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Abstract 

This thesis presents the motivation for and implementation of a novel progressive hap

tic guidance scheme designed to improve the efficiency of a virtual training environment 

used for skill acquisition. A detailed expertise-based analysis of the dynamic human mo

tor task identifies the key skills required for success and motivates the progressive haptic 

guidance scheme. The thesis compares the effectiveness of the scheme to similar visual 

guidance, written guidance and no-guidance. The experimental training protocol presents 

a target-hitting training task in a virtual environment that utilizes an LCD display for vi

sual feedback and a force feedback joystick for haptic interactions. This protocol lasts 

eleven sessions over a two-month period, thereby ensuring the performance saturation of 

participants. During each session, the number of target hits obtained becomes the objective 

measure of performance. Two additional measures, trajectory error and input frequency, 

are defined and implemented to calculate the performance of participants in two key skills. 

The guidance scheme then employs these last two measures as gain inputs to the guidance 

controller, which in turn progressively diminishes the forces that display guidance as virtual 

walls. The haptic controller design initially restricts a participant's motion to a preferred 

task path, but increased performance results in decreased guidance from one trial to the 

next. In addition to these measures, the protocol also presents the computerized version 

of the NASA Task Load Index (TLX) to all participants at each session, thereby provid

ing cognitive workload measurements throughout the entire training period. The results 

demonstrate that this progressive haptic guidance scheme, one that integrates key skills 



and measures of performance, significantly outperforms three other guidance modes early 

on in the training and only when guidance is active. The data failed to show whether the 

haptic guidance scheme has significantly higher performance when the guidance is inac

tive. This scheme also generates less frustration and mental workload than visual guidance. 

Possible applications for these findings include virtual training environments designed for 

surgery and rehabilitation. 
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Chapter 1 

Introduction 

This thesis presents the motivation for and implementation of a novel progressive hap-

tic guidance scheme designed to improve the efficiency of a virtual training environment 

(VTE) used for motor skill acquisition. The effectiveness of the scheme compares favor

ably to similar visual guidance, written guidance and no-guidance schemes. A detailed 

expertise-based analysis of the dynamic human motor task identifies the two key skills 

required for success. This analysis also motivates the progressive haptic guidance scheme. 

The human-user training protocol presents to participants a target-hitting training task 

in a virtual environment. The eleven sessions of the protocol, over a two-month period, 

provide the data for comparison. During each session of 25 trials, the number of target hits 

obtained provides a measure of performance. Two additional measures, trajectory error and 

input frequency, are defined and implemented to quantify the performance of participants 

in two key skills. The values of these two skill measures become the gain inputs to the 

guidance controller, thereby progressively diminishing the forces that display the guidance 

as haptic virtual walls. The haptic controller design initially restricts a participant's motion 

to a preferred task path, but increased performance results in decreased guidance from one 

trial to the next. 

In addition to these skill measures, the computerized version of the NASA Task Load 

Index (TLX) was administered to all participants during each session, thereby providing 

cognitive workload measurements throughout the entire training period. An exit question

naire also provides subjective data. The results show the differences between the four 

guidance schemes in terms of the three measures of performance and in terms of workload. 

Moreover, I conducted analysis of variance (ANOVA) and post hoc analysis of the data to 
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reveal the significant differences between the four guidance schemes and the sessions of 

the protocol in terms of performance and workload measures. 

1.1 Motivation 

Virtual training environments (VTEs) offer great opportunities for the future, opportunities 

to reduce costs and risks in the training of humans in motor skill acquisition. These VTEs 

evolved from computer simulations which became prevalent in flight training beginning 

in the 1970s. More recently, medical researchers have successfully developed VTEs for 

surgical and laparoscopic procedures. These VTEs initially offered only visual and audi

tory feedback; however, the development of faster computer processors and digital motor 

controllers for the teleoperation field during the past 25 years has provided the necessary 

hardware to add haptic feedback to cutting-edge VTEs. 

The term "haptics" describes both feedback through cutaneous and force feedback in

teraction. While loop rates on the order of 10 to 100Hz effectively display visual feedback 

to users, haptic systems must typically operate in excess of 1 kHz to ensure that they ade

quately simulate real environments. In addition to their prior use in flight and medical sim

ulators, haptics-enabled virtual environments are now being used in stroke rehabilitation 

and in gaming - the field where many computer technologies have their commercial gene

sis. In the research community, haptic interface design and development is a relatively new 

field of science, forged at the intersection of mechanical, electrical, and computer engineer

ing with cognitive psychology and neurobiology. These are the primary areas of ongoing 

research: hardware and software technologies, basic human haptics, and domain-specific 

applications. Researchers are applying newly developed virtual training environments to 

robotic rehabilitation as well as to flight, surgical, and sports simulators. Novel haptic inter

face designs reproduce the real-world task being simulated, and either do so as accurately 

as possible or augment skill acquisition by assisting or guiding the trainee in some way. 
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1.2 Problem Statement 

This thesis reports the results of two user studies that address three problems in the develop

ment of VTEs with haptic guidance augmentation for guidance. The first of these problems 

is the identification of the key skills required for training success. The second problem 

is the development of quantitative performance and cognitive skill acquisition measures 

which will help ascertain the effectiveness of the guidance. The third problem this thesis 

addresses is the design haptic guidance that provides effective assistance in facilitating mo

tor skill acquisition by either accelerating or improving training outcomes that go beyond 

no guidance at all as shown in Figure 1.1. 

Increase outcome 

Training Protocol Length 

Figure 1.1: The goal for the research reported in this thesis is to design a haptic guidance 
scheme that provides effective assistance in facilitating motor skill acquisition by either 
accelerating or improving training outcomes that go beyond no guidance at all. 

1.3 Objectives 

The objectives of this research are twofold. The first is to design and develop an effective 

progressively-diminishing haptic guidance scheme that employs measures of key skills, 

thereby augmenting motor skill acquisition training. The second objective is to implement 

this novel guidance scheme in a human-user training protocol, testing its effectiveness by 
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comparison to similar visual guidance, written guidance and no-guidance schemes. 

I meet the first objective by analyzing and comparing the performance of experts and 

novices as they execute the specific dynamic human motor task, by identifying the key 

skills and developing dynamic measures for them, and by providing the updated inputs to 

the guidance augmentation controller for display to the user. I meet the second objective 

by comparing the final results to those produced by other schemes. 

The block diagram shown in Fig. 1.2 illustrates a basic haptics-enabled virtual training 

environment. The user applies a force or torque to the haptic interface which in turn pro

vides position and velocity inputs to the virtual environment. The physics model of the task 

at hand computes output forces based on the input of the device states and the controller 

applies additional forces or torques to the haptic interface in order that these are felt by the 

user. 

Human 
Operator 

F-»r V ^ 

A 
hapt ic\ 
feedbacl 

Haptic Device 

c ] 

TC3Jpinn T a c k 

position, 
velocity 

Virtual Environment 

Figure 1.2 : Block diagram of a basic haptics-enabled virtual training environment with no 
guidance augmentation. 

The block diagram shown in Fig. 1.3 illustrates a haptics-enabled virtual training envi

ronment with haptic guidance augmentation. In this scenario, the states of the virtual en

vironment are transmitted to the haptic guidance augmentation controller. This controller 

computes guidance forces based on the VTE states and with the guidance scheme being 

employed. The controller sums the guidance forces to the VTE system dynamic forces 

before they are applied to the user. 
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Human 
Operator 

Fn 

/ i i a p t i c 
feedback 

Haptic 
Augmentation 

haptic\ 
feedbacl 

Haptic Device 

t ] 

Trailii'1'1 Tack 

position, 
velocity 

Virtual Environment 

Figure 1.3 : Block diagram of a haptics-enabled virtual training environment with haptic 
guidance. 

The block diagram illustrated in Fig. 1.4 shows a haptics-enabled virtual training en

vironment with visual guidance. In this scenario, the states of the virtual environment are 

transmitted to the visual augmentation controller. This controller computes guidance over

lays based both on the VTE states and on the guidance paradigm being employed. The 

visual interface displays the overlay to the user. 

Human 
Operator 

! visual 
I feedback 

Visual 
Augmentation 

Haptic Device 

haptic 
feedback position, 

velocity 

Training Task 

Virtual Environment 

Figure 1.4 : Block diagram of a haptics-enabled virtual training environment with visual 
guidance. 
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1.4 Contributions 

This thesis makes five significant contributions to the field of haptics-enabled human motor 

training: 

The first contribution is an observation of how experts perform by analyzing the data 

regarding their performance, and by comparing that data to the performance data of novices. 

The results of the comparison validate the present approach to haptic guidance design as 

previously reported [35]. 

The second contribution is an improvement over my prior work in collaboration with 

Li, Patoglu, and O'Malley that showed that progressive haptic guidance designed in an ad 

hoc way results in no significant improvement over no guidance at all [44]. The progres

sive haptic guidance I design utilizes the expertise-based analysis mentioned above as a 

motivation for using virtual walls and a proportional-derivative (PD) controller to supply 

auxiliary forces to the user, thereby demonstrating the appropriate control motion for the 

task. Furthermore, the two independent measures of performance relate to the two key 

skills required for successful task completion. These measures serve as gain-adjustment 

inputs to the guidance controller. I evaluate this guidance design in a pilot study [37]. 

The third contribution is a demonstration that this performance-based progressive hap

tic scheme significantly outperforms nonguidance at the time that active guidance is en

gaged. Performance data for post-guidance subsessions fail to demonstrate significant dif

ferences between the guidance and nonguidance groups. These results confirm the general 

trend in augmented haptics training research that indicates that VTEs enhance performance 

but do not accelerate training. Nevertheless, for this particular skill acquisition, the guid

ance scheme here presented is the first and only guidance scheme in a series of proposed 

guidance schemes where haptic guidance has significantly outperformed no-guidance at 

any time period during the protocol. 

The fourth contribution is the utilization of minimum hand jerk criteria in the design of 

the haptic guidance controller. In Chapter 4, an initial experiment verifies and validates the 

minimum hand jerk criteria for a multi-mass system [36]. Chapter 5 describes how I have 
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integrated those criteria into the haptic guidance controller design. 

The fifth contribution is a demonstration that haptic researchers should not divorce mo

tor skill performance measures from cognitive load measures, as these may be appropriate 

for a given application. My research employs a cognitive workload assessment to mea

sure the workload of each participant as each receives the assistance of varied guidance 

schemes. The different workload results between the guidance schemes are significant 

enough to suggest the advisability of including measures of cognitive load in a determina

tion the effectiveness of any haptic guidance scheme. 

1.5 Thesis Structure 

This thesis is structured as follows: Chapter 1 introduces the motivation, problem state

ment, objectives, and significant contributions of this research. Chapter 2 reviews the lit

erature associated with haptics and virtual training environments (VTEs). The chapter also 

reviews the requirements for experimental tasks and guidance schemes. An overview of 

expertise-based analyses as a means to study differences in performance precedes a review 

of measures of skill and cognitive loading that could be used to quantify training improve

ments. Chapter 3 fully presents the background and motivation of this research. Chapter 

4 introduces and describes an initial experiment on movement smoothness, presenting the 

methods, results, and discussion of the experiment. Chapter 5 describes the implementa

tion of movement smoothness as the basis for the input frequency guidance scheme and 

documents the overall design of the progressive haptic guidance scheme along with the 

methods used to test and evaluate it. Chapter 5 also reports the results of the human-user 

study and closes with a discussion of the findings. Finally, Chapter 6 discusses overall 

findings, conclusions, and directions for future research. 
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Chapter 2 

Literature Review 

This chapter reviews the literature associated with haptics and virtual training environments 

(VTEs) in general. It also reviews the requirements for experimental tasks and guidance 

schemes, followed by an overview of expertise-based analyses as a means to study dif

ferences in performance. Finally, the chapter closes by reviewing measures of skill and 

cognitive loading that will be used to quantify training improvements in the subsequent 

experiments conducted in this research. 

2.1 Haptic Interfaces 

This section provides an overview of haptic interfaces, basic human haptics, and applica

tion domains for haptics technology. The term "Haptic" is derived from the Greek word 

haptesthai meaning the sense of touch or the act of touching. Burdea extended the def

inition of haptics to include not only tactile interactions but also kinesthetic interactions 

pertaining to a sense mediated not on the skin surface but rather within the muscles, ten

dons, and j oints [11]. The notion of presenting a virtual environment that includes "haptic" 

interaction as well as audio and visual feedback can be attributed to Ivan Sutherland, the 

creator of SketchPad, the first computer graphics program [74]. In 1965, Sutherland pro

posed the ultimate display: "a room within which the computer can control the existence 

of matter itself" [75]. This would be a room where virtual handcuffs would actually con

strain and where one could actually sit on virtual chairs. After Sutherland's proposition, 

most of the development of computer interfaces in the 1970s and 1980s was focused on 

the graphic interfaces. This focus was due in part to limitations in hardware having to do 

with requirements of human-perception. Visual displays need only refresh at around 30 
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Hz to ensure adequate simulation. Since haptic interfaces require update rates in excess of 

1 kHz, however, these were not possible until the advent of faster computers and digital 

motor controllers in the 1990s. 

There is a decided difference between haptic interactions and visual or auditory feed

back. The haptic interaction between the user and the virtual environment contains a bidi

rectional transfer of energy due to changing forces and positions. Figure 2.1 illustrates 

an overall virtual environment with the bi-directional haptic interactions. The burgeoning 

field of haptics research includes three broad categories as defined by the Association for 

Computing Machinery (ACM): human haptics, haptics technology, and haptics applica

tions. While haptics does refer to both tactile and kinesthetic feedback, in this thesis the 

focus is on the kinesthetic feedback with little discussion of tactile feedback. 

^v 
haptic 

interface 

HC 
visual & audio 

feedback 

low-level 
control 

distributed 
computing 

platform 

/ \ 15 _ 
& 2 

V 
interface 
controller 

Figure 2.1 : The system architecture for haptics-enabled virtual environments. Note that 
visual and audio feedback to the user is uni-directional while haptic interaction is bi
directional (adapted from [11]). 
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2.1.1 Human haptics 

Basic human haptics research involves studying human attention, biomechanics, cognition, 

human factors, ergonomics, human performance, neuroscience, perception, psychophysics, 

and social communication. While these are all mature fields of science, new developments 

in haptic interfaces have afforded new insights in each. Studies have sought both to gain 

new understandings of the senses and to develop novel forms of interaction with virtual 

environments. 

2.1.2 Haptic devices 

Three classifications describe haptic interfaces: the number of degrees of freedom (DOF) 

of the interface, the type of control scheme used, and the input and output capabilities of the 

interface. The degrees of freedom (DOF) refer to the number of variables that are required 

to fully represent the position of the device. Most haptic devices utilize rotational joints, 

although translational and spherical joints have also been employed. In order to represent 

a point interaction in 3-D space a 3 DOF device is required. Researchers often use 1 and 2-

DOF devices in order to reduce the complexity of the interactions. Figure 2.2 depicts three 

different haptic devices. The Immersion Impulse Engine 2000 utilized in the experiments 

reported in this thesis is an example of a 2-DOF device. The Sensable PHANToM is a 

3-DOF device, while the MIME-RiceWrist is actually a pair of devices that have a total of 

nine degrees of freedom when combined [51,56]. The representation of multiple contact 

points with the user, as is the case in rehabilitation applications, requires a device with more 

than 3 degrees of freedom. 

Each degree of freedom will typically require both sensors and actuators. Sensors such 

as encoders, resolvers, tachometers or accelerometers provide state information to the con

trol system. The device may have force/torque sensors as well. Actuator technologies 

include pneumatics, hydraulics, and (the most prevalent) electromechanics in the form of 

motors. To be considered an effective and high quality interface, the haptic device must 

meet several requirements: it should have a high power to weight ratio, high force/torque 
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Figure 2.2 : Three haptic devices categorized by degrees of freedom (DOF) include the 2-
DOF Immersion Impulse Engine 2000, 3-DOF Sensable PHANToM, and 9-DOF MIME-
RiceWrist. The first two and the RiceWrist are impedance controlled while the MIME 
system is admittance controlled. 

output, and high bandwidth [59]. The bandwidth refers to the range of the output fre

quencies attainable by the system. Typical haptic devices have low friction and are back 

drivable. These device also often have direct drive transmissions to further reduce inertial 

forces. 

The second classification of haptic devices has to do with which one of two render

ing control schemes is employed. In the impedance (force feedback) rendering scheme, the 

user determines the position and velocity of the device interface. The device states could be 

represented in workspace or joint-space coordinates. The state input is sent through signal 

processing and conditioning and delivered to the real time operating system. The physics 

model resident in the control code calculates the associated output forces and delivers cur

rent commands to the motor controller/amplifier that in turn delivers the corresponding 

torque to the appropriate motor of each DOF (or joint). The impedance rendering method 

can be summarized as: 

Fe=ZeXh (2.1) 

where Fe is the force output of haptic interface, Ze is the virtual environment impedance, 

while Xh is the human input position. In the admittance (position feedback) rendering 
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scheme, on the other hand, the user applies a force or torque to the device interface, and 

one or more force/torque sensors detect the user's action. A data acquisition card (DAC) 

conditions a force or torque signal and delivers it to the controller which in turn computes 

the associated positions and velocities to be delivered to the motor controllers. The admit

tance rendering method can be modeled as: 

Xe=FhYe (2.2) 

where Xe is the position output of haptic interfaces, Fh is the human input force, while Ye 

is the environment admittance. Depending on the application, one or the other of the hap

tic rendering control schemes will be integral part of the interface design and will affect 

the choice of hardware, software and sensors. Implementation of the admittance control 

scheme is, in general, more costly [11]. The MIME RiceWrist system shown in Fig. 2.2 

incorporates both control schemes. The PUMA industrial robot of the MIME system has a 

6 DOF force/torque sensor at the interface to provide the input to the admittance controller. 

The RiceWrist, on the other hand, utilizes optical encoders on all DOF to provide the inputs 

to its impedance controller. The two devices communicate only high-level commands with 

each other through a serial port connection [56]. Kotoku et al. also utilized both control 

schemes. They designed a position-force-control switching mode. Force control delivers 

zero feedback during motion in free space. The device switches to position control upon 

collision detection [41]. Most desktop haptic interfaces, including the joystick used in the 

experiments reported in this thesis, employ impedance control because of the lower sensor 

and actuator cost and low inertia of the transmission. The disadvantage of impedance con

trol, however, is its inability to represent hard surfaces, although state-of-the-art impedance 

systems are able to represent "believable" interactions. For a haptic device to capture and 

represent "believable" kinesthetic interactions, it must operate within human perception 

and excitation ranges. 
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2.1.3 Application domains for haptics 

Haptic systems developed and diversified rapidly in the past twenty years, in part due to 

the rapid development and decreasing cost of the requisite hardware and software. There 

has also been a growing demand for the technology in the private sector. These are some, 

though not all, of the most prevalent application areas for haptic systems: 

Education 

The field of psychology has shown that students have different learning styles. In the 

past, multi-sensory approaches to education had used only the audio and visual sensory 

channels. Haptics-enabled educational tools are providing deeper understanding of topics 

that can be learned best through the tactile and kinesthetic sensory channels. At Rice 

University, haptic paddles provide students the opportunity to interact and readily modify 

virtual mechanical systems in an undergraduate course in system dynamics [10]. 

Medicine 

Medicine, and more specifically laparoscopic training, is possibly the most active appli

cation domain for haptics. Since this type of surgery involves fine motor control, as well as 

small workspaces and tools, it necessitates the use of robotic assistance. Since laparoscopy 

also involves obstructed vision, it also requires the use of alternative means of feedback. 

Moreover, the high risk of training someone to perform surgery on a live person offsets 

the currently high costs of haptics-enabled training simulators. As the field matures, some 

medical schools are already requiring residency students to train on these systems. As de

mand for these simulators increases and the price for them drops, they will become more 

commonplace [76]. 

Rehabilitation and assistance for the disabled or impaired 

Another developing use for haptics technology is robot-mediated neurorehabilitation. 

Researchers are coupling advances in robotics, virtual reality (VR), and haptic interfaces 

with neuroscience and physical therapy to design new treatments for neurological injuries 

such as stroke, spinal cord injury, and traumatic brain injury. Further work will identify the 

most effective methods for delivering treatment in home and hospital settings [31,65]. 
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Military simulations 

Haptics-enabled VR telepresence simulations allow personnel in different locations to 

participate together in military training exercises. Branches of the US military test ground 

vehicles under simulated battlefield conditions. For example, by means of the use of force-

feedback gloves to manipulate 3D components, researchers enabled workers at remote lo

cations to simulate the reconfiguring of a vehicle chassis with different weapons. Opera

tors of aircraft and other complicated and dangerous machinery can be safely trained with 

haptics-enabled VTEs [25,48]. 

Entertainment 

Haptic interfaces are a natural fit for video games because they allow the user to feel 

and manipulate virtual solids, fluids, tools, and avatars. One example is a stock XBox 

controller powered by Immersion's force feedback technology. Game players experience 

the rapid-fire vibrations from a machine gun and a heavy recoil effect when firing a rocket 

launcher. As is the case with so many novel computer technologies, haptics may most 

quickly find commercial applications in video gaming [14]. 

2.2 Virtual Training Environments 

Haptics-enabled virtual environment (VE) technologies have applications in helping to 

train skills in each of the domains previously mentioned: vehicle control, medical proce

dures, sports training and rehabilitation [6,14,27,65]. These VTE technologies provide for 

reliable data acquisition, analysis, feedback, and evaluation of motor skill task performance 

while also providing a comparatively low-cost and low-risk training platform. Virtual envi

ronments used for training are designed to reduce risk, improve and accelerate skill acquisi

tion over traditional training schemes, and to transfer what is learned in the simulation envi

ronment to the equivalent or targeted real world task. Virtual training environments (VTEs) 

are designed either to provide an environment for practice that is as similar as possible to 

the real task or to act as an assistant by augmenting the feedback in some way during train

ing. Commercial examples of these augmented systems include heads up displays (HUDs) 
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for pilots and simulators for surgery residents [48,76]. Haptics can play an important role 

both in matching the VTE to the targeted environment and in providing VTE augmentation 

during training. Researchers in haptics have proposed three broad approaches to implement 

haptics-enabled virtual training schemes, thereby exploiting the augmentation capabilities 

of the interfaces. One scheme is first to present the performance of an expert (human or 

robot) to a trainee via visual and haptic feedback and then to allow the trainee to practice 

the task unassisted [32] [73]. A second approach requires the trainee to perform the task 

with enforced restrictions or reductions of the degrees of freedom of the task as proposed 

by Bernstien and more recently implemented as virtual fixtures by Rosenberg etal. and Ab

bott et al. [1,9,67]. A third approach, shared control, modifies the dynamics of the system 

so as to encourage the correct behavior from the trainee [18,27,60]. A comparative study 

of these last two approaches performed by Srimathveeravalli et al. showed slightly better 

performance from the shared control approach over the virtual fixture approach [72]. Al

though VTEs are already in use, whether or not VTEs with haptic guidance augmentation 

show measurable improvement over real or virtual practice in dynamic task training is still 

being debated in the haptics research community. This thesis compares the performance of 

a progressive haptic guidance scheme to three other schemes: no guidance at all, written 

guidance, and a visual guidance scheme in a VTE protocol to train for a dynamic human 

motor skill task. 

For the purposes of this thesis, I define "performance" to be a measurement of output 

or ability in the task being studied, while "training" is the protocol designed to increase 

performance over a period of time. I draw from the brain research of Kami et al. to declare 

that dynamic human motor skills require multiple-session training protocols with the ses

sions placed a couple of days apart to allow for consolidation of the skill acquisition [40]. 

The present study, therefore, implements a multi-session training protocol. Previous stud

ies have shown that the addition of haptic feedback to VEs during training can provide 

benefits over against visual and auditory displays for performance enhancement, increas

ing dexterity and the sensation of realism and presence [18,27,57,69]. While performance 
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can be improved at the time haptic feedback is provided, there exist only a limited number 

of published studies aimed at determining the efficacy and outcomes of VTE protocols with 

haptic guidance augmentation [60]. The studies that do exist show inconsistent results. 

2.3 Experimental Task and Guidance Schemes 

The development of a haptic guidance training protocol presents three issues: first, the task 

to be studied must be difficult enough to require multiple sessions for mastery, enabling the 

observation of changes in performance throughout training; second, the guidance must be 

removed progressively as performance improves to avoid the participant's dependence on 

the guidance; and third, the amount of guidance must be based on measurements derived 

from the progressive mastery of the key skills themselves. 

The first issue is that the task must present sufficient difficulty so as to require mul

tiple sessions across various days to successfully achieve asymptotic performance im

provements. Otherwise, the results will not be adequate to observe statistically significant 

changes across multiple trials and sessions. Yokokohji et al. implemented a task for moving 

virtual boxes, while Adams et al. designed a building block task with a cognitive compo

nent, but both recognized that their tasks were too simple to observe learning effects of 

training [82], [5]. Other studies by Reinkensmeyer's and Salisbury's groups and by Feygin 

et al., present tasks that may be difficult enough to require multiple sessions for adequate 

training but they chose experimental protocols that lasted only one session, thereby limiting 

their results to performance assessment and not training [19,49,53]. Morris et al. suggested 

that their experiment may have been confounded because the haptic condition was novel 

for all participants, and Feygin et al. stated that a longer-term protocol would be left to 

future work [19,53]. Furthermore, according to Todorov et al. and Adams et al. , the value 

of virtual training environments (VTEs) will be demonstrated when they are used for rela

tively complex tasks rather than for simple tasks [5,79]. For these reasons I implemented a 

task similar to one previously studied by O'Malley et al. and later by Li et al. [44,46,60]. 

Their task was difficult enough to require multiple sessions to master and saturation was 



17 

not observed until after seven to ten sessions. Based on Li's and Kami's works, the protocol 

for the current experiment is defined as eleven sessions over a two-month period; i.e. one 

evaluation session, nine training sessions spaced two days apart for roughly four weeks, 

and one retention session four weeks after that. 

The second issue one faces when designing a human motor training task experiment 

has to do with participant dependence on the guidance. When the guidance is provided on 

the same sensory channel as the skill training that is sought-in this case the haptic channel-

dependence can occur. The trainee actually learns the system dynamics of the augmented 

task rather than the targeted task. In early attempts to use haptics for training, such as the 

record and replay strategies, the dynamics of an expert performing the task are recorded 

and are then played back to the novice to assist learning [19,24,32,82]. The record and 

replay training scheme does not account for differences due to user-specific dynamics and 

restricts the novice to the expert's performance without consideration of possible alternate 

strategies for completing the task [46]. Results from studies on effectiveness of record and 

replay techniques for motor skill training are inconclusive. 

To overcome the deficiencies of the record and replay models, Bayart et al. proposed 

a four-step scheme similar to the stages in learning to ride a bicycle [7]. First, the trainee 

observes the teacher performing the task. Then, the trainee is guided along as the teacher 

pushes the bicycle and rider. Next, the rider performs the task with restrictions such as 

training wheels and finally, the rider successfully performs the dynamic task without any 

assistance. In Bayart's implementation, the stages were fixed levels that had to be switched 

manually by the experimenter, thereby preventing a truly gradual and automated progres

sive scheme. 

Ideally the progressive model should adapt to the current performance of the partici

pant and gradually diminish as performance improves or increase if performance worsens. 

Bell et al. showed benefits from a performance-based progressive guidance scheme for 

self-learning of a radar-tracking task but again they limited the length of their "training" 

protocol to one session and it did not include haptics [8]. In a robot-assisted rehabilitation 
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simulation, Reinkensmeyer et al. measured adaptation to a dynamic environment via tra

jectory error [64]. The control gains of the guidance robot were then adjusted at each trial 

based on the measurement of error. The simulation results suggest that providing guidance 

only when needed is more effective than a fixed amount of assistance. In order to reproduce 

Reinkensmeyer's simulation and to test his hypothesis, Li et al. first compared a fixed-gain 

shared control scheme to no-guidance at all in a dynamic target-hitting task (similar to the 

one implemented in this study) and showed that the fixed-gain scheme had negative effi

cacy both during and after guidance [46]. Then, Li et al. compared a progressive shared 

control scheme to the same fixed-gain scheme and showed significant improvement over 

fixed-gain but no significant differences from no-guidance. This was true both at the time 

the guidance was active and after the guidance was deactivated [44]. Li's discussion moti

vated the research of this thesis by alluding to the need for guidance scheme designs to be 

based on the significant components of the task. 

The third issue that the development of a haptic guidance training protocol presents 

is this: the guidance scheme inputs must be based on measures of performance that are 

derived from the key skills required for success in the task. The next section will address 

this issue in detail. 

2.4 Measures of Skill Acquisition 

While these virtual training schemes have demonstrated effectiveness in enabling improved 

task performance, they have not yet conclusively demonstrated effectiveness in accelerat

ing developmental progression (learning) or to in increasing overall task performance after 

a period of training. Sutherland et al., for example, reviewed thirty studies utilizing sim

ulation (or VTEs in some form) for surgical training [76]. In all thirty studies, VTEs did 

not outperform traditional training schemes, and in fact VTEs only outperformed control 

groups who received no training at all. Similarly, Adams et al. found no significant learn

ing benefit from training for their simple pick and place assembly task in a virtual envi

ronment [5]. Furthermore, in a manual target-hitting task, Li et al. showed how a haptic 
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guidance VTE designed in an ad-hoc fashion resulted in negative efficacy when compared 

to the non-guidance that the control group received [46]. In subsequent analyses of alter

nate haptic guidance schemes, Li et al. found that performance-based progressive haptic 

guidance resulted in training outcomes that were better than fixed-gain assistance but only 

as good as no guidance at all [44]. In contrast, Morris et al. found that participants could 

more accurately recall force profiles as a result of visual and haptic training than from 

visual or haptic training alone, but noted that the haptic feedback was unfamiliar to all 

participants [53]. In another experiment, Feygin compared visual and haptic feedback in 

the performing of a 3-D path-following training task [19]. They found that while visual 

training was significantly better for teaching the trajectory shape, dynamic aspects were 

more effectively learned from the haptic guidance. Feygin et al. qualified their findings by 

stating that the experiment was too short to arrive at firm conclusions about overall training 

outcomes [19]. A common conclusion of Feygin, Li, Morris, and their colleagues is that 

the best types of guidance are those that are tailored to present specific or primary skills 

required for the task at hand. 

Once the key skills of a particular task are identified, VTE developers must define mea

sures that can quantify the acquisition of the skills. Numerous measures have been pro

posed, investigated, and validated. Total movement time is the most commonly employed 

measure. It has been validated through Fitts' law, a well-known and robust experimental 

psychology movement model that predicts the total movement time from the task's index 

of difficulty (ID) [20]. The original Fitts' task involved an arm movement to reach a target. 

The user was asked to move from an initial position to a fixed target position. Specifically, 

Fitts' law is expressed as: 

MT = a + blog2^ (2.3) 

where MT is the total movement time, A is the distance between the initial position and tar

get position, W is the target region tolerance and a and b are empirically derived constants. 

Thus, a trade-off exists between the speed and accuracy associated with this kind of task. 

This law has been applied to and validated in many areas of movement research includ-
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ing human computer interaction (HCI). The original Fitts' task requires zero order position 

control only and has been used for over 50 years [20,71]. Other researchers more recently 

have extended the law to apply to tasks requiring higher order control but the skill measure 

is still a form of the "total movement time" measure. Obviously these completion-time 

measures cannot be used for tasks with fixed durations. 

Error measures are another broad category of measures available for quantifying perfor

mance. These measures work well when the task requires a specific movement trajectory. 

They conveniently draw from statistical techniques to measure deviation and provide val

idation. In the robotic rehabilitation field, several researchers including Celik et al. and 

Colombo et al. have sought to correlate robotic based error measures of performance to 

the clinical measures that therapists have used for years [13,15]. Celik compared a tra

jectory deviation measure to the Fugl-Meyer impairment measure and to the Motor Ac

tivity Log (MAL). In skill training, Li used a time-independent error measure instead 

of a time-dependent error measure as used in similar work by Gillespie et al. and Pat-

ton etal. [24,43,62]. 

Flash and Hogan initiated another category performance measures related to speed 

smoothness. They showed that the tangential speed profile of the hand during point-to-

point reaching movements of healthy subjects can be accurately represented by an op

timally smooth speed profile that minimizes jerk, the time derivative of acceleration [22]. 

Later, Hogan derived the optimally smooth speed profile for a rhythmic movement (like the 

one under investigation) [33]. Since then other researchers have used movement smooth

ness as a measure of movement quality. Celik also compared a movement smoothness 

measure to the Fugl-Meyer and to the Motor Activity Log (MAL) measures [13]. 

Still other researchers have looked at force or torque as measures of performance. Mor

ris et al., for example, studied human ability to replicate force patterns [53]. Srimathveer-

avalli et al. implemented force profiles in their "haptic attributes" techniques [72]. Other 

researchers have investigated frequency based measures [34,38]. 

Finally, another broad category of performance measures is the task-specific measures 
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of success. These measures are as varied as the tasks being represented. In surgery, for 

example, a common measure is the suturing force required to avoid tears. In flight training, 

pilots are evaluated by measuring landing location, forces, and distances. The main draw

back to the task-specific measures is that they rarely transfer to other application tasks and 

domains. 

In this research, I designed, implemented and demonstrated a progressive haptic guid

ance scheme for training participants to carry out a non-trivial dynamic task where the 

amount of guidance is adjusted by decreasing gain algorithms that utilize both error and 

speed profile performance measures. 

2.5 Measures of Cognitive Workload 

The advent of robotics and automation has relieved the human operator from much of the 

tedious physical work that historically characterized manual labor. Consequently, human 

operators are experiencing a shift from physical to cognitive demands. For example, while 

pilots previously invested most of their time in physically keeping the airplane on course, 

they are now principally occupied in mentally monitoring the computer systems that control 

the aircraft. For this reason, researchers find it imperative to assess the cognitive and mental 

workloads being placed on human operators and trainees. The human factors literature 

outlines four techniques for assessing mental workload: physiological measures such as 

heart rate and breathing rate, subjective measures, secondary task measures and primary 

task measures [52]. 

Human factors engineers most commonly use subjective workload assessment tech

niques because these techniques are easy to use, are non-intrusive, are low cost, and have 

a known sensitivity. Subjective mental workload can be defined as the subject's personal 

estimation or comparative judgment of the mental or cognitive workload experienced at 

a given moment [63]. Some popular unidimensional and multidimensional measures in

clude the Cooper Harper scale, direct scaling and consumer mental workload scale [50]. 

The two most common multidimensional techniques, however, are the Subjective Work-
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load Assessment Technique (SWAT) developed by Ried and Nygren [63] and the National 

Aeronautics and Space Administration - Task Load Index (NASA-TLX) developed by Hart 

and Staveland [30]. 

The SWAT scale has three dimensions: mental effort load, time load, and psychological 

stress load. In addition to performing the task itself, participants prioritize cards represent

ing the three dimensions of the SWAT scale and they also score their own workload after 

completion of the task along the three dimensions. There are 27 cards to rank in order, and 

this produces a tedious procedure in order to obtain the workload ratings. Moreover, the 

SWAT has been criticized for a potentially low sensitivity at low mental levels of workload. 

Several alternative methods with more sensitivity but still based on the SWAT dimensions 

have been proposed in the literature [50]. 

The NASA-TLX has six dimensions: mental demand, physical demand, temporal de

mand, performance, effort, and frustration as shown in Fig. 2.3. A computerized version 

of the NASA-TLX exists that reduces the time it takes to score the six dimensions, to com

pare the fifteen pairs created by all possible combinations of the six dimensions, and to rank 

each of the six in order [54]. Like the SWAT, the comparisons are tedious, but the TLX 

only requires 15 comparisons. The TLX provides additional information about the task 

that is not available from the SWAT. This task information, along with the rapid assessment 

the computer version affords, were the main reasons for selecting the NASA-TLX for this 

study. 

Currently, very few published studies have investigated the cognitive workload effects 

of haptic guidance or assistance during long-term training despite Rosenberg's sugges

tion that mental workload could be reduced, a suggestion he made when he introduced 

the concept of virtual fixtures. He did not, however, investigate workload further [68]. 

Gillespie, who introduced the virtual teacher, later, with Griffiths, investigated secondary 

task workload while participants performed a vehicle steering task. Whereas the presence 

of a secondary task adversely affected ability to stay in a lane without haptic assistance, 

when haptic assistance was provided, the presence of a secondary task did not adversely 
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Measure Title 

Mental Demand 

Physical Demand 

Temporal Demand 

Performance 

Effort 

Frustration 

Endpoints 
of the scale 
Low - High 

Low - High 

Low - High 

Good -poor 

Low - High 

Low - High 

Descriptions 

How much mental and perceptual activity was required (e.g. 
thinking, deciding, calculating, looking, searching, 
remembering). Was the task easy or demanding, simple or 
complex, exacting or forgiving? 
How much physical activity was required (e.g. pushing, pulling, 
turning, controlling, activating, etc)? Was the task easy or 
demanding, slow or brisk, slack or strenuous, restful or 
laborious? 
How much time pressure did you feel due to the rate or pace at 
which the task elements occurred? Was the pace slow and 
leisurely or rapid and frantic. 
How successful do you think you were in accomplishing the 
goals of the task set by set by the experimenter? How satisfied 
were you with your performance in accomplishing these goals? 
How hard did you have to work (mentally and physically) to 
accomplish your level of performance? 
How insecure, discouraged, irritated, stressed and annoyed 
versus secure, gratified, content, relaxed and complacent did 
you feel during the task? 

Figure 2.3 : Six dimensions of the NASA-TLX described (from [30]) 

affect the participants in terms of steering performance or obstacle avoidance. This find

ing suggests that haptic guidance designed for enhancing performance reduces the overall 

cognitive workload during performance of the task but no firm conclusions about training 

can be derived from this study since Griffiths and Gillespie limited their investigation to 

single-session performance [28]. 

Kalawski et al. provided a top-down systems engineering overview to the understand

ing of the role of human factors in virtual environments in general but did not specifically 

address haptic guidance [39]. The seminal work by Tan et al. on human factors in the 

design of haptic interfaces describes the psychophysical measurements of human kinemat

ics and forces but not subjective measurements of workload [78]. Ongoing work by Tan 

and her collaborators has continued to concentrate on the psychophysical aspects of haptic 

interactions. Zhou et al. recently investigated spare cognitive capacity of surgeons, at the 

moment that they were training with haptic feedback in a laparoscopic procedure [83]. The 
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participants were asked to solve two digit multiplications in their mind while performing 

the surgical skill on a simulator. Zhou found that the participants tended to pause to solve 

the math problem and simply took longer to complete the surgical task. This cognitive 

loading of a primary with a secondary task was easier and faster for both novices and ex

perts when haptic feedback was provided. This result suggests that haptic feedback does 

indeed reduce workload. Although this study included haptic feedback, it did not include 

haptic guidance per se. In one experimental condition, however, the haptic feedback was 

exaggerated in a way similar to an augmentation. Zhou was interested in cognitive capacity 

rather than the workload of the task itself. For extensive discussions regarding performance 

and workload see work by P.A. Hancock [29,42]. Hancock has addressed such issues as 

the effects of control order, input device types, and augmented feedback [29]. While Han

cock did extend the research to encompass both augmentation and training, to my knowl

edge there has not been an investigation of workload and haptic guidance during long-term 

training. With these considerations in mind, I decided to use the NASA-TLX for assess

ment of subjective workload [30]. The NASA-TLX has been used extensively worldwide 

because of the design of the assessment tool it uses and because it measures multiple di

mensions simultaneously. Thus, this thesis records and analyzes measures of both human 

motor skill performance and subjective workload and investigates both, concurrently, in a 

multi-session user study. 

2.6 Expertise-Based Analysis 

In an effort to determine key skills that are critical to success, some researchers have cho

sen to observe complex tasks in which there are clear and significant differences between 

high performing experts and inexperienced novices [4,81]. Researchers have a preference 

for studying training domains that are closely related to equivalent real world tasks, such 

as vehicle control, medical procedures, sports training and rehabilitation [6,14,27,65]. In 

practice, expert is understood to mean an individual displaying exceptional levels of per

formance in the task of interest. In the surgical domain, Rosen et al. analyzed expert and 
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novice surgeon performance during a typical laparoscopic procedure, finding significant 

differences between the groups in fourteen interaction types [66]. In a survey of surgi

cal simulation for training, Gallagher et al. insisted on the need to define and categorize 

expert performance clearly for the purpose of establishing proficiency criteria to evaluate 

surgery trainees objectively regardless of the simulation used [23]. Thus the criteria for 

objectively categorizing an expert is as important as the degree of realism of the VTE. In 

fact, Tzafestas et al. state that any haptic surgical simulator must be assessed in two ways: 

not only as a training tool but also as a skill assessment tool [80]. O'Toole et al. provided 

evidence that the performance of two groups, experts with more than 1,000 procedures 

performed and novices with no experience, could be differentiated using their simulator's 

metrics [61]. Other fields that require similar objective measures of motor performance are 

flight training [47], sports [2], and rehabilitation [13,15]. 
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Chapter 3 

Background and Motivation 

As previously mentioned, when researchers design any virtual training environment (VTE) 

experiment to study training in a human motor task, the task must present enough difficulty 

so as to require multiple sessions across various days in order to successfully master the 

task and to achieve asymptotic performance improvements. In this chapter, I summarize 

and then analyze prior research in the Mechatronics and Haptic Interfaces (MAHI) Lab, 

research that investigated a target-hitting task which presented sufficient complexity. Prior 

experiments employed the target-hitting task and demonstrated performance improvements 

and skill acquisition over several sessions. They measured performance via a hit count 

score and a trajectory deviation measure, but the researchers did not use any cognitive 

measures. One of the guidance schemes employed actually had negative efficacy on skill 

acquisition while another did not demonstrate significant differences from the nonguidance 

control group [43,46]. This result provided the opportunity to study the unguided perfor

mance of a group of seventeen participants. Based on prior work in the field and drawing on 

expert performance in sports, I conducted an expertise-based analysis of the performance 

data that revealed key skills required to complete the task. I report the results of this data 

analysis in this chapter. I then investigated measures that would adequately quantify perfor

mance in the key skills. The chapter concludes with the motivation of the expertise-based 

guidance scheme that I propose in the following chapter. 

This chapter is organized as follows: Section 3.1 presents the VTE used in the Mecha

tronics and Haptic Interfaces lab. Section 3.2 presents the methods used including the 

experiment procedure, expertise-based grouping, performance measures and data analysis. 

Section 3.3 presents the results of my analysis while Section 3.4 discusses the findings, 
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contributions and alternate measures. Section 3.5 draws the conclusions of this analysis 

and motivates the design of the progressive expertise-based haptic guidance described in 

Chapter 5. Although I was not a major contributor to conducting the experiment referred 

to in this chapter, I conducted the entire expertise-based research, analysis and results here 

reported. A major portion of this chapter is under revision for publication in a journal [35]. 

3.1 Dynamic Target-Hitting Task VTE 

In 2003, O'Malley and Gupta first reported investigating machine-mediated training using 

a two-mass underactuated dynamic system as the virtual training environment experimental 

setup [57]. They noted the advantages of the task they had chosen: novelty, complexity, and 

application to real world dynamic tasks. Since then, several collaborators in the MAHI lab 

have used the same task and have extended the guidance designs to virtual fixtures, shared 

control, and progressive schemes [44-46,58,60]. This study extends this line of research 

by adding four components: an expertise-based analysis of the task, a guidance scheme 

that utilized measures of performance in key skills, integration of the movement smooth

ness model to the guidance scheme, and the inclusion of a cognitive workload assessment. 

Since the progressive guidance scheme proposed in Chapter 5 is designed and implemented 

for the same task that the previous MAHI researchers used, the present section revisits the 

setup, apparatus, virtual environment, and dynamic task that they employed. The experi

mental setup as shown in Fig. 3.1 included physical blinders around the test site to mitigate 

visual distractions. During all trials, all participants donned noise canceling headphones 

playing pink noise (equal energy in all octaves) loud enough to mitigate interference from 

such audio stimuli as the surrounding environment and sounds of the joystick moving dur

ing the execution of the experimental task. 

3.1.1 Visual and Haptic Apparatus 

The experimental apparatus, illustrated in Fig. 3.2, was comprised of a nineteen inch LCD 

video display and a high fidelity two degree of freedom (DOF) force feedback joystick 
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Figure 3.1 : The experimental setup includes visual blinders and audio muffing with pink-
noise to mitigate visual and audio distraction from the physical environment (adapted from 
[44]). 

(Immersion Impulse Engine IE2000). The joystick workspace limits were ±45deg on both 

axes. The arrangement and placement of the joystick relative to the the participant allowed 

one axis of the joystick to correspond roughly to wrist flexion/extension and die other axis 

to forearm pronation/supination. The ±45deg polar workspace of the joystick was mapped 

to ±400 pixels on the video display that corresponded to a 210mm x 210mm Cartesian 

coordinate space. Thus the conversion from joystick rotation to visual movements was 

1 deg joystick rotation = 2.333mm on the video display. The device exhibited low friction 

(< 0.14AT) and displayed zero backlash due to the cable and capstan drive design. The 

fine encoder resolution along with the placement of the encoder directly on the motor shaft 

created a 0.002 joystick radians/encoder count rotational resolution at the joystick handle. 

All haptic simulations ran on a 2 GHz computer in such a way that updates occurred at the 

sampling frequency of 1 kHz. The system bandwidth for the apparatus was 120 Hz and it 

displayed a maximum force of 8.9 N in the workspace. The virtual environment graphics 

were created using OpenGL in the C++ programming language. The visual feedback con-
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trol loop rate operated at 58Hz. The software recorded the states of the dynamic system to 

a data file at 50Hz for documentation and subsequent analyses. 

Figure 3.2 : A participant is sitting at the virtual training environment. The interface in
cludes a visual feedback display and a haptic joystick for force feedback, both of which 
provide feedback of the system dynamics to the participant. 

3.1.2 Dynamic Under-Actuated Task Rendering 

The rendered virtual environment (VE) (recall the basic VE with haptic feedback shown 

in Fig. 3.3) is a planar second-order system modeled as two point masses connected by a 

spring and damper in parallel as shown in the inset of Fig. 3.4. This two-mass system has 

four degrees of freedom, namely the planar motion of each of the point masses, m\ and 

»i2. Therefore, it is under-actuated since the only control inputs are the planar motions of 

mi, corresponding to the joystick position. All participants receive visual feedback of the 

targets and moving masses via the LCD display. Additionally, all participants receive haptic 

feedback from the VE in the form of the mathematically-computed force interactions of the 

dynamic system. In other words, they feel the mass inertia and spring and damper forces as 

the device motors apply those force to the joystick. The participants attempt to overcome 
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Figure 3.3 : The block diagram for haptic feedback shows how the system states were input 
to the virtual environment. Forces were computed based on the system dynamics and fed 
back to the device handle for display to the user. 

the motor-generated forces to acquire the targets as illustrated in the block diagram of the 

haptic control loop (Fig. 3.3). The typical torque computed by the dynamics model and 

exerted by the motors of the joystick on the handle and therefore on the participant's hand 

are 1 Nm with the maximum allowable torque set to 2 Nm. These levels are set based on 

a similar experiment with the same virtual environment, conducted by Li et al. because at 

those levels participants did not complain of fatigue throughout the experiment [46]. 

The environment is rendered using an impedance control mode, where user motion is 

measured via optical encoders on the joystick, and forces are computed and commanded 

according to the equations of motion of the system and shared controller. This open-loop 

impedance controller is illustrated in Fig. 3.5. 
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Figure 3.4 : Underactuated dynamic target-hitting task. The participant controlled the 
position of the force feedback joystick (mi) in order to cause the object (rri2) to hit the 
desired target. Inset shows the virtual underactuated system. Trajectory error was defined 
as the deviation of the joystick {m\) from the target axis (adapted from [44]). 
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Figure 3.5 : Block diagram for the open-loop impedance controller utilized to render the 
VTE (adapted from [12]). 

In the figure, Axd denotes the deviation of desired position x^ from nominal position xo, Ze 

is the virtual environment impedance, F^ is the desired force command, %d is the desired 

torque command, AT denotes the deviation of total applied torque from the nominal torque 

To, Z^ is the impedance of the haptic device (the linearized haptic device dynamics), J is 

the Jacobian of the haptic interface while JT is the transpose of Jacobian, F is the force 
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applied by the participant, Ad is difference between the actual joint angle with the nominal 

joint angle 6Q, and Ax is difference between the actual position with the nominal position 

XQ. The closed-loop impedance of this controller (Zc;) is computed with Eq.3.1: 

Zd=Ze+Zd (3.1) 

The linearized dynamics Z^ can be derived from Eq. 3.2: 

Af(e)e+c(e,e)e+G(0) = T (3-2) 

where M(6) is the inertia term of the haptic device, C(6, 6) is the coriolis effects of the 

device, and G(6) is the effect of gravity, and T is the torque commanded to the device 

motors. The impedance of the haptic device, Ze, is neglected in this study since Ze « Zj, 

thus Zci « Ze. This approximation can be attributed to several reasons: first, the device has 

relatively low inertia, therefore M{6) is small. Second, the human motion input velocities 

are relatively low, so C(6,6)6 is small. Third, the gravity compensation term G(6) is 

small since the task motion is almost horizontal. Moreover, the haptic interface used in the 

experiments has low friction, is free of backlash, and is highly backdriveable. Therefore, 

the impact of the inherent dynamics of the haptic device is neglected, as is commonly done 

for high fidelity impedance type haptic displays [12]. The task, illustrated in Fig. 3.4, is 

to manipulate the motion of the point mass (mi) via the 2-DOF haptic joystick, and thus 

indirectly, through the system dynamics, to control the movements of the object (iri2) in 

order to hit as many of the diagonally placed targets as possible during each 20-second 

trial. The targets are located 100mm apart on the visual display representing 76deg of 

joystick rotation. Once a target is hit, the current target becomes inactive and the opposite 

target becomes active thus the active target alternates positions. 

The dynamic second-order VE task is described by the following equations of motion: 

Fsx = nt2X + bsx + ksx (3.3) 

Fsy = m2y + bsy + ksy (3.4) 
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where Fsx and Fsx are the forces generated by the system dynamics, bs is the damping, and 

ks is the spring constant of the modeled second-order system (see Fig. 3.4 and system 1 in 

Table 3.1). The total force computed and delivered to the motor controllers for display on 

the haptic device is computed by the following sum: 

FD = £(Ffc + Fw + Fc + Fs) (3.5) 

where Fh is the force applied by the participant's hand, Fw is the force created by the virtual 

wall guidance, Fc is the force created by the PD tracking guidance, and Fs are the forces 

generated by the system dynamics. 

Three sets of system parameters increased the task complexity by presenting a different 

one of the three sets of parameters at each trial. The set to be presented in a particular trial 

is selected in a uniformly random fashion. The parameter sets include a specific mass of 

m.2, spring stiffness, and damping to provide unique resonant frequencies (fr) as shown in 

Table 3.1. There is no information about fr provided to the participants, hence they have to 

identify the changes based on the behavior of the virtual system (displayed on both visual 

and haptics channels). All three systems are under-damped since the damping ratio (£) is 

less than unity for each system. The training data for in this task are used in the expertise-

Table 3.1 : The system parameters of the target-hitting task generate unique resonant fre

quencies. 

Parameter m\ rri2 k b £ fr 

Set (kg) (kg) (N/m) (Ns/m) (Hz) 

1 0 5 100 3 0.0671 0.709 

2 0 2 80 1 0.0395 0.490 

3 0 5 50 5 0.158 1.000 

based analysis. Then, in the experiment to be presented in Chapter 5, the system parameters 

are maintained constant with values equal to the system parameter set 1 listed in Table 3.1. 
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Figure 3.6 : Bode diagrams for the three systems utilized in Li's experiment. 

Figure 3.6 illustrates the Bode diagrams of the three systems with their responses across a 

range of frequencies. The figure also shows the peak amplitudes at the resonant frequencies 

of the three systems. 

3.2 Expertise-Based Analysis 

Li, Patoglu, O'Malley and myself in the MAHI lab conducted a month-long human-user 

study where participants trained for the virtual target-hitting task. The virtual environ

ment and task were described in Section 3.1. The results of the guidance was previously 

reported by Li et al. [44,46]. Those two studies aimed to determine the efficacy of an error-

reducing shared controller (ERSC). The fixed-gain ERSC scheme showed negative efficacy 

compared to no guidance at all while the progressive (performance-based) shared control 

scheme showed no significant difference compared to no guidance at all but did outperform 
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the fixed-gain scheme [44,46]. 

In light of these results, I called into question the validity of error-reduction as the sole 

basis of Li's haptic guidance scheme. Thus, Li's findings motivated my research to identify 

the key skills needed to perform the target-hitting task, skills that could be measured and 

integrated into the design of an effective guidance scheme. Subsequently, I analyzed the 

performance and motion data of the experiment which Li et al. conducted, first to gain 

insight into the strategies adopted by participants who were adept at the task, and second to 

identify and measure key skills needed to perform the task. I analyzed the data from only 

those participants who trained in the VTE with unguided practice. 

As a first step toward designing progressive haptic guidance schemes, I analyzed indi

vidual and unassisted performance data from the virtual environment training protocol in 

order to identify the key skills required for successful performance. The data was compiled 

from seventeen participants in a VTE experiment with unguided practice conducted in the 

MAHI laboratory and documented by Li et al. [44,46]. As previously stated, the primary 

objective of Li's work was to determine the efficacy of an error-reducing shared controller 

(ERSC). In the two studies, the fixed-gain ERSC scheme showed negative efficacy com

pared to no guidance at all [46], and the progressive (performance-based) shared control 

scheme showed no significant difference compared to no guidance at all [44]. These results 

called into question the validity of error-reduction as the sole basis of Li's haptic guidance 

scheme. Li's findings motivated the research reported in this thesis for the purpose of un

derstanding key skills in performing the target-hitting task in order to design an effective 

guidance algorithm. 

To assist the analysis, the participants were divided into two groups based on their 

performance before training in the target-hitting task. One of the two groups was further 

subdivided at the end of training for a total of three groups. The analysis of the group per

formance presents insights into the skills that experts consistently execute to achieve their 

level of performance. The scores of these groups show significant correlations between the 

target hit count and two other performance measures - the space dependent trajectory error 
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{etmj) and the frequency dependent input frequency {finput) measures. I hypothesize that an 

understanding of the key skills and related performance measures like etraj and finput can be 

used to design performance-based visual and haptic guidance schemes that will accelerate 

and improve training. 

Based on the performance of seventeen participants in an initial evaluation session of 

a VE target-hitting experiment, the participants fell into two groups: experts and novices. 

As a result, I gained insight into and identified the two key skills that experts were con

sistently executing to achieve their level of performance. In this chapter I define measures 

for these two key skills and correlate them to the task objective measure. I propose that 

the identification of the key skills and the employment of related performance measures 

in progressive guidance schemes will accelerate and improve training outcomes in virtual 

training environments. 

3.2.1 Description of Experiments 

The analysis is based on the performance data of eight participants from the nonguidance 

control group and nine participants who received guidance from the ERSC on only 4 out 

of 42 daily trials and for whom the data failed to show significant differences from the 

nonguidance control group throughout the entire protocol (for further explanation of the 

groups, see [46]). Even though the experiment was to study guidance via a shared con

troller, a control group was included that completed the entire protocol with no guidance 

provided. This was a very important component of my study. A second group of nine 

(called strategy group) received guidance in only 4 trials out of 42 trials from each ses

sion. The motivation for the reduced number of trials with assistance was based on work 

by Reinkensmeyer et al. and also work by Li et al. which suggested that a smaller dose of 

assistance could improve skill acquisition [45,64]. These assistance forces were combined 

with the system dynamic forces before being presented to the participant at the joystick 

interface on the haptic channel during the first four trials of the guidance subsession. Dur

ing the remaining ten trials of the guidance subsessions, in addition to the 28 trials total of 
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Figure 3.7 : The experiment design included an evaluation session (Session 1), nine training 
sessions, and one retention session (Session 11). The data was extracted from the last 
fourteen trials of each session as shown (adapted from Li et al. [44]). 

pre-guidance and post-guidance baseline subsessions, the strategy group received no assis

tance. The statistical analysis reported by Li et al. demonstrated that this strategy group 

was in effect practicing with no augmentation. While this result with the strategy group 

was insignificant for that study [44], it provided me with important unassisted performance 

data from seventeen subjects. I decided to base my analysis specifically on the last 14 trials 

of each of 11 sessions where none of the participants received any guidance, thereby further 

ensuring homogeneity of the seventeen participants. The experiment design is illustrated 

in Fig.3.7 and highlights the trials that were incorporated to this data analysis. 

The participants, who took part in the two month-long study (1 evaluation session, 3 

sessions/week for 9 sessions followed by 1 retention session after 30 days [46]), were all 

right-handed undergraduate students, and had no previous experience with haptic devices. 

A university Internal Review Board (IRB) approved form was used to obtain informed writ

ten consent from all participants prior to incorporation. The seventeen participants were 
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ranked by preliminary performance in the evaluation session and then randomly placed in 

one of the two groups for the remainder of the protocol. This placement becomes insignifi

cant in the current study because they were re-arranged based on their level of performance 

in the evaluation session as the next section describes. 

3.2.2 Expertise-Based Grouping 

I sought to identify and measure the key skills required to perform the manual target-hitting 

task in order to improve the design of guidance schemes that can be conveyed in a virtual 

training environment augmentation. In order to identify the key skills, I chose to investigate 

the differences between expert and novice performers in a quantitative and systematic way. 

In lieu of a standardized method to determine a participant's level of expertise and recog

nizing the broad range of definitions for expertise in the literature (see the seminal work by 

Fitts [20] and recent work by Dreyfus et al. [17]), in this study I chose to use a statistical 

divider after the initial evaluation session to differentiate experts from novices in the VTE 

with unguided practice. After conducting the experiment, another statistical divider at the 

end of training further divided novices into fast-learning novices and slow-learning novices 

in the last session. 

To determine the expertise of the participants, I analyzed the number of target hits 

for each of the seventeen participants - 8 in the "no-assistance" (N) group and 9 in the 

"strategy" (S) group - in the initial evaluation session as shown in Figure 3.8. Any partici

pant whose performance was greater than one standard error above the mean of all partic

ipants was deemed to be an expert (Participant IDs: N6, N7, N8, and S8 as designated by 

Li et al. [46]). The remaining participants were considered novices ; those who performed 

worse than one standard error above the mean. 
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Having thus divided all the participants into two groups, some differences emerged as 

a result of observation. Figure 3.9 shows representative position trace plots from training 

in the task. Some participants, like Participant A, began with erratic and slow motion, and 

continued to be erratic throughout training. Others, like Participant B, began erratically but, 

during training, learned to excite the system along the target axis. Still others, like Partici

pant C, excited the system along the target axis from the very beginning of training. These 

data emphasized the need to follow the target axis to achieve a high number of hits, and 

were the motivation for the error-reducing shared control (ERSC) algorithm. Li's ERSC al

gorithm used a time-independent error measure instead of a time-dependent error measure 

as used in similar work by Gillespie et al. and Patton et al. [24,62]. A time dependency 

along the axis between the targets, exists, however, such that the input excitation frequency 

of the dynamic system must increase to obtain an increased hit count. 
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Figure 3.9 : Sample traces for three typical participants shows varying improvements and 
performance differences. 
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3.2.3 Performance Measures 

From initial observations the two key skills for performing the task are first, to not deviate 

from the target axis and second, to excite the system at the resonant frequency so that 

the system response is also at the resonant frequency. A thorough investigation of the 

literature presented various measures that might be utilized to quantify the performance of 

participants. What follows is an analysis of each of these types of measures. 

Time to completion 

As described in the previous chapter, "Time to completion" based measures are irrelevant 

for this experiment since the task has a fixed length of time. 

Hit count 

The first measure to be included was, in fact, the objective measure of the task (The word 

"objective" is used in terms of this being the stated objective of the task.). The partici

pants were instructed to "hit as many targets as possible in each 20 second trial." Although 

this measure has only integer values, it has enough resolution to register variations in per

formance over trials and sessions. For this analysis, then, the same objective measure of 

performance is utilized as the one defined by Li et al. [46]. A hit was registered whenever 

the center position of m.2 was detected to be within 4 mm of the target center. 

In order to compare performance regardless of the virtual system parameters (men

tioned in section 3.1), the total hit count per trial (count/Hz) is normalized by the following 

equation: 

nhit = -j x (hitcount) (3.6) 
Jr 

Trajectory Error 

The next category to be looked at is the error measures. As observed, deviation from the 

target axis will result in missing the target. If mi (see Figure 3.4) is excited such that it 
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does not deviate from the target axis throughout the trial, the transient response of m.2 will 

diminish and guarantee a target hit at every pass. Therefore, any measure that quantifies 

the deviation of either mass from the target axis will be a valid and useful measure of 

performance. In prior work collaborating with Li, we utilized the RMS error of m.2 [45]. 

For this task, an error measure along the target axis is irrelevant because m.2 only need pass 

though the target, but not stop on it. Trajectory error is defined as the absolute magnitude 

of the deviation from the target axis of the input joystick position at each sampled instant 

summed for the entire trial (n = 400 samples). The target axis, shown in Fig. 3.4, is the 

diagonal line passing through both targets and along the oriented x-axis. Since the trial 

duration is always the same, trajectory error does not need to be averaged. Thus, trajectory 

error is expressed in units of millimeters. Mathematically, 

n 

etraj = Yiabs(yd @.7) 

I choose to use the error of the joystick (mi) rather than the object (wi2) because I am 

analyzing the performance of the participant. Because prior analysis showed negative ef

ficacy of the fixed-gain error reducing shared control (ERSC), I questioned the validity of 

error reduction as the sole basis for the task's guidance scheme [35]). Analysis of indi

vidual participant data for the target-hitting task reveals the need for additional measures 

of performance that are dependent on time or the phase plane. Figure 3.10 shows position 

traces for the tenth trial of the fourth session (approximately midway through the training 

protocol) for three different participants. The trajectory error (etraj) as previously discussed 

is represented by the area from the zero reference to the thin black line. The solid thick 

line is the position of the mass mi (system input) while the dashed line represents the po

sition of the point mass wi2 (system output) along the x axis. Figure 3.10(a) illustrates the 

typical low performance of a participant who has yet to learn the task and has high etraj 

(22.9 mm) resulting in a low «/,„ score (6 hits). The performance of another participant in 

Fig. 3.10(b) shows the ability to maintain low etraj (14.7 mm). The participant achieves, 

however, only a moderate nhit score (16 hits) because of an apparent inability to leverage 

the dynamics of the controlled system and excite the system near its resonant frequency. In 
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contrast, the participant in Fig. 3.10(c) shows good performance by being able to maintain 

low etraj (5.55 mm) as well as provide a consistent input excitation frequency of 95% of 

the resonant frequency, resulting in a high rihu score (33 hits). 

Velocity Profile Consistency 

Velocity profile consistency was reviewed, in an attempt to obtain a measure that would 

capture a type of trajectory error in the target axis direction. Consistency in the velocity 

profile is defined as the average variation of the velocity within one trial. To make a reason

able comparison, the average excitation frequency is used to parse the trial into segments 

which are then overlapped. In Figure 3.11 the sample trial with high performance shows 

low variation for both joystick (mi) and disc (rri2) profiles. Only the joystick variation, 

rather than the disc variations can be used because the dynamics of the system act as a filter 

to the input excitation. 

Figure 3.11 : Velocity profile consistency for both m\ and m.2 attempt to capture variations 
in the velocity along the target axis. 

At low or irregular velocities, however, this measure was not consistent or dependable. 

Thus I sought another measure that could capture the periodic nature of the excitation along 

the target axis. 
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Figure 3.10 : Displacement time traces from trial 10 of session 4 for three typical partici
pants, (a) shows the high etraj and irregular input motion of a low performer, (b) shows the 
low etraj but inconsistent input motion of a moderate performance example and (c) shows 
a high performer's low etraj and consistent excitation. 
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Input Frequency 

An observation of the performance periodicity indicated the importance of input excitation 

frequency, I propose input frequency {finput), as a measure of excitation performance in a 

trial. The Fast Fourier Transform (FFT) is computed from the x axis position data of the 

joystick (m\). The FFT power spectrum is a convenient way to determine the amplitude and 

frequency of the motion that is being applied to a system and was used by Huang et al. in 

a similar task to quantify performance [34]. Figure 3.12 shows three typical FFTs of the 

same three data sets represented in the displacement versus time traces shown in Fig. 3.10. 

Figure 3.12(a) shows the tenth trial from the fourth session of a participant who is incon

sistently exciting the system and shows wide spectral variability. In contrast, Fig 3.12(b) 

shows a participant who is exciting the system in a fairly consistent manner. Figure 3.12(c) 

shows a small, but very clear, spike at 95% of the resonant frequency of the virtual two 

mass system. The challenge for the first participant is to increase their input frequency 

such that it equals the system resonant frequency. The participant must identify the res

onant frequency and then provide consistent input motion commands near that frequency 

to the joystick m\ in order to achieve a significant increase in n^n score. To clarify, even 

though the FFT plot is called a "power spectrum," in this particular case it has units of 

mm2. Because the experiment used three separate parameter sets, my definition includes a 

normalizing coefficient. The equation for the second performance measure finput is given 

in units of (Hz/Hz) as follows: 

finput = -j x f(arg(max(FFT))) (3.8) 
Jr 

Therefore, exciting the system at the resonant frequency will give a value of finput = 

1 {Hz/Hz) regardless of the system parameter set. 

Movement Smoothness 

Movement smoothness was also considered and will be analyzed and discussed further in 

Experiment 1 in Chapter 4. For the present, and for this experiment, let it be assumed that 
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Figure 3.12 : Two-dimensional FFT position power spectra for three participants for Trial 
10 during session 4. (a) shows the erratic input spectrum of a low performing slow learner, 
(b) shows the fairly consistent but slower finput of a moderate performance example and (c) 
shows the extremely consistent and low power of a high performer. 
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an optimal full-cycle smooth speed profile can be accurately approximated by a sinusoid 

with appropriate amplitude and frequency [33]. Thus I define a smoothness ratio measure 

('"smooth) using the recorded state-space (position vs. velocity) trajectory of m.2 and an op

timally smooth trajectory. A rhythmic movement in this state-space appears as an ellipse. 

There are many ways to compare two ellipses: for example, the area of each ellipse that is 

not common to both can be considered as an error. The nature of the task at hand, however, 

makes it possible to overshoot the targets, causing a wider (greater amplitude) and taller 

(higher velocity) ellipse than the optimally smooth ellipse and yet one could also be suc

cessful (see Fig. 3.13(b) as an example). Hence I opted for a shape comparison of the state 

space trajectories. The smoothness ratio is defined as 

^actual/ "actual ,~ QX 
rsmooth — 77 (*•") 

^nominal / "nominal 

where aactuai and bactuai represent the major and minor axes of the average ellipse calculated 

from the recorded data by considering the points of intersection with the axes (points of 

zero velocity and zero position). An initial portion (1.75 seconds) of each 20 second trial is 

trimmed from the data before calculating aactuai and bactuai. Then anominai and bnomina[ are 

calculated from the optimally smooth rhythmic movement that has a duration equal to the 

inverse of the resonance frequency of the system (fr). When the sinusoid approximation for 

the speed profile is used, the movement amplitude does not need to be specifically defined, 

since it gets canceled when calculating the ratio anominai/bnominai. After the simplifications, 

this ratio becomes 

^•nominal •!• ,o ,n\ 

"nominal ^Jr 

With this definition of rsm00tn, the measure approaches unity, since the state trajectory of 

m.2 approaches an undistorted but scaled version of the optimally smooth ellipse. As it can 

be easily deduced from equations 3.9 and 3.10, rsmootn effectively becomes a measure of 

the actual average period of the movement normalized by the period of the movement at 

the resonant frequency of the system. Therefore, one would expect to see a high correlation 

of 
rsmooth with finput- In conclusion, the rsmootn measure, which describes the smoothness 



48 

600 

-600 

- Actual state trajectory 
• Optimally smooth state trajectory 

Average state trajectory 

-100 -50 0 50 
Position (mm) 

(a) low performance 

100 -100 0 100 200 
Position (mm) 

(b) moderate performance 

-50 0 50 100 
Position (mm) 

(c) high performance 

Figure 3.13 : Actual, average and optimally smooth state trajectories for the three partici
pants for Trial 10 during session 4. 

of a movement, is an equivalent measure of the consistency and correctness of the input or 

the output frequency for a rhythmic task using an underactuated linear system. Thus either 

measure (finput or rsmootn) could successfully determine performance of the excitation skill 

required for this task. Each measure might have certain benefits depending on one or more 

of the following: access to either the input or output state variables, computation in real 

time or off-line, and types of disturbances in the system. I chose to use finput in keeping 

with the objective to analyze the actions of the participant. 
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Force and Energy-Based Measures 

The dynamic second order system has a theoretical minimum input energy trajectory if 

there exists a output amplitude requirement. Since participants were not specifically asked 

to minimize energy, varying input and output amplitudes could give an equal number target 

hits. The frequency might stay the same but the velocity would increase and thus the 

energy input to the system is greater. For this reason both force and energy measures were 

not considered. 

3.2.4 Data Analysis 

Based on the evaluation of measures of performance in the preceding section, this study in

troduces, defines, and utilizes two measures which enable the quantification of participants' 

performance in the two key skills: trajectory error (etraj) and input frequency (finput)- Ad

ditionally, hit count is employed as a measure of success. For all participants, values for 

n/iif. etraj> and finput for each session were determined by averaging the scores of 14 tri

als per session. Thus each of the seventeen participants has a data point for each of the 

eleven sessions of training resulting in a total of 187 observations (17 participants and 11 

sessions) of each measure. A performance group average score for each measure was de

termined from the participants' session scores to give one value per session per group. The 

data were fit with linear and exponential curves using MATLABrM and the best fit curves 

were determined from the R2 values. Analysis of variance (ANOVA) was used to determine 

significance among groups. Finally, correlation coefficients were computed for each pair 

of measures. 

3.3 Results of the Expertise-Based Analysis 

After a preliminary analysis of the hit count performance of all seventeen subjects through

out the eleven sessions of the training protocol, I observed that the novice group could be 

further subdivided into slow-learning novices and fast-learning novices. This result is in 
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keeping with expertise groups denned in the literature as follows: 

• Expert: one who is able to perform the task well at the beginning of the training 

and therefore improves only marginally throughout training - also called masters, 

teachers, or autonomous in the literature ([3,21,23,32,55,81]) 

• Slow learning novice: one who performs the task in a superficial way doing poorly 

at the outset and only marginally improving throughout training - also called novices, 

beginners, or students in the literature ([3,21,23,32,55,81]) 

• Fast learning novice: one who begins poorly but improves rapidly early in train

ing until he/she is as good as, or better than, the expert - also called intermediates, 

competent, or proficient in the literature ([3,21,23,81]) 

In a way similar to the way I defined the expert group, those who performed better than 

one standard error above the mean in the initial evaluation session, any participant with a 

nhit score less than one standard error below the mean of all participants during the last 

training session is considered a slow learning novice (Participant IDs: Nl , SI, S4 and S9). 

Furthermore, those who performed worse than one standard error above the mean in the 

first session (to differentiate them from the experts) and better than one standard deviation 

below the mean in the last session (to differentiate them from the slow-learning novices) 

are called fast-learning novices. Figure 3.14 shows the distribution of performance for 

each participant, classified by their group assignment, at the end of the training protocol. 

Interestingly, the experts identified in Session 1 are not necessarily achieving the highest 

nhu scores in Session 11 but are intermixed with the fast learners. Thus the groups were 

comprised of four experts, four slow learning novices and nine fast learning novices. These 

three groups {experts and fast and slow learning novices) are used in the remainder of this 

chapter as the basis for comparison in terms of the three performance measures («/,,-, > etraj, 

and fi„put)-

Next, I present and compare the results of the data analysis of the three performance 

measures by estimating the parameters of the learning curves for each measure and by 
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Figure 3.14 : Hit count performance rankings of all participants in the retention session 
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computing correlation coefficients between measures. Figure 3.15 shows the «/,,-, scores 

as a function of session for the three participant groups (experts, fast learning novices and 

slow learning novices). Each data point is the n^u average for any given group at the 

corresponding session, with error bars indicating standard error from the mean. Straight 

line and exponential functions were fit to the data in order to visualize learning effects as a 

function of session. A summary of the curve fitting results, including estimated parameters 

and correlation coefficients from goodness of fit for each of the three groups of participants 

are shown in Table 3.2. 

The experts initially had the highest n^u scores and improved slowly until reaching 

a saturation level of approximately 36 hits (parameter c of exponential function, see Ta

ble 3.2). Fast learners began with lower «/,,-, scores than that of the experts (evidenced by 

the 95% confidence bound of parameters c — a) and reached saturation at a significantly 

faster rate than that of the experts (evidenced by 95% confidence bound of parameter b). 
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Table 3.2 : Summary of the curve fitting procedures for the performance measure data of 
each expertise group. 

Goodness of fit 
Participant Group measure 

DOF Function type Function expression R2 Parameters 

Experts 

Slow Learners 

Fast Learners 

"hit 

etraj 

finpul 

Ihil 

etraj 

Jinput 

"hit 

Ztraj 

Jinput 

8 

8 

9 

8 

8 

8 

9 

9 

9 

Exponential 

Exponential 

Straight Line 

Exponential 

Exponential 

Exponential 

Straight Line 

Straight Line 

Straight Line 

-ae'bx + c 

ae~bx + c 

ax + b 

-ae~bx + c 

ae'bx + c 

-ae-bx + c 

ax + b 

ax + b 

ax+b 

0.95 

0.65 

0.68 

0.99 

0.94 

0.99 

0.98 

0.88 

0.96 

a = 14.6,6 = 0.18, c = 36.6 

a = 3.60, b = 0.28, c = 8.18 

a = 0.006, b = 0.93 

a = 25,fc = 0.37,c = 33.15 

a = 16.4, b = 0.74, c = 10.6 

a = 0.53, b = 0.42, c = 1.03 

a= 1.81,6 = 7.84 

a = -1.96, b = 30.0 

a = 0.04, b = 0.47 

The 95% confidence bound for the saturation level (parameter c) of the fast learners coin

cides with that of the experts, indicating that both groups reached the same performance 

level towards the end of the experiment. Additionally, the fast learners reached 90% of the 

saturation level slightly after the sixth session. The slow learners started with lowest nnit 

scores and improved linearly with significant slope (parameter a), hence failing to reach 

saturation during the experiment. The average etraj and finput are shown in Fig. 3.16 and 

Fig. 3.17 respectively (results are over the eleven sessions of the protocol). Error bars show 

standard error of the group mean. Figure 3.16 shows decreasing trends of mean etraj while 

Fig. 3.17 shows increasing trends of mean finput as training progressed. Analysis of both 

the etraj and fmput measures of performance by group showed similar trends to the perfor

mance by group in terms of n^. In other words, slow learners had the worst performance, 

experts showed the best performance, and the fast learners started out somewhere in the 

middle, yet achieved performance comparable to the experts at some point during training. 

Straight line and exponential curves were fit to the data, with details included in Table 3.2. 
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Figure 3.15: Average n^u as a function of session for the three groups of participants. Error 
bars indicate standard error from the mean. 
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Figure 3.16 : Average etraj as a function of session for three groups of participants. Error 
bars indicate the standard error from the mean. Expert and fast learner data are best fit by 
exponential functions while slow learner data are best fit with a straight line function. The 
error bars for the slow learners are especially large in the first 5 trials due to one participant 
who attempted to perform the task by exciting the system in a circle with a diameter equal 
to the distance between targets. In session 6, this participant, began to use the common 
oscillatory pattern. 
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Figure 3.17 : Average finput as a function of session for the three groups of participant 
(Error bars indicate standard error from the mean) Fast learner data are best fit with an 
exponential function while experts and slow learners are best fit by straight line functions. 

For etraj, data for experts and fast learners exhibited exponentially increasing trends, 

while the slow learner data was better characterized by a straight line function. For finput, 

data for experts and slow learners showed linearly increasing trends, while fast learners 

demonstrated an exponentially increasing trend. 

Each performance measure was further analyzed using a two-way ANOVA in order 

to highlight significant effects of group and session. For all three performance measures, 

the main effects of group and session were significant. For nnit the effects of group and 

session were significant (group: F(2,154) = 180, p < 0.001; session: F(2,154) = 41.4, 

p< 0.001). For 

etraj t n e effects of both group and session were also significant (group: 

F(2,154) = 23.5, p < 0.0001; session: F(2,154) = 3A9,p < 0.0001). Finally, for finput 

the effects of both group and session were also significant (group: F(2,154) = 51.3, p < 

0.001; session: F(2,154) = 7.8, p < 0.001). The interaction effect of group and session 

was significant for nni, (F(20,154) = 2.03,p < 0.0086) but was not significant for either 

etraj (F(20,154) = 1.36,p < 0.152) or finput (F(20,154) = 1.30, p < 0.190). The analysis 

indicates that the performance measures were significantly different among groups and 
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Figure 3.18 : Summary of statistical analysis of performance group differences 

the performance improved along sessions. In order to show all instances of significant 

difference in performance between the three groups in each session, a post hoc Scheffe 

test was performed on the data in each session and results of the analysis are presented 

in Fig 3.18. The figure shows three tables for the comparison of the three participant 

groups. Each table has rows corresponding to each of the three performance measures and 

eleven columns for the sessions. Cells with asterisks indicate an instance of significant 

difference between groups. Dark shading indicates significance with a 95% confidence 

level and light shading indicates 90% confidence level. Light shaded cells with no asterisk 

indicate that the data failed to show significant differences with a 90% confidence level. The 

results here indicate that the nnit measure is significantly different throughout training when 

comparing experts and slow learners as well as when comparing fast learners and slow 

learners. The performance of experts compared to fast learners was statistically different in 

the first two trials, but no significant differences were observed in the later sessions. This 

results indicates that after just two session fast learners approach the performance of the 

experts. The analysis also indicates similar significant trends throughout training between 

rifiit and finput but not between nnit and etraj. To determine the relationship between nnit and 

the two other performance measures, coefficients are computed for the correlations shown 

in Fig. 3.19 Strong correlation exists between «/,,-, and finput evidenced by r(185) = +0.75 
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Figure 3.19 : Correlation plots for etraj and fmput versus nnit demonstrate the good corre
lation of the secondary measures to the objective measure of performance but not to each 
other. 

(p < 0.01). Correlation between nhit and etraj is r(185) = -0.72 (p < 0.01), indicating a 

slightly better correlation between «/,,-, and finput. Multiple regression in the form: 

nhit = a + bi (etraj) + bzifinput) (3.11) 

where a — 12.6, b\ = —154 and bi — 22.16 demonstrates that both secondary performance 

measures are significant (r(185) = 0.90, p < 0.001). Although both measures showed a 

good correlation with the objective measure (HM), the correlation coefficient between finput 

and etraj indicates a poor correlation (r(185) = —0.34) between the secondary measures, 

thereby suggesting the measures are independent. 

3.4 Discussion of the Expertise-Based Analysis 

The task used in this study demonstrated sufficient complexity, as required by Todorov to 

ensure differences in the levels of performance of the participants [79]. In contrast, tasks 

chosen by Yokokohji et al. and Adams et al. as the basis for testing virtual environment 

training were found to be too simple to be able to draw conclusions from them regard

ing the efficacy of the virtual training [5,82]. The analysis found statistically significant 

differences in performance between the three expertise-based groups. By evaluating ex

pert performance and comparing it to the performance of fast and slow learning novices, a 
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method suggested by Williams [81], I determined two key skills for the target-hitting task. 

The first key skill required for the target-hitting task is the minimization of the trajec

tory error. The second key skill is related to the excitation frequency of the system input. 

I concentrated my analysis of performance on the motion of mi measured in the underac-

tuated dynamic system, which corresponds to the motion of the human via the joystick. 

The analysis directly assessed the participants movements and performance of the task. 

The trajectory error measure was based on the motion of m\ relative to the target axis. In 

my prior work with Li, we analyzed the error of the output of the second order dynamic 

system [44]. Such analysis of performance based on trajectory is important for tracking 

tasks such as those studied by Fey gin et al. [19]. Due to the dynamics of the system in 

this target-hitting task, the motion of the output (1712) is directly coupled to the motion of 

the input (mi). Therefore, similarly decreasing trends are noted in the trajectory error mea

sure over the course of training. For the input frequency measure described, I based my 

calculations on the motion of mi, which directly corresponds to the motion of the input 

joystick and human participant. Others have focused on input frequency as have I (e.g. 

Israr et al. and Huang et al. [34,38]). Conversely, some groups have approached the mea

surement of rhythmic task performance by analyzing the smoothness of the system output 

but I showed that when the optimally smooth state-space trajectory is defined based on the 

resonant frequency of the system, a comparison of the shapes the actual trajectory with the 

optimal trajectory coincidentally becomes a comparison of average movement frequency 

with resonant frequency. Hence movement-smoothness-based measures and frequency-

based measures have an inherently close relationship for rhythmic tasks. 

3.5 Motivation for Progressive Haptic Guidance 

I propose that haptic guidance schemes for virtual environment training must be based 

on key skills that are critical to successful task completion. The performance of each of 

three expertise-based groups who completed a virtual target-hitting task was analyzed in 

this chapter to determine the key skills necessary for success, measured by the number of 
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target hits during a trial. Two key skills of the virtual target-hitting task were determined, 

namely minimization of trajectory error and excitation of the virtual dynamic system near 

resonance. Correlation between these measures and the objective hit count measure was 

verified for seventeen participants of varying skill level. Participants were grouped by their 

hit count performance into three distinct groups (experts, fast learning novices and slow 

learning novices). These groupings were determined to be consistent for the key skills as 

well. The measures, etraj and finput have high correlation to the objective measure of nnit 

yet have low correlation between each other, suggesting independence. The performance-

based progressive guidance scheme designed in the Chapter 5 enhances the effectiveness of 

a VTE over unguided practice and visual guidance schemes by incorporating mechanisms 

for emphasizing these two key skills. The next chapter investigates and develops one spe

cific component of the guidance scheme, an optimal excitation trajectory for guiding the 

participant. 
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Chapter 4 

Movement Smoothness Model: Experiment I 

This chapter presents the experiment design, results, and analysis of a human-user study 

that tests and validates the minimum hand jerk (MHJ) model implemented in the progres

sive haptic guidance controller for input frequency guidance. This experiment pertains 

specifically to a human forearm reaching task while simultaneously manipulating a multi-

mass object. This work validates and extends prior work that demonstrated the MHJ cri

teria, a mathematical approach to human movement modeling, more accurately represents 

movements with multi-mass objects than the alternative optimally smooth transport (OST) 

model. To validate the prior work, I developed a visual and haptic virtual environment 

with a five-mass system with friction and connected by springs and viscous dampers. The 

point to point reaching task I implemented required participants to move their hand with 

the set of masses to a target position, thereby generating movement profiles for analysis. 

The experimental design uniquely extends the application of the MHJ criteria to forearm 

pronation movements and my results show that the MHJ model holds. The extension of the 

model to forearm movements and the MHJ criteria for human movements generally provide 

inexpensive models of human movements applicable to fields such as computer animation 

and virtual environments. Portions of this chapter have been accepted for publication in the 

Proceedings of the IEEE 11th International Conference on Rehabilitation Robotics [36]. 

4.1 Introduction to Movement Smoothness 

This chapter presents the experiment design, results and analysis of a human-user study 

that tests and validates the minimum hand jerk (MHJ) model for a human forearm reach

ing movement when manipulating a multi-mass object. The MHJ model is a mathematical 
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optimal control model of human reaching movements that can be used for analysis. Analy

sis of human movement is achieved via two broad computerized approaches which in turn 

serve to capture and represent these movements precisely. The two approaches are motion 

capture and mathematical modeling. In the motion capture approach, a human subject must 

perform the motion under consideration in the presence of a motion capture device, such as 

dedicated cameras or electromechanical position sensors. Typically, the captured position 

data must be merged across trials or subjects to obtain some type of average or represen

tative movement. Intensive post-processing into a 3-D representation is often required as 

well. While these systems do allow movement researchers to access and utilize reliable 

and detailed data, the method relies on expensive equipment and software and thus limits 

the implementation of the technology. Furthermore, if a modification to the represented 

trajectory is desired, the modified motion must be re-captured and processed again. 

Mathematical modeling is another approach to represent human movement. In this ap

proach, an equation represents a family of movements. Movements can be modified by 

changing the equation parameters. The primary benefits of modeling are the ease with 

which it modifies trajectories as well as its low processing costs. The disadvantage of this 

approach is difficulty in developing representative equations that are accurate enough for 

a range of applications. Numerous researchers have chosen to develop these mathematical 

representations via optimal control theory. More specifically, hand reaching movements 

are excellent candidates for the application of optimal control theory. The movement paths 

tend to be straight and smooth, despite the fact that revolute and spherical joints generate 

the movements. These joints create a redundancy that allows many different state trajecto

ries for a given reaching task. In general, however, the path taken by the hand tends to be 

a straight line with smooth bell-shaped velocity profiles [22]. Current research in the func

tioning of the central nervous system (CNS) indicates that the path of the hand is planned 

in the coordinate system defined by the eye and the target location [70]. The CNS then 

computes the smoothest trajectory based on a cost function. Flash and Hogan proposed to 

quantify the smoothness of a human reaching movement via the minimization of the jerk 
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function, one that they defined as the third derivative of position [22]. My work extends the 

validity of the MHJ model to forearm pronation movements in the presence of a multi-mass 

system. 

The minimum hand jerk (MHJ) model, experimentally confirmed by Flash and Hogan, 

was limited to point to point reaching movements in free space. Dingwell et al. proposed 

the optimally smooth transport (OST) method (also called minimum object crackle) as the 

model of choice for reaching movements with a two-mass system [16]. Dingwell sug

gested that people adopt the external end effector as an extension of their own limb [16]. 

Recent work by Svinin et al. broadened the original MHJ model to include dynamic con

straints, namely the equations of motion of the multi-mass system. In the same work, 

Svinin et al. compared the two criteria and found that the OST representation does not ade

quately apply to multi-mass systems . The MHJ model, on the other hand, can sufficiently 

represent any multi-mass system as long as it has an added dynamic constraint [77]. In the 

case of a multi-mass system, Svinin and his collaborators showed that the end effector's 

velocity is limited by an upper bound when using an MHJ model but not when using the 

OST. In this chapter I first replicate the results of Svinin et al. Then, I present and resolve 

two significant deficiencies in their experiment. Finally, I arrive at the same result that MHJ 

is a more accurate representation than OST of upper extremity reaching movements. My 

work extends their model to forearm pronation reaching movements and the results show 

that the MHJ mathematical model matches experimental data while the OST model does 

not. 

4.2 Methods 

I conducted a user study in human performance to record data for comparison analysis of 

the two mathematical movement models. Similar to the work of Svinin and his collabo

rators, I chose to represent the dynamic task in a haptic virtual environment rather than 

build a physical model for motion capture. In the user study, I demonstrate smooth out

put profiles and I use viscous damping, both of which are absent in Svinin's experimental 
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setup. Additionally, my experiment featured a forearm pronation movement rather than a 

compound shoulder, elbow, and wrist movement, like the one Svinin et al. tested. I chose 

forearm pronation because it better matched the virtual environment presented in Section 

3.1 and, for simplicity, limited my analysis to only one joint. Position and velocity data 

were captured from the virtual environment during task performance for later analysis. 

4.2.1 Participants 

Seven participants (all healthy males, ages 18-39, 5 right-handed and 2 left-handed who 

both chose to perform the task right-handed) completed the experiment. A university IRB-

approved form was used to obtain informed written consent from all participants. The data 

from the first two participants were used as pilot trial data for further refinement of the 

experiment and therefore were not included in the analysis. The remaining five participants 

(ID's 3 through 7) took part in the three-session study comprised of one familiarization ses

sion, one training session, and one evaluation session. Each session lasted approximately 

10 minutes. The first two sessions were separated by a time period of 10 minutes to 4 hours, 

while the last two sessions were separated by a time period of anywhere from 2 hours to 24 

hours. Only data from the evaluation session (the third session) were used in the analysis 

of human movements in the virtual environment. 

4.2.2 Apparatus and Virtual Environment 

The experimental apparatus and virtual environment used in this experiment are shown 

in Fig 4.1. The physical apparatus included a nineteen-inch LCD display with a 60 Hz 

graphics software loop rate for visual display and a force feedback joystick (Immersion 

IE2000) for haptic interaction. Participants interacted in a visual and haptic enabled virtual 

environment providing both position and velocity inputs to the joystick by rotating the 

forearm in pronation and simultaneously receiving feedback via both the visual display and 

the haptic force display. The environment was a sufficiently accurate virtual representation 

of the multi-mass system and did not demonstrate chatter on the output or any instabilities. 



63 

participant 

LCD monitor 

virtual task 

joystick 

Figure 4.1 : The experimental setup for the participant to interact with the task in a vir
tual environment included position input as well as haptic force and visual feedback. The 
participant provided both position and velocity inputs to the virtual environment via the 
joystick encoder. An LCD display provided visual feedback to the participant while a hap
tic joystick provided force feedback. 

While the force feedback joystick is a two degree of freedom (2-DOF) device, the exper

iment required only 1-DOF. Therefore, I mechanically restricted the rotation of the joystick 

in ulnar/radial deviation. With the flexion deviation of the wrist restricted by the shape of 

the fixed joystick handle, the only motion allowed was the pronation and supination of the 

participant's forearm. The setup was different from Svinin's planar setup that allowed par

ticipants to move shoulder, elbow and wrist. I chose the 1-DOF rotational setup in order 

to limit the analysis to one-joint human movements rather than three joint movements that 

allow an infinite set of kinematic configurations for the reaching task. 

The hardware and simulation were controlled by a 2 GHz Pentium computer operating 

the haptic loop at 1kHz while movement data was stored at 50Hz. The virtual multi-mass 

system was modeled as a linear second order system on one axis of movement with five 

point masses: m ^ ^ , m,2, m^, m^, and m^ as shown in Fig 4.2. The location of the first mass, 
mhand-> w a s the joystick encoder position, thereby transferring the hand states directly to the 
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Figure 4.2 : The virtual environment included the joystick location and four equal masses 
linked by springs (ks) and viscous dampers (bs) connected in parallel. The experimental 
task presented to the participants was to move all five masses and their hand from the start 
position to the target position 200mm away within a specified time. 

the virtual environment. The remaining four masses were connected to inland via parallel 

spring and damper links (ks and bs in Fig 4.2 respectively). 

Since the participant could only directly manipulate m/,a„^, the 5-DOF system was un

der actuated, thereby differentiating the task from a simple reaching task in free space that 

Fitts's Law is based on and that Flash and Hogan originally studied [21,22]. The parame

ters of the system dynamics were masses mj-s — 3.0Kg and spring stiffness ks = \20N/m 

as modeled by both Dingwell et al. and Svinin et al. [16,77]. In order to ensure settling, 

I added both viscous damping bs = 10 and viscous friction Cf = OAN/m. The mass of 

the hand (m^a„^) depended on the mass of the joystick and the dynamics of the participant 

which are assumed to be much larger than the masses of the virtual task. Each spring-

damper link force is computed solely from the positions and velocities of the attached 

masses as follows: 

Fdisp = ks(x2 -xh)+bs(v2 - vh), (4.1) 

Fi = ks(xi+i -xi) + bs(vi+i - Vj), (4.2) 

F5 = ks(x5-X4) + bs(v5-xA). (4.3) 

In Eq. 4.1, F^sp is the force displayed to the participant via the DAC output current to the 

haptic joystick motor. F[ in Eq. 4.2 is the force across the tth spring and F$ in Eq. 4.3 is the 

spring force acting on the 5th mass which is the end effector. At each haptic iteration, the 
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acceleration, velocity, and position of the end effector (X5, V5,a5), were computed according 

to Newtonian dynamics as follows: 

1 0 
x5 = v5t + -a5t

z, (4.4) 

v5=a5t, (4.5) 

F5 
a5 = v5cf. (4.6) 

m5 

The end effector mass is m$ and Cf is the coefficient of viscous friction applied to all of 

the masses except mhand- The positions, velocities and accelerations of the intermediate 

masses were computed in a similar fashion and in the same order. In this same way, all 

kinematic and dynamic information was updated within three iterations of the haptic loop 

during performance of the task. 

4.2.3 Experimental Multi-mass Task 

The experimental task consisted of the participant moving all masses from a start position 

to a target position as shown in Fig 4.2. The start position was located at 45 ° of forearm 

supination. The rotational distance from the start position to the target location was 60° of 

forearm pronation. The 60° rotation mapped to 200mm of linear travel on the 2D visual 

display. The task presented to the participants was to move all five masses and their hand 

from the start position to the target 200mm away. At the start position the five masses 

were colocated. Position, velocity, and time constraints had to be met at the target location 

for the trial to be successful. The task had three conditions (A, B, and C), each with its 

own set of constraints as listed in Table 4.1. Having three different conditions of the task 

permitted the participants to complete the task in a single oscillation or multiple oscillations 

as Svinin et al. reported. I obtained the constraints both from pilot tests and by matching 

the success rates that Svinin et al. reported. The constraint values chosen show both single 

oscillation solutions (Condition C) as well as multiple oscillation solutions (Condition A). 
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Table 4.1 : Successful Completion Tolerances for the three timed conditions of the task 
where T was the base completion time, AT was the time tolerance, Ax was the final position 
tolerance, and Av was the final velocity tolerance. 

Parameter Condition A Condition B Condition C 

T 2.25s 1.35s 1.00s 

AT ±0.5s ±0.5s ±0.5s 

Ax 0±6mm 0±12mm 0±12mm 

Av 0 ± 6mm/s O i l 2mm /s 0 ± 24mm/s 

4.2.4 Data Collection and Analysis 

Point to point reaching data was obtained for the five participants over three sessions. The 

first session consisted of 90 familiarization trials without any time requirement. This ses

sion permitted success in every trial. The second session, used for training in the task, 

consisted of all three timed conditions (A, B and C), with 50 trials for each and presented 

to all participants in the same order from the slowest to the fastest condition as listed in Ta

ble 4.1. The third session, identical to the second session, was the evaluation session. Only 

the successful trials of the evaluation session were used for analysis. In other words, only 

those trials that met the constraints for all parameters in the current condition were kept for 

analysis (see Table 4.1). Filtering out the unsuccessful trials ensured comparable velocity 

profiles for each condition. A wider tolerance in the completion times would have allowed 

participants to complete the trial successfully more often; however, the raw data had to be 

normalized for trial matching. Also, if the time tolerance were kept small, it would ensure 

that the profiles being compared were similar. During the pilot testing I observed, as did 

Svinin and his collaborators, that when longer completion times are permitted, participants 

may use either a single oscillation or a double oscillation velocity profile to complete the 

task, thereby making comparison difficult. 

By choosing small time tolerances for all three conditions and ensuring single oscilla

tion patterns, the only post processing required was to time-shift the peak velocity in order 
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to normalize the trial. One participant's joystick {rrihand) a n d end effector {m^) velocity 

profiles for Condition B are shown in Fig. 4.3 to illustrate the data shifting. Once the data 

were shifted, the velocity profiles were consistent enough for analysis and comparison to 

the mathematical models. The MHJ model of the end effector trajectory used was: 

x(t) = x0 + (x0 - X / ) ( 1 5 T 4 - 6T 5 - 10T 3 ) (4.7) 

where T = t/tf, x0 is the initial object position and Xf is the final position [22]. The OST 

model of the end effector trajectory used was: 

x[t) = L T 5 ( 1 2 6 - 4 2 0 T + 5 4 0 T 2 - 3 1 5 T 3 + 7 0 T 4 ) (4.8) 

where T = t/tf and L is the length of the trajectory [16]. The inverse dynamics of the 

system were used to compute the theoretical hand trajectories for both models. 

4.3 Results of the Movement Smoothness Experiment 

All five of the participants completed all three conditions. During the third session, the 

worst success rate was 55% while the best success rate was 98% as listed in Table 4.2. 

As previously stated, the pilot data from participants 1 and 2 were not included in this 

work. The success rates were comparable to the rates obtained by Svinin et al. , namely 

25% to 93% success. My success rates are higher than Svinin's in part because all of my 

participants had previous experience with force feedback haptic devices whereas theirs did 

not. 

To achieve a comparison of all participants, each participant's average velocity profile 

is presented in one plot per condition as shown in Fig. 4.4(a), (c), and (e). Joystick data 

represents the hand motions and provides a reasonable estimate of velocity and position of 

the multi-mass system. The end effector velocity profiles are emphasized in this experiment 

in order to compare them with the theoretical MHJ and OST models. Joystick and end 

effector velocity variances decrease as the time requirement of the condition decreases. 

In fact, under Condition A the joystick velocity average for each participant shows the 
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(a) Joystick (m-hand) velocity profiles. 

(b) End effector (ms) velocity profiles. 

Figure 4.3 : Velocity profiles of successful trials in Condition B for Participant 5, a typical 
participant. Profiles are peak velocity shifted for time normalization of the data. The end 
effector velocity profiles shown in (b) are consistent. The hand velocity profiles shown in 
(a) are also consistent and smooth. 
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Table 4.2 : Success rates in percentages for each participant during the evaluation session. 

Participant 

3 

4 

5 

6 

7 

Condition A 

92 

94 

90 

82 

86 

Condition B 

55 

98 

90 

55 

92 

Condition C 

96 

98 

90 

63 

90 

most variance due to Condition A's slower completion time permitting a wider range of 

successful trajectories. Because Condition C has the fastest completion time, it requires a 

trajectory pattern that approaches optimal in order to have success. 

The end effector velocity profiles for the three movement conditions are shown in 

Fig. 4.4(b), (d), and (f). As the task increases in speed, the MHJ theoretical curve with 

an amplitude of 2.5m/s aligns closely with the experimental end effector velocity profiles 

with amplitudes between of 2m/s and 2.5m/s. Condition A is the slowest condition and 

has the largest envelope of time to complete the task. Therefore, the theoretical profiles for 

Condition A have a visibly greater difference from the experimental end effector veloci

ties. The optimally smooth transport (OST) trajectories with amplitudes of 3.5m/s do not 

match the experimental end effector velocity data with amplitudes of 2.5m/s for multi-mass 

systems. 

4.4 Discussion of Movement Smoothness 

The experiment results show that the MHJ model with a dynamic constraint represents hu

man reaching movements with a multi-mass system closer than the OST model. While 

these results are the same as Svinin's, there are three noteworthy differences between the 

studies: the physics model, the apparatus, and velocity differences. The first difference is in 

the physics model of the virtual environment. Svinin and his collaborators reported using 
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(c) Joystick (rrihand) velocity (d) End Effector (m^) velocity profiles Condition B. 

(e) Joystick (m/,am;) velocity (f) End Effector (m.5) velocity profiles Condition C. 

Figure 4.4 : The thick dashed line represents the theoretical MHJ model. The thin dashed 
line represents the theoretical OST model. The thin solid lines are the experimental av
erages. The MHJ model more accurately represents experimental data of the end effector 
velocity profiles. 
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a simple mass-spring system model [77]. In a simple mass-spring system, once energy has 

been input to the system, the end effector settles by oscillating around the joystick. Svinin's 

data do not show such oscillations [77]. However, even for an over-damped system, the set

tling time is too brief to obtain completion times similar to Svinin's. Therefore, I include 

viscous friction between the masses and a modeled virtual surface under the masses to fur

ther reduce the settling time. For these reasons, my model of the dynamic system explicitly 

includes viscous damping and friction. By matching all the other system parameters to the 

Svinin et al. model, I then varied the damping in an attempt to approach the success rates 

and times presented in their work. 

The second difference between my work and Svinin's is the choice of apparatus and 

virtual environment implementation. Svinin and his collaborators implemented the haptic 

virtual environment on a PHANToM 1.5 with 3 DOR Therefore, they had to implement 

virtual walls in the directions orthogonal to the movement line [77]. Interactions with these 

orthogonal forces may be the cause of chatter in Svinin's experimental data as shown in 

the end effector velocity profiles such as the one in Fig. 4.5(a). In my implementation of 

the virtual environment, I use a 2-DOF device and further simplify the environment by 

mechanically securing one of the axes of the device. One axis limits movements of the 

handle along the task axis, thereby avoiding the need for virtual walls. As can be seen from 

Fig. 4.5(b) the experimental end effector velocity has no chatter. 

The last significant difference between my work and Svinin's regards the results with 

peak variations of the velocities across each of the three conditions. The peak velocity of 

the end effector is directly related to the system dynamics through its natural frequency. 

Thus, regardless of the completion time and velocity profile of the hand, the maximum 

velocity of the end effector should remain constant [26]. Svinin's data showed different 

peak velocity for each condition while my peak velocities are constant across all three 

conditions. 

The results from the experiment reported in this chapter show that a sinusoidal veloc

ity movement pattern models an optimal way to perform the task at hand. Since the task is 
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0 .25 0 . 5 0 .75 1 1.25 1.5 

(a) Condition B end effector velocity profile shows chatter (from [77]). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Time (seconds) 

(b) Condition B end effector velocity profile is smooth. 

Figure 4.5 : Comparison of Svinin et al.'s results in (a) and my results in (b) show first that 
the experimental data from both works match the MHJ criteria much closer than the OST 
criteria. Secondly, the end effector chatter evident in the Svinin result is not present in my 
results. 
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under-constrained it is not possible to consider unique optimality. Nevertheless, the conclu

sion afforded by the movement pattern can also be defended by resorting to experimental 

data as presented in the expertise based analysis in Chapter 3. The data clearly shows that 

experts performing this task tend to excite the system in patterns that are approximately 

rhythmic and sinusoidal in the velocity dimension. For these reasons, the guidance design 

described in the next chapter will be based on a sinusoidal movement pattern. 
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Chapter 5 

Progressive Haptic and Visual Guidance: Experiment II 

This chapter presents the expertise-based design of the proposed progressive haptic guid

ance scheme as well as the methods and results of implementing the scheme for training 

in a previously designed dynamic task. This is the main contribution of this thesis. The 

chapter begins with the experimental methods used to design and implement the guidance 

scheme based on the background and motivation presented in Chapter 3. The chapter also 

includes a description of the human-user study designed to test the haptic guidance scheme 

against similar visual guidance, written guidance and no-guidance in both skill performance 

and cognitive workload measures. Section 5.2 presents the results of the experiment while 

section 5.3 discusses the findings. 

5.1 Methods 

A two-month human-user study was conducted to evaluate the performance and workload 

effects of training with haptic, visual or written guidance and to compare each guidance 

scheme to no guidance at all. The haptic and visual guidance schemes were motivated 

by the conclusions from the expertise based performance analysis described in section 3.2. 

The training was conducted in the virtual environment (VTE) described in Chapter 3.1 with 

participants performing the dynamic target-hitting task illustrated in Fig. 5.1. Prior work by 

Li in a similar task helped determine the duration of this training experiment to be eleven 

sessions spaced over one month in order to saturate the participant performance [44,46]. 

This section will cover the design of the guidance controller, experiment protocol, and the 

implementation of the cognitive workload questionnaire (NASA-TLX). 

The expertise analysis in Section 3.2 showed that there exist two key skills required for 
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Figure 5.1 : A participant is sitting at the virtual training environment. The interface in
cludes a visual feedback display and a haptic joystick for force feedback. The training task 
is shown on the visual display with the visual guidance activated. 

success [35]. First, the participant should not deviate from the target axis so as to ensure 

that the object (mz) passes through the targets. Second, the participant should excite the 

system close to its resonant frequency in order to generate rhythmic oscillations of the 

object (m2). Thus, in addition to hit count presented to the participants as the objective of 

the task, I use the two additional measures, trajectory error etraj and input frequency finput, 

to determine performance in the two key skills and suggest that they can be used as inputs 

to a progressive guidance controller [35]. The dependent variables of experiment II are the 

following three measures of performance: 

Hit count 

The objective of the task was for the participant to hit as many targets as possible in each 

20 second trial. A hit was registered whenever the center position of the object (mz) was 

detected to be within 4 mm of the target center. Hit count (nnit), the objective measure of 

performance, is defined as the number of target hits occurring in each trial. 
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Trajectory Error 

Trajectory error (etraj) is defined as the absolute magnitude of the deviation (y direction as 

shown in Fig. 3.4) of the input joystick position (mi) at each sampled instant (50Hz sample 

rate) summed for the entire trial («), and expressed in units of millimeters. Mathematically, 

n 
etraj = £ a f o C y / ) , ( 5 > 1 ) 

1=1 

where y,- is the deviation of one sample. 

Input Frequency 

Based on the observation of the importance of input excitation frequency for this task, input 

frequency {finput) is a measure of the rhythmic performance in a trial. The fast Fourier 

transform (FFT) of the position data of the joystick (m\) provides a frequency spectrum of 

the input signal. For clarification, even though the FFT plot is called a "power spectrum," 

in this particular case it has units of mm2. To simplify the understanding of the measure, 

the definition includes a normalizing coefficient. The equation for the second performance 

measure finput is given in units of (Hz/Hz) as follows: 

finput = -rxf(arg(max(FFT))), (5.2) 
Jr 

where fr is the resonant frequency of the system. Therefore, exciting the system at the res

onant frequency will give a value of finput — \{Hz/Hz) regardless of the system frequency. 

The system parameters and resonant frequency are kept constant in order to eliminate in

teractions with the experimental conditions. 

While the participants were explicitly told that hit count (nnit) was the objective way of 

measuring performance, etraj and finput measure the participants' performance in the two 

key skills of the task. The analysis in section 3.2 showed that these two measures correlate 

well with hit count but not with each other suggesting independence. This fact drove the 

design of the guidance scheme for this work to represent the two measures independently 

and orthogonally. 
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5.1.1 Guidance Scheme Design 

As stated in Chapter 1 the first objective of this research is the design of a progressive haptic 

guidance scheme that integrates performance measures of key skills, thereby augmenting 

human motor skill training. The block diagram shown in Fig. 5.2 describes the haptics-

enabled virtual training environment with haptic guidance augmentation. The trajectory 

error guidance is in the form of augmenting forces modeled as virtual walls. The input 

frequency guidance is in the form of a PD tracking controller moving in a sinusoidal pattern 

at the resonant frequency of the system. 

Human 
Operator Haptic Device 

Track 

Guidance Controller 

states 

position, 
velocity 

System Dynamics 

Virtual Environment 

Figure 5.2 : Block diagram of the haptics-enabled virtual training environment with haptic 
guidance augmentation. The guidance is in the form of virtual walls to mitigate deviation 
from the target axis and in the form of a PD tracking controller. 

As described in Section 3.1.1 the dynamics attributed to the haptic device are neglected 

in this study due to the selection of a high-fidelity haptic interface. Such a device exhibits 

negligible friction, very low effective inertia, and the velocities and accelerations that the 

haptic device experiences in this VTE are relatively low. Therefore, the dynamics of the 

device (specifically its mass) are neglected during the implementation of the controller. 

Parasitic forces due to the existence of the haptic device and modeling errors exist, but these 
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forces are negligible when compared with the forces rendered through the task dynamics 

[43]. 

After completing the initial evaluation session, participants were ranked by n/,,f. The 

ranked participants were then randomly assigned to one of three groups: haptic guidance, 

visual guidance or no-guidance. The written guidance group data used in this study was 

from a first attempt of this same experiment by the author . In that experiment, the haptic 

and visual guidance controllers were flawed and only the written guidance group data could 

be rescued. While all effort was made to mitigate external effects, the written guidance 

results reported here should be taken in consideration with this caveat: this group received 

verbal and written instructions regarding the two skill necessary to successfully complete 

the task. 

The nonguidance control group replaced the written guidance group in the second run 

of the experiment. The session 1 mean scores of all four groups were compared to ensure 

that the groups were balanced at the beginning of the training protocol. The haptic and vi

sual guidance groups received a form of guidance during the guidance subsession of each 

of the nine training sessions. Appendix A documents the hints provided to each partici

pant at the beginning of Session 2, the first training session, depending on their assigned 

guidance scheme. At the end of each 20 second trial, the performance of the participant 

was computed in terms of etraj and finput which then automatically adjusted the inputs to 

the guidance controller. The corresponding adjustments to the level of guidance were then 

presented to the participant in the next trial. One group received its guidance via the haptics 

channel while the other received it via the visual channel. The guidance was in the form 

of two orthogonal regions as shown in Fig. 5.3 and as proposed in the previous section to 

demonstrate the best performance in the two key skills. The first region (shown in a dark 

shade in Fig 5.3) indicates the maximum allowable deviation from the target axis that will 

still result in a target acquisition, thereby reducing etraj. This region does not move in ei

ther the visual scheme or the haptics scheme. The second region (shown in a light shade 

in Fig 5.3) oscillates at the resonant frequency of the system and with an amplitude that, if 
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tracked, will ensure sufficient output amplitude to acquire the targets. The oscillations are 

presented as a cosine which generates a sine wave velocity profile and closely approximates 

an optimally smooth velocity profile as presented in Chapter 4. 

For the visual guidance scheme, the two regions are represented by colored areas whose 

intensities diminish independently as performance improves in each of the two measures. 

Similarly, in the haptic scheme, the edges of the regions are represented by stiff virtual 

walls (see Rosenberg et al. [68]). The minimum force required to penetrate the walls is 

progressively reduced as performance improves thus gradually shifting primary control 

from the robot to the trainee as the training protocol progresses. Both the visual and haptic 

guidance schemes employ exponentially diminishing gains that are controlled by the two 

measures of performance etraj and finput. In the case of haptic guidance, the guidance forces 

are calculated and then combined with the system dynamic forces before being presented 

to the user at the joystick interface on the haptic channel. The trajectory error region is 

represented by two stiff and fixed virtual walls only 2mm apart creating a channel for the 

joystick to travel in. Due to the high initial stiffness, the walls must be modeled as bi-cubic 

splines so that motor torques can ramp smoothly as the joystick enters the wall face. The 

wall forces are computed based on three equations depending on whether the joystick is 

outside a wall, completely inside a wall, or on the wall face (with a 0.95mm tolerance). If 

the joystick is outside the walls, then the equation for the wall force is simply: 

Fw = 0 (5.3) 

If the joystick position is inside the wall, then the wall force is: 

tw = kw (~>-4) 

where kw is the maximum gain for the wall. Finally, if the joystick is on the wall face within 

±0.05mm of the wall face, then the following equation is used to compute the wall force: 

Fw = kw(2t*,-3i$) (5.5) 

where kw is the maximum gain for the wall, and tw is the parametric position on the wall 

face (from 0 to 1 where 1 is the wall depth required to reach maximum force. Figure 5.4 
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object (m2) 

joystick position (m-,) 

etraj guidance region 
(fixed location) 

Active Target 

S 
finput guidance region 
(oscillates at / r ) 

Inactive Target 

Figure 5.3 : Guidance schemes designed from the measures of performance in the dynamic 
task show both input deviation and frequency key skills to the trainees. In addition to a 
nonguidance control group, a second group received progressive guidance only through the 
visual display while a third group received equivalent progressive guidance only through 
the haptic joystick display. A fourth group was given written instructions regarding the two 
skills necessary to successfully perform the task. 
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Figure 5.4 : Virtual walls are designed such that the force displayed is related to the position 
of the joystick. At the wall interface, the force is displayed as a bi-cubic spline to avoid 
chatter that might occur due to high wall stiffness. 
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shows the force profile for the trajectory error guidance on the y-axis. At the beginning of 

training kw is set to the maximum force value allowed by the software limits of the motor 

torque outputs. 

The input frequency region is represented by a 1 DOF proportional-derivative (PD) 

controller that tracks the position of a reference along a sinusoidal pattern assumed to be an 

optimal path as developed in Chapter 4. The frequency of the sinusoid pattern is the same 

as the resonant frequency of the system (see Table 3.1). The equation for the PD controller 

is: 

Fc = kc{xt-x\)+kdi\ (5.6) 

where kc is the position gain, kd is the derivative gain, xt is the position of the reference 

at time t, and x\ and xi are the joystick position and velocity at the current time. The hat 
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denotes that these values are in the rotated coordinate frame of the target axis. The position 

gain, kc, is initially set to the maximum value allowed by the software motor torque limits. 

The derivative gain, kj was set by experimentation to be as small as possible and still 

prevent chatter. A PID control scheme was considered but deemed unnecessary because 

there is no need avoid lagging behind the track. The source code included in the haptic 

loop for the controller can be found in Appendix C 

The progression of the guidance gains vary according to the three conditional state

ments of the control algorithm: increase, decrease, and no change. The decrease condition 

occurs when three successive trials show improvement in one of the two measures of perfor

mance resulting in a gain decrease of the corresponding guidance. The increase condition 

occurs when three successive trials show degrading performance in one or both of the mea

sures, thereby resulting in an increase in the gain of the corresponding guidance. Finally, 

the no change condition occurs when fluctuating performance trends occur resulting in no 

change in the gain. The size of the step was determined from the following exponential 

equation: 

where step = [1, 1.25, 1.5, . . 8]. Thus 4 steps are required to reduce the max force of 

the wall by 50%. The first 20 steps are illustrated in Fig. 5.5. As shown, this step design 

ensures a smooth and almost imperceptible change between steps and also ensures that the 

walls can be completely removed in less than three sessions. 

A pilot study was administered to two trainees prior to the experiment to verify the 

functionality of both the visual and haptic guidance schemes. The changes of both gains 

for both trainees are graphed in Fig. 5.6 and show exponentially diminishing trends with 

some occasions where the gains remained the same or increased, thereby verifying the 

functionality of the guidance schemes. These two trainees did not participate in the main 

study. 
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Figure 5.5 : Virtual wall maximum force is progressively and exponentially reduced as 
long as performance in trajectory error improves. 
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Figure 5.6 : Both visual and haptic guidance gains, based on the measures of performance 
etmj and finput, diminish throughout training in the dynamic task for both haptic (HI) and 
visual (VI) guidance trainees. This suggests that the designed guidance schemes are func
tional. 
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5.1.2 Experiment Protocol 

The experiment protocol consisted of one evaluation session, followed by nine training 

sessions (two or three sessions per week), and one retention session after thirty days for a 

total of eleven sessions as shown in Fig. 5.7. The nine training sessions were spaced two 

to five days apart. The retention session was at least 30 days, but no more than 45 days, 

after the last training session. The protocol was similar in length and structure to one im

plemented by Hancock to study both performance and workload effects [29]. One of the 

factors of the experiment was session (guidance mode was the other factor). Each training 

session contained three subsessions: first, a pre-guidance baseline with five trials; second, a 

guidance subsession with fifteen trials; and third, a post-guidance baseline, again with five 

trials. Each trial lasted 20 seconds for a total duration of approximately nine minutes active 

baseline and guidance time per session. Participants were given the specific objective of 

hitting as many targets as possible in each 20 second trial. Each trial began with the two 

point masses 0.1 mm apart at the center of the screen and ended at precisely 20 seconds 

from the start signal. At the end of both the pre-guidance and guidance subsessions, par

ticipants completed the computerized version of the NASA Task Load Index (TLX). The 

questionnaire typically took about three minutes to complete. At the end of each training 

session, all participants filled out a paper questionnaire self-evaluating and comparing the 

daily performance to the previous session's performance (see Appendix A for the question

naire). Thus the total time required was 16 to 20 minutes per participant per session for a 

total of under four hours over the two-month period. 

5.1.3 Cognitive Workload Assessment 

Subjective cognitive workload was assessed using the NASA Task-Load Index (NASA-

TLX), developed by Hart and Staveland [30] and later implemented in a computer based 

questionnaire [54]. Prior to the beginning of the first evaluation session, each participant 

was provided with a one-page description of the NASA-TLX and descriptions of the six 

scales to be used during the assessment. The computerized version of the NASA-TLX was 



85 

Evaluation Training Retention 

Session 

TTS TTS TTS TTS TTS TTS TTS TTS TTS 

Session 
11 

TQ 

7 days 2-5 days 30 days 
typical 

Legend: 

FfH Evaluation and Retention 

|Hl Pre and Post Subsession 

| | Guidance Subsession 

| | Recesses 

T NASA TLX administered after this subsession 

S Subjective questionnaire after this session 

Q Final Questionnaire administered at the end of the protocol 

- Duration: 25 Trials (20 sec. ea.) 

- Duration: 5 Trials (20 sec. ea.) 

- Duration: 15 Trials (20 sec. ea.) 

Figure 5.7 : The training experiment design consists of eleven sessions including one eval
uation session and one retention session (shown in light gray above). Only during guidance 
subsessions (shown as dark shaded boxes above) do the haptic and visual guidance groups 
receive the corresponding progressively diminishing guidance. Rest periods between ses
sions are indicated with braces and their duration is noted. The NASA-TLX (T) is admin
istered after the pre-guidance subsession (shown in light shading above) and once again 
after the guidance subsession (shown in dark shading above). A subjective questionnaire 
(S) is administered after the post-guidance subsession. A final demographic survey (Q) is 
administered after the last session. 
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integrated to the dynamic task testing such that as soon as the participant finished a subses-

sion, the first of the two-step procedure of the NASA-TLX appeared on screen. In the first 

step, participants rated from low to high (with 20 subdivisions) their perceived workload 

demand on each of the six scales: mental, physical, temporal, performance, effort and frus

tration. Then, in the second step, the participants were asked to pairwise compare all six 

scales to generate a 'weighting' for each scale with a value from 0 to 5. The total overall 

workload score was computed by multiplying each raw scale score with the appropriate 

weighting and then dividing the sum of the six products by fifteen (the number of pairwise 

comparisons). Percentage scores for the six scales were then computed from the total score. 

5.1.4 Participants 

Initially, 57 healthy participants, primarily undergraduate engineering students, were re

cruited for the experiment: 27 for the first run of the experiment and 30 for the second 

run. Recruitment was conducted via classroom announcements with sign-up sheets to sub

sequently e-mail further information. The incentives included snacks after each session, 

cash prizes for top performers, extra credit in the particular course (depending on profes

sor approval and depending on the relation of this experiment to the course content), and 

altruistic support of research. As mentioned in section 5.1.1 the data from the visual and 

haptic groups in the first run had to be discarded because of an error in the code that caused 

the guidance to diminish immediately at the beginning of the protocol with no regard to 

the participants' performance. Therefore, of the first run, only the written guidance group 

could be salvaged. Of the nine participants that were ranked and assigned to the written 

group, one did not complete the experiment for personal reasons. The performance of this 

participant in the first session was roughly equal to the average of the whole group. For 

the second run of the experiment, 30 participants were recruited. Two participants had 

equipment failures in the seventh and eighth sessions respectively and did not immediately 

report the problem to the investigator. The investigator detected the failure during daily 

data download and questioned the participants about the problem at the next session. Both 
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commented that they had felt something awkward in the previous session. The hardware 

failure was a loose cable in the capstan drive system, causing the joystick position to slip 

to the edge of the screen. The entire data for those two participants was ultimately re

moved from the analysis. In order to preserve an equal number of participants per group, 

the data of two other participants was removed. The participants whose data were chosen 

to be removed were determined by their having an identical ranking in their own groups 

as the two whose hardware failed. Hence, the data included in the experimental results 

is from 32 participants (7 female and 25 male; 30 right-handed and 2 left-handed; ages 

18 to 51) primarily undergraduate engineering students with no previous experience with 

haptic devices. Despite these changes to the data, initial performance evaluation in terms 

of hit count still presented no significant differences between groups as shown in Fig. 5.8. 

All 32 participants completed the protocol. A university IRB approved form was used to 

obtain informed written consent from all participants. To allow for simultaneous testing, 

two experiment stations were assembled. Participants were assigned to one station for the 

duration of the training protocol to mitigate effects due to differences in the stations. The 

visual displays and force feedback joysticks were equivalent for the two stations. One of 

the stations could be adapted for left-handed participants by moving the joystick to the op

posite side of the display. Moreover, a mirrored version of the task was implemented in the 

software so that the task continued to be from lower flexion to upper extension. 

5.1.5 Data Analysis < 

For all participants, values for n^u, etraj, and finput for each subsession are recorded: five 

trials for pre-guidance and post-guidance subsessions and fifteen trials for the guidance 

subsession. Thus each of the 32 participants has five data points (or fifteen during guid

ance) for each of the eleven sessions of training resulting in a total of 1760 observations 

of each measure for pre-guidance and post-guidance subsessions (5 trials, 11 sessions, and 

32 participants) or 5280 observations for the guidance subsessions (15 trials, 11 sessions, 

and 32 participants). The data were also averaged by guidance mode to be fit with ex-
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Figure 5.8 : Formation of groups after completing the evaluation session. Participants were 
rank ordered by performance in terms of hit count and then randomly placed in one of the 
three groups: no-guidance (N), haptic guidance (H), and visual guidance (V). The written 
guidance (W) group data was transferred from the first run of the experiment. The means 
and standard errors of the means fail to show significant difference between the four groups. 
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ponential curves using MATLABrM and the best fit curves were determined from the R2 

values. Analysis of variance (ANOVA) was used to determine significance of the factors 

between groups. The guidance mode factor had four levels, namely haptic guidance, visual 

guidance, written guidance,and no-guidance. Furthermore, guidance mode was a between-

subjects factor since eight different subjects were used for each one of the modes. Session 

was a within-subjects factor (also called repeated measure because the measure was re

peatedly taken on each participant for each session) since the same subjects were used for 

all 11 sessions. Thus the experiment was a factorial design with guidance mode (4) and 

session (11) as factors. A post hoc test performed on the data of each session identified the 

significant differences in performance between the three guidance modes and during each 

session. 

For the subjective workload analysis, each participant completed the computerized ver

sion of the NASA TLX after both the first and second subsessions resulting in two data 

points per session averaged over the eight subjects per group for a total of 88 observations 

(2 subsessions, 11 sessions, 4 groups) for each of the six workload measures. An anal

ysis of variance analysis (ANOVA) was conducted on the total workload as well as the 

six workload measures. Finally, at the end of each of the nine training sessions (see Fig. 

5.7 the participants completed a short subjective questionnaire with three or five questions 

depending on the group assignment. The questions asked participants to compare their per

formance in both the guidance and post-guidance subsessions to the previous session. It 

asked, "Did your performance improve? Y/N and why?" The third question asked if in the 

current session the participant had had any new insight that helped improve performance. 

For the visual and haptic groups a perception question asked: "which of the two skill guid

ance methods did you still receive." Finally, these same two guidance groups were asked 

if they thought that the guidance helped and if so, how. The results of the subjective ques

tionnaire are documented in Appendix B. The the performance and cognitive results are 

reported in the next section. 
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5.2 Results 

The data analysis and results are obtained from the two-month human-user study. A total 

of 32 participants completed the protocol. Section 5.2.1 includes comparisons of guidance 

modes in terms of performance, estimations of skill acquisition rates, analyses for signif

icant factors, and differences at the experimental and session levels. The next subsection 

reports comparisons of guidance modes in terms of cognitive workload and the final sub

section reports analysis of the subjective questionnaire administered after each session. 

5.2.1 Measures of Performance 

The results and data analysis are presented for the four guidance groups in terms of perfor

mance. Figures 5.9 through 5.14 show the performance of the four groups (no-guidance, 

haptic guidance, visual guidance and written guidance) across the three measures («/,if, 

etraj, and finput) for both the guidance subsessions and the post-guidance subsessions. The 

pre-guidance subsession results are not included in the analysis because the data fail to 

show significant differences in performance between guidance modes during those subses

sions. The scores of the fifteen guidance trials (or of the five post-guidance trials) for the 

eight participants of each mode are averaged to obtain one mean score per subsession in 

each performance measure. The data points plotted in Figs. 5.9 through 5.14 represent the 

mean of the subsession scores of each guidance mode with error bars indicating the stan

dard error of the mean. The nnn scores for all participants show increasing trends across 

all sessions as training progressed with saturation at about 22 hits per trial. Scores for etraj 

show decreasing trends with a saturation around 30mm while finput scores show increasing 

trends across all sessions with saturation just below 1 Hz/Hz. In order to visualize trends 

that suggest skill acquisition, in performance from session to session power functions are 

fit to the data according to the following equation: 

y = axb + c (5.8) 



91 

where a, b, and c are the parameters of the equation and have R2 values in excess of 0.95 

except for the haptic guidance group in the guidance subsession that had an €traj curve fit 

of R2 = 0.85. The fit curves are also plotted in Figs. 5.9 through 5.14 along with the mean 

subsession scores and associated error bars. A summary of the curve fitting results, includ

ing estimated parameters and goodness of fit for each of the four groups of participants 

are shown in Table 5.1. During both guidance and post-guidance subsessions, all guidance 

modes reach saturation in terms of the measures of performance. During the guidance sub-

session, the haptic group reaches saturation at a significantly faster rate (parameter b) than 

the other three groups in terms of all three measures performance as shown in Figs 5.9, 

5.11, and 5.13. In other words, during the guidance subsession, the haptic guidance mode 

increases in performance at a faster rate. This performance rate increase, however, is not 

observed during the post-guidance baseline as shown in Figs. 5.10, 5.12, and 5.14. The 

visual guidance group also appears to perform slightly better than no guidance during the 

training subsessions. Moreover, the visual and written guidance groups appears to outper

form the other groups early in training (sessions 2 and 3) in terms of etraj and finput in 

the post-guidance subsessions suggesting that being given the instructions visually and in 

writing was beneficial. 

Table 5.2.1 summarizes the statistical analysis of performance as measured by the three 

dependent variables, n^u, etraj, and finput- Each guidance group is analyzed using a two-

way analysis of variance (ANOVA) in order to highlight significant effects of group and 

session. For all three measures of performance in both subsessions, the effects of ses

sion are significant as shown in Table 5.2.1. With respect to guidance mode, the guidance 

subsessions show significant differences, while the post-guidance subsessions fail to show 

significant differences. The interactions between guidance mode and session fail to show 

statistically significant differences. 
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Figure 5.9 : Performance in terms of hit count during the guidance subsessions. The haptic 
group appears to demonstrate a higher performance in sessions 2-6 and a higher rate of 
skill acquisition. The other groups do not appear from the curve fits to be different from 
each other. 
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Figure 5.10 : Performance in terms of hit count during the post-guidance subsessions. No 
obvious differences between groups are immediately visible. 
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Figure 5.11 : Performance in terms of trajectory error during the guidance subsessions. 
The haptic guidance group appears to have significantly smaller etraj. Both visual and and 
written guidance groups also appear to have lower etraj early in the training protocol. 



95 

jg a) 
1 .a -5 3 O • S o o 

if ll 
i 

I 

o 
co o o o 

lO 
o 

fBJ»= 

o 
00 

o 
CM 

Figure 5.12 : Performance in terms of trajectory error during the post-guidance subsessions. 
Visual guidance group appears to have a lower error than the remaining groups. 
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Figure 5.13 : Performance in terms of input frequency during the guidance subsessions. 
Haptic guidance appears to excite the system near resonance starting at the first training ses
sion. Visual and written guidance also appear to have better performance than no-guidance 
early in the training protocol. 
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Figure 5.14 : Performance in terms of input frequency during the post-guidance subses-
sions. Visual guidance may slightly outperform the other groups in sessions 2 and 3. 
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Table 5.1 : Summary of 
acquisition rates. 

Guidance Group measure 

No-Guidance elraj 

Jinpul 

Ihit 

Haptic Guidance e,raj 

Jinpul 

Ihit 

Visual Guidance e,mj 

Jinpul 

"hi. 

Written Guidance e,mj 

Jinpul 

the curve fitting procedures f( 

Goodness of fit 

Guidance 

R1 Fit Parameters 

0.96 a= 31.7, 6 = 0.15, c = -23.8 

0.95 a= 52.8, 6 = -0.90, c = 20.8 

0.98 a = -0.76, b = -0.37, c= 1.29 

0.95 a = -13.5,6 = -1.33, c = 22.1 

0.87 a = 39.9, 6 =-26.8, c = 21.7 

0.99 a = -0.44, 6 = -3.83, c = 0.96 

0.98 a=33 .0 , 6=0.15, c= -25 .4 

0.98 a= 47.1, b = -1.42, c = 24.0 

0.99 a = -0.49, b = -1.49, c = 0.94 

0.98 a = -85.0, b = -0.08, c = 91.4 

0.98 a = 4 1 . 1 , b = -0.57, c = 14.9 

0.99 a = -0.36, b = -1.14, c = 0.98 

estimating guidance mode skill 

Goodness of fit 

Post-Guidance 

R2 Fit Parameters 

0.97 a = -85.0, b = -0.06, c = 93.6 

0.98 a = 38.5, b = -1.06, c = 25.0 

0.99 a = 5.69, 6 = 0.03, c = -5.07 

0.95 a= -56.6,6= -0.11, c = 65.0 

0.95 a = 37.1, 6 =-0.87, c = 25.1 

0.98 a = -0.45,6 = -0.73, c = 1.04 

0.97 a = -34.3, 6 = -0.21, c = 42.7 

0.98 a = 39.8, i = - 1 . 3 0 , c = 23.9 

0.99 a = -0.44,6 = -1.71, c = 0.95 

0.99 a = -164, b = -0.03, c = 173.3 

0.99 a =47.8, 6 =-0.70, c = 18.8 

0.99 a = -0.60,6= -1.14, c = 1.00 
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Table 5.2 : Statistical analysis summary for each on the three measures of performance 
shows significant differences during the guidance subsession but fails to show significant 
difference during the post-guidance subsession 

Metric Effect During Guidance P value Post-Guidance P value 

rihii 

Zlraj 

Guidance 

Session 

Interaction 

Guidance 

Session 

Interaction 

F(3,348) = 9.25 

F(10,341) = 39.05 

F(30,337) =0.95 

F(3,348) = 10.66 

F(10,341) = 22.85 

F(30,337) = 1.20 

p< 0.0001* 

p< 0.0001* 

p = 0.5505 

p < 0.0001* 

p< 0.0001* 

p = 0.2228 

F(2,348) = 3.39 

F(10,341) = 36.73 

F(30,337) = .31 

F(2,348) = 1.12 

F(10,341) = 18.52 

F(30,337) = 0.33 

p = 0.0183* 

p< 0.0001* 

p = 0.9998 

p = 0.341 

p < 0.0001* 

p = 0.99976 

Guidance F(3,348) = 4.77 p = .0143* F(2,348) = 0.65 p = 0.5863 

finpm Session F(10,341) = 26.92 p< 0.0001* F(10,341) = 28.53 p< 0.0001* 

Interaction F(30,337) =0.74 p< 0.8657 F(30,337) = 0.72 /? = .8597 

In both guidance and post-guidance subsessions all three measures of performance 

show significant main effects of session as documented in Table 5.2.1. The interaction 

effects during guidance are also all significant. The guidance mode factor shows signif

icant main effects in terms of all measures during guidance (see Table 5.2.1). However, 

in the post-guidance subsession, guidance mode fails to show a significant main effect in 

terms of input frequency. Furthermore, the interaction effects are mixed. 

In order to identify significant differences in performance between the four groups in 

each session, a post hoc Scheffe test is performed on the data of each set of subsessions 

and results for the guidance subsession are presented in Fig 5.15. The figure shows the 

six pairwise comparisons of the four guidance modes. Each sub figure has three rows 

corresponding to three measures of performance and eleven columns for the sessions. Cells 

with asterisks indicate a significant difference between the pair of groups. A darkly shaded 

cell indicates to a 95% confidence level that a significant difference exists between the pair 

of groups. A lightly shaded cell indicates with to a 90% confidence level that there is a 

significant difference. Lightly shaded cells with no asterisk indicate that the data fails to 
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Legend: ^^Significant Difference Between Groups 
with 95% confidence (p<0.05) 

[_^jSignificant Difference Between Groups 
with 90% confidence (p<0.1) 

|_J Failed to show Significant Difference 
with 90% confidence (p<0.1) 

Figure 5.15 : Summary of the post hoc test to summarize differences between guidance 
modes during the guidance subsession. Test shows that the haptic guidance is significantly 
different from all three of the other guidance schemes during sessions 2 through 7. 

show significant differences. The test demonstrates, first of all, that the groups are balanced 

after session 1 in terms of nnjt, but written guidance is significantly different in terms ofetraj 

and finput- From sessions 2 through 7, the haptic guidance is significantly different from 

no-guidance in terms of all three measures. Also from sessions 2 through 7, and comparing 

haptic guidance to both written and visual guidance, there are significant differences in 

terms of both «/,,-, and etraj- However, differences in terms of finput are mixed for the same 

sessions. Results of comparisons for sessions 8 through 10 are mixed. In session 11 the 

haptic guidance group performs significantly worse in all measures. This last result may 

in part be due to one participant performing much worse in session 11 having undergone 

surgery between session 10 and 11 and delaying to complete session 11 for almost two 

months. 

With regard to the post hoc test of post-guidance subsessions, significant differences 

are mixed and sporadic. Visual guidance is significantly different from written guidance in 

terms ofetraj in sessions 5 and 6. Visual guidance is also significantly different from haptic 
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guidance in terms of error in sessions 5,8 and 9 and significantly different in terms of hit and 

error from no-guidance in session 10. Haptic guidance is significantly different in terms of 

error from all three other groups. All of these post-guidance subsession comparisons are 

made to a 95% level of confidence. 

To further analyze differences in learning patterns changes in performance from one 

subsession to the next were computed for the three groups (This discussion does not in

clude the written guidance group from the first run of the experiment as explained in Sec

tion 5.1.1.). Figure 5.16 illustrates the differences utilizing the pre-guidance subsession as a 

reference and then computing the differences. In Fig. 5.16(a) the black bars indicate that the 

greatest change in performance for the haptic group occurs between the pre-guidance and 

guidance subsessions. The improvement is then lost as the gray bar comparatively shows 

when the haptic guidance is removed in the post-guidance subsession. There is some in

crease in performance in the first five sessions when the participants come back the next day 

as shown by the white bars. Figure 5.16(b) shows the nonguidance control group learning 

effects to be gradually increasing from subsession to subsession and somewhat consistent 

across the training protocol. This group serves as a baseline for expected improvement 

from subsession to subsession and from session to session. The final sub figure 5.16(c) 

shows improvements for the visual group occurring not only between pre-guidance and 

guidance but also between the guidance and post-guidance subsessions suggesting that this 

group improves the most after having been shown the guidance but are undisturbed by the 

guidance scheme when they are again in the unassisted post-guidance subsession. 

5.2.2 Cognitive Workload Measures 

The subjective workload tested via the NASA Task Load Index (TLX) also presents signifi

cant results. Figure 5.17 shows the overall workload computed across all pre-guidance and 

guidance subsessions for the four groups. The visual guidance group reports significantly 

greater workload than both the nonguidance and written guidance groups. The haptic guid-
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• Guidance 
0 Post-Guidance 
D Pre-Guidance Following Session 

Session 

(a) Haptic guidance group subsession differences in terms of hit count. 

Guidance 
Post-Guidance 

D Pre-Guidance Following Session 

Session 

(b) Nonguidance control group subsession differences in terms of hit count. 

• Guidance 
® Post-Guidance 
B Pre-Guidance Following Session 

Session 

(c) Visual guidance subsession differences in terms of hit count. 

Figure 5.16 : Differences in subsession performance. The Pre-guidance of each trial is the 
base score. Bars represent: guidance subsession minus pre-guidance shown in black, post-
guidance minus pre-guidance shown hatched, and pre-guidance of the next session minus 
the current pre-guidance session) 
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Figure 5.17 : Total subjective workload computed via the NASA-TLX for the four groups: 
nonguidance (N), haptic guidance (H), visual guidance (V), and written guidance (W). 
Significant differences (with a 95% level of confidence) are shown above the mean with 
the initials of the modes that are different. Error bars indicate standard error of the means. 
Visual guidance mode records the highest workload and is significantly different from the 
written and nonguidance groups. Data fails to show significant difference between the 
haptic guidance and the visual guidance groups. 

ance group also has a significantly higher score than the written group but the data fails to 

show any significant differences by comparison to the other two groups. 

Upon analyzing the six scales separately, more details emerge. Figure 5.18 shows indi

vidual subplots for each of the six scales. Each subplot presents the four guidance groups 

as vertical bars. The error bars indicate standard error of the means of the eight participants 

per guidance mode. Significant differences with a 95% level of confidence are listed above 

each bar. The visual guidance group reports significantly higher mental workload than the 

haptic group, but both fail to show significant differences from the no-guidance and written 

guidance groups. The visual group presents significantly higher frustration than all three 

groups. This particular result is further confirmed by the subjective questionnaire admin

istered after each session and reported in Section 5.2.3. The nonguidance control group 

displays significantly less frustration than all three guidance groups. As might be expected, 
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Table 5.3 : The six scales of the NASA TLX cognitive workload assessment show signif
icant main effects of guidance mode for both the guidance and the post-guidance subses-
sions. Asterisk * indicates a — 0.05 confidence interval. 

TLX Scale Pre-Guidance Guidance 

Mental 0.024* 0.025* 

Physical < 0.0001* < 0.0001* 

Temporal 0.25 0.032* 

Performance < 0.0001* 0.0037* 

Effort 0.002* 0.0002* 

Frustration < 0.0001* < 0.0001* 

the haptic group reports significantly higher physical workload than visual but not different 

from no-guidance. The the visual group reports significantly less physical demand than the 

other three groups. In terms of the temporal workload, both haptic and visual groups report 

greater workload than the no-guidance group. The written guidance group reports signifi

cantly greater effort than both visual and haptic guidance, while the no-guidance group has 

a significantly higher performance demand over visual and written guidance but failed to 

show a difference from haptic guidance. 

Analysis of variance on the six cognitive workload scales indicated a significant main 

effect of the guidance mode in both the pre-guidance and guidance subsessions but failed to 

indicate a main effect of session in any of the six measures. These results are summarized 

in Table 5.3. 

5.2.3 Subjective Questionnaire Analysis 

Two subjective questionnaires were administered, one at the end of each session and an

other longer one at the end of the training protocol (see Appendix A for copies of the ques

tionnaires). All participants completed a short questionnaire at the end of each training 

session (see Fig. 5.7). The questionnaire included three questions that everyone answered 
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Figure 5.18 : NASA Task Load Index. The six workload scales show the differences of 
the mean scores of the four guidance modes: no-guidance (N), Haptic (H), Visual (V), and 
Written (W) guidance scheme. Error bars indicate standard errors. Significant differences 
are indicated with an asterisk (*) and the initials (N, H, V, or W) of the different groups. 
For bars not indicated with asterisks, the data failed to show significant differences. 
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and two additional questions that only those in the three guidance groups answered regard

ing the guidance itself. The first two questions asked of everyone compared participant 

perception of current session performance to that of the previous session. The third ques

tion asked of everyone had to do with skill learning. Those who received guidance were 

asked about it and whether or not the guidance helped. The answers to this questionnaire 

are documented in Appendix C. 

5.3 Discussion 

This chapter presents the implementation of a novel progressive haptic guidance scheme 

designed to improve the effectiveness of a virtual training environment used for motor skill 

acquisition. The scheme integrates the measurements of key skills as input gains as pro

posed in Chapter 3. Depending on the participant's performance from trial to trial, the 

guidance gains progressively diminish, thereby reducing the level of guidance. The func

tionality of the progressive scheme is demonstrated via a pilot experiment showing the 

general diminishing trend of the guidance gains over the duration of the training proto

col. The results of this methodology confirm prior work that had suggested that providing 

guidance when needed is more effective than a fixed amount of assistance [44,64]. 

Furthermore, because saturation does not occur until after the sixth session, this task 

provides sufficient complexity to be able to study the effects of guidance as recognized by 

Todorov et al., Yokokohji et al., and Adams et al. [5,79, 82]. The analysis of variance 

showed, as expected, that session is a significant factor and demonstrates that skill acqui

sition is occurring from session to session. The trends are approximated well by power 

curves in all three measures of performance: hit count«/,,-,, trajectory error etraj, and input 

frequency f-mpM, indicating skill acquisition "learning rates." The haptic guidance mode 

has the greatest rate of b = —1.33 (parameter b of the curve fit equation 5.8) compared 

to b = 0.15, b = 0.15 and b = 0.08 for visual, written, and no-guidance respectively. This 

"learning rate" difference does not hold for the post-guidance subsession, suggesting a lack 

of transfer to the un-guided task. Nevertheless, at least the guidance group does not per-
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form significantly worse than no-guidance in the post-guidance subsession as Li reported 

for a fixed-gain guidance scheme [46]. Dependence on the proposed haptic guidance is to 

be expected since the guidance drives the participant at the beginning of training. Toward 

the end of training, however, as the participant's performance improves and the guidance 

diminishes, the dependence is eliminated. The post-guidance data from each session fails 

to show significantly worse performance that might indicate the adverse effects of depen

dence. 

The post hoc Scheffe pairwise test exposes significant differences between guidance 

modes within the sessions (see Fig 5.15). The results show that from sessions 2 through 7, 

the haptic guidance mode is significantly different from no-guidance in terms of all three 

measures. Comparing haptic guidance to both written and visual guidance, also from ses

sions 2 through 7, there are significant differences in terms of both nnjt and etray, however, 

differences in terms of finput are mixed. These results are true for the guidance subsession 

but not for post-guidance, indicating that the proposed haptic guidance can be applied early 

in training without affecting the training outcome and it does not significantly improve per

formance in the post-guidance session. Interestingly, the performance gains obtained by 

the haptic guidance are not obtained by either visual or written guidance. 

These results suggest that haptic guidance, based on key skill measurements, is ef

fective early in the training protocol when participants are beginning to understand the 

skills required for the task but should be progressively removed to avoid possible depen

dence as suggested in prior work [46]. The resolution of the experiment design may be 

too coarse to capture the changes in performance occurring in the first three sessions. An 

experiment with finer resolution may be required. During the post-guidance baseline sub-

sessions the data fails to show significant differences between the haptic guidance group 

and the nonguidance group suggesting that the skill acquired during haptic guidance does 

not transfer to the post-guidance unassisted condition. Further insight, however, is obtained 

from the results of the cognitive workload assessment. 

The results of the NASA-TLX, administered during each session, show that the hap-
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tic guidance scheme generates less frustration and mental workload overall as shown in 

Fig. 5.18. This result, that haptic guidance reduces mental workload, confirms prior find

ings by Griffiths and Gillespie that had the same result utilizing secondary task tech

nique [27]. The visual guidance group reports significantly higher mental workload than 

the haptic group, but both fail to show significant differences from the no-guidance and 

written guidance groups. The visual group presents significantly higher frustration than 

all three groups. This particular result is further confirmed by the subjective questionnaire 

administered after each session and reported in Section 5.2.3. The control group displays 

significantly less frustration than all three guidance groups. As might be expected, the hap

tic group reports significantly higher physical workload than visual but no different from 

no-guidance. The visual group reports significantly less physical demand than the other 

three groups. In terms of the temporal workload, both haptic and visual groups report 

greater workload than the no-guidance group. The written guidance group reports signifi

cantly greater effort than both visual and haptic guidance. Although the no-guidance group 

has a significantly higher performance demand over visual and written guidance, it failed 

to show a difference from haptic guidance. 

A trade off between performance and workload may exist. In some cases, the addition 

of guidance schemes may be warranted if the workload is reduced, even if the performance, 

or rate of improvement, does not increase. On the other hand, guidance schemes that gen

erate an improvement in performance may not be acceptable if the workload in a particu

lar category is unduly increased. Therefore, it is important that haptic guidance schemes 

used for training be evaluated not only according to performance improvements but also 

according to changes in workload. Quantitative measures as the NASA-TLX, subjective 

workload assessment technique (SWAT), or physiological measures of workload should be 

used if practical. This recommendation is in keeping with the interdisciplinary nature of 

haptics research, bridging the gaps between mechatronics engineering, cognitive science, 

and neurobiology. 
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Chapter 6 

Conclusions and Future Work 

Novel haptic interface designs attempt to reproduce real-world tasks as accurately as pos

sible or to provide virtual environment augmentation that will assist or guide the trainee in 

some way during skill acquisition. This thesis presents the implementation of a progres

sive haptic guidance scheme designed to improve the efficiency of an augmented virtual 

training environment to be used for skill acquisition. Based on a detailed analysis of the 

performance of experts and novices executing a dynamic motor skill task, I identified the 

key skills required for success and motivated the progressive haptic guidance scheme. The 

modification of a previously-developed virtual environment target-hitting task accommo

dates the guidance controller for investigation. The research compares the effectiveness 

of this scheme to a visual guidance that presents the same information in an exclusively 

visual way rather than using haptics. The research also compares this same scheme to 

written guidance and to no guidance at all. The user study is a training protocol that lasts 

eleven sessions over a two-month period. During each session, target hit count, trajec

tory error, and input frequency quantify performance. The latter two measures indicate 

the level of proficiency in the two key skills; by feeding their values into the controller, it 

updates the level of guidance offered to the participant. In addition to these measures, the 

computerized version of the NASA Task Load Index (TLX) was administered to all par

ticipants during each session, thereby providing workload measurements throughout the 

entire training period. An exit questionnaire also provided subjective data. The analysis of 

the experimental results demonstrates that during the time the guidance is active, the hap

tic guidance significantly outperforms visual guidance, written guidance, and no guidance 

at all in all three measures of performance until late in the protocol when all four groups 
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of participants converge at approximately the same level of performance. After each ac

tive guidance subsession, participants complete a short no-guidance baseline test. During 

these baseline subsessions the data failed to show significant differences between any of the 

groups. These data suggest that the level of proficiency acquired during haptic guidance 

does not transfer to the unassisted condition. The results of the cognitive workload assess

ment, however, show that the haptic guidance scheme tends to generate less frustration and 

mental workload than the visual and written guidance schemes overall. Haptic guidance 

tends to produce greater physical workload than the visual guidance scheme. Visual guid

ance is significantly lower than the other schemes on this count. The no-guidance group 

is significantly less frustrated than the others but reports the same high physical workload 

as the haptic group. The written guidance group reports significantly greater effort than 

either guidance group and is significantly more frustrated than the no-guidance group. The 

group's performance data, however, failed to show any significant differences from the no-

guidance group, a result that suggests that the advantage of being shown a skill - either via 

the visual or the haptics channel - over being told how to perform the same task does not 

reside in improved performance but in reduced frustration. 

The results of two user studies here presented address three problems in the develop

ment of haptic guidance in virtual training environments. The first problem is to identify 

the key skills required for training success. The second problem is to develop quantita

tive performance and cognitive skill acquisition measures, which will help ascertain the 

effectiveness of the guidance. The third problem is to design haptic guidance to provide 

appropriate and timely assistance in facilitating skill acquisition by either accelerating or 

improving training outcomes that outperform no guidance at all. The design of the haptic 

guidance scheme integrates measures of performance of key skills by comparing and ana

lyzing the execution of the dynamic human motor task by both experts and novices. This 

design also incorporates a preferred state trajectory validated by a movement smoothness 

model described in the first experiment. 

Previous shared-control experiments by other colleagues have included the presentation 
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of three sets of system parameters to participants and followed by the random alteration of 

those parameters from trial to trial. The change in parameters modified the resonant fre

quency of the two-mass system, causing participants to require more sessions to achieve 

performance saturation. This study maintains the system parameters constant, thereby re

ducing the number of significant experimental factors. This reduction itself, by reducing 

the complexity of the task allows participants to saturate their performance sooner than in 

previous experiments. One future direction of research would be to again increase the com

plexity of the task to ensure slower rates of skill acquisition. This could possibly demon

strate further improvements in the effectiveness of haptic guidance. Another method to 

increase the task complexity would be to require the excited mass to stop on the target 

rather than allowing overshoot. In addition to raising the complexity of the task, this re

quirement would open up the opportunity to analyze the task with optimization techniques. 

This change, in turn, would allow the development of alternate performance measures that 

are task-independent. Findings suggest that if the early part of the training protocol presents 

multiple conditions, it will initially affect performance adversely but will ultimately result 

in better overall performance. This is another possible direction of research. Since the pro

gressive guidance scheme is an essentially different training condition from the nonguid-

ance task, there is a possibility that it may produce better results in participants facing a 

third experimental condition. Another line of research that follows from the results of this 

thesis is to develop "smart" progressive guidance schemes. In this study, the gains of the 

guidance were varied by fixed amounts. Better results may come from guidance that can 

recognize not only an improvement in performance but also how much of an improvement 

has been observed and adjust the level of guidance based on that. Input frequency is a 

reliable measure of rhythmic motions such as the one here studied, but it fails in typical 

point-to-point reaching tasks. Trajectory error is an effective measure in most reaching 

tasks but is ineffective when task success does not depend on the path. The most important 

future research will apply the augmented VTE design considerations developed in this the

sis within a study that would compare the effectiveness and outcomes of haptic guidance in 
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a VTE to no guidance at all in a targeted real-world task such as pole-balancing, juggling, 

bicycling, or navigation of an under constrained vehicle. 

These are the significant contributions of this research: First, the analysis of relative 

expertise thereby identifies and validates performance measures of key skills. Second, 

when the proposed haptic guidance scheme is active, it improves task performance. Third, 

the research suggests that skill performance measures should be supplemented by cognitive 

workload measures, such as the NASA-TLX, to more completely evaluate the effectiveness 

of haptic guidance schemes. Fourth and finally, the guidance scheme integrates progressive 

performance gains with an optimized path. The results of this thesis demonstrate that a 

progressive haptic guidance scheme, one that integrates an emphasis on key skills with 

measures of performance, is effective early in the training protocol. The haptic guidance 

design considerations and the findings of the analyses reported in this thesis can be applied 

to the development of an array of virtual training environments: surgical tasks, vehicle 

control, sports training, and rehabilitation. 
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Appendix A 

Forms and Testing Documents 

This appendix includes the forms and documents used in executing the experiments. The 

forms include: 

• IRB Sample Form 

• Invitational Flyer 

• Experimenter Instructions for Session 1. 

• Experimenter Instructions for session 2-11. 

• Experiment Description for Participants 

e NASA-TLX Questionnaire Description 

• Hints Provided to Each Group at Session 2 

• Session Subjective Questionnaire: No Guidance 

• Session Subjective Questionnaire: Written Guidance 

• Session Subjective Questionnaire: Visaul and Haptic Guidance 

• Final Questionnaire 
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IRB Form 

Rice University 

Consent to Participate in a Research Study 

Study Title: Augmented Haptic Feedback for Training 

Principal Investigator: Dr. Marcia O'Malley 

Interviewer: Joel C. Huegel 

The purpose of this study is to determine whether adaptive assistive forces, displayed 

via an arm exoskeleton robotic device or a joystick robotic device and in tandem with 

interaction forces that arise when interacting with a virtual environment, increase efficiency, 

retention, and transfer of training in manipulation and assembly tasks. 

You are being asked to participate in this study because you are a healthy individual 

with no known perceptual disabilities. You will be asked to: 

• Wear/manipulate one or more of the haptic interfaces 

• Interact with virtual environments that simulate the visual and haptic (force) cues the 

exist during manipulation (e.g., maneuvering blocks through a maze) and assembly 

(e.g., building objects out of component pieces) tasks 

• Train to perform these manipulation and assembly tasks with and without assistive 

forces displayed at the same time as the interaction forces. For example, you will 

feel the block surface and resistance when you push it through the environment. At 

the same time, you may feel that there are certain paths through the workspace that 

are easier to move along. These paths are desired paths that we are trying to teach 

you. 

• Sessions will be no longer than one hour. 

• Repeatedly perform the manipulation and assembly tasks so that we can measure 

your learning rates with and without the assistive forces, your retention of training at 

given intervals (two to four weeks between training sessions), your ability to adapt to 
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different systems, your perception of differences between systems, and your ability 

to transfer that training to a similar real-world task. 

You may be asked to test for several sessions under different simulation conditions. 

You may find the following risk(s) or discomfort(s) from participating in this study: 

First, there are minimal risks of injury to you due to the hardware. There are safety shut-

off s and hardware limits for each of the haptic interfaces. All interactions with the devices 

will be closely supervised by the PI or the research assistant. There is also the risk of 

fatigue of the arm due to the weight of the exoskeleton device and repeated arm motions 

with all of the haptic interfaces. 

Personal benefits you may receive from this Study are the chance to interact with state-

of-the-art virtual environment technologies and receive extra credit for certain courses in 

which you are enrolled (pending instructor approval). 

Neither your name nor information that could identify you personally will be used in 

the data analysis and publication/ presentation of this study. Your identity will be kept 

confidential by: You will be assigned a number and your name will not be recorded. Your 

participation is completely voluntary. You may refuse to participate or withdraw your con

sent or discontinue your participation in the study at any time without penalty or loss of 

benefits or rights to which you might otherwise be entitled. 

If you have any questions about this study, you should feel free to ask them now or any

time throughout the Study by contacting Dr. Marcia O'Malley, Department of Mechanical 

Engineering at Rice University at 713/348-3545 or by email at omalleym@rice.edu. 

If you believe that your rights have been violated in any way, please contact Nancy 

Nisbett, Director of the Office of Sponsored Research at Rice University at 713/348-6200. 

or by email at nnisbett@rice.edu. 

By signing this consent form, you are indicating your consent to participate in this 

study. 

Signature Date 

mailto:omalleym@rice.edu
mailto:nnisbett@rice.edu
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Invitational Flyer 

The flyer used to invite participants is shown in Figure A. 1 describing the experiment in 

very simple terms, presenting the time commitment required and the incentives offerred to 

motivate participation. When visiting a classroom by professor invitation, students were in

vited to put the name and email address on a form that was passed around. These classroom 

visits were followed up by an eamil with a more detailed task description and invitation to 

participate and how to proceed. This permitted the investigator to send several emails until 

the students either signed up or asked to be removed from the list. Thus the emails were 

not unsolicited. 

* m f l h f •••• • 
# 

Experiment Description 

• Goal: to design the training paradigm to 

accelerate human motor learning in 

virtual environments 

• Participants will interact with an 

underactuated dynamic system via a 2 

DOF haptic joystick 

Time Commitment 

• 20 minutes per session 

• 11 sessions total over 2 month 

Incentives 

• Simple and interesting virtual reality 

interaction game (FUN!) 

• Cookies and drinks (FREE FOOD!) 

• Prizes for top performance (CASH!) 

COA 
-\..>-

"A* 

Note: If you are interested, we can arrange a lab tour, here are the contacts and our lab website 

Jhusgoferice edu / Tel: 713-348-23Q0 http://mems.rice.edu/~mahi 

Figure A.l : Flyer used to invite students to participate in the program. 

http://mems.rice.edu/~mahi
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Experimenter Instructions for Session 1 

1. Welcome the participant in a friendly manner. 

2. Verify the participants name and email address on the participation list. 

3. Ask if they are LeftHanded or RightHanded. If Left ask if they prefer to do the task 

LH or RH. (they can play with the Dots example in step 7 to decide) 

4. Have the participant read and sign the Consent Form. 

a Answer any questions he/she might have. 

5. Provide the participant with the Instruction sheet and allow he/she to read over it. 

a Answer any questions he/she might have about the instructions. 

6. Explain the experiment setup including of sessions, duration of each session and 

briefly describe the 6 parts of a session. 

7. Show the participant the "dots" example and give the subject 3 minutes to get familiar 

with the device and force feedback. 

a Observe the participant and provide additional information about the device and 

interacting with it. 

8. Ask if the participant is ready to begin. 

9. Start the 2008-NFV program and ask the participant to enter their initials (in Group 

field), date and session number, (do not need to enter a subject number). 

10. Show the participant the "Calibration Position." 

11. Show the participant the "Center the Joystick" position. 

12. Reiterate the "purple mass is to hit the green dot" and watch the participant perform 

the first trial (provide no additional verbal instruction or feedback). 
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13. Verify that the participant can again center the device. 

14. Allow the participant to perform the Test 1 Trials without observation. 

15. Assist the participant with the TLX User ID (Initials + 1). 

16. When the participant is finished, offer her/him a drink and snack.. 

17. Have the participant select a "best" time slot and a "second" best slot for the training 

sessions which begin next week. 

18. Thank the participant and remind them that I will email them before the first appoint

ment. 
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Experimenter Instructions for session 2-11. 

1. Welcome the participant in a friendly manner. 

2. Verify the participants name and time slot on the schedule. 

3. Verify the Group Letter and Subject Number on the participation list. Inform them 

of the Group Letter and Subject Number that they will use throughout the remainder 

of the program. 

4. Provide the participant with an Instruction sheet based on the Group Letter and allow 

him/her to read over it. 

a Answer any questions he/she might have about the instructions especially the 

hints. 

5. Ask if the participant is ready to begin. 

6. Start the 2008-NFV program and ask the participant to enter their Group Letter 

(A,B,C), Subject number ID (1-9), Session number (2). Assist them with the correct 

numbers. 

7. If the participant is in groups A or C there will be a prompt for the Gains. Please 

refer to the chart. Ask the participant to enter the new gains that will be displayed 

after Test 2. 

8. Remind the subject that there will be 5 trials followed by the questionnaire then 15 

trials of training and one more questionnaire. 

9. Remind the participant what group and subject number to use in the TLX question

naire. (Group, Subject, and Session, eg: Al-2-1). 

10. Ask the participant to don the headphones and verify the volume. 

11. Verify that the Joystick red light is on. 
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12. Verify the participants use of the "Calibration Position." 

13. Verify that the Joystick green light is now on. 

14. Watch the participant perform the first trial (provide no verbal instruction or feed

back). 

15. Verify that the participant can again center the device. 

16. Allow the participant to perform the remainder of the session without observation. 

17. When the participant is finished, offer her/him a drink and snack.. 

18. Have the participant fill in the post session questionnaire. 

19. Remind the participant that they should not discuss the experiment with other partic

ipants. 

20. Verify the next appointment time and date. 

21. Thank the participant. 
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Experiment Description for Participants 

MAHI - Dynamic Task Training 

Experiment Description 

• Goal: to train participants to perform better in a manual dynamic task. 

• Participants will interact with an underactuated dynamic system via a 2 DOF haptic 

(force feedback) joystick. 

Time Commitment 

• 20 minutes per session 

• 10 sessions total during 1 month 

• 1 follow up session 1 month later 

Instructions 

Each Session consists of 6 parts: 

1. Test 1 - Evaluation of current performance level 5 trials each 20 seconds in duration. 

2. Questionnaire 1 - Workload during the Evaluation period. 

3. Test 2 - Training period of 15 trials each 20 seconds in duration. 

4. Questionnaire 2 - Workload during the Training period. 

5. Test 3 - Post-Training Evaluation of current performance level 5 trials each 20 

seconds in duration. 

6. Questionnaire 3 - End of session questionnaire (on paper). 

Tests 1,2,3 Description: You will be asked to move the joystick, overcoming the dynamic 

forces of the system, to drive the purple dot to the active target square (indicated by being 

green). When you have hit the target, the active target will alternate to the opposite side of 
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the screen (indicated by red target changing to green) and you will have to drive the purple 

dot to that target. Your performance will be measured based on how many targets you hit 

in each 20 second trial. 
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NASA-TLX Questionnaire Description (Scales) We are not only interested in assessing 

your performance but also the experiences you had during the different task conditions. 

Right now we are going to describe the technique that will be used to examine your 

experiences. In the most general sense we are examining the "Workload" you 

experienced. The factors that influence your experience of workload may come from the 

task itself, your feelings about your own performance, how much effort you put in, or the 

stress and frustration you felt. The workload contributed by different task elements may 

change as you get more familiar with a task, or perform easier or harder versions of it. 

Since workload is something that is experienced individually by each person, there are no 

effective "rulers" that can be used to estimate the workload of different activities. One 

way to find out about workload is to ask people to describe the feelings they experienced. 

Because workload may be caused by many different factors, we would like you to 

evaluate several of them individually rather than lumping them into a single global 

evaluation of overall workload. 

This set of six rating scales (shown in the table below) was developed for you to use in 

evaluating your experiences during different tasks. Please read the descriptions of the 

scales carefully. If you have a question about any of the scales in the table, please ask me 

about it. It is extremely important that they be clear to you. After performing the task, six 

rating scales will be displayed. You will evaluate the task by marking each scale at the 

point which matches your experience. Each line has two endpoint descriptors that describe 

the scale. Note that "own performance" goes from "good" on the left to "bad" on the right. 

This order has been confusing for some people. Please consider your responses carefully 

in distinguishing among the task conditions. Consider each scale individually. Your 

ratings will play an important role in the evaluation being conducted, thus, your active 

participation is essential to the success of this experiment, and is greatly appreciated. 



Measure Title 

Mental Demand 

Physical Demand 

Temporal Demand 

Performance 

Effort 

Frustration 

Endpoints 
of the scale 
Low - High 

Low - High 

Low - High 

Good -poor 

Low - High 

Low - High 

Descriptions 

How much mental and perceptual activity was required (e.g. 
thinking, deciding, calculating, looking, searching, 
remembering). Was the task easy or demanding, simple or 
complex, exacting or forgiving? 
How much physical activity was required (e.g. pushing, pulling, 
turning, controlling, activating, etc)? Was the task easy or 
demanding, slow or brisk, slack or strenuous, restful or 
laborious? 
How much time pressure did you feel due to the rate or pace at 
which the task elements occurred? Was the pace slow and 
leisurely or rapid and frantic. 
How successful do you think you were in accomplishing the 
goals of the task set by set by the experimenter? How satisfied 
were you with your performance in accomplishing these goals? 
How hard did you have to work (mentally and physically) to 
accomplish your level of performance? 
How insecure, discouraged, irritated, stressed and annoyed 
versus secure, gratified, content, relaxed and complacent did 
you feel during the task? 

Figure A.2 : Description of the six dimensions of the NASA-TLX (from [30]). 
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Hints Provided to Each Group at Session 2 

(Written Guidance group): 

Hints: 

1. By keeping the purple mass on an imaginary line between the two targets, you can 

improve the number of hits in each trial. 

2. By moving the joystick at or near the natural frequency of the system you can get 

more hits in the same amount of time. 

Visual Guidance group: 

Hints: 

1. By keeping the purple mass an imaginary axis between the two targets, you can 

improve the number of hits in each trial. During the training test, initially the 

computer will provide a blue bar on this axis to help you keep on the target axis). 

2. By moving the joystick at or near the natural frequency of the system you can get 

more hits in the same amount of time. 

During the training test, initially the computer will show you a green bar that is moving at 

the natural frequency to help you keep the joystick moving at the natural frequency. 

As your performance improves, however, the computer will slowly remove the visual 

guides leaving you to do the task on your own without assistance. 

Haptic Guidance group: 

Hints: 

1. By keeping the purple mass on an imaginary axis between the two targets, you can 

improve the number of hits in each trial. During the training test, initially you will 

feel the computer help you to keep the purple mass on the target axis. 

2. By moving the joystick at or near the natural frequency of the system you can get 

more hits in the same amount of time. 



During the training test, initially the computer will help you drive the joystick at the 

natural frequency. 

As your performance improves, however, the computer will slowly remove the haptic 

guides leaving you to do the task on your own without assistance. 
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Session Subjective Questionnaire: No Guidance 

GROUP SUBJECT ID Session 

1. Comparing just the Test #2 (Training) with the previous sessions Test #2, do you 

feel your performance improved? a. If yes, why? If no, why? 

2. Comparing just the Test #3 (Post-Evaluation ) with the previous sessions Test #3, do 

you feel your performance improved? a. If yes, why? If no, why? 

3. What did you learn or figure out (if anything) during this session that helped you 

improve your performance? 



128 

Session Subjective Questionnaire: Written Guidance 

GROUP SUBJECT ID Session 

1. Comparing just the Test #2 (Training) with the previous sessions Test #2, do you 

feel your performance improved? a. If yes, why? If no, why? 

2. Comparing just the Test #3 (Post-Evaluation ) with the previous sessions Test #3, do 

you feel your performance improved? a. If yes, why? If no, why? 

3. What did you learn or figure out (if anything) during this session that helped you 

improve your performance? 

4. What impression do you have of the hints and guidance received? 



129 

Session Subjective Questionnaire: Visual or Haptic Guidance 

GROUP SUBJECT ID Session 

1. Comparing just the Test #2 (Training ) with the previous sessions Test #2, do you 

feel your performance improved? If yes, why? If no, why? 

2. Comparing just the Test #3 (Post-Evaluation ) with the previous sessions Test #3, do 

you feel your performance improved? If yes, why? If no, why? 

3. What did you learn or figure out (if anything) during this session that helped you 

improve your performance? 

4. Which, if any, guidance did you still receive during Test #2? 

a. none b. axis error c. excitation frequency d. both b and c 

5. Did you feel the guidance helped you? If so, how? If not, why not? 



Final Questionnaire 

Subject number: Subject Age: Gender: M / F Today's Date: 

Dominant hand for computer/videogame use: LH / RH 

1. Were you experienced with haptics before this experiment? (devices such as 

Sidewinder, phantom, or falcon). 

a. no experience b. used once or twice before c. used on a weekly basis 

2. Are you experienced with videogames that require eye-hand coordination? Rank 

yourself: 

a. never have played b. novice c. defend myself d. better than most e. expert 

3. Is there any other activity that you are good at that requires a high level of 

coordination and might have helped you be better at this task? (e.g. baseball, ping 

pong, racecar driving, walking and chewing gum at the same time, etc.) 

4. Do you play a musical instrument? NO / YES If YES, which one? 

5. Throughout the sessions, what strategy did you develop for hitting the targets 

quicker or more accurately? 

6. Did you change your strategy at any time? NO / YES. If YES, what was the new 

strategy and what prompted it? 

7. Now that you have trained for the task for 11 sessions, please recall your experience 

in the first session. Which of the following statements best describes your situation 

upon completing session 1: 

a I mentally understood how the task should be performed to obtain high scores 

BUT I did not have the motor skills to perform the way I mentally wanted to. 

b I mentally understood how the task should be performed to obtain high scores 

AND I had the motor skills necessary to perform the way I mentally wanted to. 



c I mentally did not understand how to perform the task to obtain high scores 

BUT I had the motor skills to intuitively perform it and obtain high scores. 

d I mentally did not understand how to perform the task to obtain high scores 

NOR did I have the motor skills to perform it and obtain high scores. 

8. Which of the statements above best describes your situation upon completing 

session 11 (circle one) a. b. c. d. 

9. What was your all-time maximum Hitcount score: 

10. What do you think might be the highest Hitcount score possible for this task: 

11. What do YOU think YOU would have to do differently to achieve the maximum 

score? 

12. Did you or do you have any complaints about this study? NO / YES If Yes, please 

describe: 



Appendix B 

Subjective Questionnaire Results 

Question 1 

Comparing just Test 2 (training) with the previous session's Test 2, do you feel your performance 
improved? 
Session 2 
A1N/R 
A2 Yes, it helps me keep on a straight line (ruler) 
A3 Yes, I had a better idea of how I would accomplish my goal after this session's training 
A4 Yes, guided joystick help feel the needed movement 
A5 Yes, I hit a new all-time high of 24 
A6 Yes, the oscillation helped me find the natural rhythm 
A7 Yes, joystick was physically guided 
A8 Yes, once I stopped trying to control the stick, the machine did all the work for me 
A9 Yes, because I had some help giving me the path motion to hit more times the two squares 
AA No, I felt like I was fighting against the joystick, not being guided 
Bl Yes, I'm getting more used to control the stick and the score is getting improved a lot too 
B2 Not really, it was a long time between, there wasn't much advantage of having done it before 
B3 Yes, I have experiences and skills 
B4 Yes, simply logging more time on the sim improved my performance 
B5 Yes, I used Test 2 from previous session to experiment different methods and find the best one 
B6 No, I think it took me a while to get used to the opposite orientation of the targets for 
left-handers 
B7 No, it's really hard to get a technique that works every time even when I feel I'm doing the 
same thing, I just miss the targets 
B8 Yes, I already knew what to expect and had developed muscle memory 
B9 Yes, I have improved my control of the device and also have learned techniques to increase my 
score 
BAN/R 
BB Yes, lots of practice 
CI Yes, I've had more experience with the equipment 
C2 Yes, the visual aids provided an easy way to keep the black ball and consequently the purple 
ball in line with the targets 
C3 Yes, more familiarity with the joystick, guides 
C4 No, because last time I did the experiment in this way 
C5 No, I had trouble conceptualizing the little and not just using arcs to try to reach the point 
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C6 Yes, the direction bar between the targets helped the most by giving a constant reference to how 
straight I was aiming 
C7 Yes, natural frequency bar helped get a better rhythm 
C8 Yes, I was able to get into a good rhythm with the joystick 
C9 No, Feel I scored worse this session 
CA No, the moving bars only distracted me from focusing on hitting the targets; I was trying to 
match the bars 
Session 3 
Al Yes, I felt relaxed and I knew what to expect, but the joystick did feel much "stiffer" than 
before! 
A2 Yes, experience helped 
A3 No, I thought the training was very similar-I was struggling with the same things 
A4 Yes, feel the rhythm better 
A5 Yes, I knew what to expect with training. Let machine take control earlier. 
A6 Yes, I learned to work with the guidance instead of against it. 
A7 Yes, the computer provided some resistance making the joystick easier to control, but not so 
much that I felt as if I didn't have to do anything. 
A8 Yes, I understood what was happening in test 2 from the beginning. 
A9 No, because I forgot how was the proper movement in order to get to the targets. 
AA Yes, I felt that I had become more used to the resistance the training provides. 
Bl No, I was trying to move the ball as fast as I could. But later I figured out it didn't help much in 
improving die number of hits. 
B2 Yes, practice 
B3 Yes, I can remember the skills which I summarized last time and keep these skills in mind 
while training. 
B4 No, I was trying to go too fast, and it took a while to realize that the feedback force is related to 
applied force (the harder you press the joystick, the more it pushes back). 
B5 No, wasn't as consistent as before, tried a different approach 
B6 Yes, I was more consistent of hitting the targets. My scores were much higher. 
B7 No, today I just couldn't get into a pattern of moving the ball in a straight line 
B9 Yes, but not too much. I am more familiar with the device and its response to my actions. 
BA No, I tried a different technique and failed. 
BB Yes, maybe a little because of practice 
CI Yes, because I was used to the moving bar and therefore less distracted 
C2 Yes, the visual guides helped keep the ball between the axis because you only had to focus on 
keeping the black ball on the blue line instead of hitting targets. 
C3 Yes, still more familiar with mechanism moving with pattern 
C4 Yes, more practicemore progress 
C5 Yes, I felt more comfortable with the joystick, and also more relaxed 
C6 Yes, because I am becoming more experienced using the joystick to accomplish the task 
C7 Yes, I think I have higher average 
C8 Yes, I felt more comfortable with (less distracted by) the green bar so I was able to focus on 
staying on the blue 
C9 Yes, followed the purple bar better 
CA Yes, experience 
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Session 4 
Al Yes, more freedom on moving guide resulted in less "effort" and "physical demand" and 
consequently better "performance" 
A2Yes 
A3 Yes, I think with practice my performance improves 
A4 Maybe, performance seemed to be the same 
A5 Yes, more comfortable with training 
A6 Yes, I guess I've gotten used to the assistance now. 
A7 Yes, more consistent in hitting target, able to establish rhythm faster; no computer aid 
A8 Yes, more used to sensation of the testing aid 
A9 No, I felt almost the same because it seems is the same help, so it's the same result 
AA No, the resistance provided by the training doesn't accurately model the evaluation tests 
B1 No, I couldn't control the stick as smoothly as last time. The ball on the screen didn't go in the 
same direction as I wanted it to. 
B2 Yes, more practice 
B3 Yes, I just slept for a while at noon, so I couldn't concentrate immediately on the game in the 
previous sessions. As far as I can remember, I broke my record in the training session. 
B4 Yes, different strategy led to higher hit count. 
B5 Yes, more consistent 
B6Yes, I feel that I improved my consistency. I also achieved my highest score yet (26). 
B7 Yes, today I was able to get a smooth pattern going. I got it to not go so circular but more 
straight. 
B9 No, just did same thing as before 
BA Yes, more consistent rhythm 
BB Yes, I went faster 
CI Yes, I have learned to control the equipment (spring) better. 
C2 No, I tended to concentrate more on keeping the black ball on the guideline instead of hitting 
the targets. 
C3 No, the guides actually feel like more of a distraction 
C4 No, I got some influence from the green bar. 
C5 No, the numbers on average seemed lower, and I felt the training was still distracting 
C6 Yes, greater experience level 
C7 Yes, more consistent 
C8 No, very similar to previous time 
C9 Yes, better rhythm, more consistent hits 
CA Yes, more experience 
Session 5 
Al Yes, understanding of physical demand 
A2 No, the enforced training became annoying 
A3 No, I think they were about the same 
A4 Yes, hit more targets with less effort-found the rhythm sooner 
A5 No, not as much guidance 
A6 Yes, I guess it just finally snapped into place for me. I did a lot better today, though. 
A7 Yes, more accurate at hitting target, not overshooting 
A8 No, last session had "target axis fixed guide" 
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A9 Yes, because I felt I could be more constant because I'm getting more used to the exercise. 
AA Yes, I learned how to work with the guidance forces more. 
B1 Yes, I'm more concentrated on the movement of the stick than last time and thus having a much 
more concise control on the ball. 
B2 Yes, more experience 
B3 Yes, at first, I can't concentrate quickly, and the joystick feeling is not very well because I 
didn't use it for 3 days. Then after several trials, I came back. 
B4 No, less hits per turn, not sure why 
B5 Yes, just a little, consistent 
B6 Yes, scores were higher overall. More consistency 
B7 Yes, today some of my hit counts were higher than I've ever received. 
B9 No, I arrived a little late, so I was not focused completely on the task. The performance was 
terrible. 
BA Yes, got more consistent 
BB No, I feel it was about the same 
CI No, I was more frustrated than before 
C2 Yes, I focused on the target rather than the guidelines 
C3 Yes, more consistent, better feel with joystick 
C4 No, the joystick is hsard to move. I think it's because I didn't move it correctly first to upper 
right 
C5 Yes, hit count fairly consistently over 20. I'm pretty sure that counts as improvement. Also, 
hitting the targets faster. No as annoyed by the moving guide. 
C6 Yes, more experience 
C7 Yes, better feel for the rhythm 
C8 No, a little rusty 
C9 No, stayed about the same 
CA Yes, more experience, familiarity with joystick 
Session 6 
Al I allowed the feedback of the joystick to make the increased frequency of motion; again subtle 
motions still got better 
A2No 
A3 Yes, I thought, in general the training was better. I was able to hit more target more consistently. 
A4 Yes, not sure 
A5 Yes, had higher numbers 
A6 No, I did OK, but compared to the last session, it wasn't an improvement 
A7 No, stay pretty much the same 
A8 Yes, more used to no track (target axis guide) 
A9 Yes, because I felt I was a little bit more constant 
AA No, still fighting the resistance the training provides 
B1 Yes, I have a more steady performance today. The speed of the ball is well controlled so that it 
can move in the desired direction 
B2 Yes, more consistent-have more practice I guess 
B3 Yes, I need some hint to get familiar with the joystick 
B4 Yes, more consistent. Higher average hits/trial. 
B5 No, stayed the same 



B6 No, my consistency was much worse. I received scores in the teens too often. 
B7 No, today was really irregular. I started off really bad but toward the end I got back to my 
average performance 
B9 No, there was something different in today's experiment. The position of my arm was different. 
I had to correct its action more often. 
BA No, I tried something new and it didn't work 
BB No, I just couldn't seem to hit as many 
CI No, I felt more resistance from the joystick and it took more physical effort to move/complete 
the task 
C2 No, I wasn't able to keep the black ball along the guideline so I couldn't hit as many targets 
C3 Yes, more consistent, better control of the joystick 
C4 Yes, I control the frequency 
C5 No, I wasn't hitting as often, and I didn't feel like I had much control (I'm also exhausted, 
which is probably a large factor). The guides didn't help at all. 
C6 No, my average hits didn't change. 
C7 Yes, higher average hits 
C8 Yes, felt it easier to stay in tune with natural frequency 
C9 About the same, more comfortable though 
CA No, it stayed the same, frustrated with improving my hit count 
Session 7 
Al Yes, I continued to use the feedback and the joystick to increase the frequency of the "purple 
ball" 
A2 Yes, much better; follow the guidance's tempo more 
A3Yes, I think I was generally more consistent 
A4 Yes, felt the rhythm better with minimum joystick movement 
A5 Yes, more consistent 
A6 Yes, I've gotten used to the way the ball moves. It seems easy now. 
A7 No, stayed the same 
A8 No, performance did not really change much 
A9 No, I think my arm got a little bit tired earlier and I was kind of sleepy 
AA No, the resistance is still too strong 
B1 Yes, more hits than last time 
B2 Yes, decided to try really hard 
B3 Yes, in test 2 I broke my record again, 23/trial, but the average record in test 2 may not be very 
good. As I feel a little frustrated when I miss one hit. 
B4 Yes, practice 
B5 No, very sluggish today. Not enough sleep. Had trouble focusing. Required more mental 
demand/concentration than preceding sessions. 
B6 Yes, my overall consistency improved. Also, I developed a new technique for higher scores. 
B7 Yes, today was an improvement because last session was not uniform in performance. I feel I 
did average today. 
B9 Yes, the device was different. I was in a better mood. 
BA Same. Did the same technique. 
BB Yes, I didn't do very well last time. 
CI No, I'm tired. 
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C2 No, there was too much circular movement instead of going in a straight line between the 
targets. 
C3 No, the joystick felt slightly less firm than usual. 
C4 Yes, control the direction and frequency. 
C5 Yes, I wasn't completely exhausted. I hit more per session, and I felt I was moving faster. 
Almost feel like I'm up to speed with the guide. 
C6 No, similar average hits 
C7 No, not so good at staying on the line 
C8 Yes, better use of natural frequency 
C9 Yes, better score 
CA No, a little rusty from weekend and missing Monday 
Session 8 
Al No, still learning to use increased frequency of joystick movement along axis of targets 
A2 Yes, feel closer to the natural frequency 
A3 No, I thought they were about the same 
A4 No, too early to perform at best 
A5 No, lower scores 
A6 No, something went wrong with the calibration. My center was far above the training space. 
A7 No, a little worse. Joystick seemed stiff. 
A8 No, tried new things to break plateau, sometimes didn't work 
A9 Yes, because with the practice, I know how to control more easily the speed and the right path 
AA Yes, just stopped trying to guide and let the training force do all the work 
Bl No, performance same as last time 
B2 No, wasn't as consistent 
B3 Yes, at first, I didn't concentrate enough. In the training session, my average record improved, 
so I'm not frustrated. 
B4 Yes, practice 
B5 No, although I got a new ?-score of 28, twice. I was less consistent due to trying for a high score 
B6 Yes, I got my highest score to date (28) 
B7 No, my highest hit count value didn't improve 
B9 Yes, I wanted to improve it 
BA No, I tried to do it faster and failed 
BB No, I did really well last time and not very well this time 
CI Yes, more practice 
C2 No, I feel that my performance was about the same as last week's because I still had too much 
circular motion 
C3 Yes, me joystick seemed a little more light, and thus I was able to move it more easily 
C4 Yes, I increased the frequency 
C5 Yes, I think hit count improved overall. But mentally, I felt about the same. 
C6 Yes, better hit average 
C7 No, about the same 
C8 No, was a little rusty; took a little bit to get back in the groove 
C9 No, worse scores 
CA No, not at prime physical and mental condition 
Session 9 
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Al Still improving on increasing the frequency of motion of joystick 
A2 No, the joystick was aligned well 
A3 Yes, I hit more targets on average 
A4 No, guide once seemed to fight what needed to be moved 
A5 No, lower hit totals 
A6 Yes, well, for one, the controls were working properly. I also felt more energetic today. 
A7 About the same 
A8 No, no guide conquered 4 incorrect, last time 
A9 No, I felt it was almost the same because it's getting pretty normal to get the same help and the 
same results 
AA No, still just as much resistance in training or at least it feels like it 
Bl No, same as last time 
B2 No, about the same-repetition 
B3 No, this time I am trying to find a way to make the ball move faster, so I don't care about 
performance 
B4 Yes, improvement with practice 
B5 No, stayed the same 
B6 Yes, I got a 28 twice and a 27 once. My scores were higher overall. 
B7 Yes, In the beginning of the session my average was 20 or above. But as I started feeling 
confident, it went down some. But over all pretty consistent for once 
B9 Yes, I was more relaxed than the last time. Also I didn't use the noise reduction headphones. 
BA Yes, I tried to go faster and succeeded. 
BB Yes, I did really badly last time 
CI Yes, I learned that I should focus on hitting the upper node and this will also in turn cause me to 
hit the bottom node. To clarify, I never looked at the bottom node and my performance improved. 
C2 No, it took me longer than usual to get comfortable controlling the ball 
C3 Yes, joystick seemed loose, move lightly ? tapped for precision 
C4 No, the green bar influence my frequency 
C5 No, hit count was down a little, but not drastically. (No real loss, just no improvement either.) 
C6 Yes, more hits on target 
C7 No, no real improvement in hits 
C8 Yes, the green bar faded to where I could almost not see it 
C9 No, same 
CA Yes, because performance horrible last time 
Session 10 
Al Yes, starting to have better rhythm and targeting 
A2 Yes, guidance isn't as pushy as last time 
A3 No, I thought they were about the same. 
A4 Yes, better first movement on axis 
A5 Yes, higher hit count 
A6 No, last time was the best I did; this session just couldn't have surpassed it. 
A7 Yes, got better at just barely reaching squares 
A8 Yes, more consistent 
A9 No, I don't know, I felt like I had better rhythm but it didn't seem to work 
AAYes, slightly, tried to focus more on feeling the frequency and let the fixed guide do all the work 
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B1 Same as last time 
B2 Yes, more consistent 
B3 Yes, I make the ball move quicker, more quickly and more accurately 
B4 Yes, practice 
B5 No, same 
B6 Yes, I got my highest score (31) to date 
B7 No, I feel it was similar to my session 9 performance 
B9 No, it should be very close to the previous. I used the same things. 
BB No, there was a lot more interfering force 
CI Yes, I am getting better implementing my strategy 
C2 No, I couldn't keep the ball on the middle axis so I wasn't able to hit as many targets 
C3 No, had some problem with getting started into the rhythm today, due to human error. 
C4 Yes, I find the frequency of the movement of the green bar can improve my performance 
C5 No, again, not hitting as much (I kept careening wildly into all the wrong places) 
C6 No, it's the last session. I am as good as I am going to get. 
C7 No, same 
C8 No, it was very similar 
C9 Yes, better consistency 
CA Yes, more experience-not higher hits, just more consistent 

Question 2 

Comparing just Test 3 (post-training) with the previous session's Test 3, do you feel your 
performance improved? 
Session 2 
Al 
A2 Yes, my hand memorizes the "ruler" pattern 
A3 Yes, again I had a better idea of what to do 
A4 Yes, just barely-not until final trial did I seem to improve 
A5 No, I was babied in Session 2 where last week Session 2 was more practice 
A6 No, I think learning on my own helped the "muscle memory" more. I got thrown off when the 
training force was gone. 
A7 No, although the guiding was effective, my hands pretty much "forgot" how to move on their 
own. Staying on the diagonal axis was harder. 
A8 Yes, hit 20 this time, but not last time 
A9 Yes, because now I have practiced more and I have known how to stabilize the motion a little 
more 
AA Yes, knowing more what line to move on helped 
Bl 
B2 Yes, test 3 this time was my best. Finally figured out best strategy. I guess I hadn't for 3 last 
time 
B3Yes, based on the training improvement 
B4 
B5 Yes, the two sessions of training allowed me to "remember" the movement required for a high 
score 
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B6 Yes, my average was a lot (+10) higher, and I figured out how to rack up high scores 
B7 No, same as above. It seems as if I'm never training. It just seems like endless test in which 
some I do good and others I don't 
B8 No, past test 3 
B9 
BA 
BB Yes, same reason. I feel like I have the pattern now. 
CI Yes, same as above 
C2 Yes, even though the visual aids were no longer present, it was easy to keep the ball in line 
because it was just a continuation of the pattern from the previous trial 
C3 Yes, overall more experience with the most efficient pattern to movement 
C4 Yes, because I have practiced more 
C5 Yes, even if I was moving in arcs, they were straighter and more accurate 
C6 Yes, because of mostly more time under my belt so I was more practiced at the task 
C7 Yes, better training with bars 
C8 Yes, better familiarity with the joystick and the movement of the two dots 
C9 Yes, scored better 
CA Yes, more experience 
Session 3 
Al Yes, again I felt relaxed except this time I physically felt at ease 
A2 Yes, it helped me recall the technique 
A3 No, I don't think there was a significant improvement between this session and the previous 
one because I'm still trying to learn the best way to accomplish the task. 
A4 Yes, could remember the feeling of joystick movement from training 
A5 Yes, more familiar with motion/strategy, more practiced 
A6 No, learning to work with guidance throws me off when I have no assistance 
A7 Yes, finding the correct rhythm was easier 
A8 No, the adjustment to receiving no aid took longer today than it did last week 
A9 No, I think it was similar to the last one 
AA Yes, this session's training I focused mostly on the first motion of the ball 
Bl Yes, I slowed down my speed a little bit and felt that it's easier to control the movement of the 
ball 
B2 Yes, practice 
B3 Yes, based on the training, I'm more familiar with the skills 
B4 Yes, improvement with time/experience 
B5 No, about the same, new approach reduced physical effort but affected speed/accuracy 
B6 Yes, again consistency was much better, and the effort I exerted was lower 
B7 No, same as above 
B9Yes, practice 
B3 Yes, based on the training, I'm more familiar with the skills 
B4 Yes, improvement with time/experience 
B5 No, about the same, new approach reduced physical effort but affected speed/accuracy 
B6 Yes, again consistency was much better, and the effort I exerted was lower 
B7 No, same as above 
B9 Yes, I am familiar with the response of the device to different levels of strokes 



BA No, same reason 
BB No, I messed up a few times 
CI Yes, but I attribute this to luck and chance 
C2 Yes, having the training period twice improved my performance because it reiterated the 
targeted motion 
C3 Yes, same reason as 1 
C4 Yes, I control the method 
C5 Yes, I felt more comfortable, I guess 
C6 Yes, level of experience 
C7 Yes, higher average 
C8 Yes, felt better at keeping black dot on axis between squares 
C9 Yes, scored better with more accuracy 
CA Yes, feel more consistent in hitting targets 
Session 4 
Al Yes, muscle memory. Also, my "performance" encouraged my "mental demand." 
A2Yes 
A3 Yes, this training session was easier than the last. It helped me focus on improving rather than 
trying to deal with the guidance. 
A4 Yes, seemed to move joystick with less effort to keep on axis 
A5 No, I was on fire last time 
A6 Yes, I'm starting to remember exactly how to move so that I get more hits. 
A7 Yes, same as above, more consistent and able to establish rhythm more quickly 
A8Yes, quicker adjustment to lack of aid 
A9 Yes, here I felt that I had a little better performance because of the practice. 
AA Yes, better control of initial motion 
B1 No, same reason as above 
B2 Yes, more practice-post-evaluation seems to not matter as much 
B3 Yes, my average record has been increased. Based on the training, I am more confident about 
my performance. 
B4 Yes, same reason 
B5 Yes, got a high score of 26, in one trial, didn't miss a target, first time this has happened B6 
Yes, again my consistency improved-all of my scores were above 20 
B7 Yes, I slowed down how quick I tried to begin each run and this allowed for better control of 
the ball 
B9 No, I just did the same thing as before 
BA No, I tried new techniques, they didn't work 
BB Yes, I used the same technique as the Test 2 
CI Yes, I've had more practice 
C2 Yes, I was able to keep the ball on the axis between the two targets and increase the natural 
frequency instead of just one or the other 
C3 Yes, more practice with the joystick, better with the pull 
C4 Yes, I have control over the direction and frequency 
C5 Yes, relief that the training guides were gone? Or maybe just used to the controls by now. 
Seemed to get more hits in a row. 
C6 Yes, more experience 
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C7 No, lower average hits 
C8 Yes, I did feel like I fared better on staying between squares 
C9 Yes, higher scores 
CA Yes, more experience 
Session 5 
Al No, my mental demand had lowered! Less focus starting out and really had to improve in Test 3 
A2 Yes, stimulated by the training frustration and learned from making mistakes 
A3 No, I thought they were about the same, too. 
A4 Yes, some-found the rhythm sooner 
A5 No, not as high of hits 
A6 Yes, the lesson I learned from the training session actually carried over this time. 
A7 Yes, same as above 
A8 Yes, more consistent 
A9 No, because it took me longer to get the hand of it on my own 
AA Yes, more on line between dots 
Bl Yes, the general score gets improved, but the performance is not very stable. Sometimes I can 
get a high score while sometimes the score is very low. 
B2 No, same 
B3 Yes, after the training, I became familiar with the joystick and can concentrate easily on the 
performance 
B4 No, I must be having an off day. 
B5 Yes, higher score, new high score! 27! 
B6 Yes, I reached my high score (26) 3 times 
B7 Yes, I feel an improvement but not much. With only 5 sessions in Test 3, it doesn't allow you to 
mess up on too many and still make up for it 
B9 No, I think the final performance was still influenced by the ? conditions. I "forgot" how to 
deal with the device in order to get higher scores. 
BA Yes, same reason 
BB Yes, I was more ? 
CI Yes, my rhythm is better 
C2 Yes, I wasn't focusing on the guide lines when I did the training, so when I got to test 3 I was 
already used tohitting the targets without a visual guide 
C3 Yes, more consistency more experience with joystick, but my hand is a bit tired at that point 
C4 No, the same reason to 1 
C5 No, I wasn't doing as well as I did in practice, and the numbers seemed similar to last time's 
C6 Yes, more experience 
C7 Yes, better rhythm 
C8 Yes, got in better sync with the natural frequency 
C9 No, scored worse 
CA Yes, same as above 
Session 6 
Al Yes, I attempted to mimic the faster frequency of motion 
A2Yes 
A3 No, I thought it was much worse. I thought the joystick was very hard to control. At first it was 
very difficult to move, then for the last two trials it was very loose 
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A4 Yes, felt more rhythm 
A5 Yes, higher numbers 
A6 No, same thing it was decent, but it wasn't an improvement over the previous session 
A7 Yes, reached new high of 29 hits 
A8 Yes, hit 20 again 
A9 Yes, because I felt more relaxed and confident because of the practice 
AA Yes, more relaxed 
Bl Yes, same as above 
B2 No, I think it was less good. Didn't put as much effort. 
B3 Yes, I have some trials of Test 3. A good record, but not all I feel the duration of Test 3 is a 
little shorter than that of Test 2. 
B4 Yes, high hits pretrial, consistently great than 15 
B5 No, did a little worse, but just a little 
B6 No, again my score was marginally lower 
B7 No, I think it was just about the same. Nothing major changed in my performance. 
B9 No, same as before. Still, the performance improved because I assume the learning process 
restarted. 
BA No, same reason 
BB No, I kinda feel like I've already peaked 
CI No, I did not learn anything which would have increased my performance 
C2 Yes, I found it easier to maneuver the purple by keeping the black ball in the center of the 
targets and just barely changing directions 
C3Yes, hand wasn't as tired due to below 
C4 Yes, direction and frequency are controlled 
C5 No, again I was missing the targets fairly often, and I knew I wasn't going as fast due to lack of 
control 
C6 Not really, my hit average is still only around 23 
C7Yes, higher average hits 
C8 Yes, got in sync with the natural frequency and stayed on axis between squares 
C9 Better feeling for purple bar when it wasn't there 
CA No trying different techniques 
Session 7 
Al Yes, I may have muscle memory that I received from the joystick 
A2 Yes, but unstable. 
A3 Yes, I think my post-evaluation was much better, I didn't have any joystick problems this time 
A4 Yes, get the ball moving on the correct axis sooner 
A5 Yes, higher number of hits, less effort 
A6 No, for some reason, the black ball kept starting in a different place than I was used to 
A7 No, about the same, a little more consistent 
A8 Yes, more consistent 
A9 No, because I forgot sometimes the proper movement or path and it made some circles 
AA Yes, faster "swings" of the ball 
Bl Yes, more hits than last time 
B2 Same, in post-evaluation, combination of knowing it's the post-evaluation and arm soreness 
makes me do a little worse 
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B3 Yes, I have a new record in test 3 this time, 23/trial. My average performance in this session is 
better too. 
B4 Yes, practice 
B5 No, same reason as above 
B6 Yes, I got my highest score to date (a 27) 
B7 Yes, same as above 
B9 Yes, see above 
BA Yes, more consistent 
BB Yes, I didn't do very well with test 3 last time 
CI No, I have not learned anything new that would improve my performance and I felt the joystick 
had more resistance than before 
C2 Yes, my movements were shorter and more precise so I was able to hit more targets 
C3 No, see above comment 
C4 Yes, I know the frequency 
C5 Yes, (I think I did better the session before last, though) Again, not completely wiped out, and 
better at aiming at higher speeds 
C6 No, same number of hits 
C7 No, same results 
C8 Yes, better job of staying on axis and oscillating at natural frequency 
C9 Yes, felt more comfortable 
CA Yes, relaxing and bit plus motion is in "muscle memory" 
Session 8 
Al Yes, I'm becoming relaxed as I use the increased frequency 
A2 Not much 
A3 Yes, I thought my performance was generally the same, maybe a little better 
A4 No, same 
A5 No, lower gain, not as many hits 
A6 No, for the same reason above. At the lowest point on the joystick I was halfway up the screen. 
A7 No, about the same 
A8 Yes, new things worked, hit 27 
A9 No, because I was trying to do it faster and faster but I lost control at a certain point 
AA No, about the same 
Bl No, same as last time 
B2 No, same, not consistent. This time my third trial was way worse than 2nd. 
B3 Yes, in test 3 I keep 2 times of 24 hits/trial. I'm very familiar with the game 
B4 Yes, practice 
B5 No, less consistent 
B6 No, my average score was lower on average by about 2 hits 
B7 No, my hit counts are not uniform. They vary a lot. 
B9 Yes, same as above 
BA Yes, I tried to do it faster and succeeded 
BB No, I did better in test 3 than test 2, but I still did better last time 
CI Yes, more practice 
C2 Yes, I was able to restrict the motion of the ball more effectively so the movement was more 
controlled and precise 



C3 No, about the same performance-wise due to some human inconsistency in moving the ball 
C4 Yes, more practice. Much better. 
C5 No, I was not hitting as often as I was capable of. Couldn't get into the groove, really. 
C6 Yes, better hit average 
C7 No, a bit lower average 
C8 Yes, consistently got over 20 hits 
C9 No, worse scores 
CA No, same as above 
Session 9 
Al No, could not get my frequency rhythmic 
A2 No, disturbed by Test 2 
A3 Yes, my average number of hits was higher 
A4 Yes, seemed better without the training, i.e., no forced movement 
A5 No, lower hit totals 
A6 Yes, I'm getting used to controlling without the guide now. This was probably the best I've 
done. 
A7 About the same 
A8 Highest score last time 
A9 Yes, because I learned how to be constant in the movement 
AA No, about the same 
Bl No, same as last time 
B2 No, about the same-repetition 
B3 No, the same as above 
B4 Yes, improvement with practice 
B5 No, same 
B6 Yes, I got my highest score to date (29) 
B7 Yes, my average was higher, I believe. My results were more consistent. 
B9 Yes, same as above 
BA Same. I tried to go faster and failed. 
BB Yes, I didn't do well last time. 
CI Yes, see answer for 1. 
C2 Yes, I concentrated more on accuracy rather than speed, and I was able to hit more targets. 
C3 Yes, same as above 
C4 No, perhaps I am not so concentrated on it. 
C5 No, I just couldn't aim properly. I don't know why, but I kept missing and going back to 
ellipses. 
C6 Yes, more hits per section. 
C7 No, same hits 
C8 Yes, reached new personal best number of touches 
C9 No, same 
CA Yes, same as above 
Session 10 
Al No, not sure, performance probably ? leveled 
A2 Yes, less confused 
A3N/A 
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A4 Yes, better first movement on axis 
A5 Yes, felt more in control 
A6 No, likewise, last session's Test 3 was amazing. This session was good, but it wasn't an 
improvement. 
A7 Yes, high score at 32. Just barely reaching squares makes a big difference. 
A8 Yes, more consistent 
A9 No, even with the ? of the path and the constant movement, sometimes I lost the control. 
AA Hit counts were similar. No improvement in frequency which appears my limiting factor. 
B1 Same as last time 
B2 No, about the same 
B3 Yes, I'm trying to make the ball move quickly so even I miss once or more, the score also could 
reach 23/trial 
B4 Yes, improvement with practice 
B5 No, same 
B6 Yes, my scores were on average higher and the standard deviation was lower. 
B7 No, same as above 
B9 No, I tried new things this time. I tried to compare the usual technique with the new one (test 8) 
BB No, there was a lot more interfering force 
CI Yes, I have found an effective way to hit the nodes 
C2 Yes, I had more controlled movements because I didn't feel as rushed 
C3 Nothing new 
C4 Yes, I improve my frequency 
C5 No, couldn't hit over 20. More wild careening 
C6 No, same as above 
C7 Nothing new 
C8 Natural frequency 
C9 Yes, better feel for axis 
CA Same as above 

Question 3 

What did you learn or figure out (if anything) during this session that helped you improve your 
performance? 
Session 2 
Al I needed to physically relax which led to less mental demand and my score escalated 
A2 Body has memory as well, so performance could be enhanced by repetitive assisted practice 
A3 Moving the joystick along the axis helped my performance 
A4 First motion was off axis. Trying to make first motion on axis helps 
A5 Loosen grip, relax hand 
A61 was moving the ball too much last time, so I was losing valuable seconds 
A7 Stay exactly on the axis and oscillate back and forth 
A8 Nothing; simple reinforcement 
A9 How to prevent the circular motion a little 
AA The direction of the first pull is the most crucial step 
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B1 It's better to let the purple ball move in a straight line instead of letting it circle around. In order 
to do this, I need to stable the position of the black ball. When the purple ball begins to circle 
around and being hard to control, I can slow down the movement of the black ball so that the 
purple ball can slow down, too. 
B2 The most efficient technique 
B3 Make the movement of the stick accurate and simple. The amplitude of the dot vibration on the 
screen should be a less as possible 
B4 The joystick has its own applied forces I have to fight. 
B5 I learned that the ball is unlikely to go off course given more momentum towards the target. 
Also, direction can easily be adjust when the ball reaches the very end of the string (farthest away) 
B61 learned that the best way to get high scores is to use an easy back-and-forth motion, on the 
joystick 
B7 My strategy is to try to keep the ball moving in a straight line rather than in circular motion 
B8 I learned to take it slow and steady and focus on trying to improve 
B9 Keeping centered the black ball and harder toward the targets, measure velocity of the 
movement (frequency of the move) and its 
BA 
BB I think that by the end of the last one, I had the same pattern down that I used this time 
CI Nothing, I had already figured this out 
C2 Keeping the black ball in line with the targets made the purple ball go through the targets rather 
than around them 
C3 Nothing much, just improved on technique used last time 
C4 The blue bar and the frequency are very important 
C5 Straight lines really are the most efficient way to get somewhere! And not as much effect is 
necessary as I used. 
C6 Nothing over the previous session 
C7 Better feeling for natural frequency 
C8 Staying on the axis between the two squares 
C9 Axis and frequency 
CA More mental: relax and try and find a rhythm 
Session 3 
Al I learned how to make more gentle and subtle movements of the joystick; I also attempted to 
bring the black dot into the green square-this method often and easily caused a "strike" by the 
purple dot. 
A2 Keep hand stable and static 
A3 Nothing new 
A4 Less force and movement-don't oversteer 
A5 Once again, light grip, motion diagonally back and forth 
A6 Nothing new since last session, I think 
A7 Get the purple ball to just touch the 2 squares without overshooting too much 
A8 
A9 Nothing 
AA 
Bl It's essential to find a moderate speed so that I can control the ball movement in the most 
efficient way 
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B2 Go slow at the beginning 
B3 I need to highly concentrate on the game, never miss one hit. Make the movement appropriate, 
not too large nor too small. 
B4 To go slow and steady. Smoothly 
B5 Less action=less reaction. Pull with minimum force to hit target. Thus, one feel less resistance 
going the other direction. 
B6 I learned that I think that muscle memory is key to this exercise 
B7 I just have to work on starting off smoother. If you start bad, it just goes downhill from there. 
B9 Nothing new. However, the fact of knowing my score was good made me worry more about the 
final score of the trial. 
BAI "learned" that faster rebound means more hits, with a drawback-less accuracy-sill try to 
master both. 
BB No, I didn't learn or use anything new or different. 
CI Move the joystick in small movements 
C2 Nothing new 
C3 Started moving joystick in tighter oscillations to save time 
C4 The blue line is very important 
C5 I stopped fighting the pull of the joystick as I changed the direction of the "ball" on the string. 
C6 Nothing 
C7 Faster speed is not necessarily good 
C8 Better at finding blue axis when bar not there 
C9 Following purple really helps 
CA Do not grip the joystick hard. A loose grip works best. 
Session 4 
Al I'm making more subtle movements of the joystick, consistently hitting more targets 
A2 Not that much 
A3 Since I can hit the targets more accurately now, I was able to experiment with going faster. 
A4 Use less pressure 
A5 Same as before: telling myself to have loose grip 
A6 The natural axis I swing the ball on is off the axis of the points 
A7 Making ball barely pass through targets is not sufficient, must oscillate at certain frequency to 
make ball move quickly 
A8 I am better at catching the square on the return bounce. 
A91 feel that with the more sessions I have, the better performance at the exercise. 
AA The training makes me overcompensate (strength-wise) in the post-evaluation. 
Bl Not really 
B2 Go faster? 
B3 I have to cope with the frustration exactly, which could influence my record. To improve my 
record (best record), I need to know the basic parameter of the game. Such as the elastic coefficient 
of the string. 
B4 Minimizing movement of black dot, keeping it centered, while slinging purple dot along a 
linear path from square to square is the optimal method. 
B5 I improved on the technique I developed in the previous session to be more consistent. 
B61 tried to keep the maximum displacement of the ball to a minimum, so I would waste time 
between target hits. 



B7 Starting off slower gives you more control 
B9 Nothing 
BA Nothing 
BB I was a little faster. It seemed to help a bit. 
CI Nothing 
C2 Nothing new 
C3 Nothing 
C4 The blue bar is important 
C5 I don't know if I figured anything outno great revelations today 
C6 
C7 Working on rhythm 
C8 Stayed between squares better on Test 3 
C9 Rhythm is important 
CA Nothing 
Session 5 
Al Relax and breathe: every time I was satisfied with my performance 
A2 Instead of positive difference, I improved by learning from error-prone tendency 
A3 Nothing new 
A4 Just move joystick in correct direction to prevent circling 
A5 Nothing 
A61 suppose I learned how to better imitate the training guide 
A7 Have to start moving opposite direction before purple ball passes you 
A8 
A91 felt I didn't improve my performance, but I think the training session helps you a lot. 
AA Timing the frequency of the oscillations 
BINo 
B2 Not really 
B3 1. Feel easy if miss one hit. My best record is 22, but I can reach 21 even miss once or twice. 
So keeping composure can improve my average record. 2. To improve my best record, I should 
find out a way to make the ball move faster. 
B4 No really 
B5 Nothing much just did what I've been doing 
B61 tried to be more aggressive and move the joystick faster 
B7 Just working to keep everything moving in a straight line between the points 
B91 need some time to focus in the task (?). The muscles of my arm seem to be used to the task, 
but the ? of executing the process must be clear. It's kind weird. 
BA Slow and steady wins the race 
BB Just starting out a little slower seemed to help 
CI Nothing 
C2 Nothing new 
C3 Keep the oscillations smaller, more small corrections 
C41 must do it correctly at the beginning 
C5 I can move the ball a bit faster and control it better. Also, using the moving guide as a (very 
general) guide helped a little bit. 
C6 



C7 Increase speed for more hits 
C8 Got closer to the natural freqauency 
C9 Nothing 
CA Nothing 
Session 6 
Al "I ? conceded" to the feedback and the joystick! Also, I tried to strike the target in the forward 
stroke: big challenge 
A2 Avoid unnecessary over-pull to increase accuracy 
A3 N/A 
A4 Starting motion is critical-take the first motion slowly 
A5 move joystick very little, concentrate on one dot 
A6 I was having shoulder pain from raising my arm too high, and raising the chair fixed that. 
A7 Be more consistent, don't overshoot target. 
A8 
A9 How to correct the movement of the point when it gets out of the proper path 
AA 
BINo 
B2 Center the joystick as perfectly as possible, then it's easier to make the first one, and faster. 
Move joystick minimally. 
B3 On the same condition, making the ball move in straight line is faster than making it more 
circularly. And the first hit is very important to improve the performance. 
B4N/A 
B5 Nothing 
B6 I learned to reduce the amplitude of my joystick swings 
B7 Once you panic because you're messing us you tend to rush to try to make up hits but that 
doesn't work 
B9 Position of ? right arm and even body have influence on the performance 
BA Doing it in circles does not help performance. Believe more and more that slow and steady 
wins the race 
BB Nothing new 
CI No 
C2 You can hit more targets if you keep the black ball directly between the targets. The less the 
black ball moves the more likely it is for the purple ball to hit the targets 
C3 No need to swing the joystick around or hard, controlled ? movements are easier to recover 
from and place less stress on the hand/wrist 
C4 Frequency and strength are very important 
C5 Well, I had to learn to avoid the guides all over again, since they were moving much faster than 
I was comfortable with today. Other than that, I'm too tired to innovate. 
C6 Nothing 
C7 Rhythm 
C8 How to get the ball to oscillate quicker 
C9 Nothing 
CA Move the joystick a big faster possibly 
Session 7 
Al 



A2 As I found the guidance being more helpful, I became more dependent on it; thus I lose focus 
more easily once the guidance is removed, but I recall the tempo aster a few runs. 
A3 N/A 
A4 First movement needs to be considered to get ball on proper axis 
A5 
A6 My performance depends on how quickly I can get the purple ball onto the axis 
A7 Be more consistent 
A8 
A9 Nothing 
AA 
BIN/A 
B2 Not really 
B3 1. The first movement of the joystick is very important. Making it straightforward to the green 
point in a line is a good start for me to break the record. 2. Making the ball move in a straight line 
is faster than in circular line. 
B5N/A 
B6 Sleep deficit reduces mental focus. 
B7 I learned to use a rocking motion to minimize my swing amplitude 
B8 N/A 
B91 tried to use the velocity of the ? recuperative movement. It goes faster but requires more 
control. It can not be a good strategy. 
BA The tempo can be increased by ? lunging the joystick back and forth. I will try this on my next 
test. 
BB No, I used the same methods 
CI No, I already try to stay on the blue line even when it's not there 
C2 
C3 No, it's just a distraction now rather than an aid 
C4 No, I have my own frequency 
C5 The moving guide did, but the target fixed guide didn't do much for me. I just tried to move 
sort of with the moving guide. Even if I was slower than it, I'm faster than I have been. 
C6 The fixed axis is useful 
C7 To be led staying on the line 
C8 Yes, because I was able to focus more on the natural frequency 
C9 Yes, h elps me remember rhythm 
CA No, just distracted 
Session 8 
Al 
A2 Driving force ? be about out of force to the spring 
A3 N/A 
A4 Slow down movement if off axis then increase speed when on axis 
A5 
A61 didn't learn anything this time. 
A7 Be more consistent 
A8 Improved travel distance of purple ball 
A9 That I can improve my performance by doing it faster, but without losing the right movement 
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AA 
Bl N/A 
B2 Not really. I tried a different grip but my results were the same. My arm might have gotten a bit 
more sore. 
B3 Find out the way to make the ball more faster. 
B4N/A 
B5 I started pulling the opposite direction as the ball passes through the center of the plane. This 
change in ?tone is very prone to directional error, reducing my consistency. However, it allows the 
ball to oscillate faster and achieve higher scores. 
B6 I was more aggressive with my joystick movements 
B7 
B9 Nothing 
BA Launching the ball does work, it's just a matter of accuracy. With improved accuracy, since the 
speed is already there, I will improve. 
BB No, not really 
CI Nothing 
C2 Nothing new 
C3 Nothing this time 
C4 Increasing frequency plays a key role 
C5 It's a bit easier to aim if you don't overshoot by 2 or 3 times the distance to the square (duh)! 
C6 Nothing new 
C7 Nothing 
C8 I feel that I am really getting good at oscillating at the machines natural frequency 
C9No 
CA Nothing 
Session 9 
A1 Need a rhythm! 
A2No 
A3 N/A 
A4 Start slower 
A5 
A6 Nothing that I didn't already know. 
A7 Keep the rhythm steady 
A8 
A9 That being constant helps you to get to a higher performance 
AA 
BIN/A 
B2No 
B3 Moving the joystick to the opposite direction of the ball's movement would make the ball move 
faster. This will need a lot more physical demand and technique 
B4 N/A 
B5 Nothing 
B6 I used a lot of force moving the ball across the screen. This led to shorter times between hits 
and larger scores. 
B7 Don't rush because that only causes unnecessary errors. 
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movements I wanted. This improved my confidence doing the tasks. 
BA 
BB Nothing 
CI Yes, see answer for 1 and 2. 
C2 It's better to focus on making slow but precise movements rather than less accurate fast 
movements because it's hard to regain control when the ball is moving that fast. 
C3 Continue to u se light touch for adjustment 
C4 Yes, concentration and frequency are both important. 
C5 Nothing. My performance was terrible for no reason at all. 
C6 The first few movements are key to getting more hits in one section. 
C7 Nothing really 
C8 Natural frequency 
C9 Nothing 
CA Same, learned not to swing the ball so far out 
Session 10 
Al Sometimes my increased frequency caused the paddle to swell 
A2 Focus on the temporal manipulation 
A3N/A 
A4 First movement on axis 
A5 
A6 Nothing 
A7 By barely touching squares, more targets can be hit within the time limits 
A8 
A9 
AA 
BIN/A 
B2No 
B3 Practice more to make the ball move more quickly and accurately as I did in the previous tests 
B4 A great deal more concentration is necessary to get into the proper rhythm at the start of a trial 
than is required to maintain that rhythm. 
B5 Nothing 
B6 I tried to go "all out," even if that meaning making a few mistakes. 
B7 
B9 Nothing 
BB I couldn't use the same method because of the ? force. I had to keep the black ball at the 
bottom and aim for the targets one at a time. 
CI Keep concentrating on only one node throughout the session. 
C2 Nothing new 
C3 Nothing new 
C4 Improving frequency 
C5 If my performance didn't improve, then I don't think I learned anything. I don't feel like I 
learned anything. 
C6 
C7 Nothing new 
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C8 Natural frequency 
C9 Move faster back and forth 
CANo 

Question 5 

Did the guidance help you? If so how? 
Session 2 
Al No, it generated muscle tension in my elbow and bicep, and my score went down 
A2 It generally helped, but when I made an error it makes it harder to get back on the right track 
A3 Yes, it kept me from trying to overcompensate when I missed (which was previously causing 
me to waste a lot of time) 
A4 Yes, helped feel the correct amount of joystick movement and frequency 
A5 Yes, after I got used to it, kept me on correct axis 
A6 It helped and hurt, I guess. It threw off my personal sense of the axis, but it helped me in 
getting the oscillation frequency 
A7 Somewhat, but if I got off rhythm I felt like I was pushing against something all the time 
A8 Once I realized how the guidance worked, it helped. Instead of controlling the stick, I just let it 
move on the path of least resistance 
A9 Yes, by pushing me to do the right motion 
AA Not much. I'm not convinced the increased speed is an advantage considering the extra 
distance it requires you to travel 
CI No, I found the excitation frequency was distracting 
C2 Yes. It was easier to keep the black ball in line with the visual aid present 
C3 To some extent; the frequency was useful, to make swing more efficient length-wise. The bar, 
not so much; I just seem to have a problem moving the stick 
C4 Yes, tell me the direction where I shall move the joystick 
C5 The axis error did, but the excitation frequency was just distracting (since I was trying to go for 
accuracy, not speed). 
C6 I felt like the axis reference bar was the most helpful. I found the moving frequency bar to be 
distracting. 
C7 Definitely helped, especially the frequency bar 
C8 The bar along the axis helped to visualize the axis. The frequency bar did not help at all; in 
fact, it made it difficult to focus on staying on the axis. 
C9 No, green didn't start delayed 
CA Yes, my performance increased due to experience. The moving bars only distracted me from 
focusing on hitting the targets; rather I was trying to match the bars. 
Session 3 
Al Not sure; the moving guide tended to restrict my attempts at a longer movement of the black dot 
A2 Yes, it "rulered" my hand 
A3 At first it helps but if it continues after a few seconds it makes it more difficult 
A4 Not too much-didn't feel the guide was helping i.e. moving me to the correct movements of 
joystick 
A5 Yes, it did, I was able to recover quicker in Test 3 this time too. 
A6 Both; it helped my performance, but it left me confused when it disappeared. 
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A7 Yes, this time the guide was softer, so that I could move the joystick as I wanted to, but it still 
had resistance when I got off track. 
A8 No, when the guidance was removed, adjusting took time. 
A9 It reminded me again at the proper movement to hit the targets 
AAI still feel that the guidance is something I'm fighting and when it goes away I'm completed 
thrown the first time. 
CI Maybe. It was helpful but again, it was also somewhat distracting. 
C2 Having the blue line visual helped keep the ball on the axis between the two targets 
C3 No, rely more on experience and trajectory analysis rather than the guides 
C4 Yes, it helps me to control the frequency 
C5 Target axis is still sort of useful in determining direction, but the moving guide just seems 
distracting 
C6 Only the axis guide was actually helpful 
C7 Helped keeping my hand on the "line" between targets 
C8 Yes, because I was able to stay between the squares and at a better speed 
C9 Yes, helped and middle line to follow 
CA Yes, helped me to stay on line with the targets 
Session 4 
Al Good question: I'll say "Yes" (C.F., 1 above); the moving guide allowed me more freedom or 
travel than I needed. That resulted in ? to make the subtle movements of the joystick. 
A2 Not this time 
A3 Yes, instead of distracting me it was minimal enough that I thought it helped 
A4 Help feel the desired/optimum movement need for joystick 
A5 Yes, although it was lighter this time (kept me on line) 
A6 Yes, even though it's not as strong, I'm still getting better at swinging the ball 
A7 No, guidance gave more realistic practicing environment for the actual evaluation 
A8 Yes, guidance kept me on the optimal path 
A9 So so, I feel that the moving guide helps me, but what I think is better, is the practice 
AA No, it doesn't mimic the test situation enough 
CI No, not really. I can already mentally see a line connecting the two nodes. 
C2 No, though I was able to keep the ball on the guideline, I wasn't always able to make the 
necessary adjustments to hit the targets because I was concentrating on the blue line 
C3 No, it distracted me from just moving the ball back and forth due to movement of the guides; 
plus I feel I need to keep the blue ball in the target axis which is not always good 
C4 Yes, it helps me to find the direction 
C5 No, moving guide still distracting me-still can't get speed up that high and be accurate at the 
same time 
C6 Just the axis guide was helpful 
C7 Target axis helped 
C8 Blue bar helped stay on axis 
C9 Yes, line guides, green sets rhythm 
CA Yes, once got used to it, but I have a different technique which doesn't match up so I have to 
switch 
Session 5 
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Al Yes, like in Session 4, the moving guide assisted me in making subtle and gentle movements of 
the joystick 
A2 Yes, but it was a counter force 
A3 
A4 Yes, helped get the movement in the correct axis and prevent circling 
A5 Kept me on track 
A6 Yes, it gives you the best movement and teaches you how to do it yourself 
A7N/A 
A8 Yes, only having the moving guide gives more transferable aid than both guidance methods 
together 
A9 Yes, because it helps your brain and arm to get used to the proper movement. 
AA The guidance still feels like too much of a handicap; when it's on, I'm not able to improve 
because it changes the environment too much. 
CI No, I still find it distracting and feel increased pressure to follow its lead. 
C2 
C3 No, it's more of a distraction at that point. 
C41 think so. But it's a pity that the joystick cannot work as normal. 
C5 Target axis is still helpful, but now more in a peripheral vision sort of way. Moving guide's 
speed and distance are still not comfortable to me, but I could move in its general pattern. 
C6 The moving guide is really just a distraction. The axis guide is helpful. 
C7 Yes, both guides helped me increase hits by providing a visual guide to follow. 
C8 Helped get in tune with natural frequency 
C9 Yes, bar helps align still 
CA Not really. It would be interesting to see if the test 2 was unguided. 
Session 6 
Al Yes, the increased frequency seemed to improve my performance 
A2 This time guidance helped concentrate on the temporal adjustment 
A3 I think the guidance helps me most at the very beginning. It helps me start off going in exactly 
the right direction. 
A4 Develop the feeling for the best movement 
A5 
A6 Yes, it corrects my weird axis when I swing the ball 
A7N/A 
A8 Yes, more ? applicable to post-evaluation not to have target axis fixed 
A9 It always helps me to remember which is the correct path of the moving point 
AA No, it fails to mimic the testing situation. The correction is too extreme to be applicable to the 
post-evaluation performance. 
CI No, it's still distracting. 
C2 The training session didn't really make a difference this time. 
C3 No, it was a distraction. 
C4 Yes, helped me to ensure the direction and frequency. 
C5 No, not at all. The moving guide was too fast again, and I'm trying to hit a straight line without 
the target axis guide and only occasionally glancing at it. I still can't move in a straight line at the 
speed I need to. 
C6 Target axis was useful, moving guide was distracting 



C7 Not any more 
C8 Focusing on staying on blue bar allowed me to focus more on my oscillations. 
C9 Helped me remember rhythm and axis 
CA No, just distracted me 
Session 7 
Al Encouraged faster frequency of movement 
A2 As said in part 3 
A3 I think this helps me at the beginning. Once I get going there is little guidance but it helps me 
start going in the right direction 
A4 Guidance helped keep the wrist motion on the proper axis-helped to feel that motion 
A5 
A6 Yes, even though it's faint, it still helps to stabilize my movements 
A7N/A 
A8N/A 
A9 It always helps me to remember the proper movement and path 
AA No, the frequency guidance isn't strong enough to help and the axis guide is too strong 
CI No, I already try to stay on the blue line even when its not there 
C2 
C3 No, it's just a distraction now rather than an aid 
C4 No, I have my own frequency 
C5 The moving guide did, but the target fixed guide didn't do much for me. I just tried to move 
sort of with the moving guide. Even if I was slower than it, I'm faster than I have been. 
C6 The fixed axis is useful. 
C7 To be led staying on the line 
C8 Yes, because I was able to focus more on the natural frequency 
C9 Yes, helps me remember rhythm 
CA No, just distracted 
Session 8 
Al Yes, reminded me to use increased frequency 
A2 It helped me concentrate more on the tempo rather than straightening the path 
A3 
A4 Feel the on axis movement 
A5 No, restricted motion, felt heavy 
A6 Yes, it still found the true center, even if the positioning was off 
A7 The stiffness was bad, arm got tired after 7-9 trials 
A8 N/A 
A91 felt it just a little, but it was always helpful to remind you how you're supposed to do it 
AA No, not similar enough to testing situation 
CI No, I've had it for weeks; I understand how it should help improve my performance. 
C2 
C3 No, still just a distraction 
C4 Not so much because I have found the way to improve my performance 
C5 Well, apparently, it did, since I became suddenly incapable of hitting things in the 
post-evaluation. But I still pay slightly more attention to the moving guide. 
C6 By now the guides don't help much any more. 
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C7 No, wasn't there 
C8 Helped get better at the natural frequency 
C9 Yes, reminded me where axis is 
CA Very little, just confused 
Session 9 
A1N/A 
A2 The guidance was initialized off the right track-whether it's on purpose or not, it's not helpful. 
A3 
A4 No, for first time felt guidance hurt performance rather than help 
A5 
A6 Actually, the guidance has gotten so slight I could barely feel it, so it didn't help much. 
A7N/A 
A8N/A 
A9 Not much because I'm getting used to the proper movement. 
A9 No, it's strong enough now I don't really do anything in training. 
CI No, it never does. 
C2 
C3 No, it's just a distraction. 
C4 No, influence my frequency 
C5 Kept me on the path, which I was apparently incapable of doing on my own today. 
C6 Neither, by now I am about as good at the task as I will ever be 
C7 Did not have it 
C8 The blue bar helped me stay on the axis better 
C9 Not really, used to it 
CA Indifferent/unsure. 
Session 10 
A1N/A 
A2 Yes, the axis fixed guide helped me focus better. 
A3 
A4 Not much 
A5 
A6 It did help me, but only very slightly. It corrected me just a little bit when I got off course. 
A7N/A 
A8N/A 
A9 It didn't help me because I didn't get anything. I'm on my own now with the knowledge of the 
past sessions. 
AA No, the frequency (moving) guide is too difficult to interpret, so I still don't really know what 
the resonance is. 
CI No, I just ignore it 
C2 
C3 No, especially since trying to move your hand at the speed of the moving guide tires out my 
hand/wrist pretty quickly 
C4 Yes, help me to increase my frequency 
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C5 It reflects badly on me that I started missing more when the fixed guide became fainter except I 
never looked at it (even peripherally) anyway. I think I was trying to match the moving guide, and 
that didn't help at all. 
C6 Not really. By now I know what to do. 
C7 No guidance 
C8 Not really because they were very faint 
C9 Yes, helped me find center 
CA A bit with my rhythm 
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Appendix C 

Source code Progressive Haptic Guidance Scheme 

//Haptic—Function Thread ************************************ 

// Updates force and position 

void —stdcall Haptic-Function(void *pv) 

{ 
// V.a. Initialization of local variables 
********************************************** 

int j = numtrials/FILE_SAMPLING; 
float m_tool = 1; 
float target_dist; 
float K_field = 400, xacc_tool, yacc_tool; 
float lambda = 5; 
float K_p = 7 0 ; 
//float Guide_K_p = 100; // Globalized for tying to guidance 
float K_d = 1; 
float Guide_K_d = .2; //was 100 
int assist_counter=0; 

float PosTool_inline; 
float VelTool_inline = 0; 

if (j>snumpts) 
j = snumpts - 1; 

force[0] = 0; 
force[1] = 0; 

// V.b. Get raw Postion and record 
****************************************** 

// Get the current position of the device put in NewPosition 
Imp_EncMultiInput(IE_DEVICE_N, 0x03, NewPosition); 

NewPosition[0] *= -1; //correct sign of x-coordinate 



NewPosition[0] = NewPosition[0] + 3000; //jch added to be a 
NewPosition[l] = NewPosition[1] + 3000; //jch added 

xpos_tool = slope* (float)NewPosition[0] / 3000; //adjust to 
ypos_tool = (float)NewPosition[1] / 3000; 

// choose one of the methods to calculate velocity 
//Get the current velocity of the device and put in NewVelocity 
Imp_EncMultiVel(IE_DEVICE_N, 0x03, NewVelocity); 
//hardware velocity calculation 
//xvel_tool = (xpos_tool - oldxpos_tool) 
/ ((float)HAPTICS_UPDATE_PERIOD/1000) ; 
//offline velocity calculation 
//yvel_tool = (ypos_tool - oldypos_tool) 
/ ((float)HAPTICS_UPDATE_PERIOD/1000) ; 

xvel_tool = slope* (float)NewVelocity[0] /3000; 
yvel_tool = -1*(float)NewVelocity[1] /3000; 

PosTool_inline = ( (1/ (2*sqrt(2)))*xpos_tool) + 
((1/(2*sqrt(2)))*ypos_tool); 
VelTool_inline = ( (1/(2*sqrt(2)))*xvel_tool) + 
((1/(2*sqrt(2)))*yvel_tool); 

xacc_tool = (xvel_tool - oldxvel_tool)/ ((float) 
HAPTICS_UPDATE_PERIOD/1000) ; 
yacc_tool = (yvel_tool - oldyvel_tool)/ ((float) 
HAPTICS_UPDATE_PERIOD/1000) ; 

oldxpos_tool = xpos_tool; 
oldypos_tool = ypos_tool; 

oldxvel_tool = xvel_tool; 
oldyvel_tool = yvel_tool; 

//distvector = the current position of the disc in the 
//reference frame of the device 
distvector[0] = discPosition[0] - xpos_tool; 
distvector [1] = discPosition[1] - ypos_tool; 

//distnorm = the length of distvector 



distnorm = sqrt(distvector[0]*distvector[0] + 
distvector[1]*distvector[1]); 

//force due to spring = 
forcespring[0] = spring_k * (distnorm - FREESPRING) * 
distvector[0] / distnorm; 
forcespring[1] = spring_k * (distnorm - FREESPRING) * 
distvector[1] / distnorm; 

//velvector = the current velocity of the disc in the 
// reference frame of the device 
velvector[0] = discvelocity[0] - xvel_tool; 
velvector[1] = discVelocity[1] - yvel_tool; 

//force due to damper = B * velocity 
forcedamper[0] = damper_b * velvector[0]; 
forcedamper[1] = damper_b * velvector[1]; 

//forcespring_e[0]=0; 
//forcespring_e[1]=0; 

// V.c. Haptic Guidance Calculations 
********************************************** 

if(HAPTIC_GUIDANCE) 

{ 

//Tracker Frequency and Amplitude 
float h_amplitude = .16; //.12; //tracker; 
//In version 7 was set to 0.16 
//float h_freq = trackfreq; // sent to a global variable 
float h_track = h_amplitude * ( sin(((time_now/25)/ 
(2*3.1418))*h_freq)); // haptic tracking point 
float posinwall = 0; 
float inwall = (wall_location + wall_thickness); 
float outwall = (wall_location - wall_thickness); 
//jchh variables for guidance walls 
float guide_thickness = .1; // 1/2 the total guide thickness 
//float guide_location = .01; // still tbd but worked with .075 
float posinguide = 0; 
float g_loc = .03; //guide distance from haptic track 
float pt4 = (g_loc + guide_thickness) ; // in guide right max 
float pt3 = (g_loc - guide_thickness) ; // out guide right min 
float pt2 = (-g_loc + guide_thickness); // out guide left min 
float ptl = (-g_loc - guide_thickness); // in guide left max 
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// end jch variables 

//Potential forces to prevent deviation from desired trajectories 
float angleForce [2], PosTool, VelTool; 
//Potential force to guide in the desired trajectories 

// jch adding code to improve the virtual walls to be cubic with a 
//maximum force 
if(TARGET_SET_FLAG < 2 ) 

{ 

PosTool=((1/(2*sqrt(2)))*xpos_tool)-
((1/(2*sqrt(2)))*ypos_tool); 
VelTool=((1/(2*sqrt(2)))*xvel_tool)+ 
( (1/(2*sqrt(2)))*yvel_tool) ; 
angleForce[0] = 0; 
//angle force in line (for just virtual walls w/no guidance 

// conditionals for virtual wall penetration 

if ((PosTool > -outwall) && (PosTool < outwall)) 
//between walls 

{ 
angleForce[1]= 0; 

} 
else if (PosTool <= -inwall) 
// beyond penetration of neg side wall 

{ 
angleForce[1] = wall_maxforce; 
//angleForce[1] = 0; 

} 
else if (PosTool >= inwall) 
//beyond penetration of positive side wall 

{ 
angleForce[1] = -wall_maxforce; 
//angleForce[1] = 0; 

} 
else if ((PosTool > outwall) && (PosTool < inwall)) 
// penetrating positive side wall 

{ 

posinwall = (PosTool - outwall)/(inwall - outwall); 
angleForce[1] = -(-2*(posinwall*posinwall*posinwall) + 
3*(posinwall*posinwall))*wall_maxforce; 

//angleForce[1] = 0; 



else if ((PosTool < -outwall) && (PosTool > -inwall)) 

// penetrating negative side wall 

{ 
posinwall = (PosTool - (-outwall))/((-inwall) -
(-outwall)); 

angleForce[1] = (-2* (posinwall*posinwall*posinwall) + 
3*(posinwall*posinwall))*wall_maxforce; 

//angleForce[1] = 0; 

else // between walls repeated 

{ 
angleForce[1] = 0; 

} 

// moving guide conditionals 

//PD Controller 
angleForce[0] = ((h_track - PosTool_inline ) 
/guide_thickness)*Guide_K_p + VelTool_inline * Guide_K_d; 

} 

forcepotential[0]=((1/sqrt(2))*angleForce[0])+((1/sqrt(2)) 
•angleForce[1]);//*.8; // removed .8 scale factor 
forcepotential[1]=((1/sqrt(2))*angleForce[0])-((1/sqrt(2)) 
*angleForce[1]);//*.8; // removed .8 scale factor 
// note: version 7 error in equations: 
// was *sqrt(2) but now changed to l/(sqrt(2)) 
//for correct calculation 
// had to change Guide_Kp and wall_maxforce 
//from 100 to 200 to give 
// similar results as NFV2008-1. 

} 
// V.c. END OF HAPTIC_GUIDANCE 
********************************************************** 

else 

{ 
forcepotential[0] = 0; 
forcepotential[1] = 0; 



} 

// V.d. New Postion and Forces calcuation 
******************************************************** 

//net force felt = force due to spring + force due to damper 
force[0] = forcespring[0] + forcedamper[0]; 
force[1] = forcespring[1] + forcedamper[1]; 
//TotalForce[0] = forcespring[0] + forcedamper[0]; 

//Set up new position, velocity, and acceleration 
//of disc according to Newtonian mechanics 
discPosition[0] += discvelocity[0]*HAPTICS_UPDATE_PERIOD/I000 + 
0.5*discAccel[0]*(HAPTICS_UPDATE_PERIOD/1000)* 
(HAPTICS_UPDATE_PERIOD/1000); 
discPosition[l] +=.discvelocity[1]*HAPTICS_UPDATE_PERIOD/1000 + 
0.5*discAccel[1]*(HAPTICS_UPDATE_PERIOD/1000)* 
(HAPTICS_UPDATE_PERIOD/1000) ; 

discvelocity[0] += discAccel[0]*HAPTICS_UPDATE_PERIOD/1000; 
discvelocity[1] += discAccel[1]*HAPTICS_UPDATE_PERIOD/1000; 

discAccel[0] = -l*force[0]/mass; 
discAccel[1] = -l*force[1]/mass; 

target_dist = sqrt((discPosition[0] -
x_target[ACTIVE_TARGET_FLAG])*(discPosition[0] -
x_target[ACTIVE_TARGET_FLAG]) 
+ (discPosition[1] - y_target[ACTIVE_TARGET_FLAG]) 
*(discPosition[1] - y_target[ACTIVE_TARGET_FLAG])); 

// V.e. Collision Detection 

************************************************************* 

if(target_dist <= (TARGET_RADIUS/100) + (DISC_RADIUS/100)) 

{ 

if(ACTIVE_TARGET_FLAG == 0) 
ACTIVE_TARGET_FLAG = 1; 
else 
ACTIVE_TARGET_FLAG = 0; 
no_of_hits++; 
hit_interval=time_now-time_old; 
time_old•= time_now; 



} 

// V.f. Write out the force to the joystick command 
************************************************************* 

force[1] = -force[1]; //correct sign of y-coordinate 

// lastforce[0] = force[0]; //save force for debugging display 
// lastforce[l] = force[1]; 

// Adjusting force 

AssForce[0] = (forcepotential[0] + 0.5*forcecomplete[0]) 
* FORCEMULT; 
TotalForceX= (force[0] + forcepotential[0] + 
.5*forcecomplete[0])* FORCEMULT; 

AssForce[l] = (forcepotential[1] + 0.2*forcecomplete[1]) 
* FORCEMULT; 

TotalForceY = (force [1] - forcepotential[1] -
.2*forcecomplete[l])* FORCEMULT; 

outforce[0] = slope*TotalForceX; 
outforce[1] = TotalForceY; 

if (MOTORS_ON == FALSE) 
// turn off motors whenever the haptic loop is stopped 

{ 
outforce [0] = 0; 
outforce[l] = 0; 

} 

Imp_DacMultiOutput(IE_DEVICE_N, 0x07 , outforce); 

// V.g. Input to the file variables 
**************************************************** 

if(time_now!=0) 

{ 
if((timer%FILE_SAMPLING)==0) // this is every sample period 

{ 
toolx[numpts] = xpos_ too l ; / / Values t o be p r i n t e d t o f i l e 



tooly[numpts] = ypos_tool; 
discx[numpts] = discPosition[0]; 
discy[numpts] = discPosition[1]; 
numpts++; 
} 

} 
else 

{ 
for(int i=0; i<numpts; i++) 

{ 

toolx[i] = 0; 
tooly[i] = 0; 
discx[i] = 0; 
discy [i] = 0; 
} 

numpts=0; 

} 

time_now++; 
timer++; 

if ((timer%FILE_SAMPLING)==0) 

{ 
if (!Practice) 

{ 
no_of_sample++; 
trial_sample++; 

int assist, test; 
if (HAPTIC_GUIDANCE) 
assist=2; // group 4 
else if (VISUAL_GUIDANCE) 
assist=3; 
else 
assist=l;//group 1 
if (Training) 

{ 

if(Baseline) 
test=l; 
else 
test=2; 
} 
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else 
test = 3; 

data_assist[no_of_sample]=assist; 
data_test[no_of_sample]=test; 
data_mass[no_of_sample]=mass; 
data_spring_k[no_of_sample]=spring_k; 
data_damper_b[no_of_s ample]=damper_b; 
data_sys_set[no_of_sample]=sequence_sys; 
data_trial[no_of_sample]=done+l; 
data_xpos_tool[no_of_sample]=xpos_tool; 
data_ypos_tool[no_of_sample]=ypos_tool; 
data_discPosition_x[no_of_sample]=discPosition[0]; 
data_discPosition_y[no_of_sample]=discPosition[1]; 
data_xvel_tool[no_of_sample]=xvel_tool*3000; 
data_yvel_tool[no_of_sample]=yvel_tool*3000; 
data_discVel_x[no_of_sample]=discVelocity[0]; 
data_discVel_y[no_of_sample]=discVelocity[1]; 
data_x_target[no_of_sample]=x_target[ACTIVE_TARGET_FLAG]; 
data_y_target[no_of_sample]=y_target[ACTIVE_TARGET_FLAG]; 
data_TotalForceX[no_of_sample]=TotalForceX; 
data_TotalForceY[no_of_sample]=TotalForceY; 

data_AssForce_x[no_of_sample]=AssForce[0]; 
data_AssForce_y[no_of_sample]=AssForce[1] ; 
data_no_of_hits[no_of_sample]=no_of_hits; 
data_VisualControlGainX[no_of_sample] = VisualControlGainX; 
data_VisualControlGainY[no_of_sample] = VisualControlGainY; 
data_ForceControlGainX[no_of_sample] = ForceControlGainX; 
data_ForceControlGainY[no_of_sample] = ForceControlGainY; 
//data_VelocityConsistency[no_of_sample] = VelocityConsistency; 
data_hit_interval[no_of_sample]=hit_interval; 
data_timer[no_of_sample]= timer; 
trialdata_traj_error[trial_sample] 
=slope*(((1/(2*sqrt(2)))*discPosition[0])-((1/(2*sqrt(2)))* 
discPosition[1]));//added slope version 9 
trialdata_freq_error[no_of_sample] = 
trial_freq_error[no_of_trial] ; 

} 
} 
} 
// V. END OF Haptic Function Thread ***************** 
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