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ABSTRACT 

The Case for Vehicular Visible Light Communication (V2LC): Architecture, Services 

and Experiments 

by 

Cen Bi Liu 

Visible Light Communication (VLC) is a fast-growing technology to provide data 

communication using low-cost and omni-present LEDs and photodiodes. In this the

sis, we make the case for the use of vehicular VLC (V2LC) as follows. We describe an 

architecture for V2LC networks and introduce five network services that V2LC needs 

to provide for vehicular applications. We use a custom VLC prototype developed at 

Intel on which we investigate the unique networking properties of V2LC. Specifically, 

our experiments show that a V2LC receiver's narrow filed-of-view angle makes V2LC 

resilient to visible light noise from sunlight and legacy LED sources and interference 

from active VLC transmitters; further, V2LC can operate in full-duplex mode with 

the exception of being subject to multipath effects at very short distances, e.g., 1.5 

m in our experiment. By performing a large scale simulation study and leveraging 

our experimental data, we evaluate V2LC's ability to provide network services for 

vehicular applications. Our results reveal two key findings: (i) in dense vehicle traffic 

conditions (e.g., urban highway during peak hours), V2LC takes advantage of mul

tiple available paths to reach vehicles and overcomes the effects of packet collisions; 

(M) in the presence of a visible light blockage in traffic, V2LC can still have a signifi

cant number of successful transmissions because of the dynamic gaps in the blockage 
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caused by vehicular movements. 
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Chapter 1 

Introduction 

Visible Light Communication (VLC) is becoming an alternative choice for next-

generation wireless technology by offering unprecedented bandwidth and ubiquitous 

infrastructure support. As the name suggests, VLC uses the visible light spectrum 

as the medium to transmit and receive information. A VLC receiver consists of pho-

todiodes, whereas a VLC transmitter can use an array of LEDs. As a result, VLC is 

closely coupled with the deployment of LEDs. As LEDs have become widely adopted 

as power-saving lighting devices, the expansion in the usage of LEDs spurs VLC to 

be utilized in both indoor and outdoor applications. 

VLC can be applied in vehicular environments since there already exists an infras

tructure with many vehicle lights and traffic lights installed with LEDs. In terms of 

vehicular applications, the Intelligent Transportation Systems identify internet con

nectivity and vehicle safety as the two main applications [1]. While RF solutions to 

the vehicular applications have been proposed, e.g., IEEE 802.lip [2], their capabili

ties to meet the requirements of the vehicular applications are still an open problem 

[3]-

In this thesis, we make the case for the use of vehicular VLC (V2LC) and address 

the unique capabilities and limits of V2LC with respect to the requirements of the 
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vehicle safety and internet access applications. We describe an architecture of V2LC 

networks, in which vehicle lights as well as infrastructure lighting serve as transmit

ters, and receivers are co-located with the transmitters, and identify five network 

services V^LC needs to provide for the vehicular applications. On a custom VLC 

research platform, we perform experiments and investigate the unique networking 

properties of V2LC in relation to the environment and vehicular application impos

ing requirements, such as resilience to visible light noise and interference as well as 

assurance of delivering time-sensitive information. We evaluate V2LC's performance 

in providing the network services that are re-quired by the vehicle safety and internet 

access applications via a large scale simulation study. 

In particular, we make the following three contributions. First, we describe an 

architecture of V^LC networks in which vehicles and infrastructure lighting can have 

multiple simultaneously working transmitters and receivers because of their physical 

separation. In order to support the requirements of the vehicular applications, we 

then introduce five network services that V2LC needs to provide, namely, multihop 

inter-vehicle forwarding, limited neighbor broadcasting, infrastructure-to-vehicle one-

hop broadcasting, vehicle-to-infrastructure one-hop anycasting, and vehicle-to/from-

infrastructure unicasting. 

Second, we are the first to identify and evaluate V2LC's unique networking proper

ties. We used the VLC prototype developed at Intel, whose design values are in range 

of future low-cost VLC transmitters and receivers that can be massively produced, 
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e.g., the VLC receiver has an off-the-shelf photodiode with a 12° field-of-view angle 

(the largest angular extent), and the VLC transmitter with a 50° half-angle (the max

imum divergence of a light beam) consists of commercially available white LEDs. On 

the VLC research platform, we perform experiments to evaluate V2LC's networking 

properties with respect to robustness to visible light noise and interference as well 

as vehicular applications' requirements. We find that V2LC is resilient against wide

band noise sources (i.e., sunlight) with the exception of a direct exposure to the sun, 

which can only occur when vehicles with a direct line-of-sight to the sun and during 

sunrise and sunset (i.e., when the sun makes a small angle to the horizon and falls 

into the VLC receiver's 12° field-of-view angle). We also find that V2LC is robust to 

narrowband noise that is generated by idle VLC transmitters as well as legacy lights 

with no data transmission abilities. When considering V2LC's performance under 

interference, we determine that the VLC receiver's field-of-view angle has a binary 

indication property on the success of transmissions and perceived interference, e.g., 

in our experiment, a shift of the transmitter for a few centimeters moves it out of 

the field-of-view angle (12°), and the packet delivery ratio sharply drops from 100% 

to 0%. Equivalently, V2LC's small field-of-view angle significantly limits the impact 

of interference, and it results in a high spatial reuse in V2LC networks. Lastly, we 

evaluate the ability of V2LC to operate in full-duplex mode, which has the potentials 

to increase throughput and decrease delay for vehicular applications. We characterize 

the feasibility of full-duplex mode in relation to multipath effects created by reflective 
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and scattering surfaces in vehicular environments, and we show that the effects only 

exist in very short distances, e.g., within 1.5 m in our experiments. 

Third, using our experimental characterization of our VLC prototype and V2LC's 

networking properties, e.g., four co-located pairs of transmitters and receivers that 

can operate in full-duplex mode on each vehicle, we perform a large scale simulation 

evaluation of V2LC with respect to the five network services. We simulate vehicle 

movements as well as packet transmissions by following a set of physical and traf

fic rules: vehicles cannot pass through each other, speed limits are set on the road, 

packets cannot be transmitted through vehicles, etc. In dense vehicle traffic condi

tions that are prone to vehicle accidents (e.g., urban highways during peak hours 

with inter-vehicle distances less than 66 m [4]), we find that V2LC's performance 

in the multihop inter-vehicle forwarding satisfies the stringent requirements of 100% 

reachability with latency as low as 20 ms for the vehicle safety applications. Prom 

our blockage scenario where vehicles in the middle lane hinder the communication 

between vehicles in the leftmost lane and infrastructure nodes in the rightmost lane, 

we show that with inter-vehicle distances less than 26 m, reachability is less than 

100%. On the other hand, with inter-vehicle distances greater than 26 m, V2LC can 

opportunistically enable successful transmissions between the vehicles in the leftmost 

lane and the infrastructure nodes in the rightmost lane by using the gaps among the 

vehicles in the middle lane, and reachability is 100%. Our results reveal two key 

findings: V2LC takes advantage of a large number of available paths (paths found via 
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multihop broadcasting, not routing protocols) to reach vehicles in dense vehicle traffic 

conditions, i.e., a consequence of V2LC's high spatial reuse, to overcome the effects 

of packet collisions, and V2LC can have successful transmissions in the presence of a 

visible light blockage in traffic because of the dynamic nature of the gaps caused by 

vehicular movements. 

The rest of the paper is structured as follows. We first present background infor

mation on VLC and the vehicle safety applications in Chapter 2. We describe V2LC's 

architectural design and introduce the network services in Chapter 3. We then use 

the VLC research platform to investigate V2LC's unique networking properties in 

relation to robustness to visible light noise and interference as well as vehicular ap

plication requirements in Chapter 4. We evaluate V2LC's performance in each of the 

five network services in Chapter 5. We discuss related work on VLC in Chapter 6 

and conclude in Chapter 7. 
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Chapter 2 

Background 

In this chapter, we-describe basic concepts and operations of a VLC system in trans

mission and reception as well as advantages of employing VLC systems. We also 

introduce the eight high-priority vehicle safety applications and their communication 

requirements in reachability and latency. 

2.1 VLC System 

VLC uses the visible light spectrum (between 400 THz and 790 THz) as the commu

nication medium. A VLC system consists of VLC transmitters and receivers, which 

are physically different and functionally separated. The transmitter modulates infor

mation at lighting sources, such as LEDs. This modulation takes place in such high 

frequencies that humans' bare eyes cannot perceive any difference in lighting com

pared to that when there is no modulation. A VLC receiver consists of photodiodes 

either as stand-alone elements or in the form of an image sensor. 

A VLC system inherits four advantages in data transmission from operating in 

the visible light spectrum and functioning with LEDs and photodiodes. First, VLC 

is secure for data contents because it often requires a line-of-sight for transmission 

and reception. Second, VLC is safe to humans and other instruments because it op-
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erates in the visible light spectrum and in low density with lighting devices. Third, 

VLC is cost-efficient because its components, such as LEDs and photodiodes, can be 

massively produced, and it is additionally power-efficient by using LEDs. Fourth, 

VLC has a ubiquitous infrastructure support because it can use the existing lighting 

infrastructure that is deployed everywhere. 

2.2 Vehicle Safety Applications 

The vehicle safety applications and their communication requirements are determined 

by the Vehicle Safety Communications Project [5]. In [5], eight out of more than 

75 applications are identified as the high-priority applications, and they are repre

sentative of a range of communication requirements, namely, traffic signal violation 

warning, curve speed warning, left turn assistant, stop sign movement assistant, lane 

change warning, cooperative forward collision warning, pre-crash sensing, and emer

gency electronic brake lights. 

We give a brief description for each of the high-priority applications. All of them 

assist drivers with making safe de-cisions in traffic and complying with traffic regula

tions. The traffic signal violation warning and curve speed warning applications allow 

infrastructure to transmit to vehicles with traffic light states and curvature of banks, 

respectively. The left turn assistant application allows vehicles travelling in one di

rection to transmit their positions and speeds to m-frastructure, and then it allows 

infrastructure to transmit this information to vehicles waiting to make left turns in 
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the opposite direction. The stop sign movement assistant application is similar to the 

left turn assistant application except that it allows infrastructure to retransmit infor

mation to vehicles waiting at nearby stop signs. The lane change warning application 

allows vehicles to gather information on their neighbors' positions and speeds. The 

cooperative forward collision warning application gathers and forwards information 

among vehicles to help identify objects and incidents as in-path or out-of-path. The 

pre-crash sensing application is similar to the cooperative forward collision warning 

application except that it also prepares the safety protection systems of vehicles that 

are engaged in unavoidable collisions. The emergency electronic brake lights appli

cation allows vehicles to transmit information to others whenever breaking lights are 

on, especially in adverse weather conditions. 

We present the eight applications' communication requirements in reachability 

and latency. Reachability is defined as a ratio of the number of vehicles that can be 

suc-cessfully reached by a communication system to the total number of vehicles that 

are targeted in the applications. All of the eight applications require 100% reacha

bility. Latency is defined as a maximum time span during which a communication 

system needs to successfully deliver information to the targeted vehicles. All of the 

eight applications require 100 ms latency except the curve speed warning and pre-

crash sensing applications. The curve speed warning application requires 1000 ms 

latency; while, the pre-crash sensing application requires 20 ms latency. 
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Chapter 3 

V2LC Architecture and Services 

In this chapter, we describe an architecture for V2LC networks. We then identify 

the network services V2LC needs to provide for vehicle safety and internet access 

applications. 

3.1 V2LC Architectural Design 

A V2LC network consists of vehicles as mobile nodes and infrastructure lighting 

sources as fixed gateways. Both the mobile nodes and the infrastructure lightings, 

such as traffic lights, can be equipped with multiple transmitters and receivers which 

can operate simultaneously. For example, the headlights and the brake lights of a 

vehicle can serve as transmitters, and multiple receivers can be mounted around the 

vehicles. Figure 3.1 illustrates the V2LC network architecture. In this design, vehicles 

can either directly communicate with the gateway infrastructure lightings or reach 

the gateways using other vehicles as relays. The gateways are connected by an infras

tructure network, which is further connected to the internet. The information related 

to the vehicle safety applications is contained within the infrastructure network and 

vehicles. Depending on the nature of the application, it may involve none, one, or 

more gateways. For internet access applications, over single or multiple hops, vehicles 
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are connected to the internet via the infrastructure network. 

Figure 3.1 : An illustration of a V2LC network architecture 

3.2 V2LC Network Services 

Vehicular applications, including the eight high-priority vehicle safety applications 

and internet access applications, span different network scenarios and require a range 

of network services. We categorize the scenarios needed for support of these applica

tions into three categories: vehicle-to-vehicle, infrastructure-to-vehicle, and vehicle-

to-infrastructure. Furthermore, the information dissemination in these scenarios can 

occur over multiple hops or be limited to single hops. Based on the descriptions of the 
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safety application operations in [5], we introduce four network services for support 

of the safety applications: multihop inter-vehicle forwarding, limited neighbor broad

casting, infrastructure-to-vehicle one-hop broadcasting, and vehicle-to-infrastructure 

one-hop anycasting. We also introduce an additional network service, vehicle-to/from-

infrastructure unicasting, for vehicular internet access applications. These network 

services, either stand-alone or combined, provide all the services required for vehicu

lar applications. 

Multihop Inter — vehicle Forwarding. This network service works in the vehicle-

to-vehicle scenario over multiple hops. Each vehicle acts as a relay and forwards data 

packets from all of its VLC transmitters, following a set of rules to prevent unnec

essary broadcast flooding, e.g., there is a time-to-live limit on each packet, and a 

packet is forwarded only once by each vehicle. This network service maximizes the 

chance that information is disseminated quickly and reliably among a large number 

of vehicles. Therefore, it is suitable for providing service to event-triggered, urgent 

message delivering applications, such as cooperative forward collision warning, pre-

crash sensing, and emergency electronic brake lights. 

Limited Neighbor Broadcasting. The limited neighbor broadcasting network 

service also operates in the vehicle-to-vehicle scenario, but over single hops. Each 

vehicle broadcasts information from all of its transmitters to its neighboring vehi

cles. But, the information dissemination is limited to one hop, and the neighboring 

vehicles do not forward information that they receive. Thus, this network service 
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only provides vehicles with information from close vicinity; by limiting the extent 

of broadcasting, it prevents network performance degradation due to high volume 

flooding. Thus, it can provide service to the applications that need periodic, local 

information. For example, the lane change warning application requires this network 

service because vehicles constantly need to know about the positions of the nearby 

vehicles when making lane changes, but information from other distant vehicles is 

irrelevant. 

Infrastructure — to — vehicle One — hop Broadcasting. This network service 

works in the infrastructure-to-vehicle scenario over single hops. In this service, in

frastructure nodes broadcast information to vehicles, and the vehicles do not send 

information back to the infrastructure nodes. The service in its stand-alone form is 

required by the traffic signal violation warning and curve speed warning applications 

because in both cases, only the infrastructure nodes need to transmit information 

to the vehicles. Combined with the vehicle-to-infrastructure one-hop anycasting, it 

can provide service for the left turn assistant, and stop sign movement assistant ap

plications where bi-directional information exchange between the vehicles and the 

infrastructure nodes is required. 

Vehicle — to — infrastructure One — hop Anycasting. The vehicle-to-infrastructure 

one-hop anycasting network service operates in the vehicle-to-infrastructure scenario 

over single hops. Vehicles anycast information to infrastructure nodes; meanwhile, 

the infrastructure nodes do not send information to the vehicles. If any infrastructure 
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node receives the information from vehicles, then the communication is successful be

cause the infrastructure nodes are connected by a backbone network. This network 

service, along with the previous infrastructure-to-vehicle one-hop broadcasting ser

vice, can be combined with the multihop inter-vehicle forwarding. In this way, the 

combination maximizes the utilization of the backbone infrastructure network and 

vehicles as relays and the chance to reach every node. 

Vehicle — to/from — infrastructure Unicasting. The vehicle-to/from-infrastructure 

unicasting network service takes place in the vehicle-to-infrastructure and infrastructure-

to-vehicle network scenarios, with each scenario providing uplink and downlink for 

vehicular internet access applications, respectively. This service works over single 

hops and multiple hops to/from a gateway infrastructure node. By using routing 

protocols, vehicles first find routes to a gateway infrastructure node and then start 

transmissions to that gateway, which may use other vehicles as relays. We note 

that this network service is the only one that requires routing protocols to discover 

routes, and other services find paths to vehicles and infrastructure nodes via single 

hop transmissions and multihop broadcasting. 
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Chapter 4 

V2LC Networking Properties 

In this chapter, we use the VLC research platform developed at Intel to investigate the 

unique networking properties of V2LC. We first describe the VLC platform hardware. 

We then examine the networking properties of V2LC with respect to resilience to 

visible light noise and interference as well as requirements of vehicular applications. 

In our experiments, we use packet delivery ratio (PDR) as the performance measure, 

i.e., the ratio of the number of packets successfully received at the receiver to the 

total number of packets transmitted over the air. 

4.1 VLC Research Platform Hardware 

Transmitting and receiving data in the visible light spectrum requires specialized 

hardware, which is not commercially available. Consequently, we needed a custom 

platform to investigate the networking properties of V2LC. 

We present Intel's V2LC prototype. Figure 4.1 (a) and (c) show a photograph 

and the block diagram of the VLC transmitter. It consists of 120 off-the-shelf white 

LEDs, each having a dissipation power of 120 mW. The transmitter's half-angle, that 

is, the maximum divergence of a light beam, is 50°. The design values lie in the range 

that is expected for V2LC transmitters, such as vehicle lights and traffic lights. The 
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transmitter uses on-off keying modulation implemented in software. 

Figure 4.1 (b) and (d) depict the VLC receiver which consists of a commercial 

photodiode with a spectral response range from 350 nm to 1100 nm, a 4x zoom 

optical lens, and a software-based signal processing component. The receiver has a 

12° field-of-view angle, i.e., the largest angular extent that can be seen at the receiver. 

All of these design choices are again within the range expected for future low-cost 

V2LC receivers that use massively produced photodiodes. The software for both the 

transmitter and the receiver is implemented in MATLAB, which runs on laptops that 

are connected to the hardware units with RS-232 cables. 

4.2 Robustness to Visible Light Noise 

Vehicular environments are expected to encounter a high level of ambient visible light 

noise. Here, we evaluate the robustness of V2LC to both wideband and narrowband 

noise. The most prominent source of wideband noise is sunlight, which contains en

ergy in the spectral response range of the VLC receiver's photodiode. In contrast, the 

expected sources of narrowband noise originate from idle VLC transmitters of other 

vehicles and infrastructure as well as any lighting source with no data transmission 

capability. This source of noise is dominant during nighttime, and its energy is also 

distributed in the spectral response range of the photodiode. 

Wideband Noise Scenario. In this scenario, we investigate V2LC's robustness 

to wideband noise. There are two key cases we consider: when the sun directly 
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Figure 4.1 : VLC transmitter, picture (a) and block diagram (c); VLC receiver, 
picture (b) and block diagram (d) 



17 

within the receiver's field-of-view angle and when the sun out of the angle. This cat

egorization is the result of the fact that the receiver's field-of-view angle is relatively 

narrow, and the sun is not always directly within the field-of-view angle. The former 

case usually happens during sunset and sunrise (i.e., when the sun makes a relatively 

small angle to the horizon and therefore possibly falls in the field-of-view angle) with 

vehicles' having a clear line-of-sight to the sun. Meanwhile, the latter case occurs 

much more frequently during the day since it does not place any restrictions on the 

sun's position or require vehicles to have a clear a line-of-sight to the sun. 

Figure 4.2 depicts the experiment setup for this scenario. The angle a is the az

imuth angle of the receiver to the sun, whereas the angle /3 is the elevation angle of 

the receiver to the sun. The distance between the transmitter and receiver is denoted 

by d. In the experiment, we vary a and fi (within the range allowed by the test envi

ronment) to profile the impact of the sun with respect to its position. We also vary 

d to measure the achievable transmission range of the VLC platform in the presence 

of wideband noise. We conducted our experiments between 2 p.m. and 6 p.m. on a 

sunny afternoon in both indoor and outdoor environments. Indoor experiments were 

performed on the third floor of an office building with a glass wall facing the sun. 

Outdoor experiments were conducted in a patio. While sunlight intensity was similar 

in these two environments, the indoor environment provided the elevation angles that 

could not be obtained in the outdoor environment due to surrounding buildings. 

Table 4.1 summarizes the experimental results for the first case when the sun is 
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Figure 4.2 : Experiment setup in the wideband noise scenario 

not directly in the receiver's field-of-view angle. In this scenario, the sun intensity 

is higher than that in the second case since it usually takes place during the day 

rather than during sunset and sunrise. The result shows that the packet deliver ratio 

is 100% for all values of a and P with d less than 101 m. It indicates that despite 

the reflective and scattering surfaces in the surroundings, our VLC receiver with a 

12° field-of-view is robust to highly ambient wideband noise. While we note that 

the transmission range depends on the transmission power and is system-specific, we 

make the observation that using this VLC platform, the packet delivery ratio remains 

100% for d less than 101 m. 

For the second case when the sun falls directly in the field-of-view angle, we remove 

the optical lens from the receiver, which increases the field-of-view angle from 12° to 

50°. Since we cannot have a clear line-of-sight to the sun due to surrounding buildings 
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Table 4.1 : V2LC robustness to wideband noise 

d 

5.4 m 

5.8 m 

7.5 m 

16.8 m 

(16.8, 101] m* 

>101 m* 

a 

0° 

30° 

10° 

10° 

10° 

10° 

P 

15° 

45° 

30° 

10° 

10° 

10° 

PDR 

100% 

100% 

100% 

100% 

100% 

0% 

during sunset and sunrise, it is equivalent to increase the field-of-view angle for the 

sun to be directly seen at the receiver. Under such conditions, the packet delivery 

ratio is reduced to 0%. This is because the energy of the direct sunlight saturates the 

photodiode. To increase robustness in this scenario, we can narrow down the field-of-

view angle by increasing the 4x zoom to a higher lens zoom. Further, we can make 

the field-of-view angle adaptive by dynamically changing the lens zoom. Nonetheless, 

this case occurs infrequently and requires a clear line-of-sight to the sun, which also 

needs to be within 12° of the horizon, for default. 

Narrowband Noise Scenario. In this scenario, we evaluate V2LC's robustness 

*Due to the lack of environment space, d is obtained by reducing the transmission power of the 

VLC transmitter and calculated using the free space propagation model. 
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to two representative narrowband noise sources. They include an LED red light 

source of 9.6 W and a halogen light bulb of 60 W. The LED source represents idle 

VLC transmitters. On the other hand, the halogen light bulb is a type of incandes

cent light and often installed for automobiles and street lights. It is an example of 

lighting sources with no data transmission capabilities. Both sources emit light in the 

spectral response range of the VLC receiver's photodiode. 

A receive, / * 

# t ransmit ter d / /CXj^ \ 2 

• noise / / ! \ 
source % a i ° ^ 

Figure 4.3 : Experiment setup in the narrowband noise scenario 

We show the experiment setup in Figure 4.3. In the illustration, the angle a and 

distance d\ are the angle and the distance between the transmitter and the receiver, 

respectively. Similarly, the angle /? and distance ^ are the angle and the distance 

between the noise source and the receiver, respectively. In order to isolate the effects 

of narrowband noise from wideband noise (i.e., sunlight), we conducted these experi

ments in the lab environment with shades drawn to block sunlight. We fix d\ and a 

to be 2 m and 3°, respectively. We also fix (5 to be 3°, i.e., both the transmitter and 
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the noise source axe in the receiver's filed-of-view angle. We vary da to change the 

noise level at the receiver. 

Table 4.2 shows that with the LEDs as the noise source (i.e., an idle VLC trans

mitter), the packet delivery ratio remains at 100% for all values of c^. In this case, 

the results demonstrate that the performance of the VLC receiver is independent of 

the level of narrowband noise generated by idle VLC transmitters. However, when 

the halogen light bulb with a significantly higher power is the noise source, the packet 

delivery ratio is 0% for da less than 5 m. For da greater than 5 m, the packet de

livery ratio is 100%. The reduction in the packet delivery ratio suggests that the 

VLC receiver's photodiode can also be saturated by a narrowband noise source, sim

ilar to what happened in the wideband noise scenario. However, the saturation due 

to the narrowband noise can be eliminated by increasing the distance between the 

noise source and the receiver. The separation needed, shown to be 5 m, is very short 

considering inter-vehicle distances in traffic. Therefore, in V2LC networks, the VLC 

receiver is also robust to the narrowband noise generated by lighting sources with no 

data transmission capabilities. Furthermore, with LEDs' capabilities in saving power, 

many vehicle lights and infrastructure lights with halogen light bulbs are expected to 

be replaced with LEDs. 

Findings. Noise can affect V2LC's performance by saturating the photodiode. 

This happens only if the noise power is significantly high, e.g., direct exposure to 

sunlight and close range of 5 m within a halogen light bulb, and the noise source 
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Table 4.2 : V^LC robustness to narrowband noise 

ck 

0.1m 

>0.1m 

[0.1,5] m 

>5 m 

Narrowband noise source 

LEDs 

LEDs 

Halogen 

Halogen 

PDR 

100% 

100% 

0% 

100% 

directly falls in the field-of-view angle of the receiver. With increasing distance be

tween the noise source and the receiver and decreasing the field-of-view angle, V2LC 

becomes completely robust to both wideband and narrowband noise, e.g., sunlight 

and idle LED lights. 

4.3 The Field-of-view Angle, Interference, and Collisions 

The VLC receiver's field-of-view angle determines the largest angular extent from 

which the light is viewed at the receiver. Therefore, it impacts the link establishment 

between the transmitter and the receiver. Once there is a VLC transmitter-receiver 

link, the field-of-view angle also affects the perceived interference at the receiver. For 

an interferer, we use another VLC transmitter actively sending modulated signals. 

This is in comparison to the idle VLC transmitter as a narrowband noise source in 

the previous section. Here, we first examine the effects of the field-of-view angle 
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on the success of the communication between the transmitter and the receiver with 

no interferer. Then, we investigate the field-of-view angle's effects on the collision 

condition created by two packet transmissions from the transmitter and the interferer. 

Transmitter — receiver Link Establishment 

Scenario. In this scenario, we evaluate the effects of the transmitter's being in and out 

of the receiver's field-of-view angle on the link establishment between the transmitter 

and the receiver. The experiment setup is similar to the one depicted in Figure 4.3 

but with only the transmitter and the receiver. We keep d\ constant at 2 m. In the 

experiment, we vary a to move the transmitter in a circular motion with respect to 

the receiver. We conducted experiments in this scenario in the lab environment. 

Figure 4.4 shows the packet deliver ratio as a function of a. The packet delivery 

ratio is 100% when a is smaller than 6°, i.e., when the transmitter is in the receiver's 

field-of-view angle. Once a becomes greater than 6°, and the transmitter falls out of 

the field-of-view angle of the receiver, the packet delivery ratio immediately drops to 

0%. This sharp drop is observed in the granularity of 1°, i.e., a slight movement of 

the transmitter on the magnitude of a few centimeters can break the link with the 

receiver. The result implies that the field-of-view angle of the receiver is a binary 

indicator of the packet delivery ratio. If the transmitter is in the receiver's field-

of-view angle, and the receiver is within the transmitter's transmission range, then 

the receiver can successfully receive all transmissions from the transmitter. If the 

transmitter is not in the field-of-view angle, then the receiver cannot receive from the 
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transmitter. 
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Figure 4.4 : Field-of-view angle of the receiver is a binary indicator on the transmit
ter's packet delivery ratio 

Effects of Proximity of Interferer to Receiver 

Scenario. In this scenario, we examine the effects of the interferer's being in and out 

of the receiver's field-of-view angle on the established link between the transmitter 

and the receiver. The experiment setup is similar to the one in Figure 4.3 except that 

we replace the noise source with another VLC transmitter acting as the interferer. 

We keep d\ and a constant at 2 m and 3°, respectively. We conducted this scenario's 

experiments in the lab environment. 

We locate the interferer in the receiver's field-of-view angle and keep /3 constant at 

3°, i.e., both the transmitter and the interferer are in the filed-of-view angle, and two 

data transmissions are now incident at the same receiver. In the experiment, we vary 
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only da to change the power level of the interference at the receiver. Table 4.3 shows 

that when the interferer is less than 100 m away, the receiver cannot successfully 

receive from the transmitter, i.e., the packet delivery ratio is 0%. When the interferer 

is more than 100 m away, the packet delivery ratio is 100%. We measure the SIR 

required for successful transmission to be over 280,000. Recall that the transmission 

range of the VLC transmitter is measured to be 101 m in the resilience against noise 

scenario. Hence, we can conclude that as long as the interferer is in the receiver's 

field-of-view angle, and the receiver is in the interferer's transmission range, it will 

be impossible for the transmitter and the receiver to communicate. We note that 

the on-off keying modulation used by the VLC transmitters is extremely sensitive to 

interference as overlapping signals can cause 0 s to be detected as 1 s. With use of a 

different modulation scheme, for example amplitude modulation, the results may be 

different. We also observe that as soon as the interferer is in the receiver's field-of-

view angle, the packet delivery ratio drops to 0% when keeping da at 2 m and varying 

P-

Findings, (i) The field-of-view angle of the receiver has a binary indication on 

the success of transmissions because of sharp boundaries around the reception area, 

e.g., a spatial shift in a few centimeters of the transmitter moves it out of the field-of-

view angle (12°), and the packet delivery ratio sharply drops from 100% to 0%. (ii) 

When the interferer is out of the receiver's field-of-view angle, the communication is 

always successful regardless the interferer's position. Further, a small field-of-view 
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Table 4.3 : When interferer in the field-of-view angle 

da 

[1,10] m 

(10,100] m* 

>100 m* 

PDR 

0% 

0% 

100% 

angle significantly limits the amount of interference at the receiver. 

4.4 Full-duplex Mode Feasibility 

The VLC transmitter and receiver's angular directionality along with the physical 

separation between the two entities yields a potential for full-duplex mode. Com

pared to half-duplex mode, full-duplex has the abilities to increase throughput and 

decrease delay, which are valuable assets to vehicular applications. However, the sur

rounding materials' reflective and scattering properties in the visible light spectrum 

create multipath effects, which can hinder full-duplex communication. For example, 

for a pair of co-located receiver and transmitter, the transmitter's signal may be re

flected and scattered and appear as interference at the receiver. Here, we explore the 

multipath effects on full-duplex mode. 

Reflection and Scattering Scenario. In vehicular environments, the main re-

td<2 is also obtained by reducing the transmission power, similar to d in Table 4.1 
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flective and scattering objects are the surfaces of the nearby vehicles, including their 

painted bodies, glass windows, and plastic covers. We use the experiment setup 

shown in Figure 4.5 to investigate the impact of the surfaces of vehicles on V2LC's 

full-duplex operation. A vehicle is placed in front of a pair of co-located VLC trans

mitter and receiver. The distance between them is denoted by d. The transmitter 

and the receiver are kept 0.1 m apart, and we vary the distance, d. We conducted 

this set of experiments between 2 p.m. and 3 p.m. outside an entrance to an office 

building. 

^ receiver 

transmitter 

d I 
Figure 4.5 : Experiment setup in the full-duplex feasibility scenario 

Figure 4.6 shows the packet delivery ratio as a function of d. A packet delivery 

ratio of 100% means that the receiver is able to receive from the transmitter because 

of the reflection and scattering caused by the vehicle parked in front. The results show 

that full-duplex operation is not feasible for d less than 1.5 m because the transmit-
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ter's signal appears as interference at the receiver, and this interference will cause 

packet losses as found in the robustness to interference section. On the other hand, 

a packet delivery ratio of 0% means that the receiver cannot receive from the trans

mitter, and the multipath effects have diminished. Figure 4.6 shows that full-duplex 

operation is feasible for d greater than 1.5 m. Considering inter-vehicle distances 

in traffic, such a small separation always exists to allow full-duplex communication. 

This short distance is the result of the fact that vehicles as whole entities are highly 

reflective rather than scattering. Much of the signal's energy is reflected, and little 

energy is scattered in all directions. Further, with an approximate 0° reflection angle, 

most of the reflection is directly towards the transmitter. As a result, only a small 

amount of reflected and scattered signal caused interference at the receiver, and this 

small amount of interference only exists in a short distance. We note that, in this 

experiment the receiver was aimed at the reflection of the transmitter on the surface 

of the vehicle. In normal conditions, the receiver does not necessarily target at the 

reflection of the transmitter, which results in reduction of interference at the receiver. 

In that case, the full-duplex operation is feasible in significantly shorter distances. 

Findings. The reflected and scattered transmitter's signal can only fall in the 

receiver's field-of-view angle in short distances, e.g., 1.5 m while aiming the receiver 

at the transmitter's reflection, and does not cause interference in long distances, e.g., 

inter-vehicle distances in traffic. Therefore, the multipath effects are only strong in 

short distances, and V2LC can operate in full-duplex mode. 
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Figure 4.6 : Multipath effects on V2LC full-duplex mode 
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Chapter 5 

V2LC Service Evaluation 

In this chapter, we evaluate V2LC's performance with respect to the five network 

services introduced in Chapter 3. We first describe our evaluation methodology and 

parameters. Via an extensive simulation study, we then present our results for each 

of the five network services. 

5.1 Evaluation Methodology and Parameters 

Vehicle Clusters in Traffic. Previous research, e.g., [6], has shown that travelling 

vehicles form a number of co-existing, non-connected clusters at a given instant. In 

our evaluation, we choose the size of the vehicular network to a vehicle cluster for two 

reasons. First, when considering vehicle safety applications, only vehicles in the same 

cluster are potential communication targets. This is because they are in the vicinity 

of one another via single or multiple hops. At a given instant, vehicles in one cluster 

are considered physically distant enough from those in another cluster by definition. 

Second, the communication between one vehicle cluster and another vehicle cluster 

has already been studied in delay tolerant network applications, e.g., [7], but this 

type of communication is not suitable for vehicle safety applications due to stringent 

latency requirements. 
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Inter — vehicle Distance. The inter-vehicle distance (or equivalently the vehi

cle density) reflects different traffic conditions, and it impacts the performance of 

vehicular networks. Thus, we examine V2LC's performance in traffic conditions with 

different average inter-vehicle distances. The average inter-vehicle distance is defined 

as the mean distance between one vehicle and the next vehicle in the same lane. In [4], 

the U.S. Transportation Research Board uses this distance as one criterion to catego

rize traffic conditions measured by Level-of-Service, a qualitative measure describing 

operational conditions within a traffic stream. Table 5.1 details Level-of-Service with 

its corresponding inter-vehicle distances, frequent occurrences, and abilities to absorb 

traffic accidents. 

Traffic Scenario Generat ion. For the large scale simulation study of VLC, we 

modified the network simulator, ns-2 [8], to accommodate our experimental charac

terizations of V2LC. Moreover, we use the Freeway model of the IMPORTANT tool 

to generate vehicle movements [9]. Due to the limitations of the IMPORTANT tool, 

traffic scenarios cannot be generated with an inter-vehicle distance below 6.6 m (6.6 m 

is the inter-vehicle distance when vehicles are uniformly distributed at the beginning; 

after one second, the vehicles have broken loose from the uniform pattern, and we 

start taking measurements). However, we make the observation that for inter-vehicle 

distances lower than 6.6 m, the vehicles are not much maneuverable in traffic. Thus, 

^Inter-vehicle distance ranges are for freeways with speed limit of 75 mph. They vary for different 

types of roads. However, the variations are negligible compared to the sizes of ranges. 
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Table 5.1 : Level-of-Service for traffic conditions 

Level-

of-

service 

A 

B 

C 

D 

E 

F 

Inter-

vehicle 

distance 

range* 

>160m 

159-101 m 

100-67 m 

66-50 m 

49-35 m 

< 3 5 m 

Frequent occurence exam

ples 

Rural areas 

Rural highway 

Urban highway 

Urban highway during peak 

hours 

Roadway in large urban ar

eas 

Traffic jam 

Ability to absorb vehicle in

cidents 

Fully absorbent 

Absorb minor incidents 

Partially absorb minor inci

dents 

Cause short queuing 

Cause long queuing 

Breakdowns 
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their relative positions to one another remains approximately the same. Based on 

this observation, we conducted the same set of simulations for static scenarios with 

inter-vehicle distance smaller than 6.6 m. The results were similar to those obtained 

in the scenarios where vehicles are in close distance of one another and mobile. 

MAC Protocol. While we acknowledge the impact of MAC on probability of 

collision and hence network performance, we keep MAC design and optimization for 

V^LC out of the scope of this thesis and use an ALOHA based MAC protocol. We 

implement the MAC in ns-2 in which every vehicle waits a random amount of time 

before sending packets. The random amount of waiting comes from a uniform dis

tribution, where the minimum is zero and the maximum is ten times a packet trans

mission time. Acknowledgments are used only in unicasting scenarios. Additionally, 

we implemented full-duplex mode which is established to be feasible for V2LC in the 

full-duplex feasibility section, and there are four co-located pairs of transmitters and 

receivers on each vehicle, i.e., our node model in the simulation. We also implement 

the field-of-view angle's binary indication property in Chapter 4, and our MAC has 

a fine-grained geometric granularity in identifying vehicles' being in and out of the 

field-of-view angle and visible light blockage due to vehicles' physical bodies. 

Simulation Parameters. Table 5.2 lists simulation parameters for the vehicle-

to-vehicle network scenario. The vehicle-to-vehicle scenario is used for the first two 

network services presented later in the section. For the last three network services 

that operate in the vehicle-to-infrastructure or infrastructure-to-vehicle scenarios, the 
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Table 5.2 : Simulation Parameters 

parameters 

Num. of vehicles 

Acceleration 

Num. of lanes 

Vehicle length 

Vehicle width 

Lane width 

values 

30 

[-3,3] m/s2 

3 

4.5 m 

1.5 m 

2.5 m 

parameters 

Half-angle 

Field-of-view angle 

Packet size 

Data rate 

Trans, range 

values 

50° 

12° 

481 bits§ 

2 Mbps 

101m 

following parameters are different: 29 infrastructure nodes with a spacing of 120 m 

placed in the rightmost lanes, and 20 vehicles traveling in the leftmost and middle 

lanes. The placement of the infrastructure nodes is to cover the entire distance that 

the vehicle cluster travels during the simulation time span. The arrangement of vehi

cles in two lanes establishes the vehicles in the middle lane as a visible light blockage 

to the vehicles in the leftmost lane and infrastructure nodes in the rightmost lane, 

and we study V2LC's performance with such a blockage. 

§A representative value specified by [5] 
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5.2 Multihop Inter-vehicle Forwarding 

Scenario. The front most vehicle in the cluster initiates the information flow, and 

the information is disseminated backwards by the multihop inter-vehicle forwarding. 

This scenario occurs, for example, when a vehicle discovers an incident on the road 

and needs to warn all other vehicles. In this case, we measure reachability as the per

centage of vehicles receiving the information, and delay as the time difference between 

when this piece of information is sent by the initiator and when it is last received. We 

also investigate the effects of packet collisions on V2LC's performance in reachability 

and delay because they can cause certain paths to reach vehicles unusable. 

Figure 5.1 (trend lines in figures are provided for clarity purposes) shows the 

reachability as a function of the average inter-vehicle distance. The reachability is 

100% for the inter-vehicle distance smaller than 66 m. With the inter-vehicle dis

tance greater than 66 m, the reachability ranges from 40% to 100%. In order to find 

out the reason behind such wide variations in reachability, we draw the percentage 

of collisions vs. average inter-vehicle distance in Figure 5.3. We observe that the 

percentage of packet collisions, i.e., the ratio of the number of collisions to the sum 

of the number of collisions and the number of receptions, remains between 20% and 

33%, and yet the collisions affect the reachability significantly for the inter-vehicle 

distance greater than 66 m. The reason is that for shorter inter-vehicle distances, 

there are multiple paths available to reach any vehicle. Hence, in order to impact the 

reachability, collisions would need to occur on all the available paths, whose proba-
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bility is small. As the inter-vehicle distance increases, and the number of available 

paths decreases, the probability of all the paths being impacted by collision increases. 

Thus, there is a decrease in reachability. The variation in reachability is due to the 

random movements of the vehicles, which randomizes the number of available paths. 
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Figure 5.1 : Reachability in multihop inter-vehicle forwarding 

Figure 5.2 plots the delay of V2LC in multihop inter-vehicle forwarding as a func

tion of the average inter-vehicle distance. We observe a generally increasing trend in 

delay. The increase is attributed to two factors. One factor is the rise in the number 

of hops required to reach vehicles as the inter-vehicle distance increases. The other 

factor is the effect of packet collisions as they may cause certain paths to become un-
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available, and therefore a longer delay to reach vehicles is required. We also observe 

that as the inter-vehicle distance increases beyond 40 m, there is a variation in delay 

ranging from 7 ms to 27 ms. The reason for such a variation in cases of larger inter-

vehicle distances is similar to that for the variations in reachability. Additionally, we 

find that delay is more sensitive to the impact of packet collisions than reachability, 

as the break point, i.e., when the wide variation occurs, is 40 m for delay as compared 

to 66 m for reachability. One explanation is that collisions affect when packets can 

arrive at the vehicles, but the reachability remains unchanged as long as packets can 

reach the vehicles. 

Having seen that the impact of packet collisions on reachability and latency is 

negligible for short inter-vehicle distances, we now evaluate the effects on reachability 

and latency with an increase in packet collisions. In this scenario, the two most front 

vehicles initiate information to be sent in the multihop inter-vehicle forwarding at the 

same time. It almost doubles the amount of transmitted information among vehicles 

and the number of packet collisions. This scenario is one of the worst cases for the 

following two reasons. First, the initiators in the front will often observe the same 

event. Before vehicles retransmit information from the initiators, they should have a 

mechanism to first check if it is any new information. If not, the information will not 

be retransmitted to prevent unnecessary network flooding. Second, vehicles normally 

do not initiate information at the same time. As shown in Figure 5.2, if the time 

difference between two initiations is more than 0.03 s, one has finished its multihop 
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inter-vehicle forwarding before the other one starts. Nevertheless, even in this worst 

case scenario, we did not observe any performance degradation in either reachability 

or latency. 

Findings, (i) V2LC satisfies the 100% reachability and latency as low as 20 ms 

requirements in critical traffic conditions, with a Level-of-Service D or below (i.e., 

with an inter-vehicle distance 66 m or smaller), which do not have the ability to ab

sorb any vehicle incidents, (u) The impact of packet collisions on reachability and 

delay is negligible when the inter-vehicle distance is short because there are a large 

number of paths to reach vehicles. 
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Figure 5.2 : Delay in multihop inter-vehicle forwarding 



39 

35 

% 30 

&g2 5 

o £20 
tJO . — „ r-

g|15 
§ 8io 
tt. 5 

0 

v^^v^^, 

0 20 40 60 80 

Average inter-vehicle distance (m) 

100 

Figure 5.3 : Percentage of packet collisions in multihop inter-vehicle forwarding 

5.3 Limited Neighbor Broadcasting 

Scenario. Every vehicle in the cluster performs limited neighbor broadcasting. This 

scenario, for instance, occurs when the lane change warning application requires ve

hicles to periodically send information regarding their positions, speeds, and accel

erations. We measure reachability as the percentage of vehicles within a vehicle's 

proximity which can successfully receive the information. Two vehicles are consid

ered in proximity of one another if the distance between them is 18 m or less, and 

they are in the same or adjacent lanes. The reachability is averaged over all of the 

30 vehicles. We define delay in this service as the time difference between when a 

piece of information is sent and when it is received by the neighboring vehicles. The 
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delay is constant at 0.00024 s, which is the packet transmission time over one hop; 

the propagation delay is negligible. 

Figure 5.4 shows the reachability of V2LC as a function of the average inter-vehicle 

distance. When the inter-vehicle distance is smaller than 50 m, the reachability varies 

from 42% to 60%. With the inter-vehicle distance greater than 50m, the reachability 

variation range is 25% to 98%. The wider range for larger inter-vehicle distances is 

a result of the fact that as the inter-vehicle distance increases, the vehicle cluster ex

pands. Recall from Section IV that the field-of-view angle has a binary indication on 

the success of the communication between the transmitter and the receiver, and our 

node model where the VLC transmitters are vehicle headlights and brake lights, and 

the VLC receivers are co-located with them. When the vehicle cluster is compact, 

vehicles can only hear from the vehicles to their front and back, and not from the 

vehicles to their sides, which are out of their field-of-view angle. When the vehicle 

cluster expands, the vehicles' random movements determine if the receiver can receive 

from the vehicles in their proximity. 

Given the high probability of being out of the field-of-view of the neighboring 

vehicles, it is expected that with the neighbor broadcasting limited to one hop, V2LC 

cannot maintain a reachability of 100%. However, the performance of V2LC can be 

improved by either allowing 2-hop broadcasting or increasing the number of trans

mitters/receivers on the vehicles in such a way that the aggregate field-of-view angle 

is increased. 
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Findings. V^LC on average reaches half of the target vehicles under the one-hop 

limited neighbor broadcasting. This is a manifestation of the field-of-view angle's 

binary indication property. If required, the performance can be improved by extend

ing the field-of-view of the vehicles to cover their sides as well as employing limited 

multihop broadcasting. 
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Figure 5.4 : Reachability in limited neighbor broadcasting 

5.4 Infrastructure-to-vehicle One-hop Broadcasting 

Scenario. Every infrastructure node broadcasts to the vehicles within its transmis

sion range. This can serve as the last-mile connectivity for vehicular applications 

that require information from the gateways. We measure the reachability, i.e., the 



42 

percentage of vehicles that successfully receive packets from the infrastructure nodes. 

Delay in this case is the time spent for vehicles to receive transmitted packets from 

infrastructure nodes. Similar to the results in the previous subsection, since informa

tion exchange is over one hop, the delay is at the constant value of 0.00024 s. 

We show the reachability of V2LC as a function of the average inter-vehicle dis

tance in Figure 5.5. For the inter-vehicle distances greater than 22 m, the reachability 

is 100%. For the inter-vehicle distances less than 22 m, some vehicles in the leftmost 

lane are blocked by the vehicles in the middle lane, and they cannot receive the pack

ets transmitted by the infrastructure nodes located in the rightmost lane. Hence, the 

reachability is less than 100%. 

We make the observation that for the average inter-vehicle distances of 22 m or 

more, although there are vehicles in the middle lane blocking the vehicles in the left

most lane, V2LC opportunistically uses the gaps among the vehicles in the middle 

lane to reach the vehicles in the leftmost lane. In order to increase the reachability of 

V2LC in smaller inter-vehicle distances, either the number of the infrastructure nodes 

can be increased to reduce the "blind spots," or the infrastructure-to-vehicle one-hop 

broadcasting can be combined with the multihop inter-vehicle forwarding service to 

extend the coverage of the infrastructure nodes. Based on the results of the multihop 

inter-vehicle forwarding section, it is expected that the combining the two services 

would increase the reachability of V2LC to 100%. 

Findings. Since V2LC operates in the visible light spectrum, vehicles can block 
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one another and impact their reachability. However, the mobile nature of the ve

hicular environment enables opportunistic transmissions for V2LC through dynamic 

appearances of gaps in a traffic stream. 
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Figure 5.5 : Reachability in infrastructure-to-vehicle one-hop broadcasting 

5.5 Vehicle-to-infrastructure One-hop Anycasting 

Scenario. Each vehicle anycasts to the infrastructure nodes. This network service 

is used with a backbone network in which the infrastructure gateways are inter

connected. In this scenario, the reachability is the percentage of vehicles whose trans

missions are successfully received by any infrastructure node. Delay is defined as the 

time span that it takes a packet transmitted by a vehicle to reach an infrastructure 
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node. The information dissemination is also occurring over single hops here, and 

hence the delay is at the constant value of 0.00024 s. 

Figure 5.6 shows the reachability of V2LC as a function of the average inter-vehicle 

distance. When the inter-vehicle distance is smaller than 26 m, vehicles in the middle 

lane hinders the infrastructure nodes in the rightmost lane from receiving information 

from the vehicles in the leftmost lane. As a result, the reachability is less than 100%. 

With inter-vehicle distances greater than 26 m, the reachability is 100%. We ob

serve similar trends in results depicted in the previous scenario and this scenario. In 

the previous scenario, however, the probability of collision is lower, since every car is 

at most within transmission ranges of two infrastructure nodes, whereas in this sce

nario, an infrastructure node can hear packets from multiple vehicles. We note that 

even though there are more packet collisions in this scenario, in both cases reachabil

ity of 100% has been achieved for average inter-vehicle distances higher than 26 m. 

Similar approaches as in scenario of the previous section can be taken to increase the 

reachability for smaller inter-vehicle distances. 

Findings. With the same set of vehicular movements but different numbers of 

collisions, two scenarios both achieve reachability of 100% with average inter-vehicle 

distances higher than 26 m. Thus, compared to packet collisions, the relative posi

tions of the transmitters and the receivers are dominant factors in determining the 

reachability of V2LC. 
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Figure 5.6 : Reachability in vehicle-to-infrastructure one-hop anycasting 

5.6 Vehicle-to/from-infrastructure Unicasting 

Scenario. One vehicle in the leftmost lane transmits CBR traffic to a gateway infras

tructure node in the rightmost lane by using AODV routing protocol. In this scenario, 

an acknowledgment is sent from the infrastructure gateway to the transmitters for 

every data packet successfully received. The simulation starts when no vehicle has 

reached the transmission range of the infrastructure gateway, and it ends when all 

vehicles have passed the gateway and are out of its transmission range. The simula

tion is conducted for three scenarios with different average inter-vehicle distances: 14 

m, 45 m, and 67.5 m. These inter-vehicle distances are representatives of low density, 

medium density, and high density traffic conditions. 
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Figure 5.7 shows the normalized throughput in three traffic conditions as a func

tion of CBR rates, where the normalized throughput is defined as the ratio of the 

number of received bits to V2LC data rate, 2 Mbps. We observe that the normalized 

throughput is the highest in the high density scenario. This is because in denser 

traffic conditions, there are more routes to the gateway infrastructure node as a re

sult of V2LC's high spatial reuse. We also observe that the normalized throughput 

saturates at 1700 kbps, lower than the data rate. We verified that the bottleneck on 

the throughput achievement is the high delay AODV has in finding new routes in a 

vehicular environment. Our results indicate that another routing protocol design can 

possibly improve the performance; however, the development of routing protocols is 

out of the scope of this thesis. 

Findings. Denser traffic conditions result in more available routes, which is a di

rect consequence of high spatial reuse in V2LC networks. Therefore, V2LC achieves 

higher throughput. 
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Figure 5.7 : Normalized throughput vs. CBR rate 
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Chapter 6 

Related Work 

6.1 VLC Link Speed. 

Prior work has investigated constructing single VLC links and increasing the link 

speed via optical techniques and modulation schemes. [10] reports a VLC link speed 

up to 80 Mbps by using pre-equalized white LEDs. In [11], the authors demonstrate 

a VLC link with speed up to 200 Mbps by using discrete multi-tone modulation. 

Recently, researchers at Siemens achieved a VLC link speed up to 500 Mbps [12]. 

These studies show that the VLC link speed has progressively increased. In contrast, 

we have a focus on the networking properties with multiple VLC links. We show that 

the VLC receiver's field-of-view angle has a binary indication on transmissions and 

perceived interference. 

6.2 VLC System Implementations. 

Beyond link rate, a number of single-link VLC systems have been proposed for proof-

of-concept purpose. Visible Light Communication Consortium in Japan demonstrates 

a VLC system, in which two computers use lamps to communicate with each other 

in [13]. In [14], data is transmitted uni-directionally from a traffic light to a vehicle. 
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These proof-of-concept systems have demonstrated that VLC is a feasible technology 

for data communication. In contrast, we have a focus on the introduction of V2LC ar

chitecture. Additionally, we identify five network services that V2LC need to provide 

for all vehicular applications. 

6.3 VLC in Indoor Environments. 

A number of VLC systems have been proposed for usage in home and office settings. 

In [15], the authors provide a theoretical analysis on VLC systems based on indoor 

environment assumptions, such as a lack of sunlight background noise on VLC links. 

In [16], the EU OMEGA project plans to use VLC and infrared to achieve a transmis

sion speed at 1 Gbps in home settings. Because of an existing infrastructure in indoor 

lightings, VLC has garnered significant interest for indoor applications. However, our 

study differs from theirs in two ways. First, we study VLC in a vehicular environment 

that poses different challenges from indoor environments. Second, we have a focus on 

evaluating V2LC's network services. 

6.4 Standardization. 

There are two standardization processes that are related to our work. One is 802.lip 

[2], and it aims to enhance 802.11's capabilities in vehicular environment. The other 

is 802.15.7 [17], and it standardizes PHY and MAC for VLC personal area networks. 

Our work is complementary to the standardization processes. On a VLC research 



50 

platform, we provide experimental results on V2LC's networking properties. More

over, we provide simulation results on V2LC's services for vehicle safety and internet 

access applications. 
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Chapter 7 

Future Work 

Although VLC is still in an infant development stage, it has become a fast burgeoning 

technology in the wireless world. Much of the previous work has been done on single 

links, such as increasing link speeds and proof-of-concept systems. We investigate 

VLC from a networking perspective. However, our research is still at an early stage, 

and we need to address several open problems. Having found that VLC has a high 

spatial reuse, it opens door for research on MIMO with VLC. A node can be equipped 

with multiple VLC transmitters and receivers, and they can transmit and receive 

simultaneously in a system design with MIMO. Therefore, we aim to design a more 

flexible VLC research platform and conduct research on VLC MAC regarding its 

MIMO potentials. This platform will need to provide design environment and tools 

for MAC and PHY layers development. For example, the WARP board developed 

at Rice University is good candidate. Further, we intend to evaluate VLC in real 

vehicular traffic environments. Such environments offer many real-world challenges, 

such as the visible light blockage by vehicular bodies and noise from sunlight and 

other lighting sources. 
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Chapter 8 

Conclusion 

In this work, we describe V2LC networks' architecture and introduce the five network 

services that are needed for vehicular applications. We build a custom VLC research 

platform, and we are the first to investigate the unique networking properties of 

V2LC. We show that V2LC is resilient against visible light noise and interference, 

and it can enable full-duplex mode. Further, we show that V2LC can satisfy the 

stringent reachability and latency requirements in dense vehicle traffic conditions. 
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