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Rydberg Atom Wavepacket Dynamics in One and 
Two-Dimensions 

Jeffery Mestayer 

Abstract 

Atoms in high-lying Rydberg states with large values of principal quantum number 

n, n > 300, form a valuable laboratory in which to explore the control and manipula

tion of quantum states of mesoscopic size using carefully tailored sequences of short 

electric field pulses whose characteristic times (duration and/or rise/fall times) are 

less than the classical electron orbital period. Atoms react to such pulse sequences 

very differently than to short laser or microwave pulses providing the foundation for 

a number of new approaches to engineering atomic wavefunctions. The remarkable 

level of control that can be achieved is illustrated with reference to the generation 

of localized wavepackets in Bohr-like near-circular orbits, and the production of non-

dispersive wavepackets under periodic driving and their transport to targeted regions 

of phase space. New protocols continue to be developed that will allow even tighter 

control with the promise of new insights into quantum-classical correspondence, infor

mation storage in mesoscopic systems, physics in the ultra-fast ultra-intense regime, 

and non-linear dynamics in driven systems. 
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Chapter 1 

Introduction 

Engineering the quantum states of microscopic and mesoscopic objects is a goal in 

many current fields of research ranging from nanomechanical devices to quantum 

information processing[l, 2, 3, 4]. Recent advances in experimental technique now 

allow accurate measurements of the dynamical behavior of atomic systems on a variety 

of time scales extending into the attosecond regime through the use of short electric 

field pulses. This has been widely exploited to explore both electron and heavy-

particle motions in atoms, molecules, and solids[5, 6]. 

One area in which major advances have been made is the control of electronic 

motions in high-n Rydberg atoms using carefully-tailored sequences of pulsed electric 

fields. Such atoms provide a valuable laboratory in which to explore, control, and 

manipulate quantum states of mesoscopic size. Here we demonstrate the remarkable 

control that can be achieved in very high-n Rydberg atom wavepackets using a tailored 

sequence of half-cycle pulses. There are number of advantages to using very high-n 

wavepackets. As we will see in the next section, the physical properties of high-n 

atoms are dramatically different compared to lower lying states. Most importantly, 

at high-n the spacing between adjacent energy levels becomes extremely small thus 

allowing the semiclassical modeling of the system. In addition, the change in the 
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spacing between levels is also very small, leading to a nearly uniformly spaced set 

of energy levels which is similar to the spectrum of the harmonic oscillator. This 

near-uniform spacing allows the creation of wavepackets with minimum dispersion, 

and thus appreciable lifetimes. These characteristics make the very-high-n Rydberg 

atom an ideal system for the coherent control and manipulation of wavepackets. 

1.1 Rydberg Atom Properties 

A Rydberg atom contains one or more electrons which have been excited to a high 

principal quantum number, n. Many of the physical properties of Rydberg atoms 

are quite exaggerated compared to low-lying or ground state atoms[7]. Some of these 

characteristics as listed in table 1.1 along with their dependence on n and typical 

numerical values for several specific n levels. One such important property is the 

mean distance between the electron and the nucleus, which scales as n2. At n = 350, 

the mean radius reaches 6.5 //m, which is comparable to the size of a biological cell, 

and would be resolvable using an optical micropscope if the Rydberg atom were a 

solid object. Due to the large separation between the electron and the core, the 

properties of the Rydberg atom resemble those of the hydrogen atom. The time scale 

for Rydberg wavepackets, given by the orbital period of an electron in a Kepler orbit 

about the core, also rapidly increases with increasing n. It is of the order of a few 

nanoseconds (6.5 ns at n = 350) which is easily observed using modern electronic 

equipment. The binding energy of the electron decreases rapidly with increasing n to 
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hundreds of/xeV at high-n, so very little energy is required to ionize it. In addition, at 

high-n, very weak externally applied electric fields (~ lmV/cm) can strongly perturb 

electronic motion. As a result, extreme care must be taken to minimize any stray 

electric fields present in the experimental volume. However, it is this increased time 

scale and extreme sensitivity to electric fields that make possible the ability to create, 

observe, and manipulate the motion and shape of atomic wavepackets. 

Table 1.1 : Physical properties of Rydberg atoms. 

Property 

Mean Radius 

Orbital Period 

Binding Energy 

Energy Spacing 

Classical Field 

Ionization 

Threshold 

Scaling (a.u.) 

n2 

27m3 

- l / 2 n 2 

1/n3 

l/16ra4 

n = 1 

5.3 x 1(T9 cm 

1.5 x 10~4 ps 

13.6 eV 

10.2 eV 

3.0 x 108 V/cm 

n = 30 

4.8 x 10~6 cm 

4.1 ps 

15meV 

1.0 meV 

400 V/cm 

n = 350 

6.50 fim 

6.5 ns 

111 /xeV 

0.63 /ieV 

22 mV/cm 

It is straightforward to create and apply unidirectional electric field pulses (termed 

half-cycle pulses or HCPs), whose duration are much smaller than the orbital time 

scale (Tp <C Tn), to high-n Rydberg atoms. In this limit, the applied field delivers an 

impulsive momentum transfer or "kick" to the excited electron given by 
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Ap = - I FHCP{t)dt (1.1) 

where Fncpit) is the electric field associated with the HCP. Each applied HCP im

parts an energy transfer given by 

A E = - | " + P i - A p (1.2) 

leading to the coherent excitation of a range of Rydberg states. A strong HCP that 

delivers an energy transfer, AE, which exceeds the binding energy of the original 

Rydberg atom can induce ionization. Monitoring this ionization as a function of 

time provides a tool for monitoring the motion of Rydberg atom wavepackets. In 

addition, application of a train of HCPs can be used to study interesting effects 

such as dynamical stabilization. Also, in the following chapters we will see that a 

carefully tailored sequence of HCPs can be used to steer a Rydberg wavepacket to 

arbitrary locations in phase space, laying the foundation for the engineering of atomic 

wavefunctions. 

1.2 Overview 

In this work, we will discuss the generation of Rydberg atom wavepackets, their 

control and manipulation, and the experimental observation of their evolution. The 

resulting dynamics of these wavepackets is analyzed using the classical trajectory 

Monte Carlo Method[8]. The experimental techniques for creating and observing 
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wavepackets are summarized in chapter 3. 

The control and manipulation of localized wavepackets whose motion is confined 

to a single dimension is discussed in chapter 4. It is demonstated that, once generated, 

a wavepacket can be dynamically trapped in a localized region in phase space known 

as a "stable island". It is possible to transport the wavepacket to a selected location in 

phase space by adiabatically shifting the position of the stable island. This technique 

allows control of the final n-state distribution as well as the transfer to other stable 

islands in phase space. 

The remarkable results of the manipulation of wavepackets in two dimensions 

are discussed in chapter 5. The carefull control of Rydberg atom J-state distribu

tions leads to the production of localized Bohr-like circular wavepackets. While these 

localized wavepackets eventually dephase, it is demonstrated that localization can 

be re-induced using a single HCP. In addition, it is shown that localization can be 

maintained indefinitely using a tailored periodic train of HCPs. 
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Chapter 2 

Rydberg Atom Theory 

2.1 Coulomb Potential and Orbital Dynamics 

The Hamiltonian of a single electron atom in atomic units is 

v2 1 
" = j-]f\ < 2 1 » 

where p is the momentum and r is the distance from the nucleus. This Hamiltonian 

is common to both the classical Rydberg atom and the Kepler motion of planetary 

orbits. At very high-n, due to the close spacing of the energy levels, the dynamics 

of the Rydberg atom can frequently be modeled classically[9, 10, 11]. Therefore it is 

useful to describe some of the properties of classical Kepler orbits. 

Since the potential only depends on the distance from the nucleus, the system 

has spherical symmetry and thus it is rotationally invariant. As a consequence, the 

angular momentum L = r x p is a constant of the motion. The bound solutions to 

the Hamiltonian are ellipses, and in polar coordinates are defined by the equation 

A typical orbit is shown in Fig. 2.1. Another quantity that is conserved in this system 



7 

Perigee Force Center 

a<£ 

Apogee\. 

2a 

2b 

' > 

Figure 2.1 : Parameters describing a Kepler orbit. 

is the Runge-Lenz vector, which is defined as 

A = px L- — 
\f\ 

(2.3) 

The Runge-Lenz vector lies along the major axis of the orbital ellipse and points from 

the nucleus to the point of closest approach, also known as the perigee. Because the 

Runge-Lenz vector is in the plane of the orbit, A • L = 0 . The magnitude of the 

Runge-Lenz vector is equal to the eccentricity, e . The value of e determines the 

nature of the orbit. For e > 1 the motion is hyperbolic and unbound. For bound 

states however, e is denned as 

e = Vl + 2EL2 (2.4) 

and is related to the scaled angular momentum L0 by 
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-0.5 

L0=.7S 

Figure 2.2 : Orbits of varying eccentricity. 

L0 = LV2E = V l - e 2 (2.5) 

Notice that, as shown in Fig.2.2, as L0 varies from 0 to 1.0, the orbit goes from 

nearly one-dimensional to nearly circular. This fact will prove to be quite important 

in the upcoming analysis of one and two-dimensional wavepackets. 

2.2 Rydberg Atoms in External Electric Fields 

Rydberg atom electrons occupying very-high- n levels are very strongly perturbed 

by electric fields that are considered "weak" (~ 100 //V/cm) by ordinary laboratory 
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standards. This characteristic presents a tremendous challenge when attempting to 

selectively photoexcite very-high-n Rydberg atoms. However, if one has the means 

to precisely control the applied electric field, this same property can be quite useful 

in the areas of wave packet manipulation and selective ionization. In either case, it 

is imperative to understand precisely how Rydberg atoms respond to external fields. 

2.2.1 The Hydrogen Atom in a Static Field 

I Energy 

"stafk" 
V--1/z + Fz 

^Stark 
• i i 

! I ' 

Figure 2.3 : Potential energy of an electron in a uniform electric field in the z-direction. 

If a hydrogen atom is placed in an external electric field, F, in the z direction the 

resulting potential seen by the electron is 
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V = - - + \F\z (2.6) 
r 

The resulting Schrodinger equation is not separable in spherical polar coordinates. 

The most common way of dealing with this problem is to transform to parabolic co

ordinates, for which the equation remains separable[12, 13]. The parabolic coordinate 

system is defined in terms of the Cartesian coordinates as follows 

£ = r + z = r ( l + cos<9) (2.7) 

rj = r - z = r(l~cos9) (2.8) 

(j) = tan"1 ^ (2.9) 
x 

with the associated inverse transform 

X= y/^T}CO&(j) (2.10) 

y = V ^ s i n 0 (2.11) 

z = (i- ri)/2 (2.12) 

r = (£ + *7)/2 (2.13) 

The parabolic coordinate system is a system of curvilinear coordinates obtained by 

revolving parabolas about the z-axis as shown in Fig. 2.4. Using the above transfor

mation equations the Schrodinger is now written as[7] 
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where 

Figure 2.4 : Parabolic coordinate system. 

' 2 

2
 +?!Lz*rH=Wi, 

Z + v 
(2.14) 

„ 2 4 <9 / <9\ 4 d ( d\ Id2 

(2.15) 

and W is the energy. Here we use the most common technique for separating variables 

in a partial differential equation, assuming a product solution of the form[12] 

M,Ti,<l>) = u1(£)u2{ri)eim* (2.16) 

Inserting the trial product solution back into (2.14), we find that we can recover two 

independent equations 
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*(^JH"2~+ '"^""^J"1 (2"17) 

and 

d ( du2\ (Wrj m2 Frj2\ 

Notice that m only appears as a squared term, thus its sign is irrelevant. Therefore the 

wavefunctions associated with ± m are degenerate. This is not surprising considering 

the cylindrical symmetry in this system. The parameters Zi and Z2 are separation 

constants, and are related by the expression 

Zx + Z2 = 1 (2.19) 

The terms Z\ and Z2 are often referred to as the effective charges, because they 

mathematically resemble positive binding charges in the £ and r\ directions. 

The most concise way of proceeding at this point is to solve the zero field case, and 

then to use the zero field parabolic wavefunctions as basis functions in a perturba

tion expansion. In solving the zero field case, we find that there are two additional 

quantum numbers n\ and n2, that are related to n and \m\ by 

n = ni + n2 + \m\ + 1 (2.20) 

They are also related to Z\ and Z2 by 
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and 

* = !(„,+ l!±tl) (2,22) 

The wavefunctions themselves can be given in terms of associated Laguerre polyno

mials as 

^ n i n 2 m oc e ^ e i + V ^ 2 + ^ e - ^ (2.23) 

using the reverse transformation equations (2.13), we obtain the electronic probability 

density in spherical coordinates[l2] 

\^nnin2m\2 = ^ ( l + C O S ^ ) 2 " 1 + l ^ ( l - COS O f ^ ^ e ^ ( 3 3 4 ) 

The probability density is plotted for n = 8, m = 0, n\ — n2 —-7 to 7 in Fig. 2.5. 

Quite striking in this plot is that the extreme states (ni — n2 =-7 and 7) are aligned 

parallel and anti-parallel with the applied field. 

Using the zero field wavefunctions in (2.23), the first order energies are[12] 

1 3 
Wnnin2m = -—— + - F ( n i - n2)n (2.25) 
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Figure 2.5 : Electron probability density plots for hydrogenic parabolic states at n=8 

Interestingly, for states where ni — n<i = 0 there is no first order Stark shift. Coinci-

dentally, these are also the same states that have no net dipole moment. In addition, 

it is important to note that for each n and \m\ state, there are n — \m\ Stark levels. 

If the perturbation calculation is taken to second order, the energies are[12] 
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W, nniri2m "2̂ 2 + \F^ni ~ n^n ~ J^n^17n2 ~ 3 ( n i ~ n ^ ~ 9™2 + 1 9 ) ( 2 - 2 6 ) 

Figure 2.6 : Stark energy structure for \m\ = 1 hydrogen 

Figure 2.6 shows the Stark energy structure for hydrogen from n = 8 to 12, 

\m\ = 1. To a good approximation, the energies vary linearly with field all the way 

to the point of ionization. This shows that the second order expansion, Eq. 2.26, is 

sufficient for most applications. Using the first order energy levels, Eq. 2.25, we find 

for a given value of \m\, that the spacing between adjacent Stark levels is given by[14] 

AW = W, Wn n,n\,\m\ '" n,n\ — \,\m\ 3nF (2.27) 
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Using the zero field energy level spacing of AW„_,n+i « ^ and the first order Stark 

energy, Eq. 2.25, we find that extreme members of adjacent manifolds cross at fields 

of 

"crossing q 5 (Z.Zo) 

At n = 350, this crossing field corresponds to 326 yuV/cm. Therefore, to selectively 

excite states within the n = 350 Stark manifold, we must control the applied electric 

field in the apparatus to less than ~ 100 /W/cm. Although these level crossings 

appear to violate the "no-crossing" theorem of Wigner and von Neumann, this is 

not actually the case. The symmetry unique to the Coloumb potential allows levels 

of identical \m\ to cross[15]. In alkali atoms, the core breaks this symmetry and in 

general, states with the same value of m do not cross. 

2.2.2 Alkali Atoms in a Static Field 

Alkali atoms behave very similarly to hydrogen atoms in an electric field. However, 

there are some important differences due to the finite size of the ionic core. The 

Hamiltonian for an alkali atom in the presence of an electric field in the z-direction 

is given by 

H = ~ + - + Vd(r) + Fz (2.29) 
2 r 

where Vj(r) is the potential due to the core. V^(r) is only non-zero close to the 
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Figure 2.7 : Avoided crossing in Li of the (n, ni,n2, \m\) states (18,16,0,1) and 
(19,1,16,1). The calculated energy level structure is superimposed on experimental 
excitation spectra. From ref. [14]. 

nucleus. One of the most important implications of adding the Vd(r) term is that 

the parabolic quantum number n\ is no longer a good quantum number, which is of 

course not the case in hydrogen. One of the results of this is that the red and blue 

states are now coupled due to overlap near the core. As a result, red and blue shifted 

Stark states from adjacent n manifolds no longer cross, but instead exhibit avoided 

crossings as seen in Fig. 2.7. 

There is no direct analytical solution for the Shrodinger equation with the Hamilto-

nian (2.29). In addition, the perturbation expansion is asymptotic and nonconvergent. 

However, the problem can be solved using a direct numerical matrix diagonalization 

technique using the zero field nlm spherical states as a basis[14]. Figure 2.8 shows 

the results of such a calculation for potassium in the vicinity of n = 15. 
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0 1000 2000 3000 4000 5000 6000 
FIELD (V/cm) 

Figure 2.8 : Stark energy structure for \m\ = 1 potassium near n = 15. From ref. 
[14] 

2.2.3 Pulsed Field Ionization 

Adiabatic and Diabatic Ionization 

The ionization due to pulsed electric fields has been the subject of much investigation[16, 

17]. This is due in part to the efficiency and selectivity in which field ionization can 

be employed as a detection method for Rydberg atoms. The most simplistic analysis 

results from the combined Coulomb-Stark potential 
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V=-- + Fz (2.30) 
r 

which has a saddle point on the z-axis at z — — -T= as illustrated in Fig. 2.3. At the 

saddle point, the potential has the value —2y/F. Thus if if the atom has a binding 

energy, W, then ionization will occur at a field of 

W2 

F = — (2.31) 

If we ignore the Stark shift and use W = —l/2n2, we obtain the classical ionization 

threshold 

F = -^— (2.32) 
16n4 V ; 

Although this approach completely ignores the Stark energy shift and the possibility 

of tunneling through the barrier, it is still quite useful in determining the order of 

magnitude at which field ionization is expected. 

As the value of \m\ increases, the associated centrifugal barrier potential raises 

the threshold field. We can account for this by considering the fractional field change 

compared with the \m\ = 0 state as follows[18] 

AF = WVW = H (2 33) 

We can further improve the accuracy of (2.32) for red shifted Stark states simply 

by inserting the first order shift into (2.31). The result of doing so is[7] 
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1 
9 ^ 

(2.34) 

All of the above formulas rely on a simple over the barrier picture. However, tun

neling through the barrier usually blurs the concept of a true "threshold" field. There 

have been accurate calculations of ionization rates which take this into account[19, 

20. 211. 

Figure 2.9 : Stark levels at an avoided crossing showing adiabatic(solid arrow) and 
diabatic(broken arrow) passage. From ref.[7] 

When a field ionization pulse is applied, there are two possible ionization paths. 

As the applied field increases, the Stark state in question will eventually approach 

an avoided crossing, UJQ, with the adjacent manifold. If the applied field is slewed 

through the crossing over a time long compared to 1/UJQ the passage with be adia-

batic. But, if the applied field is slewed quickly through the crossing, the passage 
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will be diabatic. In general, adiabatic ionization ionization occurs at lower fields than 

diabatic ionization[7]. 

Impulsive Ionization 

While the ionization of Rydberg atoms by pulsed electric fields has been studied 

extensively, in the majority of these studies, the rise time and width of the applied 

pulses are greater than the classical Kepler orbital period of the Rydberg electron, 

Tn, given by 

Tn = (1.5 x l(T16)n3s (2.35) 

where n is the principal quantum number. In the slowly varying regime, ionization 

results from over the barrier escape and tunneling through the barrier. From Eq. 2.32, 

we see that the threshold field decreases rapidly with increasing n, scaling as 1/n4. 

However, application of a very short electric-field pulse with duration Tp < Tn lowers 

the Coulomb barrier only briefly, limiting electron escape. However, ionization can 

still occur if the impulse delivered to the electron by the pulsed field is sufficient to 

increase its energy by more than its original binding energy. As a result, the n scaling 

of the ionization threshold field crosses over from the 1/n4 dependence characteristic of 

"long-pulse" ionization to a 1/n dependence in the limit of ultrashort pulses, Tp <C Tn 

[22, 23]. 

The application of such an ultra-short pulse leads to an impulsive momentum, 
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Ap, transfer to the excited electron given by 

/

oo 

F(t)dt (2.36) 
•oo 

where F(t) is the time varying applied electric field. If the atom is initially in some 

stationary Rydberg state |0t), the electronic wavefunction immediately after applica

tion of the pulse can be written 

|^(* = O)) = |0f) = e i A ^ i ) (2.37) 

which corresponds to the initial state shifted in momentum space by Ap. The resulting 

expectation values for energy and momentum are[10] 

(E)t=0 = <0f \Hat\<p?) = {hlHatlM + ^ + (<j>i\pe • Aplfr) (2.38) 

(pe)t=o = (4>f\pMf) = Ap + (<l>i\pMi) (2-39) 

where Hat is the atomic Hamiltonian and f and pe are the electron momentum and 

position operators, respectively. Classically, the application of an ultra-short pulse to 

an electron with momentum pe and position f leads to a final energy of 

(Av)2 

E(t = 0) = Eni + ^ - + p-e • Ap (2.40) 

where Eni is the initial energy of the electron. We can easily re-write (2.40) as an 

expression for the energy transfer, AE, as follows 
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AE = E(t = 0) - Ent = K—^- + fe • Ap (2.41) 

SCALED FIELD, E0 

Figure 2.10 : Calculated and experimental survival probabilities as a function of the 
scaled pulse field amplitude F0 = nAF for different T0 = Tp/Tn. From ref [9]. 

If the energy transfer, AE, is greater than the initial binding energy of the electron, 

then ionization will occur. The ionization profiles for several different scaled pulse 

widths, T0 = Tp/Tn, are shown in Fig. 2.10. Notice that as T0 decreases to the 

impulsive limit (To <C 1), the ionization profile becomes much steeper. 
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Figure 2.11 : Rydberg atom survival probability following application of two pulses 
in (a) the same and (b) opposite directions to K atoms with rii ~ 417 as a function 
of time delay. From ref [10]. 

The use of slowly varying fields for ionization of Rydberg atoms yields information 

about the excited state distribution since the ionization threshold depends strongly 
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on n. The use of an ultra-short pulse for ionization, however, allows one to probe the 

time evolution of a wavepacket. Equation (2.41) shows that the energy transferred 

by an ultra-short pulse depends directly on the initial momentum of the electron. 

If a relatively large pulse is used, -^ = 0.5, variations in the electron momentum 

will appear as variations in the measured survival probability. An example of this 

procedure is demonstrated in Fig. 2.11. 

2.3 Quantum-Classical Correspondence and the CTMC model 

The classical orbits described in section 2.1 are not equivalent to quantum mechani

cal wavefunctions. As the principal quantum number, n, of a Rydberg atom increases, 

the atomic dimensions eventually become greater than the deBroglie wavelength as

sociated with the electron. Thus we would expect a particle-like classical model to 

become an increasingly valid description. This is the essence of classical-quantum cor

respondence. However, even at the very-high-n levels, the Rydberg atoms discussed 

in the present work are still quantum systems, whose properties and dynamics are 

completely described by the time dependent Schrodinger equation 

where U(r, t) is the time dependent potential, and ip(r, t) is the usual complex valued 

wavefunction. Even though the above equation fully describes the system in question, 

its solution at very-high-n can be exceedingly difficult if not impossible given current 
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available computing power and numerical techniques. However, insights into the 

behavior of high-n systems can be obtained using classical or semi-classical methods. 

Many classical approximation techniques have been pioneered[24, 25, 26], mostly 

in the field of ion-atom collisions. Among these, the most successful approximation 

has been the classical trajectory Monte Carlo(CTMC) method first introduced by 

Arbines and Percival[8]. In general, the CTMC method employs an initial classi

cal microcannonical ensemble which reproduces the quantum density distribution in 

position and momentum. 

Development of the CTMC Method 

We begin by considering a fluid dynamical interpretation of the Schrodinger equa

tion for one-electron systems[27]. In this alternative and equivalent quantum mechan

ical description, the complex wavefunction i/>(f, t) is replaced by a real probability 

density in phase space, fq(r,p,t). This phase space distribution function is obtained 

as a Weyl transform of the density matrix, D, which leads to the Wigner probability 

density 

fq(f,p,t) = /T 3 J' d\e^lh{r- <f/2|D|r + ?/2) 

fq(f,p, t) = h~3 J Sqe^'^r- q/2)W+ q/2) (2.43) 

The time evolution of fq is governed by the Weyl transform of the Von Neumann 

equation for the density matrix. This leads to the quantum Liouville equation[28, 29] 
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where Lg is the quantum Liouville operator. If Lg is simply replaced with the classical 

Liouville operator, Lc, not surprisingly, this leads to the classical Lioville equation[27] 

% = LJ = [H, f] (2.45) 

where [,] denotes a Poisson bracket, and H is the time dependent Hamiltonian. While 

the quantum and classical Liouville equations are not equivalent, they are entirely 

analogous. Just as in the quantum formalism, the classical Liouville equation gov

erns the time evolution of the phase space distribution function, / . However, in the 

classical case, the points in phase space evolve independently in time allowing for a 

direct numerical integration. 

The largest challenge to this approach is in constructing the initial ensemble. For 

computational purposes, a discrete number of random points must be chosen to rep

resent the continuous phase space distribution, / . Each individual phase space trajec

tory alone does not have any specific meaning. Only the total ensemble of trajectories 

determines the values of the observable quantities. There does not exist a unique ini

tial phase distribution which mimics the initial quantum state. However, we adopt 

the most common choice which is the microcannonical ensemble 



28 

fi(r,p) = Ci5 Ei-^~ Vat(r) Ui (2.46) 

where Cj is a normalization constant, i?i is the initial quantum mechanical binding 

energy, and Ui is a characteristic function representing the other quantum numbers 

of the initial state. For a hydrogenic spherical state |ni, k, m) [30] 

U i , „ = 0 ( 1 - i m , + 1 - 1 ) 6 ( i . - ^ L Z i l ) e ( ^ t i > - £ , ) (2.47) 

where L = f x p is the classical angular momentum and 0 denotes a step function. 

In addition, for a hydrogenic parabolic state with the quantum numbers n^nxun-n 

"»»,»* = © (VC " nu + ^ G (-JVf + nu + ^) 

x 9 fe - n2i + ^ 9 f-7V2
c + n2i + £) (2.48) 

where 

^ic,2 = ^ M l = F ^ 2 ) - ( | ^ | + l)] (2-49) 

where A is the Runge-Lenz vector. After propagating the initial classical state, /*, 

all of the relevant observables (i.e. energy, position, momentum, angular momentum, 

etc) can be extracted from the final statistical ensemble. Survival probability can 

be calculated by considering the ratio of phase trajectories that remained bound 

(Efinai < 0) to the total size of the initial ensemble as follows 
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Figure 2.12 : Phase space distribution, / , for the initial parabolic state, (a) Spatial 
probability density projected onto the x,z plane, (b) Poncare section in the z,pz 

plane. 

Number of trajectories with a negative energy at time t 

Total number of trajectories in initial ensemble 

Limitations of the CTMC method 

(2.50) 

The CTMC method has been shown to accurately reproduce the dynamics of atomic 

wavepackets even for relatively low-lying states (n < 10) [31]. But, the method 

is an approximation and has limitations. At longer evolution times, the classical 

and quantum dynamics begin to diverge. This breakdown time is governed by the 
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h 
tHeisenberg ~ / A T-I\ \^•"•'• J 

For Rydberg atoms, the energy spacing scales as ~ 1/n3 and becomes quite small. 

Thus, the breakdown time becomes quite large allowing CTMC modeling of very-

high-n wavepackets for an extended period, ~ 1/is at n ~ 300. 

2.4 Classical Scaling Invariance 

The values shown in table 1.1 can be computed easily based on classical scaling 

invariance. Each parameter shown for different levels of n can be reduced to a common 

reference value normalized to n = 1. It has been demonstrated that the classical 

equations of motion are invariant under the scaling transformation [8, 26] 

r = n2f0 (2.52) 

t = n3t0 (2.53) 

where rjj and to are now the scaled parameters. We can extend this transformation 

using the definition of momentum as follows 

_ fdf\ n2 (df0\ 1 _ _ 

Continuing this procedure for the angular momentum L 
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L = rx p = (n2f*0) x - = nf*0 x p"0 =$> LQ — — (2.55) 
\n J n 

Continuing the transformation for the remaining relevant parameters and summariz

ing the previous results, we find 

E0 = 

h = 

r~o --

-n2E 

_t_ 
n3 

r 
~ n2 

p"0 = rip (2.56) 

f — L 

F°~ £ 
z° - i? 

Applying the above transformation to the atomic Hamiltonian, wc find 

P2 1 = Vl 1 = 1 
2 r 2n2 Ton2 n2 H(f,p,t) = ^ - - - = ^ - _ - = -HQ(f0,p->0,t) (2.57) 

where Ho is now the invariant Hamiltonian. Under this tranformation, initial ensem

bles with different energies, along with the associated dynamics, become identical. 

This is useful for comparing the behavior of Rydberg atoms in different energy levels, 

and for testing quantum-classical correspondence, because quantum corrections break 

the scaling invariance[32]. Scaled parameters are used throughout this work and are 

denoted by the subscript 0. 
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2.5 Quasi-One Dimensional Rydberg Atoms 

The Rydberg atom is a three dimensional system. However, if the probability density 

of the electron can be confined to a single dimension, not only would the resulting 

dynamics be greatly simplified but the resulting atoms would form an excellent start

ing point for further studies of quantum control and manipulation. In principle, it 

is straightforward to create atoms which are nearly one-dimensional by exciting the 

extreme members of the Stark manifolds[12, 33]. As shown in Fig. 2.5, the extreme 

members of the Stark manifold have large permanent electric dipole moments and are 

strongly polarized along the direction of the applied field. While these states are not 

entirely confined in one-dimension, they are a close approximation and are referred to 

as quasi-one-dimensional(quasi-ld or Ql-D) states. It is expected that the dynamics 

of these quasi-lD states will mimic that of true ID atoms[34, 35]. 

The excitation of extreme members of a given Stark manifold as a method of 

producing quasi-lD atoms is simple in concept. However, the production of selected 

Stark states at high-n(n > 100) remains a challenge because the oscillator strengths 

associated with their excitation are small, and because the Stark energy levels are 

closely spaced requiring the use of narrow-linewidth frequency-stabilized lasers and 

the minimization of Doppler effects. 

Figure 2.13 gives an example of the calculated Stark energy level structure for 

potassium (m = 0) states in the vicinity of n ~ 50[36]. The essential features of the 
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Figure 2.13 : Calculated Stark energy level structure for K(m = 0) states near n = 50 
(thin lines). Also included is the probability for photoexcitation from the ground state 
(thick lines) by a laser with a linewidth AUL = 10~3/n2 for several values of applied 
field. 

Stark manifold are the same as for the n ~ 300 — 350, m = 0 states used in the present 

work after re-scaling the energy by n2 and field strength by 1/n4. Most importantly, 
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the positions of the low-/, s,p, and of core-penetrating states relative to their adjacent 

Stark manifolds are invariant because the quantum defects are insensitive to n. As 

the strength of the applied field increases, these states begin to interact with states 

in the neighboring Stark manifolds. The d state couples with states of the same n 

and mixes strongly with the highly-polarized downhill states. 

Experimentally, the probability of photoexcitation from the K (4s) ground state 

depends on the oscillator strengths. Figure 2.13 shows the calculated excitation prob

ability for several values of applied electric field. The transitions obey the dipole selec

tion rule (rif, l/\z\n, I) ~ ^,(^±1). As a result, only the p-state can be excited in zero 

field. As the applied field is increased, other low-/ states begin to couple to the p-state 

and to acquire p-like character. As the applied field approaches the manifold crossing 

field, the Stark shifted s and d states acquire significant excitation probability. Also, 

near the manifold crossing the d state has become strongly polarized due to coupling 

with the neighboring downhill manifold states. This along with its modest excitation 

probability, makes the d state the best choice for experimentally producing quasi-lD 

atoms. The applied field used during excitation is thus the manifold crossing field 

given by Eq. (2.28). 

While the above discussion is somewhat qualitative, the polarization of a given 

Stark state, | / ) = \n, 77,1,77,2) can be quantified in terms of its scaled dipole moment 

along the z-axis. Since in scaled atomic units, the charge of the electron is unity, the 
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Figure 2.14 : Probability for photoexcitation of ground state of potassium atoms into 
m — 0 Stark states in the vicinity of n = 350: (A) calculation for an ultra narrow 
linewidth (Awi = 0) laser and F^ = 300/4 V/cm (thin line). (B) same as (A) but 
assuming an effective laser linewidth of ~10 MHz. (C) measured excitation spectra 
for several values of applied field. Also displayed in (A) are the z-components of 
the dipole moments for each excited state (heavy black lines). The thin lines in (C) 
indicate the position of the extreme members of the Stark manifold. 

dipole moment is given by the scaled expectation value of the z-coordinate. 
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(z0) = {f\z\f)/n2 (2.58) 

For large n and m = 0, the dipole moment lies in the range —1.5 < (z0) < 1.5. Fig

ure 2.14 shows a detailed view of the Stark transition probabilities near the manifold 

crossing field. Also shown is the scaled dipole moment in the z-direction. Notice that 

the extreme value of the dipole moment corresponds to the position of the d-state. 

The actual values of the dipole moment for the s, p, and d levels are -0.25, +0.7, and 

-1.25 respectively[36]. Also shown are several experimental excitation spectra. 

The quasi-lD nature of these excited states can be examined experimentally by ob

serving the asymmetry in ionization profiles when ultra-short pulsed fields are applied 

parallel and transverse to the weak DC excitation field. The results of such an exper

iment are demonstrated in Fig. 2.15. When probed transverse to the atomic axis a 

sharp decrease in survival probability with increasing kick strength is observed point

ing to a narrow distribution of transverse momentum. When probed along the axis of 

orientation, the survival probability decreases much more slowly with increasing kick 

strength indicative of a much broader distribution of electron momenta parallel to 

the axis. Also shown, is the calculated spatial probability density of the final excited 

state, which, as expected, is strongly polarized along the z-axis. The excitation of 

these quasi-lD states is the first step in all of the following experiments. 
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Figure 2.15 : Survival probabilities for Hi ~ 350 quasi-ID potassium atoms as a 
function of the scaled impulse Ap0- The experimental data are for probe HCPs 
applied parallel ( • ) and transverse ( • ) to the atomic axis (see insets). The lines 
show the results of CTMC simulations. Also shown (inset) is the calculated spatial 
probability density of the quasi-lD state. 

2.6 Phase Space Localization and Stable Islands 

The present work is motivated by the increased interest in recent years to con

trol and manipulate atomic wavefunctions[37, 38, 39]. The ease with which desired 

targeted final states can be produced is governed by the initial momentum and po

sition distributions of the electron. In essence, the more tightly the initial state is 

localized in phase space the more straightforward it is to access some selected final 

state[40, 41, 42]. 
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2.6.1 Transient Phase Space Localization 

(a) (b) 

Figure 2.16 : Transient phase space localization of a quasi-lD atom. Phase space 
probability density (a)before the localization kick, (b)at the scaled time t0 = t/Tn = 
1.5, (c) at the time of optimum localization, i0 = 2, (d) at equilibrium state, long 
after the pulse application. 

It is possible to temporarily induce localization in phase space by applying a single 

HCP to a quasi-lD atom. The kick must be relatively small (Apo ^ 0.1), and must 

be directed towards the nucleus. The kick produces a non-stationary wavepacket 

in phase space. Figure 2.16 shows the evolution of the wavepacket following the 

application of a kick with scaled impulse Ap0 = —0.085 to a n = 350 quasi-lD 

atom. Frame (a) shows the initial quasi-lD state prior to application of the kick. 
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The probability density lies along the torus of constant energy associated with the 

n = 350 state. Frame (c) shows the wavepacket at the time of optimum localization. 

At this time, the wavepacket temporarily occupies a much smaller area in both z 

and momentum space, making this the optimum time to deliver additional pulses to 

further shape the wavepacket. Frame (d) shows the phase space distribution long 

after the localizing pulse. The state is now slightly broader and less denned due to 

the small energy transfer delivered by the localization kick. This is the penalty for 

temporarily confining the wavepacket. 

The localization in phase space can be analyzed in more detail by considering 

the evolution of the pzo and z0 distributions after the application of the localization 

pulse. These distributions are shown in Fig. 2.17. The first vertical line intersects 

the pzo distribution at the scaled time to = t/Tn = 2. At this point the momentum 

distribution is squeezed to a width of less than 0.1 in scaled units. 

2.6.2 The Periodically Kicked Rydberg Atom: Stable Islands in Phase 

Space 

The above technique of achieving strong transient phase-space localization can be 

very useful for experimental atomic wavepacket engineering. However, the local

ized wavepacket quickly disperses once it passes the optimal localization time. Even 

though the scaled effective area occupied by the phase-space distribution oscillates 

during further time evolution, the degree of localization achieved subsequently is 
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Figure 2.17 : Evolution of the (&)pz0 and (b)z0 distributions after application of a 
transient phase space localization pulse. The white vertical lines mark the scaled 
times to = 1, 2 and 3. 

never as tight. In real experimental environments, the wavepacket is dispersed even 

faster than predicted by theory due to the presence of noise and field inhomogeneities. 

Thus, in practice, there is only one scaled evolution time delay that can be used ex

perimentally. To maintain transient phase-space localization for extended periods, 

dynamical stabilization, a technique to periodically trap a localized wavepacket in 

phase space must be used[43, 44, 34, 35]. 

Dynamical stabilization can occur when quasi-lD Rydberg atoms are exposed to 
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a train of identical equispaced HCPs with duration Tp C T „ . Each individual pulse, 

Fiicp(t), delivers an impulsive momentum transfer, or "kick" with strength 

Ap = - J FHCP(t)dt (2.59) 

to the electron [23]. The Hamiltonian for such a periodically kicked system can be 

written as 

2 1 N 

H = ^r z A ^ « y ( t - f c T ) (2.60) 
2 r k=i 

where T is the period between HCPs in the train, and N is the number of HCPs 

in the train. The resulting dynamics can be quite complicated, and is most easily 

analyzed by examining Poncare surfaces of sections in phase space. The objective of 

this type of analysis is to reveal areas in phase space that are stable and in which 

wavepackets can be trapped. 

This analysis shows that, as expected, the resulting dynamics is quite sensitive 

to the period, amplitude, and direction of the applied pulse train. In particular, for 

kicks directed away from the nucleus, there are no stable regions present and the 

resulting dynamics is globally chaotic leading to rapid ionization through diffusion to 

the continuum. In the specific case for scaled frequency v0 = l/T = 1.3, and scaled 

impulse \Ap0\ = 0.3, this is demonstrated by the lack of structure in Fig. 2.18(b). 

However, when the pulses are directed toward the nucleus, Apo — —0.3, the phase 

space structure, Fig. 2.18(a), is completely different. A series of stable closed tori, or 
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Figure 2.18 : Poincare surfaces of section for the periodically kicked quasi-lD Rydberg 
atom with scaled frequency uQ = 1.3 and scaled impulse | Ap0 | = 0.3. (a) kicks directed 
toward the nucleus (Ap0 = —0.3) and in (b) kicks directed away from the nucleus 
((Apo = +0.3)). In (a) and (b), the dashed lines show the position of the initial state. 
(c) Survival probability as a function of the number, N, of pulses toward and away 
from the nucleus. 

"islands" are embedded in the chaotic sea. In addition, there is considerable overlap 

between these islands and the position of the initial state in phase space. This result 

is of great significance because those electrons whose initial phase-points lie within the 

stable region will remain trapped. This trapping in phase space leads to dynamical 

stabilization. 
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The most striking signature of dynamical stabilization is that the rate of diffu

sion into the continuum, or ionization, is suppressed as long as the electron remains 

trapped in the stable region in phase space. Figure 2.18(c) shows the survival prob

ability as a function of the number of pulses, N, for HCP trains directed toward and 

away from the nucleus. As the number of pulses is increased, the fraction of electrons 

that are ionized is dramatically higher for those that were exposed to kicks away 

from the nucleus. For kicking towards the nucleus some electrons are stabilized and 

survival probability remains high even after a large number of pulses. 

Dynamical stabilization is very critical in the present work. As will be discussed 

later in more detail, for example, once transient phase-space localization is achieved 

it can be recovered periodically by positioning the localized state atop a stable is

land associated with a subsequent periodic HCP train. In this manner, transient 

phase-space localization can be maintained for an extended period. Furthermore, by 

adjusting the parameters of the periodic HCP train, we can navigate the trapped 

localized wavepacket to different regions in phase space, offering a powerful tool for 

performing atomic wavepacket engineering. 
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Chapter 3 

Experimental Apparatus and Techniques 
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Figure 3.1 : The timing sequence for a typical experiment: (l)Photoexcitation to 
Rydberg level, (2) Application of HCPs, and (3) Application of field ionization ramp 
for detection. 

Potassium atoms contained in a collimated thermal-energy beam are photoexcited 

to selected high-n Rydberg states by an extra-cavity doubled tunable CW dye laser. 

Excitation occurs near the center of an interaction region composed of three pairs 

of copper electrodes which are independently biased to minimize stray electric fields. 

The laser output is formed into a series of pulses of ~l -2 /xs duration by an acousto-

optic modulator (AOM). Immediately following the laser pulse, Rydberg atoms are 

subjected to a sequence of one or more half-cycle electric field pulses (HCPs). Fol

lowing a delay of ~5-10 /xs, the number and n-state distribution of the surviving 
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Rydberg atoms is determined by selective field ionization (SFI), in which a linearly 

increasing ionization field is applied. Any electrons produced by field ionization are 

accelerated to and detected by a channel electron multiplier. Measurements in which 

no HCPs are applied are interspered uniformly throughout the data acquisition cycle 

to monitor the number of Rydberg atoms initially created by laser excitation. The 

survival probability is determined by calculating the ratio of electrons detected with 

and without HCPs. 

3.1 Vacuum System 

The vacuum system consists of two connected, differentially-pumped stainless steel 

chambers. The regions are referred to as the source chamber and the main chamber. 

The smaller source chamber contains a potassium oven that is surrounded by a water 

cooled enclosure. This chamber is pumped by a 4" Varian diffusion pump, and is 

separated from the main chamber by a 0.5mm aperture which allows the potassium 

beam to enter the main chamber while minimizing contamination. The main chamber 

contains the interaction region where Rydberg atoms are created, studied, and then 

field ionized. It is pumped by a single 6" diffusion pump. 

A combination of mechanical and diffusions pumps is used to exhaust the chambers. 

The pressure in both chambers is monitored using a TK-150 Bayard-Alpert type 

ionization gauge. The pressure in the main chamber during experimental operation 

is typically below 1 x 10~7 torr. The laser beam enters and exits the main chamber 
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through quartz windows set at Brewster's angle. 

3.2 P o t a s s i u m B e a m O v e n 

The atom of choice for the present work is potassium. The main advantages of 

using potassium in this role are twofold. First, its electronic configuration is rela

tively simple, with a quasi-hydrogenic valence electron orbiting a noble gas like core. 

Second, becuase of its relatively low ionization potential of 4.34 eV, the wavelengths 

of light necessary to excite it from the ground state to the Rydberg levels are readily 

achievable using commercially available frequency-doubled rhodamine 6G dye lasers. 

The oven is essentially a two piece stainless steel enclosure, inside which is sealed 

a 5-gram ampoule of potassium. A 0.020" diameter laser drilled collimating exit 

aperature is mounted to the front of the oven, and is aptly referred to as the "nose". 

The oven is heated to ~300°C using six cartridge type resistive heating elements. 

Four of these heaters are embedded in the main body of the oven with the remaining 

two in the nose. Each of these two groups of heaters is independently controlled. 

The temperatures of the main oven and the nose are measured independently using 

thermocouples. A temperature gradient of 30°C is maintained between the nose and 

body to prevent potassium from condensing on the nose and clogging the aperature. 

The entire oven is enclosed in a water-cooled copper shield. This arrangement 

prevents the radiative transfer of heat from the oven to main chamber. In addition, 
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the vacuum chamber is kept relatively clean because the heated potassium vapor 

condenses readily onto the inside surface of the copper jacket. After exiting the nose 

aperture, the potassium beam passes through a second 0.5 mm diameter collimating 

apperture resulting in a beam diverge of less than 0.5°. The beam flux is measured 

using a hot tungsten wire ionization detector. The density of beam estimated to 

the be ~ 108/cm3, with an average thermal velocity of ~500m/s. There are two 

potassium isotopes present in the beam in natural abundance (93.3% 39K, 6.7% 41K). 

3.3 Laser System 

The wavelength required to excite the potassium 4s ground state to a Rydberg 

state with n ~350 is 2856.4 A. Wavelengths in this range can be generated by a 

frequency-doubled Rhodamine 6G dye laser. The laser system employed in this work 

is a Coherent 699-21 single frequency dye laser pumped by 7.5W of 532 nm light 

from a Verdi V8 solid state laser. The typical output power from the dye laser is 

~ 1W. Its output beam is directed into a Spectra-Physics Wavetrain tunable CW 

frequency doubler. The Wavetrain uses a BBO crystal in a ring configuration and a 

Pound-Drever active resonator stabilization method to provide a doubling efficiency 

of 5-10% over a large spectral range. With its active stabilization, the doubler can 

follow any reasonable changes in frequency of the input beam. 

The frequency of the dye laser is actively stabilized by locking it to a temperature-

controlled Fabry-Perot etalon. Changes in laser frequency away from the lock point 



48 

are corrected by slightly changing the length of the cavity. Fast deviations are cor

rected by a piezoelectric-translator(PZT)-mounted mirror resulting in a frequency 

jitter of less than ~250 kHz. The laser can be scanned over a 30GHz range by 

rotating a vertex-mounted galvanometer driven quartz plate about Brewster's an

gle. Although the reference cavity is temperature stabilized, temperature drift is 

still sufficient to shift the reference cavity lock point by 40MHz/hr in the funda

mental (80MHz/hr UV), which is unacceptable for the present work. To minimize 

the long-term drift, the laser is locked to a frequency stabilized Helium-Neon laser 

using a second temperature controlled Fabry-Perot etalon. A fraction of the visi

ble radiation emerging through the end mirror of the dye laser is superposed with 

the output of a polarization-balanced, frequency-stabilized He-Ne laser and directed 

through a sealed temperature-stabilized confocal Fabry-Perot etalon (FSR 750MHz, 

Finesse~125). The mirror spacing in the etalon is repetitively scanned at 50Hz using 

a PZT, producing two series of sharp transmission peaks, one associated with each 

input wavelength. Changes in the separation between the first pair of neighboring 

peaks in the scan are monitored and used to generate an error signal that restores the 

dye laser to the desired frequency. Since this method depends only on the separation 

of the two peaks and not on their absolute position within the scan, the lock point 

is insensitive to small thermal drifts of the etalon. The frequency stability is limited 

by that of the HeNe laser to lMHz/8 hours in the fundamental ( 2MHz UV). By 

changing the lock point, the frequency can be scanned over an 800MHz range and 
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can be controlled externally using a DC input voltage in the range -5V to +5V. 

The laser wavelength is monitored using a scanning Michelson interferometer. The 

system counts the fringes of the unknown wavelength and compares this number to 

the fringe count of a reference laser, in this case a polarization stabilized HeNe laser. 

The accuracy of the wave meter is approximately 1GHz at the operating wavelength. 

The CW output of the dye laser is chopped into short pulses, typically of ~ 1-2 

/j,s duration, using an acousto-optic modulator (AOM). The AOM consists of a PZT 

transducer mounted on a high purity fused quartz block. The transducer generates a 

high frequency RF acoustic traveling wave inside the quartz. The resulting periodic 

variation of the refractive index produces a diffraction grating, which can deflect 

up to 90% of the light out of the zero order. To produce light pulses, rf drive is 

pulsed periodically deflecting light into the first order which is then directed into the 

apparatus. 

3.4 Interact ion R e g i o n 

Excitation occurs near the center of an interaction region bounded by three pairs 

of independently biasable copper electrodes, each 10cmx 10cm. The output of the 

laser is focused to a spot diameter of ~150 /zm at the atomic beam using a 0.5m focal 

length UV lens. Even with all electrodes grounded, fields of ~2mV/cm remain at the 

center of the interaction region. These residual fields primarily result from potassium 
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Figure 3.2 : Interaction region. 

deposition on the copper electrodes, which generates patch fields due to the difference 

in work function between copper and potassium (2.3eV for K and 4.5eV for Cu). The 

use of large electrodes well separated from the experimental volume minimizes the 

effect of the patch fields associated with these non-uniformities. To minimize motional 

electric fields, the magnetic field is reduced to < 20mG by use of a //-metal shield that 

surrounds the interaction region. The electric fields are locally reduced to <50 ji\/cm 

by application of small bias potentials to the electrodes that are determined using a 

technique based on the Stark effect[45]. Except for the bottom plate, all side plates 

are held at small selected offset potentials obtained using a voltage divider network. 

This reduces sensitivity to small drifts in the offsets generated by the biasing circuits. 

The bottom electrode is connected to a ramp generator for selective field ionization. 
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Electrons resulting from field ionization are accelerated by the ramp and exit the 

interaction region through a 1" diameter mesh-covered opening in the bottom plate. 

After exiting the interaction region, the electrons are accelerated to ~ 100 eV and 

detected by a Dr. Sjuts channeltron (electron multiplier). To insure a stable and 

accurate field zero or field offset during laser excitation, the extraction ramp baseline 

voltage must not only be very stable over several hours but must also have a near-zero 

slew rate between laser excitation and the application of the field ionization ramp. 

During the experiment, the output of the ramp generator is continuously monitored 

with a GaGe Compuscope 1602 PCI card on a computer running GaGescope pro

fessional edition oscilloscope software. The Compuscope 1602 samples at 2.5MS/s 

and performs a 16 bit analog-to-digital conversion of the analog input signal with a 

75dB signal to noise ratio. Real time averaging of the signal is performed using the 

GaGescope software to eliminate the effects of card-generated noise. The baseline 

voltage is typically observed to be stable to 0.15mV over an 8 hour period. 

3.5 Hal f -Cyc le P u l s e G e n e r a t i o n 

The HCPs are generated by applying voltage pulses to one of two circular copper 

electrodes, each 4cm in diameter, that are positioned to provide fields along the x or 

z axes. The HCP electrodes are mounted on the end of sections of semi-rigid copper 

clad RG-141 coaxial cable that are terminated by a 50 Q resistor. This arrangement 

minimizes the stray capacitance of the HCP electrode, allowing fast pulse rise times 
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Figure 3.3 : Electric potential inside the interaction region at the time of HCP appli
cation. Three slices are shown to demonstrate potential variation in all three spatial 
dimensions. 

(200ps) to be achieved. Positioning the "z electrode" inside the interaction region 

reduces the symmetry of the system, thus limiting the excitation of resonant cavity 

modes, which are estimated to be significantly above ~3GHz. The output pulses from 

the pulse generators are ac-coupled to the HCP electrodes using a Picosecond Pulse 

Labs 5542 bias-tee to prevent small drifts in the output baselines from introducing 

stray fields in the experimental volume. The bias-tee combines the ac-coupled HCP 

signal with the field zero bias voltage. This bias-tee ac-coupler has a flat frequency 
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response from 10kHz to >50GHz and reduces the rise time of the applied signals by 

only 7ps. The results of a finite element method solution to Laplace's equation with 

a HCP applied are shown in Fig. 3.3. It is clear from this result that a strong electric 

field is produced in the ^-direction below the HCP Electrode. Near the center of the 

interaction region, the field is relatively homogeneous. However, the two secondary 

slices show that traveling significantly away from the center of the region results in a 

decrease in field strength. 

Four externally-triggered fast pulse generators are used to produce the HCPs: a Pi

cosecond Pulse Labs (PSPL) 10,050 pulser, two Hewlett-Packard (HP) 8131A pulsers, 

and an Advantest D3173 pulse pattern generator. The PSPL 10,050 provides a single 

10V pulse and is capable of a 100 kHz rep rate. The pulse rise time is 45ps and fall 

time is llOps, with pulse durations from lOOps to 10ns, adjustable in 2.5ps steps. The 

amplitude is adjusted using broadband attenuators with a bandwidth of DC to 6GHz. 

The HP8131A is a GPIB-controllable 500MHz pulse generator with two independent 

outputs. The rise and fall time of the pulses is fixed at ~200ps. The pulse widths are 

adjustable from 400ps to 500ns in lOps increments. The amplitude of these pulses 

is adjustable from 0.1V to 5.0V in 0.01V increments. The HP8131A is capable of 

running in two modes: single pulse mode or pulse train mode. 

The Advantest D3173 pulse pattern generator is an extremely versatile instrument 

capable of producing a near limitless variety of unidirectional fixed-amplitude pulse 
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sequences. Despite the complex variety of pulses that can be generated by this in

strument, the theory of its operation is quite straightforward. There are two main 

components to the system: a variable-frequency clock generator and a 64 kilobyte 

block of high speed addressable digital memory. For each of the 65,536 memory loca

tions, a one or zero can be stored. After the device is triggered, on each clock cycle, 

each subsequent one or zero stored in memory is transferred to the output similar 

to the operation of a standard digital shift register. The maximum clock frequency 

available on the device is 3.2 GHz, yielding a minimum pulse width of 312 ps. This 

instrument now allows the production of such complicated pulse sequences as fre

quency chirped pulse trains and so-called "colored" noise which is random noise that 

contains a well defined band of frequencies. 

The complex waveforms required here are produced by combining the outputs of 

several signal generators using a Mini-Circuits broadband (200kHz-2GHz) power com

biner. Semi-rigid RG-141 cable is used throughout because of its very good frequency 

response and very low attenuation. All the signal generators are separately triggered 

using a Stanford Research Systems (SRS) DG 535 delay generator. The SRS pulser 

is a GPIB-controllable precision delay generator capable of adjusting the separation 

between its two outputs to an accuracy of better than 50ps. 

Pulses are measured directly at the electrodes using a Tektronics P6156 DC - 3.5 

GHz voltage probe and a Tektronics 7603 sampling oscilloscope equipped with an S-2 
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type sampling head (<75 ps rise time). Uncertainties in the field calibrations and 

measurements of pulse profiles introduce an uncertainty of ~10% of the applied field. 

High frequency components in the pulses are removed using a PSPL 200 ps rise time 

filter to minimize excitation of resonant modes in the interaction region, which are 

expected to be significantly above 3 GHz. 

3.6 H i g h - n S p e c t r o s c o p y 

For the current work, it is necessary to excite Rydberg atoms with a precise value 

of n. The energy levels of very-high-n potassium Rydberg atoms can be represented 

as 

where R is the Rydberg constant and 6(n, I) is the quantum defect. The quantum 

defect can be computed using a modified Rydberg-Ritz formula 

b c d e .„ „. 
*" - a + 7 ^ + 7 U + 7 ^ + 7 \s 3-2 

(n - a)2 (n — a)4 (n - a)6 (n - a)8 

where the I dependant parameters a, b, c, d, and e are empirically determined co

efficients for 39K. The /-dependence of the quantum defect is a consequence of core 

penetration. The final excitation wavelengths are given by the equation 

y = E ( n , p ) - £ ( 4 , s ) (3.3) 

For lower values of n(< 50), the resolution of the wavemeter (±2GHz) is sufficient 

to distinguish between adjacent n-states. However, in the region near n~350, the 
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Figure 3.4 : The Rydberg atom excitation spectrum in the vicinity of n=350 in near 
zero field. The frequency offset is in the fundamental (visible). The top figure is an 
experimental spectrum and the bottom is a calculated spectrum 

resolution is not sufficient to allow the accurate identification of individual n-states. 

Therefore, the laser frequency offset is scanned. The resulting frequency spectrum, 

shown in Fig. 3.4, can be used to identify individual n-states, by comparing the 

experimental level spacings with those calculated from the above formulas. The line 

width of the states is mostly due to Doppler broadening from the divergence in the 

atomic and laser beams (<0.5 degrees). Figure 3.4 also includes a calculated frequency 

spectrum for comparison. Not readily apparent in the figure is the presence of two 
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hyperfine series separated by 461.7MHz, resulting from the excitation of the 4s (F=l) 

and 4s (F=2) ground state hyperfine levels of 39K. The relative intensities of each 

of these lines are proportional to the degeneracy (2F+1) of the two hyperfine levels. 

The rc-levels for the two hyperfine states are indicated at the top of the figure. In the 

vicinity of n=350, the best overlap occurs for n=352, F = l and n=350, F=2. 

3.7 Se lec t ive Fie ld Ion izat ion 

Selective field ionization (SFI) is a technique which allows measurement of the 

number of surviving Rydberg atoms, but also gives information about the excited 

state energy distribution. In SFI, a linearly increasing electric field is applied to the 

Rydberg atoms. Because atoms in different Rydberg states ionize at different applied 

fields, measurement of the ionization signal as a function of the applied field provides 

information on the energy distribution of the atoms present at the time of application 

of the field. If the field rises linearly with time, the observed time dependence of the 

ionization signal parallels its field dependence. 

The detailed physics of ionization by pulsed electric fields is treated in more detail 

elsewhere (see ref[7]). The field at which ionization occurs depends on both m and the 

slew rate of the applied field, which governs the path to ionization. Field ionization 

occurs over two distinct regimes. In small fields (< 3^5) where states from adjacent 

Stark manifolds do not yet cross, the parabolic rani^m states evolve adiabatically 

in the field. In large fields (> 3^5) avoided crossings occur between states of the 
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same m and different n. Ionization occurs over a range of field strengths beginning at 

~ j ^ j . As the applied SFI ramp increases, atoms with higher values of n therefore 

ionize before atoms with lower values of n. Thus measurement of the time of arrival 

distribution of electrons resulting from field ionization yields information about the 

distribution of Rydberg states present at the time of application of the ramp. Free 

electrons produced by HCP-induced ionization can also be extracted by the electric 

field ramp and can contaminate the SFI spectrum. Therefore, it is imperative to leave 

a time delay between the time of HCP application and the time of SFI extraction to 

allow the free electrons time to drift from the interaction region. 

ARRIVAL TIME (ps) 

0 0.01 0.02 0.03 0.04 0.05 0.06 
APPLIED FIELD (V/cm) 

Figure 3.5 : Sample SFI spectra. 
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For very-high-n atoms, field ionization occurs at very small fields. Thus the time 

required for liberated electrons to reach the detector depends on the field in which 

ionization occurs. Therefore for accurate measurement of excited state distributions, 

a series of SFI calibration spectra must be obtained by tuning the laser to excite 

specific high-n states and measuring the resulting profile. An example of such spectra 

is found in Fig. 3.5. 
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Chapter 4 

Rydberg Atom Wavepackets in One Dimension 
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Figure 4.1 : Poincare surface section scaled to n* = 350 for the periodically kicked 
hydrogen atom for I/Q — 1.3, Apo = —0.2. The stroboscopic snapshots are taken 
immediately after each kick. Several stable islands are evident. 
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4.1 Se lec t ive Loading of S tab le Is lands in P h a s e Space 

As discussed in section 2.6.2, application of a train of equispaced unidirectional HCPs 

to a quasi-ID atom gives rise to a series of sizable islands of stability in an otherwise 

chaotic phase space. Once a wavepacket is loaded into a stable island, transient phase 

space localization can be maintained for extended periods. Practical realization of 

this "dynamical stabilization" is only possible if a wavepacket can be efficiently loaded 

into the island. For effective loading, a wavepacket must overlap the area of the island 

at the start of the periodic train of HCPs. Better overlap leads to an increase in the 

efficiency of loading which we have demonstrated using a carefully-tailored sequence 

of HCPs. 

To position the wavepacket in phase space to allow maximum overlap, two "prepa

ration" pulses are used followed by the train of HCPs that generates the islands of 

stability. A typical pulse sequence for selective island loading is depicted at the top of 

Fig. 4.2. A final probe pulse can be added to the sequence to experimentally analyze 

the final wavepacket. This sequence allows the use of two convenient parameters for 

controlling the overlap of the wavepacket with the island. The first parameter is the 

period of the HCP train, TT, which controls the position of the island on the z-axis. 

The second is the time delay between the preparation pulses and the HCP train, tp. 

Application of this protocol for selective island loading is remarkably efficient with 

~90% of the initial quasi-lD Rydberg atoms becoming trapped within it. 

Fig. 4.2 illustrates the dynamics underlying the present protocol. We start with 
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Figure 4.2 : Top: Profile F(t) of applied HCP sequence, (a) — (c) Phase-space 
portraits of the wave packet following different delay times to- The solid line shows 
the torus for the unperturbed initial state, (d) — (f) Poincare surfaces of section for 
the 3D kicked hydrogen atom and trains of kicks with scaled strength Ap0 = —0.1 and 
various periods TT- The cuts are taken immediately after each kick and correspond 
to po ~ 0.5 ± 0.2, ppo ~ 0 ± 0.2. The dashed, solid, and dotted lines show, for a 3D 
atom, the stationary tori that correspond to scaled energies of -0.4, -0.5, and -0.7, 
respectively. The crosses mark the centers of the wave packets shown in (a) — (c). 

potassium atoms in the lowest-lying red-shifted states in the n* = 350 Stark manifold. 

(Due to Doppler shifts associated with small beam divergences, photoexcitation leads 
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to production of an incoherent mixture of ~36 Stark states centered on the parabolic 

quantum number rii = 320, a mix that is used in our simulations). These quasi-

1D states are oriented along the +z axis, (i.e. the z component of the electric dipole 

moment d — —{ip\z\ip) = —{z) is negative). The first weak "localizing" HCP provides 

a scaled impulse ApLo = n^Api, = —0.085 directed towards the nucleus. This creates 

a wavepacket that, after a time delay of 6.5ns (~ Tni), undergoes strong transient 

localization into a region of phase space that is smaller than the size of the target 

island and is located near the outer classical turning point (z = 2raf), (see section 

2.6.1), with a mean z component of momentum pz ~ 0. A second HCP with scaled 

strength Apo = riiAp/2 = —0.05 provides an initial "positioning" in momentum space 

as will be discussed later. CTMC simulations showing the subsequent evolution of the 

wavepacket after the preparation pulses are presented in Fig. 4.2 (a)-(c) for different 

time delays to- The centers of these wavepackets are marked with crosses in Fig. 4.2 

(d)-(f)-

Poincare surfaces of section showing the islands of stability into which the wavepacket 

is loaded are also presented in Fig. 4.2 (d)-(f). These surfaces of section were gener

ated for a hydrogen atom subjected to ^-function impulses using the Hamiltonian 

N 

Htram(t) = Hat + zAp J2 6(t ~ kTT) (4.1) 
fc=i 

where N is the number of kicks applied, and Hat is the atomic Hamilitonian. In the 

comparisons with experiment below, the dynamics is governed by the Hamiltonian 
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H = Hat + zF{t). The actual time varying HCP electric field profile, not 5-shaped 

kicks are used. The stroboscopic snapshots used in generating these surfaces were 

taken immediately after each kick. 

The largest of the stable islands, known as a period-one island and denoted Ax 

in Fig. 4.1, is the focus of this protocol. The physical origin of this island can be 

understood by noting that a kick, Ap = zAp, leads to a change in energy of AE = 

Ap2/2 -f pZiAp, where pzi is the initial z component of electron momentum. For 

stabilization to occur, the electron energy must be nearly constant following each kick. 

Thus we require that pzi fa —Ap/2, which means that the final electron momentum 

after the kick will be pzf « +Ap/2. The dominant islands in Fig. 4.2 are therefore 

centered at pz0 = Ap0/2 — —0.05. The purpose of the second preparation pulse is 

to center the wavepacket on this value. Phase points that are initially offset from 

the center of the island follow quasi-periodic orbits, and on the Poincare surface of 

section appear to rotate around the central point in the island. We will later exploit 

this "rotational" motion. The period of the HCP train, TT, controls the position of the 

center of the island with respect to the initial energy manifold given by n?Hat — —0.5. 

For TT — 5ns, corresponding to a scaled frequency VQ = vr/^m — 1-3, where VT is the 

kick frequency and vni is the Keppler frequency, the center of the island is located to 

the left of the initial torus (Fig. 4.2 (d)). As TT increases, the center moves towards 

larger values of z such that for TT = 6 ns (u0 = 1.06) it nearly intersects the initial 

torus (Fig. 4.2 (e)). Whereas for TT — 7ns (v0 = 0.93) it is situated to right of the 
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initial torus (Fig. 4.2 (f)). The effect of varying the delay between the preparation 

pulses, to,is demonstrated in Fig. 4.2 (a)-(c). By varying to the initial wavepacket 

can be placed essentially anywhere along the initial torus. By combining these two 

control parameters, it is possible place the initial wavepacket at any position within 

the stable island. 

To demonstrate this capability, we consider selectively placing the wavepacket 

near the periphery or "shore" of the island (depicted in Fig. 4.3 as a solid red line). 

If we choose the control parameters to= 4 ns and TT = 6 ns, the wavepacket will 

be located at the upper edge of the island as shown in Fig. 4.2. Fig. 4.3 shows that 

as the number of kicks, N, is increased, the wavepacket circumnavigates the edge of 

the island. After N = 9 HCPs the wave packet returns to its starting point with 

remarkably little dispersion. 

The motion of the wavepacket around the border of the island implies oscillatory 

behavior in the average electron momentum, (pz), as N increases. The evolution of 

the pz distribution, shown in Fig. 4.4 as a function of N, shows clear oscillations with 

the pattern repeating every ninth kick as expected. Since, as noted earlier, the energy 

transfer, AE, produced by a HCP, and thus the survival probability, depends on pZi, 

these changes in (pz) can be observed experimentally using a probe HCP applied at 

a fixed delay i^ (= TT) after the last pulse in the train. 

As shown in Fig. 4.5, the measured survival probability undergoes strong oscil

lations as N increases that mirror the predicted changes in (p2,). The results are 
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Figure 4.3 : Phase-space portraits showing the evolution of kicks for TT — 5 ns and 
to = 4 ns. The wave packet is selectively placed at the periphery of the main island, 
denoted by the thick solid line. The corresponding Poincare surface of section is 
shown at the top left frame. The cuts are the same as in Fig. 4.2 

in reasonable accord with the CTMC simulations, which assume that states with 

n > 800 are ionized by stray residual fields in the apparatus and that there are 10% 
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Figure 4.4 : Evolution of the pz distribution as a function of N for control parameters 
TT = 5 ns and tp = 3.5 ns. 

noise fluctuations in the period and amplitude of the train. The damping of the mea

sured oscillations is somewhat more rapid than predicted, which can be attributed to 

small field inhomogeneities present in the experimental region. 

Selective loading is demonstrated by Figs. 4.5 (a)-(c),which correspond to three 

different values of the control parameters TT and to- Those for Figs. 4.5(a) and 

(c) were chosen to place the wave packet on the shoreline of the main island but 

with initial z components of electron momentum of opposite sign (see Fig. 4.2). The 

ensuing variations in the average electron momentum (pz) are therefore ir out of 

phase, which is reflected in the predicted and measured oscillations in the survival 
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Figure 4.5 : N dependence of the average scaled electron momentum rii(pz) (dashed 
line) survival probabilities measured using probe pulses of scaled strength ApA0 = 
riiApA = 0.7 (open squares) and 1.05 (solid squares) for different values of TT and 
tp. The solid lines show CTMC simulations that use the experimental pulse profile. 

probability. The control parameters for Fig. 4.5 (b) were selected to position the wave 

packet close to the center of the island. Little variation in (pz) is therefore expected 

and the oscillations in survival probability are greatly reduced. 

Wave packet motion around the periphery of the main island also leads to periodic 

changes in electron energy (and n). The evolution of the electron energy distribution, 
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Figure 4.6 : AT dependence of the calculated electron energy distribution for different 
values of TV and to and initial wave packet placement at different locations on the 
periphery (a),(c) and at the center (b) of the island. 

expressed in scaled units H^ = n?Hat, is shown in Fig. 4.6 for the same control 

parameters as utilized in Fig. 4.5. Strong periodic oscillations are seen in Figs. 4.6(a) 

and (c), which persist to large N. The widths of the energy variations (—0.7 < H^ < 

—0.45 and —0.55 < Hg1 < —0.35) are equal to the energy widths of the corresponding 

stable islands [Figs. 4.2(d) and (f)]. As expected, the energy fluctuations are minimal 
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when the wave packet is placed in the center of the island [Fig. 4.6(b)]. 

The variations in the mean energy (Hat) with N can be observed by probing the 

evolution of the wave packet after the train of pulses is turned off. The period of this 

evolution for a nonstationary wave packet is to leading order, given by the classical 

Kepler period T{n) = 2n(-2{Hat)-3/2), where Hat depends on N. The period is 

monitored using a probe HCP applied at different time delays tA after the HCP 

train. 
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Figure 4.7 : Time evolution of the wave packet after N = 3 and N = 8 HCPs for 
TA = 7 ns and a probe pulse of scaled strength ApA0 = 0.8. The experimental data 
(squares) are compared with CTMC simulations (solid lines) that employ the same 
assumptions as for Fig. 4.5 
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Typical experimental results are presented in Fig. 4.7. Periodic variations in 

survival probability are seen, the period changing from T^ ~ 9.5 ns for N — 3 

[Fig. 4.7(a)] to T<n) ~ 6.0 ns for N = 8 [Fig. 4.7(b)]. These periods are in good agree

ment with those predicted by CTMC simulations, although the predicted amplitudes 

of oscillation are somewhat larger than those measured, presumably as a result of 

field inhomogeneities in the experiment and of uncertainties in the initial mix of 

Stark states excited. These results demonstrate the remarkable level of control over 

atomic wavepackets that can be achieved in high Rydberg levels (n > 350). Using a 

carefully tailored sequence of HCPs we have successfully placed phase space localized 

wave packets near the shore and near the center of a stable island and followed their 

subsequent motion within the island. Such time-resolved control over the position of 

the wave packet in combination with the suppression of its spreading holds promise 

for realizing more complex protocols for steering wave packets to preselected regions 

of phase space or for switching population between islands. 

4.2 Transporting Rydberg Electron Wavepackets with Chirped 

Trains of Pulses 

The previous section demonstrated that using a tailored sequence of HCPs, a wavepacket 

can be selectively loaded into islands of stability in phase space, leading to a dynam

ically stabilized non-dispersing wavepacket. Recent theoretical work suggests that, 

once a wavepacket is succesfully loaded into such a stable island, by adiabatically 
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varying the frequency of the HCP driving train the wavepacket can be transported 

to arbitrarily pre-selected regions of phase space [46]. This effect is based on the fact 

that the position of the stable island in phase spaces depends on both the amplitude 

and frequency of the driving train. 
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Figure 4.8 : Stable islands in phase space for a periodically kicked quasi-lD atom. 
(a)Ap0 = - 0 . 1 , v0 = 1.3. (b)Apo = -0 .5 , v0 = 0.77. (c)Ap0 = - 0 . 1 , VQ = 0.2. Also 
included are tori representing the position of stationary states for several different n 
levels (solid lines). 

The positions of stable islands for several different driving trains are shown in 
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Fig. 4.8. Frame (a) shows the Poincare surface of section for a driving train with 

scaled impulse, Ap0 = -0 .1 and scaled frequency, i/0 = Tn/T = 0.77, where T is the 

period of the train, and T„ is the electron orbital period. Notice the presence of a 

large island of stability centered at z0 — 2.2 and pz0 — 0.05. This is the largest of the 

islands and its dynamics corresponds to a single pulse per orbit [44], and is therefore 

called a period-1 island. The position of this island along the z-axis depends on the 

period of the driving train. As the period is increased to z/0 = 0.2, the position of 

the period-1 island moves to z0 = 6.2, as shown in Fig. 4.8. The resulting island for 

a train with scaled impulse, Ap0 = —0.5 and scaled frequency, u0 = Tn/T = 0.77 

is shown in Fig. 4.8(b). Notice that the position along the z-axis is the same as in 

Fig. 4.8(a), however, the vertical position of the island has shifted to pzo — 0.25, 

which is of course Ap/2. 

It is clear that the position of a stable island can change by changing the param

eters of the HCP train, but the remaining question is can a wavepacket, once loaded 

into an island, follow the position of the island. The result is that if the rate of change 

of the period is sufficiently slow, a wavepacket initially localized in the island can re

spond adiabatically and remain trapped in the island as it "moves", thereby allowing 

it to be transported to a different location in phase space, to a different location in 

coordinate space, z, and to different quantum numbers n. The adiabaticity criterion 

[47] suggests that this can be accomplished if ST -C T where 6T is the change in time 

interval between adjacent kicks, or chirp. This is demonstrated in Fig. 4.9, where a 
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Figure 4.9 : Upper panel: profile of applied HCP sequence. The pulse spacing in the 
chirped train is incremented linearly as tj+i — tj = 6ns +0.67(j — 1) ns. Lower panels: 
Dark points, phase space distribution of the present wave packet, projected on the z, 
pz plane, immediately before the 1st, 21st, and 48th kick in the chirped HCP train. 
The axes are labeled in scaled units. Light points, corresponding Poincare surfaces 
of section for the 3D kicked hydrogen atom with T = 6, T = 20, and T = 38 ns, and 
(^-function kicks with scaled strength ApO = —0.1. The cuts are taken immediately 
before each kick. The dashed lines indicate stationary tori corresponding to states 
with n = 350. 500, and 650 
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classical ensemble of phase space points that simulates the wave packet created here 

is transported from zo ^ 1.8 to ZQ — 6.5. The spacing between adjacent pulses is 

incremented linearly as tj+\ — i, = 6ns +(j — 1)ST using 6T = 0.67 ns <C Tn. 

The efficiency of the present protocol is maximized by carefully loading the island 

starting with a quasi-one dimensional (quasi-lD) state localized along the z axis. 

The pulse sequence, shown in Fig.4.9, is comprised of a "localizing" HCP Apjr,, a 

"positioning " HCP ApP and a chirped train of N identical HCPs. The first localizing 

HCP provides a kick of scaled strength Apw = ntApL = —0.085 directed towards 

the nucleus. This creates a wave packet which after a time delay of ~6.5 ns (TnJ 

undergoes strong transient localization [48] into a region of phase space located near 

the outer classical turning point ((z,pz) ~ (2nf, 0)) that is smaller than the dominant 

island. The positioning pulse, App (applied at the time of optimum localization) 

is used, in conjunction with the time delay tp> (see Fig. 4.9) to optimally position 

the wave packet within the island [49] at the start of the chirped HCP train. The 

values employed (App0 = n^App = —0.05, rp, = 7.4 ns) were optimized through both 

experiment and simulation (see section 4.1). 

The chirped HCP train was provided by a programmable pulse pattern generator 

(PPG) that divides time into a series of bins and in each outputs a voltage of 0 or 

V (see section 3.5). The bin width was set at 0.67ns and V was chosen to deliver a 

scaled impulse Ap0 = riiAp = —0.1. The electron is initially in a stationary quasi-lD 

Rydberg state [50] oriented along the z axis. 
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Figure 4.10 : Calculated evolution of the (a) spatial and (b) electron energy distri
butions of quasi-lD n, = 350 Rydberg atoms during a linearly chirped train of N = 
50 HCPs of strength Ap0 = —0.1 and period £j+i£,- =6ns +0.67(j — l)ns. The inset 
shows the final electron spatial distribution. 
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The calculated evolution of the electron position, momentum and energy distribu

tions during the chirped train is shown in Fig. 4.10. Even though the initial chirp rate 

8T/T is sizeable (~ 0.1), the overlap between the islands associated with successive 

pulse spacings is sufficient to allow the electron wave packet to remain trapped moving 

linearly up in z as N, and the pulse separation, increases. The final two-dimensional 

spatial distribution following 50 HCPs is shown in the inset in Fig. 4.10. This was 

calculated 0.5 /is after the last HCP to allow the product wave packet to reach its 

quasistationary state. Remarkably, the final state is nearly as strongly polarized as is 

the initial quasi-lD state. As N increases, the atom also moves steadily up in n but 

the electron energy distribution remains narrow [see Fig. 4.10(b)]. More than 95% of 

the parent atoms are predicted to survive the HCP sequence and be transported to 

very-high-n states. 

The calculated energy distribution following 50 HCPs is strongly peaked at n ~ 

660 with a width at half height of An ~ ±30, which is significantly narrower than 

those found for previous HCP protocols [49]. SFI studies confirmed this behavior. 

For reference, Fig. 4.11(a) shows SFI spectra recorded with no applied dc field and 

the photoexcitation laser tuned to produce selected high-n states. As expected, as 

n is increased the spectra move towards earlier times, i.e., ionization occurs at lower 

fields. SFI spectra obtained following application of different numbers of HCPs are 

presented in Fig. 4.11(b). These move steadily towards earlier times as N increases, 

consistent with transfer to higher-n states. Their widths remain comparable to those 
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ARRIVAL TIME (us) 

Figure 4.11 : (a) SFI calibration spectra recorded with no applied dc field and the 
laser tuned to excite states with the values of n indicated, (b) SFI spectra recorded 
following application of the numbers JV of HCPs indicated in the down-chirped train 
shown in Fig. 4.10. (c) SFI spectra recorded following application of the number N' 
of up-chirped HCPs indicated (see text). 

seen following excitation of single Rydberg states pointing to a narrow final n dis

tribution. By extending the chirp to larger values of T it should, in principle, be 

possible to generate localized groups of states with arbitrarily high n. This could not 
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be verified experimentally as stray fields and field inhomogenities in the apparatus 

begin to ionize atoms with values of n above ~ 800 - 900. For large iV a small tail 

is evident on the SFI features that extends to later times, indicating that a small 

fraction of the parent atoms escape the island. Such escape could account for the 

measured overall survival probability, typically ~ 80% - 90% , being somewhat lower 

than predicted by simulation and can be attributed to uncertainties in the alignment 

of the initial states, i.e., in the orientation of the initial Stark field, induced by stray 

fields. 

NUMBER OF KICKS 

Figure 4.12 : Calculated evolution of the electron energy distribution for quasi-lD 
rii = 350 atoms subject to a chirped HCP train in which the pulse separation is 
linearly increased for the first 25 HCPs, held constant for 10 HCPs, and then linearly 
decreased (see text). The spacing between the first two pulses was 6 ns and was 
incremented in units of ± 0.67 ns. 
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Coherent state manipulation using a chirped HCP train is also reversible. This 

was demonstrated by first driving parent rii ~ 350 Stark states to higher-n (n ~ 540 

states using the first 25 HCPs in the "down-chirped" train shown in Fig. 4.9. This 

was followed by 10 pulses with constant separation T = 22 ns before applying 25 "up-

chirped" HCPs with linearly decreasing separation (ST = 0.67 ns). The calculated 

evolution of the electron energy distribution during this pulse sequence is shown 

in Fig. 4.12. As the pulse separation decreases the wave packet is driven steadily 

towards states of lower n, but remains narrow in energy. Overall, more than 90% of 

the parent atoms survive the pulse sequence. Once again, this evolution in the energy 

distribution was confirmed experimentally using SFI [see Fig. 4.11]. Towards the end 

of the pulse train, however, an early-time SFI feature becomes apparent indicating 

that some atoms are left in very-high-n states. For low-ra states (n < 450) the SFI 

profile after N' = 22 HCPs is similar to that for N = 2 (the time-reversed partner 

would be N — 3). Overall, approximately 70% - 80% of the parent atoms survive the 

entire pulse sequence, ~ 70% of which return to n < 450 states (i.e., the combined 

return probability is ~50%). 

The narrow width of the final momentum distribution was confirmed experi

mentally by applying a probe HCP immediately following the last pulse in a train 

of N = 25 chirped pulses. As shown in Fig. 4.13, the survival probability falls 

steadily with increasing probe strength displaying a reasonably sharp steplike drop 

near Apo — 0.7, which is significantly steeper than that seen for the initial station-
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Figure 4.13 : Dependence of the survival probability on the scaled strength nApp,.^ 
of a probe kick, where n is the average principal quantum number of the states being 
probed, when the probe impulse is both applied directly to the initial n — 350 quasi-
1D state and following the first 25 HCPs in the train shown in Fig. 4.9 such that 
n = 540. The experimental results (symbols) are compared with CTMC simulations 
(lines) assuming that stray fields and field inhomogenities in the experiment ionize 
atoms with n > 800. 

ary state. The steplike decrease provides clear evidence that transport by a chirped 

HCP sequence preserves the localization of the wave packet in both position and 

momentum[48]. Again, a reduction in initial alignment can account for the difference 

between theory and experiment. 

Application of the present protocol is not restricted to quasi-ID atoms nor does 

it necessarily require prelocalization. Transport without prelocalization was explored 
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through both simulation and experiment using K(351p) atoms (rather than quasi-lD 

atoms) for which there is reasonable initial overlap with the main island. While the 

efficiency with which parent atoms can be transported to the targeted (higher) n 

states is reduced, the results showed that some 25% can still be transferred to the 

desired levels. 

4.3 Transferring R y d b e r g Wavepacket s B e t w e e n Per iod-1 and 

Per iod-2 S tab le Is lands 

As discussed in the two previous sections, the classical phase space of periodically 

driven systems is generically characterized by a series of stable islands embedded in 

a chaotic sea[51, 52, 53, 2]. While phase flow between islands that are separated by 

the chaotic sea is classically forbidden, quantum dynamics allows such transfer by 

way of "Dynamical tunneling" [54, 55]. In this section we present a classical protocol 

by which the phase space distribution can be efficiently transferred between islands 

across the chaotic sea without invoking any quantum effects. Key to the protocol is 

the transient deformation of the phase space by a near adiabatic modulation of the 

driving field. We demonstrate, both theoretically and experimentally, the efficiency 

of this protocol using atoms in high Rydberg states subject to a sequence of half-cycle 

pulses (HCPs). One prerequisite for the realization of transport between islands is 

the creation of an initial state that is well localized within a given island. 

Classically, localization or trapping of phase space density results from the (nearly) 
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impenetrable borders of the islands, the Kolmogorov-Arnold-Moser (KAM) tori for 

the periodically driven Rydberg atom[51, 52, 53, 2]. Quantum mechanically, trapping 

in an island corresponds to formation of a nondispersive wave packet[42, 56, 57] and 

results from the modification of the Rydberg eigenenergy spectrum by the periodic 

external perturbation[42, 58]. The driving field helps to preserve phase matching be

tween quasieigenstates of the periodically driven system, i.e., the Floquet eigenstates 

of the period-1 time evolution operator (Floquet operator) [58]. The spectrum of the 

corresponding quasienergies is, in part, equispaced, which allows for nondispersive 

wave packets within classical islands of stability. As in the case of the harmonic 

oscillator, such nondispersive wave packets behave like classical particles and their 

dynamics can be controlled and manipulated in much the same way as those of a 

classical particle. Due to the modified eigenenergy spectrum, dispersion is slow, and 

localized wave packets can be maintained for extended periods. Furthermore, for 

n ~ 350 the Heisenberg (or quantum break) time[51, 52] is of the order of microsec

onds. Thus within the experimentally accessible observation time (~ Ifjs), quantum 

and classical dynamics should closely mirror each other. 

4.3.1 The Physics of Period-2 Islands 

Several protocols to manipulate nondispersive wave packets based on their under

lying classical dynamics have been suggested[59, 39]. This can be accomplished by 

adiabatically changing the position of the classical resonances at the centers of the 
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stable islands. For weak fields, the largest island occurs when the frequency of the 

unperturbed electron Kepler orbit vn = l/(27rn3) is synchronized with the frequency 

v of the external driving {y ~ un). This period-1 island is remarkably robust against 

slow changes in the external driving field and is therefore the preferred starting point 

for steering Rydberg wave packets to different regions of phase space by chirping the 

period or the strength of the driving field[60]. 

In this section we describe a technique for transferring a wavepacket from this 

period-1 island to a pair of period-2 islands across the chaotic sea. This is accom

plished by taking advantage of a protocol that employs two superposed trains of 

identical pulses, each with the same period, whose relative time shift r is adiabat-

ically varied. A notable feature of such time shift chirping is that it is possible to 

keep the principal action n (approximately) constant while slowly changing the stro-

boscopic value of the conjugate angle variable, the "mean anomaly" [61]. In contrast, 

simply chirping the period of a train of pulses leads to the opposite result, i.e., the 

action is changed while the angle remains approximately constant. The two chirping 

protocols thus complement each other and provide powerful tools with which to con

trol Rydberg wavepackets. The physical processes underlying the present protocol 

can be understood with the aid of theoretical simulations. 

As discussed in section 2.6.2, the response of a Rydberg atom to a periodic train of 

N identical half-cycle pulses with profile Fncp{t) directed along the z axis is governed 

by the Hamiltonian 
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H(t) = ^ - - + zFtrain(T, Ap, t) (4.2) 
2. r 

where r(x, y, z) and p[x, y, z) are the postition and momentum of the Rydberg elec

tron, and 

N 

Ftrain{T, Ap, t) = Y^ FHCP{t - tj) 

= J2j = lNFHCp(t-jT) 

with T — tj+i — tj being the period of the train. Here we consider quasi-lD Rydberg 

atoms oriented along the z axis subject to kicks directed toward the nucleus, i.e., with 

Ap< 0. 

Figures 4.14(a) and (d) demonstrate typical phase space portraits (Poincare sur

faces of section) for the kicked atom when driven by trains of HCPs with period 

T — 6 ns and T" = 12 ns respectively, with each pulse delivering kicks of scaled 

strength Ap0 = UiAp = —0.1. These exhibit a mixed phase space consisting of stable 

islands embedded in a chaotic sea. The stroboscopic snapshots used in generating 

these figures were taken immediately before each kick. Since we focus here on quasi-

lD motion along the z axis, the cuts used are for the limit p = \/x2 + y2 —> 0 and 

pp = (xpx+ypy)/p —• 0. The axes are labeled in scaled units ZQ = z/n2 and pzo = pzni, 

where n, = 350. The stable islands are associated with electron motion that is syn-
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Figure 4.14 : (a) - (d) Poincare surfaces of section of the periodically kicked Rydberg 
atom, (a) A single train is applied with a scaled kick strength of Ap0 = — 0.1 and 
period T=6 ns. The stroboscopic snapshots are taken immediately before each kick. 
(b), (c) Two identical HCP trains with Ap0 = —0.1 and period T"=12 ns and a relative 
time delay r—3 ns are applied. The stroboscopic snapshots are taken immediately 
before each kick in the first (b) and second (c) train, (d) Same as (a) but for a period 
V =12 ns. The phase space coordinates are scaled to nj=350. The upper panels show 
the associated pulse timing sequences with each HCP represented by a 6 function. 
The gray dashed lines in (a) show Kepler orbits with principal actions of n^ — 435 
and UAX — 465. In (b) the Kepler orbit with n = n^2 and in (c) and (d) that with 
n — fiAx is drawn. In (e), the steps involved in the protocol for transporting phase 
space density from island A to Ai or A2 via D are schematically indicated. 

chronous with the periodic train leading to dynamical stabilization. Otherwise the 

electron follows a chaotic trajectory and eventually becomes ionized[43]. Immediately 

before each kick, the largest islands in Figs 4.14 (a) and (d) are centered, respectively, 
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at (20, Pzo) ~ (2,—Apo/2) (labeled as A) and (z0, pzo) ~ (3.3,—Ap0/2) (labeled as 

D). Thus the effect of a kick of magnitude |Ap0 | in the — z direction on an electron 

located near the center of either island is to change its z component of momentum 

from pz0 = +|Ap0 | /2 to pz0 — — |Ap0 |/2, i.e., the z component of its momentum is 

reversed while its energy remains essentially unchanged. Clearly, synchronization of 

the kick frequency v and the Kepler frequency vn is a prerequisite for the formation 

of a stable island. When the frequency is reduced by a factor of 2, the center of the 

island moves away from the nucleus toward larger z, because only a smaller Kepler 

frequency (or larger n) meets the synchronization condition. 

At the higher driving frequency two stable islands [labeled as A\ and A2 in 

Fig. 4.14(a)] also appear. These are associated with Kepler orbits of higher n than 

for island A and are termed period-2 islands. If an electron is located in the island 

J4~I, its momentum is positive. Therefore, a kick toward the nucleus decelerates the 

electron and its energy is reduced. After half a Kepler period, the electron reaches 

the island A2 with negative momentum. Application of another kick at this time 

accelerates the electron and the energy is increased. The losses and gains in energy 

following succesive kicks cancel and the net energy transfer vanishes. This causes the 

electron to periodically transition between Kepler orbits with n ~ 435 and 465. This 

periodic energy variation is a signature of the dynamics of an electron trapped in a 

period-2 island. 

Due to the increase in complexity of the dynamics, period-2 islands are less stable 



88 

than those of the period-1 islands such as A and D. As a consequence, the period-

2 islands A\ and A2 cover less area in Poincare surface of sections than islands A 

and D. It is thus more challenging to trap a wavepacket in period-2 islands. Once 

a wavepacket is loaded, however, its evolution can be rather easily monitored using 

a probe HCP because the centers of the islands A\ and A2 correspond to opposite 

signs of pz. For a probe kick directed along the +z axis, a wavepacket positioned in 

the island Ai (pz > 0) will gain energy, leading to ionization, whereas a wavepacket 

positioned in island Ai (pz < 0) will lose e ergy, and little or no ionization will 

occur. The resulting changes in survival probability as the wavepacket oscillates 

between Ai and A2 thus provide a clear signature of the population of period-2 islands. 

Furthermore, once the train of HCPs is turned off, the wavepacket will evolve at a 

rate characteristic of the period of the final n manifold. Since the period-2 orbit 

invloves two different energy manifolds, the periodic transistions between Ai and A2 

can be seen by monitoring the time evolution of the final state using a probe HCP 

applied after a variable time delay[56]. 

4.3.2 Transfer between islands: Response to a superposition of two trains 

of pulses 

The main objective in this section is to establish a protocol to transfer an electronic 

wavepacket that is trapped in a period-1 island centered at A to the period-2 is

lands centered at A\ and A2. All of these islands correspond to the "same" train 
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of pulses, e.g. with the same kick strength Ap0 = —0.1 and period T = 6 ns. In 

section 4.2, a protocol was demostrated to navigate wavepackets in phase space by 

adiabaticaly chirping the period of the pulses in a train. This chirping technique al

lows a wavepacket trapped in island A to be transported to island D by adiabatically 

chirping the interval tj+i — tj between successive HCPs in the train from T = 6 ns to 

7" = 12 ns. However, and adiabatic modulation of a single train of pulses that starts 

and ends with the same values of T and Ap, will return the wavepacket to its original 

location in phase space. Transfer from a period-1 to a period-2 island thus requires 

the introduction of a new control variable, which we obtain by superposing a second 

train of pulses onto the first. 

To understand the protocol, it is instructive to first analyze the phase space struc

ture for a Rydberg atom subject to the following superposition Fs of two identical 

pulse trains each of which is periodic with period T": 

FS{T, Ap, T, t) = Ftrain(T', Ap, t) + Ftrain(T, Ap, t - r) (4.4) 

where r is the relative time shift between the trains. This superposition is also 

periodic in time with period T" and contains two pulses per period. Correspondingly, 

the phase space portrait evolves in time. Figures 4.14 (b) and (c), respectively, show 

Poincare surface of sections immediately before each kick in the first train at times 

t = jT' and before each kick in the second train at times t = jT' + r for r = 3 

ns. During the time interval r the Poincare surface of section changes from that in 
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Fig. 4.14(b) to that in Fig. 4.14(c) before returning to that in Fig. 4.14(b) a time 

2T-T later. 

The present protocol is based on the fact that the superposition in Eq. (4.4) has 

the following limits: 

FS(T', Ap, T - 0, t) = Ftrain(T', 2Ap, t) (4.5) 

FS(T', Ap, T-+T,t) = Ftrain(T, Ap, t) (4.6) 

As r —» 0, Fs collapses to a single train of pulses of period T" = 2T = 12 ns as 

used to generate Fig.4.14(d) but with twice the amplitude. This leads to little change 

in the PSS because Ap is small. The size of the island D is slightly reduced but its 

position is largely unchanged. Conversely, as r —> T = T'/2 we recover a pulse train 

identical to that used to generate Fig.4.14(a). As r is varied from 0 to T, the period-1 

island D is "morphed" into the period-2 islands A\ and Ai through the intermediate 

structure shown in Figs.4.14 (b) and (c), i.e. through the islands labeled B and 

C. In summary, by chirping the frequency of the HCP train, introducing a second 

superposed HCP train, and varying the time delay r, a wavepacket initially localized 

in the period-1 island A can be adiabatically transferred to the period-2 islands A\ 

and A2. A diagram of the path followed by the wavepacket during this protocol is 

illustrated in Fig.4.14(e). 

The complete HCP used in the present protocol is shown in Fig. 4.15 and consists 

of the following elements that can be realized experimentally. 
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Figure 4.15 : Calculated evolution of the phase space distribution of the wavepacket 
for an initial mix of maximally polarized Stark states. The phase space distributions 
are taken at the times when the 1st, 10th, 21st, 31st, and 32nd HCPs reach their peak 
values. The shaded areas represent the stable eslands associated with the transient 
train of pulses in which the wavepacket is evolving. The colored line shows the porfile 
of the applied HCP sequence. 

(1) Starting from a mix of quasi-lD n, = 350 Stark states a transiently localized 

wavepacket is prepared and loaded into island A, as described in section 2.6.2, using 

the two weak localizing kicks. The first has a scaled stength of Apoz, = —0.085. The 

second is applied after a delay of 6.5 ns and is of strength Ap0T = —0.05. 

(2) The main HCP train begins 7.4 ns later and has a scaled strength of Ap0 — 

—0.1. The period of this train is incremented over the ten pulses labeled TV = 1 — 10 
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according to tN+1 - tN = T + 6T{N - 1), where T = 6 ns and 5T = 0.67 ns. That 

is, the period is linearly increased from T = 6 ns to T" = 12 ns in increments of 

0.67 ns (an interval which is set by experimental considerations). This transfers the 

wavepacket from island A (with n* ~ 350) to island D with n ~ UAX ~ 435. 

(3) A second identical periodic train of HCPs with period V = 12 ns is then 

superposed with an initial relative time shift r = 28T = 1 . 3 ns. Since this separation 

is short compared to the electron orbital period, their combined effect is similar to 

that of a single pulse of twice the strength. As noted above, this leads to only small 

changes in the position and shape of island D. The time shift and period of these 

trains are kept constant for three periods (six pulses extending from N = 11 to 16). 

(4) The wavepacket is then transferred from island D to the period-2 islands A\ 

and A2 by linearly increasing the time shift r from 1.3 to 6 ns, again in increments 

of 6T = 0.67 ns, over the next 12 pulses N = 17 - 29. 

(5) Finally, for pulses N = 30, 31,... the train is held fixed with T — 6 ns to 

maintain the product wavepacket in the period-2 islands. 

4.3.3 Period-2 Island Simulations: the maximally polarized state 

Figure 4.15 displays the results of CTMC simulations that show the time evolution 

of the wavepacket during the HCP sequence outlined above. The initial state is 

represented by a microcanonical ensemble of phase points that encompasses a mix of 

the 18 extreme redshifted states in the n^ = 350, m = 0 Stark manifold. Because 
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stable islands of the periodically kicked atom are observed only along the z axis, this 

choice of initial states maximizes the overlap between the initial wavepacket and the 

target stable island, thus optimizing trapping efficiency. The number of parabolic 

states included in the initial distribution is chosen according to the effective laser 

linewidth. However, the precise number is not important as long as the width of the 

wavepacket does not exceed the transverse dimension of the stable island. 
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Figure 4.16 : Dependence of the calculated survival probabilities on (a) the strength 
and direction of the probe kicks, (b) the number of kicks N in the HCP train, and (c) 
the delay time Tdeiay between the end of the HCP train and applicatin of the kick. In 
(a) the probe HCP is applied 6 ns after the 31st (solid) and the 32nd (dashed) kicks. 
In (b) the train of HCPs is turned off after N kicks and the probe HCP with strength 
Approbe — —0.8 is applied 6 ns later. In (c) the probe HCP Apache = 0.5 is applied 
after the 31st (solid) and 32nd (dashed) kicks. 

The final trapped wavepacket can be examined using a probe HCP that is ap

plied at a preselected time delay Tdeiay following the last HCP pulse in the train. 

Measurements of the survival probability as &Pprobe is varied provide information 
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on the momentum distribution of the product wavepacket[62]. This is illustrated in 

Fig.4.16(a), which shows the calculated survival probabilities as a function of App^e 

for a probe pulse applied 6 ns after the N =31 and 32 kicks. Following the 31st kick, 

the wavepacket is positioned within island At having pz > 0, and evolves toward 

island A2 (pz < 0) during the 6 ns delay. A negative probe pulse ApW(^e < 0 there

fore accelerates the electron, leading to large ionization probabilities. In contrast, 

for Approve > 0 the electron loses energy, greatly reducing the chance of ionization. 

The sudden fall-off in the survival probability around Approbe = —0.5 points to strong 

wavepacket localization. Following N = 32 kicks, the survival probability is almost a 

mirror image of that for JV = 31 kicks, demonstrating that the wavepacket is localized 

within the island A2 having pz < 0. 

Beyond lApp,.^ = 0.51, the difference between the survival probabilities following 

N = 31 and N = 32 kicks becomes quite large (the difference is ~ 70%). This large 

contrast provides a clear signature that can be used to examine how long a wavepacket 

can be kept trapped inside the period-2 islands. This is illustrated in Fig. 4.16(b) 

for a fixed scaled probe strength Approbe = —0.8 and a fixed delay time Tdeiay — 6 ns. 

The survival probability is calculated as a function of the number of kicks prior to 

the probe. The result mirrors the dynamical behaviour of the the average momentum 

{pz(t)) of the wavepacket during the HCP sequence. As shown in Fig. 4.16(b), even 

after 50 kicks, the survival probability still oscillates between values of 0.2 and 0.8, 

indicating that the wavepacket is well trapped within the period-2 islands. 
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As noted above, the period-2 orbit involves two different energy manifolds n^j 

and TIA2 (> n ^ ) . This energy difference can be examined using a probe HCP of fixed 

strength applied after different time delays following the last HCP in the train. Once 

the HCP train is turned off, the wavepacket evolves freely, and the survival probability 

exhibits periodic behavior with period Tn = 27rn3 that is characteristic of the average 

principal action n of the final wavepacket. Thus the periodic variations in survival 

probability can be mapped onto the average principal action. Prior to the 31st kick, 

the wavepacket is located in island A\ with pz > 0. During the HCP the wavepacket 

is is decelerated and then follows the Kepler orbit with the smaller energy n — UAX-

In contrast, after the 32nd kick, the wavepacket is returned to the higher-energy 

manifold n = UA2- Therefore the time evolution of the wavepacket, and consequently 

of the survival probability, (Fig. 4.16), following TV = 31 kicks is somewhat faster 

than that after the TV = 32 kicks. The oscillation periods of approximately 12.5 and 

15.3 ns correspond to population of states with UAX — 435 and HA2 — 466. 

4.3.4 Period-2 Islands: Experimental Realization 

The protocol for transferring a wavepacket trapped in a period-1 island to period-2 is

lands outlined above requires the precise production of a complicated pulse sequence. 

Only with the availability of the high frequency pulse pattern generator (PPG, de

scribed in section 3.5) was this experiment possible. 

Figure 4.17 shows the results of this experiment. The measured quantities are the 



96 

SCALED PROBE STRENGTH NUMBER OF KICKS DELAY TIME (ns) 

Figure 4.17 : Dependence of the measured and calculated survival probabilities on (a) 
the strength and direction of the probe pulse, (b) the number of kicks N in the HCP 
train, and (c) the delay time Tdeiay between the end of the HCP train and application 
of a probe pulse. The parameters are the same as used in Fig. 4.16. The open 
triangles show survival probabilities measured after the 30th kick, filled squares the 
31st kick. Calculated survival probabilities after the 30th and 31st kick are shown in 
(a) and (c) by dashed and solid lines respectively. The initital wavepacket used in the 
CTMC simulations is a mix of 36 Stark states with n^ = 350, m — 0 centered around 
k — —175 oriented along the same axis as the applied HCPs. 

same as those calculated in Fig. 4.16. The survival probability is shown as a function 

of strength and direction of the probe pulse, Fig. 4.17(a), the number of kicks in the 

HCP train, Fig. 4.17(b), and the time delay Tdeiay between the end of the HCP train 

and the probe pulse, Fig. 4.17(c). Although the results are qualitatively very similar 

to those in Fig. 4.16, the observed effect is less dramatic. There are a number of 

factors that might account for this. The results in Fig. 4.16, were derived using a mix 

of the extreme maximally polarized redshifted states in the Stark manifold which have 

an average dipole (do) ~ —1.5. Although the laser frequency can, in principle, be 

tuned to excite these states, this is diffcult because the associated oscillator strengths 
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are very small. Also, the effective laser linewidth is broadened by beam divergence 

and Doppler effects to ~12 MHz and therefore overlaps a number of Stark states, 

many of which have larger oscillator strengths and can be more efficiently excited [50]. 

These are centered around k ~ —291 and have an average scaled dipole moment 

of (d0) ~ —1.25. 39K also has two ground state hyperfine levels 4s(F = 1) and 

4s(F = 2), that are shifted relative to one another by 462 MHz. Excitation from 

these levels gives rise to two different Rydberg series, i.e., two different excitation 

spectra. The present excitation wavelength is selected such that, in zero field, peaks 

from the two spectra overlap, leading to excitation of n = 350 states from the F = 2 

level and fewer n — 347 states from the F — 1 level. Thus, given their similar Stark 

splittings in a field, the same mix of Stark states should be created for both. The 

potassium beam, however, also contains ~7% of 41K. Depending on the size of the 

isotopic shifts, Stark states with even an opposite orientation of the average dipole 

moment might be created, which could signifcantly decrease the overall average dipole 

moment. Furthermore, while stray fields in the experimental region can be reduced 

to less than 50//Vcm_1, their presence can lead to uncertainties in the magnitude and 

direction of the applied Stark field. These factors point to an average dipole moment 

somewhat below the value (d0) ~ —1.25. Consistently good agreement between the 

experimental data and CTMC simulations is obtained, assuming an ensemble of initial 

states with an averaged scaled dipole moment of (d0) ~ —0.75, i.e., with a mix of k 

values centered at k ~ —175. A reduced dipole moment leads to a less asymmetrical 
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dependence of the survival probability on probe direction and strength following even 

and odd numbers N(N > 30) of applied kicks (Fig. 4.17). As expected, however, the 

asymmetry is reversed upon reversing the direction of the probe. As evident from 

Fig. 4.17(b), the predicted strong period-2 variations in survival probability are clearly 

seen. Little damping of these oscillations is evident with increasing N, indicating that 

a sizable fraction of the initial wave packet is transferred to, and remains trapped 

within, the period-2 islands. Furthermore, Fig. 4.17(c) shows that the time evolution 

of the final product state depends markedly on whether the pulse train contains an 

even or odd number of kicks, demonstrating that two different energy manifolds are 

indeed involved in the period-2 motion. 
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Chapter 5 

Rydberg Atom Wavepackets in Two Dimensions 

Figure 5.1 : Spatial probability density of n — 306 near-circular state. 

5.1 Early attempts at two-dimensional wavepackets 

The most simplistic approach to creating a localized wavepacket in two dimensions is 

to first begin with the well characterized quasi-ID state (see section 2.5). By applying 

an HCP to the quasi-lD state directed orthogonal to the axis of orientation, the initial 
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state will be projected into a two-dimensional elliptical state. The final ellipticity is 

determined by the size of the orthogonal HCP and the initial momentum distribution 

of the quasi-lD state along the axis of orientation (z-direction). This can be done in 

a more controlled fashion by taking advantage transient phase space localization (see 

section 2.6.1) before applying the orthogonal kick 6.5 ns later at the time of transient 

phase space localization. 
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Figure 5.2 : Spatial point density plot showing the final spatial distribution following 
application of a Apo — 0-75 orthogonal HCP to a transiently localized n = 350 
quasi-lD atom. 

Exploration of this technique to transfer the initial quasi-lD state to a higher 

angular momentum state has been met with rather limited success. Figure 5.2 shows 
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the equilibrium spatial distribution following application of such an orthogonal HCP. 

While the resulting wavepacket clearly has a much higher average angular momentum, 

the distribution of angular momentum is quite broad. In addition, the energy distri

bution is also very broad, and the resulting wavepacket packet dephases in less than 

two orbital periods, thus prohibiting the use of this wavepacket as a parent state for 

further manipulation and control. It is clear that another protocol for transforming 

the quasi-lD state into a localized 2D state is required. 

5 . 2 P r o d u c t i o n o f B o h r - L i k e C i r c u l a r W a v e p a c k e t s 

5.2.1 Theory of the production of near-circular wavepackets 

A solution to this problem is suggested by Fig. 5.3. The quasi-lD parent state is a 

very low angular momentum state. If the angular momentum could be transformed, 

the resulting system would then be a well defined near-circular state (essentially an 

ideal candidate for 2D dynamical studies). This angular momentum transformation 

can be achieved using an effect known as Stark precession. Stark precession can 

be illustrated by following the evolution of a single elongated Coulomb orbit when 

exposed to a transverse electric field Ff"mp. The dynamics of the electron is governed 

by the Stark Hamiltonian 

„2 1 
Hstark(t) = Hat + zFlumv = £ - - - + zpv^v (5 X) 

where Hat is the field free atomic Hamiltonian. To first order in F | u m p , the angular 
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Figure 5.3 : Spatial probability density of n = 306 quasi-lD atom. Superimposed are 
elliptical orbits with varying scaled angular momentum, L = 0.0 — 1.0. 

momentum L = fx p*and the Runge-Lenz vector A = px L — (1/Y)r*precess about 

the axis of the pump field according to the Bloch equations[61, 63] 

where n = l/y/—2Hat and ws(t) = 3nFPump(t) is the Stark frequency which coincides 

with the energy splitting between adjacent Stark states. If the pump field is static, 

the z-components of L and A, Lz and Az are constants of the motion. However, 
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the dynamics of the other components, Lx, Ly, Ax, Ay, resemble that of a harmonic 

oscillator. 
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Figure 5.4 : Stark precession in a static field, (a) trajectory of a classical electron 
in a coloumb orbit precessing in a transverse electric field, (b) Ly distribution of a 
quasi-lD atom in a transverse electric field. 

Figure 5.4(a) shows the evolution of a classical electron trajectory in a static 

pump field. The electron is initially in a highly elliptical orbit. This classical orbit 

is analogous to the initial probability density of a quasi-ID state. Notice that as the 

electron evolves, the orbit changes from being highly-elliptical to nearly circular on 

a time scale of half of a Stark period. As the electron continues to evolve, the orbit 
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again becomes elliptical, but with the Runge-Lenz vector in the opposite direction. 

The evolution of the Ly distribution of an n ~ 306 quasi-lD atom in a transverse 

Stark field is illustrated in Fig. 5.4(b). The value of Ly is initially near zero. How

ever, as the atom evolves in the field, the distribution oscillates sinusoidally between 

extreme values in Ly of -270 and +270 which corresponds, respectively, to an electron 

traveling anticlockwise or clockwise around a near circular orbit. The distribution 

remains narrow during this process. Rapidly switching off the pump field at the 

times of extreme values in Ly "freezes" the distribution, leaving the atom in a near 

circular state. This operation is similar to the un/2 pulse" used to manipulate nu

clear spins[64]. Remarkably as the resulting wavepacket evolves it undergoes strong 

transient localization in azimuth. 

This is illustrated in Fig. 5.5 which shows calculated snapshots of the spatial 

probability density at the time of optimum localization following application of a 

field FPumP that is turned off after 22 ns, i.e. when Ly first reaches its largest negative 

value. A localized wavepacket is evident that moves anticlockwise in a near circular 

orbit. 

As seen in Fig. 5.6, which shows the time evolution of both the electron angular 

and radial distributions, the wavepacket remains well-localized for several orbits. It 

evolves with near constant radius and, since its angular position depends linearly 

on time, with constant angular velocity and momentum. The localization of the 

wavepacket in azimuth initially improves with time becoming optimum ~ 7 — 12 ns 
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Figure 5.5 : Snapshots showing the evolution of the resulting near-circular wavepacket 
following application of a pump field F | m m p = —20 mV/cm for 22 ns to quasi-lD 
Hi = 306 atoms. These are taken at the times shown following the turn-off of F^ump 

after turn-off of the pump field. At this time, the full width half maximum of the 

angular distribution is about 1 radian. The position of the center of the wavepacket 

moves in an approximately circular orbit given by 

(x(t), z(t)) ~ n2(cos(w„t + 6), sm{unt + 5)) (5.3) 
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Figure 5.6 : Time dependence of (a) the angular and (b) the radial distributions of 
the wavepacket following turn-off of a pump field of -20 mV/cm applied for 22 ns. 

where 5 is a constant phase shift, and un — n 3 is the angular frequency. The 

momentum components, given by 

(Px{t),Pz{t)) -n 1(-sm(unt + 6),cos(unt + 6)) (5.4) 
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are 90° out of phase with the spatial coordinates. 

0 5 10 15 20 25 
TIME DELAY AFTER PREPARATION (ns) 

Figure 5.7 : Time dependence of (a) the momentum coordinates, (b) the position 
coordinates, and (c) the experimental (symbols) and calculated (lines) survival prob
abilities following turn-off of a pump field F^wmv — —20 mV/cm applied for 22 ns. 
The stars in (a) indicate the times at which the momentum is probed in Fig. 5.9. 
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Figures 5.7 (a) and (b) show the time evolution of the calculated expectation 

values of momentum and position respectively. These values closely mirror Eqs. 5.3 

and 5.4. Both (y(t)) and (jpy(t)) remain very close to zero, however, strong oscillations 

are observed for (x), (z), (px), and (py), which is consistant with motion in the xz 

plane. 

5.2.2 Experimental Realization of Bohr-like wavepackets in near-circular 

orbits 
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Figure 5.8 : Pulse sequence used to experimentally observe the evolution of the near 
circular wavepacket. 

To create Bohr-like wavepackets experimentally, an n = 306 quasi-lD atom was 

prepared along the +x direction. A pump field of -20 mV/cm is applied suddenly 
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along the z direction. The rise time of the applied field was less than 300 ps. After 

a predetermined time, the field is rapidly turned off (t0ff < 300 ps). The subsequent 

evolution of the wavepacket is monitored using probe pulses applied along the x ov z 

directions as shown in Fig. 5.8. The remaining atoms (and thus survival probability) 

are then detected using selective field ionization. Applying a probe "field step" at 

t = tp, i.e. rapidly turning on a constant electric field, indirectly probes the electron 

position coordinates by ionizing those electrons whose coordinates z(tp) [or x(tp)] are 

such that their energy -l /(2ra2) + z{tv)Ffohe [or - l / ( 2 n 2 ) + x(tp)Ffobe] lies above 

the top of the field ionization barrier (—2\Fprobe\1/2) generated by the probe pulse[65]. 

In this case a probe field of 100 mV/cm and 6 ns duration ( Tn) is used. 

Figure 5.7(c) shows both the experimental (symbols) and calculated (lines) results 

of such an experiment when probing along both the x and z directions. In both cases, 

strong oscillations in survival probability are observed. The experimental data are 

in excellent agreement with the CTMC simulations. Also, as expected, the survival 

probability as a function of probe delay (tp) closely mirrors the evolution of the 

spatial coordinates, (x(t)) and (z(t)). Equation 5.3 shows that a 90° phase shift 

between orthogonal coordinates is one of the signatures of circular motion. This 

phase shift is visible present in the data. The oscillations persist for several orbits 

but ultimately dephase due to the distribution of excited states within the wavepacket 

(see Sect. 5.2.3). 

The experiment described above provides information about the evolution of the 
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average spatial coordinates. It is possible, however, to obtain further verification of 

near circular motion by probing the momentum distribution of the wavepacket using 

a short (impulsive) HCP. Ionization caused by the HCP depends on the momentum 

distribution of the wavepacket at the time of the pulse application. If the electron 

is located on the +x axis moving in the +z direction, a pulse in the +z direction 

will accelerate the electron and increase its energy, when even relatively small probe 

pulses will cause significant ionization. In contrast, if the electron is located on the 

+x axis and traveling in the —z direction the same small pulse in the +z direction 

will decelerate the electron leading to stronger binding to the core. In this case, only 

when the pulse is large enough to accelerate the electron in the reverse direction, will 

the electron gain enough energy to be ionized. As a result, much larger probe pulses 

are required to induce significant ionization. The times at which these conditions 

occur are marked with stars on Fig. 5.7(a). The first star (located at 4 ns) marks 

a time where the wavepacket is located on the +x axis and is traveling in the +z 

direction. The second star (6.4 ns) marks the time where the wavepacket has evolved 

to the opposite position in the orbit (—x axis, traveling in the —z direction). At each 

of these times, a short duration (800 ps) probe pulse is applied in the +z direction, 

and the survival probability is measured as a function of probe strength. 

Figure 5.9 shows the results of such an experiment. The insets on the figure show 

the spatial distributions of the wavepacket at the time the probe pulses are applied. 

The white arrow on each inset shows the direction of motion of the wavepacket. As 
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Figure 5.9 : Survival Probability versus the strength Ap of a probe pulse applied in 
the +z direction when the wavepacket is on the +x axis moving in the +z direction 
(4 ns) and on the — x axis moving in the — z direction (6.4 ns). The preparation of the 
wavepacket is identical to the conditions in Fig. 5.7. Both experimental (symbols) 
and CTMC results (lines) are shown. 

expected, the two different times yield very different ionization profiles. When the 

probe pulse is applied at 4 ns, the survival probability decreases sharply as Ap is 

increased. In the second case, 6.4 ns, as the probe strength is increased, the survival 

probability drops more slowly. In this case a scaled impulse of Ap = 2.0 is required to 

reach 50% ionization whereas in the earlier case, this ionization level is reached with 

a probe strength of only Ap = 0.6. These measurements indicate that the momentum 

distribution is localized, consistent with near circular motion. 
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Figure 5.10 : Survival probability vs probe delay in the x and z direction following 
application of a 66 ns duration 20 mV/cm pump field. Both experimental (symbols) 
and CTMC results (lines) are shown. 

If the duration of the 20 mV/cm pump field is increased to 66 ns (as opposed to 

the 22 ns duration used in the preceeding discussion), then the resulting value of Ly 

is +270 instead of the extreme negative value -270, corresponding to a wavepacket 

moving clockwise about the core in the xz plane. Experimentally this was confirmed 

by probing in the x and z directions as in Fig. 5.7(c), except with a pump field 

duration of 66 ns. The results, shown in Fig. 5.10, are very similar to those in 

Fig. 5.7(c). Careful inspection shows that sinusoidal oscillation in the x direction 

now leads the z data by 90°. This result is consistent with a reversal in the direction 

of rotational motion. 
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5.2.3 Wavepacket dephasing and the effect of the pump pulse shape 

When the pump field Ffump is suddenly turned off, thus locking in the maximum 

angular momentum distribution, it is not unexpected that the resulting orbit will be 

near circular. However, it is not clear that the wavepacket resulting from this angular 

momentum transformation should undergo transient localization. Prior to the pump 

field application, there is no preparatory pulse causing transient localization1. Yet 

after the pump pulse, a transiently-localized non-stationary wavepacket is formed. 

As will be discussed, this localization results from small position-dependent changes 

in the electron energy associated with the (sudden) turn off of the pump field which 

translates into a position dependence in the subsequent orbital frequencies, tj((f>i)~3. 

When that part of the ensemble orbiting at the higher frequencies catches up with 

that part orbiting more slowly the ensemble becomes transiently localized forming a 

Bohr-like wavepacket in a nearly circular orbit [66]. 

Focusing of the distribution occurs as the faster moving (lower-n) components 

catch up with the slower moving (higher-n) components. The time required to reach 

maximum localization, or focusing, depends on the width of the energy distribution 

following pump field turn-off. In addition, the time for which the wavepacket remains 

localized also depends on the energy distribution. 

1An attempt to pre-localize the Rydberg atom electron prior to application of the pump pulse 

ppump actuai]y resulted in a reduced wavepacket lifetime. The application of the localization pre-

pulse introduced energy broadening which increased the rate of dephasing. 



114 

The final energy distribution depends very strongly on the shape of the applied 

pump field, FPump(t). Because HStark = Hat = E for zero field (which is the case 

both before and after the pump field), the pulse shape dependence of AE can be 

derived from the dynamics of the Stark interaction using the equation 

dHStark ^ dFJ^^t) 

dt ~Z{t) It ( ' 

XA7& Kom-n +iiic 3.n.2Llirsis \y*T consiclsrin0- tb.6 sini^I^st QBSQ of 3. snu.9xc sh.3,ncd ^uixip 

pulse, (Use = tfaU = 0). The value of HStark (defined as HStark = *(t)ffm p(*)) , &* 

a quasi-lD state elongated in the x-direction (for which z ~ 0) remains essentially 

unchanged during the sudden turn on of the pump field. However, after precession, 

the orbit emcompasses a range of z coordinates and the Stark interaction becomes 

strongly dependent on the fall time tfau. When the pump field is turned off suddenly 

at t — t0fj, the wavepacket is spread around a circular orbit (z(t0ff) = n2 sin 4>, where 

4> = arctan z/x), the final energy of the electron is 

Esudten^ = - - L + Frmpz{toff) ~ - - L + Flumpn2 sin<j> (5.6) 

The d> dependence of the energy, E((/>), leads to a final energy distribution of width 

AE. The largest energy change occurs when <j> = ±7r/2 resulting in a width of 

AE = 2\Fpump\n2 (5.7) 

The time if, at which the circular wavepacket achieves maximum localization (and 
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therefore the overall lifetime) can be increased by decreasing the strength of the pump 

field, \Fpump\. This results because the final energy energy width, AE is linearly 

dependent on \Fpump\, thus tL oc l/AE oc l/\FJump\. 

The verification of this theoretical prediction is a rather straightfoward experi

ment. As the magnitude of the pump pulse, \Fpump\, is varied the width of the pulse 

must also vary to maintain a constant area so that the final Ly distribution remains 

constant. The results for two different pump pulses are shown in Fig. 5.11. The 

pump pulse used in Fig. 5.11(a) and (b) is the same that is used in Sect. 5.2.2, a 

magnitude of Fpump — — 20 mV/cm with a duration of 22 ns. The result of applying 

a pump pulse with a magitude of Fpump = —10 mV/cm with a duration of 43 ns 

is shown in Fig. 5.11(c). Just as before, the experimental results show outstanding 

agreement with CTMC results. Also the strong sensitivity of tL on the magnitude 

of the pump field is quite evident. With the -20 mV/cm pump field, the wavepacket 

reaches maximum localization at ~ 12 ns. But when the pump pulse amplitude is 

reduce by half, the localization time increases to near 30 ns. 

The measurements of ii, as a function of pump pulse strength are shown explicitly 

in Fig. 5.12 along with the results of CTMC calculations. The optimum localization 

time measurements were taken at pump probe magnitudes \Fpump\ — -5, -10, and 

-20 mV/cm. Again, excellent agreement is seen between the measured values and 

the CTMC results. Both the measured and calculated localization times show the 

expected l/\Ffump\ dependence predicted by calculations of energy width AE. 
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Figure 5.11 : Survival probability as a function of the time delay between the pump 
pulse turn off time and application of a 6 ns duration 100 mV/cm probe pulse, (a) 
ppump = _ 2 0 m V/cm and the probe pulse applied along the z axis, (b) F f m p = - 2 0 
mV/cm and the probe pulse applied along the x axis, (c) Fpump — —10 mV/cm and 
the probe pulse applied along the x and z axes. Also shown in (a) and (b) are the 
expectation values of x and z. The vertical lines are shown to visualize the 90° phase 
shift between x and z coordinates shown in (a) and (b). Both the pump and probe 
fields were turned on and off suddently. 

The analysis of the width of the energy distribution can be extended to include 

finite rise and fall times. If the rise and fall times are short compared to the Stark 
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Figure 5.12 : Experimental (symbols) and calculated (lines) optimum localization 
times as a function of the strength of the pump pulse. Both pump pulse and probe 
pulse are turned on and off suddenly, ir,se = tfau < 500 ps. The dashed line illustrates 
the l/\F£ump\ behavior. 

period Ts {Ts = 85 ns for \F^m,p\ = - 1 0 mV/cm), the final energy width can be 

determined from the change in HStark during the fall time —t0ff/2 < t — t0ff < £0///2. 

i.e., integrating Eqn. 5.5 for a trajectory on a fixed circular orbit z{t) = n?sin(i/n?). 

The shape of the pulse during the rise and fall is important to the final result. The 

most straightfoward approach is to use a simple linear rise and fall. However, mea

surements of the experimental pulse shapes show more curvature than a simple linear 
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Figure 5.13 : Measured pump pulse rising edges for 2.0, 3.0, and 4.5 ns rise times. 

rise(see Fig. 5.13). As a better approximation of the experimental pulse profiles a 

sine-like fall (F(t) oc 1 — sin7r(t — £<,//) A/a«) is also considered. The following are the 

summarized results from integration of Eqn. 5.5 assuming an approximately circular 

orbit during the fall time. For a linear turn off, 

n2
{AE ~ 2 n ? | F ™ | 

sin(7ri /aM/Tni) 

ntfaU/Tni 

while a sine-like turn off yields 

(5.8) 

n2AE ~ 1n\|Ffmp| 
COS (TTtfau/Tni) (5.9) 

l-(irtfall/Tniy\ 

Figure 5.14 shows the result of experimentally varying the fall time of the pump 

pulse. As the fall time of the pump pulse is increased, the maximum localization 
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Figure 5.14 : Experimental (symbols) and calculated (lines) maximum localization 
times for FPump — —10 mV/cm as a function of fall time for a linear (dashed line) 
and sine-like fall (solid line). 

time increases rather dramatically. As expected, the experimental data are better 

predicted using the sine-like transition. However, overall the agreement between the 

experimental and calculated results is quite good. 

5.3 Pulse-Induced Wavepacket Re-Localization 

The above section discusses the formation and dephasing of the near-circular wavepack-

ets resulting from the turn off of the transverse pump field Fpump. However, the static 

quasi-equilibrium state following the dephasing of such wavepackets is also of consider-
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able interest as a laboratory for studying driven dynamics in two-dimensional atomic 

systems. The simplest first experiment along these lines is to examine the behavior 

resulting from the application of a single unidirectional HCP. 

before pulse • # * -

1A, ',W 
0.2 

! = 1.45 TK 

after pulse 

(= 2.9 TK 

Figure 5.15 : An ensemble of classical electrons traveling along a circle before and 
after interacting with a short electric field pulse (HCP). Dispersion in velocities that 
result from the interaction causes the ensemble to bunch up in a small segment of the 
orbit. From ref. [67]. 

It has been proposed by Stroud, et. al., that a single HCP can induce localization 

in a uniformly distributed circular state[67]. The basic mechanism is illustrated in 

Fig. 5.15 using an ensemble of classical electrons. Each electron in the ensemble is 

initially distributed evenly throughout the orbit, and evolves with the same angular 
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velocity. Application of an electric field pulse causes a change in momentum to each 

electron which is proportional to its initial momentum component in the direction of 

the applied field. Because the electrons have a uniform angular velocity distribution, 

the subsequent change in momentum only depends on the initial position in the 

orbit. Immediately following the application of the pulse, the electron positions are 

unchanged but there now exists a range of momenta (and subsequently energies). This 

then leads to a bunching of the angular distribution as the faster moving particles 

catch up to the slower moving ones. This simple model is classical; however, it 

can be shown that the overall dynamics are preserved in the quantum mechanical 

description[67]. 

As mentioned above, the quasi-equilibrium state following turn off of the pump 

field is an excellent starting point for studying pulse induced wavepacket focusing. 

The probability density 150 ns after the pump field turn off is shown in Fig 5.16. This 

plot shows a near uniform distribution in azimuthal angle around the orbit. 

Figure 5.17 shows the pulse sequence used to explore the effect of pulse induced 

wavepacket re-focusing. First, the angular momentum transforming pump pulse, 

ppump _ _ J Q m v / c m and 43 ns duration, is applied to a quasi-lD atom initially 

oriented in the x direction. After allowing the wavepacket to dephase, a single HCP 

is applied directed along the z axis towards the nucleus. 

Figure 5.18 shows the time evolution of both the angular and radial distribu

tions following application of an HCP with scaled strength of Ap — —0.035 150 ns 



122 

1.5 

1 

0.5 

N ° 

-0.5 

-1 

-1.5 

"?2 -1.5 -1 -0.5 0 0.5 1 1.5 

Figure 5.16 : Electron probability density of uniformly distributed near-circular state 
150 ns after pump field turn off. 

after the pump field turn off. Initially the angular probability density is uniformly 

distributed. Shortly after the HCP is applied, the angular distribution narrows indi

cating wavepacket localization. The angular distribution reaches a minimum in width 

(thus optimum localization) at 162 ns or after about three orbital periods. Just as in 

the previous example of a circular wavepacket, after the peak in localization occurs 

the wavepacket begins to dephase. Figure 5.18(b) shows that the radial distribution 
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Figure 5.17 : Pulse sequence used to examine pulse induced focusing of quasi-
equilibrium near circular states. 
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Figure 5.18 : CTMC calculations of the time dependence of (a) the angular and (b) 
the radial distributions of the wavepacket following application of a HCP of scaled 
strength Apw — —0.035 at ip = 150 ns to a near circular n — 306 state. 
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remains constant during this process. 
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xo 

Figure 5.19 : Spatial probability density snapshots following application of a single 
localization pulse to the quasi-equilibrium circular state. 

Snapshots of the calculated spatial probability density following application of 

the localization pulse are shown in Fig 5.19. Clear orbital motion of a localized 

wavepacket is evident and persists for several orbits. At later times, due to the energy 

distribution (somewhat broadened by the HCP), the wavepacket dephases leading to 

loss of angular localization. 

-1 

N 
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Figure 5.20 : Experimental (symbols) and calculated (lines) survival probabilities 
following application of localization HCPs with scaled strenghs Apz of (a) -0.018 (b) 
-0.035 (d) -0.1 150 ns after turn-off of F^amp. The probe pulses were applied in the x 
(red) and z (black) directions. The expanded plot in (c) demonstrates the 90° phase 
shift between measurements in the two directions, (e) Re-localization induced by a 
second HCP of strength Apz = —0.035 applied 100 ns after an initial localizing pulse 
of the same strength. 

This effect was investigated experimentally in the same manner as outlined in 

Sect. 5.2.2. A probe pulse of 100 mV/cm and 6 ns duration was applied in both the x 
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and z directions (large enough to ionize 50% of the Rydberg atom population). The 

position of the pulse was varied and the survival probabilty measured as a function 

of probe delay time. The results of this experiment are shown in Fig. 5.20 for a 

variety of HCP strengths. The buildup of strong periodic variations in the survival 

probability following application of the HCP is observed. This and the 90° phase shift 

between measurements with the probe field oriented along the x and z axes, i.e., in the 

evolution of (x) and (z), demonstrate strong azimuthal focusing and transient creation 

of a Bohr-like wave packet moving in near-circular orbit with angular frequency un ~ 

2ir/Tn ~ n3. At late times azimuthal focusing is lost through dephasing. The focusing 

time, tfocus, or equivalently, the dephasing time, depends sensitively on the strength 

of the HCP varying as ~ 1/Ap2 as expected. Strong HCPs lead to population of 

a relatively broad band of n levels (An « ±nApz0). While this results in stronger 

and more rapid localization of the wave packet, its dephasing is also more rapid. Use 

of weaker HCPs results in a narrower band of final n states reducing the dephasing 

rate but requiring longer for the wave packet to achieve optimum localization. The 

experimental data are in excellent agreement with CTMC simulations. 

At sufficiently late times following the "localizing" HCP the wave packet dephases 

and becomes uniformly distributed in the azimuth when application of a further 

HCP can, as illustrated in Fig. 5.20(e), lead to regeneration of a transiently localized 

wave packet. Such regeneration can be continued for extended periods simply by 

applying further (alternating) HCPs. However, each HCP broadens the atomic n 
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Figure 5.21 : Spatial distributions at peak angular localization following application 
of a third and fifth [(a) and (b)] re-localization HCP applied 350 ns and 550 ns after 
the pump field. 

and / distribution and the degree of localization and the times over which it can be 

maintained decrease as the number of HCPs is increased. This is evident in Figs. 5.21 

which show the optimum localization achieved following a third and a fifth localization 

kick. After the third localization kick, the minimum azimuthal width is increased by 

more than 40% relative to that obtained after the first localization kick. Following 

the fifth localization kick, only minimal localization is observed. 

5.4 Periodically Driven Circular Wavepacket Stabilization 

In the previous section, it was demonstrated that it is possible to re-induce localization 

to a uniformly distributed near-circular state using just a single pulse. It was also 
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shown that it is possible to regenerate localized wavepackets by applying further kicks. 

However, each additional kick leads to a small amount of energy broadening which 

places an upper limit on the usefulness of this technique. The use of smaller kicks 

reduces this effect since the energy broadening induced increases with the strength 

of the applied kick. Therefore a periodic train of relatively small pulses might be 

an excellent way to maintain wavepacket localization for extended periods. However, 

a smaller applied kick requires a longer time to reach optimum localization. The 

solution to this problem is to simply apply the localization pulse train before the 

original wavepacket has a chance to dephase. In this case, extremely small pulses 

can be used which minimize the induced energy broadening. However, because the 

wavepacket is already tightly localized in the azimuthal angle, we do not require that 

the pulse train induce localization. This pulse train need only prevent the wavepacket 

from spreading. 

pump I 

Stabilization Pulse Train 

ITBflllWflflf(II 
i . i . i • i , 
0 50 100 150 200 250 

TIME (ns) 

Figure 5.22 : Pulse sequence used to maintain localization for extended periods. 
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The pulse sequence used for maintaining wavepacket localization for extended 

periods is shown in Fig. 5.22. The pulse train is applied at the time of optimum lo

calization following the turn-off of a 43 ns-duration 10 mV/cm pump field. The period 

of the applied train is 4.3 ns which is equal to the orbital period of the wavepacket. 

Each pulse in the train delivers a scaled stength of Aptrain — —0.0035 (a factor of ten 

less than what was used in Sect. 5.3). 

\) 50 100 150 "200 250 "300 

TIME (ns) 

Figure 5.23 : Experimental (symbols) and calculated (lines) survival probabilities re
sulting from a probe delay experiment in the z direction using a 50 pulse stabilization 
train applied 27 ns after the turn off of a 10 mV/cm pump field. The train had a 
period of 4.3 ns and an a scaled impulse of Aptrai-no = —0.0035. The top plot shows 
an expanded section of the data. 

The result of applying such an HCP train is shown in Fig. 5.23. The evolution of 
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the wavepacket position coordinate during the HCP train is monitored by the sudden 

application of a dc probe field, FProbe
j directed along the z axis. Pronounced periodic 

variations in the survival probability (and thus (z)) are evident and continue for 

nearly 250 ns at which time the stabilization train is turned-off. In the absence of the 

applied train, the wavepacket quickly dephases. Measurements along the x-direction 

reveal similar behavior, but with the expected 90° phase shift which is indicative of 

uniform circular motion. 

Attempts to extend these results to longer times showed a gradual reduction in 

amplitude of oscillations. The problem was solved by considering the evolution of 

the angular momentum of the wavepacket during the application of the stabilization 

train. Figure 5.24 shows the evolution of (x) and (Ly) during a 4.3 ns stabilization 

train with kick strength of AptTain = -0.0089 and -0.018. The DC component of 

the applied train causes the angular momentum of the wavepacket to precess with 

a corresponding reduction in the amplitude of oscillations in (x). Notice that by 

doubling the amplitude of the applied pulse train (and thus the DC component), the 

rate at which the angular momentum precesses also doubles. 

This effect can be countered by applying a small dc offset during the train. Fig

ure 5.25 shows the evolution of the angular momentum distribution with and without 

a cancelling offset field. The difference between the two cases is dramatic. Without 

the small offset field, the angular distribution oscillates between the maximum and 

minimum extreme values with a period of 1200 ns. However, when the small offset is 
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Figure 5.24 : Evolution of (x) and (Ly) during a 4.3 ns stabilization train with kick 
strengths of (a) Aptrain = —0.0089 and (b)Aptrain = —0.018. The red verticle lines 
indicate when the wavepacket reaches a minimum in \Ly\. 

applied to cancel the dc component of the train, the angular momentum distribution 

remains essentially unchanged. 

Figure 5.26 shows the applied field profile of the stabilization pulses with the dc 
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Figure 5.25 : Evolution of the angular momentum distribution during a stabilization 
train of period 4.3 ns and kick strength AptTain = -0.0089 with and without an offset 
to cancel the DC component of the train. 
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Figure 5.26 : Pulse profile of wavepacket stabilization train with a dc component 
canceling offset. 

component of the train cancelled. This allows the stabilization of the wavepacket for 

extended periods. As is evident from Fig. 5.27, even after ~ 100 orbits the wavepacket 
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Figure 5.27 : Snapshots of the (simulated) electron probability density distribution 
showing the time dependent behavior of the wavepacket after ~ 100 orbits. The times 
indicated are the times after turn-off of the pump field FPumP_ 

remains localized and continues to move in a near-circular orbit. A sustained Bohr

like wavepacket, however, can only be achieved with a careful choice of driving field, 

i.e., of the kick strength, period, and phase. Tests revealed that if the kick strength 

is too small localization is not maintained. If it is too large the wavepacket broadens 
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and becomes progressively less well localized. A kick strength of Aptrain — —0.018 

was found to be optimal. The period Tp of the HCP train must also match closely 

the initial electron orbital period Tn = 4.3 ns. 
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Figure 5.28 : Experimental (symbols) and calculated (lines) survival probabilities for 
a probe pulse of 6 ns duration and 100 mV/cm amplitude as a function of its time of 
application after turn-off of the pump field Ff"mp. The different panels show results 
obtained with: (a) no HCP train applied; (b) and (c), a train of HCPs of strength 
Apzo = —0.018 and period Tp = 4.3 ns initiated following a delay to — 27.5 ns; and 
(d) same as for (b) and (c) but with a pulse period Tp = 8.6 ns. All results were 
obtained with the probe pulse applied in the +z direction. 

Figure 5.28 shows the experimental and calculated results of using this optimized 

pulse sequence. Frame (a) shows the result without the stabilization train, and as 

expected localized wavepacket motion is observed for several orbits before dephasing. 

Figure 5.28 (b) shows the result of using the optimized stabilization train on an iden-
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tical time scale. In this case, a localized wavepacket is maintained with no evidence of 

dephasing. Figure 5.28 (c) shows the same data set but at much later times. Again, 

clear periodic motion is observed without any reduction in the amplitude of oscilla

tion. The effect of driving the wavepacket at half the orbital period (Tp = 8.6 ns) is 

shown in Fig. 5.28(d). Figure 5.29 demonstrates the sensitivity of the stabilization 

to the driving parameters. Figure 5.29(a) shows the results for the same conditions 

as for Fig. 5.28(b) to allow easier visual comparison. Figures 5.29 (b) and (c) show 

the effect of driving the wavepacket with periods of Tp — 3.7 and 5.0 ns respectively. 

In both cases the wavepacket is destroyed within several orbits after application of 

the pulse train. The timing of the HCPs relative to the position of the wavepacket 

in its orbit is also critical. As is evident from Figs. 5.29 (a) and (d), generation of a 

sustained wavepacket requires that the HCPs start when the wavepacket is centered 

on the +z axis, i.e., at x ~ 0, z ~ +n2. 
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Figure 5.29 : Experimental (symbols) and calculated (lines) survival probabilities as 
a function of time after turn-off of the pump field. The different panels show results 
obtained with: (a) the same conditions as in Fig. 5.28(b); (b), (c) as in (a) but with 
HCP periods Tp = 3.7 and 5.0 ns, respectively; (d) as in (a) but with a delay time 
tD = 29 ns. 
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Chapter 6 

Conclusions and Outlook 

6.1 Conclusions 

This work has demonstrated the remarkable level of control that can be exercised in 

the manipulation of Rydberg atom wavepackets in one and two dimensions. 

The application of a periodic train of HCPs gives rise to islands of stability in 

the Poincare surface of section in phase space. A pulse sequence which includes 

two preparatory pulses preceding the periodic train can be used to efficiently and 

selectively load a Rydberg atom wavepacket into an island of stability. By varying the 

available control parameters (i.e. the amplitude and time delay between preparation 

pulses) one can selective load the resulting stablized wavepacket anywhere withing the 

stable island. The extreme cases of this technique lead to the population of the center 

of the island and the periphery or "shore" of the island. Placing the wavepacket in the 

center of the island results in a wavepacket with a nearly static energy distribution. 

However, placing the wavepacket on the edge of the island results in the periodic 

evolution of the wavepacket around the perimeter of the island. This periodic motion 

is accompanied by oscillations in the energy distribution of the wavepacket. This 

variation in energy was observed by monitoring the evolution of the wavepacket with 
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a probe delay experiment. The results were in excellent agreement with CTMC 

predictions. 

It was also shown that once a wavepacket is optimally loaded into an island, the 

position of the island in phase space can be shifted by adiabadically chirping the 

period of the applied HCP train. If the change in period for each adjacent pulse 

is small compared to the orbital period of the electron(<5Tp <C Tn), the transfer 

is efficient, with more than 90% of atoms surviving the process. Because a shift 

of a stable island in the direction of increasing position coordinate constitutes an 

increase in energy, by carefully controlling the final position of the stable island, the 

final energy of the wavepacket can also be controlled. SFI measurements confirmed 

that a train of 50 chirped pulses efficiently transported an initial wavepacket at n = 

350 to n — 650. CTMC calculations and measurements of the final momentum 

disribution demonstrated the spatial polarization of the initial state was preserved. 

It was also found that by reversing the direction of chirping, the transport process can 

be reversed. In addition to the larger period-1 island of stability in phase space, there 

also exist other islands which correspond to more complicated motion. The period-

2 island is such an example. It was also demonstrated that after a chirped pulse 

sequence, by superimposing a second period train onto the first and then adabadically 

varying the spacing between the two trains, the wavepacket can be transferred to the 

period-2 island. 

Previous attempts to create a two dimensional (near-circular) wavepacket by ap-
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plying a single large orthogonal HCP to a quasi-lD atom have met with limited suc

cess. This technique led to the population of a large range of energy levels thus making 

attepts at manipulation and control rather limited. However, by using a relatively 

small static transerve pump field, the angular momenum of the inital quasi-lD atom 

can be controlled to a high degree of precision. The resulting localized wavepacket 

has created a new series of experiments in two dimensions. Simply by tuning the pa

rameters of the pump pulse (such as the amplitude and rise/fall time), the lifetime of 

wavepacket can be greatly enhanced by minimizing the width of the resulting energy 

distribution. However, even the equilibrium state several hundred nanoseconds fol

lowing the dephasing of the wavepacket provides a laboratory for studying interesting 

dynamical effects. It was demonstrated that localization can be re-induced using a 

single HCP. in addition, by applying a phase and frequency matched pulse train dur

ing the time of initial optimum localization, a non-dispersing near circular wavepacket 

can be created. To date, this wavepacket represents the closest experimentally verified 

analog to the original Bohr atom. 

6.2 Outlook 

It seems that the remarkable control that is achievable using near-circular wavepack-

ets represents just the beginning in a new series of experiments. This situation is 

analogous to the discovery of stable islands in the phase space of periodically driven 

one-dimensional atoms. Much like in the ID case, it seems that once the near-circular 
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wavepacket is locked to a driving train, the parameters of the train can be adia-

badically varied thus transporting the wavepacket to some different region of phase 

space. Calculations along these lines seem very promising. Using a carefully tailored 

sequence of frequency chirped pulses, it should be possible to efficiently transport 

stabilized near-circular wavepackets to arbitrarily high n. The largest experimen

tal challenge is the ability to create a chirped pulse train whose dc component is 

compensated for thus preventing unwanted angular momentum precessing. 

The technique used to dynamically stabilize the near circular wavepacket might 

by used to selectively filter out states within a narrow energy range from a broadened 

distribution. This techique could be applied to dynamically filter the range of states 

created by applying a single large orthogonal HCP to the initial quasi-lD atom. 

Past experiments have explored the effect of the application of so-called "colored" 

noise to the dephasing of wavepackets [68]. Colored noise differs from typical white 

noise in that it contains some well defined characteristic frequency content which can 

be controlled. This technique has been very useful in quantitatively analyzing the 

stability of dynamical systems. It would be interesting to use this technique to study 

the frequency dependence and robustnest of the dynamically stabilized near-circular 

wavepacket. 

The techniques we have developed for controlling the angular momentum of the 

Rydberg atom may have applications in quantum information processing. A single 

transverse pump pulse, with the appropriate duration and amplitude, can transform 
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the initial quasi-lD Rydberg atom to states of extreme scaled angular momentum 

LQ = ± 1 . It is not hard to imagine each of these states representing the "0" and 

"1" of an atomic "bit" of information. With the appropriate pulse sequence, it would 

be possible to test which extreme angular momentum state was populated. Such a 

sequence would constitute a "read" operation while the angular momentum trans

forming pump pulse would represent a "write" operation. 
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