
RICE UNIVERSITY 

Magnetism and Fermi Surface in Heavy Fermion 
Metals 

by 

Seiji James Yamamoto 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

Doctor of Philosophy 

APPROVED, THESIS COMMITTEE: 

Qimiao Si, Chair 
Harry C. and Olga K. Wiess Professor of 
Physics and Astronomy 

Cariescolech 
Assistant Professor of Physics and 
Astronomy 

Juni^niro Kono 
Associate Professor of Electrical and 
Computer Engineering 

Houston, Texas 

April, 2009 



UMI Number: 3362434 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI 
UMI Microform 3362434 

Copyright 2009 by ProQuest LLC 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



Abstract 

Magnetism and Fermi Surface in Heavy Fermion Metals 

by 

Seiji James Yamamoto 

With a multitude of different phases and quantum critical points, heavy fermion 

materials should reign supreme as the prototype for competing order, a major con

temporary theme in condensed matter physics. One key feature that differentiates 

the types of magnetic phases and critical points is the presence or absence of Kondo 

screening. This singlet formation is dramatically manifested in the Fermi surface, 

which may or may not include atomic /-orbital electron states. To provide a theo

retical basis for the different types of magnetism, we have carried out asymptotically 

exact studies of the Kondo lattice model inside both the antiferromagnetic and fer

romagnetic phases. A fundamental aspect of the approach is to map the magnetic 

Hamiltonian for the /-orbitals onto a quantum nonlinear sigma model (QNLcrM). The 

Kondo interaction results in an effective coupling between the QNLCTM fields and the 

conduction electrons. Renormalization group analyses show that the Fermi surface 

in the corresponding ordered states is small (not incorporating the /-orbitals) for 

both the ferromagnetic and antiferromagnetic cases. These results are of relevance 



to a number of materials, including YbRh2Si2 and CeRu2Ge2, where experimental 

measurements of magnetotransport and de Haas van Alphen effects have supplied 

evidence for small Fermi surface phases. The implications of our results for heavy 

fermion quantum critical points will also be discussed. 
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Chapter 1 

Introduction to Heavy fermions 

1.1 Itineracy Versus Locality 

The interplay between locality and itineracy is a frequent theme in condensed matter 

physics. For example, in band theory [1], it is well known that electrons can be 

understood in either an itinerant Bloch wavefunction basis, or a localized Wannier 

(tight-binding) representation. In magnetism too, Stoner's description [2] is well 

suited to, say, Nickel, because it is metallic, while the Heisenberg model seems to 

work better for insulators. Likewise, for superfluids and superconductors, the BCS 

picture of Cooper pairs whose partners are widely separated in space works well for 

a large class of materials [3], while the molecular BEC view of more closely conjoined 

paired states is better suited to other circumstances, say on the repulsive side of 

a Feshbach resonance [4]. For heavy fermions, to be defined shortly, we also have 

itinerant and localized descriptions. The Periodic Anderson Model (PAM) treats f-

orbitals as itinerant electrons with strong Coulomb interaction. On the other hand, 

the Kondo Lattice Model (KLM) views f-orbitals as local moments which are well 

separated from each other. 

The reason for this frequent dual portrayal of the same phenomena perhaps stems 

from something deep, like Quantum Mechanics. The intention here is not to become 

involved in philosophical questions, but merely to note that dual descriptions often 

exist. While the two descriptions are not exactly equivalent, it is not always clear if 

a sharp distinction can be drawn either. This thesis is concerned with sorting out 

the sometimes confusing interplay between the localized and itinerant perspectives 
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in heavy fermion metals where the uncertainty lurks in the nature of the f-orbital. 

We will show that while many experimental measurements contain some degree of 

ambiguity, a sharp distinction can in fact be made with regard to the nature of the 

Fermi surface. The focus of this work will be on magnetically ordered phases, but to 

put this in perspective with the field more broadly, the first few chapters will discuss 

more general aspects of heavy fermions and quantum criticality. 

1.2 Heavy Fermions 

Heavy fermions are a class of materials that almost always contain an element with / -

orbitals, such as Ce, U, and Yb [5]. This includes elements from the Lanthanoid (4/) 

and Actinoid (5/) series.* Some examples include UPt3, UGe2, PuCoGa5, UPd2Al3, 

CeCu2Si2, YbRh2Si2, and CeRu2Ge2. The Lanthanides are usually tri- or tetra-valent. 

For example, Ce3+ has a valence shell configuration of 4/ 1 , which is S = 1/2, L = 3 

and J = 5/2. Due to the strong spin-orbit coupling, J is the good quantum number. 

In a crystalline environment, the (2J + l)-fold degenerate multiplet gets split. For 

an odd number of electrons, and in the absence of time reversal symmetry breaking 

terms, a doublet ground state is guaranteed by Kramers' Theorem. It is this Kramers 

doublet that is modeled as the effective SU(2) system and is usually implicated as 

the relevant local degree of freedom involved in Kondo physics. 

The reason these materials are called "heavy" fermions is because they experi

mentally exhibit paramagnetic Fermi liquid properties, but with an extremely large 

*IUPAC has been recommending since 1985 that Actinoid and Lanthanoid be used rather than 

Actinide and Lanthanide, even though the latter are in widespread use. This is because "-ide" 

implies ionic charge, whereas "-oid" simply means "similar to." No attempt will be made in this 

thesis to adhere strictly to one convention or another. 



3 

effective mass. In practice, this means that, at least within part of the phase diagram, 

they have a quadratic temperature dependence of the resistivity (p = p0+AT2), a tem

perature independent Pauli paramagnetic static magnetic susceptibility (x ~ const.), 

and an unusually large linear in temperature specific heat coefficient (7 = C/T > 10 

mJ/mol.K2). The specific heat coefficient is a measure of the effective mass; for CeAl3, 

7 *v 1.5 J/mol.K2, which is over 1000 times the bare mass of the electron, hence the 

modifier "heavy" [6]. Incidentally, CeAl3 was the first heavy fermion to be discovered 

by Andres, Graebner, and Ott [7]. 

Having introduced what they are, we may now describe why people find them 

interesting. First, they exhibit many unusual phases such as unconventional super

conductivity, a variety of magnetic orders, and even coexistence between the two. 

CeCu2Si2 is one of the most famous examples of a heavy fermion since the discov

ery of its superconductivity by Steglich et al. sparked the widespread interest in 

these materials [8]. Previously, it had been thought that magnetism is so toxic to 

superconductivity that the two can never coexist. 

A second motivation to study heavy fermions comes from the ability we have to 

tune them between the phases described above. As a result, they provide a convenient 

test-bed for theories of quantum criticality (more on that in the next chapter) that 

are relevant to other classes of materials [9]. Ease of tunability is never guaranteed, 

but it is the happy circumstance heavy fermions provide due to the small energy 

scales involved. Relatively modest amounts of pressure, doping, or external field 

strengths are needed to take them all the way across one, or even several, phase 

transitions [10]. Of course, the preponderance of phases means that these materials 

are often studied outside the heavy Fermi liquid phase, i. e. where they are no longer 

heavy. Since "rare earth intermetallic" or some similar designation is rather clumsy, 
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we will instead continue to call the material a heavy fermion if it is somehow easily-

tunable to a phase in which it can become heavy, even if this means changing its 

chemical composition by doping. 

1.3 Microscopic Hamiltonians 

Two microscopic models are most commonly encountered in theoretical investigations 

of heavy fermions: the Periodic Anderson Model (PAM) and the Kondo Lattice Model 

(KLM). The latter can be derived from the former in a particular parameter regime 

via a generalized Schrieffer-Wolff transformation [11, 12]. The Periodic Anderson 

Model (sometimes also referred to as the Anderson Lattice) can be written: 

ka ka i 

+£wi<w+^.) (i.i) 
ka 

In this model, the difference between conduction electrons and /-orbital electrons 

is simply that the latter have some correlation, modeled by a Hubbard U, while 

conduction electrons are treated as free-electron like. The two species hybridize with 

each other through Vk which is in general momentum dependent, though this is often 

approximated by a simple constant. 

The "Kondo regime" of the Anderson model corresponds to the limit where the 

correlation is strong and the /-level sits far below the Fermi level, that is: 

ef < fi < ef + U (1.2) 

where we have assumed that the width of the band described by e{ is so much narrower 

than the band described by e£ that we can treat the former as a constant with 

characteristic energy e/ = e£=0. To be in the Kondo regime, in addition to the 
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condition above, the width of the band ek must be much smaller than the intervals 

\fj, — Cf\ and \ef + U — fj,\. In this parameter regime a "local moment" exists at every 

lattice site because it would be energetically costly to populate the /-orbital with 

either 0 or 2 electrons. Of course, this is somewhat of a caricature of a real material 

where the "local moment" consists of the lowest doublet of the crystal field split 

J-multiplet. Nonetheless, this has been a useful model for the past three decades. 

When we know that a material sits in the Kondo regime, it is convenient to map 

the PAM to the KLM, where the local moments are represented by spins attached to 

the lattice rather than itinerant, though strongly correlated, /-orbitals. This model 

can be expressed by the following Hamiltonian: 

#KLM = J2C^Ck<r(ek-^) + JK^24a^-C0-Si (1.3) 
kar ia/3 

where a is the vector of Pauli matrices and JK is the Kondo coupling. Within 

weak-coupling perturbation theory, the Kondo interation can be shown to generate 

an effective coupling between the local moments via the so-called RKKY interac

tion [13, 14, 15] which can be pictured as the spin analog of Friedel oscillations [16]. 

It is therefore often convenient to introduce the Kondo Heisenberg Lattice, which is 

sometimes also referred to as the Kondo Lattice Model: 

k<r ia/3 ij 

The spin-spin coupling i^ is proportional to the density of states times J\ if it is of 

purely RKKY origin, though other exchange interactions may exist in the material; 

we lump them all together in i^. This model will serve as the starting point for 

the studies of this thesis and will be discussed at great length later. The Kondo-

Heisenberg Model has been used by a number of authors in the context of heavy 

fermions; see for example [17, 18, 19, 20]. On the issue of double counting, see [21]. 
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On intuitive grounds we would expect the PAM to be useful for studying heavy 

fermions when it is known that the /-orbital needs to be in some sense itinerant. 

For example, the mixed-valent problem [16] corresponds to situations in which the 

/-orbital occupancy tends to fluctuate because the fn and fn±1 states are nearly 

degenerate in energy. Since this is outside the Kondo regime where the mapping PAM 

—»• KLM breaks down, we expect the PAM to be more suitable than the KLM at least 

for the mixed-valent problem. Indeed, in the limit U —• oo, several authors have 

devised a large-iV (where N is the number of fermion flavors) slave-boson technique 

that appears to work well in this situation, as well as within the Kondo regime for 

the paramagnetic heavy Fermi liquid phase [22, 23, 24]. 

In fact, for the paramagnetic heavy Fermi liquid phase, strong theoretical argu

ments exist suggesting that the /-orbitals are always itinerant in character for both 

the PAM [25] and, surprisingly, the KLM [26]. This is rather unexpected since it 

suggests that within the local moment parameter regime, the /-orbitals can actually 

acquire itinerant character. How this is possible will be discussed in the next section, 

but here we briefly point out that, in principle, there may also be situations in which 

the /-orbital states behave as if they are localized. Such a situation would of course 

be sensible in the local moment parameter regime, suggesting that the KLM should 

be the appropriate starting point. This thesis will be dedicated to understanding 

one such circumstance where the /-orbitals assume a localized nature even at T = 0, 

namely when there is magnetic ordering. What is meant by itinerant will be described 

as we go, and it will turn out to be closely related to the nature of the Fermi surface. 
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1.4 Why is it heavy? 

A standard lore exists which describes how the electrons become so heavy within 

the paramagnetic phase [5]. A brief account of the story goes like this. At high 

temperatures, an f-orbital local moment can be found at every site of a well defined 

lattice. These should be thought of as angular momentum degrees of freedom which do 

not contribute to conduction. The material is metallic, but the conducting electrons 

are completely distinct from the f-orbitals. As we lower the temperature, some sort 

of many-body entanglement occurs whereby the local angular momentum degrees 

of freedom become screened by the conduction electrons to form an overall singlet 

state. When this happens, the local moments are said to be "quenched" and the 

susceptibility crosses over from a Curie to Pauli form. In this low temperature phase, 

the Fermi surface becomes anomalously large. In fact, the Luttinger sum rule [27], 

which relates the density of electrons to the Fermi volume, indicates that the f-orbitals 

must now be considered itinerant in any bandstructure calculation in order to obtain 

the correct Fermi surface. The local moments have thus "dissolved" into the Fermi 

sea and are in a sense no longer local even though the lattice structure may be such 

that the pure /-orbital wavefunctions cannot directly overlap. 

This is a rather remarkable story, especially if viewed from the perspective of the 

KLM. In this model, the /-orbitals are not electrons at all, but merely spin degrees of 

freedom. Indeed, the original work by RKKY [13, 14, 15] was concerned with nuclear 

spins, and the story above would suggest that the heavy Fermi liquid paramagnet 

can develop even if the local moments are of nuclear origin [5]. Would it really make 

sense in that case to say that the local moments have dissolved into the Fermi sea, 

or is something else going on? This is the fundamental issue in heavy fermions: are 

f-orbitals localized, or itinerant? 
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Perhaps a better way to understand the situation is by labeling phases according 

to clear-cut experimental criteria. We will show in the next section that for many 

measurements related to itineracy, the answer is not completely clear. However, what 

seems unambiguous is the size of the Fermi surface, and we propose to use this as a 

criterion for categorizing phases. 

T>T* K 

Curie Paramagnet 
No Kondo Screening 
Small Fermi Surface 

Local f-orbitals 

T<T* K 

Pauli Paramagnet 
Kondo Screening 

Large Fermi Surface 
Itinerant f-orbitals 

Figure 1.1 : Large and small Fermi surfaces of the paramagnetic phase. The large 
Fermi surface corresponds to Kondo screening, while the small Fermi surface has no 
Kondo singlet. Here, the distinction is slightly less useful because, technically, the 
Fermi surface is only sharply defined at T — 0 and the transformation of states is 
only a crossover rather than a sharp phase transition. For magnetic phases at T = 0, 
the distinction becomes sharp, as described in the text. 

1.5 /-Orbital Itineracy and the Fermi Surface 

In this section we review some of the ways to adjudicate the itineracy of /-orbitals as 

usually presented in the literature. Given any heavy fermion metal, the first thing to 

do is measure the temperature dependence of the susceptibility. When local moments 

are unquenched (localized) we expect this to track a Curie-Weiss form: 

Xcw(T) = ° (1.5) 
1 — aw 
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where Ow is the Weiss temperature and C is the Curie constant. In an unfrustrated 

system, the Weiss temperature can give us a handle on the relevant coupling strength, 

whereas the Curie constant gives a measurement of the size of the effective local mo

ment. In particular /xe/y = /J,BV&C, where \XB is the Bohr magneton. Experimentally, 

the susceptibility is usually found by measuring the magnetization of the sample us

ing a SQUID in response to some small applied magnetic field, and simply taking the 

ratio x ~ M/H. The Curie-Weiss form is derived from a mean-field treatment of the 

Heisenberg Model, so it is expected to work well when the spin degrees of freedom 

responding to the applied magnetic field are of localized nature. Since the treatment 

is only mean field, the true ordering temperature found experimentally (usually called 

the Curie or Neel temperature, depending on the type of order) almost always differs 

from the Weiss temperature. The latter is defined by fitting the high temperature 

inverse susceptibility and extrapolating to zero. Another way to say this is that the 

experimental plot of l /x(T) is rarely a perfectly straight line. 

In contrast, when the spins are of itinerant nature, we expect quite different be

havior. Here, the susceptibility takes a Pauli form which is temperature independent: 

XP(T) = p(EF) (1.6) 

In the zero temperature, zero frequency, zero momentum limit, \P gives a measure 

of the density of states at the Fermi level, assuming no ordering intervenes to lowest 

temperatures. This is useful information in itself, but for our discussion the important 

point is that XP is independent of temperature. 

When the susceptibility crosses over from an inverse temperature dependence to 

a constant, this is interpreted as experimental evidence for the quenching of local 

moments. However, as seen in figure 1.2, susceptibility data alone does not make it 

obvious when or if /-orbitals are itinerant. Features in the resistivity data have a 
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Figure 1.2 : Temperature dependence of the susceptibility for several different heavy 
fermion compounds, from [28]. Notice the Curie form at high temperature, and the 
Pauli form at low temperatures. 
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similar problem of indirectness. More problematic is that magnetic or superconduct

ing order might take over at lower temperatures leading to a different temperature 

dependence and making it difficult to assess the itineracy or locality of /-orbitals over 

a sharply defined range of temperatures. 

Inside a magnetically ordered phase, the temperature dependence of the suscep

tibility does not tell us anything about the locality or itineracy of /-orbitals. In such 

a case, the size of the moment is often used as a criteria for categorizing the magnet 

as itinerant or local. The moment size can be determined from neutron scattering, 

directly from a magnetometer, or by integrating the specific heat to determine the 

entropy, and thus the degeneracy, of the angular momentum degree of freedom. 

In figure 1.3 is the so-called Rhodes-Wohlfarth plot [29, 30]. On the vertical 

axis is the rato / i e / / / / / s a t , while the horizontal axis is the Curie temperature (this is 

only relevant to ferromagnetic materials). Known local ferromagnets tend to lie on 

a flat line, whereas itinerant ferromagnets tend to fall on the curve. For large Tc, 

the difference is rather difficult to ascertain, but at least for small values of Tc this 

appears to provide a useful empirical trend. 

Now, the reason for /-orbital itineracy could be something simple like direct wave-

function overlap. In the case of actinides, Hill's limit has been established which sep

arates overlapping from non-overlapping compounds, see table 1.1 and reference [31]. 

For {/-based compounds, Hill's limit is about 0.34 nm. When the distance between 

/-orbitals is less than Hill's limit, the wavefunctions overlap. Comparing table 1.1 

to the Rhodes-Wohlfarth plot in figure 1.3, it is easy to identify several materials 

which are beyond Hill's limit (meaning /-orbital wavefunctions do not overlap), yet 

nonetheless appear to fall on the curve identifying them as itinerant. Therefore, for 

some materials, something other than direct wavefunction overlap is causing them to 
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TC(K) 

600 

Figure 1.3 : The Rhodes-Wohlfarth plot, from [30]. Local moment ferromagnets tend 
to lie on the horizontal line, whereas itinerant ferromagnets fall on the curve. The 
vertical axis is the ratio of the effective to saturation moment. 
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Table 1.1 : Hill's limit is the distance between atomic sites containing /-orbitals 
below which wavefunctions begin to overlap. For uranium, Hill's limit corresponds to 
dc = 0.34 nm. The data for this table can be found in [31]. 

material 

a-U 

/?-U 

7-U 

UCo 

U6Ni 

UPt3 

UBe13 

URu2Si2 

UGe2 

UPd2Al3 

URhGe 

PuCoGa5 

PuRhGa5 

Am 

d (nm) 

0.31 

0.31 

0.29 

0.31 

0.32 

0.41 

0.51 

0.41 

0.38 

0.40 

0.35 

0.42 

0.43 

0.30 
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behave as if the /-orbitals are itinerant. This is usually ascribed to the lattice analog 

of Kondo screening, as discussed above. 

All of the experimental methods discussed so far that are commonly used to de

termine the itineracy or locality of /-orbitals are in some way indirect, or potentially 

ambiguous. However, a clear-cut measure does exist which is simply the size of 

the Fermi surface. The Fermi surface can be directly measured by Angle Resolved 

Photoemission Spectroscopy (ARPES) and the de Haas van Alphen (dHvA) effect. 

Since these techniques are confined to surface studies and relatively high magnetic 

fields, respectively, magnetotransport (such as the Hall coefficient) can yield infor-? 

mation about the Fermi surface as well. If the Fermi surface is only consistent with 

bandstructure calculations that treat the /-orbital as itinerant, which we call a Large 

Fermi surface, then we know that it contributes to the single-electron excitation spec

trum. On the other hand, if Fermi surface measurements yield something which only 

matches calculations which do not include the /-orbital, then we expect the material 

to be a local moment metal and this tells us that, at least statically, Kondo singlets 

cannot exist. Measurements of the Fermi surface therefore provide a sharp test for 

the itineracy or locality of /-orbitals. We differentiate magnetic metal phases by the 

size of their Fermi surfaces. When the Fermi surface is large, we use the subscript 

"L." When the Fermi surface is small, we label it with "S." See table 1.2. 
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Table 1.2 : Notation for different types of magnetic metal phases. 

Magnetic order 

Ferromagnetic 

Ferromagnetic 

Antiferromagnetic 

Antiferromagnetic 

f-orbital type 

Itinerant 

Local 

Itinerant 

Local 

Fermi surface 

Large 

Small 

Large 

Small 

Notation 

FL 

F 5 

AFi 

AF 5 
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Chapter 2 

Quantum Criticality in Heavy Fermions 

The goal of this chapter is to introduce the idea of unconventional Kondo break

down quantum criticality in heavy fermions, as well as experimental evidence for its 

relevance to YbRh2Si2 and CeCue-xAuj;. An understanding of criticality in these 

materials will set the stage for the main research question of this thesis which will 

focus on magnetically ordered phases rather than criticality itself. 

2.1 Strongly Correlated Electrons 

The field of strongly correlated electrons is generally concerned with situations in 

which a description based on a weakly interacting gas of fermions no longer works 

well. One way this comes about is when interactions between electrons are so strong 

that perturbation theory is no longer justifiable. This view leads to the exclusion of a 

number of theoretical methods, but it does not clearly describe the physical systems 

at the focus of our attention. One theme of the field that is easier to understand is 

the notion that electrons should cease to be the main protagonists of the story. 

No longer the most convenient entities at the heart of our descriptions, electrons 

must give way to fundamentally different types of excitations. An old motif from the 

early days of condensed matter physics was the concept of collective excitations of 

many-body systems [32]. At about the same time, high energy physicists were de

veloping ideas about symmetry breaking, massless excitations, and non-trivial vacua 

(i.e. ground states) [33]. These concepts naturally converged in the fields of phase 

transitions and renormalization which allowed us to understand how changes of phase 
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can lead to a dramatic reconstruction of the excitation spectrum. In one phase, elec

trons might constitute an excellent approximation to the low lying spectrum, but 

such a description is not guaranteed to hold after the system experiences a phase 

transition. 

Despite the strong interplay between quantum field theory, statistical mechanics, 

and phase transitions, it was not until the late 1970's that the word quantum began 

to be emphasized in the context of phase transitions [34]. The main idea here is 

that situations exist in which the phase transition can be induced by tuning a con

trol parameter other than temperature. In fact, a quantum phase transition can be 

operationally defined as a phase transition that occurs at strictly zero temperature. 

It is easy enough to appreciate the conceptual profundity of the idea of a quan

tum phase transition, but it is not as easy a task to identify experimentally accessible 

systems in which the phase transition can be traced to quantum rather than ther

mal effects. Today, it might seem relatively simple to recognize a large number of 

systems where quantum criticality is at play, but this was not so obvious 30 years 

ago. In fact, as mentioned previously, the experimental scarcity of quantum critical 

systems was one of the early motivations behind the high levels of interest in heavy 

fermion materials: their rich phase diagrams make them a veritable cornucopia of 

phase transitions. 

This chapter will review some notions about classical and quantum phase transi

tions, then discuss several specific issues particular to heavy fermion criticality. We 

will then finally be ready to make contact with the new contributions this thesis of

fers, namely the development of models appropriate to the small Fermi surface phases 

of heavy fermion magnets. 
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2.2 Classical Phase Transitions 

Although this thesis is concerned with electrons in solid state environments, the 

concept of a phase is obviously much more general. Solids, liquids, and gases comprise 

the entirety of all matter familiar to the vast majority of non-scientists. These form 

the intuitive basis upon which our modern understanding of more exotic electronic 

phases is founded. We even name them as such: Fermi gas, spin liquid, Wigner 

crystal, etc. Quantum mechanics happens to feature conspicuously in each of these 

examples, as it will in most problems in the field of strongly correlated electrons. 

However, a large body of knowledge has grown over the years on the topic of classical 

phase transitions, or classical critical phenomena. The elements of critical phenomena 

we wish to mention are the order parameter, Landau theory, the correlation length, 

and universality. 

The order parameter is something we can define that takes a non-zero value in the 

ordered phase, and a value of zero in the non-ordered (or disordered) phase. Usually, 

it is the average value of a quantity that can be defined locally. For example, in the 

Ising model, when the average value of the spin, (Si) = m, takes a non-zero value 

we label it with the letter m and call it the magnetization. When m = 0 we say the 

system is disordered (paramagnetic), whereas when m ^ 0 the system is ordered. For 

a more mundane material like water, which exhibits solid, liquid, and gaseous phases, 

the order parameter is related to the density. 

The most influential phenomenological theory that encodes this idea of an order 

parameter is due to Landau and coworkers [35]. At the crudest level, Landau theory 

is simply a quartic polynomial: 

L[m] = am2 + bmA (2.1) 



19 

where m is the order parameter, b > 0, and a controls the phase transition. If a < 0 

the system is ordered, if a > 0 it is not. A slightly more sophisticated view would call 

this "04-theory" and allow the order parameter to become a function of space. The 

action is given by 

S = /"rf3a;[(V0(f))2 + r02(f) + ^ 4 ( f ) ] (2.2) 

Once again, the sign of r controls the phase transition, so it is usually denned by 

r = rQ(T — Tc) where r0 is some constant and Tc is the transition temperature. When 

u = 0, the theory is called Gaussian because the partition function takes the form of 

a Gaussian integral: Z ~ JV4>e~^ . 

The critical point is captured at T = Tc where it can be shown that the correlation 

length of this statistical field theory diverges as T —* Tc. In fact, this defines the 

critical exponent v via: 

i ^ {T^Tcy
v (2.3) 

The divergence of this length scale is the driving force behind universality. At the 

heart of universality is nothing but dimensional analysis. Near the critical point, 

the biggest scale in the problem is always the correlation length £, which dwarfs 

every other scale in the problem thus making many details irrelevant. Quite a lot of 

information can therefore be had at criticality simply by dimensional analysis with £ 

as the only length scale. 

2.3 Quantum Phase Transitions 

In quantum statistical mechanics a correspondence can be drawn between a quantum 

problem in d dimension and a classical problem in d+ 1. This is not always the case, 
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but often works because the path integral formalism of statistical mechanics formally 

treats temperature effects by integrating over an additional dimension. One way to 

think about this is by allowing the Landau functional (action) to become dependent 

on an imaginary time dimension: 

S = f d3x f dr [(V0(f, r))2 + r(f)2(x, r) + u04(£, r)] (2.4) 

where (3 = 1/T. This is seemingly innocuous, but only because we are doing phe

nomenology. The main conceptual difference is that the quadratic coefficient can now 

be understood to represent a non-thermal tuning parameter: r = a(8 — Sc), where 

8 can represent pressure, doping, magnetic field, etc. Another conceptual difference 

is that the fluctuations that cause the phase transition are due to quantum zero-

point motion rather than classical thermal vibrations. That is why the theory is 

fundamentally related to quantum mechanics. 

In this thesis we are interested in metals, so we need a theory for phase transitions 

of metals. One of the early models of quantum criticality [34] was in fact concerned 

with metallic antiferromagnets, sometimes interchangeably referred to as spin-density 

wave antiferromagnets [36]. The idea is to begin with an electronic model, decou

ple the four-fermion interaction using an auxiliary Hubbard-Stratonovich field, then 

completely integrate out the fermions to arrive at an effective field theory involving 

only the bosonic auxiliary fields. This methodology will be utilized in chapter 3, but 

here we merely want to note that this new theory turns out to take the form of a 

quantum 04 theory as described above. Nowadays, this is often called Hertz-Millis-

Moriya theory [34, 37, 38] and has served for many years as the prevailing paradigm 

for the magnetic quantum phase transition of metals. This theory turns out to fail 

under certain circumstances, which is the narrative we turn to next. 
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2.4 QCPs in Heavy Fermions 

Although heavy fermion materials exhibit a diverse set of phases, we will primarily 

be focused on magnetism. Whenever the phrase Quantum Critical Point is used it 

should always be understood, at least within this thesis, to be a magnetic QCP. In 

most cases, the magnetic QCP in question is metallic on both sides of the transition, 

so for many years it was thought that the Hertz-Millis-Moriya theory of the SDW 

QCP was sufficient to describe the transition. 

However, that picture began to be challenged in the late 1990's when neutron 

scattering studies of CeCu6_xAua; revealed [39, 40] u/T scaling in the imaginary part 

of the dynamical susceptibility: 

X>,T) = T-ag(u/T) (2.5) 

with g(y) = csin[o;arctan(j/)]/(y2 + l ) a / 2 and a « 0.74. Though a seemingly ob

scure result, what it means is that the QCP must be non-Gaussian. This important 

observation rules out the SDW theory of the QCP because, for d > 2, the Hertz-

Millis-Moriya theory sits above its upper critical dimension, df = 4 — z = 2. Here, all 

the couplings beyond quadratic order are irrelevant in the RG sense (to be discussed 

later) and the theory is controlled by a Gaussian fixed point. Such a Gaussian theory 

will have a susceptibility (propagator) with the following quantum critical form [41]: 

* ( 9 > ) - /(,") + «(f,D-»u- (2'6) 

where a is a constant, f(q) oc (q — Q)2 with Q the ordering wavevector, and the 

function K,(q, T) has the property lim n(q, T) — 0. Clearly, this form does not exhibit 

u/T scaling as indicated by the experimental fit of the neutron data in equation (2.5). 

Therefore, the Hertz-Millis-Moriya theory of a simple SDW cannot explain the QCP 
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observed in CeC^-yA^ . One example of a theory that fits the data better is local 

quantum criticality [17, 42]. The word "local" applies because the theory predicts 

the fractional frequency (and temperature) exponent in the susceptibility, a above, 

to be independent of wavevector. 

The theory of local criticality is one example of the more general idea that at cer

tain QCP's in heavy fermions the Kondo effect may be a crucial part of the quantum 

critical fluctuation spectrum. Intuitively, this is clear since the Kondo effect occurs 

locally at every lattice site where an /-orbital exists. This is the main physical differ

ence between the SDW picture and what we will now label as the Kondo breakdown 

scenario. If we begin in the paramagnetic heavy Fermi liquid, there are two doorways 

to magnetism. We can either achieve magnetic order through the conventional SDW 

QCP gateway, or we might pass through a totally different kind of QCP where the 

Kondo effect breaks down simultaneously with the development of magnetic order. 

For this reason, we call this somewhat unconventional route a Kondo breakdown 

QCP. See figures 2.1 and 2.2. 

Besides the form of the dynamical susceptibility, these two different types of QCPs 

can be experimentally distinguished by other means. One of the early tests was the 

temperature dependence of the Grueneisen ratio at criticality [44, 45], defined as the 

thermal expansion coefficient divided by the specific heat: T == a/Cp. For the SDW 

scenario we expect F ~ T _ 1 , while for the LQCP we expect V ~ T~om. For CeNi2Ge2 

the exponent was found to be very close to —1, while for YbRh2(Sio.95Ge0.o5)2 the ex

ponent was about —0.7. Notably, the Bose-Fermi Kondo Model within an e-expansion 

predicts —0.62 at first order and —0.66 at second order [45]. This suggest that 

YbRh2Si2 may provide an example of Kondo breakdown criticality. 

More recent work indicates that other experimentally measurable quantities (mag-
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Conventional 
"SDW" 

TA 

r 

AFL2 / A F L K / * P M L 

large FS 
(c+f)-electrons 

T* 

Unconventional 
"Kondo Breakdown" 

"V ' " ' FL 
X / ••• 

A F s \ ^ P M L 

small FS large FS 
c-electrons (c+f)-electrons 

Figure 2.1 : Two different types of quantum critical point scenarios for heavy fermion 
metals. In the Kondo breakdown scenario, a direct transition from the paramagnetic 
large Fermi surface (PM^) to the antiferromagnetic small Fermi surface (AFs) phase is 
possible. In the SDW scenario, Kondo screening persists on both sides of the critical 
point, so both phases are labelled large: PMx, —* AF^i. As the order parameter 
grows, the system can undergo a Lifshitz electronic topological transition, thus reach 
another antiferromagnetic phase which we label AF^2-
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G/W 

c 

CO 

LQCRETT > 

Hertz-Moriya-Millis (SDW) 
> 

Kondo Coupling 
jK/w 

Figure 2.2 : Global phase diagram at T = 0. The horizontal axis is the strength of the 
Kondo coupling. The vertical axis represents some control of frustration in the local 
moment component, labelled by G. For example, if we have both nearest-neighbor 
(Inn) and next-nearest-neighbor (/„„„) RKKY coupling, the frustration parameter 
could be measured by G = Innn/Inn- All units are normalized by the conduction 
electron bandwidth, W. Notice the presence of several different types of QCPs. ETT 
stands for the Lifshitz electronic topological transition [43], while LQCP and SDW 
are discussed in the text. 
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netostriction, magnetization, Hall resistivity) all demonstrate that multiple energy 

scales converge to zero precisely at the magnetic QCP [10]. The reader is referred 

to [46] for further details. We describe next the Hall coefficient experiment because 

it is more closely connected with the main topic of this thesis. 

2.5 Fermi Surface and Criticality 

Looking at figure 2.2, we see that the existence of two different QCPs implies that two 

different types of antiferromagnetic phases must exist. The distinction between the 

two, as also seen in figure 2.1, is that Kondo screening can be found on both sides of 

the SDW QCP, whereas no Kondo screening is expected in the magnetic phase prox

imate to the Kondo breakdown QCP. As discussed in the previous chapter, if there is 

no Kondo screening, we expect the Fermi surface to be small in the sense that local 

moment /-orbitals do not constitute itinerant states. Such an assumption makes a big 

difference in bandstructure calculations and provides a sharp, experimentally testable 

distinction between the two types of phases. Thus, the size of the Fermi surface is 

crucial and, as described in Table 1.2, we denote the Kondo screened antiferromagnet 

by AFL because it will have a large Fermi surface, and the non-Kondo screened anti

ferromagnet by AFs because the conduction electrons will be completely decoupled 

from the local moments, thus comprising a small Fermi surface. Experimentally, how 

do we tell the difference between AF$ and AFL? 

There are three common ways to measure the Fermi surface: Angle Resolved 

Photoemission Spectroscopy (ARPES), the de Haas van Alphen (dHvA) effect, and 

magnetotransport measurements such as the Hall coefficient. The latter has been 

carefully scrutinized for the material YbRh2Si2, confirming the Kondo breakdown 

scenario [47]. The way this is determined is via the way the Hall coefficient changes 



26 

across the transition. In the conventional SDW scenario, magnetic ordering is ex

pected to slowly gap out portions of Fermi surface close to hot spots defined by the 

ordering wavevector Q, with the gapped-out regions slowly increasing in expanse as 

the size of the magnetic order parameter increases. In contrast, for the Kondo break

down QCP, a dramatic reconstruction of the Fermi surface is expected as /-orbitals 

are immediately ejected from the Fermi sea. The difference in the evolution of the 

Hall coefficient is schematically depicted in figure 2.3. 

SDW Criticality Kondo Breakdown Criticality 
R H A R. H A 

• * P 

Figure 2.3 : Evolution of the Hall coefficient for the two different types of QCP. The 
left figure shows a smooth evolution of the Hall coefficient for the SDW scenario, 
while the right figure shows a jump in the Hall coefficient for the Kondo breakdown 
QCP [48]. 

While the dichotomy of QCPs and, correspondingly, ordered phases, has been well 

established for antiferromagnetic heavy fermions, in principle the same classification 

could exist for ferromagnetic heavy fermions. Can both large (FL) and small (Fs) 

ferromagnetic phases exist? Are there different types of ferromagnetic QCPs? Very 

little theoretical work has hitherto been devoted to the ferromagnetic problem, but 

we will devote the latter half of this thesis to this issue. First, however, we begin our 

attack on the antiferromagnetic problem. 
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Chapter 3 

Antiferromagnetism in the Kondo Lattice 

Chapter 1 provided an introduction to heavy fermion materials and explained 

how they fit into the larger framework of the study of strongly correlated systems. 

Chapter 2 narrowed the scope by reviewing the on-going debate in the community 

regarding the types of quantum critical points in these materials, while at the same 

time providing a brief reminder of the salient features of phase transition theory 

relevant to our discussion. We now begin to present new contributions to the field. 

The goal of this chapter is to derive a representation of the Kondo Lattice Hamiltonian 

in terms of a Quantum Nonlinear Sigma Model (QNLcrM). The next chapter will 

develop the methodological tools necessary to analyze this model, and the chapter 

after that will apply those techniques to the model developed here. There, we will 

finally be able to answer the question raised in the previous two chapters concerning 

the stability of the antiferromagnetic phase with a small Fermi surface. 

The results of the next three chapters have already appeared in two brief publi

cations [49, 50], but the detailed explanations are presented here for the first time. 

Some of the exposition and figures, however, will have significant overlap with these 

publications. 

3.1 Summary of the Mapping 

Since an explicit demonstration of the mapping will take a fair amount of space, in 

this section we summarize the essential points of the story. Subsequent subsections 

will provide the details. 



28 

We consider the Kondo lattice model: 

H = Hf + Hc + HK (3.1) 

Here, Hc — Ylko ekln: ^ka describes a band of free conduction c—electrons, with a 

bandwidth W. For now, we will consider the electron concentration, x per site, to be 

such that the Fermi surface of 7ic alone does not touch the antiferromagnetic zone 

boundary. Later, we will discuss the modifications necessary for the more general case. 

HK = J2i JKSI • sCti specifies the Kondo interaction of strength JK', here the conduc

tion electron spin sCfi = | X w Woi^ao'tyo'j.-, where f is the vector of Pauli matrices. 

Finally, Hf = \ J ^ • UjSi • Sj is the magnetic Hamiltonian for the spin-| /—moments, 

Si, for which there is 1 per site. The strength of the exchange interactions, 7^, is 

characterized by, say, the nearest neighbor value, I. 

We focus on the parameter region with JK <C / <C W. Here, it is appropriate to 

expand around the limit JK = 0, where the local-moment and conduction-electron 

components are decoupled. We will consider, for simplicity, square or cubic lattices, 

although our results will be generally valid provided the ground state is a collinear 

antiferromagnet. Hf can be mapped to a quantum non-linear sigma model (QNLcrM) 

by standard means [51, 52]. Details of this mapping are given in subsequent sections. 
—* 

The low-lying excitations are concentrated in momentum space near q — Q (the 

staggered magnetization) and near q = 0 (the total magnetization being conserved): 

2Si -> rjgn(x, T)Jl- (2adL{x, r)Y + 2adL(x, r) (3.2) 

where x labels the position, r\$ = ±1 on even and odd sites, a is the lattice constant, 

and we have used S = 1/2. The linear coupling ft • sc cannot connect two points on 

the Fermi surface and is hence unimportant for low energy physics (such a kinematic 

constraint has appeared in other contexts, e.g. Ref. [53]); see Fig. 3.1b. The Kondo 
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coupling is then replaced by an effective one, S • sc —> adL • sc, corresponding to 

forward scattering for the conduction electrons; see Fig. 3.1a. 

(«) (* ) 

Figure 3.1 : When the Fermi surface (FS) of the conduction-electron component does 
not touch the antiferromagnetic zone boundary, only the uniform component (q fa 0) 
of the local moments can interact with states near the FS, as shown in (a). The linear 
coupling involving the staggered component, n- sc, is not kinematically favorable, as 
shown in (b). 

The mapping to the QNLerM can now be implemented by integrating out the L 

field. The effective action is 

S = S, QNLCTM + ^Be r rv + $K + <S< 'Berry (3.3) 

£QNL<TM 

s 

ddxdr (Vn(x,r)Y + 
2 , / dn(x, T) 

c dr 2gJ 

'K = A / ddxdr [sc(x, r) • (p{x, r)] 

Sc = JddKdeY/^UK,ie)(i€-^K)MK,is) + X2f^ 

where £#• = vp(K — KF). The Berry phase term for the n field, .Sserry, is not im

portant inside the Neel phase, which is very different from the ferromagnetic case to 

be discussed in a later chapter. What is meant by "the Berry phase" requires some 

clarification. Certainly some aspects of the geometric term do indeed contribute to 

the physics, but this will be spelled-out in the next section. We have introduced a 

vector boson field (p which is shorthand for n x |z- The n field satisfies the constraint 
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n2 = l, which is solved by n = (if,cr), where if labels the Goldstone magnons and 

a = \/l — if2 is the massive field. We will consider the case of a spherical Fermi 

surface; since only forward scattering is important, our results will apply for more 

complicated Fermi-surface geometries. The parameters for the QNLcrM will be con

sidered as phenomenological [52], though they can be explicitly written in terms of 

the microscopic parameters. The effective Kondo coupling is A = iJK/(4dIad), which 

will be explicitly demonstrated below. 

This summarizes the structure and setup of the effective field theory for the an-

tiferromagnetic phase of the Kondo Lattice Model. We now describe the details of 

how this is done. 

r, = 

v / ^ A j / 

4 
(a) 

r I = ~^r^W[ + 

(b) 

Figure 3.2 : The Feynman rules associate wavy lines with magnons (n fields), and 
solid straight lines with itinerant electrons (ip fields). A slash through a boson line 
indicates a time derivative (i.e. 7r). (a) represents the four diagrams in Tz. (b) 
describes the infinite number of spin-flip vertices, r_i_, involving an odd number of 
magnons. 
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3.2 Coherent State Representation of the Partition Function 

In this and the next sections, we set up our notations by considering in some detail 

the standard case of the Heisenberg model. This will help us perform the analgous 

mapping for the Kondo lattice model, which is essentially the same but includes con^ 

duction electron coupling. We will focus on a square lattice with nearest-neighbor 

(nn) and next-nearest-neighbor (nnn) spin-exchange interactions, I\ and I2 respec

tively. 

hi 
nn nnn 

= h 2_^ s* • Sj + ii 2_^ Sj • Sj 
(ij) « « » 

= h 2_^ Si • Sz+a + h 2_j S* "Sx+/? (3.4) 
x,a x,/3 

where x runs over all lattice sites, a runs over the nn sites for each lattice site x, and 

(5 runs over nnn sites for each site x. After the mapping is completed, it will be clear 

that the coupling constant g of the quantum non-linear sigma model (QNLCTM) can 

be tuned by changing h and It-

The coherent state spin path integral representation of the partition function for 

quantum spin systems is now a standard formalism that can be found in textbooks 

(e.g. [54, 55]). We will briefly sketch the main idea. The partition function can be 

written 

/

M-X 

VA(T) TT (A(rfe+1)|l - €# |A(T*)> (3.5) 

where the many-particle basis is a direct product of single-site spin coherent states: 

|A(T)) = nj^x('?"))- Here M is the number of discrete time slices in the Trotter de

composition, and e = @/M. Recall that at each lattice site, (f2|S|f2) = SCI, where the 
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unit spin vector is represented by Q = , * S « S/S1 = (cos 4> sin #, sin cf> sin 0, cos 0). 

Using this (overcomplete) basis, the matrix elements of the Heisenberg Hamiltonian 

can thus be written, to leading order in e, 

(A(rk+1)\H\A(rk)) =, S2(A(rk+1)\A(rk)) 

x I h ^flx(rk) • nx+a(rk) + h^nx(n) • nx+p(rk) 1 
V x,a x,(3 / 

(3-6) 

This allows us to write the Hamiltonian in terms of classical variables Qx. To linear 

order in e, 

(A(rfe+1)|(l - eH)\A(rk)) = (A(rk+1)\A(rk))e-^^ (3.7) 

where 

Hcl(r) = S2h ^2 n*(r) • nx+a(r) + S2I2 £ fi,(r) • fix+/3(r) (3.8) 
x,a x,P 

The penalty for the classical representation is the additional overlap (A(Tk+i)\A(rk)) 

which is the Berry phase accumulated from the adiabatic evolution from the time-

slice rk to Tfc+i. Including the Berry phase accounts for quantum corrections, and is 

crucial to obtain the proper mapping to the QNLcrM. We can write it more clearly 

as follows: 

(A(rk+1)\A(rk)) = J[(^x(rk+1)\nxl(rk)) (3.9) 
x,x' 

= Y[(nx(Tk+1)\nx(Tk)) (3.io) 
X 

— T T e-iS[l-COS0x(Tk)][<l>x(Tk+T.)-<f>x(Tk)] ( 3 11) 

X 

In the partition function we need an infinite product of such overlaps, which leads to 



33 

a continuum representation in imaginary time 

A f - l 

lim TT<A(7fc+1)|A(7*)) = l i m T]e-^1-0050*^™*^^-**^ 
M->oo 

fc=l 

M—>oo 

*= e - i S E x / o ' « * r [ l - o o 6 » s ( r ) ] ^ 

= e - i S E x « ( 0 , ) (3.12) 

where ui(£lx) = J0 dr[l — COS9X(T)]-^- is the Berry phase for a single spin at site 

x. We have represented it with a set of parameters 6X and (f>x for familiarity, but 

this need not be specified. The important thing to note is that the total Berry phase 

contribution to the action in the path integral is given by the sum of the Berry phases 

of all the lattice site spins: SB = iSY^x^i^x)- A convenient representation for the 

Berry phase of a single spin is given by 

u(Q) = 7 dr du n ( r , u ) -
dn(r,u) dfl(T,u) 

(3.13) 
du dr 

where by convention fl(r, u = 1) = f2(r) and Q(r, u = 0) = (0,0,1) = |0) = \S, m — 

S) (see [9] p. 244). [In technical jargon, Q(T, U) is a homotopy of fi(r).] 

Now, in a similar way to what was done above for the Berry phase, we can take 

the continuum limit to express the Hamiltonian term, Ha, as an integration over 

imaginary time. The partition function then becomes 

= fvA(T)e~s 

= SB + / drHd(r) 
Jo 

SB = iS2_] / dr du 
„ Jo Jo 

Z 

S = SB + 

dSlx(T,u) dnx(r,u) 
llx{T,U) • — X 

du dr 

(3.14) 

(3.15) 

(3.16) 

Hcl(r) = - S ^ / i X I ^ W - O x + a W + ^ / a ^ n ^ r J - n ^ r ) (3.17) 
x,0 x,a 
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3.3 Q N L C T M Mapping for the Heisenberg Model 

We assume an antiferromagnetic order in which case we can represent each spin as 

the sum of a staggered component nx representing the local Neel field, and uniform 

(q « 0) fluctuations Lx, 

fix(r) = rixnx(T)Jl-(^hx(r)^ +JLX(T) (3.18) 

The factor rjx £ ±1 is either positive or negative, depending on which sublattice x 

falls in, while the factor ad/S in front of the uniform fluctuation field L ensures that 

integrating around any small volume will yield the total magnetization contained in 

that volume. Here a is the lattice constant. Recall that the spin variable is constrained 

by the condition Qx • Clx = 1 at each site. With the above choice, this constraint 

now becomes nx • nx = 1 and nx • Lx = 0. Note that the total number of degrees of 

freedom in the system remains the same because in the n, L representation we must 

restrict ourselves to the magnetic Brillouin zone; there are twice as many degrees of 

freedom on half as many sites. 

We now wish to write the action in terms of n and L rather than O. We will 

consider the Berry phase first, then the Hd term. 

3.3.1 Berry phase 

Let us first consider what happens when we substitute this expression for the spin 

into the Berry phase part of the action. We need the expressions for the r and u 

derivatives: 

(Sf) n nd nd 

2pL = n ^ r j ^ - 1 " ( L - L > + ^ L U (3.19) 

^ ^ n r = i r yn T -^(L.L T )n + ^LT (3.20) 
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where we temporarily dropped the site index, x, and instead use subscripts to denote 

differentiation. We have also defined 7 = A /1 — (^-L J . Plugging this into equation 

(3.16): 

>B iS^2 dT du\[TP0- + ^ 7 L ) • (7?272n« x n r - r/2^-(L • Lu)nu x n 

+777—n„ x L7 

, 0 ' r)2a2d 77 a 2d 
-?72—(L • Lu)n x 1^ + -^2"(L • hu)(h • L r)n x n - - ^ - ( L • L J n x LT 

+777—Lu x nT - - — ( L • L r)Lu x n + — Lu x L rJ (3.21) 

To simplify this equation requires knowing that nu, nT and L are all perpendicular 

to n. This means their triple product must vanish: L • nu x n r = 0. We also neglect 

terms higher than linear order in L [terms quadratic in L are small compared to those 

kept in Eq. (3.32)], leading to 

„d 

>B 
is^[dTt du r/373n • n u x n T + ?j 7 - n • (nu x LT + Lu x n r ) 

(3.22) 

Note also that r)x = 1 and rjx =
 rqx. We then obtain 

>B du 

du 

r/n • nu x n r + —n • (n,, x LT + Lu x n,.) 

dnx dnx ad ( dnx 8LX 

dLx dnx 

<7U OT 

= *? / * ! dw 

+ 

X 

af_d_ 
Sdu 

r)xnx-
dnx dnx ad d 

x + ^^ n: du Or S dr 

dnx 

du 
x L 5 

n r • LiT x 
dnx 

3T 
(3.23) 
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In the second line we have restored the full notation, while the third line can be 

written with total derivatives since the terms proportional to J ^ cancel thanks to 

the triple product identity ( - b x c = —b • ( x c. The second term in the third line 

vanishes after integrating the total r derivative and using the periodicity of the fields. 

The third term in the third line can be integrated over u, and the value at u = 0 is 

zero due to the orthogonality at the north pole. We finally find, 

SB = i S ^ l d r ^ d u ^ . ^ x S ^ j - i ^ ^ dr (LX • nx x ^ 

(3.24) 

The first term is precisely the Berry phase for the Neel component n, while the second 

term is something additional that must be added to the total action. Although both 

terms came from the expression for the Berry phase of ft, it is only the first term 

that is often referred to as the Berry phase for the antiferromagnet. 
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3.3.2 Hamiltonian 

Next we compute the contribution to the action from the Hamiltonian HCI(T) ex

pressed in terms of n and L fields. Plugging (3.18) into (3.17), 

Hd(r) = S2h^T 
x,a L 

Vxnx(r)\ll- ( -gLx(r) 1 + -jhx(r) 
2 ad 

ad \ 2 ad 

rjx+anx+a(T)\ll- ( — Lx+a(r) J + —Lx+a(r) 

x,0 

aa 
r)xXLx(T)\\l- ( -^-Lx(r)J + £-LX(T) 

2 d 

ar 

ad \ 2 ad 

r]x+pnx+0{T)\\l- [ —LX+(3(T)J + —LX+/3(T) 

nn ( 1 / d \ 2 \ d 

S% £ V*nx(r) 1 - - (JLX(T) J + ^ L , ( r ) 

/ 1 fad \ 2 \ ad 
Vx+anx+a(T) I 1 - - ( —Lx+Q(r) J 1 + —Lx+a(r) 

x,/3 

%nx(r) ( 1 - ^ ( ^ ^ ( r ) J j + ^L x ( r ) 

^+/3nx+/3(r) j 1 - - (—LX+P(T)J j + —~LX+I3(T) 

(3.25) 

Since n is a unit vector, we have the identity nx • ny = 1 — |(nx — n^) • (n^ — iij,). We 

also know that at every site nx • ~LX = 0. Using these two identities and dropping the 
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r label for brevity, the Hamiltonian can be expressed as follows: 

Hd = S2hJ2{r)* Vx+c 

x,a 

1 - 2 K ~ %) • (n* - ny) 25 2 ' 
1 ~~ W^(^x + ^x+a) 

ad ad 

,2d 
*~OC2 LL* + L x + a ~ ( L x ~ L*+a)2] 252 

+S2I2 ^ \ ^xVx+P 
x,/3 

1 --(nx - riy) • {nx - riy) 
,2d 

1 ~~ W^fax + ^x+p) 2S2 

•^rjxiix • (Lx+p - L x ) + — ^ - ^ n ^ • (L x - L x + / 3 ) 

,2d 
a 
252 ^002 LL* + Lx+/3 _ (L* _ Lx+/3) ] (3.26) 

where we used 2LX • L I + a = Lx + ~Lx+a — (L^ — Lx+a)
2 and similarly for f3. We 

have written the expression in this way in order to take advantage of a Taylor series 

between different lattice sites: 

n. 'x+a n" 

nx+(3 — nx 

a{a-V)nb
x + ---

aV20-V)nb
x + 

(3.27) 

(3.28) 

where b runs over the components of the vector field. Note that nearest neighbor (nn) 

sites x and x + a are separated by a distance a, while next nearest neighbor (nnn) 

sites x and x + (3 are separated by a distance a\/2. Expressing all lattice differences 
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in this way leads to: 

Hd = S2h ^ I VxVx 
x,a K. 

2d 

+ ^ 2 [(1 - V*rh*a)(Ll + L ' + J - a2[(d • V)Lb
x]

2] 

Ix+a l - y [ ( 5 - V ) < ] 2 

,<2+l 

+ ^ T fanb
xVLb

x - Vx+an
b
x+aVLb

x+a] 

+S2I2 ^ \ VxVx+0 
x3 

l - y [ ( ^ V K ] 2 

Jld 

~ [(1 - VxVx+0)(L
2

x + L2
x+p) - 2a2[0. V)Lb

x]
2] 

ad+1V2 
S2 [r)xn

b
xVLb

x-Vx+0n
b
x+0VLb

x+0\ (3.29) 

After summing over lattices sites and neighbors, each term proportional to ad+1 sums 

to zero, so, 

lx+a l _ _ [ ( 5 . V ) n ; 6i2 
x\ Hd = S2h ^2 < r]xrjx 

x,a V. 

+ ^ [(1 - VxVx+a)(L
2
x + L2

x+a) - a2[(a • V)Lb
xf] 

6 l 2 +S2hY,\rixVx+p l-a2[0-V)nb
x] 

xfi 

,2d 
a 
2S2 

6 l 2 
(i - Thfh*fi)Q4 + K+ti) ~ 2 a ^ • v)Lx] (3.30) 

Now, to our order of approximation, Lx+a PS 1IX. Also, since a runs over nearest-

neighbors, while P runs over next-nearest-neighbors, we have r]xr)x+a — —1 and 

VxVx+p = +1- On the square lattice, the number of nn and nnn sites is 2d, and 
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to avoid double counting we divide by 2. 

Hcl = S 2 / i r f£( - l + | W ) 2 + | 
2 

2d[ 

2 

2d 

A«'->>'+l 
2S2 

2d 

4L2 - i - (VL.) 2 

2S2 

2a2 

(VLS)5 

(3.31) 

Note that (Vnx)2 should be interpreted as £)£=i S ^ i ( ^ M ) • We also used ^ J ( a ' 

V)n>]2 = £ x [ ( £ + 1 + &K? = E , (Vn x ) 2 , and similarly for (3 and L terms. 

To be consistent with our expansion in small powers of a and 1/S we should also 

ignore gradient terms like (VL)2. The expression simplifies to 

Hcl = S 2 d W / 2 - / 1 + ^(/i-2/2)(Vna;)
2 + 2ha 

S2 

2d 

= S2dMsite{h - h) + S 2 y (h - 2/2) ^ ( V n , ) 2 + 2dha2d £ L2 (3.32) 
X X 

Finally, we take the continuum limit with the correspondence ^ x —• aTd f ddx, 

HC1(T) = consh + S2a2-d(h/2 - J2) / ddx (Vn(i , r))2 + 2rf/iad / rfdxL2(f, r ) 

(3.33) 

We have introduced the constant factor consti = NSitedS2{I2 — h) which is unimpor

tant for our purposes. 
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3.3.3 Completing the square and the QNLaM mapping 

At this point the total action is given by 

Z = fvnVL5(n2-l)5(n-L)e-s[n'L] (3.34) 

<S[n, L] = consh + S'B[n] + S2a2~d{h/2 - I2) I dr f ddx (Vn(f, r)f 

+2dhad [ dr f ddxL2(x,r) 

-if dr Iddx (L(X,T) • n(x,r) x ^ y ^ ) (3.35) 

[̂n] ^ iS^Vxjyrj\u(nx.^x^j (3.36) 

where the Berry phase S'B[n] now only depends on the n field. The delta functionals 

enforce the local constraints. To deal with them, we use the integral representation 

of the delta functional and introduce a scalar Lagrange multiplier field a(x, r ) : 

, ( n . L ) = / j * , , - * * / * . * ™ * * ™ (3.37) 

It is now clear that the functional integral is Gaussian with respect to L, so we 

may "complete the square" and integrate it out completely. If we use the identity 

/ P L e / - ^ 2 + b L = 7rM/2(detC)"1/2eb2/4C, the correspondence is C = 2dhad and b = 

in x h - i a n . We also need the quadruple vector product identity (n x h)2 = 

ri2n2 — (h • n)2, and the relations h • n = 0 and n2 = 1 and n • n x h = 0. This leads 
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b2 
t 0 4C = ~8d7^(h + a )' a n d h e i l C e 

Z = f VnVa 6(n2 - l)e-s[n^ (3.38) 

i 7rM fP r 
S[n,a] = j3canst1--log^^ + S2a2-d(I1/2-I2) j dr I ddx(Vn(x,r))2 

8dha 
l—ifdr ( ddx 
had Jo J 

fdn(x,r) 

2gc 

where we have defined 

V dr 

const2 + S'B[n] + — / dr / dc 

2g Jo J 

1 ( dr fddxa2(x,r) 

+ a (X,T) + S'B[n] 

x (v„(,»f + I(*fll 

(3.39) 

c = 2aSIly/dJl1 ^ 

2ad-l4d I h 

h - 2/2 

_ 1 . 7T 
const2 = p consti — - log 

M 

2 to 2dhad 

(3.40) 

(3.41) 

(3.42) 

Recall that M is the number of time slices and may be considered to be of order NSite-

All that remains is to perform the gaussian integral over a: fVa e~^J a = 

y/2gcKM = e(V2)iog(2SOT
M) Q u r final a n s w e r becomes: 

,-S[n] Z = fvn5(n2 -1)< 

5[n] = canst3 + S'B[n] + Y dr dc 
x (Vn(l'T)) + 7A^r~ 

(3.43) 

(3.44) 

where const3 = canst2 - ±log(2gcKM) = pNsiteS
2d{I2 - h) - log(2?rM). These 

results for the constants c and g agree with [56] who considered first, second and 

third neighbor couplings. Clearly, by adjusting Ii and I2 we can tune g. This model 
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can also be expressed in terms of the spin-wave stiffness and transverse magnetic 

susceptibility. They are given by 

Ps = - = S2a2-d(h-2I2) (3.45) 

i* = h=*k* (3-46) 
Notice that xx is independent of /2, which means that nnn interactions do not renor-

malize the transverse magnetic susceptibility. 

3.4 QNLaM Mapping for the Kondo Lattice Model 

We have now shown how to map the quantum Heisenberg AF to the QNLCTM. Next, 

we want to incorporate the Kondo interaction which couples the local moment spin, 

S, to the conduction election spin, sc. This adds the following term: 

JKS Y^ tox(r) • SCJX{T) = JKSa~d f ddx dr sc(x, r) • fi(f, r) 

= JKScCd J ddxdr r}x(n(x,T) -SC(X,T)) 

X\l1~ \sL(*>r>> 

ad 

+^- L (^ , T ) • sc(x, T) 

JK I ddx dr L(x, r) • sc(x, r) (3.47) 

The last line follows due to n • sc « 0. The latter is because we have, as discussed 

earlier, chosen to work with a Fermi surface that does not intersect the magnetic 

zone boundary (see Fig. 3.1); what remains of the Kondo interaction is the (nearly) 

forward scattering channel for the conduction electrons. The assumption we make is 

not necessarily that the density of conduction electrons is infmitesimally small, but 
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only that it does not intersect the AFBZ boundary. Specifically, we requires Q > 2KF. 

In section 5.7 (Appendix 5C) we will discuss the modifications to the theory when 

the Fermi surface does indeed intersect the magnetic zone boundary [50], i.e. when 

Q < 2KF. 

Let us return to the action for the quantum AF before completing the square 

(equation 3.35), and add to that the above Kondo coupling. The total action for the 

Kondo Lattice Model, SKLM, now has something extra coupled to the L field: 

Z = I VnVLVaV^Vip 5(n2 - 1) 

SKLM[n, L, a, sc] = consh + S2a2~d(h/2 - J2) I dr I ddx (Vn(f, r))2 

+2dhad J dr I ddxL2(x,r) 

- dr ddxL(x, r) • j in(x, r) x — ' - JKsc(x, r) 

-ia(x, r)n(x, T) ] (3.49) 

where consti and S'B[n] are as defined previously, and Sclip^ip] is the conduction 

electron component of the action. Just like before, the functional integral is Gaussian 

with respect to the L field. With the identity / VLef -CL2+b-L = x /7 rM/d e t^ eb2 /4< ) 

the correspondence is now £ = 2dl\ad and b = in x h — JKSC — ian. The important 

quantity is: 

b2 1 
4C 8dhad L 

+i JKCHSC • n + a n • n x h + i JK&C • n — a2n2 

— (n x ri) — i JKsc - n x h + a n - n x h - i JKSC • n x h + J^s 2 

(3.50) 
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To simplify this expression, we need the following identities 

n2 = 1 

n • n 

2 

= 0 

(n x h) 

n • n x h 

• 2 2 / • \2 -2 
n i r — (n • n) = —n 

0 

0 

s: = 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 
a,<*,P,l,S 

This leads to: 

b 2 

4C 8dAad 

2 2 

- a n 

3Ji 
h2 - 2i J* sc • n x h + — £ J ] ^ V v - ty\Mtyl 

(3.57) 

Note that the terms that came from s2 serve only to renormalize the direct quadratic 

and quartic fermion couplings, which can be incorporated into Sc[^ ,^}\. So after 

integrating out the L field we find: 

Z = fvnVaV^Vi;8(n2-l)e-SKLM[n^Sc]-s^^]-sB^ (3.58) 

S*:LM[n,a,sc] = const2 + Y dr d (Vn(x,r))2 + ' v M 

c2 \ dr 

+X / rf^xdr ( sc(x, r ) • n(af, r) x 

1 ^ 

dn(x, T) 

8T 

2gc 
f dr fddxa2(x,r) (3.59) 

The constants g, c, and const^ are defined exactly as before, and the new Kondo 

coupling constant is: 

A = 
iJ\ K 

Adhad (3.60) 
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Finally, we integrate out the a field which only contributes the same constant as 

before. The final result is: 

SQNLO-MM = constz + Y dr ^x 

61) 

1 (dn(x,r) 

c2 V dr 

(Vn(x,r)Y 

(3.62) 

SK[n, sc] = A J ddxdr (sc(x, r) • n(x, r) x dn^TA (3.63) 

5c[^
t,^] = fddKdeJ2^HK,ie)(is-^K)MK,ie) + ufi;4 (3.64) 

Note that terms from s2 have been absorbed in u and £#. This completes the mapping 

from the microscopic Kondo Lattice Hamiltonian to the effective field theory, as 

claimed earlier. 

Now that we have demonstrated this mapping in detail, we are confronted with 

doing the renormalization group analysis. The next chapter is devoted to this theo

retical development. 
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Chapter 4 

Scaling and Renormalization with a Fermi Surface 

Although the theory of renormalization has profoundly affected our conceptual 

understanding of many-body systems, its calculational framework is imperfect and 

continually evolving. In the end, we are interested in how couplings flow under changes 

of scale, but a variety of distinct procedures exist, each with its own advantages and 

drawbacks. An incomplete list of the assortment of programs includes the multi

plicative RG, real space decimation, functional RG, exact RG, flow equations, and 

various flavors of e-expansion, such as the classic minimal subtraction which expands 

around d = 4, or expansions around some other parameter, such as the deviation of 

the range of the interaction from a suitable reference value [57, 58]. Each method has 

its own limits of practicality, ease of use, and range of problems to which it may be 

usefully employed. One of the most popular engines for condensed matter problems 

has been Wilson's momentum-shell approach [59, 34]. However, in the early 1990's a 

few people recognized [60, 61, 62] that the standard momentum-shell procedure must 

be modified for problems involving a Fermi surface. A campaign soon followed at

tempting to understand Fermi Liquid Theory from an RG perspective. An excellent 

and influential summary of the pure fermion RG can be found in [63]. 

Another indication that the RG for fermions required more scrutiny came from the 

study of quantum critical points in itinerant electron magnets. The usual Hertzian 

picture [34] uses an auxiliary (Hubbard-Stratonovich) field to decouple the fermion 

interaction for the purpose of completely integrating out the fermions. The resulting 

effective theory is then expressed in terms of the remaining bosonic auxiliary field, 
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to which standard bosonic RG techniques can be employed. This turned out to 

be inappropriate for both the ferromagnet [64] and the antiferromagnet [65]. The 

process of integrating out the fermions robs us of important information required for 

an accurate understanding of the critical properties of itinerant electron magnets. 

It therefore becomes necessary to devise an RG scheme capable of simultaneously 

handling both bosons and fermions with a Fermi surface. 

Of course, besides the critical itinerant magnets, a mixed fermionic-bosonic RG 

formalism would be quite useful for a huge assortment of problems. For example, 

in the context of the gauge-fermion problem several authors [66, 67, 68, 69] have 

developed their own schemes for counting dimensions in mixed theories. All have 

in common the subdivision of the Fermi surface into a large number of patches, but 

results vary and despite the intervening 15 years since the pioneering work on the 

RG for the gauge-fermion problem, little progress has been made. The importance of 

the gauge-fermion problem is historically linked to an interesting path to non-Fermi 

liquid behavior [70, 71]. More recently, effective gauge theories have become rather 

fashionable in condensed matter physics [72], thus providing new incentives for a 

resuscitation of the RG program for the gauge-fermion problem. 

We should mention in passing a growing body of work on the functional RG which 

may be amenable to mixed theories [73, 74]. Our aim here is rather more modest, 

which is to develop a scaling scheme for mixed theories with a high score in the "ease 

of use" category. This was the chief virtue of the original Wilsonian RG which could 

quickly identify the relevant and irrelevant operators with a minimum of fuss. The 

emphasis of this chapter is to carefully explain how to extend Shankar's scheme to 

include bosons while maintaining the easy-to-use spirit of the Wilsonian approach. 

In section 4.1 we introduce the main actors by writing down the action we wish 
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to subject to a scaling analysis. Briefly, in section 4.2 we remind the reader of the 

essential points of the bosonic Wilson-Hertz scaling. Section 4.3 quickly moves on to 

discuss scaling in fermionic systems, largely paraphrasing what has already been done, 

but emphasizing a slightly different perspective on the matter. The next section, 4.4, 

explains the way to properly scale in mixed theories which contains the central result 

of this chapter. The appendix to this chapter discusses some pitfalls. 

4.1 The Action 

The most general problem we are concerned with can be decomposed into bosonic, 

fermionic, and interaction terms: 

S = Sf+Sb + Sbf (4.1) 

The fermionic and bosonic pieces can be further divided into quadratic and quartic 

pieces. 

Sb = S* + Sj (4.2) 

Sf = S{ + S{ (4.3) 

Theories based upon Sb or S* alone have already been subjected to momentum-shell 

renormalization group analyses; see, for example, [34] and [63]. 

For the bosonic case, the quartic part of the action can be schematically written 

S\ = Ubfcj)4, while the quadratic part can take several different forms depending on 
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the value of z. For example, 

S£(* = l) = /' ddqdu(j)*(aq2 + bu;2)(l> (4.4) 

<S2
6(2 = 2) = J ddqdw<t>*{aq2 + buj)(j) (4.5) 

Sb
2(z = 3) = f ddqduj (j>* (aq2 + 6 - J <f> (4.6) 

£*(* = 4) = (ddqdw <j)* (aq2 + b^j 0 (4.7) 

The bosons might represent phonons, magnons, photons, or some collective mode 

of an underlying fermionic theory. At this point, we need not be specific. The 

important point is that the form of «S| establishes a precise relationship between the 

scaling dimensions of bosonic energies and momenta, namely 

[q] = [U]/z (4.8) 

If we make the choice [u] = 1, the scale invariance of £2, which is necessary to define 

a fixed point, dictates that [q] — 1/z and [0] = — |([ofd?] + 1 + 2/z). Thus we require 

knowledge of the way the measure transforms under scaling, which will be determined 

in the next section. In addition, there is a further subtlety regarding the argument 

of the field. In defining the fixed point, we fix the way the field transforms under a 

specific operation on its arugment, e.g. (j>(sq) —> s~^<j)(q). If, however, the argument 

of the field is not q, but something more complicated, we will not know how the field 

scales. More on this later. 

For fermions, the quartic part can be represented by S{ = Ufjtp4, while the 

quadratic part is written 

Si = fddKde$(ie-vFk)ip (4.9) 

The explanation of this form of S( will be given later. For now, simply note that it 
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implies the important relation 

[e] = [k] (4.10) 

which furthermore necessitates [ip] = — \(\ddK\ + 2[e]) if S^ is to be scale invariant. 

Once again, we need to know how the measure transform, and this will turn out to 

be different from the bosonic case. 

Now that we have introduced the objects of analysis, let us briefly review how the 

scaling is done for bosons, then indulge in a slightly more detailed exposition of the 

procedure for fermions. 

4.2 Boson Scaling 

The Wilsonian RG for bosons is well-known [59] so we only review those elements 

crucial to the comparisons we wish to make later with the fermionic RG. Consider 

a d-dimensional integral in momentum space with a cutoff, A, to high-energy and 

therefore large-g modes. 

/ ddq = [d*-1n?[ q^dq 

/

pA/s pA 

dd~^ / q
d~ldq + / qd~x 

JO JAIs 

dq 
A/. 

Here, dd~1Sl$ represents the measure for integration over all angular coordinates in 

<f-space, q = \q\ is the radial coordinate, and s ^ 1. We have ignored factors of 2n. 

At the tree level we simply throw away the shell integral. To regain the original form 

of the action we rescale the radial coordinate in a trivial way: q' = sq. This leads to 

jdd-l^tKs^d-l\'d-xs-xdci = s-
d fA(dd

qy 

We conclude that the scaling dimension of the measure is given by [ddq] = d[q]. Note 

that rescaling the radial variable, q, is the same as rescaling all the components of q 
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since q — \/^2a <&• For this to be consistent with q' = sq, we must have q'a = sqa for 

all components a € {x, y, z,...}. This is an important difference from the fermionic 

case to be discussed next. 

If we apply this to the quadratic part of the boson action we may now make the 

statement. 

M = - ^ ( d + * + 2) (4.11) 

where we used [q] = [ui\/z and defined [u] = 1. However, we must be careful what is 

meant by this. More specifically, we have only determined: 

<t>'(q', iu') = s-V+'+VHMftsV'q, siuj) (4.12) 

If we were to scale the argument of the field in some other way, this statement would 

no longer be true. This excludes a particular scaling choice that we will be confronted 

with later. See appendix 4A. 

4.3 Fermion Scaling: Shankar's RG 

Now we review Shankar's formulation of the fermionic RG [63]. We shall use Shankar's 

notation and label momenta measured with respect to the Brillouin zone center with 

a capital letter K = (Kx, Ky,...). In contrast to the bosonic case, low energy modes 

live near an extended surface (the Fermi Surface) rather than a single point (the 

Brillouin Zone center). For a spherical Fermi surface, a high energy cutoff can be 

implemented on ^-integrals as follows: 

KF+A 

' 'dK 
/

A /> /"Af+A 

ddK = I d^Qg / Kd~l 

J JKF-K Here, dd 1fi^ represents the measure for integration over all angular coordinates in 

K^-space, while K = \K\ is the radial coordinate. Usually, we work at fixed fermion 
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density which, by Luttinger's Theorem, dictates that we design our scaling scheme in 

such a way that the Fermi volume remains invariant. To preserve the Fermi surface* 

under rescaling we cannot simply scale the radial coordinate as we did in the bosonic 

case. To see this, observe that after mode elimination the expression we wish to 

rescale is given by 

/

A/s /• PKF+A/S 

ddK = / dd-lSlg I Kd~xdK (4.13) 
J JKF-k/s 

Clearly, no simple rescaling of K will return the integral to its original form. This 

is the principle disparity between the fermionic and bosonic RG. To make progress 
—* 

we define the lower case letter k = \K\ — Kp. Note that k = 0 corresponds to 

£^ = eg. — \x — 0 since £g = —•^JL « vp{K — KF) = vpk. Small k corresponds to 

low energy whereas small K does not. Such a change of variables greatly facilitates 

rescaling. 
r>A/s 

[d*-1^ f (Kp + kY^dk 
J J-A/s 

/
rKls / ic \ d~l 

w Kfr1 I' dd-lSlR f dk (4.14) 

J J-A/s 

We have neglected certain terms above for two reasons: they are of order A/Kp 

relative to what has been kept, and they are less relevant in the RG sense. To see 

the latter, note that the integral can be restored to its original form with the simple 

rescaling k' — sk. This determines the scaling dimension [k] = 1. However, note 

well that the variable k is not a vector, nor is it a radial coordinate since it can take 

negative values. Later, we will discuss another scheme, which we call patching, that 
*We shall not consider constant-volume Fermi surface shape changes. In principle, such a scheme 

could be devised by, for example, incorporating the real part of the self energy. 
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—* 

decomposes the momenta into components parallel (fcy) and perpendicular (k±) to 

the Fermi surface. This method will be applied to the ferromagnetic problem, which 

involves z > 1, For now, we specialize to z = 1. 

To further emphasize the dissimilarity between the fermionic and bosonic cases, 

observe that after rescaling 

/

A /• />A 

ddK » Kp1 / dd-lQR / a^dA/ 
= s"1 / ( d ^ ) ' (4.15) 

which implies [ddK] = 1. Here, the angular variables are truly untouched after rescal

ing in contrast to the bosonic case; this is necessary to maintain the Fermi surface. 

Unfortunately, the straightforward transformation k' = sk does not translate into a 

simple transformation on the components of K. Care must therefore be exercised to 

write all expressions in terms of k before the scaling procedure can begin. For ex

ample, after mode elimination and rescaling of energy and momentum, the quadratic 

part of the fermionic action is given by: 

Si oc s~3 J dk'de'${KF + s^k', s'He') Ue' - vFk') ^{KF + s'W, s~He') 

In order to make <S;f invariant to the RG transformation we must demand that the 

fermion field obeys: 

8~zl2il>{KF + s-lk! ,-8-Ht!) = ip'(KF + k',ie') (4.16) 

where we have not explicitly written the dependence of ip on angular variables since 

these do not scale. Equation (4.16) tells us two important things. First, the dimension 

of the fermion field is simply: 

M = - 3 / 2 (4.17) 
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Second, the RG transformation of the fermion field does not take the form of a 

generalized homogeneous function as was the case for the bosonic field; see equation 

(4.12). Thus, the momentum argument of the fermion field K has a magnitude equal 

to the Fermi wavevector plus a small deviation: K = KF + k. Only the deviation k 

scales, while Kp remains constant. This important difference from the bosonic case 

will be discussed further in appendix 4A. 

The story so far seems relatively elementary, but the true subtleties materialize 

when we try to determine the dimension of the ip4 coupling function Uf based on the 

dimension assignments required to make S2 scale invariant. The quartic part of the 

action can be written 

S[ = f[ f ddKi f de^iRi +K2-K3- K4)S(e1 + e2 - e3 - e4) 

^ ( 3 ) ^ ( 1 ) ^ ( 4 , 3 , 2 , 1 ) (4.18) 

The ^-functions explicitly enforce the conservation of energy and momentum (up 

to a reciprocal lattice vector). Of course, this results from the local nature of the 

interaction in position space: %l)4(x). We might integrate one of the momenta, say 
—* 

K4, against the delta function to yield an integral over three independent momenta 

Ki, K2, and K3. 

54 = ] l / ddKi fdeMl + 2--3)^(3)^(2)^(1) 
x=l J J 

xuf(l + 2 -3 ,3 ,2 ,1 ) (wrong) (4.19) 

But this expression is not quite right. The problem is that not all momentum-

conserving processes should be included in the low-energy effective field theory. We 

must respect the cutoff imposed on the quadratic part of the action, which only allows 

excursion into states within a distance ±A of the Fermi surface. Imposing a cutoff 
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amounts to constraining the momentum integrals. Until now, we have implemented 

the constraints by writing them explicitly in the limits of integration, but let us 

re-express them as 

J ddKi = / ofee(A -\ki\) (4.20) 

where, as usual, ki = \Ki\ — Kp. With all momentum integrals written in this way, 

we can safely use the (^-functions to eliminate one variable, say K4 and e4. 

S[ = f[ f ddKi f ded(l + 2 - 3)^(3)^(2)^(1)«/(1 + 2 - 3,3,2,1) 

x6(A - M ) 9 ( A - N ) 0 ( A - |fc3|)e(A - |/C4|) 

= n / ddRi f d€i^1 + 2~ 3)t/i(3)^(2)^(l)M/(l + 2 - 3,3,2,1) 

e (A- | /C 4 | ) (4.21) 

The constraints on K\, K2, and K3 have been put back in the limits of integration, 

but we have the additional constraint |/C4| < A where 

K^ = \KZ-K2-KX\-KF (4.22) 

We can implement this constraint in a number of ways. One way is to allow K\ and 

K2 to range anywhere inside the annuli defined by —A < k\, k2 < A, but restrict K3 as 

appropriate to satisfy |/C4| < A. The outcome of a proper phase space analysis shows 

that once K\ and K2 have been chosen, the angle for K3 is highly constrained [63]. 

To see this in more detail, observe that to leading order in A/KF, 

/C4 « KF{\A\-1) (4.23) 

where A = Kx + K2 — K3, and where the Ki are unit vectors, each pointing in the 
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direction of Ki. After mode elimination, the momentum integrals become: 

3 oA/s 

f[f V^e(A/s~XF||A|-l|) 
=1 

=n / ddRi@ ( A ~ SKF IAI ~ i ) (4-24) 
Simply rescaling k\ = ski is not sufficient to regain the original form of the action 

for generic values of ki. The obvious snag is the annoying way the 0-function trans

forms under rescaling. There are, however, certain special values of the ki where 

the situation is transparent. Indeed, when |A| = 1 (i.e. /C4 = 0) the G-function is 
—* 

always satisfied. Since A is composed of unit vectors, its modulus will be unity in 

the following three cases: i) K$ = K\ and K2 = K4; ii) K3 = K2 and K\ = K4, hi) 

K\ = —K.2 and K3 = —K4. For these values of the momenta, the rescaling k'{ = ski 

works flawlessly and it is easy to show that u is marginal at the tree level. In Shankar's 

notation, cases (i) and (ii) correspond to u = F and case (iii) u = V. 

The condition /C4 = 0 is a special limit where the constraint function is exactly 

satisfied, but it is conceptually different from the A/Kp —> 0 limit. To see this, let 

us rewrite the condition /C4 = 0 as follows: 

\K3-K2-Kxl = KF (4.25) 

To understand the geometric implication of this constraint, define P = Ki + K2 which 

obviously gives 

\K3-P\ = KF (4.26) 

This says that the the vector joining the tip of K3 to the tip of P must have magnitude 

precisely equal to Kp- Figure 4.1 depicts the situation. Geometrically, the choices 

available to K3 once K2 and K\ have been selected are given by the thick gray lines 

file:///K3-K2-Kxl
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K3 must stay within the annulus 

:K*-P 

K3 — P must be a point on this circle 

—# —# 

Figure 4.1 : Once K\ and K2 have been chosen the conservation of momentum and 
the requirement that K3 respect the cutoffs of the field theory strongly constrain the 
phase space available to K3, as depicted by the thick gray lines. 

in the figure. Notice that while k3 can still take any values —A < k3 < A within the 

annulus, the angle of K3 has become highly constrained. However, it is clear that 

even when /C4 = 0 the value of A/Kp can still be nonzero. 

The three cases corresponding to K\ = 0 constitute only a small portion of 

(Ki, K2, K3)-space. To see what happens to the coupling function u(3, 2,1) for other 

values of momenta, Shankar had the insight to employ a soft cutoff: 0(A — \ki\) »s 

e-|fci|/A. Using this device, the rescaled constraint for arbitrary ki values becomes 

e ( A - s t f F | | A | - l | ) w e -"A| |£ | - i | 

= e -AT A | |A | - l | e - ( S - l ) iV A | |A | - l | 

where we have defined the large parameter N^ = Kp/A (generally, we have the 

hierarchy k < A <C Kp, which means N\ » 1). We choose to write the constraint in 

this second way because then clearly when |A| = 1, corresponding to the three cases 
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—* 

listed above, this becomes a factor of unity. For any |A| ^ 1, which means all other 

values of the ki} the constraint —> 0 in the limit N\ —* oo provided s > 1. While we do 

not know how the coupling function u(3,2,1) scales for values of the momenta where 

|A| 7̂  1, it does not matter because these couplings will be exponentially suppressed 

in the limit l/NA = \/KF -+ 0. 

Note that the condition |A| — 1 is simply the statement that IC4 should not 

scale. Indeed, it means £4 = 0, but in particular /C4 7̂  sK.4. This is perfectly 

reasonable since £4 is not a free variable, but rather that special combination of the 

other momenta which should be scale invariant if we are to simultaneously satisfy 

the conservation of momentum and the condition that all processes remain inside the 

prescribed cutoff for the low-energy field theory. This useful interpretation will be 

used again later when we extend the formalism to include bosons. 

4.4 Boson+Fermion Scaling 

We are finally ready to incorporate bosons. Consider the following interaction term 

involving two fermions and one boson: 

x6W(K2 - £ - g)0(A - N ) B ( A - N ) 6 ( A - \q\) (4.27) 

g is the coupling function which plays the same role as Uf in the 4-fermion problem. 

For simplicity we have suppressed frequency integrals and assumed A& ~ A^ ~ A. 

Note that more boson legs can be included as a composite field provided the inter

action vertex is local. Now, to conserve momentum we have two choices: use the 

5-function to eliminate a fermionic momentum K^ or the bosonic momentum q. This 
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gives either 

/ 

A 

ddKddq $K+^K<t>MK, S)©(A - |/C2|) (4.28) 

or 

/ ' 
ddK1d

dK2 ^K^KAK.-K, g(K2, J?i)e(A - |Q|) (4.29) 

with the definitions K2 = \K + q\ — KF and Q = K\ — K2. 

The first scheme turns out to be the proper choice because a self-consistent scaling 

procedure can be constructed, which is not the case for the second choice. The reason 

is because, for the second choice, the argument of the boson will have magnitude 

\KX - K2\ « KF^/2(l-cos812)[l + (fci + k2)/(2KF)]. Under the rescaling k\ = ski, 

the argument of the boson scales in a rather unusual way whose form is more closely 

akin to that of a fermion. However, in order to ensure scale invariance of <S|, the 

boson field needs to scale homogeneously. We have no idea what dimension to assign 

to the boson in the non-homogenous case, so we cannot use this scaling choice. More 

details on such issues are provided in Appendix 4A. For the rest of this chapter, we 

will commit to the first choice which expresses the integration with one fermionic and 

one bosonic momentum, rather than two fermion momenta. 

Since we integrated against the delta functions, momentum and energy are explic

itly conserved. However, just like the pure fermion case, not all momentum conserving 

processes are allowed because some might fall outside the high-energy cutoff. We must 

further restrict the coupling function g with the constraint 6(A— \fC2\). Unfortunately, 

this quantity does not scale in a simple way in the most general circumstances. 

Recall from the form of S2 that we have the relation [k] — [e], while S^ demands 



61 

[q] = [UJ]/Z. We have the freedom to make the choice [u] = 1, which then determines: 

[e] = [k] = [q] = 1/z (4.30) 

[w] = 1 (4.31) 

m = ~YZ (4-32) 
M = ~^0 (4-33) 

Mode elimination and rescaling according to this scheme leads to the following inter

action term (we reinstate the energy integrals): 

/

A 

xGJ A - sl/zU(s-llzk' + KF)2 + s-2/zq'2 + 2(s-1/zk' + K^s'1/^' cos 0Kq 

-Kf 

where 

(4.34) 

cos(^K -9a) , d = 2 
cos**, = { K "' (4.35) 

cos 9K cos 9q + sin 9K sin 9q cos(ipK — <Pq) , d = 3 

Clearly, the constraint does not return to itself after rescaling. To make progress, we 

take the same strategy used in the pure-fermion problem by focusing our consideration 

on the phase space where the constraint does scale perfectly, namely when /C2 = 0. 

This is analogous to K.4 = 0 (or |A| = 1) in S(. This new condition can also be 

written 

\K + q\ = KF (4.36) 

—+ 

Thus, besides staying within their respective cutoffs, the choices available to K and 

q in this particular limit are restricted in such a way that their sum vector must sit 
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precisely on the Fermi surface. Once K is chosen, qis obligated to connect K + q to 

the Fermi surface which limits its permissible magnitudes and angles. This is depicted 

in figure 4.2. 

^ X 
\ , „ » • • • • » . , . # * \ 

^V.-"'-; AN 2 A ^ 
K + q 

\ 

Figure 4.2 : K must stay within the annulus while <f must stay inside the little circle 
of radius A. In the limit where /C2 = 0, the sum K + q must sit precisely on the 
Fermi surface. Clearly, the limit /C2 = 0 is not the same as A/KF = 0. The only 
phase space that satisfies all three constraints is the thick gray line which represents 
a small patch of the Fermi surface of size 0(Ad _ 1). 

Thus, for those portions of phase space where K.2 = 0 the dimension of the coupling 

function can be readily found. What about other values of momenta? It turns out 

that for the special case z — 1, it is possible to find a self-consistent scheme with only 

a minor modification to the situation where /C2 is strictly zero. We now specialize to 

this case, which is central to the analysis of the antiferromagnetic phase of the Kondo 

lattice. Later, after discussing the ferromagnetic phase, we will introduce a scheme 

that can be used when z ^ \ using a very different approach. 
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Let us rewrite the expression involved in the constraint: 

|/C?| = \\K + q\-KF\ 

1/2 
= I [(KF + kf + q2~ 2(KF + k)q cos dKq] ' - KF 

K* l + -;r^(k + qCOs6Kq) 
J\p 

1/2 

« ' Kp 

= \k + qQ,osQKq 

1 + -r^{k + qcos9Kq) - 1 
Kp 

(4.37) 

which is valid to leading order in A/Kp. This is an important observation because 

it shows that using this representation, the constraint function transforms in the 

following way: 

e (A/s - | /C 2 | ) w Q(A/s-\k + qcos 9Kq\) 

= 0(A - s\k + qcos 6]
Kq\) (4.38) 

which returns to its original form by simply rescaling k' — sk and q' = sq. Clearly, 

this is only valid for z = 1, but that is an important case as we will show in the next 

chapter. This representation is quite convenient because it does not even require the 

soft cutoff needed for the pure-fermion problem. 

The boson-fermion coupling can now be written: 

S»f = s3-^ g f ddq'dk'dd-lVLRde'dw'ijj'ilj'(j}'Q ( A - |k' + q' cos9Kq\ ) (4.39) 

where we used z = 1. This is equivalent to 

[9] (3 - d)/2 (4.40) 

For this choice of the boson field, the coupling is marginal in d — 3 and relevant in d = 

2. In the next chapter we will describe how to do the scaling for the antiferromagnetic 
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phase with a small Fermi surface where the bosonic field has a different dimension, 

and therefore the dimension of the Kondo coupling will be different than the result 

described here. 

At this point, a few issues are worth emphasizing. 

• Since we integrated against the delta functions, energy and momentum are 

explicitly conserved. 

• The quantity /C2 is not a free variable and it does not need to scale in the same 

way as bosonic or fermionic momenta. This is consistent with the non-scaling 

of JC4 in the pure-fermion problem. 

• In this scheme, all components of q scale the same way. In particular, [ddq] — 

d/z. At the same time, only fermionic momenta in the direction perpendicular 

to the Fermi surface scale. 

• Importantly, k is not a vector. It does not have parallel or perpendicular com

ponents as discussed in certain patch schemes. For more on the patch scheme, 

see Chapter 7. 

4.5 Appendix 4A: Choice of Boson-Fermion Integration 

In this appendix we show why the alternative decomposition of the interaction term: 

/ 

A 

ddK1d
dK2 ^ 2 ^ M l < ? ( £ 2 , £ i ) e ( A - \Q\) 

is not an appropriate starting point to determine the scaling dimension of the boson-

fermion coupling. The problem is that the argument of the boson field, Q = K± — K2, 

does not transform homogeneously, so we do not know what dimension to assign to 
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the boson itself. To see this, write: 

\Q\ = [Kf + Kl-2K1K2 cos 812]
1/2 

= '{KF + h)2 + (KF + k2f - 2(KF + ki)(KF + k2) cos012] 
1/2 

KFV2 (1-COS812) 1 + 
h + k2 

KF 

1/2 

which is true to leading order in 1/N\, and where 

(4.41) 

COS Bio = (4.42) 
cos(0i-02) , d = 2 

cos 6i cos 92 + sin Q\ sin Q\ cos(< î — </?2) , d = 3 

Since we have chosen to make S2 scale invariant by not scaling any angular compo

nents of fermion momenta, mode elimination and rescaling will result in the following 

form 

rA 

Sb/ = / s^dk'^dk'^de'^dt'z 

x4>(KF^/2(l-cos6l2) 

x<?(2, l )e(A/S- |Q|) 

1 + 

fiiKF + k^ie'^XKF + k'^ie'J 

2sKF >U2 Ul 

where 

0 ( A / s - | Q | ) = e[A-KF^/2(l-cos612) s + 
fC-i ~T~ /Co 

2KF 
(4.43) 

There are two problems. First, the constraint function does not return to its original 

form, making it impossible to compare the flow of the coupling function before and 

after the RG transformation. Second, we do not know how the <p field transforms 

under this change of argument. All we know is that 

0'(g
,,«" ,) = s~(*"*+2)/(2*) <f>(s^zq, siy) (4.44) 
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which states that the boson scales in a homogeneous fashion. If we transform the 

boson arguments in a non-homogeneous way, we are not guaranteed that the trans

formation will induce a simple multiplicative prefactor. Note that the mathematical 

requirement that the boson field transform homogeneously means that the relative 

angle between the incoming and outgoing fermions must be allowed to scale, which is 

not allowed in this scheme. We therefore cannot adopt this scaling procedure. Also 

note that selecting a scheme where the angular variables of, say, Ki scale in addition 

to the deviations ki will seemingly yield a dimension for the boson-fermion coupling 

that appears consistent with the scheme adopted in the main text, however such a 

procedure cannot be justified because the quadratic part of the action which defined 

the fixed point explicitly does not scale the angular parts of the fermionic momentum 

measure. 

One might wonder why we are being so strict on the homogeneity requirement 

when it seems like the other scheme 

J ddKddq [^+^^g(K, fl)0(A - \JC2\)] (4.45) 

also violates this principle. In fact, the fermion is not required to be a homogeneous 

function of momentum anyway. All that we need is: 

ip(KF + s - V ) = s3/2i/j'(KF + k') (4.46) 

The incoming fermion is clearly of this form, whereas the outgoing fermion can be 

written: 

${\K + q\) « $(KF + s-1 k'+ s^q'cos6Kq) (4.47) 

In this form, we know this expression is equivalent to: 

ip(KF + s-lk'+ s-lq'cos9Kq) = s3/2f(KF + k' + q'cos9Kq) (4.48) 
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In equation (4.45) we know how all fields transform under the same energy and 

momentum scalings used in the quadratic parts of the action, therefore this is a good 

scaling scheme. 

With this new understanding, we should also check that in the pure fermion 

problem the field ip{K,^) transforms in a consistent manner. To see this, we need to 

keep a few more higher order terms than what we showed earlier. 

\KA\2 = K* + Ki + Ki + 2K1-K2-2K1-K2-2K3-K2 (4.49) 

» 2KF(ki + k2 + k3 + 3/2) + 2KFKl • K2(h +k2 + KF) 

-2KFKX • k3(h + k3 + KF) - 2KFK3 • K2(k3 + k2 + KF) (4.50) 

= 2KF{KF{k1-K2-kl-Kti-k3-k2 + Z/2) 

+h[i + fa • (k2 - k3)} + k2[i + k2 • (kx - k3)} 

+fc3[l + ^ 3 - ( ^ i + ^ 2 ) ]} (4.51) 

In the special case where K\ = K3, corresponding to forward scattering, we have 

\K4 w Kp + h + ih-k^Ki-fa (4.52) 

This shows 

MlC'i) - iP(KF + sk2 + s(fci - h)Ki • K2) (4.53) 

which is precisely the scaling form appropriate for a fermion. In the same way, it 

is easy to show that the fermion scales appropriately for the cases k2 = k3 and 

kr = -k2. 

To summarize, ip{Ki) scales like a fermion, ip(JC2) scales like a fermion, but 4>{Q) 

does not scale like a boson. 
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Chapter 5 

Fermi Surface and Antiferromagnetism in the 
Kondo lattice 

In chapter 3 we showed how to map the microscopic Kondo Lattice Hamiltonian 

onto an effective field theory involving a QNLaM coupled to itinerant electrons with a 

Fermi surface. In chapter 4 we developed a new renormalization group framework that 

can be used to study problems involving bosons and fermions with a Fermi surface. 

In this chapter, we will apply this RG framework to analyze the antiferromagnetic 

phase of the Kondo lattice. First we find the scaling dimension at the tree level, then 

we examine the one-loop vertex correction. We then explain why, in this scheme, 

we are allowed to neglect vertex corrections on general grounds. The conclusion is 

that the Kondo coupling is exactly marginal to all orders. Since there is no flow to 

strong coupling, Kondo resonances can never develop and the Fermi surface of the 

antiferromagnetic phase is small. The contents of this chapter are heavily based upon 

a recent publication [49]. Appendices 5A and 5B give unpublished details of the 

vertex correction and large-AA calculations. The results of Appendix 5C appeared in 

[50], but further details are provided there to explain the scaling analysis when the 

Fermi surface intersects the antiferromagnetic Brillouin zone boundary. 

5.1 Scaling at the tree Level 

We will describe the d = 2 case for the most part, but our conclusions remain valid for 

any other d > 1 dimensions. Our analysis involves a combination of the bosonic RG 

for the QNLcrM [52, 75, 76] and the fermionic RG [63], as developed in Chapter 3. (We 



69 

note in passing that a combined bosonic/fermionic RG has been used in the context 

of several other problems [77, 74].) Without loss of generality, we take the ultraviolet 

energy cutoffs for the fermions (A/) and bosons (Ab) to be A ~ Af ~ A&. Unless 

otherwise specified, the variables (q, u) belong to bosonic fields, while (K, e) belong 

to fermionic fields, with K measured from the Brillouin zone center and k = K — Kp 

is measured relative to the Fermi surface. Under scaling, u —>• sui, e —> se, q —• sq, 

and k —*• sk. The fermionic kinetic term specifies [63] that [ip(K, e)] = —3/2. 

For the QNLerM, we write n(x, r) = TT+(X, r ) , 7r_(x, T), y/1 — n\ — 7rl , and de

fine the composite vector boson field (p by 

n(x, T) = 

1 n+frr) ^ 

7r_ (£, r) 

n(x, T) 

\Jl-*%-*L) 

dr 

TC+(X,T) 

•k-(x,r) 

—7T-j-7r-|- — 7 T _ 7 r _ 

<p(x, r) = n(x, T) x n(x, r) 

' - (—7T- — 7r+7T+7r_ + 7T+7r+7r_) 

V 

£ (7T+ + 7T_7r_7r+ — 7r_7T_7T+) 

7T_7T+ — 7T-7r+ J 
The square-root factors can be expanded, for example £ = • , ^ 2 

7ri) + (3/8) (7r+ + 7ri)2 -I . The scaling dimensions are 

(X,T)} =.[TC(X,T)] = 
d_ 

dr 

(5.1) 

l + ( l / 2 ) « + 

(5.2) 
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from which it follows that 

[ip(q,u>)] = [ddx dr <p(x, r ) ] 

= -d (5.3) 

while the coupling constant g has the scaling dimension [gr] = 1 — d, as is well known 

for the QNLcrM [52]. The dimension of the boson field is a result of the nonlinear 

constraint and differs markedly from the boson field dimension we found in Chapter 4. 

As a result, the boson-fermion coupling will have a correspondingly different dimen

sion. Note that in order for the boson-fermion coupling term to satisfy homogeneity, 

the relative angle (which does not appear in the measure) between K and K + q also 

needs to scale [77]. As explained in the previous chapter, this is why we choose to 

write the integral as involving one fermionic momentum and one bosonic momentum, 

rather than two fermionic momenta. The scaling dimension of the Kondo interaction 

term is given by 

[SK] = dkdeddqdw^Q(k + q, e + u)^(k, u) aa/3 • <p(q, u) 

= l + l + d + l + 2(-3/2) + (-d) 

= 0 (5.4) 

We reach the important conclusion that [A] = 0: at the tree level, the Kondo cou

pling is marginal in arbitrary spatial dimensions. But this is only the tree-level result. 

In order to determine if the Kondo coupling is marginally relevant or marginally ir

relevant we need consider higher order terms. This is the subject of the next section. 

5.2 One-Loop 

The Kondo interaction can be written as the sum of longitudinal and spin-flip terms: 

SK = VZ + T±. It will be convenient to rescale the Goldstone field, n = y/gir, and 
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Ar« 

(a) 

(b) 
Figure 5.1 : (a) shows the lowest order corrections to the vertices Tz and F_L- (b) is 
an example of a class of diagrams that do not contribute to the beta function. 

the free-field part of the QNLerM becomes: 

<SQNL<TM = o~ / ddxdr (^(^ r))2 

'= | I<fWr(d^(£,r))2 

Thus, the dimensions of the new fields n and ip are given by: 

[Sf(9»] = -^d + 3) 

<p(q, w) = - l 

(5.5) 

(5.6) 

[ir(q, UJ)] = - (d+3) /2 and v?(g, a;) = — 1. There are an infinite number of interaction 

vertices involving an increasing number of n fields, always coupled to exactly two 

fermion fields; see Fig. 3.2. However, we only need to consider one representative 

vertex and all its loop corrections; other vertices renormalize in the same way, as 

dictated by symmetry. For further details on this point, see page 343 of the textbook 

by Chaikin and Lubensky [76]. 

We describe in some detail one example of a one-loop correction, that of ATZ 
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outer fermionic shell 

Fermi Surface 

inner fermionic shell 

KF-A 

A - K/s = dk 
A logs 

allowed 
phase space 

bosonic shell 

KF + A 

Figure 5.2 : In a combined bosonic/fermionic RG, we require the propagator momenta 
to live inside the appropriate shells being eliminated, but we also need to conserve 
momentum. This constrains the phase space so severely that only the shaded region 
of the figure is integrated over. Straightforward geometric analysis shows that the 
phase space area is proportional to dAy/XdK oc (logs)3/2. 
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shown in Fig. 5.1a which we call ArV Other corrections are of a similar form and 

the conclusions are the same. 

The conduction-electron propagator is G°(K,ie) = (ie — £/c)_1 and the magnon 

propagator is D0(q,iu) = (iuj)2 /[(iuj)2 — wl], where w$ = cq and c is the spin-wave 

velocity. 

Ar :(q, iu; P, in) = -g2\l\ziu £ / ddKCfy (K, fe)Gjt (K + q, is + iu) 
fj I -L 4 - 1 

xDl_,+ (P-K,iPl-ie) 

= gz\i\ ?/ ddK 
ie -£Kie + iu~ £K+q 

x-
(ipi - ief 

(5.7) 
(ipi - ie)2 - c2\P - K\2 

The bosonic momentum <f is the difference between the momenta of the two external 

boson lines. Similarly iu is the difference in Matsubara frequency of the two external 

boson lines. Thus, (q, iu) represents the energy-momentum transfer of the spin-wave 

fluctuation. The factor (ipi — ie)2 comes from the time derivatives of the internal 

boson propagator. 

Summing over the Matsubara frequency leads to 

ATz(q, iu; P, ipi) = gzX±Xziu ! *-\ I 7<2) 

tinner shell inner+outer shells 

(5.8) 

where 

7(D = 

7(2) 

w2
P_K(-2ipi -iu + £K + £K+q) 

[(ipi - £K)2 - W2P-K] [(m + «w - ^K+q)
2 - w2

P_K] 
1 Wp-K 

(5.9) 
[ipi - wp-K - £K] [ipi + iu- WP-K - £K+q]' 

Here, (P, ipi) label the energy-momentum of one of the two external fermions, while 

(q, iu) denotes the energy-momentum transfer between the two external bosons (or, 
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equivalently, between the two external fermions). The magnon energy is wP^.K = 

c\P — K\. The derivation of this form is given in Appendix 5A. We would normally 

expect ATZ to be a function of the four external four-momenta. Conservation of 

momentum reduces this number to 3, and we denote the difference of the two external 

boson lines by energy-momentum transfer variables (q, iu), thus bringing the number 

to 2. 

We can now consider the kinematics of these one-loop corrections. Three mo

menta, P, K, and q, are involved in the integral for ATZ. The external fermion 

momentum P can be set to the Fermi momentum, \P\ « KF, since any difference 

would be irrelevant in the RG sense. Likewise, the external boson momentum transfer 

q can be set to zero. The fermionic loop momentum, K, is restricted to the inner and 

outer shells straddling the Fermi surface: 

KF + A/s < \K\ < KF + A (5.10) 

KF - A < \K\ < KF - A/s (5.11) 

which is equivalent to: 

A/s<k<A (5.12) 

- A < k < -A/s (5.13) 

Finally, the bosonic momentum P — K must be contained inside the circle defined by 

its cutoff: \P - K\ < A. 

These restrictions on P and K lead to the construction shown in Fig. 5.2. The only 

phase space allowed by momentum conservation is the shaded region in the figure. 

This limits the loop integration over K to the small angular interval from —A/KF 

to +A/KF, and two radial shells of width dA = A — A/s « A logs (where s ^ 1). 
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A simple geometric analysis shows that the allowed phase space (shaded region) is 

proportional to A2(logs)3/2, therefore ATZ oc (logs)3/2. The vertex correction is 

superlinear in logs, so it does not contribute to the beta functionl Therefore, the 

Kondo coupling is still marginal at the one-loop level. 

We note that if instead of eliminating modes within the momentum shell scheme, 

we were to integrate over the entire phase space in a field theory approach, then the 

vertex correction would be of order g2\'±\z-£-, which is suppressed to zero in the 

limit A/Kp —• 0. This is shown explicitly in the Appendix 5A. 

Finally, there are also vertex corrections due to the interactions purely among 

the fermion fields or purely among the QNLcrM fields. The former do not yield loop 

corrections in the forward-scattering channel [63]. The latter are irrelevant since g 

renormalizes to 0. 

Let us briefly summarize what has been done so far. We have examined the 

tree-level and one-loop contributions to the beta function: 

P(JK) = b0JK + hJz
K + O{J5

K) (5.14) 

Tree level marginality means b0 = 0, while the vanishing contribution at one-loop 

means &i = 0. This can be seen in the momentum-shell scheme from a simple phase-

space analysis which shows that the loop integral is confined to a region of size 

(logs)3/2. Thus, the one-loop contribution is proportional to ^-^( logs) 3 / 2 = 0. 
° s=l 

In a field theory approach, this results from the fact that the one-loop contribution 

is proportional to a positive power of kjKp = l/N\. 

In the next section we will show that higher order terms are even smaller, thus 

establishing a sort of Migdal's Theorem which states that the tree-level result is the 

entire story. Since we found marginality at the tree-level, this is the exact answer to 

all orders in the limit where K/Kp —» 0. 
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5.3 Infinite Loops 

The kinematic arguments so far are similar to what happens to the renormalization 

of the forward-scattering interactions in the pure fermion problem, where momentum 

conservation combined with cutoff considerations severely limit the available phase 

space [63]- A very similar picture can be extended to the RG beyond one loop. 

Again, we will describe in detail the d=2 case but the generalization to any other 

d > 1 dimensions is straightforward leading to the same conclusions. See Appendix 

5B. We begin by decomposing the Fermi surface into N\ = irKp/A patches, and 

rescale the momentum and energy variables for each patch in terms of A: e = e/A, 

k = k/A, and so on. We also absorb a factor of A2 into the fermion field so that the 

kinetic term for the fermions becomes 

Nx r 
S( = ^2 / d2kideiip\{i£i - vph)^ (5.15) 

and i is the patch index. Likewise, we absorb a factor A5/2 into the 5r field, so that 

the kinetic part of the QNLcrM is 

SQNLCTM = d2qdu(q2
 + U2)TT2 (5.16) 

We then find that the spin-flip Kondo coupling (r_i_) contains a factor A1/2, and the 

longitudinal Kondo coupling (r2) contains a factor A. In other words, the Kondo 

couplings are of the order of (l/y/rN\)\± ^ J ip-ipty and ( 1 / A 7 A ) A Z ^ f ipt/ity, re

spectively. This is shown in more detail in Appendix 5B. These extra l/y/WH and 

1/N\ factors make their contributions negligible to infinite loops, except for a chain 

of particle-hole bubbles (in the spin-flip channel), the lowest order of which is shown 

in Fig. 5.1b. These iterates of the bubble do not contribute to the beta function, since 

the two conduction electron poles are located on the same side of the real axis [63]. 
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The Kondo coupling is therefore marginal to infinite loops. This should be con

trasted to what happens in the single-impurity Kondo problem. There, the Kondo 

coupling is relevant and flows to infinity, which signifies singlet formation in the 

ground state and a concomitant Kondo resonance in the excitation spectrum. In the 

paramagnetic phase of the Kondo lattice, the Kondo coupling is believed to flow to 

a related strong coupling fixed point where, again, Kondo resonances are generated 

and the Fermi surface becomes large. 

What we have shown is that inside the antiferromagnet phase an exactly marginal 

Kondo coupling prevails, implying that there is no Kondo singlet formation and the 

Fermi surface will remain small in the sense defined earlier. 

5.4 Implications 

We now turn from the asymptotically exact results to their implications. It is well 

accepted that two other phases occur in the zero-temperature phase diagram of the 

Kondo lattice: a paramagnetic phase with a large Fermi surface, PML, and an an-

tiferromagnetic phase with a large Fermi surface, AFL- The existence of PML has 

been most explicitly seen in the large-N limit of the SU(N) generalization of the 

model [24, 78] [where H(K,u) = (v*)2/(u — e*j) contains a pole and, correspondingly, 

G(K, UJ) yields a large Fermi surface]. Our results demonstrate that the antiferromag-

netic part of the phase diagram in principle accommodates a genuine phase transition 

from AFs to AFL. For commensurate antiferromagnetic ordering this corresponds to 

a Lifshitz transition with a change of Fermi surface topology. Such a transition has 

been heuristically discussed in the past [42, 18]; our exact result on the stability of 

the AFs phase provides evidence for the existence of this Lifshitz transition. 

In addition, the existence of the AFs phase opens the possibility for a direct 
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quantum transition from the AFs to the P M L phases. This is a "Kondo Breakdown" 

QCP. For this transition to be continuous, the quasiparticle residues z$ and ZL must 

vanish when the QCP is approached from the two respective sides. The quantum 

critical point is then a non-Fermi liquid with a divergent effective mass; local quantum 

criticality [17, 42] is one such example. The results reported here, therefore, provide 

a new perspective to view local quantum criticality. 

5.5 Appendix 5A: One-Loop Vertex Correction 

This appendix gives some details about the one-loop vertex correction. The diagram 

considered earlier in the chapter can be expressed in position space by 

A r = - I ddxxdrx I ddx2dT2 Iddx3dr3 

\ V / XlTl \ / X2T2 \ 'X3T3/ 

= -g2X+X-Xz / ddxxdrx / ddx2dr2 I ddx3dr3 

X7T_(f!, TX)n+(xX, Ti)i>\(x3, T3)V>T(£2, T2) 

X < V ^ ( * I ,
 T l ' f 2 ' T ^ G l \ ^ u Tl\*3> T^D*-*+&> r2\x3, T3) (5.17) 

We take G° to be the bare free-electron propagator, and D° to be the propagator for 

the 7r field of the nonlinear sigma model. If we translate to momentum space, this 

defines the vertex correction 

AT(Q,iqm;P,iPl) = -g2\+\„\ziqmJ2 J ddKGl^(K,ikn) 

x G " ^ ^ + Q,ik„ + iqm)D°t_it(P - K, ip, - ik„) (5.18) 

-9^-Ki^Ef^J^: ikn + iqm - €K+Q 

(ipi - ikn)2 

(iPl - ikn)
2 - c2\P - K\2 (5.19) 
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The factor iqm comes from the time derivative on the external boson line 7r_, while 

the two factors (ipi — ikn)
2 come from the time derivatives of the internal boson 

propagator. In this appendix iqm corresponds to the variable iu written in the main 

part of this chapter. 

We can do the Matsubara sum over ikn by standard methods: 

Ar(Q, iqm, P, ipi) = -g2X+X-Xziqm / ddK< 

M6r) (ipi - £K)2 

+ 

[iqm + £K~ £K+Q] [(ipi - £K)2 - u2
P_K] 

nF{JK+Q - km) (ipi - ZK+Q + iqm)2 

[-iQm + CK+Q ~ 6 d [(ipi ~ £K+Q + iqm)2 - u2
P_K) 

1 nF (ipi - UP^K) UP-K 

2 [ipi - up-K - &] [ipt - c\P -K\+ iqm - ZK+Q] 

1 nF{ipi + ujp-.K) UP-K 
2 [ipi + UJP-K - £K] [iPl + C\P -K\+ iqm - £K+Q] 

(5.20) 

Note that we have used the following forms of the boson propagator: 

Dl^P-KM-iK) = {ipi~ikn)\ (5.21) 
+ (IPl - lkn)

2 ~ UP_K 

If ipi- ikn ipi - ikn 

2 V (ipi -ikn)+ up-K (ipi - ikn) - UJP_K t 

(5.22) 

where the bosonic dispersion is defined as usual: UIQ = c\Q\. We can make further 

simplifications by noting that nF(x ± iqm) = nF(x) for bosonic frequency iqm — 

i2TTm/l3, and nF{x ±ipi) = —UB(X) for fermionic frequency ipi = in(21 + l)/(3. 
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The vertex correction is now given by 

AT(Q,iqm,P,ipi) = -g2\+\^\ziqm I ddK< 

e(-fr) \IPI - u? 

+ 

[iqm + £K~ £K+Q] [(ipi - ZK)2 - u2
P_K] 

®(-£K+Q) (ipi + iqm - £K+Q)2 

[-km + €K+Q ~ &] [(iPl + km ~ €K+Q)2 ~ Wp_K] 

1 Q(up-K) WP-K 

2 [ijn - up_K - £K] [ipi - C\P -K\+ iqm - ZK+Q] 

_ 1 Q(-Up-K) VP-K 

2 [ipi + up-K - £K] [iPl + C\P - K\ + iqm - £K+Q] 

(5.23) 

Due to the absolute values in the argument of the last two step functions we have 

e(wP-K) = B(c|P - K\) = 1 and Q(-uP-K) = 6 ( - c | P - K\) = 0. 

AT(Q, iqm, P, ipi) = -g2X+X^Xziqm / ddKl 

Q(-Cy) (in ~ ZK? 
[iqm + £K- ZK+Q] [(ipi - ZK)2 - u2

P_K) 

Q(-&r+q) (m + km - £K+Q)2 

[-iqm + £K+Q -€K] [(iPi + iqm - 6C+Q) 2 ~ ul-K] 

1 UP-K 1 

2 [iPl - Up-K - £K\ [ipi - C\P - K \ + iqm ~ ZK+Q] 

(5.24) 

At this point we would like to simplify the second term by shifting variables K' = 

K + Q. However, this is not possible because we are using a regularization with an 

explicit ultraviolet cutoff. Remember, though, that we are interested in the limit 

Q —> 0. Unless Q > A, within the momentum-shell approach the only effect of 

©(—€K) aud 0(—£K+Q) is to restrict the integration region to the inner shell only. 

Therefore we can combine the first two terms. Since the third term has no @ function, 
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we must integrate over both inner and outer shells for that term. 

g2X+X-Xziqm J (ipi - £K)2 

AT(Q,iqmiP,ipi) I 
inner shell 

[iQm + €K- ZK+Q] I [(ipi - £K)2 - up_K] 

(ipi + igm - £K+Q)2 

[(ipi + iqm - ZK+Q)2 - u2p_K] 

iqm 

(5.25) 

g A+A_AZ J 1 [ipi - Up^K - £K] 

X-

inner+outer shells 

U>p-K 
(5.26) 

[ipi + iqm-c\P-K\- £K+Q] 

Remember that the above equation is only valid in the limit Q « A. We can also 

re-express this by combining terms in the curly brackets. 

AT(Q,iqm,P,ipi) = g2\+\-\z I iqmWp-K 

[{ipi ~ ZK)2 - up-K] 

x 

inner shell 

(-2ipt - iqm + £K + £K+Q) 

[(ipi + iqm ~ £>K+Q)2 ~ u2
P_K] 

g2\+\-\z I 
x-

inner+outer shells 

U)p-K 

i<W2 

[ipi ~ UJp-K ~ £K\ 

(5.27) 
[ipi + iqm - c\P - K \ - £K+Q}_ 

With A+ = A_ = Aj_, this is the form of the vertex correction claimed earlier in the 

chapter. 

5.6 Appendix 5B: Large-A^v 

In this appendix we discuss the details of the large-iVA sketched in the chapter. There 

are two ways in which we can show that the Kondo coupling is a positive power of 

\/N\ relative to the kinetic term. First, the patch argument. Decompose the Fermi 

surface integral into a sum over N\ = 7rKp/A patches each of approximate size Ad. 
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We have something like: 

ddKde = Yl / d%' / ^ i (5-28) 

where j labels the patch index. The integration variables each range over regions on 

the order of A, so let us define new dimensionless variables 

Sj = EjA (5.29) 

kj = kjA (5.30) 

such that, for example, kj is dimensionful while kj is dimensionless. Consider the 

kinetic term 

y ^ / ddkjdEj ip](i£j - vFkj)ipj (5.31) 
3 Jhd 

= A d + 2 ^2 / ddkjdej %l)]{%g - vFk)^j (5.32) 

The integrals are now over dimensionless regions, so the factor out front gives the 

overall dimension of the expression (remember that the sum over patches brings in a 

factor NA)- To define this part of the action as our reference point, let us absorb the 

leading factor into the definition of the field: Ad+2ipfyj = ^j^j. This tells us that the 

fermion fields are of order 

V> oc A-(d+2)/2 (5.33) 

We do a similar exercise for the QNLcrM component of the action (no patching nec

essary here): 

«SQNL<TM = J ddqduj(u;2 + q2)\7r\2 (5.34) 

= Ad+3 fddqdu)(u2 + q2)\n\2 (5.35) 
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To fix this reference point, we define new bosonic fields 7f such that 

7T oc A"(d+3V2 (5.36) 

Now we are in a position to determine the dimension of the Kondo interaction relative 

to these kinetic parts of the action. For the spin-flip part, 

T± = AXi 

o 
^T f ddkdeddqdu[tp^(u7r)} (5.37) 

Recall that the time derivative on the -K field brings in an additional factor of fre

quency. Re-expressing in terms of our new variables we find: 

r_L = A * - I - H * I + 2 ^ + I + ^ A ± £ ddkdeddqdw[^(u7t)} (5.38) 
3 

= A^d-^2X± J2 / ddkdeddqdLJ[^ii{QTt)) (5.39) 
3 

We thus find for d = 2, 

itK * i (5-40) 
For the non-spin-flip channel we obtain: 

Tz = XZY^ ddkdeddq1duj1d
dq2cku2{^i/}(uJTnr)} (5.41) 

i "* 
NA f 

= A d + 1 + d + 1 + d + 1 + 2 ( ^ l + 1 + 2 t - 3 1 A ^ / d d ^ ^ ^ ^ ^ ^ ^ - - - ^ 

3 

NA , 

= Ad~l\zJ2 / ddA;deef'gida>i<f'ftjdw2[V'tV'(w7f7f)] (5.42) 
3 J 

For d = 2, 

| oc A o c i - (5.43) 
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There is an alternative way to arrive at the same conclusion without appealing to 

patching arguments. For a spherical Fermi surface we can write the Fermi momentum 

integral in terms of spherical coordinates: 

/

rKp+A p 

ddK = / Kd~xdK \ dd-xSlK (5.44) 

= f (k + Kp^dk fd^1^ (5.45) 

The most relevant part of the above is 

I ddK = Kdfx f dk I' dd-xSlK (5.46) 

Now the kinetic part of the fermions can be written, 

Sc = Kfr1 f dkd^QKde ipr(ie - vFk)xp (5.47) 

We define new dimensionless variables: 

e = Ae (5.48) 

k = Ak (5.49) 

QK = nK (5.50) 

i ^ A f y t y = W (5.51) 

Note that the angular components of fermionic momenta are untouched. We now 

have: 

Sc = / dkdd-l£lKde fi(ie - vFk)ip (5.52) 

The important difference from the previous patching argument is that now the fermionic 

fields contain factors of Kp. Plugging this into the Kondo couplings we find (note 
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that the QNLCTM rescaling is identical to what we did previously) 

Tx = KiF-dAi+i+d+i-3+i-(d+3)/2X± I dW-^Kde^qdw^^un)} (5.53) 

A(d-l)/2 r 

-rX± / dk^QKdedtqdQtytyiQir)] (5.54) 
KF 

For d = 2 we have 

LL K ^ - _ i L_ (555) 

In the non-spin-flip channel: 

I \ = ^ l , - r f A l + l + d + l + d + l - 3 + l - 2 ( ( ( i + 3 ) / 2 ) A 2 f dM
d-mKded%dw1d%dQ2[^(u7T7r)j 

A d -A d _ 1 r - -
-^^Xz I dkdd-1nKded%dti1d%dLU2[^ip(u>Trit)} (5.56) 

For d = 2, 

We have thus shown that for any d > 1 the Kondo vertex will have associated with 

it positive powers of 1/N\. Because of this, as the number of powers of JK increases, 

so does the suppression factor \/N^. Thus, the tree-level result is the whole story. 

5.7 Appendix 5C: Intersection of the Antiferromagnetic Bril-

louin Zone 

This appendix treats the case where the Fermi surface intersects the antiferromagnetic 

Brillouin zone (AFBZ) boundary. In this case, the linear coupling n • sc between the 

local moments and conduction electron spin cannot be neglected. Until now, we have 

only considered the term L-sc because our assumption has been that the Fermi surface 

does not intersect the AFBZ boundary, i.e. Q > 2Kp- See Fig 3.1 and the comments 
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following equation (3.47). When Q < 2Kp, the conduction electrons see the AF 

order parameter of the local moments as a staggered scattering potential, resulting in 

a reconstruction of their Fermi surface. The hot spots of the Fermi surface therefore 

become gapped out, as shown in Fig. 5.3. At the mean field level, the conduction 

electron component now becomes: 

\ AFBZ / N / _0 , _z A \ / n 

Ck,ai Ck+Q,a HfF = "£ l J J 
kaP X ' \ r a / ? ^ Ta/3ek+Q J ^ Ck+Q,(3 J 

where the sum on k only runs over the AFBZ, Q = (7r/a, n/a) is the AF ordering 

wavevector, r^ are the 2 x 2 Pauli matrices, and the gap is given by the product of the 

Kondo coupling and expectation value of the massive field of the QNLcrM: A = \{cr). 

In this mean-field picture, the quadratic Hamiltonian can be simply diagonalized by 

a unitary transformation: 

Ofea 

ha \ Vk<0 -Uk(T°a/3 J 
(5.58) 

/ 

Using these new quasiparticles, the effective spin-flip Kondo couplings become 

T AFBZ BZ 

-fY^Y, [^(M)(aUiH^-&Lw)<] (5-59) 
k q 

where T<Ta(k, q) = UkVk+q — VkUk+q is the coherence factor. See the next section. The 

other terms, such as inter-band interactions (e.g. atb) are gapped out at low energies. 

Near the ordering wavevector the vertex is linear in momentum: T^(k, q) oc q, where 

<f is the deviation from the AF ordering wavevector Q. (See e.g., Ref. [79].) The form 

of this linear-momentum suppression factor survives beyond the mean-field treatment 

of the conduction electron band, as dictated by Adler's Theorem [80]. Within the RG 

analysis, the linear-momentum factor serves the same function as the time derivative 

in (p to preserve the marginality of the transverse Kondo coupling. 
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The next section will show how we obtain the momentum dependence of the 

coherence factor. 

Figure 5.3 : When the Fermi surface of the conduction electrons intersects the 
AFBZ boundary (the dashed lines), the Kondo coupling connects the re-diagonalized 
fermions (whose Fermi surfaces are given by the solid lines) to the QNLerM fields. 

5.7.1 Kondo coupling coherence factors 

We are interested in the following spin-fermion coupling: 

J* 
4 ^ / ? % / ? • s ? (5-60) 

r r ki,k2,q 

For the local moment spin we write Sg « nqe
lQr + L r Plugging in: 

^ = 7 E E e ' ( f c l " f e + ? ) J i « ^ ( V Q j + L9) (5.61) 
r ki,k2,q 

J, 
• y Yl {^koP^k+q+Qfi • n9 + <b<r°pck+qtP • Lqj (5.62) 

k,q 
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Now we need to rewrite the sum over fermion wavevectors in the full Brillouin zone 

as a sum over only the magnetic Brillouin zone: 

( BZ BZ 

T± = - y Yl a<# ' \ J2 E [ClaCk+q+Q,0nq + cLCfe+g;/3
LJ \ (5-63) 

a/3 I k q ) 
j ( AFBZ BZ 

— ~2Z-*i °aP ' ] ^ Z-*, J \CkaCk+q+Q,l3 + Ck+Q,aCk+q+2Q,/3 J n<7 
a/3 I k q 

+ (ckack+q,(3 + c{+Q>ack+q+Qtl3) L , ] \ (5.64) 

yCkadk+q,P + dkaCk+q,p) n 9 + \^kaCk+q,p 

(5.65) 

, (AFBZ BZ 

a/3 K k q . 

+dkadk+qj3J L 

where d|.a = ck+n a. Prom here we need to substitute the inverse Bogoliubov trans

formation: 

Ck,a = uka
0

a/3ak(3 + vka
z
apbkp (5.66) 

dk,a = vka
z
a0ak0 - ukal0bk0 (5.67) 

According to Adler's Principle, the effective vertices between the Bogoliubov fermions 

ak, bk and the spin variables nq, Lq should give us something that vanishes when q = Q 

for vertices involving n fields, though the situation is not so clear for vertices with L 
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AFBZ BZ 

+ [Vk^sals - uka°agblsj [uk+qa°01ak+qty + vk+qa
z
01bk+qil] Jng 

+ ( [w^a5aL + «fc<^Lj [uk+q(r^ak+qtl + vk+qa
z^bk+qa] 

+ [Nasals ~ fastis] ["k+q^ak+q,^ - uk+qa
0^bk+qtJ] jL, j \ (5 

, ( AFBZ BZ 

= -f E^-| E E[ 
a/3 k k q 

(V^ik, q)alak+q,p + V^(k, q)b\abk+q,p + V^(k, q)a\abk+q,p 

+V£0(k,q)blaak+q,e)nq 

(W:f(k, q)alak+q<(3 + Wg{k, q)b[abk+q,0 + W*(k, q)a[abk+^ 

+W^^k,q)blaak+q^Lq]\ (5 

The vertices are defined as follows: 

V£f(k,q) = (pukvk+q + avkuk+q) (5 

vbb0(k,q) = - (aukvk+q + f3vkuk+q) (5 

vab*(k,q) = (-ukuk+q + vkvk+q) (5 

Vbf(k,q) = (vkvk+q - ukuk+q) (5 

'W«£f(M) = (ukuk+q + a/3vkvk+q) (5 

wbf(k,q) = (a(3vkvk+q + ukuk+q) (5 
waf(k,q) = ((3ukvk+q - avkuk+q) (5 

wbf(k,q) = (avkuk+q - f3ukvk+q) (5 



90 

The important interaction terms are those which do not involve an energy gap (from 

band a to a, or b to b, but not a to b), and flip the spin of the fermion (a — —f5). 

These are: 

Vr(k,q) = -V™(k,q) = -a(ukvk+q-vkuk+q) (5.78) 

W£(k,q) = Wgi{k,q) =, (ukuk+q-vkvk+q) (5.79) 

These expression agree with Vekhter and Chubukov [79]. The explicit momentum 

dependence of these quantities can be further simplified for small q: 

uk+q = uk + A(k,Q) + 0(q2) (5.80) 

_ A ^ + y4 + g i ) ] ( 4 - 4 + 8 ) (5.81) 
Dl'2(Sk + Dt)>V 

vk+, = v„ + B(k,Q)q + 0(q2) (5.82) 

B(k,Q) = A l f ( l l t - 0 ) M3) 

where we have used the shorthand e'k = -%±1 
dq 

the interaction vertex involving the Goldstone mode is: 

. This approximation shows that 
9=0 

Vr(k,q) = -Vbf(k,q) = -a[(ukvk-vkuk) + q(Buk-Avk) + 0(q2)](5M) 

= -a[q(Buk-Avk) + 0(q2)] (5.85) 

Thus, the leading order term is linear in q and the vertex vanishes for q —> 0. This is 

in accord with Adler's Theorem. Note that here we are measuring q from Q rather 

than from zero. This is clear because we have: 

Sr = nre
±iQ-r + Lr (5.86) 

=*• Sq = nq±Q + Lq (5.87) 

where we've noted that for a general function <f)(t) and its Fourier transform <&(u>), 

the Fourier transform of 4>(t)etQt is simply $(u; + Q). So multiplying by exponentials 
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in real space merely shifts the argument of the Fourier transform in reciprocal space. 

To summarize, this appendix has shown that when the Fermi surface intersects the 

AFBZ boundary the coherence factors produced in the re-diagonalization of fermions 

induce an additional factor of q in the effective coupling. This can be viewed as a 

kinematic suppression similar to the deformation potential problem of the electron-

phonon system [80]. From the RG perspective, the additional factor of q represents 

a decrease in the dimension of the coupling which has the same effect as a derivative 

coupling: sc • nq —> qa)aa • nq. Now the conduction electron spin is coupled directly 

to nq which has dimension [7rg] = — d — 1, but the additional factor of q brings the 

dimension to [q nq] = — d which has the same value as the vector field [<pq] — —d we 

considered earlier for the case where the Fermi surface does not intersect the AFBZ 

boundary. Therefore, our previous result on the marginality of the Kondo coupling 

is not spoiled when the Fermi surface intersects the magnetic zone boundary. 
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Chapter 6 

Ferromagnetism in the Kondo Lattice 

(5.1 Introduction and Motivations 

We now turn our attention from antiferromagnetic to ferromagnetic order in heavy 

fermion materials. The next few chapters are based on work submitted for publica

tion and currently posted on the arXiv [81]. Surprisingly, a rigorous theoretical basis 

for metallic ferromagnetism is still largely missing [82]. The Stoner approach pertur-

batively treats Coulomb interactions when the latter need to be large [2], while the 

Nagaoka approach incorporates thermodynamically negligible holes into a half-filled 

band [83]. We will show that the ferromagnetic order of the Kondo lattice is amenable 

to an asymptotically exact analysis over a range of interaction parameters. In the fer

romagnetic phase, the conduction electrons and local moments are strongly coupled 

but the Fermi surface does not enclose the latter (i.e., it is "small"). Moreover, non-

Fermi liquid behavior appears over a range of frequencies and temperatures, which 

will be demonstrated in the next chapter. Our results provide the basis to understand 

some long-standing puzzles [84, 85, 86] in the ferromagnetic heavy fermion metals, 

and raises the prospect for a new class of ferromagnetic quantum phase transitions. 

The vast majority of theoretical work on magnetic heavy fermions has focused 

on antiferromagnetism [46, 6]. Nonetheless, the list of heavy fermion metals which 

are known to exhibit ferromagnetic order continues to grow. An early example sub

jected to extensive studies is CeRu2Ge2 (ref. [87] and references therein). Other 

ferromagnetic heavy fermion metals include CePt [88], CeSix [89], CeAgSb2 [90], 

and URu2_xRexSi2 at x > 0.3 [91]. More recently discovered materials include 
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CeRuPO [92] and UIr2Zn20 [30]. Finally, systems such as UGe2 [93] and URhGe [94] 

are particularly interesting because they exhibit a superconducting dome as their 

metallic ferromagnetism is tuned toward its border. Some fascinating and general 

questions have emerged, yet they have hardly been addressed theoretically. One cen

tral issue concerns the nature of the Fermi surface: Is it "large," encompassing both 

the local moments and conduction electrons as in paramagnetic heavy fermion met

als [16, 26], or is it "small," incorporating only conduction electrons? Measurements 

of the de Haas-van Alphen (dHvA) effect have suggested that the Fermi surface is 

small in CeRu2Ge2 [84, 85, 86], and have provided evidence for Fermi surface recon

struction as a function of pressure in UGe2 [95]. At the same time, it is traditional to 

consider the heavy fermion ferromagnets as having a large Fermi surface when their 

relationship with unconventional superconductivity is discussed [93, 94]; an alterna

tive form of the Fermi surface in the ordered state could give rise to a new type of 

superconductivity near its phase boundary. All these point to the importance of the

oretically understanding the ferromagnetic phases of heavy fermion metals, and this 

will be the focus of the next few chapters. The derivation of the effective field theory 

will closely parallel the antiferromagnetic case, but the resulting form will be slightly 

different. Moreover, the scaling analysis will require significant modification due to 

the presence of a Stoner gap in the excitation spectrum and a different form of the 

dynamics, corresponding to z ^ 1. This chapter has the modest goal of establishing 

the effective field theory appropriate for the ferromagnetically ordered phase, while 

the next chapter will present its analysis. 
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6.2 Field Theory for the Ferromagnetic Phase 

As before, we begin with the Kondp lattice model in which a periodic array of local 

moments interact with each other and with a conduction-electron band. Kondo lattice 

systems are normally studied in the paramagnetic state, where Kondo screening leads 

to heavy quasiparticles in the single-electron excitation spectrum [16]. The Stoner 

mean field treatment of these heavy quasiparticles may then lead to an itinerant 

ferromagnet [96]. With the general limitations of the Stoner approach in mind, here 

we carry out an asymptotically exact analysis of the ferromagnetic state. We are 

able to do so by using a reference point that differs from both the Stoner or Nagaoka 

limits. 

The model contains a lattice of spin-| local moments (Sj for each site i) with 

a ferromagnetic exchange interaction (/ < 0), a band of conduction electrons (c^a, 

where K is the wavevector and a the spin index) with a dispersion eg and a charac

teristic bandwidth W, and an on-site antiferromagnetic Kondo exchange interaction 

(JK > 0) between the local moments and the spin of the conduction electrons. The 

corresponding Hamiltonian is 

H = E eKCkcx. + I E S?SJ + E JKS?c\Jfcia,. (6.1) 
K (y> * 

Here / represents the sum of direct exchange interaction between the local moments 

and the effective exchange interaction generated by the conduction electron states 

that are not included in Eq. 6.1. Incorporating this explicit exchange interaction term 

allows the study of the global phase diagram of the Kondo lattice systems, and tuning 

a control parameter in any specific heavy fermion material represents taking a cut 

within this phase diagram. As a side remark, a distinction should be made between 

this problem and what is sometimes called the "ferromagnetic Kondo lattice" in the 
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literature [97]. Such double-exchange ferromagnet studies are typically focused on the 

manganites where the local moments belong to the lowest submanifold of a crystal-

field-split d-shell (say, t%^), while the conduction electrons live in the higher manifold 

of the same d-shell (eg). Due to Hund's rules, the coupling between the local moment 

and conduction electron is necessarily ferromagnetic. This is not the situation under 

investigation here. We consider local moments which belong to the f-orbitals of a rare-

earth element, such as Ce, which couple antiferromagnetically to conduction electrons 

residing in metallically hybridized d- or s-orbitals. Of course the J-multiplet will also 

be split by the crystal field, often resulting in a ground state doublet for Kramers 

ions, but the essential difference we care about is the antiferromagnetic spin exchange 

coupling between the local moment ground state doublet and the conduction electron 

spin. We usually refer to this spin exchange as a "Kondo coupling." 

The parameter region we will focus on is JK <C | / | <C W. Here we can use the limit 

JK = 0 as the reference point where local moments represent f-electrons with strong 

Coulomb repulsion and are decoupled from the conduction electrons. As illustrated 

in Fig. 6.1, the local moments order in a ferromagnetic ground state because / < 0, 

whereas the conduction electrons form a Fermi sea with a Fermi surface. A finite but 

small JK will couple these two components, and its effect is analyzed in terms of a 

fermion+boson renormalization group (RG) procedure [81, 49, 68, 63] described in 

the next chapter. Though our analysis will focus on this weak JK regime, the results 

will be germane to a more extended parameter regime through continuity. 

The Heisenberg part of the Hamiltonian, describing the local moments alone, is 

mapped to a continuum field theory [98] in the form of a Quantum Nonlinear Sigma 

Model (QNLcrM). In this framework, the local moments are represented by an 0(3) 

field, in, which is constrained non-linearly with the following continuum partition 
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Figure 6.1 : An illustration of the Kondo lattice. Local moments from f-orbitals are 
in green, and are depicted here to be spin down. Spin-up conduction electrons are in 
red, which have a higher probability density than the spin-down conduction electrons 
in blue. The Hamiltonian for the model is given in Eq. (6.1) where a is the spin index 
and a refers to the three spin directions. Note that the Einstein summation convention 
is used on indices. For simplicity, we assume eg = ^m . The characteristic kinetic 
energy, W, is defined &sW = l/po, where p0 = J2K $(EF — eg) is the single-particle 
density of states at the Fermi energy (Ep). Both Ep and the chemical potential, fi, 
scale like W. We use the Shankar notation with K — \K\ measured from the center 
of the Brillouin zone. 
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function. 

Z •= [vmV[ip,ip}6(m2(x,T)-l)e-s 

$ — S'm + ^Berry + <5C + $K 

Ps f ,d j dma(x, T) dma(x, r) 
SL = ^ / ddxdr I dx*1 dxi* 

^Berry = iM0 f d*xdr A a [ m ] ? ^ 

S'c = / ddxdr ^(x,r) (dT- //J ^(x,r) 

SK = JK f ddxdr s^(x,T)ma(x,T) (6.2) 

- Ta 

where, as usual, s" = '0jo--^fi^w. The topological Berry phase term is crucial to 

capture the dynamics correctly [99]. If we define the z-axis as the direction of mag

netization, we have Vm x A = (0,0,1) = (m) (note that the curl is in field space, 

not real space). Thus, in a linearized, low-energy theory of spin fluctuations, we have 

A « {—my, ™>x, 0). Defining m+ = mx + imy and m~ = mx — imy we obtain a theory 

of a single complex scalar 

Sm — Sm + ^Berry (6-3) 

« - / duddq m+(q, iuS) (—M0iuj + psq
2) m~(—q, —iu) 

+gj(dm)i (6.4) 

Here, M0 is the magnetization density, and ps the magnon stiffness constant. The 

magnon-magnon coupling g, schematically written above and more precisely specified 

in the next chapter, turns out to be irrelevant in the RG sense when fermions are 

also coupled to the system. Finally, the Kondo coupling can be separated into static 

and dynamic parts. The static order of the local moments induces a splitting of the 

conduction electron band on the order of A ~ «/Jc(m2) ~ JK, which modifies S'c
 m t o 
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the following action for the conduction electrons 

Sc = IddKde ^(K,e)(-ie+-^--fji + aA\ ^(K,e) (6.5) 

The dynamical part couples the magnons with the conduction electrons, leading to 

S± = J ^ y > A ^ ^ A ' < f e ( ^ + , , T ^ ) i m 7 + V ' i r + , , i ^ , T m 3 " ) (6-6) 

sic = ~Y f **^**^*KH**^^*^K*m«m») (6J) 

The mapping from the microscopic model in Eq. (6.1) to the field theory in (6.3)-

(6.7) is similar to the antiferromagnetic case [49], but differs from the latter in several 

important ways. One simplification is that translational symmetry is preserved in 

the ferromagnetic phase. At the same time, two complications arise. Ferromagnetic 

order breaks time-reversal symmetry, which is manifested in the Zeeman splitting of 

the spin up and down bands. In addition, the effective field theory for a local-moment 

quantum ferromagnet involves a Berry phase term [98] such that Lorentz invariance 

is broken, even in the continuum limit; the dynamic exponent, connecting u> and q in 

Eq. (6.3), is z = 2 instead of 1. The effective field theory, comprising Eqs. (6.3)-(6.7), 

is subjected to a two-stage RG analysis as detailed in the next chapter. 
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Chapter 7 

Fermi Surface, non-Fermi Liquid, and 
Ferromagnetism in the Kondo Lattice 

The previous chapter presented the derivation of the QNLcrM representation of the 

ferromagnetic Kondo lattice. This chapter is devoted to its analysis for the purpose 

of answering the same question posed earlier for the antiferromagnetic phase: Is 

the Fermi surface large or small? The analysis will prove to be significantly more 

complicated than the antiferromagnetic phase as the length of this chapter testifies. 

For the sake of clarity, a summary of all the results and their implications are presented 

in the next subsection. The rest of the chapter will provide the details explaining how 

those conclusions can be derived. The contents of this chapter will appear in a future 

publication [81]. 

7.1 Summary of Results and Implications 

The most important concepts to physically understand about the ferromagnetic phase 

of the Kondo lattice are depicted in figure 7.1. This displays the spin-subband split

ting of the conduction electrons induced by the local-moment ferromagnetic order, 

and the resulting effect on the excitation spectrum which is a gap in the spin-flip 

continuum. As mentioned at the end of the last chapter, this splitting will lead to a 

separation of the problem into two kinematic regimes. At the lowest energy scales, the 

local-moment magnon is undamped and propagates with z = 2. At higher energies, 

it enters the damping continuum and transforms into z = 3. This can be seen by 

incorporating self-energy corrections as detailed in later subsections of this chapter. 
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From the perspective of the RG, it is perhaps more sensible to think about the high 

energy regime first, and scale down (integrate out high energy modes) to lower ener

gies to see how the behavior changes. We refer to the energy and momentum where 

the magnon enters the continuum as cutoffs, (qc,uc), since this divides the problem 

into two dynamical regimes which call for separate analyses. 

a 

K 

spin-flip 
continuum 

local-moment 
/ magnon 

t t 
KF\ ~~ KF\ KF^ + KFI 

Figure 7.1 : Phase space for the Kondo coupling, a, The spin-splitting of the con
duction electron band, which kinematically suppresses interband processes associated 
with the Kondo spin-flip coupling to the local-moment magnons. b, The kinemat
ics for the spin-flip Kondo coupling. The low-lying excitations of the local-moment 
system are the magnons which enter the continuum at finite u and q. Those of 
the conduction electrons are expressed in terms of the spin-flip continuum, whose 
Kondo-coupling to the local-moment magnons is cut off below the cutoff energy, 
uc « (I/W2)A2, and the cutoff momentum, qc « Kp\ — Kp\, ~ (KF/W)A. 

For energies and momenta above their respective cutoffs, u>c ~ (I/W2)A2 and 

qc ~ KF] — Kp\, ~ (Kp/W)A, the magnons are coupled to the continuum part of 

the transverse spin excitations of the conduction electrons. Here, the Kondo coupling 

is relevant in the RG sense below three dimensions. This implies strong coupling 

between the conduction electrons and the local moments, and both the QNLerM 
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as well as the action for the conduction electrons will be modified. Explicitly, the 

correction to the quadratic part of the QNLcrM is 

7 2 ' - • < " n ( £ w ) « j £ p b ( X + t 7 — ) (7.1) 

where 7 is a dimensionless constant prefactor. At the same time, the conduction 

electrons acquire the following self-energy: 

E(tfF,e) 
-MM/12)11* (-^)2/3 d = 2 

-A3(p0J
2
K/I)e\og(-ie) d = S 

where A2 and A3 are dimensionless constants of order unity. Similar forms for the 

self-energies appear in other contexts, notably the gauge-fermion problem and the 

spin-fluctuation-based quantum critical regime. The formal similarities as well as 

some of the important differences are discussed in later subsections. 

With these damping corrections incorporated, the effective transverse Kondo cou

pling, J^, becomes marginal in the RG sense in both two and three dimensions; the 

marginality is exact in the sense that it extends to infinite loops. This signals the sta

bility of the form of damping for both the magnons and conduction electrons [68, 66]. 

At the same time, the effective longitudinal Kondo coupling, Jfc, as well as the non

linear coupling among the magnons, g, are irrelevant in the RG sense. 

The exactly marginal nature of the Kondo coupling in the continuum part of the 

phase space implies that the effective coupling remains small as we scale down to the 

energy cutoff u ~ uc and, correspondingly, the momentum cutoff q ~ qc. Below these 

cutoffs, the transverse Kondo coupling, which involves spin flips of the conduction 

electrons, cannot connect two points near the up-spin and down-spin Fermi surfaces; 

see Fig. 7.1. Although there is no gap in the density of states, as far as the spin-flip 

Kondo coupling is concerned, the system behaves as if the lowest energy excitations 
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have been gapped out. The important conclusion, then, is that the effective transverse 

Kondo coupling renormalizes to zero in the zero-energy and zero-momentum limit. 

This establishes the absence of static Kondo screening. Hence, the Fermi surface is 

small, and this is illustrated in Fig. 7.2a. 

Our result is surprising given that the ratio JK/VC ~ W2/ (ZJ/^ra*)2) » 1. By 

contrast, the standard Kondo impurity problem with a pseudo-gap of order Apg -C JK 

in the conduction electron density of states near the Fermi energy would be Kondo-

screened [100, 101]. The difference is that, in the latter case, the Kondo coupling 

renormalizes to stronger values as the energy is lowered in the range Apg <C w -C W; 

for JK/'Apg 3> 1, the renormalized Kondo coupling is already large by the time the 

energy is lowered to w ~ Apg. 

The small Fermi surface we have established is to be contrasted with the large 

Fermi surface of a ferromagnetic heavy fermion metal in the Stoner treatment, il

lustrated in Fig. 7.2b. In the latter case, the local moments become entangled 

with the conduction electrons as a result of the static Kondo screening. Kondo reso

nances develop and the local moments become incorporated into a large Fermi surface. 

This Fermi surface comes from a Zeeman-splitting of an underlying Fermi surface for 

the paramagnetic phase. That the paramagnetic Fermi surface is large can be seen 

through a non-perturbative proof [26] that relies upon time-reversal invariance. 

The region of validity of Eqs. (7.1,7.2) corresponds to uc <C UJ <C \I\ and g c < g < 

2Kp- This range is well-defined given that A « JK(™>Z) < JK and that we are con

sidering JK "C \I\ •< W. In the same energy and corresponding temperature range, 

other physical properties also show a non-Fermi liquid behavior. In two dimensions, 

the specific heat coefficient C/T ~ J1-1/3 and the electrical resistivity p ~ T4/3. In 

three dimensions, C/T ~ log(l/T) and p ~ T5/3. 
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Figure 7.2 : Contrasting the small and large Fermi surfaces. The spin-up electron 
Fermi surface is drawn in red and larger than the spin-down electron Fermi surface 
in blue. The larger Fermi surface has been made slightly transparent to reveal the 
smaller sheet, a, The local moments are not part of the Fermi surface, b, Static 
Kondo screening has caused the Fermi surface to expand to accommodate the Kondo 
resonances associated with the local moments. 
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Our result of a stable ferromagnetic metal phase with a small Fermi surface 

provides the basis to understand the dHvA-measured [84, 85, 86] Fermi surface of 

CeRu2Ge2, which is ferromagnetic below Tc = 8 K. Our interpretation rests on a dy

namical Kondo screening effect that turns increasingly weak at lower energies. This is 

supported by the observation of the collapsing quasielastic peak measured in the in

elastic neutron-scattering cross section as the temperature is reduced [102]. It will be 

very instructive if the Fermi surface of UGe2 [95] is further clarified and if systematic 

dHvA measurements are carried out in other ferromagnetic heavy fermion metals as 

well. With future experiments in mind, we note that our conclusion of a small Fermi 

surface also applies to ferrimagnetic order. The might be relevant to UIr2Zn2o which 

displays an antiferromagnetic Weiss temperature, but ferromagnetic order [30]. All 

that is required in our theory of "ferromagnetism" is a splitting of the up and down 

spin Fermi surfaces as a result of the coupling to local moment order. 

In the parameter regime we have considered, the non-Fermi liquid features are 

sizable. For instance, the non-Fermi liquid contribution to the self-energy [Eq. (7.2)] 

is, at the cutoff energy uc, larger than the standard Fermi liquid term associated with 

the interactions among the conduction electrons. It remains to be fully established 

whether the non-Fermi liquid terms in the electrical resistivity and specific heat can 

be readily isolated from contributions of other processes. Still, there is at least one 

family of materials, URu2_xRexSi2 at x > 0.3, in which non-Fermi liquid features 

have been shown to persist deep inside the ferromagnetic regime [91]. Whether this 

observed feature is indeed a property of the ferromagnetic phase, or if it is related 

to some quantum critical fluctuations or even certain disorder effects, remains to 

be clarified experimentally. We hope that our theory will provide motivation for 

the experimental search of non-Fermi liquid behavior in ferromagnetic heavy fermion 
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metals as well. 

Finally, the existence of a ferromagnetic phase with a small Fermi surface raises 

the prospect of a direct quantum phase transition from a Kondo-destroyed ferromag

netic metal to a Kondo-screened paramagnetic metal. This, like its antiferromagnetic 

counterpart [46, 47, 103], in turn raises the possibility of a new type of superconduc

tivity; the underlying quantum fluctuations would be associated with not only the 

development of the ferromagnetic order [93] but also the transformation of a large-

to-small Fermi surface. Accessing the quantum phase transition requires that our 

analysis be extended to the regime where the Kondo coupling is large compared to 

the RKKY interaction, and this represents an important direction for the future. 

To summarize, we have shown that the ferromagnetic Kondo lattice has a param

eter range where static Kondo screening is destroyed and the Fermi surface is small. 

This conclusion is important for heavy fermion physics. It allows us to understand a 

long-standing puzzle on the Fermi surface, as epitomized by the dHvA measurements 

in CeRu2Ge2. It also sharpenes the analogy with the extensively studied antiferro

magnetic heavy fermion metals, where the dichotomy between Kondo breakdown and 

conventional quantum criticality is well established. More broadly, this work has led 

to one of the very few asymptotically exact results for metallic ferromagnetism. 

The remainder of this chapter will describe how the conclusions discussed above 

were found. 

7.2 Scaling Analysis 

We need to carry out an RG analysis for the field theory above several times, both 

before and after self-energies have been incorporated. To begin, we summarize the 

pure boson problem which has been done previously [98]. The dimension of the m field 
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is fixed by the nonlinear constraint ma(x, T)ma(x, r) = 1 which requires [ma(x, r)] = 

0. In momentum space, this becomes [ma{q, u>)] — —d—zy,. Unless indicated otherwise, 

we will exclusively be concerned with field dimensions in momentum space, so the 

arguments will often be dropped: [m] = —d — zy,. As usual for purely bosonic RG, 

the momenta and energies scale simply as [q] = 1 and [u] — zy,, where zy, = 2 is the 

dynamical exponent for the boson, which is consistent with ui ~ q2. The modulo 

47T ambiguity in the Berry phase dictates [M0] = d, and the scale invariance of Sm 

establishes [ps] = d + zy, — 2. 

Read and Sachdev were the first to point out that higher order gradient terms 

may be relevant. 

S$ = 9 J ddxdT\dymadyimadvmbdvmh-2dumadvmadIJ/rnhdvrnhj (7.3) 

Using the scaling scheme described above, this coupling, representing magnon-magnon 

interactions, has scaling dimension [g] = d — 2. This indicates that, for d > 2, the 

magnon-magnon scattering is relevant. We will see later why this term becomes 

irrelevant when fermions are incorporated. 

In parallel to the pure boson problem, there is a well known procedure for han

dling pure fermion problems within a momentum shell approach [63]. The essential 

difference from the bosonic RG is that the low energy manifold now consists of an 

extended surface, the Fermi surface, rather than a single point. Scaling should there

fore be done with respect to this surface, and this may be accomplished by a clever 

change of coordinates for a simple spherical Fermi surface. 

When the action contains both bosons and fermions, the momentum shell RG 

becomes much more complicated. In the special case Zf = 1 and z\, = 1, we have 

extended Shankar's approach in a straightforward fashion [49]. However, such an 
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approach does not work if Zf ^ z&. Another strategy has been proposed by Altshuler, 

Ioffe, and Millis [68], and we adopt this method here. 

Each fermion momentum space integral is decomposed into patches of size Af in 

every direction so that each patch is locally a flat space. Scaling is accomplished lo

cally with respect to the center of each patch. Momenta are therefore decomposed into 

components parallel (k\\) and perpendicular (k±) to the vector normal to the Fermi 

surface at this reference point. For example, Jaanillusd
dK = £ p a t c h e s J ^ d^^dk^. 

Note that some authors use an opposite naming convention for components; we fol

low the notation of Ref. [68]. A tacit assumption of this approach is that the boson 

does not connect two fermipns in different patches; this is only justified for forward 

scattering problems like the one we consider here. Bosonic momentum integrals are 

already constrained to a volume of linear dimension A&, which we assume naturally 

fits inside the fermionic patch: A& ~ A/ = A. In this scheme, fermionic and bosonic 

momenta scale the same way, albeit anisotropically. The assignment of values for [e], 

[k\\], and [k±] will depend on the form of the quadratic action, and this will be dif

ferent depending on how we incorporate the corrections to the QNLcrM and fermion 

actions. The scaling analysis will therefore need to be done anew for each case. 

The introduction of fermions and the choice to use the scaling procedure outlined 

above has an immediate consequence on the way we scale the bosonic action. In the 

pure boson case, we can use [M0] = d. This comes from the modulo 4w ambiguity 

of the Berry phase. Specifically, since et4nS = 1, we need IA-KS = i27rn, where n is 

an integer. Therefore S is quantized at either an integer or half integer value, and 

is insensitive to the RG rescaling. However, since S = M0 f ddx = M0L
d, and since 

[Ld] — —d, we must have [M0] = d [9]. But the anisotropic scalings we employ in 

momentum space no longer translate simply to a coordinate space analysis. We must 
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therefore abandon these dimension assignments for the pure boson problem. Instead, 

we write the action completely in momentum space and live with the understanding 

that after rescaling, the fields ma(q,u) and ^(k,e) no longer represent the Fourier 

transforms of the coordinate space fields ma(x,r) and ip(x,r). This is nothing new 

since even in the original Wilsonian RG formalism the imposition of a cutoff invali

dates the interpretation of (f>(q) as a true Fourier transform of 4>(x). 

A second reason to modify the Read-Sachdev assignments for scaling dimensions 

in the pure boson problem is that the addition of fermions acts as a magnetization sink 

for the local-moment system. Of course, the overall magnetization is still conserved 

in the ferromagnetic phase. Furthermore, we assume there are no valence fluctuations 

(an implicit assumption in writing down the microscopic Kondo-Heisenberg Hamil-

tonian) so we can still treat the local moments as 0(3) spins attached to the lattice, 

and therefore work with the nonlinear field theory. 

The way we fix the scaling dimensions is to define the quadratic action according 

to: 

S, = I duj dd 1q±dq\\ m+ {—iu + qj_) m (7.4) 

Sc = J2 f ded^k^k^Me-VF^y-^-k])^ (7.5) 
patches 

where, as usual [68], q± S> q\\. The coupling of the local-moment magnons to the 

fermions introduces anisotropy in momentum space; as we will see, such an anisotropic 

fixed point turns out to be exactly marginal. To ensure that these forms are scale 
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invariant, we make the assignments: 

[e] = 1 

[*ll] = 1 

[k±] = l/zt = l/2 

[iP] = -(3zb + d-l)/(2zb) = -(5 + d)/4 

[m] = -(2zb + d+l)/(2zb) = -(5 + d)/A (7.6) 

This information is used to count dimensions for the Kondo coupling. 

SK = JK dd-1qxdq\\du;dd-1k±dki\de $k+qAi>kAm~ + $k+qA^kAm+\ (7.7) 

The tree-level dimension of the Kondo coupling is now easily found. 

[s^ = o 

= [JK] + 2[dd~1k±dkllde] + 2[V>] + [m] 

,j±, 2d-l + 2zb Szb + d-l 2zb + d+l 
1 K1 zb 2zb 2zb 

=* \JK\ - ( 3 - d ) / ( 2 ^ ) (7.8) 

The spin-flip Kondo coupling is relevant in two dimensions, and marginal (at the 

tree level) in three dimensions. Usually, when the Kondo coupling is relevant, we 

expect the model to flow to a strong coupling fixed point where Kondo screening sets 

in, destroying the magnetic order and leading to a paramagnetic phase with a large 

Fermi surface. This, however, would be an incorrect, and inconsistent, conclusion. 

A proper calculation of the self energies and subsequent re-analysis of the scaling 

dimensions around the appropriate fixed point will show that there will never be 

Kondo screening. 
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7.3 Damping Corrections to the QNLcrM and Scaling 

Our analysis so far has been a little too naive. In particular, it describes the wrong 

fixed point. Note that so far we have not considered the ^-component of the Kondo 

interaction, JR- / szmz, which we refer to as the longitudinal channel. This coupling 

has two important effects. First, it introduces the effect of splitting the spin bands of 

the conduction electrons. Second, when the modified bosonic propagator is inserted 

into the fermionic self energy we will obtain a non-Fermi liquid form when the Kondo 

coupling is SU(2) symmetric (</£ = J^ = J|-). What is crucial for this, of course, is 

that the magnons will remain gapless in the presense of the Kondo coupling to the 

conduction electrons, and we wish to show this explicitly. With all this in mind, we 

present below in some detail the calculation of the magnon self-energy, as well as an 

RG analysis with the modified QNLCTM. 

ip-a m~a ^o 

f/V ma il>a 

Figure 7.3 : Interaction vertices of the Yg phase 

The first observation is easy to demonstrate. For small fluctuations about the 

ordered state, the longitudinal interaction is approximately JK f (rfiipi — ^J.^i)(l ~~ 

| ra + rn _ ) . where we have used the constraint mz = \ / l — m+m~. The "1" comes 

from the magnetization in the z-direction, and leads to a Zeeman shift in the energy 

of the conduction electrons. The reference point for our theory should therefore have 
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a quadratic action for the fermions of the form 

Sc = f ddxdr t/v (x, T)(dT-^-v + aA\i>a {x, r ) (7.9) 

where A ~ JK(mz) ~ J^. We need to write this in momentum space where it has 

the effect of defining a spin-dependent Fermi wavevector: Kp„ = y/2me(/j, + aA). 

Expression (7.5) is unchanged except for the new definition of Kpa- We need to build 

an effective low-energy theory around this fixed point, where there is a gap of size 2A 

between the up-spin and down-spin bands. This form of the fermionic spectrum is 

essential to correctly capture the damping of magnons via the Kondo interaction. The 

interaction vertices are represented diagrammatically in figure 7.3, while the leading 

contributions to the self energies are shown in figure 7.4. The real and imaginary parts 

of the retarded functions can be calculated exactly. For example, the contribution 

from diagram TlA is 

Ren£(9-» = J^k\q 

+*:FTsgn(C-,T)e(|C-)T| - i)^/e,T-i 

+/rn8gn(Cu)e(|Cf,il - Vy/tlr1 

mJt-Jis r imn£(g-» = ^ ^ [ - ^ e a - I C - . T D ^ / i - e . r 

+Kne(i-|C+,il)V'1-C,ij (7-io) 

where we have defined (±j(T = ^ ~ 2 ^ ± ^ — , and a E {+, —}. The region in (a;, <?)-space 

where the imaginary part is non-zero is depicted in the main paper. A similar exact 

expression is also available in d = 3, but the approximate form is perhaps more useful. 

The bubble 11^ in the regime A < w < vpq <C fJ- = Kp/(2me) is approximately: 

n£(M « JpKP^ii + hd^-) (7.ii) 
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where 7<j is a constant prefactor which depends on the spatial dimension, and Po ' = 

^2CT Po I *s the density of states at the Fermi level. In two and three dimensions, 

the explicit expressions are p0~ = ^ and PQ~ = -^Kpa- The u/q form of the 

damping is common to a variety of systems; in this case it signifies Landau damping 

of the magnons with spin 1 excitations of the fermions. 

n c 

—a 

^o = 

n B 

n D _ 

JK
+ JK 

Figure 7.4 : Self energies of the F5 phase 

To satisfy Goldstone's theorem, it is necessary for all the pieces of II to cancel 

in such a way that the full bosonic propagator emerges in massless form. In the 

gauge-fermion problem, this is a consequence of gauge invariance [104]. In our case, 

the cancellation is somewhat more subtle. First, note that the diagrams Iic and II1* 

are explicitly 0{J](). Diagrams HA and IIB, however, are both linear in JK- This is 
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obvious for I I s , whose calculation is trivial: 

Rel lf(<j» = -Js
K{^-ni) 

I m l l | ( g » = 0 (7.12) 

The sign difference comes from the fact that there is a four-leg vertex J|- for each spin, 

but the sign of the coupling constant depends on <r. The reason why IIA is linear in 

JK instead of 0 (</£-) can be seen from a simple calculation at (q = 0, u = 0), which is 

non-singular due to the different spin indices. After performing the Matsubara sum, 

ni(8,o) - 2jp-J^f-f^ 
J (27r)a

 €K,I-€K,I 

2J+T_ , ddK n(^) - n(frfi) «/£ 
= ^ ( n t - n A ) (7.13) 

Therefore, when the Kondo coupling is SU(2) symmetric the mass terms cancel and 

IP4 + IIB « Jx7d|w|/g and thus x'1^^) = Q2 + ldJ]c~-, where as usual we have 

neglected the linear in OJ term because it is less relevant in the RG sense. This special 

form of the bosonic propagator has emerged in a number of other applications, the 

most famous example being the gauge-fermion problem. We will comment on its 

consequence a little later. 

With the inclusion of damping, the quadratic action now becomes: 

Sm = dudd-1q±dqllm
+ (q2

± + b—]m- (7.14) 

Sc = dedd~1k±dk\\ tya (ie — Vpk\\ — a^k2^ tp^ (7.15) 

where aa and b are simply couplings that control the relative scaling between different 

components of the action. Their dimensions will be chosen to ensure the quadratic 

action is scale invariant. Significantly, in this z\, = 3 theory the Berry phase no longer 
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controls the dynamics, being instead overwhelmed by the damping term. Physically, 

this is because the magnetization of the local moment system is no longer conserved 

by itself once it can exchange spin flips with the conduction electrons. 

The scaling analysis now needs to be redone. 

[e] = 1 

M = 1 

[k±] = l/zb=l/3 

[a] = l-l/zb = 2/3 

[b] = 0 

[</>] = -(3zb + d-l)/(2zb) = -(8 + d)/6 

[m] = -(2zb + d+l)/(2zb) = -(7 + d)/6 (7.16) 

Note that in principle aCT and fa could scale differently for different spin projections, 

but because of the way they enter the action, we scale them identically. With these 

choices, all the terms in the quadratic action are scale invariant. The Kondo coupling 

terms, 

$K = JK dd~1q_Ldq\\dujdd~1k±dk\ide fa+qAfayim~ + $fc+*,i^fc,Tm? (7-17) 

&K = JK dd~1qi±dqi\\dujidd~1q2xdq2\\du2dd~1k±dk\ide 

x [1Pk+qi-q2,^k,]m+1m-2 + i}k+qi-q2A^Klm^m-2 (7.18) 
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are easily analyzed: 

[S*\ = 0 

- [J±] + 2[dd-1kxdkllde] + 2[i>] + [m] 

1 Ki zb 2zb 

= * [J*\ = (3-d)/(2z) 

[S*K] = 0 

2zb + d + 1 
2z6 

(7.19) 

= \JZK\ + ^[d^kxdkude] + 2[ip) + 2{m] 

zd-l + 2zh 23zb + d-l 22zb + d+l 

zb 2zb 2zb 

= • [J'K] = (1 - d)A (7-20) 

The inclusions of uj/q damping into the quadratic part of the boson action has the 

effect of changing the dynamics from zb — 2 to zb = 3, however, there is no change 

to the dimension of the spin-flip Kondo coupling. The longitudinal Kondo coupling 

is irrelevant for any d > 1. 

It turns out that a proper analysis of the fixed point requires insertion of the 

fermion self energy as well [68], which we turn to next. 

7.4 Electron Self Energy and Non-Fermi Liquid Behavior 

In addition to the scaling analysis, we have another reason to determine the electron 

self-energy. Anticipating that the non-Fermi liquid contribution from the Kondo 

coupling to the magnons will be cut off at the energy of order u ~ u>c ~ (I/W2) A2, we 

wish to ascertain the magnitude of the non-Fermi liquid term at this cutoff scale. This 

will allow us to compare this term with some background Fermi liquid contributions. 

Since the Kondo coupling also occurs in the modified magnon propagator, we present 

here the calculation of the electron self-energy in some detail. 
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The leading order contribution to the electron self energy in d = 2 is given by the 

dressed boson, bare fermion and no vertex correction, as depicted in figure 7.4. 

2 f d2qdu) 1 1 
K J (2TT)3 ie + iu- ZK+qt<T q* - U(q, iw) 

2 fdSdw 1 1 
dK J (2TT)3 ie + i u - ^ - % cos 9 q* - Tl(q, ™) ^ ' } 

Prom the previous section we have the result U(q, iun) « —J\y^-. For the integral 

over 9 we use: J^ ^ ^ = ^ ^ for any complex z. 

- _ 2 / qdqdw 1 1 f 1 

2 r qdqdw 1 1 t ^ 1 
K J (2TT)3 Kq/m q2 + j^M J e+%^ +icos9 

_ 2 f qdqdu 1 1 27rsgn(e + a;) 

But in the regime of interest, and with the momentum restricted to K « ATp, we 

have ^^fm" ^ 1* ^ e self_energy then simplifies to 

Ea(KF,ie) « -iJlc I "fit *, 2?rSgn(6+
|
a;) 

T9 ira /*A , f°° , sgnfe + a;) 
= " ^ T ^ T T / ^ / ^ 2 T2 H ( ? - 2 3 ) 

(27T)ZKF 7O ./-OO <?2 + JicTq 

This integral is a little tricky. First note that the frequency integral should have 

a cutoff, but this is complicated by the presence of the sgn function. It would be 

incorrect to simply shift variables u> —* u> + e. The essential identity we need is: 

f duf(w)sgn{u + e) = 2 / duf(u) (7.24) 
J-A JO 



117 

which is only true for even functions: f(u>) = /(—o>). To see where this comes from, 

note first that for even functions: 

rb p—b 

I duf(u) = - dwf(u) 
J a J —a 

Next, to handle the sgn function we partition the integral into four regions: 

/

A P — € pO Pt ph. 

dwf(u)sga(u + e) = - <kuf(u)+ duf(u)+ duf(u)+ f(u) 
A ./-A J-e JO Je 

where the minus sign is the result of the sgn function. Now we use the identity valid 

for even functions: 

/

A pe PO pe /»A 

du)f(uj)sgn{uj + e) = / dwf(u) - / duf(u) + / duf(u) + / f(u) 
•A JA Je Jo Je 

= 2 [ dujf{u) (7.25) 

Armed with this identity, the self energy is: 

Z<r(KF,ie) » -J ——— / dq / du- —-TT 

{2iryKF JQ J0 q2 + J | . 7 M 
r2 2im / , 0 0

J , / r 2 7 e \ 
- ^ % (Jhef* (7-26) (27r)2KF7v/3 

Had we used a cutoff on the q-integral, we would have ended up with some unsightly 

hypergeometric functions whose asymptotic form is the same as above, so it is easier 

to just set the cutoff to infinity straight away. For convenience, we have so far dropped 

the stiffness (ps) factor in the q2 term of the boson propagator. Reintroducing this 

factor, and taking ps oc / , we end up with the conduction electron self-energy quoted 

in the main text, Eq. (6). 

Redoing the calculations for d = 3 is relatively straightforward, although now the 

integral will be UV divergent. The only difference is that now we set K onto the 



118 

Kx-axis since the (f> variable is the one that runs from 0 •—> 2%. This allows us to use 

the same identity on the <f> integral that we used in the d = 2 case for the 0 integral. 

q2dq sin 6d9du> 1 1 f 1 v (v -\ T2 [qdq sin 6d9du 1 1 f 
S»(tf,,e) _ JKJ ^ Kq/mf + Jl-Mj d<j>-

(2TT)4 Kq/m q2 + j^M J ^ i £ ± ^ l ^ _ c o s 0 

q2dq sin OdOdw 1 1 f fJ 1 
dcp-

. T2 f Q dq sin OdOdu 1 1 /" 
=
 ~UK] ( 2 ^ i ^ / m ? + j ^ H J U - £ ± ^ + < cos 0 

T2 /" 92(^9sm QdOdw 1 1 27r sgn(e + a;) 
= - "J (ihc)« J C / m g . + ^ y M / ( , + ^ , = 

Within the regime of interest this simplifies to 

E,(Jf„«) * -jK-—-J &J^^—j-g 

- -4(s^r*2i°g(i+^) 
A3l„g(1 + 42j)+^log(l + ^ ) ; 

e + 0(e2) (7.27) 

2im 
( 2 ^ ) 3 ^ 7 

2ira 
(2TT)3KF7 

A3 

^ 7 - J%7 l oS e + J\l log - = -
Ji<:7. 

So the leading singularity in <i = 3 is: 

E oc tJ&eloge (7.28) 

Again, recovering the stiffness factor leads to the form of the conduction electron 

self-energy presented in the main text, Eq. (6). 

Holstein, Norton, and Pincus were the first to show that the transverse electromag

netic field coupling remains unscreened and can in principle lead to non-Fermi liquid 

behavior [70]. For a real electromagnetic field, the smallness of the fine structure 

constant suppresses this effect to extremely low temperatures. Related non-Fermi 

liquid form appears in the gauge-fermion problem [105, 66, 68]. More recently, simi

lar self energies have been found near quantum critical points and the nematic fermi 
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fluid [106, 107, 108]. The prevalence of this self energy results from the generic pres

ence of a massless Zb = 3 boson coupled to a system with a Fermi surface. The 

problem we have considered here has some important formal differences from the 

gauge-fermion and critical Fermi liquid cases, even in the Zb — 3 continuum regime. 

One difference is in the mechanism by which the boson propagators are gapless. In 

the gauge-fermion problem, gauge invariance guarantees the cancellation of the mass 

term upon adding the bubble and tadpole diagrams in a large-N calculation of the 

self energy of the vector potential [104]. At the ferromagnetic QCP, the divergence 

of the correlation length (£ - 2 —> 0) leads to gapless quantum critical fluctuations. In 

our case, it is the SU(2) spin symmetry of the Kondo interaction which dictates that 

the contribution from the longitudinal channel exactly cancels that from the trans

verse channel. A similar effect from the longitudinal mode of the ordered itinerant 

antiferromagnet was recently discussed by [79], and we suspect that the cancellation 

argument we advance here may apply to their case as well. Another feature that is 

unique to our problem corresponds to the specific non-linear terms [Eq. 7.3] that oc

cur here, which come into play in our RG analysis. We have shown that these terms, 

while relevant for the pure Heisenberg problem, become irrelevant when the Kondo 

coupling to the fermions is introduced. 

We close this section by addressing how the self-energy correction to fermions 

modify the damping term in the QNLcrM given in Eq. (7.11). The damping remains 

to have the u/q form. For the regime of our interest here, u ~ q3, both the self-energy 

and vertex corrections to the damping term are negligble. For generic |a>| <C q, 

the self-energy and vertex corrections cancel with each other leaving a subleading 

contribution [68, 109]. 
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7.5 Scaling With Fully Dressed Propagators 

Now that we have the expression for the electron self energy we can finally incorporate 

it into the fixed point and redo the scaling analysis. 

Sm = dujdd-lqLdq\\ m+ (q\ + b— J m~ (7.29) 

Sc = I ded^kxdkw fa {\e\d/z» - vFk\\ - aak
2
±) fa (7.30) 

Note that the self energy correction to the fermion in d — 3 is actually e log e, but 

for the purposes of scaling we can simultaneously treat the cases d = 2 and d = 3 by 

analyzing the form ed/Zb. To make every term in the quadratic action scale invariant 

we make the assignments: 

[k±] = l/d 

W - 1 
[e] = zb/d = 3/d 

K] = l -2/d 

[1>] = -(3d + zb-l)/(2d) = -(3d + 2)/(2d) 

[m] = -(2d + zb + l)/{2d) = -(2d + 4)/(2d) (7.31) 

Inserting these dimensions into the Kondo coupling produces: 

[J±] = (3-zb)/(2d) = 0 (7.32) 

[JK\ = (3-zb-d)/d=-l (7.33) 

In both d = 2 and d = 3, we find that the insertion of the self energies has led to the 

marginality of the transverse Kondo coupling, and the irrelevance of the longitudinal 

channel. This demonstrates that with the correct self energies built into the theory, 

which references the appropriate stable fixed point, there is never any unstable flow 
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of the Kondo coupling. The ferromagnetic phase with a small Fermi surface is stable 

to the Kondo coupling. 

Parenthetically, note that the magnon scattering term scales like: 

S<? ~ g J' ((f-Vdffydw)8 (q±m)4 (7.34) 

3(d - 1 + d + zb) + 4 - 2{2d + zh + 1) 
[g] = d 

l-zb-2d 
d 

= -2*±± (7.35) 

which is always irrelevant. 

7.6 T h e Effect o f t h e C u t o f f 

Below the cutoff, u < uc ~ (I/W2)A2 and q < qc ~ (KF/W)A, the transverse 

Kondo coupling becomes irrelevant in the RG sense due to phase space restrictions. 

The longitudinal Kondo coupling, having the scaling dimension (1—d)/zi„ is irrelevant 

as well. The non-Fermi liquid effect will therefore be cut off in this range. 

To ascertain the strength of the non-Fermi liquid contribution, we can compare 

the continuum contribution to the self energy, Eq. (7.2), with the background Fermi 

liquid contribution at the cutoff frequency u>c. Adding a Coulomb interaction u among 

the conduction electrons leads to a Fermi-liquid contribution to the self-energy of the 

order T,FL(^) ~ u2ple2. In d = 2 we have 

* W e ~ w c ) ~ ( p o 4 / / 2 ) 1 / 3 ^ 2 / 3 ~ JT/W5/3 (7.36) 

ZFL(e~uc) = u2plu2
c~(u2I2/W7)J4

K (7.37) 

In the parameter range we consider, JK «C | / | <$; W, I^NFL(^ ~ <*>c) is much larger 

than £.F£,(e ~ uc). Note that in three dimensions, Ejv,F£(e ~ u>c) ~ poJ^Uc/I ~ 
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Jjc/W3, leading to a similar conclusion. 

7.7 Absence of Loop Corrections 

7.7.1 Vertex corrections 

For problems involving forward scattering of conduction electrons, the inability of 

vertex corrections to qualitatively modify leading order results has been established 

in related problems by a numbers of authors [66, 68, 109, 49]. The essence of the 

argument is a sort of Migdal's theorem reminiscent of the suppression of vertex cor

rections in the electron-phonon problem [27]. Previous work utilized a large number 

of fermion flavors, but we will take a slightly different approach which is more in line 

with the spirit of the fermionic RG and, like the original work by Migdal, focuses 

more explicitly on kinematics and phase space. The conclusions are essentially the 

same. The small parameter in our problem is A/Kp = 1/N\ which we use to define 

the large-A^A expansion. (This AT\ —• oo limit corresponds to asymptotically low en

ergies, i.e., with the fermions approaching the Fermi surface.) Denoting the number 

of loops by L, the structure of the beta function is given by: 

L/—1 A 
j 

= boJK + - AJK (7.38) 
a log s 

where loop integrals are performed over shells of width A —A/s « A logs with scaling 

parameter s = ee ^ 1. L is equal to the number of integrations needed to compute 

the diagram. If the exponents e(L,d) are positive for all values of L and d (> 1), 

the beta function is given by the tree-level result (PQJK) in the large-A/A limit, which 

means vertex corrections can be neglected. Since we have already shown that bo = 0, 
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this would imply marginality to all orders. The goal of this section is to demonstrate 

that this is indeed the case-

Figure 7.5 : L = 1 and L = 2 vertex corrections. All propagators are dressed. 

In what follows, we give two general arguments that demonstrate that vertex 

corrections become increasingly suppressed in the loop expansion. Specifically, a 

diagram with L-loops will come with a factor of l/A^(rf+3)/3, i.e. e(L,d) = L(d + 

3)/3. We also illustrate the principle by calculating an example L = 1 diagram to 

demonstrate how this factor emerges. We work with cutoffs in units of Kp so that 

NA = 1/A. 

The first argument is essentially just power-counting. Every loop integral will 

introduce a factor of Ad+1 from the measure of integration. For L loops, there will 

be 2L fermion propagators (see Fig 7.5) each carrying a factor of A_d//2 with z — 3. 

There will also be L boson propagators which, because of the u/q form of the boson 

self energy, scale like 0(1). Thus, each diagram with L-loops contributes the following 
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amount of phase space. 

AJK = ^6 L ( 5 )4 L + 1 (A d + 1 ) L (A- d / 2 ) 2 L (A/A) L 

oo 

= 5>L(s)4 L + 1 A [ d ( 1 - 2 / 2 ) + 1 ] L 

L = l 

= 2 ^ Ar(d+3)L/3 JK + (7-39) 
£,=1 i v A 

Therefore e(L, eQ = (d+3)L/3 > 0, vertex corrects are kinematically suppressed, and 

the tree level result (marginality) is the entire story. 

The careful reader will have noticed that other classes of diagrams are possible. 

For example, Fig 7.6a shows a self-energy insertion into the boson propagator. Iterates 

of diagrams like this might at first appear to compensate for some powers of N^ due 

to the pure fermion loops. However, since we are using fully dressed propagators, 

this would be double counting. Such terms are already included by defining the fixed 

point action to have the u/q self energy from the beginning. 

(a) 

(b) 

Figure 7.6 : (a) Diagram which is not included because self energy corrections are 
already built into the dressed propagators, (b) An example of L = 4 diagram with 6 
fermion propagators and 4 boson propagators. 

Another class of diagram is represented in Fig 7.6b, which is L = 4 and with 
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propagator powers of G6x4 = G2L~2xL- More generally, an exhaustive classification 

of diagrams at order L, with L even, will actually have L/2 +1 subclasses which have 

factors 

If L is odd, the series will terminate at L+1 rather than L, and there will be (L+1)/2 

subclasses. However, since these subclasses only differ by smaller powers of G than 

the G2L we considered above, it is easy to see that they will be subleading compared 

to the estimate given in equation 7.39. 

The second way to obtain Migdal's theorem more closely mirrors the antiferro-

magnetic case [49] and the "leap to all loops" of the pure fermion problem [63]. Begin 

by writing the quadratic parts of the action and rescaling all momenta and energies 

by A so the limits of integration become dimensionless: k —> AA;, e —» Ae, etc. 

Sc = Ad+1 ̂ 2 / ddkde ^(ied/zAd/z - Afcy - A 2 ^ ) ^ (7.40) 

Sm = Ad+1 f ddqdLjm+(A2q2+u/q)m- (7.41) 

For simplicity, we have omitted some prefactors. To leading order in 1/NA (small A), 

the dominant term in the fermionic part is tdlz (eloge in d = 3), while the u/q term 

is largest in the bosonic part. We therefore rescale fields according to these terms, 

obtaining: 

^ _ A-(4d/3+l)/2^ 

m± _ A-(d+l)/2m± ( 7 4 2 ) 

This allows us to estimate the phase space contribution of the interaction term. 
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Rescaling according to this procedure, the Kondo coupling is given by: 

JK f A2(d+VddkdeddqduA-W3+V^i;A-(d+1V2m± (7.43) 

oc JKA (d+3) /6 (7.44) 

Associated with every power of JK is a factor 1/A7^ + '' , and within the loop expan

sion the Lt/l-order correction is given by AJK/JK °C J j ^ oc 1/N[ + ' , or e(L,d) — 

(d + 3)/3 > 0, which is the same result we found earlier. Therefore vertex correction 

can be neglected and the tree-level result is asymptotically exact to all orders. 

Note that the analog of this field rescaling for the pure fermion problem results 

in a four-fermion coupling given by Aufip4'. In this case, Shankar found that the 

four-fermion coupling is still marginal despite the additional factor of A induced by 

the field rescaling. We are simply to regard A as a small parameter (in units of Kp), 

not a running variable. Within the momentum shell approach, the beta function is 

determined by finding the dependence on the parameter s = ee and computing the 

derivative d/d£, not by finding any explicit dependence on A as is done in the field 

theory approach. 

We have now proven that vertex corrections can be neglected in the large-A^v limit. 

To demonstrate how the peculiar exponent e(L, d) = (d + 3)/3 arises in a concrete 

example, let us calculate the first, L = 1, vertex correction shown in figure 7.5. 

AJK(p, ie; Q, ifi) = J% J ^G(p + 1 « + i.)G{p + 1 + Q, fc + fc, + fflfcffi fc,) 

(7.45) 

We can set the fermionic variables p = 0 (measured from the patch origin) and e = 0 

since any deviation would be irrelevant in the RG sense. In contrast, the variables Q 

and Q belong to the external boson which we keep nonzero, keeping in mind that our 
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problem has cutoffs uic and qc-

1 

* fcJ'V + np/» - n(g„ + Qy) - t,A(^ + gi)/(2^Tn) 

One way to demonstrate Migdal's theorem is to factorize integrands of momentum 

integrals according to a certain procedure, as detailed by several authors [68, 110, 

111]. Physically, this relies of the fact that fermions are much faster than bosons. 

Formally, this can be accomplished by rescaling vp —* NVF and similarly for the 

coupling; see Appendix A of of ref [111]. 

The validity of the factorization is not entirely obvious. Within a large-N treat

ment, a thorough analysis has been done where numerical comparisons show that 

the factorization approximation only begins to break down at relatively high tem

peratures [110], outside the regime we consider here. In the next section, we show 

that the factorization of momentum integrations applies in the large-A^A limit (with

out invoking large-AT). For the rest of this section, we first proceed with such a 

factorization. 

In such a case, the only parts of the integrand that depend on q± are the bosonic 

propagators. This allows us to define a momentum independent boson given by the 

fully momentum dependent propagator integrated along the Fermi surface: 

Xi(iu;A±,qc) = I dd lqxx{q,iu)\n=Q 

Note, once again, that we adopt the convention of ref. [68] in labeling parallel and 

perpendicular components. Also note that unlike other problems, we have a natural 

infrared regularization provided by the cutoff on bosonic modes. All integrals thus 
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have both UV regularizations A and IR regularizations qc and UJC. Moreover, loop 

integrals will be performed over momentum and energy shells, rather than extending 

the limits of integration to infinite intervals. This is the reason why we do not find 

a non-analytic q^2 correction to the static boson propagator, in contrast to theories 

for the itinerant ferromagnetic quantum critical point [112]. 

To leading order in large-A^A, the vertex correction can now be written in factorized 

form: 

AJK{0,0;Qhity = J\ duXi(iu;A±,qc) 

x / dg||-
J id ^2 / 3M2 /3 - "Ttfii iel,z\u + ^l2 / 3 - VM\ + Q\\) 

Note that the dimensional dependence is confined to Xi(zu;), while the q\\ dependence 

is isolated in the fermionic propagators. The dependence on external Q± has dropped 

out, which is higher order in 1/N\. To proceed, we consider d = 2 for this illustrative 

example. 

The range of integration requires some comment. Within the momentum-shell 

scheme, each loop integral consists of a number of "slabs" in phase space of width 

A — A/sv « 77A log s, where rj is the scaling dimension of the appropriate direction. 

Within each slab, the integrand can be approximated by its value at the cutoff. For 

example, at one-loop we can write 

/ = dudq\\dq±f(u,q\\,q±) 

~ [q±] A± logs / dwdq\\[f(w, q\\,A±) + f(u, qh -Aj_)] 

+ h | ] A||logs / dudq±[f(uj,Ahq±) + f(uj,-Ahq±)] 

+ [w]Awloga / dg||dgJ.[/(Aw,g||,gJ.)-l-/(-Aw,g||,gj.)] 

= (A±I± + A\lL+Au,Iu)\ogs (7.47) 
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We have divided the loop integral into a sum of (d+1) terms which represent the slabs 

directed along each of the (d + 1) hyperplanes. This is simply the multidimensional 

generalization of the trivial result: JA, „ dx f(x) + J_A dx f{x) « ?7Alogs[/(A) 4-

/(—A)]. Let us consider one of these slab integrals. 

• ' ' • U J - ' U ) 

J y i "T" / u , i J 

x 
1 

• 1/3 A 2 / 3 

-«e0 AJ - v^q\\ 

+ 

teJ /3(Aw + u;c)2/3 - ^(gy + &) 
1 1 

(7.48) 
ieJ^A2/3 + utg|| ieJ/3(Aw - wc)

2/3 + ^(g-y + gc)-

where we have take the external frequency and moment down to the cutoffs qc and 

uc, and assumed 0 < uc < A„. This integral is factorized, with the first factor being 

given by 

Xi(w = K) = Xi(w = -K) 

1 

/ 
= dq. • g 2 + 7 A 

9X1 

(1/3)(7AW)-1/8 

-2^3 arctan 

2V3 arctan 
l -2 9 c ( 7 A a ) ) - 1 /3 

V5 
1 - 2qc{1K)-^ 

+21og(9c + ( T A , ) 1 / 3 ) - 21og(A± + ( T A , ) 1 / 3 ) 

- log(9 c
2 - 9 c (7AJ 1 / 3 + (7A.)2/3) _ 

+ log(Ai-A±(7Au ;)
1 /3 + (7Aa;)2/3 ) (7.49) 

For an estimate of this factor, we must first take the limit qc —> 0, since this must be 
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smaller than the UV cutoffs: 

l imyi(^ = Aw) = (1/9)(7A.)-1 / 3 

qc->0 

, V 3 - 6 V 3 a r c t a n ( 1 - 2 A ^ ) " 1 / 3 ) 

-61og(A± + (7A.)1/3) + 31og(Ai - A±(7Au;)
1/3 + {^f*) 

(7.50) 

next we set Aw = Aj_ = A, then take a small A expansion, finding: 

Xi oc A/7 - ^ A 3 + 0(A5) (7.51) 
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The second factor is a more complicated integral. 

J(GG\Aw + GGUJ = / ^ l [ . e i / g A 2 / 3 _ 

1 

vrq\\ iel/3(Aw + u>c)
2/3 - v ^ + qc) 

1 

ieJ/3A'/3 + vm ieJ/3(Aw - uc)^ + v^ + qc) 
1 

— arctan 
Vtfc 

i4/3[(K + Vc)2/3-Al/3]-vFqc 

A 2i [arctan ( ^ A " ^ 
\ T̂ L Veo /3 |Aw |2/V ^ " " V4 / 3 |AJ 2 / 3 . 

_ J_ ^1 , _ e f |Wc + A.|4/3 + vl(qc - Ay)2 

U l o g ^ 7 3 T i^^ + A ^ + v ^ + A^ 

el/3\uc + Aw\*/* 
l0£ -

+i arg[2ej/3|a;c + AJ2 / 3 - ^(gc - A,,)] 

-iaxg[ielJ3\uc + Aw|2/3 - vt(qc + A,,)] 

+zarg[zeJ/3|o;c + Aa,|
2/3] 

-iarg[ieJ/3|u;c + AJ 2 / 3 -2^ g c ] N 

1 
+ie1

Q
/3[(A„-uc)W-A2J3-vFqc} 

x< -
2i 

arctan 
-utA|| 

eJ/3|Awp/3^ arctan 
-«T& 

eo^lA^p/a 

1/1 e f l - ^ + A . I ^ - ^ - A , , ) 2 

ui V2 

-7TloS 

e
2 / 3 | - U , c + A j 4 / 3 _ U 2 ( g c + A | | ) 2 

ffV^ + AJ4'8 

+i arg[iej/3| - u;c + A,/ /3 + v ^ - A,,)] 

- i arg[;e;
/3| - uc + Aw|2/3 + Vl(qc + A,,)] 

+iarg[ie; /3 |-u;c + AJ2/3] 

-i arg[iej/3| - wc + A„|2/3 + 2vtqc] (7.52) 
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where we have neglected terms of order v\ — v^ ~ A///, and used / dq\\ = J dq\\Q(q\\ — 

<jc)0(A|| — q\\). Using the same procedure as for the previous factor, as well as the 

following simplifications, qc/A <C 1, uc/A <C 1, wc/qc <C 1, and a>c/a> <C 1, we find 

the rather simple result: 

J(GG\Aw+GGUJ oc AV3A-2/3 = A-I/S (7.53) 

Putting it all together, we find 

A J . ~ MAQog^AA-1/3 

= ^A5/3(logs) (7.54) 

By a similar analysis, the other slab contributions can be shown to have the same 

exponent: A.±I± ~ A5/3 and A||/|| ~ A5/3. Therefore, the one-loop correction to the 

beta function is given by: 

SJK ~ -/-A5/3logs 
a logs 

= A 5 / 3 

= 1/N5
A

/3 (7.55) 

which confirms our previous and more general derivations of Migdal's theorem: e(L = 

l ,d = 2) = (2 + 3)/3 = 5/3. 

To summarize, we have demonstrated Migdal's theorem in three different ways, 

including an explicit calculation of the one-loop integral as a concrete example. 

An interesting future direction would be to consider calculations of this sort with 

finite A/KF, akin to 1/N\ corrections. In particular, it is easy to imagine that 

special bandstructures might possess Fermi surface features, such as nesting or van-

Hove singularities, that might lead to significantly different conclusions. For such 
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cases, however, it would then be necessary to consider specific materials with realistic 

bandstructures, and we would lose our ability to make universal statements. For 

this reason we remain content with the N\ = oo limit which should be valid under 

generic circumstances, and leave to future work detailed investigations of material-

specific bandstructures where l/N\ corrections might play an important role. We 

also point out that identifying the iVA = oo theory is in itself a non-trivial result. 

After all, Landau Fermi liquid theory is the N\ = oo limit of the interacting fermion 

problem [63] which has been profoundly useful despite the fact that, by itself, 1/N\ 

corrections are not captured. 

7.7.2 Factorization of momentum integrals 

The property of q\\ — q± integrations has previously been discussed within a large-

N limit, where N is the number of fermion flavors [110]. These theories typically 

perform loop integrations over all of phase space, in which case it becomes necessary to 

introduce the large factor N in order to properly weight the desired kinematic range. 

Working with cutoffs explicitly, as we do, the integrals are more difficult to compute 

without the technology of residue calculus, however, the physical kinematic regime 

is more naturally apparent. Here, we demonstrate the validity of the factorization 

approximation used in the previous section, but we do not require a large number of 

fermion flavors. Instead, our large parameter is the ratio iVA = Kp/A. 

Consider a low-energy fermion represented by a point infinitesimally near the 

Fermi surface. This point on the Fermi surface defines the origin of our coordinate 

system. Since this patch of surface is defined by its normal, we decompose the coor

dinate system into components parallel and perpendicular to this normal vector. A 

low energy, forward scattering excitation involving this state will be contained within 
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a box of size A near this point of the Fermi surface, and we demand A -C KF. The 

momentum transfer between these two fermion states we label with q — (q\\,q±). The 

factorization approximation is valid in the limit where the dimension of the box along 

the Fermi surface is much smaller than the Fermi wavevector: Ax <C Kp. There are 

three ways to choose a small cutoff, as depicted in Fig 7.7. Either set Ay <C Aj_ ~ KF, 

or Aj_ <IC Ay ~ Kp, or Aj. ~ Ay <C Kp. The first choice might lead one to believe 

that the number of patches is not large, which is not the case. The second option 

appears to suggest that q± <C q\\, which is opposite to the regime we wish to consider. 

Furthermore, it includes high-energy excitations far from the mass shell. The third 

choice seems most natural, and it turns out to be the most convenient in terms of 

calculations as well, as indicated in the previous section. It might lead one to believe 

that the scaling is isotropic, but we will show below that this is not the case. Finally, 

a fourth possibility, where Aj_ ~ Ay ~ Kp has been used in calculations by other 

authors. When calculating with the fourth option, where loop integrals essentially 

extend to infinity, it is necessary to rescale the Fermi velocity by a large factor such 

as an artificially large number of fermion flavors [111]. The hope is that the N = oo 

results will be connected to the N = 2 case we wish to understand, rather than the 

N = 0 limit which is qualitatively different [113, 68]. We choose, instead, to rely 

on the fact that A <C Kp which does not require us to resort to large-AT, but only 

large-N& which is simply the limit of the low-energy field theory. 

To see the small error made by the factorization approximation when Aj_ ~ Ay <C 

Kp, consider the one-loop vertex correction we calculated in the previous section, 
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Aj. «: AN * KF 
An «: A. Ax * A, <K KF 

A,.* A, 

Figure 7.7 : This figure depicts the various choices we have in choosing the size of our 
integration cutoffs in relation to each other, and the scale set by the Fermi momentum 
Kp. To restrict to low-energy excitations we must have Ay <C KF. To ensure that we 
have a large number of patches, we must insist that Aj_ <C KF. The most convenient 
and sensible choice is to take Aj_ ~ Ay «C Kp- Even though the cutoffs are of similar 
size, we still have q± » q\\, as indicated by the next figure. 

with and without the factorization approximation: 

1 
AJK = J3

KJ d qdu 
\M+i 

AJi K 
factorized 

,1 /3 
"0 

= Jfc / ddqduj 

^ / 3 M 2 / 3 - vm - V]ql/(2KFr) (q± + ?2)3/2 + T M 

1 (7.56) 
iel

0
/3\u + np/3 - Vi(qil + Q{]) - Vl(ql + Ql)/(2KFl) 

1 \Q±\ 

x 

ieJ/3M2/3-vTg||9i+7M 
1 

,•1/3 ie^ |a ; + fi|2/3-n(g||+Q||) 
(7.57) 

The integrands are sharply peaked in phase space along surfaces defined by the 

zeros of the inverse propagators. For A JK this corresponds to the surface defined by: 

G~X(q±, q\\,iu)G~1(q± + Q±, q\\ + Q\\,iu + in)x~1(q±, q\\,iw) = 0 (7.58) 

while for AJK-L t . ,, the surface is defined by: 
I factorized 

G-1(0,qhiu)G-1(0,qll+Qhiu + in)X-1(q±,0,iu) = 0 (7.59) 
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exact expression with A=KF 

<7||/A 

exact expression with A=KF/50 
%/A 

Q./A 

factorized approx 
</||/A 

; ;. 

qJA 

us 1.0 -1.0 -as 

Figure 7.8 : The left panel shows constant energy contours defined by the equation 
G~1(q±,q\\,iuj)G-1(q± + Q±,q\\ + Q\\,iu + ifi)x_1(9-L><7||>^) = 0, corresponding to 
the peaked regions of the unfactorized ("exact") integrand of the one-loop vertex 
correction with the unphysical value A = Kp. The middle panel is the same exact 
expression, but with the more reasonable A = Kp/50. Finally, the right panel depicts 
the constant energy contours of the highly peaked regions of the integrand using the 
factorization approximation; these curves are defined by: G-1(0,<7||,zu;)G-1(0,q\\ + 
Q\\, iuj + iQ)x_1 (q±, 0, iw) = 0. Clearly, the middle and right panels are very similar, 
justifying the use of the factorization approximation when Kp is the largest scale. 

The difference between these two cases is depicted in Fig. 7.8, where contours of 

constant energy are plotted in the momentum plane for d = 2. Obviously, when A <C 

Kp, the exact and factorized contours are almost indistinguishable. Only when A ~ 

Kp does the curvature of the Fermi surface become apparent and the factorization 

approximation break down. 

The figure also illustrates the fact that when A <C KF, the most highly peaked 

portions of the integrand occupy significant phase space where q± 3> q\\ for fixed 

energy (i.e. on each contour). This is so despite the fact that Aj_ ~ Ay, and is the 

justification for the neglect of q\\ terms in the bosonic propagators. At the same time, 

we neglect q± pieces of the fermionic propagators because Kp is large. 

A less graphical way to see the above is as follows. Because A <g; KF, the q\\ 

integration is dominated by a horizontal strip of width A2, corresponding to the 

curvature of the Fermi surface. Over this range, the fermionic propagator can be 
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approximated 

G-\qL,qhiu) = u2'3-vF(q\\+q2j2KF) 

» . u2/z - vFq\\. (7.60) 

The fermionic propagator tells us that the most important regions of the integrand 

are for q\\ ~ a>2/3. At the same time, the bosonic propagator is most highly peaked 

around q ~ a;1/3. This means that q2 ~ a;2/3. Since the pole of the fermion propagator 

will force q2 ~ a;4/3, this means that the boson propagator must have q\ ~ a;2/3 3> 

q2 ~ u;4/3, and thus 

X~\qi.,q\\M ~ ql + l\u\/q±. (7.61) 

All these approximations become exact in the N\ —> oo limit. Eqs. (7.60,7.61) ensure 

the factorization of the q\\ and gj. integrations. 

7.8 Non-Analytic Corrections 

An intriguing question for future studies is the effect of non-analytic Fermi-liquid 

corrections. Such non-analytic corrections to susceptibility and other physical prop

erties already exist in a standard Fermi liquid theory [114, 107]. In generic cases, 

such non-analytic corrections are relatively small. Just like it is important to estab

lish the Fermi liquid fixed point before such non-analytic corrections are analyzed 

in detail, we have focused on the existence of a small-Fermi-surface ferromagnetic 

fixed point. In the case of quantum critical point of a weak ferromagnetic system, the 

existence of an extensive critical regime controlled by the fixed point without taking 

into account the non-analytic-Fermi-liquid corrections is supported by experimental 

observations [115]. 
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Chapter 8 

Conclusions 

This thesis has focused on magnetically ordered phases of the Kondo lattice model, 

which is the theoretical paradigm for understanding heavy fermion systems. We devel

oped effective nonlinear field theories that function well inside the antiferromagnetic 

and ferromagnetic phases, and studied them by renormalization group analyses. The 

main conclusion is that the Kondo coupling is exactly marginal to all order of pertur

bation theory within the limit A/Kp —» 0. The Fermi surface in these magnetic phases 

is therefore small: /-orbitals are localized and no static Kondo singlet exists. The 

RG analysis itself required the invention of new theoretical techniques, as discussed 

in detail in Chapter 4. Beyond the phases themselves, this work has implications for 

quantum critical points in heavy fermion metals where Kondo fluctuations may play 

an important role in addition to magnetism. Within the broader scope of strongly 

correlated systems, this work provides asymptotically exact statements in the limit 

where N\ —> 0. This is theoretically useful because although 1/N\ corrections might 

prove to be a fruitful topic for future studies, the construction of the N\ = oo theory 

we have given here represents an important anchoring point. After all, Landau Fermi 

Liquid Theory (LFLT) itself is the other example of an N\ = oo theory. Inclusion 

of \/N\ corrections, superconductivity according to Kohn's theorem, approaching a 

QCP, and coupling to a gauge-field all appear to invalidate LFLT. Nonetheless, LFLT 

has served as an important conceptual paradigm for over half a century. 

In addition to the theoretical implications of this thesis, this work is relevant to a 

number of real materials such as YbRh2Si2 (antiferromagnet) and CeRu2Ge2 (ferro-
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magnet) as discussed earlier. For the ferromagnetic case, we made several predictions 

for non-Ferm liquid signatures that can be checked by experimental measurements of 

the resistivity and specific heat. For both ferromagnetic and antiferromagnetic heavy 

fermion materials, the existence of a small Fermi surface phase is testable by direct 

Fermi surface studies. Existing data on YbRh2Si2 [47] and CeRu2Ge2 [84] already 

confirm this idea, and we hope future experiments will further clarify the situation in 

these and other materials. 
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