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A Type-Based Prototype Compiler for Telescoping 
Languages 

Cheryl McCosh 

Abstract 

Scientists want to encode their applications in domain languages with high-level op

erators that reflect the way they conceptualize computations in their domains. Tele

scoping languages calls for automatically generating optimizing compilers for these 

languages by pre-compiling the underlying libraries that define them to generate 

multiple variants optimized for use in different possible contexts, including different 

argument types. The resulting compiler replaces calls to the high-level constructs 

with calls to the optimized variants. This approach aims to automatically derive 

high-performance executables from programs written in high-level domain-specific 

languages. 

TeleGen is a prototype telescoping-languages compiler that performs type-based 

specializations. For the purposes of this dissertation, types include any set of variable 

properties such as intrinsic type, size and array sparsity pattern. Type inference and 

specialization are cornerstones of the telescoping-languages strategy. Because opti

mization of library routines must occur before their full calling contexts are available, 

type inference gives critical information needed to determine which specialized vari

ants to generate as well as how to best optimize each variant to achieve the highest 

performance. To build the prototype compiler, we developed a precise type-inference 

algorithm that infers all legal type tuples, or type configurations, for the program 

variables, including routine arguments, for all legal calling contexts. 

We use the type information inferred by our algorithm to drive specialization and 



optimization. We demonstrate the practical value of our type-inference algorithm 

and the type-based specialization strategy in TeleGen. 
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Chapter 1 

Introduction 

A serious hindrance to the productivity of the scientific computing community is the 

time it takes to produce high-performance applications. This is due in part to the 

increasing complexity of modern-day architectures and to the lack of expert program

mers. Scientists would like to abstract away from details of tuning for modern archi

tectures and focus only on the high-level concepts of their domains. To increase their 

productivity, scientists have been looking to high-level, domain-specific languages to 

encode their applications. 

Unfortunately, these languages have traditionally not been able to exploit key 

architectural features (e.g., memory hierarchy) to achieve the highest possible perfor

mance. Therefore, scientists only use these languages to develop and test their algo

rithms. To achieve high performance for larger problems, they must hand-translate 

the high-level code into lower-level languages such as Fortran or C. This translation 

step consumes a large portion of development time. 

Telescoping languages is a strategy that aims to decrease the time to develop high-

performance, scientific applications by enabling scientists to encode applications in 

languages with high-level, polymorphic constructs that capture the domain function

ality, while also delivering high performance for their applications. It accomplishes 

this by automatically generating optimizing compilers for domain-specific languages 

specified as libraries. 

We built a prototype telescoping language compiler, TeleGen that focuses on type-

based specialization, which is an integral part of any telescoping-languages system. 
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1.1 Telescoping Languages 

Many scientists would benefit from the ability to encode applications in high-level, 

polymorphic languages. Such an approach enables programs to be expressed concisely 

with a minimum of effort. Additionally, having domain-specific functionality encoded 

directly in the language would make it easier for them to focus on only the problem 

at hand. Many higher-level languages are augmented with domain-specific toolboxes 

that capture such functionality. These toolboxes are typically encoded as libraries and 

extend the language in which prototype codes for scientific applications are written. 

Using libraries can cause performance problems for applications. Libraries are typ

ically treated as black-boxes, which is an impediment to applying optimizations once 

their calling contexts are known. Another option would be to recompile the library 

procedures used directly and indirectly by the application each time the application 

is compiled. This approach can achieve higher performance from the libraries at the 

cost of long compilation times, since compilation of the application becomes propor

tional to the size of the call chain through the libraries rather than the size of the 

application. Neither strategy exploits the domain-specific knowledge encoded in the 

libraries. 

A more powerful solution would call for application developers to use a domain-

specific language with its own optimizing compiler. This solution offers the advantage 

that the domain-specific knowledge can be directly encoded in the compiler. The 

problem with this strategy is that the time required to develop languages and com

pilers is prohibitive, especially given that the size of the user base is typically small. 

For most domains, this strategy is simply not an option. 

We need a strategy that not only makes it simple to develop and maintain new 

domain-specific languages, but can also exploit the inherent algebra in the domains 

to achieve high performance. Telescoping languages is a strategy that seeks to sim

plify application development of high-performance implementations by automatically 

deriving them from high-level specifications based on programs built using domain 



Figure 1.1 : Overview of the telescoping-languages approach. 

libraries. 

In the telescoping-languages strategy, primitive operations in domain-specific lan

guages are encoded as libraries. Encoding languages as libraries also has the advan

tage of ease of development. "Languages" can be built as extensions to languages 

that have already been generated by the telescoping compiler. The idea of developing 

applications from multi-layered libraries led to the term telescoping languages. 

Telescoping languages envisions automatically building the domain-specific lan

guage through the language-building compiler. User scripts, or the applications en

coded in these languages, can then be compiled using the language compiler to pro

duce highly-optimized object code. Note that scripts can be encoded in any language, 

since the scripts merely assemble together calls to the libraries. The telescoping-

languages strategy is shown pictorially in Figure 1.1. 

To transform one or more libraries into a domain-specific language, the 

telescoping-languages strategy involves an extensive pre-compilation phase of the li

brary. During this phase, analysis of the library procedures is performed to determine 

the possible contexts in which each procedure is used. This analysis is guided by 

annotations provided by the library writer that specify the algebra for the library. 
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These annotations are based on the library annotations used in Broadway [45, 46, 44]. 

However, Broadway does not pre-compile the libraries. In this way, a telescoping-

languages system is able to exploit domain-specific knowledge. 

After analysis, the library compiler generates variants optimized for several pos

sible uses of each library procedure. The enhanced-language compiler then merely 

needs to replace sequences of calls to the library procedures with calls to the appro

priate variants. As a result, compilation time for user scripts remains linear in the 

size of the scripts. 

Because the responsibility of achieving high performance for the multiple possible 

uses of the library is transferred to the library generator, library developers can also 

benefit from the telescoping-languages strategy. They can encode their libraries in a 

single, polymorphic version written in a high-level, domain-specific language, and the 

language generator will ensure that the library is optimized for every use that may 

occur in practice. Note that generating variants for libraries is similar to performing 

script compilation since libraries can script together calls to previously generated 

libraries. 

Library generation is a costly step, primarily due to the fact that aggressive opti

mizations are performed for multiple possible uses of the library. However, the time to 

perform library generation can be amortized over the many uses of the library, since it 

should only need to be performed infrequently for maintenance purposes. Also, extra 

compilation time during library generation will still be less time consuming than the 

hand-translation step typically performed by library developers. 

1.2 Types and Telescoping Languages 

Type inference and specialization are cornerstones of the telescoping-languages strat

egy. Since the telescoping-languages strategy envisions generating multiple specialized 

versions of library procedures and recognizing which version is most appropriate for 

a given call site, properties of the procedure arguments must drive the specializa-
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tion choices. A vast majority of these properties can be viewed as types, which is 

a term we use for the purposes of this dissertation in the loosest sense. Therefore, 

a telescoping-languages compiler must rely heavily on type inference to know which 

variants to generate in the libraries as well as which variants to call in the scripts. 

To build a compiler for telescoping languages, we needed a precise type-inference 

algorithm. Type inference should limit the number of variants generated to only those 

that could occur without error in practice. Because libraries are pre-processed without 

knowledge of the calling context, type inference must be able to infer the types of the 

procedure arguments from the uses in the procedure body. Type inference must work 

with information provided by the library writer, either in the form of annotations or 

sample scripts to enhance the type information inferred. 

Also, since type inference will be used to infer properties that have non-traditional 

behavior with respect to the traditional notion of types and must infer types for 

scripting languages that are potentially not strongly typed, type inference needs to 

be more flexible than the type-inference schemes available from the programming-

languages community. For example, the transpose of an upper triangular matrix is 

a lower triangular matrix and vice versa. While these kinds of type assignments are 

rare, they are valid and therefore need to be covered in the generated variants. Note 

that simply inferring that the input and output can both either be upper or lower 

triangular is not precise enough and would require generating four variants as opposed 

to only the two that are valid. 

There were no existing type-inference strategies that could handle all of the fea

tures of telescoping languages. To solve these problems, we developed a novel type-

inference strategy that can infer all possible type assignments, or type configurations, 

for the variables, including all possible calling contexts in terms of types. Types are 

inferred across procedures by summarizing the calling contexts inferred into a table 

that can be accessed by library procedures or scripts. 

We use the type information inferred by our algorithm to drive specialization, 
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which includes both variant generation (choosing which specialized variants to gener

ate) and variant selection (choosing the appropriate variants to call in place of calls 

to the generic library routines). We incorporated our type-inference algorithm and 

the type-based specialization strategy in a prototype compiler to demonstrate the 

practical value of these strategies. 

1.3 TeleGen 

TeleGen is a prototype compiler for telescoping languages that only includes the analy

sis and tools necessary to perform type-based specialization for libraries. This version 

of TeleGen will provide a building block for future telescoping-languages technologies, 

including new analyses and specializations. 

The prototype compiler currently uses MATLAB as its base language, MATLAB is an 

array-based language for numerical computation and includes several toolboxes for a 

number of problem domains. MATLAB is widely-used within the scientific community 

precisely because it abstracts away low-level details. Unfortunately, MATLAB is unable 

to achieve the high performance needed by the scientific applications, leading many 

developers to recode their applications in lower-level languages such as Fortran or C. 

This translation step can take up a large portion of application development time. The 

telescoping-languages strategy envisions automating this last step in the application 

development process. MATLAB is an ideal starting point from which to test the ideas 

and new technologies in telescoping languages. 

MATLAB is an interpreted language, and a number of issues arise when converting 

it to a compiled language. The most difficult of these is that MATLAB is a dynami

cally typed language with operators that are heavily overloaded based on type. Here, 

"type" refers to array properties such as array rank, size, sparsity pattern, and intrin

sic type (integer, real, etc.). Therefore, to translate into a lower-level, explicitly-typed 

language and correctly determine the meaning of the operations, the types must be 

inferred by the compiler. MATLAB introduces interesting challenges for type infer-
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ence. Even with the whole program available, statically inferring a single type for 

each variable in MATLAB is impossible in the general case. 

Once analysis has been performed on the library procedures or scripts, code gen

eration and specialization can commence. 

Figure 1.2 shows the interactions between type inference and specialization in Tele-

Gen. The pieces shown are the minimal pieces required to perform type-based spe

cialization for high performance. Further analyses and optimizations could increase 

the performance achieved. To describe the pieces of TeleGen, we will not distinguish 

between procedure calls and operations. This is consistent with the telescoping-

languages strategy since one of its goals of is for procedure calls to behave as primitive 

operations in a higher-level language. 

Type Jump-Functions The TeleGen compiler has the burden of inferring types 

when specific calls to a procedure are not given. Type inference must result in types 

defined in terms of the inputs so that, for each possible configuration of input types, a 

variant is generated with the correct corresponding types for the variables local to each 

procedure. To handle this, type jump-functions akin to those used in interprocedural 

analysis are defined [15, 43]. We use a tabular representation of the type jump-

function so that each entry represents one possible type configuration. The type jump-

function is only used for specialization. Once the procedure has been specialized, the 

table can be deleted. 

Return type-jump-functions, which define the types of the outputs in terms of the 

types of the inputs, handle the propagation of type information across procedure calls. 

Code Generation In the simplest model for specialization, one variant is generated 

for each entry in the type jump-function table. Each variant is specialized with respect 

to the types given in the entry by replacing each operation or procedure call within 

the procedure with a call to a variant that is specialized for the given types. 
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Figure 1.2 : Type-based specialization in a telescoping compiler. 

Interprocedural Analysis To ensure this, TeleGen performs type inference on the 

library procedures in reverse post-order on the partial call graph, thus ensuring where 

possible that the return type-jump-functions are available for called procedures. If 

there is a cycle in the call graph, TeleGen iterates over the cycle until a fixed point 

is reached. There exists a fixed point since the compiler initializes the types to be 

the most general (i.e., all type configurations over the arguments) and only reduces 

the number of type configurations at each iteration over the cycle. When source code 

is unavailable, as in the case of MATLAB's primitive operators, return type-jump-

functions may be entered by hand. 

Putting It Together Figure 1.2 describes how these pieces work together in a 

telescoping compiler. For library generation, the input to the type-inference en

gine is a library procedure and optional annotations that describe its possible uses. 

The type-inference engine uses information about called procedures and operations, 
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summarized in the return type-jump-function table, to determine the legal types of 

variables at every point in the procedure. This information is used to produce both 

a type jump-function and a return type-jump-function for the procedure. Code is 

generated using the type jump-function as well as a table of previously generated, 

specialized variants of called procedures. 

Script compilation is similar to library generation. However, information does 

not need to be stored back to the tables since the scripts are only used for a single 

application. 

1.4 ARPACK 

Throughout this dissertation, we use examples from ARPACK, a linear algebra library 

for solving large-scale eigenvalue systems [74]. The ARPACK developers first devel

oped their code in MATLAB. They then spent a large amount of time hand-translating 

the algorithm efficient Fortran 77 code. There are actually eight separate variants of 

the Fortran 77 code specialized to different types of the input matrix. This makes 

ARPACK an ideal example of an application for which telescoping-languages technol

ogy would be highly beneficial, especially type-based specialization. The primary 

example routine from the MATLAB version of the code is ArnoldiC. 

1.5 Thesis 

The ability to write high-level, polymorphic code improves productivity. Library-

based scripting languages provide abstract operations that can be used to rapidly 

assemble complex applications. However, this approach can result in lower perfor

mance compared to application encoded in lower-level languages due to interpretive 

overhead. 

This thesis explores strategies for type-based specialization in library-based pro

gramming models. The strategy is inherently interprocedural and focuses on making 

it possible to analyze and optimize multiple layers of libraries efficiently. Telescoping 
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languages aims to invest in offline analysis to be able to understand library operations 

in detail. It then uses the results of this analysis to generate a compiler that accepts 

calls to the library as primitive operators. 

Type inference and specialization are cornerstones of the telescoping-languages 

effort. They are indispensable elements of a system that analyzes and optimizes 

multiple layers of library-based primitives. 

This document shows that type-based specialization is important to achieve high 

performance and that we are able to achieve effective specialization with a manageable 

number of variants. We describe type inference in this system and show that it is 

sufficient to solve types in the library generation problem. Type inference discovers 

a set of type configurations that cover the set of possibilities that could occur for the 

library subroutines. We carefully analyze its algorithmic complexity to both identify 

the worst case and to show that type inference is efficient in practice. We also show 

that the result of type inference is precise, thereby limiting the number of generated 

variants to only those that are valid (in terms of types) in practice. We support this 

analysis with experimental data. To provide concrete validation of the practical value 

of this strategy, we built a prototype compiler that uses the type analysis and the 

simple specialization technique described in this document. 

1.6 Organization 

Chapter 2 provides an overview of related work. We will then discuss the type-

inference algorithm and formalize it to prove soundness and completeness in Chap

ter 3. In Chapter 4, we describe extensions to the type-inference algorithm that are 

necessary for type inference to work over MATLAB code as it is used in practice as well 

as extensions that enable a broader range of types to be inferred for other problems 

and languages. Chapter 5 describes the interactions between type inference and spe

cialization. We describe our implementation of TeleGen in more detail in Chapter 6 

and validate our strategy experimentally using TeleGen. Finally, in Chapter 7, we 
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discuss contributions and future work. 
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Chapter 2 

Related Work 

Van Deursen et. al. [77] define a domain-specific language to be "a programming lan

guage or executable specification language that offers, through appropriate notations 

and abstractions, expressive power focused on, and usually restricted to, a particular 

problem domain." Some of the benefits to domain-specific languages that they men

tion include enabling solutions to be expressed at a level that can be understood and 

developed by domain experts, enhanced productivity, reliability and maintainability. 

Some drawbacks they mention are the cost of developing the languages and potential 

losses of efficiency inherent in the language. 

Telescoping languages aims to provide users the benefits of high-level, domain-

specific languages without requiring an extensive language-development process [56, 

57]. Moreover, telescoping languages seeks to achieve high-performance from appli

cations written in these languages. 

There are many interesting areas of research within the telescoping-language 

project. Previous and current research in telescoping languages at Rice includes 

development of domain libraries with descriptions of possible high-level transforma

tions [11], optimizing transformations for procedures called inside loops [17], and 

transformations that allow for earlier allocation of arrays [18, 19]. 

The focus of the work in this dissertation is type-based specialization, which is 

essential to generate high-performance code from scripting languages. This work 

also focuses on developing strategies to give the domain-library developers the abil

ity to use high-level, domain-specific languages and to give the user the ability to 

encode their applications in these languages while still achieving high performance. 
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To solve these problems, we developed strategies for MATLAB compilation within the 

telescoping-languages framework, including a new strategy for type inference. These 

strategies build upon ideas developed in the author's Master's thesis [62]. 

The ideas and goals of telescoping languages are related to a number of different 

research projects. This chapter discusses some of those projects and describes work 

that is specifically related to the technologies developed in this dissertation. 

2.1 Projects Related to Telescoping Languages 

The telescoping-languages strategy uses libraries to build domain-specific languages. 

There has been a lot of research on both developing domain-specific languages and 

library compilation. Telescoping languages combines these strategies. 

2.1.1 Development of Domain-Specific Languages 

Developing a domain-specific language from scratch is impractical for most domains. 

Therefore, some projects have focused on developing domain-specific languages from 

existing languages. Two such projects are MAGIK and KHEPERA. Telescoping lan

guages also aims to build domain-specific languages from existing languages, but uses 

libraries to define the extensions, which are simpler to use. 

Engler developed a system called MAGIK, which provides mechanisms for program

mers to include extensions to the compiler that can modify the system's intermediate 

representation during compilation [36]. Thus, high-level, domain-specific knowledge 

can be encoded into a general-purpose compiler. The developer must be very familiar 

with the intermediate representation and the compiler implementation. 

KHEPERA provides a small language for specifying translations from a domain-

specific language to another language with pre-existing high-performance compil

ers [64]. The translations must result in code that makes it easy for the target 

language's compiler to exploit optimization opportunities. In this way, the language 

developer can leverage existing compiler technology to achieve high performance. 
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This also requires the domain-specific language developer to have detailed knowledge 

about the target language's compiler. 

2.1.2 Library Compilation 

Several projects have looked into different strategies for library compilation. Libraries 

are widely recognized as a relatively simple way to encapsulate domain knowledge. 

Because they are traditionally treated as black boxes, they cannot get the perfor

mance required. The projects mentioned here focus on finding ways to make library 

usage more practical. The primary difference between these projects and telescop

ing languages is that telescoping languages seeks to turn library calls into primitive 

operators in a language. 

The Broadway compiler developed at the University of Texas at Austin has very 

similar goals to those of telescoping languages in that Broadway allows domain-library 

writers to provide domain-specific annotations that aid the compiler in optimizing ap

plications that use the library code [45, 44, 46]. Telescoping languages envisions using 

similar annotations to guide optimization in the language compiler. Broadway has 

shown that by using these annotations, the compiler can achieve performance im

provements over compiling the application without domain-specific knowledge. A 

major difference between the Broadway strategy and the telescoping-languages strat

egy is that Broadway does not perform extensive pre-compilation of the libraries, but 

rather compiles the libraries together with the application. This can mean large com

pilation times even for small applications. Also, Broadway requires hand-written an

notations for every layer of libraries, which is a laborious process. The type-inference 

strategy provided in this dissertation is in part designed to reduce the need for user 

annotations, although annotations will augment type inference. 

The Rose project at the Lawrence Livermore National Laboratory is designed to 

provide a way for users to express high-level abstractions of library semantics in C + + 

using pattern-based rewrite rules [73]. This framework allows the user to express op-



15 

timizations that can be used by the compiler when transforming the code. The user 

must be familiar with the representation of the AST to specify these transformations. 

There has also been work at Lawrence Livermore National Laboratory on making 

expression templates more efficient [9]. Expression templates allow expressions to be 

passed into the function as arguments and inlined into the function body [79]. This 

technique helps avoid unnecessary temporaries and enables more loop optimizations. 

The type inference and type-based specialization strategies presented here could ben

efit from similar constructs, since statements are flattened, causing many unnecessary 

temporaries. 

Vandevoorde developed support that allows programmers to define optimizations 

through the use of interfaces called SPIs or specialized procedure interfaces [78]. 

These interfaces allow the programmer to provide multiple implementations specified 

for different possible calling contexts. The compiler is responsible for replacing calls 

to the interface with calls to the appropriate implementation. To determine which 

implementation to use, the compiler uses conditions provided by the programmer and 

written in a formal-speculation language. The compiler must then prove whether the 

conditions hold. Telescoping languages seeks to automate the entire process. Also, 

theorem provers are not an ideal tool for compilation as they are computationally 

intensive. The telescoping-languages strategy also involves using computationally in

tensive tools during library generation, but this compilation phase occurs infrequently. 

ATLAS and F F T W are examples of specialized libraries that are automatically tuned 

for specific platforms [81, 42]. The goals behind ATLAS and FFTW are complementary 

to those proposed by telescoping languages. Telescoping languages focuses on opti

mizing for different possible uses of the libraries while ATLAS optimizes for different 

architectures. In fact, we use ATLAS-tuned BLAS routines to handle the base library 

routines from which other libraries are built. In this way, the telescoping-languages 

compiler is also specialized for the different possible platforms. 

SPIRAL is a library generator for high performance software implementations of 
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linear signal processing transforms [69]. It represents the transforms as formulas and 

then generates the algorithms that are optimized for the target architecture for the 

specified transforms. These algorithms are then translated into Fortran or C. 

Active libraries are libraries that take an active role in compilation by gener

ating components, specializing algorithms and configuring themselves for a target 

machine [80]. All of the projects mentioned in this subsection fall into the category 

of active libraries, including telescoping languages. Simply put, active libraries allow 

library developers to encode abstractions and corresponding optimizations into the 

libraries. 

2.1.3 Component Integration 

Telescoping languages can also be viewed as a strategy for component integration, 

where the components are libraries [7]. The Common Component Architecture (CCA) 

effort's primary goal is to try to develop component integration systems for scientific 

application development. CCA trades performance for flexibility. Components are 

dynamically selected within CCA-compliant frameworks, and components are treated 

as black-boxes, prohibiting beneficial cross-component optimizations. 

2.2 Type Inference 

The programming-languages community has focused primarily on type systems for the 

purpose of static type checking. These static type checkers are, in general, designed 

to ensure that a program will not compile unless no runtime type errors are possible. 

This may mean for some languages that well-typed programs will not pass the static 

type checker. In contrast, the type-inference system presented here is designed to 

identify optimization opportunities. The compiler must model the behavior of the 

language. Therefore, it needs to infer all valid type configurations of the variables, 

to cover any possible situation that may occur without a type error in the MATLAB 

interpreter. 
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Type reconstruction, or type inference, is the process of trying to infer the types 

of expressions that are not explicitly typed in the language [66]. In general, type 

reconstruction tries to determine principal types or most general types. Type infor

mation of this kind is not precise enough for optimization in a telescoping-languages 

compiler. Furthermore, most of the research in this area has been on type systems in 

functional languages with possibly some extensions to handle imperative constructs. 

Most of these systems infer a traditional notion of type (intrinsic types or object 

types). However, a few provide type systems that can infer information such as array 

sizes, which we describe in Section 2.2.3. 

2.2.1 Hindley-Milner Type Inference 

Hindley-Milner type inference is a common technique for performing polymorphic 

type inference in functional programming languages [29]. Hindley-Milner determines 

a polymorphic type for each expression in a program independently. Limited depen

dence between types is expressed through the use of type variables. Hindley-Milner 

provides a basis for type inference with more complex type systems. Hindley-Milner 

is designed to infer principal types of expressions, where a principal type is a type 

from which all other valid types can be computed. 

The Hindley-Milner type inference proceeds by placing typing constraints on ex

pressions using type variables to represent type dependencies. These constraints are 

then solved using a unification process. While this sounds very much like the type-

inference algorithm presented in this dissertation, the types of constraints and the 

fact that they are formed over expressions and not the variables makes the type in

formation inferred by Hindley-Milner very different. Also, the style of overloading 

found in MATLAB makes it difficult for a Hindley-Milner-style type inference to infer 

types with the same precision. 

Hindley-Milner type inference requires that the types of functions be uniquely 

determined given the types of the input parameters. This means that is is unable 
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to determine types of functions that could have different output types depending on 

the control flow within the function or the values of the parameters. These cases 

occur frequently in MATLAB functions. The following sections describe extensions to 

Hindley-Milner can handle this problem. 

2.2.2 Subtyping with Union and Intersection Types 

Subtyping provides constraints on the type system that allow functions to accept as 

inputs values that are "subtypes" of the parameter types (i.e., b is a subtype of a 

means that the set of values of type a contain the set of values of type b) [66]. This 

allows for code reuse in programs while maintaining the property of sound typecheck-

ing. 

Union types handle the problem in Hindley-Milner, in which function types must 

be uniquely determined given the types of the parameters [75]. The result of a function 

may have a union of types representing the possibility that there were multiple paths 

within the procedure. Intersection types provide a way for the type system to allow 

finitary overloading [24, 25, 47, 67], which is sufficient for the intrinsic type and 

pattern problems, since these lattices are finite. 

Subtyping with union and intersection types is able to express types that resemble 

the types inferred by our system. They are able to express the precise relationships 

between parameter types. Intersection types can more precisely type check programs, 

because of these more-exact relationships. However, type inference with intersection 

types is undecidable in the general case. Therefore, languages that use full inter

section types require at least some explicit typing [71]. Many research projects have 

looked at ways to impose restrictions on the intersection types that would enable type 

inferencing to be decidable [26, 16, 58, 41]. 

Very little work has been done on intersection types in imperative languages, 

making it more difficult to present a good comparison between intersection types and 

our work. One exception to this is work by Davies and Pfenning [30]. They show 
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that standard formulations of intersection type systems are unsound in imperative 

languages. They restrict intersection types to achieve soundness. Their formulation 

does require some explicit typing. Their system is designed for type checking as 

opposed to type reconstruction. 

2.2.3 Dependent Types and Componential Set-Based Analysis 

Dependent types are types that can be indexed by terms. To infer these dependent 

types, annotations from the programmer are required. Xi and Pfenning use depen

dent types to perform array bounds checks in ML programs [82]. Type inference in 

telescoping languages can infer array sizes in terms of the inputs without aid from the 

library developer, although such annotations can reduce both the run-time complexity 

and the space requirements for the compiled code. 

Xi and Pfenning's approach does not allow for the overloaded operators present 

in MATLAB. For example, the * operator in MATLAB can be scalar multiplication, 

matrix scaling, or matrix multiplication, depending upon the shape of the parameters. 

Also, because they are inferring types to perform static type checking, their system 

accepts fewer valid programs than the size inference system presented here. Lastly, 

the information inferred from this system does not provide information for allocating 

the matrixes to the maximum size reached in any run of the program. 

2.2.4 Type Inference for Object-Oriented Languages 

Object-oriented languages pose special problems for type inference as well as many 

opportunities for highly beneficial optimizations. The primary complication in infer

ring types in such languages is that they are highly polymorphic in nature. Note that 

the systems mentioned below can also be used to infer types other than user-defined 

types, such as intrinsic types and patterns in MATLAB. 

Agesen performed a study of the different constraint-based analyses for inferring 

types in languages with parametric polymorphism [2]. All of these systems rely on 
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whole-program analysis to precisely infer types. We present the systems that have 

the most in common with our type-inference algorithm here. In future work, we plan 

to show that combining types inferred for different components gives similar results 

to these whole-program analyses. 

Palsberg and Schwartzbach developed a basic, fast constraint algorithm that as

signs a type variable to every variable and expression in the program [65]. These type 

variables are nodes in the constraint graph. Edges or constraints provide data flow in

formation from the program. Types are propagated to nodes through the constraints. 

The disadvantage of this scheme is that each method body is only represented in the 

graph once. If a method is invoked with different types, precision is lost. 

Plevyak and Chien developed an improvement to this algorithm [68] that performs 

the basic algorithm and then uses the inferred type information to determine where 

methods should be cloned to improve precision. They do this iteratively until a fixed 

point is reached or until the algorithm reaches a fixed number of iterations. The types 

inferred are much more precise than with Palsberg and Schwartzbach's algorithm. 

Agesen et. al. developed a cartesian product algorithm which is just as precise 

(in some cases more precise) than the algorithm by Plevyak and Chien [3]. An added 

bonus is that the algorithm is not iterative, and is therefore more efficient. The 

basic idea is that instead of cloning templates, cartesian products of all the possible 

parameter types are tracked. 

2.2.5 Type Inference Using Data-Flow Analysis 

Kaplan and Ullman developed a forward and backward data-flow scheme for type 

inference [55].1 Forward and backward type-inference passes are performed to re

duce the set of possible types for each variable until a fixed point is reached. This 

strategy requires that the type lattice have the finite-descending-chain property to 

prove termination. Therefore, it is not applicable to the problem of inferring array 

lrThis algorithm reappears in a more accessible form in [4]. 
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sizes, which we describe in Chapter 3. While this type-inference algorithm produces 

the most powerful results of any similar strategy, determining sets of possible types 

for the variables does not give precise enough information for library compilation in 

telescoping languages. It does not give exact relationships between the variables and 

their types. For example, one variable might be complex if and only if an input is 

complex. Yet, a type assignment that said that both could be either real or complex 

would suggest that a variant may be needed for the case when the input is real and 

the variable is complex. 

2.3 Specialization 

Specialization in the type-based prototype compiler presented in this dissertation in

volves variant generation and variant selection. Variant generation involves determin

ing which of the inferred type configurations should induce a separate corresponding 

variant and which should (and can) be merged. Variant selection is the process of de

termining how to replace calls to the generic procedures with calls to the appropriate 

variants. 

Variant generation is a form of procedure cloning [21, 22]. The methodology for 

determining when procedures should be cloned in these papers examines the call sites 

for the procedures. In the telescoping-languages strategy, not all of the call sites are 

available during library compilation. Therefore, the compiler must rely on precise 

analysis to determine which calling contexts could validly occur given the procedure 

body. 

Dean, Chambers, and Grove developed a strategy for optimizing object-oriented 

languages by selectively cloning methods and specializing each for a possible receiver 

type [31]. The specialized versions have more information about the types of formal 

arguments, which means that methods called on these arguments may be statically 

dispatched, leading to further optimization opportunities. However, to determine 

which methods should be specialized, the compiler must examine the call graph to 



22 

see how the methods are called. This method will not work in telescoping languages, 

since it does not have the benefit of the full call graph when precompiling libraries. 

Dean et al. extend the specialization methodology to specialize on all arguments, 

not just the receiver, which is also the aim of the type-based specialization described 

in this dissertation [32]. Their compiler uses profile information to reduce the amount 

of specialization, which cannot be applied to the current telescoping-languages frame

work without sample user scripts that provide the full range of types that may be 

seen. Instead, the library compiler must analyze the way in which arguments are used 

within the method to determine whether to specialize for a particular type. Excluding 

the possibility of increased space requirements, similar performance benefits could be 

achieved once the calling context is known. 

2.4 Compiling MATLAB 

MATLAB is a popular language within the scientific community for programming due 

to its simplicity, including the lack of explicit typing. However, scientific-application 

developers are not able to get the performance required for large-scale applications. 

Therefore, there have been several projects focused on moving MATLAB from a strictly 

interpreted language to a compiled language, where the compilers focus on achieving 

high performance. 

MATLAB is a dynamically-typed language. Therefore, a single type for every vari

able is often not determinable at compile time. To compile MATLAB, types must be 

disambiguated. This is especially problematic since many of the operators in MAT

LAB are overloaded based on the types. All of the MATLAB compilation projects use 

some form of type inference to achieve higher performance as well as to maintain 

correctness. Type-inference strategies range from requiring that the whole-program 

be available to performing just-in-time compilation when the types can be known. 

It is important to note that MATLAB compilation is not the primary focus of this 

dissertation. However, because we chose to use MATLAB as our source language, 
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TeleGen needs to handle all the problems inherent in compiling MATLAB. All of the 

technologies presented can be applied to other languages. However, MATLAB is a 

high-level language with a wide user-base and thus provides a good starting language 

for research in telescoping languages. 

2.4.1 Mathworks compilers 

Mathworks provides a MATLAB-to-C compiler, called MATLAB Compiler (formerly 

MCC) [60, 59]. The compiler outputs either stand-alone applications or MEX files, 

which are C files that are built using an interface that can be called from the MAT-

LAB interpreter, MATLAB Compiler's output at the top level seems to resemble the 

library calls that would be made in the interpreter. Every MATLAB operation has a 

corresponding library call that is passed the appropriate variables that are declared 

with the most general type - the array type. Most notably, the types of the vari

ables are left undetermined in the top level and are interpreted further down the call 

chain to dispatch to the appropriate variants. This strategy precludes many simple 

optimizations, and the resulting code is comparable in performance to the original 

MATLAB. 

2.4.2 FALCON 

FALCON, which was developed at the University of Illinois at Urbana Champaign by 

De Rose and Padua, is a MATLAB to Fortran 90 translator [72, 33]. Falcon takes 

as input a whole program written in MATLAB along with sample input data. The 

primary analysis needed for translation from MATLAB to Fortran is type analysis. 

The FALCON compiler infers intrinsic types, shape (scalar, vector, or matrix), and 

size that are included in the array properties inferred in TeleGen. 

Static type inference is performed using data-flow analysis based on the algorithm 

developed by Kaplan and Ullman [55]. The analysis proceeds from the top-level 

procedure and sample data, and information is propagated forward through each 
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procedure. When a function call is encountered, its M-file is inlined into the top-level 

procedure. A table of MATLAB operators with type information that gives output 

types in terms of input types is used to infer types across the operators. This table 

is similar to the return-type-jump-function table in TeleGen, except that it only has 

summary information for the MATLAB operators. A single step of back propagation 

of type information occurs if the type of an array changes from an assignment. If 

the type of a variable is undeterminable through this process, it is given the type 

unknown. 

Sizes that cannot be inferred statically from constants and unknown types are 

disambiguated at runtime. For intrinsic types, control-flow statements are entered 

that are predicated on the actual runtime type of the unknown variable. The branches 

of the statement include the type declaration of the variable and a cloned version of 

the operation that uses the variable. The dynamic sizes of matrix variables are also 

tracked, and tests of array sizes to check if the size is growing through assignment 

past the bounds of the original array are administered if needed after the static-size 

inference. 

The FALCON compiler is able to achieve substantially better performance than the 

MATLAB interpreter and performance comparable to hand-coded Fortran 90 programs. 

While telescoping languages shares the goal of providing application developers the 

ability to produce high-performance code from high-level languages such as MATLAB, 

it also envisions reducing compilation costs by pre-compiling the underlying libraries 

and optimizing them for every possible use. Therefore, the need for the whole program 

to be available to the compiler, and the aggressive inlining strategy for both analysis 

and code generation employed by FALCON, are counter to the goals of telescoping 

languages. Also, inlining whole programs for type clarity may lead to significant 

source-code growth and subsequent high compilation costs. 

Furthermore, not all types are inferred statically, since type inference in FALCON 

relies on data-flow analysis that converges to a single type. FALCON is able to avoid 
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these problems in most cases, since it has all the input-type information available 

during static analysis, and it has methods for coping with these variables dynami

cally. In contrast, the type-inference algorithm presented in this dissertation works 

over single procedures, without knowledge of the possible calling contexts. It infers 

multiple type configurations and is therefore able to infer all types statically in terms 

of the types and values of the input variables and outcome of control flow. Thus, with 

less information, it is able to statically infer types more precisely for all possible situa

tions. This is primarily due to the fact that inferring a single type for each variable is 

not possible in MATLAB in the general case unless all information available during run 

time is available statically. FALCON has much more information available at compile 

time, but not enough to infer a single most general type for each of variable. 

2.4.3 MaJIC 

MaJIC, also developed at UIUC, is a MATLAB just-in-time compiler built on some of 

the techniques from FALCON [6, 5]. By providing a just-in-time compiler for MATLAB, 

MaJIC is able to preserve the interactive nature of MATLAB while achieving better 

performance. MaJIC utilizes two phases of compilation - a pre-phase compiler and 

a just-in-time compiler. The pre-phase compilation performs FALCON-style type in

ference. In addition, it performs additional backwards propagation of "type hints". 

These hints provide likely types of the variables given their use in a few specific 

MATLAB operators. In this way, the analysis is able to anticipate likely arguments. 

Backward and forward passes alternate until the types converge. The result is a map

ping from types to variables, which the compiler infers to be a likely type assignment. 

The code is compiled down to object code assuming these types and then stored in a 

code repository. The pre-compilation phase in the telescoping-languages strategy is 

more extensive in that, instead of trying to determine a single most-likely version, it 

generates code so that all possible uses of the function are covered. 

During just-in-time compilation, if there is a version in the code repository that 
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corresponds to the given types, a call to that version is made. A version of the code is 

appropriate if the types of the inputs are subtypes of the actual parameter types. The 

variant with the most specific type signature is chosen. Ties are broken using a simple 

heuristic. The code repository and code selection are very similar between MaJIC 

and telescoping languages. However, as we will discuss in Chapter 5, the telescoping-

languages compiler will use a pre-set score to determine the most beneficial variant 

in the event of ties. 

If there is no appropriate version of the code, the just-in-time compiler performs 

forward type inference and compiles the code using a light-weight compiler. The 

resulting object code is added to the repository and may be recompiled by the more 

intensive compiler. 

Note that the script-compiler phase could be implemented with a just-in-time 

compilation option, since the job of the script compiler is merely to replace the calls 

to the library procedures and operators with calls to the appropriate variants. Since 

most of the work of compilation is performed in the pre-compilation phase, the script 

compiler need not be a heavy-duty compiler. 

2.4.4 MAGICA and MATCH 

MAGICA is a MATLAB type-inference system developed at Northwestern [50] and is 

implemented as a Mathematica application. MAGICA performs intrinsic-type infer

ence, shape inference (sizes and ranks), and value-range inference. Type rules specify 

the type algebras of the primitive operations. Types are forward propagated across 

statements and into user-defined procedures at call sites. Type inference in this sys

tem determines a single shape that must hold for every run of the code, and therefore 

may be unable to determine an exact shape [51, 49]. This is insufficient to cover all 

possibilities for library generation in a telescoping-languages system. MAGICA solves 

algebraic systems of equations to determine the sizes of matrices. An advantage of 

this system over FALCON is that even if sizes cannot be inferred, useful information 
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regarding the relationships between matrix sizes is inferred. MAGICA uses a lattice-

based approach similar to that of Kaplan and Ullman to determine a range of possible 

intrinsic types for each variable [48, 52]. The exact relationship of types in the range 

to types of all variables is still not established, which could lead to extra variant gen

eration for a telescoping-languages system. We are unaware of any complexity results 

for this system. 

MATCH (MATlab Compiler for distributed Heterogeneous computing systems) was 

also developed at Northwestern [8]. It requires typing directives to infer types. To 

perform type inference, MATCH converts MATLAB expressions into a sequence of ex

pressions, each containing one operator. It then uses the type algebras of the MAGICA 

system to infer types. 

2.4.5 Menhir 

Menhir is a MATLAB compiler that generates parallel and sequential Fortran or C 

code [20]. Menhir's primary feature is that it is retargetable. Menhir uses type 

directives at specific points in the MATLAB code to aid in type inference. It also clones 

functions and wraps conditional statements around the call sites to the function that 

are predicated on the variable types to avoid operator overloading. Menhir allows 

for extensions to the array properties analyzed, unlike other MATLAB compilers. Our 

type-inference algorithm also allows the set of array properties inferred to be easily 

extended. Menhir chooses the most appropriate data structure and then the most 

appropriate implementations to which to dispatch given the types. Choosing the 

implementations involves finding the implementation with the lowest casting cost. 

TeleGen can also incorporate the cost of coercion into its variant selection choice. Like 

telescoping languages, Menhir uses optimized libraries to achieve high-performance 

from the generated code. Automatically generating these libraries, however, is not 

handled. 
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2.4.6 Type Inference via Partial Evaluation 

Recently, Elphick et al. implemented a type inference system for MATLAB that relies 

on partial evaluation [35]. Because the calling contexts for library procedures are un

known at library compilation time, this strategy provides little benefit for telescoping 

languages. 

2.4.7 Cost of Interpretation 

Menon and Pingali performed a study of the cost of the overhead of the MATLAB inter

preter along with a study of some source-level transformations [63]. It was found that 

type optimization, elimination of array-bounds checking, and elimination of dynamic 

reallocation of arrays all had dramatic effects on the performance of the application. 

The type-inference algorithm presented in this dissertation provides enough type in

formation to be able to perform these optimizations. 

2.4.8 Other Parallel MATLAB Compilers 

The Otter system, developed at Oregon State University, is designed to compile MAT

LAB into C with MPI [70]. They perform intrinsic type and rank inference as much 

as possible at compile time. Type information is extracted in part from input files. 

Size inference is left for runtime evaluation. 

Compiling MATLAB for parallel architectures is beyond the scope of this disserta

tion, although we do describe how to extend type inference to infer data distribution. 

However, any MATLAB compiler must have a way of dealing with the dynamic-typing 

problem. Most parallel MATLAB compilers infer types using a system similar to the 

one in FALCON and are are therefore not mentioned here. 

2.4.9 MATLAB-Like Languages 

Octave is very similar to MATLAB [34]. Because it is open-source, and therefore 

has accessible libraries to implement the primitive operations, octave libraries may 
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be used to replace the MATLAB primitive operators in both library compilation and 

script compilation. 
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Chapter 3 

Type Inference 

Type information drives specialization in TeleGen, where type refers to properties of 

the variables, such as intrinsic type and matrix size. We chose to start with type-

based specialization in the prototype compiler because knowledge of types is essential 

for performing many of the optimizations found in high performance compilers. Be

cause we chose MATLAB as our source language, type inference becomes necessary to 

correctly translate to lower-level languages. However, we envision that technologies 

developed in this dissertation will be beneficial to all future applications of telescop

ing languages regardless of the source language. This is especially true since the 

type-inference algorithm described in this chapter can be applied to a broad range of 

analysis problems. 

3.1 Motivating Type Inference 

Type inference must be performed to translate from a high-level, dynamically-typed 

language such as MATLAB to a lower-level, explicitly-typed language such as Fortran or 

C. Furthermore, several specialization opportunities may appear from understanding 

the possible types of the variables. 

In the telescoping-languages strategy, analysis of library procedures occurs be

fore the calling context is available. Pre-compiling libraries, when the calling con

texts are unknown, has traditionally led to limited specialization opportunities. The 

telescoping-languages strategy aims to address this problem by generating several 

variants for a given script, with each variant intended for a different possible config

uration of types over the arguments. Therefore, the telescoping-languages strategy 
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achieves the benefit of specializing for actual input types without having to wait un

til the calling routines are available. Note that, while important to the success of 

the telescoping-languages strategy, type inference and specialization alone are not 

sufficient to achieve the highest performance possible. For example, constant propa

gation is an important optimization that cannot be represented as a type inference 

problem. The telescoping-languages strategy gives up the opportunity to perform 

constant propagation across call sites. 

To provide specialization opportunities for all calling contexts, the traditional 

methods of type inference, whereby a single type or a set of possible types is assigned 

to every variable or expression, will not suffice. In the case where each expression 

is assigned a single type, there is not enough specialization opportunity. In the 

case where each expression is assigned multiple types, there is not enough precision, 

resulting in too many variants. 

Because the prototype compiler uses MATLAB as the source language, type infer

ence becomes even more complicated. For example, it is usually impossible to infer a 

single type for every variable that will suffice for every possible dynamic invocation 

of a MATLAB procedure. Note that the features of MATLAB that complicate type 

inference can be found in several other high-level, domain-specific languages, such as 

R, Python, or Lab VIEW. 

To address these problems, we developed a new type-inference strategy that is 

able to infer all valid type assignments or type configurations for the procedure with

out knowledge of the possible calling contexts. The type-inference algorithm serves 

two purposes. First, it determines the minimum number of type configurations that 

could legally occur in any dynamic invocation of the procedure. Second, type infer

ence is used to statically determine, for each corresponding variant, which optimized 

implementations should be invoked at each call site. 

This chapter defines and formalizes the solution to type inference in telescoping 

languages. Type inference over a procedure produces a type jump-function, which 
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lists every possible type configuration over the variables in terms of the parameter 

types. 

Type inference over a procedure produces a return type-jump-function, or proce

dure type, which lists every possible type configuration over the variables in terms of 

the input types. To represent this information, we introduce a new notion of types 

that we term mutually exclusive types, which are related to intersection types in that 

multiple type configurations over the parameters are represented in the principal 

type of a procedure. These types enable us to express properties that are necessary 

to accurately infer types in a polymorphic, array-based language such as MATLAB. 

To formally describe these types, we present a core calculus for MATLAB and 

impose a static type system, which we prove is type safe. We then formalize the 

constraint system and define the conditions under which these constraints are satis

fied. We prove that these conditions are sound and complete with respect to the type 

system. 

Although inference of intersection types is undecidable in general, we prove that 

the inference algorithm for mutually-exclusive types is solvable in polynomial time 

under a set of simplifying conditions. We argue that these conditions typically hold 

in practice. 

3.2 The Type-Inference Problem 

The type-inference algorithm presented in this dissertation must serve two purposes. 

First, it must determine the minimum number of valid type configurations or type as

signments. Second, it must provide the information necessary to statically determine, 

for each variant, which optimized implementations should be dispatched at each call 

site. 

Because we use MATLAB as our base language, the type-inference problem is com

plicated by the fact that MATLAB has a high degree of polymorphism. For example, 

the * operation in MATLAB is overloaded based on the types of the inputs. This 
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operation can perform scalar multiplication, matrix scaling, or matrix multiplication 

depending on the rank of the inputs. It is therefore necessary to precisely infer the 

types to preserve the semantics of the code when we translate MATLAB operations to 

calls to libraries in Fortran or C. 

Furthermore, the * operation is used for both real and complex inputs. The per

formance benefit from correctly determining the types and calling the implementation 

that is optimized for those types can be large [19]. 

Type inference must be precise enough to preserve the semantics of the code and 

provide specialization opportunities. 

To describe our type-inference mechanism in the context of a concrete language, 

we consider a subset of MATLAB and ignore some of its rarely-used features such 

as dynamic evaluation of strings as code, object-oriented features, and structures. 

In Chapter 4, we describe extensions to the basic type-inference strategy that enable 

type inference to be applied to a broader subset of MATLAB as well as other languages. 

3.2.1 Type Problems 

To carry out specialization based on variable types, we first define the variable prop

erties that are of interest. In general, the properties should be such that they can 

be encoded in the target language and the compiler for that language can leverage 

the information for optimization. They should also reflect the power of the source 

language. 

Since MATLAB is an array-based language, we use the 4-tuple definition of a 

variable type based on work by deRose [33]. We define a type to be a tuple 

T = < T , S, a, 7T> where, 

r is the intrinsic type of the variable (e.g., integer, real, complex). The intrinsic 

types constitute a fixed set of scalar types. Solving r solves the "intrinsic type 

problem." 

S is the upper bound on the number of dimensions for an array variable, also 
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called the rank. A tighter bound can be reached when the type inference system 

determines that the variable has a size of 1 in one or more dimensions. 6 will 

always be greater than or equal to 2. 

a is a tuple showing the maximum size of an array variable in each possible 

dimension. aA = < 1,1 > means that A is a scalar. Since some of the sizes 

may be 1, a also determines the actual rank of the variables (as opposed to a 

maximum number of dimensions). Solving a solves the "size problem." 

7r is the sparsity pattern of an array variable (e.g., dense, triangular, symmetric, 

etc.). Solving IT solves the "pattern problem." We assume that the lattice for 

the pattern inference problem is finite. 

This list can be extended as needed for other languages and other problems. In 

this chapter, we focus on the size-inference problem to demonstrate the power of our 

type-inference algorithm 

3.2.2 Type Inference in MATLAB 

MATLAB's simplicity makes it popular among scientific programmers. However, some 

of the very features that make MATLAB a desirable language for programming make it 

difficult for the compiler to translate to lower-level languages. Some of these features 

include: 

1. MATLAB is dynamically-typed. This makes inferring primitive types necessary 

to generate code in lower-level languages such as Fortran or C, both of which 

require explicit typing. 

2. Operators are heavily overloaded. For example, the * operation can refer to 

both matrix-matrix multiplication and matrix scaling, depending on whether 

an operand is scalar. Therefore, determining whether a variable is a scalar or 

not is important for correctness. 
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3. Variables can change types in the middle of the program, including arrays grow

ing in the middle of a loop. Inferring the maximum number of iterations of a 

loop would help avoid reallocating the array at every iteration. 

4. All variables are treated as arrays, including scalars, which are l x l arrays. 

Overloaded operators such as * are overloaded based on the size or extent of 

the array in each dimension. 

These features not only make type inference essential for compilation, they also 

make it difficult to statically determine the types of the variables. 

3.2.3 Type Inference in Telescoping Languages 

Since, in the telescoping-languages framework, libraries are preprocessed before call

ing context is known, type inference must use information within the library proce

dures to determine a minimum number of type configurations. 

Information about the type of a variable in a MATLAB procedure depends on the 

following: 

1. The operation that defines the variable. For example, in the statement 

A=w*v, 

A's size can be determined from the sizes of v and w. 

2. The operations that use the variable, since operations impose type restrictions 

on their inputs. For example, in the statement: 

H ( l , l ) = alpha, 

alpha must be scalar since it is assigned to a single element of H. 

The first causes forward propagation of variable properties along the control flow, 

while the second causes backward propagation. The type-inference system must infer 

types in both directions for the most precise outcome. 
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3.2.4 Existing Solutions 

Because telescoping languages proposes pre-compiling libraries before the calling-

context is known, MATLAB type-inference systems such as FALCON and MaJIC will 

not suffice, since FALCON relies on inlining to exactly determine types, and MaJIC 

determines types, in part, during a just-in-time compilation step. Moreover, both 

systems rely on data-flow analysis that converges to a single type for each variable. 

There are two main difficulties to using a traditional data-flow-analysis framework 

for the problem described here. 

1. It is difficult, if not impossible, to determine that the analysis will halt for a 

given subroutine. This is primarily due to the fact that for size inference, the 

finite-descending-chain property does not hold. 

2. The compiler must find all type solutions allowed by a procedure. Therefore, 

data-flow analysis is ill-suited for the problem, since if the analysis converges, 

it converges to a single solution (as in FALCON) or to a set of types as in the 

algorithm presented by Aho, Sethi and Ullman [4]. In the first case, there is 

not enough specialization opportunity, since the types are too general. In fact, 

in many cases a type will not be assigned, since the possible types might not 

have a most general type that can represent all possibilities. When this occurs 

in Falcon, types must be inferred in the dynamic compilation phase. 

In the second case, the exact relationship of the types of variables is not cap

tured, resulting in more type configurations than could validly occur in the 

program. For example, the data-flow analysis may be able to infer that an 

input variable and an output variable to an operation that performs transpose 

can each be either a upper or lower triangular, but it would not be able to 

capture the fact that the output is only an upper triangular if the input is a 

lower triangular. Such imprecision could lead to a radical increase in the num

ber of variants, and with it, a corresponding increase in library compiler times. 
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If the telescoping-languages library compiler were generating variants from the 

data-flow solution, it would generate an extra variant that would provide for the 

possibility that an upper triangular input might produce an upper triangular 

output, which is not a possibility. To avoid generating superfluous variants, the 

compiler needs a more precise type-inference strategy. 

3.3 Type-Inference Solution for Size Problem 

To perform type analysis over MATLAB procedures in the telescoping languages frame

work, we developed an alternative solution to the traditional data-flow techniques that 

performs analysis over the procedure as a whole [62]. This section gives an overview 

of the solution to provide the necessary background for the rest of the dissertation. 

To illustrate the type-inference algorithm, we describe the solution to the size-

inference problem, since it has the most interesting properties. Size inference solves 

two problems, the rank problem (scalar or non-scalar) and the size or extent of each 

dimension of the matrix. The rank problems is necessary to understand which oper

ators and procedure calls are intended, since operators are overloaded based on the 

rank. The extent in each dimension is necessary to understand the relationship of 

variable sizes in the library procedure, which is important for optimizations such as 

preallocating arrays based on the sizes of the inputs. To isolate the size-inference 

problem, we assume that the number of dimensions is always two (scalars have a size 

of one in each dimension). We discuss how to handle multiple dimensions as well as 

how to use the type-inference algorithm to infer intrinsic types and sparsity pattern 

in Section 4. 

We perform type inference over an intermediate representation of the MATLAB 

code in which all expressions have been expanded so that the results of each operation 

or procedure call are assigned to variables. Because each statement now contains only 

one operator or procedure call, we use these terms interchangeably. 

Also, to handle the fact that a variable may change type in the middle of a 
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procedure, we assume that the procedures have been converted to SSA form [28] so 

that each use of a variable refers to a single definition. Redefinition of a section of an 

array results in a new array, since this can cause a change in type. The arrays and 

variables will be re-merged during code generation if possible. 

Finally, we assume for simplicity that all global variables have been converted to 

inputs and outputs to the procedures. Therefore, when we refer to the number of 

parameters, we are actually referring to the number of parameters plus the number 

of global variables. 

The type-inference algorithm we propose determines the information that each 

individual operation or procedure call gives about the types of the variables involved 

and then combines that information over the entire procedure to find types. Thus, 

forward and backward inference occur simultaneously. 

3.3.1 Statement Information 

The information from operations is given in the form of propositional constraints on 

the types of variables involved in the statement, called statement constraints. MATLAB 

operations, and typical library procedures, are heavily overloaded based on the types 

of the inputs. Therefore, statement constraints need to represent all possible valid 

type configurations. 

Statement constraints are formed using a database of return type-jump-functions 

containing one entry per procedure or operation. Figure 3.1 shows an example of 

the return type-jump-function for the size problem on the MATLAB multiplication 

operation,"*". The clauses representing possible ranks over the input and output 

parameters are composed through logical disjunction. These clauses are defined to 

be mutually exclusive, thereby imposing the property that each clause represents 

a distinct type configuration. The clauses are made up of size definitions for each 

parameter. The sizes are represented by $-variables, which give the exact size rela

tionships between the variables. The parenthetical expression in each clause details 



39 

ol = i l * i2 

1 CTO1 =<1 ,1> A cr11 =<1 ,1> A a12 =<1 ,1> XOR 
2 CTO1 =<$1 , $2> A a11 =<1 ,1> A (7i2 =<$1, $2> A ($1 ^ 1 V $2 ^ 1) XOR 
3 C T O 1 = < $ 1 , $ 2 > A c r i l = < $ l , $ 2 > A C T S 2 = < 1 , 1 > A ($1 ^ 1 V $2 ^ 1) XOR 

4 cro1 =<$1 , $3> A a11 =<$1 , $2> A o-i2 =<$2, $3> A (($1 ^ 1 A $2 ^ 1)V 
($3 ^ 1 A ($1 ^ 1 V $2 ^ 1))) XOR 

5 a ° i =<1,1> A a11 =<1, $1> A <ri2 =<$1,1> A ($1 ̂  1) 

Figure 3.1 : Example of a procedure type for the size inference problem on the MATLAB "*" 
operation. Each clause gives a possible size configuration over the sizes of the variable. The 
first clause states that the operation could be scalar multiplication. This second and third 
clauses state that "*" could be a scaling operation. The fourth clause shows the operation 
could be matrix-matrix or matrix-vector multiplication. The last clause gives the possibility 
that the operation is multiplication of two vectors. This last case is necessary to keep track 
of the fact that ol may be scalar when il and i2 are not. While the last clause may not 
represent different functionality from the fourth clause for this "*" operation, the output 
may be used in another statement, where understanding that it is scalar may be important 
to determining the meaning of the operation. 

the conditions necessary to ensure that each clause is mutually exclusive. Note that 

the clauses aren't only tracking rank, but whether the variables are row or column 

vectors. The constraint language is formalized in Section 3.5. 

The $-variables are simply place holders for integer values representing sizes. Since 

each $-variable can be used for multiple variable sizes within a single statement con

straint, they capture the size relationships between the variables in a single operation. 

The fields in a can be defined to be linear expressions over the $-variables. Thus far, 

these expressions are sufficient to represent the size relationships between the vari

ables. For example, to represent concatenation of two array dimensions with sizes $1 

and $2, the concatenated dimension would have size $1 4- $2. $-variables are used to 

track the extents of the matrices in each dimension. 

Notice that in addition to tracking array sizes through the use of $-variable place 

holders, the clauses also track whether the source-code variables are scalars or non-

scalars {i.e., the rank problem). This is important because MATLAB operators are 
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overloaded on this information. For example, the * operator has completely different 

semantics depending on whether its arguments are scalars or not. Further differentia

tion between number of dimensions does not demonstrate these drastic effects on the 

meaning of the operators and therefore does not need to be represented in separate 

clauses. We describe how to use the type-inference algorithm to infer dimensionality 

in Chapter 4. 

The statement constraint formed from this procedure type at a particular appli

cation site is identical to the procedure type except that the variables are replaced by 

the actual input and output parameters. Since the statement constraints should be 

formed in isolation from each other, $-variables in a statement constraint should be 

interpreted as though they are existentially quantified. Rather than including binding 

constructs, we ensure that $-variables are not shared across statement constraints. 

$-variables may be replaced by constants in a statement constraint, when it can be 

determined that the matrix size is constant in a particular dimension for the statement 

in the MATLAB program. This can cause a reduction in the number of clauses in the 

statement constraint, since the constant may guarantee that certain clauses can never 

hold. The size of a matrix may also depend on a variable in the procedure. Unlike the 

case of constants, since the compiler may not be able to determine that a program 

variable is never 1, the clauses stating the possibility that the size may be 1 must be 

maintained. 

3.3.2 Combining Statement Information 

In a valid procedure, the type of a variable must satisfy all the constraints imposed 

by all the operations that can feasibly execute in any run of the program. Therefore, 

the set of valid type configurations over the local variables in the procedure, which we 

call the type jump-function or, more formally, the principal type, can be determined 

by taking the conjunction of the statement constraints over the procedure, called the 

procedure constraint, and finding all possible type configurations of the variables that 
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ff* 

cr"1 

CTfcl 

a"2 

awi 

aQi 

ah 
aCl 

CT/2 

a012 

av> 
ah 

<A 
(7V3 

av* 
aW2 

ah,x 

at* 
aC2 

ah 
(jh 

av> 
ah2 

config A 
<1,1> 
<1,1> 
<1,1> 
<1,1> 
<1,1> 
<1,1> 
<1,1> 
<1,1> 
<1,1> 
<1,1> 
<lp> 

<$1,1> 
<1,1> 

<$1,1> 
<$1,> 

<$1,1> 
<ki,l> 
<$1,1> 
<fel,l> 
<$1,1> 
<$1,1> 
<$lp> 

<ki,l> 

config B 
<1,1> 
<$1,1> 
<1,1> 
<$1,1> 
<$1,1> 
<1,1> 

<$1,1> 
<1,1> 

<$1,1> 
<1,1> 
<$1;> 

<$1,1> 

<1,1> 
<$1,1> 
<$1;> 

<$1,1> 
<fci,l> 
<$1,1> 
<A;i,l> 
<$1,1> 
<$1,1> 
<$lp> 

<A;i,$l> 

config C 
<$1,$1> 
<$1,1> 
<1,1> 
<$1,1> 
<$1,1> 
<1,1> 

<$1,1> 
<1,1> 

<$1,1> 
<1,1> 
<$lp> 

<$1,1> 
<1,1> 

<$1,1> 
<$i;> 

<$ l , l> 
<fci,i> 
<$ l , i> 
<fci,l> 

<$ l , l> 
<$ l , l> 
< $ l ^ 

<&i,l> 

funct ion [V, H, f] = 
ArnoldiC(Ai, ki, vi); 

V2 = vi/norm(vi); 
Wl=Ai*V2\ 

tmpi=V2*cti) 
fi=wi-tmpi; 
ci=v'2*fr, 
tmp2 = V2*ci; 
f2 = fi-tmp2] 
a2 = a i + c i ; 
Vi(:,l)=v2; 
# i ( l , l ) = a 2 ; 
for j = 2:ki, 

h=(!>(f2,h); 
/ ? i=norm(/ 3 ) ; 

v3=f3/0i; 
H2(j,j-l)=[31; 
V2(:,j) = v3; 
W2 = Ai*V3; 
hi=V2(:,l-J)'*W2; 
tmp3 = V2(:,l-j)*hi; 
h=w2-tmpz\ 
C2 = V2(:,hjy*f4] 
tmp4 = V2(:,l-j)*C2; 
h=f4-trnpi\ 
h2 = h\+C2\ 
Hz(l:j,j) = h2; 

end 
v3=4>(Vi,v2y, 
H^iH^Hz); 

Figure 3.2 : The resulting type configurations and the corresponding pruned SSA 
form of ArnoldiC. 

satisfy the resulting boolean expression. Solving typical propositional constraints of 

this form is NP-hard.1 However, we show in Section 3.4 t ha t under certain conditions 

1The well known 3-SAT problem can be reduced to this problem [27]. 
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that occur most frequently in practice, we can devise an efficient algorithm using the 

specific properties of the problem. 

The type jump-function inferred by our type-inference algorithm from the MATLAB 

procedure, ArnoldiC,2 is shown in Figure 3.2 in tabular form. Each column represents 

a different possible type configuration for the SSA form of ArnoldiC. 

In this example, the types of variables can be exactly inferred from the type 

configurations table given the inputs. For example, if A\ is non-scalar, then config

uration C should be used. Configuration C is, in fact, the only type configuration 

intended by the library writers. An annotation stating that the input A is never scalar 

would have made configuration C the only result of type inference. The telescoping-

languages strategy provides a mechanism for such annotations as will be discussed in 

Section 3.4. 

Because the only free variables occurring in each configuration are the runtime 

values $1 ( the size of Ai in each dimension) and the iteration variable j (whose 

maximum size is ki), the sizes of all the variables in the procedure can be determined 

once the sizes and values of the inputs are known. The type-inference algorithm is 

powerful enough to infer that A\ must be square (i.e., that it has the same size in 

both dimensions) if it is a matrix, as well as the fact that many of the variables are 

vectors. 

Note that the type configurations in the table are mutually exclusive and jointly 

exhaustive, and they involve the fewest number of $-variables possible, so that the 

fewest values need to be known for all the sizes to be known. 

3.4 An Implementation for Solving Procedure Constraints 

In this section, we give an efficient implementation for solving procedure constraints 

and prove that it is efficient in practice. To simplify the initial description, we first 

describe the type-inference algorithm for straight-line code. In Chapter 4, we extend 

2This procedure is from the ARPACK development code. 
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the algorithm to handle the other constructs, such as control flow, which are necessary 

for applications that occur in practice. 

Solving constraints can be broken down into three phases - building a graphical 

representation of the constraints, finding n-cliques over the graph, and solving the 

cliques to produce the procedure type. 

First, a number of assumptions are necessary for this algorithm to perform effi

ciently. 

1. The type-inference engine has valid code on input (i.e., all variables are defined 

before being used).3 

2. All global variables have been converted to input and output parameters. 

3. The number of input and output parameters in each operation or procedure is 

bounded by a constant. This property is important to limit the complexity and 

is common in practice since parameter lists do not tend grow with the size of 

the procedure [23]. Also, libraries are not typically written with global variables 

to ensure that the procedures function in arbitrary contexts. 

3.4.1 Reducing Type Inference to Clique Finding 

After constraints for each operation have been determined, the compiler must reason 

about them over the whole procedure. That is, it must find all possible type config

urations that satisfy the whole-procedure constraint. By representing the operation 

constraints as nodes in a leveled-graph, where each node is associated with a level 

and each level corresponds to a different operation, the problem is reduced to finding 

n-cliques, where n is the number of operations in the procedure, and an n-clique is a 

complete subgraph involving n nodes. 

3This is a reasonable assumption for MATLAB programs since users can develop and test their 
code in the MATLAB interpreter before giving it to the optimizing compiler. It is also easy to verify 
since SSA construction fails if there is an undefined use. 
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A = b + c 

l a <JA=<1,1> ACT6 

l b o - A =<$l ,$2> Aab 

l c o- A =<$l ,$2> ACT6 

I d aA =<$1 , $2> A ab 

E = c - d 

2a CTB =<1 ,1> A ac 

2b aE =<$3, $4> A crc 

2c cr^ =<$3, $4> A ac 

2d ( j^ =<$3, $4> A ac 

la A 

2a 

Figure 3.3 : Example graph. 

Figure 3.3 shows a simple example of how the graph is constructed. Each clause, 

or possible type configuration for an operation, is represented by a node at the level 

corresponding to the lexicographical position of the statement in the code that con

tains it. There is an edge from one node to another if the expressions in the nodes do 

not contradict each other. For example, there are no edges from 16 to 26 since c can

not be both scalar and non-scalar. Note that since each clause is mutually exclusive, 

there is no edge between nodes on the same level. 

The final graph has n levels, where n is the number of operations or procedure 

calls (or statements in the expanded form). Each level is bounded by 2V nodes, since 

2 is the number of possible types for each variable (scalar or non-scalar), and v is 

the number of variables involved in the statement, v is assumed to be small by the 

third assumption. 2V is the number of possible type configurations, or entries in the 

type table, for the variables in the operation corresponding to that level, since there 

=<1,1> A ac =<1 ,1> XOR 
=<1,1> A ac =<$1 , $2> A ($1 ^ 1 V $2 ^ 1) XOR 
=<$1, $2> A crc =<1 ,1> A ($1 ^ 1 V $2 ^ 1) XOR 
=<$1, $2> A ac =<$1 , $2> A ($1 ^ 1 V $2 f 1) 

=<1,1> A ad =<1 ,1> XOR 
=<1,1> A ad =<$3, $4> A ($3 ^ 1 V $4 ̂  1) XOR 
=<$3, $4> A ad =<1 ,1> A ($3 ̂  1 V $4 ̂  1) XOR 
=<$3, $4> A ad =<$3, $4> A ($3 ̂  1 V $4 ̂  1) 



45 

are two possibilities for each variable. Since v is assumed to be bounded by a small 

constant, 2V must be bounded by a constant. 

The goal of our type-inference algorithm is to find the set of type configurations 

or type assignments of the variables that could validly (without type errors) occur 

in practice. Because the clauses in the statement constraint represent every possible 

type assignment of arguments at the call site, the set of type configurations over the 

procedure must satisfy one clause from every statement constraint or one node on 

each level of the graph. Therefore, finding the set of all possible type configurations 

maps naturally to the set of all n-cliques (where n is the number of levels in the graph, 

and a clique is a complete subgraph) over the graph. 

3.4.2 Finding Cliques 

To show that using cliques to determine types is viable for our problem, we must 

prove that we can find cliques efficiently. First, we prove that the number of type 

configurations is bounded by a small number, and then from this, prove that the total 

number of n-cliques is bounded by a small number. 

Let u-vars be defined to be the smallest set of variables such that all other variable 

types can be determined from the types of the u-vars. U-vars represent the set of 

variables that are not guaranteed to be statically determinable in terms of the types 

of the other variables. Examples of u-vars are input types, merged types at control-

flow join points, operations for which there is no available return type-jump-function, 

and the results of non-type-input-dependent operations (where type-input-dependent 

means that the types of the outputs can be uniquely determined from the types of 

the inputs). The algorithm may be able to infer exact types for some or all of the u-

vars by their uses. For the simple case where all operations are type-input-dependent 

and there is no complex control flow, u is bounded above by the number of input 

parameters and is therefore small by assumption 3. 

We define a valid procedure to be one with the property that all variable definitions 
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occur lexically before any of their uses. 

Theorem 3.4.1 The number of possible type configurations is bounded by lu, where 

u is an upper bound on the number of u-vars and I is the number of possible types for 

each variable. For the size inference problem, I is 2. 

Proof: By the definition of u-vars, all other variable types excepting the u-vars can 

be statically determined in terms of the types of the u-vars. Therefore, the total 

number of possible configurations over all the variables is just the number of possible 

configurations of the u-var types. For the size problem, this is 2" since each u-var 

could potentially be either scalar or non-scalar and the clauses are mutually exclusive. 

The $-variables do not change the number of type configurations, since they do not 

affect the number of clauses in the statement constraint, but will be used to solve for 

actual sizes once the ranks have been inferred. • 

Theorem 3.4.2 The number of n-cliques is bounded by lu. 

Proof (by contradiction): Since each clique represents a possible type configuration, 

we need to show that no two cliques represent the same type configuration. We start 

by assuming there are two distinct cliques that represent the same type configuration 

over the variables. The cliques must differ at one or more levels to be distinct. Since 

expressions in nodes of the same level contradict each other, at least one variable 

must have a different type. Therefore, the two cliques cannot have the same type 

configuration over the variables. • 

Finding n-cliques in general is ./V'P-Complete [27]. However, we claim that given 

the structure of the problem, we are solving a subset of the n-clique problem that has 

a polynomial time solution given a bound on u. 

The solution must be able to take advantage of the specific properties of the 

problem. Figure 3.4 gives a simple iterative algorithm to achieve this. The algorithm 

starts with one level and puts each node in that level in its own clique. For each 
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findCliques 

input: graph G 

output : CurrCliques 
i n i t i a l i z e CurrCliques to f i r s t - l e v e l nodes 
1 for every l eve l r in G - f i r s t row 
2 newCliques = empty 
3 for every node n in r 
4 for every c l ique c in CurrCliques 
5 c a n d i d a t e 3 t r ue 
6 for every node q in c 
7 candidate = candidate & edge?(n,q) 
8 if (candidate) 
9 newCliques =newCliques + c l ique(c .n ) 
10 CurrCliques = newCliques 

Figure 3.4 : Iterative n-clique finding algorithm. 

subsequent step, it compares each node in the current level with each already formed 

clique. If the node has an edge to every member of the clique, it forms a new clique 

with the old clique. It does this until it reaches the last level. 

The loop starting on line 4 in Figure 3.4 iterates over the cliques from the previous 

step. Because the bound of 2" only holds for the final number of cliques, we need to 

find a bound on the number of intermediate cliques to limit the complexity. 

Theorem 3.4.3 The number of cliques at each step of the iterative n-clique-finding 

algorithm is bounded by lu if the levels are visited in program order. 

Proof: The number of cliques for a program with only arguments and an empty 

body is the number of type configurations over the input and output arguments, or 

/". We have from above that on valid procedures there is an upper bound of lu on 

the number of cliques. At any operation or procedure call, the rest of the code can 

be left off and the remaining (beginning) code is still valid.4 Therefore, since every 

4Since valid only refers to the fact that every variable is defined before being used, SSA gives us 
this property in the presence of control-flow constructs. 
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iteration of the algorithm has processed valid code, if the levels are in program order, 

after every iteration, the algorithm will have produced cliques on valid code. The 

number of cliques after every iteration must be bounded by /". • 

With lu cliques after every iteration, the n-clique-finding algorithm takes lvlun2 

steps, where n is the number of operations, lv is the maximum number of nodes in 

a level (always bound by a small constant), and u is the number undeterminable 

variables. Therefore, the overall time complexity is 0(n2) if lu is bounded by a 

constant, which is true when all operations are type-input-dependent {i.e., all output 

types can be determined by the types of the inputs) and there is no complex control 

flow. 

Of course, in MATLAB, not all operations are type-input-dependent. For some 

operations, the types of the outputs could depend on the values of the inputs rather 

than the types. This means that an operation could produce multiple output types 

on a given set of input types. Variables defined by such operations are u-vars. u 

should still remain small, since few operations are not type-input-dependent. Note 

that the algorithm works even without this assumption, but the complexity could 

become exponential in the worst case. 

3.4.3 Solving Cliques 

Each clique represents a different possible type configuration. However, the equations 

in each clique still need to be solved to determine a more succinct representation of 

the type configurations. Since each node in a clique has equations that use different 

$-variables from equations in other nodes, the exact size relationships are still not 

apparent. To reduce the cliques to a more useful form, the compiler must "solve" the 

equations so that the sizes of the variable are all expressed in terms of the sizes of 

the u-vars and the minimum number of $-variables are used. The last requirement 

guarantees that the exact relationship between the variable sizes is explicit. 
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The following strategy provides a general solution to the clique-solving problem. 

We implemented a strategy that solves a specific instance of the problem in which 

there are no coefficients. The strategy for finding a general solution is a relatively 

straightforward extension of the implemented strategy. 

Because the size in each dimension is written in terms of a linear expression 

over the $-variables, solving the equations in the clique can be formulated as solving 

systems of linear Diophantine equations. Note that the system will most likely be 

under-constrained, in which case the solver must solve the equations in terms of the 

minimum number of variables (in this case, $-variables). 

Each variable dimension is solved separately. Therefore, equations are of the form: 

v.d = \ J OjXj + b, 
i=0 

where b is a constant, the a^'s range over the set of $-variables, v is a variable, and d 

is a dimension of v. 

First, the equations are sorted into systems of equations so that each system 

contains all equations that define the size for a single dimension of a variable. For 

each system, the solver performs a linear pass over the equations. If there is only a 

single equation, no further action is necessary. Otherwise, the solver examines two 

equations from the system at a time and solves for the $-variables in the equations. 

The solution from this solving process is guaranteed to involve fewer $ variables than 

the original equations. The solutions to the $-variables are then substituted for the 

$-variables in all the equations from all the systems. After $-variables substitution, 

the two examined equations are the same, so one of the equations is removed from 

the system. The solver then solves this new equation with the next equation from 

the system if there is one available. When this process is completed, there will be a 

single equation denning each dimension of each variable. These equations will involve 

the fewest number of $-variables needed to represent all possible size configurations. 

To solve for the $-variables in two equations, the solver subtracts the equations 

to get rid of the procedure variable. The resulting equation is of the form: 
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i = 0 

E a-iXi = b. 
n 

n 

Theorem 3.4.4 All solutions to the equation Vja^Xj = b have the form: 
i=0 

n 

X0 

_ ^ ajkj 

j 

, 0,0 Ki 

^ gcd(a0, aj) 

Xi = x'{ — r, VI < i < n, 
gcd{a0, at) 

where a;, = x\ Vz, 0 < i < n is one solution to the equation. 

Proof: Substituting the general solution into the original equation, we get 

Simplifying, we get 

jridcdiao^j)1 j ^ x
 3 9cd(a0,aj)

J 

it, it, I ii, j 

<HXi + a0 > / , - a o V , / v = b. 
i=o j^9cd{ao,aj) ^gcd{aQ,aj) 

Therefore, 

n 

E aiX'i = b ' 
i=0 

which we know to be true based on the definitions of the z-s. • 

The kiS are fresh $-variables. Thus, given two equations from the cliques, the 

solver is able to reduce the number of $-variables from the equations by one. The 

original $-variables (the Xi's) are replaced by the solution in all the equations in which 

they occur, reducing the total number of $-variables over all the equations by one. 

Continuing in this fashion will eventually yield the smallest number of $-variables 

needed to compute all the sizes. 

One important feature of this strategy is that in the final solution, each $-variable 

appears in at least one equation by itself. This property held true before solving, and 
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each step of solving preserved this property. The equations can be arranged so that 

each $-variable appears by itself in a size equation denning the type of a u-var. Thus, 

the property that all the variable sizes are computed in terms of the sizes of the u-vars 

with a small amount of back-solving to isolate the $-variables from the coefficient and 

the x\ is maintained. The u-vars themselves may be statically inferred. In some cases, 

it is determined that a clique is invalid if there is no solution from the solver. 

Now the only requirement for a solution to the equations is a starting solution. 

This can be calculated from the computation of gcd(ao,..., an), which we will call gcdn 

for brevity. It is well-known that given integers a, b there are integers s and t such 

that gcd(a, b) = sa + tb (proved using induction on the value of b using the Chinese 

Remainder Theorem). There are known algorithms for finding such integers. This 

can be built up to determine that given integers ao,..., an, there are integers t0,..., tn 
n 

such that gcdn = V J ^a,. 
i=0 

Theorem 3.4.5 Let to, ••-, tn be integers such that gcdn = \ J ^a*. Then one solution 
i=0 

i=0 

to 2_]a-i^i = b is 
n 

Ub 
Xi 

gcdn 

Proof: Substituting this solution into the original equation, we get 

We can simplify this to get 

E o,itib _ 

gcdn ~ 
i=0 3 

i=0 

Since we have gcdJ1 = YJ^fli, we get b = b. • 
i=0 
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Integers n,m,k £ I 
Arrays a £ A 
Vars x, y £ X 
Procedures / £ F 
Exprs e £ E ::= a\ x \ x(e, e) | /(e) \ e + e \ e*e 
Statements c £ C ::= x := e 
Proc Bodiesb £ B ::= stop|c;fe 
Proc Defs p £ P ::= fnrc := f(x)b 

Figure 3.5 : CORE-MATLAB syntax. 

Solving the equations is 0(n2), since the number of equations is the constant 

number of variables involved at each statement times the number of statements, 

and after each equation is solved, all equations must be updated. The solving 

process happens once for each inferred clique. Since we proved that under practical 

conditions there are a constant number of cliques, the total process is 0(n2). 

3.5 Formal Description 

To analyze the problem of inferring array sizes, we formalize this problem over a 

minimal core calculus for MATLAB that we call CORE-MATLAB. All valid programs 

in CORE-MATLAB are valid MATLAB programs. In Section 3.4, we described type 

inference informally over a larger subset of the constructs available in MATLAB. 

We first describe the subset of MATLAB over which we infer types. We then give 

the type system for our problem and formalize the solution we informally described in 

the previous section. We show that our solution is sound and complete with respect 

to the type system. 

3.5.1 CORE-MATLAB 

Figure 3.5 gives the syntax for CORE-MATLAB. CORE-MATLAB does not include 

higher-order functions. Many MATLAB features that have little bearing on the ar-
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ray size-inference algorithm are omitted in CORE-MATLAB. For example, in CORE-

MATLAB, we assume that each procedure returns a single value and that subscripted 

array accesses only access single elements of an array. Because scalar types are not 

relevant to array-size inference, we stipulate that all scalars are integers and will 

not infer primitive types, which would be necessary to properly handle non-integer 

numbers. For simplicity, we require that all arrays are two-dimensional. 

One feature of MATLAB that is relevant to array-size inference that we do not for

malize is control flow such as conditional branches, for-loops, and recursion. Although 

these features are handled in our implementation, we leave a formal analysis of their 

bearing on array-size inference as future work. The problem is interesting even in the 

absence of control flow since the overloaded operations are a form of control flow as 

they require dynamic dispatch based on the input types. 

We use ":=" to represent assignment in the formalization to distinguish from 

equality, although this is not MATLAB syntax. CORE-MATLAB does not support direct 

assignment to a section of an array. We choose not to support this because we are 

operating on an SSA form that creates a new variable whenever a section of an array is 

assigned and copies the new array into the new variable. In the actual implementation, 

we handle assigning to array sections directly. 

A CORE-MATLAB procedure consists of a single output parameter, the procedure 

name, a set of input parameters, and a procedure body. We use the procedure symbol 

loosely in that sometimes P refers to the body of the procedure P. The procedure 

body is a series of statements ending in stop. Each statement assigns an expression on 

the right-hand side to a variable. Expressions can be array constants, other variables, 

array sections, or procedure applications. Included in CORE-MATLAB are two prim

itive operations, -I- and *. While the type-inference algorithm does not distinguish 

between primitive operations and procedure calls, we include these primitive oper

ations to show the types of errors that can be caught from static analysis, namely, 

that certain size constraints hold on inputs to the operations and procedure calls. 
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The primitive operations also give us starting operations from which all other library-

procedures may be built. 

Operat ional Semantics The evaluation rules, as shown in Figure 3.6, describe 

the CORE-MATLAB semantics. We evaluate these rules over procedure bodies with a 

given set of inputs to the procedure. 

The set of stores holds all the variable assignments seen thus far in the program. 

Addition and multiplication are over matrices. 

[VAR] : Access to a variable returns the value of the variable if the variable and 

its value are included in the store. 

[E-VAR] : If the variable is not part of the store, access to the variable results 

in error (i.e., trying to access a variable before it has been defined). 

[ A P P ] : The result of function application is the result of evaluating the body 

of the function with formal parameters replaced by actual parameter values. 

[ E l - A P P ] : If the number of actual parameters does not match the number of 

formal parameters the program results in an error. 

[ E 2 - A P P ] : If the function is not defined, the program results in an error. 

[ELEM] : A subscripted variable results in the element represented by the eval

uation of the subscripts of the matrix corresponding to the variable as defined 

in the store. 

[ E - E L E M ] : If the variable is not stored or the array subscripts are not scalars, 

the program results in an error. 

[ADD]:The + operator results in matrix addition. 

[E-ADD] : If the sizes of the two matrices do not match, the program results in 

an error. 
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Stores E G ST ::= [] | x := a,Z 
S\zeof(Anxm) =<n, m> 

Add(ai, 02) = a, where a is result of matrix addition on a\ and a2. 
Mult(ai, 02) = o, where a is result of matrix multiply on a-i and 02-

{x := a} G E r , {x := a} 4 E r 

i -= VAR ^ L L _ E-VAR 
E, 2; <-> a E, £ c-> error 

£>e / ( / )= fnx 0 := / ( a ; i i - - - , ^n )& 
E, [xi H-> a i , . . . , xn H-> a„]6 ^ a 

— v-i „ x A P P 

S, / (e i , - - - ,en) H a 
Def(f) = fn x0 := / ( x i , . . . , xm)6 

m^n , f 4 Def 
— £ - , E I - A P P ^ t . J * f E2-APP 
E , / ( c i , - - - ,en) t e r r o r S , / (e a , ••• ,en) «-+ error 

E, ei «->• ai E, e2 e-» a2 E(x) = a 
Sizeof(ai) =<1,1> Sizeof(a2) =<1,1> 
Sizeof(a) =<n i , n2> a,\ <n\ a2 < n2 

E,x(ei,e2) *-> a(ai, a2) 
L[ELEM] 

E, ei c—> ai E, 62"—>a2 {x := a} ^ E or 
Sizeof(ai) ^<1 ,1> or Sizeof(a2) T^<1, 1> 

- — r E - E L E M 
E,a;(ei,e2).t-^ error 

E, ei <L-» ai E, e2 *-» 02 E, e\ «-» ai E, e2 <-> 02 
Sizeof(ai) = Sizeof(a2) ' . Sizeof(ai) 7̂  Sizeof(a2) . 

-[ADD] — — - — ——[E- ADD] E , e i + e2 <-> Add(ai,a2) E, e\ + e2 <-> error 

E, e\ <-> ax E, e2 ^ a2 

Sizeof(ai) =<n1,n2>,Sizeof(a2) = < m i , m 2 > n2 = mi r 

— -TT-r-, \ MULT 
E, ei * e2 «-»• Mult(ai, a2) 

E, ei -̂> ai E, e2 e-> 02 
Sizeof(v 1) =<n i , n2>, Sizeof(t/2) = < m i , m 2 > 712 7̂  mi 

E, ei + e2 <-* error 
[E-MULT] 

E, c «̂-» E' E', 6 «-» E" r , E, e «-» a 
— - — — BODY — - — - f r- S T M T S T O P 

E,c;6«-*E" • l JE,:r : = e ^ E + { x : = a } 1 J E , s t o p - + E l J 

Figure 3.6 : CORE-MATLAB operational semantics. 
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[MULT] : The * operator results in matrix multiplication. 

[ E - M U L T ] : If the size of the second dimension of the first matrix does not match 

the size of the firs dimension of the second matrix, the program results in an 

error. 

[BODY]: The body is evaluated a single statement at the time from first to last. 

[STMT] : Each statement is evaluated by evaluating the expression on the right-

hand side and storing the resulting value with the variable on the left-hand 

side. 

[STOP] : The program terminates when stop is reached. 

Type Sys tem We first define the type language used for the size-inference problem 

shown in Figure 3.7. In the type language, a procedure type is a sequence of mutually 

exclusive, jointly exhaustive clauses, where each clause denotes a single configuration 

of types over the procedure parameters. We call these types mutually exclusive types. 

These types are necessary both to define the smallest number of variants and for 

efficient compilation as we showed in Section 3.4. Procedure types are used in the 

constraint system when substituting parameter types with argument types at a par

ticular call site. Their non-standard formulation as a sequence of clauses allows us to 

simplify the description of the constraint system. 

The clauses represent each possible type assignment over the inputs and outputs 

of the procedure. The clauses should be mutually exclusive and jointly exhaustive. 

That is, no two clauses can hold true at the same time, and the clauses represent every 

possible type assignment to the parameters of the procedure. The variable types used 

in the clauses consist of a pair of linear expressions over the $-variables representing 

the size in each dimension. 

Figure 3.8 describes the simple type system for the size-inference problem that we 

impose on CORE-MATLAB. The procedure type as described in Section 3.3 has at most 
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$-Vars d € D ::= %n 
$-Exprs s & S ::= n * d \ n \ n * d + s 
Var Types t e T : :=<si ,s2> 
Clause cleCL::=cl/\ax = t\ Acx = t 
Proc Types r e R ::= r XOR d | d 

Figure 3.7 : Type language. 

one clause that represents each scalar/non-scalar assignment to the parameters. The 

$-variables handle the additional constraints of how the sizes of the parameters relate 

to each other. To determine that the types of the arguments at an application site are 

represented in the procedure type by a clause, we define a notion of substitution. If 

the variable types of the parameters in one of the clauses from the procedure type can 

be validly substituted by the variable types of the arguments, then the application is 

well-typed. 

Substitution maps $-variables to linear expressions of $-variables. Substitution 

must not map non-scalar types to scalar types. Also, substitution should recognize 

that linear expressions are commutative, distributive and associative. Therefore, to 

ensure, for example, that 

Ms(Sl) = 3 * $5 + 2 * $7 

and 

// s($l) = 1 * $5 + 2 * $7 -I- 2 * $5 

both represent the same substitution, we will normalize the substitution by introduc

ing a canonical ordering. We sort the terms of a linear combination in the substitution 

into ascending order of $-var, and add the coefficients of the $-variables within the 

expression. We call this canonical ordering function norm. 

These constraints are represented in the definition of a substitution, which we 

define in three parts. 

1. Substitution of $-variables for linear expressions of $-variables: 
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Type Table Type : F —• R (contains function type-
for all called procedures). 

Def Table Def : F —> P (contains function definitions 
for all called procedures). 

Environ T EG ::= [] | x : t A T 
TSub HT-T^T 

SSub iis:S^S 
DSub nD:D-*S 

(J.T(<Sl, S2>) =<fJ,S(si), /J,S(S2)> S.t. <fJ,S(si), (J,S(S2)>=<1, 1>=><SU S 2 > = < 1 , 1> 

Hsihdi -\ h kndn) = norm(kiiJ,D(di) H 1- kn/j,D(dn)) 
HD(d) = s 

Expression typing rules: 

[VALUE] 
T h Anxm :<n,m> 

r ( s ) = t, 

TTT7T'VAR1 
n - e ! : < l , l > n - e 2 : < l , l > 

n - x ( e 1 , e 2 ) :<1,1> 
T\-ei:t T\-e2:t 

[ELEM] 

[ADD] 
r h ex + e2 : t L J 

r i - e i :<si ,s3> n - e 2 :<s3 ,s2> 
— M U L T 
r h ei *e 2 :<si ,s2> 

Def(f) = fn x0 := f(x\, ...,xn)b 
ax° = t'0 A • • • A aXn = t'n G Type(f) 

T h ei : ti • • • T \- en : tn 

3fir s.t. ^rit'i) =U,i = 0, . . ,n 

r i - / ( e i , . . . , e n ) : *o 

Statement typing rules: 

[APP] 

T{x)=t r h e : < , r h c T H L , r o ' 
T h x : = e [ S ™ T ] T h e ; 6 ^ j ^ S r o r ] 

Figure 3.8 : Type system for size problem. 
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fj,D(d) = s 

2. Substitution of linear expressions of $-variables to linear expressions of $-

variable: 

Hs(hdi -\ h kndn) = norm(A;i/iZ)(di) H h knfiD(dn)) 

3. Substitution of variable types to variable types: 

M < s i > s 2 > ) =<(J>s(si),[J.s(s2)> 

s.t. <ns(si), fis(s2)>=<l, 1 > = > < S I , S 2 > = < 1 , 1> 

It is assumed that we are given tables, Type and Def that map procedure names 

of the called procedures to the corresponding procedure types and definitions respec

tively for all the called procedures. 

[VALUE]: A matrix value has a type that is the size of the matrix in each 

dimension. 

[ELEM] : An element of an array is a scalar. 

[MULT] : The type of the result of multiplication is the size of the first dimension 

of the first matrix and the size of the second dimension of the second matrix. 

[APP] : To get the type of the result of function application, first the procedure 

type from the type table must be determined. Then the clause with types of 

the formal parameters that match the types of the actual parameters is found. 

The type of the result of the procedure in this clause is the type of the result 

of function application. 

Type inference over a procedure P is described via the notion of a Principal of 

P, which is a set of distinct type environments T i , . . . , Tn such that each I \ is a type 

environment corresponding to a particular type configuration of P 

Princ(P) = {T \ T h P Vars(P) = dom(T)} 
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To have a valid type derivation of a procedure P, one must assume that the 

procedure type for any procedure / called in P must give only the input and output 

type configurations that allow / to be well-typed. Since the type inference process 

infers these entries, we show that, given correct entries for Type on the primitive 

operations, the correct procedure type is inferred for any procedure that is built up 

from the primitive operations. Therefore, any entry to Type entered from results of 

type inference is correct. 

To show all of this, we first prove that the type system we present is type safe 

with respect to CORE-MATLAB, given that Type is correct. We then show that we 

can infer exactly the set of type environments, F, that allow for a type derivation 

over a procedure, P. It is trivial to show that by inferring Principal for P, we can 

extend Type to include a new entry for P, that takes only the information from the 

input and output parameters from each T in Principal, and combines them using V 

to produce the procedure type. Since Type(P) is based on a correct Principal for P, 

the new Type is still correct. 

Safety We define the following judgment to relate type environments to stores in 

the evaluation rules. 

V{x:=a} eZ r h i : t • h a : t 

r i - s 

Appendix A provides a proof for the following type safety theorem. 

Theorem 3.5.1 Type Safety: 

Given Type, if F h S,T h e : t and E,e <-• a then F h a : t. Also, ifF\-X,F\- P, 
and E , P ^ S ' , then F h £ ' . 

Note that this theorem ensures that no well-typed procedure results in an error. 
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3.5.2 Deriving the Principal Type 

The typing rules only state that a procedure is correct with respect to a given 

Principal. What they do not state is how we derive Principal for the procedure. 

We now formally describe the process by which we derive all valid F's, which we will 

informally describe in Section 3.4. 

Principal can be derived in two steps. First, the procedure constraint must be 

formed from the statement constraints. Then the procedure constraint must be solved. 

We show that these two steps are sufficient to find Principal. 

Building the Procedure Constraint Before procedure constraints can be built, 

the procedure must be transformed so that each statement contains only one operation 

or procedure call, since constraints are formed over statements and not operations. 

This normalization is described in Figure A.2 in the Appendix, as well as a proof 

that normalization preserves types. We define the function nrm as the function that 

normalizes procedures. 

As shown in Figure 3.9, statement constraints are formed from procedure types, 

with the parameters replaced by the arguments. The $-variables are replaced by $-

variables that are fresh in the procedure constraint to isolate the statement constraints 

from each other. If one of the actual parameters involved in the statement is a 

subscripted array access, an extra atom stating that the argument must be a scalar is 

appended to the statement constraint. This has the effect of negating any clause that 

treats that argument as a non-scalar. In the actual implementation, the compiler just 

eliminates these clauses. 

Solution for the Procedure Constraint The procedure constraint merely states 

what properties must hold over the variable types for the procedure to be valid. It 

does not give the possible type configurations, or T, necessary for variant generation. 

The procedure constraint must be solved to determine all possible type configurations. 
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Proc Constraints pc € PC ::= pc A sc \ e 
Stmt Constraints sc G SC ::= sc V cl \ cl 
Expr Constraints ec G .EC ::= cre = t 
Expressions e E E ::— a \ x \ x(e, e) 

$—vars(r) = d, where d is the set of $-vars used in r. 

a—=<n,m>[VALVE] 

: l V A R l _,, . x . ^ f e , ^ _ t E L E M l a: : el J x ( e i , e2) : ax^'e2) =<1,1> A' 
<7e2 = < 1 , 1> A (7ei = < 1 , 1> 

61 : G C i , . . . , 6 n : eCn 

Type(/) = r £>e/(/) = fn x0 := f(xu . „ , x„) P 
$-vars ( r ) = d d' fresh \d'\ = \d\ 

[STMT] 

y = f(eit.J_.,en) : 
([x0 •-»• y, Xj i-» ej][rf H-> d']r) A eci A • • • A ecn 

,c:sc P : pcr 
: [STOP1 _ A M P R O C ] 

stop : e c; P : sc A pc 

Figure 3.9 : Simple constraint system for size problem. 

We describe the process for solving the constraints in Section 3.4. We formalize the 

solution to the constraint system in Figure 3.10. 

A T satisfies the constraints if for all the program constraints, there exists a valid 

mapping, n?, from $-variables to linear expressions over $-variables that match the 

variable types in T. 

Soundness and Completeness of Solution We show that our solution is both 

sound and complete with respect to the type system given in Figure 3.8. The proofs 

are given in Appendix A. 

Theorem 3.5.2 Soundness: Given Type, Def, and P, iff-ir, T\- pc and nrm[P] : pc 

then r r- P. 

Theorem 3.5.3 Completeness: Given Type, Def, and P, ifT¥-P then there does 



cl = ax = t A cl' 
r(x)=fir(t) nT,r\-cl' 

/ i r , r I- cl 

cl = ax = t 
T(x)=fiT(t) 

[CLAUSE] 

HT, Y\- cl 

sc = cl v sd 
HT,F\-CI V fj,T,T\-sd 

HT, F h SC 

sc = cl 
HT, T\- cl 

[CLAUSE2] 

[STMT-CONSTR] 

pc = sc A pd 
HT, T h SC HT, r I- pd 

[STMT-CONSTR2] 

fjT, r i- pc 

pc = e 

[PROC-CONSTR] 

[PROC-CONSTR2] 
fiT, r i- pc 

Figure 3.10 : Well-formed type configurations. 

not exist a \x? such that (J,T, T h pc, where nrm[P] : pc. 
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Chapter 4 

Extensions to Type-Inference Algorithm 

Chapter 3 described the basic size inference algorithm over single MATLAB procedures 

without control flow. This chapter describes extensions to the basic algorithm that 

enable type inference over programs that occur in practice. We first discuss ways to 

extend type analysis to handle the widely-used program constructs found in MATLAB 

and other languages such as control flow and access to array sections. We show 

that annotations from library writers concerning types are easily incorporated into 

the type inference system to help reduce the number of type configurations inferred. 

We then discuss interprocedural issues for the type-inference algorithm. While the 

telescoping-languages strategy does not require whole-program analysis, we still need 

to consider how type inference is handled across procedures. Finally, we show how 

type inference is applicable to problems other than the size inference problem that 

are important for achieving high performance from MATLAB and other languages. 

4.1 Handling Control Flow 

In Chapter 3, we presented the type-inference algorithm under the assumption that 

there was no control flow and that all procedures were type-input-dependent (i.e., 

the types of the outputs can be determined directly from the types of the inputs). 

Of course, many MATLAB procedures do involve control flow constructs, and not all 

operations in MATLAB are type input-dependent. For some operations, the types of 

the outputs could depend on the values of the inputs, rather than on the types. This 

means that an operation could produce multiple output types for a given set of input 

types. Variables defined by such operations and by the outcome of control flow are 
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u-vars. u should still remain small, since few operations are not input-dependent and 

the amount of control flow is usually limited. Note that the algorithm works without 

these assumptions, but the complexity is exponential in the worst case. 

Loops as well as branch statements involve control-flow constructs. In SSA, <j>-

nodes represent merge points in the control flow. For the type inference problem, the 

0-nodes represent the "meet" operation over the types of the variables involved along 

each path. This section describes two strategies for extending the type-inference 

algorithm to handle control flow. Our original strategy only infers types correctly 

under certain, albeit likely, assumptions, and is not precise {i.e., may infer more type 

configurations than are valid). The second strategy is more precise and will correctly 

handle all valid procedures. 

4.1.1 Original Strategy 

Our original strategy is a straightforward extension of the type-inference algorithm 

described in the previous chapter. A single constraint graph is generated to represent 

constraints over all the basic blocks in the control flow graph. The constraints for the 

blocks are listed in reverse-post order in the constraint graph. 

The constraint graph does not represent the 0-statements directly. However, the 

introduction of a new variable defined by the 0-node creates an u-var since the types 

of the u-var in this strategy cannot necessarily be determined by the types of the 

variables defined before its definition.1 Type inference proceeds as it does for straight-

line code. 

Although u could now be as large as the number of statements, in actuality, this 

number should still remain small, since the amount of control flow rarely reaches this 

upper bound. Note that the use of the variable is required for the variable to appear 

in a constraint, and the constraints from the use will help limit the possibility of extra 

1The compiler can get the benefit of working with pruned SSA without requiring the code to be 
in the pruned form, since if a variable is never used, it never appears in a constraint. 
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complexity caused by control flow. 

There are two disadvantages to the original approach. The first is that the type 

of the variable defined by the 0-node is in no way dependent on the types of the 

inputs to the ^-function. In other words, the type of this variable is only determined 

from its uses. This can lead to imprecision in the result as well as inefficiencies in the 

algorithm, since not only is the variable defined in the </>-node not constrained by the 

arguments to the <̂ >-node, the arguments are not constrained by subsequent uses. 

The other problem with this approach is that because the statements from all of 

the basic blocks are combined in a single constraint graph, the restrictions on the 

variable types from statements in the individual paths can restrict the variable types 

over the whole procedure. For example, a parameter may be used as a scalar along one 

path, but another path may use the parameter as a non-scalar. The original strategy 

would result in no solution, when either case is valid depending on the control flow, 

since MATLAB supports different types for the same variable along different paths. 

While cases like these are not frequent, to assert that the solution is complete (i.e., 

covers all possible type configurations) this problem must be addressed. 

4.1.2 Complete Strategy 

To address the problems with the original strategy, we developed a new strategy 

for performing type inference in the presence of control flow. In this strategy, type 

inference is performed over each basic block separately and then the information from 

each block is merged along the edges of the control-flow graph. This strategy is shown 

if Figure 4.1. 

The blocks in the control-flow graph are visited in reverse post order (i.e., all the 

predecessors to a block that do not come from a back edge are visited before the 

block). After the cliques have been found and solved over a particular basic block, 

the solution is converted into a single statement constraint involving all the variables 

that have been used or defined on the paths from the entry node that include that 
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inferTypes 

input: Function f 

output: Type Jump-Function sc 

1 cfg = f .getCFGO 

2 changed = true 

3 while (changed) 

4 changed = false 

5 for every n in cfg visited in reverse post order 

6 oldSC = n.summaryConstraint 

7 predConstraint = emptyConstraint 

8 predsChanged = false 

9 for every cfg node p s.t. p is a predecessor of n 

10 predConstraint = merge(predConstraint, p.summaryConstraint) 

11 if (p.hasChanged) 

12 predsChanged = true 

13 if (predsChanged) 

14 constraintList = buildConstraintList(n) 

15 constraintList.addFrontPhiConstraints(n) 

16 constraintList.addFront(predConstraint) 

17 graph = buildGraph(constraintList) 

18 cliques = findCliques(constraintList) 

19 n.summaryConstraint= solveCliques(cliques) 

20 if (n.summaryConstraint != oldSC) 

21 n.hasChanged = true 

22 changed = true 

23 else 

24 n.hasChanged = f a l se 
25 sc = n.summaryConstraint s . t . n i s l a s t node in reverse post order 

Figure 4.1 : Type inference in the presence of control flow: 

block. This constraint, which we term the summary constraint, is then prepended to 

the constraint graphs for each of the successor blocks. 

If a block has multiple predecessors, all summary constraints from its predecessors 

are merged by conjoining them through logical disjunction, and then transforming this 

new constraint so that the clauses are mutually exclusive. In this way, all possible 

type configurations of the variables over all the preceding paths are still possible. 
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Merge also removes from the summary constraints all equations involving variables 

defined in the successor block, so that types are not over-constrained by previous 

iterations. 

The solution as we have described it thus far handles the second problem from 

the original strategy of over-constraining the variable types. However, the algorithm 

still does not solve the first problem of losing information at merge points. To solve 

this problem, we insert constraints that represent the merge of types at the <^-nodes. 

Clauses in the 0- node constraint are associated with a particular predecessor so that 

(/>-node clauses are only compatible with the clauses in the summary constraint from 

the predecessor to the block that correspond to the CFG node with which the </>-node 

clause is associated. This ensures that the constraints at the 0-node accurately reflect 

the flow of types into the block and avoids imprecision. 

Since the summary constraints along the paths leading up to the block with the 

0-node are unioned together, the type of the variable defined by the ^"-function is 

constrained to the types of the inputs along the incoming paths. Thus, more precise 

information is inferred. Note that because type inference infers types of variables 

from uses as well as the definition, the variables that are the inputs to the 0-node 

will be constrained by the type inferred for the result of the (p-node. 

Because loop bodies must be evaluated before type inference has been performed 

on all of their predecessors, this process must be repeated until a fixed point is reached. 

While type inference does not meet the rapid condition [54], it is guaranteed to halt. 

Changes in variable types that occur from iterating over a back edge are all dependent 

on the changes to the types of the inputs to the ^-function. This is the purpose of 

the 0-node in the type-inference algorithm - to represent any possible changes in type 

that occur through merging the types at any node. Since the number of types any 

variable can take is bounded by the size of the type lattice (for size, this is just 2 -

scalar and non-scalar), and since the types can only grow around back edges (0-nodes 

represent a merging of types), the number of iterations is bounded by the number of 
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0-nodes at back edges times the number of elements in the lattice, which is constant. 

However, in practice, the algorithm converges much faster, since the only case where 

this can occur is if there is a trail of operations that grow arrays from scalars based 

on the sizes of the other variables. 

4.1.3 Complexity 

Type inference for each basic block takes time 0(2um2), where m is the number of 

operators in each basic block. This complexity result is from the previous chapter 

(since none of the previous order requirements have been violated by the extension). 

If the number of basic blocks is b, then the total complexity is 0(2um?b), assuming 

no back edges. But since the number of statements in the entire procedure is approx

imately mb, the complexity is 0(2umn), where m < n. u could still be large in the 

worst case because the procedure may have calls to routines that are not input de

pendent. Again, in practice the number of u-vars should remain small. Also, because 

the new strategy is more precise, fewer cliques will be inferred at each step in the 

clique finding algorithm. However, the presence of back edges causes the complexity 

to be multiplied in the worst case by the number of 0-nodes with inputs defined from 

a back edge, which in the worst case is n2. This upper bound is only reached if there 

is a chain of resizing operations that convert scalars to arrays based on the sizes of 

the other variables. Otherwise, the number of iterations is very small. 

4.1.4 Specialization 

Control flow and non input-determined operations may cause multiple cliques that 

represent the same type configuration over the arguments, but different types for the 

local variables. The compiler must be able to determine which specialized variant of 

the general procedure to use at a given call site based on the types of the types of the 

inputs and outputs. Therefore, separate variants should not be generated with the 

same types for the inputs and outputs since these variants would be indistinguishable 
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t = V ( : , l : j ) * h 

a* =<1 ,1> (A CTV(:'1;J) =<1,1>) A a h =<1 ,1> XOR 
a* =<$1 , $2> (A CT

V(:'XJ) =<1,1>) A crh =<$1 , $2> A ($1 ^ 1 V $2 ^ 1) XOR 
<T* =<$1 , j> (A av(:>1:J) =<$1, j>) A ah =<1 ,1> A ($1 ^ 1 V j ^ 1) XOR 
a* =<$1 , $3> (A <TV( : '1:J) = < $ l , i > ) A ah =<j, $3> A (($1 ^ 1 A j ^ 1)V 

($3 ^ 1 A ($1 ^ 1 V j ^ 1))) XOR 

a* =<1 ,1> (A av( : '1:J) = < 1 , j > ) A a h = < j , 1> A (j ^ 1) 

Figure 4.2 : Statement constraints in the presence of array sections. 

during variant selection. However, the compiler can generate specialized paths from 

the control-flow points and operations if it can determine that optimization would be 

beneficial. For example, it may be beneficial to have separate paths if the outcome 

of the 0-node could either be real or complex. Since this could cause an increase in 

the size of the code, the compiler must be careful about how many specialized paths 

are generated. Ultimately, the compiler could allocate the meet of the types to the 

variable over all paths. We discuss further specialization opportunities in the presence 

of control flow in the next chapter. 

4.2 Subscripted Array Accesses 

MATLAB has support for using and assigning to sections of arrays. When only a section 

of an array is accessed in a statement, the size of the whole array is not constrained by 

the statement. The sizes of the other variables are, however, constrained by the size 

of the section of the array accessed. Since the values of constants or other program 

variables determine the size of the section, this information can be very helpful in 

more accurately inferring sizes. 

Subscripted array accesses can also reduce the complexity of the type-inference 

algorithm if certain nodes in the constraint graph are found to be invalid given in

formation about the size of the piece accessed. For example, if the statement is only 
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accessing a single element of the array, then that argument or result is a scalar and 

nodes that constrain the arguments to non-scalars are eliminated. 

If the size of the array section is defined in terms of the value of a program variable, 

the compiler needs to account for the fact that the variable could have a value of one 

at runtime, making the access scalar. Figure 4.2 illustrates how the constraints are 

written to handle this situation. The first fields of d° do not appear in the actual 

constraint, but are left in to show the relationship of the other variables to the piece 

of v accessed. 

The subscripts used to access the array section may also give some information 

about the size of the whole array. The variable must be at least the size of the value of 

the largest subscript. If the compiler determines that the subscript accesses elements 

past the first element, then it can add a constraint that forces the variable to be 

non-scalar, reducing the number of cliques. 

If an array section is assigned to, then the size of that array is the value of the 

largest subscript in each dimension. This holds true because it is assumed that 

redefining parts of an array creates an entirely new array in SSA, therefore this 

assignment to the array section is the only assignment to the array over the whole 

procedure. The arrays will be remerged during code generation and allocated to the 

maximum size of all of the pieces. 

To take advantage of subscript information when the subscripts are written in 

terms of procedure variables, the compiler must first perform a variation of constant 

propagation to determine the maximum value of the variables if possible and, there

fore, the maximum array sizes. Note that a maximum size is only needed when there 

is a subscripted assignment to the array in a loop to avoid reallocation in loops if the 

array grows. Determining a minimum value of the variable would also be useful to 

prove that the section of the array is not a scalar. 

Subscripted array accesses do not affect intrinsic type inference since all the array 

elements are defined to have the same intrinsic type. For the pattern inference prob-
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[ol,o2] = s i z e ( i l ) 

ao1 =<1,1> A a°2 =<1,1> A a11 =<1,1> XOR 
<TO1 =<1,1> A a°2 =<1,1> A (711 =<$1, $2> A $1 = ol A $2 = o2 

ol= ze ros ( i l , i2) 

<ro1 =<1,1> A an =<1,1> A (Ti2 =<1,1> XOR 
CTO1 =<$1, $2> A a11 =<1,1> A aK2 =<1,1> A $1 = il A $2 = i2 

Figure 4.3 : Return type-jump-function for MATLAB operators s i ze and zeros. 

lem, array sections should not constrain the whole array, since the section accessed 

could affect the pattern in undeterminable ways. 

4.3 Value Dependent Operators 

MATLAB has a number of operators where the sizes of the arguments determine the 

value of the results or vice versa. For example, s i ze takes a matrix as an argument 

and produces the size in each dimension. Type inference can use these statement to 

more accurately infer the relationship between the sizes of the different variables, s ize 

is often used to define local variables to have the same size as the inputs. Another 

routine that is commonly used in MATLAB is zeros, zeros is used frequently by 

MATLAB programmers since it has the effect of preallocating the array. This turns 

out to be an important optimization to keep the MATLAB performance under control 

since otherwise if the array grows in the loop, it may need to be reallocated on every 

iteration. 

To take advantage of the information provided by these statements, we must 

modify the structure of the return type-jump-function to constrain the $-variable's 

values to be the values of the program variables. Figure 4.3 shows the return type-

jump-functions for the two operators mentioned above. 
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Once the $-variable's are set in the statement constraints, we can store the in

formation that this $-variable has the same value as the program variable. This can 

be used to allocate the arrays whose size depends on n. Unfortunately, since we rely 

on SSA, zeros does not provide much new information in the analysis phase, since 

redefining a section of the array is treated as an entirely different array. We can 

however use this information to allocate the arrays once they are remerged. 

4.4 Using Annotations 

One of the key ideas in telescoping languages is allowing the compiler to leverage the 

knowledge of the library writer through annotations. This information is important 

to know what cases can and cannot occur in practice, which the compiler alone may 

not be able to infer. Annotations also give information to the compiler so that it can 

perform specializations that it would otherwise not know to be legal or useful. 

For type-based specialization, the library writer can provide type information 

on the parameters of the procedure to be analyzed. In the absence of source code 

for a procedure, these annotations can be transformed into the procedure's return 

type-jump-function. The compiler treats these annotations as constraints on the 

procedure header, which corresponds to the zeroth level in the graph. Any cliques 

occurring in the graph must have part of the user-defined annotations as one of their 

nodes. Annotations can greatly reduce the number of possible cliques and, therefore, 

specialized variants, since they give type constraints to which all cliques must adhere. 

Because of the reduction in the number of cliques at each stage, they can reduce the 

runtime of the algorithm. If there are no annotations provided, the header is assumed 

to be unconstrained. 

Annotations can also be used to split out important cases to signal the compiler 

that there separate variants should be generated. If there are two separate clauses in 

an annotation stating that a matrix can either be sparse or dense, the type-inference 

algorithm will propagate this separation wherever that matrix is used, so that ulti-
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mately there will be separate cliques for the sparse and dense cases. Otherwise, with 

no annotation, type inference would have assumed that the most general type (dense) 

would suffice. 

Type annotations are not type declarations, but merely provide hints to the com

piler for optimization purposes. The ability to incorporate type annotations is a 

feature in our type-inference algorithm. Traditional type inference for the purpose of 

static checking would assume there was a programming error if the type were used in 

a more specific way that the type that was declared. 

Annotations on the types of the parameter are also useful for variant generation. 

They give hints to the compiler that generating a particular variant will be impor

tant in practice - something the compiler cannot necessarily infer on its own. We 

discuss annotations as they apply to variant selection and generation more in the 

next chapter. 

4.5 Interprocedural Type Inference 

Because the return type-jump-function for a procedure stores all the type information 

required for any call to a procedure, when inferring types for a calling procedure, type 

inference does not need to be re-performed for the called procedure. To ensure that 

the return type-jump-function is available to the calling procedure, the call graph 

must be traversed in post order (i.e., all of a node's successors must be visited before 

visiting the node itself). Cycles in the call graph are a special case. Also, source 

code, and therefore return type-jump-functions, may not be available for all called 

procedures. 

4.5.1 Function Parameters 

MATLAB allows the user to pass in functions along with a variable number of ar

guments as parameters to a procedure. The procedure is then evaluated with the 

appropriate number of arguments using the f eval operation. From the statement 
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that calls feval , the parameters passed to the function parameter can be known. 

The type-inference algorithm can constrain the types of these parameters based on 

subsequent uses as well as determine the number of parameters. Thus, the function 

parameter is constrained so that parameter numbers match the number inferred and 

the parameter types match the type information found. Unfortunately, the parame

ters to the passed-in function are rarely used outside of the feval statement, in which 

case, type inference must rely entirely on library-writer annotations. 

4.5.2 Missing Return Type-Jump-Functions 

When the algorithm encounters a procedure call or a built-in operation, it looks in 

the database for the appropriate return type-jump-function to build the constraints 

at that statement. If the compiler encounters a procedure call for which there is 

no return type-jump-function, it simply considers variables as unconstrained by that 

statement. This degrades the precision of the algorithm, as it may infer more type 

configurations than are legal. However, all legal configurations will still be inferred. 

The library writer may also supply an annotation for the procedure that could serve 

as its return type-jump-function, which reduces analysis time and improves precision. 

4.5.3 Recursion 

In the case of a cycle in the call graph, or recursion, precision can be enhanced by 

iterating over the cycle until a fixed-point is reached. 

Figure 4.4 describes the algorithm for interprocedural type inference. First, 

strongly connected components in the call graph, or scc's are found using Tarjan's 

algorithm [76]. If there is no recursion, each function is an sec. These scc's are then 

traversed in post order over the call graph (i.e., if there is an edge from one sec to 

another, the second must be visited before the first). 

First, header constraints for each function in the sec are found. If there is no an

notation available for that function then the header constraint represents all possible 
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Interproc 

input: call graph G 

output: type jump-function for each function in G 

1 sccList=findSccs(G) 

2 for every sec s in sccList visited in post-order 

3 for every fn f in s 

4 f.headerConstraint = buildHeaderConstraint(f) 

5 f.cliques=inferTypes(f) 

6 changed = true 

7 while (changed) 

8 changed=false 

9 for every function f in s 

10 for every node n in f.headerConstraint 

11 partOf Clique = false 

12 for every clique c in f.cliques 

13 if (n in c) 

14 partOf Clique = t r ue 
15 i f ( !par tOfClique) 
16 removeNodeFromHeaderForFn (n , f ) 
17 for every function cf in s s . t . cf c a l l s f 
18 for every node m in cf .const ra in tGraph s . t . 

m corresponds t o n a t c a l l s i t e 
19 for every cl ique c in c f . c l i q u e s s . t . m in c 
20 changed = t r ue 
21 removeCliqueFromFn(c, cf) 
22 for every fn f in s 
23 for every c l ique c in f . c l i ques 
24 so lu t ion = solve(c) 
25 addSolToTJF(solution,f.typeJumpFunction) 

Figure 4.4 : Interprocedural algorithm. 

type configurations over the inputs and outputs. If there is a call to a function in 

the sec, the statement constraint for this call site is also unconstrained (unless there 

was an annotation provided). Then, the cliques are found in the constraint graph for 

the entire function including the header. Note that after cliques have been formed 

in the initialization step, the cliques already include valid type configurations over 
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the procedures. The iterative step, which we describe next is designed to refine the 

configurations further, resulting in more precise types. 

If a node at the zeroth level in the constraint graph (i.e., the level corresponding 

to the header constraint) for one of the functions in the sec is not a part of any clique, 

the node can be removed from the graph as well as the corresponding clause in the 

return type-jump-function. This means that the call sites for this function can be 

updated as well by removing the node that corresponds to the invalid clause. If this 

node belonged to some cliques in the constraint graph for the calling function, these 

cliques are no longer valid and can be removed from this graph. This in turn may 

mean that more nodes at the zeroth level for the calling function do not belong to 

any cliques, etc. The algorithm iterates until a fixed point is reached. 

A fixed-point can be reached in a constant number of iterations for each procedure 

involved. At each iteration, the type-inference algorithm tries to reduce the number of 

clauses in the return type-jump-function for the procedure (initially the return type-

jump-function contains all possible type configurations over the input and output 

arguments). Since there are only a constant number of clauses, this number can only 

be reduced a constant number of times. 

4.6 Other Type Problems 

The type-inference algorithm can be applied to all of the type problems discussed in 

Section 3.2.2. The compiler infers each element of T in a separate pass and then takes 

the cross product of the different type configurations to determine which variants are 

necessary. It can handle types separately since, except for dimensionality and size, 

the types are independent of each other, although knowing that a variable is scalar 

makes pattern inference unnecessary. 
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4.6.1 Handling Multiple Dimensions 

The type-inference algorithm described here can easily be extended to handle inferring 

sizes over multiple dimensions by simply increasing the number of fields in a. 

To determine the number of fields needed, an upper bound on the number of 

dimensions of an array must be determined before size inference can occur. Only an 

upper bound is needed since the size inference will determine the actual dimensionality 

by inferring that some dimensions have size 1. Inferring dimensionality involves a 

single pass over the code to determine which dimensions of each variable are accessed 

explicitly or may be used by an operation. If an upper bound cannot be determined 

(some operations have no limit on the number of dimensions), a dummy field in 

the size tuple is used to represent the sizes of dimensions beyond what is explicitly 

referenced. 

Inferring sizes of arrays with dimension over two should not increase the complex

ity, since there are still only two possible types for each variable - scalar or non-scalar. 

If the number of explicitly accessed dimensions grows arbitrarily, this could increase 

the time to build the constraints, build the graph, and solve the constraints. How

ever, it is unlikely that the procedure will explicitly access an arbitrary number of 

dimensions. 

Because MATLAB was designed around matrices, we assume a minimum dimen

sionality of two. 

4.6.2 Pattern and Intrinsic Type Problems 

The problems of inferring intrinsic types and patterns differ from inferring size in 

that the algorithm only operates on finite lattices. Therefore, the constraints are 

formulated differently. The constraints must restrict variables to a range of types on 

the respective lattice. Using ranges represents the fact that the specialized variants 

replacing the call can accept inputs of types that are lower in the lattice than the 

declared input types. For example, an input argument that is defined as type r e a l 
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o=mean(i) 

(real < r° < real) A (_L< T1 < real) XOR 
(comp <T°< comp) A (comp < r l < comp) 

Figure 4.5 : Intrinsic type constraints on mean operation. 

could actually be of type in t when called. Using ranges also reduces the number of 

cliques, since each node can represent multiple possibilities. 

The constraints for intrinsic types on the mean operation are shown in Fig

ure 4.6.2. 

Two constraint clauses are not compatible if a variable appears in both clauses and 

the corresponding ranges do not intersect. The compiler still needs mutual exclusivity 

for the algorithm to run efficiently. Also, since maintaining the type-input-dependence 

property is important in reducing the complexity, when possible, the constraints are 

formulated so that the same input configuration should give only one configuration 

over the output types. Once the compiler has found the cliques, solving the equations 

corresponds to taking the intersection of all ranges for each variable over the clique. 

The lattices for the intrinsic type and shape problems include a topmost element 

which is the most general ± , which represents invalid types, and intermediate 

elements. The meet between two elements is the top-most intersection of their paths 

from the bottom element. 

The number of steps for finding cliques for these problems is bounded by lvlun2 

steps, where I is the number of lattice elements, which should be bounded by a small 

constant. Therefore, the overall time complexity is still 0(n2) if lu is bounded by a 

constant, which is true when operations are primarily type-input-dependent. 

Because array patterns do not behave predictably in many operations, the com

piler must rely more heavily on user-defined annotations from the library writer to 

isolate important patterns for the routines. Currently, type inference by default 
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assumes that all arrays are dense. If an annotation states that other shapes are 

important, type inference will propagate this information through the procedure to 

generate separate cliques and thus separate variants. 

TeleGen allows the library writer to extend the type inference problem with new 

type problems not handled by size, shape and intrinsic type. New problems, like 

intrinsic type and shape, must work on a single finite lattice. The library writer must 

provide a new base lattice for the new type problem, as well as methods for deter

mining if clauses contradict and for solving the equations from the cliques. At Rice, 

two projects have extended the type-inference algorithm to solve two new problems 

- data distributions and object-oriented types. Both of these problems were easy to 

implement due to the flexibility of the lattices. We discuss these problems in more 

detail in Sections 4.7 and 4.8. 

The type-inference algorithm can be applied to type problems that do not conform 

to this standard as well {e.g., unit and dimension types), although extending the 

algorithm to handle these problems is not as straightforward. 

The next section discusses how the type-inference algorithm can be applied to user-

defined types. New constraints are introduced that could also improve the precision 

of the intrinsic type and pattern solution with very little added complexity. 

4.7 Distribution Inference 

TeleGen is also able to compile libraries written in Matlab D [40, 39, 38]. Matlab 

D extends MATLAB with distribution functions. A preliminary Matlab D compiler 

has been implemented in TeleGen. For Matlab D, the compiler automatically par

allelizes the code by translating the MATLAB code into Fortran with communication 

and partitioned arrays. 

Distribution analysis solves the problem of finding distributions for the arrays used 

in the procedure. We derived a simple distribution analysis that is a straightforward 

extension of the lattice-based type-inference algorithm. The distribution functions 
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serve the purpose of annotations. This algorithm is sufficient to find the most appro

priate data distributions under the assumption that no redistribution is required or 

beneficial. 

4.8 Type Inference for Object-Oriented Languages 

In this section, we describe methods to extend type inference to infer user-defined 

types. We use Python as an example language. 

Recently, Python has had growing success among the scientific community. 

Python is a dynamically-typed, object-oriented language. To support object-oriented 

features in the telescoping compiler, the type-inference algorithm must be extended 

to handle user-defined types. 

By performing type inference for Python, the compiler, in many cases, will be 

able to eliminate dynamic dispatch. Dynamic dispatch has traditionally caused a 

degradation in performance. Also, further cross-method optimizations are possible if 

the result of dispatch is known statically. 

The type-inference strategy for user-defined types is similar to the previously 

described strategy for inferring primitive types. However, for intrinsic types, the type 

inference engine only needs to handle a bounded number of types. Also, in an object-

oriented world, the type lattice can be extended at any point, including after type 

inference has been performed. 

We first discuss the type-inference strategy for object-oriented types and then 

describe how to handle the problem of extending the type lattice. 

A project at Rice plans to use type inference to uncover more opportunities for 

object inlining, which has been shown to be an important optimization for making 

Java more efficient [13]. For this project, preliminary object-oriented type inference 

has been implemented for Java by a straightforward extension to our type-inference 

algorithm. This implementation will need to be modified to handle the problems 

discussed in this section. Note that the strategies applied to Python can be applied 
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class Shape : 

origin = (0,0) 

def __init__(self, x=0, y=0): 

self.x = x 

self.y = y 

def move(self, delta_x, delta_y): 

self.x += delta_x 

self.y += delta_y 

return self 

class Circle(Shape): 

def __init__(self ,x=0,y=0,radius=l): 

Shape.__init__(self, x, y) 

s e l f . r a d i u s = radius 
def a r e a ( s e l f ) : 

r e t u r n s e l f . r a d i u s * s e l f . r a d i u s * 3.14159 

Figure 4.6 : Example classes written in Python. 

to Java as well. Since Java has explicit type declarations, the type-inference problem 

is much easier. 

To describe the type-inference algorithm as it applies to user-defined types, we 

use the Python classes shown in Figure 4.6 as a running example (taken from [37]). 

Shape defines a method move. Circ le is a subtype of Shape and therefore inherits 

the method move. Ci rc le also defines a method area. 

4.8.1 T y p e Lat t ice 

To perform type inference, a lattice of all types used by the libraries must be con

structed. Figure 4.7 describes the type lattice corresponding to the example shown 

in Figure 4.6. The return type-jump-functions over this lattice for the methods move 

and area are shown in Figure 4.8. 

While statement constraints for user-defined types are similar to the constraints 

for the primitive types in MATLAB, there is no bound on the size of the lattice. 

To combat the extra complexity caused by this, new ways to rewrite the statement 
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Shape 

Circle 

Figure 4.7 : Type Lattice for Python with user-defined types. 

o=move(self,il,i2) 
(Circle< r° < Circle) A ( Circle< Tself < Circle)A 

(1< rn < real) A (J_< ri2 < real) XOR 
(Shape <T° < Shape) A (Shape< Tself < Shape)A 

(-L< r*1 < real) A (±< Ti2 < real) 

o=area(self) 
(real < r° < real) A (Circle < rae^ < Circle) 

Figure 4.8 : Return type-jump-function for move and area. 

constraints more concisely are considered. 

For the user-defined types problem, the complexity of the algorithm, 0(lvn2), is 

unbounded because the number of elements in the lattice is unbounded. Since V 

represents an upper bound on the number of nodes at a particular level, steps can 

be taken to try to ensure that the number of nodes on a level never reaches these 

bounds. One such step involves using more sophisticated constraints that allow each 

clause (or node) to encode more information. For example, the return type-jump-

function for move could be rewritten as shown in Figure 4.9. The types of the program 

variables are assigned type variables. These type variables are then constrained to 
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o=move(se l f , i1 , i2 ) 
(T° = T) A (TseV = T) A (X< T < Shape) 

( ± < TU < r e a l ) A (J_< r ' 2 < r e a l ) 

Figure 4.9 : Concise return type-jump-function for move. 

ranges. Note that if the ranges in the old return type-jump-function were merged, 

the exact relationship of the variable types would be lost. The new return type-jump-

function still captures all the information in the original (i.e., the fact that the input 

and output type must be the same), but it requires only one node. In this way, all 

clauses that describe the same type pattern can be collapsed into a single node. Most 

methods with the same name would follow the same type pattern, but the algorithm 

is flexible enough to handle cases that do not have this property. The range that 

binds the type variables can also be written in terms of other type variables that 

define the types of one of the procedure variables. These type variables are similar to 

the $-variables used in size inference. 

With the new constraints, the number of nodes per level corresponds to the num

ber of different patterns of the types for a particular procedure, not the number of 

possible type configurations. This significantly reduces the complexity of the algo

rithm. Although the number of viable type patterns can still be large, in practice 

only one type patterns should apply to a particular method name. 

The intrinsic type and pattern problems can also benefit from this increased pre

cision without an increase in the complexity. 

4.8.2 Extending the Lattice 

An important feature of object-oriented programming is that the type hierarchy can 

easily be extended, and by doing so, the types over which methods work are also 

extended. This poses a problem for telescoping languages, since the type-inference 

algorithm assumes that the return type-jump-functions for the called procedure have 
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class Square(Shape): 

def __init__(self ,x=0,y=0,side=l); 

Shape.__init__(self, x, y) 

self.side = side 

def area(self): 

return self.side * self.side 

Figure 4.10 : Example type extension. 

been formed before the calling procedure. Adding types after analysis has already 

been performed on a procedure invalidates the return type-jump-function. Note that 

for the purposes of telescoping languages, types are added only when new libraries 

that potentially use the existing libraries are added or when new types are defined in 

the user script. 

There are two possible cases to consider. First, if the new types implement meth

ods that have the same type pattern as already-defined methods, all that is required 

is an extension to the ranges allowed for the type variables in some of the clauses. In 

this case, the nodes in the graph do not change. The compiler would need to examine 

the new edges to see if they allow for more cliques in the graph than were previously 

possible. 

For example, suppose a Square class is added, as shown in Figure 4.10. Then the 

new return type-jump-function for area would extend the range of the type variables 

to include Square. 

Second, if the new types cause the methods to have different type patterns from 

the previous definitions of the method, new clauses must be added to the constraint. 

New nodes will need to be added to the graph corresponding to the new clauses as 

well as new edges to the rest of the graph. 

Obviously, performing type inference again for all methods that are defined in or 

inherited by a new class as well as all methods that involve the new types indirectly 

would produce correct results. However, this is more expensive than necessary. One 
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optimization is to store the graph and cliques along with the generated variants. 

Then the new cliques would only have to be computed by checking edges from nodes 

involving the new types. While this could potentially double the storage requirement, 

it would make updating these constructs to include the new types more efficient. 

Lattices can also be extended in the intrinsic-type and pattern problems if a library 

writer or application developer determines that a particular type is important, and 

it is not yet represented in the lattices. For example, a new sparsity pattern such as 

banded could be added to the pattern lattice. In these cases, similar strategies can 

be applied. 

Changes in methods for specialization when this occurs are discussed in the next 

chapter. 
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Chapter 5 

Type-Based Specialization 

Once the types for a library procedure have been determined, the specialization engine 

must use this information to optimize the procedure. Specialization occurs during the 

code generation phase for both library compilation and script compilation. 

There are two important aspects of specialization - variant generation and variant 

selection. Variant generation is performed during library compilation and, for the 

type-based prototype compiler, refers to generating the specialized Fortran or C vari

ants as well as determining which specialized variants to generate given the inferred 

type configurations. Variant selection occurs during both library compilation and 

script compilation. During code generation, the compiler must determine the most 

appropriate variant with which to replace the operation or procedure call at each 

point in the code. This chapter discusses issues related to both aspects of specializa

tion. First, we discuss the relationship between variant selection and generation in 

terms of the simplest model for type-based specialization. We will then discuss how 

the need to control the number of variants affects each aspect. 

5.1 A Simple Model for Specialization 

The simplest model for specialization generates a separate variant specialized for 

the types given by each type configuration over the parameters. Separate paths 

are generated within the variant that correspond to two distinct type configurations 

with the same parameter types (i.e., the code within the procedure can be cloned at 

control-flow points if the types of the variables depends on which paths are taken). 

The paths are predicated on the types of the non-input parameter u-vars, so that the 
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appropriate path will be taken at runtime. 

When generating each specialized variant or path in the procedure, the compiler 

replaces each operator or procedure call with a call to a specialized variant based on 

the types given in the corresponding type configuration. The process is called variant 

selection. 

Each variant is stored in a database and is indexed by the corresponding clause in 

the return type-jump-function for the procedure, which details the range of input and 

output types handled by the variant. Thus, when specializing a calling procedure or 

script, the compiler can replace the call to the procedure by looking in the database 

for the variant with the appropriate type configurations over the parameters. 

Because the return type-jump-function lists every possible type configuration over 

the input, any valid calling procedure will pass actual types to the procedure that 

correspond to a single clause in the return type-jump-function. Since it is assumed 

in the simple model that there is a single variant corresponding to each possible type 

configuration over the inputs, the variant called is the one with the type signature 

that corresponds exactly to the types given for the calling procedure in the type jump-

function. Note that while there may be several variants that will handle the same 

type configuration, in the simple model, there is exactly one variant that matches the 

parameter types. 

5.2 Variant Generation 

Many of the variants generated by the simple model will not be used in practice. 

Furthermore, it is likely that some of the variants do not provide much added benefit 

in terms of performance over variants for more general types. To avoid code explosion, 

it is important to limit the variants generated. 

To handle this problem, the compiler can determine that two or more type config

urations in the type jump-function for a library procedure do not need to have distinct 

variants. The type of each variable in the merged type configuration is the bottom-
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most ancestor on the lattice of the types for the variable given in each of the distinct 

type configurations. Note that since the type jump-function lists all legal types, the 

merged type configuration should always correspond to a type configuration in the 

type jump-function if the types can be legally merged. Thus, the merging process is 

actually just eliminating type configurations that are deemed not important by the 

compiler if another type configuration can handle the types. 

It is still important that all inferred type configurations are covered in the variants, 

where "covered" means that there is a variant that will produce correct and efficient 

code if a particular type configuration occurs. Thus, for the size problem, all variants 

should be generated (unless annotations state otherwise), since none of the type 

configurations can legally cover another one without changing the meaning of the 

code. If it is determined that no operators that are overloaded based on the size of 

the variables occur within the procedure, then this requirement can be relaxed. 

5.2.1 Beneficial Variants 

In many cases, the benefit of generating a separate variant is small, since distinguish

ing between certain input types may have little effect on the execution speed of the 

code. For example, the parameter may only be used once or not at all within the 

code or may be used in a way that the exact type does not matter for performance. 

The compiler identifies the important variants to generate based on three factors: 

correctness, space, and profitability. 

Variants may need to be generated to preserve the correctness of the code. For 

example, separate variants are needed for inputs that can either be scalars or non-

scalars if the parameter is used in a multiplication, since this is a different operation 

depending on the type of the input parameter. Also, the compiler needs to generate 

variants that cover every possible range given in the return type-jump-function. 

The result of the type-inference algorithm discussed in the previous chapter lists 

only the possible type configurations, although it does limit the number of configu-
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rations to only those that could legally occur (without type errors) in practice given 

the information available at library-compilation time. However, it does not provide 

any analysis about which variants are beneficial to generate. The compiler must de

termine how often parameters may be used within the code and how they are used. 

We developed a static-estimation strategy that works in conjunction with the type-

inference algorithm to provide information on which variants are the most beneficial 

to generate. Currently the static-estimation strategy is not part of TeleGen. 

Static Estimation and Type Inference The information of interest in deter

mining which variants to generate involves information about how each parameter is 

used in the procedure. This includes both the number of uses, and how advantageous 

specializing for each use is in terms of possible performance benefit. For example, if 

a parameter is passed to a procedure that is called within the loop and there exists 

a specialized version of the called procedures that works with the parameter of a 

specific type, then it may be important to generate a separate variant for this case. 

This information can be built up from the primitive operators along with the 

type information with the static-estimation strategy. To statically estimate the ben

efit, each clause in the return type-jump-functions is assigned a score. For primitive 

operations, this score can be obtained from experimental data. Each clause has a 

corresponding library procedure that it uses in place of the operator to specialize for 

the types. These library procedures are used to determine the scores. The average 

number of cycles it takes to perform the operation for a given set of input data given 

the types in a clause is a good metric for the score for that clause. For example, in the 

return type-jump-function for multiplication, the clause that corresponds to integer 

multiplication would have a much lower score than the one corresponding to complex 

multiplication. 

Determining the scores on the primitive operators is complicated by the fact that 

type inference is performed separately for each type problem. However, the library 
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procedures representing the primitive operations are defined in terms of all the type 

problems. Therefore, each clause in a return type-jump-function for a given type 

problem may actually have multiple associated library procedures corresponding to 

variations in types for the other type problems. 

In determining the scores for individual type problems, it is difficult to factor out 

the effects of the other type problems. One way to do this might be, for each possible 

clause in the return type-jump-function for a given problem, to take the average of all 

corresponding library procedures (defining the operation) that satisfy the constraints 

of the given clause (i.e., the procedures that range over the types for the other type 

problems). Averaging these scores should work well in practice, since the types of 

the variables have "steady" effects on the performance of the code. For example, it 

is unlikely that a complex version of the code will run faster than an integer version 

regardless of the shapes of the arrays. 

The scores for the return type-jump-functions of library procedures are built up 

from the primitive operators and other library procedures. This building-up of scores 

works in conjunction with the type-inference algorithm. When the return type-jump-

function is translated into a statement constraint, the scores from the clauses in the 

return type-jump-function are attached to the corresponding clauses in the statement 

constraint. For statements that are in a loop, the score can be multiplied by a factor 

of ten to handle that fact that it is important to specialize the pieces of code that 

occur most frequently. These scores are then attached to the appropriate nodes 

in the constraint graph. This information can be combined over each possible type 

configuration by simply summing the scores for each node in the corresponding clique. 

These scores on the type configurations are then used to determine which variants 

are the most beneficial to generate in terms of the greatest wins in performance. The 

type configurations with the greatest differences in scores from the type configuration 

with the most general types represent variants that may be beneficial to generate. 

Type configurations with similar scores can be merged if possible. 
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The type configuration scores are also used to determine scores on the clauses in 

the return type-jump-function for the library procedures. If two or more type config

urations correspond to the same clause in the return type-jump-function, the scores 

on the type configurations are averaged to determine the score for the corresponding 

clause. Therefore, all the scores can be built up from the scores of the primitive 

operations and other library procedures. 

Note that this same method can be used to determine whether to generate spe

cialized paths for types determined inside the procedure at points corresponding to 

non-input-determined procedures or control-flow decisions. If there is not much ben

efit to be obtained by specializing for the different possible types separately, the 

compiler can just merge the types to generate a single version of the path. 

The advantage of this approach is that the relative benefit to generating each vari

ant can be determined with reasonable accuracy before having to generate the actual 

variant. Because this approach can be done in conjunction with type inference, the 

added complexity is very slight, making it much more efficient than other techniques, 

such as actually generating the variants and running them on sample input, which in 

many cases is not available. 

5.2.2 Most Used Variants 

Another important factor in determining which variants are most beneficial is how 

often the procedure is called with each calling context. 

Because, in the telescoping-languages framework, code generation for library com

pilation occurs before any possible calling contexts are known, it is impossible for the 

library compiler to determine from the code which type configurations will be used 

most in practice without the benefit of extra information. However, because the li

brary compiler can make use of annotations from the library developer, the library 

writer can aid the compiler by providing an annotation stating that a specific calling 

context is expected to occur frequently in practice. Alternatively, the library writer 
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can provide a sample set of user-level scripts. 

Type configurations that match annotations indicating a frequent occurrence 

should have a variant generated, even if the benefit is only very slight. The library 

writer can include an annotation on the frequency of a particular type configuration 

by attaching a use score to each clause in the annotation. The use score indicates a 

factor by which each type configuration involving that clause should be multiplied. 

The multiplier can be a number from 0 to 1, with 0 meaning that this case is almost 

always the case that would occur, and 1 being a case that would rarely occur. Thus, 

the type configurations most likely to occur in practice will have a lower overall score, 

which triggers the compiler to generate separate variants for these cases, since it looks 

to generate the variants that give the fastest times. 

This will not only ensure that a variant is generated for the most-used cases, but 

it will also allow the compiler to determine the most likely type configurations for 

calling procedures. The occurrence of a particular procedure call will, in one sense, 

be able to provide hints to the compiler of the types that are most likely to occur. 

For example, the ones operator almost always has integer scalar inputs. Otherwise, 

in the MATLAB interpreter, a warning is generated, although the program will still 

execute. Therefore, a score of zero on the clause representing scalar inputs (and a 

score of one on the other clauses), would provide a hint to the compiler for calling 

procedures, that it is important to generate variants that call ones with scalar inputs. 

5.3 Variant Selection 

Whereas in the simple model for specialization in which every inferred type configura

tion corresponds to a distinct specialized variant or specialized path within a variant, 

once variants are merged, the problem of dispatching to the appropriate variant be

comes more complicated. Specifically, it is now possible for more than one variant to 

be equally appropriate in terms of the parameter types. It is the responsibility of the 

library generator to set up a mechanism for determining the best variant. 
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As a side note, even before merging the variants, the simple model is not always 

viable. Specifically, if the procedure called is a primitive operation in the base lan

guage, the compiler must choose an existing library with which to replace the calls. 

For example, the matrix operations used in ArnoldiC are replaced with calls to the 

BLAS library. Therefore, the compiler is restricted to specialized variants given in the 

library, which may not include one variant for every possible type configuration on 

the parameters. In this case, the compiler must determine the best version to call. 

Once variants have been merged, each handles a broader range of types. The 

problem occurs when there are two or more variants that are specialized for the types 

of different parameters. For example, assume there exists a library procedure with 

the header: 

function [c] = l ib_proc(a,b) 

Assume that lib_proc accepts both real and complex inputs. Also assume that 

there are two variants for this procedure: l ib_procl that handles parameter a as 

real and b as complex and lib_proc2 that handles parameter a as complex and b as 

real. If there is a procedure that calls lib_proc and passes it two reals, the question 

becomes which variant is best for that call site. 

This question is answered by how a and b are used within lib_proc. Again, 

the compiler can use static estimation described in the previous section to determine 

which parameter is more important to specialize for (the version with the lowest score 

is used). Ties can be broken arbitrarily. 

The cost of coercing the actual parameters to the types given in the type signatures 

of the generated variants can prove to be an important factor in determining which 

variant to choose. This is particularly true for array-valued actual parameters. 

To maintain fast compilations of scripts, questions such as the one posed above 

will be answered during library generation time to the extent possible. The library 

generator has a list of all legal configurations of the input and output parameters 

in the form of the return type-jump-function. Therefore, the library generator can 
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determine which variant should be dispatched to for each possible type configuration 

and store this information in a table. Thus, to call the appropriate variant, the 

compiler only needs to look up the types given in the calling procedure or script in 

the table. 

5.3.1 Selection from Output Types. 

Because type inference handles both forward and backward flow of type information, 

variants can be selected based on the types of the output parameters for the procedure 

calls as well as the input types. 

This means the compiler will find more opportunities to dispatch to variants stat

ically than when using more traditional type-inference strategies. This is especially 

important for object-oriented types to enable transformations such as object inlining, 

which is itself an enabling optimization [14, 12]. 

To do this, variants need to be generated that assume specific output types. In 

case the output types cannot be determined by their uses in the calling program, 

variants should also be generated for the case when the exact output type may not 

be determined until runtime. 

5.3.2 Coercion Problem 

Because there may not be a single variant for each possible type configuration over the 

parameters, coercion might be necessary if none of the inputs accept the exact type 

passed in. Therefore the specialization engine may need to add coercion operations 

on the parameters of a procedure call. Coercion operations can be stored on the edges 

of the lattices for the type problems. 

Coercion is also necessary when types are added to the lattice after type analysis 

and code generation for a called procedure has already been performed. This is 

especially likely in the pattern problem because new sparsity patterns with new types 

can be added. 
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These types must be coerced from the new type into an old type, specifically, the 

type corresponding to the bottom-most ancestor in the new lattice that is an element 

of the old lattice. This means that the lattices used to perform type inference must 

be stored (or at least the set of lattice elements). If there are two such ancestors, the 

score can be used to coerce the type into the type that will be most efficient based 

on the scores. 

Note that there will always be a valid type to which the type can be coerced, since 

the variant generation process ensured that all valid type configurations were covered 

by the set of variants produced. 
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Chapter 6 

TeleGen 

We implemented both the type-inference strategy and type-based specialization in a 

prototype telescoping-languages compiler, TeleGen. Currently, TeleGen only includes 

analyses and optimizations that are based on types. However, we designed TeleGen 

to be easily extendable to multiple languages, analyses, and optimizations. 

This chapter gives an overview of our implementation of type inference and type-

based specialization in TeleGen. It then describes the experiments that we used to 

validate these strategies. 

6.1 Structure of TeleGen 

TeleGen is implemented in C++. It is organized into two main pieces - a language-

independent piece and a language-dependent piece. The language-dependent piece 

currently assumes that MATLAB is the source language. The language-independent 

piece includes type inference and type-based specialization and provides interfaces to 

the language-dependent piece. To use TeleGen with a different source language, the 

user merely needs to implement the interfaces. 

TeleGen proceeds by first building the information about a subroutine into an 

AST and CFG. While TeleGen provides interfaces that do not require an AST or a 

CFG to be built to perform type inference, type-based specialization still relies on 

graphs. As the MATLAB AST is built, the operations are flattened or unfolded so that 

each statement contains only one operation. This is necessary for type inference as 

described in Chapter 3. 
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6.1.1 T y p e Inference in TeleGen 

Interprocedural type inference is performed over an entire library. It invokes type 

inference for each subroutine so that the types for called procedures are inferred 

before type inference is performed over the calling procedures. Traversing the partial 

call graph of the library in reverse post-order increases the likelihood that return 

type-jump-functions are available for called procedures. The interprocedural type-

inference routine also handles recursion if present in the library. 

Type inference is performed on each individual routine in isolation. Only the an

notation tables give information about the other routines in the library. First, state

ment constraints are built from the annotation table and the subroutine. During this 

process, subscript information is stored for later use in determining the relationship 

between program variables and sizes. 

Once the statement constraints are formed, TeleGen solves for types using the 

algorithm for type inference in the presence of control flow discussed in Chapter 3 

and Chapter 4. After types have been inferred over a block, the solver reduces the 

type to a statement constraint, which is appended to all successor blocks. If any 

variables denned in the successor block are constrained by the summary constraint, 

the piece of the summary constraint concerning that definition is removed to avoid 

falsely over-constraining the variables. For example, a variable may be defined on 

the first iteration to be scalar, but can grow into an array on subsequent iterations. 

However, the summary constraint along the back edge of the loop would constrain 

the variable to be a scalar. 

6.1.2 Type-Based Specialization 

Once a fixed point is reached and all the types are solved, the AST is replicated so 

that there is a separate graph for every type configuration inferred. It is at this point 

that arrays are merged back together and SSA is deconstructed. 

Each AST is specialized according to the corresponding type configuration. Spe-
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cialization occurs in the language-independent part of TeleGen. For each operation in 

the subroutine, the specializer looks up the appropriate version with which to replace 

the call from the types of the arguments using the specialization table. The AST 

is modified to store the new calls. The specialization annotations for the generated 

Fortran or C variants are then stored in the specialization table. 

6.1.3 Code Generation 

After specialization, code generation produces the Fortran or C code. The code 

generator is in the language-dependent piece of TeleGen. It interfaces with the ASTs 

and specializer so that other back-end languages may be easily attached to TeleGen. 

The code generator has two responsibilities. The first is to ensure that all calls to 

specialized routines meet the Fortran or C standard.1 The second is to ensure that 

all the size variables and allocation statements are generated. 

Allocations occur as early as possible. If the size of a variable depends on a 

procedure variable that is not defined until inside the loop, code is generated to test 

the size of the variable to see if reallocation is necessary. Because we are able to 

take loop bounds into account when performing size inference, we are able to allocate 

most variables a single time, usually outside of loops. Techniques such as slice hoisting 

could eliminate the need to reallocate almost entirely [18]. 

6.1.4 Limitations to Current Implementation of the Compiler 

TeleGen is able to handle a majority of the MATLAB language. However, there are a 

few properties of MATLAB that TeleGen is not able to correctly evaluate at this time. 

We felt that none of these detract from the validation of the core techniques described 

in the dissertation. None of the changes we made to the MATLAB benchmarks changed 

Currently, the C generator is only partially working and the Fortran generator produces Fortran 
90. 
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the meaning of the code (although results do vary due to rounding error). We plan 

to handle the whole MATLAB language in the future. 

First, MATLAB does not require that variables be defined on all paths that are 

reachable by their uses. TeleGen, however, does require this to build SSA. Therefore, 

for the benchmarks we used to evaluate TeleGen, where necessary, we added assign

ments to the variables (initialized to zero) at the beginning of the routines. This is 

an exception to our claim that we do not change the meaning of the code. If the 

subroutine is called and a path is taken that results in an output not being defined, 

in the original benchmark, MATLAB would result in an error, whereas in the generated 

code, zero(s) would be returned. 

TeleGen currently does not allow multiple operations in the condition statements 

of loops or if statements. The flattening function is not able to push statements across 

basic block boundaries. This should be relatively easy to fix. 

MATLAB allows users to assign ranges to variables. Ranges can then be passed in 

to loop headers or as subscript ranges for performing operations on sections of the 

arrays. Since type inference examines each operation in isolation, range variables are 

not understood by type inference. We inlined the ranges into the arrays and loops. 

The current type-inference implementation includes a simple solver to solve $-

variables in each clique for size inference. This solver assumes only simple equations. 

Therefore, we are currently unable to handle concatenation, since concatenated vari

ables have sizes that are the sum of the sizes of the input arrays. Since concatenation 

may occur in loops, this requires the solver to handle coefficients. While we do have a 

strategy to handle such equations, which we described in Chapter 3, we have not yet 

implemented it. We have replaced concatenation with assignment to array sections. 

It appears as though MATLAB does not use the ATLAS-tuned BLAS for matrix 

multiplication. We found that there was a slight discrepancy in the result of matrix 

multiplication between MATLAB and the BLAS routines. In some of the benchmarks 

involving long chains of multiplication over many loop iterations, this rounding error 
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compounded to more significant differences in the results. Were we to have access 

to the MATLAB libraries, we would not have this problem. We did not feel that a 

difference in library implementation detracted from the results. 

Currently, TeleGen uses the simple strategy to determine when to generate vari

ants (i.e., a single variant for every type configuration). We leave the implementation 

of the more sophisticated variant-generation techniques as future work. 

6.2 Experimental Evaluation 

We used TeleGen to evaluate the type-inference and type-based specialization strate

gies over library routines. Currently, TeleGen does not handle script compilation 

since it has no way to statically determine the exact types of matrices defined ex

ternally. TeleGen does not yet have the mechanism to generate runtime queries to 

disambiguate the types of these matrices to determine which specialized variant to 

call. The library procedures, however, are generated completely automatically, since 

types are determined by the operators, and multiple variants are generated to handle 

all cases. The script compiler should only generate a single variant. Therefore, to run 

the experiments, we hand wrote the Fortran scripts. 

6.2.1 Experimental Setup 

The benchmarks we used to evaluate TeleGen are MATLAB routines that were used in 

the development of the ARPACK library. These routines implement the core algorithms 

used in ARPACK. 

All experiments were conducted on a two processor, 2.5 GHz PowerPC with 8 GB 

of memory. The L2 cache for each processor is 512 KB. The Fortran 90 code was 

compiled with the IBM XLF compiler and -03 optimization option. We used MATLAB 

7 to run the MATLAB benchmarks. 

To measure performance for all the Fortran and MATLAB experiments, we used 

wall-clock time, with granularity of a hundred-thousandth of a second. The times are 
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shown in seconds and are measured over multiple input matrices of varying size. We 

ran each experiment 5 times for benchmarks with running times around two hours or 

more (excepting the MATLAB LUfacG benchmark with crylOOOO, which we ran twice) 

and 10 times for the rest of the benchmarks and took the average of the non-outliers. 

We found at most one outlier for ten runs and none for five. The matrices are all 

represented as dense, real, and non-symmetric. 

TeleGen is compiled with gcc 3.3 on the PowerPC with -03 optimization. Timings 

of type inference in TeleGen are taken using the wall clock time as well and are 

averaged over five runs. 

TeleGen replaces calls to the MATLAB primitive operators with calls to high-

performance libraries. The primitive operators in the ARPACK development code were 

primarily matrix operations that corresponded to procedures in the BLAS library. We 

use ATLAS-tuned BLAS we so that the code could be specialized for the architecture 

as well as the types [81]. ARPACK also uses ATLAS-tuned BLAS to perform most of 

the underlying matrix operations. 

Experiments were run using matrices of varying sizes from MatrixMarket [61]-

Platzmans Oceanographic Model (a 362 x 362 matrix with 5,786 non-zero entries), 

BCSSTK27 (a BCS Structural Engineering Matrix, which is 1224x1224 with 28,675 

non-zero entries), BCSSTK28 (another BCS Structural Engineering Matrix, which is 

4410x4410 with 111,717 non-zero entries), and CRY10000 (a Diffusion Model Study 

for Crystal Growth Simulation, which is non-symmetric, 10000x10000 with 49,699 

non-zero entries). For inputs to the complex variants, we used QC324 (a Model of 

H2+ in an Electromagnetic Field, which is 324 x 324 with 26730 non-zero entries) 

and DWG961A (a Dispersive Waveguide Structure, which is 961x961 with 3405 non

zero entries). We also generated matrices for the QR factorization codes from drivers 

provided in the MATLAB development code suite. 

To perform experiments for dense matrices, the matrices above were expanded into 

dense format. Similarly, to experiment with complex matrices, the representation 
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of the elements of the matrix were changed. In this way, the value of accurately 

determining the types can be seen. 

6.2.2 Evaluation of Type-Inference Algorithm 

ArnoldiC Lanczos LUfacC QRcpsF QRqivens Totals QRqivens Givens 
Num Input Args 
Num Phi-Nodes 
Num Operations 
Type Inference Time (seconds) 4.02 3.12 6.12 170.94 970.98 
Total Num Configurations 

3 
4 

29 
4.02 

60 

3 
5 

26 
3.12 

15 

1 
5 

27 
6.12 

6 

1 
7 

44 
170.94 

8 

2 
13 
92 

.26 
28 

2 
3 

23 
0.94 

36 

Figure 6.1 : Results of type inference. 

ArnoldiC Lanczos LUfacC QRcgsF QRgivens Totals QRgivens Givens 
Num Input Args 
Num Phi-Nodes 
Num Operations 
Size Inference Time (seconds) 
Size Num Iterations 
Num Size Configurations 

3 
4 

29 
1.80 

3 
3 

3 
5 

26 
1.62 

3 
3 

1 
5 

27 
3.09 

5 
2 

1 
7 

44 
158.67 

14 
4 

378.65 

2 
13 
92 

378.47 
8 
4 

2 
3 

23 
0.18 

2 
4 

Figure 6.2 : Results of size inference. 

Figure 6.1 shows the results of type inference over the MATLAB benchmarks. The 

figure shows that type inference infers a small number of type configurations for the 

benchmarks in a reasonable amount of time given the complexity of the problem. 

Figures 6.2,6.3, and 6.4 split out the type inference results for the size, intrinsic-type, 

and shape problems respectively. 

The number of type configurations inferred for each type problem is well under 

the upper bound of lu or the number of types in the type lattice to the number of 
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Num Input Args 
Num Phi-Nodes 
Num Operations 
Intrinsic Inference Time (seconds) 
Intr Num Iterations 
Num Intrinsic Configurations 

ArnoldiC Lanczos 
3 
4 

29 
1.56 

3 
5 

3 
5 

26 
1.24 

3 
5 

LUfacC 
1 
5 

27 
2.74 

4 
3 

QRcqsF QRqivens Totals QRqivens 
1 2 
7 13 

44 92 
10.83 586.94 586.25 

4 7 
2 7 

Givens 
2 
3 

23 
0.69 

2 
9 

Figure 6.3 : Results of intrinsic-type inference. 

Num Input Args 
Num Phi-Nodes 
Num Operations 
Shape Inference Time (seconds) 
Shape Num Iterations 
Num Shape Configurations 

ArnoldiC 
3 
4 

29 
0.51 

3 
4 

Lanczos 
3 
5 

26 
0.10 

3 
1 

LUfacC 
1 
5 

27 
0.18 

4 
1 

QRcqsF QRqivens Totals QRqivens 
1 2 
7 13 

44 92 
0.37 1.60 1.54 

3 4 
1 1 

Givens 
2 
3 

23 
0.06 

2 
1 

Figure 6.4 : Results of shape inference. 

u — vars (the number of input variables and phi-nodes). Note that the number of 

lattice elements that TeleGen uses for the size, intrinsic type, and shape problems are 

two, seven, and six respectively. For the intrinsic type problem, since the benchmarks 

use only numerical operations, the number of lattice elements considered is actually 

only three (integer, real, and complex). 

ArnoldiC The results of size inference for ArnoldiC are given in figure 3.2 and 

discussed in Chapter 3. 

For intrinsic-type inference for ArnoldiC, there are three input parameters and 

three possible numerical types (integer, real, and complex). Therefore, barring u-

vars, there is a maximum of nine possible intrinsic-type configurations. However, 

the algorithm is able to infer that the second input is always integer. The third 
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input parameter, v, is immediately killed with the statement, v = v/norm(v);. Since 

v is used in a division, type inference does not distinguish whether the inputs to 

division are real or integer. Therefore, type inference infers that the input v must 

be either complex or real/integer. The first parameter, A, is used in the statement 

w = A * v;. Type inference does not distinguish whether an input to multiply is real 

or integer if the other input to multiply is complex. Therefore, if v is complex, A 

can either be complex or real/integer, which accounts for two of the five inferred type 

configurations. The other three configurations assign v to real/integer and A can be 

any of the three numerical types. Note that type inference considers real and integer 

together for multiplication and division because of the return type-jump-functions. 

Since these operations are intrinsic to MATLAB, to make separate cases for real and 

integer, we just need to redefine the return type-jump-functions. We did not see any 

cases where this would be necessary for performance. 

Shape inference is a special case, since, currently, TeleGen relies on the library 

writer to provide annotations. We only annotated ArnoldiC with shape information. 

Otherwise, we did not use any annotations that constrained the types for any of the 

benchmarks. These shape annotations on A are propagated down to w = A * v„ so 

that the appropriate multiplication variant for the shape is called. 

Lanczos Lanczos is very similar in structure to ArnoldiC. Therefore, the inferred 

types, as well as the time for type inference are similar. 

LUfacC LUfacC takes in only one input. Therefore, it makes sense that size infer

ence produced two type configurations (one in which the input is scalar and one in 

which the input is non-scalar) and three intrinsic-type configurations corresponding 

to the three numerical type possibilities for the input. 

QRcgsF QRcgsF also only has a single input. Therefore, the four inferred size 

configurations for QRcgsF exceed the maximum number of size configurations based 
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on the input. In fact, in all four size configurations, the input must be non-scalar. 

The difference in the size configurations comes primarily from control-flow paths 

taken through the routine. Two of the type configurations are inferred over the 

same control-flow path. However, they diverge at the statement, r = Q' * A(:,j);. 

Notice that the return type-jump-function for * is actually not type input-dependent, 

since two non-scalars can produce either a non-scalar or a scalar (multiplication of 

two vectors). Therefore, r may either be scalar or non-scalar if A and Q are both 

non-scalar. Since there are no uses of r that constrain it further (unlike the other 

benchmarks such as ArnoldiC), the type configurations diverge at this point. 

TeleGen makes these four type configurations separate variants. Two of the type 

configurations assign the input to a vector and two assign it to a two dimensional 

matrix. All four type configurations have different type assignments to the output. 

Therefore, calling procedures may be able to determine which specialized variant to 

call based on the uses of the output. A general case still needs to be produced to catch 

cases when the output is not used in a type-significant way in the calling procedure. 

There are only two intrinsic type configurations inferred for QRcgsF stating that 

the input parameter can be either complex or integer/real. Again, this is due to the 

fact that the input parameter is used in division. 

Notice that the time to infer types, particularly size goes up for QRcgsF. This is 

primarily due to the increased complexity of the code as is evidenced by the number 

of phi-nodes as well as the number of operations. The number of phi-nodes plus the 

number of inputs gives a rough estimate on the number of u-vars. More importantly, 

the number of phi-nodes determines, in part, the number of iterations over the CFG 

until a fixed-point is reached. This is the primary factor in the increased time for 

QRcgsF, although, since the algorithm is 0(n2) on the number of operations, the 

larger number of operations plays a factor as well. 
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QRgivens QRgivens calls Givens inside a loop. Givens is a very simple routine 

with no loops, which is why it converges in two iterations for all the type problems. 

The second iteration is merely to check that a fixed point has been reached. The four 

size configurations cover all possible combinations of scalar or non-scalar types over 

the two input variables. The nine intrinsic-type configurations similarly range over 

all possibilities of the three numerical types over the two input parameters. 

Size inference is able to infer for QRgivens that the two input parameters are 

either both matrices or both vectors of the same size. There are seven intrinsic-type 

configurations instead of the nine maximum configurations over the two inputs and 

three numerical types. Again, this is because for matrix multiplication, integers 

and reals are not distinguished if the other parameter is complex. This matrix 

multiplications does not happen directly on the inputs, but the types are propagated 

back to the inputs. 

Note that although the intrinsic-type problem has more lattice elements, for most 

of the benchmarks, it actually takes less time than the size-inference problem. This is 

in part due to the more complicated solver required for the size inference problem, but 

also has to do with the number of iterations required until a fixed point is reached. The 

intrinsic-type constraints can be merged so that multiple types can be represented in 

a single constraint. Therefore, because there are fewer constraints at the join points, 

intrinsic-type inference converges in fewer iterations than size inference, where the 

equations cannot be merged together if a variable is an array on one edge and a 

scalar on the other. The one exception to this is in QRgivens. Even though the 

intrinsic-type problem converges in fewer iterations than size inference, the overall 

time spent inferring intrinsic types is much greater than the time inferring sizes. This 

is due, at least in part, to the fact that most of the variables are subscripted array 

accesses, which, as we discussed in Chapter 4, can greatly reduce the complexity of 

size inference by reducing the number of clauses per statement constraint. Intrinsic-
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type inference does not benefit from subscript information. 

The total number of configurations represents the number of variants TeleGen 

generates for each benchmark. For these benchmarks, the number of variants is 

relatively small. If the number of variants gets out of hand, then the strategies 

proposed in Chapter 5 can be employed. 

Benchmark Matrix 
ArnoldiC 

Lanczos 

LUfacC 

QRcgsF 

QRgivens 

plat362 (362x362) 
bcsstk27 (1224x1224) 
bcsstk28 (4410x4410) 
crylOOOO (10000x10000) 
qc324 (324x324 complex) 
dwg961 (961x961 complex) 
plat362 (362x362) 
bcsstk27 (1224x1224) 
bcsstk28 (4410x4410) 
qc324 (324x324 complex) 
dwg961 (961x961 complex) 
plat362 (362x362) 
bcsstk27 (1224x1224) 
bcsstk28 (4410x4410) 
crylOOOO (10000x10000) 
qc324 (324x324 complex) 
dwg961 (961x961 complex) 
(200x160) 
(400x320) 
(1600x1280) 
(3200x2560) 
(6400x5120) 
(200x160) 
(400x320) 
(1600x1280) 
(3200x2560) 

Generated 
0.02 
0.15 
2.19 

11.06 
0.03 
0.23 
0.02 
0.14 
2.20 
0.02 
0.22 
0.11 
4.90 

230.03 
2748.51 

0.16 
4.55 
0.02 
0.33 

28.63 
223.68 

1708.55 
0.04 
0.69 

361.41 
7008.92 

MATLAB 
0.05 
0.24 
2.54 

12.04 
0.11 
0.51 
0.03 
0.17 
2.24 
0.06 
0.43 
1.36 

30.18 
4102.43 
> 50000 

1.49 
25.44 

0.10 
1.06 

54.18 
429.56 

3395.07 
0.93 
5.10 

669.10 
12082.85 

Ratio 
2.86 
1.65 
1.16 
1.09 
4.36 
2.28 
1.88 
1.20 
1.02 
2.80 
1.91 

12.10 
6.16 

17.83 
> 18.19 

9.36 
5.59 
6.15 
3.24 
1.89 
1.92 
1.99 

22.85 
7.39 
1.85 
1.72 

Figure 6.5 : Comparison of MATLAB performance versus automatically generated 
Fortran. 
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6.2.3 Code Genera t ion 

Figure 6.5 compares the running times of the MATLAB benchmarks to those of the 

automatically-generated Fortran. The automatically-generated Fortran routines are 

correct with respect to the MATLAB code. 

While it is not the purpose of this thesis to prove that TeleGen always produces 

faster code than MATLAB, it is interesting to note that there can be a large per

formance benefit in moving from a high-level interpreted language to a lower-level 

explicitly-typed language where arrays are allocated as early as possible (most vari

ables are only allocated once). 

ArnoldiC includes the statement h = V(:, 1 : j)' * w; inside the loop, where j is 

an induction variable in the loop. While many MATLAB programmers have adopted 

the practice of pre-allocating arrays by assigning the array an array of zeros of the 

maximum size seen in the procedure 2, h cannot be preallocated without changing 

the meaning of the statement (or requiring subscripts). Therefore h is one example 

of an array that must be reallocated on every iteration of the loop. This means 

that although MATLAB is calling efficient library routines underneath, the cost of 

reallocation is not dominated by the time spent in the library routines. 

The ratio between MATLAB and Fortran decreases slowly as the size of the input 

matrices grow for ArnoldiC and Lanczos, since the time spent in library routines on 

bigger matrices begins to dominate the interpretive overhead. For LUfacC, however, 

this is not the case due to the fact that LUfacC does not rely on the BLAS or 

equivalent libraries the way ArnoldiC and Lanczos do. Therefore, the interpretive 

overhead is more apparent. 

In QRcgsF and QRgivens, the benefit of Fortan decreases more dramatically as 

the sizes of the matrices increase. This is again due to the reliance of these two 

benchmarks on BLAS-equivalent library routines. 

2zeros not only pre-allocates the array, but ensures contiguous memory for the array 
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Figure 6.6 : Value of Specialization. 

6.2.4 Value of Specialization 

Figure 6.6 demonstrates that type-based specialization can achieve large performance 

benefits for numerical applications. To perform type-based specialization, TeleGen 

needs a powerful static type-inference strategy that can allow the compiler to take 

advantage of all possible runtime types. Thus, this section not only validates the 

type-based specialization strategies described in this chapter, but also motivates the 

type-inference algorithm. 

Figure 6.6 shows running times of different automatically specialized variants from 

TeleGen for the same input matrix. This experiment was designed to demonstrate 
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Figure 6.7 : Comparison to hand-coded Fortran. 

that type-based-specialization is very important to achieve the maximum perfor

mance. An imprecisely inferred type can potentially result in a large performance 

loss. 

6.2.5 Library Generation 

ARPACK is a linear-algebra library designed to solve large-scale eigenvalue problems. 

Figure 6.7 compares the execution time of ArnoldiC under MATLAB 7 with the 

TeleGen and ARPACK versions for different matrix input sizes. The performance of 

the code from TeleGen is comparable to that of the hand-coded Fortran, and these 
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results scale as the size of the input matrix grows. Note that this is only true because 

ARPACK relies heavily on the BLAS routines, so determining which BLAS routine to 

call (i.e., disambiguating types) as well as preallocating the arrays are the two most 

important optimizations in the hand-coded ARPACK. We are not claiming to have 

solved the library generation problem in TeleGen for libraries in general, but merely 

want to show that type inference and type-based specialization play an important role 

in telescoping languages, and that our type-inference strategy is sufficient to handle 

the typing needs of library generation in telescoping languages. 
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Chapter 7 

Contributions and Future Work 

As architectures become increasingly complex, the problem of encoding scientific ap

plications that take full advantage of the platforms available becomes even more 

difficult, especially given the small number of expert programmers available. Alle

viating the difficulty in code development for scientists is important to accelerate 

scientific advancement. Telescoping languages aims to allow scientists to easily build, 

maintain, and use languages that inherently understand the domain in which the 

scientist is working. This dissertation provides essential technology necessary for 

a telescoping-languages system, namely, a type-inference system that works within 

the unique constraints imposed by the telescoping-languages strategy and type-based 

specialization that optimizes based on the inferred types. 

The telescoping-languages strategy envisions generating specialized variants of 

library routines based on properties of the variables for likely calling contexts. There

fore, type inference is essential to telescoping languages since the definition of types 

used for the purposes of this dissertation is categories of program variable properties. 

This can include anything from intrinsic types to ranges of values for the variables. 

To describe the type-inference system, we focused on variable size, intrinsic type, 

and array-shape type problems, since we used MATLAB as our example language to 

encode the libraries. However, the type-inference strategy can be applied to many 

more type problems than these, including value ranges, which will be important for 

further optimization. 
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7.1 Contributions 

Telescoping languages envisions generating the optimizing compilers before all calling 

contexts for the libraries are necessarily known. This means that type inference must 

infer the most general types possible. However, as we showed, inferring the most 

general types will lead to poor performance of the generated code. Therefore, we 

need a type-inference system that will guide the library generator in the telescoping-

languages compiler to produce multiple variants for different calling contexts. To 

represent this information, we defined the notion of return type-jump-functions and 

type jump-functions, which provide a mechanism for both describing the type infor

mation in detail and determining which type configurations should induce their own 

variant. Inferring types in TeleGen thus becomes the process of determining return 

type-jump-functions and type jump-functions for the library procedures. 

This dissertation develops the algorithm for performing type inference in a 

telescoping-languages system. The type-inference algorithm is able to determine all 

possible type configurations and exact relationships between the types of the program 

variables to produce type jump-functions and return type-jump-functions. Through 

representing the algorithm using graphical constructs, we were able to prove that type 

inference is performed in 0(n2) time under certain reasonable conditions. We imple

mented the type-inference algorithm in TeleGen and demonstrated that the actual 

running time of the type inference is reasonable for examples of MATLAB develop

ment code. We also showed that type inference was able to infer the correct type 

configurations for these benchmarks and was precise. In other words, the number of 

type configurations was small enough to limit the number of variants that need to be 

generated. 

We described how to extend the type-inference algorithm to handle multiple type 

problems that may be useful for other languages and even MATLAB. While some of 

these extensions are straightforward, some will require more work to exactly determine 

how to map the problem into the type-inference system. However, the type-inference 
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system is very flexible, which is important for building future telescoping-languages 

technology. 

Once types are available, the library generator (or script compiler) in a telescoping-

languages compiler needs to be able to utilize this information to specialize the vari

ants. Type-based specialization involves two interrelated components - variant gen

eration and variant selection. We generate variants by examining the original library 

routines and performing variant selection to determine the best variant for the types 

of the arguments at each call site in the routine. Once variant selection has completed, 

the code for the variant is generated. 

Finally, we incorporated the type inference and type-based specialization into 

the prototype telescoping-languages system, TeleGen. In addition to providing a 

compiler for MATLAB scripts, TeleGen also performs library generation. TeleGen 

provided a framework for validating the type-inference and type-based specialization 

strategies. Because we implemented type inference and type-based specialization to be 

independent of the scripting language, we expect that TeleGen will provide a backbone 

for future type-based optimizations and future telescoping-languages systems. 

7.2 Future Work 

TeleGen provides only a basic type-based specialization engine. There are many op

timizations and analyses that could provide opportunities for improvement in the 

library generator. Type inference itself can be extended to enable many of these 

optimizations and is applicable to many interesting problems. Additionally, the 

telescoping-languages strategy has several interesting applications. 

Avoiding Impact of Temporaries Because both type inference and specializa

tion require a single operator per statement, temporaries are an unavoidable side 

effect of the generated code. Temporaries introduce additional overhead as they have 

to be allocated, reallocated, and in many cases copied back into the program vari-
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ables. Baumgartner et. al. have worked on mitigating the effects of intermediate 

arrays in tensor-contraction computations through what amounts to scheduling and 

tiling to avoid producing and consuming the entire array [10]. Added benefits of this 

strategy include reduction in the memory footprint and improved cache reuse as well 

as improvements to the instruction pipeline. 

Object-Oriented Inference The ability to precisely infer user-defined types in 

object-oriented languages can lead to many performance improvements. In this dis

sertation, we sketched out some extensions that will be necessary to efficiently infer 

types for object-oriented languages in a telescoping system. We would like to im

plement these extensions to study their effectiveness and explore more potentially 

beneficial extensions to the algorithm as it is applied to user-defined types. Precise 

type inference can enable transformations such as object inlining [53], which is itself 

an enabling optimization. 

In-Placeness Algorithms We have worked with researchers from National In

struments to come up with strategies for avoiding unnecessary copies in Lab View [1]. 

Our heuristics use copy-avoidance advantage scores on potential copy pairs (i.e., in

put and output combinations) to determine the most beneficial pairs to compute in 

place. We plan to use the size-inference strategy to better approximate the copy 

avoidance advantages. Currently, our research in Lab View has focused on single-

procedure optimization. We plan to use a telescoping-style strategy to summarize 

advantage information across procedures. 

Component Integration Telescoping languages can be thought of as a component 

integration system in that the user scripts assemble components in the form of libraries 

to generate applications [1]. Also, the scripting language is independent of the lan

guages used to write the libraries. We would like to research ways in which TeleGen 

can be extended into a component-integration system. We plan to use Fortress, one 
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of the high-productivity computing systems languages developed at Sun, which has 

language support for component integration, as a basis for exploring research issues 

in this area. We have been working with researchers for Sun to explore other ways in 

which Fortress could benefit from the type-based technologies found in TeleGen. 

Type Feedback The type-inference algorithm presented in this dissertation can be 

used to provide feedback to library writers. Since it infers all valid type configurations, 

library writers can examine the return type-jump-function to ensure that their code 

handles the types that they expected. This will allow library writers to in turn feed 

information back to the compiler to more precisely infer types. 

Type Inference in Programming Languages We would like to further explore 

the relationship between our type-inference algorithm and type inference-strategies 

from the programming-languages community. We feel that our algorithm solves some 

similar problems to those being studied in that community. To make a direct com

parison to other type-inference strategies, we will need to extend CORE-MATLAB with 

more interesting features found in other programming languages. 
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Appendix A 

This appendix supplements the formal description of the type-inference algorithm 

described in Chapter 3. First, we describe the error-propagation rules for CORE-

MATLAB. This rules help determine the validity of CORE-MATLAB programs. We 

prove safety with respect to the error propagation rules. We then formally define the 

normalization process to transform CORE-MATLAB programs so that each statement 

contains only one operation or procedure call and prove that this transformation pre

serves types. Finally, we prove the soundness and completeness of the type-inference 

solution with respect to the type system given in Chapter 3. 

A.l Error Propagation Rules and Type Safety 

Theorem 3.5.1 Type Safety: 

Given Type, if T h S,T h e : t a n d S , e - > a then T \- a : t. Also, if T h E, T h P, 

and E, F w £', then T h £'. 

Proof of Theorem 3.5.1: By structural induction on evaluation derivation. 

Case [VAR]: The result is immediate because x := a € E, and r I- £ . Therefore, 

Y\- x :t means that V \- a : t, since x and a evaluate to the same value. 

Case [ E - V A R ] : If x := a fi 2 , then x is not well-typed. 

Case [ELEM]: By the induction hypothesis E, ei '—* a\, E, e2 -̂> 02, and E,x «-> a, 

and r h a\ : £1, Y h a2 : £2, and V h a :<S\, «2>- We know that the sizes of a\ 

and a2 are both <1,1>. Since we know that a\ < s\ and a-z < S2, the evaluation 

results in 0,(0,1,0,2) :<1,1>, since we are only accessing a single element of the 

matrix. 
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E, e'i c-* error or E, e2 *-> error 
— [ E P - E L E M ] E, x(ei,e2) e-* error 

E, e <-> error 

E, a; := e ^ error 

E , c - » error 

[ E P - S T M T ] 

E, c; 6 c-> error 
[ E P - B O D Y ] 

3i G {1, • • • , n} s.t. E, et «-* error or 
Def(f) = fn x0 := f{xu...,xn)b 
E, [xi H » o i , . . . , a ; n w an]b ^ error 

„ , . r E P - A P P 
S, / (e i , - - - ,en) terror 

E, ei «—» error or E, e^ <L-> error 

E, e\ + e2 <-> error 

E, ei <-* error or E, e2 <-• error 

[EP-ADD] 

[ E P - M U L T ] 
E, e\ * e2 -̂» error 

Figure A.l : Error Propagation Rules 

Case [ E - E L E M ] : By induction hypothesis E,e\ <—• a\, E,e2 e—> 02, and E,a; «-» a, 

and h ai : t i , T h 02 : £2, and T h a :<si, s2>- If {# : = a} $• 2 , then this fails 

an assumption of the theorem and is therefore not well-typed. Also, if either 

t\ ^<1 ,1> or t2 7^<1,1>, then this expression is not well-typed. 

Case [ A P P ] : We know by the induction hypothesis E, e* «-» a* that a* : tjVi G 1 , . . . , n. 

We also know that axo =t'0/\---AaXn = t'n G Type(f). Since Type(f) depends 

on the function type for / , we know by the induction hypothesis that there is 

a valid evaluation of the body f with the given input types, where x0 has type 

to- Therefore, since a gets the value and and therefore type of XQ, a : to-

Case [ E l - A P P ] : If the wrong number of arguments are given then no typing as

signment to arguments will be in Type(f). Therefore, this expression is not 
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well-typed. 

Case [ E 2 - A P P ] : If / £ Def, then there is no entry for / in table Type, which means 

that the expression is not well-typed. 

Case [ADD]: By the induction hypothesis E,ei «—» a\, E,e2 <—»• «2> and ^i '• t\ and 

a2 : *2- 1̂ and £2 must be the same if this is well typed. Therefore, a : t, by the 

definition of Add. 

Case [ E - A D D ] : By the induction hypothesis E, e\ •—> ai, E,e2 "—> a-i, and ai : ti and 

0,2 : <2- Since ti and t<i are not the same, this expression is not well typed. 

Case [MULT]: By the induction hypothesis E, ei ^ ai, E, e2 «—> a2, and ai :<Sj, Sj'> 

and a2 :<s2, s2'>- si ' and s2 must be the same if this is well typed. Therefore, 

a :<s[, s2>, by the definition of Mult. 

Case [ E - M U L T ] : By the induction hypothesis E,ei <—> aj , E,e2 «—• a2, and ai :< 

s ^ s ^ and 02 :<s2,S2>. Since s" and s2 are not the same, this expression is 

not well-typed. 

Case [STMT]: By the induction hypothesis E,e <—> a we have r I- o : t. Since 

r I- x := e by assumption on the theorem, r(x) = t and T \- e : t. Therefore, 

since T h E, then T h E + {a; := e}. 

Case [STOP] : Trivially true. 

Case [BODY]: By the induction hypothesis S , c - » E', we have that T h E'. Then, 

also by the induction hypothesis, if E', b -̂> E" then T h E". 

Error propagation: The error propagation rules are given in Figure A.l. These 

rules state that if an evaluation in the antecedent results in an error, then the 

evaluation of the expression results in an error. Since we have by induction 

hypothesis that any evaluation that results in an error will not occur in a well-

typed expression, the evaluations in the antecedents must evaluate expressions 



: — [VAL] — : r—[VAR] 
nrm[x := a\ —• nrm[x := x\ —» 

a -s 

#1 j ^2 fresh in b 

x := a x := x' 

nrm[x0 := x(ei, e2)] —• 
nrm[xi := ei];nrm[x2 •= e2J;aro := x(xj,X2); 

[ELEM] 

^1,^2 fresh in b ' 
— [ A D D ] nrm[x0 := ei + e2] —• 

nrm[xi := ei]; nrm[x2 := e2]; £o := #i + #2; 

#1,^2 fresh in b P 

: — — [ M U L T ] nrm[xo := ei * 62] —•. 
nrmfzi := ei]; nrm[x2 := 62]; £0 := £x * x-i\ 

x\,...,xn fresh in b r 

F 7; 1̂ [ A P P 

nrm[x := f (ex,..., en)\ -> 
nrm[x\ := e i ] ; . . . ; nrro[x„ := en]; 

a; : = /^Xx, • • •, xnJ 

-[STOP] 
nrm[stop] —> stop 

r[BODY] 
nrm[c; b] —> nrm[c]; nr?n[6] 

Figure A.2 : Normalization Rules. 

that are not well-typed. Therefore, the expression in the error propagation rule 

must not be well-typed. 

• 

A.2 Normalization and Type Preservation 

We show that normalization preserves types. 
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Theorem A.2.1 IfFhP, then there exists F' DF such that F' h nrm[P}. Further

more, F' h P. 

Proof of Theorem A.2.1 : We prove the first statement in the proof by structural 

induction over the normalization rules. 

Case [VALUE]: trivial, since the result of the normalization is the same as in the 

original statement. 

Case [VAR] : trivial, since the result of the normalization is the same as the original 

statement. 

Case [ELEM]: Let F' be such that F' D F, and F' h xx : h and F' h x2 : t2. Then, 

T' h x\ := e\\x2 :— e2;xo := x{x\,x2). Therefore, by the induction hypothesis 

3 r " such that T" D F' and F" h nrm[xi := e^F" h nrm[x2 := e2]. Therefore, 

r " h nrm[xo := x(ei,e2)]. 

Case [ADD]: Let F' be such that F' D F, and D- xi: h and F' h x2 : t2. Then, 

T' h x\ := e\;x2 := e2;xo :— x\ + x2. Therefore, by the induction hypothesis 

3P" such that T" D r ' and F" h nrm[xi := d ] , F" h nrm[a;2 := e2]. Therefore, 

r " h nrm[xo := ei + e2]. 

Case [MULT]: Let F' be such that F' D F, and F_h xi : ti and r ' H a;2 : <2. Then, 

I" h xi := e\;x2 := e2;xo := x\ * x2. Therefore, by the induction hypothesis 

3 r" such that T" D F' and F" h nrm[xi := e i ] , r" h nrm[x2 := e2]. Therefore, 

T" h nrm[a;o := ei * e2\. 

Case [ A P P ] : Let T' be such that F' D F, and F' (- ^ : U for 'all i G { 1 , . . . , n}. Then, 

r" h Xi := e i ; . . . ; x„ := en; a; := f(x\,..., a;n). Therefore, by the induction 

hypothesis there exists a F" such that T" D T' and T" h nrm[xi :— e,] for all 

i G { 1 , . . . , n} . Therefore, T" f- nrm[x := / ( e i , . . . , en)]. 
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Case [STOP] : trivial, since the result of the normalization is the same as the original 

statement. 

Case [BODY]: By induction hypothesis, there exists aT" D T and a Y" DY such that 

r h nrm[c] and T" h nrm[b\. Therefore V" = f U T" gives us F" \- nrm[c; b}. 

The second statement of the theorem is trivial since r" D Y • 

A. 3 Soundness 

Theorem 3.5.2 Soundness: Given Type, Def, and P, if IXT, Y h pc and nrm[P] : pc 

then r h P. 

Proof of Theorem 3.5.2 (By Induction Over Procedure Bodies): Base Case: Let 

P be stop. Then the derivation with respect to any T is: 

T h stop. 

Induction step: Assume P is a normalized procedure, T is well-formed with respect 

to P, and T allows for a valid type derivation of P. Let V be another type environ

ment. We can treat type environments as though they are existentially quantified, so 

that we can meaningfully combine type environments by conjoining them. Note that 

this corresponds to performing a remapping of the sizes before conjoining the type 

environments so that no $-variables are shared across T and V. Let r " = T A T' be 

well-formed with respect to c; P. Then, since T is a subset of T", there must be a 

valid derivation of P with respect to Y". 

Y"\-P 

We must show that this derivation can be extended to include c. Let c be x := 

/ (e i , • • • , en). Since Y" is well-formed, there must be a mapping, tfT from $-variables 

to linear expressions over the $-variables such that for one of the clauses in the 
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statement constraint corresponding to c, \JT does not take matrices to scalars. Let 

HD be the mapping from $-vars to $-vars that was used in generating the statement 

constraints. Let JJLT — A*T ° /•*£>• Then there exists a mapping, fi'T, that that satisfies 

the restrictions for /J,? to be valid. Therefore, we can use /J,? to prove that there is a 

type-derivation over c with respect to T, and we can append this derivation to that 

of P to get the type derivation for c; P. 

T"{x) = t axo = t'0 A • • • A aXn = t'n e Type(f) 

T"^v-t r,'\-e1:t1---r
,ken:tn 

F"\-f(e1,...,en):t0 ' ••• 
T"\-x:=f{el,...,en) T" h P 

T"\-x:=f(eu...,en);P 
Statements of the form JU *~— C t . Ju •~~~ JU * and x :— a;'(ei,e2) are trivial, since they 

are the same constraints used in T for these statements. 

When the expressions passed to / involve subscripts, extra constraints stating 

that these expressions have to have a size of < 1 , 1 > are added. These constraints 

match those given in the type system. 

By theorem A.2.1, we have that T I- P', where P' is the pre-normalization form 

of P if T I- P. 

D 

A. 4 Completeness 

Theorem 3.5.3 Completeness: Given Type, Def, and P, if T ¥• P then there does not 

exist a fir such that IXJ, V h pc, where nrm[P] : pc. 

Proof of Theorem 3.5.3 (By Contradiction): Assume there exists a valid type 

derivation for the normalized procedure P with respect to T, where T is not well-

formed with respect to P. Then for some statement, c, the statement constraint, for 

every clause, for some atom, there does not exist a mapping, n'T, that can take the 
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atom to T. Therefore, there does not exist a type assignment in Type for / called at 

statement c, since there can be no valid mapping, /J,T- Therefore by theorem A.2.1, 

we have that T ¥ P, means that if T F P' where P' is the pre-normalization form of 

P. 

• 
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