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Abstract 

Stability Analysis of a Phase Plane Control System 

by 

Michael Plummer 

Many aerospace attitude control systems utilize a phase plane control scheme 

which includes nonlinear elements such as dead zone and ideal relay. Nonlinear control 

techniques such as pulse width modulation (PWM), describing functions, and absolute 

stability are implemented to determine stability. To evaluate phase plane control 

robustness, stability margin prediction methods must be developed. While PWM has 

been used to predict stability margins, in this research, describing functions and absolute 

stability are extended to predict stability margins. Time domain simulations demonstrate 

all techniques yield conservative gain margin results. A constrained optimization 

approach is also used to design flex filters for roll control. The design goal is to optimize 

vehicle tracking performance while maintaining adequate stability margins. Two filters 

are designed in this thesis; one meets PWM stability margin specifications and the other 

holds for Popov stability. 
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Chapter 1: Introduction 

The objective of this thesis is to explore various analytical techniques for 

evaluating nonlinear controller stability and performance such as a phase plane controller 

developed for an aerospace system. Linearization and quasi-linearization methods such 

as pulse width modulation (PWM) and describing functions are reviewed as well as 

Lyapunov-based absolute stability techniques including the circle criterion and the Popov 

criterion. Stability margin techniques are reviewed for PWM and describing functions 

and developed for absolute stability. A constrained minimization approach is applied to 

design optimized flex filters. The design goal is to maximize bandwidth in order to 

optimize system performance while ensuring robust system stability margins. 

1.1 Problem Motivation 

The nonlinear phase plane controller , "an idealized method of treating 

performance optimization for classes of minimum time and/or minimum fuel problems," 

has been used in aerospace systems such as the Space Shuttle and the ISS for years [1] 

[2]. Few techniques are currently available to evaluate nonlinear control systems such as 

the phase plane controller. In the past, describing functions have been implemented to 

linearly approximate the phase plane controller's nonlinearities, but this process only 

predicted instabilities and did not provide stability margins [1] [2]. Additional nonlinear 

control techniques such as PWM and absolute stability have also been applied to 

aerospace systems to determine stability. PWM has been used for ISS attitude control 

and stability margin predictions while absolute stability was utilized in a concept for 

stabilizing the Saturn V pitch control system [3] [4] [5]. Similar to describing functions, 
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absolute stability has not been applied to a phase plane controlled system for the purpose 

of determining stability margins. 

1.2 Thesis Objective 

There is a need for a nonlinear control technique comparison with regards to a 

phase plane controller. The techniques need to be compared not only to each other but 

also to time domain simulations. Aspects such as accuracy and conservatism must be 

weighed and considered throughout the analytical process. The primary goal of this 

thesis is to review nonlinear control techniques, establish stability margin tests for the 

techniques that do not currently possess stability margins, and use the knowledge gained 

to design performance-optimized flex filters with guaranteed asymptotic stability. 

1.3 Scope 

This thesis seeks to provide a review and analysis of nonlinear techniques that can 

be applied to a phase plane controller to determine stability margins. To this end it is 

advantageous to limit the number of simplifications and assumptions; on the other hand, 

in order to concisely compare these analytical techniques, it is necessary to implement 

several simplifications and assumptions that limit the scope of this thesis. 

1.3.1 Frozen-Time Solution 

All the analytical methods that will be discussed in this thesis (PWM, describing 

functions, the circle criterion, the Popov criterion, Kharitonov's theorem) are all frozen 

time techniques; therefore, all analysis for these techniques will take place in frozen time 

format. Frozen time analysis has proven to be effective in launch vehicles with slowly 
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varying parameters such as the Saturn V [6]. Because of this fact, frozen time only 

frozen time models will be considered in this thesis. 

1.3.2 Roll Control Only 

Aerospace attitude control systems often consist of both gimbal control and fixed 

jet control where the former is used for pitch and yaw control while the latter is utilized 

for roll control. Pitch and yaw axes have both been thoroughly explored in previous 

work, so this thesis will only examine the roll axis [7]. 

1.3.3 Aerodynamics Ignored 

This thesis operates under the assumption that there will be no aerodynamic 

forces exerted on the system structure in the roll axis. This assumption simplifies the 

rigid and flex dynamics without losing very much fidelity in most aerospace systems. 

1.4 Thesis Outline 

Subsequent to the introductory chapter, this thesis is organized as follows: 

Chapter 2 discusses roll dynamics and the phase plane control system. Both the 

rigid dynamics and the flex dynamics are fully explored and adapted to the system. Once 

the dynamics have been established, a description of the phase plane controller follows. 

Chapter 3 details two methods for approximating the nonlinear behavior of a 

phase plane controller. The first method that will be considered is PWM which involves 

discretization of the linear system and linear approximation of the nonlinear system by 

dead zone scaling. The second method outlined in Chapter 3 involves describing 

functions which are quasi-linearization tools that approximate nonlinear elements with 
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equivalent gains. Once applied, both PWM and describing functions allow for linear 

design methods such as Nichols and Bode to be used in system analysis. 

Chapter 4 provides a background into classical absolute stability including the 

circle criterion and the Popov criterion, presents D. D. Siljak's method for transforming 

non-Hurwitz systems so that absolute stability can be applied, and concludes by 

discussing the Kharitonov theorem's implications for robust, absolute stability. 

Additionally, a technique is developed for the circle criterion and the Popov criterion for 

predicting gain margins. 

Chapter 5 applies the techniques discussed in Chapter 3 and Chapter 4 to roll 

stability; furthermore, time domain simulations are accomplished in order to verify the 

validity of the above mentioned analytical techniques. 

Chapter 6 builds on the knowledge gained in Chapter 5 and designs new flex 

filters optimized for performance while utilizing PWM and absolute stability as stability 

design constraints. The optimized filter is then compared to the current filter based on 

performance-measuring simulations. 

Chapter 7 summarizes the findings and draws conclusions from the results of 

Chapter 5 and Chapter 6. The chapter also cites new developments in the nonlinear 

control field and suggests directions for future research. 
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Chapter 2: Spacecraft Attitude Dynamics and Control 

This chapter begins by discussing the spacecraft attitude dynamics which include 

both rigid and flex subsystems. After it is shown how the plant combines these two 

subsystems, the chapter will move on to the phase plane controller which will be used to 

stabilize the control system in the roll axis. 

2.1 Governing Equations 

The dynamics equations can be split into two subsets: rigid and flex. The equation 

for rigid dynamics can be seen in Equation 2.1 [8]: 

Ixx4> - GxR (2.1) 

In Equation 2.1, GxR is the torque about the centerline due to all thrusters while 7X 

is the inertia. In order to use this equation for analysis, it is desirable to convert the 

equation into state-space form which can be seen in Equation 2.2: 

<Kt) 
4>(0 Lo oJ L 

4>(0 
+ 

o 
GxR U(t) (2.2) 

Because only rate is desired in the output, the output equation is defined as such: 

yi(t) = [o l ] 
cb(0 

<K0 
(2.3) 

The flex dynamics equation for the can be derived from the following dynamics 

equations [8]: 

(s2 + 2!pi(Dpis + ayfavpi = uR I F r u s t e r s f<^R k i (2.4) 
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•th 
In Equation 2.4, fyi is the damping ratio of the i mode, OĴ J is the flex frequency 

of the i mode, rjpt is the flex diplacement of the ith mode, uR is the roll command (0,1,-

1), fj[k is the force vector from roll thrust k, and |iRki is the displacement vector of the ith 

mode at thrust k [8]. The state-space representation for the flex system can be seen in 

Figures 2.14 and 2.15 [8]: 

i i(t) 
ii(t). 

0 

-n'p -2Zp%jLf|(t)J ][ 
Tl(t) 

+ 
0 

L /̂3 BRCSTjetsi 
u(t) 

y2(t) = [0 4V] n(0 
TlCO 

(2.5) 

(2.6) 

In Equation 2.5, Qp is a diagonal matrix of flex frequencies, Zp is a diagonal 

matrix of damping ratios, <£>J is the mode shapes at jet locations, BRCS is the thrust 

direction mapping matrix, 7)ets is the jet select mapping matrix, and <Pyis the mode shape 

at the output node. The final governing equation that will be discussed in this section is 

the sensor output equation which reflects how the flex dynamics affect the readings to 

which the controller responds [8]. 

flex 
MRGA = <t> + YJt p^ms (2.7) 

In Equation 2.7, o»RGi4is the sensed rate at the rate gyro assembly and p ^ is the 

rotation of the ith mode at the rate gyro. Because the high-frequency flex dynamics 

possess the ability to make the system unstable, it is critical that a low pass filter be 

employed to attenuate high-frequency flex modes. 
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2.3 Spacecraft Dynamics 

The rigid and bending plant dynamics are integrated with the flex filter and phase 

plane controller to create the roll dynamics and control system. The block diagram in 

Figure 2.1 outlines the dynamics and control components: 

(t) Plant 
(Rigid and 

Flex) 
-G

-

<t> Flex Filter 

-e
-

<i> 
Phase 
Plane 

Controller 

¥(t) 

Figure 2.1: Dynamics and Control Block Diagram 

The flex filter block includes a low-pass filter to attenuate high-frequency noise 

while at the same time allowing low-frequency dynamics to feedback into the controller. 

A phase plane control system regulates attitude tracking and performance. The phase 

plane controller is an inherently nonlinear system which necessitates the requirement for 

nonlinear techniques in order to predict the system's behavior. 

2.4 The Phase Plane Controller 

The phase plane controller is "an idealized method of treating performance 

optimization for classes of minimum time and/or minimum fuel problems" [1]. The 

phase plane controller offers a unique method for attitude control. In this section the 

ideal phase plane controller will first be explained. After the phase plane controller's 

behavior has been outlined, a method for creating an equivalent PD controller combined 

with a nonlinear element comprised of a dead zone and an ideal relay will be explored. 
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2.4.1 Phase Plane Controller Model 

First, the concept behind an ideal phase plane controller will be explained. A 

phase plane controller responds to the vehicle dynamics in the plane defined by state 

errors and state rate errors. The trajectories in the phase plane can be described through 

Equations 2.8 and 2.9 [9]. 

4>2 = 4>i + w A t (2-8) 

^ 2 = 4 ) ! + aAt (2.9) 

In the expressions above co is angular velocity, a is angular acceleration, and At is 

the thruster firing time for the phase plane controller. Figure 2.2 demonstrates exactly 

how trajectories in the phase plane operate. For example, consider the starting point in 

Figure 2.2. The system applies a continuous torque until it enters the drift channel. At 

this point, the thrusters discontinue their firing and the system's attitude continues to 

increase because the system is in the upper half of the phase plane which means it has a 

positive rate. The rate is constant as long as there is no firing because the system cannot 

accelerate. Once the system crosses the negative switch line into the negative firing 

region, the system undergoes a negative acceleration which places the system back into 

the non-firing region; however, the system's attitude will continue to move towards the 

negative firing region until the system has been driven into the lower half of the phase 

plane. Once there, the system's attitude will decrease in the non-firing region until it 

crosses the positive switch line at which point a positive firing will occur [1]. 
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Drift Channel 
Trajectory 

Starting 
Point 

Positive Firing 

kp$ + kd$ < -S 

-> <p 

Negative Firing 

kp<b + fcd<j> > S 

Drift Channel 

Figure 2.2: The Phase Plane Controller 

The system will continue to oscillate around the origin of the phase plane in what 

is called a limit cycle. A common definition of a limit cycle is an oscillation of "fixed 

amplitude and fixed period without external excitation" [10]. 

2.4.2 Equivalent PD Controller 

In order to evaluate a nonlinear system such as a phase plane controlled system, it 

is necessary to transform the phase plane controller into a form where linear control 

techniques can be applied. This will be accomplished in a two step process. First, only 

the attitude hold region will be evaluated, and second, the phase plane controller will be 

transformed into an equivalent system consisting of a PD controller and a nonlinear 

element consisting of a dead zone and an ideal relay. This development can be seen in 

Figure 2.3: 
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V (t) = +/-1 

—> 

Phase Plane Controlled System 

Plant 

> 

-e-

* Filter 

<!> 

-e
-

Mj(t) = +/-1 

> 

(I) (t) = +/-1 

q> (t) = +/-1 

Plant 

Step 1: Attitude Hold Region Only 

• I . * 
— > 

* 
Filter 4> t-.6 

«|J (t) = +/-1 

Step 2: PD-Equivalent System / > * 
l inparrontmllpr Nonlinear Controller 

Plant 

• 

<i> Filter 

* 1 

* 
KD * + 

offl 
•*» 

3
.11 i t i i i H i - I » » 

HJ (t) = +/-1 

Figure 2.3: PD-Equivalent Phase Plane Development 

In Figure 2.3 above, step one ignores the drift channels of the phase plane 

controller because this thesis will focus on the sloped portion of the phase plane. Figure 

2.4 below illustrates the region to be analyzed in the proceeding development [11]. 
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<p 

\S 

0) RL 

* 0 

Figure 2.4: Sloped Portion of the Phase Plane 

The two switching curves, which define the dead zone between the positive and 

negative firing regions, can be defined by the inequality: 

- ( W R 7 5 )0 -<*RL<<I>< - ( ^ V S V + "RL (2-10) 

In order to progress from step two to step three in Figure 2.3, it is necessary to 

implement a PD controller. It is first necessary to rewrite Equation 2.10: 

- 1 < V */»„<! (2.11) 

Multiplying Equation 2.11 by the dead zone, S, leads to Equation 2.12: 

-S < <f> + {S/coR^ < S (2.12) 

This inequality provides the following values for kp and ko which are the 

proportional and derivative gains respectively [11]. 
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kP = l (2.13) 

kD = 5URL (2-14) 

The &p and kd values calculated above are instrumental in creating a practical 

phase plane controller that can be used with control analysis techniques. Substituting 

these values into Equation 2.12 yields the result for the dead zone [11]. 

-8 < kP(p + kD(p< 8 (2.15) 

The phase plane controller utilizes thruster firings. To model these firings, it is 

necessary to switch the signs from Equation 2.15 which models the dead zone. The 

thrusters are activated whenever either of the two inequalities becomes true [11]. 

fcpcb + /cd4> < —8 [Positive Firing] (2.16) 

kp 4> + kd<j> > 8 [Negative Firing] (2.17) 

The nonlinear controller portion in step three of Figure 2.3 can be evaluated by 

nonlinear control analysis techniques such as PWM, describing functions and absolute 

stability. 

2.5 Conclusions 

The spacecraft attitude control system takes into account both rigid and flex 

dynamics. The phase plane controller offers an idealized model for constructing a 

nonlinear controller which optimizes time and fuel performance. It is possible create an 

equivalent phase plane controller system that functions as the ideal phase plane 
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controllers using a PD controller. Nonlinear control techniques for the phase plane 

controller will be expanded upon in the proceeding chapters. 
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Chapter 3: Limit Cycle Prediction 

In this chapter two methods of limit cycle prediction will be explored. The first 

method, PWM, will create a linear approximation for which stability criteria such as 

those proposed by Bode, Nichols, and Nyquist can be applied. The second topic, 

describing functions, approximates nonlinear behavior through a quasi-linearization 

process. This information can be used to predict unstable limit cycles either through 

Nichols Plot intersections or by applying a gain and phase margin tester. 

3.1 Pulse Width Modulation (PWM) Approximation 

PWM is a method which transforms a nonlinear system into a form in which 

classical control techniques can be utilized through converting the linear system into 

discrete-time, calculating the system on-time, and performing dead zone scaling. For 

PWM the nonlinear element in Figure 2.3 is replace by dead zone scaling as can be seen 

in Figure 3.1: 

Linear System 

¥tt*+M 

Dead Zone 

Plant Fitter 

4 > j 

— * 

ft. 

—» 

+ 

+ 

» 1 

6 

Figure 3.1: Phase Plane Controlled System with PWM 

PWM discussion concludes with an explanation as to why PWM is utilized 

instead of pulse-width-pulse-frequency (PWPF). 
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3.1.1 PWM Discrete-Time 

A PWM approach will require transforming the linear system from Figure 3.1 to a 

discrete-time system of the form shown in Figure 3.1 [12]: 

Ad 

cd 

Bdftpw} 

Dd 

y 

Figure 3.2: Discrete PWM-Actuated System 

The state space equations appear as follows in the discrete-time domain [12]: 

y[(k + l ) t c ] = Cdx[ktc] + Ddrc[ktc] (3.1) 

x[(k + l ) t c ] = Adx[ktc] + Bdrc[ktc] (3.2) 

The discrete-time matrices Ad, Bd, Cd and Dd are defined in Equation 3.3-3.6 [4]. 

A, = eMc 

Bd = (eAt')V\l 0]el ™ ol P ] V~xBtc 

Cd = CAd 

(3.3) 

(3-4) 

(3.5) 

Dd = CBd (3.6) 

Where is the original continuous state space representation. In the above 

Bd matrix, V is known as the Vandermonde matrix and A is the diagonal eigenvalue 
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matrix. The Vandermonde and diagonal eigenvalue matrices are shown in Equation 3.7 

and 3.8 [13] [14]. 

V = 

I 1 1 \ 
A-^ • • • An 

Vr1 - A»-V 

(3.7) 

/Aj 0 0 
A = I 0 X 0 J (3.8) 

V 0 0 An 

The above matrices can be determined through Equation 3.9 [14]: 

Ad = VAV'1 (3.9) 

With the linear system properly converted to discrete-time, it is now possible to 

move forward with the remainder of the PWM analysis. 

3.1.2 System On-Time Calculation 

Since the system is discrete-time, it can be broken down into control cycles with 

period, tc. At each cycle the PWM-based phase plane controller is updated to enhance 

performance for the nonlinear roll control system. The jets provide a constant torque, Tjets, 

when activated. It is important to remember that there is a minimum "on" time for the 

actuators when calculating the desired torque, xc. Once the desired torque has been 

computed it is now desirable to calculate the total desired momentum, Ahc, through 

Equation 3.10 [4]: 

Ahc = Tctc (3.10) 

Depending on whether or not the system is in a firing or non-firing region, the 

applied torque, x, is determined [4]: 
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_ f tjets> ktc <^ t < ktc + tpw 
~ (0, ktc + tPW <t <(k + l ) t c 

(3.11) 

In the expression above k is the integer series 0, 1,2,... and tPW is the pulse-width 

on time which comes from Equation 3.12 [4]: 

Ahr = Trtr = xt PW (3.12) 

Based on the principle of angular momentum, Equation 3.12 can be simplified to 

the following equation to solve for tpw [4]: 

Lpw — i i Lr 

••jets! 
(3.13) 

The value calculated here for tpw is utilized to determine the appropriate amount 

oiAhc to be applied to the system. 

3.1.3 Dead Zone Scaling 

In order to compensate for the dead zone nonlinearity in the system, it is 

necessary to cut the closed loop system immediately before the dead zone nonlinearity in 

order to create an open loop system without the dead zone or ideal relay nonlinearities. 

This can be seen in Figure 3.3: 

i|) (t) = +/-1 IJJ (t) = +/-1 

Linear System 

Ad 

cd 

Bd 

Dd 

Dead Zone Scaling 

a( t ) 1 

Figure 3.3: PWM System Model 
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This system's response is then scaled by the dead zone value in order to 

approximate the nonlinear behavior of the phase plane controller [3]. The small gain 

theorem is then applied to the new linear approximation of the nonlinear system. If the 

system's open loop gain is greater than or equal to unity, unstable limit cycling will occur 

within the system [15]. Though this method accounts for the dead zone nonlinearity, it 

does not make an additional approximation for the ideal relay nonlinearity. This absence 

can lead to inaccuracies when using the method to predict stability margins for nonlinear 

systems as shown in Section 4.4. 

3.1.4 PWM versus PWPF 

One alternative to PWM is PWPF which is a similar jet selection logic technique 

that "converts the torque command to the RCS jets command" [16]. For this case RCS 

denotes a reaction control system which is the physical control setup the roll control 

system utilizes. The technique has advantages over PWM because PWM utilizes short 

pulses which are "generally fuel-inefficient under harsh aerodynamic environments" 

which the system encounters in the first stage of flight [17]. Because PWPF "originates 

from an analog device" a "minimum pulse could be selected to be equal to the sampling 

time of the flight computer or an integer multiple of the sampling time [17]. This 

essentially means that the PWPF method offers fuel efficiency and reliability; however, 

the "PWPF has a potential issue of phase loss at high frequencies" which is an important 

problem for many systems due to the large amount of structural flex these systems 

experiences [17]. This flex is ultimately why PWM was selected over PWPF for this 

thesis. 
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3.2 Describing Functions 

Describing functions are quasi-linearization tools that detect limit cycles. As 

discussed in Chapter 2, limit cycles are "sustained oscillations" in a nonlinear system 

which exists with no external action [18]. This method fits progresses from Figure 2.3 as 

follows in Figure 3.4: 

Linear System 

Describing 
Function 

Plant 

* 

* 
Filter 

• 

4> 

kp 
v w 

» 

> 

+ 

+ 

> N(A) 

IP (t) = +/-1 

Figure 3.4: Phase Plane Control System with Describing Function 

Describing functions are a natural choice for control system design because they 

are a frequency-based technique; therefore, they can be used in conjunction with classical 

control techniques. This result is because describing functions are largely based on the 

Nyquist criterion. 

3.2.1 Describing Function Theory 

The basic form for describing function analysis splits the nonlinear and linear 

portions of the system as seen in Figure 3.5: 
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Nonlinear Elements Linear System 

r(t) = 0 

-v Asin(cot) 
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S 

Figure 3.5: Describing Function Form 

Since "describing function analysis.. .belongs to those methods of solving nonlinear 

differential equations which are based upon an assumed solution," there must be an 

assumed input into the nonlinear element, N(A,co) [18]. When using describing function 

analysis, it is necessary to assume the input to be of the sinusoidal form: 

f(t) = Asin(cot) (3.19) 

Because the output is a signal, it can be modeled through the Fourier series [10]. 

It will be assumed that the nonlinearity is odd and the only the fundamental output, y/j(t), 

of the nonlinear element will be of concern in the following analysis [10]. 

3.2.2 Derivation of an Odd Describing Function in General Form 

As stated above, a describing function's output can be represented using the 

Fourier series as in Equation 3.20 [10]: 

\p(t) = — + Tin=ilan cos(nwt) + bnsin (ncot)] (3.20) 

Where a„ and b„are determined in Equations 3.21 and 3.22 [10]: 

1 rn an = - / _ w(t) cos(nojt) d(cot) (3.21) 
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1 rlt 
bn = - / w(t)sin (nojt)d(ojt) (3.22) 

All nonlinearities discussed in this thesis will be odd, that is, they will "possess 

odd symmetry" which is manifested in Equation 3.23 [16]: 

i/>0) = -rpira) (3.23) 

Odd symmetry will eliminate ao from Equation 3.20; furthermore; since only the 

first output, y/i(t), is being considered the following is true [10]: 

xp(t) = rpt(t) = at cos(o)t) + ^ s i n (o>t) (3.24) 

Transforming y/j(t) into polar coordinates provides the result [10]: 

tf>i(£) = Msin(ot + 0) = MeJ^t+e^ (3.25) 

M and 6 are defined [10]: 

M(A,<0) = Jal + bf (3.26) 

e(A,co) = tan-1(^j (3.27) 

The goal of describing functions is to quasi-linearize a nonlinearity in the 

frequency domain [16]. To accomplish this feat it will be necessary to model to output 

over input of a generalized nonlinearity using the input, Asin(a)€), and the output, y/j(t) 

[10]. 

»c^) = ̂  = ̂  = ;H 8 <"s> 
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For the generalized describing function form, it is necessary to transform the 

equation from polar to Cartesian coordinates [10]. 

N(A,w)=j(b1+ja1) (3.29) 

3.2.3 Dead Zone Describing Function Derivation 

The dead zone nonlinearity is a key nonlinearity in the phase plane controller 

discussed above; therefore, it is of the utmost importance that dead zone is modeled as a 

describing function in order to fully explore the system's nonlinear dynamics. Figure 3.6 

below depicts the input/output relationship for a dead zone nonlinearity. The symbol, S, 

represents the numerical value for the dead zone. 

-s\ 

/ Dead 

k 

/ . 
r * 
\S 

zone 

Figure 3.6: Dead Zone Nonlinearity Input vs. Output 

For any nonlinearity which needs to be modeled with describing functions, it is 

always first required to start with the output function. The output function for dead zone 

is shown [10]: 
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/ m _ f 0, 0<(ot<Y 
WKX) ~ {k(Asin(cot) -8)lY<ayt< TT/2 l ^ U J 

In Equation 3.30 above, y is defined: 

Y = sin-1(S/A) (3.31) 

For the dead zone nonlinearity the "quadrature gain" or a; is always zero because 

this is true for any nonlinearity that is "static and single-valued" [16]. A static 

nonlinearity is defined by Equation 3.32: 

xP = xP(a) (3.32) 

This means the nonlinearity displays "no dependence upon the input derivatives" 

[16]. The generalized equation for a describing function can be reduced as such: 

N(A) = b-± (3.33) 

In order to have a treatable equation, it is necessary to expand b\ in the preceding 

equation [10]: 

h = ^ /^wOOsin (a)t)d(cot) (3.34) 

b± = -jjw(t) sin(a)t) difiit) (3.35) 

Dividing the equation into two integrals, one for each y/(t) function gives [10]: 

u 4 
b1=-

n 

rS 
/ (0) sin(o)t) d(cot) + J2 k(Asin(a)t) - S)sin(o)t) d(cot) (3.36) 



24 

Finally integrating bj and placing it into the equation for N(A) yields [10]: 

, 2kA -2-
sin U-u1-^ (3.37) 

K J A n i-**-1®-'^ (3.38) 

It will be useful to know the describing function for other nonlinearities such as 

an ideal relay; therefore, the describing function for a relay element is given in the 

equation [16]: 

«w>=S (3.39) 

In the above expression, D is the magnitude of the relay's output which can be 

either positive or negative depending on the sign of the input. 

3.2.4 Two Nonlinear Elements in Series 

In many systems there will be more than one nonlinear element to consider. In 

this section, two nonlinear elements (Nj and Ni) in series will be examined. The model 

below in Figure 3.7 illustrates the nonlinear element set up that will be discussed [16]. 

Figure 3.7: Two Nonlinear Elements in Series 
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The goal of this exercise is to create one describing function which captures the 

nonlinear behavior of both N; and N2. It is important to remember that single valued 

describing functions are considered to be linear gains in nonlinear control theory; 

therefore, the two nonlinearities need to be multiplied by each other in order to 

determined there combined gain value [16]. Before the combined gain can be determined 

it is necessary to more clearly define each of the input amplitudes An. Aj is the input 

amplitude to the nonlinear element series. A2 is the output of Nj and the input to N2 and 

is defined by the expression: 

A2 = N^AJAI (3-40) 

The symbol A 3 denotes the output to N2 and is defined by the following 

expression: 

A3 = N2(A2)A2 (3-41) 

Combining TV; and N2 to create a combined describing function N(Aj) requires 

multiplying the two gains together: 

N(AJ = ^(.AMfa) = N^AMCN^AJAJ (3.42) 

The above process provides a method for combining two describing functions to 

approximate two nonlinear elements in series. 
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3.2.5 Nichols-Based Limit Cycle Prediction 

The first method of predicting whether or not a system will experience limit 

cycling involves plotting -1/N(A) in a Nichols plot with the linear system response, G(jco). 

Whenever the two plots intersect, limit cycling may occur [10]. For example; Penchuk, 

Hattis and Kubiak established modeling the space shuttle's phase plane controller's 

nonlinearities as hysteresis [1]. Hysteresis is different than dead zone because it has not 

only a real but an imaginary portion which means it has frequency content as can be seen 

below [1]: 

^ J ^ + ̂ i - A ^ 0 (3.43) 
I 0, A < 0 

As a result of this frequency content, the Nichols plot of -1/N(A) is not just a 

vertical as would be the case for dead zone. Figure 3.8 below demonstrates how the 

hysteresis can predict limit cycling in a nonlinear system [2]: 
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Figure 3.8: Predicting Limit Cycling Through Intersections 

As can be seen in Figure 3.8, there are two frequencies at which the system in this 

example limit cycles. Such knowledge can be critical in ascertaining the overall stability 

and performance of a system. It must be noted that describing functions are conservative 

in nature and it takes experience to know whether or not limit cycling will actually occur 

even if there is an intersection [10]. Generally, it is the accepted practice to consider a 

system that does not intersect as non-limit cycling while one that does intersect needs to 

be examined more closely [10]. 

3.2.6 Gain and Phase Margin Tester 

Wu and Perng establish a gain and phase margin testing technique which is based 

on examining the characteristic equation of the closed loop transfer function T(s) also 

27 

Describing Function: Nominal Low Pass Filter 
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known as the complementary sensitivity function. The gain and phase margin tester is of 

the form [19]: 

Gain/Phase Margin Tester = Ke ie (3.44) 

where K represents gain and 6 represents phase in the feedback loop. Consider the 

following figure [19]: 

r(t) 
>o 
- t \. 

e(t) 
>. 

LTI System 

G (s) = num(s)/den(s) 

Ke~ie 

y(t) 

Figure 3.9: Gain/Phase Margin Tester Block Diagram 

From the above figure it can be seen that T(s) is defined by Equation 3.45: 

T(s) = 
G(5) 

l+Ke-ieG(s) 
(3.45) 

It is important to note that G(s) includes the describing function for the 

nonlinearity as a complex gain or in the case of dead zone as a gain with no frequency 

content. To determine stability (in this case defined by limit cycle existence or lack 

thereof, it is necessary to examine the characteristic equation for T(s) [19]. 

1 + Ke-JeG(s) = 1 + Ke~>e ^^fi- = den(s) + Ke-J°num(s) = 0 (3.46) 
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By substituting zero into the phase, Equation 3.47 is found: 

den(s) + num(s)K = 0 (3.47) 

In this equation, K now functions as the gain margin seeing as phase has been set 

to zero. Gain margin can now be solved for by splitting the above equation into real and 

imaginary portions and solving for K [19]; 

, _ -Re[den<js)] , - . „ . 

Re[num(s)] 

„ _ -Im[den(s)] . - . „ , 

Im[den(d)] ^ ' ' 

It is necessary to vary the describing function in G(s)'s amplitude, A, from 0 to oo 

while also varying &>, from 0 to GO. Solve for K' = K" at every At. UK' = K" = Kt for A = 

At, then Kt is the valid gain margin for that amplitude. The minimum gain margin is 

considered the actual gain margin in this technique. The result can be seen in Figure 3.10: 
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Figure 3.10: Gain Margin Test Results 

The phase margin tester is constructed in a similar manner as the gain margin 

tester in that you begin with the characteristic equation for T(s) [19]: 

1 + Ke-J°G(s) = 1 + Ke->e ^ ^ = den(s) + Ke-Jenum(s) = 0 (3.50) 

By substituting unity into K and applying Euler's method yields [19]: 

W + Ucos(9) + Vsin{6) = 0 (3.51) 

Separating the equation into real and imaginary parts yields [19]: 

WR + URcos(9) + VRsin{9) = 0 

W} + U,cos(9) + Vjsin{9) = 0 

(3.52) 

(3.53) 

Using the previous two equations, 6 is determined [19]: 
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9 = cos -1 (VRWI-VIWR\ 

URV,-U,VR J • ' ( ^ e' (3.54) 

(3.55) 

Again it is necessary to vary the describing function in G(s)'sA from 0 to QO while 

also varying cot from 0 to oo. Solve for 9' = 9" at every At. lf9' = 9" = 9iforA=Aj, then 

9i is the valid phase margin for that amplitude. The minimum phase margin is considered 

the actual phase margin in this technique. The result can be seen in the following plot: 
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Figure 3.11: Phase Margin Test Results 

The preceding method can be applied to any describing function both with and 

without frequency content. 

3.3 P W M and Describing Function Conclusions 

Both PWM and describing functions can be utilized to predict the existence of 

limit cycles in nonlinear systems. The prediction of unstable limit cycles is critical for 
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determining whether or not a nonlinear system will behave in a controllable and stable 

manner. These techniques will later be applied to spacecraft attitude control systems and 

compared to other nonlinear methods by means of their results. 
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Chapter 4: Absolute Stability 

The phase plane controller is a nonlinear control scheme which means it is 

necessary to take these nonlinearities into account when determining system stability. 

Absolute stability provides a method for guaranteeing asymptotic stability for a nonlinear 

system primarily through two techniques called the circle criterion and the Popov 

criterion. Both the circle criterion and the Popov criterion were developed in the 1960's 

by theorists such as Zames, Aizermann, Gantmacher and Popov who applied Lyapunov's 

second method to the frequency domain [15] [20] [21]. 

4.1 Lur'e Problem and Background 

For systems with nonlinearities such as dead zone and ideal relay, standard linear 

control methodologies such as Bode and Nichols cannot be applied. These nonlinear 

aspects must be taken into account. The Lur'e Problem accomplishes this task by 

separating the linear and nonlinear elements as in the Figure 4.1 [22]: 

^ > 

eft) 

qj(a) 

Linear Subsystem 

<j(t) 

Nonlinear Element 

l * (o ) 

r ; 
Figure 4.1: Lur'e Problem System Model 
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Figure 4.1 corresponds to the following system of equations [22]: 

x(t) = Ax(t) + Bxp(a) (4.1) 

ff(t) = Cx(i) (4.2) 

Using this model, it is possible to evaluate the sector bounds for the nonlinear 

element. A nonlinearity belongs to a sector [a, /?], where /? and a are the upper and lower 

sector bounds respectively, if the inequality 

aa2 < xp(a)a < po7 
(4.3) 

holds true [23]:. Sector bounds define the regions where a nonlinearity can dwell 

when plotting the input, a(t), versus the output, y/(a) as in Figure 4.2 [26]. 

s 

•* a 

Figure 4.2: Input/Output Sector Bounds 

These sector bounds allow for nonlinear stability to be ascertained by way of 

frequency-based methods such as the circle criterion and Popov criterion. 
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4.2 Circle Criterion 

A system with nonlinearities enclosed within the sector bound is guaranteed to be 

asymptotically stable provided the system is a minimal realization of G(s). This means 

that the A and C matrices must be observable while the A and B matrices must be 

controllable when the system is in state space form [22]. Determining /? and a can be 

accomplished through one of the following three cases, collectively known as the Circle 

Criterion. 

Case One: [0<a<y5] 

For this case the "Nyquist plot of G(s) does not enter the disk D (a, fi) and 

encircles it m times in the counterclockwise direction, where m is the number of poles of 

G(s) with positive real parts" [23]. For the expression: 

G(s) = ,5
4
 V 5 v (4.4 

The accompanying Nyquist plot can be seen below: 
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Figure 4.3: Circle Criterion (Case 1) Example 

Case Two: [a = 0, p > 0] 

For the second condition, the linear portion, G(s), must be strictly Hurwitz which 

means all poles are in the open left hand side of the s-plane. The Nyquist plot of G(s) 

must lie to the "right of the vertical line defined by Re[s] = -1/(3" [22]. Khalil includes 

the following example [23]: 

G ( 5 ) = (s+l)fe+2)fe+3) ( 4 - 5 ) 

Which when plotted appears as below: 
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tyquist Diagram 
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Figure 4.4: Circle Criterion (Case 2) Example 

This above chart shows that for this particular transfer function, /? will be equal to 

27.8 which is large enough for both dead band and ideal relay nonlinearities. 

Condition Three: [a < 0, /? > 0] 

This case also requires G(s) to be Hurwitz; however, the Nyquist response of G(s) 

must be completely inside the disk, D (a, {$) [23]. The same example function can be 

taken from condition two; however, condition three will be applied. 
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Nyquist Diagram 
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Figure 4.5: Circle Criterion (Case 3) Example 

Condition three leads to an a of-10 and a P equal to 5 which means there are 

regions of absolute stability in both the second and fourth quadrants of the input/output 

nonlinearity chart. 

The dead zone and ideal relay nonlinearities cannot fit inside the sector as defined 

by condition one, so that means condition one is ruled out as an option. Sector conditions 

are more difficult to derive for condition three than for condition two. Condition three 

requires the disk, D (a, ft), to be generated while condition two implements a vertical line 

placed at the minimum real value of the Nyquist response to G(s). That minimum real 

Nyquist value is then compared to -1/p in order to determine if a system possesses 

absolute stability. For these reasons, condition two will be explored for the remainder of 

this paper rather than condition one or condition three. 
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It is important to note that circle criterion is only a sufficient condition for 

absolute stability [10]. In other words, a system is guaranteed asymptotic stability if the 

system meets circle criterion conditions, but if the system fails to satisfy those conditions, 

it is not necessarily unstable. 

4.3 Popov Criterion 

The Popov criterion is an additional method for determining whether or not a 

nonlinear system possesses absolute stability. As in the circle criterion, it is necessary to 

begin with the Lur'e problem system setup in Figure 4.1. There are limitations to the 

particular type of system that can use the Popov criterion to ensure absolute stability. 

Vidyasagar notes "unlike the circle criterion, the Popov criterion is applicable only to 

autonomous systems" [22]. An autonomous system is defined as autonomous if/in the 

following expression "does not depend explicitly on time" [10]. That is: 

* = f{x) (4.6) 

A system that is non-autonomous would have behavior that could be described by 

Equation 4.7 [10]: 

x = f{x,t) (4.7) 

As in the circle criterion, it is necessary that the A and B matrices are controllable 

and the A and C matrices are observable, therefore, ensuring the open loop transfer 

function for the system is a minimal realization of the system [22]. Similar to conditions 

two and three of the circle criterion, it is necessary for the system to be strictly Hurwitz to 
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satisfy the Popov criterion [10]. Popov's criterion is similar to condition two of the circle 

criterion in that the lower sector bound, a, is set equal to zero while the upper sector 

bound, /?, is determined through a graphical-frequency based technique [10]. From here 

it is necessary to examine the following inequality. The inequality must be satisfied in 

order for absolute stability to exist [10]: 

jRe[(l +ja)r)G(ja))] + ^ > e , V w > 0 (4.8) 

In Equation 4.7, the value e should be an arbitrarily small value while r is 

required to be non-negative [10]. Applying constrained minimization to minimize 1//? in 

the above expression results in a solution for /? for a particular transfer function. Using a 

sample transfer function from Vidyasagar along with MATLAB code created to perform 

the above constrained minimization generates results which are best seen in a Popov plot 

[22]. The Popov plot only considers positive frequencies (unlike circle criterion plots) 

and is similar to the s-plane except that the Popov plot graphs Re[G(jco)] vs. colm[G(jco)] 

as opposed to Re[G(ja>)] vs. Im[G(ja>)] as in the circle criterion [22]. A sample transfer 

function from Vidyasagar will be used for demonstration purposes [22]: 

C(s) = —-i— (4.9) 
v J s(s+l)2 v ' 

Plotting the positive frequencies for the above transfer function (blue line) as well 

as performing the constrained minimization which generates the red line in Figure 4.6 

below: 
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Popov Stability: Upper Sector Bound = 2 
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Figure 4.6: Popov Criterion Example 

Figure 4.6 shows that the upper sector bound for the given transfer function is 

equal to two. It is important to note that sector bounds generated for a given transfer 

function using the Popov criterion will be less conservative than those generated utilizing 

the circle criterion. Another significant difference between the two absolute stability 

criterions is that the circle criterion proves global exponential stability while the Popov 

criterion only guarantees global asymptotic stability [22]. 
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4.4 The Siljak Transformation 

4.4.1 Siljak Transformation Theory 

As stated earlier, the circle criterion (case 2) and the Popov criterion require the 

system A matrix to be strictly Hurwitz. Siljak's transformation method circumvents this 

requirement by introducing a feedback gain which creates a transformed Hurwitz system 

[5], Starting with the Lur'e system shown in Figure 4.1, the linear time-invariant (LTI) 

system's minimal realization transfer function leads to the following loop transformation 

model when Siljak's method is applied [22]: 

LTI System 

0 + r^ eft) + ^ 

Figure 4.7: Loop Transformation 

The above loop transformation results in the following expression for the 

transformed system [5]: 
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c-<s>=dHb> <4'l0) 

Using Equation 4.9, ks should be varied until Gtr(s) is strictly Hurwitz. The 

transformed A matrix can be seen in the equation [5]: 

Atr=A + ksBC (4.11) 

The transformed nonlinearity can be seen in the expression [5]: 

tftr(<r) = tf(ff(t))-fctf<r(0 (4.12) 

Because of the subtracted portion in the above equation, there will be a limit on 

a(t), denoted as v, where any input greater than that limit will lead to a sector violation. 

This means a system with an input greater than v will not be guaranteed absolute stability. 

The new transformed state space system is seen in the form [5]: 

x(t) = Atrx{t) +B\ptr(a) (4.13) 

o(t) = Cx(t) (4.14) 

The sector limits (a = 0, /?) are still determined by applying condition two of the 

circle criterion or the Popov criterion to the non-transformed system. These sectors can 

be shown in the following inequality [5]: 

0 < axptr(a) < Bcr2, where \a\ < <rmax and ^ t r ( 0 ) = 0 (4.15) 

The Siljak transformation's main benefit is it allows the control designer to 

establish absolute stability over a finite domain. Whether or not a region possesses 
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asymptotic stability depends on the type of nonlinearity which needs to be accounted for 

through absolute stability. Because of the negative portion in the nonlinear function 

equation, dead zone regions do not possess guaranteed absolute stability over a finite 

domain even using the Siljak transformation. This is because the sector bounds would be 

immediately violated as soon a a(t) was greater than zero, but ideal relay nonlinearities 

do not suffer from the same handicap. Ideal relays result in asymptotic stability because 

the nonlinearity has a positive slope at the origin; therefore, amax > 0 for saturation 

nonlinearities and a finite domain of absolute stability exists. The figure below helps 

demonstrate this concept that dead zone regions do not posses absolute stability while 

ideal relay regions possess absolute stability over a finite domain. In the figure below the 

transformed system is not guaranteed to be absolutely stable when the transformed 

nonlinearity enters the second or fourth quadrant. 

Siljak Input/Output with k = 0.07 
O 

Transformed 
0.5 Nonlinearity 

\ ~^max 

t ° 

-0.5 

\ 

••Nonlinearity 

••. a , max 

-20 -15 -10 -5 0 5 10 15 20 
<x(t) 

Figure 4.8: Siljak Transformed Input/Output 
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The result of the Siljak transformation with respect to dead zone and ideal relay 

match how the phase plane controller is designed to operate. When in the dead zone 

region there is no firing only drifting compared to when the system is in the ideal relay 

portion it is firing and asymptotically stable. 

4.4.2 Siljak Transformation Example 

Violating the finite domain of absolute stability will result in an unstable system 

as can be seen in the following example. To demonstrate how the finite domain of 

absolute stability functions, a pitch control system will be analyzed at t = 60 seconds. 

This is important because the pitch plant is open loop unstable in the pitch axis at this 

frozen-time without closed loop control because the system is not Hurwitz and has a 

maximum, real eigenvalue greater than zero. The first step is to perform a linear analysis 

to find the minimum ks value necessary to transform the pitch plant into a Hurwitz system. 

0.1 

0.05 

S. o 

-0.05 

k* = 0.45 

-0. h 0.3 0.4 0.5 0.6 0.7 0.8 
k 

5 

Figure 4.9: Linear kg Analysis 
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Once ks has been determined, it is now possible to plot the transformed 

nonlinearity in order to determine v which will define the maximum input amplitude the 

nonlinear element can sustain before it becomes unstable. 

•% Transformed Nonlinearity 

-3 
-10 

Saturation Nonlinearity 
-5 0 5 

Input, a 
10 

Figure 4.10: Pitch Control Transformed Nonlinearity 

It can be seen in Figure 4.10 that omax = 4.5, thereby, defining the limit to the 

nonlinear element input amplitude, a. Time domain simulation confirms this amax value 

to be a conservative estimate. Figure 4.11 demonstrates the system maintains stability 

with a = 5.0 input into the system: 
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am a Y = 5.0 

10 20 30 
Time, t [sec] 

40 SO 

Figure 4.11: Time Domain Simulation for Pitch Example (a = 5.0) 

However, when inputs greater than 5.0 are encountered, the system response 

diverges, indicating an unstable system. 

20 30 
Time, t [sec] 

Figure 4.12: Time Domain Simulation for Pitch Example (<r> 5.0) 
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These results indicate that amax = 4.5 is a serviceable estimate for the maximum 

nonlinear input amplitude for the Pitch Control System. The finite domain of absolute 

stability can be utilized in nonlinear systems as an abort condition. If a > omax, the 

current maneuver should be aborted. 

4.5 Kharitonov's Theorem 

Determining stability for a particular nominal set of parameters at a particular 

time is useful to the control engineer; however, in order to fully establish a full spectrum 

picture of a system's stability, it is desirable to explore a system's parametric uncertainty. 

This can be accomplished through several different techniques both analytical and 

probabilistic. Dobra and Trusca established a method for combining Kharitonov's 

theorem with absolute stability based on the Popov criterion [25]. Using this method, it 

will be possible to prove absolute stability for a system with uncertain parameters. 

Kharitonov's theorem establishes an interval plant family with minima and 

maxima for each uncertain parameter. From here, the theory builds four polynomials for 

the interval plant's numerator and four polynomials for the interval plant's denominator. 

Combining these sets of numerators and denominators results in sixteen boundary plants 

that define the limits of a system's parametric uncertainty [26]. The interval plant takes 

the form [25]: 

C f e P , , ) = f g (4.16) 

The numerators and denominators in the above interval plant are defined by the 

expressions [25]: 

N{s,q) = q0 + q±s + q2s
2 + q3s

3 + - (4.17) 
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D(s,p) =p0+ PiS + p2s
2 + p3s

3 + ••• (4.18) 

Each value of qt and/?/ above represents a value which is governed by one of the 

two expressions [25]: 

qt G [£i ?T| (4.19) 

Pi e [P[ P7] (4.20) 

For both the numerator and denominator, it is necessary to compute the 

Kharitonov polynomials in order to map out the parametric space. The numerator 

Kharitonov polynomials are determined through the family of expressions where the 

negative and positive superscripts denote minima and maxima respectively [25]: 

WfciO) = qo+ Rls + q^s2 + q+s3 + - (4.21) 

N f e 2 0) = qo + qls + q2s
2 + q%s3 + ••• 

NfcsOO = qt + R?s + <li s 2 + <J3_s3 + ••• 

Nk4(s) = (?o + qfs + q$s2 + q3s
3 + ••• 

The denominator Kharitonov polynomials are similarly computed using the 

family of expressions: 

AtiOO = Po + Pis + Vts2 + pis3 + ••• (4.22) 

Dk2(s) = Po + Pis + p^s2 + pis3 + ••• 

Dk3(s) = Po + pis + pis2 + P3S3 + ••• 

Dk4(s) = Po + pis + pis2 + P3S3 + ••• 

The combination of the above family of expressions creates sixteen Kharitonov 

systems which can each be analyzed via an absolute stability criterion. Starting with the 

interval plant similar to one in Dobra and Trusca [25]: 
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G{s,v,q)= ~A ^ r (4-23) 
v ,H>-IJ s*+q3S3+q2s2+qlS+q0 V ) 

Defining the parameter space: 

<?i6[l 2],qQE[2 3] (4.24) 

Pa e [9 10], p2 e [10 13], P! 6 [7 9], Po e [1 2] (4.25) 

These values result in the Kharitonov polynomials: 

Nkl(s) = l + 2s (4.26) 

Nk2(s) = 2 + 2s 

iVk3(s) = 2 + 35 

iVfc4(s) = 1 + 3s 

Dfcl(s) = l + 7s + 13s2 + 10s3 + s4 (4.27) 

^fc2(s) = 2 + 7s + 10s2 + 10s3 + s 4 

Dk3(s) = 2 + 9s + 10s2 + 9s3 + s 4 

DM(s) = 1 + 9s + 13s2 + 9s 3 + s4 

These Kharitonov polynomials create sixteen transfer functions which can be 

evaluated using absolute stability techniques such as circle criterion and the Popov 

Criterion. Although Dobra and Trusca only discuss using Kharitonov's theorem in their 

paper, it is also possible to apply condition two of the circle criterion because all sixteen 

Kharitonov plants will be strictly Hurwitz. Below is a graph displaying the results of a 

condition two circle criterion test for the upper sector limit, /?: 
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Circle Criterion: Upper Sector Bound = 1.3051 
2 

1.5 

1 

0.5 

£ 0 

-0.5 

-1 

-1.5 

-2 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 

Re 

Figure 4.13: Kharitonov Based Circle Criterion (Case 2) Example 

It is also useful to examine the Popov plot of the same sixteen Kharitonov plants 

and determine the worst case condition: 

Popov Criterion: Upper Sector Bound = 2.0871 
0.5 

0.25 

0 

r -0-25 

-0.5 

-0.75 

"-1 -0.75 -0.5 -0.25 0 0.25 0.5 
Re 

Figure 4.14: Kharitonov Based Popov Criterion Example 

i » ' i 

T 1 -̂  - - r i 
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As can be seen in the above two plots, the Popov criterion is less conservative than 

the circle criterion which means it will provide more accurate stability margins 

predictions and a wider variety of nonlinear elements can be utilized in a system while 

still maintaining absolute stability. 

4.6 Stability Margin Prediction 

To effectively compare nonlinear stability techniques, it is necessary to develop a 

method for determining stability margins. With absolute stability it is possible to predict 

gain margins through the following process. This method will be valid for absolute 

stability techniques such as circle criterion (case 2) or the Popov criterion. First, it is 

necessary to review the Lur'e model: 

Linear Subsystem 

* > 

u(t) = -v(t) a(t) 

Nonlinear Element 

V(t) 

Figure 4.12: Lur'e Model 

From the above linear system, it is possible to determine the actual upper sector 

limit, /?, using either the circle criterion (case 2) or the Popov criterion. Next, it is 
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necessary to determine from the nonlinear element the required upper sector limit, pmin, as 

is demonstrated in Figure 4.14: 

Nonlinearity 

Figure 4.13: Determining the Required Upper Sector Limit, K 

The difference between /? and /3min results in a gain margin region, in which the 

system is absolutely stable. As long as ft > pmin, the system is considered to be stable. 

This region is depicted for circle criterion in Figure 4.13: 
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lm Circle 
Criterion 

Gain Margin Region 

Figure 4.14: Gain Margin Region for Circle Criterion 

The same region is illustrated for the Popov criterion in Figure 4.14: 

Gain Margin Region Aw*lm P o p o v 
Criterion 

-1/(3miny' -1/(3 

4 
j)"1™ Re 

Figure 4.15: Gain Margin Region for Popov Criterion 
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Taking advantage of this gain margin region, Equation 4.28 is developed to 

determine the gain margin for a particular system. 

Gain Margin = dB I $Ia 1 (4.28) 
\ Pmin J 

The gain margin prediction method developed in this section will be tested later in 

Chapter 5 with regards to a phase plane controlled roll system. Its effectiveness and 

conservatism will be compared to other nonlinear stability analysis techniques. 

4.7 Absolute Stability Conclusions 

Absolute stability includes useful techniques such as the circle criterion and the 

Popov criterion. These techniques are critical in determining sector bounds for which 

systems with nonlinear elements can be considered stable. In general, circle criterion 

(case two) is the easiest both conceptually and computationally to implement; however, 

the Popov criterion does have an advantage. The Popov criterion is less conservative 

than the circle criterion (as will be demonstrated in Chapter 5) which means that a more 

accurate picture of how the system operates is achieved. Siljak's transformation offers 

obvious benefits with its ability to allow for absolute stability even with non-Hurwitz 

poles while conveniently helping to explain the phase plane controller's stable and 

neutrally stable regions. Finally, a method for harnessing absolute stability for predicting 

gain margins is developed. 
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Chapter 5: Application to a Phase Plane Control System 

In the following section techniques such as PWM analysis, describing functions, 

circle criterion, Popov criterion, and Kharitonov's theorem discussed in the previous 

chapters will be applied to a roll control system. Additionally, the SIMULINK tool will 

be utilized to simulate the nonlinear system in order to verify the results obtained from 

the analytical techniques. The primary concern of this analysis is to determine whether 

or not the system meets the design criteria of 6 dB gain margin and 10 dB flex dynamics 

attenuation. 

5.1 Flex Filter 

Many aerospace systems currently employ elliptic filters for low pass filtering to 

stabilize the spacecraft by attenuating high-frequency noise while allowing the low-

frequency spacecraft dynamics to be fed back to the controller. An elliptic filter is unique 

in that it is "equiripple in both the passband and the stopband" which is in contrast to 

Butterworth filters which are "monotonic in the passband and in the stopband" and 

Chebyshev filters which contain an "equiripple characteristic in the passband and 

monotonic in the stopband [27]. Using a filter with equiripple provides the advantage of 

being able to use a smaller order filter and additionally for a given cutoff frequency, "the 

transition band is small as possible" [27]. The latter advantage means that an elliptic 

filter "yields the sharpest cutoff frequency selective filter" for a filter of a given order 

[27]. When designing elliptic functions, it is important to keep in mind "elliptic filters 

must have both poles and zeros" in order "to obtain equiripple error in both the passband 
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and stopband" [27]. The current filter was designed using MATLAB's "ellip" function in 

which the engineer specifies the filter order, the ripple, the stopband minimum 

attenuation, and the cutoff frequency [28]. Figure 5.1 shows the Bode plot for the current 

filter. 
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The current filter above in Figure 5.1 is a sixth order filter with a ripple of 0.01, a 

stopband attenuation of-30 dB, and a cutoff frequency of 5 Hz. Using the current filter, 

roll stability will be analyzed and simulated: 

5.2 PWM Results 

The PWM method provides a method for linearly approximating a nonlinear roll 

control system. This linear approximation is necessary for classical control tools to be 

applied to the system. In the following section, nonlinear elements will be linearly 

approximated, the Nichols plot of the linearized system will be examined, and the 

Bode Diagram 

Frequency (Hz) 

Figure 5.1: Current Flex Filter 
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singular value decomposition (SVD) will be analyzed in order to determine if the current 

system satisfies the design criteria. 

5.2.1 PWM Linear Approximation 

Because the phase plane controller exhibits nonlinear behavior, linear 

approximation is required before classical techniques such as the Nichols Chart and SVD 

can be applied. As discussed in Chapter 2, linear approximation is accomplished by 

cutting the closed loop system at the dead zone nonlinearity to create an open loop 

system. This system is then scaled by the dead zone value in order to approximate the 

nonlinear behavior of the phase plane controller. It is worth noting that this method does 

not account for the ideal relay nonlinearity. In the following two subsections, the PWM-

based analysis technique will be utilized to generate the Nichols Chart and the SVD of 

the flex dynamics. 

5.2.2 Nichols Chart Results 

After performing PWM linear approximation on the nonlinear elements by scaling 

the system response by 1/S = 0.5 degrees, it is now possible to evaluate the stability and 

performance of the system. The Nichols chart allows the control engineer to see both 

magnitude and phase information on one chart. In order to fully understand the 

spacecraft stability, it is desirable to examine both the rigid and flex dynamics. The 

Nichols chart will allow for the gain margin to be easily determined visually while, 

simultaneously, providing a means for examining each filter's performance with respect 

to high-frequency flex dynamics. A gain margin of 6 dB and a high-frequency peak of 
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less than -10 dB will be desired in a design. Figure 5.2 contains a Nichols chart depicting 

the frequency response. 

-540 -495 -450 -405 -360 -315 -270 -225 -180 -135 -90 
Phase [deg] 

Figure 5.2: PWM Nichols Chart 

The current flex filter fulfills the requirement for 6 dB rigid margin and 10 dB 

attenuation for high-frequency peaks. The table below again summarizes the gain margin 

results from the Nichols chart. 

Time 
[sec] 

1 
20 
40 
60 
80 
100 
120 

Gain Margin 
[dB] 
17.5 
17.0 
16.2 
15.1 
13.5 
10.7 
7.7 

Table 5.1: PWM Results 
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The table above demonstrates that with the current flex filter, the system meets 

the gain margin requirements of 6 dB, even with flex dynamics. 

5.2.3 Flex Dynamics Results 

It is now necessary to consider the SVD response for the flex dynamics in order to 

determine to what extent the current filter attenuates high-frequency noise in the system's 

dynamic response. This is a relatively simple process and the result can be seen below in 

Figure 5.3. 
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Figure 5.3: PWM SVD Plot 

Examining the SVD plot in Figure 5.3 above, it can be seen that the maximum 

flex response is at approximately -15 dB. The SVD plot agrees with the Nichols chart for 

the high-frequency flex dynamics. This result satisfies the design criterion for 10 dB flex 

dynamics attenuation. 
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5.3 Describing Function Results 

The phase plane controller's nonlinearity can primarily be modeled as a dead zone 

combined with an ideal relay. The describing function for dead zone was shown earlier 

[16]: 

N^) = 2i 7T_ . _! rs_\ _ s_ L _IP_ 

2 \AJ A1^\ A\ (5.1) 

On the other hand, the describing function for an ideal relay was shown [16]: 

4D 
J V 2 G 4 2 ) = - T - (5-2) izA 2 

Using the procedure developed in Section 3.2.3 to create a combined describing 

function for these two nonlinear elements in series results in the expression. 

An 

N(i40 = f— (5.3) 

In the above expressions, D is the saturation output, S is the dead zone width, and 

Aj is the input amplitude. This describing function will be used in both describing 

function techniques that determine whether or not the nonlinear system will limit cycle. 

5.3.1 Nichols-Based Intersection Analysis 

By plotting the linear portion of the system for first stage times ranging from 1 to 

120 seconds and comparing those results to a plot of -\IN(A), it is possible to discover 

whether or not the nonlinear system will encounter unstable limit cycling. If the linear 

plots intersect with the -IIN(A) plot, then a limit cycle may occur. This is by no means an 
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exact method for limit cycle determination; whereas, not every intersection will result in 

a limit cycle. It is important to remember, however, that if no intersection occurs, it is 

guaranteed there will be no unstable limit cycling in the nonlinear system. For the 

analysis below both rigid dynamics and flex dynamics are considered. 
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Figure 5.4: Describing Function Nichols Chart 

Figure 5.4 above indicates that the linear frequency responses for the system at 

varying times do not intersect the negative, inverse describing function plot. Table 5.2 

below summarizes the amount of gain that can be introduced into the system before limit 

cycling will occur. 
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Time 
[sec] 

1 
20 
40 
60 
80 
100 
120 

Gain Margin 
[dB] 
15.4 
14.9 
14.1 
13.0 
11.4 
8.6 
5.6 

Table 5.2: Describing Function Nichols Chart Results 

Such a result is favorable because it demonstrates the filter successfully avoids 

additional limit cycling which would decrease system stability while increasing the 

amount of propellant consumed during roll maneuvers. 

5.3.2 Gain Margin Tester 

Wu and Perng's method for determining the stability margins for limit cycles is a 

natural extension of the classical intersection method applied above for analysis. Using 

the gain margin tester developed in Chapter 3, it is possible to detect how much gain can 

be introduced into the nonlinear phase plane controlled roll axis before the system begins 

to undergo limit cycling. The gain margin will be analyzed versus amplitude as is 

necessary with describing functions. 
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Amplitude vs. Gain Margin 
251 1 1 1 1 

{ i i i i i i i 

2 2.5 3 3.5 4 4.5 5 
Amplitude 

Figure 5.5: Describing Function Margin Tester Results 

Gain margin is determined from the lowest value for each time. The most critical 

time is at t= 120 seconds, and from the figure above it can be seen that the gain margin is 

5.6 dB. It is important to note that the amplitude begins atA=2 because amplitudes less 

than this fall within the dead zone of the nonlinearity. For the purposes of this thesis, 

only limit cycling outside the dead zone will be of concern because they are the only limit 

cycles that will lead to excessive propellant usage. For each time, the minimum gain 

margin is selected as the critical and overall gain margin for the system. This result 

matches the results previously analyzed through the intersection method. The gain 

margin is clear because the plot of -\IN(A) is all at one phase while -UN(A) exists across 

a range of magnitudes. The results are summarized in the table below: 
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Time 
[sec] 

1 
20 
40 
60 
80 
100 
120 

Gain Margin 
[dB] 
15.4 
14.9 
14.1 
13.0 
11.4 
8.6 
5.6 

Table 5.3: Describing Function Margin Tester 

It is worth noting that the results obtained here using the margin tester directly 

match the results obtained by using the Nichols intersection method above. This 

demonstrates that both approach the same information from different viewpoints. 

5.4 Absolute Stability Results 

In this section, the absolute stability will be examined through the application of 

the circle criterion and the Popov criterion. First, it will be necessary to determine the 

sector requirement for the phase plane controller's nonlinearities. After that exercise, the 

kg values for Siljak's transformation will be optimized in order to provide the largest 

upper sector limit, /?, possible for the system. This will ensure the proper (and least 

conservative) gain margin is calculated using the circle criterion and the Popov criterion. 

After values for ks have been obtained through the optimization, the circle criterion and 

the Popov criterion will be employed to determine /? for each major frozen-time. Finally, 

robust, absolute stability will be examined by using Kharitonov's theorem. 
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5.4.1 Sector Requirements 

Before absolute stability analysis techniques such as circle criterion and the 

Popov criterion can be applied to the system, it is necessary to determine the minimum /? 

required for the phase plane controller's nonlinearities defined earlier as K. AS previously 

discussed in Chapter 3 and in Section 5.3, the phase plane controller incorporates a dead 

zone nonlinearity in series with an ideal relay as can be seen in Figure 5.6. 

5 = -2 

v 
Pmin=0.5 

-*- o 

-1 
5 = 2 

Nonlinearity 

Figure 5.6: Nonlinear Element with Sector Requirements 

The dead zone is equal to 2 degrees while the relay outputs a simple +/- 1 

depending on the sign of the input a. A positive ideal relay output corresponds to a 

positive thruster firing in the phase plane while a negative relay output indicates a 

negative thruster firing. These values create a nonlinear element as shown by the red line 

in Figure 5.6. The nonlinearity requires a K equal to 0.5 because that is the minimum 

slope necessary for the nonlinearity to fit inside the sector. When the circle criterion or 

Popov criterion is utilized to determine the linear system's /?, it is critical that /? is greater 
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than or equal to 0.5 to guarantee absolute stability. In order to determine the gain margin 

with regards to absolute stability, it is necessary to consider how much gain could be 

added to the linear system before /? = 0.5, therefore, violating the sector condition. It can 

be seen that the following expression can be utilized to determine the gain margin once /? 

is known for a given system. 

Gain Margin = dB (&/K ] =CLB( fy0 5 J (5.4) 

5.4.2 ks Optimization 

When applying the circle criterion and the Popov criterion for absolute stability, it 

is necessary to consider the linear system's poles. Particularly, the designer must know 

whether or not the linear system is strictly Hurwitz. For circle criterion, both case two 

and case three require all poles to be strictly Hurwitz while the Popov criterion requires 

strictly Hurwitz poles as well [10]. Performing eigenanalysis upon the linear system 

results in three poles at s = 0 for all times in the first stage. This result indicates neither 

the circle criterion nor the Popov criterion can be utilized to guarantee absolute stability 

without a modification to the system. The modification required is the Siljak 

transformation which allows for the linear system to be modified by closing the loop on 

the linear system with negative feedback and gain, ks. Siljak's transformation makes the 

system absolutely stable; however, optimized values for ks should be selected in order to 

increase stability by maximizing /?. The first critical step in determining optimal ks 

values is ensuring all values being considered will lead to a Hurwitz system. 
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Figure 5.7: ks versus Maximum Real Eigenvalues 

Figure 5.7 above shows that any value satisfying the following inequality in 

Equation 5.5 will guarantee a Hurwitz system. 

0 < k/t < 1 (5 

Smaller values for kg decrease the slope for the transformed nonlinearity in the 

following chart which results in a larger finite domain of absolute stability: 
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Figure 5.8: Siljak Transformed Input/Output Chart 

Figure 5.8 illustrates how smaller ks values increase the value for amax, the limit to 

the finite domain of absolute stability which increases the overall absolute stability of the 

system. For the phase plane control system, there is a ks value which results in the largest 

/? value. Graphical optimization is employed by way of charts plotting ks versus ft in 

order to select ks with the maximum /?. Using the current filter, a ks set is determined 

using circle criterion and Popov criterion based graphical optimization. The circle 

criterion results can be seen in Figure 5.9: 
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Circle Criterion Results for Varying kx 
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Figure 5.9: Circle Criterion ks Graphical Optimization 

The Popov results below provide less conservative /? values: 

Popov Criterion Results for Varying kx 
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Figure 5.10: Popov Criterion ks Graphical Optimization 

The results from the two charts above are condensed in Table 5.4: 

i i i 
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Time [sec] 

1 
20 
40 
60 
80 
100 
120 

kg Value 
Circle 

Criterion 
0.45 
0.42 
0.39 
0.34 
0.29 
0.22 
0.15 

Popov 

0.24 
0.22 
0.20 
0.17 
0.14 
0.10 
0.07 

Pmax 

Circle 
Criterion 

2.5 
2.4 
2.1 
1.9 
1.6 
1.1 
0.8 

Popov 

3.5 
3.3 
3.0 
2.7 
2.2 
1.6 
1.1 

Table 5.4: ks Graphical Optimization 

It can be seen in the results above that the Popov criterion results in smaller kg 

values which means the system will possess a larger finite domain of absolute stability. 

In addition to this fact, it can also be seen that the Popov criterion should have larger/? 

values which indicates the Popov criterion is a less conservative absolute stability 

technique than the circle criterion. 
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5.4.3 Circle Criterion and Popov Criterion Results 

First, the results for the circle criterion (case two) for the current flex filter will be 

examined in Figure 5.11. 

Circle Criterion: Upper Sector Bound = 0.76956 

E 0 

i l \ I 1 f f/s ' 
i j \ i V i1 (ff • 
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i \f i I \ V \ i 

1 j - V + X ^ | "_: J * * ^ ^ ^ ^ * * * * 

1 J ^ V 1 I ^ S ^ ^ 1 

-1.5 -1 -0.5 
Re 

Figure 5.11: Circle Criterion Plot Results 

While the current system meets the nominal requirement for /? = 0.5 with its /? = 

0.76956, it does not meet the 6 dB criteria of/? = 1 which we defined earlier. The Popov 

criterion supplies a less conservative absolute stability requirement as can be seen in the 

Popov plot in Figure 5.12: 
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Popov Criterion: Upper Sector Bound = 1.1421 

I 

Figure 5.12: Popov Criterion Plot Results 

In contrast to the circle criterion chart for the initial filter designed system, the 

Popov plot results in/? = 1.1421 which fulfills both the design criteria/? requirements. 

The results from the circle criterion and the Popov criterion are summarized in Table 5.5: 

Time [sec] 
1 

20 
40 
60 
80 
100 
120 

Gain Margin [dB] 
Circle Criterion 

14.1 
13.5 
12.6 
11.6 
9.9 
6.9 
3.7 

Popov Criterion 
17.0 
16.4 
15.6 
14.6 
13.0 
10.2 
7.2 

Table 5.5: Absolute Stability Gain Margin Comparison 

As in Section 5.4.2, the above results show that the Popov criterion proves to be a 

less conservative technique than the circle criterion which is as predicted in the literature 

[13,24]. 
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5.4.4 Finite Domain of Absolute Stability Determination 

Because the Siljak transformation is used in the absolute stability analysis during 

Section 5.4.3, it is necessary to determine the finite domain of absolute stability. The 

first step is to perform a linear analysis to find the minimum ks value necessary to 

transform the phase plane control system into a Hurwitz system. 

0.2 

k* = 0 

-0.4 
0 0.1 0.2 0.3 0.4 0.5 

Figure 5.13: Linear ks Analysis 

For this particular case, the ks required is so small that is can be considered to be 

zero. Now that ks has been determined, it is now necessary to plot the transformed 

nonlinearity to find the v which defines the maximum input amplitude the nonlinear 

element can sustain before it becomes unstable. 



Siljak Input/Output with k = 2.7279e-014 
5 
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Figure 5.14: Input/Output Plot for Finite Domain Determination 

From the plot above it can be noted that amax = oo which means that there will be 

no practical finite domain of absolute stability for the nominal case. Using time domain 

simulation, it should be noted the system maintains stability an extremely large input, a = 

287.2, in the nominal case. 
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Figure 5.15: Time Domain Test for Finite Domain of Absolute Stability 
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This result indicates v ~ oo for the roll control system; therefore, the finite domain 

of absolute stability does not need to be utilized as an abort condition for the system in 

this case. 

5.4.5 Kharitonov Theorem Results 

Kharitonov's theorem of robust control was discussed earlier in Chapter 4, and now 

it will be applied to the phase plane controller. As a reminder, Kharitonov's theorem 

involves finding the minima and maxima for each element of the numerator and 

denominator polynomials from the transfer function. Kharitonov polynomials are used to 

construct sixteen new transfer functions with outline a system's robust boundaries. These 

boundaries can then be tested against the circle criterion and the Popov criterion. Ideally, 

all the first stage frozen times could be inputted into the Kharitonov algorithm and the 

outputted sixteen systems would all fulfill the circle criterion and Popov criterion. 

Unfortunately this is not the case. Transfer functions representing the system at 5 

seconds were inputted into the system for the entire first stage and the results can be seen 

below in the circle criterion. It is important to note that because the Kharitonov theorem 

accounts for robustness, /? is only required to be greater than or equal to 0.5 as opposed to 

the previous test where the 6 dB gain margin requirement necessitated a/? greater than or 

equal to 1. 
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x 10
5Circle Criterion: Upper Sector Bound = 1.7161e-005 

1.51 1 1 1 1 1 

Figure 5.16: Kharitonov Circle Criterion Plot 

With (1 = 1.7161 E-5, it is clear the absolute stability requirement of/? = 0.5 

cannot be met for circle criterion; furthermore, the Popov criterion cannot be met also (fi 

= 0.00010225) as can be seen Figure 5.14: 
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Popov Criterion: Upper Sector Bound = 0.00010225 
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Figure 5.17: Kharitonov Popov Criterion Plot 

Since considering all the first stage at once does not result in Kharitonov systems 

which pass the circle criterion and the Popov criterion, it is necessary to break the time 

varying system into twenty overlapping ten second intervals, thereby, creating a less 

conservative robustness criterion. The problem is that for the phase plane control system 

these intervals would have to be so small that they would practically be the same as 

frozen time analysis. Kharitonov theorem-based results become increasingly unreliable as 

the order of the system increases due to the technique's reliance on varying transfer 

function coefficients instead of the parameters themselves. For this reason, Kharitonov's 

theorem is too conservative for the purpose of phase plane control. 
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5.5 Time Domain Simulation 

It is important to confirm the current filter successfully provides absolute and 

asymptotic stability. In order to make this determination, it is necessary to construct a 

SIMULINK model which reflects the phase plane controller as well as the roll dynamics 

[29]. The figure below shows the SIMULINK model derived from the phase plane 

equivalent, PD controller presented in Chapter 2. The model was utilized in order to test 

the current system stability within a simulation. 

Figure 5.18: SIMULINK Model 

The model presented in Figure 5.15 above is used to simulate the system and to 

record the maximum energy and the number of on-times per maneuver. Energy is 

defined as the rate error squared as can be seen in the expression: 

Energy = 0 | (5.6) 

To determine how much gain can be introduced before the system becomes 

unstable it is first necessary to define criteria for instability. This is warranted for a phase 
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plane controlled system because the dead zone and ideal relay nonlinearities ensure the 

system's response will never diverge for a system featuring a stable plant and filter; 

however, with enough gain added to the system, it will eventually experience limit cycles 

with no dead zone drift. Penchuk, Hattis, and Kubiak define this stability condition as 

when the system will "periodically exceed angular rate limits before it is excited enough 

to cause forced attitude deadband oscillations," [1]. The phase plane controller will 

essentially become a bang-bang controller, thereby, invalidating the entire purpose of 

using a phase plane controller and resulting in a much greater amount of propellant 

consumed due to dramatically increased thruster on-times. Simulations considered were 

performed at the least stable time (t= 120 second) in the first stage in order to achieve a 

worst case time scenario. Each simulation is run for 300 seconds with varying initial 

attitude errors between +/- 2 degrees and initial rate errors between +/-1 degree per 

second. Additional simulations at varying times can be examined in Appendix A. The 

graph below shows energy as compared to the amount of gain introduced into the system. 
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Figure 5.19: Gain vs. Energy (t = 120 sec) 

10 

Figure 5.16 demonstrates that there is a dramatic increase in energy at 8.3 dB 

indicating that as the gain margin point. The gradual development of unrestrained 

thruster firings and high-frequency limit cycles can be observed in the phase plane charts: 
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Figure 5.20: Phase Plane Plots with Gain Added (t = 120 sec) 

As more and more gain is introduced into the system, the phase plane response 

develops a primary and then secondary limit cycles. Referring back to Figure 5.17, it can 

be noticed that the system transitions to fully bang-bang behavior between 8 dB and 9 dB 

which agrees with the 8.3 dB gain margin determined from the energy plot. 
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The above analysis was performed for the entire first stage of flight; Table 5.6 

below includes the gain margins at twenty second intervals which were gleaned from this 

process. 

Time 
[sec] 

1 
20 
40 
60 
80 
100 
120 

Gain Margin 
[dB] 
18.9 
18.3 
17.2 
16.2 
14.5 
11.7 
8.3 

Table 5.6: Simulation Results 

The results in Table 5.6 indicate that the system gradually decreases in stability as 

the time within the first stage progresses. 

5.6 Method Comparison 

Table 5.7 below summarizes all of the gain margins for the various analytical 

techniques and the simulation discussed in this chapter. 

Time [sec] 
PWM 

Describing Function 
(Nichols) 

Describing Function 
(Margin Tester) 
Circle Criterion 
Popov Criterion 
Time Simulation 

1 
17.5 
15.4 

15.4 

14.1 
17.0 
18.9 

20 
17.0 
14.9 

14.9 

13.5 
16.4 
18.3 

40 
16.2 
14.1 

14.1 

12.6 
15.6 
17.2 

60 
15.1 
13.0 

13.0 

11.6 
14.6 
16.2 

80 
13.5 
11.4 

11.4 

9.9 
13.0 
14.5 

100 
10.7 
8.6 

8.6 

6.9 
10.2 
11.7 

120 
7.7 
5.6 

5.6 

3.7 
7.2 
8.3 

Table 5.7: Gain Margin Comparison [dB] 

Comparing the analytical techniques such as PWM, describing functions, the 

circle criterion and the Popov criterion to the time domain simulation provides a method 
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forjudging each analytical technique's effectiveness at predicting the gain margin for the 

system. PWM, describing functions, the circle criterion, and the Popov criterion are all 

conservative, but PWM and the Popov criterion are the least conservative of these 

methods for predicting nonlinear gain margins. 

5.7 Analysis Conclusions 

After reviewing the gain margin results for analytical techniques such as PWM, 

describing functions, circle criterion, and the Popov criterion and comparing those to the 

time domain simulation results, certain conclusions can be drawn. PWM, describing 

functions, the circle criterion, and the Popov criterion all yielded conservative gain 

margin results, but PWM and the Popov criterion results were the least conservative. 

PWM does not fully model ideal relay; however, the Popov criterion can be utilized with 

most nonlinear elements. 
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Chapter 6: Filter Design for a Phase Plane Control System 

While the current filter resulted in stable gain margins of a spacecraft attitude 

control system, the filter was not designed to maximize fuel-consumption performance. 

The nonlinear control analysis techniques demonstrated in Chapter 5 are useful for 

determining the roll stability margins, but these methods can also be applied towards 

designing a better filter that is optimized for performance but still guarantees stability 

margins. The current elliptic filter was not optimized for the best performance by means 

of maximum bandwidth; therefore, new 6th order flex filters specifically designed to 

guarantee PWM and absolute stability while optimizing performance are created. 

Equation 6.1 shows the design concept for an optimized filter. 

^ + £ £ i i ± i £ + 1 

Flex Filter(s) = Ulo^T £ £ , (6-1) 
<°4i+2 & )4'+2 

This chapter will detail the flex filter optimizations and then compare their 

performance to that of the current filter, thereby, demonstrating the optimized filters' 

improved performance over the current filter. 

6.1 Flex Filter Optimization 

The purpose of flex filter optimization is to maximize the performance of the 

system while ensuring that all constraints imposed by stability and flex margin 

requirements are still met. An approach similar to that followed by Jang, Hall and 

Bedrossian will be taken in this thesis [24]. A numerical optimization code is developed 

utilizing MATLAB's 'fmincon' function to perform a constrained minimization [30]. 
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Before optimization is performed, it is necessary to design an initial filter to feed into the 

system. Ideally, any values could be selected and the optimization code would still work, 

but experience has shown that providing a good initial estimate improves the 

optimization's performance. The optimization is performed with the goal being to 

maximize the bandwidth of the system. This is accomplished by minimizing to following 

equation. 

/ = — bandwidth[G (s)] (6.2) 

This minimization is constrained by the need for the system to be Hurwitz, the 

frequencies and damping ratios must be positive, and the flex filter must achieve 30 dB of 

attenuation at frequencies within the stopband. The flex filter must possess 30 dB of 

high-frequency attenuation because the unfiltered system exhibits 16 dB of high-

frequency gain as can be seen in Figure 6.1: 

Flex SVD Plot 

10 10 
Frequency [Hz] 

Figure 6.1: Unfiltered SVD Flex Response 

10 
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The high-frequency flex dynamics must have 10 dB attenuation with 4 dB gain 

robustness added. The total from these three sources adds up to 30 dB high-frequency 

attenuation in the sop band. For stability, PWM, 6 dB can be guaranteed by simply using 

Bode or Nichols analysis to determine the linearly approximated system's gain margin. 

Additionally, absolute stability is guaranteed by ensuring that the system passes the circle 

criterion with 6 dB of gain margin at each time step. Once all the constraints have been 

outlined, it is now possible to perform the optimizations described above which can be 

seen in the proceeding sections. 

6.2 PWM-Based Flex Filter 

A PWM-based filter will be designed to maximize bandwidth while ensuring 

system stability in terms of 6 dB rigid gain margin and 10 dB high-frequency flex 

dynamics attenuation. The requirements for the PWM-based filter are condensed and 

summed up in Figure 6.2. 



minimize 

subject to 

where 

-bandwidth[F(5>] 

| G ( s ) | > 6 d B 

|F(s) | < 0 dB 

|F(s) | < - 3 0 dB 

Q)i>0 

G>0 

VzG(s) = ±180 deg Gain Margin 

V o <coc 

V o > f t ) c 

i= 1,2,3, 

i= 1,2,3, 

F(s) = Flex Filter 

G(s) = Linear System Transfer Function 

coc = Crossover Frequency (rad/sec) 

Figure 6.2: Optimization Criteria (PWM Filter) 

Rigid Gain Stability 

Flex Gain Stability 

Filter Stability 

rth The 6 order PWM flex filter obtained from the above described optimization can 

be seen below in Figure 6.3. 
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Figure 6.3: PWM Optimized Flex Filter 
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The above filter has a bandwidth of 5.37 Hz and it can be seen in the above figure 

that it possesses 30 dB of stopband attenuation. The following section will confirm the 

PWM filter's stability. PWM stability relies on two plots, the Nichols chart to check 

rigid and flex margins and the SVD plot to ensure the high-frequency flex dynamics are 

sufficiently attenuated. First, the Nichols chart can be observed in Figure 6.4: 

Nichols Chart 

540 -495 -450 -405 -360 -315 -270 -225 -180 -135 -90 
Phase [deg] 

Figure 6.4: PWM Nichols Chart (PWM Filter) 

Figure 6.4 demonstrates that the system with the optimized filter meets the 6 dB 

rigid dynamics gain margin requirement and also the 10 dB high-frequency flex 

dynamics margin. The PWM Nichols Chart results are summarized in Table 6.1. 
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Time 
[sec] 

1 
20 
40 
60 
80 
100 
120 

Gain Margin 
[dB] 
18.4 
17.8 
17.0 
16.0 
14.4 
11.6 
8.6 

Table 6.1: Gain Margin Results (PWM Filter) 

The 10 dB margin for high-frequency flex dynamics is also confirmed in the SVD 

chart in Figure 6.5. 

Flex SVD Plot 

10 10 
Frequency [Hz] 

10 

Figure 6.5: Filtered SVD Response (PWM Filter) 

These two plots confirm the PWM-optimized filter meets the stability constraints 

set forth previously for the system. There is 6 dB rigid gain margin and more than 10 dB 

high-frequency flex attenuation. 
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6.3 Absolute Stability-Based Flex Filter 

An absolute stability-based filter will also be designed to maximize bandwidth-

while ensuring system stability in terms of 6 dB rigid gain margin and 10 dB high-

frequency flex dynamics attenuation. For the filter designed using absolute stability, gain 

margin can be guaranteed through the constraint. 

minRe[Gtr(s)] = minRe [T^^] > 1 (6.3) 

The circle criterion is used for this calculation instead of the Popov criterion for 

several reasons. The first reason is that the circle criterion requires less computational 

resources than the Popov criterion due to the Popov criterion's use of 'fmincon'. An 

additional motive for using the circle criterion is that using a 'fmincon' function within 

another 'fmincon' function appears to create inaccuracies in the numerical optimization 

code and output. The requirements and design criteria are condensed in Figure 6.6: 
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minimize 

subject to 

where 

-bandwidth[F(s,)] 

mm Re[Gtr(s)] > 1 V co 

\F(s)\<OdB V®<eoc 

|F(s) | < - 3 0 dB Vco>coc 

Wi>0 i = 1,2,3, . . . 

d>0 i = l , 2 , 3 , . . . 

F(s) = Flex Filter 

G(s) = Linear System Transfer Function 

1 + ksG(s) 

kg = Siljak Gain 

coc ~ Crossover Frequency (rad/sec) 

Figure 6.6: Optimization Criteria (Absolute Stability Filter) 

Absolute Stability 

Rigid Gain Stability 

Flex Gain Stability 

Filter Stability 

rth Again, a 6 order flex filter was obtained through constrained minimization and the 

resulting figure can be seen below in Figure 6.7. 
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Figure 6.7: Absolute Stability Optimized Flex Filter 

The absolute stability filter has a bandwidth of 5.17 Hz; furthermore, Figure 6.7 

demonstrates that the filter successfully achieves 30 dB of stopband attenuation. The 

following sections will graphically optimize kg and confirm the filter's stability. 

6.3.1 Optimizing ks for the New Filter 

It is now necessary to graphically optimize the values for ks for the optimized flex 

filter. The values are selected on the basis of obtaining the maximum value for the upper 

sector limit, p. Below the circle criterion results can be seen: 
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Circle Criterion Results for Varying k 
O 

0 0.2 0.4 k 0.6 0.8 1 
5 

Figure 6.8: Circle Criterion ks Graphical Optimization (Absolute Stability Filter) 

The Popov results below provide less conservative /? values: 

Popov Criterion Results for Varying k 

0 0.2 0.4 k 0.6 0.8 1 
5 

Figure 6.9: Popov Criterion ke Graphical Optimization (Absolute Stability Filter) 
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The results from the two charts above are condensed in Table 6.2: 

Time [sec] 

1 
20 
40 
60 
80 
100 
120 

kg Value 
Circle 

Criterion 
0.475 
0.450 
0.400 
0.350 
0.300 
0.225 
0.150 

Popov 

0.250 
0.225 
0.200 
0.175 
0.150 
0.100 
0.075 

Pmax 

Circle 
Criterion 

2.5 
2.4 
2.1 
1.9 
1.6 
1.1 
0.8 

Popov 

3.6 
3.3 
3.1 
2.7 
2.3 
1.6 
1.2 

Table 6.2: kg Graphical Optimization (Absolute Stability Filter) 

The table indicates that Popov criterion-based kg values not only provide less 

conservative /? values, they also lead to smaller k§ values which mean a larger finite 

domain of absolute stability. 

6.3.2 Stability Confirmation 

Confirming absolute stability is important for the optimized filter. Figure 6.10 

displays the Popov plot showing the results for the optimized filter. 
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Figure 6.10: Popov Criterion (Absolute Stability Filter) 

The Popov plot above shows the worst case scenario for Popov stability, and it 

can be seen for this instance the worst case upper sector limit, P = 1.1543 which 

corresponds to 7.6 dB. The remainder of the gain margins can be seen below in Table 6.3. 

Time 
[sec] 

1 
20 
40 
60 
80 
100 
120 

Gain Margin 
Popov Criterion 

[dB] 
17.0 
16.5 
15.7 
14.7 
13.1 
10.3 
7.3 

Table 6.3: Gain Margin Results (Absolute Stability Filter) 

Table 6.3 above clearly shows that the absolute stability-based filter results in a 

fully stable system according to the Popov criterion. It is also critical to ensure the 
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absolute stability-based filter ensures 10 dB high-frequency flex dynamics attenuation as 

can be seen in Figure 6.11: 
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Figure 6.11: Filtered SVD Response (Absolute Stability Filter) 

The SVD plot above indicates the absolute stability-based filter successfully 

attenuates the high-frequency flex dynamics 10 dB, thereby, fulfilling the design criteria. 

6.4 Performance-Measuring Time Simulation 

At this point it is necessary to compare the performance of the optimized filters to 

that of the GNC 6 filter which involves utilizing the Monte Carlo to generate random 

initial conditions for attitude error and rate error. Once these initial conditions have been 

generated, it is possible to perform simulations which record key performance metrics 

and then to evaluate those numbers statistically. 
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6.4.1 The Monte Carlo Method 

Monte Carlo analysis is the natural choice to probabilistically determine flex filter 

performance [31]. Monte Carlo is "a numerical method of solving mathematical 

problems by the simulation of random variables" [32]. The first critical step in 

generating random values of a particular distribution is to generate a random number n in 

the open interval (0, 1). Computational methods cannot generate truly random numbers, 

so "random" numbers generated by a computer, as will be used in this paper, are actually 

called "pseudo-random" numbers [33]. Using MATLAB to compute n of a desired size, 

it is now possible to generate uniformly distributed numbers in the interval (a, b) with the 

expression: 

u = a + (b — a)n (6.4) 

Sample size is an important issue when performing Monte Carlo simulations. 

This is because "the larger the number of the simulated records is, the smaller the 

expected deviation of the obtained numerical values from the theoretical values of the 

response statistics should be" [34]. Based on Dr. Roberts and Dr. Spanos's 

recommendations, distributions with 3,000 samples were generated in this paper [34]. 

6.4.2 Random Initial Condition Generation 

As mentioned above, uniformly distributed initial attitude and rate errors must be 

generated; furthermore, to ensure an accurate simulation, three thousand random samples 

will be generated for each variable. First, a random uniform distribution for attitude error 
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will be generated. It can be seen below in Figure 6.12 that initial attitude errors range 

from +/- 1 degree. 

-1 -0.5 0 0.5 1 
Initial Attitude [deg] 

Figure 6.12: Uniformly Distributed Initial Attitude Error 

In Figure 6.13, the probability distribution for the initial rate error can be 

observed. 
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Figure 6.13: Uniformly Distributed Initial Rate Error 

6.4.3 Performance Results 

The distributions generated above were used for both current filter and optimized 

filter simulations. The SIMULINK model from Figure 5.15 was again used for 

simulation; however, a 5000 ft-lbf disturbance torque was introduced at t = 20 seconds. 

With regards to performance, there are two main criteria by which both filters: maximum 

attitude and number of on-times. The maximum attitude distribution for the current filter 

can be seen in Figure 6.14: 
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Figure 6.14: Maximum Attitude Distribution (Current Filter) 

Figure 6.14 demonstrates the maximum attitude distribution with mean equal to 

1.9 degrees and standard deviation equal to 0.1 degrees. Figure 6.15 includes the 

distribution for the PWM stability filter. 
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Figure 6.15: Maximum Attitude Distribution (PWM Filter) 



102 

For the PWM-based filter, the mean maximum attitude distribution is 1.9 degrees 

while the standard deviation is 0.1 degrees. This is somewhat larger maximum attitude 

than the current filter, but not significantly so. Figure 6.16 below illustrates the results 

for the absolute stability filter. 
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Figure 6.16: Maximum Attitude Distribution (Absolute Stability Filter) 

For the optimized filter, the mean maximum attitude is equal to 1.9 degrees and 

standard deviation of 0.1 degrees. Next, the number of on-times will be examined for 

both the current filter and the optimized filter. The number of on-times distribution for 

the current filter is shown in Figure 6.17: 
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Figure 6.17: Number of On-Times Distribution (Current Filter) 

It can be seen in Figure 6.17 that the number of on-times for the current filter has 

a mean equal to 37.4 times and standard deviation equal to 8.6 times. Figure 6.18 

includes the distribution for the PWM filter. 
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Figure 6.18: Number of On-Times Distribution (PWM Filter) 
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The PWM filter results indicate that the mean number of on-times is 29.6 times 

which is the smallest value out of any of the filters; furthermore, the standard deviation 

for the on-times is 6.1 times. The results for the absolute stability-based filter can be 

observed in Figure 6.19: 
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Figure 6.19: Number of On-Times Distribution (Absolute Stability Filter) 

For the above distribution, the mean number of on-times is equal to 32.6 times 

and a standard deviation equal to 6.7 times. Table 6.4 summarizes the results of the 

Monte Carlo analysis. 

Mean 
Standard 
Deviation 

Maximum Attitude [deg] 
Current 
Filter 

1.9 
0.1 

PWM 
Filter 

1.9 
0.1 

Absolute 
Stability 

Filter 
1.9 
0.1 

# of On-Times 
Current 
Filter 

37.4 
8.6 

PWM 
Filter 

29.6 
6.1 

Absolute 
Stability 

Filter 
32.6 
6.7 

Table 6.4: Statistical Performance Comparison 
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The optimized filters have a significantly lower number of on-times which is a 

function of their improved bandwidth. This propellant performance increase does not 

come at a decrease in maximum attitude performance, thereby, creating an overall 

improvement in system performance. 

6.5 Performance Conclusions 

Two optimized 6th order filters were designed to maximize performance with 

regards to propellant consumption. The filters were optimized to maximize bandwidth in 

order to acquire the greatest level of performance for the phase plane controller. This 

optimization included constraints requiring the system to have 30 dB attenuation in the 

stopband, 0 dB gain in the passband, 6 dB gain margin for the rigid dynamics, and 10 dB 

attenuation of high-frequency flex dynamics. These constraints were shown to have been 

met through PWM and Popov criterion analysis. Finally, Monte Carlo simulation was 

utilized to demonstrate the two optimized filters' improved performance over the current 

filter which could be seen in the new filters' reduced number of on-times. The PWM-

based filter resulted in a smaller number of on-times than the absolute stability-based 

filter. This result is likely due to PWM being a less conservative analysis technique than 

absolute stability. 
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Chapter 7: Closure 

The phase plane controller offers an idealized method for optimizing time and fuel 

performance while ensuring stability and attitude tracking. As seen in Chapter 5, the 

phase plane controller becomes unstable when it no longer functions with a dead zone 

drift; more specifically, the phase plane controller behaves like a 'bang-bang' controller. 

This behavior consumes an unacceptable amount of propellant while leading to high rate 

errors which can cause structural damage or guidance failure. 

Nonlinear control techniques such as PWM, describing functions, the circle 

criterion, and the Popov criterion all offer methods for determining not only the stability 

of a system but also how much gain robustness the system contains. The nonlinear 

techniques discussed above all resulted in conservative gain margins, but PWM proved 

to be the least conservative. It must be noted, however, that PWM does not model the 

ideal relay nonlinearity which is an important part of the phase plane controller. The 

Popov criterion combined with Siljak's loop transformation accounts for both the dead 

zone and ideal relay nonlinearities and the gain margin yielded from the criterion is the 

second most conservative. This necessitates the conclusion that both PWM and the 

Popov criterion should be utilized in predicting a system's gain margin. The PWM is 

less conservative and allows the designer to consider both rigid and flex dynamics while 

the Popov criterion fully accounts for any type of nonlinearity that may fit into the sector 

bounds. This attribute makes the Popov criterion more universally applicable while the 

PWM is more closely tailored to roll control system. 
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The nonlinear analysis techniques discussed above can also be used to design 

optimized filters with improved performance over the current filter. In Chapter 6, two 6th 

order filters were designed to maximize bandwidth while ensuring adequate stability. 

The first filter used PWM analysis to ensure stability while the second filter used absolute 

stability to define the stability constraints. The primary constraints for the filter design 

were 30 dB attenuation in the stopband, 0 dB gain in the passband, 6 dB gain margin for 

the rigid dynamics, and 10 dB attenuation of high-frequency flex dynamics. Monte Carlo 

simulation verified the optimized filters' improved performance over the current filter 

which could be seen in their reduced number of on-times while the maximum attitude 

performance metric showed no significant increase in value. The PWM-based filter 

resulted in a smaller number of on-times than the absolute stability-based filter though it 

possessed a worse maximum attitude distribution. Both techniques created filters that 

utilized nonlinear control gain margins while ensuring maximized performance. 

With regards to future research into nonlinear analysis techniques for the phase 

plane controller, several avenues are particularly interesting in the area of absolute 

stability-based control. These developments include time-varying stability, necessary 

and sufficient conditions for absolute stability, and robust absolute stability. 

Molchanov and Liu developed a technique which effectively determines a 

nonlinear discrete-time system's robustness towards the parametric uncertainty, which 

develops in a time-varying system such as aerospace systems [35]. The method's 

primary drawback is that it is necessary to confirm that the system's A matrix at each 

time step belongs to a convex set [35]. 
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In Chapter 4 it was noted that absolute stability being derived from Lyapunov's 

second method is a sufficient condition for asymptotic stability. G. A. Leonov has 

developed a method for guaranteeing absolute stability for two-dimensional time-varying 

systems [36]. Leonov accomplishes this task by "the method of comparison systems" in 

which regions of attraction in the phase plane are computed [36]. The technique 

developed would be based on a necessary condition; thereby, it would be less 

conservative than the strictly sufficient condition based absolute stability criterions. The 

method also has the added advantage of being time-varying which would allow for more 

accurate modeling of aerospace systems. 

There have been several cases where researchers such as Tsypkin, Polyak, 

Impram, Munro, Yang, Duan, and Huang have explored robust, absolute stability [37] 

[38] [39]. Tyspkin and Polyak utilized the circle criterion and the Popov criterion where 

the linear subsystem is subjected to a i/M norm-bound multiplicative or additive 

perturbation while Impram and Munro approach absolute stability with both "structured 

and unstructured" perturbations in the linear subsystem [37] [38]. Finally, Yang, Duan, 

and Huang apply a "Hx sub-optimal controller by using a loop transformation" and 

solving a linear matrix inequality (LMI) to guarantee robust, absolute stability for a 

system [39]. 

Implementing a time-varying solution through Molchanov and Liu's discrete-time 

method or through Leonov's necessary conditions would result in a higher fidelity 

solution than what is currently offered by the methods detailed in this thesis. 

Furthermore, the application of robust perturbations could ensure that a phase plane 
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controlled system would have a fully trustworthy stability envelope which would greatly 

increase its reliability. 
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