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Abstract 

On the Diffusion and Phase Transitions 

of Confined Colloid-Polymer Mixtures 

by 

Amir Amini 

Diffusion and phase transitions of confined neutral colloid-polymer mixtures are 

studied theoretically in one dimension, and theoretically and experimentally in two 

dimensions. 

For colloids in a channel, their short-time self- and collective diffusion coefficients 

and their long-time mobility are calculated, assuming the colloid-polymer interactions 

to be of depletion origin and described by the Asakura-Oosawa model. The colloid-

polymer mixture is mapped onto an effective one-component system in which the size 

of the colloids, the hydrodynamic interactions, and the wall effects are taken into 

account. It is found that depletion interactions reduce the diffusion of colloids for 

short times and enhance their mobility for long times. 

For a single polymer in a colloidal suspension confined to a channel, the self-

diffusion coefficient of the polymer center-of-mass is calculated in the ground-state 

dominance regime as function of suspension density, degree of confinement, and qual-

ity solvent quality. The scaling exponents describing the variations of the self-diffusion 
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coefficient with the degree of polymerization and the radius of the channel are com-

puted. These exponents are found to have higher values than those of a polymer in 

the absence of colloids. It is also shown that the influence of colloids on polymer 

diffusion under theta and good solvent conditions is much more pronounced for the 

latter case. 

Monolayers of mixtures of poly(lactic acid) (PLA) and two types of particles, 

magnetic colloids and Cd-Se nanoparticles, are prepared using the Langmuir-Blodgett 

technique. Pressure-area isotherms show that the transition from the isotropic phase 

to the liquid-crystalline smectic-A phase, observed for pure PLA, is suppressed at a 

critical concentration of the magnetic colloids, whereas it persists in the presence of 

nanoparticles, even at high concentrations. The theory developed by McMillan for 

the smectic-A phase in three dimensions is extended to the case of two dimensions, 

and its predictions are compared to those of the latter as well as to experiment. 
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Introduction 

This thesis is concerned with two problems in the area of colloid-polymer mixtures. 

The first is diffusion in confined colloid-polymer systems and the second is phase 

transitions in monolayers consist of colloidal particles and polymer chains. 

(A) Diffusion in confined colloid-polymer mixtures 

The understanding of the dynamics of complex fluids provides the key to some of 

the most relevant problems in engineering, physics, chemistry and biology involving 

for example self-assembling molecular systems, proteins, colloids, cellular filaments, 

glasses, and membranes. The challenge in studying these systems lies in the fact that 

the relevant physical processes often occur over a wide range of characteristic length 

and times scales which can be strongly correlated. 

The question of how fluids move through geometrically confined spaces such as 

pores and channels is also important for understanding a variety of naturally occurring 

and man-made systems of interest to engineers, physicists, chemists, and biologists. 

For example, the transport of fluids through carbon nanotubes, porous materials such 

1 



2 

as zeolites, and ion channels in biological membranes, is an area of intensive research, 

and there is a considerable body of literature covering both experimental, theoretical, 

and computer simulation studies of a wide variety of systems [1], 

Among these systems, colloidal suspensions have attracted much attention during 

the past decade because of their widespread technological applications and the avail-

ability of both calibrated model particles and new experimental techniques to study 

their static and dynamical properties [2]. 

The use of colloids in technology and medicine is widespread in classical appli-

cations including coatings and paints, tires, inks, adhesives, cosmetics, food, and 

blood. Today, colloids are proving useful in several new technological applications 

such as colloidal processing of functional ceramics [3], colloidal crystals for photonic 

bandgap materials [4, 5, 6, 7, 8, 9] and porous metallic nanostructures [10] , magnetic 

colloidal nanoparticles for medical diagnostic [11, 12], colloidal inks for directed as-

sembly of mesoscale periodic structures [13], and colloidosomes for encapsulation [14]. 

In applications such as coatings and paints, inks, motor oils, biochemical separations 

processes, detergency, and the processing and preserving of food products, soluble 

or adsorbing polymers are commonly added to colloidal dispersions. Such polymer 

additives are instrumental in controlling the stability and rheological properties of 

colloidal dispersions [15]. 

The addition of soluble polymer to colloidal dispersions, even in small amounts, 

has a significant effect on transport properties, mainly because it induces a new type 
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of interaction between the colloidal particles, the depletion interaction. The depletion 

interaction is due to the fact that at appropriate concentrations and for suitable ratios 

of the size of the polymer to that of the colloid for which excluded volume effects 

become important, an entropic force between the colloidal particles is induced by the 

presence of the polymer. This entropic force is generally attractive. 

When colloid-polymer systems are confined by surfaces, boundary and wall effects 

become important, and their equilibrium, interfacial and transport properties are 

expected to differ from those of their bulk three-dimensional counterparts. In quasi 

one-dimensional geometries, colloidal systems offer practical interest, in particular for 

diffusion processes in zeolites and microporous solids [16, 17], and in biological systems 

[18, 19, 20]. In quasi two-dimensional geometries, colloid and colloid-polymer systems 

also present much interest from the point of view of new applications like the use of 

two-dimensional protein crystals for immunosensors, highly isoporous ultrafiltration 

membranes for bioelectronic and biophotonic devices, and thin films [21, 22, 23]. 

The development of a theory of diffusion in colloid-polymer systems at a fun-

damental, molecular level, is a problem of great complexity and difficulty. It is in-

deed known that even for ordinary binary molecular systems much simpler than the 

colloid-polymer systems studied in this thesis, there is no accurate molecular theory of 

diffusion for the liquid state, unlike for the gas state. The only available theories are 

highly approximate hydrodynamic and activated-state models [24], Consequently, 

and in order to avoid the introduction of too many uncontrolled approximations, 
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models of colloid-polymer systems must be developed which are simple enough to be 

tractable with accuracy. 

Previous studies of diffusion have been restricted to pure colloidal systems or to 

diffusion of polymers in the absence of colloids. Three-dimensional colloidal systems 

have been investigated over a wide range of concentrations, both by theory [25, 26] and 

by computer simulations [27, 28], and the cage diffusion concept has proved successful 

in accounting for experimental results on hard sphere-like colloids [25, 29, 30], as well 

as in describing diffusion near the colloidal glass transition [31, 32], Diffusion in one-

dimensional colloidal systems has also been studied theoretically and experimentally. 

It exhibits a noteworthy non-Fickian long-time behavior [33, 34, 35, 36, 37]. Usually, 

the effects of direct and hydrodynamic interactions on the dynamics of particles is 

assessed by multiple light scattering experiments in the wavevector and frequency 

domains. One advantage of colloidal systems is that, in contrast to atomic and 

molecular fluids, direct observation of the dynamics by light microscopy becomes 

feasible in real space and real time. This is because the typical relaxation time of 

particles is of the order of milliseconds, which is orders of magnitude larger than 

molecular relaxation times (an exception being the special phenomenon of critical 

slowing down near a critical point). Likewise, the relevant length scale for these 

structures lies in the mesoscopic rather than molecular range [38], 

Diffusion of polymer, in the absence of colloid, has been widely studied in three 

dimensions [39, 40, 41], and recently results have been reported on two-dimensional 
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systems, in particular DNA on lipid membranes [42, 43] and polystyrene films [44], 

Apart from a theoretical study of diffusion of small colloidal particles in polymer 

melts [45] and the recent experimental works of our group [46, 47, 48], there appears 

to be few experimental and no theoretical reports on colloid or polymer diffusion in 

colloid-polymer systems. 

A good starting point to examine the diffusion dynamics of polymers in a colloidal 

suspension in confined geometries is the Kirkwood formula, which is closely related to 

the many-body generalized Langevin equation, supplemented by self-consistent field 

approaches [49]. Experimentally, in order to observe their motion, polymer molecules 

are tagged with fluorescent probes, and fluorescent microscopy is used to track them. 

(B) Phase transitions in monolayers of colloid-polymer mixtures 

In contrast to bulk systems, much less is known about the behavior of colloid-

polymer systems when they are confined to two dimensions. It is believed [50] that un-

der suitable conditions, these systems phase separate into two coexisting fluid phases, 

one rich in colloid and the other one rich in polymer. This is similar to what has 

been observed in the bulk. Mean-field theory predicts that demixing will occur for 

polymer-to-colloid size ratios greater that 0.32, a result that due to the nature of 

approximations is inevitably independent of number of dimensions [51]. However, 

computer simulations reveal that the size ratio corresponding to the onset of phase 

separation is much greater than the above value and also depends weakly on the col-
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loid diameter [52], Gibbs ensemble Monte Carlo simulations combined with density 

functional theories, when applied to demixing in colloid-polymer mixtures confined 

between parallel plates [53], show that the binodal curve moves toward higher poly-

mer activities and lower colloid fugacities, implying capillary condensation of the 

colloidal liquid in the slit. The effect of confinement between two parallel repulsive 

walls and the accompanying shift of the critical point has also been investigated by 

means of grand canonical Monte Carlo simulations [54]. As the distance between the 

walls increases, the critical exponents gradually change in a non-monotonic fashion 

from the values of the two-dimensional Ising model to those of the three-dimensional 

Ising model. There is also experimental evidence for the occurrence of liquid-liquid 

demixing in colloid-polymer mixtures confined in two-dimensional channels [48]. All 

these studies share a common feature, that is, the polymer is not totally confined to 

a plane; in other words, although the motion perpendicular to the walls is restricted, 

the polymer still retains a three-dimensional conformation and its segments can move 

out of plane. This, together with the effect of the walls, causes deviations from true 

two-dimensional behavior. 

Nevertheless, it is quite possible to confine the properly chosen colloids and poly-

mers at a liquid-vapor interface (such as an air-water interface), and study their 

phase behavior using the Langmuir-Blodgett technique. The ability of the Langmuir-

Blodgett method to produce thermally and chemically stable polymer monolayers ex-

plains its wide use in technological applications, for example in membrane technology, 
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and in micro-, and nano-electronics. Furthermore, the understanding of the behavior 

of polymers at interfaces has been significantly stimulated in the past decade due to 

potential applications in nonlinear optical devices, biosensors and microlithography 

[55]-

Following the pioneering work of Crisp [56, 57] on the polymer poly(methyl metacry-

late) (PMMA), the properties of PMMA films, including their stability and hysteresis 

[58, 59, 60, 61, 62], elasticity [63], and thickness [64, 65], have been studied by us-

ing the Langmuir Blodgett method [66, 67], ellipsometry [64], surface light scattering 

[65], atomic force microscopy [68, 69], and fluorescence spectroscopy [70]. Similarly 

to polymers, charged and neutral colloids partially wet by water [71, 72] can form 

monolayers at air-water interfaces, due to surface tension [73], and these monolayers 

can form various phases depending on their concentration. Lin and Chen [74] have 

employed enhanced digital video microscopy to study the equilibrium structures of 

monolayers of sulfate-polystyrene particles at oil-water interfaces, and observed solid, 

hexatic, and liquid phases. 

Clearly, not all colloids and polymers respectively float and lie flat at air-water in-

terfaces. But thanks to several experimental [73, 71, 75, 76, 77], theoretical, and com-

puter simulation studies [78, 79, 80] of colloid and polymer interactions and monolayer 

stability, it is now possible to create well-characterized monolayers of either colloids 

or polymers at air-water interfaces. 

When a polymer does not spontaneously form a monolayer by itself at the air-water 
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interface, it is nevertheless sometimes possible to obtain a monolayer by chemical 

modification. For instance, monolayers of poly(imide) [81] and poly(arylenevinylene) 

[82] were prepared using the Langmuir-Blodgett method by attaching hydrophobic 

chains to the precursor polymers. Another class of such polymers, comblike poly-

mers such as copolymers derived from maleic acid and maleic anhydride, has drawn 

much attention [83]. These polymers can be considered the polymeric analogue of 

low-molecular weight amphiphilic molecules. While their backbone is typically hy-

drophilic, the attached side chains are usually chosen to be hydrophobic in order to 

keep the water-soluble backbone at the air-water interface. This enables one to change 

the conformation of these polymers at the interface simply by changing the degree 

of hydrophobicity by using different side chains. Nieuwkerk et al. [84] reported the 

formation of hydrophobically-modified maleic anhydride and maleic acid copolymers 

on several subphases. In general, at low concentrations, the side chains lie on the 

air-water interface, whereas at sufficiently high concentrations (semi-dilute regime), 

the side chains tend to lie upwards [83], 

A schematic of this situation together with the associated isotherm is depicted in 

Fig.l and Fig.2. The isotherm exhibits a first-order phase transition from a liquid 

expanded (LE) state with no orientational order to a liquid-condensed (LC) state pos-

sessing orientational order in the side chains. Pressure-area isotherms and Brewster-

angle microscopy confirm the formation of a monolayer in these systems, which upon 

compression eventually turns into a multilayer and ultimately into a solid. 



Figure 1: Alternating comb polymers and colloidal particles at an air-water interface: 
a) dilute regime, where the side chains lie flat on the interface; b) concentrated regime, 
where the side chains stand up. 

Figure 2: Typical Pressure-area isotherm for two-dimensional systems which exhibit 
a first-order transition, using the Langmuir-Blodgett method. 



This thesis is organized as follows. Chapter 1 presents a brief background on the 

fundamentals of diffusion processes and the theoretical foundations of the dynamics 

of interacting many-body systems from a microscopic point of view. Chapters 2 and 

3 deal with the models and methodologies employed to determine the diffusion coef-

ficients of polymer and colloid in a confined colloid-polymer mixture, as a function of 

colloid and polymer concentrations, of their sizes, and of the confinement geometry. 

Chapter 4 describes the phase transitions observed in a colloid-polymer mixture us-

ing the Langmuir-Blodgett technique and examines the implications of a mean-field 

theory on the results. 



Chapter 1 

Theory of Diffusion 

1.1 Diffusion in Three Dimensions 

The dynamics of colloidal suspensions can be discussed on several levels of descrip-

tion, depending on the time scale and the associated length scale of interest. The 

most detailed description is provided by the deterministic Liouville dynamics, which 

includes the microscopic time evolution of all degrees of freedom, i.e., the positions 

and momenta of colloidal particles and solvent molecules. However, such a detailed 

description is not needed when one is merely interested in the slow dynamics of the 

colloidal particles, since these are substantially larger and heavier than the small sol-

vent molecules. Thus it is possible to average out the fast fluctuations in the solvent 

particles' positions and momenta. This leads to a coarse-grained level of descrip-

tion, valid for times much longer than the relaxation time of the solvent molecules 

11 



(f > r s % 10~12s), in which only the phase space variables of the colloidal particles 

appear explicitly. At this level, the solvent is reduced to a Navier-Stokes fluid ex-

erting hydrodynamic friction forces on the colloidal particles. The only remnant of 

the averaged fast degrees of freedom are the Gaussian stochastic forces driving the 

irregular Brownian motion of the particles [85]. 

Two types of diffusion processes are to be distinguished: collective and self-

diffusion. Collective (cooperative) diffusion relates to the simultaneous motion of 

many Brownian particles, induced by the density gradients of these particles, while 

self-diffusion concerns the dynamics of a single Brownian particle under the influence 

of interactions with surrounding Brownian particles in a system with homogeneous 

densities of constituents. The single particle under consideration is commonly re-

ferred to as the tracer particle or the tagged particle, while the remaining Brownian 

particles are referred to as host particles [86]. 

To further elucidate the difference between these two types of diffusion processes, 

we note that in collective diffusion all particles participate in the relaxation of con-

centration fluctuations towards equilibrium (cooperative motion). This is the case 

for experimental studies of macroscopic systems where two sub-systems with concen-

trations c + 8c and c — 5c are brought into contact, and the concentration profile 

is monitored as a function of time. Thus cooperative diffusion reflects the speed at 

which non-uniformities in particle concentration propagate through the system. On 

the other hand, if for example a small fraction of the particles is radioactive (tagged 
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particles), we can see them spread out with a certain self-diffusion coefficient which is 

in general completely different from the collective diffusion coefficient (both diffusion 

coefficients coincide only in dilute solutions) [49]. 

1.1.1 Collective Diffusion 

Let p(r, t) denote the space- and time-dependent macroscopic density of the Brow-

nian particles, and J(r,t) their flux. Then the continuity equation, which expresses 

conservation of the number of Brownian particles, reads 

In the case of collective diffusion, the flux is driven by gradients in the density of 

Brownian particles. For small gradients, the flux can formally be written as 

where D(r,t) is the diffusion kernel, which vanishes for t < 0. To leading order in 

density gradients and for otherwise translationally invariant systems, the diffusion 

coefficient is a function of r and r' only through the difference r — r'. When the 

current flux at a point r is fully determined by the instantaneous density gradient at 

the same point, so that there is no coupling with gradients in adjacent points and 

with preceding states of the system, the diffusion kernel is proportional to a delta 

distribution in both position and time, that is, D{r — r') = D(r,t)6(r — r')S(t — t'), 

so that J(r,t) = — D(r, t)Vp(r, t). In general, however, there is a coupling between 

(1.1) 

(1.2) 
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gradients in density at different positions due to interactions between the Brownian 

particles. Also, the evolution at a certain instant of time may depend on states at 

earlier times. 

In the absence of such memory effects, we thus have, as noted above, 

D{r - r ' , t - t') = D(r - r', t)S(t - t') , (1.3) 

and the current density J is fully determined by the instantaneous density profile 

J(r , t) = - J dr'D(r - r',t)Vp{r', t) . (1.4) 

Substitution of Eq.(1.3) into Eq.(1.2) and Fourier transformation with respect to 

position yields 

-p(k,t) = -D(k,t)k?p(k,t). (1.5) 

The solution of Eq.(1.5) is 

p(k, t) = p(k, 0)exp[-JDc(k, t)kH] , (1.6) 

where the collective diffusion coefficient is defined as 

Dc(k,t) = - fdt'D(k,t'). (1.7) 
t Jo 

For isotropic systems, the collective diffusion coefficient is only a function of k = | k|. 

The zero-wavevector limit of the collective diffusion coefficient is called the gradient 

diffusion coefficient, Dy, which describes transport of Brownian particles in a density 

profile with a constant gradient. Hence 

lim Dc(k, t) = Dv . (1.8) 



The limit in Eq.(1.8) should be interpreted as: "take k so small that gradients in 

the density may be considered constant over distances equal to the range of the 

interaction between the Brownian particles." Also, the form of the density profile 

remains the same, since only very long-wavelength density waves are present during 

the entire relaxation of smooth gradients. Therefore, the time dependence of the 

diffusion coefficient is lost. We are thus led to the following conjecture [86]: 

The collective diffusion coefficient is independent of time for small wavevectors. 

Short-Time and Long-Time Collective Diffusion 

The initial decay of a purely sinusodial density profile is described by the collective 

diffusion coefficient in Eq.(1.7) for small times, which is referred to as the (wavevector-

dependent) short-time collective diffusion coefficient Ds
c{k) 

In practice, the short-time limit is reached for times of order TB = m/Co ~ Ins, where 

tb is the Brownian time in which the initial velocity of a particle of mass m relaxes to 

equilibrium, and Co = 6rrr]sa is the friction coefficient of an isolated spherical particle 

of radius a in a solvent of viscosity r)s. The late stage decay of the Fourier component 

of a density profile that was originally purely sinusodial with wavelength A = 2ir/fc, 

is described by the long-time collective diffusion coefficient Dl
c(k) 

Ds
c(k) = \imDc(k,t). (1.9) 

D[{k) = lim Dc(k,t) . (1.10) 
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1.1.2 Self-Diffusion 

The simplest quantity that characterizes the motion of a single Brownian particle is 

its mean-squared displacement W(t), defined as 

where r(t) is the position vector of the tracer particle at time t. For TG ~ t <C TP and 

for t TP
 1 [86], W(t) is linear in time and is given by 

where DS is the time-dependent self-diffusion coefficient, and RP = CI2/D0 ~ 1ms is 

the Peclet time characteristic for free particle diffusion over a distance equal to its 

own radius, with DQ = KGTJC,o the diffusion coefficient of a single particle at infinite 

dilution. To make connection with light scattering experiments, the above definition 

of the self-diffusion coefficient, as we shall see in the next section, is generalized to 

a time- and wavevector-dependent coefficient D s(k, t), in analogy with its collective 

counterpart. However, most of the time we are interested in the k —> 0 limit, because 

it identifies the macroscopic self-diffusion as well as W(t). 

Short-Time and Long-Time Self-Diffusion 

On average, the tracer particle resides at positions where the "free energy land-

scape" set up by host particles exhibits minima. Short-time diffusion of the tracer 

1 For particles interacting via long-range forces, r p , in these relations, has to be replaced by the 

interaction t ime TJ (see Eq.(1.15)). 

W{t) = (| r(t) — r(0)|2) (1.11) 

W(t) = 6Da(t)t , (1 .12) 
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particle thus relates to its displacements away from such minima. The diffusive mo-

tion away from the free energy minima is characterized by the short-time self-diffusion 

coefficient Ds
a(k) 

Ds
s{k) =limDs{k,t) . (1.13) 

The initial mean-square displacement is related to the zero-wavevector limit of Ds
s(k) 

(macroscopic self-diffusion coefficient) 

limW(t) = 6Ds
s(k = 0)t. (1.14) 

For later times, the tracer particle climbs over free energy barriers, which changes the 

time-dependence of the mean-squared displacement, and the self-diffusion coefficient 

may then become time-dependent. However, for long times t 77, when the tracer 

particle has crossed many free energy barriers, the mean-square displacement is again 

proportional to t. Here 

n = 1 /Dl
c(km)k2

m (1.15) 

is the interaction time and km is the wavevector at which the static structure factor 

attains its maximum. The right-hand side of Eq.(1.15) is approximately the time 

that it takes a density wave of wavelength Xm to fully relax. In the case of particles 

interacting via short-range forces, the long-time limit is reached when t TP. The 

corresponding diffusion coefficient in this case is the long-time diffusion coefficient 

D[{k) 

Dl
s{k) = lim Ds(k,t) , (1.16) 

t—»oo 
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and 

lim W(t) =6Dl
s(k = 0)t . (1.17) 

t—> oo 

1.1.3 Light Scattering and Smoluchowski Dynamics 

The main experimental tools to investigate the statics and dynamics of colloidal 

suspensions are static and dynamic light scattering. Hence, most theoretical work 

has been devoted to a quantitative understanding of light scattering data in terms 

of mesoscopic properties of the suspended particles [85]. A dynamic light scattering 

experiment on a monodisperse system measures the collective diffusion coefficient for 

a wavevector that is set by the scattering angle 

S(q, t) = S(q)exp[—Dc(q, t)qH] , (1.18) 

where 
i * 

s M = N E ^ t o - M * ) - r ; ( ° ) ] » ( L 1 9 ) 
i,j=1 

is the collective dynamic structure factor 2 measured in dynamic light scattering 

experiments, with S(q) the static structure factor, which can be measured in a static 

47T 
light scattering experiment, and q = — sin(#/2) is the momentum-transfer vector. 

A 

The angular brackets () denote the equilibrium ensemble average in the canonical 

ensemble. Similarly, the self-diffusion coefficient can be obtained by dynamic light 

scattering experiments at large q's, and is related to the self dynamic structure factor 
2Some authors call this the collective intermediate scattering function F(k,t), and reserve the 

term collective dynamic structure factor for its Fourier transform S(k, u). 
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3 by 

Ss(q,t) = exp[-Ds(q,t)q2t] . (1.20) 

Since dynamic light scattering experiments are restricted to correlation times t > 

10~6s, which are usually orders of magnitude larger than TB. one only observes a 

much slower equilibration of the Brownian particles' positions. This allows for a 

coarse-grained configuration-space description of the relaxation of spatial coordinates 

for times and distances much larger than TB and (DQTB)1^2 respectively (Smoluchowski 

dynamics). Within the framework of Smoluchowski dynamics, the time evolution of 

the system of N interacting particles is given by [87] 

^p(rN,t) = Clp(TN,t), (1.21) 

where p is the probability of finding the particles at rA' at time t and Cl is the 

Smoluchowski operator defined by 

N 

= E Vj.Dy (r^).[/3VjU(rN) + V,] . (1.22) 

Here Vj = d/dv(3 = l/k^T, and D,;j is the diffusion tensor which incorporates the 

hydrodynamic interactions. The time correlation of two arbitrary phase functions can 

be expressed in terms of this operator. Most importantly, collective and self dynamic 

structure factors are given by [88] 

S(k,t) = ^(5n(-k)e"Bt5n(k)) (1.23) 

3Like its collective counterpart, this is sometimes called the self intermediate scattering function 

Fs(k,t), and the term self dynamic structure factor is reserved for its Fourier transform Ss(k,u>). 
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Ss(k, t) = (<$ni(-k)e"Bt5m(k)) , (1.24) 

where 5n(k) is a plane-wave collective density fluctuation mode with wavevector k, 

i.e., 
N N 

5n(-k) = e"k'r - £ ' (L25) 
i=1 i = l 

and 5ni(k) is the one-particle density fluctuation mode, i.e., 

Jn(-k) = e~ikri
 - {e~ik r i ) . (1.26) 

QB = is the backward (adjoint) Smoluchowski operator describing the time evo-

lution of the system, i.e., 

N 

ClB = n t = ^ [ V i - / W ^ r ^ . D ^ . V , - . (1.27) 
«j=i 

1.1.4 Calculation of the Self-Diffusion Coefficient 

The experimentally determined behavior of the mean-squared displacement can be 

quantitatively described within the Smoluchowski dynamics, which allows one to re-

late the diffusion coefficient to the effective interparticle forces. This is achieved by 

using the conserved one-particle density as the slow variable in the Mori-Zwanzig pro-

jection operator formalism [89]. From this choice of slow variables follows the time 

evolution equation for the self dynamic structure factor [90] (also called the van Hove 

self-correlation function and denoted G(q,t)) 

§-tSs(q,t) = -q2Ds
sSs(q,t) + J duMs(q,t - u)Ss(q,u) , (1.28) 
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in which Ms(q, t) is the self memory function. The short-time self-diffusion coefficient 

is easily shown to be given by[91] 

Ds
s = (q.Bu(rN).q)eq. (1.29) 

The exact calculation of Ds
s is not feasible, due to the complicated many-body charac-

ter of hydrodynamic interactions. However, at the two-particle level, series expansions 

of D\\ in powers of (a / r ) are known, in principle, to arbitrary order. These expansions 

have the form [92] 

N 

D n ( ^ ) = A){1 + E ^ M W ; + ^ ( r i i X 1 - W i ) ] } , (1.30) 
3=2 

where the self-mobility functions up to order (a/r)8 are given by 

. . N 15 / a \ 4 11 / a \ 6 =- +2 y (i-3i» 
„ / \ 1 7 / a \ 6 

(1.32) 

The memory kernel Ms(q, t) can be written as an autocorrelation function of reduced 

one-particle forces. It contains the effect of interparticle forces on the self-diffusion, 

and is expected to decay faster than Ss(q,t). 

An exact calculation of the memory function is possible only in a few limiting 

cases. However, various approximations of Ms(q, t) at different levels of sophistication 

have been discussed in the literature [93, 94]. With Ms(q,t) in hand, the long-time 

wavenumber-dependent self-diffusion coefficient can be obtained from [88] 

D[ 
poo 

(k) = 1/1 dtk2Ss(k,t). (1.33) 
J o 
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1.1.5 Calculation of the Collective Diffusion Coefficient 

Information on the collective diffusion coefficient is contained in the dynamic light 

scattering data of S(q. t). It is possible to explain all the experimentally observed fea-

tures of S(q,t), in particular the generally non-exponential decay, the wavenumber-

dependent Dc, and to some extent the equality of short-time and long-time collective 

diffusion coefficients in the long-wavelength limit, by using the generalized Smolu-

chowski equation as the underlying transport equation in the Mori-Zwanzig projec-

tion operator formalism [95]. In the case of collective diffusion, it is appropriate to 

choose the Fourier components of the microscopic density fluctuations as the slow 

variables in the projection operator formalism. This choice leads to the following 

memory equation for the dynamic structure factor [90] 

|-S(q, t) = -q2Deff(q)S(q, t) + j f duM(q, t - , (1-34) 

which is valid for times t > tb- Here Deff(q) is given by the ratio 

Deff(q) = , (1.35) 

where H(q) is the hydrodynamic function 

' ( L 3 6 ) 

which is positive definite due to the positive definiteness of the super-matrix of many-

body diffusion tensors Dy. The general form of Dij(i ^ j) at the two-particle level 

is [86] 

D ij = D0{Ac(rij)rijrij + B c(ry)[ 1 - f y f y ] } , i ^ j , (1.37) 



23 

where the cross-mobility functions up to order (a/r)9 are given by 

7 

(1.38) 

3 

(1.39) 

The hydrodynamic function contains the configuration-averaged effect of hydro-

dynamic interactions on the short-time dynamics. The collective memory function 

M(q,t), which is expected to decay faster than S(q,t), is responsible for the devia-

tions from a single-exponential decay of S(q,t) for times t > 77. Knowing M(q,t), 

which is expressible as an autocorrelation function of the collective random force, the 

long-time wavenumber-dependent collective diffusion coefficient can be obtained from 

In suspensions of interacting particles, a single exponential decay of S(q,t) is 

observed only in two limiting cases: firstly, at short times, and secondly, in the 

hydrodynamic regime of very small wave numbers q and long times At short 

times, as has already been seen, one finds an exponential decay with the first cumulant 

given by T 1(q) — q2Deff(q). The effective diffusion coefficient reduces for q -C qrn 

to the macroscopic short-time collective diffusion coefficient, i.e., Ds
c — liin Deff(q). 

In systems with strong repulsive pair forces, Ds
c is found, at finite concentrations, to 

be substantially larger than the free particle diffusion coefficient D0. In the opposite 

limit of q qm, Deff becomes again independent of q, and reduces to Ds
s. For long 

[88] 

(1.40) 



24 

times, macroscopic isothermal gradient diffusion close to equilibrium can be described 

by the phenomenological diffusion equation 

jtpn(t) = -q2Dl
cP(l(t) , (1.41) 

where Pq(t) is the Fourier component of p(r. t). According to Onsager's regression 

hypothesis [96, 97], the density autocorrelation function is expected to obey, in the 

hydrodynamic limit, the same evolution equation as Pq(t). This implies at once 

lim lim = *M-q 2 D l
c t ) , (1.42) t^oo q •() b {q) 

and therefore, Dl
c is measurable also with dynamic light scattering performed in the 

limit q <C qm ~ (D0T/) -1/2 and t TI, with q2t held fixed at a value of 0(1). The 

limit q —> 0 also implies the thermodynamic limit, which needs to be taken first. 

1.2 Diffusion in Quasi-One Dimension 

The unique feature that distinguishes quasi-one-dimensional diffusion from diffusion 

in higher dimensions is the geometric confinement that forces the particles into a single 

file with a fixed spatial sequence. This confinement generates a self-diffusion mecha-

nism that has a different time-dependence of the mean-squared particle displacement 

in different time domains. For time intervals shorter than the time between particle 

collisions, in the presence of a randomizing background fluid, the probability density 

for particle displacement is 

Ps(x,t) = (47tD!*)-2 exp 
x(t)2 

"4 
(1.43) 
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However, excluding the mutual passage of particles severely restricts the prob-

ability for large single particle displacements, and therefore drastically reduces the 

diffusion rate at long times (anomalous diffusion) [98]. An analytic description of 

one-dimensional diffusion in system of hard rods with stochastic background forces, 

neglecting hydrodynamic interactions, was first reported by Harris [99]. Several other 

one-dimensional systems have been examined with a similar approach [100, 101]; the 

results obtained are in mutual agreement. For an infinite one-dimensional system, 

the long-time behavior of the probability density for displacement x is [102] 

x{tf 
PL(x,t) = (47rF£1/2)-5exp 

where F is the mobility coefficient defined by 

W / 2 (1.44) 

?HR _ /A> _ 1 - PER j D0 _ 2tc F = FnK = l\— = = . (1.45) 

V 7r P V 7T v 7T 

FHR denotes the mobility of the hard rods, a is the particle length (diameter), p is 

the one-dimensional number density, I is the mean spacing between the particles, and 

tc = P/2D o is the mean time between collisions. Eq.(1.44) and Eq.(1.45) provide a 

remarkably simple picture of the one-dimensional diffusion at long times: the self-

diffusion process, determined by the width of the probability density, is proportional 

to i1/2, and the proportionality constant is determined by the short-time individual 

particle dynamics 

{.x2(t)) = 2Ft1 '2 . (1.46) 

Recently, Kollmann [103] has reported an analysis of the long-time behavior of 
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one-dimensional diffusion that is valid for both atomic and colloid systems. For colloid 

systems, he finds the asymptotic probability density function displayed in Eq.(1.44) 

with a wavenumber-dependent mobility 

which is valid for q <C a - 1 . 

Kollmann's analysis predicts that the long-time behavior of quasi-one-dimensional 

diffusion is determined by the short-time collective dynamics of the system, which also 

incorporates the effect of hydrodynamic interactions. To understand this result, it 

should be realized that, owing to the absence of mutual particle passages in single-file 

diffusion, the motion of a density wave with q -C a~l is reflected by the trajectory 

of every individual particle. In contrast, during normal (not single-file) diffusion, the 

motion of an arbitrarily chosen particle is completely decoupled from the collective 

motion of the system, and Eq.(1.46) does not apply. 

1.2.1 Screened Hydrodynamic Interactions 

When a particle moves through a fluid, it creates a flow that affects the velocities 

of other particles in its vicinity. Thus the motion of otherwise noninteracting Brow-

nian particles can become correlated at times shorter than the collision time. For 

instance, during the diffusion of micro-size colloidal particles in a water-filled chan-

nel, it has been observed that several close-by particles exhibit a concerted motion 

by forming a dynamical "train" which lasts for a few seconds, signaling the existence 

(1.47) 



of hydrodynamic coupling [104]. 

Colloidal particles either in a finite container, near a single wall, or between two 

walls, have been studied. The hydrodynamic interactions in those geometries are 

always attractive (i.e., creating positive velocity correlations) and long-ranged: in an 

unbounded fluid, the interaction decays with interparticle distance r as 1/r [105]; the 

interaction between particles moving near and parallel to a single wall decays as 1/r3 

[106, 107]; and for particle moving between and parallel to two walls, the interaction 

decays as 1/r2 . More constrained geometries - perpendicular to the walls in a two-wall 

configuration and along a cylindrical channel - are essentially different, in that point 

disturbances should create flows with an exponential spatial decay [108, 109, 110]. 

To get a theoretical estimate of the hydrodynamic coupling, one needs in principle 

to calculate the Stokes flow due to the motion of two particles, subject to no-slip 

boundary conditions at the surface of the channel of radius R and particles of radius a. 

This is technically very difficult, and one thus has to resort to simplifying assumptions. 

It is thus assumed that the particle size is much smaller than both the channel width, 

a <siC R, and the interparticle distance, a r . The latter requirement, though not 

strictly fulfilled in practice, allows one to treat the effect of one particle on the flow 

near the other one and near the walls, as if it were exerting a point force on the 

fluid. This is sometimes referred to as Stokeslet approximation. Therefore, to leading 

order in a / R or a / r , the flow induced by the motion of one particle in the vicinity of 

another is that of a point force. In addition, if we assume that the particle motion 
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is restricted to the central axis of the channel (which is reasonable in the case of 

colloidal suspensions), then the fundamental solution of the Stokes flow at the center 

of the channel is [104] 

In this equation, £ = z / R , un = an + i[3n are respectively the complex roots of the 

equation, U[JQ(U) + J\(U)] = 2J0(u)JI(u), and an + ibn = 2/ JL(uN){IR[2JI(UN)Y0(UN)— 

un(Jo(un)yo(UN) + ^i(«n)^i((Mi)))] — UN} where J„ and YV are the Bessel functions 

of the first and second kind of order u, respectively. For ( « 1. the particles are 

insensitive to the walls, and the coupling approaches the algebraic ~ 1/4 dependence, 

like in an unbounded fluid. Yet, for £ 1, the confined geometry becomes manifest; 

the sum is dominated by its first term, and the interaction decays exponentially with 

distance (the coefficients of this term are oi —0.037, bi ~ 13.8, ~ 4.47, and 

In general, hydrodynamic interactions are long-ranged and are not pairwise ad-

ditive. Screening of the hydrodynamic interaction between particles in a quasi-one-

dimensional channel, on a length scale comparable with the channel diameter, implies 

that the concentration dependence of is largely determined by pair hydrodynamic 

interactions [111]. 

oo 
(1.48) 

fli ~ 1.47) [104], 
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1.2.2 Concentration Dependence of Self-Diffusion 

Recently, Rice and coworkers [112] have calculated the influence of the hydrodynamic 

coupling between a colloid particle and the walls of a quasi-one-dimensional channel, 

and between pairs of colloid particles and the walls of the quasi-one-dimensional 

channel and each other, on the concentration dependence of the short-time single 

particle diffusion coefficient. Their approach is the following: 

(i) the hydrodynamic interaction is analyzed for the case of a fluid that can be 

described by the linear Navier-Stokes equations for incompressible stationary flow; 

(ii) an approximate solution for the concentration dependence of the single particle 

diffusion coefficient is obtained using the method of reflections, and an average is 

performed over all possible configurations of the particles. 

According to their study, the two-particle diffusion tensor is given by 

M Q = l + X w + Xp(Z) (1.49) 
MD 

1 1 f°° . J r 3/5 3/33 1 f°° n . . , . 
= 1 - - / Ada - - / Basm(aZ)da] x 

~ Jo ZS 7r Jo 

X 2^" ^ 7T J0
 Csm(a&da\ 

— T 1 = 34~T~- R A c o s + x p ( 0 ' ( L 5 ° ) M) ^ 7T Jo 

with (3 = a/R. The function Xw represents the effect of the wall, while the function 

Xp(r) represents the effects of interactions between particles with separation r. The 
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other terms in Eq.(1.49) and Eq.(1.50) are 

30al?(a) _ 2 A W . 
A , + * + y ; ; ° w « (1.51) / 0(a) 2/2(a) a /? (a ) + 2/0(a) / i (a) - a/0

2(a) v ' 

3(3alf(a) f33a2 hja) 

7 ? - - ^ i 3 / 3 i 2 / ° ( a ) 2 n ^ V 2 + P) I0(a) 21$ (a) a / 2 ( a ) + 2/o(a)/i(a) — aio(a) j 

5/33a2/f (a) _ 2f35a3 h ( a ) (37a4 

"2 3 ' / 0 ( a ) 4/ 2(a) Ql2(a) + 2 / 0 ( a ) I i ( a ) - a I ^ ( a ) ' 

(1.53) 

where /^(a) and Kv{a) are the modified Bessel functions of the first and second kind of 

order /A respectively. It should be kept in mind that Eqs.(1.49) and (1.50) are far-field 

approximations. As the concentration is increased and the distance between particles 

becomes comparable to their size, the pair hydrodynamic interaction is affected by 

the presence of other particles. Then, a concentration-dependent correction factor, 

which involves the pair correlation function of the particles, is needed to account for 

the observed oscillations in P u ( r ) and £)12(r) in concentrated dispersions. 

When only pair hydrodynamic interactions are considered 4, Eq.(1.49) leads to 

the following result [112] for the short-time diffusion coefficient 

^ = l + Xu, + l T d£g(Oxp(0 , (1-54) 
M) P Jo 

with 77 = pa = Na/L the packing fraction of N particles of diameter a = 2a in 
4It has been shown [111] that three-body contributions are small, even at high concentrations. 



a channel of length L. and g(r) is the pair distribution function. Since the colloid 

particles in this model system are constrained to move along the axis of the capillary, 

the assembly of colloid particles is equivalent to a one-dimensional fluid of hard rods 

for which the exact g(r) is [113] 

= i f 9 ( , - *) ( j i - ) ' - ^ ^ exp , ,1.55) 

where Q(.r) is the unit step function and x = rja. Evaluation of the integral in 

Eq.(1.54) using the hard-rod pair distribution function for sterically stabilized colloids 

yields Dg(rj)/DQ as a function of r/ for given (3. It is worth noting that Ds
s(0) is smaller 

than what is predicted by the Stokes-Einstein relation for a particle in an infinite 

three-dimensional liquid, due to the effects of the nearby channel walls. When a 

particle is close to a wall, it is customary to represent the effect of that wall on Ds
s{0) 

by the multiplicative factor A - 1 , i.e., Ds
s{0) = D0/A, which in terms of the former 

result yields A = (1 + Xw)'1 [114, 37]. 



Chapter 2 

Diffusion of Colloids in Confined 

Colloid-Polymer Mixtures 

A detailed description is given of the model used to study the diffusion of colloids in 

a colloid-polymer mixture confined in a channel. First, the binary mixture is mapped 

into an effective one-component system of colloids in one dimension and then methods 

from the theory of diffusion together with Monte Carlo simulations are employed to 

study the diffusion dynamics of colloids in the mixture. 

2.1 Mapping to Effective One-Component System 

When non-adsorbing polymers are added to a suspension of hard sphere-like colloidal 

particles, an effective, generally attractive interaction is induced between the colloidal 

particles. The origin of this interaction is the so-called depletion effect: the exclusion 

32 
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of polymer from the depletion zone between nearby colloids gives rise to an unbalanced 

osmotic pressure. Alternatively, one can view the depletion induced attraction as 

arising from an increase in the entropy of the polymers: when two colloids approach 

each other closely, their depletion zones start to overlap and offer the polymer more 

free volume to explore, thereby yielding a gain in entropy. Asakura and Oosawa 

[115], using an idealized picture, showed that the range of the depletion interaction 

is determined by the diameter of the polymer coils, and its strength is proportional 

to the activity of the polymer reservoir. 

In order to develop the statistical mechanics of such mixtures, it is necessary 

to specify a suitable model Hamiltonian. This was first done by Vrij [116], who 

considered a zeroth-order model in which the colloid-colloid interaction is hard sphere-

like, with colloids of diameter ac , and with polymers taken as ideal interpenetrating 

coils, as Asakura and Oosawa had assumed. However, polymers are excluded by a 

center-of-mass distance (ac+ap)/2 from the colloids. The solvent is treated as an inert 

continuum. It is found [117, 118, 119] that for size ratios crp/crc = q < 2 / \ /3 — 1 = 

0.1547, this binary mixture in two and three dimensions can be mapped exactly onto 

an effective one-component Hamiltonian for the colloids which contains only zero, one 

and two-body (pairwise) contributions. 

We turn next to the case of one dimension. Omitting trivial kinetic energy terms, 

the Hamiltonian is given by the H = HCC + HCP + HPP, where HRC denotes the colloid-

colloid Hamiltonian, HCP the colloid-polymer Hamiltonian, and HPP the polymer-
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polymer Hamiltonian, 

NC 

= (2-1) 
i<j 

NC NP 

H<V = vcpiXt - xj) 
i=1 3=1 
NP 

Hpp = ^ ^ 4*pp ) ~ 0 j 
i<j 

where Xi denotes the center of colloid i, xt that of polymer i, Xij = \Xt — Xj |, and 

xLJ = | Xi — Xj |. The pair potentials are given by 

<t>cc(Xij) — 

oo for Xij < b 
( 2 . 2 ) 

0 otherwise 

oo for \Xi — Xj\ < (a + b)/2 
t)cp{Xi - X j ) = 

0 otherwise 

<pppî Xjj) 0 , 

where a and b denote the length of the polymer and colloid rods, respectively. 

As always, the quantity which needs to be evaluated is the partition function. 

For systems with purely hard interactions, this is equal to the 'volume' available on 

the line. However, in the case of the Asakura-Oosawa model, this available volume 

depends upon the way in which the two different species are ordered in each config-

uration. For the general case of Nc colloidal rods and Np ideal polymer rods, the 

calculation clearly presents a difficult combinatorial problem. As Evans et al. [118] 

have shown, this difficulty can be bypassed by integrating out the polymer degrees of 
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freedom, leading to an effective Hamiltonian for the colloids. Unlike the case of three 

and two dimensions, truncation of the series of cluster integrals after the two-body 

interaction terms is exact for q = a/b < 1. Nevertheless, it is not entirely clear how a 

physical interpretation can be given to the one-dimensional pair 'depletion' potential; 

there is indeed no longer an intuitive picture of the polymer being excluded from the 

region between the colloids. The effective pair potential must now be regarded as one 

of combinatorial origin, which simply reflects the fact that more weight is given to 

particular configurations of the colloids as a result of the number of ways in which 

the polymer can be positioned around them. The same interpretation appears to be 

called for in the study by Widom and Lekkerkerker [120]. 

In order to integrate out the polymer degrees of freedom, consider a homogeneous 

mixture in the semi-grand canonical (Nc, L, zp, T) ensemble, and write the correspond-

ing thermodynamic potential F in one-component form 

where zp = A~ x exp (n P / k B T) is the activity of the polymer reservoir and A„ is the 

thermal de Broglie wavelength of species v, with v = c, p. The grand potential of the 

ideal polymer coils in the external field of a fixed configuration of Nc colloids with 

coordinates {Xj}, with i = 1,2,.... Nc can be expanded in terms of the colloid-polymer 

Mayer /-function /y- = f{Xi,xj) = e x p [ - ^ ( X I - XJ)/kBT] - 1, 

J d X ^ . - J dXNc exp [~(HCC + Q)/kBT\, (2.3) 

(2.4) 



The expansion can be written as a sum of contributions fln , which are classified 

according to the number n = 0,1. 2,..., Nc of colloids which interact simultaneously 

with the 'sea' of ideal polymers, i.e., 

Q = f20 + fii + fl2 + . . . 

NC 

= -zpLkBT + zpNc(a + b)kBT + J ^ p Q j ) + • • • (2.5) 
i<j 

The zero and one-body terms are independent of the colloidal coordinates and have 

the following interpretations: Q0 is the grand potential of ideal polymer rods in a 

length L at activity zp. since zp = Pp/k/iT = pp, where Pp is the pressure and p'p the 

number density of the ideal polymer in the reservoir, and Q,\/Nc is the grand potential 

required to insert a single colloid in the sea of ideal polymer. The third term is the 

sum of pair potentials, with the effective pair potential 4>{X) given by a simple linear 

function 

{0 \X\ >(a + b) 

; (2.6) 

-zpkBT(a + b-\X\) b<\X\<(a + b) 

4>{X) is the one-dimensional Asakura-Oosawa depletion potential; (a + b — |X|) is 

simply the difference in accessible length for the polymers when the colloids are sepa-

rated by a distance |X| and when their separation is infinite. The higher-order terms 

in Eq.(2.5) correspond to three-body, four-body, etc., potentials. In general, the ex-

pansion contains Nc terms. However, it is easy to show that provided that q < 1, 

three- and higher-body potentials are identically zero. This follows from the fact that 

a smaller polymer cannot simultaneously overlap with three non-overlapping colloids. 
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Thus, for q < 1 the effective one-component Hamiltonian for the colloids reduces 

to the simple form [121] 

HEFF = HCC + FI 

= + a + , (2.7) 
i<j 

where the effective pair potential 

0 e / / ( X ) = 0 c c p O + 0 P O (2.8) 

consists of a hard core with an attractive linear portion whose (finite) range is equal 

to a, the length of a polymer rod, and whose value at contact is zpkBTa. In this 

exact mapping, the complex binary mixture problem has been reduced to that of a 

one-component fluid in one dimension for which the particles interact via the nearest-

neighbor pair potential 0 e j j - The free energy and equation of state of such a fluid 

can be determined exactly and analytically by utilizing standard Laplace transform 

techniques [113]. 

At this point, we have to find a relation between the packing fraction of polymer 

in the system and the packing fraction of polymer in the reservoir. Introducing 

"f(zp, rjc) = (Np)Zp/Lpr
p as the ratio of the density of polymer in the mixture to that 

in the reservoir, the packing fraction of polymer in the system can be written as 

VP = IVl- Using the following identity for the thermodynamic potential of a binary 

mixture 

F(NC, L, zp) = F(NC, L, zp = 0) - kBTL [ ' dz'p j(z'p, Vc) , (2.9) 
Jo 
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the free volume fraction 7 is obtained from 

7<%,*) = - ( ^ (WO) 

In these equations, r/p and rfv are the packing fractions of polymer in the system and 

in the reservoir, respectively, and rjc is the colloid packing fraction. 

2.2 Self-Diffusion and Mobility of Colloids 

Consider a mixture of colloids and polymers in a solvent confined in a cylindrical 

channel (Fig.2.1). In the Asakura-Oosawa model, colloid-colloid and colloid-polymer 

interactions are just hard-core repulsions, whereas polymers do not interact with each 

other at all. Furthermore, colloids cannot pass each other if the channel is narrow 

enough, so that their motion will effectively be restricted to translations along the 

central axis of the channel. On the other hand, depending on its size, the polymer 

can be regarded in limiting cases as a one-dimensional rod of length 2Rg or as a 

three-dimensional sphere of radius Rg. 

In the first case, as mentioned above, the binary mixture can be reduced (at least 

from the thermodynamics point of view) to an effective one-component system with 

a modified Hamiltonian, and this reduction is exact for q < 1. In the second case, the 

situation is different, in the sense that we have to use a modified depletion potential 

for colloid-polymer mixtures interacting in the bulk, due to the presence of the walls. 

Neglecting three- and higher-body potentials, the effective Hamiltonian for a mixture 
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i V Y O I S c r * V - n 4 / 

Figure 2.1: Schematic representation of a confined colloid-polymer mixture in the 
single-file regime of the colloids. 

Figure 2.2: Schematic representation of the depletion zone of polymers in a channel 
(overlapping portion of the two dotted circles). The blue circles are colloids and the 
red-filled region is that part of the depletion zone taken up by the walls. 



40 

NC 

in the bulk may be written as 

H e f f = Ho + 4>eff(Rij) , 
i<j 

with effective pair potential 

4>eff(Rij) = 4>cc{Rij) + M R i j ) , 

and 

H0 = Q0 + fy = -zpkBT[ 1 - J7C(1 + qf]V , 

(2.11) 

(2.12) 

(2.13) 

where {Ri} denotes the position coordinates of colloids and 0AO is the pair potential 

of Asakura-Oosawa [122], which describes an attractive potential well close to the 

surface of the colloid, and is given by 

<pAo(Rij) = 

77 ^ " 6 P 
1 + q zpkBT x 

x 3 Rij + R^ 
2(1 + q)ac 2(1 + qfa^ 

0 

ac < R^ < ac + av 

Rij > + crp. 

(2.14) 

Although the geometry in three dimensions is less forgiving than that in one 

dimension, and the mapping to an effective one-component is only exact for q < 

0.1547, this result is valid for our quasi one-dimensional model up to q = 1 because, 

as noted above, a smaller polymer cannot simultaneously overlap with three non-

overlapping colloids. Meanwhile, the sum in Eq.(2.11) reduces to a sum only over 

immediate neighboring colloids. 



If we take into account the fact that the Asakura-Oosawa potential is actually 

proportional to the difference in free volume of the polymers between the case where 

two colloids are separated by a finite distance = | R ( — R j | and the case where they 

are separated by an infinite distance, then it becomes clear that we should subtract 

the volume of that part of the depletion zone which has been taken by the walls from 

the total overlap volume. In practice this volume is negligible, unless the walls are 

very close to the surface of the colloids or the size ratio is not far from unity (see Fig. 

2.2). For a rectangular channel of width w, which is often used in actual diffusion 

experiments, and for w2 > (1 + q)2cr2 — r2, which is usually satisfied, this volume is 

found to be 

A y rVT^/2 ( fy/(i-r*)/4-v* \ 
— = 4JS dyU dx[—r + y/1 - + y*)] J , (2.15) 

where r is the distance between two adjacent colloids and <5 is the distance between 

the walls and the center line of the channel, both reduced by a c + ap . 

We could successfully map the binary mixture to an effective one-component sys-

tem as far as direct interactions are concerned. However, when it comes to hydro-

dynamic interactions, reduction of the mixture by integrating out polymer degrees 

of freedom is a very difficult task, if possible at all, especially since hydrodynamic 

interactions are not pairwise-additive in general. But we may think of polymers in so-

lution as an effective medium with a modified viscosity which depends on the polymer 

concentration. This means that we only consider the impact of the polymer on the 

hydrodynamic motion of colloids through a change of the diffusivity of a free colloid 
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from D0 to Do(Co/Ce//)- where ("e// is the effective friction coefficient corresponding 

to the modified viscosity. This approximation enables us to obtain an explicit ex-

pression for the concentration dependence (rjc and r]p) of the self-diffusion coefficient 

5 and mobility factor of the colloids in a colloid-polymer mixture. 

In order to find the self-diffusion and mobility from equilibrium ensemble averages, 

we need to know the two-point equilibrium distribution functions g(r) analytically 

without approximation. The model described above is in essence a one-dimensional 

model with nearest-neighbor interactions. For these types of systems, there is a 

systematic analytic method to calculate g(r) exactly. Unfortunately, for models in 

the continuum such as the present one, the result can only be given as an infinite series 

which involves increasingly complicated inverse Laplace transforms. In particular, for 

finite-range isotropic pair potentials which have a hard core of diameter (length) a, 

g(r) is given by [123] 

where c = 0 is the Heaviside step function, and J is the Laplace transform 

of the Boltzmann factor for the pair potential 0(r), i.e., 

5In the case of mixtures, the term tracer-diffusion is sometimes used instead of self-diffusion. 

g(r = \R-R'\) 

(2 .16) 

(2.17) 
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The pressure p in the system at a fixed bulk density is given by 

Analytic closed-form evaluation of the sum in Eq.(2.16), even for the linear po-

tential of Eq.(2.6) is feasible for short separations [124], but is otherwise tedious and 

must practically be performed numerically. An alternate way to get accurate results 

for g(r) is through Monte Carlo simulations, which then can be used to compute Ds
s 

from Eq.(1.54). 

As mentioned earlier, for non-passing colloids the long-time diffusion coefficient is 

zero because of the anomalous diffusion stemming from the single-file motion of par-

ticles. In this case, the proportionality factor relating the mean-squared displacement 

of the tagged particle to the square root of time is called the mobility factor, which 

can be related to the short-time collective dynamics of the system. It is seen from 

Eq.(1.35) that finding Ds
c requires obtaining the static structure factor S(k), which 

is directly related to the Fourier transform of g(r) 

S(k) = ±(5n(k)5n(-k)) = 1 + pJ ^r9(r)dr , (2.19) 

where p = Nc/V is the number density of colloids. In the case of a one-dimensional 

geometry, the above equation leads to 

/•oo 
S(k) = 1 + 2pRe / eikxg(x)dx , (2.20) 

Jo 

with p = Nc/L. 
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The hydrodynamic function defined in Eq.(1.36) can be further simplified and 

made more explicit. The "diagonal" terms (i = j) in the double sum yield precisely 

the expression for the short-time self-diffusion coefficient. At the pair level, we can use 

the two-body microscopic diffusion tensor given by Eq.(1.50). Each of the remaining 

"off-diagonal" terms (i ^ j ) contributes equally, so that the sum may be replaced 

by an ensemble average of just one pair of particles (for example i = 1 and j = 2), 

multiplied by twice the number of pairs, i.e., N(N — 1) « N2. We thus get 

2.3 Results and Discussion 

The short-time self-diffusion coefficient of colloids in a colloid-polymer mixture has 

been computed and compared with the short-time self-diffusion coefficient of colloids 

in a pure colloidal dispersion. The diagonal elements of the two-body microscopic 

diffusion tensor are given by a modified version of Eq.(1.49), which incorporates 

concentration corrections [112]. The short-time self-diffusion coefficient is obtained 

by taking the equilibrium ensemble average of these elements. An essential ingredient 

of this calculation is the colloidal pair distribution function, which is obtained from 

the Monte Carlo simulations. The computer code was first validated by reproducing 

the correct distribution function g(r) in three-dimensions [118]. Fig.2.3 shows g(r) 

for two selected values of r\c. Comparing with the pair distribution function of pure 

(2.21) 
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rloc 

r/oc 

Figure 2.3: Radial distribution function of colloids in a confined colloid-polymer 
mixture at rjp = 0.2 and q = ap/ac = 0.4; (a) r]c = 0.2. (b) rjc = 0.6. 



colloids 6 reveals that the depletion interaction leads to a higher value of g(ac), as 

expected. 

The reduction of the self-diffusion coefficient of colloids upon addition of polymers 

to the solution is depicted in Fig.2.4. It is customary to write the diffusion coefficient 

in terms of a virial expansion in density or volume fraction. The second virial coef-

ficient is negative in our case, in contrast to the case of diffusion of colloids in bulk 

solutions. Next, the short-time collective diffusion coefficient and long-time mobility 

of colloids in a colloid-polymer mixture are determined. The off-diagonal elements of 

the microscopic diffusion tensor appear in the hydrodynamic function H(q), and are 

given by Eq.(1.50). As is already seen, the calculation of D*(q) and F(q) requires 

the knowledge of the colloid-colloid pair distribution function as well as of the static 

structure factor of colloids in the presence of polymers. The structure factor of col-

loids in a colloid-polymer mixture attains a higher value at zero wavenumber (long 

wavelength), and its first peak shifts towards shorter wavelengths (see Fig.2.5). 

The variation of D12 with separation in a concentrated solution is illustrated in 

Fig.2.6. The red curve contains the correction required at high concentrations, while 

the green curve neglects this effect. However, eventually, there is only a slight differ-

ence between the acquired Ds
c. Fig.2.7 exhibits an interesting feature of Ds

c, short-

time gradient diffusion coefficient, namely, its growth with concentration, which dis-

tinguishes it from the short-time self-diffusion. This behavior is the result of the rapid 

6 The contact value of g{r) is (1 — r?c) -1 for a one-dimensional hard-rod fluid. 
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Figure 2.4: Short-time self-diffusion coefficient of colloids in solution with and with-
out the presence of polymer depletion. f3 = a/R = 0.216 and q = 0.4. 
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kac 

Figure 2.5: Static structure factor of colloids with and without the presence of 
polymer (q = 0.4). 
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relaxation of inhomogeneities at high colloid concentrations. It also shows that the 

addition of polymer reduces the gradient diffusion of colloids, in accord with intuition. 

In contrast to the gradient diffusion coefficient, the long-time mobility factor is en-

hanced in systems with short-range attractive interactions in one dimension compared 

to systems where hard-core repulsive forces are the only source of direct interactions 

(Fig.2.8). This is in agreement with the picture given in [125], in which the drag 

force on a colloid inside the deletion layer is merely exerted by the solvent, whereas 

outside the depletion layer, the drag force is exerted by the polymer solution. Thus, 

the outcome is a friction coefficient less than what is obtained in a system with no 

depletion effect. 

Our predictions are in qualitative agreement with the experimental results that 

have been performed previously in our group [126]. The reduction of the self-diffusion 

coefficient given by the slope of the curves in Fig.2.9 at short times, is evident. Unfor-

tunately, quantitative agreement cannot be verified, since the theory developed here 

gives the normalized diffusion coefficients and mobility of colloids in the mixture. 

The normalization factor is the diffusion coefficient or mobility of colloids at infinite 

dilution (rjc = 0) and at a given polymer packing fraction (r/p), and thus is inversely 

proportional to the friction exerted on a single colloid slowly dragged in a polymer so-

lution. Moreover, additional experimental data, in particular for the long-time limit, 

would be useful. 



50 

r/R 

Figure 2.6: Comparison of the expressions for D12; the red curve represents the one 
which incorporates the concentration dependence, while the green curve represents 
the one with no such correction (infinite dilution). In both cases (3 = 0.216. 
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0.0 0.1 0.2 0.3 0.4 0.5 

Figure 2.7: Short-time gradient diffusion coefficient of colloids in solution with and 
without polymer. The case where hydrodynamic interactions (HI) are absent is also 
plotted for reference. 0 = a/R = 0.216 and q = 0.4. 
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Figure 2.8: Long-time mobility factor of colloids in solutions with and without 
polymer. /3 = a/R = 0.216 and q = 0.4. 
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Time (s) 

Figure 2.9: Mean-squared displacement of colloids in a channel for various polymer 
concentrations (adapted from [126]). 



Chapter 3 

Diffusion of a Polymer in Confined 

Colloid-Polymer Mixtures 

In this chapter, we describe the dynamics of a single polymer chain in a colloidal 

suspension confined in a narrow channel. The colloids are modeled as hard obstacles 

and the polymer is modeled as a Gaussian or self-avoiding chain depending on the 

quality of the solvent. 

3.1 General Formalism 

The method described in the previous chapter does not take into account the internal 

degrees of freedom and the structure of the polymer. More importantly, it cannot 

provide any information on the dynamics of the polymers. 

The theoretical foundation of the current understanding of transport properties 
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of macromolecules in bulk dilute solutions may be traced back to the pioneering 

works of Kirkwood [127] and Zimm [128], who elucidated the importance of the 

hydrodynamic interactions in the dynamic properties of macromolecules in solution. 

Subsequent developments by Fixman [129, 130] provided a general framework for 

polymer dynamics that accounted for excluded-volume effects and chain stiffness. As 

a result, calculated transport properties of macromolecules can now be quantitatively 

compared with measurements. 

Due to the success of the Kirkwood formalism for computing transport coefficients 

in bulk solutions, this approach will be employed here. Such an approach yields 

approximate expressions for diffusion coefficients, including numerical prefactors. We 

will focus on the case of flexible linear polymers in a cylindrical capillary, first in the 

absence of colloids, and then in the presence of colloids. 

Consider a single polymer consisting of N monomeric units suspended in a quies-

cent incompressible Newtonian solvent of viscosity r\a. We will view the monomers as 

spherical Brownian particles of radius b and friction constant ( = 6irrjsb, and the link 

between neighboring monomers as permanent but flexible bonds maintained by some 

internal potential between them. In addition, there may also be a long-range interac-

tion between non-bonded monomers, e.g., the excluded volume interaction. We will 

lump all internal interactions into one potential, Uint. In general, if an external force 

F j is applied to each monomer j and no external torques are applied, the induced 
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velocity of, say, monomer i, in the overdamped limit, has the following form 

N 

= • (3-1) 
j= i 

which defines the matrix of mobility tensors H^ 7. 

One can obtain an expression for H^ by solving the creeping flow equations of low-

Reynolds number hydrodynamics subject to appropriate boundary conditions. For 

our present purposes, we assume the confining capillary of radius R to be oriented in 

the ^-direction. Hence, we need only the zz component of H, which in the Stokeslet 

approximation (point force) is given by [131] 

TJ (r r f \ _ f+°° V^ V V l —kk \ Jn(anmp/ R)Jn{Unmp' / R) in(4>-<t>') A (z-z') 

(3.2) 

where k2 = kj + (anm/R)2, k is a unit vector in the k direction, k\\ is the z component 

of k, Jn(x) is the Bessel function of the first kind of order n and anrn is its m t h zero, 

and where we use cylindrical coordinates, r = (p,</),z). Notice that Hzz is not a 

function of r — r' in confined geometries, due to the broken translational symmetry. 

Note also that Hzz diverges at r = r'. Hence a short-range cutoff is implicit in 

Eq.(3.2). 

To determine the matrix of mobility tensors H^ for the confined Brownian par-

ticles, we note that the no-slip (stick) boundary conditions between the particles 

and the solvent imply that particles move with the local solvent velocity, that is, 

HijZZ = Hzz{xi, Tj). Having obtained the mobility matrix for a collection of Brownian 
7 The relation between H.tJ and D y (defined in Section 1.1.3) is simply: D ( ) = kBTH.ZJ. 
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particles in a cylinder, we can now calculate the Kirkwood estimate for the diffu-

sion constant D\\ for the center-of-mass motion along the axis of symmetry of the 

cylindrical capillary. 

Several computational schemes are possible. We will use a Langevin equation for 

the motion of the particles. Consider a weak, constant force field Fz in the z-direction 

applied to the center of mass of the collection of Brownian particles (i.e., a force per 

particle Fz/N). This applied field will induce the center of mass to move with some 

steady-state velocity (vcm). The ratio of this induced velocity to the applied force is 

the total mobility of the macromolecule, filot. The diffusion constant D\\ is related to 

Ptot via the fluctuation-dissipation theorem, D\\ = ksT/^ot, i.e., 

where Zj is the 2 coordinate of monomer j , Uint is the internal contribution to the 

particle potential, and f j ( t ) is a random Brownian force in the z-direction originat-

ing from collisions between solvent molecules and monomer j . The distribution of 

f j ( t ) is assumed to be Gaussian, and characterized by its moments: ( f j ( t ) ) = 0 and 

( f j ( t ) f j ( t ' ) ) = 2H^\zkBTS{t - t'). Summing Eq.(3.4) over i and dividing by N gives 

an equation for the center-of-mass velocity in the z-direction 

D\{ = kBT(vcm)/F . (3.3) 

The motion of a single monomer in the z-direction obeys 

(3.4) 

N N 

(3.5) 
i=1 j=1 
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Note that in the double sum over all particles, the contributions from the interparticle 

potential cancel as a result of the action-reaction principle. Thermal averaging of 

Eq.(3.5) and using Eq.(3.3) then yields the diffusion constant. 

Performing this average, however, is not feasible in general due to the compli-

cated structure of the mobility matrix Hy. To simplify the analysis, a preaveraging 

approximation is traditionally employed in which the thermal average of the terms in 

Eq.(3.3) is broken into the products of the equilibrium averages of the forces and of 

the HijZZ. This amounts to replacing Hl]ZZ by 

in Eq.(3.5) prior to thermal averaging, where is the equilibrium distribution 

function of the macromolecule, and D({Rn}) indicates that a functional integration 

over all particle configurations is to be carried out. The resulting expression for D\\ 

is given by 

The main difficulty encountered in using the formalism described above to com-

pute D\\ for a particular polymer system lies in the computation of the equilibrium 

averages. Such averages require knowledge of the two-point distribution function 

\ I>eq( r i , r j ) for a polymer in a confined geometry. Unfortunately, even the two-point 

distribution function for an unconfined self-avoiding polymer is unknown. In such 

cases, one must resort to scaling theories or to various approximate self-consistent 

calculations. And even when ^ e q ( r i , r J ) is known, computation of these averages for 

(3.6) 

(3.7) 
i=1 1 
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arbitrary capillary sizes can be quite tedious. This analysis may, however, be sub-

stantially simplified by considering the limit of very narrow capillaries, i.e., of radius 

much smaller than the mean size of an unconfined polymer. This happens to be also 

the case of most technological interest. 

3.2 Polymer in a G Solvent -

The Gaussian Model 

First, let us rewrite the expression for D\\ given by Eq.(3.7) in the more compact form 

_ kBT f+oc ^ ^ ^ (H(i,j;n,m,k\\))e(l 

D{1 ~ N2 L 2n ^ i ^ ^ ^ ^ W ^ C o n ™ ) ' ^ 

where P(k) z z = 1 — kzkz and where the kernel H(i,j ;n,m,fc||))eq is given by 

H(i,j ; n, m, k\\))eq = {Jn{anmpi/R)Jn(anmpj/R) exp[m(4 - <£,•)] exp[ik(zi - ^)]) e q • 

(3.9) 

For the Gaussian chain model of polymer chains in a G solvent, the exact two-point 

distribution function may be obtained for arbitrary capillary size [40]. Furthermore, 

the two-point distribution function may be factored into the product of a longitudinal 

and a transverse distribution function ^'eq(ri, rj) = (z% — Zj ; |i — j\)ip_I(pi, Pj ; i, j), 

so that the equilibrium average of the kernel given in Eq.(3.9) may also be factored 

into a product of a longitudinal average and a transverse average [131]: (H)eq = 
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{H\\{i,j ; fe||))eq{Hj.(i, j ;n ,m)) e q , with 

{H\\{i,j-k^))e(l = { e i k ^ - ^ ) e < i (3.10) 

(H±{i,j ; n, m))eq = (Jn^nmPi/R) Jn^nmPj/R)ein^-^) . (3.11) 

eq (3.10) 

The longitudinal equilibrium average obtains trivially. The distribution function 

in this case is given by the ordinary one-dimensional Gaussian distribution function 

To find the transverse equilibrium average, we must solve for a two-dimensional 

Gaussian polymer of N monomer units confined to a disk of radius R. The basic ap-

proach is to calculate tp±(Pi, Pj ; i,j), the propagator (Green's function) G0(p, p'; N), 

which gives the statistical weight of a chain starting at p and ending at p', and then 

get i>±{Pi, pj ; i,j) from Go{p, p'; N). The propagator is given by the solution to the 

equation 

subject to the boundary condition Go(p, p'; N) = 0 on p = |p| = R. This calculation 

is straightforward and similar in spirit to many existing calculations of the distribution 

of a Gaussian polymer between parallel plates [132, 133, 134], It is customary to 

rewrite Eq.(3.13) as 

(3.12) 

(3.13) 

dNG = {-b2V2/6 + Uext(p)/kBT)G (3.14) 
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with G(p, p ' ;0) = S(p. p'), because of its remarkable similarity to the Schrodinger 

equation for a non-relativistic particle. 

In some cases we can solve this equation directly. In many other cases, it is more 

convenient to use an expansion in eigenfunctions. We introduce a linear Hermitian 

operator T corresponding to the right-hand side of Eq.(3.14), 

r = - ^ V 2 + . (3.15) 
D KQJ. 

The spectrum of this operator is then obtained from 

Tuk(p) = ekuk{p) , (3.16) 

where uk(p) are its eigenfunctions with eigenvalues ek. starting from a minimal value 

eo, the ground state. The uk s satisfy the usual orthogonality and closure relations. 

The explicit form of G is an expansion in these eigenfunctions, 

G(p, p' ;N) = Y , K(p)uk(p') e x p ( - N e k ) . (3.17) 
k 

The transverse part of the two-point equilibrium distribution function is given by 

_ f dp0 J dpN G(p0, pj; i) G(pj, pj ; \i - j\) G(pjtpN ; |N - j|) 
/ dp0 f dpN G(p0, pN ; N) 

(PI , PJ; \I-JI) = 

(3.18) 

The resulting expressions for arbitrary R are complicated and not very useful. 

However, in the limit of narrow channels (R < R\\), we may invoke the ground-

state dominance approximation [49], and simplify these expressions considerably. In 
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the ground-state dominance regime, it is permissible to keep only the first term in 

this eigenfunction expansion since the ratio of the consecutive terms in the expan-

sion is (in our case) of the order of exp(—const. (i?||/i?)2), which becomes negligibly 

small when R/R\\ <C 1. Thus one finds G0(p,p'\N) = ip0(p)ipQ(p') exp(—'eQN) and 

ip±(pi,pj]i,j) = <P&Pi)<Po(pj), where ip0(p) is the solution of 8 

b2 1 d f d<p0\ 
6 = < 3 ' 1 9 ) 

subject to <po(R) = 0 and the normalization condition 2ir J^ dpp \(po(p)\2 = 1. Hence, 

for very narrow capillaries, we find [131] 

{ n ± { i , j ; n , m ) ) e q = 
fR 

2ir / dppJ0(a0mp/R)a(p) 
Jo 

2 

Sno , (3.20) 

where a(p) = |(po(p)|2 = ^o( aoiP /R)/^R 2<^i( aoi) is the normalized monomer number 

density. 

Combining these results using Eq.(3.20) for a narrow channel, we obtain 

D\\,e = 
2 a2

01kBT 2 [ (M«r/R)) pdp r - i ^ L , (3.2D 
Jo V J J-oo ( k 2 + ( a o i / j R ) 2 ) n2N7]R8 

where the subscript 0 means the theta condition. Carrying out the integrations in 

Eq.(3.21) with the aid of the Gaussian-chain structure factor gives an estimate of the 

diffusion constant of the center of mass of a single polymer at 0 conditions and, in 

the absence of colloids, 

8 The radial symmetry of cp is a consequence of a general theorem concerning the solution of 

second-order elliptic partial differential equations [135]. 
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We should point out that the application of the Gaussian model in confined geometries 

is subject to a number of important caveats. Self-avoidance cannot be entirely ignored 

for polymers in a 9 solvent in sufficiently narrow capillaries. Furthermore, polymer 

chains at 0 conditions and in narrow capillaries are expected to form knots, which 

have been neglected in the present treatment. 

3.3 Polymer in a Good Solvent -

Swollen Chains 

In situations where excluded volume effects are relevant, the calculation of D\\ using 

the expressions given in Eqs. (3.8) and (3.9) becomes difficult. As in the case of a self-

avoiding polymer in free space, the exact two-point distribution function ^ r
e q(r i , r j ) 

of a confined self-avoiding polymer is unknown. Moreover, the factoring of the distri-

bution function into a product of longitudinal and transverse two-point functions is 

in general not possible. The best one may do is to obtain the scaling properties of the 

averages in Eq.(3.9) by, for instance, renormalization group calculations. Theoretical 

predictions for Dy based on scaling arguments give D\\ ~ N~1(R/b)2^ [136], These 

scaling theories are in good qualitative agreement with experimental studies [137], 

but are unable to predict the numerical prefactors. 

Alternatively, estimates of these averages that include numerical prefactors may 

be achieved using self-consistent approximation schemes. Variational approaches or 
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self-consistent mean-field theories have been successfully used in certain problems 

under unconfined conditions [138, 139]. But such approaches are in general quite 

involved, especially in confined geometries. However, in strongly confined systems, 

they can be sufficiently simplified to facilitate calculations. For very narrow cap-

illaries, breaking of the averages into longitudinal and transverse components is a 

reasonable approximation. Thus we may estimate with v/'ii and a(p) appropriate 

for excluded-volume chains. 

The calculational method for obtaining a(p) is analogous to that employed in 

the previous case. In a self-consistent mean-field treatment, the propagator satisfies 

Eq.(3.13), augmented by a mean-field potential proportional to the local monomer 

concentration, U(r) = vksTc(v) ~ i/kBT\a(p), 

where uef/ = uA, in which A is the linear density of the chain assumed to be constant 

over the length of the chain. We also require G(p, p'; N) = 0 on p = R, and a{p) to 

be determined self-consistently from G(p, p'; N) by 

For narrow channels, we can reduce Eqs.(3.23) and (3.24) to a single ordinary 

differential equation, and write an equation similar to Eq.(3.25) with an additional 

(3.23) 

a(p) = I dpp f dpN f0
N dn G(p0, p;N- n)G(p, pN ; n) 

I dp0JdpN G{p0,pN]N) 
(3.24) 
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term 

+ e0(f - ueff\ip\2ip = 0 , (3.25) 

subject to the same boundary and normalization conditions. This nonlinear ordi-

nary differential equation may be solved numerically or, for sufficiently small v e f f , 

perturbatively. Alternatively, it may be recast as a variational integral 

which is then minimized for a suitable class of trial functions, <fitr{p', with respect 

to the variational parameters With a judicious choice of trial functions, this 

approach often yields good approximate solutions [49]. Given a solution for <p(p), 

we then find a(p) from a(p) = |(/?(/o)|2. In general a(p) is a monotonically decreasing 

function of p, and is expected to have a broader distribution compared to the Gaussian 

case due to the excluded-volume interactions. A commonly proposed form of the trial 

function, based on the above and some other arguments, is ptr = A tanh[(/? — p)/£]. 

Therefore, we must solve S I / 5 A = 0 and 51/St; = 0. Eliminating A between the two 

equations gives £ = 0 . 2 2 7 b ( R / b ) 3 ^ 4 for athermal solvents [y = 63). A is then obtained 

separately from the normalization condition for iptr and is given by [27T JQ
K[tanh((i?— 

The structure factor of a self-avoiding chain cannot be computed exactly. However, 

for sufficiently narrow capillaries, the chain is in a strongly extended state, leading 

to a uniform linear density of the monomers except perhaps near the ends of the 

chain. Assuming A(z) = (A(z)) gives an approximate closed-form expression for the 

p)/0}2pdp]~1/2. 
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structure factor [140]. With g(k\\) in hand, the diffusion constant along the axis of 

the capillary can be obtained from 

= a2
01kBT 

LL,G 2TT2 NRJR4 [ f ^ ^ r f f M j r 
.Jo Ji{aQ1) \ £ J J J ^ 

gG(k{)dk\\ 

(fcf + (aoi/i?)2) 
(3.27) 

where the subscript G means good solvent condition. 

3.4 Single Polymer with Many Colloids 

Addition of colloids to the system of polymer+solvent in a quasi-one-dimensional 

channel (see Fig.3.1) makes the problem of polymer dynamics more challenging, and 

renders the solution from first principles a tremendously difficult task. 

The idea we use here is based on a physical picture of a diffusing polymer in 

which the dominant mode of transport is cage diffusion [25]: the polymer tries to 

escape from the dynamic cage created by its two neighboring colloids. Our starting 

point is Eq.(3.7) for the diffusion of the polymer's center of mass. It corresponds 

to the diffusion coefficient obtained from the initial decay rate in intensity of the 

scattered light in scattering experiments, and therefore gives the short-time diffusion 

coefficient. For short times, the polymer is still trapped inside the cage and merely 

rattles between the colloids. During this time, the colloids, which are much larger 

than the monomers, have hardly moved. Thus we will neglect their influence on the 

hydrodynamic motion of monomers. However, the two neighboring colloids act as 
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barriers against the motion of the chain. As a first approximation, the associated 

barrier potential for the two colloids, located a distance L apart, may be described 

by a combination of delta functions (see Fig.3.2) 

0U(z) = R, b)[5(z - L/2) + 5(z + L/2)\ , (3.28) 

where we assume that the channel is in the z-direction, and where S is the strength of 

the barrier, which depends on the size of colloids and monomers as well as the diameter 

of the cylinder. Roughly speaking, the strength of this entropic barrier for a monomer 

is inversely proportional to the area accessible to it. Therefore S a b2/(R2 — a2). On 

the other hand, S has the dimensions of length and has to vanish as a —» 0. These 

arguments suggest the following ansatz for S 

a{b/R)2 

S ~ 1 - (a/R)2 ' (3"29) 

To proceed further, knowledge of the structure factors is called for. When the 

chain is subject to an external potential U(z), the average monomer concentration 

at position z' will change from A to A exp [—3U(z')}, and thus the net difference is 

A [exp {—[3U{z')) — 1], However, since the monomers are interconnected, this will also 

affect the local concentration at position z by an amount given by the correlation of 

the monomers located at those two points, i.e., by g(z — z'). The final expression for 

the pair correlation function in the case of a weak external potential reads [49] 

g(z) - g°(z) = - J g°(z - z')\(3U{z')dz' , (3.30) 
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Figure 3.1: Schematic representation of a polymer chain confined in a narrow channel 
and trapped between two colloids (the neighboring colloids are in yellow). 



69 

— 

-VI 0 Li 

Figure 3.2: Schematic representation of the barrier potential used in Eq.(3.28). 
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where g°(z) is the pair correlation function in the absence of the external potential. 

Needed to compute the diffusion constant is the Fourier transform of g(z). Performing 

this Fourier transform, using the convolution property in Eq.(3.30) with the above 

barrier potential, gives for the structure factor 

9(h) = 0°(fc||)[l - acos(fc||L/2)] , (3.31) 

with a = XS (0 < a < 1). This relation gives the diffusion coefficient for a particular 

configuration of the two neighboring colloids separated by a distance L, which then 

has to be averaged over all possible distances using the nearest-neighbor distribution 

function of colloids, H{L). Fortunately, H(L) is exactly known for pure colloids 

modeled as hard spheres (hard rods) in one dimension [141], and the presence of a 

single polymer in a dilute solution will not change this distribution significantly: 

2 a H ( L ) = k exp[—fc(L/2a - 1)] , (3.32) 

where k = 2rjc/(1 — r/c), with r/c the packing fraction of colloids in the channel. 

Fig.3.3 and Fig.3.4 show the normalized diffusion coefficient of a polymer in theta 

and good solvents respectively, and for several values of the parameter a. As expected, 

the diffusion coefficient decreases with increasing colloids packing fraction and with 

increasing the extent of confinement. For fixed values of k and a the polymer has 

a higher diffusion coefficient in the theta solvent than in the good solvent. This 

has to do with the constraint of self-avoidance in the good solvent condition. The 

confinement suppresses the number of possible conformations. The suppression has 

a greater impact on a swollen chain compared to an ideal one. 
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K 

Figure 3.3: Normalized self-diffusion of an ideal polymer chain in a colloidal sus-
pension as a function of colloids packing fraction for various extents of confinement 
measured by a . 
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K 

Figure 3.4: Normalized self-diffusion of a swollen polymer chain in a colloidal sus-
pension as a function of colloids packing fraction for various extents of confinement 
measured by a . 
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Figure 3.5: Scaling exponent u in D ~ N " fo r ideal and swollen chains as a function 
of colloids packing fraction for various extents of confinement measured by a . 



The dependence of the diffusion coefficient on polymerization index (number of 

monomers) is shown in Fig.3.5. The diffusion coefficient scales with N in a power-law 

fashion (for large N) with a scaling exponent u which depends on a. At a. = 0, the 

exponents are essentially those of a single chain trapped in a narrow channel in the 

absence of colloids. The exponent increases with a and reaches a maximum value at 

a = 1 where the chain is under strong confinement. Thus, according to our model 

the upper bound for u is about 1 for theta and about 2 for good solvent conditions. 

To check for consistency, we need to obtain the conditions that keep a less than 

unity. Since A = N/R\\ ~ 1 (6/i?)—2/3 and S ~ a(b/R)2, we find that a scales like 

(b/R)1 / /3 , assuming a/R = 0( 1). This means that the value of a will be less than 

unity as long as the prefactor that appears in Eq.(3.29) (to make it an equality) is 

itself of the order of unity. Nevertheless, this argument beaks down when R gets 

extremely close to a. One way to resolve this issue is to realize that the diffusion 

constant scales with the size of the channel, suggesting that by enforcing the scaling 

condition, we can obtain the dependencies of a and S on R for both the ideal (O 

solvent) and the real chains (good solvent). 

We explicate the steps in the case an ideal polymer, since we essentially have to 

follow similar steps in the case of a real chain. First, let us define / and f° as: 

(3.33) 

(3.34) 

where i?|| = (2/\/§)N1l2b is twice the radius of gyration of an ideal polymer The 
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/{-dependence of the diffusion constant pertaining to the addition of colloids comes 

from the ratio f / f ° . Therefore, if D\\ is to scale with R according to a power-

law, then the second derivative of the logarithm of this ratio with respect to the 

logarithm of R, after taking the appropriate statistical average, has to vanish, i.e., 

d2 ln(///°)/(9(ln R)2 = 0, in which / is the average of / over all possible distances 

L between two neighboring colloids. Note that the measured exponent in actual 

experiments is usually expressed as a function of the concentration of the colloidal 

suspension, and not of the average distance between the colloids, since the former is 

known in advance. Imposing this condition yields for / 

/ 
/*oo 

= / f(R, L)H(L, K)dL = CR0 , (3.35) 
J 2a 

where UJ and C are arbitrary constants. On the other hand, at the 6 condition, / 

can be written as 

(•OO 
fe(R, = a(R)pe(L) = /g - a e / 9%(x) c o s ( x L / R ^ d x , (3.36) 

J o 

where the subscript O stands for the theta solvent condition. Setting these two 

expressions equal to each other, subject to the boundary condition a{a) = 1, gives 

a© = (R/a)w» + & (1 - ( R / a , (3.37) 
Po 

where p© = J™p(L)H(L,K,)dL. has to be determined from the fact that at a 

certain radius R*, a monomer hardly feels the effect of the colloid as a one-dimensional 

obstacle along the direction of motion. This is when the transition to three dimensions 
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occurs at which a(R*) = 0, and the polymer retrieves its original conformation in 

free space. In terms of this critical value of the channel radius, we will have 

with the exponent WQ = 1 U(/q / ( /q — pe))/ln(R*/a). A similar expression can be 

developed for a real (swollen) chain. The minor differences compared to the expression 

obtained above is due to the dependence of on R. This means that now pc = 

P G ( L , R ) , which leads to: 

with the exponent LOg = l n ( / ^ / ( / ^ — pG{l)))/\n(R*/a) in which 

PG(R) = J^PG(L, R)H(L, K)dL, and the subscript G stands for the good solvent 

condition. 

For both ideal and real chains, the exponent u> increases with the concentration 

of colloids, and decreases with the critical radius (R*) of the channel (Fig.3.6 and 

Fig.3.7). Although this radius is unknown 9, an upper bound for UJ is achieved by 

inserting R* = 2a into the above equations. However, there are some evidence [126] 

that the crossover to two dimensions does not occur for R < 4a. The exponent ui 

saturates at high values of K for both ideal and real chains showing a much stronger 

dependence on the concentration of colloids in the case of real chains. At ft = 0 we 

recover the values known for a single chain in a narrow channel in the absence of 

colloids, i.e., U = 0 for theta and UJ « 0.6 for good solvent conditions. 
9It is of the order of magnitude of the Flory radius. 

(3.38) 

(3.39) 
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Figure 3.6: Exponent us in D ~ Rw for an ideal chain in a colloidal suspension as a 
function of the concentration of colloids and for different values of the critical radius 
R* (in units of 2a). 
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Figure 3.7: Exponent tu in D ~ R" for a real chain in a colloidal suspension as a 
function of the concentration of colloids and for different values of the critical radius 
R* (in units of 2a). 



Next, we consider another ansatz for the barrier potential that takes the widths 

of the barrier into account, in order to investigate the sensitivity of the results to the 

shape of the potential. We choose a repulsive square-wall potential, whose width is 

of the order of the colloid diameter, and which can be represented by (see Fig.3.8) 

(3U(z) = ^S[e(z-(L/2-a))-e(z-(L/2+a))] + ̂ S[e(z^L/2+a)-0(z+(L/2-a^ , 

(3.40) 

where O(z) is the Heaviside step function and S is the strength of the barrier (di-

mensionless in this case). Following the same procedure as above, we obtain 

9(k||) = 0°(fc||)[l - 2afcjf1 sin(fc||a) cos(fc||L/2)] , (3.41) 

with a = AS. Although this result for the structure factor is somewhat different from 

the earlier one, it will give essentially the same value for D\\ by simply rescaling the 

strength of the barrier potential. The reason for this lies in the fact that most of 

the contribution in the last integral appearing in Eq.(3.21) or Eq.(3.27) comes from 

values of k\\R\\ < 1, which means k:\iR, <C 1 . This allows us to safely neglect the 

higher-order terms in the Taylor expansion of sin(fca) about zero. Thus the above 

expression for g(k\\) will eventually reduce to that of Eq.(3.31) if S = 2aS. 



-U2 L/2 

Figure 3.8: Schematic representation of the barrier potential used in Eq.(3.40). 



Chapter 4 

Phase Transitions of 

Colloid-Polymer Mixtures 

in Two Dimensions 

This chapter first describes the methods and results of our experimental studies of 

the phase transitions of mixtures of spherical colloids and polymers trapped at the 

air-water interface. A set of surface pressure-area isotherms (two-dimensional analog 

of p — V isotherms) are obtained as a result of these measurements using a Langmuir-

Blodgett trough. Next, we present and examine a possible way to explain the ex-

perimental observations based on the extension of McMillan's mean-field theory to 

two-dimensional systems. 
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4.1 Materials and Experimental Methods 

High-molecular weight polymer, poly(L-lactic acid) (PLA), M = 700,000, with poly-

dispersity of 1.8, was purchased from Polysciences Inc., in form of small pellets, and 

was used as received. The radius of gyration of PLA corresponding to the above 

molecular weight is about 77nm. For the colloids, we used two types of spherical 

particles: paramagnetic Fe2C>3 beads coated with short chains of poly(acrylic acid) 

790 nm in diameter, and Cd-Se nanoparticles 4-5 nm in diameter. 

To prepare the samples, colloidal particles and polymer are both dissolved in 

chloroform at room temperature. In the case of PLA, even after shaking and stir-

ring with a vortex creator, it takes tens of minutes for the pellets to get completely 

dissolved. The Langmuir-Blodgett trough is cleaned thoroughly with isopropyl al-

cohol and acetone at the beginning of each experiment, and rinsed under deionized 

water. Impurities, dust particles, and other contaminants that might be present on 

the surface of the subphase (water in this case) or edges of the barriers, must also 

be removed. This is simply done by slowly scanning the water surface and sucking 

any possible dirt with a pipet tip connected to the suction section of a small pump. 

With the help of a mini syringe, samples are then spread onto the water surface of 

a standard Langmuir-Blodgett trough (900 cm2, KSV instruments Ltd.), filled with 

ultrapure (resistivity = 18.2 Mfi.cm) water obtained by passing tap water through a 

Millipore water purification system. Typically, the suitable amount of sample being 

used which gives a uniform spreading depends on the materials, and is in fact a matter 



of trial and error. In our case, this is between 100 and 200 pil. 

We then wait between 15 to 20 minutes before starting to perform measurements, 

to ensure that the solvent has completely evaporated. This can be verified by mon-

itoring the surface tension of the sample as the evaporation proceeds. The effective 

area of the trough is changed by moving the two barriers placed symmetrically at 

both ends of the trough. A Schematic of the system is shown in Fig.4.1. 

As the sample goes through successive compression-expansion cycles, a sensitive 

Wilhelmy plate (0.004 mN/m resolution), dipped about halfway into the water sub-

phase, records the excess surface tension (with respect to the subphase) caused by 

the sample molecules floating at the surface. In order to get reliable data, the plate 

has to be positioned in a direction perpendicular to the barriers. The trough can be 

connected to a heat exchanger (external bath) coupled to an on/off simple system, 

in order to control the temperature of the subphase, by circulating water or glycol 

through the base of the trough. Temperatures between 0°C and 60°C are achievable 

in this way. 

The rate at which the barriers sweep the air-water interface is set to 10 mm/min, 

and is chosen such that the molecules have enough time to respond to the changes 

in area, so that the measured surface tension (pressure) represents the equilibrium 

value. 

Both colloidal particles used in the experiments are sterically stabilized, partially 

hydrophobic, and neutral. PLA, on the other hand, is hydrophobic along its backbone, 



Figure 4.1 Langmuir-Blodgett trough, KSV 2000 series. 



with strong hydrophilicity due to the carboxyl groups. This gives PLA an amphiphilic 

character which allows it to adopt purely two-dimensional conformations at the air-

water interface. In addition, when sufficiently compressed, it spontaneously forms IO3 

10 helices at the air-water interface. Studies [142, 143] show that the helical structure 

withstands compression up to the solid-like state, and reduction of surface area merely 

changes the type of the helix from IO3 to 3i- This property distinguishes PLA from 

most other polymers, which can only remain flat at the air-water interface over a 

narrow range of concentrations. Further compression (increase in concentration) will 

lead to either buckling and formation of multilayers, or flipping up of monomer units. 

First, we investigate the pressure(-/r)-area(A) isotherms for the one-component 

systems of pure colloids and pure polymers. Both the magnetic colloids and the 

nanoparticles exhibit no transition up to the onset of monolayer collapse and the 

emergence of multilayers (see Fig.4.2). The isotherms of PLA, however, exhibit a 

plateau (Fig.4.3), in accord with the experiments of Esker, et al. [144], This plateau 

is due to a structural phase transition from the liquid-expanded (LE) to the liquid-

condensed (LC) states. Brewster-angle microscopy reveals [144] that at the transition 

surface pressure, islands of PLA molecules, ordered into a lamellar pattern, are con-

densed out of the original disordered liquid state. It is important to realize that these 

patterns are different from the lamellar structures arising from phase separation of 

block-copolymers, in the sense that there are no folded chains in a PLA lamella. 

10Crystallographic nomenclature; in a IO3 helix, 3 turns are required to make a helix consisting 

of 10 residues. 
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Figure 4.2: 7r — A isotherm for pure colloidal particles at 14.2°C; (a) Magnetic 
colloids; (b) Cd-Se nanoparticles. 
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Figure 4.3: n — A isotherm for pure PLA molecules at 14.2°C. 



In this regard, the patterns are reminiscent of a smectic phase of rigid rodlike polymers 

or of small liquid-crystalline molecules [145]. 

The nearly vanishing slope of the curve for the entire transition region (see Fig.4.3) 

supports a first-order transition. This is in agreement with the fact that the isotropic-

smectic phase transition is first-order, and the plateau cannot be accounted for by an 

isotropic-nematic transition, which is generally continuous in two dimensions 11. 

4.2 PLA-Particle Mixtures 

We next investigate the influence on the LE-LC transition of adding colloidal particles 

and the possible emergence of new coexisting phases similar to what has been observed 

in bulk solutions during liquid-liquid phase separation [147]. We look at two limiting 

cases: 

1. Colloid limit: magnetic colloid + PLA (q « 0.2) 

2. Protein limit: nanoparticle + PLA (q « 32) 

where q is the polymer-to-colloid size ratio. 

To perform the experiments, we prepare mixtures of colloids (magnetic particles 

and nanoparticles) and polymers (PLA) dissolved in chloroform at the desired con-

centrations, and of equal volumes. Therefore, after mixing the two components, the 

final concentrations of each of the component will be in fact half of what has been 
11 The isotropic-nematic transition can be first -order in two dimensions if the anisotropic part of 

the intermolecular interactions is sufficiently sharp and narrow; see for example [146]. 



initially prepared. Finding the suitable concentrations is again a matter of experi-

ence, and some trial and error. If the solution is too dilute, no phase transition will 

occur, whereas if it is too concentrated, it will from a solid-like elastic film before 

compression starts. 

Mixtures of Magnetic Colloids and PLA 

As can be seen in Fig.4.4, addition of magnetic colloids to PLA reduces the width 

of the LE-LC transition. For a fixed value of the PLA concentration, there is a 

critical colloid density at which the LE-LC phase transition disappears. Raising the 

temperature above a critical value has a similar effect [144]; in this respect, the density 

of colloids plays the role of temperature. Furthermore, upon addition of colloidal 

particles, the surface pressure at which the LE-LC transition occurs does not change 

significantly; however the area corresponding to the onset of the transition shifts to 

lower values. 

These observations can be explained qualitatively by observing that the presence 

of colloids will increase the average distance between the PLA molecules, and in 

order for the PLA molecules to feel each other (either through direct interactions, 

or through entropic effects such as packing), the area available to the mixture has 

to decrease. On the other hand, colloidal particles make it more difficult for large 

clusters of PLA molecules to form ordered lamellar structures, and therefore if the 

density of the colloids is high enough, no such cluster will appear in the system. 



90 

Surface pressure versus Trough area 
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Figure 4.4: it — A isotherm for mixtures of PLA and magnetic colloids at three 
different concentrations. The top values in brackets are the concentrations of each 
component in units of mg/ml. 
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Mixtures of Nanoparticles and PLA 

Nanoparticles, even at relatively high concentrations, do not affect the LE-LC 

transition of PLA (Fig.4.5). Indeed, the lamellar spacing is much larger than the 

size of individual nanoparticles, which allows nanoparticles to disperse between the 

PLA molecules without altering the lamellar structure. Fig.4.6 shows that when the 

concentration of PLA is low, one essentially gets isotherms very similar to those of 

pure nanoparticles. A plateau in the isotherm will emerge at n = lOmN/mm upon 

increasing the concentration of PLA, which is the signature of a LE-LC transition in 

PLA (see Fig.4.7). 

Another possibility for the formation of a macroscopic phase upon addition of 

nanoparticles is when the mixture separates into colloid-rich and polymer-rich phases. 

However, such liquid-liquid demixing was not observed in our experiments 12. It is 

plausible that the polymer-to-colloid size ratio of q m 32 which lies in the protein 

limit is too large, as intuition suggests that depletion effects in that regime vanish. 

Obtaining isotherms for PLA-nanoparticle mixtures with larger nanoparticles and 

low-molecular weight PLA, leading to a smaller q value (still in the protein limit) is 

currently undertaken in our group. Note that capillary interactions, which originate 

from the distortion of the meniscus due to the presence of colloids, are negligible 

for submicron particles [71]. Also, there is no electrostatic repulsion between the 

nanoparticles since they are neutral. 

12 Similar results were achieved in computer simulations performed previously in our group (see 

[102]). 
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Figure 4.5: IT — A isotherm for mixtures of PLA and nanoparticles at high nanopar-
ticle concentration. The top values in brackets are the concentrations of each com-
ponent in units of mg/ml. 
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Figure 4.6: n — A isotherm for mixtures of PLA and nanoparticles at low PLA 
concentration. The top values in brackets are the concentrations of each component 
in units of mg/ml. 
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Figure 4.7: it — A isotherm for mixtures of PLA and nanoparticles at fixed nanopar-
ticle concentration. The top values in brackets are the concentrations of each com-
ponent in units of mg/ml. 
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4.3 McMillan Theory of Smectic-A Phase 

in Two Dimensions 

Straley [148] has shown that true orientational long-range order cannot exist for 

two-dimensional systems at the thermodynamic limit (infinite system) if the particle 

interactions are separable into positional and orientational parts. In many systems, 

including that of hard rods, the positional and orientational parts of the potential 

are not separable. This allows for the possibility of having orientational long-range 

order at the thermodynamic limit. However, in the case of hard spherocylinders with 

variable aspect ratios (from hard disks to hard needles), computer simulations [149] 

have demonstrated the nematic-isotropic transition is continuous and occurs via a 

Kosterlitz-Thouless mechanism involving unbinding disclinations. The orientational 

correlation functions decay algebraically rather than exponentially with distance, im-

plying the absence of true long-range orientational order. 

Furthermore, the existence of true translational order, and therefore a true crys-

talline solid, is ruled out for power-law potentials of the Lennard-Jones type [150]. 

In this respect, the nematic and smectic phases in two dimensions can only possess 

quasi-long-range order. 

In 1971, McMillan used a simple molecular model to extend the Maier-Saupe 

model of the transition from the nematic phase to the smectic-A phase in the bulk 

(three dimensions). Here, we study the consequences of applying his approach in two 
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dimensions. 

In this case, the appropriate order parameter for the nematic phase is S = 

(cos(29)), where 9 is the angle between the long axis of the molecule and a pre-

ferred axis or director (taken as the z direction for convenience) in two-dimensional 

space. Similarly to the form proposed by McMillan [151], the anisotropic part of the 

pair potential, assuming an angle-independent uniform distribution of intermolcular 

distances, can be written as: 

V12(r12, cos912) = -(Vo/NTrrDe-^rf cos(2012) , (4.1) 

where 7*12 is the distance between the molecules' centers-of- mass, r0 is of the order 

of the rigid core length of the molecule, and 9I2 is the angle between the long axes of 

the two molecules. 

To induce a smectic phase, we suppose that there is a density wave with a wavevec-

tor q0 parallel to the director. This implies that we must expand e~(2/Vo'2 in terms of 

its Fourier components. Neglecting the terms higher than first-order, we obtain 

e-«a/rg = ^ Q ) [1 + Ccos^oz)\ , (4.2) 

where £ = 2 exp[—(Trro/d)2]er{(d/r0), with q0 = 2K/d, and erf is the error function. 

( is a measure of the strength of the short-range interactions. Large values of £ 

correspond to a strong attraction between the smectic layers. 

The one-particle mean-field potential that a molecule feels is 

Vx(z, 9) = -V{,[5 + <TC cos(2irz/d)] cos(29) , (4.3) 
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where a is the smectic-phase order parameter controlling the amplitude and phase of 

the density wave along the z direction. An alternative way to express Vi is through 

the pair interaction potential Eq.(4.1) using the one-particle distribution function 

/ i (z , 9) = exp [-Vi(z, d)/kBT). To this end, we have 

,r( a ^ _ N f d2r2V12(rl2, cos 9l2)f(z2, cos 92) ^ l U l i f l J — 7r— — — . (4.4J J d2v2f [z2, cos 02) 

In order for Eq.(4.3) and Eq.(4.4) to be self-consistent, we must require that 

5 = (cos(20))f , (4.5) 

and 

cr = (cos(2viz/d) cos(2B))f , (4.6) 

where the average of a function O of z and 9 is defined by 

J0
ddzf0

2vd9O(z,9)f(z,9) 

Jo dz JQ^ dOf(z, 9) 

In order to solve this set of equations, we first find the isotropic-nematic (N-I) 

transition temperature Tni, which serves as the scale of temperature. At the N-I 

transition, a becomes identically equal to zero, and therefore S is given by 

s = iTexp [V0Scos(29)/kBT}cos(29)d6 
/0

2T exp [V0S cos(29)/kBT] d9 

If we let a = VoS/k B T and x = cos(20), then S can be expressed as S = d\nl(a)/da, 

with 

/

I o ax 

'==dx . (4.9) 
.1 vl - x2 
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Solving for S numerically shows that the maximum temperature leading to a 

nonzero S, i.e., the N-I transition temperature Tni, is Vo/2kB , at which S ~ 0.2. 

Next, the set of self-consistent equations is solved by fixing a value for tr/T, where 

T = T / T n i is the reduced temperature. Then, choosing a trial value of S/T, Eq.(4.6) 

is used to determine T. However, this choice does not satisfy Eq.(4.5). Thus, we 

continue the trial procedure until we find a value of S/T which satisfies Eq.(4.5). At 

that point, we have the values of both order parameters at the same temperature. 

This procedure is repeated to establish S and a as functions of temperature. 

When the transition is first-order, i.e., when there is a discontinuity in the order 

parameter, we must compute the free energies of the two phases to determine which 

one is more stable. Similarly to the three-dimensional version of the theory, the 

Helmholtz free energy is given by 

F = \NVq(S2 + Co-2) - NkBT In Z , (4.10) 

where Z is the one-particle partition function 

rd 

Z = dT1 dz d9f(z,d). (4.11) 
Jo Jo 

This model exhibits three distinct phases: 

(1) isotopic liquid (S = 0, a = 0) 

(2) nematic (S ± 0, a = 0) 

(3) smectic-A (S ± 0,<r ^ 0). 

The behavior of the order parameters as functions of temperature depends on the 

value of For ( < 1.54 and T < 0.88, the smectic-A order parameter decreases 



continuously to zero, and thus there is a second-order smectic-A - nematic (S-N) 

transition, followed by a first-order nematic-isotropic (N-I) transition at higher tem-

peratures. For 1.54 < £ < 2, a drops discontinuously to zero, i.e., the S-N transition is 

first-order, and since the nematic and smectic-A order parameters are coupled, there 

is also an abrupt change in S to a nonzero value. S will eventually vanish at T = 1. 

Therefore, ( = 1.54 and TSN — 0.88 correspond to a tricritical point, at which the 

line of first-order transitions goes over to a line of second-order transitions. Finally, 

at £ = 2, which is the maximum value the interaction parameter can adopt, both 

order parameters go to zero at T = 1. The variations of the order parameters with 

temperature at two values of £ are shown in Fig.4.8 and Fig.4.9. 
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T/TM 

Figure 4.8: Order parameters S and a as functions of reduced temperature for 
C = 0.5. 
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m m 

Figure 4.9: Order parameters S and a as functions of reduced temperature for 
C = 1 - 8 . 
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The major qualitative difference between the two-dimensional and three-dimensional 

versions of McMillan's theory is that in two dimensions, except in the limiting case 

of £ = 2, the smectic-A phase does not melt directly into the isotropic phase. From a 

quantitative point of view, the nematic order parameter has a lower value at the N-I 

transition compared to that of the three- dimensional case where Sni = 0.43. Also, 

the tricritical point occurs at a higher value of the interaction parameter. These 

results can be regarded as a consequence of the fact that there are fewer immediate 

neighbors that a given molecule can interact with when we reduce the dimensionality, 

leading to a weaker mean-field potential (if everything else is left unchanged). 

The effect of the concentration of the molecules is contained in VQ. V$ increases 

with increasing concentration, and this shifts the transition temperatures to higher 

values. It is worth mentioning that the original formulation of Maier and Saupe 

displays a p2 dependence of Vo, whereas Cotter [152] demonstrated subsequently that 

thermodynamic consistency requires Vo to be proportional to p, regardless of the 

nature of the intermolecular pair potential. 

As opposed to its original version in three dimensions, McMillan's model in two 

dimensions does not allow for a direct transition from the isotropic phase to the 

smectic-A phase, i.e., the former always goes through a nematic phase. Therefore, 

unless the nematic phase is missed in the experiments, this model is not capable of 

explaining the experimental results. 



Chapter 5 

Future Studies 

Many interesting and challenging questions regarding diffusion and phase transitions 

in confined colloid-polymer mixture are raised by this research. Here, we describe 

some of them and propose possible directions for finding answers. 

Microfluidics and Non-equilibrium Phase Transitions 

In studying the diffusion of confined colloid-polymer mixtures, our focus has been 

on the dynamics in the absence of any external flow field. In other words, the fluid 

was initially quiescent, with no preferred direction for the motion of particles. It 

would be of interest to investigate the effect of a flow induced by an external field 

(a pressure-driven flow for example) on the transport properties of the mixture. It is 

not obvious if the drift of the particles due to the flow is merely an additive contri-

bution to the total dispersion coefficient (the other part coming from purely diffusive 
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motions). Indeed the particles, if they are large enough, do not necessarily follow the 

streamlines. In fact, the streamlines are perturbed in the vicinity of the particles. It 

is also known that at sufficiently high velocities, the structure of polymers around a 

moving colloid is very different from their structure in the case of vanishing Reynolds 

number [153]. In addition, the problem of dynamic phase transitions that can occur 

under such non-equilibrium conditions is an interesting one to investigate. 

Beyond the Asakura-Oosawa Model 

While the Asakura-Oosawa model enables one to perform analytic calculations, 

it is not reliable quantitatively [52], in particular at high concentrations, mainly be-

cause of its neglect of the polymer internal structure. More realistic models are called 

for in order to address dynamics in the concentrated regime, and possibly to include 

other types of interactions such as electrostatic repulsion between charged particles or 

polymers. However, such models are difficult to treat analytically. Perhaps computer 

simulations could shed light on this problem. 

Crossover From One to Two Dimensions 

In this thesis, we considered the diffusion in a one-dimensional geometry. The 

crossover to two dimensions and the diffusion in two- dimensional geometry is yet 

to be investigated theoretically, and comparison should be made with earlier experi-

mental results obtained in our group [126]. Determination of the exact value of the 
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critical radius (or width) of the channel, at which the crossover to two dimensions 

occurs, calls for a generalized description of hydrodynamic interactions in order to 

yield an smooth transition from one to two dimensions. The results may also depend 

on the stiffness of the polymer, which is characterized by its persistence length. 

Long-time Diffusion 

A complete description of the diffusion in colloid-polymer mixtures with colloid 

and polymer of arbitrary size ratio, and at all accessible time scales, involves the 

consideration of coupled dynamics of colloidal particles and polymer chains. The 

major challenge to tackle this problem, apart from the many-body interactions, is the 

existence of multiple relevant length and time scales in the system. Analytical calcu-

lations are thus very difficult (although renormalization concept may prove useful). 

One way to tackle this problem is to employ computer simulation techniques such 

as Brownian dynamics, coupled to fast numerical algorithms, in order to solve the 

hydrodynamic equations. However, these calculations, even for the coarse-grained 

models of a single DNA molecule in a microchannel with no particles, require signifi-

cant computer resources. 

Correlations in Two-Dimensional Liquid Crystals 

It is not clear whether the observed isotropic to smectic-A transition in PLA 

monolayers is of the Kosterlitz-Thouless type or not. To elucidate that point, the 



106 

orientational correlations in the ordered (smectic-A) phase have to be determined. 

The algebraic decay of these correlations with distance is a signature of the Kosterlitz-

Thouless transition. As a corollary, the isothermal compressibility of the smectic 

phase diverges at and below the Kosterlitz-Thouless transition temperature. 

A related future study is that of the microstructures of PLA-particle mixtures. In 

this regard, Brewster-angle microscopy (BAM) and atomic force microscopy (AFM) 

are capable to shed light on the arrangement of magnetic colloids and nanoparticles 

in the PLA-particle mixtures. 

It is also of interest to examine the phase behavior and correlations in systems 

consisting of charged species or subject to external fields. In this respect, a natu-

ral extension of our studies is to apply an external magnetic field, so that super-

paramagnetic colloids acquire dipole moments whose strength can be readily tuned 

by varying the intensity of the external magnetic field. 
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