volume method with the Discontinuous Galerkin 

method. The Finite Volume method is relatively cheap compared to the DG method 
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and gives accurate solutions in cases where the permeability is well behaved. In 

view of this, it is a natural choice to use this method in parts of the domain where 

the permeability does not change much and the Discontinuous Galerkin method in 

problem areas. We have shown convergence of the coupled scheme and illustrated its 

potential through numerical examples. 

8.3 Future Work 

In practice the permeability field in the porous medium has a wide range of scales. 

The small scale effects often have profound effects of the nature of the flow as a result 

it is important to incorporate them into the model. However due to the size of the 

domain it is computationally expensive to do this without some kind of approxima-

tion. Incorporating multi-scale techniques into the Darcy region would improve the 

model's capability to solve more realistic problems that arise in porous media flow. 

Extending the model to three dimensions will allow for a more extensive numerical 

study of the model. The theory shown in this work extends to three dimensions 

already. Parallelization of the code will also help speed up computations on larger 

domains in three dimensions. In the numerical results section the fracture example 

demonstrated the potential advantage of adaptive mesh refinement. This will require 

error estimators for the coupled problem. Developing error estimators will be a very 

interesting mathematical problem. This will also improve the computational aspects 

of the model. 
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