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ABSTRACT 

Magnetic Damping of an Elastic Conductor 

by 

Jeffrey M. Hokanson 

Many applications call for a design that maximizes the rate of energy decay. Typical 

problems of this class include one dimensional damped wave operators, where energy 

dissipation is caused by a damping operator acting on the velocity. Two damping 

operators are well understood: a multiplication operator (known as viscous damping) 

and a scaled Laplacian (known as Kelvin-Voigt damping). Paralleling the analysis of 

viscous damping, this thesis investigates energy decay for a novel third operator known 

as magnetic damping, where the damping is expressed via a rank-one self-adjoint 

operator, dependent on a function a. This operator describes a conductive monochord 

embedded in a spatially varying magnetic field perpendicular to the monochord and 

proportional to a. Through an analysis of the spectrum, this thesis suggests that 

unless a has a singularity at one boundary for any finite time, there exist initial 

conditions that give arbitrarily small energy decay at any time. 
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Chapter 1 

Introduction 

Minimization of energy is a common design objective for physical systems. Frequently, 

engineers attempt to design systems such that the energy introduced by perturbations 

is quickly removed. For example, a car designer might want a door to close silently. 

A key strategy problem would then be to place damping material in the door to 

maximize the rate of energy decay. Design problems such as these motivate the study 

of damped wave operators, which manifest many characteristics of harder problems 

yet yield to rigorous analysis. Two of these operators have been subjected to thorough 

study: the Kelvin-Voigt and viscous damping operators. In this thesis I analyze a 

novel third damped wave operator associated with magnetic damping to find the 

conditions for maximizing energy decay. 

Magnetic damping was first studied by Leibowitz and Ackerberg in 1963 [14]. 

After rescaling variables, they found that a conductive string embedded in a magnetic 

field string obeyed the integro-differential equation 

d2u d2u r a 

w-w = -a{x)h «(%«&*)<* (11) 
u(0,t)=u(ir,t) = 0, 

where u(x, t) measures transverse displacement and a(x) is proportional to the mag­

netic field intensity. A derivation of the equations of motion is given in Appendix A. 

In this thesis I demonstrate how the choice of a affects the rate of energy decay. 

Magnetic damping can be understood in a similar manner .to other damped wave 
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operators. Following the approach of Cox and Zuazua [7] for viscous damping, I study 

energy decay by converting the second order partial differential equation (1.1) into 

the first order form 

d_ 
dt 

where A is an operator posed on a space X endowed with an inner product measur­

ing system energy. Under these conditions the spectrum of A reveals energy decay 

properties. For magnetic damping, A takes the form 

• 

u 

du 
at 

= A 

" 
u 

du 
dt 

(1.2) 
0 / 

A —a(-,a) 

Here and for the remainder of this thesis, (•, •) is the standard L2(0, n) inner product 

(f,9)= / f(x)g(x)dx. 
Jo 

Similarly, the L2(0,7r) norm is denoted || -|| , where ||/ | | — (/, f)1?2. The operator A 

is posed on the space X = HQ(0,IT) X L2(0,TT) with energy inner product 

([«, v]T,[f, g]T)x= [ u'(xjf7(?)dx+ f v(x)g~&)dx (1.3) 
Jo Jo 

and norm ||V||x = (V>V)x • The norm || -|| x is a measure of the total energy in 

the string: the first term in (1.3) measures potential energy; the second kinetic. Let 

L(X) denote the set of bounded linear operators on X. For T G L(X) the energy 

norm induces the operator norm 

\\T\\nx)= sup ||7V||x. 
\\v\\x=i 

The operator A maps 

Dom(A) = {[u,vf e 7#(0, vr) x L2(0, TT) : u" - a(v,a) e L2(0, TT)} 
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to X. This operator also generates a Co semigroup; thus for an initial condition 

Vo G X, the energy in the system is written as 

£(t) = \\etAV0\\
2

x. 

(Here we understand etA in the sense of [22, §15].) The asymptotic rate of energy 

decay, u(A), is the smallest scalar such that 

£(t)<\\etA\\l(X)\\Vo\\2x<Cet2"M (1.4) 

for some C > 0 and for all Vo £ Dom(A). Let cr(A) denote the spectrum of A, that 

is, the set of all A € C such that A — A does not have a bounded, densely defined 

inverse. The spectral abscissa, 

Oi{A) = sup Re (A), 
\£<T(A) 

is always a lower bound on energy decay: a (A) < u(A). Under certain restrictions 

on A, the reverse inequality can be shown, and thus a(A) = OJ(A). Theorem 4 in 

chapter 4 will show that if a is a function of bounded variation, a G BV(0, -K), then 

a(A) = u(A). Further, when a 6 BV(0,7r), Theorem 3 demonstrates that a(A) — 0. 

Thus for bounded variation magnetic fields at any finite time r, there exists initial 

conditions that manifest arbitrarily small energy decay at t = r. The lack of energy 

decay will motivate my study of singular fields in chapter 5, i.e., those a for which 

there exist constants C > 0 and.p > —3/2 such that 

\a(x)\<Cxp(n-x)p 

for all x G (0,7r). Even when a is singular, the spectrum of A still contains only 

eigenvalues, as demonstrated in Theorem 1 in chapter 3. Analysis and computations 

for such singular damping are considerably complicated by the unbounded nature of 
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a. No proofs establishing a(A) = u(A) are demonstrated here for singular fields, 

nor any results establishing a{A) < 0. However, several bounds on the resolvent 

and eigenvalue estimates obtained in chapter 5 suggest a(A) < 0. The final chapter 

points to directions in which results presented here might be extended to prove both 

a(A) < 0 and a(A) = u{A). 
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Chapter 2 

A Menagerie of Wave Operators 

In this chapter, I discuss three operators that are similar to the magnetic damping op­

erator. Two of these operators correspond to Kelvin-Voigt and viscous damping. Like 

magnetic damping, these two operators are parametrized by a map a : [0,7r] —>• R. 

In particular, work on the viscous damping operator by Cox and Zuazua [7] inspires 

many of the results seen in Chapter 3. Both Kelvin-Voigt and viscous damping oper­

ators differ from the magnetic damping operator given in equation (1.2) by the entry 

in the (2,2) block. First, however, the undamped wave operator will be reviewed, in 

which the (2,2) block is the zero operator. This operator is the limit of Kelvin-Voigt, 

viscous, and magnetic damping for the constant map a(x) = 7 —> 0. Finally, at the 

end of this chapter, I will include a brief discussion of previous work on the magnetic 

damping operator. 

First, a few preliminaries. Each operator is posed on a subspace of X = HQ(0, IT) X 

L2(0,7r) with energy inner product (•, -)x as defined in equation (1.3). An orthonormal 

basis for HQ(0,IT) defined by 

^,(x) = v ^ A s i n ( n i ) , n= 1,2,3,.. . (2.1) 

is useful in constructing eigenvectors of both Kelvin-Voigt and viscous damping op­

erators. 



2.1 Undamped wave operator 

A starting point for the study of damped wave operators is the undamped equation 

d2 
u (x,t) 

>d2 
u (x,t) = 0 

(2.2) dt2K ' ' dx2 

u(0, t) = u{ir, t)=0 

whose origin traces back to Euler, d'Alembert, the Bernoullis, and others [23]. This 

equation describes the transverse displacement u of a string as a function of space x 

and time t subject to homogeneous Dirichlet boundary conditions. The c2 term acts 

as a scaling between time and space, and so, with appropriate scaling on x or t we 

can take c = 1, as I do for the remainder of this thesis. An equivalent formulation 

of (2.2) may be obtained by the following technique. First, time differentiation is 

split into two first derivatives by making the identification v = ut. Then the wave 

equation (2.2) is written as 

d 

-v = c2— 
dt dx2 

d2 

u. 

Writing this in matrix form gives 

d 
dt 

• • 

u 

V 

0 / 

A 0 

" " 
u 

V 

Then make the identification V = [u, v]T and 

4) = 
0 / 

A 0 
(2.3) 

L 

where Dom(A)) = #o(0, n) fl H2(0,TT) X # O ( 0 , TT). The operator A0 has eigenvalues 

X±n — ±.in for n e Z+ ; as such, a(A0) = 0. Finally note that this operator is skew-

adjoint on X (i.e., A = —A*) with eigenfunctions ~$±n(x) = '<t>n[l/n, ±i]T that form a 
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complete orthonormal basis for X. Even if (2.2) is generalized to allow c : [0, TT] —> 

(0, oo) corresponding to variable density and stiffness, this operator remains skew-

adjoint under an appropriately modified energy inner product. These results imply 

that AQ is conservative: as defined in equation (1.4), £{t) = 5(0) for alH > 0 — there 

is no choice of c such that energy in the system decays for any initial condition. 

Kelvin-Voigt and viscous damping operators have eigenfunctions associated with 

eigenvalue An with a similar structure for constant damping: \&n = <fin[l, An], though 

the spectrum for both operators is different. 

2.2 Kelvin—Voigt damping 

The Kelvin-Voigt model is a basic description of viscoelasticisty used for modeling a 

solid, like steel, as the infinitesimal limit of a damper and a spring in parallel. In the 

linearization, a string with a Kelvin-Voigt interior will obey the equation 

d2u, . d2u. . d ( . . d2u , \ 

w{x,t) - —2(x,t) = - ^ ( s ) — ( z , t ) J ^ 

u(0,t) = u(ir,t)-=0t 

where u measures the longitudinal displacement and a is nonnegative and proportional 

to the strength of the damper. This is simply a rescaled version of the equation 

studied by Chen, Liu, and Liu [6, eq. (1.6)] restricted to constant linear density and 

stiffness, and Dirichlet boundary conditions. In a similar manner to the undamped 

wave equation, the equation of motion for the Kelvin-Voigt system (2.4) may be 

converted to a first order system Vt = AKVV, where 

AKY = 
0 / 

A VaV 
(2.5) 
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Here for constant a, Bom(AKv) = {[u,v]T G Hb(0,ir)r)H2(0,ir)xH£(0,n)nH2{0,n)}. 

In contrast to the magnetic damping operator, the (2,2) block of AKV is unbounded. 

The spectrum will tend towards a point in the complex plane as a(x) = 7 —> 00, and 

a can be chosen such that CX(AKV) < 0. 

In contrast to the magnetic damping operator, when a(x) = 7 is constant, an 

explicit form for the eigenvalues of AKV can be found. Apply AKV to the vector 

Vn = [4>n-,^n<}>n\, then observe that the following relation must hold for An to be an 

eigenvalue: 

As <$>"n = —n24>ni this reduces to a scalar equation, quadratic in An, with roots: 

A„ = =^- ± n ^ n 2 - 1. (2.6) 

An example of this spectrum is plotted in figure 2.1. Observe that in the limit 

a(x) = 7 = 0, the spectrum of AQ is recovered. One interesting feature of this 

spectrum is that for finite 7 > 0, there are only a finite number of nonreal eigenvalues. 

There has also been interest in exotic variable coefficients a that are supported on a 

strict subset of the domain; see, e.g., work by Liu and Liu [16] and Renardy [19].' 

The viscous damping operator discussed in the next section has similar properties 

to the Kelvin-Voigt operator. Namely, eigenvalues and eigenfunctions may be written 

explicitly when a{x) = 7. However, the viscous damping literature provides a more 

apt template for work on the magnetic damping problem. 

2.3 Viscous damping 

Viscous damping is an effect due to the drag of the surrounding media on transverse 

motions of a string. Deriving this operator from the Navier-Stokes equations is fre-
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Figure 2.1 : Spectrum of the Kelvin-Voigt damping with constant a(x) = 7 = 2/5. 
For this choice, AKV has an eigenvalue of multiplicity two at —5 and eight nonreal 
eigenvalues. The nonreal eigenvalues fall on the circle of radius 2/7 centered at —1/7. 
Real eigenvalues accumulate at the center of the circle. 



10 

quently treated in an ad hoc manner due to the difficultly of coupling these equations 

to string motion; see, e.g, Batchelor's work [3, pp. 355-358, esp. eq. (5.13.14)]. The 

derivation assumes a quasi-steady viscous drag acting locally that results in a drag 

force acting against transverse motion proportional to velocity. Namely, 

^(x,t)-^(x,t) = 2a(x)^(x,t), ^ 

u(Q,t) = u(n,t) = 0, 

where a is nonnegative and proportional to the viscosity of the surrounding fluid 

and u is the transverse displacement. This approach has some shortcommings as 

compared to a more elaborate equation of motion given by Lin [15], but (2.7) is 

studied due to its relative simplicity. Despite this 'simplicity,' this model exhibits 

rich and complex spectral behavior. Converting equation (2.7) to an operator on 

X, as with the Kelvin-Voigt problem, results in the evolution problem Vt = AviscV, 

where 

0 / 
A • (2.8) 

I A 2a I 

and Dom(Avisc) =• {[u,v]T € X : u e # 2 (0 ,TT) D H^(0,TT), V E H%(0,ir)}. Observe 

that if a is bounded, then the (2, 2) block in the operator is bounded, in contrast to 

the Kelvin-Voigt case, where it is unbounded. 

Like the Kelvin-Voigt operator, the spectrum of the viscous damping operator for 

constant a(x) = 7 > 0 can be written explicitly. Applying A^sc to Vn = </>n[l,An] 

results in a similar scalar equation, quadratic in A„, leading to the eigenvalues 

An = - 7 ± V7 2 - n2. (2.9) 

An example is plotted in figure 2.2. For 7 6 [0,1] the spectrum falls on a vertical line 

in the complex plane with real part —7. The first real eigenvalue occurs at 7 = 1, 

and real eigenvalues result for all 7 > 1. 
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0 

-5 
-8 -6 -4 -2 0 

Figure 2.2 : Spectrum of the viscous damping operator with constant a(x) = 7 = 2. 
For this choice, J4VJSC has an eigenvalue of multiplicity two at —4 and two other real 
eigenvalues. The nonreal eigenvalues fall on the line Im (z) = —7. As 7 —• 00, half 
of the real eigenvalues tend to —00 and the other to 0. The latter eigenvalues are 
responsible for 'over damping' and limit the spectral abscissa. 
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The affect of a on the spectrum of the viscous damping operator, where a €E L°° 

is nonnegative, was studied by Cox and Zuazua [7], who: 

• estimate eigenvalues using a shooting function; 

• show that eigenfunctions of the operator form a Riesz basis; 

• show the operator has a compact inverse, and hence a discrete spectrum; 

• compute the resolvent using a Green's operator; 

• obtain asymptotic estimates on eigenvalues using Rouche's theorem; and 

• show that the asymptotic decay rate is equivalent to the spectral abscissa using 

Parseval's equality. 

Each of these except the last will have parallels in this thesis. 

Once one understands the basic spectral theory for a family of operators, it is 

natural to investigate design problems: find a such that energy decay is maximized. 

Cox and Overton considered this problem for generic wave operators on d-dimensional 

spaces [9]. They conjectured that for viscous damping, a(x) = 7 for some constant 7 

was optimal over all a G L°° [9, p. 1355]. Preitas [10] later disputed this conjecture 

with a numerical counterexample. Using a genetic algorithm he optimized a damping 

function chosen from a constant plus cosine basis and found a promising example that 

appeared to move the spectral abscissa further to the left than the optimal constant. 

In response to Freitas's results, Castro and Cox [5] found a class of damping functions, 

a(x) ~ 77") 
V ' X + l/c 

that cause the spectral abscissa to become arbitrarily negative as c —*• 00. For the 

damping function a{x) = 1/x, the spectrum is empty and solutions must exhibit 

extinction in finite time. 
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A similar damping function, a(x) = 2/(irx), inspired by the above, seems to 

preform well for the magnetic damping problem, as discussed in section 5.4. 

2.4 Magnetic damping 

Magnetic damping corresponds to an elastic vibrating string in an external magnetic 

field, as derived in Appendix A. The equation of motion is 

d2u d2u = -a(x)j\(0^,t)^ 
dt2 dx2 

u(p,t) =u(n,t) = 0. 

Posing this problem on X results in the operator 

0 / 

(2.10) 

(2.11) 
A -a{-,a) 

where Dom(A) = {[w,u]r : u , « e H^(0,n),u"-a{v,a) G L2(0,7r)} and A : Dom(A) -> 

X. Note in contrast to both Kelvin-Voigt and viscous damping operators, here a is 

allowed to be both positive and negative. 

Magnetic damping has been treated in only two published papers to my knowledge: 

first by Leibowitz and Ackerberg in 1963 [14] and second by Wolfe in 1998 [24]. 

Leibowitz and Ackerberg first studied magnetic damping to modify the tonal quality 

of a piano string, that is, the rate at which each mode decays. To derive the equations 

of motion, the authors presume that the transverse displacements of the string are 

small and then apply the effect of a constant magnetic field. For a constant field, 

where a(x) = 7, they constructed two proofs — one using Rouche's theorem, the 

other based on perturbation theory — bounding the location of eigenvalues An: 

{ in, n even; 

(2.12) 

m - ^ + 0 ( 7
4 ) , nodd. 
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They also obtained a formula for the eigenvalues of the nonconstant case in terms of 

a Green's function [14, eq. A6]. No results were derived for general a, although the 

equations of motion were stated in the appendix [14, eq. Al]. 

Wolfe approached magnetic damping from a far more rigorous mathematical per­

spective [24]. Like Leibowitz and Ackerberg, he considered only the constant magnetic 

field case, but he did address variable string density. He rigorously derived the equa­

tions, starting from a full 3D nonlinear elasticity model and then linearizing around 

a rest state in a manner similar to Antman [2, Ch. 2]. Wolfe constructed proofs of 

existence and uniqueness using a Galerkin method on the corresponding weak formu­

lation of the partial differential equation. At the end he asks if magnetic damping 

is strong enough to prevent the formation of shocks in the nonlinear problem; this 

question has not yet been answered. 

A third paper is currently under development by Cox, Embree, Kelm and I on the 

magnetic damping problem [8]. Many of the results from this paper are described in 

this thesis, particularly those results appearing in chapters 3 and 4. In those chapters, 

our results establish that cr(A) contains only eigenvalues when a(x) < Cxp(n — x)p 

for p > —3/2 and C > 0, and that, for a E BV(0,ir), the spectral abscissa matches 

the decay rate which is zero, a(A) = ui(A) = 0. These results are explained in further 

detail in the following chapters. 

In contrast to Kelvin-Voigt and viscous damping, there is no simple expression 

for the eigenvalues of the magnetic damping operator for even constant a. In the case 

that a{x) = 7, the eigenvalues of A must be written as the roots of the transcendental 

equation 

^2 = -A2sinh(A7r) 
7 (cosh(A7r)-l)2-sinh(A7r)(sinh(A7r) + A7r)' K' J 

This result follows from a similar argument from the viscous case. A more general 
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0 

-5 
-8 -4 0 

Figure 2.3 : Spectrum of the magnetic damping operator with constant a(x) = 7 = 
0.8745. This choice of 7 approximates the 7 for which the first real eigenvalue of A 
emerges. For that constant damping, the double eigenvalue is located at approxi­
mately —1.0225. Note that ±2m for n = 1,2,3,. . . are still eigenvalues. Odd eigen­
values move on the order of 1/n to the left of their undamped values, as allowed by 
Theorem 3. 

form is given in Theorem 2 in section 3.3 below. As is expected, when 7 = 0, the 

resulting equation is simply sinh(A7r) = 0, which has roots A = ±m. 
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Chapter 3 

Basic Results for Magnetic Damping 

In the previous chapter, I discussed the history of magnetic damping and mentioned 

that many results would follow the approach of Cox and Zuazua [7] for the viscous 

damping problem. This chapter proves that cr(A) contains only eigenvalues of finite 

multiplicity. The result parallels [7, Thm. 3.1], and is included in [8]. First, an explicit 

form for the resolvent of A is constructed through the use of a Green's function. The 

second section will prove that A'1 is compact, and thus every point in the spectrum 

is an eigenvalue. Finally, an equivalence between roots of a shooting function and 

eigenvalues of A is demonstrated. 

This chapter and the succeeding one will make use of the separability of X. When 

a has singularities diverging slower than x~3^2 at both 0 and IT, e.g., 

\a(x)\<Cxp(ir-x)p 

for some C > 0 and p > —3/2, an orthonormal basis for Dom(A) is given by 

1/n 

±2 
±n V2 

, n = l , 2 , 3 , . . . , (3.1) 

where the <j>n functions are the orthonormal basis vectors for HQ(0,TT) as defined by 

equation (2.1). These $±n are the eigenfunctions of the undamped wave operator. 

Additionally, for brevity, the nth Fourier coefficient of a will be noted as 

an = {a,4>n). 

With these definitions, we are prepared to approach this problem. 
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3.1 Explicit form for the resolvent 

Forming the resolvent requires two steps. First (A — A) -1 is explicitly constructed in 

terms of its component block operators and an as yet undetermined Green's operator. 

Then this Green's operator is constructed from the left and right shooting functions 

y and w of the associated linear operator C\ to be defined in (3.5). Once constructed, 

this expression for the resolvent is used in section 3.2 to determine that A has a 

compact inverse. The shooting functions will also provide an alternative means of 

estimating eigenvalues, as shown in section 3.3. 

3.1.1 Inverting A — A via triangular factorization 

The resolvent, (A — A) -1, is constructed by formally inverting A — A by a triangular 

factorization. For simplicity, assign 

A-X = 
-A J 

A —a(-,a) — A 

Using this form, consider the decomposition 

B{X) C 

D E(X) 
(3.2) 

A-X = 
B{X)1'2 0 

DB{\)-1'2 Q(X)1/2 

B{X)1'2 B{\)-l>2C 

0 Q(A)V2 
= L(X)U(X), 

where Q(X) = E(X) — DB(X) lC. Then note the inverses of L and U take the form 

L(A)-1 = 

17(A)-1 = 

5(A)"1/2 0 

-Q{X)-l'2DB{X)-1 Q{X)-1'2 

B(X)-V2 -5(A)-1CQ(A)-1 /2 

0 Q{X)-1'2 



18 

Thus the resolvent may be formally written as 

(A - A)-1 
^ ( A ) - 1 ^ + CQ{\)-lDB{\)-1) -B{\ylCQ{\)-1 

-Q(\)-lDB(X)-1 Q(A)-1 
(3-3) 

At this juncture, note that B(X) = XI is trivially invertible away from A = 0; only 

the term Q(X) = (1/A)A — a(-, a) — X poses difficulty. Suppose we can find some G(X) 

such that G(X)Q(X) — A. Then the resolvent may be written in two similar forms: 

(A - A)"1 

(3.4) 

(1/A)(/-G(A)A) G(X) 

G{X)A XG(X) 

G(X)(XI + a(-,a)) G{X) 

I + XG(X)(XI + a(-,a)) XG(X) 

Alternating between these two forms makes use of the identity G(X)A = A(A + 

XG(X) + G(X)a(-, a)). A simple calculation shows that the form of the inverse on the 

right in (3.4) holds for all A £ a(A). 

One way to construct (7(A) would be to construct a Green's function g(x, £, A) for 

the operator 

£ , = d2 -
dx2 X — Aa(-,a), (3.5) 

since G(X)C\ = I. Then G(X) could be defined through 

(G(A)u)(0= rg(x^,X)v(x)dx. 
Jo 

The next section describes how g(x, £, A) is constructed. 

(3.6) 
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3.1.2 Green's function 

The Green's function for C\ may be constructed from the left and right shooting 

functions 

= sinh(Az) £ a{y) smh(Xy) dy f* a(y) sinh(A(x - y)) dy 
V[X) X \-\fZa(y)JZa(z)smh(\(y-z))dzdy ' l ' j 

sinh(A(7r - a;)) /p* a(y) sinh(Ay) dy / * q(y) sinh(A(x - y)) dy 
WW A + X-Xj;a(y)j;a(z)smh(X(y-z))dzdy ' ^ 8 j 

which satisfy the ordinary differential equations C\y — 0 and C\w = 0 subject to the 

initial conditions y(0) = 0; y'(0) = 1 and w(n) = 0; w'(ir) = —1. Using these two 

solutions, the Green's function for C\ may be written as 

">(€.A)y(x,A) 0 < x < f < 7T-

g(x,£,X) = < 

k V«.A)io'(€,A)-v'tt,A)iott,A) 

This formulation satisfies the relation 

«fcAM*-A> , 0<Z<x<n. 

A / #(z, £, X)v(x) dx = v 
Jo 

and the boundary conditions, g(0, £, A) = #(71-, £, A) = 0. A typical example of one 

such Green's function is shown in figure 3.1. With this definition, (A — A) -1 is 

defined explicitly. The next section will make use of this result to establish that A-1 

is Hilbert-Schmidt, and hence cr(A) contains only eigenvalues. 

3.2 Discrete spectra 

To show that all points in the spectrum of A are eigenvalues, it is sufficient to show 

that A has a compact inverse. If A~l is compact, then by the spectral theorem 

for compact operators, every nonzero point A £ a(A~l) is an eigenvalue with an 
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Figure 3.1 : The Green's function g(x,£, A) for £ « 2.75, A = —1 + | i , and a(x) = 1. 
Black denotes the real component; gray the imaginary. Dots reflect the Chebyshev 
grid on which g is discretized, following Appendix B with N = 128. The discontinuity 
in the derivative of g(x,£, A) at x — £ is due to the construction of g. 
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associated finite dimensional eigenspace. Thus for the eigenpair (A, V) of A-1, with 

A ^ 0, we have 

AV = \~lV. (3.10) 

Before continuing, a restriction must be placed on a to facilitate the analysis of 

this operator. As in [8], I will only permit a to have singularities at the ends of the 

domain, controlled in the sense that there exists C > 0 such that for all x G (0, n) 

\a(x)\<Cxp(-K-x)p, p > - 3 / 2 , (3.11) 

Those a that obey this property will be called singular. These singular a have two spe­

cial properties: their Fourier coefficients do not grow with increasing frequency, and 

(/, a) is bounded for / G HQ(0,TT). These two statements are not trivially equivalent 

when a £ L2(0, TT) and so will be established in the two lemmas below. 

Lemma 1. If a obeys the bound (3.11), then (/, a) < oo for all f G HQ(0, IT). 

Proof. To demonstrate this, observe that for / G HQ(0,TT), by Hardy's inequality [4, 

P- 147], 

fix) 
x(n — x) 

The inner product may be bounded by 

\(f,a)\<C r\f(x)\xp(n-xydx. 
Jo 

As fx~l{it — x)~l and xp+1(7r — x)p+1 are both in L2(0,7r), this integral may be 

bounded by Cauchy-Schwarz inequality 

\(f,a)\<Cy* 

This finite, and so provided a obeys (3.11), the inner product (/, a) is bounded for 

a l l / G ^ ( 0 , 7 r ) . D 

< C\\f'(x)\\. (3.12) 

/ ( * ) 
x(n — x) 

da; x 
p+1(n-x)p+1dx (3.13) 
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Lemma 2. If there exists C > 0 such that for allx G (0, IT) then \a(x)\ < Cxp(ir — x)p 

for p > —3/2, then an = 0(1) as n —* oo. 

Proof. This is handled as two separate cases. When p > 0, then 

|fln| < / |a(a:)||sin(n:r)|da; < / \a(x)\dx<oo 
Jo Jo 

and hence \an\ = 0(1). 

In the other case where —3/2 < p < 0, first note that 

/•7T piT 

\an\ < / |sin(na;)| |a(:r)| dx < C |sin(na;)|a;p(7r — x)pdx. 
Jo Jo 

The last integral is symmetric about n/2 and thus it is sufficient bound the growth 

of the Fourier coefficient on one half of the domain. On the left half, the (ir — x)p 

term may be bounded above by a constant, giving 

/•7T rn/'Z 

I | sin(nx) |zp(7r - x)p dx < 2(TT/2)- 3 / 2 / | sin(n:c) \xp dx. 
Jo Jo 

The integrand on the right above may be decomposed into the product of sin(nx)/x 

and xp+1. Since sin(na:)/a; is continuous and bounded above by n for all x e (0,7r/2), 

it is in L2(0,7r); the xp+1 is also in L2(0,7r) since p + 1 > —1/2. Applying the 

Cauchy-Schwarz inequality yields 

Jo 
sin(na;) 

x 
x 

p+1 dx < n (T sin(n:r) 

nx 

2 \ V 2 

da; / x^+Vdx) . (3.14) 

Now this bound must be shown to be independent of n. To demonstrate this, rescale 

the sm(nx)/(nx) integral and split it, giving 

n 

MT/2 

Jo 

sin(na;) 

nx 
dx 

pmr/2 

Jo 

sin(y) 
dy 
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The integral on the bottom left in the above equation may be bounded by noting 

| sin(y)/y\ < 1; the term on the bottom right may be bounded too, since | sm(y)/y\ < 

1/y. This results in 

pnn/2 / 

JO V 

8inM] &y<* \ 2 ( n _ 1 ) <* | 2. 
y J 2 nir 2 7r 

The second integral on the right of (3.14) may be explicitly computed, as p > 

-3/2: 

f7r/2 

Jo 2p + 3\2J 

Collecting all the terms forms the final bound on an: 

'7T\i/2 
K | = |yo Mnx)a(x) dx < -j== ^ + - J y 

This bound is independent of n and thus \an\ = 0 ( 1 ) . D 

Using these lemmas, the following theorem establishes A 1 is Hilbert-Schmidt 

and thus cr(A) contains only eigenvalues. 

Theorem 1. If a obeys the bound (3.11), then A has a discrete spectrum. 

Proof. First, we establish that A-1 is compact. Observe that equation (3.4) gives 

A-1 explicitly when A = 0. In this case Co = d2/ drr2, so the corresponding Green's 

function is 

(*-€)=• 

<7(z,£,0) = 
, z < £ ; 

(3.15) 

which is the limit of (3.9) as A —> 0. Observe that 

V2 
lG(O)o(0B,a)±«G(O)^n 

-A 
(3.16) 
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Thus splitting the above term into the sum of three vectors and applying the triangle 

inequality yields 

V2\\A-^±n\\L{x) < -\an\ ||(G(0)a)'|| + | | (G(0)^) ' | | + - | |0n | | . (3.17) 
lb ft 

Looking at the final term on the right of (3.17), as (f>n are orthonormal on L2(0,7r), 

we have ||0n | | = 1. For the second term on the right, note that 

G(O)0B = ~ 0 n . (3.18) 

n • 

Thus \\(G(0)cf>ny\\ = l/n. 

The first term on the right of (3.17) is the most cumbersome. By lemma 2, 

a-n — 0(1), so this term does not grow with n. Finally, || (G(0)a)'\\ needs to be 

bounded. Regardless of which p is chosen for the bound in (3.11), an upper bound 

can always be constructed with p < 0. Taking the derivative of 

(G(0)o)(0 = ^ ^ / xa(x)dx + 1 / (TT - x)a(x)dx, 
7T Jo 7T Jt 

the terms involving the derivatives of J0 xa(x) dx and C(ir—x)a(x) dx cancel, leaving 

-1 /•* 
|(G(0)a)'(OI= ~ f xa(x)dx + - f (ir-x)a(x)dx 

I 7T Jo 7T Jz 

<-([ xp+x {n - x)p dx+ f xp(ir- x)p+1j 

<Cn2p+1(Bi/n(p + 2,p+l) + B(^)M(p + 2,p + l)) 

where B is the incomplete Euler beta function. This is bounded and square integrable 

on (0,7r), thus ||(G(0)o)'|| < oo. So the first term on the right in (3.17) is 0(l/n). 

Since every term on the right of (3.17) is 0 ( l / n ) , we conclude | |A - 1$±n | |x = 0 ( l / n ) . 

Thus A*1 is Hilbert-Schmidt as, 

\\A-^s = ^\\A-^±n\\l<oo, 
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and so also compact. Therefore, by the Fredholm Alternative, <J(A) contains only 

point spectrum; see, e.g. [18, Thm. VI. 14]. • 

Additionally, the term ||(G(0)a)'|| plays a role in a bound proved in section 5.2. 

There, an upper bound on the resolvent is constructed whose poles, and hence possible 

locations for eigenvalues, hinge on || (C^(A)o.)'||. 

The next section proves that when y(n, A) = 0, this A is an eigenvalue of A. 

3.3 Shooting function 

The left and right shooting functions provide a technique to compute the spectrum of 

A. The following theorem establishes that the roots of shooting functions are indeed 

equivalent to eigenvalues. 

Theorem 2. For the left shooting function y given in equation (3.7), y(ir, A) = 0 if 

and only if A € o(A). 

Proof. If y(7r, A) = 0, then V = y[l, X]T e X. Applying A - A to V, 

(A - X)V 
0 

j y'{ - Xa{y, a) - X2y \ 

However, as y satisfies y" — X2y — Xa(y, a) = 0 by construction, then (̂ 4 — A)V = 0 

and V is an eigenvector associated with eigenvalue A. 

If A € cr(A), then there must exist an eigenvector V = [u,v] £ X. Then 

(A - X)V = 
—Xu + v 

u" — Xa{v, a) — X2v 

The first entry gives v = Xu, while the second then requires 

v" - X2v - Xa(v, a)=0. 
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This integro-differential equation has the two linearly independent solutions y(x, A) 

and w(x, A) given in equations (3.7) and (3.8). These satisfy the left and right bound­

ary conditions respectively. In order for a linear combination of these to satisfy both 

boundary conditions, we must have y(n, A) = 0 and w(0, A) = 0, as required. • 

In this section I have shown that a (A) contains only eigenvalues. These eigenvalues 

may be estimated by roots in A of the shooting function y(ir, A). With equal validity, 

w(0, A) — 0 implies that A is an eigenvalue of A. The next section will develop bounds 

on the spectrum of A, but also cite an important result from [8] that for bounded 

variation fields, energy does not asymptotically decay for all initial conditions. 
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Chapter 4 

Bounded Variation Fields 

If maximizing energy decay is the design objective, then bounded variation fields are 

inadequate, as shown in [8]. In this chapter I will cite the critical result from [8] 

that for bounded variation fields a, X±n approaches ± m with an error of 0(l/n) as 

n —• oo. This proof will be outlined in Theorem 3 below. Then Theorem 4 shows that 

Theorem 3 is sufficient give a(A) = u(A). Section 4.2 will present several bounds on 

a(A) in terms of ||a||. Then section 4.3 establishes a new bound on the resolvent of A 

in terms of the Fourier coefficients an. Finally, I will conclude with two examples of 

a: a single sinusoid in section 4.4 and multiple sinusoids in section 4.5, both of which 

come from [8]. These examples demonstrate the bounds derived in the preceding 

sections and point to the need for singular damping functions, i.e., those divergent at 

some point x G [0,7r], as analyzed in chapter 5. 

4.1 Spectral abscissa for bounded variation a 

The following result follows from [8, prop. 4.2]. 

Theorem 3. Suppose a G BV(0,7r) and let AV±n = A±nV±n for n = Z+. One can 

order eigenvalues such that if an = 0, then Xn = in and Vn = $± n and if an ^ 0, then 

\±n = ±in + 0(l/n) and V±n = $ ± n + 0(l/n). 

The set of vectors {Vn : n = ±1, ±2, ±3 , . . . } is a Reisz basis for X. 
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The proof of this results follows a similar technique to that of Cox and Zuazua [7, 

Thm. 5.1 &: 5.3], sketched below. First a bound on the eigenvalues establishes 

that they reside in the slab {A : — | | |a | | < Re (A) < 0} (as shown in Theorem 5 

below). Then a series of telescoping balls are constructed, centered at ± m for 

n — 1,2,3,... , with decreasing radius proportional to 1/n. A bound establishes 

that \y(n, A) — A -1 sinh(A7r)| < |A_1 sinh(A7r)| on the boundary of these disks for suf­

ficiently large n. Then Rouche's theorem implies that A -1 sinh(A7r) and y(7r, A) have 

the same number of zeros on the interior of these disks. Thus as n —> oo, each 

disk contains one root. As these disks are of decreasing radius, the roots approach 

±in + 0(l/n). 

Since —a(-, a) is bounded, then A a bounded perturbation away from A0, a skew-

adjoint operator. Thus the eigenvectors of A, 14, form a Reisz basis, due to a theorem 

of Gohberg and Krein [11, Ch. 5, Thm. 10.1]. The spectral abscissa will then deter­

mine the asymptotic decay rate, following Cox and Zuazua [7, Thm. 6.4]. 

Theorem 4. If a € BV(0,TT) then a{A) = u(A). 

Proof. From Theorem 3, {Vnj : n = ±1 , ±2, ± 3 , . . . ; j = 0,...,mn — 1} forms a 

Reisz basis for X, where mn is bounded above and denotes the dimension of subspace 

associated with the nth eigenvalue. Hence, eigenvectors 14,1, Vn,2, • • • ,Vn,mn share 

the same eigenvalue An. Thus any initial condition V may be written as a linear 

combination of elements 14,j- Expanding both V and £ in this basis yields 

mn —1 

neZ n^O i=0 
mn—1 

£(t)<s(o) ]T £ KJYV^mj2. 
neZ n^O ;/=0 
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As demonstrated in [8, Prop. 4.2], there are most some finite number, say N, eigen­

values of algebraic multiplicity greater than one. Thus there exists a C such that 

£{t)<C£(0)(l+tN)e2a{A)t. 

This establishes u)(A) < a(A). The other direction of the inequality also holds as 

mentioned in Chapter 1, and so 

u(A) = a(A). 

• 

Together, Theorems 3 and 4 imply u>(A) = 0. Thus given any decay rate n < 0, 

there exists an initial condition such that energy decays at a slower rate than \x. 

The lack of energy decay for bounded variation fields motivates the study of singular 

fields in the next chapter. In the following sections, however, several bounds will be 

constructed illustrating where cr(A) must lie for a e L2(0,n). 

4.2 Bounds on the spectrum 

The proof of Theorem 3 required a rough bound on the location of cr(A). These 

bounds are constructed by a clever use of inner product identities and bounds, as 

shown in the following theorem. Here I follow [8, Thm. 2.1(iii) and (iv)]. 

Theorem 5. Suppose A € o~(A) and a € L2(Q, IT). Then the following bounds hold. 

(i) //Im(A) ^ 0 then Re(A) > - | | | a | | 2 . 

(ii) Iflm(X) = 0 then Re (A) > - | |a | |2 . 

(Hi) \\\>l. 
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Proof. Recall y, defined equation (3.7), solves the ordinary differential equation C\, 

given by (3.5), obeying boundary conditions on the left. Thus C\y = 0 by construc­

tion. Taking the inner product of C\y with y gives 

0 = (C\y,y) = (y",y) - X2(y,y) - X(y,a)(a,y) 

= - | b / | | 2 -A 2 |M | 2 -A | ( ? / , a ) | 2 ; 

here the second step uses integration by parts. Although this appears to give a 

quadratic that explicitly determines A, it does not, as y depends on A. To obtain a 

bound independent of y, note that the roots of this quadratic are given by 

x_-\(y,a)\2±V\(y,a)\*-M\yWH ^ ( 4 1 ) 

2IMP 

Eigenvalues A are real provided \(y, a)\2 > 2||y/||||y||. Assuming so, constructing a 

lower bound on A by setting the second term under the root to zero gives 

Re(A)>- | | a | | 2 . (4.2) 

This establishes part (ii). 

Note that when A is not real, the real and imaginary components in (4.1) may be 

read off. As y G HQ(0, 7r), Poincaire's (or Wirtinger's) inequality provides \\y\\ < \\y'\\-

Using this bound, the real and imaginary components of A may be bounded below by 

R e ( A ) > - i | | a | | 2 

2
 ( 4 3 ) 

( I m ( A ) ) 2 > l - ^ | H | 4 . 

This establishes part (i). 

Part (iii) states that A stays outside of the unit disk, excepting the real line. To 

show this, simply note when A ^ R, then 

|A|2 = (Re(A))2 + ( Im(A)) 2 >l (4.4) 

using the upper bounds given in (4.3). D 
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Figure 4.1 : Bounds provided by Theorem 5. The bounds are indicated by black lines. 
Eigenvalues of A then reside inside the gray regions. Here, ||a||2 = 1.6. As the norm 
of a increases, the vertical line moves increasingly to the left and the two diagonal 
lines collapse onto the real line, at which point they no longer restrict the spectrum 
on C 

Another bound established in [8] is on the argument of A for ||a|| < 2. Defining 

Re (A) = |A|cos# and Im(A) = |A|sin#, then 

cos2fl ||a||4 

sin20 — 4 — 

Since these are the components of a right triangle, observe cos20 < ||a||4/4 implies 

9 is within arcsin(||a||2/2) of TT/2 or 37r/2. As illustrated in figure 4.1, this angle 

intersects the vertical line (Theorem 5 (i)) and disk (Theorem 5 (iii)) bounds. 

An alternative to explicit bounds on the eigenvalues of A is to bound the resolvent 

of A. The following section establishes a new lower bound providing, a suggestion of 

where cr(A) must reside when an is small. 
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4.3 Resolvent bound in terms of Fourier coefficients 

The following is a new result I have established on the norm of the resolvent of A. 

Assuming the resolvent exists, then a lower bound may be obtained from (A — A)\& 

for some vector \Er. Observe, 

Setting ^ = (A — A)<fr where $ € Dom(A — A) and noting the cancellations gives the 

lower bound on the resolvent of A 

Define \&n = <f>n[l, A] and note that 

0 

-n2(j)n — X2(j)n — Aa„ 

Taking the X-norm of (A — A)^n and expanding in the orthonormal basis $±m yields 

\\(A - X)^n\\2X = Yl \~n25nm ~ ^nm - A a n O m | 2 (4 .7) 
±m 

mgZ+ 

where Smn denotes the Kronecker delta function. Adding the term |Aa212 term to the 

right allows the sum to be decomposed into the m = n term and a term proportional 

to || a ||2; thus a lower bound may be written as 

\\(A - \)*±n\\
2
x < \n2 + A2 + Aa212 + |A|2|a„|2||a||2. (4.8) 

This result leads to Theorem 6. 

Theorem 6. Let A G C. Provided a e L2(0, TT), then 

n2+JAl2 < I P - A ) - I | | | m (4.9) 
|n2 + A2 + Aa2|2 + |A|2|an|2||a||2 " "V ' m x ) K ' 

holds for all n. 

(A-\)Vn (4.6) 
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Note that when an = 0, taking A —• ±in results in an arbitrarily large lower bound 

on the resolvent, indicating the presence of an eigenvalue. This replicates the result 

of Theorem 3, which states that when an = 0, ±in is an eigenvalue. 

Theorem 7 in the next chapter suggests that A = —\a2
l±in are approximate 

eigenvalues when an is small. With this choice of A, \n2 + A2 + Aa2| = 0. Thus 

R F i^L_< l l (^^ + |WVl l i r o . (4.10) 

This shows that in the limit of small an, the resolvent grows as a~2 here. 

The next two sections will detail exact methods for computing eigenvalues when 

an is nonzero for only a finite number of terms. 

4.4 A sinusoidal damping field 

In the case where a(x) = 70TO(x), an analytic expression for the eigenvalues of A can 

be obtained following [8]. This is made easy since a is an eigenfunction of 4>"—m2<j) = 0 

on (0,7r). TO determine the eigenvalues of A, apply the operator to <fr±n, where <&±n 

are the eigenfunctions of the undamped operator AQ as defined by equation (3.1). 

Then 

{A T in)$±n = —= 
0 

0. 
^i(j)n ± i(pn - n(j)n =f ^720m(0m, (j)n) + n<j>n 

When n ^ m, (A^ in)®±n = 0. Thus ±m, n ^ m, are eigenvalues; this is expected 

from Theorem 3. For the n = m case, apply A to \J/-fcm = 0m[l, ±A] to see 

(A - A)tt±m =-
(m2 _ A y _ X2)(f)n 
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Figure 4.2 : Eigenvalues of A when a(x) = 7<fo(:r). Here eigenvalues of A are marked 
in black dots as 7 ranges from 0 to 10 in steps of \. These eigenvalues fall on the 
gray path starting from the imaginary axis, moving towards —2, after which one goes 
to 0 and the other to —00 as 7 —• 00. Unperturbed eigenvalues are marked by an x. 

Then \J/±m is an eigenvector provided m2 — A72 — A = 0. So the spectrum of A may 

be written as 

<j(A) = {±in:n^m, n = 1,2,3,...} \J j ~ 7 ' ± ^ " 4 — 1 . (4.11) 

Several features are easily noted. For 7 < \/2m, all eigenvalues are complex; a real 

eigenvalue with multiplicity two occurs when 7 = \p2m at A = —2m; for 7 > \/2m, 

there are two real eigenvalues: one in (—00, —2m); the other in (—2m, 0). 

The construction of W±m suggests a similar technique when a is composed of a 

finite number of sinusoids. This is explored in the following section. 
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4.5 Finite bandwidth a 

When a(x) = X)n€2-7nSin(n:r) f° r s o m e finite set of indices X C {1,2,3, . . .} , the 

dimension of the problem can be reduced. As 4>n functions are orthogonal, 3>±n is still 

an eigenvector of A with eigenvalue ± m provided n £ I . The remaining eigenvalues 

can be found via a finite dimensional quadratic eigenvalue problem [8]. Assume the 

eigenvectors have the form 

\nel J 

As the upper entry in A — A applied to V is zero, so the condition for V to be an 

eigenvector lies solely with the lower entry, 

[(A - X)V]2 = ^2 artn2(t)n - A ] P 7 „ 0 n Yl a™7m ~ >? J Z ^ " ^ 

This condition on j n for A to be an eigenvalue can be rewritten in terms of one matrix 

and two vectors. If n, denotes the jth entry in X, then these matrices are: 

(o, j ± k, 

Thus the A € cr(A) associated with damped eigenvectors satisfy a finite-dimensional 

quadratic eigenvalue problem, 

Q{X)a = (D - XggT - A2/) a = 0. (4.12) 

Of course, the undamped eigenvalues remain at A±n .== ±in for all n ^ X. 

As this chapter has demonstrated, bounded variation fields, despite their many 

interesting features seen in the preceding two sections, are ineffective at producing 
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energy decay. The next chapter will explore fields that diverge at either 0 or n or 

both. Several results will suggest that a (A) < 0 for certain singular fields. 
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Chapter 5 

Singular Damping Fields 

As the preceding chapter demonstrated, if a £ BV(0, ir), then the asymptotic rate of 

decay, u>(A), is zero. This lack of energy decay in the bounded variation case prompts 

the study of singular fields, which are those a such that for some C > 0 and p > —3/2, 

\a(x)\<Cxp(7r-x)p 

for all x € (0,7r). As described in the two lemmas in section 3.2, this choice of a 

ensures the Fourier coefficients of a do not grow with increasing frequency and that 

the inner product (v,a) is bounded for all v E HQ(0,7T). In this chapter I present 

several novel results. The first section gives an estimate of the rate at which damping 

functions move eigenvalues away from the imaginary axis. Sections 5.2 and 5.3 give 

an upper and a lower bound on the norm of the resolvent. These may be used to 

locate eigenvalues of A and determine asymptotic behavior. The last section presents 

some numerical experiments to find a damping function that minimizes the spectral 

abscissa of low frequency eigenvalues. 

5.1 Rate of leaving the axis 

Here we use the implicit function theorem to obtain the derivative of A with respect 

to the strength of the field a. 

Theorem 7. Let a denote a function that satisfies (3.11), and, in a neighborhood 

[0, e) for some e > 0, let An(7) denote an eigenvalue of A with damping function 



38 

a7(:r) = y/^a(x), with A„(0) = in for all n e Z\{0}. Then A^(0) = — \a^. 

Proof. Define S(X; a) by 

J
p-n pn 

' sinh(Xx)a(x) dx / sinh(A(7r — y))a(y) dy 
o Jo 
pTT pX 

— sinh(A7r) / a(x) / svah(X(x— y))a(y)dydx. 
Jo Jo 

Note that S(X;a) is a scaled version of y(ir, A); as such, roots of S(X;a) correspond 

to eigenvalues of A. For notational brevity, the following shorthand is introduced for 

the three components of S(X; a): 

X(X)= / smh(Xx)a(x)dx, 
Jo 

Y(X)= rsinh(X(ir-y))a(y)dy, 
Jo 

pw px 

Z(ty = / a(x) / sinh(A(a; — y))a(y)dydx. 
Jo Jo 

Consider the two-variable parametrization i?(A,7) := S(X, y/ya), so 

JR(A,7) = sinh(A7r)+7X(A)y(A)-7sinh(A7r)Z(A). (5.1) 

First note that R(in,0) = 0 for n € Z and R € C1 (see Rudin [20, Thm. 9.21]). 

Denote the partial derivative with respect to the jth component by Dj. Then pro­

vided D\R is nonzero, the implicit function theorem [20, Thm. 9.28] gives a function 

An(7) defined on [0, e) where e > 0 such that i?(An(7),7) = 0 and 

A/ (n\ _ -P2^(A,7)U=m,7=0 
nK ' r>ii2(A,7)U=m,7=o' 

Observe 

Dii?(A,7) =7rcosh(A7r) +^(X\X)Y(X) +X(X)Y'(X)) 

- 77rcosh(A7r)Z(A) - 7sinh(A7r)Z'(A) 

D2i2(A,7)=X(A)y(A)-sinh(A7r)Z(A). - -
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Thus we may conclude that 

X(0)Y(0) 
An(0) = 

7r cosh(m7r) 

j * i sm(nx)a(x) dx(—l)n+1 J* i sin(ny)a(y) dy 

7r(-l)n 

- ( J sin(nx)a(x)dx) = --afnl 

D 

This result matches what one would expect from Theorem 3, which shows a(A) = 

0 for a e BV(0,ir). A result from [17, Cor. 1.4.43] shows that if a G BV(0,IT), then 

an = 0(l/n), so Theorem 7 predicts A'n(0) —> 0 as n —> ±oo, matching Theorem 3. 

Also, the first order approximation of an eigenvalue of A, A = in + A'n(0) is special. 

This choice of A maximizes the bound given by equation (4.9). However, this bound 

on the resolvent holds only for bounded variation functions. The following section 

will detail the particular singular case of a(x) = j/x. 

5.1.1 Example when a(x) = -y/x 

The study of a(x) = 7/x is motivated by its resemblance a function that moves 

the spectral abscissa uniformly for the viscous damping problem [5]. The Fourier 

coefficients of this function may be written as: 

{a, (f>n) = 7-\/2/7r / sm(nx)/xdx = 7\/2/7r / sin(x)/a;da; 
Jo Jo (5.2) 

= 7\/2/7rSi(n7r), 

where Si is the sine integral as defined by Abramowitz and Stegun [1, p. 232]. By 

taking a Taylor expansion, the values of Si(n7r) can be approximated for large n: 

Si(±n7r) = ± 7 r / 2 T ( - i r / ( n 7 r y + 0 ( l / n 3 ) . (5.3) 
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Table 5.1: Comparison of A^(0) as computed by Theorem 7 and a numerical estimate. 
Here a(x) = 2/(irx). Numerical estimates of the derivative are computed by first order 
approximation: AJ,(0) = (An(e) - An(0))/e for e « 1.5 x 10 - 8 . (This choice of e is 
the square root of machine precision.) Approximate eigenvalues An(e) are computed 
by a spectral discretization of A on a Chebyshev grid size N = 1024, as described in 
Appendix B. Error is the difference between A'„(0) and A^(0) divided by A^(0). 

n 
1 
2 
3 
4 
5 

A^(O) 
-0.44244787 
-0.25945010 
-0.36183797 
-0.28723568 
-0.34442273 

AU0) 
-0.44243694 
-0.25943227 
-0.36183510 
-0.28724784 

-0.34440233 

Error 

0.00693 
0.00030 
0.00114 

0.00009 
0.00055 

Using this approximation, the rate of eigenvalues leaving the imaginary axis may be 

expressed as 

An(0) = - 7 2 ~ S i 2 M = - 7
2 ^ + 0 ( l / | n | ) 

7T 4 

as n —> oo. Thus as n —* ±oo, each eigenvalue appears to leave the imaginary axis 

at the same rate. Numerical experiments confirm this result, as seen in Table 5.1 

5.2 Resolvent upper bound 

Here I will obtain an upper bound on the resolvent by using the undamped operator 

AQ, (i.e. A with a(x) = 0). To do so note the action of (A — A) - 1 on AQ — X when 

A ̂  <J(AQ) U cr(A) we formally have 

(A - A)"1 = (A- X)-l(A0 - A)(A> - A)"1, 

which suggests the expansion 

(A-X)-l = 
I G(X)a(-,a) 

0 / + AG(A)a(-,a) 
(̂ 4o - A) - l 
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The range of (A0 - A)"1 is Dom(A0) = # 2 (0 ,TT) n H%{0,ir) x H^(0,n), on which 

the operator on the left is bounded following lemma 1 and Theorem 1. Splitting up 

the operator above into an identity plus a second operator and applying the triangle 

inequality yields 

/ 

\\(A-X)-%ix)<\\(A0-X)-%(x) 1 + 

\ 

0 G(X)a(-,a) 

0 AG(A)o(-,o> 

\ 

L(X) ) 

To obtain the norm of the operator on the right, take the supremum over multiplying 

on the right by all unit vectors V = [u, v]T £ X. It is clear that the supremum will 

occur with u = 0 and thus |H|£2(0i„.) = 1. The function v only acts inside the inner 

product and so the scalar (v, a) may be extracted. Applying these observations yields 

!UA ~ ^ = 1 + SUP \(v,")\V\\(G(\)a)T + \M2\\G(\)a\\2. 
\\(Ao-A) 1\\L(X) iit,|i=i 

By analogy with the argument showing G(0)a 6 HQ(0,TT) in the proof of Theo­

rem 1 and our explicit form for G(X), one could show G(X)a G HQ(0,TT). Then using 

Wirtinger's inequality (Poincaire inequality in one dimension), 

\\G(X)a\\<\\(G(X)a)% 

resulting in the bound 

\UA ~ ^ w l ^ ^ ^ 1 + V / nWH(G(A)a)1) sup |(W|fl>|. 
\\{Ao- X) L\\nx) IIHi=i 

The scalar {v, a) measures the proximity of a to the space HQ (0,7r). When a E L2(Q, TT) 

the choice of v that maximizes (v, a) is a scalar multiple of a, and this term obtains 

its maximum at ||a||... When a <£ L2(0,7r), a choice for the optimal v is not apparent, 

but provided a is singular as defined by (3.11) then by lemma 1 this inner product is 

bounded. 
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The resolvent of Ao may look troublesome, but in fact is explicitly computable. 

As A0 is skew-adjoint on X, it is normal, and so by Kato [13, V.3, eq. 3.31], 

\\(Ao-\)-1\\nx)= sup k - A I " 1 - sup | A - m | _ 1 - (5-4) 
zeo(Ao) neZ\{0} 

Thus the final bound on the resolvent of A may be written: 

l + x / rT |AF| | (G(A)ay| | fsup 1HI=1 \(v,a)\) 
l\(A J^-lM < ; V ^i/oHO.TT) ) (5.5) 
\\yA-X) \\L(X)< j-7 rr—T-, • 

intnez\{0} |A - m| 

Numerical experiments show this bound is sharp enough to reveal eigenvalue locations. 

Figure 5.1 illustrates the -y/l + |A|2||(G(A)a)/|| term in this bound is sufficient to locate 

eigenvalues when a(x) = 2/(-KX). This omits the scaling by the resolvent of Ao, but 

as the eigenvalues for this operator are not near the imaginary axis, that contribution 

is irrelevant. 

To show that singular functions like 1/x have no eigenvalues close to the imaginary 

axis, one approach is to show that the resolvent is bounded on the imaginary axis. 

Applying the estimate from Theorem 7 showing that eigenvalues asymptotically move 

a finite distance away from the imaginary axis will allow the \\(Ao — A)_ 1 | |L(X) term 

to be bounded above by a constant, and hence ignored. Then the eigenvalues of A 

will occur only at poles of ||(G(A)a)'||. However the details of this, and perhaps a 

proof, await completion. 

5.3 Resolvent lower bound 

In this section I derive a lower bound on the resolvent. Unlike the bound constructed 

in section 4.3, this bound is appropriate for singular a. A similar approach will be 

followed; recall from equation (4.5), 

| | ( A - A ) * | | X 
< ] \ { A - APl l^x ) W eDom(A). (5.6) 

file:////yA-X
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Figure 5.1 : Upper bound on the resolvent for a singular field. Here a(x) = 2/(irx). 
Contours represent the log base ten value of >/l + |A|2||(G(A)a)'||. Black contours 
measure differences of 1 logarithmically, beginning at 1 near the origin and increasing 
in magnitude towards (numerically computed) eigenvalues, marked with black x's. 
Gray contours are equally spaced, with 5 between each black line. Observe this term 
alone from equation (5.5) is sufficient to locate eigenvalues in this case. 
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Construct \& = /[1,A]T. Here / will be a mollification of y such that / satisfies 

/(0) = /(7r) = 0 and approximately satisfies the C\y = 0. The mollification r 

is constructed such that it is supported only on the interval [X,TT], r(ir) = 1, and 

r'{x) = 0. Thus f — y — y(ir, X)r satisfies the boundary conditions and is a member 

of H%(0, TT), but now £xf ^ 0 if y(ir, A) ^ 0. 

There many choices for r. Generally, a quadratic is sufficient; however, the special 

structure of this problem poses some difficulty. Note that 

Cxf = 0 + y(ir, \)Cxr = y{ir, A) (r" - X2r - Xa(r, a)), (5.7) 

so if (r, a) ^ 0 and a £ L2(0, ir) then the norm of C\f could be unbounded if (r, a) ^ 0 

and a ^ L2(0,7r). Thus r should be built orthogonal to a. To construct such an r, 

define 

0, xe[0,x\; 
q ( x ) = l 

I (x — x)/(-K — x), X € (x, 7r]. 

Then r is formed as a linear combination of q2 and g3 that is orthogonal to a. The 

choice 

r(x) = aq2(x)-/3q3(x) (5.8) 

with 

a _ ( < ? V ) - 1 ^ ( g 2 , a ) ~ l 

(q3,a)-(q2,a) (q3,a) - (q2,a) 

satisfy the required conditions such that r is a mollification and ensures (r, a) = 0. 

Should a or (3 diverge or go to zero, a different choice of x should suffice to construct 

an appropriate mollification. 

Unfortunately, due to the complexity of y(x, A) and r, there is no obvious choice 

of x or a simple form of the resolvent bound generated by this choice of / . Compu­

tationally, this bound does reasonably well, as shown in figure 5.2. 
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Figure 5.2 : Mollification lower bound on the resolvent. Here a(x) = sin(2x). The 
gray and black lines are contours of the log base ten of the lower bound given by 
the mollification (5.8). Black contours indicate differences of 1/4, starting from 0 
and increasing towards the black x 's. These black x 's denote exact eigenvalues (see 
equation (4.11)); hence this lower bound accurately locates eigenvalues. Spectral 
methods are used to construct y and its derivative, as described in Appendix B. 
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Figure 5.3 : Spectrum of A when a(x) = 2/(,nx). Here, cr(A) was computed with a 
discretization of dimension N = 2048 as described in Appendix B. 

5.4 Is a(x) = 7/cc optimal? 

Although the numerics and the rate of eigenvalues leaving the imaginary axis both 

suggest that a(x) = y/x makes the spectral abscissa negative, it is not clear that 

a(x) = 7/2; moves the eigenvalues uniformly off the axis, as the Castro-Cox function 

does. In the high frequency limit, eigenvalues for a(x) = y/x are uniformly negative 

as 7 —>• 2/7T. The low frequency eigenvalues display a complicated structure as see in 

figure 5.3. This suggests that by perturbing a(x), a function can be found that moves 
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Table 5.2 : Numerically optimal finite Laurent series. A spectral discretization of 
A is constructed of size 1024 and an estimate of the spectral abscissa based on low 
frequency eigenvalues is optimized using MATLAB'S fminsearch optimization routine. 
The exact coefficients are sensitive to the initial condition, but the abscissa generated 
is stable. 

Terms 

1 

2 

3 

4 

Abscissa 

-0.48799 

-0.68366 

-0.65403 

-0.65131 

7-1 

0.65027 

0.63069 

0.63841 

0.63874 

7o 

0.03899 

0.01160 

0.01148 

7i 

0.01729 

0.01618 

72 

0.00070 

the spectrum uniformly. 

One approach is to expand the hypothetical function in terms of a Laurent series, 

oo 

a(x) = 5Z 7i^-
i = - i 

Running an optimization routine on this function to minimize the spectral abscissa 

with a finite number of terms in the series results in a smaller spectral abscissa 

numerically, as shown in Table 5.2. This approach is similar to Freitas [10]; however, 

I cannot claim to have found a 'better' damping function without further work. This 

optimization approach does not suggest a simple form for a better function — I have 

been unable to find a series for a well-known function that resembles the coefficients 

in Table 5.2. This is not surprising due to the sensitivity of the coefficients 7,- to 

changes in discretization size and starting values for the optimization routine. A 

superior damping function to a(x) = 7/2; might exist, but further investigation is 

needed. 



48 

Chapter 6 

Conclusions 

I have studied a family of damped wave operators parametrized by a function a(x) : 

[0,7r] —• E. These operators correspond to the magnetic damping of an elastic con­

ductor in which a is proportional to the magnetic field strength. My objective in 

studying this operator was to find those choices of a that lead to energy decay. Simi­

lar questions have already been asked of the related Kelvin-Voigt and viscous damping 

operators, as described in Chapter 2. Theorem 4 reveals, when a G BV(0,7r), that 

the energy decay is bounded by the spectral abscissa, which, as Theorem 3 showed, 

is zero. Thus for any time T > 0 there exist initial conditions such that arbitrarily 

little energy is lost over t € [0, T]. 

This lack of decay in the bounded variation case motivated the study of singular 

fields in Chapter 5. Theorem 7 provides a suggestion that all eigenvalues of A might 

move off the imaginary axis. Numerical examples were then presented confirming 

this result. In this chapter I also established two bounds on the resolvent: one lower 

(section 5.3), one upper (section 5.2). The structure of each bound is complicated, but 

could provide an avenue for future work on this operator. The combination of these 

two bounds should enable localization eigenvalues of A by finding the intersection 

where both bounds diverge. However, the upper bound alone would also be useful in 

establishing where eigenvalues of A may reside. Alternatively, Rouche type analysis 

could be applied to the shooting function y(ir, A) to bound the location of eigenvalues, 

in a similar manner to Theorem 3, but now strictly away from the imaginary axis. 
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Additional work will also be required to ensure that the spectral abscissa governs 

the rate of decay in the singular case. When a is singular, a{-, a) is no longer a bounded 

perturbation to a skew-adjoint operator, and so more sophisticated techniques will 

be required to establish that the eigenvectors of A form a Reisz basis. 

It is my belief that this operator will eventually yield to analysis that will confirm 

the case a{x) = 2/(TTX) does indeed move all eigenvalues finitely off the imaginary 

axis. What is less clear is whether the efficacy of this improved spectral abscissa is 

tempered by large resolvent norms near the imaginary axis. 
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Appendix A 

Derivation of Magnetic Damping 

This appendix contains a derivation of the equations of motion for a conductive string 

in a magnetic field, as seen in equation (1.1). Two levels of sophistication are generally 

used for such derivations. One begins with an equilibrium state and assumes small 

perturbations to this equilibrium. These are commonly seen in physics textbooks and 

justly chastised by Antman [2, p. 13]. The proper approach is a derivation beginning 

at three dimensional nonlinear elasticity following Antman [2, ch. 2]. In the case of a 

constant magnetic field, a derivation of this type was completed by Wolfe [24, §2]; the 

case of non-constant field will be covered in an upcoming paper [8]. These derivations 

and subsequent linearizations, although the correct approach, mask the underlying 

physical processes in their sophistication. In this appendix, I seek a balance between 

these two extremes. I begin with the linearized wave equation with an additional 

forcing term, and then show this forcing term is the perturbation in the equation of 

motion for a magnetically damped string. 

To begin, consider a string with constant tension a and constant linear density p. 

The linear equation of motion for this string with an additional force F(x, t) acting 

pointwise is 

P^(x,t) = a^2(x,t) + F(x,t).y, (A.l) 

where y is the unit vector perpendicular to the string's rest state. In the case of 

magnetic damping, F(x, t) depends on u(x, t) as illustrated below. 

Define the surface S(t) to be the manifold in the x, y plane bounded by u(x, t) and 
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,E{x,t) 
F(x,t) 

A/WNA 
R I(t) 

Figure A.l : Physical setting for magnetic damping. An elastic conductive string is 
stretched between two rigid endpoints a length IT apart. The two ends of the string 
are connected through a resistor R. A magnetic field B(x) permeates the region 
from the z direction (out of page). As the string is displaced, u(x,t), it induces an 
electromotive force E(x,t). This electromotive force induces a current I(t) through 
the resistor R. A Lorentz force F(x, t) then acts on the string. 

Table A. l : Variables required for derivation of magnetic damping equations of motion 

x,y,z 

•^•s. « - v *—•. 

x,y,z 

x = [x, y, z] 

a 

P 

R 

I(t) 

u(x, t) 

E(x,t) 

F(x,t) 

B(x,t) = B(x)z 

coordinates relative to axes in figure A. 1 

right handed unit vectors for R3 as labeled in figure A.l 

vectorized form of above 

tension in string 

linear mass density of string 

resistance through current loop 

current in string loop 

string displacement 

electric field induced in loop at x 

force acting on the string 

external magnetic field 
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the current return path illustrated in figure A.l. Additionally, let So be similarly de­

fined when u(x, t) = 0. As the string traverses the external magnetic field, it encloses 

a variable amount of the magnetic flux. Then using Faraday's law of induction [12, 

eq. 7.15] 

/ E d£ = —^- [f B- da. 
Jds(t) "t J Js{t) 

To take the derivative over this time-changing surface, note that the integral over 

5 (t) may be composed of 5*0 and an additional surface: 

I E . d £ = d ( [ [ B-da+ f r ^ B([x,y,0})-zdydx 
JdS(t) a t \JJSo JO JO y 

= -^J\u(x,t))B(x)dx (A-2) 

= -j^(x,t)B(x)dx. 

If vibrations of u(x, t) are sufficiently slow, a uniform current will be established in 

the loop. As the current reaches equilibrium on a time scale of the length of the string 

times the speed of light, for physical vibrations, this assumption is warranted. The 

current may be calculated from the electromotive force in equation (A.2) via Ohm's 

law and flipping signs, as dS(t) and I(t) are oriented in opposite directions. This 

yields 

E • d£. (A.3) /w-s£ IdS 

The current flowing inside the string interacts with the surrounding magnetic field 

through a Lorentz force [12, eq. 5.16]. At each point x the current flows parallel with 

the string, and in this linearization the angles of displacement are assumed small; 

then the current flows effectively in the x direction. Hence, 

F{x,t) = [I{t)x] x [B{x)z] = -B{x)I{t)y (A.4) 

file:///JJSo


53 

in the limit of small vibrations. So finally, the forcing term may be written as 

F(x,t) = -^£^t)B(Od£y. (A.5) 

Setting a(x) = B{x)/\fR and p = a = 1, the partial differential equation for the 

string with magnetic damping, equation (1.1), is obtained. 
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Appendix B 

Spectral Methods 

Numerical experiments have been used, throughout my research to provide intuition 

about the magnetic damping operator. A wide variety of techniques can be used 

to approximate the magnetic damping operator, but I have chosen to primarily use 

Chebyshev pseudospectral collocation methods as described by Trefethen [21]. These 

methods approximate derivatives and integrals by exactly differentiating and inte­

grating interpolants to those functions on a Chebyshev grid. The resulting differ­

entiation matrices are dense, unlike lower order finite difference methods, increasing 

computational cost. Unlike lower order methods, however, this method will converge 

exponentially as the discretization size is increased for smooth functions. For damped 

wave problems, the solutions are smooth for most a, so this spectral method will pre­

form well. Below, I will describe how this spectral method may be applied to the 

magnetic damping problem. 

B.l Chebyshev differentiation matrices 

Regularly spaced grids are a poor basis on which to approximate derivatives with a 

high degree of accuracy due to Runge's phenomenon. Grids with points clustered 

near the boundaries turn out to be superior in most cases; Chebyshev points are one 

example of such a grid. For a discretization size N, Chebyshev points on (—1,1) 
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are [21, eq. 5.2] 

Xj = cos(jir/N). (B.l) 

The function f(x) is approximated on this grid by constructing the vector / where 

[f]j = fM 

samples / at the grid points x = (XQ,XI,...,XN+I)T. Similarly, define / ' as f'(x) 

evaluated at grid points. Then a differentiation matrix D G c(N+1)*(.N+1) may be 

constructed such that Df ta f following [21, eq. 6.3-5]. This matrix D is dense, 

making computations expensive, but if / is smooth, then as iV —* oo, the error in the 

approximation decays exponentially. 

B.2 Approximating the undamped wave operator 

The undamped wave operator is approximated by using the approximate deriva­

tive operator D. The resulting approximation mimics the structure of (2.3). First, 

though, the second derivative operator needs to be approximated. Simply squaring 

the derivative operator, D, on the Chebyshev grid is sufficient for this purpose. To 

enforce the Dirichlet boundary conditions, observe that the first and last entries in / 

and D2f must be zero. Thus the first and last columns and first and last rows of D2 

are removed, leaving L <E C ^ - 1 ^ ^ - ^ [21, p. 62]. 

Now the undamped wave operator on (0,7r) may be formed by scaling x and L 

appropriately for this domain. Namely, 

(7r/2)(aj-l) -»ac, 

(2/TT)2L^L. 
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Table B.l : Convergence of spectral methods for the undamped wave operator. This 
table compares eigenvalues of the true operator to eigenvalues of the approximation 
on grids of size 8 and 16. As this illustrates, the first N/2 eigenvalues are accurate; 
a feature seen repeatedly in practice. The conjugate pairs of these eigenvalues have 
been omitted, but share the same error properties. 

Exact 

\i 
2% 
3i 
Ai 
hi 
U 
li 

N = 8 
0.99999997711157i 

2.00004618424119i 
2.99856926441649i 
4.05271176596448i 

4.72021971131075z 
9.03919773621486i 

9.32104180081907z 

N=16 
l.OOOOOOOOOOOOOOi 
2.00000000000087i 
3.00000000021948? 

3.99999993203235i 
4.99999871401721i 

6.00004061504667z 

6.99955182665405z 

Forming the matrix A € C 2 ^ 1)x2(Ar 2) where 

A = 
0 / 

L 0 
(B.2) 

and I is the (N — 1) x (N — 1) identity matrix, this A approximates the undamped 

wave operator. 

The eigenvalues for the undamped wave equation are simply the integers times i 

excepting 0. The Chebyshev spectral approximation of A, denotedA, approximates 

these eigenvalues well even for small N, as seen in Table B.l. Code to construct this 

matrix is shown in figure B.l. The routine cheb.m is Trefethen's code for construct­

ing Chebyshev differentiation matrices, described in [21], and is available online at 

h t tp : / /web.comlab.ox .ac .uk/n ick . t refe then/spect ra l .h tml . 

http://web.comlab.ox.ac.uk/nick.trefethen/spectral.html
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N = 16; 
[D,x] = cheb(N); 
L = D~2; 
L = L(2:N,2:N); 
L = L*(2/pi)~2; 
A = [zeros(N-l) eye(N-l) ; L ze ros (N- l ) ] ; 

Figure B.l : Code generating an approximation of the undamped wave operator. 

B.3 Approximating the magnetic damping operator 

The magnetic damping operator differs from the undamped wave operator by a rank-

1 perturbation in the (2,2) block. Similarly, the discretization of this operator will 

differ from the undamped discretization by a rank-1 perturbation. 

We now need to approximate the operator a(-,a), i.e., we want to construct a 

matrix C so that when the vector / samples the function / on the Chebyshev grid, 

then Cf « a(f, a). This clearly requires an approximation of the integral in the inner 

product. Since / is represented at Chebyshev points, it is natural to use Clenshaw-

Curtis quadrature, a high-order quadrature rule based on exactly integrating the 

polynomial interpolant to a function at Chebyshev points. Let the vector w represent 

the quadrature weights for the JV+1 point Clenshaw-Curtis rule. Then the integration 

JQ f(x) dx may be approximated by the inner product wTf. To construct damping 

term in the magnetic damping operator, first the integral (-,a) must be constructed. 

Denote pointwise vector multiplication by the symbol 0 . Then for some vector / , 

(/, a) « wT(f Qa) = {wQ off. (B.3) 

In a similar manner, the action of the operator a{-,a) is approximated by the outer 
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product 

a(-,a) « a(w 0 a)1 (B.4) 

A = (B.5) 

Using this approximation for the damping, the wave operator may be approxi­

mated by 

0 I 

L -a(w 0 a)T 

The code for constructing this A shown in figure B.2 differs from the undamped 

wave code only in the change of the (2,2) block. When a is smooth, this method 

works well, as demonstrated in Table B.2. When a is singular, this method converges 

slowly. Grids of size 1024 or larger are needed to resolve low frequency eigenvalues to 

reasonable precision, as shown in table B.3. Better numerical approaches are needed 

here. 

Spectral methods and Clenshaw-Curtis quadrature are also used in several other 

areas of this thesis. They are used to construct the shooting functions y and w, along 

with G(X)a, used in sections 5.2 and 5.3. Building approximations to these objects 

follows simply from their respective definitions. 
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a = @(x) sqrt(2)*sqrt(2/pi)*sin(l*x); 

N = 16; 
% Construct differentiation matrix 

[D,x] = cheb(N); 
L = D~2; 

L = L(2:N,2:N); 
L = L*(2/pi)~2; 

% Construct damping term 
[x,w] = clencurt(N); 
x = pi/2*(l+x(2:N)) •;• w = pi/2*w(2:N) -;---
ax = a (x ) ; 
C = ax*(w.*ax'); 
A = [zeros(N-l) eye(N-l); L -C] ; 

Figure B.2 : Code generating an approximation of the magnetic damping operator. 

Table B.2 : Eigenvalue convergence for spectral approximation of the magnetic damp­
ing operator when a G BV(0,TT). Specifically a(x) = 0.8. Convergence follows a 
similar pattern to Table B.l. Note that even eigenvalues (those approximating 2in 
for n G Z+) are undamped, as predicted by Theorem 3. 

iV = 16 
-0.84597839166559 + 0.56481991443707i 
-0.00000000000000 + 2.00000000000087i 
-0.06588872814612 + 2.95834400444970z 
-0.00000000000000 + 3.99999993203234i 
-0.02834893734824 + 4.98890387449988i 

0.00000000000001+ 6.00004061504667z 
-0.01538451336862 + 6.99519928607148i 

JV = 256 
-0.84597839166538 + 0.56481991444776i 
-0.00000000000004 + 1.99999999999452? 
-0.06588872808362 + 2.95834400428002i 

0.00000000000003 + 4.00000000000070z 
-0.02834904174222 + 4.98890511896678z 

0.00000000000000 + 5.99999999999974i 
-0.01541014475877 + 6.99563975558354i 
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Table B.3 : Eigenvalue convergence for spectral approximation of the magnetic damp­
ing operator when a(x) = 2/(nx). Note that convergence is far slower than seen 
previously in Tables B.l and B.2. 

N = 256 
-0.60324627212638 + 1.37890054767696i 
-0.45749313204658 + 2.10066302903099i 
-0.71758009884126 + 3.33459474744582? 
-0.58744884573420 + 4.14090611536783* 
-0.78205632165110 + 5.31619430194206i 
-0.66553939907565 + 6.15881104985526i 
-0.83036927072012 + 7.30520777330564* 

N = 1024 
-0.60254808326093 + 1.37924089900725* 
-0.45708144585507 + 2.10135242862779* 
-0.71423043875790 + 3.33545485745885* 
-0.58521736451053 + 4.14301600389049* 
-0.77423682058696 + 5.31780556506505* 
-0.66008418625021 + 6.16288854260860* 
-0.81623925765204 + 7.30790060104027* 
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