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ABSTRACT 

Laurentide lee Sheet Meltwater Influences and Millennial-Scale Climate Oscillations on 

the Northwestern Slope of the Gulf of Mexico During Marine Isotope Stage 6 and 

Termination II 

by 

Walter Werley O'Hayer 

Sub-Milankovitch climate oscillations are well documented phenomena in the Gulf of 

Mexico during Marine Isotope Stage (MIS) 3 and Termination I, however very little is 

known about equivalent events during older time intervals. Basin 4 is located on the 

northwest slope of the Gulf of Mexico and has provided a detailed record of late MIS 6 

and Termination II. The results of this study show that the 8 O record of planktonic 

foraminifer G. ruber contains millennial-scale climate oscillations during MIS 6, a series 

of meltwater spikes, and a climate reversal during Termination II. Paired 8180 - Mg/Ca 

data across these events reveal that the unusually large amplitudes in the 8180 record 

cannot be explained by sea surface temperature (SST) or ice volume, but rather are a 

response to isotopically light glacial meltwater from the paleo-Mississippi river. This 

conclusion supports the studies of similar oscillations during Termination I and MIS 3. 
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GENERAL INTRODUCTION 

Millennial-scale climate oscillations have been described, especially for the last 

100 ka (Dansgaard et al., 1993; Alley et al., 2000), however the forcing mechanisms 

behind these cycles are not as well understood as those causing Milankovitch-scale 

changes. With the aid of 14C dating as well as correlation to high resolution climate 

records of Greenland and Antarctic ice cores, the timing and magnitude of these rapid 

climate changes of the last 40 ka are well constrained (Hill et al., 2006). 

The Gulf of Mexico (GoM) is particularly sensitive to changes in the Laurentide 

Ice Sheet (LIS) during these rapid climate changes, as glacial meltwater is routed through 

the Mississippi (Leventer et al., 1982). The meltwater subsequently changes the isotopic 

composition of the surface waters, registering a response in the tests of planktonic 

foraminifers (Flower and Kennett, 1990). These meltwater pulses have been noted for 

both Marine Isotope Stage (MIS) 3 (Hill et al., 2006) as well as the last deglaciation 

(Flower et al., 2004) in the Gulf of Mexico. Millennial-scale climate oscillations have 

also been noted for the penultimate glaciation/deglaciation (MIS 6 / Termination II; 

Cannariato and Kennett, 2005 and references herein), although lack of a viable dating 

method for these records, as well as the lack of a northern hemisphere ice record with 

which to correlate, inhibits a chronology as precise as those for the rapid climate 

oscillations seen during the last deglaciation and MIS 3. 

This study focuses on Basin 4, located on the northwest slope of the GoM, in 

order to understand millennial-scale climate oscillations seen during MIS 6 and 

Termination II. Two cores from this basin allow us to constrain the timing of these 
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millennial-scale oscillations with changes in the Laurentide Ice Sheet, as seen in the 6180 

record of planktonic foraminifers. A coupling of 8180 and Mg/Ca measurements on the 

planktonic foraminifers allows us to differentiate changes in sea surface temperature and 

the isotopic composition of the surface waters in the Gulf of Mexico. Ultimately, this 

research aims to establish the existence of meltwater events during MIS 6 and 

Termination II in the GoM and suggest that these records can be used to associate the 

growth and decay cycles of the Laurentide Ice Sheet (LIS) with worldwide records of 

millennial-scale oscillations during this time period. 
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CHAPTER 1. Laurentide Ice Sheet Meltwater Influences and Millennial-Scale 

Climate Oscillations on the Northwestern Slope of the Gulf of Mexico During 

Marine Isotope Stage 6 and Termination II 

Abstract 

Sub-Milankovitch climate oscillations are well documented phenomena in the Gulf of 

Mexico during Marine Isotope Stage (MIS) 3 and Termination I, however very little is 

known about equivalent events during older time intervals. Basin 4 is located on the 

northwest slope of the Gulf of Mexico and has provided a detailed record of late MIS 6 

and Termination II. The results of this study show that the 8180 record of planktonic 

foraminifer G. ruber contains millennial-scale climate oscillations during MIS 6, a series 

of meltwater spikes, and a climate reversal during Termination II. Paired 8180 - Mg/Ca 

data across these events reveal that the unusually large amplitudes in the 8180 record 

cannot be explained by sea surface temperature (SST) or ice volume, but rather are a 

response to isotopically light glacial meltwater from the paleo-Mississippi river. This 

conclusion supports the studies of similar oscillations during Termination I and MIS 3. 
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1.1 Introduction 

Milankovitch scale climate forcing is a well documented phenomena (Hays et al., 

1976; Imbrie et al., 1984), however climate records spanning the last 100 ky are 

punctuated by sub-Milankovitch, millennial-scale climate oscillations such as Dansgaard-

Oeschger (D/O) cycles seen in Marine Isotope Stage 3 (MIS 3) and the Boiling-Allerod 

and Younger Dryas events of the Termination I (TI) (Dansgaard et al., 1993; Alley et al., 

2000; Flower et al., 2004). Along with accompanied changes of 8-16 °C in the air 

temperature in Greenland (Landais et al., 2004; Huber et al., 2006), D/O cycles are 

important because sea level has been shown to rise and fall by up to 30 m during these 

rapid events (Lambeck and Chappell, 2001; Siddall et al., 2003). Studies of D/O cycles 

during the second half of MIS 3 can be anchored by 14C dating, and therefore, correlated 

to Greenland or Antarctic ice core records (Hill et al., 2006) 

The detailed structure of late Marine Isotope Stage 6 (MIS 6) and Termination II 

(Til) has been extensively studied, and analogues for many of the millennial-scale 

climate changes of the last deglaciation, such as the Younger Dryas, and D/O cycles in 

MIS 3, are already described during the previous glacial cycle (Cannariato and Kennett, 

2005; Siddall et al., 2007 and references therein). The lack of a viable dating method for 

many of these records, outside of U/Th used in coral records, as well as commonly low 

sedimentation rates that prohibit the detailed analyses of these millennial-scale cycles, 

makes MIS 6 and Til particularly challenging time intervals for the analysis of rapid 

climate changes. 

1R 

Studies attempt to correlate foraminiferal marine 5 O records of MIS 6 and Til to 

the Greenland ice cores (Rasmussen et al., 1999), however the bottom of the GRIP ice 
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record (Johnsen et al., 1997) has problems such as folding, missing section, and inserted 

layers in the ice record older than MIS 5.5 (Chappellaz et al, 1997). With no ice record 

in the Northern Hemisphere representing the MIS 6/TII interval, it is almost impossible to 

establish or discredit a link between ice volume changes in the Laurentide Ice Sheet (LIS) 

and the changes seen in the records from around the world. The northern Gulf of Mexico 

(GoM) planktonic foraminifer 8180 records from small anoxic basins, such as the Orca 

Basin, have been shown to be particularly sensitive to rapid changes in the LIS through 

the routing of isotopically light meltwater through the paleo-Mississippi River (Kennett 

et al., 1975; Kennett et al., 1985; Leventer et a l , 1982; Flower and Kennett, 1990; Figure 

1.1). 

Meltwater timing and intensity have been studied, using paired Mg/Ca and 8180 

records, for the last deglaciation (Flower et al., 2004), as well as during MIS 3 abrupt 

climate changes (Hill et al., 2006). MIS 3-type climate oscillations are postulated to exist 

during late MIS 6 in Santa Barbara Basin offshore Central California (Cannariato and 

Kennett, 2005), however a paucity of planktonic foraminifera prohibited a paired Mg/Ca, 

8180 analysis. Basin 4, an upper slope mini basin in the northern GoM, is ideally situated 

(Figures 1.1 and 1.2) for capturing the meltwater routing in the GoM, as it is 200 km west 

of the location of the paleo-Mississippi River delta of Suter and Berryhill (1985) during 

MIS 6 and TIL Close proximity to the sediment source led to very high sedimentation 

rates, as described further in this study, exceeding 6m/ka along the GoM upper slopes of 

the western shelf of Louisiana and southeastern shelf of Texas, which allows for a high 

resolution study of MIS6/TII. 
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Sub-Milankovitch, abrupt climate changes in the 8180 records during the MIS 

6/TII time interval are analyzed using paired Mg/Ca - 5180 measurements to determine if 

these changes coincide with freshwater routing to the GoM, analogous to cycles observed 

during MIS 3 (Hill et al., 2006) and the TI (Flower et al,, 2004). The phasing of sea 

surface temperature (SST) and how it relates to changes in 8180 of seawater will also be 

examined. 

The timing of a Younger Dryas-like climate reversal observed during TII is 

studied in relation to changes in the LIS and global sea level using high resolution 

planktonic foraminifer 8180 records as a proxy for higher latitude climate changes. GoM 

spatial variations in the response to TII meltwater will also be discussed. 

1.2 Regional Setting 

The Brazos-Trinity drainage system is located within the Texas-Louisiana Slope 

physiographic province of Martin and Bouma (1978) (Figures 1.1 and 1.2). The slope of 

the Brazos-Trinity system includes four oval mini basins connected by a system of 

interbasinal channels first described by Satterfield and Beherns (1990). The shelf in this 

area contains thick lowstand delta deposits which formed during the late Pleistocene 

glacial stages (Abdulah et al., 2004; Fraticelli and Anderson, 2003). These deltas are 

interpreted to be the source for the large volumes of sediment that subsequently infilled 

the Brazos-Trinity intra-slope basin system (Beaubouef and Friedmann, 2000; Mallarino 

et al., 2006). Basin 4 is the a mini-basin located at the termination of the Brazos-Trinity 

drainage system on the upper slope in the northwest GoM in waters ranging from 1000 m 

at the basin rim to 1500 m at its center (Figure 1.3). No outlets to Basin 4 exist, 



5 

indicating that Basin 4 is the final sediment sink for the Brazos-Trinity drainage system, 

however sediments have partially filled the basin via an abandoned western feeder 

channel, and an inactive eastern feeder channel that creates the connection to the updip 

basins. The nature of the sedimentary infill of the four linked mini-basins and its timing 

in relation to sea level fluctuations (Malarino et al., 2006 and references herein) have 

been studied in great detail. 

However, until the Integrated Ocean Drilling Program (IODP) 2005 Expedition 

308, little attention was given to the thick package of muddy sediments blanketing the 

entire region and underlying the turbidite basin infill sequences within Basin 4. The 

seismic images of this package show continuous and parallel reflections with slight 

thickening to the north, indicating that either the source of these deposits lies in a 

northward direction or at the very least that sedimentation was concentrated in that area. 

Deposition does not appear affected by the local basin topographic changes (Mallarino et 

al., 2006) and therefore sedimentation possibly occurred prior to the basin formation 

itself if it is assumed that topography would affect the sedimentation processes depositing 

the muddy drape. 

1.3 Basin 4 Sediment Sequences 

Data used in this study were collected during two different research cruises. 

IODP Expedition 308, GoM Hydrogeology, was conducted on the D/V JOIDES 

Resolution in May-July 2005 (Flemings et al., 2006). Two drill sites, 1319A and 1320A, 

were cored in Basin 4, both of which have been sampled for this study. Hole 1319A is 

located on Basin 4 southern margin whereas Hole 1320A was drilled in the central part of 
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the Basin (Figure 1.3; Table 1.1). In addition to the IODP Holes, a Calypso giant piston 

core MD03-2641 (herein referred to as MD-41) was recovered on the Basin 4 

southwestern margin in a very similar setting as, and 3 km northwest of Hole 1319A, as 

part of the IMAGES program during an earlier (2003) research cruise of the French 

research vessel Marion Dufresne (Figure 1.3: Mallarino et al., 2006). 

Hole 1319A and Hole 1320A were drilled and cored to depths of 157.5 m and 

299.6 below sea floor (mbsf), respectively. MD-41 , a giant piston core, penetrated down 

to 40 mbsf on Basin 4 slope (Figure 1.3). Slumping and turbidite accumulation disrupt 

the record starting in the middle of MIS 5 (Mallarino et al., 2006), however there is 

neither evidence of slumping nor turbidite disruption for the MIS 6/TII interval in the 

three cores analyzed in this study. 

1.4 Methods 

Three research groups involved in this study include Rice University in Houston, 

the Laboratoire des Sciences du Climat et de l'Environnement (LSCE) in Gif sur Yvette, 

and at Lille University; all were involved in the analyses of Basin 4 sedimentary 

sequences. The group at Rice University focused on the analyses of IODP Holes 1319A 

and 1320A, while LSCE and Lille University established the 8180 analyses of MD-41 

and generously provided the data for this paper. 

1.4.1 Stable Isotopes and Mg/Ca 

1.4.1.1 Holes 1319A and 1320A 

For isotope stratigraphy and Mg/Ca analyses, 80 ~22 cm3 samples were analyzed 

at a 1.5 m interval in Hole 1320A whereas 262 samples at a 0.75 m interval down Hole 
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1319A. The samples were disaggregated with Calgon solution and washed over a 63 um 

sieve. The >63 um fraction was dried and dry sieved to retain the >150 um fraction. 

From this fraction, 6 to 30 Globigerinoides ruber tests (preferably the white variety), a 

planktonic foraminifer, were picked and washed in an ultrasonic cleaner with distilled 

water for less than 5 seconds. After being dried, the samples were crushed and mixed, 

and then split into two subsamples; one for 8180- 813C and the other for Mg/Ca analyses. 

The 8180- 813C subsamples were sent to U.C. Davis for 8 , 80 and 813C isotopic 

analyses. For stable isotope 8180 and 813C analyses, specimens were ultrasonically 

cleaned in distilled water after being carefully crushed to release potential sediment 

infilling. Samples were then heated under vacuum at 375°C for 1/2 hr to remove organic 

contaminants. Using a common 100% phosphoric acid bath at 90°C, 20-50 micrograms 

of sample were reacted and analyzed using a GV Instruments Optima isotope ratio mass 

spectrometer at University of California, Davis. Isotope values are reported in delta 

notation relative to VPDB. Repeated analyses of a marble working standard (calibrated 

against the international standard NBS-19) indicate an accuracy and precision of 0.05 %o 

(la). 

The Mg/Ca subsamples were performed at the Laboratoire des Sciences du Climat 

et de PEnvironnement, Gif sur Yvette. For the Mg/Ca analyses, samples were carefully 

cleaned following Barker(2003). His method involves an initial sonication to remove 

fine clays, oxidation of organic matter with a buffered peroxide solution, and a dilute acid 

leach that eliminates any adsorbed contaminants. Samples were dissolved in weak HNO3 

to yield calcium concentrations of -20 ppm to minimize calcium concentration effects. 

Foraminiferal Mg and Ca were analyzed on a Varian-VistaPro inductively coupled 
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plasma - atomic emission spectrometer (ICP-AES) with a cyclonic mini-room and an 

very low flow atomizer (200ul/mn). Precision is better than 0.6% on ratios between 1 

and 5 mmol/mol. 

1.4.2 Ash Layer and Menardii Complex 

The presence or absence of the planktonic foraminifers G. menardii was noted for 

each sample. Trends in abundances were compared to known and dated patterns for the 

GoM late Quaternary (Kennett and Huddlestun, 1972; Mallarino et al., 2006). One clear 

ash layer was identified in each Hole, and this ash layer was used, as in Mallarino et al.'s 

(2006) previous Basin 4 study, to anchor the sedimentary sequence and aid in the 

correlation between Basin 4 three individual sedimentary sections included in this study 

1.4.3 Mg/Ca Derived SST and $8Oseawater Calculations 

From the Mg/Ca analyzed in G. ruber planktonic foraminifers, sea surface 

temperature (SST) is calculated using a relationship obtained by core top calibration in 

cores from the tropical Atlantic, and proven valid for the GoM in Flower et al.(2004); 

Mg/Ca = 0.38 exp(0.090 SST) where Mg/Ca is in mmol/mol and SST is in °C (Dekens et 

al., 2002). The pooled standard deviation of 70% replicate Mg/Ca analyses is ±2.5% or 

~0.3°C. To subtract out the temperature effect from 8180, the equation T = 14.9 - 4.8 

(518Oc - §
18Osw), is used; where T is SST in °C, the c subscript indicates carbonate, and 

the sw subscript indicates seawater (from Thunell et al., 1999). Solving the equation for 

818Osw and adding 0.27%o to convert to the Vienna Standard Mean Ocean Water 

(VSMOW) standard gives 818Osw (VSMOW). Total error in this sequence of calculations 
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is ±3.1%. This sequence of calculations follows the procedure set in Flower et al. (2004) 

and Hill et al. (2006). 

1.4.4 Discussion of tfsO 

In stable isotope geochemistry, differences in the isotopic ratios of two samples 

are generally small and hard to visualize. The 8 notation is commonly used to aid in 

showing these small differences. In this paper, the oxygen isotopic ratio from 

foraminiferal samples is compared to the ratio from a standard by the expression 

(Krauskopfand Bird, 1995): 

818Oforara = {[( ,80/ ,60) foram- (180/160)standard] / (
180/160)standard} x 1000%o 

Where a 618Oforani positive value indicates enrichment of the sample in 180 

relative the standard and a negative value indicates depletion. 

Changes in the 8180 of seawater is driven by fractionation due to water 

evaporation and precipitation at ocean surface and in the atmosphere, accumulation and 

loss of ice at high latitude regions, the mixing of waters with different 8180 values such 

as meltwater and river runoff, as well as the isotopic content of the oceans (Craig and 

Gordon, 1965; Broecker, 1982). When looking at the changes in 818Oforam values through 

time, it is assumed that those values reflect the changes in the 8180 values of the seawater 

in which the foraminifers were living. Experiments have shown this relationship to hold 

true, with a few caveats (Erez and Luz, 1983). Several factors create conditions where the 

1 R 

8 Oforam is not in equilibrium with seawater values. These factors include temperature, 

salinity, vital effects, and the isotopic composition of the water in the location in which 

the foraminifers are living (Bickert, 2000). Bcause fresh water can have 8180 values as 
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low as about -60%o (VSMOW), freshwater can become a major influence on the 8180 

values recorder in the foraminifer calcite, obviously in relation with the amount of 

freshwater mixed with the ocean surface waters (Millero, 1996). 

Because Basin 4 is located adjacent to the mouth of the paleo-Mississippi (Fig. 

1.2), and therefore the potential effects of fresh water input on the 8180 values in 

planktonic foraminifers can become significant, a 8I80 curve alone is not sufficient for 

analyzing the paleo-climatologic conditions for the time period of interest in this study. 

We used, therefore, a second geochemical relationship, Mg/Ca, to attempt to subtract out 

factors creating disequilibrium between seawater and planktonic foraminifers. 

1.4.5 Discussion of Mg/Ca Method 

Mg/Ca has been recognized to be a good paleotemperature proxy; once the 

paleotemperature proxy is combined with 8180 analyses in paired samples, the 8180 of 

sea water can be calculated substracting the temperature effect on the 8180 measured in 

the foraminifer calcite (Lea et al., 2002, Schmidt et al., 2004). When using Mg/Ca 

paleothermometry to Pleistocene sample material, the possible changes in Mg/Ca of 

seawater must be considered. Because the residence time of Mg in seawater is -13 

million years (Broecker and Peng, 1982), while the residence time of Ca is ~1 million 

years (Chester, 2000), the paleo-sea surface temperature records were not affected by a 

change in Mg/Ca of seawater on shorter timescales. Local Mg and Ca concentrations can 

be affected by several factors including carbonate deposition (Wilkinson and Algeo, 

1989), varying continental weathering rates (Berner et al., 1983), and hydrothermal 

alteration of basalt at mid-ocean ridges (Elderfield and Schultz, 1996). Because the 
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timescale on which this study is focused is much smaller than the residence times of both 

Mg and Ca, and because the local effects on these concentrations is assumed to be 

minimal, we consider changes to Mg/Ca to be negligible to the data in this study. 

1.5 Biostratigraphy and Time Makers 

Determining the age-depth profiles for the sediment underlying the turbidites-rich 

infill in the three Basin 4 sedimentary sections, too old for 14C dating, is possible using 

several distinct markers. A distinctive ash layer found in all three studied sections is used 

as first marker to correlate the three sediment sections relative to one another (Figure 

1.4a). On the basis of the Emiliania huxleyii Acme Zone, the ash layer is identified as the 

Chocoyos Y8 Ash (Flemings et al., 2006) and dated at 84 ka by Drexler (1980). The 

second marker is based upon the abundances of G menardii, a species of foraminifers 

that live in warm tropical waters. Within the Atlantic Ocean, G. menardii often disappear 

during late Pleistocene glacial stages, and re-appears during interglacial stages (Ericson 

and Wollin, 1956). Zone X represents most of MIS 5 and is observed in the interval just 

below the 84 ka-old ash layer. Late MIS 6 is a glacial stage during which G. menardii 

tests are known to be completely absent in a sub-zone Wl, that lasted only 21 ky, and 

occurred from 150 to 129 ka according to Kennett and Huddlestun (1972). Figure C.3 

shown in the Appendix illustrates background information on terms used throughout this 

paper to describe the different time subdivisions and the comparisons between these 

different time intervals. Based on the G. menardii sub zonation (Kennett and 

Huddlestun, 1972), Wl (150-129 ka) is represented in Holes 1319 and 1320A by two 

sediment intervals at least 127 m and 150 m thick, respectively , corresponding to a time 
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span not exceeding 21 ky, with the base of both sections being not older than 150 ka. 

Because G menardii is totally absent in the bottom 6 meters of MD-41, this interval 

corresponds to at least part of the MIS-6 Wl sub-Zone. The Wl subzone upperboundary 

is identified at 33.5 mbsf in MD-41 where Zone X begins. 

Previous work conducted on Basin 4 established an isotope stratigraphic 

framework for the turbidite-rich sediment units and extended further down the cores only 

a few meters below the Y8 ash layer (Mallarino et al., 2006). Because this study looks at 

the isotope record from the ash layer downward, it becomes an excellent complement to 

the Mallarino et al. (2006) Basin 4 study. 

The three Basin 4 8180 records were plotted with respect to depth (mbsf) due to 

the age uncertainties associated with MIS 6 and Til (Figure 1.4a). The three records 

were then hung at each three sites on the Wl/X menardi zonation boundary, 

corresponding to an age of 129 ka, to visually aid the presentation of and the correlation 

between the three 8180 records (Figure 1.4b). Because of the total absence of G. menardii 

at the base of Basin 4 three records, G. menardii zonation indicates that only the Wl zone 

is present and the MIS 6/TII records span no greater than 21 ky (Kennett and Huddlestun, 

1972). In addition to the G. menardii Wl/X zone boundary, the Y8 tephra layer clearly 

identified at the three sites is also an excellent marker to correlate the three 8180 records 

(Figure 1.4b). Between the two definite markers, the three different 8180 records were 

correlated using the best visual match, by aligning the records next to each other and 

correlating 8180 peaks of similar amplitude and value of millennial-scale 8180 

oscillations. 
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1.6 Basin 4 8180 Records 

In this study, three 8 I80 curves were produced in Holes 1319A and 1320A, and in 

core MD03-2641 at least for the sediments immediately underlying the Y8 ash layer 

(Figures 1.4a and 1.4b). 

1.6.1 Holel319A 

The 1319A 8180 record displays at 26.5 and 31.5 mbsf two unusually light values 

of-3.4%o and -3.79%o (VPDB), respectively (Fig. 1.4a) Moreover, the 8 , 80 record shows 

a Til climate reversal from 34 to -32 mbsf (Figure 1.5). Although more apparent in MD-

41, values in 1319A reverse themselves from -2%o at 35 mbsf to close to 0%o at 34 mbsf. 

The reversal interval ends with a rapid decrease of the 8180 values, reaching a minimum 

of-3.5%o slightly below the X/Wl G. menardii boundary at 31.6 mbsf. Below this, 8180 

values quickly become heavier, trending towards 0%o. Overall, Til spans from 36 to 31 

mbsf and has an amplitude of ~3%o. 

From 35 to 155 mbsf, the 8180 record exhibits a series of rapid high amplitude 

oscillations between 0 and -3%o. Because of these rapid high amplitude oscillations, the 

interpretation of the 8180 1319A record during MIS 6/W1 interval was made easier in 

using a 5-point moving average, plotted over the original data in Figure 1.6. Although 

the 5-point average curve mutes the rapid and high amplitude 8180 oscillations observed 

during MIS 6/W1, 5 longer term oscillation events, labeled E1-E5 from the youngest to 

the oldest, can now be identified. These oscillation events have thicknesses ranging from 

15 to 30 m. Each event consists first of a series of rapid high amplitude oscillations 

followed by a sequence of heavier and lower amplitude values. 
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1.6.2 MD03-2641 

Below the Y8 Ash layer, 10 m of section was recovered in MD-41. The 8180 

record in this interval shows many of the same characteristics as the ones observed in 

Hole 1319A, but in much higher resolution. However the bottom 10 m of MD-41 

represents only the very end of MIS 6/W1 subzone, the complete Til, and most of MIS-5 

(Figure 1.7). The two -3.8 and -3.3%o lightest 6180 values in MD-41 , at 32.5 and 33.5 

mbsf, respectively, agree with the corresponding two lightest 8180 values observed in 

Hole 1319A, with less than 0.3%o difference in values between the two MD-41 and 

1319A records (Figure 1.5). The G. menardii X/Wl zone boundary correlation between 

the two records further demonstrates that these two 8180 minima are equivalent in time. 

A third 6180 light value of -3.3%o observed in MD-41 at 36 mbsf, apparently is not 

appearing in 1319A most likely due to the greater resolution of the MD-41 record. 

The Til climatic reversal interval observed in this record spans from 36 to 33.5 

mbsf, with 8180 values ranging from <-3%o at 36 mbsf, falling to ~-l%o at 34 mbsf. 

Overall, Til spans from 37.5 to 32.5 mbsf with an overall amplitude of ~3.2%o. The 

amplitude of the rapid climatic reversal reaches ~2.25%o, while in comparison the 3.75%o 

amplitude for the entire deglaciation is quite larger. The thickness and amplitude of the 

climate reversal observed in MD-41 are very similar to the values seen in 1319A. The 

very end of the MIS 6/W1 sub-zone is recorded at the bottom of MD-41, with values near 

0%o from 39 to 37.5 mbsf. 

The MD-418180 record above the ash layer is important to this study because it 

enables to compare more recent events to those of the MIS 6/W1/TII interval. This 
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includes the MIS 3 climate oscillations from 21 to 14 mbsf, and the TI meltwater spike at 

4 mbsf (Figure 1.7). 

1.6.3 1320A 

The 8180 record for Hole 1320A, used as a complement to the other two high 

resolution records, displays only one very light -3.2%o value at 157 mbsf. Because the 

lack, or paucity of foraminifers from 183 to 157 mbsf in Hole 1320A, 8180 analyses 

could not be generated in this particular interval. From 298 to 183 mbsf, Hole 1320A 

shows a series of rapid 8180 oscillations much like those observed in Hole 1319A in 

terms of their overall amplitudes of up to ~2.5%o, although the resolution of Hole 1320A 

8180 record is much lower. The 1320A record displays 8180 values, 0.4%o and 0.8%o at 

290 and 268 mbsf, respectively,, that are heavier than any of the values observed in the 

1319A record. (Figure 1.4b). 

Although Hole 1320A 8180 record lacks resolution, this record is important to 

show that the lightest -3.2%o value is similar to the two minima observed in the other two 

1319A and MD-41 records. Moreover, the overall ~2.5%oamplitudes, for individual 

events, during the late MIS 6/W1 interval are identical in both Holes 1319A and 1320A. 

1.7 Mg/Ca and Related Records 

1319A was sampled at 73 individual core levels between 96 and 27 mbsf (an 

average spacing of 75 cm, except where a lack of foraminifers prohibited the dual 

analyses) and were split into two aliquots for paired 8180 (-0.1 mg) (Figure 1.8a) -

Mg/Ca (~0.3mg) (Figure 1.8b) analyses. The paired analyses of these samples cover the 
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upper half of E3, all of E2 and El, up through Til and MIS 5.5 (Figure 1.6). Mg/Ca 

ratios range between 3.0 and 5.8 (mmol/mol), with a trend of decreasing values from E3 

through El, while the onset of Til marks a rapid increase in values. Because temperatures 

are directly derived from the Mg/Ca ratios, the trends in the temperature curve (Figure 

1.8c) obviously mimic the Mg/Ca curve, with overall SST temperatures ranging from 

22.7 to 30.3°C. A general cooling trend from E3 to El, from 29.5°C to 23.8°C, and then 

a rapid warming, rising from 23.8°C to 30.3°C during TH are observed. Fairly constant 

and average temperature values (26.5 to 28 °C) are displayed within the first half of 

MIS 5. 

S18Osw (Figure 1.8d) reflects sea water oxygen isotopic composition after the 

temperature effect has been subtracted out. Isolating the data in this way, the excursion 

during the E3 event increases to ~2.2%o, a new event exceeding 1.2%o appears during E2, 

and while the overall amplitude of the El sequence remains about the same at 1.9%o, the 

events become more orderly, with a trend of decreasing amplitude with time. The 518Osw 

range during TH displays a total amplitude of 2%o and is one of the three largest 

amplitude events in the 1319A record. A lack of data points during the Til climate 

reversal prohibits the analysis of this event using the paired data. The end of TH marks 

an equally dramatic drop of 1.8%o, and represents the end of MIS 5.5 and a transition into 

MIS 5.4. The last rise in values of 1.5%o corresponds to the transition from MIS 5.4 to 

MIS 5.3. 



17 

1.8 Discussion 

In this study, Til and MIS 6/W1 millennial-scale climate oscillations have been 

described for Basin 4. The TII meltwater pulse and MIS 6/W1 climate oscillations 

display close similarities to rapid climate changes observed in the GoM (in particular the 

Orca Basin) during younger and better constrained by absolute dating TI and MIS 3 time 

intervals. (Flower et al., 2004; Hill et al., 2006). analysis and comparison of the Basin 4 

record. The Red Sea record (Siddall et al., 2007) of the TII climatic reversal provides a 

chronology for the event, and the Basin 4 record links the changes in sea level observed 

in the Red Sea to meltwater pulses of the LIS. 

1.8.1 Termination II Meltwater Pulse 

During Termination I, the transition from Last Glacial Maximum (LGM) to the 

current interglacial MIS 1, or Holocene, large volumes of glacial meltwater were flushed 

into the Gulf of Mexico via the paleo-Mississippi River in rapid and distinct pulses that 

appear as istopically light values in the planktonic foraminiferal 8180 record (Kennett and 

Shackleton, 1975; Aharon, 2003 and references therein). The influence of this 

isotopically light melt water derived from the North American Ice Sheet on the Gulf of 

Mexico surface water 8180 record is especially well established in the Orca Basin for the 

last deglaciation (Shakleton and Opdyke, 1973; Flower and Kennett, 1990; Flower et al., 

2004) and can be seen as a -4%o sharp minimum in the Basin 4 record of MD-41 (Figures 

1.7 and 1.9). Williams (1982) predicted that the magnitude of the response to pulses of 

melt water in the Gulf of Mexico had to be a function of distance from the source of the 

fresh water discharge and the overall prevailing current direction, with a linear decrease 
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in meltwater response with increasing distance away from the discharge source and a 

prevailing westward flowing current muting the response eastward of the discharge point 

during Termination I (Figures 1.2, 1.9). To explain this discrepancy, modern surface 

ocean currents in the northern GoM are assumed to be similar to currents in the gulf 

during TI. Discharge from the Mississippi River is carried west by currents (Smith, 

1980) and mixed with the isotopically heavier gulf waters. By the time the discharge 

water is carried to the eastern side of the gulf, the isotopic signature of the meltwater is 

muted due to the mixing effect (Figure 1.9; Williams, 1984). 

The Termination I meltwater response for Basin 4, using the Williams (1984) 

data, would predict 8180 values which should not exceed ~2.5%o and stipulates that 

values for any point in the Gulf of Mexico should not exceed -4.0%o. The actual response 

in Basin 4 however is much greater than the predicted value, reaching -4.0%o in cores 

MD-41 (this study), MD03-2642, and MD03-2633, and the largest value in core MD03-

2637 at -6.0%o (Mallarino et al., 2006; Figure 1.3). Because these values greatly exceed 

the predicted response, currents must obviously play a more important role in focusing 

the meltwater signal than was previously suggested (Figures 1.2 and 1.9). 

Termination II also displays a meltwater response in the GoM 8180 planktonic 

foraminiferal records (Figure 1.9). Three records show a similar response, with values 

around -2.0%o (Falls, 1980; Tripsanas et al., 2007; Joyce et al., 1990). Basin 4 8180 

values for the same Til meltwater event are much lighter than these studies, the data from 

Hole 1319A and MD-41 agree closely with each other, at -3.5%o to -3.79%o respectively 

(Figure 1.4b). This is especially surprising given the location of the Bryant Canyon core 

JPC 31 (Figures 1.2 and 1.9), less than -200 km SSE from the mouth of the paleo-
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Mississippi river (Tripsanas et al., 2007), nearly the same distance to Basin 4; ESE at 

-200 km. Westward trending surface currents, observed in this part of the modern GoM 

and thought to have occurred during Termination I (Williams, 1984), must have also 
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existed during Termination II. The plume of isotopically light 8 O meltwater was most 

likely pushed westward, across the Basin 4 area before mixing with the gulf waters. Only 

a very small plume of isotopically light meltwater, relatively isolated from the main 

freshwater plume by the westward currents, had to reach the Bryant Canyon area to 

explain the muted signal in core JPC 31 (Figures 1.2 and 1.9). These observations also 

agree with circulation patterns established in the modeling of Gulf of Mexico currents 

during the last glacial period (Brunner and Cooley, 1976). Alternatively, though not 

likely, the muted response in the Bryant Canyon cores could be at least partially 

explained by the observed lower sedimentation rates in core JPC 31 relative to the high 

sedimentation rates observed in the Basin 4 sediment accumulation. Relatively light 

8180 values in the surface of the GoM at the location of core JPC 31, would be averaged 

(muted) over a greater time span than the in the Basin 4 cores. This averaging effect can 

occur where sedimentation rates are low enough that one of these events is either much 

thinner than the 0.5 cm sample thickness used in this study or/and effect of bioturbation is 

enhanced by the low sedimentation rates. 

In Basin 4, Mg/Ca derived SST at the beginning of Til in 1319A is ~25°C before 

the meltwater pulse itself; the temperatures quickly rise during the pulse to more than 

30°C, followed by a perceived precipitous fall (which is due to the condensed section of 

hemipelagic sediment that begins at -32 mbsf and marks a rapidly reduced sedimentation 

rate when compared to the clay sediments below it), and leveling off at ~27.5°C after the 
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meltwater pulse episode. In the Orca Basin, SSTs for TI are ~24°C before the meltwater 

pulse, and rise to -28 - 29°C during and after the meltwater pulse episode (Flower, 

2004). Therefore, the two records show similar character and values (Figure 1.10a) with 

temperatures increasing a total of 4°C during TI in the Orca Basin and ~5 °C during Til in 

Basin 4. 818Osw meltwater values for Til show a total amplitude of 2%o as compared to 

the ~3%o amplitude of TI (Figure 1.10b). While Til is more muted than TI, much of this 
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difference might have to do with the resolution in 1319A. MD-41 has a 8 O amplitude of 

~4%o, the lower resolution 1319A record used for the paired 8180 - Mg/Ca only has an 

amplitude of ~3%o. It is therefore possible that higher resolution sampling, planned in a 

follow up study, would yield similar amplitudes as seen in the high resolution, 818Osw 

Orca Basin record. Because the 1319A and MD-41 Til 8180 meltwater values are similar 

to meltwater 8180 minimum values for TI in MD-41 (minimum values near -4%o) 

(Figure 1.7), and the Til SST and 818Osw curves for 1319A are comparable to those from 

TI in the Orca Basin (Figure 1.10), we conclude that similar millennial-time scale climate 

oscillations affecting the GoM during TI were also occurring during Til, and can be 

explained as pulses of isotopically light LIS meltwater (Flower et al., 2004). 

1.8.2 Termination II Reversal 

Various records, both terrestrial and oceanic, show that a Younger Dryas-like 

climate reversal occurred during Termination II (Seidenkrantz et al., 1996; Cannariato 

and Kennett, 2005; Siddall et al., 2007 and references therein). This climate reversal is 

recognized as being global, with records from the previous references showing a 

significant, correlatable cooling event in the northern hemisphere. Quantifying the 
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duration and magnitude of the reversal is difficult, and each study conducted on this time 

period has weaknesses such as discontinuous records, lack of dating or dating with 

significant error bars. Speleothem hiatuses in Norway date the duration of this event 

from 132 ka ± 6.0 ka to 128 ka ± 8.8 ka (Lauritzen, 1995). These dates largely agree 

with other studies which show the end of an early Termination II highstand, using U/Th 

dates on Barbados corals, beginning after 133.5 ka (Thompson and Goldstein, 2005) and 

the end of a Termination II sea level fall, using U/Th dating on Aladdin's Cave corals, to 

occur at 126 ka -134ka (Stirling et al., 1998) or an average of 130 ka (Siddall et al., 

2007). 

The magnitude of sea level fall during the TII climate reversal has been estimated 

at 55 to 75 m in relative sea level change using Huon Peninsula corals (Esat et al., 1999), 

and between 30m ± 12m and 40 ± 12m in relative sea level change in the Red Sea using 

8180 of G. ruber (Siddall et al., 2007). The error in these estimates is potentially 

significant due to the tectonic activity and uncertainty in uplift rates of the Huon 

Peninsula, and the fact that the Red Sea method has previously been shown to 

underestimate sea level changes during Termination I (Antonioli et al., 2004). While 

understanding this uncertainty, we bracket the actual sea level fall between 30 and 75 m 

for this event using the smallest and largest values from these studies as our upper and 

lower bounds to bracket the magnitude of sea level change during this time. 

The cooling during Termination II created a two-step deglaciation during the 

glacial MIS-6 to interglacial MIS-5 transition and demonstrates that the Younger Dryas 

cooling interval was not a unique phenomenon (Seidenkrantz et al., 1996). However, 

these two events do not have a direct one-to-one correlation. Termination I records are 
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punctuated by a series of three very rapid, meltwater pulse-derived sea level rises (Alley 

et al., 2005) and countering cooling events, however there is no evidence for events with 

measurable sea level falls (Fairbanks, 1989; Bard et al., 1990). This contrasts to the tens 

of meters of sea level fall believed to be associated with the Termination II reversal 

(Siddall et al., 2007). 

5180 records from MD-41 and Hole 1319A clearly show the Termination II 

climate reversal (Figure 1.5). While many studies have noted the existence of this event, 

it has never before been described in a GoM climate record. The Basin 4 records 

reinforce the argument that a significant worldwide cooling event occurred in marginal 

basins such as in the Santa Barbara Basin (Cannariato and Kennett, 2005), open oceans 

(Seidenkrantz et al., 1996), and on the continents (Schweger and Matthews, 1991) during 

this time by adding the GoM to the list of locations where this cooling event has 

occurred. 

The beginning and end of the Termination II cold reversal in the MD-41 records 

is marked by meltwater pulses with 8180 values of -3.25%o and -3.15%o, which is much 

lighter than the other points in the MIS 6/Termination II record in Basin 4. The very end 

of Termination II is marked by the largest meltwater pulse, recording values up to -3.8%o 

in MD-41 (Figure 1.5). 

The cold reversal is bracketed between two large meltwater pulses into the Gulf 

of Mexico, which is a contrast to the Younger Dryas, and event that came after the major 

Termination I meltwater pulse events into the Gulf of Mexico had ended, with Laurentide 

Ice Sheet meltwater subsequently redirected into the North Atlantic (Marchitto and Wei, 

1995). The cause of the Younger Dryas is thought to be linked to the eastward routing of 
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the Laurentide meltwater and shutdown of the North Atlantic deep water formation 

(Berger, 1990; Muscheler et al., 2000). If this series of events is also the cause for the 

Termination II cold reversal, the Basin 4 record of the reversal between two large 

meltwater pulses (Figure 1.5) provides an important chronology to the deglaciation and 

implies an early routing of meltwater to the North Atlantic and Gulf of Mexico, followed 

by cooling with associated sea level drop and ice sheet buildup, abruptly ending with a 

second large flux of meltwater into the Gulf of Mexico. 

1.8.3 MS 6/W-l Interstadial 

Greenland ice cores archive dramatic and abrupt climatic changes at millennial to 

decadal time scales during the last 80 ka in the northern hemisphere (Alley et al., 2000). 

Abrupt climate changes observed during MIS 6/W-l are similar in character and duration 

to the MIS 3 oscillations, and are found globally (Cannariato and Kennett, 2005). Basin 

4 records include an expanded interval preceding Til (Figure 1.4b), with oscillations 

similar to the MIS 6 interstadials of the Santa Barbara Basin (Kennett et al., 2000) and 

the MIS 3 climate oscillations in the Orca Basin (Hill et al, 2006). We use the higher 

resolution record in 1319A for discussion; however, 1320A confirms that high amplitude 

oscillations do exist in Basin 4. 

Sea level was ~ 80 to 120 m below present during MIS 6/W1 (Chappell, 2002; 

Shackleton, 2000; Martinson et al., 1987; Imbrie et al., 1984; with 8180 records converted 

to sea level in Bard et al., 2002) expected 8180 enrichment values are from ~ 0.7 to 1.0%o 

based on the relationship 0.083%o per 10m sea level change (Adkins and Schrag, 2001). 

Values < -i.6%o would indicate that sea surface temperatures were more than 3°C higher 
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than the average modern Gulf of Mexico summer temperatures of 29 °C (Levitus, 2005), 

which is prohibitively large to explain such 8180 anomalies (Flower, 2004) (using the 

equation T= 14.9 - 4.8 [818Oc - 818Osw] where T is in degrees centigrade, the subscript c 

indicates carbonate, and the subscript sw indicates seawater; Thunell et al., 1999). 

SSTs from Mg/Ca measurements verify that maximum temperature during MIS 

6/W1 was a maximum of 28.8 °C and a minimum of 23.5 °C during MIS 6/W1 (Figure 

1.8c). This is, as expected, relatively colder than the today's mean of 29 °C (Levitus, 

2005) , but is in agreement with temperature variations observed in Orca Basin climate 

oscillations during MIS 3 (Figure 1.11a). 818Osw values for MIS 6/M1 in Basin 4 also 

fall within the range of those calculated in the Orca Basin during MIS 3 (Figure 1.11b). 

MD-41 has a detailed history of MIS 3 (Figure 1.7) and when compared to the MIS 6/W1 

record in 1319A, there are striking similarities (Figure 1.12). MIS 6/W1 8180 values are 

slightly heavier than the MIS 3 8180 values, which can be attributed to the end of MIS 6 

being a fully glacial interval, whereas the MIS 3 is an interstadial, and has interstadial 

8180 values. The Orca Basin record during MIS 3 has shown how isotopically light 

Laurentide Ice Sheet meltwater affected the GoM planktonic foraminifer 8180 values. 

These MIS 3 meltwater events in the Orca Basin do not correlate to D/O cycles seen in 

the Greenland air temperature record, but rather to Antarctic warming events (Hill et al., 

2006) as this conclusion had been already to be the case for TI (Flower et al., 2004). 

Because the amplitudes and character of the events seen in Basin 4 are similar to 

those in MD-41 during MIS 3, and also Orca Basin MIS 3 melting events as seen in the 

SST and 8I8Osw records, the Basin 4 MIS 6 events must be a record of LIS melting during 

MIS 6. The amplitude of the MIS 6 818Osw events is largely a response to the meltwater 
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draining from the paleo-Mississippi river and pushed by surface currents into the area of 

Basin 4. 

Chronology can be estimated for the record using the analogs previously 

discussed. MIS 3 events lasted anywhere from 2-4 ka in the Orca Basin (Hill et al., 

2006), while MIS 6 events in the Santa Barbara Basin (Cannariato and Kennett, 2005) 

lasted from 2.5-4 ka, depending on different chronologies. Applying this to our record, 

the bottom 120 m of the 1319A core represents approximately 13 - 20 ka of MIS 6. This 

largely agrees with the age constraints using G. menardii zonation, which bracketed the 

MIS 6 record at no longer than 21 ka. The age of the oldest part of 1319A lies between 

148 and 156 ka using these constraints. These age constraints allow us to calculate 

sedimentation rates in Basin 4 during MIS 6, which were fairly rapid; on the order of ~ 6 

to 9 m per thousand years. 

1.9 Conclusions 

The greatly expanded record of Basin 4 has provided a detailed history of TII/Late 

MIS 6 using 8180 of planktonic foraminifer G. ruber (white variety) with paired Mg/Ca 

measurements. In the 5180 record, a series of millennial-scale climate oscillations are 

identified throughout MIS 6. Also, rapid climate oscillations during Til show a climate 

reversal with a 8180 amplitude greater than 1.2%o, and several meltwater spikes 

approaching values of -4%o. Paired 8180 - Mg/Ca measurements are used to estimate 

variations in SST. These SST values are used to correct 8180 for SST variabilities and 

derive 818Osw, which gives information on the meltwater events entering the northern 

Gulf of Mexico. 
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SST based on Mg/Ca ratios show an overall cooling trend through the end of MIS 6, 

reaching ~24°C at its coolest. Temperatures during Til quickly increased, reaching a 

peak values at ~29 - 30°C. The 818Osw record shows several features that were not clear 

in the 6180 curve, including higher amplitudes during MIS 6 event E3, a second peak in 

I Q 

E2, and a tapering of events during El. In the 8 Osw record during Til, meltwater pulse 

amplitude decreases to 2%o due to the large temperature increase during this time, 

however only ~l%o of this amplitude can be explained by the increase in sea level. The 

8180 MIS 6/TII record in Basin 4 is intimately linked to millennial-scale events, namely 

meltwater pulses, originating from the LIS and routed into the northern Gulf of Mexico 

through the paleo-Mississippi river. 

These results confirm other study's descriptions of MIS 6/TII millennial-scale 

climate oscillations (Cannariato and Kennett, 2005) and link them to changes in the LIS 

via meltwater routing into the GoM. 8180, SST, and 818Osw records during MIS 3/ TI 

(Flower et al., 2004; Hill et al., 2006) are comparable to the results found in this study 

and we hypothesize that the sub-Milankovitch forcing mechanisms at work during MIS 3/ 

TI also explain the Basin 4 record of MIS 6/TII, although this is nearly impossible to 

ascertain without a northern hemisphere ice sheet record. Because a northern hemisphere 

ice record older than MIS 5 does not exist, we conclude that the Basin 4 MIS 6/TII record 

could be used as a proxy for the growth and decay cycles of the LIS via the timing of 

meltwater events seen in the planktonic foraminiferal 8180 values. 
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Figure 1.1. Map of the Gulf of Mexico showing the location of Basin 4 and the Orca 
Basin. This figure is modified from http://ocean.explorer.noaa.gov. 

http://ocean.explorer.noaa.gov


34 

-98° -96° -94° -92° -90° 

-98° -96° -94° -92° -90° 

Figure 1.2. Late Pleistocene paleogeographic map of the northwest Gulf of Mexico, 
showing locations of Basin 4 and Bryant Canyon cores in relation to the two main 
depositional systems influencing the area. The Mississippi River Delta during 
Termination II and late MIS 6 (Mississippi River delta information from Tripsanas et al., 
2007), and the Brazos-Trinity (B-T) Delta during MIS 5 - MIS 2 (B-T delta information 
from Anderson et al., 2004). Numbered lobes in the B-T delta indicate chronological 
order of lobe formation. Prevailing surf ace currents in this part of the gulf explain the 
reason for the sensitivity of Basin 4 to meltwater fluxes and large volumes of fine 
sediment from the Mississippi River during MIS 6. From MIS 5 to MIS 2 the Brazos-
Trinity system became the dominant influence on Basin 4 (Mallarino et al., 2006). 
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Figure 1.3. A bathymetric map with the location for the three Basin 4 cores. The map 
modified from Mallarino et al. (2006). 



Table 1.1 Location and depth information for cores used in this study. Information for 
1319A and 1320A from Flemings et al., 2006 information for MD03-2641 from Laj 
(2006). 

Core Total Cored Latitude 
Section (m) 

1319A 157.5 27° 15.9751 N 
1320A 299.6 27°18.0809 N 

MD03-2641 39.6 27°17.352 N 

Longitude Water Environment 
Depth (m) 

94°24.1908W 1429.6 Basin slope 
94°23.2537 W 1480.4 Basin floor 
94°25.902 W 1427 Basin slope 
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Figure 1.4a. Planktonic 8180 records based upon Globigerinoides ruber for Basin 4 
cores annotated with correlations of the ash layer Y8 and G. menardii zone X/Wl 
boundary. 
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Figure 1.4b. Planktic 8180 records for Basin 4 cores, depth corrected to zero at the 
lightest meltwater peak in each record. Also, a Basin 4 bathymetric map with core 
locations (modified from Mallarino et al., 2006). 



39 

128 
Red Sea Age (ka) 
130 132 134 

m 
o 
> 

O 
CO 

30 32 34 
Site 1319A depth (mbsf) 

36 

30 32 34 36 38 
MD03-2641 depth (mbsf) 

Figure 1.5. Til climate reversal (gray shaded area) observed in 8180 record of planktonic foraminifer G. 
ruber (white variety) cores 1319A and MD03-2641. G. menardii zone boundary (red line) seen in cores 
1319A and MD03-2641, dated to approximately 129 ka (Kennett and Huddlestun, 1972). Correlation to 
Red Sea data, from Siddall et al. (2007), Aladdin's Cave data from McCullock and Esat (1999), and Gulf of 
Corinth data from Andrews et al. (2007). 
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Figure 1.6. 8180 on G ruber (white) from Basin 4 core 1319A. All G. ruber 8180 
measurements for core 1319A, shown with five-point smooth fit, and segmented into E-
events referred to in the text. 
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MD03-2641 

Depth (mbsf) 
Figure 1.7. 8180 record of planktonic foraminifera G. ruber in Basin 4, core MD03-
2641. This record is important for using its MIS 3 climate oscillations from 21 to 14 
mbsf, and the TI meltwater spike at 4 mbsf for comparing to older 8180 high amplitude 
variations observed in the other two sedimentary sequences analyzed in this study. 
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Figure 1.8. MIS 6/TII climate proxy records from Hole 1319A. Events El to E3, earlier 
identified in the high resolution 8180 data (Figure 5), are shown. Sample spacing is 
generally every 75 cm, except from 30 to 32 mbsf, where sample spacing can be as 
narrow as 30 cm. (a) 8180 values measured from G. ruber (white variety), (b) Mg/Ca 
data versus depth in core, (c) Sea surface temperature calculated from Mg/Ca ratios, (d) 
8I8Oseawater after subtracting out the temperature effect and converting to VSMOW. Total 
error in calculating 818Osw is ±3.1% or less than ±0.06%o. For errors in previous 
calculations refer to Methods. 
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Figure 1.9. Termination I and II8180 meltwater responses in planktonic foraminifers 
throughout the Gulf of Mexico (yellow and blue highlighted areas respectively). Data 
from each of the cores were taken from the following: core 1, TR126 -23 from Falls, 
1980; core 2, MD03-2641 from this study; core 3, JPC-31 from Tripsanas et al., 2007; 
core 4, EN32-PC6 from Flower, 2004; core 5, ODP 625B from Joyce et al, 1990. 
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Figure 1.10. 818Osw and SST curves for Til in 1319A (Basin 4) and TI in the Orca Basin 
covering comparable meltwater events. The 818Osw Til signal in 1319A does not show 
quite the magnitude as the TI event, however the values to fall within the same range as 
the TI Orca Basin. Temperature changes are also comparable with warming through the 
meltwater event. Orca Basin values from Flower et al. (2004). 
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:18, Figure 1.11. 815Osw and SST curves for MIS 6 in 1319A (Basin 4) are plotted with 
respect to depth, and MIS 3 in the Orca Basin, which are plotted with respect to age (ka), 
cover comparable meltwater events. The values from MIS 6 are generally comparable to 
those from MIS 3, with some variation in the oldest part of MIS 6. Orca Basin values 
from Hill et al. (2006). 
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:18, Figure 1.12. 8 O on G. ruber (white variety) from Basin 4 cores MD03-2641 and 
1319A. The MIS 3 record from MD-41 (with clarifying top right corner figure) is 
overlain on top of the MIS 6 record from 1319A. Amplitudes of anomalous excursions 
for both time periods are similar to one another. Troughs in 1319A are slightly heavier 
than MD-41, possibly because MIS 6 is a fully glacial time period. 
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APPENDIX A. Basin 4 Core Data 
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Table A.l. Data for Hole U1319A Latitude: 27° 15.9751'N, Longitude: 94° 24.1908'W. Hole, Depth 
(mbsf), 8180 (VPDB) (per mill), 813C (VPDB) (per mill). 

Hole 

1319A 

1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 

1319A 

Depth 
(mbsf) 
22.58 

23.08 
23.58 
23.87 
24.09 
25.59 
27.09 
27.44 
27.81 
28.59 
29.53 
30.09 
30.13 
30.84 
31.06 
31.33 
31.56 
31.59 
31.67 
31.93 
32.24 
32.83 
33.52 
33.59 
34.21 
35.02 
35.09 
35.83 
36.15 
36.65 
37.28 
38.09 
38.14 
38.83 
39.58 
39.59 
40.33 
41.08 
41.09 
41.83 
42.52 
42.6 
42.59 
43.08 
43.09 
43.84 

8180 
per mill 
-2.2181 

-1.5053 
-0.7215 
-0.8225 
-1.8732 
-1.6372 
-2.4520 
-3.2358 
-1.2719 
-1.5882 
-1.3114 
-1.1863 
-2.1366 
-3.7207 
-3.0889 
-2.3402 
-2.6798 
-3.4816 
-2.6016 
-2.3318 
-2.1362 
-2.5042 
-1.4240 
-1.0135 
-0.2595 
-1.4610 
-1.9052 
-1.0050 
-0.7556 
-0.6070 
-0.8549 
-1.8777 
-0.8647 
-1.0302 
-1.9340 
-0.4068 
-1.5956 
-1.5806 
-1.9454 
-1.1609 
-1.4064 
-2.4617 
-1.8613 
-0.7331 
-1.0338 
-1.2932 

613C 
per mill 

1.1760 

1.6879 
0.9876 
1.2751 
0.9064 
0.3080 

-0.2710 
0.3310 
0.6379 
0.7795 
0.8411 
1.0176 
0.7167 
0.7237 
0.5509 
0.2570 
0.1588 
0.1298 
0.7547 
0.3690 
0.4673 
0.5731 
0.4451 

-0.1426 
0.2226 
0.7746 
0.4985 
0.6340 
0.7429 
0.8121 
0.8989 
0.8968 
0.8859 
1.0484 
1.2458 
0.9450 
0.8191 
0.8101 
0.8975 
0.4747 
0.1504 
0.6721 
0.5515 
0.2989 
0.6019 
0.7827 

Hole 

1319A 

1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 
1319A 

Depth 
(mbsf) 
44.58 

45.32 
45.67 
46.07 
46.08 
46.83 
47.02 
47.56 
47.58 
48.31 
49.08 
49.09 
49.84 
50.57 
50.58 
51.8 

52.03 
52.58 
53.39 
54.07 
54.08 
54.83 
55.15 
55.15 
55.58 
55.59 
56.31 
57.07 
57.08 
57.82 
58.57 
58.58 
59.32 
60.09 
60.1 
60.84 
61.54 
61.55 
62.08 
62.085 
62.83 
63.58 
63.585 
64.31 
64.66 
64.65 

8 ,80 
per mill 
-0.9587 

-1.0416 
-2.4505 
-1.6985 
-1.3038 
-1.5114 
-1.4120 
-1.2664 
-1.2060 
-1.4428 
-0.7449 
-1.1089 
-1.6920 
-1.2400 
-2.3302 
-1.4321 
-0.5072 
-1.7273 
-1.6046 
-1.0912 
-1.0073 
-1.0231 
-1.4089 
-0.8633 
-0.6441 
-2.1184 
-0.3595 
-1.0791 
-1.0269 
-1.6879 
-0.8450 
-0.1199 
-1.6999 
-0.7039 
-0.8134 
-1.0273 
-2.2794 
-0.9129 
-1.4806 
-0.8286 
-1.5562 
-1.5011 
-1.1583 
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Appendix B: Mg/CaData 
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Appendix C: Additional Figures 
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1319A8180 1319A813C 

-1 -2 -3 

3180(VPDB) 
813C (VPDB) 

Figure C I . Comparison of 8180 and 813C from Hole 1319A. 
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Running Average Running Average Running Average 
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Figure C.2. 8180 data for Hole 1319A versus a variety of running averages. The five 
point moving average was used for this study. 
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Figure C.3. A combination diagram showing the global benthic 8180 stack (Lisiecki and 
Raymo, 2005), with corresponding Marine Isotope Stages, and G. menardii zones for the 
Gulf of Mexico (Kennett and Huddlestun, 1972). 
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