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Abstract 

Nonresonant Surface Enhanced Raman Optical Activity 

by 

Bruce E. Brinson 

Nanoshells (NS) and nanoparticles (NP) are tunable plasmonic particles that can 

be precisely engineered for specific applications including surface enhanced 

spectroscopies. A new, general method for the synthesis of core-shell and solid 

nanoparticles has been developed and is presented. Based on the CO reduction of Au , 

this new process yields the highest quality gold nanoshells synthesized to date. The 

constraints on precursor lifetime have been relaxed and post-synthesis purification has 

been eliminated. 

Nonresonant surface enhanced Raman optical activity (SEROA) has been 

investigated using biomolecular analytes deposited on Au nanoshell or nanoparticle 

substrates. The first, and currently the only, near-infrared (780 nm) excited scattered 

circular polarization Raman optical activity spectrometer (NIROAS) has been 

constructed. Surface enhanced Raman optical activity spectroscopy has been validated by 

the collection of symmetrical, surface enhanced, signed circular polarization intensity 

difference spectra from several test molecules including, (S)- and (R)-tryptophan, and 

(SS)-and (RR)-phenylalanine-cysteine. 
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Chapter 1. Introduction and Literature Review 

1.1 Introduction 

The field of vibrational optical activity is composed of two spectroscopies, Raman 

optical activity (ROA) and infrared analog vibrational circular dichroism (VCD) ROA 

and VCD spectra relay the molecular stereochemical information of optically active 

chiral molecules. VCD is a measurement of the absorption difference between incident 

right- and left-handed circular polarized light. While ROA, an inelastic scattering 

process, is a measurement of the difference in the change of the degree of polarization in 

the scattered light from a sample relative to the excitation (incident) source. 

With the advent of the gas filled ion laser, Raman spectroscopy precise enough to 

measure the minute changes predicted in the Raman scattering of circularly polarized 

light.2 So small are these circular intensity differences, that dust, thermal Schlieren 

effects, and background fluorescence can result in spectral intensity variations much 

larger than the ROA signal itself. 

P. W. Atkins presented the polarization density matrix formalism for change in 

the polarization of incident light, induced by the analyte, and observed in scattered light. 

L. D. Barron and A. D. Buckingham extended the theory and produced the first ROA 

spectrum.4' 5 It was Laurence D. Barron of Glasgow University, who pioneered ROA 

spectroscopy. Since the inception of ROA measurements, the greatest obstacle has been 

that of systematic spectral artifacts.6 Theory developed by W. Hug and validated by 

experiment7 led to the first commercially available scattered circular polarization Raman 

optical activity spectrometer (SCP-ROA).8 
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ROA cross-sections are E"3 to E"4, less than the cross-section of conventional 

Raman, while signal-to-noise ratios can be E3-E4 orders greater than that of Raman 

spectra. The ROA figure of merit, known as the circular intensity difference (CID), is the 

difference in right- and left-circular polarization intensities to their sum. Typical CID 

values range from 10"3 to 10"6.9 

Correct interpretation of ROA spectra is dependent on a thorough understanding 

of systematic artifacts and their origin. An instrument can be characterized by comparing 

experimental data to theoretical (simulated) spectra of a known (standard) system, such 

as (R)- and (S)-(-)-a-pinene.10 Even so, the spectra of an individual sample (not just the 

same kind of sample) must be carefully scrutinized. 

Surface enhanced Raman spectroscopy (SERS) is a very sensitive and well-

established spectroscopic technique.11 Using aggregated Ag particles in solution as 

plasmonic substrates, the first experimental evidence of resonant surface enhanced 

Raman optical activity (SEROA) has been presented by Abdali et al. 12~14 Johannessen, 

Abdali, and Blanch are currently investigating the resonant surface enhanced Raman 

optical activity of naturally occurring biological molecules. As with most of nature, all 

these works are applicable to molecules exhibiting left-handed chirality. Until SEROA 

spectra of complimentary molecular enantiomers can be produced and compared, the 

validity of SEROA remains in question.12'15 

The objective of this work is the validation of nonresonant SEROA by the 

elucidation of surface enhanced CID spectra from complimentary and biologically 

significant enantiomers. New protocols for the synthesis of Au nanoshells and the 
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synthesis of Au and Ag solid nanoparticles, where carbon monoxide (CO) is the 

reductant, will be presented in Chapters 2. 

Brinson et al, developed the first near-infrared excited scattered circular 

polarization Raman optical activity spectrometer (NIROAS) 16. The NIROAS is the 

centerpiece of this thesis and will be discussed extensively in Chapters 3 and Appendix 1. 

The validity of SEROA has been established by the acquisition of mirror image CID 

spectra from the biologically significant (S)- and (R)- enantiomers, of tryptophan, and 

(SS) and (RR) amine-terminated glycine-glycine-phenylalanine-cysteine (phe-cys). 

SEROA sample preparation and corresponding spectra are presented and discussed in 

Chapter 4. 
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1.2 Raman Scattering 

Raman scattering is a molecular vibrational phenomena discovered by Sir 

Chandrasekhara Venkata Raman. For this work, he was awarded a Nobel Prize. ' The 

Raman effect, also known as Stokes emission, is the inelastic scattering of 

electromagnetic radiation by the vibrational states of a molecule. Consider the No and Ni 

vibrational energy levels shown in Figure 1-1. 

Figure 1-1. Raman energy level diagram. 

If the photon incident on a material has a much larger energy than the transition 

energy between the No and Ni states, AE, it can be either elastically scattered by emitting 

a photon of the same frequency; a process termed Rayleigh scattering, or it can be 

inelastically scattered, via linear processes such as fluorescence and Raman scattering. 

When an incident photon interacts with a molecule in the ground vibrational state No, and 

the molecule absorbs the photon, it is raised to either a real (resonant, electronic) or a 

virtual (nonresonant, vibrational) state. Relaxation from either state can release energy in 

the form of a photon. However, a comparatively small number of the molecules may 

relax into a different state of the vibrational manifold. When the final state of the 



molecule is in a higher vibrational level than the initial state, the scattered photon has less 

energy than the incident photon, the difference being AE. This process is known as 

Stokes emission. Alternatively, the molecule can be in the Ni state when it absorbs the 

incident photon, and then relaxes to the No ground state. In this case, the energy of the 

scattered photon is greater than the energy of the incident photon. This process is known 

as anti-Stokes Raman scattering. Under ambient conditions, the majority of molecules are 

in the ground state, No. Thus, anti-Stokes scattering intensity can be several orders of 

magnitude less than the Stokes scattering.19 In this work, only Stokes modes will be 

evaluated 
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1.3 Raman Optical Activity 

Raman optical activity is induced by the interaction of an electromagnetic wave 

with the molecular electronic dipole, quadrupole and magnetic dipole of a chiral 

molecule.20 As a function of circular polarizability, a resulting Stokes emission, 

representative of molecular vibrations inaccessible by conventional Raman spectroscopy, 

can be measured. ROA is an inelastic scattering process by a chiral molecule that 

includes right- and left-handed circularly polarized light. A ROA spectrum results from a 

measurement of the difference in the change of the degree of polarization induced by the 

analyte, relative to the excitation source. From ROA experiments, biomolecular back 

90 

bone structure, conformation, and absolute stereochemical structure can be determined. ' 

21 ROA spectra include: bending, wagging, ring deformation, ring breathing, rotation, and 

torsion modes. ' 

Within the array of ROA spectrometers developed over the years, techniques 

include sample excitation by incident, random, right- and left-handed circularly and 

linearly polarized light. Each system must also be capable of measuring the change to the 

input polarization induced by the sample and thus, produce a polarization dependent 

spectrum. A minimum of two spectral measurements are required, one from each arm of 

a polarization analyzer. With the exception of particularly bright molecules such as a-

pinene, contemporary data collection requires collection periods measured in hours, often 
90 

over a period of days. 

An ROA spectrometer simultaneously produces conventional Raman spectra by 

summing the two polarization dependent spectra and the ROA spectra by taking the 
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difference between the two spectra. The circular intensity difference (CID), a 

measurement of the relative strength of an ROA signal, is given by Equation 1. 

Equation 1. Circular intensity difference. 

where Ii and Ir represent the intensity of left and right handed circularly polarized light 

respectively. 



1.4 Introduction to Nanoshells 

A metal nanoshell is a plasmonic device consisting of a dielectric core surrounded 

by a thin, metallic shell. The core is typically a 40 to 250 nm radius spherical silica 

nanoparticle, surrounded by a 5 to 30 nm thick Au or Ag shell. ' Nanoshells have a 

tunable plasmon resonance, which is a function of relative size of the core, core index of 

refraction, shell, and local environment. (Figure 1-2) Their plasmon resonances can be 

tuned from the visible out into the near- and mid-infrared regions of the electromagnetic 

spectrum. ' The nanoshell resonant frequencies, lineshape, and the relative 

contributions of scattering and absorption to the extinction spectra (plasmon line shape) ' 

28 can be quantitatively modeled with Mie scattering theory29. Nanoshells have found 

applications as extinction, SERS25, and SEIRA26 substrates, photo-oxidation inhibitors in 

conducting polymers30, optically triggered drug delivery substrates31, optomechanical 

materials ' , a diagnostic probe in whole blood , and a tissue specific, photo-thermal 

tumor therapy. 

The nanoshell geometry controls the far-field electromagnetic response of a 

nanoshell, and the local electromagnetic near-field at the nanoshell surface is also 

controlled by its geometry. The large, local electromagnetic fields of this simple, 

symmetric nanoparticle system can be accurately calculated and related to the measured 

SERS enhancements.28'36 
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Figure l-2Theoretically calculated (Mie scattering) optical resonances demonstrating 
plasmon tunability for nanoshells 

Nanoshells with an inner silica core radius ri = 6 0 nm and an overall particle 
radius r2 = 65, 67, 70, and 80 nm (corresponding to 5, 7, 10, and 20 nm thick Au shells). 
The plasmon resonance (extinction) of the particles red-shifts as r,/r2 increases. Modified 
from Oldenburg et al. (ref) to exclude the broadening mechanism. 

An alternative plasmonic near-infrared resonant structure to the nanoshell is the 

gold nanoparticle (NP) aggregate. Au colloid consists of solid NPs, typically spherical or 

faceted in shape The surface plasmon resonance of the smaller spherical Au NP in 

aqueous solution occurs at approximately 520 nm. (Figures 1-3 and 4a) For larger, 

nonspherical particles, this peak has been observed to red-shift as much as 100 nm. 



(Figure 1-3) While the plasmon peak of individual Au nanoparticles is off-resonance 

relative to 780 nra, as the distance between NPs approaches a few nanometers, a red-

shifted aggregate plasmon appears at the expense of the isolated nanoparticle plasmon.37 

The degree to which the plasmon red-shifts, inversely with distance between adjacent 

particles. When minimal particle distance is determined by electrostatic repulsion, the 

aggregate peak can be shifted to -700 nm. (Figure l-4b) When the interparticle distance 

is further reduced by surface charge reduction or molecular bonding, in this case by 

phenylalanine-cysteine, the resulting smaller interparticle distance further red-shifts the 

plasmon peak into the near infrared NIR where it is resonant with 780 nm, excitation 

(Figure 1-4c). This effect holds for nanoshells as well. 

I 

400 600 800 
Wavelength (nm) 

1000 

Figure 1-3 Normalized theoretically calculated (Mie scattering) optical resonances. 
Illustration of the plasmon red-shift with increasing particle size for Au nanoparticles 
with a radius of 30,60, 90 and 120 nm. 
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Figure 1-4. Optical extinction spectra of nanoparticles and nanoparticle films 
(a) aqueous gold nanoparticles, (b) a 2D aggregated nanoparticle film, and (c) a 3D NP 
film bound by amine-terminated glycine-glycine -phenylalanine-cysteine molecules. 



1.5 Surface Enhanced Raman Scattering 

The enhancement of the Raman spectra of molecules immobilized on a metal 

substrate is collectively known as surface enhanced Raman scattering (SERS). ' ' In 

these studies, Raman scattering intensities were enhanced by several orders of magnitude. 

The use of aggregated Au nanoparticles as SERS substrates has resulted in detection 

limits approaching the single molecule limit.41' ' When reabsorption is negated, for 

example, by the use of a NS film in air as opposed to an aqueous suspension, 

enhancements as high as 1010 have been reported.28 

Raman spectra are chemically specific to the vibrational modes and electronic 

transitions (which can contribute to the spectral background) of an analyte. It is common 

for SERS spectra to differ from the parent Raman spectra, but in many instances, 

excellent repeatability Can be observed or determined by digital processing methods.44 

The combination of low level delegability and specificity, lend SERS to biological, 

chemical, and environmental sensing applications. 7' '46 

Now, over 40 years after Jeanmaire and Van Duyne published their first SERS 

paper, the nature of the electromagnetic and chemical mechanisms that lead to the SERS 

phenomena are still debated.41' 47' 48 Reasons mitigating a unified SERS model include, 

but are not limited to, the nature of surfaces, particle-particle interactions, molecular 

binding geometry, molecular conformation, isomer distributions, and local 

41 4Q SO 

environment. ' ' 

The use of nanoshells and nanoparticles that are resonant with a NIR laser, which 

is off-resonance with the analyte, has been shown to increase detection limits by 8-10 

12 



orders of magnitude. ' Plasmonic structures developed and applied to the validation of 

NIR surface enhanced Raman optical spectroscopy will be presented in Chapter 2. 
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1.6 Polarization 

The term polarization in the field of electromagnetic (EM) wave radiation 

describes the orientation of the electric field vector (E), as defined by the phase 

relationship of orthogonal components. In an isotropic medium, this phase relationship is 

constant. The phase relationship can be altered by reflection or when the EM wave is 

transmitted through a medium where a difference in the index of refraction for the 

orthogonal (x, y) components exists. Equation 2 describes the path drawn by the electric 

vector over a distance of one wavelength. 

E = A cos(bc - cot) - B sm(kt - cot) 

Equation 2. Path drawn by the electric vector. 

where A, B are the amplitudes of the orthogonal x and y vectors, k (the reciprocal of 

wavelength) is the wavenumber, co is the frequency of the wavelength, and / is time. 

The change in the orientation of the unit vector (E) about the direction of 

propagation (k) over a distance of one wavelength, determines the degree of polarization 

(DP). 

DPJQ2+U2+V2 

• • • • • / 

Equation 3. Degree of polarization (DP). 

where Q, U, and Fare the applicable Stokes vector and / the polarization independent 

optical intensity. 
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With the exception of laser radiation, light exists in an elliptical or randomly 

polarized state. Linear and circular polarization can be special cases of elliptical 

polarization. As seen in Equation 2, when |A| or |B| = zero, the light is linearly polarized 

and when |A| = |B| =' 1 (A • B = 0), the light is circularly polarized. Included in a 

complete description of polarization is the "sense" of polarization, which describes the 

direction of rotation, scribed about the optical axis (k) by the E-vector. The sense is 

described as right- or left-handed circular polarization, and can be visualized as 

clockwise or counter clockwise rotation, respectively. Obviously, the direction of 

observation will determine how the rotation is described. After a review of optical 

textbooks52"54, by convention, the sense of elliptical polarization is interpreted as if 

looking to the source. Figure 1-5 illustrates in three dimensions the rotation of the electric 

vector about the direction of propagation for right-handed (using the right-hand rule in 

the direction of propagation) circularly polarized light. Figure 1-6 illustrates the sense 

of, and the change of the sense and degree of polarization for phase shift increments of 

15 
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Figure 1-5. 3D artist illustration of elliptical polarization. 
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Figure 1-6. The sense and degree of polarization vs. phase shift. 
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1.7 Conclusion 

The principles of Raman scattering, Raman optical activity, plasmonic nanoshells, 

surface enhanced Raman spectroscopy, and the degree of circular polarization have been 

presented. In chapters 3 and 4, these building blocks will be applied to the validation of 

surface enhanced Raman optical activity. 
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Chapter 2. Synthesis of Au core-shell and solid Nanoparticles 

2.1 Introduction 

Nanoshells are particles consisting of a dielectric core surrounded by a thin 

££ CO 

metallic shell, form a class of nanostructures with remarkable optical properties. ' Au 

nanoshells, consisting of spherical silica nanoparticle cores surrounded by a uniform 

nanoscale gold shell layer, and Au nanorice, prolate hematite nanoparticles surrounded 

by a gold shell layer, are two examples of this general nanoparticle morphology. The 

unique optical properties of these nanoparticles are due to their geometry dependent, 

plasmon-derived optical resonances whose frequencies depend sensitively on the inner 

and outer dimensions of their metallic shell layers. The intense optical absorption and 

scattering properties of this class of nanoparticles can be made to span a remarkably large 

region of the electromagnetic spectrum, from visible frequencies to the far infrared.56'59 

This property has led to the use of these types of nanoparticles in numerous applications, 

from fluorescence enhancement of weak molecular emitters,60 substrates for surface 

plasmon resonance sensing,61 biosensing,34 surface enhanced Raman and surface 

enhanced infrared absorption spectroscopies,26' 38' 62 to contrast enhancement in 

bioimaging and photothermal cancer therapy.63'M 

The plasmon-derived optical properties of metallic shell particles have been 

explicitly verified using fully quantum mechanical calculations " but can be understood 

in simple physical terms using the plasmon hybridization concept.68"70 In plasmon 

hybridization, the tunability of the plasmon resonances of dielectric-core metal-shell 

nanoparticles arises from the interaction of cavity plasmons associated with the inner 

shell surface with sphere plasmons associated with the outer shell surface. The plasmons 

. . . . . • . • • 1 8 



associated with the inner and outer surface of the shell mix and hybridize, resulting in a 

lower energy, "bright" or "bonding" plasmon that couples strongly to incident light, and a 

higher energy "dark" or "anti-bonding" plasmon that couples weakly to incident light. 

The hybridization interaction is stronger for thinner shell layers, leading to a strongly red 

shifted resonance for the "bright" plasmon at a wavelength determined by the thickness 

of the shell and the overall particle radius. Therefore, to position the plasmon resonance 

at a wavelength of interest it is crucial to be able to synthesize metallic shell particles 

with thin, uniform shells. 

Synthesis of dielectric core-Au shell nanostructures is a multistep process. It is 

initiated by functionalizing oxide nanoparticles with aminopropyltriethoxy- or -

methoxysilane, followed by the binding of very small (1-2 tun diameter) Au 

nanoparticles onto the nanoparticle surface to a saturation coverage of nominally 25-

30%. ' Core-decoration is followed by the chemical reduction of Au (aq)-»Au (S> onto 

the nanoparticle precursor surface. In this last reduction step, the tiny Au islands grow 

larger and ultimately merge, resulting in the formation of a continuous, multicrystalline 

metallic shell layer. Once formation of the shell layer is complete, the optical properties 

of the plasmonic nanoparticles correspond quantitatively to classical electromagnetic 

theory.72 Although the plasmon resonance of a nanoshell is robust with respect to small 

defects or variations in surface roughness,73' 74 for the electromagnetic response of 

plasmonic nanoparticles to agree quantitatively with theory, it is critically important that 

the shell layer formation on the nanoparticle surface have a continuous and uniform 

morphology. A striking example of a "nanoshell defect" that can give rise to drastic 

changes of the optical properties is the nanoegg, a metallic nanoshell with a 

19 



homogeneous metallic shell of nonuniform thickness. This particle can be fabricated in a 

*1C . . . . . . . 

controlled manner and is described as a nanoshell with a displaced (nonconcentric) 

dielectric core. The symmetry breaking of core displacement modifies the optical 

properties quite dramatically, giving rise to additional hybridized plasmon resonances in 

the extinction spectrum of the nanoparticle.75'76 

Plasmon tunable, Au nanoshells, Au nanoparticles and nanoparticle aggregates 

have been established as excellent SERS substrates.11' 28' 37. When a molecule is 

resonantly excited, specimen fluoresce may obscure vibrational spectra. The molecules to 

be evaluated for SEROA are transparent in the MR. For biological applications, 

designing a SEROA substrate that is nonresonant in the visible spectrum and resonant in 

the NIR should enhance the vibrational spectra while eliminating specimen fluorescence. 

The plasmon peak profile of Au nanoshells and nanoparticle films can be tuned to this 

specification. Nanoshell and nanoparticle sample structures have been develop and 

successfully applied to Surface enhanced Raman optical activity experiments. The 

SEROA sample structures will be elaborated on in chapter 4. 

The aqueous phase synthesis of gold nanoparticles depends on the reduction of 

tetrachloroauric acid in the presence of a reducing agent. Several reducing agents have 

been reported for the synthesis of metallic nanoparticles, and typically have a significant 

influence on the morphology of the final nanoparticle product. For the growth of gold or 

silver shell layers on silica nanospheres, the shell layer morphology depends on the 

reducing agent used in the metallization process.71'77 For example, in the case of Au 

nanoshells, the reducing agents formaldehyde (H2CO), hydroxylamine-hydrochloride, 

and sodium borohydride do not produce equivalent results in otherwise comparable 

20 



synthesis protocols. Also associated with the use of certain reductants have been 

variations in shell layer morphology due to specifics of reagent preparation. Both 

colloidal solutions and reductant solutions are known to change slowly over time, 

resulting in the growth of nanostructures with morphologies deviating from those 

achieved with freshly prepared solutions. These slow variations are most likely due to 

changes in equilibrium concentrations of the various ionic constituents or of dissolved 

gases, and are quite challenging to monitor, as is their precise influence on shell layer 

growth. A reducing agent method immune to such variations would provide consistent 

reproducibility in shell formation and improve the reliability of plasmonic nanoparticle 

fabrication. 

In this chapter a robust and reliable method is reported for the growth of an Au 

layer on a prepared dielectric nanoparticle surface based on the use of carbon monoxide 

gas (CO) as the reducing agent.78'79 The shell growth is demonstrated on silica core-Au 

shell nanoshells and hematite core-Au shell nanorice structures. We compare 

nanoparticles prepared with this new method to nanoparticles prepared using the 

conventional liquid phase reductant, formaldehyde (H2CO). For both nanoparticles, the 

growth of a continuous Au shell layer is achievable at smaller thicknesses with CO as the 

reducing agent. The CO reduction method is also applicable to Au and Ag colloid 

synthesis. Based on CO flow rates, flow times and k-carb age the nature of the Au 

colloids can be controlled. 



2.2 Synthesis of gold Nanoshells 

Ensemble extinction spectra, single particle scattering spectra and SEM images of 

specific single nanoshells and nanorice grown by both methods provide clear evidence 

that thinner, more uniform shell layer morphologies on nanoshells and nanorice can be 

fabricated with this approach. When precursor chemicals are prepared within a few days 

of nanoparticle synthesis both CO and H2CO reduction methods produce comparable high 

quality nanoparticles. However, the reduction of Au3+ by CO results in the growth of high 

quality shell layers independent of the age of precursor reagents. 

2.3 Preparation of precursor solutions 

A multistep procedure was performed to prepare the various precursors,56 

followed by reduction of aqueous Au to Au , resulting in nanoshell or nanorice 

formation. With the exception of core functionalization by APTES or APTMS in ethanol, 

all components of the nanoparticle precursor solutions and suspensions were prepared 

using Milli-Q™ water. 

Unless otherwise specified, all chemicals were supplied by Sigma-Aldrich or 

Fisher Scientific and used without further modification. Deionized water (18 MD) was 

provided by a Milli-Q™ system. 1) Chloroauric acid: gold (III) chloride (HAuCUSHaO, 

99%), 2) THPC colloidal gold suspension: Tetrakis(hydroxymethyl)phosphonium 

chloride (THPC, 80% solution in WATER), sodium hydroxide (1 M), and chloroauric 

acid, 3) Plating Solution: potassium carbonate (certified A.C.S., Fisher Sci.) and 

chloroauric acid, 4) Si02 core functionalization: condensed silica core particles 

(Ammonia stabilized, 30% colloid silica, Precision Colloids, Cartersville, Georgia) and 3-

aminopropyltriethoxysilane (APTES, minimum 98% Sigma), 5) Hematite cores: ferric 
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chloride (FeCl3-6H20) and potassium phosphate (KH2PO4), 6) Precursor nanoparticle 

synthesis: functionalized silica or hematite cores, THPC gold solution, sodium chloride, 

200 proof ethanol (Pharmco-Aaper), 7) Reducing agents: carbon monoxide (CO, 99.0%) 

(Matheson-Trigas) or formaldehyde (H2CO, 37%). 8) electron microscopy sample 

preparation: silicon substrates (Addison Engineering, Inc.), glass microscope slide cover 

slips, poly(4-vinylpyridine) (PVP, MW 160,000). 

Caution: ethanol, H2CO, CO, chloroauric acid, THPC, APTMS, APTES and piranha 

present potential health and or fire hazards. Appropriate precautions should be observed 

at all times. 

Chloroauric acid 

A 1% by weight (2.54 mM) aqueous chloroauric acid solution was prepared and 

stored in an amber glass container for a minimum of three days before use. 

Ferric Chloride solution 

An aqueous solution containing 20 mM FeC^ - 400 ^M KH2PO4 was prepared 

prior to the precipitation of hematite particles. 

Synthesis of THPC Gold Suspension 

A THPC gold solution composed of 1-2 nm Au colloid was prepared according to 

Duff et'al'.80 Under rapid stirring, 1.2 mL of 1 M NaOH was added to 180 mL of 

WATER, followed by the addition of 4 mL of a 1.2 mM aqueous THPC solution to yield 

a final THPC concentration of 2.6 uM. After five minutes of continuous stirring, 6.75 mL 

of 1 wt % aqueous chloroauric acid was added in one quick motion, after which the 

solution immediately turns to a medium brown color. The final solution was refrigerated 

for at least 2 weeks before use. The product has a shelf life of ~ 6 months when stored at 
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4 °G. The suspension quality, which degrades with increasing Au colloid size, can be 

monitored by watching for a pronounced Au colloid peak in the optical extinction 

spectrum, which appears upon nanoparticle restructuring or aggregation. ' 

Synthesis of Au Plating Solution 

A 44 uM aqueous HAuCU plating solution was produced by the addition of 3 mL 

of 1 wt % chloroauric acid to 200 mLs of a 1.8 mM aqueous K2CO3. The solution is then 

stored for a minimum of 24 hours. Typically, when the plating solution is reduced by 

H2CO, the highest quality nanoshells, as assessed by SEM imaging and optical 

properties, were obtained when used between 24 and 72 hours after preparation. In the 

case of reduction by CO(g) the shelf life time is extended beyond 6 weeks. 

Synthesis of Ag particle (colloid) precursor 

An AgN03 saturated aqueous solution was produced by the addition AgN03 to 

WATER until after vigorous agitation, precipitates continued to formed on the bottom of 

the bottle. The solution was aged under ambient conditions for 2 hours to several days. 

Clear liquid was removed and passed through 0.2 uM filter paper into a brown bottle. 

The solution was aerated with Ar before use. 

Synthesis of Hematite Core Particles 

Spindle-shaped;hematite particles with ah aspect ratio of 6.3 (340 ± 20 nm x 55 ± 

5 nm)57 were prepared by forced hydrolysis of ferric chloride salts in an alkaline media. 

Briefly, 100 mL of reaction mixture containing 20 mM of FeClj and 400 uM of KH2PO4 

solution were sealed in a round bottom flask and heated at 100 °C for 72 h. The resulting 

dark orange precipitate consisting of a-Fe203 particles were washed several times in 
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water and ethanol at 3900 RCF for 25 minutes per centrifugation cycle. The final 

en Q'j 

precipitate was redispersed in 25 mL ethanol and used as stock solution". ' 

APTES Functionalization of Silica Cores 

The protocol used for 126 nm diameter cores is presented here. This general 

procedure is applicable for various silica core sizes; however, the volume of APTES 

scales with the available silica core surface area and the relative centrifugal force is 

inversely related to particle size. For example, silica core particles witha36, 95, and 190 

nm radii were centrifuged at 6000, 1000, and 400 RCF, respectively. As-purchased SiC>2 

particles were diluted from 30 wt % to 1 wt % in water. Ammonia stabilization of the 

particles was removed by: washing the functionalized cores three times via centrifugation 

at 4000 RCF for 30 minutes; removal of the supernatant, followed by redispersion in 40 

mL of water using an ultrasonic probe. After the final removal of the supernatant, the 

particles were redispersed in ethanol. This process (in ethanol) was repeated an additional 

three times. The final suspension was redispersed in 40 mL of ethanol, placed in a 

polypropylene flask, and stirred rapidly. Fresh APTES (300 uL) was added to the 

suspension with continuous stirring for 10 minutes. The solution was sealed and slowly 

stirred overnight under ambient conditions. 

Next, the mixture was boiled in a borosilicate container for two hrs. Total 

evaporation of the solvent during the synthesis of the functionalized cores was prevented 

by the continuous addition of ethanol. Again, the functionalized core particles were 

washed three times in ethanol by centrifugation at 3500 RCF for 30 minutes as described 

in the previous section. After the last centrifuge cycle and removal of supernatant, the 

functionalized particles were redispersed in 20 mL of ethanol. This process resulted in 
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Ammonia (NFL^-terminated nanoparticles that may be stored and reliably used to 

fabricate high quality nanoshell precursor particles for at least a year. However, the actual 

shelf life has not been characterized beyond one year. An ultrasonic probe was used to 

redisperse the cores immediately before the synthesis of the nanoshell precursor particles 

in the next step. 

APTMS-FunctionalizedHematite Particles 

(by Rizia Bardhan) 5 ml of as-prepared hematite nanoparticles were stirred to a 

rapid vortex, after which 600 uL APTMS was added. The stirring velocity was reduced 

and continued for 12 hours. Excess APTMS was removed by several centrifugation / 

ethanol cycles after which the core particles were redispersed in ethanol." 

Synthesis of Nanoshell Precursor Particles 

First, 40 mL of a THPC gold solution (see above) was sonicated for 1 minute. 

During sonication, 4 mL of 1 M NaCl was added, followed immediately by the addition 

of 300 uL of the APTES functionalized silica or APTMS functionalized hematite 

nanoparticle suspension. After continuous sonication for an additional 1-2 minutes, the 

solution was allowed to reach equilibrium over a 12 hr period. This step was followed by 

centrifugation at 1400 RCF (or 1150 RCF for nanorice) for 20 minutes to remove excess 

THPC. The precursor nanoparticles formed a pellet at the bottom of the centrifuge tube. 

After removal of the supernatant, the particles were resuspended in 30 mL of WATER 

with a sonicating probe; centrifuged a second time and redispersed in 5 mL of WATER. 

The nanoparticle precursor suspension was refrigerated when not in use. The highest 

quality and thinnest complete shells are produced within a few days of synthesis, yet 

complete nanoshells may still be obtained after 1-2 months. 
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2.4 Synthesis of Nanoshells and Nanorice 

The synthesis of nanoshells and nanorice follow a common protocol. Under 

ambient conditions* two Au3+(aq) reducing agents: CO(g) and H2GO(aq) were compared in 

nanoshell and nanorice synthesis. For nanoshells, the plating solution (aged 5 and 6 days, 

used with H2CO and CO reduction methods, respectively) and nanoparticle precursor 

suspension (aged 9 and 49 days, H2CO and CO, respectively) measured by volume, were 

combined to produce a sequence of 6 mL suspensions with Au ion to particle ratios 

between 2.5 x 107 and 2 x 108. Pairs of 3 mL aliquots of each nanoshell or nanorice 

precursor solution were prepared in glass vials. (Nanoshells were successfully 

synthesized using plating solutions as old as 37 days with the same batch of precursor 

nanoparticles used in the experiments reported in this paper.) Nanoparticle concentrations 

can vary significantly batch-to-batch between nanoshell precursor solutions. 

The Au reduction technique by H2CO (Equation. 1-3) includes the rapid 

discharge of 15 uL of H2CO from a 100 uL pipette into 3 mL of the precursor 

suspension, after which the sample vial is gently vortexed by hand for about 10 seconds. 

(When the process is scaled to produce larger quantities of nanoshells, typically 200 mL 

of plating solution would be used. In this case, the nanoshell precursor material is stirred 

rapidly, to produce a strong vortex before the addition of H2CO.) The nanoshell and 

nanorice suspensions produced by H2CO reduction were subsequently aged for a 

minimum of 10 minutes, allowing for complete consumption of the Au stock solution 

before the collection of optical spectra. SEM samples were prepared within the hour. 

H2CO-reductant nanoshells must be promptly washed by centrifugation at 300 RCF (or 

150 RCF for nanorice) for 10-15 minutes and redispersed in WATER or an aqueous 
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1.8mM K2CO3 solution to remove residual H2CO. Failure to wash the tkCO-nanoshells 

will result in particle aggregation within a few hours. 

Reduction of Au3+ by CO (Equation. 4-6) was performed either by aeration or by 

exposure of solution to a CO atmosphere. For the aerated samples, CO was delivered 

through a glass diffusion tube (Chemglass) immersed in the bottom of the vial at a flow 

rate (Cole Parmer) of 25 seem for periods of 10 to 15 seconds. In the atmospheric CO 

technique, the volume in the sample vial above the suspension was filled with CO, after 

which the vial was capped and gently rocked for five to ten seconds. CO-reductant 

nanoshell and nanorice optical extinction spectra were collected immediately. SEM 

samples were prepared within the hour. CO-nanoshells do not require post reduction 

washing. 
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2.5 Characterization and Comparison of Nanoshells and Nanorice 

reduced using H2CO and CO 

Optical extinction spectra of aqueous samples in 1 cm path length polystyrene 

cuvettes (Fisher Scientific) were collected using a Varian Cary 5000 UV-VIS-NIR 

scanning spectrophotometer. Scanning electron micrographs and energy dispersive x-ray 

(EDS) spectra were obtained with an FEI Quanta 400 Scanning Electron Microscope 

(SEM) operated at 30 kV in the environmental (ESEM™) mode with an WATER vapor 

pressure of ~2 Torr. For high-resolution SEM imaging Si substrates were cleaned by 

immersion in a 3:1 H2SO4: H2G2 (piranha) for 20 minutes, thoroughly rinsed with Milli-Q 

water and dried with filtered N2. Piranha andthe components of piranha are highly 

corrosive chemicals that present numerous health hazards. When H2O2 and H2SO4 are 

combined, an exothermic, potentially explosive reaction will result. Prior to working with 

piranha solutions, the reader is encouraged to review OSHAform 174, Sept: 1985, and to 

take all necessary precautions. The substrates were then coated with a PVP adhesion 

layer as described above. They were subsequently rinsed with ethanol, dried with filtered 

N2, and allowed to cure under ambient conditions for 12 hours. Nanopaiticles were 

immobilized on the substrate surface by the sedimentary deposition for a period of 1-2 

hours after which they were gently rinsed with water and dried with filtered N2. 

Optical scattering spectra: Single particles scattering experiments were conducted 

by J. Britt Lassiter. Optical scattering spectra were collected for individual nanoshells 

deposited over S1O2 using an inverted microscope (Zeiss Axio vert 200 MAT) in the dark-

field configuration. A reflection dark-field objective (lOOx, NA 0.9) was used to focus 

the image of each single nanoparticle at the entrance slit of the spectrograph (SP-2156; 
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Acton Research, Acton, MA). Data were collected with a charge-coupled device array 

(PhotonMax 512; Princeton Instruments, Trenton, NJ). 

To facilitate the analysis of the same particle by both ESEM and optical 

scattering experiments, acetone-cleaned glass substrates were patterned by the deposition 

of an Au film through an alphanumerically indexed transmission electron microscope 

grid (e.g., a mask; Ted Pella, Inc.) in contact with the Si(>2 surface. An adhesion layer 

was added to the substrate by immersion in a I wt. % PVP-ethanol solution for 8-12 

hours after which they were rinsed with ethanol and dried with filtered N2. Nanoshells 

were allowed to deposit on the surface for 20 seconds, which resulted in an interparticle 

spacing of nominally 5 um. 

For the single particle optical scattering spectra collection, ESEM images and the 

optical microscope dark field of view were correlated to locate a specific nanoshell. By 

designing samples with an appropriate particle-to-particle separation, an adjustable slit 

can be used to optically isolate an individual nanostructure. Spectral data were acquired 

using the previously described spectroscopic system and processed by our own analysis 

software (MatLab). 

Characterization of Nanoshells 

Theoretical spectra which agree well with the empirical optical extinction spectra 

were calculated using generalized Mie theory.36 Both experimental and theoretical 

spectra were normalized at the maximum extinction values. An r-i value of 63 nm was 

determined by combined scanning electron microscopy (SEM) and Mie scattering theory. 

Using this value of ri (63nm) and the dielectric constant of the medium, (H2O, 1.77), the 

Au shell83 and the dielectric core (SiC>2, 2.04), the value of T2 (85 nm) and the theoretical 
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extinction efficiency (Atheoreticai» 4.98) was determined using Mie theory. ' ' To 

determine the concentration of the nanoparticle precursor suspension, the Beer-Lambert 

law was used: 

c 2.303 x ADp NS/mL = —— —— 
AtheoriticalX.Lx2Tlx.r21 

Equation 2-1 The Beer-Lambert law 

Where L is the optical cell path length (L • = 1 cm), r2 is the overall nanoshell 

radius in cm, Atheoreticai is the peak extinction efficiency extracted from the theoretical 

extinction spectra for [n, t{\ nanoshells, and ADP is the experimentally measured peak 

absorbance. 

The GO(g)-reductant [63,85] nm nanoshells (Figure 2-2A vi) were chosen as the 

point of reference for the precursor Au to nanoparticle ratio, based on SEM, optical 

extinction, and Mie theory. The nanoshell density was determined to be 2.86 x 10 /mL 

thus the precursor Au3+ / nanoparticle ratio was 3.05 x 107. The sample set was scaled 

relative to this value. 

2.6 Results and Discussion 

The growth of a continuous, uniform Au layer on a dielectric nanoparticle is the 

critical step in the synthesis of nanoparticles such as nanoshells or nanorice, giving rise to 

their unique geometry-dependent plasmon resonant properties. Here we report a novel, 

streamlined method for Au layer metallization on prepared nanoparticle surfaces using 

carbon monoxide as the reducing agent. This approach consistently yields plasmonic 

nanoparticles with highly regular shell layers and is immune to variations in precursor or 

reagent preparation 
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A schematic of a nanoshell precursor nanoparticle consisting of ultrasmall Au 

nanoparticles bound to a silica nanoparticle surface, two reductant methods used for shell 

layer growth, and the morphological differences in the final metalized nanoparticle are 

shown in Figure 2-1. This schematic represents the final reduction step where the silica 

nanoparticle-bound Au nanoparticles coalesce into a continuous, multicrystalline metallic 

layer on the nanoparticle surface. In particular, this schematic illustrates the thin shell 

layer limit, where just enough Au°(S) is deposited on the nanostructure to result in the 

formation of a continuous shell layer. In general, different reductants may require 

different concentrations in Au3+ to achieve continuous coverage of the nanoparticle: a 

complete shell layer that forms at lower Au concentrations would be thinner, and the 

resulting nanoparticle would have a longer wavelength plasmon resonance. 

CO (9) 

HoCO (i) 

Figure 2-1 Schematic of shell layer deposition for NS synthesis in the thin shell limit. 
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The SiC>2 core decorated with Au nanoparticles, in a HAuCU solution, serves as 

the deposition substrate, upon which a shell layer is grown using either carbon monoxide 

or formaldehyde reductants. Variations in shell morphology, observed when using the 

H2CO reduction method, can be avoided using CO as the reducing agent. 

The evolution of the optical extinction of the nanoshell precursor nanoparticles 

during shell layer growth as a function of Au concentration, for the CO(g) and H2CO 

reductants, is shown in Figure 2-2. At low Au concentrations, metal deposition onto the 

precursor nanoparticle enlarges the discrete Au nanoparticles on the nanostructure 

surface. In this concentration regime, the extinction peak shifts to longer wavelengths due 

to the increased size of the nanoscale Au islands on the nanoparticle surface and 

decreased distance between these islands, resulting in increased interparticle plasmon 

coupling and a red shifted plasmon resonance. This red shifting continues with increasing 

Au until a concentration resulting in the formation of a complete shell layer. Once a 

complete shell layer is formed higher Au3+ concentrations, result in increased thickness 

of the metal shell layer and a shift of the nanoshell plasmon to shorter wavelengths. The 

long wavelength limit therefore corresponds to the minimum Au concentration required 

to form a continuous shell layer. The longer the wavelength, the thinner the shell layer of 

the nanoparticle formed. 

In Figure 2-2 A we see this transition of the extinction peak to longer wavelengths, 

then shorter wavelengths, with increasing Au concentration. The maximum wavelength 

depends significantly on the type of reductant. In this case, the CO reductant yields 

nanoparticles with a peak extinction wavelength shifted to a measurably longer 

wavelength (780 nm) than the formaldehyde reductant (745 nm) for the thinnest shells. 
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Figure 2-2 Plasmon resonance shift and extinction spectra of nanoshells synthesized 
using the CO and H2CO reduction methods. 
(A) Surface plasmon resonance wavelength as a function of available Au ions per particle 
for nanoshells grown with CO (red) and H2CO (blue) reducing agents. (B, C) Selected 
extinction spectra corresponding to the data points (i-vi) in (A) for nanoshells grown with 
(B) H2CO and (C) CO reducing agents. Extinction spectra (i) and (iv) are corresponding 
to incomplete shell layer growth. Extinction spectra (ii) and (v) correspond to nanoshells 
near the thin shell limit, and extinction spectra (iii) and (yi) correspond to nanoshells with 
thicker shell layers. 
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The large wavelength difference seen here, between nanoshells grown using the 

CO and H2CO reducing agents, corresponds to the use of older nanoshell precursor and 

H2CO reductant solutions, and is generally a function of the age of these solutions. The 

longer peak wavelength achieved for nanoshells formed using the CO reductant occurs at 

a -40% lower Au3+ concentration per nanoparticle than for shell layers grown using the 

formaldehyde reductant, consistent with the formation of thinner continuous shell layers. 

These two characteristics indicate that less Au3+ is required to form a complete shell layer 

for the CO reductant than for the formaldehyde reductant in this case. 

Extinction spectra representative of various stages in the growth of the shell layer 

(Figure 2-2 (i)-(vi)) are shown in Figure 2-2 (B,C). Spectra corresponding to the regime 

of incomplete shell layer growth, (i) and (iv), show a broad and relatively featureless 

curve, while the other curves show evidence of both dipole and quadrupole resonances in 

the spectral lineshape, corresponding to the extinction spectrum of a nanoshell with a 

continuous shell layer. Comparison with Mie scattering theory indicates that the 

difference in shell thickness for the two-reductant methods, in the thin shell limit is 

approximately 3-5 nm. However, a closer examination of the nanoparticles in the thin 

shell limit reveals significant reductant-dependent differences in morphology for 

nanoshells fabricated with these two reducing agents. 

An examination of nanoshells grown with Au3+ concentration corresponding to 

the maximum wavelength shift reveals the largest differences in nanoshell morphologies 

obtainable with these two reductants (Figure 2-3). In the case where nanoshells are 

synthesized from reductant and nanoparticle precursor solutions aged 5 and 9 days 

respectively, comparable nanoshell morphologies result, with continuous uniform layers, 
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Figure 2-3 A,C. Occasional pinhole defects can be detected on the nanoshells grown 

using the H2CO reducing agent solution (Figure 2-3 C) but are generally not visible for 

the nanoshells grown with the GO reductant (Figure 2-3B). 
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Figure 2-3 Nanoshell and Nanorice Extinction spectra and SEM images. 
(A) Optical extinction spectra of nanoshells synthesized under optimal conditions 
(reductant solution aged 5 days and precursor nanoparticle suspension aged 9 days) (i) 
[63,83] F^CO-nanoshells, (ii) [63,83] CO-nanoshells. Scanning electron micrograph 
(SEM) images of (B) CO and (C) F^CO-nanoshells corresponding to the spectra are 
shown in (A). (D) Optical extinction spectra of nanoshells synthesized using aged 
precursor solutions (reductant solution aged 6 days and precursor nanoparticle suspension 
aged 49 days) (iii) t^CO-nanoshells, (iv) [63,75] CO-nanoshells and the Mie theory fit 
corresponding to (iv). (E, F) SEM images of nanoshells grown using (E) CO and (F) 
H2CO reductant solutions corresponding to the spectra shown in (D). G) Optical 
extinction spectra of nanorice grown using (v) H2CO and (vi) CO reductant solutions. 
SEM images of nanorice grown using (H) CO and (I) H2CO reductant solutions whose 
spectra are shown in (G). 
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Figure 2-4 Normalized scattering spectra and corresponding SEM images of individual 
nanoshells. 

Nanoshells were grown using (A) CO and (B) H2CO reducing agents in the thin 
Au layer limit, using the same Au3+ ion concentration. (C) nanoshell grown with H2CO 
reductant (not in the thin Au layer limit). 

For the case where the reducing agent and precursor solutions have been aged for 

6 and 49 days respectively, a greater variation in nanoshell morphology between the two 

reducing agents results. The extinction spectra and representative SEM images are shown 

in Figure 2-3 D,F. Nanoshells grown with the CO reductant are observed to have 

continuous and uniform shell layers, Figure 2-3 E. Nanoshells obtained using the H2CO 

reductant show incomplete shell layer growth with extended, interconnecting fissures in 
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the shell layer. The extinction spectrum of the nanoshells prepared with the CO reducing 

agent agreed quantitatively with Mie scattering theory. 

An extension of the thin shell limit by CO reduction was also observed for 

nanoshells synthesized with silica core radii of 36, 95, and 190 run (data not shown). This 

variation in shell quality also extends to the synthesis of nanorice, which incorporates 

spindle shaped hematite core nanoparticles. In the synthesis of nanorice, similar changes 

in morphology that depend upon the type of reducing agent used are obtained. For a thin 

shell layer, nanorice grown using CO as the reducing agent have significantly more 

continuous shell layers with fewer defects than is typical of nanorice synthesized using 

H2CO as the reducing agent (Figure 2-3 (G-I)). 

Single particle scattering spectra of the specific individual nanoshells, correlated 

with the ESEM images of each nanoparticle, provide the most detailed picture of how the 

nanoparticle morphology affects the plasmon response of the nanoparticle.20,35 Typical 

scattering spectra obtained for individual nanoshells in the thin shell limit, prepared with 

the same Au concentration but using the two different reductants, are shown in Figure 

2-4. The nanoshell grown using CO as the reductant (Figure 2-4 A) has both a highly 

uniform shell morphology and a high quality nanoshell plasmon line shape. A 

representative nanoshell grown at the same Au3+ concentration but with H2CO as the 

reducing agent has an incomplete shell layer and a correspondingly poorly defined 

plasmon line shape and peak wavelength in its scattering spectrum, Figure 2-4 B. The 

particle-to-particle spectral variation for the nanoshells grown using theFbCOreductant 

was far greater than that for the nanoshells grown using CO as the reductant, which is 

directly a result of a greater particle-to-particle variation in shell morphology. In addition, 
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the higher energy "dark" plasmon mode at 450 nm, only weakly allowed for a spherically 

symmetric nanoshell, appears much more prominently in the scattering spectrum of the 

incomplete^CO-reductant nanoshells, in some cases having an amplitude approaching 

the "bright" plasmon at -700 nm. The H2CO reductant does, however yield high quality 

nanoshells when thicker shell layers are grown, as seen in the spectrum and image of a 

representative nanoshell in Figure 2-4 C. 

2.7 Synthesis of Gold and Silver Nanoparticles by CO Reduction 

Gold nanoparticles (NP) maybe produced by the reduction of Au plating solution 

using H2CO and GO, as described for the synthesis of NS. By the CO aeration method, 

silver NP maybe produced by the reduction of a sliver plating solution (AgNOs). 

Au nanoparticles (colloid) synthesis by H2CO reduction is performed in the same 

manner as in the synthesis of core-shell particles. H2CO particles must be washed in the 

manor previously described (2500 RCF, 20-30 min.). In the case of H2CO, the colloids 

become larger and the SPR line widens with increasing Au plating solution age. It is 

preferred that the minimum volume of H2CO should be introduced to the system, so that 

the Au plating solution age is the variable in the synthesis of AuNP by H2CO reduction. 

Visually, a typical H2CO-AU product has an iridescent orange-brown color in 

reflection and is purplish in transmission. The dynamic range for the SPR peak position is 

520 - -600 nm, with observed colloid sizes ranging from 50-100 nm. In the washing 

process, an initial volume of 40 mL is centrifuged, after which all but 100-200 uL of 

supernatant is removed. The NPs were resuspended in 10-30 mL of WATER. As with all 
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H2CO reduced Au products, after the washing process, H2CO 1 is observed in aqueous 

SERS spectra of the Au colloid. 

The synthesis of Au NP (Ag NP) using CO is a simple process; aerate the plating 

solution with CO in the same manner used for NS. As with CO-NS, CO-NPs do not 

require post synthesis purification (washing). CO Au NP solutions range from clear ruby 

red to clear violet color. 

3 
(0 

200 400 600 800 1000 
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Figure 2-5 Optical absorption spectra of aqueous (A) CO Ag NP (395 nm), and (B) CO 
AuNP(535nm) 

In contrast to H2CO as the reductant, the use of CO provides tunable parameters 

in the synthesis of Au-NP. These include the aeration rate, time and age of the plating 

solution. The Au products with the narrowest size distribution result when using a slow 

CO flow rate and a small reaction vessel. For example: place 6 ml of Au plating solution 

in a 13mm diameter vial and a CO flow rate of 20 seem from a 5 mm diameter gas 

diffusion tube. Parameters of Ag NP synthesis have not been evaluated 
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2.8 Conclusion 

An improved method for the growth of continuous Au shell layers on dielectric 

oxide nanoparticles and by a common reductant, the synthesis of Au and Ag colloid is 

reported. The reduction of Au3+ by CO results in the formation of thin, uniform shell 

layers on these dielectric core nanoparticles at lower Au concentrations, where 

continuous shell layers are not achievable with current liquid phase reduction methods. 

This approach relies only on the introduction of CO(g) into the solution of prepared 

precursor nanoparticles and Au3+, and is not susceptible to variations in shell layer 

morphology influenced by preparation of reductant or precursor solutions, a limitation of 

current shell layer growth methods. Extension of the CO reduction method to Au and Ag 

nanoparticles exemplifies the "general" nature of the process. 

In the absence of the post synthesis purification required for other reductants, the 

use of CO as a reductant has transformed the manufacturing of nanoshells from a batch to 

a continuous flow process with potential for mass production. 

Aqueous nanoshells and structured nanoparticle films will be the plasmonic 

substrates used to validation of Surface Enhanced Near Infrared Raman Optical Activity 

spectroscopy 
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Chapter 3 . Over View of Raman Optical Activity Spectroscopy 

Raman optical activity (ROA) is a vibrational spectroscopic technique that is reliant 

on the intensity difference between the right and left handed, circular polarized 

components of the scattered beam. 

This chapter describes the development of a Near Infrared Raman Optical activity 

spectrometer (NIROAS) that overcomes the limitations of the ROA spectrometers that 

rely on resonant (488-532 nm) excitation lasers. The NIROAS allows for nonresonant 

excitation of biological analytes where the intrinsic fluorescence is minimal, and the use 

of NIR resonant Au nanoparticle substrates in the study of surface enhanced Raman 

optical activity. The reader will be familiarized with concepts of the enantiomer, 

chirality, and the near infrared Raman optical activity spectrometer. 

3.1 Enantiomers 

Molecular enantiomer(s) are commonly referred to as stereoisomers of a 

molecule. Complimentary enantiomers usually have common chemical and physical 

properties except for their ability to rotate plane-polarized light in opposite directions.86 

Structurally, enantiomers are mirror images of each other with the caveat that one 

cannot be superimposed on the other. The classical real-world example of this kind of 

symmetry is the hand. Note that a pair-of-hands has mirror symmetry. However, one 

hand cannot be positioned with the other so that they are identical in all aspects from any 

point of view. This is illustrated in Figure 3-1. 
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Electronic optical activity relates to the absorption differences (electronic 

transitions) between right- and left-handed circularly polarized light. This is known as 

circular dichroism (CD). CD can have origins in both electronic activity and the 

secondary structure of the molecules. Molecules exhibiting CD do not necessarily exhibit 

ROA, which requires a chiral center nor do molecules that exhibit ROA necessarily 

exhibit CD. ' Notation that indicates the direction a molecule will rotate plane 

polarized light is (+) and (-), for clockwise and counter-clockwise respectively. 

A mixture of enantiomers of equal concentration is known as a racemic mixture. 

Logically it follows that racemic mixtures have a net electronic and / or Raman optical 

activity of zero. 

Figure 3-1. Generic amino acid Enantiomeric pair overlaid on hands 

Chirality is the term used to describe the handedness. Three naming conventions 

are in common use. In their common nomenclature they are, (R) (rectus) and (S) 

(sinister), (+) and (-), and (L) and (D). Alternately, lower case (d) and (1) are used in 

place of (+) and (-). Capital (D) and (L) nomenclature is usually typeset in small capital 
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letters (L, D). The assignments of (R) and (S) are based on molecular structure and 

assigned a priority according to the Chan Ingold Prelog rules.88'89 (R) and (S) do not have 

a fixed relationship to either, (+) (dextrorotary) and (-) (levorotary) or (D) and (L) 

nomenclature, (L, D) are referenced to the molecule gyceraldehyde and based on the 

spatial configuration of its atoms. Indeed, a molecule possessing (S) or (R) chirality may 

exhibit (+) or (-) electronic optical activity. 

Often ROA signals are very weak, E" E" that of Raman. If a molecule is optically 

active, Raman optical activity is indicated by the measurement of the intensity difference 

between incoherently scattered right- and left-handed circularly polarized light. 
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3.2 Raman optical activity 

Raman optical activity in small chiral molecules was first observed by 

Barron et al.22,90 Hecht, Barron, and Hug developed a new generation of laser-based 

ROA instrumentation at the University of Glasgow. The new designs were based on the 

theory that relative to right-angle collection, the ROA signal to noise ratios of numerous 

ROA bands should improve significantly in the backscatter collection geometry. Hecht 

and Barron pointed out that under most conditions, ROA scattering intensity in the 

forward direction is zero, or at least the forward ROA signal is lost to isotropic scatter. ' 

13'50 Advances including simultaneous dual channel collection, and the virtual enantiomer 

contributed to a systematic artifact compensation and the current state of the art Scattered 

Circular Polarization Raman Optical Activity Spectrometer (SCP-ROA).7' 8' 51 An 

improved version of this system has since been commercialized by BioTools, Inc. Prof. 

Barron, the developer of the GUROAS#, purchased the first production ChiralRAMAN™ 

spectrometer. He remarked, "We have recently taken delivery of the first production 

model. It is around five times faster than our homemade instruments and much easier to 

use." 87 Fundamental concepts developed by Barron, Hug and Nafie are the basis of the 

NIR SCP-ROA spectrometer (NIROAS) described in this document. 



3.3 Scattered Circular Polarization (SCP-ROA) 

The concept of incident linear polarized light that has been circularly polarized to 

some degree by chiral molecules was suggested by Laurence Barron '..It was put forth; 

that the degree of circularity should not be zero when incident linear polarized light is 

scattered by chiral molecules.91 This was demonstrated experimentally by Spencer et al.5 

In the case of SCP-ROA experiments, linear or preferably random polarized radiation is 

incident on the sample.51'91 Backscattered light is collected and collimated, after which it 

is phase modulated to produce right- and left-handed circular polarization relative to the 

beam incident on the sample. Historically, SCP ROA had a decisive intensity 

disadvantage over other ROA techniques. This ceases to be the case if the two circular 

components of the scattered light are measured simultaneously.51 The Hug-Hangartner 

ROA design, inclusive of simultaneous dual channel collection, reduced the excitation 

power required to obtain a SCP signal intensity by 50% compared to previous instrument 

designs.7'51 



3.4 The Near Infrared SCP Raman Optical Activity Spectrometer 

As previously mentioned, ROA measurements are the study of the right- and left-

circular polarizability of chiral structures. The ratio of the intensity difference to the sum 

of the right- and left-handed signals is a consequence of the relative strength of the 

molecular electronic quadrupole, magnetic dipole and the dipole moment's interaction 

with an electromagnetic wave.30 The ROA /Raman cross section is small, on the order of 

10" to 10" . Complicating issues include spurious artifacts due to stray birefringence and 

asymmetry. Shot noise, and low frequency flicker (detection limits) have frustrated 

spectroscopists for decades. ROA instrumentation pioneers have devoted substantial 

portions of their careers to understanding and eliminating these deceptively genuine 

looking spectral artifacts 
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Figure 3-2 Nonresonant Raman and scattered circularization Raman optical activity 
energy diagrams 
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Like classical Raman spectrometers, the ROA systems illuminate the sample with 

near field monochromatic coherent light, e.g., a focused laser beam. The fundamental 

difference from other Raman systems is that ROA systems interrogate a sample by 

monitoring the change in the degree of polarization, relative to the incident beam and 

thus, the optical coupling difference between right- and left-handed Raman optically 

active modes. The energy flow diagrams in figure 3-2 illustrate the difference between 

the measurements of Raman and ROA. Both processed occur simultaneously. Intensities, 

of the circularly polarized component, relative to Raman signals are small, on the order of 

E"3 to E"6. This is why systematic birefringence, at levels often imperceptible by 

conventional polarization analysis techniques, can dominate an ROA spectrum. On a 

scale for phase shift in materials considered isotropic, even high quality fused silica can 

elevate the background to a level that obscures the ROA information. 
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3.5 ROA Spectrometer Design 

The near infrared Raman optical activity Spectrometer (NIROAS) is based on the 

design of the ChiraliL4M4A^M spectrometer. Principle changes to the instrument design 

are the incorporation of MR Laser, optimized optical components and software 

enhancements. All of the optical elements are commercially available. Advances in 

machine control electronics, digital signal processing (DSP), and the user interface 

developed by Dave Rice et al. (Critical Link, LLC), have greatly reduced acquisition time 

and improved the ease of use. During the development of the NIROAS numerous 

upgrades have been made to the original ROA application (Brinson and Rice). Many of 

the upgrades will be transparent to the user while others provide additional tools and 

diagnostic capability. The reader is referred to the NIROAS user's manual in Appendix II 

for information supporting the following discussion. 
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Figure 3-3 Schematic of the near infrared excited scattered circularization polarization 
Raman optical activity spectrometer. 

The incident light path 

Referring to Figures 3-3, 3-4: The NIROAS excitation laser is a wavelength 

tunable laser diode Littrow oscillator / tapered amplifier configuration rated at 1.4 watts 

of optical power at 780 nm. (Sacher Lasertechnik, Inc.) The laser is equipped with an 

internal faraday rotator, is followed by a X/2 plate (Melles Griot) and a laser line (780 

nm, FWHM 5nm) spike filter (CVI) 
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The incident beam shutter (NM Laser Products), positioned in the confocal plane 

between LI an L2, is followed by a Glan-Thompson Polarizer (GTP) (ThorLabs), 

To deliver a randomly polarized excitation, two counter rotating zero order A/2 

plates (Halle, Berlin, Germany), referred to as linear rotators (LR1 and LR2), are 

positioned between the Glan-Thompson polarizer and the sample. 

Figure 3-4. Optical components of the NIROAS incident light rail 

The incident beam is turned by a second periscope mirror set (M2), after which it 

is focused onto the sample. Scattered light is collected, and transformed to the far field, 

by; an ultraviolet light grade, fused silica, +30 mm, Fl, aspheric objective lens (Archer 

OpTx, Inc.). 
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Figure 3-5 Optical components of the NIROAS scattered light rail. 

The scattered light path 

Referring to Figures 3.3 and 3.5: Scattered light is collected by the objective lines 

and transmitted through a rotating 30 mm diameter zero-order A/2 plate (LR3) (CVI Inc.). 

LR3 has a constant phase shift for circularly polarized light. Thus, the CID experiences 

concurrent sign changes while linearly polarized light intensities are time averaging. 

LR3 is followed by a 780 nm notch filter (OD 5.5, FWHM 10 nm) (Kaiser Inc.), and a 

Liquid Crystal Variable Retarder (LCR) (Meadowlark Optics). The LCR behaves as a 

dynamic quarter waveplate that can be rapidly switched (<50 mS) to produce a A/4 and 

3 A/4 (-A/4) phase shift. The LCR is that it converts incident right- and left-handed 

circularly polarized light into S and P linearly polarized light. Unique to the NIROAA is 

the integrated assembly that includes the notch filter, LCR, polarization analyzer, L4 and 

L5, and the FO coupler. This arrangement simplifies assembly and serves to protect 
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fourteen (10) surfaces from atmospheric contamination. Scatted light from the S and P 

arms are subsequently coupled to the spectrometer and incident on upper and lower 

halves of the CCD array. 

ROA spectra of Phenylethylamine 

800 1000 1200 1400 1600 

Wavenumber (cm"1) 

Figure 3-6. Phenylethylamine Raman and ROA spectra. 
(A) Scaled and offset Raman, (B) (S)-phenylethylamine ROA, and (C) (R)-
phenylethylamine ROA spectra recorded by the NIROA spectrometer. 
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Phenylethylamine is a bright ROA molecule exhibiting well-defined vibrational 

modes. The Raman and complimentary ROA spectra of phenylethylamine are shown in 

Figure 3-6. Collection of E10 counts @ 1000 cm'1 required 500 mW @ 780 nm of 

excitation power and an exposure period of 180 minutes. 

The ROA spectra exhibit mirror symmetry across the spectrum including regions 

where the Raman spectrum is featureless. Recalling the ROA cross-section can be E" to 

E"6 of the Raman cross-section, the point to be carried forth is that ROA vibrations 

produce very weak signals relative to the parent Raman spectra, but can be resolved by 

the NIROA spectrometer. 

Advances in Software 

The software used for the ChiralRAMAN™ spectrometer has been extensively 

adapted and upgraded for the NIROA spectrometer. Challenges included spectral artifacts 

induced by cosmic rays, scattered light intensity variations, lost data files, and the 

inability to precisely monitor Raman intensities and peak ratios during a scan. 

The cosmic ray issue was resolved by a real time spectral analysis routine, which 

discards and replaces data that includes a pixel column intensity significantly greater than 

the two adjacent pixels. The discard threshold is user defined. 

The scattering intensity of NP film SERS samples can increase and decrease over 

time due to photochemical stimulation or decomposition. This also applies to aqueous 

SERS samples with limited suspension life times. A plotting routine incorporated into the 

user-interface, displays six real-time plots, inclusive of absolute intensity, S/N ratio, and 

peak-to-peak ratios. Applications include time-resolved experiments, monitoring 
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photochemical decomposition, molecular conformation changes and instrument 

diagnostics. 

Until now, scattered light intensity variations induced by the virtual enantiomer 

artifact compensation system have been ignored. Concurrent with the polarization artifact 

cancellation scheme, four sets of eight difference spectra are digitally processed. The CID 

differenced within the eight scans in each state will be constant, but the absolute 

difference in counts between states will not be constant. The Path Correction code has 

been modified to compensate for the discrepancy based on the parent spectra. The new 

path correction coefficients are updated at the end of each set of 32 scans. 

Numerous modifications, transparent to the user, enhanced the software stability 

and ease of use. The reader is referred to Appendix II for additional details. 
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The SX stage: a Solution to the Repeatability Challenges of SERS 

Historically, due to the extreme sensitivity of the SERS measurement, the SERS 

spectra suffered from a lack of reproducibility SERS elucidate genuinely representative 

SERS spectra, the instrument and user time intensive step and repeat approach is often 

employed (Figure 3-7 a). This technique often involves collecting tens of spectra from as 

many locations, and post processing by methods ranging from signal averaging to 

statistical probability calculations.44' 92 Additionally, the step and repeat technique 

requires continuous irradiation of each probed location, therein a higher probability of 

photochemical modification or decomposition prevails. 

Figure 3-7. The SX Stage 
(A) the areas sample by (a) step and repeat, (b) rotation, and (c) rotation and translation 
of the sample. Violet shading highlights the interrogation area. (B) Photograph of the SX 
stage. i 

We have developed a stage to hold and move the sample that alleviated some of 

the issues with the exposure of a small area of the sample for extended times. The SX 

Stage, Figure 3-7B, rotates a /4"/of 1" diameter solid-state sample at 250 RPM (Figure 

lb), and / or translates the sample perpendicular to the spectrometer's optical axis (Figure 

3-7c). This provides for sample averaging over large areas and higher laser power. For 

example, given a beam waist (2co°) of 100 urn and a rotation radius of 1 mm, scattered 



light from 62.5 times the single point area contributes to the spectra. Relative to step and 

repeat, higher excitation power can be used when the SX stage is implemented. 

Conclusion 

The near infrared excited Raman optical activity spectrometer has been 

constructed and qualified by the collection of ROA spectra from enantiomers of 

phenylethylamine and a-pinene (not shown). In the following chapter, the NIROAS, and 

plasmonic nanoparticle substrates will be used to determine the merits of nonresonant 

surface enhanced Raman optical activity spectroscopy. 
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Chapter 4. Nonresonant Surface Enhanced Raman Optical Activity 

4.1 Introduction 

Thus far, Raman optical activity, plasmonic nanostructures, and the NIROAS 

have been discussed. In this chapter, these concepts will be combined with descriptions 

of analytes, sample preparations, and SEROA experiment. 

Symmetrical CID spectra were collected from the enantiomers of tryptophan, and 

amine-terminated phenylalanine-cysteine-glycine-glycine (phe-cys). SEROA sample 

structures consisted of analyte functionalized, three dimensional, aggregated Au 

nanoparticle films. After the analyte, instrumentation, and the sample structures are 

presented, the experimental results will be discussed 

Nonresonant SEROA has been validated by the display of mirror symmetry 

circular intensity difference spectra. SEROA modes have been elucidated from spectral 

ranges were the SERS S/N ratio approaches 1. (Section 4.3.3) A particularly strong 

argument will be demonstrated for the tryptophan functionalized NP film. 
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4.2 Experimental: Materials, Methods, and Calculations 

4.2.1 Analytes 

The stated purity of all analytes was > 98%. All analytes were used without 

further modification. Powder (S)- and (R)-tryptophan, and liquid (R) and (S) a-pinene 

were purchased from Sigma-Aldrich. Powder (SS)- and (RR)-phenylalanine-cysteine-

glycine-glycine(s) oligomer were synthesized by aaddtec™, Inc. Liquid phenylethylamine 

was purchased from TCI America. Water (18 MQ) was supplied by a Milli-Q™ 

purification system. Au nanoparticle synthesis and common laboratory chemicals were 

previously described in Chapter 2. 

4.2.2 Instrumentation 

Optical absorption spectra of aqueous samples in either a 1 cm path length 

polystyrene (Fisher Scientific) or quartz (Sterna) cuvette, were collected using a Varian 

Cary™ 5000 UV-VIS-NIR scanning spectrophotometer. These measurements confirmed 

equivalent concentrations of the stock solutions. Optical extinction spectra were 

collected from NP films and aqueous NP. 

Circular dichroism spectra of aqueous control solutions and dry NP film 

samples was collected using a Jasco J810 Spectropolarimeter, or similar instrument, fitted 

with either 10 mm path length quartz cuvette (Sterna) or a custom mount for film 

samples. 

Nonresonant vibrational spectra (aqueous 780 nm) including Raman, ROA, 

SERS and SEROA were collected by the NIROAS. The NIROAS optical alignment and 

electronic calibrations were optimized monthly, as described in Appendix 2. A 
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microscope equipped a 50x or 63x objective lens, and 780 nm excited Renishaw In Via™ 

Raman spectrometer was used to collect vibrational spectra from as delivered analytes, 

and from functionalized NP and NS films on PVP coated quartz substrates. 

Scanning electron microscopy (SEM) micrographs were collected using an FEI 

Quantum 400 SEM operated in the high vacuum or ESEM mode. 

4.2.3 Analyte Characterization 

Enantiomer chemical equivalencies were verified by optical absorption (OA), 

circular dichroism (CD), Raman, and SERS spectroscopy. Mass spectrometry (MS) and 

high performance liquid chromatography (HPLG) data were provided by the vendor, 

aaddTek™, (data not shown). 

Optical Absorption Spectra Equivalent concentrations of stock solution were 

confirmed by optical absorption spectra Equal amounts of the analytes, by weight, were 

dissolved in water. Serial dilution sets made from the stock solution(s), were extended in 

water until the optical density across the wavelength range of 250 - 280 nm, was 

observed within the optical density range of 0.2 to 1. Molecular concentration was 

determined by the Beer-Lambert law (Equation 4-1). Absorption data not will not be 

shown. 

•. <xL 

Equation 4-1 Beer-Lambert law 

where: A is the measured absorbance, a is the absorption coefficient, and L is the cell 

path length (cm). Absorption coefficients applied in these experiments were: Tryptophan 
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5610 lVfW1 @ 278 nm, and Phenylalanine 195 M ' W 1 @ 257 nm or 144 M^cm"1 @ 

260 nm. 

Circular Dichroism CD measurements verified 1) electronic activity sign 

symmetry of the analyte solution, and 2) retention of molecular chirality when bound to a 

plasmonic substrate. The analytes are monomer tryptophan and phe-cys-gky-gly. Since 

there is no secondary structure of the analytes probed, any observable sign changes in the 

CD spectra are due solely to molecular chirality. 

Vibrational Spectroscopy Raman and SERS data were compared to verify 

common vibrational modes of the analytes, and thus, common molecular structure. For 

enantiomer pairs, Raman and SERS spectra were respectively by reasonable 

approximation, equivalent. 

RO A RO A calibration spectra were collected from as delivered (S)- and (R)-

phenylethylamine, Signals from saturated cysteine, phenylalanine, and tryptophan were 

too weak to be measured. 
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4.2.4 Film Sample Preparation 

An Au NP suspension was prepared by reducing 40 mL of potassium carbonate 

(K-carb solution) with 250 uL of formaldehyde (H2CO), followed by centrifugation of 

the particles (2500 RCF, 10 min.) and redispersion in 2 mL of water. 

A schematic of the sample development process is shown in Figure 4-3A. SEM 

Micrographs of the NP film structures are shown in Figure FY A 

150 uL aliquots of the dense NP suspension were deposited onto 0.5" diameter, 

PVP coated fused silica substrates. The NP films were not allowed to dry. Immediately 

before analyte functionalization, the NP film was gently rinsed with water and dried with 

filtered N2. 

Aqueous 50 uM analyte solutions were deposited on the NP films and allowed to 

incubate overnight. The samples were gently rinsed with water and dried with filtered N2, 

To ensure molecular monolayer coverage of a second layer of nanoparticles, in a 15 mL 

centrifuge tube, the applicable analyte was added in excess to a 2 mL aliquot of the dense 

aqueous NP suspension. The solutions were allowed to incubate overnight. The 

functionalized NPs settled at the conical bottom of the vial. The supernatant was 

decanted, followed by gentle redispersion of the functionalized NPs in water. The NPs 

were allowed to settle to the bottom of the vial. 

The film substrates were gently rinsed with water and dried with filtered N2. 150 

uL of the functionalized particles were then deposited onto the functionalized NP film. 

Tryptophan samples were allowed to dry, then gently rinsed with WATER and dried with 

filtered N2. A SEM micrograph representative of analyzed samples is shown in Figure 4-

5/:' 
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Phe-cys samples were allowed to incubate for three hours, gently rinsed with 

water and dried with filtered N2. An SEM micrograph representative of analyzed samples 

is shown in Figure 4-1 C. All samples were isolated and stored in an N2 environment 

before use. 

Figure 4-1 SEM images of AuNP films. 
(A) Analyte functionalized NP dense NP film, (B) thin NP film (C) 3D film after the 
overnight deposition of phe-cys functionalized NP, onto (A), and (D) 2D NP film after a 
one-hour deposition of phe-cys functionalized NP onto (B). All scale bars are 1 |̂ m. 
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4.3 Nonresonant Tryptophan SEROA 

Tryptophan is one of 20 standard amino acids and an essential amino acid in the 

human diet. Tryptophan is distinguished from other amino acids by the presence of the 

indole functional group.93 In this section, samples consisted of a 3D Au nanoparticle film 

functionalized by monomer tryptophan molecules. The samples were characterized and 

evaluated for evidence of SEROA. Clear circular intensity differences were observed and 

correlated with the parent Raman and SEROA spectra. Significantly, the diagnostically 

important21' 94 indole W3 ROA peak at 1550 cm"1 was elucidated from a nearly 

featureless background. 

S-Tryptophan 
CnH12N202 

R-Tryptophan 

Figure 4-2 Chemical structures of (S)- and (R)-tryptophan with the chiral centers (Ca) 
indicated in red and the torsion center (XCB) indicated in blue. 



Characterization of Tryptophan samples 

The order of sample assembly and final structure are illustrated in Figure 4-3 A. 

The NP film extinction profile includes the NP plasmon resonance peak at 520 nm, and a 

broad aggregate resonance peak in the NIR region (Figure 4-3B). Interestingly, this 

extinction profile is ideal for a direct comparison of nonresonant and resonant SEROA. A 

comparison of the control solution and functionalized NP film CD spectra confirms the 

presence of the analyte on the NP film and the retention of chirality while bound to a 

metal surface (Figure 4-4). The 3D morphology of the samples was confirmed by SEM. 

(Figure K2). 

Figure 4-3 Tryptophan nanoparticle sample morphology and extinction spectra. 
(A) Tryptophan SEROA NP film assembly order: (i, ii) functionalization of a NP film, 
(Hi) deposition of functionalized NPs, and (iv) final 3D NP aggregate film structure. (B) 
Optical extinction spectra of (i) (R)-tryptophan and (ii) (S)-tryptophan, which include 
both NP and NP aggregate peaks. 
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Figure 4-4 Tryptophan circular dichroism spectra. 
(A) aqueous (S)-tryptophan and (B) aqueous (R)-tryptophan. Inset shows the circular 
dichroism spectra of a (C) (S)-tryptophan nanoparticle film and (D) (R)-tryptophan 
nanoparticle film. 
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Figure 4-5 A SEM image of a 3D-tryptophan nanoparticle film 

Experimental 

SEROA and SERS spectra were collected simultaneously. Spectra were 

collected at three randomly chosen locations on each substrate. Instrument conditions 

included a laser power of 18 mW @ 780 nm and a cumulative exposure time of 20 

minutes. A total of 3.4xl08 SERS counts @ 1350 cm"1 were collected, with a SERS S/N 

ratio of 1.1 and SEROA CID of E"3. 

Shown in Figure 4-6 are scaled, tryptophan Raman and -NP SERS spectra and 

raw (S)- and (R)-tryptophan SEROA spectra. Relative to the ROA, the scan parameters 

are considered very low numbers, yet the SEROA spectra did appear quickly and clearly. 
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Figure 4̂ 6 Tryptophan SEROA, SERS, and Raman spectra. 
(A) SERS, (B) unenhanced powder Raman, (C) (R)-tryptophan SEROA, and (D) (S)-
tryptophan SEROA spectra. 
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Figure 4-7 Gamma, the statistical probability of spectral repeatability 
is calculated for three (R)-arid (S)-tryptophan SERS and SEROA spectra. Gamma values 
for (a) (S)-tryptophan SERS, (b) (S)-tryptophan SEROA, (c) (R)-tryptophan SERS, and 
(d) (R)-tryptophan SEROA 
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Discussion 

Vibrational modes observed in the SERS and SEROA spectra are coincident with 

Raman peaks and peak manifolds in the spectra of neat tryptophan. (Figure 4-6) A 5-

point rolling average has been applied to the SEROA spectra to smooth high frequency 

noise. Mirror symmetry was clearly observed in the SEROA spectra between 900 and 

1600 cm"1. Below 900 cm"1 both symmetry and asymmetry were observed. The lower 

region exhibits significantly less symmetry in the high frequency regime, however, as 

illustrated in the ROA spectra of phenylethylamine (Figure 3-6), symmetry is observed 

across the spectral baseline. The peak at 250 cm"1, is present in both the SERS and 

SEROA spectra but not present in the neat Raman spectra. This peak has been assigned to 

a linear Au-0 bond95. The significance of this peak is that both SEROA spectra share a 

common sign and amplitude. 

Gamma (r) calculations44, the statistical probability that multiple spectra are 

equally representative of the analyte, returned F = 1 for the SERS spectra, while both 

SEROA spectra returned f-= 0.8. (Figure 4-7) These high and equivalent values are 

indicative of consistent molecular conformation on the NP surface. 

Attributes of conventional ROA and recently published resonant SEROA spectra 

are observed in the nonresonant SEROA spectra.96 The SEROA peak resolution exceeds 

that of the SERS. Exclusive and inclusive of the signed plasmonic substrate background, 

the (S)-tryptophan and (R)-tryptophan SEROA CID was E"3, which is comparable to high 

quality ROA and silver aggregate SEROA spectra.96 These attributes suggest that in this 

experiment, the nonresonant SEROA cross section is comparable to resonant ROA and 

SEROA experiments.14 
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Clearly defined SEROA modes coordinate well with the Raman spectra in places 

where the SERS S/N ratio approaches one. Excellent examples are observed in the amide 

II region between 1400 and 1600 cm"1. These include weak CH2 and CH3 deformations 

between 1400-1480 cm"1 and the biologically significant Raman and ROA marker at 

1550cm-1.94 

The most interesting observation is the SEROA indole ring W3 vibration at 1550 

cm"1.94 The W3 vibration is indicative of the torsion angles about the XCp atom on the 

tryptophan backbone. (Figure 4-1) This peak is clearly defined in the Raman and SEROA 

spectra, but very weak in the SERS spectra. This peak contributes to the determination of 

the absolute stereochemistry of a tryptophan residue. It can also be the sole and very 

weak Raman and ROA marker for tryptophan side chains in filamentous 

bacteriophanges.21' 94 In a recently published theoretical tryptophan study, Jacob and 

Reiher placed the strongest tryptophan ROA peak ca. 1540 cm"'and attribute the precise 

peak location to the torsion angle about the Cp position on the tryptophan backbone 

(C2 = Ci - Cp - Ca). This is illustrated in Figure 4-1.97'94 Combined with information from 

the orthogonally coupled in plane W7 amide III peak ca. 1350 cm"1 mode, the exact 

stereochemistry of the tryptophan residue in complex molecules can be determined.21'98 
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Conclusion 

The observation of symmetry and asymmetry, where they are expected, and the 

elucidation of the W3 vibration at 1550 cm"1 bring validity to nonresonant surface 

enhanced Raman optical activity spectroscopy. Significantly, the 250 cm"1 mode 

attributed to linear Au-0 bonding, is equal in both sign and magnitude i.e., perfectly 

asymmetrical. With these attributes, the 250 cm"1 peak is an internal symmetry reference 

point. 

The SEROA spectra include the mirror image of the plasmonic substrate 

photoluminescent background. A plausible explanation is that SERS substrate 

photoluminescence includes a circular intensity difference, influenced by the chirality of 

the analyte. This implies that binding tryptophan to the Au surface has induced chirality 

at the particle surface and broken the Au d-band symmetry. Furthermore, the sign of the 

asymmetry is dependent on the chirality of the conjugated molecule. This is a phenomena 

that and merits further investigation. 
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Table 1. Tryptophan Raman, SERS, and SERGA peak assignments. 
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4.4 Nonresonant Phenylalanine-Cysteine SEROA 

A logical step following the successful tryptophan SEROA experiment is to 

advance the technique to molecules of greater complexity. Phenylalanine is an essential 

amino acid and a component of the controversial artificial sweetener, aspartame. Roles 

of phenylalanine in the human body range from feelings of well-being to a diagnostic 

marker for the diagnosis of phenylketonuria.103 Gamma (F), is the probability that 

multiple nonidentical spectra are genuinely representative of an analyte. f is the average 

of off diagonal cross correlation coefficients, determined between spectral pairs. 

Recently, Wei and Hartgernik reported a phe-cys SERS F = 0.95.104 Based on the 

biological significance and high level of SERS repeatability, phe-cys was selected as the 

analyte for the second phase of the SEROA validation experiments. 

By design, shown in Figure 4-8, the amino acid sequence (SS)- and (RR)-amine-

terminated phenylalanine-cysteine-glycine-glycine (phe-cys) provides an S-Au bond and 

a spacer for the phenylalanine molecule. As a molecular monolayer on a gold surface 

approaches saturation, S-Au bonds are expected to displace N-Au bonds. The result is an 

energetically favorable amine-terminated surface, where the packing density limits the 

number of molecular surface conformations. 

In this section, 3D Au nanoparticle films functionalized by the phe-cys oligomer 

are evaluated. Clear evidence of signed circular intensity differences that correlate with 

the parent Raman and / or the SEROA spectra were observed. Gamma calculations 

returned: SERS T = 1 for both analytes, and SEROA F = 0.36 and 0.43 for (RR)- and 

(SS)-phe-cys respectively. The difference was attributed to the greater complexity of the 
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phe-cys-gly-gly molecule, which could result in a broader distribution of molecular 

orientations on the nanoparticle surface. 

Characterization of phenylalanine-cysteine 

Figure 4-8. Chemical structure of amine-terminated (SS)- and (RR)-phenylalanine-
cysteine-glycine-glycine. 

Phe-Cys Conjugation Kinetics 

In the case of a saturated monolayer, the SH" group is expected to displace N-Au 

bonds. This results in an amine-terminated surface. When additional Au or phe-cys 

functionalized particles are added to the sample, molecularly bound aggregates are 

expected to form as illustrated in Figures 4-9 and 4-10. 

To confirm the molecular binding of NP on film substrates, a study of aqueous 

NP aggregation by phe-cys was conducted. When phe-cys was combined with CO-Au-

NP suspensions, the samples immediately began to change color from red to pink to 
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violet and continued to darken. The initial tint of the sample (pink to dark purple) is 

dependent on the phe-cys concentration. The final tint was both molecule and particle 

concentration dependent. The color change indicates a plasmon red-shift and therefore, 

NP aggregation. Because NPs are condensed in suspension for these experiments, it is 

impossible to know the NP density and the repeatability of the aggregate plasmon 

resonance was low. None-the-less the trend is consistent. The rapid aggregation of NPs 

into colloids, that remain suspended in solution, implies molecular binding of the NP by 

both functional groups and an amine-termination of exposed NP surfaces. The molecular 

dimer model is illustrated in Figure 4-9. 

Figure 4-9 Schematic of a phe-cys in dimer junction and SEM images of nanoparticle 
films. 
(A) Schematic of a phe-cys in a dimer junction. SEM images of nanoparticle films. B) 
before, and C) after phe-cys functionalization followed by deposition of phe-cys 
functionalized NPs. 
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Figure 4-10. Phenylalanine-cysteine circular dichroism spectra. 
(A) aqueous (SS)-phe-cys, (B) aqueous (RR)-phe-cys. The inset shows the circular 
dichroism spectra of a (C) a (SS)-phe-cys functionalized nanoparticle film, and (D) a 
(RR)-phe-cys functionalized nanoparticle film. 

Experimental 

SEROA and SERS spectra were collected simultaneously. Spectra were collected 

at three randomly chosen locations on each substrate. Instrument conditions included a 

laser power of 20 mW @ 780 nm and a cumulative exposure time of 120 minutes. A total 

of E10 SERS counts @ 1000 cm"1 were collected, with a SERS S/N ratio ca. 3. 



+ 

200 400 600 800 1000 1200 1400 1600 1800 
Wavenumber (cm1) 

Figure 4-11. Averaged spectra SERS, Raman, and SEROA phe-cys spectra. 
(A) (S)-phe-cys SERS, (B) Raman spectra of crystalline phe-cys, (C) SEROA spectra of 
(SS)-phe-cys,and (D) SEROA spectra of (RR)-phe-cys. SEROA peaks possessing mirror 
symmetry and correlation are indicated by dotted lines. 
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(RR) (SS) 

Figure 4-12 Gamma, the statistical probability of spectral repeatability. 
Gamma calculated for three (RR)- and three (SS)-phe-cys SERS and SEROA spectra. 
Returned values were: (a) (RR)-phe-cys SERS, (b) (RR)-phe-cys SEROA, (c) (SS)-phe-
cys SERS, and (d) (SS)-phe-cys SEROA 
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Discussion 

Circular dichroism measurement of control solutions and the functionalized NP 

films are shown in Figure 4-11. The mirror symmetry and line shape confirm the 

presence of the phe-cys analytes on the NP film and the retention of chirality when bound 

to a metal surface. The 3D morphology of the sample structure was confirmed by SEM. 

(Figure 4-10B) 

In this experiment nonresonant SEROA spectra were collected from samples 

consisting of; (SS)- and (RR)-phe-cys bound to Au nanoparticles in an aggregated film 

morphology. 

The vibrational spectra displayed in Figure 4-12 are: (A) SERS, (B) neat Raman 

spectra, (C) the average of three (SS)-phe-cys SEROA, and (D) the average of three (RR)-

phe-cys SEROA. Each of the three averaged spectra per analyte, were collected at 

randomly chosen locations on the sample substrates. The vibrational modes of the SERS 

and SEROA spectra are coincident with peaks and peak manifolds observed in the Raman 

and / or SERS spectra. Gamma (T) calculations44 returned: SERS T = 1 and SEROA T = 

0.36 and 0.43 for (SS)- and (RR)-phe-cys respectively. (Figure 4-13) 

The SEROA spectra exhibit symmetrical line shapes between 200 - 1540 cm"1, 

followed by an abrupt transition to well-defined asymmetry. Excluding the strong phenyl 

ring modes at ~ 1000, 1200, and 1600 cm"1, and the CH2 rocking modes at 830 cm"1; the 

SERS modes display a low S/N ratio. Nonresonant SEROA spectroscopy has resolved 

these vibrations. A clearly delineated example is given by the CH2 bending mode 

centered at 1430 cm"1. This well-pronounced Raman mode becomes a broad shoulder of 

the SERS peak at 1490 cm'1, which is almost nonexistent in the Raman spectra. Both 
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peaks are resolved in the SEROA spectra. A new peak given an amide 1 assignment, 

appears at 1640 cm"1 in the SERS and SEROA spectra.105. As observed in the tryptophan 

experiments, the mirror image of the plasmonic substrate photoluminescent background 

contributes to the SEROA spectra. 

Conclusion 

In this second experiment, the complimentary amino acid sequence of 

phenylalanine-cysteine-glycine-glycine has been evaluated. Relative to the tryptophan 

SEROA spectra, the lower phe-cys T values and broader peak widths are attributed to the 

higher degree of complexity; thus a broader range of molecular-surface conformations 

can coexist. Observations of spectral symmetry and elucidation of a amide I mode at 

1640 cm"1 extends the application of nonresonant SEROA from monomer to oligomer 

amino acid sequences. 
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Chapters. Conclusion 

A novel, general, and simple method, based on carbon monoxide reduction of Au 

and Ag plating solutions has been developed and used successfully in the synthesis of 

plasmonic Au nanoshells, solid Au and Ag nanoparticles. CO-NS were found to be 

smoother, and could be made thinner than previously possible, before incurring 

continuity defects. This is the first nanoshell synthesis method that can be scaled for mass 

production in a continuous flow process. 

The first near infrared excited scattered circular polarization Raman optical 

activity spectrometer (NIROAS) has been designed, built, and characterized. 

Expectations of the conversion from a 532 run to a 780 nm excited ROA spectrometer 

have been met. With consideration to the Raman (E"3) and ROA (E"4) scattering 

dependency, the NIROAS level of efficiency is comparable with 532 nm systems. 

Three-dimensional nanoparticle based SEROA substrate designs applicable to 

biologically significant molecules have been developed, characterized, and utilized. 

Circular dichroism measurements of functionalized nanoparticle films confirm the 

retention of chirality by the amino acid tryptophan and the amine-terminated amino acid 

series phenylalanine-cysteine-glycine-glycine. 

Nonresonant surface enhanced Raman optical activity has been validated by the 

repeatable collection of circular intensity difference spectra possessing extended mirror 

symmetry, and the elucidation of biological markers including the structurally significant 

W3 (ca. 1550 cm"1) SEROA peak, in the absence of definitive SERS structure. 
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26. Kundu, J.; Lê  F.; Nordlander, P.; Halas, N. J., Surface enhanced infrared absorption (SEIRA) 
spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 2008,452, (1-3), 1.1.5-119. 

27. Oldenburg, S. J.; Hale, G. D.; Jackson, J. B.; Halas, N. J., Light Scattering from Dipole and 
Quadrupole Nanoshell Antennas. Appl. Phys. Lett. 1999, 75, (8), 1063-1065. 

28. Jackson, J. B. Surface Enhanced Raman Scattering with Metal Nanoshells. Rice University, 
Houston, TX, 2004. 

29. Mie, G., Annalen der Physik 1908,25, 377-445 

30. Hale, G. D.; Jackson, J. B.; Shmakova, O. E.; Lee, T. R.; Halas, N. J., Enhancing the active 
lifetime of luminescent semiconducting polymers via doping with metal nanoshells. Appl. Phys. Lett. 2001, 
78,(11), 1502-1504. 

31. Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L., Temperature-sensitive polymer-nanoshell 
composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 2000, 51, 293-298. 

32. Sershen, S. R.; Westcott, S. L.; West, J. L.; Halas, N. J., An opto-mechanical nanoshell-polymer 
composite. Appl. Phys. B 2001,73, 379-381. 

33. Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L., Independent optical addressable 
nanoparticle-polymer optomechanical composites. Appl. Phys. Lett. 2002, 80, (24), 4609-4611. 

34. Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J. L., A Whole Blood Immunoassay 
Using Gold Nanoshells. Anal. Chem. 2003, 75, 2377-2381. 

35. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; 
Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic 
resonance guidance. Proc. Nat. Acad. Sci. U.S.A. 2002,23, 13549-13554-

36. Sarkar, D.; Halas, N. J., General vector basis function solutions of Maxwell's equations. Phys. 
Rev.E 1997, 56,(1), 1102-1112. 

86 



37. Wang, H.; Levin, C. S.; Halas, N. J., Nanosphere Arrays with Controlled Sub-10-nm Gaps as 
Surface-Enhanced Raman Spectroscopy Substrates. J. Am. Chem. Soc. 2005, 127, (43), 14992-14993. 

38. Wang, H.; Kundu, J.; Halas, N. J., Plasmonic Nanoshell Arrays Combine Surface-Enhanced 
Vibrational Spectroscopies on a Single substrate. Angew. Chem. Int. Ed. 2007,46, 9040-9044. 

3.9. Kerker, M.; Wang, D.-S.; Chew, H., Surface enhanced Raman scattering (SERS) by molecules 
adsorbed at spherical particles: errata.Appl. Opt. 1980,19, (24), 4159-4174. 

40. Moskovits, M., Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, (3, part 1), 783-826. 

41. Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Population Pumping of 
Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering. Phys. Rev. Lett. 1996, 76, 
(14), 2444-2447. 

42. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Irving Itzkan; Dasari, R. R.; Feld, M. S., 
Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, 
(9), 1667-1670. 

43. Nie, S; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced 
Raman Scattering. Science 1997,275, (21), 1102-1106. 

44. Zhang, D.; Ben-Amotz, D., Enhanced Chemical Classification of Raman Images in the Presence 
of Strong Fluorescence Interference. Appl. Spectrosc. 2000, 54, (9), 1379-1383. 

45. Berger, A. J.; Wang, Y.; Feld, M. S., Rapid, noninvasive concentration measurements of aqueous 
biological analytes by near-infrared Raman spectroscopy. Appl. Opt. 1996, 35, (1), 209-212. 

46. Yonzon, C.R.; Haynes, C. L.; Zhang, X.; Jr., J. T. W.; Duyne, R. P. V., A Glucose Biosensor 
Based on Surface-Enhanced Raman Scattering: Improved Partition Layer, Temporal Stability, 
Reversibility, and Resistance to Serum Protein Interference. Anal. Chem. 2004,76, (1), 78-85. 

47. Haslett, T. L.; Tay, L.; Moskovits, M., Can surface-enhanced Raman scattering serve as a channel 
for strong optical pumping? J. Chem. Phys. 2000,113, (3), 1641-1646. 

48. Haynes, C. L.; Duyne, R. P. V., Plasmon-Sampled Surface-Enhanced Raman Excitation 
Spectroscopy. J. Phys. Chem. B 2003, 107, 7426-7433. 

49. Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I., Charge Transfer Resonance Raman Process in 
Surface-Enhanced Raman Scattering from p-Aminothiophenol Adsorbed on Silver: Herzberg-Teller 
Contribution. J. Phys. Chem. 1994,98, 12702-12707. 

50. Bishnoi, S.; Levin, C. S.; Gheith, M.; Johnson, B.; Rozell, C; Johnso, D. H.; Halas, N. J., An all-
optical nanoscale pH meter. Nano Letters 2006,6, (1687-1692), 1687. 

51. Hug, W.; Hangartner, G., A Novel High-throughput Raman Spectrometer for Polarization 
Difference Measurement. J. Raman Spectrosc. 1999,30, 841-852, 

52. Jenkins, F. A.; White, H. E., Fundamentals of Optics. 4th ed.;McGraw Hill: 1976. 

53. Guenther, R. D., Modern Optics. Wiley Press: 1990. 

54. Hecht, E.; Zajac, A., Optics. 4th ed.; Addison-Wesley Pub. Co: 1979; p 565. 

55. White, J. a., Fundamentals of Optics. 4th ed.; McGraw Hill. 

87 



56. Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J., Nanoengineering of optical 
resonances. Chem. Phys. Lett. 1998,288,243-247. 

57. Wang, H.; Brandl, D. W.; Le, F.; Nordlander, P.; Halas, N. J., Nanorice: A Hybrid Plasmonic 
Nanostructure. NanoLett. 2006, 6, (4), 827-832. 

58. Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J.* Plasmonic Nanostructures: Artificial 
Molecules. Ace. Chem. Res. 2007,40, 53-62. 

59. Halas, N. J., Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic 
Nanoshells. MRS Bulletin 2005,30, 362-367. 

60. Tarn, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J., Plasmonic Enhancement of Molecular 
Fluorescence. Nano Lett. 2007, 7, (2), 496-501. 

61. Tarn, F.; Moran, C. E.; Halas, N. J., Geometrical Parameters Controlling Sensitivity of Nanoshell 
Surface Plasmon Resonance to Changes in Dielectric Environment. J. Phys. Chem. B 2004, 108, 17290-
17294. 

62. Lai, S.; Grady, N.-K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J., Tailoring plasmonic 
substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898-911. 

63. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L., Near-Infrared 
Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy. Nano Lett. 2006, 
7, (7), 1929-1934. 

64. Hirsch, L. R.; Gobin, A. M.; Lowery, A. R.; Tam, F.; Drezek, R.; Halas, N.-J.; West, J. L., Metal 
Nanoshells. Ann. Biomed. Eng. 2006,34, (1), 15-22. 

65. Prodan, E.; Nordlander, P.; Halas, N. J., Effects of Dielectric Screening on the Optical Properties 
of Metallic Nanoshells Chem. Phys. Lett. 2003,368, 94-101. 

66. Prodan, E.; Nordlander, P., Structural Tunability of the Plasmon Resonances in Metallic 
Nanoshells. Nano Lett. 2003,3, (4), 543-547. 

67. Prodan, E.; Lee, A.; Nordlander, P., The effect of a dielectric core and embedding medium on the 
polarizability of metallic nanoshells. Chem. Phys. Lett. 2002, 360, 325-332. 

68. Prodan, E.; Radloff, C; Halas, N. J.; Nordlander, P., A Hybridization Model for the Plasmon 
Response of Complex Nanostructures. Science 2003, 302, 419-422. 

69. Prodan, E.; Nordlander, P., Plasmon Hybridization in Spherical Nanoparticles. J. Chem. Phys. 
2004,120,(11), 5444-5454. 

70. Brandl, D. W.; Nordlander, P., Plasmon modes of Curvilinear Metallic core/shell particles J. 
Chem. Phys. 2007,126,144708:1-1. H. 

71; Radloff, C. J. "Concentric Nanoshells and Plasmon Hybridization", Ph. D Thesis. Rice University, 
Houston, 2003. 

72. Nehl, C. L.; Grady, N. K.; Goodrich, G. P.; Tam, F.; Halas, N. J.; Hafner, J. H., Scattering Spectra 
of Single Gold Nanoshells. NanoLett. 2004,4, (12), 2355-2359. 

88 



73. Wang, H.; Goodrich, P. G; Tarn, F.; Oubre, C ; Norldander, P.; Halas, N. J., Controlled Texturing 
Modifies the Surface Topography and Plasmonic Properties of Au Nanoshells. J. Phys. Chem. B 2005, 109, 
11083-11087. 

74. Oubre, C; Nordlander, P., Optical Properties of Metallodielectric Nanostructures Calculated 
Using the Finite Difference Time Domain Method. J. Phys. Chem. B 2004, 108, 17740-17747. 

75. Wang, H.; Wu, Y.; Lassiter, B.; Nehl, C. L.; Hamer, J. H.; Nordlander, P.; Halas, N. J., Symmetry 
breaking in individual Plasmonic Nanoparticles. PNAS 2006,103, (29), 10856-10860. 

76. Wu, Y.; Nordlander, P., Plasmon hybridization in nanoshells with a nonconcentric core. J. Chem. 
Phys. 2006,125, 124708. 

77. Jackson, J. B.; Halas, N. J., Silver Nanoshells: Variations in morphologies and optical properties. 
J. Phys. Chem. 5 2001, 105, (1), 2743-2746 

78. Turkevich, J.; Stevenson, P. C ; Hillier, J., A Study of the Nucleation and Growth Processes in the 
Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951,11, 55-75. 

79. Donau, J., Uber eine rote, mittels Kohlenoxyd erhaltene kolloidal goldlosung (Red Colloid 
Solution of Gold Obtained by means of Carbon Monoxide). Monatsh. Chemie 1905,26, 525-530. 

80. Duff, D. G.; Baiker, A.; Edwards, P. P., A New Hydrosol of Gold Clusters. 1. Formation and 
Particle SizeVariation. Langmuir 1993,9, 2301-2309. 

81. Perenboom, J. A. A. J.; Wyder, P.; Meier, F., Electronic properties of small metallic particles. 
Phys. Rep 1981, 78, 173-292. 

82. Ozaki, M.; Kratohvil, S.; Matijevic\ E., Formation of Monodispersed Spindle-Type Hematite 
Particles. J. Colloid Interface Sci. 1984,102, 146-151. 

83. Johnson, P. B,; Christy, R. W., Optical Constants of the Noble Metals. Phys. Rev. E 1972, 6, 4370-
4379. 

84. Kreibig, U.; Vollmer, M., Optical Properties of Metal Clusters. Springer Verlag: Berlin, 1995. 

85. Averitt, R. D.; Sarkar, D.; Halas, N. J., Plasmon Resonance Shifts of Au-Coated Au2S Nanoshells: 
Insight into Multicomponent Nanoparticle Growth. Phys. Rev. Lett. 1997,78, (22), 4217-4220. 

86. Streitwieser, A.; Heathcock, C. H., Introduction to Organic Chemistry. In A Series of Books in 
Organic Chemistry, Andrew Streitwieser, J., Ed. Macmillian Publishing Co., Inc.: New York, 1976; pp 
105-126. 

87. Barron, L., Private Communication Aug. 2004. In Brinson, B., Ed. 2004; p "We have recently 
taken delivery of the first production model. It is around five times faster than our homemade instruments 
and much easier to use". 

88. Cahn, R. S.; Ingold, C. K.; Prelog, V., Specification of Molecular Chirality. Angew. Chem. Int. Ed. 
1966, 5, (4), 385-415. 

89. Prelog, V., Basic Principles of the CIP-System and Proposals for a Revision. Angew. Chem. Int. 
Ed.2\, (8), 567-583. 

89 



90. Einterz, C. M.; Lewis, J. W.; Milder, S. J.; Kliger, D. S., Birefringence Effects in Transient 
Circular Dichroism Measurements with Applications to the Photolysis of Carbonmonoxyhemoglobin and 
Carbonmonoxymyoglobln. J. Phys. Ghem. 1895, 89, 3845-3853. 

91. Barron, L. D.; Excribano, J. R., Stokes-antiStokes Asymmetry in natural Raman Activity. Chem. 
Phys. 1985,98, (3), 437-446. 

92. Savitzky, A.; Golay, M. J. E., Smoothing and Differentiation of Data by Simplified Least Squares 
Procedures. Anal. Chem. 1964, 36, (8), 1627-1639. 

93. Radwanski, E. R.; Last, R. L., Tryptophan biosynthesis and metabolism: biochemical and 
molecular genetics. Plant Cell 1995,7, (7), 921-934. 

94. Blanch, E. W.; Bell, A. F.; Hecht, L.; Day, L. A.; Barron, L. D., Raman Optical Activity of 
Filamentous Bacteriophages: Hydration of a-Helices. J. Mol. Bio. 1999,290, (1), 1-7. 

95. Delgado, J. M.; Orts, J. M.; Pe'rez, J. M.; Ro, A., Sputtered thin-film gold electrodes for in situ 
ATR-SEIRAS and SERS studies. Journal of Electroanalytical Chemistry 617 (2008) 130-140 2008, (617), 
130-140. 

96. Abdali, S., Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational 
spectroscopy 
J. Raman Spectrosc. 2007, 37, 1341-1345. 

97. Jacob, C. R.; Luber, S.; Reiher, M., Calculated Raman Optical Activity Signatures of Tryptophan 
Side Chains. ChemPhysChem 2008,9, 2177-2180. 

98. Tsuboi, M.; Uedab, T.; Ushizawab, K.; Yoshiko Ezakib; Overman, S. A.; George J. Thomas, J., 
Raman tensors for the tryptophan side chain in proteins determined by polarized Raman microspectroscopy 
of oriented N-acetyl+tryptophan crystals'. Journal of Molecular Structure 1996, 379,43-50. 

99. Takashi Miura, H. T., & Issei Harada, J. Raman Spectro., 20, 667-671 (1989), Tryptophan Raman 
Bands Sensitive to Hydrogen Bonding & Side-chain Conformation. J. Raman Spectro. 1989,20, 667-671. 

100. Stewart, S.; Fredericks, P. M., Surface-enhanced Raman spectroscopy of peptides and proteins 
adsorbed on an electrochemically prepared silver surface. Spectrochimica Acta part A 1999, 55, 1615-1640. 

101. Tsuboi, M.; Overman, S. A.; Nakamura, K.; Arantxa Rodriguez-Casado; Jr., G. J. T., Orientation 
and Interactions of an Essential Tryptophan (Trp-3 8) in the Capsid Subunit of PG Filamentous Virus. 
Biophysical Journal 2003, 34, (3), 1969-1976. 

102. Hodgson, A. S., Falsifications and Facts about Aspartame. In Food Safety and Technology, 
College of Tropical Agriculture and Human Resources: 2001. 

103. Guthrie, R.; Susi, A., A simple phenylalanine method for detecting phenylketonuria in large 
populations of newborn infants. Pedatrics 1963,32, (3), 338-343. 

104. Wei, F ; Zhang, D.; Halas, N. J.; Hartgerink, J. D., Aromatic Amino Acids Providing 
Characteristic Motifs in the Raman and SERS Spectroscopy of Peptides. J. Phys. Chem. B 2008, 112, (30), 
9158-9164. 

105. Lin-Vien, D.; Colthup, N. B.; Fateley, W, G.; Grasselli, J. G., The Handbook of Infrared and 
Raman Characteristic Frequencies of Organic Molecules. Academic Press. Inc.: San Diego, CA, 1991. 



106. Neil A. Macleod; Butz, P.; Simons, J. P.; Grant, G. H.; Baker, C. M.; tranter, G. E., Structural, 
electroni circular dichroism and Raman optical activity in the gas phase and in solution: a computational 
and experimental investigation. Phys. Chem. Chem. Phys 2005, 7, 1432-1440. 

107. Hug, W., Raman Circular Intensity Differential Spectroscopy. The Spectra of (-)-a-Pinene and 
(+)-a-Phenylethylamine. J. Am. Chem. Soc. 1975, 97, (19), 5598-5590. 

91 



Appendix I 

Supplemental Information 

Thermodynamics of HAuCU reduction in aqueous solutions using CO(g) and 

H2CO(aq> as reducing agents 

General properties: The entire process is performed at the temperature of 20 °C and 

pressure of 1 atmosphere. Additionally, several simplifications can be accepted. 1) The 

reaction environment is a dilute (1-10 mM) aqueous solution. 2) Because of their 

excessive amount, some reagent concentrations can be considered constant. 3) This also 

applies to the pH of the plating solution. The pH value remains at 5.5 during the entire 

process due to the carbonate buffer. 

Plating solution: The plating solution is prepared as 0.38 mM of HAuCU and 1.79 mM 

of K2CO3 in water. An aqueous solution of HAuCU contains AuCU" ions as well as both 

free CI" and hydrated Au ions. However, the stability constant Kb of AuCU" derived 

from the two standard potentials (Equation 1, 2) suggests that AuCU" is the dominating 

form of Au(III) in the plating solution and that this domination increases as the reduction 

of Au(III) proceeds releasing free CI" ions. 
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Au 3 + +3e->Au 0 '£"(F) = 1.520 (1) 

AuCl; +3e ' -> Au° +4CI' E°{V) = 1.002 (2) 

„ [Au3+][CI] 
Kb =• - r A . . A - . — — = exPl [AuCI-] 

^M^lc/4- / A." £ 1 3 + / A,° i 
i?r 

«1.9-10 ^ (3) 

where T is the absolute temperature 273.2 °C, R the absolute gas constant = 8.31 J / 

(mole*K), F = the Faraday constant 96,485 C / mol, n is the number of e" required to 

balance the Redox equations. 

The actual reduction of Au(III) to Au is a two-step process; Au(III) to Au(I) (Equation 

4), and Au(I) to Au (Equation 5).1 The transitional state AuCl2"(aq) dominates among other 

Au(I) species because of the reason similar to that of Au(III) described above. 

AuCI; + 2e ' -> AuCI; + 2CI" E° (V) = 0.926 

E°(V) = 1.154 AuCI2+e -->Au°+2CI 
(4) 

(5) 

Since both processes are thermodynamically favorable, the combined Equation 6 can 

be considered 

AuCl;,+3e\->Au°+4C|- E°(V) = 1.002 (6) 
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When the reducing agent is introduced into the plating solution, electrons are donated 

to the gold ions. The process develops towards the equilibrium between different gold 

species, original reducing agent and its oxidized form. 

Carbon monoxide reductant: Carbon monoxide (CO) contains C(II), which transforms 

to C(IV), donating two electrons. There are multiple possible C(IV) products in this 

reaction* such as CCfyg), C02(aq), H2C03(aq), HCC^aq), C032"(aq). The maximal amount of 

C02(g) generated in the reduction process is below the CCfyg) solubility limit in water, 

which is insufficient for CCfyg) liberation. Between two dissolved forms, CCtyaq) and 

H2C03(aq), the C02(aq) dominates with a concentration 40 times that of EkCCtyaq). HCO3" 

(aq) and CO3 "(aq) are the minor species in the pH=5.5 reaction solutions as the pKaj and 

pKci2 of H2C03(aq) are 6.37 and 10.33 respectively. 

Therefore, the major reaction products in the case of pH=5.5 are C02(aq) and HCC^"^), 

and the concentration of C02(aq) is approximately ten times larger than that of HC03~(aq). 

Carbon monoxide gas was introduced into the system by bubbling through the solution 

at atmospheric pressure through a glass diffusion tube (Chemglass) immersed to the 

bottom of the vial at measured flow rates (Cole Parmer) of 20 to 150 standard cubic 

centimeters per minute for periods of 10 to 15 seconds. The reducing half reactions are 

the following:1 

£°(K) = 0.106 (7) 

E°(V) = -0.101 (8) 
pH = 0 

CO(g) + H20 -> C02 (aq) + 2e" + 2H+ 

CO(g) + 2H2O^HC03 +2e" +3H+ 



Redox potentials (7) and (8) are pH dependent and must be adjusted for pH=5.5 using 

the Nernst equation. The adjusted values are presented in equations (9) and (10): 

pH = 5.5 

(90%) '• CO(g) + H2b->C02(aq)+2e"+2H+ E(V)= 0.426 (9) 

(10%) CO(g) + 2 H 2 O ^ H C 0 3 + 2 e + 3 H + E(V) = 0.379 (10) 

Formaldehyde reductant: Formaldehyde contains C(0) and acts as a reducing agent 

transforming to formic acid, C(II), and further to carbonates and carbon dioxide, C(IV). 

The formic acid pKa=3.77} and its dominating form at pH=5.5 is the formate anion 

HCOO'(aq). Possible formaldehyde reduction processes and their potentials1 at pH=5.5 

are: 

HGOH(aq) + H 20->HCOO-+2e-+2H+ E(V) = 0.398 (11) 

HCOO +H 2 0->HG03+2e-+2H + E(V) = 0.301 (12) 

HCOO--^C02(aq) + 2e"+H+ E(V) = 0.163 (13) 

Equation (11) represents the first stage of formaldehyde reduction. Since the 

concentration of formic acid generated in the process is ~100 times less than that of 

formaldehyde and that of the carbonates in the plating solution, equations (12) and (13) 

can be ignored. Low formic acid concentration also favors the reaction presented in 

equation (11). 

Oxidation-reduction process: Combining equations (6) with (9), (10), and (11), the 

Gibbs free energy for gold, the reduction process can be evaluated. The formal values of 
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the equilibrium constants of both processes turn out to be on the order of 10 , which 

indicate that such reactions are extremely thermodynamically favorable, especially at the 

beginning of the process when the reagent concentration is high and no products have yet 

formed. Such high values effectively mean 100% reaction completion, considering that 

the total number of reacting molecules is ~1016. Since both processes are strongly favored 

by thermodynamics, the kinetic factors become the most important. From this point of 

view, the reagent delivery to the reaction zone has to be considered. 

The difference between the two reductant methods is the reducing agent delivery. An 

excessive concentration of formaldehyde is introduced to the system as a solution. As the 

reaction proceeds, the concentration in the reaction zone decreases slightly, while at the 

same time an oxidized form (formic acid) begins to form and increases in concentration. 

Both of these factors cause the actual potential of the reaction (Equation 11) to decrease 

from very high values during the time of the process, especially at the very beginning, 

which is the most important part of nanoshell growth. 

In contrast, there is no such variation in potential when carbon monoxide is utilized 

(Equation 9, 10), First, it is supplied as a gas at a constant pressure, and therefore has a 

constant chemical potential. Second, the reacting solution contains an excess of C(IV) as 

carbonate ions, which is an oxidized form of CO(g), and the additional amount of C(IV) 

generated in the reaction is small in comparison/These two factors may be important in 

stabilizing the C(IV)/C(II) reduction potential and improving the quality of nanoshells 

fabricated with this reductant. 
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1. Bard, A. J.; Parsons, R.; Jordan, J., Standard Potentials in Aqueous Solution; Mercel 

Dekker, 

Inc.: Madison, NY, 1985. 

2. International Chemical Safety Card ICSC: 0012,2006. 
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Appendix II 

1 ROA v3.20 Operation, Display and Control 

This manual and software have been jointly developed by Bruce Brinson at Rice 

University and David Rice at Critical Link on behalf of BioTools, Inc. We would like to 

gratefully acknowledge the financial support by the US Department of Defense 

Multidisciplinary University Research Initiative (MURI) grant W911NF-04-01-0203, and 

the AFOSR (STTR P2 No. FA9550-07-C-0032 and F49620-03-C-0068) 

98 



Bruce Brinson 

Rice University 

Department of Electrical and Computer Engineering 

6100 Main Street 

Houston, TX 77005 

Phone:(713)348-4020 

Fax: (713) 348-5686 

Dave Rice 

Critical Link, LLC 

6712 Brooklawn Parkway 

Syracuse, NY 13211 

Phone:(315)425-4045 

Fax:(315)425-4048 

BioTools, Inc 

17546 Bee Line Hwy (SR 710) 

Jupiter, FL, 33458 

Phone: (561) 625-0133 

Fax: (561) 625-0717 

E-mail: info@btools.com 

All Rights Reserved, Printed in USA 

99 

mailto:info@btools.com


Table of Content 

1 ROA v3.20 Operation, Display and Control 98 

1.1 Introduction 102 

1.2 Software Installation 104 

1.3 Plotting Area 105 

1.4 Instrument Operation 107 

1.5 Main Screen 110 

1.5.1 Control Panel 110 

1.5.2 Pull down menus 118 

1.5.2.1 Files _____________________ 118 

1.5.2.2 Setup : _____ _______ 122 

1.5.2.2.1 Setup window _ _ _ _ _ 122 

1.5.2.2.2 Setup | SNR Measurement 131 

1.5.2.3 Calibration 133 

1.5.2.3.1 Wavenumber / Wavelength Calibration 133 

1.5.2.3.2 LCR Calibration _ 135 

1.5.2.3.3 Image Alignment and Binning 141 

1.5.2.3.4 Easy Calibration Mode 147 

1.5.2.4 Engineering 149 

1.5.2.4.1 Instrument Setup (Factory Settings) 149 

1.5.2.4.2 Invert Polarity _ 151 

1.5.2.4.3 Instrument Electronics Board: Status • 152 

1.6 Camera Alignment Procedure _____ 155 



1.6.1 Initial Focus adjustment 155 

1.6.2 Camera Vertical Height and Tilt Adjustment 156 

1.6.3 Fiber Tilt Adjustment 158 

1.6.4 Focus Adjustment 159 

1.7 COM Port Selection 160 

1.8 Simulation Mode 161 

1.8.1 Grief Saving Comment 162 

101 



1.1 Introduction 

The BioTools ChiralRaman software application, ROA v3.20, is a functionally 

advanced and operationally streamlined version of the BioTools ChiralRaman ROA user 

interface. 

This document is a detailed guide to ROA v3.20. The application, manual, and 

comments are generally applicable to the BioTools ChiralRaman™ product line. The 

intent is to provide details of operation, associated procedures, and benefits of experience 

to manufacturing centers, field engineers and user of CTiz'ra/Raman™ spectrometers. 

Proprietary camera configuration and diagnostic programs are maintained by 

Critical Link, LLC and are available to the BioTools, Inc. manufacturing center and field 

engineers. 

The reader is expected to possess an advanced understanding of: geometrical and 

polarization optics, the principles of Raman scattering and Raman Optical Activity 

scattering, the physical components, subsystems, and the assembly of the ChiralRaman 

Scattered Circular Polarization ROA spectrometer. 

Information needed by the average user, to install the ROA software, and 

immediately begin collecting data will initially be presented. Subsequent sections vary in 

detail, depending on functions. In some cases, comments are included to provide a frame 

of reference. Topics are discussed as they appear in the graphical user interface, from left 

to right, with subtopics discussed in descending order. Information observed in the 

Engineering section is useful in cases where diagnostic procedures are required. The user 

should never attempt to alter any values in the Engineering section. The final section 
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describes the Simulation modes, which are used to demonstrate the software and test the 

ROA application in the absence of the spectrometer. 
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1.2 Software Installation 

ROA is a self-installing program typically delivered in a compressed file format 

as ROA.zip. Minimum hardware and software requirements include a Pentium-3 

microprocessor-based personal computer and the Microsoft Windows 2000 or XP™ 

operating system. Compatibility with Microsoft Vista™ has not been determined. 

ROA v3.20 is expected to be backward compatible. Nonetheless, it is strongly 

recommended that the user backup the current version of ROA and all supporting files 

before installing the ROA application. 
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1.3 Plotting Area 

The plots shown in Figure 1 are A) Circular Converter [CC], B) Raman and C) 

ROA spectra. When in the ROA mode, the Raman and ROA spectra are displayed in the 

application window. In Raman mode, only the Raman spectrum is displayed. Optionally, 

enabling Setup | Show CC Graph will display the four (4) [CC] spectra in either mode. 

While on the [CC] plot, a right mouse click will toggle the [CC] legend on / off. Within 

the legend window, the individual plots can be toggled on / off. 
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Figure 1. ROA Display and Control window with (R) and (S) a-pinene A) [CC], B) 

Raman and C) ROA spectra displayed. 
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While in Raman mode, the [CC] plots are meaningless. In the ROA mode, the 

[CC] spectra are helpful in identifying the validity of ROA peaks and the location of 

artifacts due to CGD pixel saturation. The DSS routine in v3.20 minimizes the saturated 

scan problem, but in previous versions of ROA this becomes a critical tool in the 

interpretation of ROA spectra. Essentially, any signal coincident with a saturation event 

should be very critically scrutinized. 

To the trained user the [CC] spectra can be informative about the validity of the 

ROA and instrument conditions. These interpretations could be considered an art form, 

developed as the user gains experience. The [CC] plots are useful to the field engineer as 

a diagnostic tool for alignment and calibration. 

The x-axis and y-axis by default auto-scale to present the full spectrum. By 

clicking and dragging the mouse from upper-left to lower right, the user can select an 

area of the plot to zoom in on. 

To zoom back to the full spectrum, drag the mouse in the opposite direction (from 

lower-right to upper-left). Note: It does not matter how far the user drags the mouse in 

this direction; any drag in this direction will result in full spectrum display. The relative 

size of the two or three plots can be adjusted by grabbing the bar that separates them and 

sliding it up or down. 

The bottom of the main screen includes four buttons that allow the user to specify 

the X-axis in units of increasing or decreasing wavenumber (cm"1), wavelength (nm) or 

CCD column number. 

In the lower right corner of the screen, the X and Y values as a function of the 

computer mouse position on a plot are displayed in real time. 
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1.4 Instrument Operation 

This section describes the basic operation of the ROA instrument. The camera 

power supply should be turned on prior to running the ROA application/The 

spectrometer can be turned on before, or after the application is run. However, if the 

ROAS is turned off, clicking an acquire button will generate errors. The program will 

have to be terminated within Windows Task Manager ™. 

Raman Intensity Adjustment 

Once the sample is prepared and placed in the sample holder, the first step in 

measuring an ROA spectrum is to adjust the intensity of the Raman spectrum. This initial 

step is very important. It ensures that the CCD is not saturating thus operating in the 

linear response regime while minimizing data collection time and the signal to noise 

ratio. While in Raman mode, adjust the sample position for maximum intensity. Note: In 

SERS applications, the position of maximum intensity may not be the optimal position. 

If, for some reason, the system is in Easy Calibration mode (usually for alignment 

procedures), the laser safety interlock is overridden, so extreme care must be taken. A red 

warning message is placed at the bottom of the main screen to remind the user that the 

system is in this mode. 

Be sure to wear laser eye protection goggles suited for operation at your laser 

wavelength, typically 532 or 780 nm. Jewelry, including wristwatches, should be 

removed when working in the sample compartment with the safety lock disabled. 

Additionally, when working with the ROAS enclosure removed, specular surfaces such 

107 



as belt buckles should be removed. Any chair(s) in which a person sitting would be at, or 

close to, eye level with the spectrometer, should be removed from the room. Alignment 

procedures can be performed with the laser at low power, i.e., a few mW. If the laser 

intensity is high, the user must also take care not to put his hands or any flammable 

material in the path of the beam! 

Now, press Quick Scan to assess the Raman intensity. Roughly adjust the laser 

intensity to get the Max CCD Output meter in the green range and within 2 blocks of 

the yellow range. If necessary, stop the Quick Scan and adjust the Illumination Period on 

the Acquisition Setup Screen. 

Sample Placement Optimization 

Once the Raman intensity is within the green range, use the horizontal adjustment 

wheel on the sample holder to move the sample closer to or farther from the objective 

lens. While making this adjustment, watch the Raman intensity. Adjust this position for 

maximum Raman intensity. Once this is complete, adjust the laser power or illumination 

time to get the Max CCD Output meter into the high end of the green range. Halt the 

acquisition and if applicable turn off the Easy Calibration Mode.. 

Collecting Spectra 

The user is now ready to collect an ROA spectrum. Press the Accumulate ROA 

button on the main screen to begin this process. Within a few seconds, data will appear in 

the Raman plot. The CC2, CC1, and LCR indicators will start changing color. 

Furthermore, the number of scans and exposure counters should begin incrementing. 
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The instrument can be left to collect data. In the Change Halt Criteria window, 

the acquisition period can be set to end after 1) a number of scans, 2) a specified amount 

of accumulated exposure time, 3) a number of counts at a predetermined position on the 

x-axis or, 4) to run until stopped by the user. When satisfied with the spectrum, the user 

can simply press the Halt After Cycle or Halt button to stop the acquisition. 
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1.5 Main Screen 

The ROA Display and Control window, see Figure 1, is the primary user 

interface. The interface consists of the control panel, pull down menus, and the plotting 

area. All user controls are accessible through this screen. A fair warning: unless advised 

by Biotools, Inc,. it is strongly recommended that the customer not attempt to make any 

changes within the Engineering menu windows. 

1.5.1 Control Panel 

H ROA Display and Control ~ C : 

File Setup Catbration Engineering hi 

Acquisition Type: ~1 
ROA I 

-Status 
Exposure: 018330 
Scans 43937 

CC2 CC1 LCR 

o o o 
Halt Criteria™— 
After 60 minutes 

Change Halt Criteria B 

Contror-

Halt 

Hall After Cycle 

Quick Scan 

- R e f e r e n c e - — — — 
17 Show Reference 

17 Scale to measured 

Max CCD Output 

CCO Temperature 
ViiTyilTiTMlTiS'iTmiKr* 

D 

E 

F 

Figure 2. ROA control panel. 
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Acquisition Type will indicate the kind of spectra being acquired as selected in the 

Setup | Acquisition Setup window, which will be discussed later. 

Status (Figure 2A) indicates the currently accumulated Exposure time (MMMM:SS), 

and the number of valid Raman Scans (exposures) accumulated in all [CC] states. The 

accumulated exposure time is the total amount of time that the CCD camera is exposed to 

scattered light, not real time. Real time will vary depending on exposure time and CCD 

read-out time. 

Three indicators display the state of the circularity converters (CC1, CC2) and the 

liquid crystal retarder (LCR). These indicators are meant to provide the user with a visual 

indication that the correction cycles of the ROA instrument are operating normally. 

Halt Criteria (Figure 2B) displays the user-defined conditions under which the data 

collection period (scan) will end. This can be specified in total exposure time or the 

number of exposures. The Change Halt Criteria button will open the Halt Criteria 

window (Figure 3). Conditions under which a spectral scan will terminate are displayed 

in and controlled through this window. 

A scan can be halted manually when the Control | Halt or the Control | Halt 

after Cycle button is selected, or automatically after 1) a specified number of scans, 2) 

specified amount of accumulated illumination time, or 3) a specified number of counts at 

a specified position on the x-axis (cm.i). Alternatively, when satisfied with the spectrum, 

the user can simply press the Halt After Cycle button to stop the acquisition. The Halt 
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when the Halt button is pressed option does not have to be enabled to use the Halt or 

Halt after Cycle buttons in the Control panel. In the case of a preset number of scans or 

exposure time, the preset value will be displayed in the Halt Criteria panel. 

C Han when the Hall button is pressed 

C Hah aftetrhis many scans: pO 

C Ha& after this nianyrroiutes of exposure time: |1 

ff R e T c ^ a W i i n t c n a i i i 

location (cm-tt [HBO Intenskjp (e-t |1 Mte«10 

QK Cancel 

r AutoRestartChsekBox 

Figure 3. Halt Criteria control window. 

The Control panel (Figure 2C) includes four (4) buttons for starting and 

stopping the acquisition of ROA and / or Raman data. 

Buttons may be actuated by clicking the left mouse button or the underlined letter 

on keyboard. Accumulate ROA will initiate an ROA scan, conventional Raman scan or 

a Degree of Circularity scan. When this button is pressed, the instrument begins all of 

the operations required to accumulate the chosen spectra. The user is presented with a 

dialog box, which asks if the user wants the data cleared before starting. (Figure 4) 

Do you want to clear all data before starting? 

J Yes No 

Figure 4. Clear data option / confirmation window. 
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If this is a new sample scan, answer "Yes", so that previous data will be cleared. 

If the user is continuing a run that has been halted, or would like to add data to a run that 

was previously saved (File | load filename.dat), answer "No", to have the system add 

new data to the existing data. 

The Halt button is used to halt the acquisition immediately. The instrument will 

not complete a correction cycle, but will stop when the current exposure period ends. The 

Halt button should only be used when collecting only Raman spectra or when performing 

calibration and setup operations, not when collecting ROA spectra. When selected, a 

Confirm window will appear (Figure 5). 

Are you sure you want to halt? 

lIIIJIEIZil No | 

Figure 5. The Halt or Halt After Cycle button confirmation window. 

The Halt After Cycle button is used to halt the acquisition after completing the 

correction cycle (a set of 32 exposures) in progress. By using this button, the user ensures 

that the collection of data will include equal numbers of spectra in each of the correction 

states. When selected a Confirm window will appear (see Figure 5). 

The Quick Scan button is used while calibrating the instrument, setting up a scan, 

or to view spectral exposures individually; that is, without accumulating counts from 
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multiple exposures. In this mode, the system will acquire, display, and clear data until the 

user Halts the process or the Halt Criteria have been met. In this mode, the user can 

view the effects of changing the laser intensity, exposure time or sample position in near 

real time. The displayed exposure appears two (2) exposure periods after it is acquired. 

Reference 

If enabled (File | Load Reference), the Reference panel (Figure 2D) appears 

below the Control Panel (Figure 2C). The reference data displayed (orange) can be 

toggled on / off by checking the Show Reference box. When the Scale to Measure box 

is checked, the reference Raman spectra is scaled to the displayed data at the point along 

the x-axis, where the y-axis has the greatest intensity. The reference ROA spectrum is 

scaled proportionately. 

Max CCD Output 

The Max CCD Output meter (Figure 2E) monitors the CCD pjxel of highest 

intensity during a single exposure, not to be confused with the intensity of a spectral peak 

or sum of counts along a column of pixels. 

Optimally, the laser power and exposure period should be adjusted so that the 

indicating bar is in the green range, a block or two to the left of the yellow range. 

Improper adjustment can result in an increase in the number of spectra discarded by the 

DSS routine (see Setup j Acquisition Set up | Discard Saturated Spectra), due to pixel 

saturation/Alignment issues (see Image Alignment and Binning) can significantly 

affect the overall collection efficiency of the CCD array. 
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Recall that: 

1) The output from the polarization analyzer is coupled to the spectrometer via 

the hexagonal close packed (HCP) fiber arrangement at the input of the fiber­

optic bundles and the fibers at the output are arranged in an arc that 

compensates for spherical aberration induced by the spectrograph. 

2) The image, on the CCD array is that of fiber-optic bundle. 

3) The intensity displayed in the Raman spectra is the sum of charge in each 

column of pixels. In principle, it may be that one or all pixels in a column 

contribute to the sum. 

4) The response of a saturated CCD pixel is non-linear and thus any single 

samrated pixel will corrupt the collective value of the binned of pixels. 

When coupling the output of the polarization analyzer to the inputs of the fiber­

optic bundles, the optimal position of the fiber bundle produces uniform illumination, 

along a column of pixels. At best, a close approximation to this condition can be 

achieved. In the worst-case scenario, but not possible in the ROAS design, all light is 

incident on one (1) pixel. Neither is there any reason to expect the illuminated pixels to 

be a continuous line of pixels. This is due to the geometrical conversion from the 2D 

(HCP) arrangement at the input of the fiber bundle to the ID arrangement at the output, 

e.g. in the spectrometer's object plane. The objective when aligning the fiber bundles (x, 

y, z) to the polarization analyzer output is to maximize the total photon count along a 

column(s) of pixels. 
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Although compensated for by the radial slit design of the fiber bundle, due to the 

effects of spherical aberration, it is possible that the image of the fibers on the CCD array 

can be slightly defocused toward the upper and lower edges of the CCD array relative to 

the middle of CCD array. Therefore, preferentially, the higher intensity pixels should be 

positioned close to the edge of the CCD array. If the energy distribution along the column 

is reasonably uniform and the image of the object is slightly defocused as in Figure 15C, 

due to the design of the instrument, this becomes an insignificant point. 

Recalling that the system resolution is 8 cm"1 and that this equates to about four 

(4) horizontal pixels, the sharpest focus of the FG bundle is not necessarily the best 

condition for maximizing the number of photons that can be counted within a given 

exposure period. A slight defocus that spreads the central intensity in the image of a fiber 

across 1.5 to 2 pixels is ideal for maximizing signal intensity. The defocus of the fiber 

will also reduce spectral noise, e.g. smoothe the spectra. 

It is important that the CCD binning is correctly calibrated. This should be done 

following any alignment work or physical disturbance of the instrument. (Calibration | 

Image Alignment and Binning). 

CCD Temperature 

The CCD temperature meter (Figure IF) indicates the relative temperature of 

the CCD array. The camera power supply must be turned on before running the ROA 

application. The camera will not begin cooling down until the ROA application is open. 

In practice, the ROAS and camera should be turned on at the same time. When collecting 
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spectra, the meter should be in the range of 3-5 blocks from the left of the screen. It will-

take ~15 minutes to reach the correct temperature. 

In some versions of ROA prior to v3.20, the application has to be started with the 

camera turned on and while the camera is still on, the application must be closed and 

restarted. 

Messages 

The area above and below the Max CCD Output and the CCD Temperature 

meters are used to display messages. The messages are self-explanatory and vary with 

versions. In the case of v3.20 the common message options include 1) "Camera Cooling 

Off!" 2) "LCR Not Calibrated" 3) "Easy Calibration Mode" 4) "Sample cover is open", 

5) "Waiting for Lock" (LR synchronization)", and 6) a DSS "Saturated Scan" counter. 
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1.5.2 Pull down menus 

Import 

Load Data 
Load Reference 

Print ROA Graph 
Print RAMAN Spectrum Graph 

Print Screen 
Printer Setup... 

Set Data Directory... 

Exit 

Figure 6. File pull down menu. 

1.5.2.1 Files 

Export will export the data display in the main screen into four (4) file formats: 

.dat, .pit, .txt and .all. Filenames include the Sample Name from the set up window, the 

date, and the time the file was saved. 

Filename.plt is a ASCII file containing the x-axis, Raman and ROA data strings. This is 

the output file generally intended for the user to import into spreadsheet and plotting 

programs. 

Filename.dat is a system file readable by the ROA application. This is the file loaded by 

the Load Data or Load Reference command. 
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Filename.txt is a tab and comma delimited ASCII file containing the information written 

in the Setup | Acquisition Setup | Comments window, Raman, ROA, and spectra 

recorded in all [CC] and LCR states. 

Filename.all is an ASCII file containing the x-axis and spectra recorded in all [CC] and 

LCR states. 

In previous versions of ROA, it was necessary to export the data at the conclusion 

of the scan. As of ROA V3.20 within the Setup | Acquisition Setup window checking 

the Save at the End of Collection box will automatically export the four (4) files at the 

end of the scan as defined in the Halt Criteria. If the scan is stopped before the Halt 

Criteria and Save at the End of Collection is not enabled, the data must be exported 

using this command. 

Load Data loads a previously saved filename.dat file. 

Load Reference loads the Raman and ROA spectra (orange) from a previously saved 

filename.dat file, for comparison to the displayed data (green). 

BUG Alert: In some previous versions of the ROA when a reference spectrum was 

loaded, the contents of the Setup | Comments window and the Sample Name from the 

reference.dat file have been known to replace the entries for the current sample. 
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Additionally, the elapse scan time will become that of the Reference data. This problem 

has been resolved. 

Work around: Load the last filename.dat file created before the Reference File that was 

previously loaded. When the file is loaded, the contents of the Comments window and 

the Status window's Exposure and Scans values should be restored. The Sample Name 

will not be restored and must be manually reentered. To prevent confusion in the future, 

any files created with the Reference Data info in the setup box and incorrect filename 

should be promptly deleted. Verify that all settings have been returned to the desired state 

before proceeding with the next scan. Creating a text file while setting up a scan is a 

convenient way to compose and enter information into the Comments window, via the 

copy and paste commands. 
I 

Print Raman Graph sends the displayed Raman spectrum to the default printer. 

Print ROA Graph sends the displayed ROA spectrum plot to the default printer. 

Print Screen, not to be confused with the keyboard print screen button will send the 

main screen to the default printer. Alternatively, the computer's print screen button can 

be used to copy the entire image of the computer screen to the clipboard, after which it 

can be pasted into a document and more easily managed. 

Printer Setup will display the typical Microsoft Windows™ printer setup window. 
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Set Data Directory opens the Set File Locations window (Figure 7) from which the 

subdirectory to which data will be saved can be chosen. The data directory has to be 

created outside of the ROA application, for example with MS Explorer™. If a 

subdirectory is defined while the Set | Data | Directory window is open, clicking the 

yellow file folder will refresh the directory tree. Within the File | Set Data Directory 

window the chosen data directory must be double clicked. 

Bug Alert: In some previous versions of ROA, the application will create a data 

subdirectory with the selected subdirectory's name and save the data subdirectory(s) 

outside the chosen directory. Data files will be saved into a subdirectory(s) created by 

ROA that resides outside the selected subdirectory. 

Work around: 

Select the subdirectory you want data saved to. Exit ROA and reopen the 

application. The data files will now be stored in the data subdirectory(s) ROA created in 

the user selected subdirectory. 

The location of manually Exported files will default to the data subdirectory 

created by ROA. However, an alternative subdirectory can be selected. 

The SNR.cvs file will be saved by default into the user selected subdirectory, not 

in the application generated data directory. 

. 

Set File Locations 
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Figure 7. Set File Location Window. 

1.5.2.2 Setup 

ROA Display andjContiol - C:\Doc 

Calibration Engineering Help 

Acquisition Setup 

t/ Show CC Graph 

Display Only Complete Cycles 

• Path Correction 

• Smooth 

v Shot Noise Floor 

y targe Fonts 

SNR Measurement... 
i i. i i^.i^iii i imu.i^Li^jajij i^ii^i.pi 

Figure 8. Setup drop down menu. 

1.5.2.2.1 Setup window 

Setup | Acquisition Setup 

The Acquisition Setup window, shown in Figure 9 is used to control the 

majority of the user-definable options. 

Length of Illumination Period defines the duration of one (1) exposure of the 

CCD array to the scattered light. The time required for one (1) ROA scan includes 32 

exposure periods, plus 32 CCD read periods. The CCD read period can be observed in 

the Engineering | Instrument Setup (Factory Settings) window. Because of the 

synchronization / timing of the linear rotators, only certain illumination times (exposure 

periods) are allowed. Moving the slider to the left or right, or pressing the left or right 
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arrows will decrease or increase the illumination time. Exposure periods range from 

about 73.5 ms to 10.3 seconds. 

Because reading out the CCD generates read out noise, when scattered photons 

are limited, longer exposures are preferential to multiple, short exposures. 

Shutter Run State determines which of the two shutters will be used to collect 

the data. The Incident shutter controls the light before it enters the sample cell. The 

Scattered (spectrometer) shutter controls the entry of scattered light into the 

spectrometer. The Scattered shutter must be used for calibration procedures that require 

a neon lamp. 

Enabling the incident shutter will minimize the amount of time that the sample is 

exposed to light. This is important if the sample is susceptible to photochemical 

decomposition. Inversely, leaving the shutter open may serve to preferentially photo 

bleach or burn out fluorescent chronophers in the sample. 

When the incident shutter is left open during a scan, the scattered shutter must be 

enabled. It is not normally necessary to use both shutters simultaneously. Additionally, 

leaving Calibration | Quick Calibration | Easy Calibration enabled will hold the 

incident shutter open. This is useful when aligning the ROAS. It is also useful when 

working with samples that fluoresce, since leaving the sample illuminated constantly can 

help to burn fluorescent chronophers, prior to the beginning of the data acquisition. 

The elimination of fluorescent chronophers is often applicable when analyzing 

biomolecular molecules in resonant Raman and ROA experiments (533 nm). However, 
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for non-resonate experiments (780 nm) fluorescence by biological molecules does not 

present a problem. 

Note: The incident shutter will not be heard by the user, although the scattered 

shutter should be clearly heard. If, when enabled, the spectrometer shutter is not heard, 

applying a small drop of oil to the shutter's solenoid should resolve the problem. Do not 

apply oil to the shutter blades. 

In future models, the design of the spectrometer shutter mount should be changed, 

so that the spectrometer shutter solenoid is positioned vertically with the solenoid rod 

pointed downward. 

SB Acquisition Setup EDO® 
Length of Illumination Period (seconds) 0.9555 4 | r» | 1J-

-Shuttei Run State — 

(~ Incident <" Scattered (? Both 

Rotator Steep Time 

Acqusftibn Type-

<* ROA 

f" Degree Of Circularity 

(seconds) J100 

C~ Raman Only 

(~ DofC Full Cycle 

17 Discard Saturated Scans Threshold: 150000 

Sample Name |NP*(R)Phe-(R)Cys 
Comments 
Date 
Sample„ID 
Description 
Wavelength 
Amp taser_current(mA) 
Laser(mW) 
EKposure peribd(sec) 
Cts/exposure NN(Vcm) 
Bkgnd Cts NN(Vcm) 
HalL Criteria_(min) 
Export.every(min) 

1440 
10 

9/1/08 
083108A 
NP»(R]Phe-(R)Cys 
780nm 
S50 
40 
10 
8E 4(1008) 
2 55E4(1008) 

i< 

• ^ 

' •N 

AutoS 
P? Periodically export data after every J15 

f-" Clear after each save P~ Export every j 3 times 

f~ Save at end of collection 

<•* Minutes 
C* Seconds 

Export Configuration 
F* Enable export to Grams 

I C I l L l l 

Figure 9. The Acquisition Setup window. 
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Rotator Sleep Time [NNN] is the amount of time that the system waits after 

going to an idle state before shutting down the rotator motors. Normally leaving this set 

in the range of 100 - 200 seconds will help to avoid delays on startup while the system 

waits for the linear rotator motors to synchronize. 

Acquisition Type allows the user to select from four (4) options; 1) ROA 

measurements, where full artifact correction is employed, 2) Raman 3) Regular DoC 

puts the lA wave plate in the beam but does not put the CC's in the beam path(s). This 

allows the observation of the effect of nearly purely circularly polarized light as the 

source.4) DoC Full Cycle puts the lA wave plate in the beam and does the regular [CC] 

dance. This allows one to get a feel for how well the system is canceling incident, circular 

polarized light. The typical user will not use the DoC modes. 

Discard Saturated Scans A saturated pixel is defined as a pixel on which the 

incident intensity is sufficient to shift the detector response from linear into the non-linear 

(exponential) regime. Saturated pixels are commonly attributed to a cosmic ray(s) 

incident on the CCD array. Within ROA spectra, cosmic rays can result in well-defined 

positive, negative, and sigmoidal peaks. These are purely spectral artifact(s). 

DSS will discard the eight (8) spectra in the associated [CC] state in which the y-

value of a one (1) single point along the x-axis exceeds the average value of the two (2) 

adjacent columns by a preset threshold value. The system will then recollect eight (8) 

spectra in that [CC] state. Additionally, a message including a counter will be displayed 

below the CCD Temperature meter. 

125 



The stronger the R.OA signal, the less of a problem saturated scans present. DSS 

errors appear to have three (3) origins. 1) cosmic rays, 2) excessive intensity at the CCD 

array which most likely due to improper setup parameters and 3) leaving either of the 

Simulations modes enabled. 

The cosmic ray problem is cumulative in the ROA spectra, thus longer scans are 

at greater risk. If two (2) adjacent columns contain saturated pixels, the routine will not 

discard the spectral. Due to the high number of counts in the Raman spectra, pixel 

saturation events will not be observed in the accumulated Raman spectra, but can easily 

be observed in the [CG] spectra. The threshold for discarding spectra can be set in the 

window to the right of the DSS check box. Possible values for the threshold range from 

0-65,536, with 64,000 being the default value (no filtering). 

If DSS is enabled and the scattering intensity is excessive, no data will be 

displayed because it is all being discarded. This could be confusing when setting up the 

next sample if it turns out to be much brighter than the previous sample. 

When the CCD Max meter is at the green to yellow transition region, the nominal 

A to D value is -25,000. The adjustable threshold range is then between the intensity and 

65,500K. The discarding of spectra will increase the overall collection period, so this 

parameter should be optimized. A threshold value of 28,000 seems to be a reasonable 

value for catching saturated scans where the intensity of the column exceeds IE5. 

Sample Name is a text through which the user can enter an identifier that will be 

included in the name of all saved files. 
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Bug Alert: Older versions of the RO A application are not protected from user entry of 

illegal characters (* \ / > < | : ? ). If an illegal character were entered, no files will be 

saved. This problem has been resolved. Additionally, RO A will allow filenames that 

exceed 64 characters. This may result in files that Windows™ applications will not open. 

This problem has not been resolved. 

Comments is a text box in which the user can save information about the sample, 

along with the data that is collected. Information in the Comments box will be found in 

the .dat files, .all and .txt file, which are created by the File | Export command and when 

the Setup [Acquisition Setup | Save at end of collection option is enabled. 

Periodically export data after every [ ] This feature will export a filename.dat 

file periodically over the duration of the scan. In the event of a power failure, sample 

photochemical decomposition, or an instrument problem; the data up to that point has 

been saved. After trouble shooting a problem, the last acceptable data file (.dat) can be 

reloaded and the scan resumed. The amount of time between saves is specified in the box 

to the right. These are real time minutes, not minutes of exposure time. The time between 

exports must exceed the amount of time required to collect 32 scans unless only Raman 

spectra are being collected. In this case, time must be allowed for 8 exposures. Unlike the 

File | Export and Setup | Acquisition Setup | Save at end of collection routines, only a 

filename.dat file will be saved. This feature is normally enabled. 
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Clear after Each Save clears the previous scan after the Periodically export 

data routine saves a filename.dat file. This can be used for time resolved experiments. 

This feature is only applicable to Raman spectra. ROA data becomes meaningless if this 

feature is enabled. 

Exports every [ ] times exports a filename.dat every [N] scans. This feature can 

be used for time-resolved experiments, but otherwise is typically disabled. 

Save at end of collection will run the File | Export command when the scan is 

stopped by the Halt Criteria or Halt after Cycle command. 

Enable export to Grams when enabled, data is exported in a Grams data format. 

Use of this feature requires a Software License available from BioTools, Inc. If this 

feature is enabled, the application will not automatically save filename.dat files, nor will 

the File | Export functions work. 

i:. ••. • Show CC Graph 
Display Only Complete Cycles 

5t . : . : 

E> </ Path Correction 
S< >/ Smooth 

•/ Shot Noise Floor 
1— v Large Fonts 
r - f o — : • 

Af SNR Measurement... 

Figure 10. Setup drop down menu. 
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Setup I Show CC Graph 

When enabled adds a plot of the | II - Ir | spectra for each of the 4 [CC] logic states 

to the application window (Figure 1A). 

Setup | Display Only Complete Cycle 

When enabled, the Raman, [CC], and ROA spectra are only updated after a 

complete set of scans have been collected in each of the [CC] logic states. This feature is 

typically enabled. 

Setup | Path Correction 

Due to the nature of transmission through the two paths separated by the beam 

splitting cubes, some systematic errors can be introduced into the measurements. In 

previous versions of ROA, the algorithm attempts to quantify the difference and apply a 

correction to the collected data. 

The Path Correction code has been rewritten to include compensation for 

intensity differences between [CC] states, induced by translating waveplates. This 

modification is also beneficial under conditions where slow variations of laser, and / or 

scattering intensity are encountered. The new path correction (really, intensity correction 

would be more accurate) is calculated at the end of each set of 32 scans. 

Setup | Smooth 
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The ROA software allows the user to apply a 5-point boxcar-smoothing algorithm 

to the data. This algorithm makes each plotted point equal to the average of the original 

point and its four closest neighbors. 

The basic resolution of the ROA instrument, ~ 8 cm"1, is determined primarily by 

the image size of the slit on the CCD camera. In this system, the slit image is four (4) to 

five (5) pixels wide. For this reason, 5-point smoothing will have little effect on the 

System resolution, while significantly reducing the shot noise. The feature is typically 

enabled. 

Setup | Photon Shot Noise Floor 

The quality of the spectra collected on the ROA instrument is primarily limited by 

the photon shot noise. This is overcome by collecting large numbers of counts, often over 

long periods of time, which reduces the shot noise floor, relative to the signal. The ROA 

software will compute and plot an estimate of the shot noise floor, based on the Raman 

spectrum and display it with positive and negative signs in the ROA plot. It is not 

exported but can easily be calculated, e.g. = ± SQRT(Raman counts) .This feature is 

typically enabled 

Setup | Large Fonts 

Toggles the plot axis font size. 
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1.5.2.2.2 Setup | SNR Measurement 

The SNR window facilitates the plotting of the intensity ratio for 6 (six) pairs of 

points along the X-axis, in real time. If Sig only and Enable are selected, the Raman 

intensity will be plotted at the position indicated in the Signal window. The value in the 

Reference window is ignored. 
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Figure 11. SNR Measurement, Peak intensity and ratio plotting window. 

Each of the six (6) data strings can be enabled or disabled and each can be titled. 

A Threshold value for changes in the ratio of Y-axis values can be set. If the ratio falls 

below the set value, the appropriate Threshold Crossed box will turn red. To reset the 

boxes, the scan must be stopped and restarted. Note: The intensity includes background 

noise. To disable the Threshold Crossed alerts, set the threshold to zero (0). 

Scans (exposures) To Average should be set to 32 when collecting ROA spectra. 

If other values are used, due to reflective losses when waveplates are inserted, the SNR 

trace will be transformed from a line to a periodically oscillating trace, offset by the 
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average SNR. In the case of a purely Raman scan any number of exposures can be 

averaged. The SNR plots will be updated when .dat files are saved. 

Minutes Between Averages is the real time between the end of the last set of 

average exposures and the beginning of the next set of exposures to be averaged. To 

average continuous sets of N scans, set time = 0. 

Measure CC 00 Only When enabled, only scans in the [CC] = [00] state will be 

included in the SNR average. Enabling this option is recommended if any number of 

scans other than 32 is to be averaged during an ROA scan. 

In the case of ROA, optimally the number of Scans To Average should be 32 or 

8 with Measure CC 00 Only enabled. If the Minutes Between Averages is set to a time 

less than the time required to collect N + 24 spectra (or the number of Scans To 

Average), the SPR plot will average every other set of N scans. 

When Save to file is enabled, the data strings will be saved to an SNR.cvs file. 

This file is updated each time a data point is added. 

Auto generate file name, when enabled, will add the Sample Name defined in 

the Setup window to the SNR filename and written to the subdirectory specified under 

File | Set Data Directory 

If the SNR window is closed and reopened during a scan, the previously collected 

SNR data points will not be displayed. However, the SNRxvs file will continue to be 

updated. There will be a break in the data string if the scan is stopped and restarted. This 

will have to be manually edited, if the user would like one plot that includes all of the 

data points. 



1.5.2.3 Calibration 

File Setup |MJ! fcUMA Engineering Help 

Wavenumber / Wavelength Calibaration 

R j LCR Calibration 

n 
Image Alignment and Binning 

Statu 
mmM up-

Easy Calibration Mode 

Figure 12. The Calibration pull down menu. 

1.5.2.3.1 Wavenumber / Wavelength Calibration 

Calibration of the system for accurate measurement of wavenumber or wavelength 

requires a neon lamp. Before executing the calibration routine, the application will 

compare the neon lamp spectrum to the spectrum embedded in the application. In the 

event that the spectra are not a close match, the software will not be recalibrated. 

Wavelenpth/Waven umber Calibration 

Lasef Wavelength: [77975 

CaHxate CHJ-gJESLJl 

Figure 13. The Wavelength / Wavenumber Calibration window. 

1) Turn off the laser. Position the calibration lamp on the sample compartment 

rail, far from the objective lens and insert the calibration lamp. The position 

of the neon lamp will be adjusted later. The Ne lamp emits UV in addition to 

visible and NIR radiation. Avoid looking directly at the lamp. 
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2) Enable the Easy Calibration Mode in the calibration menu. When enabled, 

the incident shutter will remain open continuously. The sample door interlock 

will likely have to be bypassed using the supplied tool. The spectrometer 

shutter must be enabled in Setup | Acquisition Setup window. 

3) Press the Quick Scan button on the main screen. The lamp position can be 

adjusted so that the Max CCD Output meter is in the green, and within a 

couple blocks of the yellow range. Note: If the photon intensity on the CCD 

array is excessive and the DSS routine is enabled, the Max CCD Output 

meter may not respond because the DSS routine is discarding all scans. 

4) Adjust the illumination time on the Setup | Acquisition Setup window. 

Note: To change the illumination time, the user must halt the acquisition, 

change the value, then re-enable Quick Scan.. Repeat this until there is a 

high green indication on the Max CCD Output meter 

5) Halt the Quick Scan acquisition and press Accumulate ROA to start 

accumulating spectra. After the Ne lamp spectrum has been collected, press 

Halt 

6) Select Calibration | Wavenumber / Wavelength Calibration and enter the 

laser Wavelength. Most ChiralRaraan systems use a solid state frequency 

doubled ND:YAG laser emitting at 532nm, with a 20-30 GHz free spectral 

range. In this type of laser, the line position and width are well defined by 

atomic transitions and do not change. Enter 532 in the Laser Wavelength 

box and click Calibrate. The application will compare the spectra to an 
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embedded Ne spectrum. If they are reasonable approximations of each other, 

the x-axis will be calibrated. 

At the time of this writing, the highest optical power NIR lasers (1-1.5 W) on the 

laser market are wavelength tunable diode lasers in a Littrow configuration. Differences 

of 0.1 nm will shift the spectrum a few wave numbers, and very few laser labs have the 

capability to resolve laser wavelength with 0.1 nm resolution. Laser wavelength meters 

available from Bristol Instruments are capable of measuring wavelengths to .002 nm of 

resolution and are a potential means of using a tunable laser (Bristol Instruments' laser 

instruments are developed jointly with Critical Link). 

One way to address ambiguity in the laser line wavelength is to use a known 

Raman line (calibration molecule) and tweak the laser or wavelength entered in the 

calibration window. 

To this end, collect and export the Ne lamp spectra. Collect the Raman spectra of 

a reference molecule and compare the peak to the position indicated on the x-axis. If the 

peak position is incorrect, load the Ne spectra, tweak the Laser Wavelength value, and 

click Calibrate. Repeat this process iteratively until the peak position is in the correct 

place. The final wavelength value may beinthel00 t h sof anm. 

The x-axis is now calibrated for wavelength and wavenumber. 

1.5.2.3.2 LCR Calibration 

The LCR Calibration screen is used to determine optimal control voltages for 

operating the liquid crystal retarder (LCR) as a dynamic ± XIA wave plate. 
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Figure 14. A) The LCR Calibration window with typical calibration curves displayed. B) 

The near infrared LCR voltage vs optical phase retardance plot. 

What is physically taking place during the LCR calibration routine? 

RsLp indicates that right-hand circular polarized light R is converted to S 

polarization, and left-hand circular polarization L is converted to P polarization. It 

indicates the desired state of the LCR. 

All linear rotators are rotating and the XIA plate on the incident rail is in the beam. 

This will result in circularly polarized light being incident on the sample, which from a 

highly polarizable sample such as CCI4, results in circularly polarized scattered light, 

with a sense common to that of the incident beam. 

The orientation of the A/4 wave plate about the optical axis is determined by 

placing a linear polarizer (analyzer) in front of a photo detector, positioned on the sample 
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rail at the far end of the sample compartment. While observing the photo detector output 

on an oscilloscope, the XIA plate is rotated until a minimum oscillation in the waveform is 

observed, then locked into place. Note; Because optical elements are not perfect, the 

waveform cannot be reduced to a flat line. Once the XIA plate is aligned, unless the Glan-

Thompson polarizer is reoriented about the optical axis, there should be no reason to 

reposition the XIA wave plate. 

The LGR's ordinary plane is orientated at 45 degrees, to the GTP and the 

polarization analyzer. This axis is marked on the LCR housing. 

A ramped (square) wave voltage results in a phase shift and the application 

determines the optimum voltages for XIA and 3XIA (-XIA). 

In principle, at these voltages, the circular polarization is converted to purely 

linear S or P polarization. In reality, this is not quite true due to imperfections in real 

world optical elements. 

The RsLp and RpLs plots are the ratios of the integrated intensity over the 

selected pixel range for the two halves CCD array, as described in the LCR Calibration 

section below. 

Some of the ROAS systems have LCR's with integrated temperature sensors, 

while others do not. Proponents argue that the phase retardation vs voltage will drift with 

changes in the temperature of the device; in this case the room temperature, and that 

compensation for changes in temperature is needed. On systems where temperature 

monitoring is an enabled option, interpolation or extrapolation is employed to optimize 

the LCR for the current temperature. Our experience has been that the ROAS is pretty 
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insensitive to the exact LCR voltage, so any drift based on temperature is not really 

significant. 

1) LCR Calibration using carbon tetrachloride (CCI4) 

2) Place a CCU sample into the sample mount. 

3) Set the system into Easy Calibration Mode by choosing Calibration | Easy 

Calibration Mode from the main menu. 

4) Go to the main screen and press Quick Scan. Optimize the sample position 

for maximum peak amplitude, then adjust the exposure time and / or laser 

power so that the Max CCD Output meter is in the high green range. 

5) Once the sample intensity is set, find the -460 cm"1 band of CCI4. Set the 

display to pixels and locate the same peak. Pick two points (in pixel 

numbers), one on each side of the peak, and note the starting and ending pixel 

numbers. 

6) Go to the LCR Calibration screen by choosing Calibration | LCR 

Calibration on the main menu. 

7) Enter the starting and ending pixel values noted above into the Start and End 

fields of the Calibration Parameters panel. These numbers may have to be 

dithered to get a proper curve. 

8) Enter starting values for the RpLs and RsLp voltages. If the instrument has 

been previously calibrated, these numbers can be estimated by looking in the 

Calibrated Temperatures table to the right of the screen. 

9) Set the Step Voltage to 20 mV, and the Number of Steps to 20. 
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10) Press the Acquire button to begin the calibration process. The instrument 

will now step through a range of voltages centered about the two center 

voltages to find the optimum LCR voltage, at the current temperature, if 

applicable. The typical RsLp line shape will be a smooth curve, while the 

typical RpLs line shape is not (Figure 14A). The difference in the 

smoothness between the RsLp and RpLs plots is at least partially attributed 

to the difference in the rate of change in the phase shift versus voltage in 

Figure 14B. Worth noting, the rate of change differs more for the NIR LCR, 

than for the visible light LCR commonly used in ChiralRaman spectrometer. 

11) Once the calibration process is complete, the user will see the RsLp and 

RpLs windows that contain plots of intensity ratio vs. voltage. If all is well, 

these should be reasonably smooth curves with one showing a minimum and 

the other showing a maximum. Furthermore, the RsLp and RpLs Min 

Voltage boxes should now show the interpolated optimum voltages for the 

LCR. These should be close to the minimum (RsLp) and maximum (RpLs) 

voltage values observed in the two plots. 

12) If these voltages look reasonable, press Add to Calibration List to accept 

them. If the graphs have obvious outlying points, it is usually best to re-run 

the calibration process. Adjusting the intensity level by shutter speed and 

laser power can improve the smoothness of the graph, if repeated runs prove 

to be noisy. As-of v3.20, the accepted calibration curve will replace, riot be 

added to the data stored in the Calibrated Temperature window. If the 
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temperature compensation option is enabled, the calibration curve will be 

added to the list. This option is not presented in all versions or ROA. 

Comment: producing nice curves can be tedious. 
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1.5.2.3.3 Image Alignment and Binning 

Figure 15. Image Alignment and Binning screen. A) Top minus Bottom spectra, B) 

Horizontal Sum, C) Image of CCD without the current binning displayed, D) Image of 

CCD with the current binning displayed, E) Image of CCD with recalculated binning 

displayed. Note: Only one image of the CCD will be displayed at one time in the ROA 

application. 

The Image Alignment and Binning screen is used to optimize the alignment of 

the fiber optic bundle to the polarization analyzer, and the FO cable and CCD array to the 
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spectrograph. This routine is also used to determine the binning pattern of the CCD. The 

binning pattern may need to be repeated occasionally to optimize the light collection. 

When the Image and Alignment Binning window is active, the system operates in 

Raman mode, i.e., the [CC] logic state is [00]. Anytime the instrument is realigned, the 

binning optimization routine should be run. 

Truly, Image and Alignment Binning adjustments are an art-form developed 

with experience. 

Image Alignment and Binning pull down menu 

SetUp options include, Acquisition SetUp and Gray Scale 

Acquisition Setup brings up the Acquisition Setup window. This option is here 

so that it is not necessary to close the Image Alignment and Binning window, adjust the 

setup on the main screen, and then reopen the window, repetitively, to get the exposure 

time set correctly for this screen. It is simply a time-saver. 
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Figure 16. The Gray Scale | Image Setting window. 
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Gray Scale| Image Setting window allows the user to effectively zoom in 

amplitude on the image. The Gray Scale settings allow the user to set the max and min 

pixel amplitudes used in coloring the image. Anything above or below the max or min 

value will show as red. 

The Image Min and Image Max value(s) are displayed to assist the user in 

selecting an appropriate Gray Scale Min and Max. The Clipping value allows the user 

to set a "clipping level" which is lower than the Gray Scale Max. This is normally not 

necessary. 

These settings are helpful when looking at a peak (line) that is much fainter than 

the maximum intensity line. Normally the image will scale to the max intensity pixel, but 

if the user is trying to look at a faint line, he / she can lower the Gray Scale Max to get it 

closer to the top value in the faint line. 

Set CCD Offset. This feature is obsolete and will likely be removed from later 

versions of ROA. 

Auto Gray instructs the software to automatically scale the intensities in the 

image each time an image is acquired. 

Image Alignment and Binning controls are displayed on the left side of the screen. 

Graph Displays allows for selective display of the Top-Bottom, Horizontal Sum 

and Image plots. 
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The Top-Bottom and Horizontal Sum plots, Figures 15A and 15B respectively, 

display a vertical axis measured in A/D converter counts. This is a good relative measure 

of intensity. 

The Top-Bottom (pronounced top minus bottom) plot (Figure 15A) displays the 

intensity difference between the lower and upper halves of the GGD array. This display is 

used to adjust fiber input tilt. When correctly adjusted, this plot should show a fairly 

small peak amplitude. Minimizing these peak amplitudes will increase the number of 

counts that can be collected before the CCD Max. Output meter moves out of the green 

range. Ideally, the shape of each peak should be symmetrical about its center, i.e., a "W" 

or "V" line shape. If the peak shows an N shape (positive then negative) or the opposite, 

this is an indication that the fiber optic cable is rotated slightly, relative to the 

spectrograph diffraction grating. It may not be possible to eliminate all non-ideal line 

shapes across the spectrum. Figure 15A represents an ideal alignment. 

The Horizontal Sum plot, (Figure 15B) displays the horizontal sum plots of 

counts along the selected rows of the upper and lower halves of the CCD array. Put 

another way, it quantitatively indicates the energy distribution along the upper and lower 

columns of CCD pixels. This plot is used to adjust the launching lens and fiber input. 

Ideally, the plot should not have strong peaks, but rather, a fairly smooth distribution of 

light 

To minimize spectral collection time, it is important that (to a reasonable 

approximation), that the scattered light intensity be uniformly distributed along the CCD 

column. This is because the minimum spectral acquisition (exposure) period is limited by 
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the highest intensity pixel limit. The line shapes do not need to be identical. However, the 

mean or average line positions should be similar in amplitude. 

The intensity distribution is controlled by the alignment of the fiber optic bundles 

to the arms of the polarization analyzer. To achieve the best approximation of an equal 

number of counts from the upper and lower halves of the CCD array, the Calculate 

Binning routine determines which rows will be binned for spectra collection 

Image The image of the CCD array (Figure 15C) graphically indicates the 

relative intensity of each CCD element. The CCD Image is the best tool for optimizing 

the fiber optic bundle to polarization analyzer alignment, spectrometer alignment, and 

spectrometer focus. The Image is updated two (2) exposures after acquisition. 

Since the main screen includes the Max CCD Output meter, binning is not as 

critical as it would otherwise be, because when properly adjusted, the probability of 

saturating or overexposing the CCD has been minimized. However, for optimum 

performance (primarily optimum collection speed), it is best to have the binning pattern 

set reasonably well. Once the pattern is set, it is probably not necessary to reset it, under 

normal circumstances. Before adjusting the binning, adjust the Ne lamp position and 

intensity, as the user would for a normal ROA acquisition. If the Image Alignment and 

Binning plots do not update, reduce the lamp intensity by moving it away from the 

objective lens. To set the binning pattern, go to the Calibration | Image Alignment and 

Binning screen. 
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Setting the Binning pattern: The Image Alignment and Binning screen can 

display three plots, each of which can be displayed or hidden, by checking / clearing a 

box in the Graph Displays panel. Any combination of plots may be displayed. In the 

Image Graph panel, check the Show Binning box. Press the Acquire button to acquire 

an image. Once a valid image (determined by the application) has been acquired, the 

current binning pattern will be displayed as white lines overlaid on top of the image 

(Figure 15D). The white binning lines should be closer together in higher intensity 

portions of the image and further apart in lower intensity portions. 

In Figure 15, the CCD columns 0-1024 and rows 0-256 are selected. When 

selecting rows or columns, the beginning row or column number is entered in the 

StartRow or StartCol box. The range of rows, or columns are entered into the 

NumRows or NumCols box(s). For example: if StartCol =100 and NumCols = 200, the 

CCD will be evaluated for pixel columns 100-300. When acquiring a spectrum, the 

response time or cycle time is a function of the number of pixels to be evaluated. It may 

be advantageous to reduce the number of columns or rows at times, for example, when 

focusing the image of the fiber optic cable on the CCD array. 

The CCD array is illuminated using aNe calibration lamp. Position the calibration 

lamp on the sample compartment rail, far from the objective lens and insert the 

calibration lamp. It may be necessary to adjust the position of the Ne lamp fixture for 

optimum signal strength. The Top-Bottom plot shown in Figure 15 appears as expected 

in that, the predominant line shapes are that of "W" and "Z", as opposed to "V". The line 

shapes result from the fact that the spectrometer focus, not to be confused with the 

sample focus, may not be exactly the same for the top and bottom, across the upper and 
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lower areas of the CCD array. Also, the photon counts on the upper and lower halves of 

the CCD array are never exactly equal. Therefore, it is expected that the Top-Bottom 

plot will have peaks, even when there is no chirality in the sample, i.e, a lamp. The 

alternating state of the LCR, should completely eliminate this over a scan. This 

cancellation is not observable in the Image Alignment and Binning window. However, 

in the main application window, when Setup | Display only Complete Cycles is not 

enabled, the RGA spectra is displayed every other scan, such that the spectrum is 

composed of two summed spectra from a common [CC] state and opposite LCR states. 

Reset Zoom resets the CCD Image x and y axis to full scale if, and only if the 

Adjust Camera Tilt and Adjust Fiber Tilt modes have not been enabled since the 

application was opened. 

Adjust Camera Tilt and Adjust Fiber Tilt are convenient in that Adjust 

Camera Tilt displays the CCD image over the pixel ranges of 1-1024 and 100-150 and 

Adjust Fiber Tilt displays the CCD image over the pixel ranges of 400-760 arid 1-256. 

Unfortunately, at the time of this writing, if either option is selected, the CCD image 

cannot be zoomed back to 1024 x 256 by a mouse drag or entry into the -Row or -Col 

boxes. The ROA application will have to be closed and reopened to return to the full 

image. This will be addressed in new releases or ROA. 

1.5.2.3.4 Easy Calibration Mode 



Calibration I Easy Calibration Mode 

Opens the incident shutter and overrides the sample compartment laser safety 

interlock. When enabled, a red warning message is placed at the bottom of the main 

screen to remind the user that the system is in this mode. 

Be sure to wear laser eye protection goggles suited for operation at the laser's 

power and wavelength. If the laser intensity is high, the user must also take care not 

to put his hands or any flammable material in the path of the beam! 
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1.5.2.3.5 Engineering 

In general, the Engineering windows are self-explanatory to someone who 

understands the instrument, and has read this document. It serves little purpose to discuss 

all the information displayed in these windows. However, there are a few points that 

should be made. 

1.5.2.3.6 Instrument Setup (Factory Settings) 

Although it can be viewed to enhance the user's understanding of the 

ChiralRamm spectrometer, the engineering section is most useful as a diagnostic tool. 

These pages should be locked to prevent alterations by anyone other than the 

manufacturer 

Instrument Setup (Factory Settings) 
</Invert Polarity 

Instrument Electronics Board: Status 
Instrument Electronics Board: Setup and Control 

Figure 17. Engineering pull down menu. 
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OK Cancel 1 
Figure 18. Engineering | Instrument Setup window. 

In the Instrument Setup (Figure 18) window, the parameter of interest that can 

be user-adjusted may be the Length of CCD Readout Period | Spectra Mode. This 

parameter is set by the manufacture or field engineer. It determines the amount of time 

allotted for the CCD to be read out and the data transferred to the computer. If this period 

is too small, CCD Overflow errors will be generated and the data will be discarded (this 

is different from the DSS routine). Overflow errors (counts) will be discussed in the IEB 

Status section. The correct setting is a compromise between the data transfer speed and 

minimizing the time required to collect ROA spectra. 

It may be possible to decrease the factory setting to reduce collection time but if 

reduced too much, losses to overflow errors will quickly increase the collection time. 

This parameter may also need to be optimized if a supporting computer or a computer's 

operating system changes. Changes in the camera communication format, for example, 

upgrading camera communications from a Serial to USB or Ethernet, will allow the read­

out period to be decreased. 
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1.5.2.3.7 Invert Polarity 

This feature compensates for the case where the inputs of the fiber bundles have 

been coupled to the wrong arms of the polarization analyzer. When enabled, the ROA 

data is multiplied by - 1 , thus flipping the spectra about the horizontal axis to satisfy the 

chiral sign convention. There is no impact on the quality of the data. Alternatively, the 

input ends of the fiber bundle may be switched to opposite arms of the polarization 

analyzer followed by realigning the fiber bundles and by recalibrating the camera. 

The fibers at the output of the fiber bundle are arranged along a radius to 

compensate spherical aberration, which is inherent to spectrographs. Rotating the bundle 

180 degrees at the spectrometer will introduce a significant curvature in the image of the 

bundle on the CCD array. Thus, this is not an alternative to the solutions mentioned 

above. 
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1.5.2.3.8 Instrument Electronics Board: Status 

The IEB Status (Instrument Electronics Board) window, shown in Figure 19, is 

both a comprehensive real time display of instrument conditions, and a display of 

conditions at the end of the last scan. The information is not written to a log file, and will 

be lost, when the next scan is started or the application is closed. This virtual window into 

the instrument's interior is primarily used during installation, and for trouble shooting by 

the field engineer. 
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Figure 19. The Instrument Electronics Board: Status window. 

The upper-left section of the window displays the logic state of CCi, CC2 and the 

LCR. The upper-right area is associated with the camera. The information displayed and 
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the significance of this information should be intuitively understood. Information in this 

window of interest to the user, or input by the user is generally accessible in or through 

the main application windows. 

The IEB Status | Counters are most useful as a diagnostic tool. 

Unlocked indicates the number of times and which LR motor loses 

synchronization. These values should remain zero. 

CCD Overflows indicates that more time is needed for data transfer from the 

CCD camera to the computer. The Overflow value also increasees by eight (8) for each 

DSS count. This can occur for several reasons, ranging from hardware / software 

communication to saturation of the CCD array. 

When a scan is initiated, the system will "clear" the CCD array of charge by 

reading out the dark noise eight (8) times. During this clearing period, the CCD 

Overflows counter will register errors. The number of errors will scale with the single 

exposure time, at ~ 10 per second. On the 9 exposure the counts should cease to 

increase. It is possible that the # of counts will slowly increase during the Scan period. 

This is where the user has to make a judgment call: to balance the quest for counts vs. the 

total collection time. Length of CCD Readout Period is the only parameter adjustable 

by the user. In principle, this value should not need to be altered from the factory setup. 

The need to make significant changes may indicate a significant hardware or software 

problem. 
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The system seems to be more susceptible to CCD overflow errors when the 

sample's signal to noise ratio (SN) is low. It is not clear why this occurs. 

Out Of Sync Messages | Heartbeats when a scan is started this value will be 

reset to zero and may initially display a few counts, but should then remain constant for 

the duration of the scan. After the scan terminates, the counter will begin incrementing at 

approximately the rate of the Stats | Heartbeats counter because spectra are no longer 

being acquired. 

Stats | Heartbeats indicates that the computer is communicating with the 

Camera. The counter will begin counting when the ROA application begins to collect 

spectra. The counts will continue to increase after the scan ends until a new scan begins, 

after which, the counters are reset to zero (0), and counting resumes. 

If the heartbeats are not observed, it is likely that the serial communications cable 

is not connected. 

Stats | Ilium Complete and Stats | Readout Complete counts should be within a 

few counts of the Heartbeat value during a scan. 

Error Flags are self-explanatory. 

CCD Threshold is the DSS threshold value that has been entered in the Setup | 

Acquisition Setup window. It cannot be edited from the IEB window. 
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1.6 Camera Alignment Procedure 

This procedure describes the alignment process for reinstalling the camera in the 

ROA system. This procedure does not use the laser as a source, so ensure that the laser 

shutter is closed and that laser emission is disabled while performing this procedure. 

Once the camera is mounted to the spectrograph, turn on the camera power supply 

and the ROA electronics power. Make sure that the USB or ether net cable is connected 

to the camera, and open the ROA software. Bear in mind that the various adjustments to 

the camera can at times interact, so the user may need to repeat certain adjustments 

before optimum positioning is achieved. 

1.6.1 Initial Focus adjustment 

The initial focus adjustment is performed using the Image Alignment and 

Binning screen. Before beginning, take the cover off the spectrograph and look at the 

position of the Nikon lens in front of the camera. Set the focus on the Nikon lens to about 

10 feet and replace the spectrograph cover. 

Select Calibration | Image Alignment and Binning from the main menu. Push 

the Adjust Camera Tilt button. Place the neon lamp near the sample cell position. Press 

the Acquire button to begin acquiring spectra If the image is too intense, the user may 

need to move the lamp farther from the sample position to reduce the light, or to reduce 

the exposure time in the Setup | Acquisition Setup window. If DSS is enabled, pixel 

intensity exceeds the user defined Threshold, the CCD image screen will not update. 

DSS errors will be counted on the Main Screen/Similarly, if the image is too faint, 

adjust the lamp for more light, or increase the exposure time. 
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Loosen the setscrew on the fiber ferule mount at the entrance to the spectrograph 

to allow the ferule to be moved in or out, relative to the spectrograph. The ferule is the 

large cylinder at the end of the fiber optic cable. While looking at the Image screen, 

move the ferule in or out of the spectrograph to get the sharpest possible lines from the 

neon lamp. This will be optimized later. Do not worry at this point if the lines are not 

perfectly vertical. Once the lines are as sharp, tighten the setscrew to clamp the ferule in 

place. The ferule and mount should be rapped with black cloth to block light that will 

leak through the ferule mount, into the spectrometer, causing large spectral artifacts. This 

point cannot be over emphasized. 

1.6.2 Camera Vertical Height and Tilt Adjustment 

Fluorescent room light, or a Ne calibration lamp can be used to adjust the vertical 

position of the camera. 

Place a white piece of paper between the slow linear rotator (LR2) and the second 

circular converter (CC2), on the scattered rail at about 45 degrees to the ceiling, so that it 

reflects some of the fluorescent lighting into the scattered rail collection optics. 

In the ROA software, go to the image alignment screen by selecting Calibration | 

Image Alignment and Binning from the main menu. Push the Adjust Camera Tilt 

button. Press the Acquire button to begin acquiring frames. If the image is saturated, 

move the paper along the optical path to reduce the light, or you may need to reduce the 

exposure time in the Setup | Acquisition Setup window. Similarly, if the image is too 

faint, adjust the paper for more light, or increase the exposure time. Once a reasonable 

image is attained, begin to adjust the camera height and tilt as follows: 
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1) Loosen the four camera mounting screws so that the camera can be moved, 

but not easily. 

2) Notice in the CCD image of the upper, and lower sets of fiber optics that 

there is a small gap running approximately horizontally through the middle. 

It may be necessary to further reduce the illumination intensity or exposure 

time to see the gap. This is the separation between the two (2) fiber bundles 

in the spectrometer's object plane. 

3) Adjust the height of the camera until the gap is approximately in the center 

of the image. The height adjustment screw is either a 6 mm cap-head or 

setscrew in the center of the top of the camera mounting assembly on the 

spectrometer. There is a faint green line on the CCD image screen 

indicating the exact center of the CCD array. Try to get the gap evenly 

centered on this line. 

4) If it becomes necessary to lower the camera height, friction between the 

camera and spectrograph mounting plates may prevent the camera from 

sliding down when the adjusting screw is rotated counter clockwise (CCW). 

Bear in mind that the vertical target position has a tolerance of ~ 50 uM. 

Normally, it is best to make the final adjustments so that you are raising the 

camera (CW) to bring the camera into position 

5) If the gap tilts from right to left, or from left to right, adjust the tilt of the 

camera. This is done by loosening the tilt adjust setscrew on one side of the 
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camera and tightening the opposite setscrew. These set screws are located 

on the left and right side of the camera mounting assembly near the top. 

6) Steps 3 through 5 may have to be repeated, in order to properly achieve this 

adjustment. 

7) Once the height and tilt are satisfactory, gently tighten the four camera 

mounting screws to lock the camera into position. Check the alignment 

once more to ensure that it was not disturbed while tightening the screws. 

Fiber Tilt Adjustment 

The fiber tilt procedure aligns the image of the fiber optic cable to the 

columns of the CC array. The orientation of the image of the fiber cable to the 

CCD array is adjusted by rotating the fiber optic ferule, using the adjustment on 

the spectrometer. This is a critically important and very meticulous task. 

1) Place the neon calibration lamp in the sample compartment. 

2) Press the Adj. Fiber Tilt button. Begin acquiring images by pressing 

Acquire. 

3) Adjust the lamp position to give strong lines without saturating. 

4) When the fiber is correctly oriented, the Top-Bottom graph will ideally 

show peaks that are V-shaped, inverted V-shaped, W-shaped or inverted-W 

shaped. These equate to spectral lines that are primarily incident on two (2) 

columns or one column respectively. It is not possible to eliminate all 

sigmoid peaks. The final tweak will result in minimal values on the y-axis 

of the Top-Bottom plot. Again this is a very meticulous adjustment. 
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1.6.4 Focus Adjustment 

Once the alignment is completely adjusted, the focus can be adjusted as well. This 

adjustment is made from the main ROA screen. 

Set up the neon lamp as the source and press Quick Scan to begin acquisition. 

Adjust the focus control on the spectrometer (under the end of the spectrometer near the 

camera) to maximize the heights of the peaks in the Raman spectral display. 
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1.7 COM Port Selection 

The selection of the COM port used to communicate with the board electronics is 

normally COM port 1. If for any reason a different COM port is needed for this function, 

the roa.ini file must be modified. To do this, open the Windows Notepad application, 

Start | Programs | Accessories JNotepad, and open the roa.ini file in the C:\Program 

Files\CriticaI Link\ROA directory. Near the top of the file is a line, which looks like 

this: "com Port=l". Change the COM port number to the desired COM port and save the 

file. The next time the software is run, the new COM port will be used. 

When using the USB-Camera interface, the same physical USB port will have to 

be used, or the roa.ini file will have to be modified to address the correct USB port. 

Optionally, the camera's Ethernet interface can be used. Relative to USB, with the 

Ethernet interface the camera read-out time can be reduced. The camera's IP number and 

serial number are written on the camera. Contact BioTools for assistance with this 

configuration. 
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1.8 Simulation Mode 

The simulation modes are used for diagnostic procedures and to allow 

demonstration of the ChiralRaman. The simulation mode is accessed by a right-clicking 

on the Accumulate ROA button. The Raman spectrum is that of cyclohexane. In 

addition to the simulation modes, the cyclohexane spectrum will appear anytime the 

ROAS is turned off, or the camera has not been cooled down to the design operating 

temperature, if either Quick Scan or Accumulate ROA is enabled. 

-Corftol-

cumuiateBSO. 

Halt 
</ Simulate IE6 
</ Simulate Instrument 

Halt Atfei Cyefe 

Quick Scan 

Figure 20. Simulate IEB and Instrument simulation menu. 

Two (2) options will be presented: 

Simulate IEB 

Simulate Instrument 

Either of the two, when preceded by a check mark, becomes active. Simulate IEB 

simulates the operation of the Instrument Electronics Board in its entirety. If Simulate 

Instrument is checked, the system can be used to communicate with an IEB without 

encountering errors, due to circularity converter motors not operating correctly. For 

normal operation, both of these should be disabled (unchecked) See Section 1.8.1. For 

demonstrations, both items should be checked. 
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When demonstrating this software on a laptop with no COM port, the roa.ini file 

must be modified. To do this, open the Windows Notepad application, Start | Programs | 

Accessories | Notepad, and open the roa.ini file in the C:\PrOgram Files\Critical 

Link\ROA directory. Near the top of the file is a line which looks like this: 

comPortAvailable= 1. Change the 1 to a 0 to disable the use of the serial port. 

1.8.1 Grief Saving Comment 

Failure to disable both the Simulate IEB and the Simulate Instrument options 

when connected to a ROA spectrometer and collecting data, will result in highly unstable 

behavior. This is because the application is receiving conflicting information from a real 

and a virtual instrument. The problems can include any aspect of operation that "should 

be working". False cosmic rays that appear to be getting by the DSS filter and lost data 

files are classic indications of a simulation mode(s) being enabled. 
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