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Abstract 

Optimization Governed by Stochastic Partial 
Differential Equations 

by 

Drew P. Kouri 

This thesis provides a rigorous framework for the solution of stochastic elliptic 

partial differential equation (SPDE) constrained optimization problems. In modeling 

physical processes with differential equations, much of the input data is uncertain 

(e.g. measurement errors in the diffusivity coefficients). When uncertainty is present, 

the governing equations become a family of equations indexed by a stochastic vari

able. Since solutions of these SPDEs enter the objective function, the objective 

function usually involves statistical moments. These optimization problems governed 

by SPDEs are posed as a particular class of optimization problems in Banach spaces. 

This thesis discusses Monte Carlo, stochastic Galerkin, and stochastic collocation 

methods for the numerical solution of SPDEs and identifies the stochastic collocation 

method as particularly useful for the optimization of SPDEs. This thesis extends the 

stochastic collocation method to the optimization context and explores the decoupling 

nature of this method for gradient and Hessian computations. 
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Chapter 1 

Introduction 

Many physical problems can be formulated as optimization problems. These prob

lems are used to gain a more comprehensive understanding of physical systems and 

typically depend on some model. In many cases, these models are deterministic. In 

real world application, uncertainty plagues everything from modeling assumptions to 

experimental data. As such, many practitioners have developed stochastic models 

to accommodate for these uncertainties. With the addition of randomness to the 

models, the resulting optimization problems require some additional theory in order 

to make sense of and solve them. This thesis develops an adjoint based approach 

to solving optimization problems governed by stochastic partial differential equations 

(SPDE). This approach allows for the computation of first and second order deriva

tive information. Furthermore, this thesis develops algorithms to exploit the parallel 

nature of the derivative computations. This derivative information is used to run an 

inexact Newton's method to solve the optimization problems of interest. Finally, a 

Hessian approximation is developed based on either a related deterministic problem 

or a problem in which the stochastic domain is smaller. This approximation leads to 

a formulation of Newton's method with inexact derivative information as well as a 

preconditioned Newton-CG method. The novelty of these methods is that they re

duce storage immensely and reduce the computational cost of the conjugate gradient 

1 
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method when solving the Newton system. 

The topic of SPDE constrained optimization is at the interface of two fields: 

stochastic partial differential equations and optimization theory. In order to solve an 

optimization problem governed by an SPDE, one must first solve the SPDE. As such, 

this thesis is structured in a progressive manner. In the first chapter, I give a com

prehensive literature review. This review covers both fields (SPDEs and optimization 

theory) separately and then I discuss the literature at the interface of the two fields. 

In the second chapter, I discuss theoretical aspects of SPDEs. This chapter develops 

existence and uniqueness of solutions to SPDEs, as well as, reviews some necessary 

assumptions on the inputs of the SPDE. These assumptions will allow for numeri

cal solution to the SPDE. The third chapter of this thesis develops three numerical 

methods for solving SPDEs. First I present two sampling based approaches (Monte 

Carlo finite element and the Stochastic Collocation finite element), and finish the 

chapter with the Stochastic Galerkin finite element method. In the final chapter, I 

rigorously develop the functional analytic framework required for optimization gov

erned by SPDEs. I present an adjoint based approach for computing the gradient 

and Hessian information and describe two forms of the inexact Newton's method for 

solving such optimization problems. As mentioned, the algorithms presented allow 

for extremely large problems due to its minimal storage requirements and parallel 

nature. Finally, I conclude with a numerical example demonstrating the necessity of 

SPDE constrained optimization (as opposed to related deterministic problems) and 

illustrate the behavior of the inexact Newton's method. 



Chapter 2 

Literature Review 

This thesis develops an adjoint equation approach for computing gradients of objec

tive functions governed by stochastic elliptic partial differential equations (SPDE). 

This research is at the interface of two fields: stochastic partial differential equa

tions and optimization. In the past century, both topics have been researched ex

tensively, but few have attempted to combined the two subjects. Attacking these 

optimization problems is a daunting task, both theoretically and numerically. With 

the ever increasing computational power, numerical exploration of such problems is 

more reasonable. With a firm understanding of the theoretical aspects concerning 

these optimization problems, numerical solutions become more attainable. This re

search presents such theoretical and numerical background to these problems and 

analyzes the error in derivative computations for specific numerical SPDE meth

ods (i.e. stochastic Galerkin, stochastic collocation, and Monte Carlo finite element 

methods). Any derivative based optimization algorithm will require the solution of 

the SPDE at each iteration. Thus, it is essential that one can numerically solve an 

SPDE efficiently and quickly. As such, this chapter is split into two distinct topics: 

numerical solutions of SPDEs and optimization. I will conclude the chapter with an 

overview of the current, albeit sparse, research at the interface of these topics. 

3 
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2.1 Stochastic Partial Differential Equations 

This thesis is concerned with stochastic partial differential equations with random 

field input data. The solutions to such equations are also random fields; therefore, 

it is necessary to understand how to represent random fields and processes. Two 

main representations exist and are implemented in practice. In 1938, Norbert Wiener 

developed his theory of "homogeneous chaos" or polynomial chaos expansion. The 

chaos expansion seeks to represent Gaussian random processes as an expansion of Her-

mite polynomials evaluated at Gaussian random variables [40]. Many recent studies 

have generated theory for "generalized chaos", which extends Weiner's chaos to non-

Gaussian random processes [19, 23, 37]. About a decade following Weiner's chaos 

theory, Karhunen (1947) and Loeve (1948) independently discovered an alternative 

representation of random fields [18, 22]. They proposed a generalized Fourier expan

sion representation based on the eigenvalues and eigenfunctions of the random field's 

covariance function. Due to the convergence properties of both representations, one 

can truncate the resulting series to approximate the random process. This allows the 

practitioner to represent a given random process arbitrarily well by only a finite num

ber of random variables (called the finite dimensional noise assumption). Also, this 

finite dimensional representation allows for the investigation of numerical solutions 

and computer representation of SPDEs. 

Early methods for solving stochastic partial differential equations included pertur

bation and Neumann expansion methods. Perturbation methods expand the solution 

to the stochastic operator equation in a Taylor's series and solve for the derivatives of 

the solution of the SPDE. This method requires undesirably harsh smoothness con

straints on the solution with respect to the stochastic variable. On the other hand, 

Neumann expansion methods are based on the idea that if an operator is a "small 

enough" perturbation of the identity operator, then the operator can be inverted in a 

Neumann series. This method places strict requirements on the boundedness of the 

stochastic operator. Ghanem and Spanos present an overview of these methods in 
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their book Stochastic Finite Elements: A Spectral Approach [13]. 

Although the perturbation and Neumann expansion methods are strong theoreti

cal tools, numerical implementation of such techniques is very cumbersome. This led 

many researchers to investigate finite dimensional representation of stochastic pro

cesses via chaos and KL expansions. Ghanem and Spanos [13], Xiu and Karniadakis 

[43], and Xiu, Karniadakis, Su, Schwab, Lucor, and Todor [19] developed solution 

techniques for SPDEs by substituting truncated chaos expansions of the solution into 

the SPDE and solving for the coefficients of the expansion. In order to solve for 

the coefficients, one must solve a system of deterministic PDEs using standard finite 

element or finite differences methods. Babuska, Tempone, and Zouraris later gener

alized this "spectral" finite element scheme to allow for other representations of the 

random processes (for instance, piecewise polynomial functions) [3, 4]. Under the 

finite dimensional noise assumption, these methods are extremely successful, as long 

as the dimension of truncation (i.e. the stochastic dimension) is small. 

When the stochastic dimension becomes large, these solution techniques become 

computationally intractable. This led to Xiu and Hesthaven to investigate the appli

cation of collocation techniques to these SPDEs [42]. Webster, Nobile, and Tempone 

[39, 26] have also investigated these collocation techniques and have proven that con

vergence of such techniques is at least as good as the previously mentioned techniques. 

Furthermore, Babuska, Nobile, and Tempone [2] even proved that under certain as

sumptions, Xiu and Hesthaven's stochastic collocation method is a generalization of 

the polynomial chaos finite element method presented in [3]. One main advantage of 

the stochastic collocation technique is that it allows for weaker assumptions on the 

input data than the polynomial chaos methods described above. Moreover, due to 

the high dimensionality of the stochastic L2 space (i.e. the order of truncation of the 

KL or chaos expansion), many authors have investigated collocation techniques based 

on Smolyak's algorithm for reducing the dimensionality of tensor product operators 

[35]. These techniques reduce the dimensionality of the resulting deterministic PDE 
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system drastically. 

Smolyak's algorithm has equally received much interest. Gerstner and Griebel 

show that choosing extended Gauss Patterson quadrature for the basis of the Smolyak 

algorithm leads to superior approximations as opposed to other quadrature rules [12]. 

On the other hand, Novak and Ritter show that one can construct sparse grids using 

a subset of the quadrature rules required in the original Smolyak algorithm [29]. This 

leads to even further reduced tensor product quadrature rules. Finally, Barthelmann, 

Ritter, Novak, Wasilkowski, Wozniakowski, and others have shown improved error 

bounds on the original Smolyak algorithm [5, 38]. All of these advancements in 

the understanding of Smolyak's work allow for quicker solution of SPDEs using the 

collocation technique. These collocation and sparse grid techniques are quick and 

efficient, and therefore, well suited for SPDE constrained optimization routines. 

2.2 Optimization 

With the advent of computers, much research has been devoted to numerically solving 

unconstrained and constrained optimization problems (see Dennis and Schnabel [8] or 

Nocedal and Wright [27]). Furthermore, many engineering and physical applications 

result in problems in the calculus of variations and optimization problems governed 

by PDEs. This created the necessity for the theory of optimization in general Banach 

spaces (a nice introduction to these topics is [16]). This thesis applies the abstract 

techniques in the theory of optimization in Banach spaces to optimization problems 

governed by SPDEs. 

Another problem that may arise in application is: given a deterministic PDE 

constrained optimization problem, how does one solve the problem if the deterministic 

governing equation is replaced with a stochastic equation? The objective function 

composed with the solution to an SPDE is a random variable, not a real number. 

This sort of objective function falls in the realm of stochastic optimization. The 
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problem with random variable objective functions is that there is no ordering on the 

space of random variables and thus no sense of optimality. Stochastic optimizers 

seek to transform the objective function into a "deterministic substitute problem". 

These substitute problems involve mapping the random variable objective function 

to a real number. Many of such substitute problems involve computing statistical 

moments of the objective function. Marti and others have applied these substitute 

problems and standard optimization techniques to various solid mechanics and design 

problems [24, 25]. From these results, not much can be said about how to choose 

the deterministic substitute problem. This task is problem dependent. Rockafellar 

has given some results concerning this topic, stating that a deterministic substitute 

problem should be coherent (which will be defined in a later chapter) [31]. 

2.3 Interface of SPDEs and Optimization 

The separate theories of SPDEs and optimization are well developed and understood, 

but few have attempted the interface of the two. PDE constrained optimization prob

lems arise in many engineering and physical applications, and stochasticity arises in 

these problems as a modeling choice. As such, many engineers are actively applying 

standard optimization techniques to problems governed by SPDEs [33, 11]. These 

practitioners have little concern with the theoretical aspects of the problem. In 2008, 

Xiu presented the idea of approximating the objective function of such problems in a 

truncated polynomial chaos expansion. This approximation transforms the problem 

into a coefficient recovery problem for a finite number of coefficients [41]. Although 

this work presents a fast and efficient method of dealing with these stochastic op

timization problems, no theory is developed. Xiu mentions nothing of convergence 

rates or how well the approximation is for the objective function or its derivatives. 

In [1], Anitescu performs a similar approximation to constrained parametric opti

mization problems. After writing down the Karush-Kuhn-Tucker (KKT) nonlinear 
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optimality system, he proves that solving the KKT system is equivalent to solving 

a finite dimensional constrained optimization problem. Guaranteeing existence of a 

solution to the KKT system requires very restrictive assumptions on the solution. 

The novelty of Anitescu's work is that the resulting optimization problem requires 

far weaker assumptions on the solution to guarantee existence. 

This thesis develops the background surrounding the problem of SPDE con

strained optimization and presents an adjoint equation method for computing the 

derivatives of objective functions. First, I supply the necessary results from the the

ory of SPDEs and numerical solutions of such equations. Next, I present the theory of 

optimization in general Banach spaces applied to problems governed by SPDEs. With 

this background, I present the adjoint approach for computing derivatives of the ob

jective function. Applying three numerical SPDE solution techniques (Monte Carlo, 

stochastic Galerkin, and stochastic collocation finite elements), I then approximate 

the derivatives of the objective function via the adjoint approach. Finally, I develop 

and analyze the errors in computing derivatives associated with each numerical SPDE 

scheme and supply numerical results. 



Chapter 3 

Elliptic PDEs with Stochastic 

Inputs 

This thesis develops an adjoint based approach to solving optimization problems 

governed by stochastic partial differential equations. In order to solve such opti

mization problems, it is crucial to be able to understand and solve SPDEs. SPDEs 

are partial differential equations for which the input data (i.e. forcing terms, diffu-

sion/advection/reaction coefficients, domain) are uncertain. This uncertainty could 

arise from modeling errors or errors in experimental data. In this section, I will focus 

on elliptic PDEs with stochastic forcing functions and coefficients. 

Suppose D C M.d is some physical domain (d = 1,2,3) and (ft,?7,/!) is a proba

bility space. That is, Q is the set of events, T is a cr-algebra of sets in Q, and \x is 

a positive measure satisfying /i(f2) = 1. We wish to find a function a : ( l x f l - > l 

that solves the stochastic elliptic partial differential equation almost surely: 

- V - ( O ( W , I ) V U ( W , I ) ) = / ( W , I ) in D (3.0.1) 

u(u,x) = 0 on dD. 

In this equation, / and a are functions mapping the product space fi x D to 1 . 

The solution to the SPDE, as well as the inputs a and / , are random fields. 

9 
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There are two ways to view a random field. One can view a random field as a family 

of random variables indexed by the spatial variable. Alternatively, one can view a 

random field as a family of realizations indexed by a stochastic variable. The latter 

view is used in this thesis. 

3.1 The Weak Formulation 

The solution u of (3.0.1) is a random field. For fixed u, (3.0.1) is an elliptic equation 

and, under suitable conditions has a weak solution U(OJ, •) € HQ(D). This generates 

a map 

tt BLU ^ ti(uv) E H£(D). 

Such functions that map measure spaces into Banach spaces motivate the development 

of Bochner spaces. 

Definition 3.1.1 Let X be a Banach space and let (ft, T, /j,) be a measure space. For 

1 < p < oo, the linear space Lp{yt]X) is defined as the space of Bochner integrable 

functions u : Q —> X such that 

\u(cu)\\p
xd^(uj) < oo. 

/a 

If p = oo, then L™(Q;X) is the space of Bochner integrable functions u : fl —> X 

such that 

ess sup ||u(a;)||x < oo. 
wen 

Many desirable properties of Lebesgue Lp spaces follow through to Bochner L^ 

spaces. For a more complete study see the appendix. Here, I will present only the most 

useful results for the discussion of SPDEs. Since the Sobolev space Ws'q(D) C Lq(D), 

I will first present results concerning the case when X = Lq(D). 

Theorem 3.1.2 The space Lp(fl; Lq(D)) forp,q £ [l,oo) is isomorphic to 

V = Iv.flx D^Rd : j i I \v(co,x)\qdx J dfi(u) < oo 
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In the case of SPDEs, this isomorphism allows for the characterization of W 

mappings from Q, to V{D) as LP mappings on the product space fix D. Elements on 

the product space are inherently easier to deal because they do not require the theory 

of Bochner measurability and integrability. This isomorphim does not generally hold 

when p = q = oo though. 

Theorem 3.1.3 L°°(0; L°°(D)) C L°°(n x D), but, in general, L°°(tl; L°°(D)) ^ 

L°°(n x D). 

Stochastic Sobolev spaces are Bochner spaces for which X = Ws,q{D). These 

spaces are defined as 

= < v : Q —* Ws'q(D) : v Bochner measurable, / \\v(u, -)||^Si9(D-|d/i(cj) < oo > 

and will be the solution spaces for SPDEs. Similar to the case when X = Lq(D), 

stochastic Sobolev spaces exhibit the following isomorphic relation. 

Theorem 3.1.4 The space Lp(fl;Ws'q(D)) for p,q e [l,oo) is isomorphic to the 

space 

V = Iv.Clx D id : / [\\v(u,-)\\w^(D)J d/i(w) < oo | . 

This result allows for the approximation of solutions to SPDEs as the tensor 

product of functions in L£(fi) and functions in Ws'q(D). 

Now, to pose the weak formulation of the linear elliptic SPDE, consider solutions 

in the Bochner space V = L^(f2; H1(D)), which is a Hilbert space with inner product: 

(u,v)v = / (u(u,x),v(u;,x))Hi{D)dn(uj). 

To satisfy the homogeneous Dirichlet boundary conditions consider the test space 

VQ = Ll(fl; H^(D)) C V. The weak problem is: find ueV0 such that 

/ / a(w,i )Vtt(w, i ) • Vt>(a>, x)dxdfi(u>) = I f 
Jn JD JU JD 

(uj,x)v(oj,x)dxdfj,(u) (3.1.1) 



12 

holds for all v E VQ. Here da; denotes Lebesgue integration. To derive the variational 

formulation, assume u E L2(Q; H2(D)) and multiply (3.0.1) by a test function v E VQ. 

Integrating this product and applying Green's identity yields 

V • (a(oj, X)VU(LU, X))V{OJ, x)dxd/j,(ui) 
in JD 

= fl(w,3;)Vtj(w, x) • Vv(u,x) — / / —(oj,x)v(ui,x)dxd(jL(uj). 
J a JD J a JdD °n 

Since v E Vo, V(LU,X) = 0 a.s. for x E 3D the boundary integral in the previous 

identity is zero and (3.1.1) follows. 

3.2 Existence and Uniqueness of Weak Solutions 

Prom the weak formulation, define the bilinear form 

A(u,v) = / / aWu-Vv (3.2.1) 
JQ JD 

and the linear form 

l(v) = f f fv. (3.2.2) 
Jo. JD 

The weak form (3.1.1) can be reformulated as: find u E Vo such that 

A(u,v) = l(v) 

for all v EVQ. AS with deterministic PDEs, one can establish existence and uniqueness 

using the Lax-Milgram theorem. To do this, I will determine, under what conditions, 

A is continuous and coercive, and I is continuous. First, recall that L°f(Q,; L00(D)) C 

L°°(f2 x D). This result will help to prove continuity and coercivity of a. 

Theorem 3.2.1 Let a E L°°(f2 x D) and suppose there exists «o > 0 such that a > OCQ 

almost everywhere in fl x D. Then A defined in (3.2.1) is continuous and coercive. 

Proof: First, notice that by theorems A.3.5 and A.3.7, V C L2:{tt; L2(D)) =* 

L2(fl x D). Thus, by Cauchy-Schwarz and the fact that a E L°°(tt x D), for all 
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v,u 6 V, 

/ \a{oj,x)VU{UJ,x) • Vf (o>,x)| < ||a||io 
JnxD 

IVU ( n x D ) | | VU | | i 2 (n . L 2(£ , ) ) | | VU||£2(n ; Z /2 ( L>)) Vul 

Therefore, aV« • Vf € La(fi x D) and the assumptions of Fubini's theorem are 

satisfied. Fubini's theorem may be applied to compute the iterated integrals 

\A(u,v)\ = a(aj,x)Vu(u},x) • VV(UJ, x)dxdfi(uj) 
n JD 

a(co, X)VU(UJ, x) • Vf(w, x) 
QxD 

Now, by repeated use of Cauchy-Schwarz and the fact that ||IO||HI(£>) > ||Vit;||i/2(jD) 

for all a; E H\D), 

\A(u,v)\ < / \a(u>, x)VU(LJ, x) • Vv(u, x)\ 
JflxD 

< ||a|U°°(nx£>) / |Vu(w,x) • VV(UJ,X)\ 
JSlxD 

< Il a | | l ,0 0(ax£)) | | 'w| |y | |u | |v . 

Thus, A is a continuous bilinear form. 

To see coercivity, for all v £ V, Fubini's theorem implies 

A(v,v) — I a(io,x)Vv(u!,x) •'Vv(uj1x)dxdiJ,(io) 
JQ JD 

= / a(u},x)Vv(u),x) • Vf (u>,x). 
JQXD 

Since a is bounded from below by a0 almost surely, 

A(v,v) > a0 Vv(u, x) • X7V(UJ,X) 
JQXD 

= a0 ||Vu(uv)|li3m)d//(u;). 
JQ 

Finally, by applying Poincare's inequality, 

A(v,v)>^r [ 
^p JQ 

I l|2 _ a° II ||2 
\V\\Hl(D) — Q2 \\V\\V 
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where Cp denotes the constant from Poincare's inequality. • 

To prove continuity of the linear functional I, first notice that one can write I as 

the integral of a duality product between a mapping, / : UJ —* (L2(D))* with a test 

function u 6 VQ. That is, 

Kv) = / (/(^)^(^,-))(H1(£'))*,Hi(£)))d^(w). 
Jn 

From this notation, the sufficient condition on / for I to be continuous becomes clear. 

T h e o r e m 3.2.2 If f E ££(£2; (H1^))*), then the linear functional defined in (3.2.2) 

is continuous. 

Proof: Suppose / £ L2(ri; (/71(D))*), then for all v eV, Holder's inequality from 

theorem A.3.5 ensures that 

\KV)\ = {f{u),v(u},-)){Him*tHiiDy)dii(u)] 
Jn 

< \\f\\mil;(HHD))')\MLHil;H^D))-

Thus, I is a continuous linear functional. • 

Under the conditions of Theorems 3.2.1 and 3.2.2, the Lax-Milgram theorem ensures 

the existence and uniqueness of the solution to the weak formulation. 

T h e o r e m 3.2.3 Let a G L°°(fi x D) be a function such that there exists a constant 

«o with a > «o almost everywhere on Q x D, and let f £ L2{Q\ (H1(D))*). Further

more, let A and I be defined by (3.2.1) and (3.2.2), respectively. Then the variational 

problem: find u £ V such that 

A(u, v) = l(v) for all v £ V, 

has a unique solution. 

Proof: Apply the Lax-Milgram theorem to A and / use Theorems 3.2.1 and 3.2.2. • 
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3.3 "Equivalence" between Strong and Weak For

mulations 

In this section, I will show that under certain conditions, the strong and weak for

mulations are equivalent. First, suppose u : 0. x D —> E solves (3.0.1). Such a 

u must be twice differentiable and must satisfy the boundary conditions. That is, 

u E Ll(tt;H^(D) n C2(D)). Also, the strong formulation (3.0.1) requires that the 

random field a(u, •) E Cl(D) almost surely. As seen in the weak formulation section, 

these conditions ensure that u is also solves the variational problem (3.1.1). Now, sup

pose u E L2{Q,; HQ(D)) is a solution to the weak problem (3.1.1). Since the strong 

problem requires second derivatives, the weak solution must have at least second 

order derivatives and must satisfy the homogeneous Dirichlet boundary conditions 

for almost every OJ E fl (i.e u(oo,-) E HQ(D) fl C2(D) almost surely). Under these 

assumptions, one can show that u is also a solution to the strong problem (3.0.1). 

Theorem 3.3.1 Suppose u E Z£(n ; H%(D) D C2(D)) solves (3.1.1). Then u solves 

(3.0.1). 

Proof: Since u solves (3.1.1), it satisfies: for all v E Vo, 

/ / a(u,x)Vu(cu, x) • Vv(uj,x)dxdfi(iu) = / / f(u,x)v(ui,x)dxdn(u!). 
J a J D JQ J D 

Applying Green's identity to the left hand side yields 

a(u,x)Vu(u),x) • Vv(u>, x)dxdfi(io) = 

I V • (a(io,x)Vu(io,x))v(uj,x)dxdj.i(uj) + / / —(uj,x)v(ui,x)dxdfi(u)). 
Ifl JD JQ J 3D Vn 

Since this holds for all v E V0, the boundary term is zero. Therefore, u satisfies 

/ / (—V • («(W,X)VM(W, X)) — f(LU,x))v(uj,x)dxdn(<jj) = 0 
Jo. J D 

for all v E V0. Now, consider the space L^Q; C™(D)) (i.e. 0(a>, •) is almost surely 

infinitely differentiable and has compact support). Since C£°(D) is dense in L2(D), 

n JD 
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Ll(n;C?(D)) is dense in L^f i ; L2\D)). Thus, for any function <j> G L^Q; L2(D)), 

there exists a sequence of L2(£t; CQ°(D)) functions that approximate (j> arbitrarily 

closely. Take <j> = ( - V • (aVu) - / ) € L£(Q; L2:(D)). Then there exists {<£n}£=i C 

L2
U(Q; C™(D)) such that (f>n —> </> as n —> oo. This yields 

(—V • (a(o;, i)Vu(w, x)) — f(u>, x))<pn(u, x)dxd/x(w) —» 
a ^D 

/ / ( - V • (a(w, i)Vu(w, x)) - /(w, x))2dxd/i(a;) > 0. 
Jo. J D 

Since (—V(aVn) — f))2 > 0, this implies (—V(aVu) — / ) = 0 almost surely. Hence 

u solves the strong problem, u also solves the boundary conditions trivially since 

ueL2
l(n;Hi

0(D)nC2(D)). • 

The previous theorem shows that under certain regularity assumptions, a weak solu

tion u is also a strong solution. Similarly, a strong solution u is also a weak solution. 

3.4 Finite Dimensional Noise 

The assumption of finite dimensional noise will be absolutely crucial when applying 

numerical methods to solving these SPDEs. This assumption requires that the ran

dom fields a and / depend only on a finite number of random variables. Symbolically, 

one writes a(u,x) = a(Yi(u>),.... Y/v(u;), x) and f(oj,x) = /(Yi(w), ...,Y^(u),x) where 

Y = (Yi , . . . , Yjv) is a random vector. For the purposes of this work, Yt is assumed 

to have mean zero and unit variance for all i = 1 , . . . , AT. As mentioned, the finite 

dimensional noise assumption is crucial in the application of numerical methods to 

these SPDEs. Some methods allow for nonlinear dependence on the random vector 

Y while others do not. If a and / have linear dependence on Y, then they may be 

expanded as 
JV 

a(ui,x) = E[a](x) + y^jak(x)Yk(uj) 
fc=i 
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and 
TV 

f(cj,x) = E[f](x) + Y,fk(x)Yk(u) 
fc=i 

where the functions ak and fk are assumed to be uniformly bounded real functions. 

Expansions of this type are discussed in the appendix (see for example, the Karhunen-

Loeve (KL) expansion). For integration purposes, this work assumes that the image 

of each Yk is a bounded interval in R, Tk = (flfe,6fe) with ak < bk. Thus, the range 

of Y is the product space Y(Q) = V = T\ x ... x T/v, which is an iV-dimensional 

rectangle. 

The next theorem (known as the Doob-Dynkin's lemma [17]), allows for a rather 

nice classification of the solution of an SPDE when the coefficient functions a and / 

satisfy the finite noise assumption. 

T h e o r e m 3.4.1 Suppose (ft, J7) and (A, A/") are measurable spaces and 4> '• & —* A 

is a measurable function. Then a function ip : Q —> R is <p~l (J7) -measurable ((j)"1^) 

is the a-algebra generated by the set {(p~l(A) : A G J\f}) if and only if there exists a 

measurable function : A —• R such that ip = h o </>. 

Applying this result to the case of SPDEs, one can show that the solution to an SPDE 

satisfies the finite dimensional noise assumption if the coefficient functions a and / 

do. Furthermore, the solution depends on the same random vector Y as a and / . 

Also, under the finite dimensional noise assumption the task of integrating over 

some probability space becomes integrating over an A-dimensional rectangle. Re

turning to the weak formulation (3.1.1), notice that 

A(u,v) — a(cu,x)Vu(io,x) •Vv(cu,x)dxdfi(uj) 
Jn JD 

a(y, x)Vu(y, x) • Vv(y, x)dxd(fi o Y~l)(y) 

Therefore, if [i o Y"1 is absolutely continuous with respect to the A-dimensional 

Lebesgue measure, the Radon-Nikodym theorem [10] ensures that there exists an 

- / / 
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almost everywhere unique function p : V —• R such that 

A(u,v) = / p(y) / a(y,x)Vu(y,x) • \7v(y,x)dxdy. 
Jr JD 

The function p is called the Lebesgue density of the random vector Y. In this case, 

the weak formulation (3.1.1) becomes the following parametrized deterministic PDE: 

find u e L2
p(T) ® H%(D), such that for all v G L2

p(T) <8> H](D) the following holds 

/ P(y) / a(y,x)Vu(y,x) • v(y,x)dxdy = / p(y) / f(y,x)v(y,x)dxdy. (3.4.1) 

It should be noted that V here refers to the gradient with respect to x. 

The computation of the KL expansion is discussed, e.g., in [18, 22, 34] and in the 

appendix. For the computation of the density function from p, and Y see, e.g., [17]. 

In this thesis, I assume that the random fields depend on the random vector and 

focus on the numerical solution of (3.4.1) as well as on optimization problems governed 

by equations like (3.4.1) . The weak problem (3.4.1) is the variational formulation for 

the following parametrized elliptic PDE: 

- V - (a(y,x)Vu(y,x)) = f{y,x) inTxD 

u(y, x) = 0 on T x 3D. 

Although the assumption of finite noise transforms the stochastic problem into a 

parametrized family of deterministic PDEs, the parameter space T is large, which 

makes the numerical solution of (3.4.1) challenging. 



Chapter 4 

Numerical Solution of Linear 

Elliptic SPDEs 

Introduction 

In this section we will review three popular approaches for the numerical solution of 

SPDEs: the Monte Carlo finite element method, the stochastic collocation finite ele

ment method, and the stochastic Galerkin method. The numerical solution of SPDEs 

is an important ingredient in the numerical solution of optimization problems gov

erned by SPDEs. The structure of the discretization schemes and their approximation 

properties strongly influences the efficiency with which the optimization problems can 

be solved. 

Under the finite dimensional noise assumption, solving stochastic elliptic PDEs 

reduces to solving the following parametrized elliptic PDE 

-V-(a(y,x)S7u(y,x)) = f{y,x) for (y, x) G T x D 

u(y,x) = 0 for (y, x) € T x dD. 

19 
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4.1 Monte Carlo Finite Element 

In general, Monte Carlo methods are sampling based techniques for computing sta

tistical quantities. In the context of stochastic PDEs, one typically samples the 

parameter vector j / G T and computes realizations of the parametric PDE. Markov's 

inequality, shows that the Monte Carlo method "converges" like 1/yfP where P de

notes the sample size. For this reason, Monte Carlo methods require a large sample 

size to determine "good" approximations of the solution. 

Given a sample yk = (yk,..., y^) € T of the random variable y the resulting PDE 

to compute the corresponding solution u(yk,x) is 

- V • (a(yk,x)Vu(yk,x)) = f(yk,x) for x G D 

u(yk,x) = 0 for x € 3D. 

To solve this PDE, any reasonable numerical PDE technique should be suitable. I will 

describe the finite element approach. The finite element formulation requires solutions 

of the weak formulation of (4.1.1) to have first order weak derivatives satisfying the 

zero Dirichlet boundary conditions, thus I choose the the weak solution space V = 

HQ(D). For any finite dimensional subspace Vh CV with basis Vh = span{0i,..., <PN}, 

one can compute the finite element solution by solving the matrix equation: 

K (yk)uk = F(yk) 

where 

{K{yk)\0 = f a(yk,x)V&(a;) • ^<f>j{x)dx (4.1.2) 
JD 

and 

(F(yk))j= f f(yk,x)M^x. (4.1.3) 
JD 

This gives rise to the Monte Carlo FEM algorithm: 

Algorithm 4.1.1 (Monte Carlo FEM) 

Given P, a, f, D, F, and (fie for £ = 1,..., N 
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1. Draw P samples {yk}k=i °f V from T; 

2. Fork = l: P 

(a) Compute K(yk) and F(yk) from equations (4-1-2) and (4-1-3); 

(b) Solve K{yk)uk = F(yk); 

3. Compute desired statistics. 

To compute the mth moment of the solution u(y,x), approximate: 

£[u(-,x)m]« pX>(j/fc,x) 

If a and / act linearly with respect to y, this formulation simplifies. That is, 

suppose a and / have the following expansions: 

M 

a(y, x) = a0(x) + ^ y ^ x ) 
i = l 

and 
M 

f(y,x) = fo(x) + Y^ Vihip). 

Then write the elements of K(yk) as 

(K(yk))e,j = / a0(x)V<Mx) • V^-(x)dx + Y V / a^V^x) • V&(x)dx 

and the components of F(yk) as 

(^(y f c ) ) ,= / /o(x)^(x)dx + ^ y f / /i(x)0J-(x)dx. 
•ID i = 1 ./a 

This allows for fast computation. We can precompute the matrices and vectors: 

{Ki)tj = I ai(x)V</>({x) • V<Pj(x)dx (4.1.4) 
JD 

and 

(Fi)j = / fiWhWdx (4.1.5) 
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for i = 0, ...,M, then the construction of the stiffness matrix and the load vector 

becomes 
M 

K(yk) = K0 + ^ykKi 

and 
M 

F(yk) = F0 + J2y-Fl. 

This leads to the following algorithm: 

i = l 

Algorithm 4.1.2 (Monte Carlo FEM with a and / in KL Expansion) 

Given P, a, f, D, T, and fa for £ = 1,..., N 

1. Compute Ki and Fi for i = 0,..., M from equations (4-1-4) and (4-1-5); 

2. Draw P samples of y from T 

3. For k = 1 : P, solve: 

M M 

{K0 + j2y"^)uk = F0 + j2y"F^ 
i = l i = l 

4- Compute desired statistics. 

Notice that the resulting FEM systems take the form the following block diagonal 

system: 

Ko + ZZiVlK 

V o 

o \(A (P,\ 

= F = K =u 

Let / G R P x P be the identity matrix, then one can rewrite this system in Kronecker 

product notation as: 

M 

(I®K0 + J2 dia§(y'. • • •. V?) ® Ki)u = F. 
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Although this is a compact manner of writing the Monte Carlo FEM system, it is 

not the best method for implementation. Since this system is block diagonal, the 

implementation can easily be parallelized. One advantage of this compact notation is 

that each of the following methods for numerically solving SPDEs results in a similar 

tensor product formulation. 

4.2 Collocation Methods 

The idea behind collocation techniques is to approximate the solution to an equation 

(be it differential, integral, or algebraic) in a finite dimensional subspace of the solu

tion space and require the approximation to satisfy the original equation at finitely 

many predetermined points. This finite dimensional subspace is called the collocation 

space and finite set of points the collocation points. For the purposes of this thesis, I 

restrict the collocation space to the space of degree P — 1 polynomials, P p _ 1 ( r ) . 

Consider the parametrized PDE 

-V-(a(y,x)Vu(y,x)) = f(y,x) for (y,x) eT x D 

u(y,x) = 0 for (y,x) G T x dD 

and collocation space P p _ 1 ( r ) C L2(T). If {yj}f=1 C T are collocation points, then 

the set of Lagrange basis functions built on the collocation points, Lj(yl) = Sij, form 

a basis of P p - 1 ( r ) and, due to the nodal nature of the Lagrange polynomials, we can 

require the approximate solution to the SPDE to be exact at the collocation points. 

With this collocation framework, the approximate solution is merely the Lagrange 

interpolant: 
p 

uP(y,x) = SjT/u(yk,x)Lk(y) 
fc=i 

where u(yk, x), k = 1 , . . . , F , are the solutions to: 

-V •a(yk,x)Vu(yk,x) = f(yk,x) in D 

u(yk,x) = OondD. 
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As in Monte Carlo, this thesis uses finite elements to compute the P solutions to 

the above system of PDEs. In the FEM framework, we have to construct P stiffness 

matrices K(yk) and P load vectors F(yk) where 

(K(yk))ej = / a(yk,x)V^(x) • V<j>j(x)dx (4.2.1) 

JD 

and 

(F(yk))j= / /(*/*, x)^-(a:)dx. (4.2.2) 
JD 

The stochastic collocation finite element algorithm is as follows: 

Algorithm 4.2.1 (Stochastic Collocation FEM) 

Given P, a, f, D, T, {yfc}£=1 and fa fori = I,..., N 

1. Fork = l: P 

(a) Compute K(yk) and F(yk) from equations (4-2.1) and (4-2.2); 

(b) Solve K{yk)uk = F(yk); 

2. Compute desired statistics. 

The approximate solution of the Stochastic PDE using stochastic collocation and 

finite elements is given by 

p N 

uhp(y, x) = ^2 Y^ uiMx) Lk(y) 
fc=l ^ = 1 

= uh(y
k,x) 

where uk is the Ith component of uk. 

If a and / have the expansions: 

M 

a(y, x) = a0(x) + ^ Viai(x) 

and 
M 

/(?/,*) = /o(x) + J > / < 0 r ) 
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then the elements of K(yk) are 

M 

(K(yk))ij = / a0(x)V<Mx) • V0,(x)dx + Y,Vi afc(^)V^(x) • V^(x)da 
J D i = 1 JD 

and the components of F(yk) as 

(^(y% = / /oWjMdx+yy / /fc(x)̂ (x)dx. 

Thus, by defining the matrices and vectors: 

and 

(A-i)/,,- = / Oi(x)V^(x) • V<^(x)dx (4.2.3) 
7 D 

(F^- = / / i (x )^(x)dx (4.2.4) 

for i = 0,..., M, then the stiffness matrix and the load vector are 

M 

K(yk) = K0 + Y,yiKl 

and 
M 

F(yk) = F0 +
 y£ykFi. 

This leads to the following algorithm: 

Algorithm 4.2.2 (Stochastic Collocation FEM with a and / in KL Expan

sion) 

Given P, a, f, D, T, {yk}%=1and {<pe}eLi 

1. Compute Ki and Fi for i = 0,..., M from equations (4-2.3) and (4-2.4); 

2. For k = 1 : P, solve: 

M M 

3. Compute desired statistics. 
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Notice that the resulting FEM systems take the form the following block diagonal 

system: 

Ko + El,ylK>, 0 

^M „ , p , 

\ (u,\ /F,\ 

= K = u =F 

Let / e M.PxP be the identity matrix, then one can cleverly rewrite this system in 

Kronecker product notation as: 

M 

(I®K0 + Y^
 diag(y'. • • • > vH ® Kju = F. 

Again, this is not the best formulation for implementation since this system is easily 

parallelized. 

In order to compute the mih statistical moments of the solution, one must compute 

E[u(-,x)m] « E[uhP(;x)m] 

. fc=i 

p p 

Suppose the collocation points {yh} are chosen as the Gaussian quadrature nodes 

corresponding to the weight function p and let {c^} denote the weights, Uk — 

JT p(y)Lk(y)dy, then the quadrature formula 

p 

p(y)g{y)dy « Qpg --=YlUk9^ 
fc=i 

integrates (with respect to p) degree P polynomials exactly. Hence, the mth statistical 
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moment calculation becomes: 

E[u(-,x)m] « E[uhP(-,x)m] 
p p 

p P p 

~ J2---J2X^fcMyfc)---WyfcK(A*)---Myfcm^) 
kl = l fem = l fc=l 

P P P 

= Yl ••• Yl ^2UJkklk---hmkUh(yk\x)---uh(ykm,x) 
k\ = \ fem = l k—1 

p 

fc=l 

Thus, the computation of high order moments is merely quadrature. 

4.2.1 Quadrature Rules 

As can be seen from the above discussion, the amount of work required by the col

location method depends on the quadrature formula used to define the collocation 

points, {yJ}. Under the assumption of independence for the finite random variables 

{Yj}, the weight function becomes 

M 

p(v) = Y[PJ(VJ)-
3 = 1 

Thus, it suffices to consider a tensor product of ID quadrature rules. Let {yj}^L1 

and {u>l YiL\ for denote the ID Gaussian quadrature nodes with respect to the weight 

functions pj for j = 1 , . . . , M and define the quadrature operator as: 

Pi 

If we wish to approximate the integral, 

p(y)g(y)dy= pi(yi)--- pM{yM)g{yu---,yM)dyM---dy1 
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we can approximate each ID integral with the above ID quadrature rules: 

p(y)g(y)dy ~ / piivi)--- PM-i{yM-i)QMg(yi,---,yM)dyM-i---dyi 
r JT\ JTM-I 

« ...*Q1---QMg 

= (Q1®...®QM)g. 

Here, <g> refers to tensor product of operators. That is, if Tj : Si —> R for i = 1, 2 and 

<7 : 5i x 5 2 - » K , then 

(T 1®T 2 )^ = T1(T25). 

Now, let Q = Qi <g) . . . <8> <5Mj t n e n Q defines a quadrature rule with P = \\j=1Pj 

nodes and weights defined as 

^ = { y ! } £ i x . . . x { y f } ^ 

and 

W = { 4 - - - ^ : i1e{i,...,pi},...,iMe{i,...pM}}-

This tensor product quadrature formulation can require an immense number of 

nodes and hence the collocation method would require the same number of FEM 

solves. For example, if pi = . . . = pu — 2 and M = 20, then P « 106. Notice that this 

rule would only be exact for polynomials of degree 1 in each of the 20 directions. Thus, 

for the collocation method to truly reach its full potential, high degree quadrature 

rules with only a small number of nodes is required. In this subsection, I will present 

three such methods: the Smolyak algorithm and two low order methods by Stroud. 

The Stroud rules have the advantage of requiring a very small number of nodes, but 

they have a fixed degree of polynomial exactness. On the other hand, the Smolyak 

algorithm allows for a high order of polynomial exactness. 

4.2.1.1 The Smolyak Algorithm 

The Smolyak algorithm [35] is a beautiful trick based on two simple analysis results. 

Suppose {cii}®!! is a convergent sequence of real numbers that converges to a G M, 
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then each element a* can be written as the telescoping sum 

i 

3 = 1 

where a0 = 0. Since Oj converges to a, the following series is convergent 

oo 

The second analysis result has to do with products of sequences. Suppose {a].}, . . . , 

{a^f} are convergent sequences of real numbers with limits a1,... ,aM, respectively. 

Then the product sequence {a\ • . .. • aff} converges to a1 • . . . • aM. Writing each 

element in the product sequence in its telescoping sum representation yields: 

4- • • • - f = E - - - E ( 4 - s 1
1 - i ) • • • • • « - < - ! ) • 

Approximating the kth element of this sequence of partial sums by maintaining only 

the indices that sum to less than or equal to k, i.e. 

A(k,M) = £ ( 4 - 4 - i ) • • • • • « - < - ! ) 
M<ji+...+jM<k 

gives an new sequence {A(k, M)} that also converges to a1 • . . . • aM. By expanding 

each term in A(k, M), one can rewrite 

A(k,M) = ]T t-1^ 
k-M+l<\j\<k 

where j = {jx,... , jM) and | j | = j x + ... + j M . 

A similar result holds when {a,j} is replaced by a sequence of operators (say Q% from 

above). Thus, suppose { T j } ^ is a convergent sequence of operators that converges 

to the operator T, then 

i i 

M - l 

fc-l.il *n 
• a •JM 

http://fc-l.il
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where T0 = 0 and Aj = Tj — Tj-i. Then, one can show that T <S> • • • Cg> T is the limit 
M 

of the sequence of operators taking the form 

T i l ( g>. . .®T i M = £ \ . . ] £ A ^ - . - A ^ . 

Notice that this sequence contains the tensor product operators 
Tt ® . . . ® T,. v . ' 

M 

In fact, the zth order partial sum of the sequence above is an approximation of the 

tensor product rule with total degree z. This is, exactly Smolyak's algorithm. Now, 

let us define these truncations as 

A(z,M) = J2Aii®---® AiM-
|i|<* 

In Lemma 1 of Wasilkowski and Wozniakowski's 1995 paper [38] as well as other 

earlier sources, present the following simplification of A: 

z-M+l<\\\<z ^ ' ' ' 

This result is the same as the result presented for sequences of real numbers. 

In the case of quadrature, the Tj operators denote successive degrees of the 

ID quadrature rule. For this to really be useful for the collocation method, one 

needs to know the resulting quadrature nodes and weights from this form. Let 

Yl — {2/1! • • • 12/p,-} denote the ID quadrature nodes of polynomial exactness pt, then 

the "sparse grid" (quadrature nodes) are 

H(z, M)= ( J Yh x . . . x Yi 
1 y\ . . . / \ i 

z-M+l<\i\<z 

The quadrature weights are computed by a similar formula, taking into account the 

scaling factors (—l)9-'1! {^S^)- The number of nodes and weights for Smolyak's algo

rithm is given by 

n(z,M)< Y Ph---PiM-
z-M+l<\i\<z 
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This is indeed an improvement from the tensor product formulation (see figure 4.1). 

For more information on how much of an improvement, see [30]. 

Tensor Product Nodes Smolyak Nodes 

1 r — , - ; — | 

0.5 

0 

-0.5 
„ _ "• « i i i i .—i—i—t i j—i—:_—;— t—s—i—s—;—j—J—;—Li ; : i ;5 A |. . , , . \ . , , 

-1 0 1 - 1 0 1 
Figure 4.1: Tensor product (left) and Smolyak (right) quadrature nodes built on ID 

Clenshaw-Curtis quadrature nodes. The tensor product nodes are exact for polyno

mials of degree 9 in each direction (P = 1089), while the Smolyak nodes are exact 

for polynomials of total degree 9 (P = 145). 

4.2.1.2 Stroud 2- and 3-Quadrature 

In his 1957 work, Remarks on the Disposition of Points in Numerical Integration 

Formulas, Stroud presents two theorems that give minimal quadrature rules of order 

2 and 3 for high dimensions [36]. In this context, minimal refers to the number of 

nodes/weights required to achieve the desired accuracy. For degree 2 quadrature, 

the minimal number of nodes is M + 1 and for degree 3, the minimal number on 

nodes is 1M. For the proofs of the following theorems, see [36]. Suppose R C MM is a 

symmetric region, then Stroud proved the following necessary and sufficient condition 

of a quadrature rule of M + 1 equally weighted points to be exact for quadratics. 

Theorem 4.2.3 M+1 equally weighted points form a degree 2 quadrature formula in 

0.5 

0 

-0.5 
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R if and only if these points are the vertices of an M-simplex with centroid coinciding 

with that of R and lie on the surface of a sphere of radius r = y/M^/Io where 

IQ = JR dv and I2 = JR x\dv = ... = JR xj^dv. 

Similarly, for R C MM symmetric, he gave the following necessary and sufficient 

conditions for a quadrature rule of 2M equally weighted points to be exact for cubics. 

Theorem 4.2.4 2M equally weighted points, dtzxi,..., ±XM, form a degree 3 quadra

ture formula in R if and only if these points are the vertices of a QM region with 

centroid coinciding with that of R and lie on the surface of a sphere of radius r — 

\JMI%J1Q. Here Qn denotes regions defined by 2M inequalities of the form zLxi ± 

. . . ± XM < a for some a £ R . 

In many applications, the random variables of interest are uniformly distributed 

on the M cube, T = [—1,1]M. The quadrature rules for this space are as follows: for 

the Stroud 2-rule, the A;th node yk € T = [—1,1]M has components 

, , [2 2ikn 
(ykhi-i = \ o cos • 3 M + l 

and 
, . [2 2ikix 

for i = 1 , . . . , [ f J. If M is odd, then (yk)M = (-l)k/y/3. The weights for this rule 

are given by wi = . . . = wM+\ — 2M j{M + 1). Similarly for the Stroud 3-rule, the 

fcth node yk G T = [— 1,1]M has components 

[2 (2i - l)kn 
( ^ 2 - 1 = V 3 C ° S M 

and 
[2 (2i- l)kir 

(yfc)2l = V l S m M 
for i = 1 , . . . , [ f J. If M is odd, then (yk)M = ( - l ) f c / \ / 3 . The weights for this rule 

are given by w\ = ... — W2M — 2 M / (2M). 
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The nodes (figure 4.2) and weights given above form quadrature rules for integrat

ing on the cube F = [—1,1]M with weight function p(y) = 1. As such, these formulas 

(with appropriate scaling) can be used when the random variables are uniformly 

distributed in the M-dimensional cube [— 1,1]M. 

Stroud 2 Nodes Stroud 3 Nodes 

1 r 

0.5 

0 

-0.5 

~-1 0 1 ~-'l 0 1 
Figure 4.2: Stroud 2 (left) and Stroud 3 (right) quadrature. The Stroud 2 nodes are 

exact for polynomials of degree 2 in each direction (P = 3), while the Stroud 3 nodes 

are exact for polynomials of degree 3 in each direction (P = 4). 

4.3 Stochastic Galerkin Method 

As opposed to the Monte Carlo and collocation techniques, which sample in some 

manner T and require the solutions to the parametrized PDE: 

- V • (a(y, x)Vu{y, x)) = f(y, x) in T x D 

u(y,x) = 0 on T x 3D. 

at these sample points, the stochastic Galerkin method works on the principal of 

Galerkin orthogonality. 

i 

0.5 

0 
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Suppose Wi C L2
Pi(Ti) with dimension pt for i = 1 , . . . , M and V C HQ(D) with 

dimension iV. Further, let {V^}n=i for i = 1 , . . . , M be bases of Wi and {^j^j a basis 

of V. One can define the finite dimensional tensor product space W\ <8>... ® WM ® V as 

the space spanned by the functions {ip^ ''' ^M4>i\ for all ni G { 1 , . . . ,Pi}, • • •, HM G 

{ 1 , . . . , P M } and i G { 1 , . . . , N}. To simplify notation, let n denote a multi-index 

whose kth component n^ G { 1 , . . . ,Pk} and X denote the set of such multi-indices, 

then the basis functions for the tensor product space have the form 

vDi{y,x) = *n(y)<Mx) 

where 
M 

fc=l 

The Galerkin method (using the inner product defined in the previous chapter) then 

seeks a solution in u G W\ <S> • • • <8> WM ® V such that 

/ P(v) / a(y,x)\7uhP(y,x)-Vvni(y,x)dxdy = p(y) / f(y,x)vni(y,x)dxdy 
Jr JD Jr JD 

for all n G T and i = 1 , . . . , N. Plugging in the explicit formula for the basis functions, 

we see that this equation is equivalent to 

P(y)*n(y) / a(y,x)VuhP(y,x) •V4>i(x)dxdy= p(y)^n(y) / f(y,x)(j)i(x)dxdy 
r JD Jr JD 

for all n G T and i = 1 , . . . , N. 

Now, writing the approximate solution as 

N 

Uhp{y,x) = ^ y~] umjVm(y)</)j(x) 
m e i i = i 

and substituting this into the above equation yields 

Y2^2Umi / /9(y)*n(y)*m(y) / a(y,x)V<j>j(x) • Vcj)i{x)dxdy = 
mei 7 = 1 Jv J D 

p(y)*n(y) / f(y,x)<j>i(x)dxdy 
D 
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for all n G I and i = 1 , . . . , iV. This notation can be simplified. Let P = \I\ = 

Ilfc=i Vk-, then there is a natural bijection between { 1 , . . . , P} and 1. From here on, I 

will refer to this mapping as the global to local mapping 7. This mapping inputs an 

integer between 1 and P and outputs a multi-index. This allows for the more natural 

notation 

P N 

y^y^Umj / p{y)mn(y)^m(y) \ a(y,x)V^>j(x) • V(j>i(x)dxdy = 
m = l ,=1 J r j D 
m=l ] 

p(y)Vn(y) / f(y,x)<t>i(x)dxdy. 
r JD 

From this representation of the Galerkin projection, one can define the block "stiff

ness" matrices Knm with components 

(Knm)tj= I p{y)^n(y)ym{y) [ a(y, x)V^-(x) • V&(x)dxdj/ 
Jr JD 

and the block "load" vectors as Fn with components 

(F") ,= fp(y)My) [ f(y,x)M^dxdy. 
D 

The resulting full finite element system becomes: 

\KPX . . . Kppj \uP) \FP) 

= K =u =F 

This give rise to the following algorithm: 

Algorithm 4.3.1 Given P, a, f, D, T, and {<pi}f=1 

1.) Compute Knm and Fnfor n,m = 1,..., P 

2.) Build the matrix K and vector F 

3.) Solve Ku = F 

4-) Compute desired statistics. 
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Notice that as M or the pi grow larger, this method becomes very computationally 

expensive due to the size of K. 

Now, suppose a and / have the expansion: 

M 

a(y, x) = aQ(x) + ^ yta^x) 

and 
M 

f(y,x) = Mx) + J2 Vifr(x) 
i=l 

then one can rewrite the Galerkin projection as 

J2 J2 Um>l ( ( K ° ^ / P(y)^n(y)^m(y)dy + Y^(Kk)itj f p{y)^!n{y)^m{y)ykdy ) 

M 

= (F0)ij /o(y)*n(y)dy + ^(F f c) I jj{y)^n{y)ykdy 

where 

(Kk)ij = / ak{x)V(j)i(x) • V4>j(x)dx 
JD 

and 

{Fk)i = / fk(x)(j>i(x)dx 
'D 

for /c = 0 , . . . , M. The task now is to somehow decouple this system of equations. 

Suppose, for instance, functions \t/ra existed such that 

p(y)yn{y)ym(y)dy = 5 
r 

and 

/ pi.y)^n(y)^m(y)ykdy = Ckn5nm. 

Then the prior equation becomes 

p N / M \ 

/ , / , «raj I {K(j)i,j + 2_^ Ckn(Kk)ij J §nm 

m = l j = l \ fc=l / 

= (^o)i p(y)Vn(y)dy + f2(Fk)i I p(y)^n{y)ykdy 
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or, equivalently, 

N M 

J = l 

/ _, Um,j I (Ko)i,j + 2_^ Ckn(Kk)i,j J 

. M 

= (FQ)i / p(y)<Hn(y)dy + J2(Fk)l I p{y)^n(y)ykdy. 
fc=i 

This gives rise to the algorithm 

Algorithm 4.3.2 Given P, a, f, D, F, and {fa}^ 

1.) Compute Kk and Fk for k = 0,..., M from, equation (4-2.3) from (4-2-4) 

2.) Compute the coefficients Cki for i = 1 , . . . , P and k = 1 , . . . , M and the basis 

functions ^ for i = 1 , . . . , P 

3.) Compute the vectors Ft for i = 1 , . . . , P 4-) F°r i = 1 : P, solve: 

M 

(K0 + Y2 CkiKk)ui = Fi 
fc=i 

5.) Compute desired statistics. 

and the block diagonal system 

I K0 + ]Cfc=i Ck\Kk \ ( u \ (F,\ 

\ 
0 

u\ 

•• K0 + ZtiCkpKkJ \uPJ \FPJ 

= F = K =u 

As in collocation and Monte Carlo approach, let / G R P x P be the identity matrix. 

Then one can cleverly rewrite this system in Kronecker product notation as: 

M 

(I®K0 + Y^ diag(C f c l , . . . , CkP) ® Kk)u = F. 
fc=i 

As before, this is not the way to implement the stochastic Galerkin method. Adopting 

the notation 
N 

uk{x) = ^2{uk)j <f>j(x), 
i = i 
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one can compute the m statistical moments of the solution as 

E[u(-,x)m] « E J2^k{-)uk(x) 
it=i 

p 

= J2--Y1 E^kA-)---^km{-)]ukAx)---ukm{x)-

The foundation of this simplification is that one can find functions that satisfy 

the two previously stated orthogonality properties: 

r 

and 

/ p(y)*«(y)*m(y)yfcdy = CknSnm. 

If Wi chosen to be continuous polynomial spaces, then we are in luck. One only needs 

to compute the "double" orthogonal polynomials in ID for each Wi and, under the 

assumption of independence, the new tensor product polynomials are products of the 

ID polynomials. These ID polynomials may be solved for as an eigenvalue problem, 

but Babuska, Nobile, and Tempone present the following useful characterization in 

their paper [2]: 

Lemma 4.3.3 Let E C R and suppose w : £ —• R is a function satisfying w > 0 

almost everywhere. Furthermore, assume {ipk}
p
k=1 ^s a se^ °f degree p polynomials 

satisfying 

/ w(x)ipi(x)ipj(x)dx = Sij 

and 

\ w(x)tpi(x)tpj(x)xdx = CiSij. 

Then the values d for i = l , . . . , p are the pth order Gaussian quadrature nodes 

corresponding to the weight function w and the polynomials ij)k are the Lagrange poly

nomials built on these nodes, up to a scalar multiple, i. e. 

ijjk(x) = a f c J J 
x o?' 
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for ak EM. and k = 1 , . . . , p. 

Proof: Setting equal both orthogonality equations yields, 

w(x)ipi(x)ipj(x)xdx = Ci I w(x)'tjji(x)ipj(x)dx 

or equivalently 

/ w(x)ipi(x)ipj(x)(x — Ci)dx = 0 
JT, 

Since this is true for all i,j = l,...,p and {9k}v
k=i span the space of degree p or less 

polynomials, we have that 

s 

w(x)tpi(x)q(x)(x — Ci)dx = 0 
JT, 

for any q G P p (£) . Let 
v 

q(x) = Y\x- ck 
fe=i 

then 

0 = 1 w(x)ipi(x)q(x)(x — Ci)dx 

v 
w(x)i/ji(x) 1 [ x — Ckdx. 

K fc=i 

Since this holds for all i = 1 , . . . ,p, Yl^=1 x — Ck is u>-orthogonal to Pp(£). Also, 

notice that the polynomials (x — Ck)ipk(%) are also orthogonal to Pp(£) by the double 

orthogonality conditions. 

Now, notice that the orthogonal compliment of Pp(£) over PP+1(E) is one dimen

sional. Thus, both (x — Ck)ipk(x) and YYk=i x — Ck span the orthogonal compliment. 

Hence, we have the following equality 

v 
(x - Ck)ipk(x) = a.k J J x - Cfc. 

fc=i 

Dividing through by (x — Ck) gives 

ipk(x) = ak Y[x - Ck 

m 
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for k = 1 , . . . , p. • 

Thus, in order to compute these multidimensional double orthogonal polynomials, 

one merely needs to compute the ID Gaussian quadrature nodes corresponding to 

the weights pi then use the global to local function 7 to distribute the coefficients C^n 

accordingly. 



Chapter 5 

Stochastic Optimization 

With an understanding, theoretically and numerically, of how to solve SPDEs, one 

can formulate an optimization problem governed by an SPDE. This chapter focuses 

on the formulation of SPDE constrained optimization problems as constrained opti

mization problems in general Banach spaces. Applying adjoint theory to the resulting 

optimization problems yield algorithms for both gradient and Hessian computations. 

First, I will present some theory from the study of equality constrained optimization 

problems in general Banach spaces. With this theory, I will develop the functional 

analytic setting for optimization problems governed by SPDEs. I will present algo

rithms for gradient and Hessian computations using adjoints. When using stochastic 

collocation to solve these optimization problems, gradient and Hessian computations 

can be parallelized. I will present a new parallel algorithm for solving the state, 

adjoint, and computing the objective function. Also, I will present a new parallel 

algorithm for the Hessian vector product. These algorithms are parallel, but there 

is no apparent way to make Newton's method parallel. I will also point out an ap

proximation of the Newton system that results in a form of Newton's method with 

inexact Hessian information. Finally, I present a numerical example displaying the 

necessity of solve the stochastic problem. For this numerical example, I also compare 

the numerical convergence history of the Newton's method with inexact derivative 

41 
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information compared with that of Newton's method. 

5.1 Optimization in General Banach Spaces 

Suppose Z, U, Y are Banach space and Z, U are reflexive. Also, let J : U x Z —» R 

and e : U x Z —• y be continuous. This thesis will consider optimization problems 

of the form 

min J(u,z) (5.1.1) 
(u,z)euxz 

subject to 

e(u, z) = 0, u € Uad, z E Zad, (5.1.2) 

where Uad and Zad denote admissible subsets of the state and control spaces, U and 

Z. If U C M.1, Z C Mm, and y C Mn, then this is a finite dimensional optimization 

problem. Much is known about such problems and under certain assumptions, one 

can prove existence and uniqueness of solutions to this problem. This thesis deals with 

the case when U, Z, Y are functions spaces. As with the finite dimensional problem, 

one can show existence and uniqueness of solutions given the right assumptions. The 

following theorem corresponds to Theorem 1.45 from [16]. 

Theorem 5.1.1 Consider problem (5.1.1) and suppose 

1. Zad C Z is convex, bounded, and closed; 

2. Uad C U is convex, closed, and contains a feasible point; 

3. e(u, z) = 0 has a bounded solution operator, u : Z —> U; 

4- the mapping (u, z) i—> e(u, z) is continuous under weak convergence; 

5. J is sequentially lower semicontinuous. 

Then there exists a solution to (5.1.1). 
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The above result ensures existence of an optimal solution, but uniqueness of the 

solution is problem dependent. If the solution exists how does one compute the 

solution? As with finite dimensional optimization, there are first and second order 

necessary and sufficient conditions for a point to be a solution. These conditions 

involve the gradient of the objective function being zero at the point and the Hessian 

being positive. As such, one must have first and second order derivative information. 

These computations require the notions of Gateaux and Frechet differentiability. 

Definition 5.1.2 Suppose F : X —>Y where X,Y are Banach spaces. 

1. F is Gateaux differentiable at x £ X if 

J C v u\ v F{x + th)-F(x) ^ 
dF(x, h) = hm — — <= Y 

t-»o+ t 

and the mapping F'(x) : h i—> dF(x, h) is bounded and linear. 

2. F is Frechet differentiable at x 6 X if it is Gateaux differentiable at x € X and 

\\F{x + h) - F(x) - F'(x)h\\Y = o{\\h\\x) as \\h\\x -> 0. 

With these definitions, one can compute derivatives of the objective function J. Many 

times, one can invoke the implicit function theorem to find a solution u(z) to the 

constraint equation e(it, z) = 0. This leads to an implicitly defined objective function 

J(z) := J(u(z),z). I will now focus on computing derivatives of J [14]. 

Computing the Frechet derivative of J applied to a direction s G Z yields 

(J'(z), s)z*,z = (Ju(u(z), z),u2(z)s)u*,u + (Jz(u(z), z), s)z-,z-

Now, computing the derivative of the constraint e with respect to z and applying it 

to (u(z),z), the implicit solution to e(u,z) = 0, 

ez(u(z), z)s = eu(u(z), z)uz{z)s + ez(u(z), z)s = 0. 

Solving for uz(z), gives 

uz(z)s = -eu(u(z),z)-lez{u(z),z)s. 
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Plugging this into the expression for J'(z), 

(J'(z), s)z*,z = -(Ju(u(z),z), eu(u(z), z)~1ez{u{z), z)s)u^u + {Jz(u(z),z), s)z>,z-

and applying the adjoint to the uz(z) term, 

(J\z), s)Z',z = -{e-z{u{z),z)*eu{u{z), z)~*Ju(u(z), z), s)z*,z + (Jz(u(z),z),s)z^z 

= (~ez(u(z),z)*eu(u(z), z)~*Ju(u(z), z) + Jz(u(z),z),s)z*,z-

Defining the adjoint state, p, as the solution to 

eu(u(z), z)*p = -Ju(u(z), z) 

the derivative of J becomes 

J\z) = ez(u(z),z)*p + Jz(u(z), z). 

One can derive this equation from the Lagrangian as well. Define the Lagrangian 

as 

L(u, z, p) = J(u, z) + (p, e(u, z))u*tU. 

Let u = u(z) be the solution to e(u, z) = 0 via the implicit function theorem, then 

J{z) = J(u(z),z) = J(u(z),z) + {p,e(u(z),z))u.,u = L(u(z),z,p). 

From Lagrangian multiplier theory, the optimal solution is obtained when the gradient 

of the Lagrangian is equal to zero. Thus, computing the Frechet derivative of J'(z) 

and equating to zero, one has that for any s € Z, 

(J'{z),s)z;z =(Lu(u(z),z,p),s}z;z 

= (Lu(u(z), z,p),uz(z)s)u*iu + {Lz(u(z), z), s)Z\z-

Explicitly writing down the derivative, for any v £ U 

{Lu(u(z),z:p),v}u*tU = (Ju(u(z),z),v)u.tU +(p,eu(u(z),z)v)Y*,Y 

= (Ju(u(z), z) + eu(u(z), z)*p, v)u*}U. 
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Therefore, finding p — p(z) such that Lu(u(z),z,p) = 0 (using the implicit function 

theorem) is equivalent to solving the adjoint equation. Furthermore, we notice that 

(Lz(u(z),z,p(z)),s)z*>z = (Jz(u(z),z),s)z*,z + (p,ez(u(z),z)s)Y*,Y 

= (Jz(u(z), z) + ez(u(z), z)*p, s)z*,z-

This gives rise to the following algorithm for computing the derivative of J(z) 

Algorithm 5.1.3 (Derivative Computation via Adjoints) 

1. Solve e(u, z) = 0 for u = u(z) 

2. Solve eu(u(z), z)*p = —Ju(u(z). z) for p — p(z) 

3. Compute J'(z) — ez(u(z),z)*p(z) + Jz(u(z),z). 

The Lagrangian approach is a powerful tool in the Hessian computations to come. 

Since J(z) = L(u(z), z,p(z)), one can compute the Hessian as 

J"(z) = Lzu(u(z),z,p(z))uz(z) + Lzz(u(z), z,p(z)) + Lzp(u(z), z,p(z))pz(z). 

From the equality Lu(u(z),z,p(z)) = 0, differentiating Lu(u(z),z,p(z)) with respect 

to u gives 

Luu(u(z),z,p(z))uz(z) + Luz(u(z),z,p(z)) + Lup(u(z),z,p(z))pz(z) = 0. (5.1.3) 

Since Lu(u, z,p) — Ju(u, z) + eu(u, z)*p, notice that 

Lup(u,z,p) = Jup(u,z) + eu(u, z)* + eup(u, z)*p = eu(u,z)*. 

Also, from the gradient computation, 

uz{z) = -eu(u(z),z)~1ez(u(z),z) 

and plugging this into (5.1.3), gives 

~Luu(u(z),z,p(z))eu(u(z),z)~1ez(u(z),z) 

+ Luz{u(z), z, p(z)) + eu(u(z),z)*pz(z) = 0. 
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Solving this for pz, yields 

Pz{z) = eu{u(z),z)-*[Luu(u(z),z,p(z))eu(u(z),zy1ez(u(z),z) - Luz(u(z),z,p(z))}. 

Combining all of these facts, the Hessian of J(z) is 

J"{z) = - Lzu(u(z),z.p(z))eu(u(z),z)~1ez(u(z),z) +Lzz(u(z),z,p(z)) 

+ Lzp(u(z),z,p(z))eu(u(z),z)~*[Luu(u(z),z,p(z))eu(u(z),z)~1ez(u(z),z) 

- Luz(u(z),z,p(z))}. 

Notice that Lzp(u, z,p) = ez(u, z) and hence 

J"(z) = - Lzu(u(z),z,p(z))eu(u(z),z)~1ez(u(z),z) + Lzz(u(z),z,p(z)) 

+ ez(u(z), z)*eu(u(z), z)~*[Luu(u(z), z,p(z))eu(u(z), z ^ e ^ ^ O ) , z) 

- Luz(u(z),z,p(z))]. 

By defining 

( ~eu(u, z)~1ez(u, z) 

the Hessian becomes 

~„ T lLuu(u(z),z,p(z)) Luz(u(z),z,p(z))\ 
J"{z) = W(u(z),z)T l V h ' n " V V ; V '' W{u(z),z). 

\Lzu{u(z),z,p(z)) Lzx(u(z),z,p(z))J 

This form is not typically used to compute the Hessian directly, but rather the Hessian 

applied to a vector v, J"(z)v. This yields the following algorithm. 

Algorithm 5.1.4 (Hessian Times a Vector Computation) 

1. Solve e(u, z) — 0 for u = u(z) 

2. Solve eu(u(z), z)*p = —Ju(u{z), z) forp = p(z) 

3. Solve eu{u{z), z)w = ez{u{z),z)v for w = w(z,v) 
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4- Solve eu(u(z),z)*q = Luu(u(z),z,p(z))w - Luz(u(z),z,p(z))v for q = q(z,v) 

5. Compute J"(z)v = ez(u(z),z)*q - Lzu(u(z),z,p(z))w + Lzz(u(z),z,p(z))v. 

With an understanding of the first and second order derivatives of the objective 

function, one can formulate a general version of Newton's method. Suppose z* G Z 

is a minimizer of (5.1.1), then J'(z*) ~ 0 and J"(z*) is positive semidefinite (i.e. for 

all v G Z, (J"(z*)v,v)z',z > 0). By continuity of the derivatives of J, the Hessian 

is also positive semidefinite in some neighborhood of z*. Thus, if z0 G Z is "close 

enough" to z*, then J"(zo) is positive and one can apply Newton's method to the 

gradient J'(z) in order to recover z*. Newton's method seeks the roots of nonlinear 

equations by linearizing the equations and finding roots of the linear model. Given 

the equation J'(z) = 0 and a point ZQ, the linearization is 

-J'(z0) = J"(z0)(z0-z). 

Finding the zero of this linearized model gives the Newton step. To compute the 

Newton step, one can employ the following algorithm: 

Algorithm 5.1.5 (Newton's Method) 

1. Given the current iterate Zk 

2. Solve J"{zk)pk = -J'{zk) 

3. Compute zk+1 = zk + pk-

The main difficulty of this algorithm is step 2, computing pk. Since there is an algo

rithm for computing Hessian vector products, one can apply the conjugate gradient 

algorithm to compute this step. The resulting algorithm is called Newton-CG. The 

conjugate gradient method only approximately solves the Newton system. This fact 

leads to a general class of methods called inexact Newton's methods. These meth

ods do not require exact Hessian information, but rather Hessian approximations 

Hk « J"(zk). 



Algorithm 5.1.6 (Inexact Newton's Method) 

1. Given the current iterate zk 

2. Solve Hkpk = -J'(zk) 

3. Compute zk+\ = Zk + Pk-

The convergence of such methods properties of such methods may be seen in the the 

following lemma. 

Lemma 5.1.7 Suppose J is twice continuously differentiable, z* G Z is a point at 

which the second order sufficiency optimality conditions are satisfied, and suppose the 

iterates zk+\ = Zk + Sk where Sk solves 

Hksk = -J'(zk). 

Furthermore, suppose J"(z) is Lipschitz with constant L and Hk is invertible for all 

k, then 

\\zk+i - *,|| < -\\H^\\\\zk - z,\\2 + \\H^(Hk - J"(zk))\\\\zk - z,||. 

Proof: Note that since the second order optimality conditions are satisfied, J'(z*) = 

0. Notice that 

~fc+l ~~ Z* =Zk + Sk — Z* 

=(xk - x*) + H^lJ'(zk) 

\Hk{zk - z.) + (J'(z*) - J'(zk)) =H? 

-Hk1 

-H? 

J"(zk)(zk - z*) 

J"(zk + t(zk - z*))(zk - z*)dt + (Hk - J"(zk))(zk - z* 

(J"(zk) - J"(zk + t(zk - z,)))(zk - zjdt 

+ (Hk-J"(zk))(zk-z*) 
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Taking norms on both sides and applying submultiplicativity and the triangle in

equality yields 

| | z f c + 1 -z* | | = lift*.1!! / \\(J"{zk) - J"(zk + t(zk-z*)))\\\\zk-z*\\dt 
Jo 

+ \\Hk-
1(Hk-J"(zk))\\\\zk-z4 

< WH^W L\\zk - t(zk - z*)\\dt\\zk - z*\\ 
Jo 

+ \\Hk-
1{Hk-J"(zk))\\\\zk-z4 

= WH^W^Wzk - z,\\2 + \\H^(Hk - J"(zk))\\\\zk - z,\\. 

Thus, giving the desired inequality. • 

Now, suppose there exists R € (0,1) such that ^H^l{Hk — J"(zk))\\ < R, then 

the inexact Newton's method converges q-linearly. More results concerning inexact 

Newton's method may be found in [20]. 

The approximate Hessian described above can either result from the use of an exact 

method for solving the Newton system or can result from a Hessian approximation 

scheme. One possible scheme, which will be described later, is to approximate the 

Hessian, J"(zk), with some matrix Hk. This research focuses on an approximation Hk, 

in the discrete sense, arising from a course discretization in the stochastic domain. 

One may also use this this approximation to precondition the conjugate gradient 

method when solving the Newton system. The preconditioned Newton-CG scheme is 

as follows. 

Algorithm 5.1.8 (Preconditioned Newton-CG) 

1. Given the current iterate zk 

2. Solve J"(zk)pk = —J'(zk) using preconditioned CG with preconditioner H^1 ; 

3. Compute zk+i — zk + pk. 

In general, one cannot compute the approximation IIk, but can compute products of 

the form Hkv. Thus, in order to precondition the conjugate gradient method, one 
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can only approximately apply the preconditioner (i.e. using CG to solve HkV = w). 

This complication requires the flexible conjugate gradient method. In the following 

algorithm, w = H^lv is approximated by w ~ TCv where H refers to some nonlin

ear function that approximately applies the preconditioner H~l. Furthermore, the 

following algorithm is presented for a general linear system Au = b. 

Algorithm 5.1.9 (Flexible Conjugate Gradient) 

1. Given UQ arbitrary and mm a x a nonnegative integer; 

2. Initialize r0 = b — Au0 and mo = 0; 

3. fori = 0 , 1 , . . . 

(a) Apply preconditioner: 

Wi = Hin); 

(b) Compute new direction: 

i—\ T . , 

* = "<- L 4 ^ 
k=i—mi *• 

(c) Update approximate solution: 

dJri 
Ui+1 =Ui+ ofld^ 

(d) Update residual: 

n+1 = Ti~ dJXd^ 

(e) Update truncation parameter: 

mi = max(l , i mod (mmax + 1)). 

For more information on flexible conjugate gradient, see [28]. 

In practice, some globalization technique for Newton's (or inexact Newton's) 

method should be employed. Linesearch techniques are popular choices for their ease 
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of implementation and relatively low computational cost. A linesearch algorithm at

tempts to find an optimal step size afc and generates the iterate zk+\ = Zk + akPk- The 

step size is required to satisfy the Armijo condition (or sufficient decrease condition) 

J(zk + ctfcPfc) < J(zk) + cakJ'(zk)pk, 

where c G (0,1) and is typically quite small, e.g. c = 10~4. For more information on 

linesearch methods see [7] 

5.2 Optimization Governed by Linear Elliptic SPDEs 

The above theory is readily applied to optimization problems governed by SPDEs. 

In this section, I will consider problems of the form: 

min J(z) = J(u(z),z) 

where u(z\ •, •) = u(-, •) is the weak solution of 

—V • f a(u>, x)Vu(u, x)) = z(x) for x G D, P-a.e. 

u(u, x) = 0 for x £ 3D, P-a.e. 

First of all, one must define the spaces of the control and state variables. As seen 

in previous chapters the solutions to linear elliptic SPDEs live in the space U = 

L2
P(Q; HQ(D)). I will assume finite dimensional noise and thus the state space is 

equivalent to U = L2{T; HQ(D)). Furthermore, I will assume the control space Z = 

L2(D). Note that the space Z = L2(D) C L2
P(T; L2(D)). The elements of Z may 

be thought as degenerate random variables, or constant mappings from F to Z. The 

constraint function is defined as the weak form of the SPDE, for all v G U, 

(e(u,z),v)u.,u = / p{y) J (a(y,x)Vu(y,x) • Vv(y,x) - z(y,x)v(y,x)jdxdy. 

Thus, the constraint function e : U x Z —* U* and Y = U*. 
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In the previous section, I formulate the gradient and Hessian, for the general 

problem. The gradient is given by 

J'(z) = -ez(u(z),z)*eu(u(z),z)~*Ju(u(z),z) + Jz(u(z),z) 

and thus one needs to compute the derivatives ez(u,z) and eu(u,z). Notice that the 

constraint function e acts linearly with respect to the state u and the control z, thus 

the corresponding derivative of e with respect to z applied to the direction Sz E Z is 

give by: for all v E U 

(ez(u,z)5z,v)u*!u = - / p(y) / Sz(y, x)v(y, x)dxdy 
Jr JD 

and, similarly, for any direction 5u E U and for all v E U, the derivative of e with 

respect to u is given by 

{eu(u,z)8z,v)u%u = p(y) / a(y,x)V5n(y,x) • Vv(y,x)dxdy. 
Jr JD 

Notice that both of these derivatives are symmetric, so eu(u,z)* = eu(u,z) and 

ez(u, z)* = ez(u, z). From here, one can compute the adjoint as 

eu(u(z),z)p = -Ju{u{z),z). 

Applying this to some direction « £ [ / , 

(eu(u(z),z)p,u)t / . i t /= / p(y) / a(y, x)Vp{y,x) • Vv(y,x)dxdy = -Ju(u(z), z)v. 
JT JD 

Therefore, the adjoint is a solution to an SPDE with the same left hand side as the 

state equation. Under the finite dimensional noise assumption, the Doob-Dynkins 

lemma implies that the adjoint is characterized by the same finite number of random 

variables that characterize the state. 

In computing the Hessian, one needs second order derivative information of the 

constraint function as well. Namely, we will need ezz,ezu — euz, and euu. Since the 

constraint is linear in both z and u, the second order derivatives, ezz and euu are 
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zero. This is easy to see from the first order derivatives, eu and ez. Next notice that 

eUz(u,z) = 0 since the first term of e does not depend on z and the second term of e 

does not depend on u. With these ideas, one can compute the first and second order 

derivatives of a given objective function. In the following section, I will construct a 

simple example of a distributed control problem governed by a linear elliptic SPDE 

and discuss how to solve the example numerically. 

5.3 Derivatives of the Objective Function 

For optimization problems governed by elliptic SPDEs, the state space is the stochas

tic Sobolev space U = L2(T, Hl(D)). Furthermore, for these problems, I will consider 

the control space Z = L2(D), where Z is associated with the space of constant map

pings from F to L2(D). In this section, (-,-)o will denote some inner product on 

Hl(D) and || • \\o will denote the norm induced by the inner product. This inner 

product will typically be the O = H1(D) or O = L2(D) inner product. Now, define 

the objective function, for a > 0, as 

J(u,z) = -E\f(\\u(y,-) -uQ 
|2 

\o. 
)]+^9{E\\\u{y,-)-u42

0 
a \ \ Il2 

+ Tj'lkllz,2^) (5.3.1) 

where UQ G H1(D) is some desired distribution and 

/ : [ 0 , o o ) ^ [ 0 , o o ) , 

g : [0,oo) - • [0,oo), 

are twice continuously differentiable functions. 

Remark 5.3.1 • For the expected value 

J(u,z) = -E \\u(y, •) -u0\\o + 7 J I I Z I I L 2 ( D ) > 

take f(s) = s and g(s) = 0. 
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• For the variance 

J(u,z) = -Var\\\u(y, •) - u0 + ^ " I I Z I I L 2 ( D ) ) 

take f(s) = s2 and g(s) = —s". 

Let 

J(z) = J(u(z;-,-),z) 

= 1-E 
2 

(5.3.2) 

+ ~29(E [f(\\u(z;y,-) - u Q \ \ 

where u(z; •, •) = u(-, •) is the weak solution of 

t(yz; l|2 
uo\\o 

a, 
H I L 2 ( £ > ) > 

- V • [a(y,x)Vu(y,x)J = z(x) 

u(y,x) = 0 

and consider the distributed control problem: 

min J(z). 
zez 

for (y,x) 6 T x D 

for (y,x) eTxdD, 

This section is devoted to computing the derivatives of objective functions (5.3.2). 

First, by the chain rule, the derivative of J with respect to u in the direction Su is 

(Ju(u,z),5u)u%u =E\f'(\\u(y,') -u0\\
2

o){u(y,-) -u0,5u(y,-)). 

+ g\E \\u(yr) -uo\\o ) E (u(yr) -u0,5u(y, -))o 

Similarly, the derivative of J with respect to to z in the 6z £ Z direction is 

(Jz(u, z), Sz)z,jZ = a(z, 5z)z. 

With these computations, one can compute the first derivative of J(z) via the adjoint 

approach. Recall that 

J'{z) = ez(u(z; •, •), z)p(z; -, •) + Jz(u(z; -,-),z) 
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where p(-, •) = p(z; •, •) G £p(T; HQ(D)) solves the adjoint equation 

eu(u(z; •, -),z)p = -Ju(u(z; •, •), z). 

or equivalently 

p(y) / a(y,a;)Vp(y,a;) • Vu(y,x)dxdy 

p(y)f'(\\u(z;y,-) -u0\\
2

o)(u(z;y,-) - u0,v(y,-))ody 

-g'{ / P(y)\\u(z;y,-) - uo\\0dyj / p(y)(u(z;y, •) - u0,v(2/> -))ody 

V^^r;//^!))). 

By the Doob-Dynkin's lemma, the stochasticity of the solution to the adjoint equa

tion depends on the random variables describing the stochasticity of the diffusivity 

coefficients a and the solution to the state equation u. Thus, no new randomness is 

introduced through the adjoint equation. With the solution ,p(z\-,-) to the adjoint 

equation, the first derivative of J in the direction w G Z is 

(J'(z),w)z*,z =(e2{u(z; •, •), z)p(z; •,•) + Jz(u(z; -,-),z), w)z*,z 

— ~ p(y) / p{z;y,x)w(x)dxdy + a / z(x)w(x)dx. 
Jr JD JD 

The algorithm for first order derivative of J is 

Algorithm 5.3.2 (Derivative Computation via Adjoints) 

1. Compute the solution u(-, •) = u(z; -, •) of the state equation 

p(y) / a(y,x)Vu(z;y,x)-Vv(y,x) = p(y) / z{x)v(y,x)dxdy 
r JD Jr JD 

VveL2
p(r-HZ(D)); 
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2. Compute the solution p(-, •) = p(z; •, •) of the adjoint equation 

P(y) I a(y,x)Vp(y,x) • Vv(y,x)dxdy 

= ~ I p{y)f'{\\u(z-,y,-)-uo\\%J{u(z-,y,-)-uQ,v(y,-))0dy 

- g'{ / P(y)\\u(z;y,-) -u0\\
2

odyJ / p(y)(u(z;y, •) - u0)v(y, -))0dy 

VveL%T-Hl{D)). 

3. Compute the first derivative in the direction w G Z as 

(J'(z),w) z*,z p(y) / P(Z'I y,x)w(x)dxdy + a / z(x)w(x)dx. 
r .ID JD 

For Hessian computations, one must compute Juu, Juz = Jzu, and Jzz. J depends 

quadratically on z, thus the mapping z i—> Jzz(u, z) is a constant mapping and the 

derivative in the directions 5z\, 5z2 G Z is 

Since the objective function (5.3.1) is a sum of two parts, one which does not ex

plicitly depend on z and the other which does not explicitly depend on u, the mixed 

derivatives Juz = Jzu = 0. Finally, to compute Juu, one must employ the chain rule 

and the product rule. These differentiation rules give for any directions 8u\, 5u2 G U, 

(Juu(u,z)8ui,5u2}u*<u 

= E 2 / " ( l K y , - ) -u0\\o)(u(y>-) -uo,Sui(y,-))o{u{y,-) - uQ,5u2(y,-))o 

+ f'(\\u(y,') - '"olio) (Su^y, •), Su2(y, -))0 

+ 2g"\E \\u{y,-)-ua\\2
0 JE (u(y,-) - u0,5ui{y,-))o(u(y,-) - u0,5u2(y,-))o 

+ 9'[E \\u(yr) -UQ\\2
0 JE {5u1(y, •), Su2(y, •))o • 

These computations, along with those from the previous section give the following 

algorithm for the Hessian times a vector computation. 
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Algorithm 5.3.3 (Hessian Times a Vector Computation) 

1. Compute the solution u(-, •) = u(z; •, •) of the state equation 

p(y) a(y,x)Vu(y,x)-Vs(y,x)-z(x)s(y,x)dxdy = 0 Vs G L2
p(T; HQ(D)); 

Jr JD 

2. Compute the solution p(-, •) = p(z; •, •) of the adjoint equation 

p(y) / a(y, -x)Vp(y,.x) • Vv(y,x)dxdy 
JD 

= - p(y)f'(\\u(z;y,-) -uQ\\%)(u(z;y,-) - u0,v(y,-))ody 

- g'[ / p(y)\\u(z]y, •) — ^ollodyj / p(y)(u(z;y,-) - u0, v(y, -))0dy 

VveL2
p(T;Hi(D)). 

3. Compute the solution w(-, •) = w(z\ v; •, •) of 

p(y) / a(y,x)Vw(y,x) • Vs(y,x)dxdy 
D 

p(y) [ v(x)s(y,x)dxdy Vs e L2
p(T; H*(D)); 

JD 

4- Compute the solution q(-, •) = q(z; v; •, •) of 

P(y) / a(y,x)Vq(y,x)-Vs(y,x)dxdy 

=E 

D 

2 / " ( j K y , •) ~uo\\o)(u(yr) - u0,w(z;v;y,-))o(u(y,-) -u0,s(y,-))o 

+ f'(\\u(y, •) - uollo) M * ; w; y> •)> s(y» -))o 

+ 2g"[E \\u(y}-)-u0\\
2

o J ^ (M(j/ ,0- '"o,iu(2;u;i / , -))o(w(y,0- 'uo. s(y.O)o 

5. Compute the Hessian times a vector v, in the direction s € Z, as 

(J"{z)v,s)Z',z = - / P(y) / g(^;u;y,x).s(.x)dxdy + a / u(.i;),s(:r)d.x. 
Jr JD JD 
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5.4 Discretization 

In this section I will present two discretization techniques for the example objective 

function 

J(u>z) = 2f\ Wu(y^)-uo\\h(D) ) + 2 9(\My,-)-uo\\2
L2{D)) + ^\\z\\2

L2{Dy 

The techniques described in this section are based around the stochastic collocation 

and stochastic Galerkin method for solving SPDEs. Both methods discretize the 

solution space as a tensor product of finite dimensional subspaces. Suppose Xh C 

HQ(D) is a finite dimensional subspace of dimension N and Yh C L2
p(T) is a finite 

dimensional subspace of dimension P , then Xh ® Yh is a finite dimensional subspace 

of the state space U. Similarly, let Zh C Z be a finite dimensional subspace of the 

control space (with dimension N). 

5.4.1 Stochastic Collocation 

For the stochastic collocation method, Yh = P p _ 1 ( r ) and Xh = span j^ i , . . . ,4>N} 

is any finite element space. For this research, Xh is the space of piecewise linear 

functions built on a given mesh 7^. Furthermore, I choose collocation points {yk}k=i 

as the nodes from a multi-dimensional quadrature formula with corresponding weights 

{wfc}jC=i- With these collocation points, one can build a the Lagrange basis for Yh-

Let Lfc denote the kih Lagrange polynomial (i.e. Lk{yj) = 5kj)- In the collocation 

framework the expected value is approximated via the natural quadrature rule built 

on the collocation points. Let {u>k}k=i denote the quadrature weights associated with 

the collocation points 

uk= p(y)L2
k(y)dy for k = 1 , . . . , P. 

With this framework, the optimization problem 

min J(z) 
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where 

m = -2f 
1 

+ 2 
g(\\u(z;y,-) -u0\\

2
L2 {D) \u{z;y,-) -u0\\LHD) 

and u(z; •, •) = u(-, •) is the weak solution of 

—V • (a(y, x)Vu{y, x) J = z(x) for (y, x) G T x D 

u(j/,x) = 0 for ( y , i ) e T x <9£>, 

is replaced by the discretized optimization problem 

a n2 

where 

min JhP{zh) 
Zh£Zh 

N 2 

Jhp{zh) =- J ^ W f c / ( | ^2(uk(zh))j <t>j -
fc=i j = i 

, P JV 2 

a, 
+ ^"IIZMIL 2(D) 

and Uk(zh) = Uk, k = 1,... ,P, solves 

Kkuk = Mzh for fc = 1 , . . . , P. 

Here Kk is the kth stochastic collocation FEM stiffness matrix 

(Kk)ij a(yk,x)V(j}i(x) • V<pj(x)dx. 
D 

To compute derivatives of the objective function, one must first compute the adjoint 

state. In the infinite dimensional formulation, the adjoint state solves 

P(v) / a(y,x)Vp{y,x) • Vv(y,x)dxdy 
JD 

= - P(y)f'(\\u(z;y,-) -u0\\
2

o)(u(z;y,-) - u0,v(y,-))ody 

p(y)\\u(z;y,-) -u0\\
2

ody) / p(y)(u(z;y,-) - u0,v(y,-))ody 

VveL2Jr;Hl(D)). 
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Thus, as in the stochastic collocation section of the numerical solutions chapter, the 

block FEM system is 

(K, ••• o \ (vA (FA 

yO ••• KPj \pP) \FpJ 

= F K V 

where Fj, is defined as 

(Fk)i = - f'[\\u(z;yk,-) ~ uo\\'o) I (u(z;yk,x) - uo(.x))0i(.x)d.x 
D 

-g'\^2^e\\u(z;ye,-) -uo\\h{D)J / (u(z]yk,x) - u0(x))ct>i(x)dx 
e=i -'D 

- lf'(\\u(z;yk,-) -UQ\\1*{D)) +g'[J2ue\\u{z]ye,.) - uo\\2
L2{D)) 

1=1 

N 

"Yl(tik)j(f>j(x)(l>i(x) - u0(x)</)i(x)dx 
' 3 = 1 

= - [ f'(\\u{z;yk,-) - "o||ia (D)J +g'(J}Ttve\\u(z;ye,.) ~ UQ\\\\D) 
\ e=i 

N , 

^(uk)j / 4>j(x)(pi(x)dx - / u0(x)4>i(x)dx] 

' p 

f(\\u(z;ykr) -u0\\
2

L2{D)J +g'\^2UJtWu(ziyt'') -UO\\L*(D) 

N 

x y^Mijiu^j - 6 , 

where M is the standard FEM mass matrix 
Mij = / 4>i(x)<fij(x)dx and &i = / u0(x)cf)i(x)dx Vi,j = l,...,N. 

J D J D 

Therefore, Fk has the matrix-vector representation 

Fk = -if'(\\u(z;yk,-) - " o l l ^ ^ J + g'( J^w*||u(z; yt, •) - uQ\\2
L2^D)J j (Muk-b). 
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With the discretized adjoint state computed, the derivative of J(z) in the direction 

bj for j = 1 , . . . , N is approximated by 

( 4 ) ; / (f>i(x)4>j(x)dx 

{J'{z),w)Z;z ~(J'hp(zh),4>j)z*,Z 

P N „ N 

= - Y^fcY](Pfc); / 4>i{x)4>j(x)dx + a V ( 
t^i i=i 7 c <=i ^ 

P N N 

fc=l i = l i = l 

The matrix-vector notation for the first derivative is 
p 

J'(z) « M ( a 4 - ^w f c p f c ) . 

This brings us to the following discretized gradient computation algorithm. 

Algorithm 5.4.1 Stochastic Collocation Gradient Computation 

1. Compute K\,..., KP, M, A, u, b; 

2. Solve 

KkPk = - f f'(\\u(z;yk,-) - UQ\\2
L2(D)) + g'\^2vt\\u(z\ye, •) - u0\\

2
L2[D)j J 

x lMuk-b} Vfc = 1 , . . . ,P ; 

3. Compute J'hP{zh) = M(azh - Y!k=\ ^kPk)-

Now, suppose to compute Hessian times a vector for the discretized problem. 

From here on, v G X^ denotes the projection of any Z function onto the space of 

piecewise linears. As such, one can write v as 

N 

v(x) = ^2vk4>k(x) 
fc=l 

and let v — (vi}..., v^)T. With the state and adjoint computed, the next step in 

Hessian times a vector computations is solving eu(u(z), z)w = ez(u(z), z)v for w. As 

with the adjoint computation, w is the solution to the following linear system 

Kw = G 
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where G = (Gj,..., G j ) T and Gk for k = 1 , . . . , P is 

„ N N 

(Gk)i = ~ ^2'Uj(f)j(x)(pi(x)dx = - ^ Mij'U3 

for a l i i = 1 , . . . , N. Therefore, Gk = Mv for k = 1 , . . . , P. 

Next one must solve eu(u(z),z)q = Juu(u(z), z)w for q. As above, this requires 

the solution to the linear system 

Kq = H 

where 

{Hk)i =2f"\\\uk - u0\\
2

L2{D))(uk -uQ,wk)L2iD)(uk -uQ,(f)i)i2{D) 

+ / ' ( | K -uo\\2
L2{D)j(wk,(j)i}i2(D) 

p 
+ 29'yz2^k\\uk - wo||i2(£))J('Ufe -u0,wk)L2(D)(uk - u0,(j)i)L2(D) 

p 

+ g'(y^2UJk\\uk -uo\\2
L2{D)j{wk,4>i)L2{D). 

e=i 

Plugging in the formulas 
JV N 

uk = ^2(uk)i4>i and wk = y ^ ( w f c ) ^ , 

the inner products (uj. — UO,4H)L2(D)
 a n d (wk,(f>i)L2(D) become 

(Uk - «0, <f>i)L*{D) = ^ J Mij(uk)j - 6j 

and 
iV 

i = i 



63 

The right hand side Hk can be rewritten as 

Hk =2/"( | |u f c -u0\\
2

L2{D)J{uk - u0,wk)L2(D)^Muk -b 

+ / ' ( |K -u0\\
2
L2iD)]Mwk 

p 

+ 2g"[^2iujk\\uk -uQ\\2
L2{D)j{uk - u0,wk)L2{D)yMuk - b 

p 

+ g'[ ^uJkWuk -u0\\
2

L2iD))Mwk Vfc = 1 , . . . , P. 

e=i 

Finally, one computes J"(z)v in the direction (pi for i — 1,..., N as 

(J"(z)v, 4>i)z-,z ^(J'hp(zh)v, (pi)z-,z 
P „ N N . 

= ~y^uJk / y^Qj(f>j(x)(f>i(x)dx + ay^Vj / (f)j(x)<pi(x)dx 
£i J°U U JD 

3 = 

P N N 

= ~ XUk Yl Mii (*t)J + a X M' 
fc=l i=l i=\ 

I] vj 

or equivalently 
p 

J"(z)v^ M(av- ^ukqk). 
fc=i 

Algorithm 5.4.2 Stochastic Collocation Hessian-Vector Product 

1. Compute Ki,...,KP,M,A; 

2. Solve Kkwk = -Mv Vfc = 1 , . . . , P ; 

3. Solve 

p 

Kkqk =2\J"[\\uk - «o||ia(D)) +9"[^2^k\\uk - u0\\
2

L2{D)J) 
e=i 

x {uk - u0, wk)L2[D) \Muk - b) 

p 

+ [f (\\uk - u0\\
2

L2{D)j + g'yY^^kWuk - UQ\\2
L2 

x Mwk Vfc = l , . . . , P ; 

2(D) 
e=i 
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4. Compute J'hp{zh)v = M(av- ^2k=1ojkqk)-

Notice that these algorithms will work for any sample based SPDE solution technique; 

hence, this technique will also work for the Monte Carlo finite element method. 

5.4.2 Stochastic Galerkin 

For general objective functions, the derivative using the stochastic Galerkin method 

become very tedious and rather messy to compute. This subsection will parallel the 

previous subsection of stochastic collocation, but I will restrict my attention to the 

objective function 

J(u,z) = 2E Hu'(y> 
a.. . 

LHD)--u0\\V(D)\ 

In the same fashion as above, I will derive the discrete versions of the objective func

tion, gradient, and Hessian times a vector calculation corresponding to the stochas

tic Galerkin solution technique for SPDEs. For the stochastic Galerkin method, 

Yh = P p _ 1 ( r ) and X^ is any finite element space. For this research, X^ is the space 

of piece wise linear functions built on a given mesh %,. As a basis of Yh, I choose the 

system of polynomials that are p-orthonormal. That is, Yh = span(^ 1( j / ) , . . . , tyP(y)) 

where Jr p(y)^i(y)^j(y)dy = <%. 

The discretized optimization problem in the stochastic Galerkin framework is 

min JhP{zh) = -E 
Zh&Zh 2, 

P N 

2 ^ 2j^k{zh))j ^k{y)4>i - u0 
fc=i j = i 

where 

u{zh) = (u1(zh)
T,...,uP(zh)

T)T = (uj,.. 

is the stochastic Galerkin solution to the state equation 

2 

L2(D) 

.T\T 

a II l | 2 
+ "^ll^llX2(£>) 

Kn K1P \ U\ 

\KP1 ••• KPPj \upj \E[<HP}Mzh) \51PMzhJ 

£[* i ]M4 

Up) = U 

(&nMzh\ 
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since E[^k] = E[l$k] = E[^i^k] = 5lk. The blocks of the above K matrix have the 

form 

(Kki)ij= / p(y)Vk(.y)*i(y) / a(y,x)V<f>i(x) • V</>j(x)dxdy. 
./r JD 

To compute derivatives of the objective function, one must first compute the adjoint 

state. In the infinite dimensional formulation, the adjoint state solves 

- V • (a(y,x)Vp(y,x)J = - (u(y , x) - uQ{x)) for (y,x) £ T x D 

p(y, x) = 0 for (y, x) eT x dD. 

Thus, as in the stochastic Galerkin section of the numerical solutions chapter, the 

block FEM system is 

Kp= F 

where F = (Fj7, • • •, Fp ) T and Fk is defined as 

(Fk)i = - / p(y)^k(y) / (u(y,x) - u 0 ( » )</>;(» dxdy 
Jr JD 

f f P N 

= - / P(y)^k(y) / ^^(u^j^^cp^x)^) - u0(x)(f)i(x)dxdy r J D 'l=l j=l 

P N 

+ ( / p(yPk{y)dy) I J uo(x)<f>i(x)dx) 

P N 

jOkl = biSik ~^2Y1 Mij(ui)jS> 
1=1 j=l 

N 

= bi5ik- y^yMlj(uk)j 

where Mtj = JD4>i(x)(f)j(x)dx and bi = JDuQ(x)4>i(x)dx. Therefore, 

b - Mux if k = 1 
Fk= • 

-Muk ifk = 2,...,P. 
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With the adjoint state computed, the derivative of J{z) in the direction (f>j(x) for 

all j = 1,...,N is 

{J>{z),w)z',z ={ez(u(z; -,-),z)p + Jz{u(z; •, -),z),w) Z'Z 

p(y) / p(z;y,x)<j>j(x)dxdy+ / z(x)c/)j(x)dx 
r JD JD 
P N 

« - y ] y ] O f c ) » / p(y)^k(y)dy / (j)i(x)(j)j(x)dx 

N 

+ y^Zi (f)i(x)4>j(x)dx 

P JV JV 

fc=l i = l i = l 

JV iV 

= -S(pi)»Mj + ^ ^ M , 

Thus, the gradient is given by J'{zh) = M(zh —pi) and is computed via the following 

algorithm. 

Algorithm 5.4.3 Stochastic Galerkin Gradient Computation 

1. Compute Zh,K,M,u, and b; 

2. Compute Fk = bSik — Muk for k = 1 , . . . , P; 

3. Solve Kp = F = (F?,..., F / ) T /or fc = 1 , . . . , P; 

4- Compute J'(zh) = M(zh — f>\)-

Now, to multiply the Hessian of J with a some vector v E Z, consider v 6 Xh to 

be the projection of any Z function onto the space of piecewise linear polynomials. 

As such, one can write v as 
N 

vix) = ^2vkcpk(x). 
fc=l 
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The first step in Hessian times a vector computations is to solve eu(u(z), z)w = 

ez(u(z),z)v for w. As with the adjoint computation, w is the solution to the linear 

system 

Kw = G 

where G = (Gj,.. ., Gj>)T and Gk for k = 1 , . . . , P is 

{Gk)i= p{y)$k(y)dy y2vjfa(x)fa(x)dx = y]MijvjSlk 
Jr J° i = l 3 = 1 

for alH = 1 , . . . , N. Therefore, 

\ Mv if k = 1 

[ 0 if k = 2,. . . , P. 

Next, one must solve eu(u(z), z)g = Juu(u(z),z)w for g. As above, this requires 

the solution to the linear system Kq = H where 

p N ,. ., N 

(Hk)i = Y,J2(™h / P(y)*k(y)Vi(y)dy / fa{x)fa{x)dx = J2Mij(wk)J 

1=1 j=l "^r ^D j = l 

or equivalently, Hk = Mwk for all fc = 1,. . . , P. Finally, J"(z)v in the direction fa 

for i = 1,.,., N is approximated by 

(J"{z)v, fa)z\z ~{J'hp(zh)v, fa)Z',z 

= - P(y) / y2y2(%)j4>j{x)tyk{y)fa(x)dxdy + a / v(x)fa(x)dx 
Jr JD fc=1j=1 JD 

P N N 

= ~ J2 Yl Miji^)jSik + a ^2 VjMij 
k=l j = l j=l 

N 

= ^2Mij(aVj - (qi)j) 
3 = 1 

or equivalently J"(z)v ~ M(av — q\). The following algorithm describes this proce

dure. 

Algorithm 5.4.4 Stochastic Galerkin Hessian-Vector Product 
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1. Compute K,M,A; 

2. Compute G1 = Mv and Gk = 0 for k = 2 , . . . , P; 

3. Solve Kw = G = (Gj,..., Gj,)T; 

4- Compute Hk = Mwk for k = 1 , . . . , P; 

5. Solve Kq = H = (Hj,..., Hj)T; 

6. Compute J'^P{zh)v = M(av — gi). 

5.5 Stochastic Collocation and the Inexact New

ton's Method 

In this section, I will develop a nearly parallel algorithm for solving optimization 

problems governed by SPDEs using collocation techniques. In the previous sections, 

I developed gradient and Hessian times vector computations for the objective function 

J(z) = J(u(z; •, •), z) where u(z; •, •) is the implicit solution to e(u, z) = 0. Under the 

collocation framework, some parallelizations may be made to these computations. 

Also, Hessian approximations may be used to achieve a form of inexact Newton's 

method with inexact Hessian information. Two key ideas are central to the results in 

the section: 

• Since the solution to the state equation e(u,z) depends on a finite number of 

random variables, the solution to the adjoint equation also depends on a finite 

number of random variables and these variables are equal to those of the state 

equation; 

• Newton's method converges q-linearly with approximate Hessian information 

H, as long as \\H~\H - J"(z))\\ < ( G (0,1). 

file:////H~/H
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To solidify the first observation, recall that the Doobs-Dynkins lemma shows that 

if the state equation depends on a finite number of random variables, e(u, z; y) for 

y G T, then the solution to the state equation also depends on y. Now, the adjoint 

equation is given by 

eu(u(z; -,-),z; y)*p = -Ju(u(z; •, •), z). 

Clearly eu(u, z; y)* depends on y and Ju(u(z; •, •), z) depends on y implicitly through 

its dependence on u. Therefore, the Doobs-Dynkins lemma also implies that p(z; •, •) 

depends on y. The second observation is solidified in lemma 5.1.7. 

First, I will present the parallelized computations to solve the state and adjoint 

equations. With these computations, one can compute the objective function and its 

gradient in one shot. Consider the optimization problem 

min J(z) = J(u(z; -,-),z) 

where u(z; •, •) is the implicit solution to e(u(z; •, •), z) = 0. Suppose the dimension of 

the collocation space is Pi. That is, there are Px collocation points {yk}kLi with nodes 

{^fclfcli a n d the basis functions are the Lagrange polynomials built on the collocation 

points. Under the stochastic collocation framework, the state equation decouples into 

Pi deterministic equations, e(u,z;yk) = 0 for k = 1 , . . . , Pi. Furthermore, consider 

objective functions of the form 

J(u,z) = -E[f(\\u(y,-)-u0\\
2

o + -g^E \\u(y, uo\\o 
a l|2 

where UQ G //1(P>) is some desired distribution and 

/ : [ 0 , o o ) ^ [ 0 , o o ) , 

g : [0,oo) -> [0,oo), 

are twice continuously differentiable functions. Then, in the collocation framework, 

the objective function is rewritten as 

Pi 1 Pl 1 P l 

JhPl(u:z) = -^2ujkf (\\u{yk, •) ~ uQ\\2
0) + ^g[^2ujk\\u(ykr) -UQWO) + | 

fc=i fc=i 

\L2(D)-
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Let ek(u, z) = e(u, z\ yk) be the state equation evaluated at the k collocation point yk. 

Once the state, uk for k = 1 , . . . , Pi, is computed, the objective function is readily 

available and, furthermore, the adjoint equation becomes 

({ek)u{uhP(z; yk, •), z)*Pk, v)z-,z 

= ~ f'[\\u(z;yk,-) -uo\\o)(u(z;yk,-) -u0,v)o 

P\ 

~ 9y^2^e\\u(z;ye,-) - u0\\
2

oj(u(z;yk,-) -u0,v)O-
e=i 

This leads to the following algorithm for computing state, objective function, and 

adjoint state in one shot. 

Algorithm 5.5.1 (Parallel State /Object ive Function/Adjoint Computa

tion) 

1. Given Zh, {yk}k=i and {uk}kLi- Set F = 0 and G = 0. 

2. fork = l,...,Pi 

(a) Compute uk{-) = uk{zh\ •) which solves the kth state equation, 

ek(u,zh) = 0; 

(b) SetF+-F + uJkf(\Hyk,-)-uQf0); 

(c) Compute pk(-) = Pk(zh', •) which solves 

{(ek)u(uk(z] •), zh)*pk, v) z- ,z = -(u(zh;yk,-) -u0,v)o W e U; 

(d) Set pk = f'(\\u(yk, •) - itollojPfc/ 

(e) SetG ^-G+ ix>k\\u(yk,-)-uQ\\2
0; 

3. end 

4. Compute JhPl(zh) = \{F + g{G) + a\\zh\\lHD)); 
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5. Compute the adjoint as p = {pk + g'(G)pk}kl=1-

In the study of linear SPDE constrained optimization, this is a vast improvement to 

the originally stated algorithm. Solving the state equation alone requires the solution 

of Pi linear system solves where Pi is the number of collocation points. The manner 

in which the original algorithm is written requires the computation and storage of Pi 

stiffness matrices at each optimization iteration, or the computation of 2Pi stiffness 

matrices at each optimization iteration if one recomputes the stiffness matrices for the 

state and adjoint computations. This could not be possible due to storage limitations 

or limitations on the speed of computating each stiffness matrix. The above algorithm 

requires the computation of Pi stiffness matrices, but only stores one stiffness matrix 

at each iteration. One observation should be noted: if Pi is "small" then it may be 

more efficient to store the Pi stiffness matrices instead of computing them on the 

fly. If the matrices are stored, then they are readily available for the Hessian times 

a vector computations as well. In the scheme I have just described, the stiffness 

matrices need to be recomputed. 

The same parallelism is natually available in the Hessian times a vector compu

tation. The two equations (other than the state and adjoint equations) that must be 

solved are 

eu(u(z; •, -),z)w = ez(u(z; •, •), z)v 

where v is the vector to be multiplied and 

eu(u(z; •, •), z)*q = Luu(u(z; -, •), z,p(z; •, -))w - Luz(u(z; -, -),z,p(z; •, -))v. 

Defining the stochastic collocation Laplacian as 

Lk(u,z,p) =jk(u,z) + (pk,ek(u,z))u*,u 

then the stochastic collocation framework requires 

{ek)u{uk(z),z)wk = {ek)z(uk(z),z)v 
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and 

(ek)u(uk(z),z)*qk = (Lk)uu(uk(z), z,pk(z))wk - {Lk)U2(uk(z),z,pk{z))v. 

This formulation gives rise to the analogous stochastic collocation Hessian times a 

vector computation: 

Algorithm 5.5.2 Parallel Hessian Times a Vector Vector, Steps 3 and 4 

1. Given v,G,{uk}^=1> {pkjklv {yk}kU and {uk}^=1; 

2. fork = l,...,Pi 

(a) Compute wk(-) = wk(zh,-) which solves 

(ek)u(uk(zh; •, •), zh)wk = (ek)z(uk(zh; •, •), zh)v; 

(b) Compute q\{-) = q\\z\ •) which solves 

((ek)u(uk(z)i z)*qk, v)Z',z = (uk - u0,v)o Vv £ U 

(c) Compute q\{-) = q\(z; •) which solves 

((ek)u(uk(z), z)*qk,v)z,tZ = {wk,v)o Vv G U 

(d) Set q\ = 2f"[\\uk - u0\\
2

oj(uk - uQ,wk)0q
l
k; 

(e) Set q2
k = f'(\\uk - u0\\

2
o)ql; 

(f) Compute qk = $ + <% + 2f{G)q\ + J(G)?k. 

3. end 

The fact that the above algorithm does not store stiffness matrices brings me 

to the next topic. From here on, I will assume Pj is too large to store Px stiffness 

matrices. Note that this does not take much. If V C M10, a first order tensor product 

quadrature rule will have Px = 210 nodes! As stated, the above algorithm does not 
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store stiffness matrices and hence they must be recomputed for the Hessian vector 

multiplication routine. Since Pi is large, stiffness matrix computation is a costly 

process. One way to circumvent this cost is to choose a lower order quadrature rule, 

requiring P2 <C Pi nodes. This will result in an approximate Hessian times a vector 

computation (taking the Hessian computed with P2 nodes as the exact Hessian). Note 

that for quadratic control problems governed by linear SPDEs, this method may be 

applied as is because the first order derivatives and second order derivatives of e do 

not depend on Uf. and the second order derivatives of J also do not depend on u^ or 

Pk- In the general setting, one may need to interpolate the state and adjoint in order 

to evaluate them at the new quadrature points. 

The approximation of the Hessian vector products using lower order quadrature 

rules leads to a version of Newton's method with inexact derivative information. As 

lemma (5.1.7) pointed out, as long as 

\\JHP2(Z)-\JHPM - Jh{z))\\z. = ||/ - ^ ( z r ^ C O H z . <rie(0,1), 

inexact Newton's method will converge q-linearly. This is a slow down in the con

vergence rate of Newton's method (from q-quadratic to q-linear), but may result 

in a more computationally tractable method since each iteration is computationally 

cheaper. 

5.6 Numerical Example 

This example illustrates the quality of the algorithms I just presented and demon

strates the need for such routines. When faced with an SPDE constrained opti

mization problem, one might ask: why can't I take the expected value of each of 

the uncertain coefficient functions and solve the resulting deterministic PDE? This 

example is meant to clarify this question by presenting a quadratic control prob

lem governed by a stochastic advection-diffusion equation where the solution to the 
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stochastic problem does not agree with the solution to the mean value problem. The 

stochastic advection-diffusion equation is of the form 

- V • (a(y, x)Vu(y, x)) + c(y, x) • V'«(y, x) = z(x) for (y, x) G Y x D (5.6.1) 

u(y, x) = d(y, x) for (y, i ) e f x 8DD 

du 
— (y, x) = 0 for (y, i ) e T x d Z V 

The corresponding mean value problem is the deterministic problem resulting from 

taking the expected value of each random coefficient is given by 

-V-(E[a](x)Vu(x)) + E[c](x)-Vu(x) = z(x) for x e D (5.6.2) 

u(x) = E[d](x) forxedDD 

nil 
— (x) = 0 for x G dDN. 
on 

In the following examples the domain is the unit square D = (0, l )2 . The Neumann 

boundary is dD^ = {1} x (0,1) and 8DD = dD \ dDN. See Figure 5.1 for a sketch 

of the domain and the boundary conditions. 

For this example, I chose the following random fields as the coefficient functions: 

The Dirichlet boundary conditions are 

d(y,x) = 0for x € (0,1) x {0,1}, 

and on {x e dDD : x € {0} x (0,1)} 

0 if x2 i (0.25,0.75), 

d(y, x) = l sin(27r(a;2 - 0.25)) if x2 G (0.25,0.75) and yi = 0, 

I Sin ̂ 4 ^ ) ° - 5 J ) " 1 ) ) if ̂  ̂  <0-25' °-75) and yi * °" 
The advection coefficients are 

c(y,x) = o(ys + i) > 
Z Vsin fy2 
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u = 0 

- V ( a V u ) + c T V u = z 

u = d 

*y,= 1 

r - y2=o 

* y 2 = - i 

u = 0 

Vu- n = 0 

Figure 5.1: The domain and boundary conditions used for the numerical experiments 

The diffusivity coefficient is 

a ( y ) x) = 10 - 2 ( l + y 4 y ) . 

Each random variable y, is independently and identically distributed according to 

a uniform distribution on [—1,1]; therefore, 

r = [ - i , i ] 4 

and the Lebesgue density is 

p{y) = 2-\T{y). 

Taking expected values of the random fields gives 

E[a](x) = 1CT2 

2^2 (l 
E[c]{x) = 

E[d](x) = 

* \0 

0 for x e dDD \ ({0} x (0.25, 0.75)) 

sin(27r(x2 - 0.25)) for x e {0} x (0.25,0.75). 
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Therefore, the mean value problem is 

-10'2Au(x) H —— u(x) = z{x) for x € D 
1X OX\ 

u(x) = 0 for x E dDD \ ({0} x (0.25,0.75)) 

u{x) = sin(2^(x2 - 0.25)) for x G {0} x (0.25,0.75) 

nil 
— (x) = 0 for x e dDN. 
on 

For the remainder of this section I use a fixed spatial finite element discretization. 

The spatial domain D is subdivided into 1/32 x 1/32 squares, which are then each 

subdivided into two triangles. This leads to a uniform mesh of triangles with a total 

of N = 1089 vertices. For the finite element basis, I use piecewise linear polynomial 

basis functions. Furthermore, when Smolyak quadrature is applied, the Smolyak 

rules are built on one dimensional Clenshaw-Curtis quadrature rules. The Smolyak 

formula uses the subsequence of ID rules corresponding to one dimensional polynomial 

exactness rrii = 2l~l + 1 in order to build the multidimensional sparse grid. This 

subsequence gives an embedding of the ID Clenshaw-Curtis quadrature nodes and 

hence an embedding of the Smolyak quadrature nodes (see figure 4.1). Furthermore, 

[29] provides a proof showing that Smolyak of level M + I (i.e. A(M + £, M)) built 

on such nodes is exact for all polynomials of total degree I. 

5.6.1 Properties of the Hessian 

In this section, I will consider two optimal control problems governed by the SPDE 

described in the above introduction. The first control problems is 

mm J(z) = - £ \\u(z; •, •) - M0 | |L2 (D) 
a, 

+ "5"IMIL2(£>) 
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where u(z; •, •) — u(-, •) is the weak solution to 

- V • (a(y, i )Vu(y, x)) + c(y, x) • Vu(y, x) = z{x) 

u(y,x) = d(y,x) 

The second control problem is 

1 

for (y, x) G T x D 

for (y, x) G T X dDD 

for (y,x) G T x dDN. 

min J(z) = - Var 
zez 2 |«(z;-,-) -wo" 2 

L*(D) 
a, 

IL2(D) 

again where n(z; •, •) weakly solves the above SPDE. All optimization problems are 

discretized using stochastic collocation finite elements. For more details concern

ing the discretization, see the following subsection on optimization results. For the 

following computations, a = 10 - 4 . 

In order for any optimization problem to have a solution, there must exist a point 

at which the gradient of J(z) is zero and the Hessian of J(z) is positive semidefinite. 

For both expected value and variance example optimization problems, the discretized 

Hessian, J'^P(z), is associated with the matrix 

A(z) + aM 

where A(z) is some matrix that may depend on the control z and M is the standard 

FEM mass matrix. If (A, v) G R x Z is an eigenpair of J'hp(z), then 

{Jhp(z)v,v)z*iZ = \{v,v)z. 

Discretely, the Z = L2(D) norm is represented as the quadratic form 

(v,v)z ~ vTMv 

where v is the vector containing the coefficients of the piecewise linear expansion of v. 

In the above matrix notation, this eigenvalue problem becomes: find (A, v) G R x Rn 

such that 

(A(z) +aM)v = XMv. 
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Therefore, the pair (77 := A — a, v) €E R x Kn is a generalized eigenpair for the matrix 

pair (A(z), M). In order to compute the eigenvalues of the Hessian, one can solve the 

generalized eigenvalue problem: find (77, v) e R x l ™ such that 

A{z)v — r)Mv 

and shift the resulting generalized eigenvalues by a factor of a. For the Hessian to 

be positive semidefinite, the generalized eigenvalues of the pair (A(z),M) must all 

be greater than or equal to a. For the problem of minimizing the expected value, 

the objective function is quadratic and, hence, the mapping z t-» J'^p(z) is constant. 

Figure 5.2 depicts the generalized eigenvalues for (A(z), M) computed using multiple 

tensor product, Smolyak, and Stroud rules. Notice that all eigenvalues are positive or 

zero and, thus, the optimization problem has a solution. In the problem of minimizing 

the variance, the mapping z 1—> J'hp{z) is not constant. Since I am interested in the 

eigenvalues at a solution z*, I first solve the optimal control problem discretized in the 

stochastic domain T with Smolyak quadrature of total degree 4 for z*, then computing 

the generalized eigenvalues of the pair (A(z*), M). As seen in figures 5.3, 5.4, and 5.5, 

the matrix pair (A(z*),M) has some negative eigenvalues. Without a large enough 

regularization parameter, a, this would be a problem. Notice that all of the negative 

eigenvalues have magnitude less than or equal to 10~4, therefore, all of the eigenvalues 

of the Hessian are greater than zero. Figures 5.3, 5.4, and 5.5 also show that varying 

degrees of quadrature could give vastly different Hessians. 

Table 5.1 contains the number of positive, negative, and zero eigenvalues corre

sponding to the different quadrature rules. These numbers reinforce the fact that low 

order quadrature rules, specifically the Stroud rules, may not be sufficient to solve 

these optimization problems governed by SPDEs. The Stroud rules may perform 

particularly poorly because they require very few quadrature nodes. This sparsity of 

nodes leads to a vary sparse sampling of the stochastic space I\ Also, table 5.1 shows 

that the Hessian for each quadrature rule has 97 zero eigenvalues. These eigenvalues 

correspond to the 97 vertices in the mesh that are constrained (i.e. have Dirichlet 
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Figure 5.2: Eigenvalues of the Hessian of the expected value, discretized using tensor 

product (top left), Smolyak (top right), and Stroud (bottom left) quadrature rules. 

boundary conditions). 

5.6.2 Optimization Results 

In this section, the objective function is the quadratic, given by 

J(u,z) = ^\\u - u0\\l2p{r.L2{D)) + -\\z\\2
L2{D) = -E \\u(y,-)-u0\\l2{D) 

aU l|2 

+ " ^ I I 2 I I L 2 ( D ) 

where the desired distribution is UQ = 1 and the regularization parameter is a — 10~4. 

First I solve the deterministic problem, that is u(z: •) — u(-) is the solution of 

(5.6.2). The optimization problem is solved using Newton-CG. The solutions to this 



80 

Positive Eigenvalues Negative Eigenvalues 

10 

10 

10 

10 

10 

10 

-5 

-10 

-15 

-?n 

-25 

• Degree 0 
* Degree 3 

* 

X 
0 200 400 600 

10' 

10 

10 

10 

10 

10 

- 5 ' 

-10 

-15 

-?n 

-25 

T Degree 0 
• Degree 3 

-

\ 
T 

0 200 400 600 

Figure 5.3: Eigenvalues of the Hessian of the variance, discretized using tensor product 

quadrature. 
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Figure 5.4: Eigenvalues of the Hessian of the variance, discretized using Smolyak 

quadrature. 

deterministic problem are illustrated in figure 5.6.2. 

To solve the stochastic problem, I use the stochastic collocation framework de

scribed in the previous section. Using the spatial discretization scheme described 

above, the resulting stiffness matrices are K^ e R1089x1089. I use a warm started 

Newton-CG framework in which I begin with Smolyak nodes built on ID Clenshaw-

Curtis quadrature nodes. The initial quadrature nodes are exact for polynomials of 

total degree 1. I solve the optimal control problem on these nodes starting with an 
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Figure 5.5: Eigenvalues of the Hessian of the variance, discretized using Stroud 

quadrature. 
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initial guess of z = 0. Once the degree 1 problem converges, I construct Smolyak 

nodes, again built on ID Clenshaw-Curtis quadrature nodes, which integrate polyno

mials of total degree 2 exactly. The initial guess for the degree 2 Smolyak rule is the 

optimal Smolyak degree 1 solution. Finally, once the degree 2 problem has converged, 

I build Smolyak nodes, again built on ID Clenshaw-Curtis quadrature nodes, which 

integrate polynomials of total degree 3 exactly and solve the optimal control problem 

with initial guess as the optimal Smolyak degree 2 solution. The Smolyak degree 1 

formula requires P = 401 quadrature nodes, Smolyak degree 2 requires P = 1105 

quadrature nodes, and Smolyak degree 3 requires P = 2929 quadrature nodes. I use 
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Quadrature Rule 

Tensor Product 

Smolyak 

Stroud 

Degree 

0 

1 

2 

3 

0 

1 

2 

3 

4 

2 

3 

5 

Positive 

582 

503 

560 

572 

583 

560 

547 

566 

572 

657 

393 

384 

Negative 

507 

586 

529 

517 

506 

529 

542 

523 

517 

432 

696 

705 

Zero 

97 

97 

97 

97 

97 

97 

97 

97 

97 

97 

97 

97 

Table 5.1: The table contains the total number of positive, negative, and zero eigen

values for the Hessian of the variance when tensor product, Smolyak, and Stroud 

quadrature rules of varying degrees are used. Note that the Smolyak degree refers to 

the total degree of polynomial exactness, while the tensor product and Stroud degrees 

refer to the degree of polynomial exactness in every direction. 

the same collocation points for the gradient and Hessian computations. To solve each 

optimization problem, I used an inexact Newton method with backtracking linesearch. 

I solve the Newton system using the conjugate gradient method. The convergence 

history for this problem is displayed in Table 5.6.2. Note that since the objective 

function is quadratic, Newton's method should converge in one iteration. Also, due 

to the quadratic nature, one could solve this problem directly using the conjugate 

gradient method. I have developed a framework centered around Newton's method, 

which is general enough to handle any objective function. Thus, for this example, I 

apply the Newton's framework described in this chapter. 
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Smolyak 

1 

2 

3 

I tera t ion 

0 

1 

2 

0 

1 

0 

1 

j(z) 

6.428522e-01 

6.639377e-02 

4.587229e-02 

4.540477e-02 

4.536547e-02 

4.543999e-02 

4.543617e-02 

l|vJ(z)!i2 

6.943939e-02 

6.254207e-04 

3.860550e-07 

1.658924e-04 

2.323872e-08 

9.652338e-05 

8.943427e-09 

1Mb 
1.440176e+02 

3.130008e+02 

1.091528e+01 

1.819926e+00 

Step Size 

1.000000e+00 

1.000000e+00 

1.000000e+00 

1.000000e+00 

# CG Iterat ions 

15 

691 

737 

357 

Table 5.2: This table displays the convergence history of the warm started Newton-

CG method for the expected value control problem, s denotes the Newton step and 

step size refers to the linesearch step size. 

It takes the warm started Newton-CG method two iterations for Smolyak degree 

1 and one iterate for Smolyak degree 2 and 3. Figure 5.6 illustrates the optimal 

distributed control to the stochastic problem. The left panel of figure 5.7 depicts 

Optimal Distributed Control 

Mo 

0.5 

•-1.5 

Figure 5.6: Optimal distributed control for the expected value control problem. 
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the expected value of the solution to the SPDE state equation corresponding to 

the computed optimal distributed control. The right panel of figure 5.7 depicts the 

Expected Value of Optimal Solution 
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Standard Deviation of Optimal Solution 
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( 

Figure 5.7: The left figure depicts the expected value of the state equation solu

tion corresponding to the optimal distributed control. The right figure depicts the 

standard deviation of the solution to the state equation. 

standard deviation of the solution to the stochastic state equation corresponding to 

the computed optimal distributed control. As one would expect, the variance is high 

near the Dirichlet boundary conditions. 

Figures 5.8 and 5.9 display, side by side, the optimal controls and states computed 

for the deterministic (5.6.2) (with random field coefficients replaced by their expected 

values) and the stochastic problems (5.6.1). Upon comparing the controls, one notices 

that it is unnecessary to control the deterministic problem near the nonzero Dirichlet 

conditions and the Neumann conditions. This difference is due to the fact that both 

the advection and the Dirichlet conditions are fixed in the deterministic problem. 

Although the controls do vary, the solution to the state equation for the deterministic 

problem and the expected value of the solution to the state equation for the stochastic 

problem are similar. With this said, much information in the control is lost when 

substituting the deterministic problem for the stochastic problem. 
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Optimal Distributed Control Optimal Distributed Control 

Figure 5.8: The left figure depicts the optimal control corresponding to the determin

istic problem, with random field coefficients replaced by their expected values. The 

right figure depicts the optimal control corresponding to the stochastic problem. 
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Figure 5.9: The left figure depicts the solution to the state equation corresponding 

to the deterministic control problem, with random field coefficients replaced by their 

expected values. The left figure depicts the expected value of the state equation 

solution corresponding to the stochastic problem. 

5.6.2.1 Newton with Inexact Hessian Information 

As seen in lemma 5.1.7, in order for Newton's method with inexact Hessian informa

tion to converge q-linearly, there must exists a £ e (0,1) such that the error term 

\H-\H-J"(z))\\<( 
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Quadrature Rule 

1 Point 

Smolyak 0 

Smolyak 1 

Smolyak 2 

Stroud 2 

Stroud 3 

Stroud 5 

\\H-\H-J"{z))\\2 

21.7061 

7.1017 

2.6986 

0.6038 

1.4022 

2.2973 

0.5663 

Table 5.3: In order for Newton's method with inexact Hessian information to con

verge q-linearly, the error \\H~l(H — J"(z))| |2 must be less than 1. From this table, 

approximating the Hessian using degree 2 Smolyak and degree 5 Stroud will yield 

q-linear convergence. 

where H is an approximation to J"{z). For the following results, the exact Hessian is 

taken to be the degree 3 Smolyak approximation using stochastic collocation FEM. 

Here the degree 3 Smolyak rule is built on one dimensional Clenshaw-Curtis quadra

ture nodes. I investigate approximating the Hessian using a one point quadrature rule, 

Smolyak quadrature of degree 0, 1, and 2, and Stroud quadrature of degree 2, 3, and 

5. Again, the Smolyak rules are built on one dimensional Clenshaw-Curtis quadrature 

rules. Table 5.3 summarizes the error bounds for the different quadrature rules and 

shows that the degree 2 Smolyak and degree 5 Stroud rules will achieve q-linear con

vergence. The degree 2 Smolyak rule requires P = 1105 collocation points while the 

Stroud 5 rule requires P = 61 collocation points. The exact Hessian (using degree 

3 Smolyak requires P = 2929. Therefore, using the Stroud 5 rule to approximate 

the Hessian will give q-linear convergence and requires significantly fewer collocation 

points than either the degree 2 or 3 Smolyak rules. In the Newton-CG framework, 
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each Newton iteration applies CG to solve the Newton system 

Hs = -J'(z) 

and each CG iteration requires a Hessian times a vector computation. The main 

computation cost of the Hessian times a vector routine is the IP linear system solves 

of size 1089 by 1089. Thus, using the Stroud 5 Hessian approximation drastically 

reduces the number of linear system solves required at each CG iteration. 

5.6.2.2 Preconditioned Newton-CG 

Along with the Newton's method with inexact Hessian information, I have also de

veloped a preconditioned Newton-CG algorithm where the preconditioner is the one 

point Hessian approximation, H1, applied using CG. This application of the pre

conditioner is no longer a linear process and requires the flexible conjugate gradient 

algorithm. In order for H1, to be a good preconditioner for the Newton-PCG method, 

the eigenvalues of [Hl)~l J"(zk) should be clustered close to one. Since the eigenval

ues of (H1)~1J"(z) do exhibit this behavior (see figure 5.10), H1 may work well as a 

preconditioner for Newton-PCG. Table 5.4 demonstrates the convergence history for 

Newton-PCG applied to the example problem. 

Smolyak 

1 

2 

3 

Iteration 

0 

1 

2 

0 

1 

0 

1 

J(z) | |VJ(z) | |2 IMI2 Outer CG Inner CG 

6.428522e-01 6.943939e-02 3.732302e+02 17 1627 

4.587335e-02 3.297836e-06 1.705401e+00 40 5161 

4.587204e-02 2.098836e-13 

4.540451e-02 1.659602e-04 1.058052e+01 27 2967 

4.536547e-02 1.241542e-10 

4.543998e-02 9.652572e-05 1.813187e+00 25 2659 

4.543616e-02 1.777759e-10 

Table 5.4: Convergence history for the Newton-PCG method. Outer CG refers to the 

number of CG iterations to solve the preconditioned linear system. Inner CG refers 

to the number of iterations required to apply the preconditioner. 
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Eigenvalues of ( F 1 ) " 1 J"(z) 

Interval 

1 ±0.1 

1 ±0.2 

1±0.3 

1±0.4 

1±0.5 

1 ± 1.0 

Percent (%) 

77.8 

88.4 

93.8 

96.3 

97.6 

99.7 
10 ' ' ' 

0 500 1000 

Figure 5.10: The figure depicts the eigenvalues of the preconditioned Newton system. 

For H1 to be a good preconditioner, the eigenvalues of (Hx)~~lJ"(z) should be suffi

ciently close to 1. The table demonstrates this clustering. For a given interval, the 

right hand column lists what percentage of the total number of eigenvalues is in that 

interval. 

Notice that the warm started Newton-CG scheme (no preconditioner) required 706 

CG iterations for Smolyak degree 1, 737 for Smolyak degree 2, and 357 for Smolyak 

degree 3. Each CG iteration requires one Hessian times a vector computation. The 

main computational work required by the Hessian times a vector routine is solving 2P 

linear system of size 1089 by 1089 (i.e. to compute the derivative of the state and the 

derivative of the adjoint), where the number of quadrature nodes required for degree 

1 Smolyak is P — 401, for degree 2 Smolyak is P = 1105, and for degree 3 Smolyak 

is P = 2929. Using H1 as a preconditioner requires only two linear system solves per 

inner iteration. Also, using the preconditioner drastically reduced the number CG 

iterations required: Smolyak degree 1 required 57 CG iterations, Smolyak degree 2 

required 27, and Smolyak degree 3 required 25. Table 5.5 contains the total number 

of linear system solves required by the Hessian times a vector routine in Newton-

CG and Newton-PCG. As seen in the table, Newton-PCG with H1 preconditioner 

drastically reduces the number of linear system solves required to converge. In fact, 

I U r - " ^ ^ 
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Smolyak 

1 

2 

3 

Total 

Newton-CG 

566212 

1628770 

2091306 

4286288 

Newton-PCG 

59290 

65604 

151768 

276662 

Table 5.5: Total number of linear system solves of size 1089 by 1089 required to 

solve the optimal distributed control problem using warm started Newton-CG (center 

column) and warm started Newton-PCG with preconditioner H1 (right column). 

Newton-PCG requires about 15 times fewer linear system solves than Newton-CG 

and thus is an advantageous scheme for accelerating Newton's method. 

5.6.3 Objective Functions Based on the Expected Value and 

the Variance 

Now, consider an objective function which is a linear combination of the expected 

value of \\u - u0|||2(£,) and the variance of ||M - u0\\
2
L2,Dy That is, for any c1:c2 G M, 

consider 

J(u,z) = C\E \U ~ U0\\L2(D) + C2Var \U-UO\\L2(D) 

a\\ 112 
+ ^\\Z\\LHD)-

Disregarding the regularization term, this optimization problem could be thought of 

as a way to approximate the Pareto curve for the bi-objective problem with objectives 

give by the expected value 

E \\u{z;-,-) -u0\\
2
L2{D) 

and the variance 

Vax\\\u(z;;-)-uo\\lHD) , 

respectively. The Pareto curve is the curve generated by changing the parameters 

ci, c2 e M, solving the resulting optimization problem, and plotting the variance 
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versus the expected value. The Pareto curve for this SPDE constrained optimization 

problem is depicted in figure (5.11). In order to generate this curve, I employed the 

Normal-Boundary Intersection (NBI) method developed by Das and Dennis [6]. 

0.08 

O0.05 
Q. 
X 
LU 0.04 

0.5 1 1.5 
Variance X1Q" 

2 
5 

Figure 5.11: Pareto curve for the variance of ||it — it0| 

of 11 it — uo 11̂ 2(D) using NBI. 

L2(D) versus the expected value 

5.6.4 The Effect of Quadrature on the Variance Problem 

Many complications may arise when applying the stochastic collocation method to 

solve the optimization problem 

min - Var 
z£Z 2 

\u(z; UO\\L2(D) 
a, 

\L2(D) 

where the regularization parameter a = 10~4. The variance of \\u(z; -, •) — tioll^m 

is quartic in u; thus, the Hessian need not always be positive definite. Since the 

conjugate gradient method requires positive definiteness, Newton-CG may only be 

applied when the current iterate zc is sufficiently close to the optimal solution (if it 
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exists). On the other hand, many quadrature rules, including Smolyak quadrature 

rules, have negative weights. With the stochastic collocation, the variance of a random 

variable X is approximated as 

p 

Var[X] = E[(X- E[X})2} « £ > * ( * * - E[X\f. 
fc=i 

Thus, even though {Xk — E[X])2 > 0, the stochastic collocation approximation of 

the variance may be negative. Having negative weights may cause some problems 

for optimization. In some cases, it may be possible to make the objective function 

arbitrarily small by finding a control z that maximizes 

( I K - UA{D) ~ E[\\u{Vi •) - Mo||ia(£))]) 

for the indices k that correspond to the negative quadrature weights. In this case, 

the resulting control may give little to no information on the true solution to the 

problem. To illustrate this problem, let 

J(u,z) = 2 V a r [H n (^ ' 

and consider the optimization problem 

U0\\L2(D) 
a\\ 112 

+ ^\\Z\\L*(D) 

min J(z) = J(u(z; •, •) 
zez 

where u(z; •, •) = tt(-, •) solve the state equation 

— 10~1Au(y, x) + c(y, x) • Vu(y, x) = z(x) for x G D 

u(x) = d(y,x) for x G (dD)o 

^ ( x ) = 0 for x G (dD)N. 

The Dirichlet boundary conditions are 

d(y, x) = 0 for x G (0,1) x {0,1}, 

and on {x G dDD : x G {0} x (0,1)} 

0 if x2 i (0.25,0.75), 

d(y, x) = <j sin(27r(x2 - 0.25)) if x2 G (0.25, 0.75) and Vl = 0, 

k sin (^^^xp^)-?"1^ lf *2 G (0'25' ° J 5 ) ^ yi ^ ° 
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and the advection coefficients are 

c(y,x) 
. s in T2/2 

Figure 5.12 depicts the computed optimal controls for this problem. The Smolyak 

rule was built on ID Clenshaw-Curtis quadrature nodes and weights. The Smolyak 

rule integrates polynomials of total degree 1 exactly and contains negative weights. 

The tensor product rule was built on the same ID Clenshaw-Curtis rule and inte

grates polynomials of degree 1 in each direction exactly. Furthermore, the tensor 

product rule has all positive weights. Figure 5.13 depicts the difference between the 

Tensor Product Smolyak 

2.5 _ _ _ 2 . 5 

1.5 

0.5 

1.5 - " - 1 . 5 

Figure 5.12: Optimal distributed controls for 2 random variable example problem. 

The left figure depicts the control computed using tensor product quadrature built 

on ID Clenshaw Curtis quadrature nodes. The tensor product rule is exact for poly

nomials of degree 1 in each direction. The right figure depicts the control computed 

using Smolyak quadrature nodes built on ID Clenshaw Curtis quadrature nodes. The 

Smolyak rule is exact for polynomials of total degree 1. 

control computed using the tensor product quadrature nodes and the control com

puted using the Smolyak quadrature nodes. Although, to the naked eye, the controls 

look rather similar, the maximum magnitude of the differences between the two is 
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0.4. Furthermore, when using the low order Stroud rules, the characteristics of the 

Difference between Tensor Product and Smolyak Controls 

« # # ^ 
-0.1 

-0.2 

-0.3 

Figure 5.13: Difference between the control computed using the tensor product rule 

and the control computed using the Smolyak rule. 

controls vary greatly from either the control computed using the tensor product rule 

or the control computed using the Smolyak rule. This variation could be do to the 

fact that the Stroud rules do not sample the stochastic domain T very thoroughly. 

That is, the Smolyak rule of total degree 3 requires P — 29 nodes whereas the degree 

3 Stroud rule only requires P = 4. The controls computed using the Stroud 3 and 5 

rules are plotted in figure 5.14. 

Another problem arises when approximating the Hessian with the one point 

quadrature rule (used in the Newton-PCG and Newton with inexact Hessian informa

tion algorithms). In order to compute the Hessian, one must compute the derivative 
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Figure 5.14: Optimal distributed controls for 2 random variable example problem. 

The left figure depicts the control computed using Stroud 3 quadrature. The Stroud 

3 rule exact for polynomials of degree 3 in each direction. The right figure depicts 

the control computed using Stroud 5 quadrature. The Stroud 5 rule is exact for 

polynomials of degree 5 in each direction. 

of the adjoint which requires forming the product 

{Juu(u, z)w, s)u*tU =1E (u(y, •) - uo, w(y, •))L2{D) (u(y, -)-uQ, s(y, -))L*{D) 

+ E \\u(y,-) -u0\\l2(D)(w(y,-),s(y,-))L2{D) 

-IE {u(y,-)-u0,w(y,-))L2{D) E {u(y, •) - u0, s(y, -))L^(D) 

E \\u{y,-)-u0\\
2
L2(D)]E {w(y,-),s(y,-))L2{D) 

for any direction s £ L2(T; HQ(D)). Let y denote the quadrature point for the one 

point quadrature rule, u(-) = u(y, •), w(-) = w(y, -), and s(-) = s(y, •). Approximating 
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the directional derivative (Juu(u, z)w, s)u*iU with the one point quadrature rule yields 

{Juu(u}z)w,s)u*:U « 2 £ {u(y, •) -u0,w(y, -))L2(D) {U - u0, s)L2{D) 

+ H«-«o||i2(m(u),s)L2(£>) 

- 2 £ (u(y, •) - Mo, w(y, 0)L 2 (D) (M - «o, S)L2(L>) 

l u ~ "011x3(0) 

lu — UO\\L2(D) -E 

(W,S)L2{D) 

II l | 2 

llu _ 'UO||L2(D) 
( U ) , S ) L 2 ( D ) . 

This approximation is merely a scaling of the right hand side associated with the 

derivative of the adjoint equation for the problem of minimizing the expected value. 

Furthermore, if the term E \U ~ 'UO|IL2(JD) is also approximated with the one point 

rule, then the approximation of Juu is identically equal to zero. Since the product 

(Juu(u, z)w, s)u*,u corresponds to the right hand side of the derivative of the adjoint 

equation, 

{eu(u(z;-,'),z)*q, s)u*,u = (Juu(u{z] •, •), z)w> s)u*,u Vs G L2
p(T; HJj(D)), 

and the boundary conditions for the adjoint equation are homogeneous Dirichlet 

and Neumann, the solution to the derivative of the adjoint equation is the constant 

function q = 0. This leads to a constant Hessian 

(J"(z)v,s}z*,z = a / v(x)s(x)dx 
JD 

for any vectors v, s € Z. Therefore, approximating the Hessian with a one point 

quadrature rule may destroy some or all important geometric features of the original 

problem. As such, care must be taken in using the one point quadrature rule to 

approximate the Hessian for the Newton-CG with inexact Hessian information and 

the Newton-PCG methods. 



Chapter 6 

Conclusions 

This thesis focuses on optimization problems governed by stochastic partial differen

tial equations. In order to develop and further the study of such problems, I have 

covered the existence and uniqueness of linear elliptic SPDEs as well as their numeri

cal solution. Furthermore, I have developed an adjoint based approach to computing 

derivatives for SPDE constrained optimization problems. When applied with the 

stochastic collocation method, the adjoint approach for computing gradients paral

lelizes. Similarly, with the stochastic collocation approach, the Hessian times a vector 

computation parallelizes. Finally, I have formulated two algorithms: an inexact New

ton's method with inexact Hessian information and a preconditioned Newton-CG 

algorithm. The novelty of these approaches is their ability to handle large problems 

due to their parallel structure, reduced storage requirements, and reduced computa

tional expense. 

Even with these contributions to the field of SPDE constrained optimization, 

much work still needs to be done. Of utmost importance is a rigorous analysis con

cerning the convergence of the discretized SPDE constrained optimization problem to 

the original infinite dimensional problem as discretizations are refined. By applying 

convergence results for the numerical solution of SPDEs with convergence analysis 

techniques for deterministic control problems, one can produce such an analysis. With 

96 
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this analysis, the optimization framework I have presented in this thesis will prove 

its merit. On the other hand, Xiu's paper [41] develops a method of approximating 

objective functions for stochastic optimization problems by polynomial chaos expan

sion. Although this seems to be a reasonable approach to solve such problems, the 

paper only gives numerical convergence results from either ID or seemingly simple 

examples. Furthermore, Xiu does not mention derivative computations for such ex

pansions. This method seems to have merit, but many theoretical aspects need to be 

pinned down before this method can prove its worth. Aside from this approximation 

technique, there is much work to be done concerning nonlinear or time dependent 

SPDEs. Although the framework that I have developed is general enough to accom

modate for nonlinear and time dependent SPDEs, some interesting computational 

complexities may arise in their implementation. Finally, as with many determinis

tic PDE constrained optimization methods, reduced order modeling techniques and 

adaptive finite element solvers are critical for quick and accurate solutions. One may 

be able to adapt such model reduction and adaptive FEM schemes to work for SPDEs. 

In conclusion, developing the field of optimization problems governed by SPDEs is 

essential for the accurate mathematical understanding of many physical systems. This 

thesis gives a rigorous framework for such problems and develops a parallel method 

for computing derivatives of the objective function. This thesis also develops two 

forms of the inexact Newton's method which are well suited to solve large problems 

due to their parallel nature and minimal memory requirements. Aside from these 

achievements, there are many more aspects of SPDE constrained optimization to be 

studied and many open questions to be answered. 



Appendix A 

Function Spaces 

This thesis develops an adjoint based optimization scheme for problems governed by 

stochastic partial differential equations. In order to solve optimization problems gov

erned by SPDEs, one needs a concrete functional analytic framework. This framework 

should include the function (Banach) spaces for which the optimization, state, and 

constraint variables live and some notion of convergence of sequences in these spaces. 

Also, one needs to solidify what it means to be measurable and integrable in these 

general function spaces. Such a functional analytic framework will make solving the 

SPDE and the corresponding optimization problems well-defined. Since the SPDE 

constrained optimization is truly the interface to two fields of study (SPDEs and 

optimization), I will focus on the two topics separately. 

Suppose D c l d (d = l ,2 ,3) is our physical domain and (f2, JF, P) is a complete 

probability space. Here, fl is the set of events, T is a a—algebra, and P is a measure 

such that P(f2) = 1. A function n : n x D - > R i s a random field if u(-,x) is 

a P—measurable function (i.e. random variable) for almost every x G D. These 

functions may act intrinsically different with respect to u> G Q than with respect to 

x G D. In the study of SPDEs, the solution u, as well as the input data, are random 

fields. Suppose u solves an elliptic SPDE. As such, u must satisfy the property that 

the mapping x i—> u(-,x) is weakly differentiable in L2(D). One may also require that 
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the mapping ui »—> u(u,-) have finite pth order moments. This characterization leads 

to 

xi-*u(-,x) e H\D) 

and 

UJ ̂ —• it (a;, •) € LV
P(Q,) 

where l£(f t) = {'<; : Jau(w)pdF(cj) < oo}. This chapter provides the functional an

alytic framework for dealing with abstract function spaces as well as the measurability 

and integrability property of functions that output into general Banach spaces. 

A.l Notions of Convergence 

In optimization theory, an overwhelming majority of algorithms are iterative. These 

algorithms generate sequences of the optimization variables with the goal that the 

sequence converges to a minimizer of the objective function. Similarly, when attempt

ing to solve SPDEs numerically, one discretizes the spatial and stochastic domains, 

then solves the resulting finite dimensional problem. As the level of discretization in

creases, the resulting solution should converge to the solution to the SPDE. Thus, it 

is critical to understand how these sequences converge. Since this thesis is concerned 

with SPDEs, I will present convergence definitions that are useful in general Banach 

spaces and in general measure spaces. For the rest of this section, X will denote a 

normed vector space, X* the dual space of X, and (Q,^7,^) will denote an arbitrary 

measure space. 

First, I will present definitions concerning convergence in general normed vector 

spaces. These definitions do not necessarily deal with sequences of functions, but may 

be applied to functions spaces which are also Banach spaces. 

Definition A.1.1 Suppose {xn}™=1 C X and x £ X. 

1. xn converges to x strongly if for all e > 0, there exists an integer N = N(e) > 0 

such that \\xn — x\\x < £ whenever n> N. 
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2. xn converges to x weakly if for all f G X*, limn^oo f(xn) = f{x). 

These definitions are ubiquitous throughout the fields of mathematical and functional 

analysis. Strong convergence is exactly convergence in norm while weak convergence 

refers to the idea that for any bounded linear functional, / : X —• R, (i.e. / G X*), 

the sequence {f(xn)} converges strongly. The optimization problems with which this 

thesis deals have optimizers in some Banach space and thus, these definitions are piv

otal to understanding the convergence of any sequence generated by an optimization 

algorithm. 

The next few definitions deal with convergence in an arbitrary measure space. 

These definitions consider sequences of functions that take (17, T, P) as their domain 

and X as their range. 

Definition A.1.2 Suppose fn:tt^Xisa sequence of functions and f : 17 —> X. 

1. fn converges to f pointwise if for all UJ G 17 and for every e > 0, there exists an 

integer N = N{ui, e) > 0 such that \\fn{uS) — f(u))\\x < e whenever n > N. 

2. fn converges to f almost everywhere (a. e.) if there exists a set EQ C 17 with 

H(EQ) = 0 such that for allu G 17\£'o and for every e > 0, there exists an integer 

N = N(e) > 0 such that \\fn(cj) — f(u>)\\x < e whenever n > N. This definition 

is equivalent to pointwise convergence almost everywhere. In probability theory, 

this is referred to as almost sure (a.s.) convergence. 

3. fn converges to f uniformly if for every e > 0, there exists an integer N = 

N(e) > 0 such that ||/n(u;) — f(w)\\x < £ for all u G 17 whenever n> N. 

4- fn converges to f almost uniformly if for every e > 0 there exists a set Ee C 17 

such that /J,(Ee) < e and for every 5 > 0 there exists an integer N = N(5) > 0 

such that \\fn{u)) — f(uj)\\x < 5 for all u G 17 \ Ee and for all n > N. 

5. fn converges to f in measure if for every e > 0 

fi({u G 17 : | | / n M - / M | | x > e}) -> 0 as n -»• oo. 
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Relating these definitions to the definitions of convergence in Banach spaces, a se

quence of functions, fn : Q. —> X, converge pointwise (almost everywhere) if and 

only if for all UJ € Q, (for a.e. u> € fi), the sequence {/n(w)} converges strongly to 

some limit. Uniform convergence and almost uniform convergence are special cases 

of pointwise and almost everywhere convergence in which the positive integer N does 

not depend onw. A simple consequence of these definitions is that uniform conver

gence implies pointwise convergence which implies almost everywhere convergence, 

but the other direction is generally not true. 

A.2 Weak and Strong (Bochner) Measurability 

As stated, the solutions of SPDEs are mappings from a measure space to a Banach 

space and must satisfy some generalized notion of measurability and integrability. The 

reader will note that the definitions and results to come are completely analogous to 

standard measurability and integrability results for functions that map a measure 

space into K. or C. This section concentrates on the measurability aspects while 

the next section covers integrability. For proofs of these results, see Einar Hille's 

book Functional Analysis and Semi-Groups [15] or Kosaku Yosida's book Functional 

Analysis [44]. 

First, I present definitions concerning any non-separable space X and the ideas of 

weak and Bochner measurability. The notions of non-separability and weak measura

bility define a useful characterization of Bochner measurability and will be used later. 

Throughout this thesis, a simple function always refers to a finitely valued function. 

To clarify, if u : ft —» X is a simple function, then can be written as u = X}n=i unXAn 

where An 6 J7, un G X, and XA denotes the characteristic function of A 

, , ( 1 if x G A 
XA{X) = < 

I 0 otherwise. 

Definition A.2.1 Suppose u : Vt —> X. 
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1. u is separably valued if u(Q) is separable. It is almost separable valued if there 

exists a set E0 C fl such that ^{E0) = 0 and u(Q \ EQ) is separable. 

2. u is weakly measurable if for all f G X*, the mapping u> i—» (f,u(uj))x*,x is 

Lebesgue measurable. Here {-,-)x*,x denotes the duality product on X. 

3. u is Bochner measurable (or strongly measurable) if there exists a sequence of 

simple functions, un : Vt —>• X, converging to u almost everywhere. 

As stated above, there is a connection between almost separably valued, weakly 

measurable functions with Bochner measurable functions. These first two properties 

give a useful characterization of Bochner measurable which allows for easy character

ization of some Bochner measurable functions. 

Theorem A.2.2 A function u : Q —* X is Bochner measurable if and only if it is 

weakly measurable and almost separably valued. 

Now, suppose X is separable, then a function with range in X is separably valued 

which implies it is also almost separably valued. Therefore, an easy corollary of the 

above theorem is that weak measurability and Bochner measurability are equivalent 

when X is separable. 

Corollary A.2.3 / / X is separable, then u : Q, —> X is Bochner measurable if and 

only if u is weakly measurable. 

The next result is another useful characterization of Bochner measurable functions 

and demonstrates the connection between Bochner measurability and Borel measura

bility. Borel measurability refers to functions that outputs into real or complex vector 

spaces. Therefore, this result yields a tangible result concerning Bochner measurabil

ity. 

Lemma A.2.4 If u : Q, ~+ X is Bochner measurable, then the mapping t \—• ||it(£)|| : 

Q, —> R is Borel measurable. 
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Many numerical schemes generate sequences of functions and, in numerous appli

cations, it is essential to know that the limit function and the sequence functions sat

isfy the same properties. The following theorem ensures that measurability properties 

do transfer from sequence functions to limit functions when the sequence converges 

weakly. 

Theorem A.2.5 If X is separable and un : tt —> X is a sequence of Bochner mea

surable functions that converges weakly to u : fl —> X, then u is Bochner measurable. 

A.3 Bochner Integrability 

The solution to SPDEs must satisfy some desired statistical properties, such as finite 

pth m o m e n t s . Since these solutions are thought of as mappings from the probability 

space (fi,^7, P) to some Banach space X (Hl(D) for instance), computing pth order 

moments requires the idea of integrating functions that output into general Banach 

spaces (not just E). The definitions and theorems concerning Bochner measurability 

are instrumental in defining such concepts of integration. As with Lebesgue integra

tion, I will first define integration for simple functions, then extract the integral of a 

general Bochner measurable function as the limit of the integrals of simple functions. 

For proofs and more results concerning Bochner integration, consult [9], [32]. 

Definition A.3.1 A simple function u : O —» X (i.e. u = Yln=\ unXAn) is Bochner 

integrable if and only if the mapping u> —> ||u(u>)||x is Lebesgue integrable. The 

Bochner integral of u is given by 

Jn n = i 

Since any Bochner measurable function is the a.e. limit of simple functions, the 

definition of Bochner integrable is readily extended to general Bochner measurable 

functions. The following definition clarifies this idea. 
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Definition A.3.2 A function u : ft —> X is Bochner Integrable if and only if there 

exists a sequence of simple functions un : Q —• X converging almost everywhere to u, 

such that 

lim \\um(u>) - un(u)\\xdfi(uj) = 0. 
n,rn^oc JQ 

The Bochner integral is defined as 

u(u>)dfj,(u)) = lim / un(cu)dfi(uj). 
in 

Now that Bochner integrability is defined, I will present a useful characterization 

of Bochner integrability. This characterization is a necessary and sufficient condition 

for a function that outputs into an arbitrary Banach space to be Bochner integrable. 

Theorem A.3.3 A function u : f2 —» X is Bochner integrable if and only if u is 

Bochner measurable and fQ ||u(w)||;td/z(u;) < oo. 

As defined, the Bochner integral satisfies all the properties of the Lebesgue inte

gral. Namely, the Bochner integral is linear and for any function u : fl —> X, the 

Bochner integral satisfies 

/ u(u)d/j,(v) < / \\u{u)\\xdfi(u). (A.3.1) 

JB V JB 

Furthermore, one can also define LP spaces in the same fashion as for Lebesgue inte

gration. 

Definition A.3.4 For \ <p < oo, the linear space LP(Q.-X) is defined as the space 

of Bochner integrable functions u : Vt —* X such that 

\u(uj)\\p
xdii(iv) < oo. 

IQ 

If p = oo, then L°°(£l;X) is the space of Bochner integrable functions u : Q, —> X 

such that 

esssup ||u(o;)||x < oo. 
wen 
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All desirable properties of the Lebesgue spaces transfer to the Bochner spaces. 

The following theorem sums up many of these properties. 

Theorem A.3.5 1. LP(Q;X) with norm |H|L"(n;x) = (Jn ll"u(w)llxd/i(a;))1/'p for 

1 < p < oo and norm |H|L°°(n;X) = esssuPwef! llt'(a;)IU for P = oo is a Banach 

space. 

2. For I <p < co, LP(Q;X) is separable if X is. 

3. (Holder's Inequality) Suppose u E LP(Q; X) and f E Lq(tt; X*) with 1/p+l/q = 

1. Then the mapping u> i—> (f (to), u(u))x*,x 6 L1{Q,,X) and 

I {f{u),u{u))X-,X^{^) < \\f\\L"(a;X')\\u\\LP(n-X)-

Jn 

4- If H is a Hilbert space with inner product < •,• > # , then so is L2(Q;H) with 

inner product 

(u,v)L2{n.H) := / (u(oj),v(u)))Hdp(uj). 
m 

5. IfX and Y are Banach Spaces such that X ^ Y. Then L?{Sl\X) --» Lq(ri]Y) 

for 1 < p < q < oo. 

In the definition of Bochner IP spaces, X is an arbitrary Banach space. In this 

research, X has a particular structure. Namely, X is a Sobolev space characterizing 

the regularity of the solution to an SPDE. Since Sobolev spaces are subspaces of Lp 

spaces, it is natural to study the tensor product space LP(Q,) <g> Lq(D). Considering 

Bochner spaces of the form LP(Q; Lq(D)) will give an essential isomorphic relationship 

between the tensor space L2(f2) <S> Hl(D) and the Bochner space LP(Q; / / 1(D)); thus 

classifying the tensor product spaces of interested, as previously mentioned. 

Theorem A.3.6 The space Lp(£li;Lq(Q2)) forp,q E [l,oo) is isomorphic to 

/ / \v(y,x)\9dx dy < oo > 
J a.1 \Jn2 J I 
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Proof: Consider the map u i—> u denned by [u(y)](x) := u(y,x). Thus, pick any 

u e Lq(Q,i; Lq(fl2)), then there exists u e V such that u(y,x) = [u(y)](x). Similarly, 

for any u £ V, for almost every y G fli, we have that 

\ P/« 

\v(y,x)\9dx < oo. / \v(y,x)\«dx) dy = /z1(n1) / 
7n2 / ^n2 'n2 

Hence, for almost all y G f̂ , u(y,x) € L9(f22). Therefore, the mapping u H-> K 

defines an isomorphism. • 

As an easy corollary to the previous theorem, consider the case when p = q. 

Corollary A.3.7 Suppose 1 < p < oo. Then L^fii x Q2) ^ Lp(fia; LP(Q2))-

An analogous result may be applied to spaces of the form Lp(Cl1; W
1,q(fl2)), which 

will be pivotal in the following chapters. The resulting isomorphism does not hold 

for p = q = oo. In this case, one can only prove the following embedding: 

Theorem A.3.8 Loo(fi1;L0O(Jl2)) C L°°(fti x J}2), but, in general, 

L°°(fii; L°°(ft2)) ^ L 0 0 ^ ! x Ct2). 

Proof: First suppose that u e I/°°(fii; L°°(£22)), then 

IMU°°(fiixfi2) = SUP l^(2/,^)l < sup sup |'u(y,x)| = ||'u||Loo(ni;Loo(n2)) < oo. 
(j/,x)gfiixfi2 3/€fii xefte 

Therefore, L0O(fii;Loo(fi2)) C L°°(fii x J22). 

On the other hand, assume Qi = Q2 = [0, T]. Then applying the mapping from 

the previous theorems to the function u(y) = X[o,y] yields u(y,x) = X[o,y](x) £ L00. 

This function is not Bochner measurable and hence u(y, x) g- L°°(rj1; L°°(Q2)). • 

In the situation of partial differential equations with uncertain input data, so

lutions must satisfy regularity properties almost surely and must exhibit statistical 
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properties such as finite variance. This gives rise to stochastic Sobolev spaces: let 

(fl, J7, P) is a probability space and D C M.d then 

Lq
P{fl;Ws'q(D)) 

= < v : fl —•> V^S'9(D) : v Bochner measurable, / \\v(u, •)||^/s,,3(.D)dP(ci;) < oo > . 

Similar results as stated above for Bochner spaces also hold for the stochastic Sobolev 

spaces. For example, the following theorem solidifies the isomorphic relationship 

between 

L 2 ^ ) ® Hk(fl2;) ^ L2(fi i ; Hk(fl2)) 9* Hk(Q2; L2(fix)). 

Theorem A.3.9 The space Lp(fli; W1,q(fl2)) for P,Q £ [1;°°) is isomorphic to 

^ = { « : f i 1 x f l 2 ^ l d : / ( / \v(y,x)\q + \Vv(y,x)\qdx) dy < oo f / \v(y,x)\q + \Vv(y,x)\qdx) dy < 
r \Jct2 ) 

Proof: This result uses the exact same isomorphism from above, just changing the 

range space of the Bochner space to Wl'q(fl2). n 

Similar definitions and results hold for Hk(D; L2(Q)), but more care has to be 

taken when computing derivatives of functions that output in a general Banach space 

[4]. With these tools, we can now properly formulate the strong and weak forms of 

our SPDEs. 



Appendix B 

Karhunen-Loeve Expansion of 

Random Fields 

In general, the random fields do not satisfy the finite dimensional assumption. In 

the case of stochastic partial differential equations, the finite dimensional noise as

sumption is absolutely crucial to be able to solve the SPDE numerically. In order 

to overcome this problem, the standard technique is to decompose the random fields 

as infinite sums involving the eigenpairs of some linear operator. In particular, this 

linear operator will be compact and self adjoint. This will require a little background 

in functional analysis. This chapter will develop probably the most common such 

expansion. This expansion is the Karhunen-Loeve expansion (KL expansion). I will 

begin with some basic functional analysis results. Most of the results in this first 

section are from Peter Lax's book [21]. Then, I will derive the KL expansion. Finally, 

I will give a few convergence results concerning the expansion and present a numerical 

example. 

108 
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B. l Compact, Self Adjoint Operators 

The goal of this section is to understand how to decompose a linear operator into a 

spectral decomposition. In order to do this, notions of compactness, self adjoint, and 

positivity must be defined in the case of linear operators. To define the notion of a 

compact operator, I require the notion of precompactness. 

Definition B . l . l Suppose S is a subset of a complete metric space, then S is pre-

compact if its closure is compact. 

There are many alternative characterizations of precompactness. The following the

orem gives two general characterizations. 

Theorem B.1.2 Suppose S is a subset of a complete metric space. 

1. S is precompact if and only if every sequence in S has a Cauchy subsequence. 

2. S is precompact if and only if S can be covered by a finite number of balls of a 

fixed, arbitrary radius. 

With an understanding of precompactness, one can define what it is to be a compact 

operator. Note that for the remainder of this chapter, X and Y will denote Banach 

spaces. 

Definition B . l . 3 A linear operator T : X —> Y is compact if the image TB where 

B denotes the unit ball in X is precompact in Y. 

In many applications, T is an integral operator. If X is a Banach space of functions 

that map D\ to R and Y is a Banach spaces of functions that D2 to R, then one can 

define the operator T : X —*Y with respect to some kernel K : Dx x D2 —> R as: 

Tu(-) = I K(x,-)u(x)dx. (B.l.l) 
J Dx 

It is then useful to determine whether or not such an operator is compact. The 

following theorem gives compactness results for three different pairs of Banach spaces 

X and Y. 
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T h e o r e m B.1.4 Consider the integral operator (B.l.l). 

1. If X = Ll{Di) and Y = C°(D2), then (B.l.l) is compact if the kernel is 

continuous on Dx x D2. 

2. If X = C°(Di) and Y = C°(D2), then (B.l.l) is compact if the kernel is a 

continuous function on D\ in the L1 norm on D2. 

3. If the kernel of (B.l.l) is L2(Di x D2), then (B.l.l) is a compact operator from 

X = L2(Dl) toY = L\Dx). 

Aside from compact operators, the derivation of the KL expansion requires the 

idea of self adjoint operators. Much of the theory of self adjoint matrices can be 

generalized for self adjoint operators and this theory lays the framework for the KL 

expansion. 

Definition B.1.5 Suppose A is an operator mapping a Hilbert space H with inner 

product (•, •) into itself. Then A is self adjoint if for all u, v G H, 

(Au, v) = (u, Av). 

Another useful definition concerns the positivity of such operators. 

Definition B.1.6 Suppose A is a self adjoint operator on the Hilbert space H. Then 

A is positive if the quadratic form (Au, u) is nonnegative for all u € H. 

With these definitions, one can investigate the spectrums and eigenspaces of such 

operators. As eluded to at the beginning of this discussion, self adjoint matrix theory 

can be generalized to self adjoint operators. Since self adjoint matrices have real 

eigenvalues and eigenvectors that form an orthonormal basis, one would hope that 

the same can be said for self adjoint operators. The following theorem clarifies this 

idea. 
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Theorem B.1.7 Suppose A is a self adjoint operator on the Hilbert space H. Then 

there is an orthonormal basis {^„} for H consisting of eigenfunctions of A. Further

more, the corresponding eigenvalues are real and their only point of accumulation is 

0. 

The connections between matrix theory and operator theory can be taken one step 

further by noting the following result. 

Theorem B.1.8 Suppose the self adjoint operator A is positive, then the spectrum 

of A is a subset of the nonnegative real line. 

As a simple consequence of these results, one can derive the KL expansion. The only 

task is to determine which operator is appropriate to expand the random fields a and 

/ . In the following sections, I will choose an operator and form the KL expansion. I 

will then present results that state that the KL expansion is, in some sense, optimal. 

B.2 KL Expansion 

Suppose a <G L 2 (0 x D) is a random field. The covariance function of a is: 

K(x,x') = \ a(u>,x) — / a(u',x)dP(u') a(w,x') - / a{J,x)dP(uj') \dP(io) 
Ja \ Ja. J y Jo. J 

or equivalently: 

K(x, x') = E Ua(-,x) - E[a{-,x)])(a(-,x') - E[a(-, x')])l • (B.2.1) 

Now, using this as the kernel, define the linear operator, A : L2(D) —> L2(D) such 

that for all u G L2(D), 

Au{x')= I K(x,x')u(x)dx. (B.2.2) 
JD 

The following theorem classifies this operator. 

Theorem B.2.1 The linear operator A defined by (B.2.2) is compact, self adjoint, 

and positive. Therefore, the eigenfunctions of A form an orthonormal basis of L2(D) 
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and the eigenvalues are all nonnegative real numbers with only one accumulation 

•point, namely 0. 

Proof: First, notice the Cauchy-Schwarz and Jensen's inequalities (applied to the 

concave function f(x) = y/x and to the convex function g(x) = x2), imply that 

' DxD DxD 

<-! E 

JDxD 

K{x,x')2dm2(x,x')= E\(a(-,x) - E[a{-,x)])(a(;x') - E[a(-,x')]) 
12 

dxdx' 

(a ( - ,x ) -£[a ( - ,x ) ] ) 2 
1/2 

x E 'M\2 (a(;x')-E[a(;x')]) 
1/2 

dxdx' 

E[{a{-,x)-E[a{-,x)])2)ll2dx 
D 

x ( / JB[(a(-,x /)-S[a(-,x ,)])2]1 / 2d^ / 

E[{a(',x)-E[a{',x)])2f2dx 
D 

< /2 [ E[(a(;x)-E[a(;x)])2]dx1 

JD 

E[{a{-,x) - E[a{-,x)\)2f2dx 
D 

2 

a(u>,x) — E\a(-,x)] 
L2(OxD) 

<[\\a\\tf(nxD) + \\E[a(-,x)\\\L2{nxD) 

<^\\a\\h{nxDy 

Since the random field a is in L2(Q, x D), the integral operator K e L2(D x D). 

Therefore, theorem B.1.4, implies that A is a compact operator from L2(D) to L2(D). 
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Now, by definition, K is symmetric (i.e. K(x,x') = K(x',x)). Using this fact, 

notice that for all u, v G L2(D) 

{Au(x'))v(x')dx 
D 

f I f K(x,x')u(x)dx\v(x')dx' 

K(x', x)u(x)dx \v(x')dx' 
D \ JD 

= ! u(x)l f K(x',x)v(x')dx')dx 

u(x)(Av(x))dx 

and A is self adjoint. 

Finally, by Fubini's theorem, the following holds true: for all u G L2(D) 

E 

E 

E[(a(-, x) — E[a(-,x)])(a(-, x') — E[a(-, x')])]u(x)dx J u(x')dx 

I / (a{-,x) - E[a(-,x)])(a{-,x') - E[a(-,x')])u(x)u(x')dxdx' 
JD JD 

J (a(-,x) - E[a(; i)])u(a;)da:) ( f (a(-, x') - E[a{-,x')\)u{x')dx' 

\ (a(-,x) — E[a(-, x)])u(x)d, 
JD 

= E 

> 0. 

Hence, A is positive. 

With these three properties, theorems B.1.7 and B.1.8 ensures that the eigenfunc-

tions of A form an orthonormal basis of L2(D) and the eigenvalues of A are positive 

real numbers that have a single accumulation point at 0. • 

Notice that, without lose of generality, E[a(-,x)] — 0. If E[a] ^ 0, then consider 

the random field a(u,x) — E[a(-,x)] and define the equivalent kernel and integral 

operator. Now, let (\n,ipn) denote the eigenvalues and eigenfunctions of the operator 

A. Since {4>n} is an orthonormal basis of L2(D) the random field a has the following 
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spectral decomposition 

a(uj,x) = y^an(uj)ipn(x). 
n=\ 

Now, multiplying through by ipm, integrating, and applying the Lebesgue Dominated 

convergence theorem, 

/ ijjxa(u,x)dx = / ipxy^an(u>)ipn(x)dx 
JD JD n=l 

oo 

y^an(uj)ipx'ipn(x)dx 
n=l 

= yZ an{u)ipxtpn(x)dx 

= am{u). 

The above formula thus defines the coefficients of the expansion of a. These coeffi

cients are random variables. First notice that these coefficients are orthogonal: for 

m y^ n 

E[aman] = E ipxa(-,x)dx II / ipn(x')a(-,x')dx' 

= / f / E[a{-,x)a(-,x')]ipxdx\ipn{x')dx' 

Xm^'xiJn(x')dx' 
D 

= 0 

since the {ipn} are an orthonormal basis of L2(D). Also notice that these coefficients 

have expected value equal to zero. 

E[am] = E a(-,x)ipxdx 
D 

E[a(-, x)]ipxdx 
D 

= 0 
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since E[a(-,x)] — 0 by assumption. Now, to normalize the random coefficients {a„}, 

notice 

EM E 

= E 

a(-,x)ipxdx ) / a(-,x')ipxdx 
D D 

a(-, x)a(-, x')i/)xdxip'xdx' 
D JD 

E[a(-,x)a(-, x')ifjxdxip'xdx' 
D JD 

(M)^dar 
D 

Xmi>xdx' 
D 

Thus, defining the random variables Ym = 4 = o m , {Ym} is an orthonormal set in 

L2(fl) with zero mean. The expansion of a is now given by 

a(u;,x) = ] P y/Ktpn(x)Yn(u}). 
n = l 

Now, suppose E[a(-,x)} is not identically zero, computing the ipn and An using 

a(u,x) = a(u),x) — E[a(-,x)}. This gives the following expansion 

a(w, x) - E[a(-, x)] = ^ T ^/Xn^n(x)Yn{uj). 
n=\ 

In order to define Yn, notice that 

1 
Yn{u) = 

/A„ j u 
1 

V'„(.'r)a(a;)x)da; 

•0n(^)(a(w,a;) - E[a{-, x)])dx. 
v A„ J D 

This construction yields the KL expansion of the random field a. 

Definition B.2.2 For a random field a G L2(D, x D), the Karhunen-Loeve expansion 

of a is given by: 
oo 

a(u, x) = E[a(-, x)] + ] T \fK^n{x)Yn{u) (B.2.3) 



116 

where ipn and Xn are the eigenfunctions and eigenvalues of the compact, self adjoint, 

positive operator (B.2.2) (i.e. {i/jn} are an orthonormal basis of L2(D) and {\n} are 

positive and real), and Yn are given by 

Yn(u) = -y== / ^pn(x)(a(u,x) - E[a(-,x)])dx. 

Furthermore, {Yn} have the following three properties: 

1. E[Yn] = 0 for all n 

2. E[YnYm] = 0 for all n ^ m 

3. E[Y2} = 1 for all n 

Thus, {Yn} are uncorrelated random variables with zero mean and unit variance. 

B.3 Optimality of the KL Expansion 

The KL expansion is a clever way of approximating any random field a. If one can 

determine the eigenvalues and eigenfuctions of the covariance of a, then a can be 

approximated by the partial sums of the KL expansion. Since such a truncation 

yields an approximation of a, one would like to be able to say that the approximation 

is optimal in some sense. I will now present results showing that the partial sums 

of the KL expansion minimize the error \\a — F'NO'\\2
L2mxD-), where P^a denotes a 

projection of a onto some finite dimensional subspace of dimension N. The following 

results from Schwab and Todor's paper Karhunen-Loeve approximation of random 

fields by generalized fast multipole methods [34] do exactly that. 

Theorem B.3.1 Suppose a 6 L 2 (0 x D) has KL expansion (B.2.3), then for any 

positive integer N, 

oo 

inf I \\a — -P/va-l^nxo) : PN projects onto U C L2{Q) with dim(U) = N > = Y^ Xn 

n=N+l 
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and the infimum is attained with U = span{<pi, ...,0jv} (i-e- -P/v is the Nth partial 

sum of the KL expansion). 

Furthermore, they present sufficient condition for the KL expansion of a to converge. 

T h e o r e m B.3.2 The KL expansion of a converges P-a.s. in L0C(D) if 

oo 

X>n(iog 
?1')2||</)n|li00(D) ^""(^n) ^ °°-

n = l 

The final result of this section will determine how quickly the partial sums of the 

KL expansion converge to the random field a. By theorem B.3.1, we know that 

the truncation error is the sum of the remaining eigenvalues of the integral operator 

(B.2.2). Thus, one needs to know how fast the eigenvalues decay in order to be able 

to judge convergence rate. The following theorems displays some decay rates given 

that the kernel of the integral operator (B.2.2) satisfies certain properties. 

T h e o r e m B.3.3 Let D C Rd be a bounded domain. Suppose K £ L2(D x D) is 

the kernel defined in equation (B.2.1) and A is the corresponding integral operator 

(B.2.2) with eigenvalues {An}. 

1. If K is piecewise analytic on D x D, then there exists constants C\,C2 > 0 

depending on K only such that 

0 < K < Cie-
c*nUd. 

2. If K is piecewise Hk <g> L2 on D x D, then there exists a constant C$ > 0 

depending on K only such that 

0 < An < C3n-k/d. 

3. If K is piecewise smooth on D x D, then for any s > 0 there exists a constant 

C4 > 0 depending on s and K such that 

0 < An < CAn~s. 



118 

B.4 Numerical Computation of the KL Expansion 

When required to compute the partial sums of the KL expansion, in general, one 

does not know the analytic forms of the eigenfunctions and eigenvalues of the integral 

operator A. Thus some approximation is necessary. That is, suppose V is a Hilbert 

space, then the goal is to find the pairs (\,ip) EM. x V such that 

Ax/}= [ K(x,x')ip(x')dx' = Xip. 
.ID 

As is standard in the theory of PDEs, one can write down the variational formulation 

of this problem and use it as a starting block to approximate the eigenvalues and 

eigenfunctions. The variational form is as follows: find (A, ip) 6 R x V such that 

w(x) J K(x,xl)^(x')dx'dx = X I ip(x)w(x)dx 
D J D JD 

for all w EV. 

I will discuss two methods of approximating these eigenvalues and eigenfunctions. 

Now, define 14 C V to be a finite dimensional subspace of V with basis {^>i)^Lv The 

first approach approximates the random field a with a linear combination of the basis 

functions: 
N 

ah(u>,x) = y^ai(u})^i(x). 

Note that if one choose {<^} to be a nodal basis (i.e. <fii(xj) = 5^ where Xj is a node 

of a mesh element), then the random variables ai(u) = a(u, xA. Assume that {4>i} is 
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nodal. Then, the approximated covariance function can be written as follows: 

Kh(x,x') = E[ah(x)ah(x')} - E[ah(x)]E[ah(x')] 

N N N 

i,j=l i = l j=l 

N N 

= J2 &(*)&(*')*(>;(•)] - Y, H^M')E[a%{-)\E[a3{-)] 

N 

N 

where Ej j = E[di(-)aj(-)] — E[a,i(-)]E[a,j(•)]). Now, constructing the discretized oper

ator Ah, 

Ahv(x) = I Kh(x,x')v(x')dx' 
JD 

and the associated weak (finite element) formulation is: find ( A , ^ ) G K x 14 such 

that 

/ <j>i{x) [ Kh(x,x')M^'Wdx = A / ^h(x)&(x)dx (B.4.1) 
J o J D JD 

for alH = 1,..., N. Writing 
N 

^h(x) = ^2vi<f>i(x), 
i = l 

equation (B.4.1) becomes: 

P N „ N 

(x) / Kh(x,x')2_]vj(f>j(x')dx'dx = \ / Yjvj(/)j(a;)0i(x)da 
^ , = 1 JD ,= 1 

Plugging in the expansion of i-T ,̂ 

- - N N p N 

<t>i(x) I Y 4'k{x)4>i(x')Ekti^2vj(l)j(x')dx'dx = X / ^ i ; j 0 i ( x ) 0 i ( x ) d 
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Rearranging the terms, yields 

y2 ^k,iVj / 4>i(x)(pk(x)dx / ^(x ' )0j(x ' )dx ' = A V V -
i,M=i 7 c JD 3=1 

4>j(x)(j)i(x)dx. 
D 

Thus, let M denote the standard mass matrix from the finite element method. That 

is, 

Mij = / (f>i(x)4>j(x)dx, 
JD 

then the reformulated weak form can be rewritten as a generalized eigenvalue problem 

of the following form: find (A, v) £ RN+1 such that 

MZMv = XMv (B.4.2) 

where v = [i>j] and S = [Si?j]. 

The second method of approximating the eigenvalues and eigenfunctions does not 

first discretize the random field a, rather, it assumes that the eigenfunctions live in 

the finite dimension space Vh and solve the weak problem: find (A, ip) E R x Vh such 

that 

<pi{x) I K(x,x')iph(x')dx'dx = A / ijjh{x)(f)i(x)dx 
D JD JD 

for alH = 1,..., N. Notice plugging in the basis expansion of xph, we get 

, N . N 

i(x) / K(x,x')\^Vj(j>j(x')dx'dx = X / / jVj(f)j(x)(j)i(x)dx. 
JD j=1 JD j=1 

Rearranging terms, 

N f f N f 
2_^vj / 4>i{x) / K{x,x')(j)j{x')dx'dx = \\_\vj / <j>j{x)<j)i{x)dx. 
j = 1 JD JD j=1 JD 

Thus, the weak form again turns into a generalized eigenvalue problem. This time, 

the problem is: find (A, ip) G M. x Vh such that 

Sv = XMv (B.4.3) 
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where S = [Sij] and 

Sij = / <fii(x) / K(x,x')cf)j(x')dx'dx. 
J D J D 

In most cases, one cannot compute this integral analytically, thus needs to employ 

some quadrature rule. Notice that if one applies a Newton-Coates quadrature rule 

using the nodes {x,} from the mesh, the integral equation reduces to: 

Sitj = wiwjK(xi,Xj) 

where w = [wi] are the quadrature weights. This is due to the fact that {^j} was cho

sen to be a nodal basis. Other methods can be generated using Gaussian quadrature 

on each element separately. 

B.5 Examples 

Gaussian random fields arise in many applications for multiple reasons: asymptot

ically due to the Central Limit Theorem and by approximation since the normal 

distribution is the maximum entropy distribution when the first and second moments 

are known. Thus, a Gaussian random field a is completely determined by it's ex

pectation and it's covariance function. In this example, I investigate a Gaussian 

random field with covariance function given by the Green's function for the two point 

boundary value problem: 

~ d 5 = / i n (0,1) (B.5.1) 

u(0) = 0 (B.5.2) 

u(l) = 1. (B.5.3) 

(B.5.4) 

The Green's function is the solution to (B.5.1) for / = 5Q{X — y) and is given by the 

following formula: 

G(x, y) = (1 - y)xx[o,y)(x) + 3/(1 - x)x(y,i](x). (B.5.5) 
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By definition, Green's functions are always symmetric. Also, the Green's function 

is positive on the set of interest, (0,1), and is L2((0, l)2) . Therefore, the integral 

operator with Kernel G(x, y) satisfies the conditions in the previous section, and the 

corresponding eigenvalues are positive, real numbers and the eigenfunctions form an 

orthonormal basis. Moreover, since the kernel is the Green's function of (B.5.1), the 

eigenfunctions are the eigenfunctions of the negative second derivative operator with 

0 boundary conditions and the eigenvalues are the reciprocals the the eigenvalues 

of the negative second derivative operator with 0 boundary conditions. Thus, the 

eigenfunctions and eigenvalues are: 

ipn(x) = sin(n7rx) (B.5.6) 

An = T - V (B.5.7) 

This leads to the following KL expansion: 

a(u>, x) — E[a(-, x)] + \^ — sin(n7r.x)yn(t<;) 
n = l 

where Yn are random variables with mean zero and unit variance. 

The purpose of this example is to determine how to generate realizations of the 

a and the partial sums of the KL expansion of a as well as to compute numerical 

approximations to the truncation error generated by the partial sums. 

Let Xi = iAx for i = 0 ,1 , . . . , N, Ax = jj, and define the covariance matrix of a 

on the mesh [xi] as the (N + 1) x (N + 1) matrix with entries: 

ij \Xii %j) • 

Figure B.l depicts the covariance matrix generated using the aforementioned covari

ance function. 

In order to generate realizations of a, one can draw samples from a multivariate 

normal distribution with mean vector fa = E[a(-,Xi)] and covariance matrix S (see 

figure B.2). 
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Figure B.l: Covariance function for the ID Green's function. 
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Figure B.2: 100 realizations of the Gaussian random field generated by the ID Green's 

function. 

Figure B.3 shows that indeed these realizations were drawn from a Gaussian ran

dom field. That is, if one chooses any finite number of spatial locations {zi}, then 
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the random variables a(u,Zi) are distributed according to a multivariate normal dis

tribution. 

A 
101 

100 - ^ f ^ ' 
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-'" 
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1 
Figure B.3: Distribution of the random field for at 4 different spatial locations. 

An important issue to consider when computing approximations to the KL expan

sion is how do the eigenvalues and eigenvectors of the discretized covariance function 

relate to the eigenvalues and eigenfunctions of the continuous covariance function? 

Figure B.4 demonstrates that the eigenvalues of the discretized operator compare 

rather well with those of the continuous operator. 

In order to compute realizations of the partial sums of the KL expansion of the 

random field a, one must compute the zero mean, unit variance random variables 

1 f1 

Yi(uj) = - = / (a(uj,x) - E[a(-,x)])i(ji(x)dx. 

v \ Jo 

Given realizations of a at the grid points, a(u>k,xi), one can compute approximate 

realizations of the Yi using the following formula: 
N 

Yik) = ^x^2(a(ujk,Xj) - fi^rp.. i\%jj 

3=0 
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Figure B.4: Eigenvalues for the discretized and actual integral operator. 

Since the resulting series are the sums of sines and cosines, the partial sums with few 

terms are rather smooth, but as more and more terms are added, the stochasticity of 

the actual random field (see figure B.5). 
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Figure B.5: 100 realizations of the partial sums of the KL expansion. 
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