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Abstract 

Response and First-Passage Statistics of Nonlinear Structural 
Models under Evolutionary Stochastic Loads 

by 

Ioannis A. Kougioumtzoglou 

In the first half of the thesis, a novel approach is developed for 

determining the response of a lightly damped nonlinear single-degree of freedom 

system to a random excitation with an evolutionary broad-band power spectrum. 

The new approach is based on the coupling of the concepts of stochastic 

averaging and equivalent linearization. The nonlinearities can be either of the 

hysteretic or of the 'zero-memory' kind. Moreover, approximate analytical 

relationships for evaluating the response variance are derived for a number of 

oscillators. The efficiency and accuracy of the approach is demonstrated by 

pertinent digital simulations. 

In the second half of the thesis, an approximate analytical approach is 

presented for examining the first-passage problem in context with the response of 

a class of lightly damped nonlinear oscillators to broad-band random excitations. 

A Markovian approximation both of the response amplitude envelope and of the 

response energy envelope is considered. This modeling leads to a backward 

Kolmogorov equation which governs the evolution of the survival probability of 

the oscillator. The Kolmogorov equation is solved approximately by employing a 

Galerkin approach. A set of confluent hypergeometric functions is used as an 
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orthogonal basis for the expansions which are involved in the application of the 

Galerkin approach. The reliability of the derived analytical solution is 

demonstrated by comparisons of digital data derived by Monte Carlo simulation. 
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Chapter 1 

Introduction 

1.1 Motivation and objectives 

Over the past decades considerable interest has been developed in random 

vibration analysis of dynamic systems used as models in structural engineering. In 

general, the use of the term random vibration analysis suggests the determination 

of the response statistics of a system subjected to a stochastic load. The interest 

shown by the engineering community in the advances in the random vibration 

field can be attributed to the fact that structural loads caused by earthquakes, sea 

waves, blast events, and winds may be realistically described on a stochastic 

basis. 

The main characteristic of a stochastic excitation is that the exact time 

history of some future loading cannot be predicted, nor can the exact time history 

of the response. Consequently, the two random processes (the excitation and the 

response) must be characterized by quantities representing average values. In fact, 

these are expected values of random variables or, in a more intuitive manner, 

averages across ensembles containing all possible time histories of the process. In 

a random vibration analysis the primary goal is to compute average quantities of 

the response, such as the mean value and the power spectral density, from 

knowledge of similar characteristics of the excitation. 
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If the system under consideration is linear, the general methodology which 

has been developed for bearing on deterministically posed problems can be 

readily extended and applied to random vibration analysis. For example, any 

possible time history of the response process may be expressed as a functional of 

a time history of the excitation process. This is essentially the Duhamel 

convolution integral. Exploiting this relationship, only the mean value function of 

the excitation must be known in order to predict the mean value function of the 

response. 

Linear dynamic models are appealing for many structural engineering 

applications. However, in several cases involving strong dynamic excitations, 

such as seismic loads, structural components are expected to exhibit severely 

nonlinear behavior. In general, nonlinear behavior of a structural system is 

associated either with material or geometrical aspects. The number of nonlinear 

random vibration problems which lend themselves to exact solutions is strikingly 

limited. In fact, when considering a non-stationary problem, exact solutions are 

almost non-existent. Thus, the predominant approach for determining, with any 

preselected reliability, the response statistics of nonlinear structural systems under 

random excitation is the Monte Carlo method. This approach involves purely 

numerical random experiments. Specifically, a large number of time history 

samples are numerically simulated and are considered representative of an infinite 

ensemble of possible time histories. Clearly, the computational cost increases 

almost linearly with the number of records, compared to the accuracy which 

increases with the square root of the numbers of records simulated. Hence, there 
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are cases, especially for multi-degree of freedom systems, where the Monte Carlo 

approach can be computationally prohibitive. 

In this context, in the first half of this thesis a novel approach is suggested 

for determining the response statistics for nonlinear oscillators under evolutionary 

excitation. The approach combines the concepts of equivalent linearization, and of 

Markovian modeling of the response by stochastic averaging to yield a simple 

expression for the response variance. The versatility of the approach is 

highlighted by applications to hysteretic and non-hysteretic nonlinear oscillators. 

In the second half of the thesis, the first-passage problem is considered for 

nonlinear oscillators under random excitation. Employing the ideas of equivalent 

linearization and stochastic averaging a partial differential equation governing the 

evolution of the survival probability is obtained. The solution is determined by 

resorting to a Galerkin scheme. 

1.2 Organization of the thesis 

The thesis consists of five chapters followed by the list of cited references. 

Excluding chapter 1 and 2, which play an introductory role, and chapter 5, which 

contains the concluding remarks, the remaining chapters each presents an 

independent research topic. Therefore, they are self-contained and include an 

introductory section followed by the analytical derivations, verified by digital 

simulations. 
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Chapter 1 serves as an introduction to the thesis presenting the motivation 

and objectives of the current research effort. Moreover, the contents of the thesis 

are briefly outlined. 

In chapter 2 the task of reviewing the existing literature on nonlinear 

random vibration problems is undertaken. First, a historical perspective of the 

birth of stochastic calculus is presented. From the early work of physicists on the 

Brownian motion to the modern engineering applications, various scientific 

branches had to contribute for the theory of stochastic mechanics to be set on a 

solid foundation. Furthermore, recent developments in the nonlinear random 

vibration field are briefly outlined and discussed. Analytical or numerical 

approaches employed over the years to yield solutions are presented. These 

include the methods of Markovian modeling of the process, equivalent 

linearization, moment closure, perturbation, series expansion, Monte Carlo 

simulation, and of numerical integration of SDEs. 

Chapter 3 contains a novel approach for determining the non-stationary 

response of nonlinear oscillators under evolutionary broad-band excitations. The 

new approach comprises the elements of stochastic averaging and statistical 

linearization. First, a linearization procedure produces an equivalent time-

dependent frequency and damping factor. Then, taking into account the equivalent 

elements, a simple first-order ordinary differential equation is derived for the 

response variance. This becomes feasible by employing a Markovian model for 

the response, and assuming a time-dependent Rayleigh distribution for the 

response amplitude. Moreover, approximate analytical relationships for 
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evaluating the response variance are derived for a number of oscillators. The 

analytical results concern oscillators of the Duffing, the piecewise linear stiffness, 

the hysteretic bilinear and Preisach kind. The reliability of the approach is 

demonstrated through Monte Carlo simulations. To this aim, evolutionary 

excitations possessing a modulated Gaussian white noise spectrum, a Kanai-

Tajimi spectrum and a non-separable spectrum have been considered. 

In chapter 4 a method is presented for obtaining survival probability 

estimates of a class of lightly damped oscillators. First, the approach is developed 

considering Gaussian white noise excitation. At the end of the chapter the 

approach is generalized to include broad-band non-stationary random excitations. 

The approach is based on modeling the response amplitude envelope by a 

Markovian process. This modeling leads to a backward Kolmogorov equation 

which is satisfied by the survival probability. In fact, modeling the response 

energy envelope by a Markovian process is also considered to illustrate the 

superiority of the latter modeling in cases of stiffness nonlinearities. For the case 

of a linear oscillator, the solution of the backward Kolmogorov equation has been 

determined in the technical literature by using the technique of separation of 

variables. This procedure leads to a boundary value problem whose 

eigenfunctions are a set of orthogonal confluent hypergeometric functions. Thus, 

the solution is cast in the form of an infinite series expansion, where the unknown 

time-dependent coefficients must be determined. In fact, the orthogonality of the 

hypergeometric functions is crucial for applying a Galerkin scheme to obtain the 

unknown time functions as the solution of a system of simultaneous linear 
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differential equations with time variant coefficients. The applicability and 

reliability of the proposed method is demonstrated by considering Duffing and 

Van Der Pol types of oscillators. 

Concluding remarks along with suggestions for future work are provided 

in chapter 5; a list of cited references follows. 
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Chapter 2 

Nonlinear random vibration literature review 

2.1 Historical review 

Since the invention of modern calculus by Gottfried Wilhelm Leibniz 

(1684) and Isaac Newton (1687), differential and integral equations have been 

used in the applied sciences, engineering, economics, and even social sciences to 

describe the current state of a system and predict its evolution in time. A 

simplified approach would suggest that the coefficients and the input to these 

equations are known quantities. In other words, when the level of uncertainty 

related to these systems is relatively small, the associated problems may be 

formulated in terms of averages. The aforementioned deterministic approach, 

however, cannot be expected to realistically describe systems where the level of 

uncertainty is severe. In fact, insufficient information, poor interpretation of 

underlying mechanisms, and inherent randomness of the system result in defining 

problems which possess random coefficients and input. In such cases, a 

probabilistic approach constitutes a rational basis for system analysis and design. 

These problems are referred to as stochastic problems, and the corresponding 

differential equations as stochastic differential equations. 

Differential equations for stochastic processes often appear in the form 
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X(t) = f(t,X(t))+G(t,X(t))r?(t), X(t0) = c, (2.1) 

where the function (rj(t)) represents a stochastic process of the white-noise type. 

This process cannot exist in the conventional sense, since its covariance function 

should be the Dirac delta function yielding an infinite variance. Therefore, the 

white noise process {rj(t)) must be viewed as a mathematical idealization for 

describing random rapid fluctuations which are essentially uncorrelated for 

different time instants. 

Langevin (1908) was the first one to study such equations describing the 

Brownian motion of a particle in a fluid following the original work by Einstein 

(1905). Einstein developed a partial differential equation whose solution yielded 

the approximation of the time-evolving probability density function related to the 

position of a particle under Brownian motion. Another approach to determine the 

time evolution of the position of the particle was followed by Langevin. Defining 

(X(t)) as a component of the velocity of a free particle, Langevin's equation is 

X(t) = -aX(t) + 07/(0, «>0> (2.2) 

where the part (-aZ(?)) represents the influence due to dynamic friction. The 

term (cnj(t)) represents the force exerted on the particle by the molecular 

collisions. Taking into account the vast number of molecular collisions per unit 

time, this term is in fact a rapidly varying one, justifiably idealized as white noise. 



Although white noise is just a generalized stochastic process, the integral 

[J ?](s)ds\ can be defined as the Wiener process. The Wiener process is a 

Gaussian stochastic process with continuous and nowhere differentiable sample 

functions possessing zero mean, (E[W(t)] = 0), and covanance 

(E [W(tx )W(t2)] = min (f,, t2)). Setting 

dW = i](t)dt, (2.3) 

eq.(2.1) can be recast in the differential form 

dX = f(t,X{t))dt + G(t,X(t))dW, X(t0) = c. (2.4) 

The corresponding to eq.(2.4) integral equation can be written in the form 

X{t) = c + \' f(s,X(s))ds+$'t G(s,X(s))dW. (2.5) 

Recognizing the fact that the second integral in eq.(2.5) cannot be treated 

as an ordinary Riemann-Stieltjes one, Ito (1951) defined such integrals for a broad 

class of functionals (<j(f)) creating a solid theoretical foundation for the theory 

of stochastic differential equations. Motivated, however, by the applicability of 

the rules of the classical Riemann-Stieltjes integral, Stratonovich (1966) defined a 
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new stochastic integral. Despite certain mathematical drawbacks (e.g. see Arnold, 

1974), this definition is frequently used in engineering applications due to the 

similarity with the Riemann-Stieltjes integral. Further discussion on the 

appropriate use of the stochastic integral in engineering problems can be found in 

the authoritative article by Gray and Caughey (1965). 

The examples of random excitations acting upon structures are plentiful. 

Wind, blast, ocean waves, and earthquake loads fall into this category. In 

developing the probabilistic theory of structural dynamics, engineers inherited an 

adequate amount of knowledge from the early work of physicists on the subject of 

Brownian motion. The work by Einstein and Langevin was followed by several 

other contributions (e.g. Uhlenbeck and Ornstein, 1930). Structural engineers, 

however, are mainly interested in problems where the excitation and the 

dissipation forces are considered independent. In the case of the Brownian motion 

the two types of forces are related since they are both provided by the fluid 

medium. 

The scientific branches of physics and astronomy were greatly benefited 

by the incorporation of probabilistic approaches, during the first half of the 

twentieth century (e.g. Chandrashekhar, 1943). Engineering applications first 

occurred in the area of communication theory to address the problem of noisy 

signals (Rice, 1944; Rice, 1945; Middleton, 1960). The analysis and design of 

structural systems followed (Bolotin, 1961), leading to the birth of the new area of 

random vibrations (Crandall, 1958; Crandall, 1963a; Crandall and Mark, 1963; 
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Robson, 1963; Lin, 1967; Nigam, 1983; Newland, 1993; Lin and Cai, 1995; 

Elishakoff, 1999). 

2.2 Solution techniques in nonlinear random vibration 

problems 

Mechanical systems or civil engineering structures can be mathematically 

modeled through a set of differential, integro-differential or difference equations. 

These systems are often characterized by uncertainties in terms of structural 

properties, loading conditions etc. Moreover, bearing in mind that no real system 

is exactly linear, the complexity of the formulation increases. In fact, 

nonlinearities may arise in various forms. For instance, the structural components 

of a building exhibit considerable hysteretic behavior, strongly nonlinear in 

character, during an earthquake event. Ultimately, if a non-linear model of the 

system is adopted together with a stochastic process model of the excitation, then 

the dynamic model takes the form of an ordinary differential relationship between 

the input (e.g. excitation) and the output (e.g. response). Since both the input and 

the output are random in nature, one faces the problem of solving a nonlinear 

stochastic differential equation (e.g. Arnold, 1973; Soong, 1973; Grigoriu, 2002; 

Oksendal, 2003). 

Taking into account the fact that there is no general mathematical 

framework arid methodology for analytical solutions of nonlinear stochastic 

differential equations, several approximate approaches have been developed (e.g. 
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Spanos and Lutes, 1986; Lin et al., 1986; Roberts and Dunne, 1988; Proppe et al., 

2003). 

2.2.1 Markov methods 

Since the early work of the scientists on the Brownian motion, it has been 

well understood that broad-band excitations can be adequately modeled in terms 

of Markov processes. This is an assumption which enables one to utilize the 

theory of continuous Markov processes. Indeed, when the excitation is a Markov 

random process, the state transition of the probability density function of the 

response is governed by a partial differential equation, the Fokker-Planck (F-P) 

equation. This probability density function which characterizes the response of 

the system can be also used to determine the response moments and mean-

crossing rates, valuable measures in assessing the reliability of the system. Thus, 

when the excitation of the system is approximated as white noise, the theoretical 

framework of the Markov processes can be employed to study nonlinear vibration 

problems. In cases where the white noise assumption is unjustifiable, pre-filters 

operating on white noise processes can be introduced to produce excitations 

possessing the desired power spectra. 

Exact solutions for linear and nonlinear systems for the stationary case 

(the time derivative term of the F-P equation is set to zero) can be found in Risken 

(1984). In general, the analytical solutions of the F-P equation are quite limited. 

Some solutions exist for a small class of stationary nonlinear problems in two 

dimensions (e.g. Dimentberg, 1982). Solutions for special systems in higher 
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dimensions can be found in Lin and Cai (1995). As far as non-stationary problems 

are concerned, the analytical solutions are even scarcer and require special forms 

of the nonlinear functions (e.g. Caughey and Diens, 1961). 

The stochastic averaging scheme constitutes a potent analytical framework 

for approximately determining the probability density function of the response of 

nonlinear systems. In this scheme, rapidly fluctuating functions are averaged to 

provide simplified equations for slowly fluctuating quantities. A review of the 

method may be found in Roberts and Spanos (1986). For lightly damped 

oscillators and broad-band excitations, this approach enables the two-dimensional 

Markov process governing the response to be replaced by a one-dimensional 

Markov process governing the response envelope amplitude process. 

Consequently, the reduction in dimension of the F-P equation simplifies the 

determination of solutions for non-stationary nonlinear problems. The 

aforementioned scheme is also valuable in calculating first-passage statistics (e.g. 

Roberts, 1986), beneficial to the reliability assessment of the system. The first-

passage problem has been related to the F-P equation by Crandall (1970) and to 

the Backward-Kolmogorov (B-K) equation by Yang and Shinozuka (1970). 

Recently, Spanos et al. (2004) and Wang et al. (2009) have employed the 

stochastic averaging scheme to yield the response statistics of a Preisach 

hysteretic system. Moreover, Spanos et al. (2007) have combined stochastic 

averaging with a Galerkin scheme to obtain the probability density function of the 

response of a class of lightly damped nonlinear oscillators. Recent developments 

concerning the method of stochastic averaging can be found in Lin (1986), Zhu 
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(1988), Red-Horse and Spanos (1992), Lin and Cai (1995, 2000), Huang et al. 

(2000,2002). 

The path integral solution (PIS) technique has been a numerical approach 

to approximately solve the F-P equation. The basic characteristic of the procedure 

is that the evolution of the probability density function is computed in short time 

steps. The method has been used by Naess and Moe (1996) to determine the non-

stationary response of a hysteretic bilinear oscillator. Related advancements 

include the work by Yu et al. (1997), Naess and Mo (2000). The method has also 

been used to derive reliability statistics (e.g. Cai and Lin, 1998; Iourtchenko et al., 

2008). 

2.2.2 Equivalent linearization 

The standard method of stochastic equivalent linearization was 

independently introduced by Booton (1953), Kazakov (1954) and Caughey (1959, 

1963). This method can be viewed as a natural extension of the original approach 

widely used to deal with deterministic problems (e.g. Bogoliubov and 

Mitropolsky, 1963). The concept of the method suggests replacing the nonlinear 

function by an equivalent linear one. The difference between the two functions is 

then minimized in an appropriate sense. 

To perform equivalent linearization, the probability distribution of the 

response random process must be known. Obviously, this is not the case, and 

therefore, the assumption that the response process is Gaussian is usually adopted. 

The validity and efficiency of the method has been demonstrated through 
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numerous applications. The technique was applied by Caughey (1960a) to derive 

the response statistics of an oscillator with bilinear hysteresis under stationary 

Gaussian white noise excitation. Making the assumption that the response is 

narrowband, an averaging technique was used to derive the equivalent stiffness 

and damping coefficients. Since then, the method has been generalized to cope 

with non-white transient excitations (e.g. Spanos, 1981a; Roberts, 1981b; 

Elishakoff, 2000; Roberts and Spanos, 2003; Proppe et al., 2003; Socha, 2005; 

Spanos et al., 2007). 

After almost forty years since the technique was introduced in the field of 

stochastic mechanics, Socha and Pawleta (1994) and Elishakoff and Colanjanni 

(1997) independently claimed that the standard procedure harbors a subtle flaw. 

Consequently, they presented an alternative procedure where they changed the 

criterion for selecting linearization parameters, suggesting that their alternative 

was the correct one. A closure to the issue was brought by Crandall (2001) who 

concluded that there was no flaw in the standard method. In fact, the alternative 

procedure differs from the standard one in that it simply employs a different 

criterion for selecting the optimum linear approximation. 

Ultimately, stochastic equivalent linearization has been proven to be a 

reliable and efficient method, which can be readily generalized to treat multi-

degree of freedom systems. Generalization of the method to cope with cases 

where the response distribution deviates from being Gaussian is also a 

straightforward procedure (e.g. Crandall, 2004). 
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2.2.3 Moment closure methods 

Using the initial equations of motion of the nonlinear system, equations 

for the moments of the response can be readily derived. However, the lower order 

moments appear to be coupled with the higher order ones. Considering additional 

equations for the higher order moments, even higher order moments are 

introduced. Therefore, the moment equations form an infinite hierarchy which 

cannot be solved exactly. As a result, a closure hypothesis must be assumed in 

order to obtain a soluble set of equations (e.g. Nigam, 1983; Soong and Grigoriu, 

1992; Lin and Cai, 1995; Roberts and Spanos, 2003). The same problem also 

arises in linear systems subjected to parametric random excitations. 

The assumption that the response is a Gaussian random process can be 

considered as the first level of sophistication in the closure schemes (e.g. Ibrahim 

and Roberts, 1972). It can be shown that the Gaussian assumption yields results 

identical to those derived by the equivalent linearization approach. A method 

introduced by Er (2000), called multi-Gaussian closure, can be interpreted as an 

extension to the standard Gaussian closure. According to this approach, an 

approximate probability density function is constructed as a linear superposition 

of Gaussian probability density functions. However, in cases where the response 

process deviates considerably from being Gaussian, non-Gaussian closure 

schemes should be employed. To this aim, higher order levels of closure have 

been considered (e.g. Crandall, 1980; Wu and Lin, 1984; Soize, 1988; Hu, 1991). 

In a different case, the Gaussian assumption could lead to highly inaccurate 
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results, especially when failure probabilities are concerned (Papadimitriou and 

Lutes, 1996). 

2.2.4 Perturbation techniques 

The perturbation method can be successfully used only when the system 

nonlinearities are considerably small. Crandall (1963) extended the approach, 

already used to treat deterministic vibration theory problems, to incorporate cases 

of stochastic excitations. The basic idea of the scheme relies on expanding the 

nonlinear solution in terms of powers of a nonlinearity quantifying parameter. The 

first term represents the solution to the equivalent linear problem and the 

subsequent ones express the influence of nonlinearity. However, including higher 

order in the expansion terms makes the calculations cumbersome and intractable. 

The perturbation technique has been used to predict the response of nonlinear 

oscillators by numerous researchers, such as Manning (1975), Iwan and Spanos 

(1978), Henriques (2007). 

2.2.5 Series expansion 

The Wiener-Hermite expansion has been used by Jahedi and Ahmadi 

(1983) to represent the excitation and the response of a Duffing oscillator. An 

iterative procedure has been employed to determine the kernel functions arising in 

the expansion. Further developments include the work by Orabi and Ahmadi 

(1987) and Roy and Spanos (1989). Moreover, Lee (1995) has applied a non-
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Gaussian closure scheme based on Edgeworth series expansion to calculate the 

equivalent linearization coefficients. 

Furthermore, Spanos and Donley (1991) considered replacing the 

nonlinear functions of the system equations by equivalent quadratic ones. As a 

result, they approximated the system response in terms of a Volterra series 

expansion. The extension to the multi-degree of freedom system followed 

(Spanos and Donley, 1992). Tognarelli et al. (1997b) and Spanos et al. (2003) 

have also applied the method using cubic nonlinear equivalent functions. 

2.2.6 Monte Carlo simulation 

The use of Monte Carlo methods as a research tool stems from work on 

the atomic bomb during the second world war. This work involved a direct 

simulation of the probabilistic problems pertaining to random neutron diffusion in 

fissile material. Since then, the method has been applied to almost every scientific 

branch due to its simplicity and versatility. The Monte Carlo approach is 

associated with the fact that a stochastic differential equation can be interpreted as 

an infinite set of independent deterministic differential equations (e.g. Soong, 

1973). Therefore, instead of solving the stochastic differential equation, a family 

of deterministic problems is considered with values for the random parameters 

compatible with their statistical characteristics. Statistical analysis on the family 

of the derived solutions is then conducted. 

The Monte Carlo approach has been widely used to predict the response 

statistics of randomly excited nonlinear systems (e.g. Shinozuka, 1972). 
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Moreover, the standard method can be coupled with variance reduction 

techniques to yield a greater degree of efficiency. To this aim, Au and Beck 

(2001, 2003), Olsen and Naess (2007) and Macke and Bucher (2003) have used 

importance sampling techniques in order to estimate the failure probabilities of 

nonlinear systems. A discussion on the various Monte Carlo digital simulation 

methods can be found in the review article by Spanos and Zeldin (1998). 

2.2.7 Numerical integration of SDEs 

The applicability and versatility of direct integration methods have made 

numerical schemes, such as the stochastic central difference method (To, 1986), 

an attractive approach. Stochastic differential equations which are driven by 

Gaussian white noise cannot be expressed in terms of the Riemann-Stieltjes 

integral, due to the rapidly fluctuating term, corresponding to the white noise 

process. Therefore, the contribution of the Ito (1951) or the Stratonovich integral 

(1966) is needed. It must be noted, however, that the solution corresponding to the 

Stratonovich interpretation and the solution related to the Ito interpretation are not 

identical. They are related, though, according to the Wong-Zakai theorem (Wong 

and Zakai, 1965). It is often preferable and more intuitive to describe an 

engineering problem using the Stratonovich formulation, and then use the Ito 

definition as an efficient formulation for solving the problem (see also Gray and 

Caughey, 1965). 

The extension of the Euler numerical scheme for deterministic differential 

equations to stochastic differential equations was made by Maruyama (1955) 
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leading to the Euler-Maruyama method. A discussion on the available numerical 

schemes can be found in the review article by Kloeden and Platen (1992). 
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Chapter 3 

Nonlinear stochastic response under evolutionary 

excitation 

3.1 Preliminary remarks 

A broad class of structural systems is subject to excitations such as seismic 

motions, winds, and ocean waves which inherently possess the attribute of 

evolution in time. Therefore, to accurately predict the system behavior under this 

kind of loading, realistic modeling has involved representation of these 

phenomena by non-stationary stochastic processes. Associated with the notion of 

a non-stationary stochastic process is the concept of a separable or of a non-

separable evolutionary power spectrum. The former relates to the evolution in 

time of the intensity of a process with time invariant energy-frequency 

relationship. The latter, which in general reflects a more realistic approach, 

encompasses the concept of 'local' energy distributions over frequency (Priestley, 

1965; Priestley, 1967). 

Attempts towards determining, either exactly or approximately, the 

response statistics of a linear oscillator under evolutionary excitation can be found 

in several references (e.g. Caughey and Stumpf, 1961; Hammond, 1968; Roberts 

1971; Corotis and Vanmarcke, 1975; Spanos and Lutes, 1980; To, 1982; Spanos 

and Solomos 1983; Iwan and Hou, 1989; Conte and Peng, 1996). Caughey and 

Stumpf (1961) first studied the transient response of a linear oscillator under unit 
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step modulated white noise. The evolutionary power spectrum of the response 

process of an oscillator subject to a unit step modulated stationary excitation was 

studied in Corotis and Vanmarcke (1975). Explicit expressions for the second 

moment statistics of the response were presented in Iwan and Hou (1989), where 

the results refer to white noise excitation modulated by step, boxcar and gamma 

envelope functions. Moreover, approximate analytical solutions for the response 

amplitude statistics of a lightly damped oscillator under evolutionary excitation 

were derived in (Spanos and Lutes, 1980; Spanos and Solomos, 1983). 

On the other hand, limited progress has been made in terms of determining 

the stochastic response of nonlinear systems. One of the interesting approaches of 

treating nonlinear oscillators under evolutionary excitation has been the coupling 

of the equivalent linearization method with the decomposition of the covariance 

matrix of the input random process (Roberts and Spanos, 2003). In this regard, a 

Karhunen-Loeve spectral decomposition was used in Smyth and Masri (2002). It 

can be argued, though, that often the complexity of such approaches limits their 

versatility. 

To this aim, a general approach is attempted in this chapter based on the 

assumed pseudo-harmonic behavior of the response. Relying on this property, an 

averaging scheme, first proposed by Stratonovich in the 1960s, is applied to yield 

a first-order stochastic differential equation (Ito equation) for the response 

amplitude. In section 3.2.1 the mathematical details of this approach are briefly 

reviewed. A detailed presentation of the averaging procedure can be found in 
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references such as Bogoliubov and Mitropolski (1963), Stratonovich (1963, 

1967), Spanos (1976) and Roberts and Spanos (1986). 

In section 3.2.2 the Fokker-Planck (F-P) or forward Kolmogorov equation 

associated with the Ito one is derived (see also Arnold, 1974; Soong, 1973; 

Oksendal, 2003) having as frequency and damping elements the equivalent ones 

obtained by a linearization scheme. Using the F-P equation with the assumption 

that the probability density function of the response amplitude is a time-dependent 

Rayleigh one, a first-order ordinary differential equation for the response variance 

is derived. 

In sections 3.3.1-3.3.4 the aforementioned procedure is applied to a 

number of hysteretic or non-hysteretic nonlinear oscillators resulting in 

approximate analytical expressions for computing the time-dependent response 

variance. The accuracy of the proposed method is verified by Monte Carlo 

simulation data in sections 3.4.1-3.4.2. 

3.2 Mathematical formulation 

3.2.1 Determination of the equivalent linear system time-dependent elements 

Consider a nonlinear single-degree-of-freedom system whose motion is 

governed by the differential equation 

x + fix + z(t, x, x) = w(t), (3.1) 
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where a dot over a variable denotes differentiation with respect to time (t); 

(z(t,x,x)) is the restoring force which could be either hysteretic or depend only 

on the instantaneous values of (x) and (x); (/3) is a linear damping coefficient; 

and (w(t)) represents a Gaussian, zero-mean non-stationary random process 

possessing an evolutionary broad-band power spectrum, S(ct)J). 

Adopting an equivalent linearization approach followed in Goto and 

Iemura (1973) and described in Roberts and Spanos (2003), the linearized 

counterpart of eq.(3.1) is 

x + 0(A)x + co2 ( A)JC = w(t), (3.2) 

where the equivalent damping element and natural frequency are assumed to be 

functions of the amplitude (A) of the response in order to partly account for the 

effect of the nonlinearity. Assuming the case of a lightly damped system, it can be 

argued that the amplitude (A) is a slowly varying function with respect to time 

and therefore can be treated as a constant over one cycle of oscillation. Thus, 

defining the error between eq.(3.1) and eq.(3.2) as 

s = z(t, x, x) + [/3- fi(A)]x - co2 (A)x, (3.3) 

the expressions 
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Sxzdt 
/?(A) = /? + £ — - (3.4) 

(bx dt 

and 

Sxzdt 
o>2(A) = j — - (3.5) 

<bx dt 

are derived by applying an error minimization procedure in the mean square 

sense, where 1(6 J can be interpreted as 'an average over one cycle' operator. 

The nonlinear oscillator (3.1) exhibits a pseudoharmonic behavior described by 

x(t) = A(t) cos [o>(A)t + 0(t)], (3.6) 

and 

x(t) = -co{A)A(t) sin [eo(A)t + (/){t)\. (3.7) 

Substituting eq.(3.6) and eq.(3.7) into eq.(3.4) and eq.(3.5) and considering A(t) 

and $(t) constant over one cycle yields 

P{A) = p + ̂ - (3.8) 
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and 

JM-Z£, (3.9) 

where 

1 f2»-
C(A) = — cos[y/]z(t, Acosy/, -CD(A)A sin \f/)dy/, 

ir Jo 

(3.10) 

and 

1 r2* 
S'(yi) = sin[i//]z(t,Acosi//,-a)(A)Asmiy)dy/ 

IT JO 
(3.11) 

Let the symbol p(A,t) represent the probability density function of the 

amplitude (A) of the response process (x). Then, the equivalent time-dependent 

damping factor and natural frequency can be evaluated by taking expectations on 

the right-hand sides of equations (3.8) and (3.9), respectively. That is, 

flm(t) = fi + E 
S(A) 

Ao)(A) 

S(A) 
-fi+Ci^mw-Aco(A) 

(3.12) 

and 
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«i(o=£ 
C(A) = [^P(A,t)dA. 

JO A 

(3.13) 

3.2.2 Markovian modeling of the response envelope 

Taking into account the manner the time-dependent natural frequency and 

damping factor have been determined, it is obvious that they possess the 

characteristic of being slowly varying functions with respect to time. Therefore, it 

could be argued that the equivalent linear system can be recast in the form 

x + /3ea(t)x + (D2(t)x = w(t) (3.14) 

The amplitude (A(t)) and the phase (0(0) of the response (x) are introduced by 

the transformations 

x(0 = A(t) cos [o)(t)t + 0(0] , (3.15) 

and 

x(0 = -co{t)A(t) sin [(o{t)t + 0(0] , (3.16) 

which lead to the equations 
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^2(0 = x2(0 + 
(m A 

(3.17) 

and 

0(t) = -a)(t)t-tan 
x(t) 

.«W(0*(Oj 
(3.18) 

Differentiating eq.(3.17) and eq.(3.18) and taking into account eq.(3.14) yields 

A(o=-^mmn2[ajot+mi--^mo>eq(t)t+0(t)]. (3.19) 
aeq(t) 

Relying once more on the assumption of light damping, further 

simplification of eq.(3.19) is obtained by a combination of deterministic and 

stochastic averaging (e.g. Spanos and Lutes, 1980) which results in the following 

first order stochastic differential equation that approximately governs the 

evolution in time of the amplitude (A(t)): 

\ l / 2 
7rS(G)' (0 ,0) 

2 ^ W 2 ^ ( 0 ^ ( 0 flV.(0 
(3.20) 

e ? ' 
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In eq.(3.20), rj(t) is a zero mean and delta correlated process of intensity one, i.e., 

E(rj(t)) = 0 and E(rj(t)Tj(t + T)) = S(T), with (S(T)) being the Dirac delta 

function. The importance of eq.(3.20) lies in the fact that it is decoupled from the 

phase (0(0) • Thus, it is feasible for the amplitude process (A(t)) to be modeled 

as a one-dimensional Markov process. 

3.2.3 Fokker-Planck equation 

The Fokker-Planck equation that corresponds to eq.(3.20) is (e.g. Nigam, 

1983) 

dp(A,t) = d 

dt dA 

IV 

IV 

1 7rS(a>(t),t) 
-Pea(t)A + — ", 
2HeqK) 2Aa>2(t) 

p(A,t) > + ... 

nSjto^t) d2p(A,t) 
2®i(0 dA2 

(3.21) 

Following a similar approach as in Spanos and Lutes (1980), a solution of 

eq.(3.21) is attempted in the form 

p(A,t) = 
A 

c(t) 
2c(t) (3.22) 

where (c(/)) accounts for the time-dependent variance of the response process 

(JC) . Substituting eq.(3.22) into eq.(3.21) and manipulating yields 
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c(t) = -^(0c(t)+ V ; ' ; - (3.23) 

Taking into account eq.(3.12) and eq.(3.13) it can be readily seen that 

eq.(3.23) constitutes a first-order ordinary differential equation for the variance of 

the process (x). Therefore, by approximating the probability density function of 

the non-stationary amplitude response by a time-dependent Rayleigh one, a 

simple expression has been derived in order to determine the variance of the 

response process. 

3.3 Analytical Results 

3.3.1 Piecewise linear oscillator 

The first application concerns a system with piecewise linear stiffness. 

Mathematically, the stiffness function can be described as 

{ 2 I I 

conx, \x\<xn 
2 2 2 • ( 3 - 2 4 ) 

O[X+J;0 (co0 - ft), )sign(x), \x\ > x0 

where the initial stiffness is given by (col )• When the absolute value of the 

displacement exceeds (x0), the stiffness changes to (ft),2). Equivalently, making 

use of the Heaviside function yields 

z(x) = co]x+(l ~[H(x + ̂ o) - H(x ~*o)\j\°^x + xo(^o - ^i )^^W - 6>ox)»(3.25) 
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where 

H(x) = 
[0, x<0 
ll, x>0' 

(3.26) 

Introducing the non-dimensional displacement (y = x/x*) and the non-

dimensional time quantity (r = ca0t), eq.(3.25) becomes 

z(y) = y + (l-[H(y + l)-H(y-l)])(sy + (l-S)Sign(y)-y), (3.27) 

where (s) is the ratio of secondary to primary elastic slope. Evaluating the 

integrals in eqs.(3.8) and (3.9) yields 

P{A) = 0, (3.28) 

and 

a>\A) = \ 
2 J l - - i - (1 - s) + Ans - 2A(-l + s) esc-1 (A) 

7tA 

1, 

, A > 1 , 

A<1 

(3.29) 

where 



csc \A) = sin M — (3 

Using eqs.(3.12-3.13) results in the expressions 

»i(0= l - e z c l " + 

i f 2\I1 j(l-s) + Ans-2A(-\ + s)csc\A) e2c(,)<£4 

;rc(0 
(3 

and 

PeM = P (3 

for the time-dependent equivalent frequency and damping factor. 

3.3.2 Duffing oscillator 

Consider the randomly excited Duffing oscillator 

x + /}x + co0x + ea)0x =w(t), s>0, (3 

for which the function (z(t, x,x)) is defined as 
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z(x) = a>{\x+eco^x . (3.34) 

Then, using eq.(3.8) and eq.(3.9), the amplitude-dependent equivalent natural 

frequency and damping term are found to be, respectively, 

fi(A) = 0, (3.35) 

and 

6)\A) = o)2
0(l+-eA2). (3.36) 

Substituting eq.(3.35) and eq.(3.36) into eq.(3.12) and eq.(3.13) respectively and 

taking into account eq.(3.22), the expressions 

£,« = £. (3-37) 

and 

a>2(t) = a>2
0(l + -ec(t)) (3-38) 

are obtained. Finally, the use of eqs.(3.37), (3.38) and (3.23) leads to a first-order 

differential equation of the variable (c(/)): 



34 

f I ^ A 
\col(\ + ^£c(t)),t 

c(t) = -Ipcit) + —^ ^ J-. (3.39) 
an 3 a>l

Q(\ + -ec(t)) 

3.3.3 Bilinear oscillator 

An oscillator that exhibits hysteretic behavior of the bilinear type will be 

considered. Thus, the equation of motion (3.1) becomes 

y + fiy + ay + (l-a)z0=f(T), (3.40) 

where the non-dimensional displacement (_y = x/x*) and the non-dimensional 

time quantity (r = ct)0t) have been introduced; (x*) is the critical value of the 

displacement at which yield first occurs; (o0) is the frequency of the oscillation 

corresponding to the primary elastic slope; (a) is the ratio of plastic to elastic 

stiffness; and (z0) the hysteretic force corresponding to the elasto-plastic 

characteristic. The hysteretic force (z0) can be represented in terms of a first-

order differential equation (e.g. Suzuki and Minai, 1987a) as 

z0=y[l-H(y)H(z0 -l)-H(-y)H(-z0 -1)] . (3.42) 

Comparing eq.(3.1) and eq.(3.40) yields 
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z(t) = qy + (Ji-a)zQ. (3.43) 

Using eqs.(3.8) and (3.9), the amplitude-dependent equivalent elements are 

fl(A) = fi+ , ^ " ^ Q ^ (3.44) 
^JaA2+(Ti-a)AC0(A)' 

and 

,2,~ _ „ ^Q(^) co\A) = a + {\-a)^^, (3.45) 
4̂ 

where 

C0 (A) = - \2" cos[^]z0 (A, t)dy/, (3.46) 
IT •"> 

and 

50(^) = - - \2* sm[¥}zQ(A,t)dv • (3.47) 
i r JO 

A technique for evaluating the integrals in eqs.(3.46) and (3.47) can be found in 

(Caughey, 1960; Caughey, 1960a) which yields 
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A_ 
(A-0.5sin(2A)), A>1 

A, A<1 

(3.48) 

and 

SM) = 
4 1 
- ( 1 - - ) , A>1 
n A •. 

0, A<1 

(3.49) 

where 

cos2A = l — (3.50) 

Combining eqs.(3.44-3.50) and (3.12-3.13) yields the expressions 

o)2(t) = a + (l-a) 1 - e2c(,) + —!— f" (A - 0.5 sin 2A) Ae2c(,)dA (3.51) 

and 
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4(1-a) f« 
A. (0 = / ? + ^ r I ^ A (3.52) 

^ J a + ^ ( A - 0 . 5 s i n 2 A ) 

for the time-dependent equivalent frequency and damping factor. 

3.3.4 Preisach oscillator 

Recently, an envelope-based approach has been applied by Spanos et al. 

(2004) to determine the response amplitude statistics of Preisach hysteretic 

systems under stationary Gaussian white noise excitation. The approach has been 

further extended in Wang et al. (2009) to yield response energy envelope 

statistics. Following the notation introduced in Spanos et al. (2004), the equation 

of motion (3.1) becomes 

x+/3x + a)2x + fH(t) = w(t), (3.53) 

where 

a = yfafi+aj = coj Jl + 0, (3.54) 

<»j=Jk~, (3.55) 

and 
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= coll(o). (3.56) 

As mentioned in Spanos et al. (2004), the Preisach restoring force can be 

divided in two terms; a linear part (tfx) and a nonlinear one (fH (t)) monitoring 

the memory of the system. Therefore, ($) quantifies the stiffness of the linear 

counterpart of the Preisach element compared to the linear stiffness (co^) 

contribution. Introducing now the parameter 

W = ^ , (3-57) 
J v 

eq.(3.53) can be recast in the form 

x + /3x + co2(x + i//dH(t)) = w(t), (3.58) 

where (dH (i) ) the scaled hysteretic restoring force and 

r* J y.max J y, 

~2 
/ ; = Jy'mm

 n
 Jy*** , (3.59) 

where (f) is the yielding force. Defining the non-dimensional parameter (v) as 
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v = -
f -f 
J v.max J \ 

yjaan J y,mw 

2/; 
.* ? (3.60) 

and applying eqs.(3.8) and (3.9) for v = 1 yields 

fi(A) = fi + -
Vj/(Q2 

A 

" V 4 ( 1 + ^> 

(3.61) 

and 

4(1 + t)2 (3.62) 

Equivalent expressions can be found for arbitrary values of (v), though more 

complicated. Combining eqs.(3.61-3.62) and (3.12-3.13) leads to the expressions 

<(0 = «2 y/^jlncit) 

«a+#r 
(3.63) 

and 

^o 2 

3^(1+ 0) c(nJc 

A2 

3^(l + ̂ c ( 0 J o _2 yw ^T2 

A1 

:e2c(t)dA (3.64) 

4(1+ ^)2 
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for the time-dependent equivalent elements. 

3.4 Numerical Applications 

To assess the accuracy of the proposed method, digital simulations have 

been performed considering both separable and non-separable excitations. For 

each Monte-Carlo type simulation an ensemble size of 500 realizations has been 

used, whereas the value of 0.01 has been chosen for the ratio of critical damping 

3.4.1 Separable Processes 

In the case of separable random processes the evolutionary power 

spectrum of the excitation is given by the equation 

S(G>,t) = \g(0?Sv(o>), (3.65) 

where (g(t)) is a slowly varying time-dependent modulating function; (Sv(co)) is 

the power spectrum of a stationary process (v(f )). Under these circumstances, the 

excitation process can be recast in the form 

"<0 = g(0v(0- (3.66) 
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In the ensuing steps, the simulation studies are performed choosing the 

modulating function to be 

g(t) = k{e-at-e-bt), (3.67) 

in which a = 0.25; b = 0.5; and k is a normalization constant so that gmax = 1. 

3.4.1.1 Modulated Gaussian White Noise 

The case where Sv{(o) = S(i, 0<|o|<oo is first considered. Obviously, 

for the case of a modulated white noise excitation, there exist many tractable 

approaches for evaluating the response statistics. However, this simulation serves 

the purpose of comparing the proposed method to another equivalent linearization 

approach. The latter, equally simple to implement for modulated white noise, is 

generally expected to have greater accuracy, since it does not have the element of 

averaging. Extended presentation of the alternative method exists in Roberts and 

Spanos (2003), therefore, limited background information is included herein. 

The simulation study is restricted to the case of a Duffing oscillator. Based 

on the assumption of Gaussian approximation of the response, eqs.(3.37) and 

(3.38) yield 

Peq(t) = P, (3.68) 

and 
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< ( 0 = *>o(l + 3*c(0) (3-69) 

for the non-stationary linearization approach. The variance of the response is then 

determined by solving the following set of coupled differential equations: 

—E(x2) = 2E(xx) 

—E(xx) = -^{\ + 3eE(x2)^E(x2)-j3E(xx) + E(x2) . (3.70) 

—E(x2) = 27t\g(t)\2SQ-2((o2(l + 3eE(x2]^E(xx)-2/3E(x2) 

The equivalent to eqs.(3.70) for the proposed method is eq.(3.23), which becomes 

c(0 = -2/7c(0+ ^8(fS° • (3.71) 

The results obtained by eqs.(3.70) and (3.71), along with the digital data, 

are shown in Figs.(3.1) and (3.2). For the natural frequency (<y0), the value 3.61 

rad/s has been used, whereas the values s = 0.5 and s = 1 have been considered 

in Figs.(3.1) and (3.2), respectively. 
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0.25 

Fig.(3.1). Response Variance for a Duffing oscillator (£r = 0.5) under modulated 

Gaussian white noise. Comparison between MCS data (500 realizations), 

eq.(3.70) and eq.(3.71) 

0.25 

30 
time (s) 

Fig.(3.2). Response Variance for a Duffing oscillator (£ = 1) under modulated 

Gaussian white noise. Comparison between MCS data (500 realizations), 

eq.(3.70) and eq.(3.71) 
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For small values of the power spectrum (S0), it is seen that both methods 

are in excellent agreement with the Monte Carlo data. Furthermore, it is 

demonstrated that increasing the nonlinearity degree gradually results in 

divergence from the digital data as expected. However, the behavior of the new 

method indicates at least the same reliability level as the equivalent linearization 

one. 

3.4.1.2 Modulated Kanai-Tajimi Spectrum 

The modulated Kanai-Tajimi (Kanai, 1957; Tajimi, 1960) excitation has 

been frequently used in earthquake engineering applications. The following form 

for the power spectrum is considered 

(8;r)4+4(0.8)2(8;r)V 
Sv(co) = Sl—-L_i__^Ll—1 , -cc<co«», (3.72) 

{{%7i)2-(o2\ +4(0.8)2(8;r)V 

which corresponds to the squared modulus of the frequency response function of 

single-degree-of-freedom oscillator with prescribed stiffness and damping 

elements. Generating realizations of the process v(/), being compatible with 

(Sv(jco)), is possible by using an auto-regressive time series algorithm (e.g. 

Spanos and Zeldin, 1998), where a minimization procedure yields a Toeplitz 

system of linear equations known as the Yule-Walker equations. In Figs.(3.3-3.5), 

the time evolution of the response variance under modulated Kanai-Tajimi 
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excitation is plotted. In Fig.(3.3), an oscillator possessing a piecewise linear 

stiffness is concerned. The value (s = 2) is used. In Figs.(3.4) and (3.5), a 

Duffing, (e = 1) and a hysteretic bilinear one, (a = 0.02,6 = 0.1), are considered, 

respectively. The reliable behavior of the new method is demonstrated for 

different values of the input strength (S1,). Comparing the approach to Monte 

Carlo results, it can be argued that it successfully manages to follow the time 

evolution of the mean value of the variance, which is quite predictable taking into 

account the averaging procedure which is involved. 

Fig.(3.3). Response Variance for an oscillator with Piecewise Linear Stiffness 

(s = 2) under modulated Kanai-Tajimi spectrum. Comparison between MCS data 

(500 realizations) and eq.(3.23) 
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Fig.(3.5). Response Variance for a Bilinear oscillator (a = 0.02,6 = 0.1) under 

modulated Kanai-Tajimi spectrum. Comparison between MCS data (500 

realizations) and eq.(3.23) 
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3.4.2 Non-Separable Processes 

The following non-separable power spectrum is considered 

S(a>,t) = S2 ^ - e-0A5t , -f-T' 
t2eK5n) , t>0, -oo<e><oo. (3.73) 

This spectrum comprises some of the main characteristics of the seismic motion, 

such as decreasing of the dominant frequency with time. Realization records 

compatible with eq.(3.73) have been produced taking advantage of the concept of 

spectral representation of a stochastic process (e.g. Spanos and Zeldin, 1998; 

Shinozuka and Deodatis, 1991). In Figs.(3.6-3.8), the time evolution of the 

response variance under the non-separable process is plotted. Several values for 

the excitation level (S2) are considered. Specifically, in Fig.(3.6), an oscillator 

possessing a piecewise linear stiffness is concerned. The value (s = 2) has been 

used. In Figs.(3.7) and (2.8), a Duffing, (f = l) and a hysteretic bilinear one, 

(a = 0.02, b = 0.1), are examined, respectively. Again, the new method succeeds 

in capturing the average characteristics of the variance, while neglecting the 

oscillatory components. 
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Fig.(3.8). Response Variance for a Bilinear oscillator (a = 0.02,6 = 0.1) under 

Non-Separable excitation. Comparison between MCS data (500 realizations) and 

eq.(3.23) 
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Chapter 4 

First-Passage problem using a Galerkin approach 

4.1 Preliminary remarks 

In order to perform a reliability-based analysis of a mechanical or 

structural system, it is often desirable to estimate the probability that the response 

of the system reaches, and possibly crosses, a prescribed level for the first time. 

Clearly, the knowledge of such a probability would be beneficial to numerous 

practical applications, in terms of safety or risk assessment. This has led to 

considerable effort to address the aforementioned challenge, known as the first-

passage problem. 

Since this problem was first posed in the field of stochastic dynamics, 

several approximate solutions have been proposed with varying degree of success. 

An early approach by Coleman (1959) adopts the assumption that the level-

crossings rate follows a Poisson distribution. In fact, this implies that the crossing 

events are independent. This is reasonable though only in the case where the level 

crossing is a rare event and quite unacceptable in the case of lightly damped 

systems as it is pointed out in Lin (1967). An advancement towards this direction 

(Vanmarcke, 1975) assumes a modified level-crossing rate which only 

asymptotically converges to the previous one as the level increases. Further, an 

approximate method for calculating the effect of clumping on the extreme 

response of lightly damped nonlinear systems may be found in Naess (1999). 
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Furthermore, since an analytical solution of the first-passage problem has 

not been possible, except for the case where the random phenomenon can be 

modeled as an one-dimensional Markov, or diffusion, process, efforts have been 

made to establish upper and lower bounds of the first-passage probability (e.g. 

Shinozuka, 1964). References to other improvements of this kind of approach can 

be found in Nigam (1983). 

In general, several different approaches have been adopted over the past 

decades to encounter the problem. These range from the ones which include 

derivation of exact solutions (Kovaleva, 2009) or employ asymptotic analysis 

(Roy, 1997), to the more numerical ones (Sharp and Allen, 1998; Pichler and 

Pradlwarter, 2008). Moreover, since the first-passage problem lacks exact 

analytical solutions, one could argue that efficient implementations of the Monte 

Carlo method could yield reliable and applicable probability estimation 

procedures. Indeed, several attempts have focused on combining the basic idea of 

the Monte Carlo method with importance sampling procedures as in Au and Beck 

(2001,2003) and Olsen and Naess (2007). 

Recently, the path integral solution (PIS) technique, a numerical approach 

to approximately solve the Fokker-Planck (F-P) equation, has been used to derive 

reliability statistics (Cai and Lin, 1998; Iourtchenko et al., 2008). The basic 

characteristic of the approach is that the evolution of the probability density 

function is computed in short time steps. 

Furthermore, Galerkin approaches have been proved to be a powerful tool, 

especially when utilizing the properties of orthogonal function bases. In fact, in Li 
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and Ghanem (1998) first-passage statistics were computed using a polynomial 

chaos expansion in conjunction with a Galerkin projection scheme. In this regard, 

although Karhunen-Loeve (K-L) expansions often appear unattractive due to the 

computational cost of calculating K-L terms, wavelet bases can be used (Phoon et 

al., 2002) to enhance the conventional Galerkin approach to solve the Fredholm 

integral equation. 

Undoubtedly, one of the most promising frameworks for bearing on the 

problem is associated with modeling the response as a one-dimensional Markov 

process. An extensive review on tackling the first-passage problem using 

diffusion methods can be found in Roberts (1986). Based on the assumption of 

pseudo-harmonic behavior of the response, an averaging procedure (Bogoliubov 

and Mitropolski, 1963; Stratonovich, 1963; Stratonovich, 1967) is employed to 

yield a first-order stochastic differential equation (Ito equation) governing the 

response amplitude. Related to the Ito equation is the backward Kolmogorov (B-

K) partial differential equation. 

In this chapter, the combination of the concepts of equivalent linearization 

(Roberts and Spanos, 2003; Proppe et al., 2003; Socha, 2005) and stochastic 

averaging (Lin, 1986; Roberts and Spanos, 1986; Zhu, 1988; Lin and Cai, 2000) 

yields a backward Kolmogorov (B-K) equation, having as frequency and damping 

elements the equivalent ones obtained by a linearization scheme. A general 

Galerkin mehodology is then applied to recover an approximate solution of the 

(B-K) equation. 
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In section 4.2 nonlinear oscillators subject to Gaussian white noise 

excitation are considered. In section 4.2.2 Markovian modeling of the energy 

envelope is also considered. The improved accuracy this alternative formulation 

offers is emphasized, especially in the case where stiffness nonlinearity is present. 

In section 4.3 the extension of the method to take into account evolutionary 

random loads is discussed. The accuracy of the proposed method is demonstrated 

through comparisons to Monte Carlo data for a number of nonlinear oscillators. 

4.2 Nonlinear oscillators under Gaussian white noise excitation 

4.2.1 Markovian modeling of the response amplitude envelope 

In this section, the probability density function (PDF) of the first-passage 

time is determined by adopting the Galerkin approach used in Spanos et al. (2007) 

to obtain the non-stationary PDF of the response envelope. In this manner, a more 

general, improved framework is employed vis-a-vis a similar approach which has 

been used in Spanos (1982) to treat systems with damping nonlinearities. 

4.2.1.1 Ito and backward Kolmogorov equations 

Consider a nonlinear single degree of freedom system whose motion is 

governed by the differential equation 

x + 2£0co0x + m\x + ef[x, x] = w(t), (4.1) 
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where (f[x,x]) is an arbitrary nonlinear function which depends on the response 

displacement and velocity; (£"„) is the ratio of critical damping; and (w(t)) 

represents a Gaussian, zero-mean white noise random process possessing a power 

spectral density equal to (S0). 

Following an equivalent linearization approach as described in Roberts 

and Spanos (2003) and Goto and Iemura (1973), a linearized counterpart of 

eq.(4.1)is 

x + 2(o0 [£0 + e^ (A)] x + [col + ™lq (A)] x = w(t), (4.2) 

where the equivalent damping element and natural frequency are assumed to be 

functions of the amplitude (A) of the response in order to partly account for the 

effect of the nonlinearity. Assuming the case of a lightly damped system, it can be 

argued that the amplitude (A) is a slowly varying function with respect to time 

and therefore can be treated as a constant over one cycle of oscillation. Thus, 

introducing the transformations 

x(t) = ̂ ( O c o s [ ^ 0
2 +ea>2

e(l(A)t + 0(t)]» (4.3) 

and 

x(t) = -^a>l +eeo2
eq(A)A(t)smya>2

0 + ea)2
eq{A)t + </>(t)^, (4.4) 
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and performing a mean square minimization procedure on the error between 

eq.(4.1) and eq.(4.2) the expressions 

<n>l,(A) = — J / c o s ^ l / C ^ c o s ^ , - ^ 2 + e&2
eq(A)Asmi//)dy/ (4.5) 

and 

2(0
0Ceq (A) = . \l" sin[^]/(^4 cos if/, -^a>l + sa)2

eq{A)A sin y/)dy/ (4.6) 

xAja>Z+etom(A) 

are derived for the equivalent damping and frequency elements. Moreover, 

substituting eqs.(4.3) and (4.4) into eq.(4.2), two coupled first-order stochastic 

differential equations are obtained governing the time evolution of the amplitude 

(A(t)) and the phase (0(t)). Nevertheless, relying on the assumption of light 

damping, modeling the amplitude process (A(t)) as a one-dimensional Markov 

process is feasible by applying a combination of deterministic and stochastic 

averaging (Bogoliubov and Mitropolski, 1963; Stratonovich, 1963; Stratonovich, 

1967; Roberts and Spanos, 1986). This leads to decoupling from the phase the 

amplitude and to equation: 

A{t) = -co0 [C0 + e£ (A)l A(t) + , fS° , 7 —=if£L_77(0. (4.7) 
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In eq.(4.7), rj(t) is a zero mean and delta correlated process of intensity one, i.e., 

E(7j(t)) = 0 and E{r](t)T]{t + T)) = d{r), with (S(T)) being the Dirac delta 

function. 

Denoting by (P(a,t)) the probability that (A), starting from an initial 

value (a) never reaches the barrier level (B) during the time interval [Q,t], the 

following partial differential equation (B-K) associated with eq.(4.7) is satisfied 

8P(a,t) 

dt ®o (£>+<«(*)) a ~ 
nSn 

2aan (a) 

dP(a,t) 

da + 
7tSn 

2a>2„(a). 

d2P(a,t) 

da2 (4.8) 

where 

fo2„{a) = (ol+£Q)2{a) (4.9) 

Taking into account the physical parameters of the problem, the following 

initial and boundary conditions are imposed: 

P(a,0) = \, (4.10) 

P(B,t) = 0, (4.11) 
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and 

P(0,0 = finite (4.12) 

4.2.1.2 Galerkin formulation 

The derived backward Kolmogorov eq.(4.8) can be equivalently recast in 

the form 

dP{a,t) 

dt nonlinear (4.13) 

where 

A/near L-J ~ ho^Q a-
a 

4L, ,m 
da 

+ Cocoocr
! s a„2 da2 

(4.14) 

and 

nonlinear L'J £><%C T ,2 if, < ^ 
a y °>nia)j 

£>0°"; 
2 1 ®0 
* „ 2 

• l l ^ l 
® » ^ 

(4.15) 

The rationale for this manipulation is that for s = 0, eq.(3.8) takes the form 
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^ ^ = J w F ( « . ' ) ] . (4-16) 
ot 

In fact, eq.(4.16) along with the boundary conditions, eqs.(4.11-4.12), leads to a 

boundary value problem which can be recast as a Sturm-Liouville one (e.g. 

Spanos, 1982). As a result, the solution of eq.(4.16) is given in the form 

Pnnear,B ( « , ' ) ^ W ^ ^ , ( 4 . 1 7 ) 

where 

E = \al- (4-18) 

In eq.(4.17), the variable (AiB) denotes the i-th eigenvalue and the variable 

(0(B[£,/l(B]) denotes the corresponding eigenfunction. Additional information 

regarding the form and the properties of these eigenfunctions can be found in 

Spanos (1980,1982). In particular, 

®iJS[E,\B] = M[-\B,l,E], (4.19) 



59 

where the symbol (M) denotes the confluent hypergeometric function. An 

important orthogonality condition can be derived based on its properties. That is, 

if ^B[E,\Bl^JB[E,^B]dE = 0, i*j. (4.20) 

Relying on the structure of eq.(4.13), an approximate solution can be 

constructed resorting to a Galerkin approach. To this aim, the solution for the 

nonlinear oscillator (4.1) is sought in the form 

PB(a,t) = PUnear,B{a,t) + f > r ( 0 O r » , (4.21) 

where the second term on the right hand side of eq.(4.21) accounts for the 

deviation of (PB(a,t)) to {Piinear<B(a,t)) due to the nonlinearity. The time-

dependent functions (cr(0) are to De determined, and the integer (N) denotes 

the truncation limit of the series expansion. Assuming that the system is initially 

at rest, the use of eqs.(4.10) and (4.21) yields 

PB(a,t = 0) = 1 = Plimar,B(a,t = 0) + J)cr(r = 0 ) O r i » , (4.22) 

which implies that 
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c ( , = 0) = 0, r = 0,l,...,N. (4.23) 

Applying a similar approach as in Spanos et al. (2007), substituting eq.(4.21) into 

eq.(4.13) yields for the residual error 

^hc(o]=E^w^,B(«)-Ecr(^w,B[^B(«)]--

2 4 e ^ * ^ y 4 - ^ ^ [ ^ 3 ( * ) ] - Z C r ( 0 4 B * - r 3 [ < ] > r 3 ( f l ) ] 
r=l r=\ 

To determine the unknown (c(t)), an appropriately selected set of functions is 

employed. According to the Galerkin scheme, the projection of the residual error 

on this set yields a set of ordinary linear differential equations for the functions 

( JL» A 
as weighting functions, the 

—a 

V 
(c(t)). In this manner, selecting Q>Bk(a)e 2 a 

Galerkin principle takes the form 

jBR[a,c(t)]OBk(a)e~2aada = 0, jfc = l,2 JV. (4.25) 

Taking into account the orthogonality conditions (eq.(4.20)) and manipulating 

eq.(4.25) yields the following linear system 

c£t) = Qc(t) + d(t) (4.26) 
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where the components of the vector (c(t)) are defined by eq.(4.23); the vector 

(d(t)) has the form 

d(t) = 

Z ^ ^ ' J O V B (^e"2"2 aLnonlineanB [®r,B(a)]da 
r=l 

1 2 

\B
0®iAa)e2a ada 

j^Lre-2^'\B
Q<S>Np (a)e^ \LnonlineaTj [Or3(a)]«fa 

i . 
—a 

\0®itAa)e 2"ada 

(4.27) 

and the matrix ( o ) is given by 

O 

K IN - 2 £ > ( A B + K I I . . . 

\l®Xfiia)e2a ada Jo*0^ (")*"' ada 

J0 ^ , B ( a ) e 2 ada J0 ° iv,B(a) e 2 a^a 

(4.28) 

where 

K» =\l®iAa)e2a aLnonlinear,B[^jAa)]da' (4.29) 
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Note that in deriving eq.(4.28), the dimensionless variable 

A = A> ff.=J#7 (4-30) 

has been introduced where (trx) represents the stationary standard deviation of 

the linear oscillator. Moreover, the following relationship 

W * [ ^ B ( « ) ] = -2<> (AB (4-31) 

between the eigenfunctions and the eigenvalues has been taken into account. 

Having determined (PB(a,t)) using eq.(4.21), the corresponding PDF for the 

first-passage time is obtained using the equation 

pB(a,t) = SLJJ., (4.32) 
at 

4.2.1.3 Van Der Pol oscillator application 

In this section, the preceding procedure is applied to a Van Der Pol 

oscillator whose equation of motion is given by the equation 

x + 2£0o>0 (-1 + ex2) x + col x = w(t). (4.33) 
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Taking into consideration the transformation of eq.(4.26), straightforward 

application of eqs.(4.5) and (4.6) yields 

coeq{d) = 0, (4.34) 

and 

( 2 a2\ 

[ e 4 

Furthermore, eq.(4.15) yields 

^nonlinear [/J ~ ] ^ O S O 
£ 4 

« > - £ . (4.36) 

To assess the accuracy of the proposed procedure, a Van Der Pol oscillator 

possessing the following parameters is considered: 

(B = l,£) =0.0l,as =\,S0 =0.3,s = 3). In Fig.(4.1) the evolution in time of the 

series coefficients {Ct{t), i = 1,...,5) is plotted. It can be seen that the influence 

of the terms in the series expansion becomes less dominant as the order of the 

terms increases. This is shown in Fig.(4.2) where the corresponding PDF of the 

Van Der Pol oscillator is evaluated. Direct comparison to Monte Carlo simulation 

(MCS) data shows a quite good agreement even for a small number of terms. 
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Specifically, despite the large value of the nonlinearity, 9 terms are enough to 

achieve a good agreement with MCS data. In fact, little improvement is obtained 

for a larger number of terms. 

0 5 10 15 20 25 30 35 40 
Timet 

Fig.(4.1). Time-dependent series coefficients {Ct(f), / = 1,...,5) for a Van Der 

Pol oscillator {s = 3) 
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Fig.(4.2) First-Passage PDF for a Van Der Pol oscillator (e - 3). Comparison 

between MCS data (5000 realizations) and eq.(4.32) 

Examining Fig.(4.2) it is noted that for small values of the time variable 

the theoretical data considerably deviate from the corresponding numerical 

simulations. It is obvious that the first-passage probability density of the oscillator 

is equal to zero for / = 0. However, this requirement necessitates the use of an 

infinite number of terms in the expansion in eq.(4.17) and therefore in eq.(4.21). 

The deviation observed in eq.(4.21) deteriorates in eq.(4.32) since differentiation 

takes place. However, there is no need to produce a smooth approximation at the 

vicinity of zero time, since the primary interest is directed to situations where the 

probability of first-passage time is higher than zero. 
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4.2.1.4 Duffing oscillator [s > 0) application 

The case of a Duffing oscillator is considered whose motion is described 

by the equation 

x + 2£oeoox + (0Q (l + ex2)x = w(t), e>0. (4.37) 

Taking into consideration eqs.(4.5) and (4.6) yields 

3 (4.38) 

and 

C(") = 0- (4.39) 

Moreover, eq.(4.15) gives 

^nonlinear L\| — i hO^Q 

( <ol ^ 

\ °>n(a)j da l^nfa) I 5a 
(4.40) 

The preceding formulation is applied to a Duffing oscillator possessing the 

parameter values: (B = l,g0 = 0.01,^ = l,S0 = 0.3, s = 0.5). In Fig.(4.3) the time 

evolution of the series coefficients is shown, whereas in Fig.(4.4) the 
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corresponding PDF for the first passage is shown. A second value for the 

nonlinearity parameter is also chosen [s = l.O). The results are shown in 

Figs.(4.5) and (4.6). It can be readily seen that more accurate estimation is 

retrieved for the lower value of the nonlinearity, as expected. However, slight 

improvement is observed for values of (TV > 15). It should be mentioned that in 

case of high nonlinearity degree the approach is unavoidably affected by the 

approximations involved in the stochastic averaging procedure in both the 

derivation of the one dimensional Ito equation and the linearization of the system. 

Fig.(4.3). Time-dependent series coefficients (Ct(t)> i=l,...,5) for a Duffing 

oscillator [s = 0.5) 
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Fig.(4.4). First-Passage PDF for a Duffing oscillator (£ = 0.5). Comparison 

between MCS data (5000 realizations) and eq.(4.32) 

Fig.(4.5). Time-dependent series coefficients (C,(/), / = 1,...,5) for a Duffing 

oscillator (e = 1.0) 
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Fig.(4.6). First-Passage PDF for a Duffing oscillator (£- = 1.0). Comparison 

between MCS data (5000 realizations) and eq.(3.32) 

4.2.1.5 Softening Duffing oscillator {s < 0) application 

The case of a softening Duffing oscillator is next concerned whose 

equation of motion is described by 

x + 2£0G)0x + a>Q (l + ex2)x = w(t), e<0. (4.41) 

This kind of nonlinearity is associated with instability issues and therefore 

it has been treated as a special case in the literature (e.g. Roberts, 1986). In order 

to apply the aforementioned methodology to a softening Duffing oscillator, 

singularities which appear in eq.(4.40) should be taken into consideration. 
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Examining eqs.(4.9), (4.38) and (4.40) it is readily seen that the condition which 

must be satisfied is the following: 

a<A , e<0. (4.42) 
V 3f 

Interpreting eq.(4.42), the prescribed barrier level should not be greater 

than the amplitude level at which the amplitude-dependent equivalent natural 

frequency of the oscillator reaches the zero value. In other words, for a chosen 

barrier level value the oscillator should possess positive stiffness. Under these 

circumstances, the Galerkin scheme is applied to a softening Duffing oscillator 

under Gaussian white noise excitation possessing the following parameter values: 

(B = 1,^0 = 0.01,<rs =l,S0= 0.3, £ = -0.5). In Fig.(4.7) the time evolution of the 

series coefficients is plotted, whereas in Fig.(4.8) the corresponding PDF for the 

first-passage time is plotted. A second value for the nonlinearity parameter is also 

chosen (£: = -1.0). The high degree of nonlinearity can also be deduced by 

comparing the PDF which corresponds to the linear oscillator to the one 

corresponding to the nonlinear one. The results are shown in Figs.(4.9) and (4.10). 
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Fig.(4.7). Time-dependent series coefficients (Cft), / = 1,...,5) for a softening 

Duffing oscillator (s = -0.5) 
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Fig.(4.8). First-Passage PDF for a softening Duffing oscillator (£ = -0.5), 

Comparison between MCS data (5000 realizations) and eq.(4.32) 
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Fig.(4.10). First-Passage PDF for a softening Duffing oscillator (e = -\.0). 
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4.2.2 Markovian modeling of the response energy envelope 

In order to circumvent the approximations that are inherent in the 

stochastic averaging procedure when applied to the case of the Duffing oscillator, 

an alternative generalized averaging scheme is performed according to Red-Horse 

and Spanos (1992). 

4.2.2.1 Ito and backward Kolmogorov equations 

Consider the class of non-linear oscillators described by the equation 

x+2<Z0co0x+g(x) = w(t), (4.43) 

where (g(x)) represents the non-linear stiffness of the system; (w(t)) represents a 

Gaussian, zero-mean white noise random process possessing a power spectral 

density equal to (S0). Then, defining the potential energy of the oscillator as 

u{x) = \lg{X)dX, (4.44) 

and considering the transformations 

x = - ^ s i n < z > , (4.45) 

and 
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u(x) = Vcos20, (4.46) 

eqs.(4.45) and (4.46) can be combined to yield 

V -—+u(x), 
2 

(4.47) 

and 

= -tan_ 

^J2u{x) 
(4.48) 

where (V) represents the total energy envelope of the system. In the case of a 

linear oscillator the stochastic averaging procedure leads to decoupling the energy 

envelope from the variable (d) which results in the following Ito equation for the 

variable (V) 

V{t) = 2£0a>0 [<7>0
2 -V]+(2crsa>0 ^Oo>ov) r,(t) (4.49) 

In eq.(4.49), ?j(t) is a zero mean and delta correlated process of intensity one, i.e., 

E(rj(t)) = 0 and E(Tj(t)ij(t + r)) = S(r), with (S(T)) being the Dirac delta 

function. The associated backward Kolmogorov equation has the form 
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— r ; — = 2£ 0fi>0 L
CT^o ~ v J — r — + 2 o - 5 £O0O v ——-2—. (4.50) 

dt "u " L * " J dv ^ u u dv 

Following the procedure described in Spanos (1982) and defining the variable 

E = ̂ j, (4.51) 
w0 

eq.(4.50) together with the initial and boundary conditions (eqs.(4.10-4.12)) leads 

to the following boundary value problem: 

. ^ ) + ( 1 _ £ ) ^ ( ^ ) + ^ ) = 0, (4.52) 
dE2 V ' dE V ' V ' 

<D(0) = finite, (4.53) 

0> 
' B^ 

\alj 
= 0, (4.54) 

where it has been assumed that (a2 = 1J. This problem can be recast as a Sturm-

Liouville one (e.g. Spanos, 1982). As a result, the solution of eq.(4.50) is given in 

the form 



Ptinear* M = £ 4 / M ^ A ^ ^ ' , 
/=1 

(4.55) 

where in this case 

J0 *,J,MJ>>° al 
±f x\ 

K<°1 J 
dv 

-•LB 

f0®lB(vA,B> 
CO, 

dv 
0 J 

(4.56) 

4.2.2.2 Galerkin formulation for a Duffing oscillator 

In the case of a Duffing oscillator, that is 

g(x) = o)*(x + ex3), (4.57) 

the corresponding backward Kolmogorov equation takes the form 

^ ^ = W W ) ] + kor.Ur.ear [PW] > (4.58) 

where 

J w H = 2<X[*Z - v ] ^ + 2^0fflgv^l, (4.59) 

http://kor.Ur.ear
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and 

KonMear [] = fc^X [ ^ 0 0 - fltf + v ] + *S0 } ^ 

^ a2 r.l 
2^0

3v(^(v)-l)-^U 

+ ... 
(4.60) 

and 

¥(v) = 
4r 

3m2 (l + r ) - 2 (4.61) 

with 

r = m +1 (4.62) 

and 

m2 = 
Ave 

(on 

(4.63) 

The operator (E(.)) denotes the complete elliptic integral of the second kind and 

the operator (K(.)) denotes the complete elliptic integral of the first kind. Further 
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details about the definition and the properties of the function (^(v)) can be found 

in Red-Horse and Spanos (1992). 

In this case the orthogonality condition derived based on the properties of 

the confluent hypergeometric function takes the following form 

\fo^iB[E,XiB-pjB[E,XjB-\dE = 0, i*j. (4.64) 

Relying once again on the Galerkin scheme, the solution for the nonlinear 

oscillator will be of the form 

^(v,0 = 4 ^ , > , 0 + X<aOOrB(v) (4.65) 
r=\ 

Following a similar procedure as in the case of the Markovian modeling of the 

response envelope and selecting 

Galerkin approach takes the form 

as weighting functions, the 

-— i 
\BR[v,c(t)]®Bk(v)ee'Z^dv = 0, k = l,2,..,N. (4.66) 

Taking into account the orthogonality conditions (eq.(4.64)) and manipulating 

eq.(4.66) yields a linear system equivalent to eq.(4.26). 
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This alternative formulation is applied to a Duffing oscillator possessing 

the following parameter values: fB = l,£"0 = 0.01,CTS =1,COQ = 3.5,£ = 3.0J. In 

Fig.(4.11) the time evolution of the series coefficients is plotted, whereas in 

Fig.(4.12) the corresponding PDF for the first passage is plotted. It can be readily 

seen that a more accurate estimation is retrieved in comparison to the classical 

approach, despite the high value of the nonlinearity. This higher accuracy justifies 

the choice of the energy envelope formulation in cases where the nonlinearity 

appears in terms of stiffness. 
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6 0 
£ c a 'o 
o -0.05 
o 
o 

-0.1 

-0.15 

"°" 0 5 10 15 20 25 30 35 40 
Timet 

Fig.(4.11). Time-dependent series coefficients (C,(/), *' = 1,...,5) for a Duffing 

oscillator (^ = 3.0) (Energy Envelope Modeling) 
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Fig.(4.12). First-Passage PDF for a Duffing oscillator {s = 3.0) (Energy Envelope 

Modeling). Comparison between MCS data (5000 realizations) and eq.(4.32) 

4.3 Nonlinear oscillators under evolutionary excitation 

4.3.1 Markovian modeling of the response amplitude envelope 

Consider a nonlinear single degree of freedom system whose motion is 

governed by the differential equation 

x + px + z(t, x, x) = w(t), (4.67) 

where a dot over a variable denotes differentiation with respect to time (t); 

(z(t,x,x)) is the restoring force which could be either hysteretic or depend only 

on the instantaneous values of (x) and (x); (f3) is a linear damping coefficient; 
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and (w(t)) represents a Gaussian, zero-mean non-stationary random process 

possessing an evolutionary broad-band power spectrum, S(a>,t). 

Then, following the approach proposed in chapter 3 the equivalent 

linearized counterpart of eq.(4.67) has the form 

x + £ , (Ox + < (0* = >K0» (4-68) 

where \Peqif)\ and (a^t)) are given by eqs.(3.12) and (3.13) respectively. As a 

result, the corresponding to eq.(4.68) Ito equation is 

1 7tS{co(t),t) (nS(o>(t),t))m 

2 " 2^(0^(0 m^it) 

In eq.(4.69), rj{t) is a zero mean and delta correlated process of intensity one, i.e., 

E(tj(t)) = 0 and £(7(f>7(/ + r)) = £( r ) , with (S(T)) being the Dirac delta 

function. The associated backward Kolmogorov partial differential equation for 

the reliability function takes the form 

where 

a-R(t)-
a 

dP 1 _ , , n,, d2P 
(4.70) 



82 

* ( / ) = 
A,('K(0 

(4.71) 

4.3.2 Galerkin formulation 

It is now possible to apply a Galerkin type scheme to solve eq.(4.70). 

1 , 
Defining the variable (E) so that E = —a, eq.(4.70) takes the form 

1 

A,(0*(0 
<=> 

l 

dP 
dt 

dP 

E 

R(t) 

dP rd
2P 

+E r-
dE BE2 

(4.72) 

Peqit)R{t)dt L hE 
1 — 

R(t) 
E^ + E ^ 

dE dE2 

Furthermore, observing that the confluent hypergeometric function 

satisfies the equation 

r ,dM rd
2M 

\l-E\ +E r = -AM, 
L J dE dE2 

(4.73) 

and that the eigenfunctions Mi satisfy the orthogonality condition 

j2MlMJe-EdE = 0,i*j (4.74) 

a solution is sought in the form 
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P = J>,CE)T;(O (4.75) 
/=i 

Substituting (4.75) into (4.72) and taking into account (4.73) and (4.74) yields 

%. =-A,(0*(OVJ+ A?(0[*(0-i]2>,,, (4.76) 
i=i 

where 

,dM, 
Jo rfE J 

J' B1 
(4.77) 

f2 M,2e~EdE 
Jo ^ 

Taking into account that (P(E,0) = l), the initial conditions in order to solve 

eq.(4.77) are 

f a2 \̂ 
T7(0) = 

f B» \ 

f2 M,e-EdE / f2 M,2e'EdE 
Jo J \ Jo J 

V V 

(4.78) 

4.3.3 Duffing oscillator application 

Applying the aforementioned scheme to a Duffing oscillator 

(B = l,£o = 0.01,o-, =1,S0= 0.3,^ = 0.5) the first-passage PDF is derived 
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(Fig.(12)). The agreement to Monte Carlo simulations is quite satisfactory. 

However, the need for fairly broad-band excitation spectra should be mentioned. 

The excitation spectrum is a time-modulated Gaussian white noise one of the 

form 

S(co,t) = \g(t)\2S(o)), (4.79) 

where 

S(a>) = S0, (4.80) 

and 

g{t) = k{e-a,-e""), (4.81) 

in which a = 0.05; b = 0.5; k is a normalization constant so that gmax = 1. In 

Fig.(4.13) the time-dependent variance {V(t)) is shown, whereas in Fig.(4.14) the 

time evolution of the series coefficients is plotted. 
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Fig.(4.13). Time-dependent functions (V(t)) and (R(t)) for a Duffing oscillator 

[s = 0.5) under modulated Gaussian white noise. 

Fig.(4.14). Time-dependent series coefficients (T^t), i = l,...,5) for a Duffing 

oscillator {s = 0.5) under modulated Gaussian white noise. 
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Fig.(4.15). First-Passage PDF for a Duffing oscillator [s = 0.5) under modulated 

Gaussian white noise. Comparison between MCS data (5000 realizations) and 

eq.(4.32). 
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Chapter 5 

Concluding remarks 

In this chapter, the main conclusions associated with the analytical 

formulations and the numerical results are presented and discussed. Furthermore, 

suggestions for further development of the proposed methods are also outlined. 

In chapter 3 the non-stationary response of nonlinear oscillators under 

evolutionary excitations has been studied. A new approach has been proposed 

which comprises the elements of stochastic averaging and statistical linearization. 

Specifically, taking into account the equivalent time-dependent frequency and 

damping factor, a simple first-order ordinary differential equation has been 

derived for the response variance. For this purpose, a time-dependent Rayleigh 

distribution for the response amplitude has been assumed. Analytical expressions 

have been derived for a number of hysteretic and non-hysteretic nonlinear 

oscillators. 

Extensive digital studies demonstrate the capacity of the approach to 

successfully capture the time evolution of the mean value of the variance, which 

is quite predictable taking into account the averaging procedure that is involved. 

In other words, the new approach succeeds in capturing the average 

characteristics of the variance, while neglecting the oscillatory components. As a 

general remark, increasing the nonlinearity degree and the excitation level 

gradually results in divergence from the digital data as expected. However, the 
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behavior of the new method indicates at least the same reliability level as the 

standard equivalent linearization does (see section 3.4.1.1). It appears that the 

proposed approach performs well for a broad class of nonlinear, elastic and 

inelastic, oscillators. It affords the option of treating problems which involve non-

separable and non-white excitation spectra without resorting to ad hoc pre-

filtering or other spectral manipulation of the system excitation as is the case for 

many of existing linearization schemes (e.g. Roberts and Spanos, 2003). 

Furthermore, based on the demonstrated reasonable reliability of the proposed 

approach for determining the nonlinear response variance, it can be argued that 

the evolving Rayleigh distribution given by eq.(3.22) can be used as a logical 

approximation of the system response non-stationary probability density function. 

Obviously, it can be argued that the simplicity and versatility of the proposed 

method compensates for the possible limitations due to the assumption of a lightly 

damped system. 

In chapter 4 an approximate analytical approach has been presented for 

examining the first-passage problem in context with the response of a class of 

lightly damped nonlinear oscillators to broad-band random excitations. A 

Markovian approximation both of the response amplitude envelope and of the 

response energy envelope has been considered. This modeling leads to a 

backward Kolmogorov equation which governs the evolution of the survival 

probability of the oscillator. The Kolmogorov equation is solved approximately 

by employing a Galerkin approach. A set of confluent hypergeometric functions is 
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used as an orthogonal basis for the expansions that are involved in the application 

of the Galerkin approach. 

As a general remark, it can be argued that the influence of the terms in the 

series expansion becomes less dominant as the order of the terms increases. 

Specifically, direct comparison to Monte Carlo simulation data shows a quite 

good agreement even for a small number of terms. For instance, as far as the Van 

Der Pol oscillator is concerned, even for large values of the nonlinearity, 9 terms 

are enough to achieve a good agreement with MCS data. In fact, little 

improvement is achieved for a larger number of terms. 

Another common feature which has been observed is that for small values 

of the time variable the theoretical data deviate considerably from the 

corresponding numerical simulations. It is obvious that the first-passage 

probability density of the oscillator is equal to zero for t = 0. This requirement 

necessitates the use of an infinite number of terms in the expansion series, which 

is obviously not feasible. However, there is no critical need to produce a smooth 

approximation at the vicinity of zero time, since the primary interest is focused on 

situations where the probability of first-passage time is higher than zero. 

Note that for the case of stiffness nonlinearities and having considered the 

case of a Duffing oscillator, the method involving Markovian modeling of the 

response amplitude envelope yields accurate results only in the case of small 

nonlinearities. In fact, it should be mentioned that in case of high nonlinearity 

degree the method is unavoidably affected by the approximations involved in the 

stochastic averaging procedure in both the derivation of the one dimensional Ito 
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equation and the linearization of the system. The remedy of this problem is the 

Markovian modeling of the response energy envelope. It has been demonstrated 

that a more accurate estimation is derived in comparison to the classical approach, 

despite the high value of the nonlinearity. Thus, this higher accuracy justifies the 

choice of the energy envelope formulation in cases where the nonlinearity appears 

in terms of stiffness. 

Finally, to apply the proposed approach to a softening Duffing oscillator, 

singularities should be taken into consideration. In fact, the prescribed barrier 

level should not be greater than the amplitude level at which the amplitude-

dependent equivalent natural frequency of the oscillator reaches the zero value. In 

other words, for a chosen barrier level value the oscillator should possess positive 

stiffness. 

As far as future research suggestions are concerned, an extension of the 

proposed response statistics estimation method could be possible by utilizing a 

wavelet representation of the non-stationary excitation and response processes 

(e.g. Basu and Gupta, 1998). The coupling of the concepts of equivalent 

linearization and wavelet transform may also be a feasible idea (e.g. Basu and 

Gupta, 1999). Extension of the approach to cope with response spectra estimation 

(e.g. Spanos and Failla, 2004) appears to be another logical objective. 
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