
RICE UNIVERSITY

Efficient Duty Cycle MAC Protocols
for Dynamic Traffic Loads

in Wireless Sensor Networks

by

Yanjun Sun

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

^/jTgfc-^
David B. Johnson, Chair
Professor/of Computer Science

T. S. Eugene]
Assistant Professor of Computer Science

Edward W. Knightly
Professor of Electrical and Computer
Engineering

HOUSTON, TEXAS

APRIL, 2009

UMI Number: 3362416

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3362416

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Efficient Duty Cycle MAC Protocols for Dynamic
Traffic Loads in Wireless Sensor Networks

Yanjun Sun

Abstract

Idle listening is one of the most significant causes of energy consumption in wireless

sensor networks (WSNs), and many protocols have been proposed based on duty

cycling to reduce this cost. These protocols, either synchronous or asynchronous, are

mainly optimized for light traffic loads. A WSN, however, could often experi­

ence bursty and high traffic loads, as may happen for example with broadcast or

convergecast traffic. In this thesis, I design and evaluate a new synchronous proto­

col, DW-MAC (Demand Wakeup MAC), and a new asynchronous protocol, RI-MAC

(Receiver Initiated MAC), that are both efficient under dynamic traffic loads, in­

cluding light or heavy loads. I also design and evaluate ADB (Asynchronous

Duty-cycle Broadcasting), a new protocol for efficient multihop broadcasting in

WSNs using asynchronous duty cycling.

DW-MAC introduces a new low-overhead scheduling algorithm that allows

nodes to wake up on demand during the Sleep period of an operational cycle

and ensures that data transmissions do not collide at their intended receivers;

this demand wakeup adaptively increases effective channel capacity as traffic load

increases. RI-MAC, instead, uses receiver-initiated transmissions, in which each

transmitter passively waits until its intended receiver wakes up and transmits

a beacon frame; this technique minimizes the time a sender and its intended re­

ceiver occupy the wireless medium to find a rendezvous time for exchanging data.

ADB is integrated with RI-MAC to exploit information only available at this layer;

rather than treating the data transmission from a node to all of its neighbors as

the basic unit of progress for the multihop broadcast. ADB dynamically optimizes

the broadcast at the level of transmission to each individual neighbor of a node

as the neighbors asynchronously wakeup, avoiding redundant transmissions and

transmissions over poor links, and allowing a transmitter to go to sleep as early

as possible. In detailed simulation of all three protocols using ns-2, they each sub­

stantially outperform earlier competing protocols in terms of reduced energy and

latency and increased packet delivery ratio. I also implemented RI-MAC and ADB

in a testbed of MICAz motes using TinyOS and further demonstrate the significant

performance improvements made over prior protocols.

Acknowledgments

I would like to express my deep and sincere gratitudes to my supervisor, David B.

Johnson. His inspiring advice and guidance have absolutely been the most invalu­

able help I received to get this work done. Besides our weekly meetings, whenever

I have questions, even including small questions about T̂ X and Illustrator, Dave

was always there to patiently listen and to give advice. Although most paper dead­

lines were around midnight, Dave always stayed up with me till the last minute to

keep improving the quality of our submission. His enthusiasm and prudent atti­

tude towards research projects not only have greatly impacted my thesis, but will

impact my future career.

I am deeply grateful to Dr. Edward W. Knightly, Dr. T.S. Eugene Ng, and

members in their group. Ed and Eugene were on the committees of both my Mas­

ter's thesis and Ph.D. thesis. In the preliminary stage of my theses work, they had

valuable discussions with me and recommended papers that were helpful for my

work. During my thesis proposal and defense, Ed and Eugene continued to help

me see the strengths and deficiencies in the theses with their valuable suggestions

and insightful opinions. I would also like to express my sincere thanks to members

in Ed and Eugene's group. Omer Gurewitz and Jingpu Shi had always discussed

V

with me for hours on my work. The discussion helped me to clearly define prob­

lems and solutions and to improve by ability of criticl thinking. I would also like

to thank Vincenzo Mancuso, Eugenio Magistretti, Stanislav Miskovic, Bo Zhang,

Guohui Wang, Zheng Cai, Florin Dinu and Jie Zheng for their valuable discussion,

feedback and support that helped to improve my work.

Furthermore, I owe sincere gratitude to members in our MONARCH group.

Santa PalChaudhuri was the one who brought me to the field of wireless sensor

networks. Amit Saha was always the first one I grabbed for questions and discus­

sions as we were in the same office. Shu Du clearly showed me opportinities in

MAC research and have been working side by side with me on several projects.

New members in the group, Keyvan Amiri and Lei Tang, also had valuable dis­

cusses with me and supported me in my experiments, proposal and defense.

Throughout my Ph.D. years, I had the opportunity to work with many profes­

sors and their students and I am grateful to them as well. In the COMPASS project,

Dr. Richard Baraniuk, Dr. T.S. Eugene Ng, and Raymond Wagner have given valu­

able feedback to DW-MAC and RI-MAC from different angles when these proto­

cols were just a simple idea. Ryan Stinnett helped me to set up a testbed of motes,

with which I turned RI-MAC into a protocol running in a real system. Collabora­

tion with Dr. Lin Zhong and his students Mian Dong, Jiayang Liu helped me to get

familar with power saving schemes more from hardware side. The work experi­

ence with them is unforgettable. I also had memorable experience of working with

vi

Deian Tabakov, Rui Zhang, Gua Hua and Yuan Zhao. They were always around

when I needed help from them. A note of thanks goes to Johnny Ngan, Anwis Das,

Scott Crosby and all my friends in the Computer Science Department for their sup­

port and sharing a good memory with me. I am also grateful to Darnell Price, Bel

Martinez, Beth Rivera, Lena Sifuentes for their support during my Ph.D. years.

My deepest gratitude goes to my wife, Bing Yuan, my parents and parents-in-

law, for their unconditional love and caring. Without their encouragement, help

and understanding, it would have been impossible for me to finish this work in

time. They care more about my work than their own work. My parents and in-laws

even sacrificed their time and came to Houston to take care of our newborn before

my defense, and my wife delayed her thesis work to take care of our baby when

I was doing experiments. I would also like to thank my son, Richard, for being a

good baby during my busiest time. Every small step of achievement during my

Ph.D. process was supported by them and I am forever indebted to them.

My work was supported in part by NSF under grants CNS-0520280, CNS-

0435425, CNS-0338856, CNS-0325971, and CNS-0209204; and by a gift from Schlum-

berger. The views and conclusions contained here are those of the author and

should not be interpreted as necessarily representing the official policies or en­

dorsements, either express or implied, of NSF, Schlumberger, Rice University, or

the U.S. Government or any of its agencies.

Contents

Abstract ii

Acknowledgments iv

List of Illustrations xi

List of Tables xvii

1 Introduction 1

1.1 Duty Cycling 1

1.2 The Need for Handling Dynamic Traffic Loads 2

1.3 DW-MAC: A New Synchronous Duty Cycle MAC Protocol 4

1.4 RI-MAC: A New Asynchronous Duty Cycle MAC Protocol 6

1.5 ADB: An Efficient Multihop Broadcast Protocol over Asynchronous

Duty Cycling 9

1.6 Thesis Outline 12

2 Related Work 13

2.1 Synchronous Duty Cycle MAC Protocols 13

2.2 Asynchronous Duty Cycle MAC Protocols 18

2.3 Broadcast over Asynchronous Duty Cycling 24

3 DW-MAC Design 29

3.1 Overview 29

3.2 Mapping Function for Scheduling 31

3.3 Scheduling Frame (SCH) 34

3.4 Broadcast and Unicast in DW-MAC 35

3.5 Optimized Multihop Forwarding 36

3.6 Implementation Issues 39

4 Evaluation of DW-MAC 41

4.1 Evaluation under Unicast Traffic 43

4.2 Evaluation under Broadcast Traffic 51

5 RI-MAC Design 59

5.1 Overview 59

5.2 Beacon Frames 61

5.3 Dwell Time for Queued Packets 63

5.4 DATA Frame Transmissions from Contending Senders 64

5.5 Collision Detection and Retransmissions 66

5.6 Beacon-on-Request 68

5.7 RI-MAC Implementation in TinyOS 69

ix

6 Evaluation of RI-MAC 73

6.1 Simulation Evaluation 73

6.1.1 Results in Clique Networks 77

6.1.2 Results in a 49-Node Grid Network 82

6.1.3 Results in Random Networks 86

6.2 Experimental TinyOS Evaluation 89

6.2.1 Results in Clique Networks 92

6.2.2 Results in a Network with Hidden Nodes 93

6.2.3 Extra Ending Beacons for MICAz 96

7 ADB Design 101

7.1 Design Motivation 101

7.2 Overview of ADB Operation 103

7.3 ADB Algorithm Details 105

7.3.1 Neighbor Detection and Link Quality Estimation 105

7.3.2 Coherent Encoding of ADB Control Information 109

7.3.3 Delegation Procedure 113

7.4 Analysis of End-to-End Delivery Latency 116

7.5 ADB Implementation in TinyOS 120

8 Evaluation of ADB 124

8.1 Simulation Evaluation 126

X

8.1.1 Results with Default Channel Model in ns-2 128

8.1.2 Results with Increased Packet Losses 133

8.1.3 Comparison to Optimal Latency . . 137

8.2 Experimental Evaluation on MICAz Motes . 139

8.2.1 Results in a Clique Network 140

8.2.2 Results in a Random Network 141

9 Conclusions 145

Bibliography 148

Illustrations

1 S-MAC with adaptive listening. Node C wakes up at the end of the

transmission between node A and B based on the information in

the overheard CTS, so that B can forward a packet to C

immediately rather than waiting until the next operational cycle. . . 14

2 Multihop forwarding of a unicast packet in RMAC. P indicates a

PION frame that is used for scheduling 17

3 Operation of X-MAC, including the strobed preamble and early

acknowledgment. During a scheduled wakeup time, a node does a

CCA (clear channel assessment) check that is longer than the gap

between two short preambles 20

4 The variation of X-MAC implemented in the UPMA package in

TinyOS. The strobed preamble is replaced by a chain of DATA

frame transmissions 20

Xll

5 Broadcast support in X-MAC in the UPMA package of TinyOS. A

transmitter S repeatedly transmits copies of a broadcast packet

(DATA frame) over a duty cycle interval, during which each

neighbor (node Rl and R2) wakes up at least once and thus has an

opportunity to receive the packet 27

1 Overview of scheduling in DW-MAC 31

2 Broadcast in DW-MAC 36

3 Unicast in DW-MAC 36

4 Optimized multihop forwarding of a unicast packet. Node B sends

an SCH to wake up node C at the time indicated by T| and

confirms the SCH received from node A 37

5 Optimized multihop forwarding of a broadcast packet. Node B

specifies node A as the immediate forwarder, which rebroadcasts

an SCH SIFS after receiving that SCH from A. Node C rebroadcasts

the SCH when its backoff counter expires 39

1 Performance for unicast traffic in 49-node grid network scenarios. . . 45

2 Performance for unicast traffic in 49-node grid network scenarios,

with 2 random events generated at a time . 50

xiii

4.3 Performance for random correlated-event traffic in 50-node

networks with sensing range of 250 m 52

4.4 Performance for broadcast traffic in grid networks 55

4.5 Performance for broadcast traffic in 50-node networks. . 56

5.1 Overview of RI-MAC. Each node periodically wakes up and

broadcasts a beacon. When node S wants to send a DATA frame to

node R, it stays active silently and starts DATA transmission upon

receiving a beacon from R. Node S later wakes up but goes to sleep

after transmitting a beacon frame since there is no incoming DATA

frame 60

5.2 The format of an RI-MAC beacon frame for an IEEE 802.15.4 radio.

Dashed rectangles indicate optional fields. The Frame Length,

Frame Control Field (FCF), and Frame Check Sequence (FCS) are

fields from IEEE 802.15.4 standard 62

5.3 The dual roles of a beacon in RI-MAC. A beacon serves both as an

acknowledgment to previously received DATA and as a request for

the initiation of the next DATA transmission to this node 63

xiv

5.4 DATA frame transmission from contending senders in RI-MAC.

For the first beacon, the receiver R requests senders (here, Si and

S2) to start transmitting DATA immediately upon receiving the

beacon. If a collision is detected, R sends another beacon with

increased BW value to request that senders do a backoff before

their next transmission attempt 65

5.5 RI-MAC beacon-on-request. When node S wakes up for transmitting

a pending DATA frame, it sends a beacon with the Dst field set to

the destination of the pending DATA. If the destination node R is

already active, R in response transmits a beacon to enable S to

begin DATA transmission immediately. 69

5.6 Composition of RI-MAC within the UPMA framework in TinyOS. . . 70

6.1 Performance comparison in clique networks with contending flows

in simulation. The total number of nodes is 1 for 0 flows, and is

twice the number of flows otherwise 79

6.2 Performance for unicast traffic in 49-node (7 x 7) grid network

scenarios in simulation 84

6.3 Performance for random correlated-event traffic in 50-node

networks with sensing range of 250 m in simulation 88

XV

6.4 Performance comparison in clique networks of MICAz motes with

contending flows in TinyOS implementation 90

6.5 Performance comparison when two sender are hidden to each

other and when they are not in a 3-node network in TinyOS

implementation 94

6.6 Effectiveness of using an extra ending beacon in RI-MAC in TinyOS

implementation 97

7.1 Overview of ADB. Node S broadcasts a DATA frame to node Rl

and R2 via unicast transmission. The footer in DATA and ACK

beacons helps S and Rl to decide which node will deliver the

DATA to R2 and helps R2 to learn that both S and Rl have received

the DATA 104

7.2 Node v analyzes an ADB footer that contains information about the

progress of packet i. This footer is received or overheard from w,

containing an array Sw that lists the status of w's neighbors. The

separate S1 local array lists the status of v's neighbors with respect

to packets 115

7.3 ADB achieves optimal latency under simplified assumptions 117

7.4 Interaction between ADB, RI-MAC, and the UPMA framework in

TinyOS 120

xvi

8.1 Performance comparison in 50-node networks with default channel

model in ns-2 130

8.2 Performance comparison in 50-node networks with increased

packet losses 135

8.3 Difference between optimal delivery latency to each node and that

with ADB 138

8.4 Topology of a 10-node random network deployed in an apartment. . 142

Tables

4.1 Networking Parameters 42

4.2 Duty Cycle Configuration 43

4.3 Average number of packets generated for each event under

different sensing ranges in the 49-node grid network 44

6.1 Simulation Radio Parameters 74

6.2 Simulation MAC Protocol Parameters 75

6.3 Average Number of Packets Generated for Each Event under

Different Sensing Ranges in the 49-Node Grid Network 83

8.1 Performance comparison in a 5-node TinyOS clique network 141

8.2 Performance comparison in the 10-node TinyOS network 143

8.3 Average duty cycle % of each node in the 10-node TinyOS network . 144

1

Chapter 1

Introduction

Wireless sensor networks (WSNs) have a significant potential in applications in­

teracting with the physical world, such as surveillance and environmental mon­

itoring. In many of these applications, the use of battery-powered sensor nodes

greatly eases deployment of the network, but the limited capacity of the batteries

substantially limits the network lifetime. Idle listening is one of the most significant

sources of energy consumption in sensor nodes. In idle listening, a node waits

with its radio turned on, listening for a possible packet to be received even when

none has been sent.

1.1 Duty Cycling

Many solutions to the problem of idle listening have been proposed utilizing the

technique of duty cycling [48,35]. In this technique, each sensor node turns its radio

on only periodically, alternating between active and sleeping states. For example,

with a 5% duty cycle, a node has its radio on only 5% of the time, resulting in

substantial energy savings. When active, a node is able to transmit or receive data,

whereas when sleeping, the node completely turns off its radio to save energy;

duty cycles of 1-10% are typical in order to maximize energy savings.

2

Contention-based duty cycle MAC protocols in the literature can be roughly

categorized into synchronous and asynchronous approaches, together with some hy­

brid approaches. Synchronous approaches [48, 8] synchronize neighboring nodes

in order to align their active or sleeping periods. Neighbor nodes begin exchange

of a packet only within the common active time, enabling a node to sleep for most

of the time in an operational cycle without missing any incoming packet. This

approach greatly reduces idle listening time, but the required synchronization in­

troduces extra overhead and complexity, and a node may need to wake up mul­

tiple times if its neighbors are on different schedules. Existing asynchronous ap­

proaches [11,35,3], on the other hand, allow nodes to operate independently, each

on its own duty cycle schedule, by employing low power listening (LPL). In LPL,

prior to data transmission, a sender transmits a preamble lasting at least as long

as the sleep period of the receiver. When the receiver wakes up and detects the

preamble, it stays awake to receive the data.

1.2 The Need for Handling Dynamic Traffic Loads

Existing duty cycle MAC protocols, including synchronous and asynchronous ones,

are mainly optimized for light traffic loads. A WSN, however, could often experi­

ence bursty and high traffic loads. For example, either broadcast [33] or converge-

east [50] traffic could suddenly increase channel contention in a local neighbor­

hood. In WSNs, broadcast is widely used for various network wide queries and

3

updates [39], and convergecast is often observed when multiple sensors that have

detected the same event send their reports to the sink node or to a node that does

data aggregation [13].

As existing approaches are mainly optimized for light traffic loads, I found that

they become less efficient in latency, power efficiency, and packet delivery ratio as

traffic load increases. As traffic in a WSN can be quite dynamic, depending on the

events being sensed and the sensing application and protocols being used, an ideal

WSN MAC protocol should perform well under a wide range of traffic loads, including

high loads and bursty traffic.

Research on duty cycle MAC protocols has been active both in the synchronous

approach and in the asynchronous one, as neither approach always outperforms

the other. The target application and network configuration highly affect which

approach is best to be used. For example, when most packets arrive at regular

intervals and/or synchronization overhead is low (e.g., a GPS receiver is avail­

able), a synchronous duty cycle MAC is generally more energy efficient. On the

other hand, if synchronization overhead is high, an asynchronous duty cycle MAC

protocol might be best. Therefore, in this thesis, I present both a synchronous

duty cycle MAC protocol, called DW-MAC (Demand Wakeup MAC), and an asyn­

chronous duty cycle MAC protocol, called RI-MAC (Receiver Initiated MAC), in

order to meet various needs from applications. Furthermore, with asynchronous

duty cycling, multihop broadcast becomes especially challenging as neighbors of

4

a node wake up at different times. The general assumption that one transmission

can reach multiple nodes no longer holds, and thus broadcast protocols based on

this assumption become less efficient. Therefore, I also present a protocol called

ADB (Asynchronous Duty-Cycle Broadcasting) to explore opportunities for effi­

cient broadcast with asynchronous duty cycling.

1.3 DW-MAC: A New Synchronous Duty Cycle MAC Protocol

In order to transmit a packet from one node to another, the radios of both nodes

must be on, motivating the use of synchronization between the operational cycles

of different nodes. Examples of protocols using synchronized approaches include

S-MAC [48, 47], T-MAC [8], and RMAC [9]. For example, in S-MAC [48] time

at each sensor is divided into repeated operational cycles, each further divided

into three periods: Sync, Data, and Sleep. Nodes in S-MAC wake up at the start

of the Sync period to synchronize clocks with each other. During the Data pe­

riod, all nodes remain active. If a node has a packet to send to a neighbor node,

they exchange Request-to-Send (RTS) and Clear-to-Send (CTS) frames during the

Data period, followed by the transmission of the data packet and the return of an

Acknowledgment (ACK) frame. Nodes not involved in communication initiated

during the Data period return to the sleep state at the start of the Sleep period;

other nodes return to the sleep state only after completion of the ACK frame.

5

Although such approaches save energy, they can add significant latency in

packet delivery, since transmission of a packet from one node to a neighbor node

must wait until the next time the nodes are active, if the nodes are currently sleep­

ing. Furthermore, forwarding a packet over multiple wireless hops, as is com­

mon in WSNs, often requires multiple operational cycles to complete. Several ap­

proaches have be proposed to mitigate the additional latency introduced by duty

cycling [8,47,9], but they are mainly optimized for light traffic loads.

In the first part of this thesis, I present a new MAC protocol, called Demand

Wakeup MAC (DW-MAC), that introduces a new low-overhead scheduling algo­

rithm that allows nodes to wake up on demand during the Sleep period of an

operational cycle in order to transmit or receive a packet. This demand wakeup

adaptively increases effective channel capacity during an operational cycle as traf­

fic load increases, allowing DW-MAC to achieve low delivery latency under a wide

range of traffic loads including both unicast and broadcast traffic.

DW-MAC differs from prior work in reducing the additional latency intro­

duced by duty cycling. In DW-MAC, medium access control and scheduling are

integrated, in that during a Data period of an operational cycle, the interval of time

during which the transmission of an access control frame occupies the medium au­

tomatically reserves the proportional interval of time in the following Sleep period

for transmitting and receiving a data packet. This integration minimizes schedul­

ing overhead and collisions. Further, by avoiding transmission of data packets in a

6

Data period, DW-MAC maximizes the number of access control frames that can be

exchanged in a Data period, thus increasing the number of data packets that can

be exchanged in a complete operational cycle.

The contributions of this firt part of my thesis include the following:

• DW-MAC introduces a new low overhead scheduling algorithm that ensures

that data transmissions do not collide at their intended receivers.

• I present the design of DW-MAC that wakes up nodes on demand in order

to efficiently handle a wide range of traffic load including both unicast and

broadcast traffic.

• DW-MAC wakes up a node in a Sleep period only when the node needs to

transmit or receive a packet, in order to minimize energy consumption.

• DW-MAC achieves lower latency, higher power efficiency, and higher packet

delivery ratio compared to existing schemes.

1.4 RI-MAC: A New Asynchronous Duty Cycle MAC Protocol

Asynchronous duty cycling MAC protocols, such as B-MAC [35], X-MAC [3], and

WiseMAC [10], allow nodes to operate independently, with each node on its own

duty cycle schedule. Asynchronous duty cycling protocols typically employ low

power listening (LPL), in which, prior to data transmission, a sender transmits

a preamble lasting at least as long as the sleep period of the receiver. When the re-

7

ceiver wakes up and detects the preamble, it stays awake to receive the data. These

protocols achieve high energy efficiency and remove the synchronization overhead

required in synchronous duty cycle approaches. However, they are mainly opti­

mized for light traffic loads, and I found that they become less efficient in latency,

power efficiency, and packet delivery ratio as traffic load increases, due to their

long preamble transmissions. WiseMAC attempts to improve efficiency by reduc­

ing the duration of preamble transmission, but this improvement requires nodes

to maintain a fixed wakeup schedule and depends on frequent, regular communi­

cation to the same neighbors.

In asynchronous protocols, preamble transmission in LPL-based protocols may

occupy the medium for much longer than actual data transmission. Such long

preamble transmission from a sender could prevent all neighboring nodes with

pending data from transmitting their data. As these nodes have to wait until the

medium is not occupied, some of them could experience significant delay. This is

often the case under bursty or high traffic load such as due to convergecast [50]

and correlated-event workload traffic [17], where multiple sensors that have de­

tected the same event send their reports to the sink node or to a node that does

data aggregation [13]. As traffic in a WSN can be quite dynamic, depending on

the events being sensed and the sensing application and protocols being used, an

ideal WSN MAC protocol should perform well under a wide range of traffic loads,

including high loads and bursty traffic.

8

In the second part of this thesis, I present a new asynchronous duty cycle MAC

protocol, called Receiver Initiated MAC (RI-MAC). RI-MAC attempts to minimize

the time a sender and its intended receiver occupy the medium for them to find

a rendezvous time for exchanging data, while still decoupling the sender and re­

ceiver's duty cycle schedules as B-MAC and X-MAC do.

RI-MAC differs from prior work in asynchronous duty cycle MAC protocols

in how the sender and receiver reach a rendezvous time. In RI-MAC, the sender

remains active and waits silently until the receiver explicitly signifies when to start

data transmission by sending a short beacon frame. As only beacon and data trans­

missions occupy the medium in RI-MAC, with no preamble transmissions as in

LPL-based protocols, occupancy of the medium is significantly decreased, making

room for other nodes to exchange data.

I believe this is the first attempt to apply the idea of receiver-initiated trans­

mission to duty cycle MAC protocols for ad hoc wireless sensor networks. By

coordinating neighboring nodes using beacons in RI-MAC, a receiver adaptively

increases channel utilization as traffic load increases, allowing RI-MAC to achieve

high throughput, packet delivery ratio, and power efficiency under a wide range

of traffic loads.

The contributions of this second part of my thesis include the following:

9

• I present a new asynchronous duty cycle MAC protocol, called RI-MAC, em­

ploying receiver-initiated transmissions, in order to efficiently and effectively

operate over a wide range of traffic loads.

• Due to the receiver-initiated design, RI-MAC not only substantially reduces

overhearing, but also achieves lower collision probability and recovery cost

than do B-MAC and X-MAC.

• I have implemented RI-MAC in TinyOS and evaluate it in a small testbed

network of sensor nodes. We also implemented RI-MAC in the ns-2 network

simulator for evaluations in larger networks.

• RI-MAC significantly improves throughput and packet delivery ratio, espe­

cially when there are contending flows such as bursty traffic or transmissions

from hidden nodes.

• Even under light traffic loads for which X-MAC is optimized, RI-MAC

achieves the same high performance in terms of packet delivery ratio and

latency while maintaining comparable power efficiency.

1.5 ADB: An Efficient Multihop Broadcast Protocol over
Asynchronous Duty Cycling

Existing systems using asynchronous duty cycling do not efficiently support mul­

tihop broadcast-based communication. Multihop broadcast is an important net-

10

work service in many sensor network applications and may be used, for example,

in route discovery or in network-wide queries or information dissemination. Sup­

porting a single-hop broadcast transmission using asynchronous duty cycling is dif­

ficult, due to the independent wakeup times of each of the neighbor nodes of the

node originating the broadcast, generally requiring multiple transmissions of the

single packet from the originating node [20]. The cost of such redundant transmis­

sions is not well taken into account in existing broadcast protocols (e.g. [33,46,34])

designed for always-on networks such as ad hoc networks. With multihop broad­

cast, the problems of single-hop broadcast are amplified, as some neighbor nodes

attempt to forward the broadcast while the original transmitting node still at­

tempts to transmit the packet to others of its neighbors, increasing contention for

the wireless channel and the possibility of collisions.

In the third part of this thesis, I present the design and evaluation of ADB (Asyn­

chronous Duty-cycle Broadcasting), a new protocol for efficient multihop broadcast

in wireless sensor networks using asynchronous duty cycling. ADB takes advan­

tage of the fact that nodes wake up at different times to optimize the progress of

a multihop broadcast at a finer granularity. Rather than treating the transmission

from a node to all of its neighbors as a basic unit of progress for the broadcast, ADB

optimizes at the level of transmission to each neighbor individually. As neighbors

wake up at different times, a sender with ADB uses unicast to reach each neigh­

bor, so that the sender accurately learns which neighbors have been reached by the

11

broadcast; this use of unicast also results in an improvement in reliability through

the use of ARQ as part of the unicast transmission. At the same time, the sender

updates each receiver with up-to-date information on the progress of the broad­

cast, helping a node to avoid redundant transmissions and to allow delegating

transmission for some neighbor to another neighbor with better link quality to it.

These optimizations allow a node to sleep as early as possible and avoid transmis­

sions over poor links, leading to lower energy consumption and delivery latency.

To achieve these goals, ADB is integrated with the MAC layer in order to exploit

information only available at this layer.

The contributions of this third part of my thesis include the following:

• I present the first complete MAC protocol for efficient multihop broadcast in

a wireless sensor network using asynchronous duty cycling, incorporating

multihop broadcast transmission and MAC-layer details including collision

avoidance and recovery and control of radio active state.

• ADB efficiently collects and distributes information on broadcast progress,

substantially reducing redundant transmissions, collisions, and energy con­

sumption, by allowing a node to transmit to only a subset of neighbors and

to go to sleep as soon as possible.

12

• ADB substantially reduces delivery latency by avoiding collisions and trans­

missions over poor links. I prove that ADB achieves close-to-optimal deliv­

ery latency with error- and collision-free links.

• I evaluate ADB both through ns-2 simulation and through implementation

in a testbed of MICAz motes using TinyOS. This evaluation shows that ADB

substantially outperform multihop broadcast based on X-MAC for power ef­

ficiency, packet delivery latency, and delivery ratio.

1.6 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 discusses related work on

duty cycle MAC protocols. The next six chapters present the design and evalua­

tion of DW-MAC, RI-MAC, and ADB. In particular, first, Chapter 3 describes the

detailed design of DW-MAC, and Chapter 4 presents a comparative evaluation of

DW-MAC with representative synchronous duty cycle MAC protocols. Follow­

ing this, the detailed design of RI-MAC is presented in Chapter 5, and Chapter 6

presents an evaluation of RI-MAC and compares its performance with represen­

tative asynchronous duty cycle MAC protocols. Chapter 7 then describes the de­

tailed design of ADB, and Chapter 8 presents the comparative evaluations of ADB

with multihop broadcast with representative asynchronous duty cycle MAC pro­

tocols. Finally, Chapter 9 presents conclusions.

13

Chapter 2

Related Work

Many existing duty cycle MAC protocols are optimized for light traffic loads. This

chapter discusses related work in the area of synchronous duty cycle protocols,

compared with DW-MAC; in the area of asynchronous duty cycle protocols, com­

pared with RI-MAC; and in the area of multihop broadcast in a wireless sensor

network using asynchronous duty cycling, compared with ADB.

2.1 Synchronous Duty Cycle MAC Protocols

A number of previous approaches to reduce latency in synchronous duty cycle

MAC protocols for WSNs have been proposed, although none provides the gener­

ality or performance of DW-MAC. I discuss these previous approaches here.

S-MAC [48] was one of the original synchronized duty cycle MAC protocols

for WSNs. However, as noted in Section 1.3, this approach can add significant

latency in packet delivery, since if the nodes are currently sleeping, transmission

of a packet from one node to a neighbor node must wait until the next time the

nodes are active. The developers of S-MAC later introduced a modification to

S-MAC known as adaptive listening [47] to improve its end-to-end delivery latency

over multiple hops. With adaptive listening, if a node overhears another node's

14

Wake up at end of transmission
' ! I f C l i m n i A l / indicated by received CTS

B

C

DATATI71|e—ff l . time ——

" ' " " ("
.Mi R i l l DATA I I

Sync i Data i Sleep

H Transmit [] Receive R:RTS C:CTS A:ACK § Active radio

Figure 2.1. S-MAC with adaptive listening. Node C wakes up at the end of the
transmission between node A and B based on the information in the overheard
CTS, so that B can forward a packet to C immediately rather than waiting until the
next operational cycle.

communication (e.g., the RTS or CTS) during the Data period, it wakes up for a

short time when the overheard communication finishes; if this node is the next-

hop node along a multihop path, its neighbor can forward the packet immediately

to this node rather than waiting for the Data period in the next operational cycle

to initiate the forwarding. Figure 2.1 shows an example of the operation of S-MAC

with adaptive listening. Node A here sends a data packet to node B, with a next-

hop node of C. When node C overhears the CTS from B, it goes to sleep but wakes

up again when the ACK from B should have been completed, based on the infor­

mation in the overheard CTS. Node B can immediately forward the data packet to

C at this time.

S-MAC with adaptive listening can deliver a packet up to 2 hops per opera­

tional cycle but generally cannot go beyond that within the cycle since the next

hop after C (such as some node D) is unlikely to have been awake to overhear the

communication from B to C; node C will transmit an RTS to D but will go back

15

to sleep itself when it fails to receive a CTS in reply from D. The use of adaptive

listening can also cause a significant increase in energy consumption, since many

neighboring nodes may overhear the RTS or CTS and wake up, whereas only one

of them is the next-hop node. Moreover, since a node does not wake up until an

overheard communication ends, this node then may not have complete knowl­

edge of the busy state of the wireless medium. For example, the node might have

missed hearing an RTS or CTS of another data transmission in the neighborhood; if

the node in this case starts transmitting any packet, the packet may cause collisions

at other nodes.

Similarly, T-MAC [8] can reduce latency by adaptively changing the ending

time of a Data period. Although T-MAC is primarily designed to shorten the Data

period when no traffic is around the node, so that nodes can preserve more energy,

T-MAC can also extend the Data period to allow multihop forwarding during a

single Data period. However, as with S-MAC with adaptive listening, T-MAC can

generally deliver a packet over only at most 2 hops within an operational cycle,

since nodes further downstream will be unlikely to overhear the upstream com­

munication 2-hops away and thus will not remain awake to receive a forwarded

packet; T-MAC may also increase energy consumption, as many nodes other than

an intended next-hop node will remain awake.

Several other approaches to reducing latency have been proposed, that make

specific assumptions on the communication pattern among nodes or on the other

16

protocols used in the WSN. For example, DMAC [28] reduces latency only for

data gathering communication in which multiple nodes try to send data to a sink

node through a unidirectional tree of paths. Likewise, the streamlined wakeup op­

timization proposed by Cao et al. [4] address only the case in which each sensor

node sends data to a sink node (although there may be more than one sink node

for the network). For a network of tree topology or ring topology, Lu et al. [29]

discuss how to minimize end-to-end latency. The work of Keshavarzian et al. [19]

analyzes latency for specific communication and wakeup patterns for communi­

cation with the sink node and proposed the multi-parent technique to improve

performance under the assumption that nodes at higher levels in the communica­

tion tree have more than a single neighbor and thus can have more than a single

parent. In contrast to each of these protocols, DW-MAC supports arbitrary com­

munication between any nodes, whether to a sink node or to the other peer nodes

such as to facilitate in-network processing of sensor data. The fast path algorithm

proposed by Li et al. [26] also supports arbitrary communication patterns but as­

sumes that such "fast paths" are long-lived and are set up through the routing

protocol; DW-MAC makes no such assumptions and supports arbitrary communi­

cation between nodes at any time without relying on other protocols for assistance.

RMAC [9] represents a different approach to reducing latency in multihop for­

warding; an example of the operation of RMAC is illustrated in Figure 2.2. In

RMAC, a control frame, called a Pioneer frame (PION), is forwarded over mul-

17

A

B

C

Figure 2.2. Multihop forwarding of a unicast packet in RMAC. P indicates a PION
frame that is used for scheduling.

tiple hops (e.g., A —• B —*• C) during a Data period in order to inform nodes B

and C when to wake up during the Sleep period to receive or transmit the corre­

sponding data packet. The number of hops over which RMAC can forward a data

packet during an operational cycle is limited by the duration of the Data period but

may be set to any value depending on the parameters used. However, as a source

node always starts transmitting a data packet at the beginning of a Sleep period

(e.g., node A in Figure 2.2), two hidden sources that have succeeded in schedul­

ing through PIONs in a Data period always cause collisions at the beginning of

the next Sleep period. In addition, a node waken up due to a previous PION will

wake up unnecessarily if the expected data packet cannot arrive due to collisions

at previous hops.

The scheduling mechanism in DW-MAC ensures that data transmissions do

not collide at their intended receivers, and many other techniques for collision-

free transmission in WSNs have been studied by others (e.g., [37, 22]). How­

ever, in contrast to these techniques, DW-MAC is a contention-based protocol

that integrates medium access control and scheduling seamlessly. Furthermore,

18

DW-MAC supports not only unicast communication but also broadcast communi­

cation. Many other techniques for efficient broadcast communication in wireless

sensor networks and in wireless ad hoc networks have been studied (e.g., [13,46,

34, 36, 39, 34]). However, in contrast to these techniques, a node in DW-MAC

wakes up on demand during a Sleep period; scheduling frames during the Data

period explicitly coordinate nodes when to wake up during the Sleep period to

transmit or receive a packet.

2.2 Asynchronous Duty Cycle MAC Protocols

In asynchronous duty cycle MAC protocols, some mechanism is needed in order

for the sender and receiver to "rendezvous" in time, so that both are awake for

the sender to transmit a packet and the receiver to receive it. B-MAC [35] and

X-MAC [3] were among the first asynchronous duty cycle-based protocols and

defined the basic structure of the mechanism for solving this problem commonly

used in asynchronous duty cycle MAC protocols in sensor networks. In particular,

in B-MAC, each node periodically wakes up to check if there is any activity cur­

rently on the wireless channel. If so, the node remains active to receive a possible

incoming packet. Prior to DATA frame transmission, a sender transmits a long

"wakeup signal," called a preamble, which lasts longer than the receiver's sleep

interval. This policy ensures that the receiver will wake up at least once during

the preamble, allowing each node to wake up or sleep based on its own schedule.

19

B-MAC is very energy efficient under light traffic because a node spends only a

very short period of time in checking channel activity at each scheduled wakeup

time. However, a node with B-MAC may wake up and remain awake due to chan­

nel activity, only to, in the end, receive one or more DATA frames actually destined

for other nodes.

X-MAC solves this overhearing problem in B-MAC by using a strobed preamble

that consists of sequence of short preambles prior to DATA transmission, as illus­

trated in Figure 2.3. In this and similar figures in this thesis, the period of time

during which a node is active is indicated by a solid gray background, frame re­

ception by a node is indicated by black text on the gray background, and frame

transmission by a node is indicated by white text on a dark background. The tar­

get address is embedded in each short preamble, which not only helps irrelevant

nodes to go to sleep immediately but also allows the intended receiver to send an

early ACK to the sender so that the sender stops preamble transmission and starts

transmitting the DATA frame immediately. In this way, X-MAC saves energy by

avoiding overhearing while reducing latency almost by half on average. After re­

ceiving a DATA frame, a receiver in X-MAC stays awake for a duration equal to

the maximum backoff window size to allow queued packets to be transmitted im­

mediately. I refer to this duration as the dwell time in the rest of this thesis.

The UPMA (Unified Power Management Architecture for Wireless Sensor Net­

works) package [20] implemented a variation of X-MAC in TinyOS, in which the

20

s
R

..Short preambles

i ftm
Early ACK I

Dwell time for queued packets

Periodic CCA check

IM

Figure 2.3. Operation of X-MAC, including the strobed preamble and early acknowl­
edgment. During a scheduled wakeup time, a node does a CCA (clear channel
assessment) check that is longer than the gap between two short preambles.

.<

DATA
Periodic CCA check

s
R

Figure 2.4. The variation of X-MAC implemented in the UPMA package in TinyOS.
The strobed preamble is replaced by a chain of DATA frame transmissions.

DATA frame itself is used as the short preamble, as illustrated in Figure 2.4. This

strategy simplifies implementation and helps a sender to determine whether the

DATA is successfully delivered from the ACK from the receiver. In the rest of this

thesis, I refer to this variation of X-MAC as X-MAC-UPMA.

B-MAC and X-MAC achieve high power efficiency under light traffic load, but

their preamble transmissions occupies the wireless medium for a long time until

DATA is delivered, making them less efficient in case of contending traffic flows.

In contrast, a sender in RI-MAC does not occupy the medium until the intended

receiver is ready for receiving, by using receiver-initiated transmission. This prop­

erty allows RI-MAC not only to achieve comparable performance to X-MAC un­

der light traffic load, but to handle a wide range of traffic loads more efficiently.

21

In addition, the receiver-initiated transmission makes RI-MAC more efficient in

detecting collisions and recovering lost DATA frames.

WiseMAC [10] is similar to B-MAC, but a sender in WiseMAC efficiently re­

duces the length of the wakeup preamble by exploiting the sampling of the sched­

ules of its direct neighbors. In effect, although individual nodes are not synchro­

nized in waking up at the same time as each other, a node does synchronize with

its neighbors in learning the wakeup schedules of those neighbors to which it is

sending data. To efficiently enable this learning, a node receiving a DATA frame

includes in the following ACK frame the remaining time until its next sampling

time. With this information, and taking possible clock drifts into account, the

sender for its next DATA frame to this receiver estimates when the receiver will

wake up next, and starts transmitting its preamble just before then. The resulting

shortened preamble greatly helps to save energy and improve channel utilization.

However, WiseMAC, as with B-MAC, suffers from the possibility of simultane­

ous transmissions from hidden nodes, due to the similar preamble sampling tech­

niques they use. In addition, each node with WiseMAC must maintain the same

regular wakeup schedule over time, allowing problems such as starvation due to

repeated collisions between competing nodes that wake up at the same time over

and over again.

The idea of receiver-initiated transmission in a MAC protocol is not new, but

to the best of my knowledge, RI-MAC represents the first attempt to combine

22

this idea together with duty cycling in the context of MAC protocols for ad hoc

wireless sensor networks, where power efficiency is a major concern. Garcia-Luna-

Aceves et al. proposed a receiver-initiated collision-avoidance scheme [16] for gen­

eral wireless networks, where collision is a major concern but power efficiency is

of lesser importance.

Receiver-initiation has previously been applied to sensor networks in the PTIP

(Periodic Terminal Initiated Polling) mechanism [11], but only for infrastructure

WSNs, where each sensor node is in range of an access point, and access points are

assumed to be energy unconstrained. With PTIP, a sensor node periodically wakes

up and sends a poll packet to an access point with which the node is associated. If

the access point has buffered any packets when the node was sleeping, the access

point starts sending those packets to the node upon receiving the poll. The type

of WSN assumed for PTIP is very different from a typical ad hoc WSN, where

multihop packet delivery can be common and most sensor nodes have limited

battery capacity. In addition, the PTIP mechanism was designed only for packets

being sent from an access point to a sensor node.

Another receiver-initiated mechanism, known as Low Power Probing (LPP),

was recently introduced in the Koala system [32]. Koala is designed for reliably

downloading bulk data from all sensor nodes, for applications with no real-time

requirements. All downloads in Koala are initiated by the gateway or gateways,

allowing the nodes to sleep most of the time until the gateway's download initia-

23

tion. With LPP, each node periodically broadcasts a short probe packet requesting

an acknowledgment. If an acknowledgment is received, the node remains active

and starts waking up other nodes by acknowledging their probes; otherwise the

node goes back to sleep. The LPP mechanism in Koala differs from RI-MAC in

both objective and design. In particular, LPP is used in Koala only for waking

up all sensor nodes for a download and is not involved in the actual data trans­

fer during a download. As such, features of RI-MAC such as back-to-back data

transmission and collision detection and recovery were not discussed in LPP.

Synchronous duty cycle MAC protocols (e.g., [48, 8, 9]) and hybrid approaches

(e.g., [49]) also achieve great energy efficiency in WSNs. The major difference be­

tween RI-MAC and these MAC protocols is that RI-MAC does not require any syn­

chronization, thus saving the overhead and complexity of clock synchronization.

Even though no node occupies the medium for a long time in these synchronized

duty cycle MAC protocols, it is still difficult for contending flows to finish their

transmissions within a single cycle. Specifically, the time window during which

transmission is allowed is usually very short in these protocols, as neighboring

nodes' wakeup times are synchronized. Once one flow acquires the medium, other

flows usually have to wait until next cycle, as their receivers might have gone to

sleep when the medium becomes idle. Therefore, RI-MAC has the potential to

handle contending flows, and thus bursty traffic, more efficiently and effectively.

24

2.3 Broadcast over Asynchronous Duty Cycling

The goal in multihop broadcast is for each node in a network to receive a copy

of some broadcast packet. Multihop broadcast has been well studied in the con­

text of mobile wireless ad hoc networks (e.g., [33, 46, 34]). For sensor networks,

Trickle [25] and DIP [27] are two examples of efficient dissemination protocols that

distribute program or data items to all nodes in a network based on gossiping; as

long as the network is connected, these protocols achieve perfect reliability. Other

protocols, such as RBP [40], target multihop broadcast for services such as routing

and resource discovery, needing only propagation of small messages with high

probability and low latency. RBP extends flooding-based approaches by allowing

some nodes to adaptively rebroadcast a packet more than once based on the lo­

cal density of the network, thus greatly improving end-to-end reliability without

significantly increasing overhead.

ADB differs from these protocols in that it is optimized for use with asyn­

chronous duty cycling and is tightly integrated with the MAC protocol in order

to exploit opportunities specific to asynchronous duty cycling. In the protocols

above, the transmission of a broadcast from one node to all neighbors is treated as

a single, basic unit of operation. Since the neighbors wake up at different times,

this basic unit can extend over a long time. ADB, instead, optimizes the progress

of the broadcast at the level of transmission from the node to each neighbor indi­

vidually. Optimization at such a finer granularity avoids redundant transmissions,

25

allows following hops to quickly begin forwarding a multihop broadcast, and en­

ables nodes to go to sleep again as soon as possible. In this way, ADB achieves

near optimal latency, high energy efficiency, and high delivery radio, making ADB

efficient in distributing small messages for services such as routing and resource

discovery when asynchronous duty cycling is used.

To my best knowledge, the only prior work that optimizes multihop broad­

cast over asynchronous duty-cycling in wireless sensor networks is that of Wang

et al. [44,45]. They present a centralized algorithm, transforming the problem into

a shortest-path problem in a time-coverage graph, and also present two similar

distributed algorithms that do not require this centralized coordination. However,

they treat the problem as a transmission scheduling problem, not as a MAC prob­

lem, and also assume that the future wakeup schedules of 2-hop neighbors can

be known in advance. Their work thus simplifies many aspects necessary for a

complete MAC protocol. For example, they divide time into fixed slots, assuming

that the active and sleeping periods of all nodes are are integer multiples of these

slots and that in each slot, an active node can either receive or forward one packet

only. Their evaluations were based on simulations, but no information was given

on details such as the mechanisms or overhead for learning the wakeup sched­

ules of 2-hop neighbors or on how the wireless channel was simulated, making

their results difficult to interpret. Moreover, none of their algorithms have been

implemented and evaluated on real hardware.

26

In contrast, ADB does not depend on learning the future wakeup schedules of

2-hop neighbor nodes. ADB is also seamlessly integrated into a complete asyn­

chronous duty-cycle MAC protocol, allowing it to process both unicast and broad­

cast traffic efficiently in the same network. In this thesis, I also evaluate ADB

through detailed simulations using ns-2 and through experiments in a real im­

plementation in a testbed of MICAz motes using TinyOS.

Most work on asynchronous duty-cycling MAC protocols for sensor networks

has focused on the unicast problem, and few of these protocols have clearly defined

methods even for single-hop broadcast or studied broadcast performance. In single-

hop broadcast, a node delivers a broadcast packet to all of its direct neighbors,

which is then often used as a building block for multihop broadcast when needed.

B-MAC [35] can support single-hop broadcast in the same way as unicast, since

the preamble transmission, extended over an entire sleep period, gives all of the

transmitting node's neighbors a chance to detect the preamble and remain awake

for the DATA packet. X-MAC [3] substantially improves B-MAC's performance

for unicast, but broadcast support is not clearly discussed in that paper. This gap

is filled by the X-MAC implementation in the UPMA package [20,43] of TinyOS,

where a transmitter repeatedly transmits copies of a DATA packet over a duty

cycle interval, as illustrated in Figure 2.5. In the rest of this thesis, I refer to this

implementation of X-MAC as X-MAC-UPMA.

27

R1 mmm DAWHSI lii

R2 fflfflt WM ffi&

Figure 2.5. Broadcast support in X-MAC in the UPMA package of TinyOS. A
transmitter S repeatedly transmits copies of a broadcast packet (DATA frame) over
a duty cycle interval, during which each neighbor (node Rl and R2) wakes up at
least once and thus has an opportunity to receive the packet.

With X-MAC-UPMA, a transmitter must repeatedly transmit the packet over

an entire duty cycle, even if all its neighbors have already received it. These re­

peated transmissions unnecessarily consume energy at the transmitter and delay

forwarding from this node's neighbors for a multihop broadcast. In addition, the

neighbors remain awake even after receiving the packet the first time, further wast­

ing energy; a possible improvement would be to let a neighbor go to sleep once

a broadcast packet is received, but this would require careful consideration as to

when to turn a node on again later for forwarding the broadcast. In addition, if two

transmitters, hidden to each other, transmit at the same time, their transmissions

will produce repeated collisions at other receivers over a long period of time; after

waking up, if a node cannot receive a valid packet after a short timeout (100 ms is

the default value in X-MAC-UPMA), it will go to sleep and thus never receive the

broadcast packet.

ADB avoids the problems faced by X-MAC-UPMA by efficiently distributing

information on the progress of each broadcast, allowing a node to go to sleep im-

28

mediately if no more neighbors need to be reached. ADB also uses this progress

information to coordinate neighbors of a node in transmitting a packet to the node,

so that collisions are significantly reduced. ADB is designed to be integrated with

a unicast MAC that does not occupy the medium for a long time, in order to min­

imize delays before forwarding a broadcast. The effort in delivering a broadcast

packet to a neighbor is adjusted based on link quality rather than the fixed number

of transmissions in X-MAC-UPMA.

29

Chapter 3

DW-MAC Design

In this chapter, I present the design of DW-MAC, a synchronous duty cycle MAC

protocol that efficiently handles a wide range of traffic load including both unicast

and broadcast traffic.

3.1 Overview

DW-MAC is a synchronized duty cycle MAC protocol, in which each cycle is di­

vided into three periods: Sync, Data, and Sleep (Figure 3.1). I denote the dura­

tion of each period by TSync, TData, and TSieep, respectively. Similar to prior work,

DW-MAC assumes that a separate protocol (e.g., [12,15]) is used to synchronize

the clocks in sensor nodes with required precision. The basic concept of DW-MAC

is to wake up nodes on demand during the Sleep period of a cycle in order to

transmit or receive a packet. This demand wakeup adaptively increases effective

channel capacity during a cycle as traffic load increases, allowing DW-MAC to

achieve low delivery latency under a wide range of traffic loads including both

unicast and broadcast traffic.

DW-MAC is unique in the way it schedules nodes to wake up during the Sleep

period of a cycle. In DW-MAC, medium access control and scheduling are fully

30

integrated. In a Data period, a node with pending data contends for channel ac­

cess using a CSMA/CA protocol as in IEEE 802.11. DW-MAC, however, replaces

RTS/CTS with a special frame called a scheduling frame (SCH). The interval of

time during which the transmission of a SCH occupies the wireless medium auto­

matically and uniquely reserves the proportional interval of time in the following

Sleep period for transmitting and receiving the pending data packet. Essentially,

DW-MAC sets up a one-to-one mapping between a Data period and the following

Sleep period. An SCH carries no timing information, and the transmission of an

SCH simply replaces that of RTS/CTS for medium access control. In this way,

DW-MAC minimizes scheduling overhead. As in an RTS, an SCH contains the

destination address so this SCH wakes up only the intended receiver, minimizes

energy consumption due to unnecessary wake-ups. Furthermore, this integration

ensures that data transmissions do not collide at their intended receivers as dis­

cussed below.

Figure 3.1 shows an overview of scheduling in DW-MAC based on this one-

to-one mapping between a Data period and the following Sleep period. In this

example, node A wants to transmit a data packet to node B. Node A first con­

tends for channel access and transmits an SCH during the Data period. Suppose

transmission of the SCH starts 7\ time units after the beginning of the Data period.

Based on 7\ and the duration of the SCH transmission, T3, both nodes A and B will

schedule their wakeup time to T2 from the beginning of the following Sleep period,

31

.scheduling frame (SCH)

! -^TJj*- / r * - T2-

A i ; w 1 — r •„•

I ' J

JL
;Sync; Data

, lData

| § - | wake up to transmit data packet

T4-

• wake up to receive data packet

Sleep

' ^Sleep "

DW-MAC proportional mapping: J = § = ? ~
12 T4 Tsieep

Figure 3.1. Overview of scheduling in DW-MAC.

and will agree on a maximum wakeup duration of T4, based on the ratio between

TData and Tsieepr as shown in the figure. If the packet to be transmitted is a unicast

packet, node B will return a confirmation SCH frame (not in the figure) SIFS delay

after receiving the request SCH from A; if the packet is a broadcast packet, node B

takes no further action. When nodes A and B both wake up at the agreed time,

node A transmits the actual data packet, which can be either broadcast or unicast.

In case of unicast packet, node B acknowledges the successful receipt of the packet

with an ACK. Although I show the scheduling for only one pair of nodes in this ex­

ample, DW-MAC allows multiple contending nodes to exchange SCH frames with

their intended receivers during a Data period, so that multiple data transmissions

can happen in the following Sleep period.

3.2 Mapping Function for Scheduling

As previously explained, DW-MAC exploits a contention based Data period in

order to schedule actual data transmissions during the subsequent Sleep period.

32

To avoid collisions during the Sleep period, a sender must coordinate with its

intended receiver to find a period of time in the Sleep period during which the

neighboring nodes of both are idle. The challenge in designing such a protocol is

twofold:

• minimize message exchanges between a sender, the intended receiver, and

their respective neighbors for schedule negotiation; and

• minimize the size of a scheduling frame, e.g., avoid carrying timing informa­

tion in a scheduling frame.

DW-MAC meets these goals by employing a one-to-one proportional mapping

function between time during a Data period and time during the subsequent Sleep

period. With this mapping function, DW-MAC schedules data transmissions with­

out exchanging any timing information. Let Tf be the time difference between a

specific time instance U in a Data period and the beginning of that Data period, and

let Tf be the time difference between the start of the subsequent Sleep period and

the corresponding mapped time instance during the Sleep period. Accordingly,

DW-MAC defines the following mapping function:

Ts = Tp. T^t (3.i)
TData

By mapping each time instant in a Data period into the subsequent Sleep pe­

riod, the mapping function scales the time based on the ratio between TSieep and

TData> and hence a time interval of 7\ time units in the Data period will be mapped

33

into T\ • ?pm time units during the Sleep period. With this mapping function,

a sender and its intended receiver(s) can uniquely determine the starting point

for data packet transmission in a Sleep period from the starting time of the cor­

responding SCH transmission during the previous Data period, without includ­

ing even a single bit of timing information in the SCH. In addition, the differ­

ence between the mapped beginning and end of the SCH transmission determines

the maximum data transmission time. Furthermore, this proportional mapping

between the Data period and the Sleep period creates an important property of

DW-MAC, defined by the following theorem:

Theorem 1 Any receiver that wakes up in a Sleep period is never in range of two simul­

taneous data packet transmissions, i.e., data transmissions by nodes that wake up during

the Sleep period do not collide at their intended receivers.

Proof: By contradiction. Assume that two data transmissions could collide.

In order for data transmissions to collide at a node, they must overlap with each

other. Therefore, the respective SCHs should also overlap at that node during

the previous Data period. In this case, that node could not have decoded any

SCH and thus would not wake up during the Sleep period, which contradicts the

assumption. •

This theorem only relates to collisions between data packets. A collision be­

tween a data packet and an ACK is still possible. This collision could be eas-

34

ily avoided by delaying the ACK to the mapped start time of the confirmation

SCH sent from the node that transmits this ACK, but such data-ACK collision is a

rare event that would require very specific topology and timing setup between the

nodes involved in the collision. In my implementation, I require a receiver to im­

mediately acknowledge a data packet, so that both the sender and the receiver can

go to sleep immediately and avoid wasting energy waiting for the delayed ACK.

3.3 Scheduling Frame (SCH)

Besides the standard fields included in an RTS/CTS, such as sender and receiver

addresses, and duration of the transmission, an SCH also includes some cross-

layer information. For a broadcast packet, SCH includes the network layer address

of its source and its sequence number. This information helps a node to decides

whether the incoming broadcast packet has been received before or not, in order

to avoid waking up to receive copies of the same packet multiple times. For a

unicast packet, an SCH includes the network layer address of its final destination.

This cross-layer information enables a node to set up a schedule to the next hop neighbor

before receiving the actual data packet, as discussed in Section 3.5.

An SCH serves either as a scheduling request or a scheduling confirmation.

For a multihop forwarding, an intermediate node sends a single SCH serving both

purposes: first, it confirms the received SCH from the upstream node, and second,

it schedules the forwarding of the packet to the next downstream node. In order to

35

distinguish between the two uses of SCH, an SCH includes two bits in the header

to indicate which role(s) it is playing. Since an access control frame in S-MAC is 10

bytes [47] and the address of a node usually takes two bytes [24], I use 14 bytes as

the size for an SCH to hold the additional cross-layer information in the DW-MAC

simulations presented presented in Chapter 4.

3.4 Broadcast and Unicast in DW-MAC

DW-MAC supports two modes of operation: unicast traffic and broadcast traffic.

An example of broadcasting of a data packet in DW-MAC is illustrated in Fig­

ure 3.2. After successfully transmitting an SCH, a sender (node A) starts broadcast­

ing the packet at the time calculated based on the mapping function (Equation 3.1),

Tf in this example. Based on the source address and the sequence number of the

packet which are included in the SCH, each receiver decides whether it has re­

ceived the packet before. In case the packet has already been received by this node,

the SCH is ignored. Otherwise, the receiver registers a wakeup time for receiving

the incoming packet. In this example, node B estimates Tf based on when the

SCH is received and its transmission delay. Using the mapping function, node B

sets up a timer to wake up at T-f after the beginning of the Sleep period. Note that

node B can contend for another SCH transmission and schedule the rebroadcast of

the incoming packet even though it does not yet have the packet.

36

B i JIL
iSync! Data

DATA

Sleep

Figure 3.2. Broadcast in DW-MAC.

|SynC; Data " > confirmation SCH frame S l e eP

Figure 3.3. Unicast in DW-MAC.

For unicast traffic in DW-MAC, a sender still transmits an SCH prior to data

transmission as it does for a broadcast packet. However, DW-MAC requires the

intended receiver of the data packet to send back another SCH, SIFS after the re­

ceipt, to confirm the receipt of the first SCH. If the confirmation is received in time,

the sender sets up a wakeup time for data transmission. Otherwise, the sender

attempts to transmit another SCH later as the retransmission of an RTS. Figure 3.3

illustrates how node A transmits a unicast packet to node B.

3.5 Optimized Multihop Forwarding

DW-MAC optimizes the timing of transmitting SCH frames in order to maximize

the number of hops either a unicast or a broadcast packet can traverse in a cycle.

Figure 3.4 illustrates the optimized multihop forwarding of a unicast packet. In

this example, node A first sends an SCH to node B in order to set up a schedule for

37

-*vir m.
Life

I s l l
jSyncJ Data

DATA~ffl J l fM i lA l

UTS
Sleep

Figure 3.4. Optimized multihop forwarding of a unicast packet. Node B sends an
SCH to wake up node C at the time indicated by T| and confirms the SCH received
from node A.

a pending packet with final destination of node C. The SCH contains the network

layer address of the final destination C. Upon receiving this SCH, node B calculates

the wakeup time Tf and checks the network layer destination in the SCH. Based

on information from the routing layer (e.g., as is done in RMAC), node B will find

that C is the next hop for the incoming packet. In this case, node B sends another

SCH, SIFS after receiving the SCH from A. This SCH not only confirms the SCH

just received from A but also wakes up C at the time indicated by T^ (both bits in

the header of the SCH are set, indicating that this SCH is serving both roles). In

this way, a unicast packet can traverse x hops by only using x + 1 SCH frames in a

cycle, and the gap between two consecutive SCHs is just SIFS, which suggests more

SCH exchanges in a data period and more data transmissions in a cycle. Multihop

forwarding in a similar manner is also supported by RMAC. However, DW-MAC

dramatically reduce the collisions experienced by RMAC due to schedule conflicts,

as DW-MAC ensures that two data frame transmissions will not collide with each

other.

38

DW-MAC can also speed the propagation of a broadcast packet when some

neighbor information is available. The main idea is to favor the rebroadcast of a

broadcast packet along some path in order to shorten delays between rebroadcasts

and to improve spatial reuse. In the SCH a node transmits, the node specifies an

immediate forwarder that rebroadcasts the SCH SIFS after receiving the SCH. In the

example illustrated in Figure 3.5, node A is specified as the immediate forwarder

by node B. Any node other than the immediate forwarder (node C) backoffs be­

fore rebroadcasting the SCH. Node A and C will specify an immediate forwarder

other than B in the SCH they rebroadcast respectively. This optimized forward­

ing makes it possible for an SCH and thus the corresponding data packet to reach

further nodes in a single cycle than having all rebroadcasting nodes compete for

the medium equally. Although this reduced randomness could increase collision

probability, the improved spatial reuse usually offsets this increase or even lowers

total collision probability as shown in the experiments in Section 4. Many criteria

can be used for choosing an immediate forwarder, such as location, degree, or the

number of children nodes of a neighbor. In DW-MAC implementation, this opti­

mized forwarding is used when a broadcast tree of a WSN is available and a node

knows its children nodes' height (the number of edges on the longest downward

path to a leaf). For an SCH to be rebroadcast, if the SCH is received from the parent

node, a node chooses the child with greatest height as the immediate forwarder. If

39

SIFS

-»T°
A

B
! - I T ?

wm
r P i l l ' Wk

|Sync| Data

DATA 'mis

DATA

Sleep

Figure 3.5. Optimized multihop forwarding of a broadcast packet. Node B speci­
fies node A as the immediate forwarder, which rebroadcasts an SCH SIFS after re­
ceiving that SCH from A. Node C rebroadcasts the SCH when its backoff counter
expires.

this SCH is received from one child node, the parent node of the SCH receiver is

chosen as the immediate forwarder.

3.6 Implementation Issues

I chose to put a packet size limit in my implementation of DW-MAC, although

DW-MAC can support larger packet sizes either by increasing the size of SCH

frames or by using variable SCH frame sizes for variable packet sizes. This design

choice was based on the fact that popular sensor radios usually have a packet size

limit. For example, CC1000 in Mica2 [24] and CC2420 in MicaZ [31] have a packet

size limit of 256 and 128 bytes, respectively. With a low duty cycle configuration

such as is common (and as I used in my simulations), a small SCH can be mapped

to a period long enough for these packet limits.

Wakeup times calculated at the sender and receiver(s) are not necessarily per­

fectly aligned due to propagation delay and processing time. However DW-MAC

40

does not require an accurate estimation of the start of a transmission. DW-MAC

needs only to ensure that a receiver wakes up early enough during a Sleep period

so that an incoming packet is not missed, which can be ensured by wakening a

receiver e seconds before an estimated arrival time.

41

Chapter 4

Evaluation of DW-MAC

I evaluate DW-MAC using version 2.29 of the ns-2 simulator both under unicast

and broadcast traffic. In the simulation configuration, each sensor node has a sin­

gle omni-directional antenna, using the standard ns-2 combined free space and

two-ray ground reflection radio propagation model. Under unicast traffic, I com­

pare DW-MAC against S-MAC, S-MAC with adaptive listening, and RMAC. Un­

der broadcast traffic, because broadcast is not supported in S-MAC with adaptive

listening or in RMAC, I compare DW-MAC only against S-MAC.

Table 4.1 summarizes the key parameters used in my simulations. Except for

the parameters on radio power consumption that are typical values for Mica2 ra­

dios (CC1000) [49], I use the default settings in the standard S-MAC simulation

module distributed with the ns-2.29 package, also used for evaluations of S-MAC

and RMAC in previous work [9]. The transition time of the CC1000 radio between

sleep and active states is around 2.47 ms [6], but the state transition power is not

available in the data sheet. Although the state transition power is normally much

lower than Tx or Rx power, I set the state transition power to the same value as

for Tx power in order not to favor DW-MAC, which requires more state transi­

tions than S-MAC in this aspect; I observed similar trends in the results even if

42

Table 4.1. Networking Parameters

Bandwidth
Tx Power
Rx Power
Idle Power
Sleep Power
SIFS
DIFS
Retry Limit

20 Kbps
31.2 mW
22.2 mW
22.2 mW

3//W
5 ms
10 ms

5

Channel Encoding Ratio
Tx Range
Carrier Sensing Range
Contention Window (CW)
SizeofRTS/CTS/ACK
SizeofPION/SCTL
State Transition Power
State Transition Time

2
250 m
550 m
64 ms
10 B
14 B

31.2 mW
2.47 ms

the state transition power is 0. In evaluating power efficiency, I focus on energy

consumed by radios but ignore energy consumed by other components such as

CPU and memory [38]. The transmission range and the carrier sensing range are

modeled after the 914MHz Lucent WaveLAN DSSS radio interface, which is not

typical for a sensor node, but I use these parameters to make the results compara­

ble to those reported in previous work, and since measurements have shown that

similar proportions of the carrier sensing range to the transmission range are also

observed in some state-of-art sensor nodes [2].

In the simulations, the duty cycle is kept constant at 5% for S-MAC, RMAC, and

DW-MAC. The durations for the Sync, Data, and Sleep periods are shown in Ta­

ble 4.2. For generating comparable results with the earlier evaluation of RMAC [9],

I use the same duty cycle-related parameters for DW-MAC as were used in that

evaluation.

To simplify my evaluations, routing traffic is not included in the simulations;

I assume that there is a routing protocol deployed to provide the shortest path

43

Table 4.2. Duty Cycle Configuration

S-MAC
RMAC
DW-MAC

TSync (ms)
55.2
55.2
55.2

TData (ms)
104.0
168.0
168.0

TSleep <ms)
3025.8
4241.8
4241.8

Tcycle <ms)
3185.0
4465.0
4465.0

between any two nodes. I also ensure that every network used in the simulations

is a connected network. In addition, I do not include any synchronization traffic

and assume all the nodes in the network have already been synchronized to use a

single wake-up and sleep schedule.

For simulations under unicast traffic, each run contains unicast packets toward

a sink node that are triggered by a series of 500 events, and each average value is

calculated from the results of 10 random runs. For simulations under broadcast

traffic, each run contains 500 broadcast packets generated by a sink node, and each

average value is calculated from the results of 30 random runs. Confidence inter­

vals of the average values are not shown because even 99% confidence intervals

are so close to average values that they overlap with the data point markers.

4.1 Evaluation under Unicast Traffic

I compare DW-MAC with S-MAC, S-MAC with adaptive listening (shown as

S-MAC-AL in all figures), and RMAC both in a 49-node (7 x 7) grid network and

in random networks.

44

Table 4.3. Average number of packets generated for each event under different
sensing ranges in the 49-node grid network

Range(m)

Packets

100
0.8

150
1.7

200
3.1

250
4.6

300
6.4

350
8.4

400
10.6

450
12.9

500
15.2

In the grid network, each node is 200 meters from its neighbors, and the sink

node is at the center. Based on a correlated-event workload [17], I introduce a Ran­

dom Correlated-Event (RCE) traffic model to simulate the impulse traffic triggered

by spatially-correlated events commonly observed in detection and tracking ap­

plications. RCE picks a random (x, y) location for each event. If every node has a

sensing range R, only nodes that are within the circle centered at (x, y) with radius

R generate packets to report this event. By adjusting the sensing rage R, different

degrees of workload in a network can be simulated. In the experiments, a new

event is generated once every 200 seconds, and each node having sensed the event

sends one packet to the sink node. The value R is varied from 100 meters to 500

meters; the average number of packets generated per event is listed in Table 4.3.

Note that an event triggers at most one packet when R is 100 meters. The lengths

of paths traversed by these packets range from 1 to 6 hops, and the average is

3.05. In this way, the simulations explore how efficiently S-MAC, S-MAC with

adaptive listening, RMAC, and DW-MAC handle different degrees of traffic load.

The performance of these protocols for unicast traffic in the 49-node grid network

scenarios is shown in Figure 4.1.

2200

Q

5150
i
o
T
TD
C

LU

E 100

2
-o 50

IBS-MAC J J
MS-MAC-AL
L":RMAC
.1 IDW-MAC

T

Ty

T . i
T l l -
M ii

T

li
ii !T

v\ 100 150 200 250 300 350 400 450 500
Sensing Range (m)

(a) Average and maximum end-to-end delay versus sensing range.

* 9°
CO

a.
I" 85

80

75

70

-S-MAC
-S-MAC-AL
-RMAG
-DW-MAC

100 200 300 400
Sensing Range (m)

500

(b) Delivery ratio versus sensing range.

12.5:

o 2
CO

° 1

LU 0.5

-S-WAC
-S-MAC-AL
-RMAC
-DW-MAC

100 200 300 400
Sensing Range (m)

500

(c) Average energy consumption of sensors versus sensing range.

Figure 4.1. Performance for unicast traffic in 49-node grid network scenarios.

46

Figure 4.1(a) shows the average and maximum end-to-end latency of packets

in the RCE model as the sensing range (and thus traffic load) increases. DW-MAC

has a much smaller rate of increase than do S-MAC and RMAC. When there are

around 15 packets generated for each event with the 500-meter sensing range, DW-

MAC reduces average end-to-end delay by around 70% compared to S-MAC and

RMAC. DW-MAC outperforms S-MAC because DW-MAC allows more transmis­

sions in a cycle by using the Sleep period for actual data transmissions. RMAC ex­

periences more delay than DW-MAC as workload increases, because of increased

packet collisions caused by scheduling conflicts. It is the retransmission effort to

recover these collided packets that results in larger end-to-end delay. When the

sensing range is 500 meters, the maximum end-to-end delay with RMAC is 374.95

seconds, which is off the top of the graph. This extreme delay occurs when a packet

generated for one event failed to reach the sink before the next event happened.

Under the light traffic with the 100-meter sensing range, DW-MAC shows slightly

larger delay than RMAC, due to the time that a received data packet is forwarded

to the next hop in multihop forwarding. In RMAC, a data packet is forwarded im­

mediately, whereas in DW-MAC, forwarding starts at a later time determined by

the corresponding SCH frame. This extra delay experienced by DW-MAC, how­

ever, is less than the duration of a Sleep period. S-MAC with adaptive listening

shows slightly larger delay compared to DW-MAC. This low delay achieved by

47

adaptive listening, however, comes at the cost of lower packet delivery ratio and

increased energy consumption as shown next.

The packet delivery ratios corresponding to Figure 4.1(a) are shown in Fig­

ure 4.1(b). DW-MAC maintains close to 100% packet delivery ratio and outper­

forms the other protocols across all sensing ranges. The delivery ratio with S-MAC

with adaptive listening drops quickly, since with larger the sensing ranges, more

collisions are caused by transmissions from hidden nodes, as discussed in Sec­

tion 2.1; in addition, a node may transmit a packet when its intended receiver is

in sleep state, further decreasing packet delivery ratio. DW-MAC and RMAC out­

perform S-MAC mainly for two reasons. First, they only transmit short scheduling

frames during a Data period, avoiding collisions between a control frame and a

long data frame. Second, a node does more retransmission attempts for a data

packet in DW-MAC and RMAC. Specifically, a scheduling frame sent by an inter­

mediate node in multihop forwarding serves both as RTS and as CTS; even if this

frame fails to reach the next-hop neighbor, the intermediate node does not increase

its retry count, as the node has not received the corresponding data packet yet, al­

though the node has attempted to reserve the medium to forward the incoming

data packet once. Even with such extra retransmission attempts, the delivery ratio

of RMAC drops more quickly than that of DW-MAC beyond a 400-meter sensing

range, as retransmissions are not enough to recover the increased collisions due to

RMAC's scheduling conflicts.

48

Figure 4.1(c) shows the average energy consumption of nodes versus sensing

ranges in the 49-node grid network scenarios. Under light workload, when the

sensing range is 100 meters, all four MAC protocols show almost the same power

consumption, but when traffic load increases as the sensing range gets larger, av­

erage energy consumption in all protocols except DW-MAC increases quickly (en­

ergy consumption for DW-MAC does increase, but increases very slowly). When

the sensing range is 500 meters, DW-MAC consumes less than 50% of the energy

consumed by S-MAC with adaptive listening to achieve even lower packet deliv­

ery latency.

In order to under how efficiently these protocols handle concurrent traffic, I use

REC traffic model to generate 2 random events at a time in the grid network. As

the two random events happen at the same time, it is likely that propagation of the

packets triggered by them overlap in the network.

Figure 4.2 compares end-to-end delays, delivery ratios and energy consump­

tion with S-MAC, S-MAC with adaptive listening, RMAC, and DW-MAC. In this

set of simulation, I only vary the range of the REC traffic model from 100 to 300 me­

ters, as the maximum end-to-end delay of S-MAC with 300-meter range is already

greater than 200 seconds, suggesting that packets for an event are still in propa­

gation when those for the events of next round are generated. Due to increased

traffic loads, each protocol show increased end-to-end delays, delivery ratios and

energy consumption compared with the results in Figure 4.1. The trends, however,

49

agree well with those in Figure 4.1: DW-MAC still outperforms the rest as traffic

load increases.

I also compare S-MAC, S-MAC with adaptive listening, RMAC, and DW-MAC

in 100 random networks, each with 50 nodes randomly located in a 1000 m x

1000 m area. For each network, one random node is chosen as the sink, and the

RCE model with 250-meter sensing range is used to generate 500 events, once ev­

ery 200 seconds. One simulation run was conducted for each network, and 3845

packets were generated in each run on average. The results are plotted in Fig­

ure 4.3. For the same reasons discusses above, DW-MAC outperforms the other

three protocols in delivery latency, delivery ratio, and energy consumption. Fig­

ure 4.3(a) show the CDF of end-to-end latency for all packets in all 100 runs. Aver­

age end-to-end latency with S-MAC, S-MAC with adaptive listening, RMAC, and

DW-MAC are 61.8%, 21.6%, 36.7%, and 15.7%, respectively. Although adaptive

listening greatly reduces end-to-end latency for S-MAC, this gain is at the cost of

lower delivery ratio and more energy consumption. Figure 4.3(b) shows the CDF

of delivery ratios in these 100 runs. The average delivery ratios of S-MAC, S-MAC

with adaptive listening, RMAC, and DW-MAC are 99.63%, 95.03%, 99.99%, and

99.99%, respectively. The average energy consumptions of the sensors are plotted

in Figure 4.3(c), where the average values with S-MAC, S-MAC with adaptive lis­

tening, RMAC, and DW-MAC are 1.386, 2.666,1.724, and 1.163 mW, respectively.

50

S200
>> a
O

fi150

UJ

E 100

50

• S-MAC
HS-MAC-AL
! iRMAC
I IDW-MAC

ILLI, i J jjfei
100 150 200 250

Sensing Range (m)
300

(a) Average and maximum end-to-end delay versus sensing range.

100 150 200 250 300
Sensing Range (m)

(b) Delivery ratio versus sensing range.

! 2.5

f1.5

o
O

u] 0.5

-S-MAC
-S-MAC-AL
-RMAC
-DW-MAC

100 150 200 250
Sensing Range (m)

300

(c) Average energy consumption of sensors versus sensing range.

Figure 4.2. Performance for unicast traffic in 49-node grid network scenarios, with
2 random events generated at a time.

51

The trends observed in these random networks are consistent with those observed

in the 49-node grid network.

4.2 Evaluation under Broadcast Traffic

I compared DW-MAC with S-MAC, both in regular grid networks and in random

networks, under broadcast traffic. For broadcast in S-MAC, a broadcast packet is

transmitted during a Data period without using RTS/CTS [48].

In the grid network, the sink node is at the center, and each node is 200 me­

ters from its neighbors. The grid size is varied from 3 x 3 (9 nodes) to 11 x 11

(121 nodes). The sink node generates a broadcast packet once every 100 seconds

so that transmissions for one packet complete before the next packet is generated.

I evaluate DW-MAC under two categories of broadcast protocols: simple flood­

ing (all nodes that have received a broadcast packet rebroadcast it exactly once,

indicated by "ALL") and Connected Dominating Set (CDS) based flooding (only

nodes in a CDS that have received a broadcast packet rebroadcast it exactly once,

indicated by "CDS"). The CDS is formed by the algorithm by Gandhi et al. [14],

with a slight modification to always include the sink node in the CDS; the re­

sults for the optimized multihop forwarding for broadcast traffic are indicated

by "DW-MAC CDS-MH." Note that this CDS algorithm is designed to minimize

broadcast latency, and the resulting CDS is not necessarily a minimum CDS.

52

• S-MAC
;S-MAC-AL
-RMAC
-DW-MAC

100 150 200
End-to-End Delay (s)

250 300

(a) CDF of end-to-end delays

0.8-

io.6

f 0.4|

o

0.2

— S - M A C
S-MAC-AL

- - - R M A C
DW-MAC

/ I
/ i
:' i

• / t
. • ; '

..: i
..- ' i

i
i i

i

i

90 92 94 96
Delivery Ratio

98 100

(b) CDF of delivery ratios

0.8

! 0.6

! 0.4

0.2-

I C /!
II /
f / /

— - S - M A C
/ •"'••••••S-MAC^AL

- - - R M A C
DW-MAC

0 1 2 3 4
Average Energy Consumption of Sensors (mW)

(c) CDF of average energy consumption

Figure 4.3. Performance for random correlated-event traffic in 50-node networks
with sensing range of 250 m.

53

The simulation results in grid networks are shown in Figure 4.4. Figure 4.4(a)

shows end-to-end latency (the time it takes for the last node to receive a given

broadcast packet) with S-MAC and DW-MAC. DW-MAC reduces the end-to-end

latency by around 50% over those with S-MAC, as DW-MAC allows more con­

tending nodes to finish their transmissions in each cycle. When optimized mul-

tihop forwarding is enabled, DW-MAC further reduces end-to-end latency, as it

increases spatial reuse and reduces delays before a rebroadcast. An interesting

trend is that CDS-based flooding shows lower latencies than simple flooding with

S-MAC but shows the reverse with DW-MAC. The reason lies in the combina­

tion of CDS formation, grid topologies, and duty cycle configuration in the sim­

ulation. First, a CDS formed is not necessarily an MCDS. Second, a CDS node

may experience more latency before rebroadcasting a packet than does a non-

CDS node with DW-MAC, due to defers caused by undecodable frames. When

a node fails to decode a received a packet, it defers for some time (such as EIFS in

IEEE 802.11) to avoid interrupting ongoing transmission. Since this defer is much

shorter than a Sleep period in the simulations, all neighboring nodes still com­

pete for the medium fairly at the beginning of the next cycle with S-MAC. With

DW-MAC, however, it is possible that a node is ready to rebroadcast a packet be-̂

fore its defer timer expires, as multiple SCHs can be transmitted during a Data pe­

riod. A CDS node that defers could be slower in rebroadcasting a packet compared

to a non-CDS node that does not defer, resulting in lower latency for DW-MAC All

54

than for DW-MAC CDS. However, DW-MAC still reduces end-to-end latency by

around 40% for CDS-based flooding compared to those with S-MAC.

Figure 4.4(b) shows the delivery ratios (the percent of broadcast packets that

are successfully received by all nodes in a network) of flooding in the grid net­

works. Because of the increased redundancy in simple flooding, S-MAC and

DW-MAC achieve higher delivery ratio than CDS-based flooding. In simple flood­

ing, DW-MAC outperforms S-MAC, since the use of (short) SCH frames instead of

long data packets during contention helps to avoid collisions. However, when

CDS-based flooding is used, DW-MAC sometimes shows lower delivery ratios

than does S-MAC, mainly due to the special grid topology and selection of CDS as

discussed before. Looking at the results in random networks (Figure 4.5(b)), on av­

erage, DW-MAC shows better delivery ratios than S-MAC when CDS-based flood­

ing is used. With improved spatial reuse when optimized multihop forwarding is

used, DW-MAC achieves higher delivery ratios than does S-MAC in CDS-based

flooding.

Average energy consumption in the grid networks, calculated as I did in eval­

uations under unicast traffic, is shown in Figure 4.4(c). The interval between traf­

fic bursts is changed from 200 seconds to 100 seconds to show the differences

among protocols more clearly. DW-MAC reduces average energy consumption

over S-MAC by about 26% under simple flooding and by about 18% under CDS-

based flooding. DW-MAC achieves these savings by not overhearing data trans-

80

70-

-s-60

•gso

^ 3 0

20

10

•••*• S-MACAII
. • O S-MAC CDS
-A-DW-MACAII

, - B - D W - M A C C D S

- t -DW-MACCDS-MH

•

. - * " ' . • • • " '

. . • • . • . ' . • • ' • ' • ' ° ' "

_„.«""""

.X ' "
, . . .••;. .©'

,.X

O -

5 7 9
Number of Nodes along Edge of Grid

11

(a) End-to-end delay versus network size.

55

100

95

S> 85

80

75

70

fr-L <*>

X ' " " • • - ^ J L ^

•X" S-MAC All
O S-MAC CDS

.-A-DW-MACAII
-B-DW-MACCDS
- t -DW-MACCDS- MH

£

^

5 7 9 11
Number of Nodes along Edge of Grid

(b) Delivery ratio versus network size.

S 2
E

W

Q.

E

8

I 0 5

!

o
6=

. 0

• x S-MACAII
•O S-MAC CDS
-A-DW-MACAII
-B-DW-MACCDS
-t-DW-MACCDS-MH

=fc

5 7 9
Number of Nodes along Edge of Grid

11

(c) Average energy consumption of sensors versus network size.

Figure 4.4. Performance for broadcast traffic in grid networks.

0.8

f 0.6

3 0.4

O

0.2

w
1 : • ;

. j - • , , — —

1/ /

• i : i /

> I: '.
; - • « • • / f -

' »/ ;
• I : : ' /

' '/ : / /

7 —-S-MACAII
/ - T S - M A C C D S
: ibW-MACAil

-->-DW-MACCDS
--I-DW-MACCDS-MH

20 40 60
End-to-End Delay (s)

80 100

(a) CDF of end-to-end delays.

0.8-

2 0.6 u.
9>

0.4

0.2

S-MACAII
—- S-MACCDS

DW-MACAII
---DW-MACCDS
---DW-MACCDS-UW

:
i

i
.:...

!

n

..A

v

.A

i>i |

n i i
• * ' F
I I J f

- ' * • f j i j.-

60 70 80
Delivery Ratio

90 100

(b) CDF of delivery ratios.

0.8

1 0.6

I
0.4

0.2

S-MACAII
—-S-MACICDS

DW-MACAII
---DW-MACCDS
---DW-MACCDS- MH i

\l(\
nil
llll
llll
1 : i I

: ! : • * : f

• : •)
• :'.'' /

0 0.5 1 1.5
Average Energy Consumption of Sensors (mW)

(c) CDF of average energy consumption.

Figure 4.5. Performance for broadcast traffic in 50-node networks.

57

missions. In DW-MAC, a node only attempts to receive an incoming packet after

receiving an SCH that indicates the packet has not been received. Simple flood­

ing consumes more energy because of more rebroadcasts. Whether or not the op­

timized mulrihop forwarding is used, a flooding results in the same number of

transmissions, so this optimization does not affect energy consumption much.

Finally, I compare these broadcast protocols in 100 random networks, the same

networks used for evaluations under unicast traffic. The sink in each network

generates 500 broadcast packets in each run, one packet every 100 seconds. Fig­

ure 4.5(a) shows the CDF of end-to-end latency for all packets in the 100 runs.

All DW-MAC based broadcast protocols show much smaller end-to-end latency

than those based on S-MAC. The average end-to-end latency for S-MAC ALL,

S-MAC CDS, DW-MAC ALL, DW-MAC CDS and DW-MAC CDS-MH are 49.1,

34.8, 24.2, 20.8, and 16.0 seconds, respectively. On average, end-to-end latency

is reduced by more than 50% both in simple flooding and in CDS-based flood­

ing. Unlike the results in grid networks, DW-MAC shows lower average end-

to-end latency in CDS-based flooding than those in simple flooding, because the

speedup gained by fast propagation along CDS nodes is often greater than the

slowdown caused by defers in these networks. For these 100 runs, the CDF of

delivery ratios is shown in Figure 4.5(b), and the CDF of average energy con­

sumption is shown in Figure 4.5(c). S-MAC ALL, S-MAC CDS, DW-MAC ALL,

DW-MAC CDS, and DW-MAC CDS-MH show the average delivery ratios of

58

98.6%, 92.1%, 99.0%, 95.0% and 96.4%, and average energy consumption of 1.785,

1.355,1.288,1,185, and 1.183 mW, respectively. The difference in energy consump­

tion between DW-MAC CDS and DW-MAC CDS-MH is almost invisible because

the optimized multihop forwarding does not affect the number of data transmis­

sions much. Overall, DW-MAC achieves lower end-to-end delays, higher delivery

ratios, and more energy savings for broadcast traffic in these random networks.

59

Chapter 5

RI-MAC Design

In this chapter, I describe the design of the RI-MAC protocol. After an overview of

the protocol, I discuss details of RI-MAC's design and conclude with a discussion

of how I implemented RI-MAC in TinyOS.

5.1 Overview

In RI-MAC, a DATA frame transmission is always initiated by the intended re­

ceiver node of the DATA. Figure 5.1 gives an overview of the operation of RI-MAC.

Each node periodically wakes up based on its own schedule to check if there are

any incoming DATA frames intended for this node. After turning on its radio, a

node immediately broadcasts a beacon if the medium is idle, announcing that it is

awake and ready to receive a DATA frame. A node with pending DATA to send,

node S in this figure, stays active silently while waiting for the beacon from the

intended receiver R. Upon receiving the beacon from R, node 5 starts its DATA

transmission immediately, which will be acknowledged by R with another bea­

con. Note that this ACK beacon's role is twofold: first, it acknowledges the correct

receipt of the sent DATA frame, and second, it invites a new DATA frame trans-

60

s-v

Start data transmission upon receving R's beacon

' ^ i J l ^ u l 0 . ? ? ^ a n d - Node sends a beacon but goes

R -
wait for beacon H ^ J to sleep since no incoming DATA

'• Node sends a beacon when it wakes up

Figure 5.1. Overview of RI-MAC. Each node periodically wakes up and broadcasts
a beacon. When node S wants to send a DATA frame to node R, it stays active
silently and starts DATA transmission upon receiving a beacon from R. Node S
later wakes up but goes to sleep after transmitting a beacon frame since there is no
incoming DATA frame.

mission to the same receiver. If there is no incoming DATA after broadcasting a

beacon, the node goes to sleep, as S does later in the figure.

RI-MAC significantly reduces the amount of time a pair of nodes occupy the

medium before they reach a rendezvous time for data exchange, compared to

the preamble transmission in B-MAC and X-MAC. This short occupation of the

wireless medium enables more contending nodes to exchange DATA frames with

their intended receivers, which helps to increases capacity of the network and thus

potential throughput. More importantly, this increase is adaptive, by letting a bea­

con serve both as an acknowledgment to previously received DATA and as a re­

quest for the initiation of the next DATA transmission, as discussed in detail in

Section 5.2.

In RI-MAC, medium access control among senders that want to transmit DATA

frames to the same receiver is mainly controlled by the receiver. This design choice

makes RI-MAC more efficient in detecting collisions and recovering lost DATA

61

frames than B-MAC and X-MAC when the senders are hidden to each other, which

can be common in ad hoc sensor networks. As discussed in Section 5.4, after trans­

mitting a beacon, a receiver detects collisions within the duration of the backoff

window specified in the beacon, which is much shorter than the delay of a sleep

interval needed in B-MAC and X-MAC.

RI-MAC also reduces overhearing, as a receiver expects incoming data only

within a small window after beacon transmission. Together with the lower cost for

detecting collisions and recovering lost DATA frames, RI-MAC achieves higher

power efficiency, especially when the network load increases. Even under light

traffic load, which is the worst case for RI-MAC for power efficiency, RI-MAC

still shows comparable performance to X-MAC in my simulation and experimental

evaluation on MICAz motes. RI-MAC still decouples the sender's and receiver's

duty cycle schedules as do B-MAC and X-MAC, which removes the overhead of

synchronization compared to synchronous duty cycle MAC protocols.

5.2 Beacon Frames

A beacon frame in RI-MAC always contains a Src field, which is the address of the

source transmitting node of the beacon. I call a beacon with only a Src field a base

beacon. A beacon can also include two optional fields, depending on the roles the

beacon serves: Dst, for destination address, and BW, for backoff window size. The

62

Frame Length

Hardware Preamble ^ FCF

—RI-MAC-Specific—

Src BWl Dst
i

FCS

Figure 5.2. The format of an RI-MAC beacon frame for an IEEE 802.15.4 radio.
Dashed rectangles indicate optional fields. The Frame Length, Frame Control Field
(FCF), and Frame Check Sequence (FCS) are fields from IEEE 802.15.4 standard.

RI-MAC beacon frame format for an IEEE 802.15.4 radio is illustrated in Figure 5.2

as an example.

A node that receives a beacon can determine which fields are present in the

beacon by looking at the size of the beacon; with an IEEE 802.15.4 radio, size of

a beacon is saved in the Frame Length field. A beacon in RI-MAC can play two

simultaneous roles: as an acknowledgment to previously received DATA, and as a

request for the initiation of the next DATA transmission, as illustrated in Figure 5.3.

After node R wakes up and senses clear medium, R transmits a base beacon. If

the medium is busy, R does a backoff and attempts to transmit the beacon later.

After receipt of the first DATA frame from S in the figure, in the following beacon

transmission by R, the Dst field is set to S to indicate that this beacon also serves as

the acknowledgment for the DATA received from S. Similar to ACK transmission

in IEEE 802.11, transmission of this acknowledgment beacon starts after SIFS delay,

regardless of medium status. Nodes other than S ignore the Dst field in the beacon

and treat it as a request for the initiation of a new data transmission. The use of the

BW field in a beacon is discussed in detail in Section 5.4.

63

Transmit upon receiving the acknowledgment beacon
T

! B|:î |B||:gTi|B
•

u . /Dwell time

R l[DATAl|[DAfAir" ^

Send an acknowledgment beacon

Figure 5.3. The dual roles of a beacon in RI-MAC. A beacon serves both as an
acknowledgment to previously received DATA and as a request for the initiation
of the next DATA transmission to this node.

The duty cycle in RI-MAC is controlled by a parameter called the sleep interval,

which determines how often a node wakes up and generates a beacon to poll for

pending DATA frames. Suppose a sleep interval of L is used in some WSN. After

a node generates a beacon, the interval before the next beacon generation is set to

a random value between 0.5 x L and 1.5 x L. In this way, RI-MAC attempts to

minimize the possibility that beacon transmissions from two nodes become coin-

cidentally synchronized.

5.3 Dwell Time for Queued Packets

After successfully receiving a DATA frame, a node remains active for some extra

time in order to allow queued packets to be sent to it immediately, as shown in Fig­

ure 5.3.1 refer to this time as the dwell time. Unlike in X-MAC, where the dwell time

is set to a fixed value of the maximum backoff window, the dwell time in RI-MAC

adapts to the number of contending senders. The duration of the dwell time is

64

defined as the BW value from the last beacon plus SIFS and the maximum propa­

gation delay. Since the BW in a beacon is automatically adjusted based on channel

collisions observed by a node as discussed in detail next, so is the dwell time.

The fewer contending senders and thus the fewer collisions, the shorter the dwell

time. This self-adaptation helps RI-MAC using the shortest waiting time possi­

ble under light channel contention while avoiding collisions under heavy channel

contention.

5.4 DATA Frame Transmissions from Contending Senders

The challenges in handling transmissions from an unpredictable number of con­

tending senders are twofold:

• minimize the active time of a receiver for power efficiency; and

• minimize the cost for collision detection and recovery of lost data, whether

or not senders are hidden to each other.

To meet these goals in RI-MAC, a receiver employs beacon frames to coordinate

DATA frame transmissions from contending senders, as shown in Figure 5.4. The

BW field in a beacon specifies the backoff window size senders should use when

they contend for the medium. If a received beacon does not contain a BW field (i.e.,

a base beacon), senders for this receiver should start transmitting DATA without

backing off. If a beacon contains a BW field, each sender does a random backoff

65

S,

R

Beacon containing a larger backoff window

\ B . n — 5 1
Collision--...

Pi
o DATA

B|«!

Backoff

DATAH

111 i 11 B88 a.
Figure 5.4. DATA frame transmission from contending senders in RI-MAC. For
the first beacon, the receiver R requests senders (here, Si and S2) to start trans­
mitting DATA immediately upon receiving the beacon. If a collision is detected, R
sends another beacon with increased BW value to request that senders do a backoff
before their next transmission attempt.

using the BW as the backoff window size over which to choose the actual backoff.

The receiver increases the value of the BW field upon detecting collisions.

If a node cannot start data transmission as soon as it receives a beacon, prior

to actual DATA transmission, a sender should make sure that the medium has

been idle for at least Tp time using CCA (clear channel assessment) checks. The

CCA checks prevent a sender from starting DATA transmission while the intended

receiver is generating an acknowledgment beacon to a DATA frame just received

from another sender. The time Tp here is set to SIFS plus the maximum propagation

delay. If a node needs more time to generate and send an acknowledgment beacon,

such as a software ACK used in TinyOS, Tp should be increased correspondingly,

as described in Section 5.7.

After waking up, a node always broadcasts a base beacon with no BW field. I

made this design choice to optimize RI-MAC for the most common cases of a typi-

66

cal WSN where there is light or no traffic most of the time. By enforcing all senders

with pending DATA frames to transmit immediately, the design attempts to mini­

mize time for the node to determine whether or not there is incoming DATA. The

shorter this duration, the less energy is used at each wakeup. In this way, I at­

tempt to minimize energy consumption if the network is idle most of the time.

The duration can be very short, as it is the maximum round trip propagation delay

plus radio switch delay (SIFS in IEEE 802.15.4). If the receiver detects no chan­

nel activity within this duration, the receiver goes to sleep immediately. Although

a base beacon could lead to concurrent DATA transmissions to a same receiver,

I found that they do not necessarily lead to collisions in the experimental imple­

mentation on MICAz motes [7], due to the presence of capture effect in the CC2420

radio [5]. This feature makes it possible for one sender to successfully transmit

a packet to the receiver even if the transmission overlaps with others, especially

when senders have different distances to the receiver (and thus different received

signal strengths) [21,23].

5.5 Collision Detection and Retransmissions

By coordinating DATA frame transmissions at receivers, RI-MAC greatly reduces

the cost for detecting collisions and recovering lost DATA frames compared to

B-MAC and X-MAC. As a sender can transmit DATA frame only upon receiving a

beacon, and since the backoff window size is explicitly controlled by the intended

67

receiver, the receiver knows the maximum delay before a DATA frame's arrival.

This delay can be calculated from the BW value in the previous beacon. The re­

ceiver need only detect the Start of Frame Delimiter (SFD) to learn of an incoming

frame. If no SFD is detected in time, while some channel activity is detected by

the CCA (clear channel assessment) check, the receiver will decide that there was

a collision and will generate another beacon with a larger BW value. In RI-MAC,

this new beacon is transmitted after the longest possible DATA transmission has

finished so that all senders' radios are already in receive mode. Prior to transmit­

ting the beacon, a node does a random backoff to avoid possible repeated collisions

with beacons from another node.

After detecting a collision, a receiver calculates the new BW value that will

be used in the next beacon, by employing some backoff strategy such as binary

exponential backoff (BEB) in IEEE 802.11 or Sift [42,18], depending on the density

of a network. BEB is used in my implementation in TinyOS, as I found it adapts to

networks of different densities and resolves collisions efficiently in RI-MAC in the

evaluations.

As RI-MAC initiates transmissions at the receiver, retransmission in RI-MAC is

significantly different from that in sender-initiated approaches such as IEEE 802.11.

In RI-MAC, a receiver plays the major role in retransmission control by managing

the timing and number of beacon transmissions. If the BW value has reached the

maximum backoff window size, or if the receiver keeps detecting collisions after a

68

number of consecutive beacon transmissions, the receive goes to sleep without fur­

ther attempts. The corresponding senders also become involved in retransmission

control, because a sender could miss receiving a beacon either because of colli­

sions or poor channel conditions. Thus, a sender maintains a retry count for each

DATA frame. If no beacon has been received from the intended receiver within

a time span 3 times as long as the sleep interval, the sender increases the current

retry count by 1. In addition, the sender increases this retry count if no acknowl­

edgment beacon is received within the maximum backoff window after the sender

transmitted a DATA frame following receipt of a beacon. When the retry count

reaches a pre-defined retry limit, the sender cancels the transmission of the DATA

frame.

5.6 Beacon-on-Request

It is possible that the intended receiver node for some sender is already active

when the sender wakes up to transmit a DATA frame to it. An optimization, called

beacon-on-request, is for this sender, after waking up for DATA transmission, to

broadcast a beacon following a CCA check, as illustrated in Figure 5.5. In this bea­

con, the sender S sets the Dst field to the receiver's address, R. If the receiver R

happens to be active, it generates a beacon in response after some random delay

longer than the BW announced in the received beacon from S. This beacon gen­

erated by the receiver on request of the sender allows the sender to transmit the

69

Initial beacon.,

IBIIBHIBI

R i H f i l l
'• Beacon sent on request from S's beacon

Figure 5.5. RI-MAC beacon-on-request. When node S wakes up for transmitting a
pending DATA frame, it sends a beacon with the Dst field set to the destination
of the pending DATA. If the destination node R is already active, R in response
transmits a beacon to enable S to begin DATA transmission immediately.

pending DATA frame immediately, rather than waiting until the next scheduled

beacon transmission by R.

5.7 RI-MAC Implementation in TinyOS

I implemented RI-MAC under the UPMA framework [20] in TinyOS on a network

of MICAz sensor motes. The composition of RI-MAC under the UPMA frame­

work in my implementation is shown in Figure 5.6. The implementation used the

CC2420 radio, which is a packetizing radio used in popular MICAz and TelosB

motes, although the code can be ported to motes with streaming radios such as the

CC1000 [6] as well.

The BeaconManager module in Figure 5.6 performs most of the functionality of

RI-MAC, including beacon generation, radio power control, wakeup/sleep schedul­

ing, and retransmission control.

LowPowerListening

AsyncSend MacControlC AsyncReceive

SenderC

LowPowerListening

Async
Send

N Beacon
Manager

Async
Receive

V

ListenerC

MacC

/x ^ RadioPower . \ „
AsyncSend control AsyncReceive

RI-MAC Adaptation Code

Radio Core

70

Figure 5.6. Composition of RI-MAC within the UPMA framework in TinyOS.

I also added some code to the radio core module of TinyOS, indicated by

RI-MAC Adaptation Code in the figure. This adaptation code is introduced mainly

for two purposes.

First, this adaptation code preloads a DATA frame into the CC2420 TX buffer. In

this way, the DATA transmission can start immediately when a desired beacon ar­

rives. This preloading helps to reduce the time a receiver node needs for detecting

if there is incoming DATA after a beacon transmission. In the implementation on

MICAz motes, after a node sends a beacon, the node needs to wait only 3.75 ms,

listening to the medium, in order to detect whether or not there is an incoming

packet. A beacon in the implementation is processed entirely in software, as the

71

beacon frame is not supported directly by the CC2420 hardware. With hardware

support, this waiting time of 3.75 ms could be further reduced.

Second, the RI-MAC adaptation code starts contiguous CCA (clear channel as­

sessment) checks immediately after a beacon transmission and counts the number

of consecutive CCA checks that show busy medium. Suppose that after trans­

mitting a beacon, a packet has not arrived within the expected arrival time that

is proportional to the BW field in the beacon transmitted. The node will gener­

ate another beacon if the CCA checks indicate busy medium, or will go to sleep

otherwise. In particular, on MICAz motes, if at least 20 consecutive CCA checks

indicate busy medium during this time, the RI-MAC adaptation code notifies the

BeaconManager of a collision; the BeaconManager then generates another beacon

with a larger BW value, if necessary.

As the beacon frame is not part of the IEEE 802.15.4 standard and thus is not

directly supported by the CC2420 radio, the implementation turns off hardware

address recognition in the CC2420 and use a reserved frame type for beacon frames.

To minimize the footprint of the RI-MAC implementation in the existing TinyOS

code, I use a frame with only the CC2420 header (cc2420_header_t in TinyOS)

as a beacon. Thus, a beacon is 12 bytes without the preceding hardware preamble,

although the size of a base beacon could be implemented to be only 6 bytes, as

discussed in Section 5.2.

72

To account for software processing delays on the MICAz motes, I also ad­

justed some parameters of RI-MAC in the implementation. A mote may experience

some delays before transmitting consecutive packets in the queue, such as post­

processing of a transmitted packet, moving a queued packet to the MAC layer,

and loading the packet to the hardware buffer. Therefore, in the implementation,

I added an extra 10 ms to the dwell time defined in RI-MAC to account for these

delays. As an acknowledgment beacon is generated entirely by software in the

implementation, Tp, defined in Section 5.4, is set to 2.5 ms, based on my measure­

ments. If a beacon were processed in hardware, this time could be much shorter.

73

Chapter 6

Evaluation of RI-MAC

In this chapter, I evaluated RI-MAC both in the ns-2 network simulator and in

an implementation in TinyOS on MICAz motes. Simulations are used to explore

RI-MAC's performance in a wide variety of networks, especially large network

topologies which are hard to deploy and experiment with. As a protocol may

not perform in the real world exactly as it does in simulation, for example due to

the simplified physical layer models used in ns-2 [1], I also evaluated RI-MAC in

a small testbed network of MICAz motes running TinyOS; my experimental re­

sults from this testbed match the results obtained in simulation and further verify

RI-MAC's performance advantages over existing protocols. Since Klues et al. [20]

have implemented X-MAC-UPMA on real motes and shown that X-MAC-UPMA

outperforms B-MAC and SCP, in this thesis, I compared RI-MAC only against

X-MAC and X-MAC-UPMA.

6.1 Simulation Evaluation

In the simulation evaluation of RI-MAC, I used version 2.29 of the ns-2 network

simulator, using the standard combined free space and two-ray ground reflection

74

Table 6.1. Simulation Radio Parameters

Bandwidth
SIFS
Slot time
Tx Range

250 Kbps
192 /is
320 /is
250 m

Size of Hardware Preamble
Size of ACK
CCA Check Delay
Carrier Sensing Range

6B
5B

128/xs
550 m

radio propagation model commonly used with ns-2. Each sensor node is simulated

with a single omni-directional antenna.

Table 6.1 summarizes the key parameters used to simulate the radio of each

sensor node. Most of these parameters are from the data sheet of CC2420 radio [5],

which is used in popular motes such as MICAz and TelosB. The RSSI sampling

delay for CC2420 was reported by Ye et al. [49]; This delay is used as the time for a

single CCA (clear channel assessment) check, i.e., the delay before actual transmis­

sion starts after a STXONCCA command is strobed [5]. The transmission range

and carrier sensing range depend on many factors such as transmission power,

antenna, and environment. In ns-2, the transmission range and the carrier sensing

range are modeled after the 914MHz Lucent WaveLAN radio, which is not typical

for a sensor node, but these ns-2 default parameters are used since measurements

have shown that similar proportions of the carrier sensing range to the transmis­

sion range are also observed in some state-of-art sensor nodes [2].

Table 6.2 summarizes the MAC protocol parameters used in the simulations.

Backoff strategy and retransmission have not been explicitly discussed in prior

work [3,20], as X-MAC is optimized for light traffic load. 32 is used as the initial

75

Table 6.2. Simulation MAC Protocol Parameters

Backoff Window
Retry Limit
Special Frame
Special Frame Size
Dwell Time

X-MAC
32

0or5
Short Preamble

6B
10.5 ms

X-MAC-UPMA
32

0or5
—

—

100 ms

RI-MAC
0-255

5
Beacon
6-9B

Variable

backoff window and 8 as the congestion backoff window, which are the default

values used in the UPMA package distributed with TinyOS [43]. In the RI-MAC

implementation, a receiver adjusts the BW value in each beacon using a binary ex­

ponential backoff (BEB) that takes values of 0,31,63,127, and 255 in the evaluation.

The backoff window size for beacon transmission is fixed at 32 slots in RI-MAC.

Although retransmission was not included in X-MAC's original design (none

was specified in X-MAC's published design [3, 20, 43]), for fair comparison

with RI-MAC in which retransmission is included, I evaluated X-MAC and

X-MAC-UPMA both with and without retransmission in the simulations. When

retransmission was enabled, 5 is used as the retry limit. The way in which an un-

decodable signal that is higher than the CCA threshold should be handled was

also not explicitly discussed for X-MAC [3], but this occurrence could be common

in a large network. Therefore, in my simulated X-MAC, a node turns off its ra­

dio if the medium has been idle for a time that is longer than the gap between

short preambles. This is achieved by starting a timer that does CCA checks every

20 ms, and each CCA check lasts longer than the gap between short preambles.

76

The time 20 ms was used because that is the wake time used in X-MAC's evalu­

ation [3]. In X-MAC-UPMA, a node that has detected busy medium turns off its

radio if no packet is received within 100 ms, according to the code in the UPMA

distribution. In the simulated X-MAC-UPMA, similar to the original X-MAC de­

sign, only the first preamble in a sequence of short preambles is subject to backoff

before transmission (i.e., when the RESEND_WITHOUT_CCA option is used in the

UPMA package).

In the simulations, a short preamble in X-MAC consists of a Frame Control

Field (FCF), destination address, and Frame Check Sequence (FCS). Each of these

fields is 2 bytes, resulting in a short preamble of 6 bytes plus the leading 6-byte

hardware preamble. A base beacon has the same length and format, except that the

address of the transmitting node is in the beacon instead of the destination address.

If a beacon also serves as an acknowledgment, or if the BW field is included, a

beacon can be 7, 8, or 9 bytes. Dwell time is defined as the maximum backoff

window size in X-MAC; 10.5 ms, a slightly longer duration, is used to account

for SIFS and propagation delays. The distributed UPMA code uses 100 ms as its

default dwell time. Dwell time in RI-MAC is variable, as it is defined as the backoff

window for senders (the BW field in a beacon) plus SIFS and propagation delays.

To simplify the evaluation, routing traffic is not included in the simulations

and assume that there is a routing protocol deployed to provide the shortest path

77

between any two nodes. I also ensure that no network used in the simulations is

partitioned.

As energy consumption of different radios varies significantly, even in the same

radio state [49], effective duty cycle is reported in evaluating power efficiency, as

done in prior work [3, 20]. The sleep interval for all three MAC protocols is 1

second, and the initial wakeup time of each node was randomized in the evalu­

ation. Note that the sleep interval is an expected value in RI-MAC, as RI-MAC

randomizes intervals of sleep time to avoid synchronized beacon transmissions

from neighboring nodes. In the evaluation, data payload size was always 28 bytes,

the default value in the UPMA package.

I compared X-MAC, X-MAC-UPMA, and RI-MAC in three types of networks:

clique networks, a 49-node (7 x 7) grid network, and random networks. Beacon-

on-request is not used in the clique networks, as no multihop communication takes

place in these networks; in all other networks, beacon-on-request is used.

6.1.1 Results in Clique Networks

I discuss first the evaluation of X-MAC, X-MAC-UPMA, and RI-MAC in clique

networks, such that all nodes in the network are within transmission range of

each other. The traffic load is varied by varying the number of independent flows

in the network, with no flow sharing source or destination node with any other

flow. In each clique network, the total number of nodes in the network is twice

the number of flows. For each flow, the source node starts to generate packets

78

10 seconds after the beginning of the simulation and generates new packets with

an interval between two successive packet generations uniformly distributed be­

tween 0.5 and 1.5 seconds. At the beginning of the simulation, each node randomly

chooses a time between 0 and 10 seconds as its next wakeup time. In this way, the

wakeup/sleep schedule of each node is randomized. The recipient nodes count the

number of packets received successfully over the course of 50 seconds. If a packet

still resides in any queue or is still being transmitted at the end of the 50-second

measurement, the packet is not counted as a delivered packet.

The results for the clique network simulations are shown in Figure 6.1, where

each average value is calculated from the results of 10 random runs. Error bars

show the 95% confidence interval. In Figure 6.1, a value of 0 for number of flows

indicates the case in which there is no traffic and just a single node in a network,

and thus all energy consumption is due to periodic wakeups of this single node.

Figure 6.1(a) shows the packet delivery ratios achieved by X-MAC,

X-MAC-UPMA, and RI-MAC with increasing number of contending flows in the

clique networks. Delivery ratios with RI-MAC are always close to 100%, indicating

that total throughput achieved with RI-MAC increases linearly with the increasing

traffic load. X-MAC and X-MAC-UPMA deliver most of the given load when there

are no more than 2 flows, but their delivery ratios drop quickly beyond 2 flows.

This sharp decline is not due to collisions, as all nodes can hear each other. Rather,

it is because preamble transmissions in X-MAC and X-MAC-UPMA saturate the

79

100

1 2
Number of Flows

(a) Average Packet Delivery Ratio

80

o
>.
O 60

3

40

20

•

y S ^ ^ A & A

//

• • / • • -*-X-MAG
-B-X-MAC-UPMA
-A-RI-MAC

1 2 3
Number of Flows

(b) Average Duty Cycle of Senders

20

£151

o
f i o
Q
<D

ra

3 5

-X-MAC
-X-MAC-UPMA
-RI-MAC

20

2 3
Number of Flows

(c) Average Duty Cycle of Receivers

10-

>
< 5

-"-X-MAC
-B-X-MAC-UPMA
-^-RI-MAC

Jt

* * *Z- * A
2 3

Number of Flows

(d) Average Latency

Figure 6.1. Performance comparison in clique networks with contending flows in
simulation. The total number of nodes is 1 for 0 flows, and is twice the number of
flows otherwise.

80

network, resulting in a large number of queued packets. When there are 4 flows in

a clique network, RI-MAC improves delivery ratio and thus throughput by about

100% compared to X-MAC and X-MAC-UPMA.

The average duty cycles of senders and receivers corresponding to Figure 6.1(a)

are shown in Figure 6.1(b) and Figure 6.1(c), respectively. In addition to the im­

proved delivery ratios, RI-MAC saves more energy when there are multiple flows

in a clique network, compared to X-MAC and X-MAC-UPMA. With 1 flow, senders

(Figure 6.1(b)) show around 50% duty cycle with all protocols, as it takes a sender

half a sleep interval to reach its intended receiver, on average. The duty cycles

with RI-MAC remain at around 50% with increasing flows, but those with X-MAC

and X-MAC-UPMA increase quickly to almost 100% when there are 4 flows. This

increase in X-MAC and X-MAC-UPMA is because a sender with pending DATA

must do congestion backoff when the medium is occupied by a preamble trans­

mission from another flow. If the corresponding receiver wakes up before the

medium becomes idle, the sender must wait until the receiver's next wakeup. If

the medium is sensed busy, the sender could go to sleep and to attempt transmis­

sion later, but in this approach, latency could be significantly increased without

necessarily saving energy.

X-MAC and X-MAC-UPMA each result in a much higher duty cycle than does

RI-MAC when there is 1 flow, as shown in Figure 6.1(c). This higher duty cy­

cle is because of the longer dwell time used in X-MAC and X-MAC-UPMA, In

81

X-MAC, this dwell time is 10.5 ms, roughly a backoff windows of 32 slots, and in

X-MAC-UPMA, this dwell time is 100 ms by default. The dwell time in RI-MAC

is much smaller with 1 flow. As there is no collision and thus backoff window for

senders is always 0, dwell time in RI-MAC is just SIFS plus propagation delay. The

duty cycles of receiving nodes decrease with more contending flows in X-MAC

and X-MAC-UPMA, as a receiver goes to sleep immediately after receiving pack­

ets from other flows.

Despite the high duty cycle at sending nodes, X-MAC and X-MAC-UPMA ex­

perience longer latency than does RI-MAC, as shown in Figure 6.1(d). This latency

is mainly because transmission of preambles saturates the medium when there are

more than 2 flows. The queuing delay in X-MAC and X-MAC-UPMA results in

an average latency that is more than 10 times longer than that with RI-MAC when

there are 4 flows.

When the number of flows is 0 in Figure 6.1, all three protocols show very sim­

ilar performance, although this is the worst case for RI-MAC compared to X-MAC

and X-MAC-UPMA. In this case, a node with RI-MAC has to stay awake each

time slightly longer than it does with X-MAC and X-MAC-UPMA. In X-MAC and

X-MAC-UPMA, a node needs to listen to the medium for at least SIFS plus the de­

lay for ACK transmission at each wakeup. RI-MAC incurs some extra cost only for

the CCA check before a beacon transmission and for detecting incoming signal af­

ter the beacon transmission. The difference caused by such extra cost, however, is

82

too small to show clearly in the figure, as all three protocols already show very low

duty cycles under very light traffic. As RI-MAC substantially improves through­

put and energy efficiency and reduces latency under higher traffic loads, RI-MAC

is suitable for a wide range of traffic loads.

6.1.2 Results in a 49-Node Grid Network

In the comparison of X-MAC, X-MAC-UPMA, and RI-MAC in a 49-node (7 x 7)

grid network, each node is 200 meters from its neighbors, and the sink node is at

the center.

In the simulations, the RCE traffic model defined in Section 4 is used. RCE picks

a random (x, y) location for each event. If every node has a sensing range R, only

nodes that are within the circle centered at (x, y) with radius R generate packets

to report this event. The sensing rage R is adjusted to simulate different degrees

of workload in the network. A new event is generated once every 60 seconds, and

each node having sensed the event sends one packet to the sink node. R is varied

from 100 meters to 500 meters; Table 6.3 shows the average number of packets

generated per event. Note that an event triggers at most one packet when R is

100 meters. The lengths of paths traversed by these packets to the sink node range

from 1 to 6 hops, with an average of 3.05 hops. In this way, the simulations explore

how efficiently X-MAC, X-MAC-UPMA, and RI-MAC handle different degrees of

traffic load.

83

Table 6.3. Average Number of Packets Generated for Each Event under
Different Sensing Ranges in the 49-Node Grid Network

Range(m)

Packets

100
0.8

200
3.1

300
6.4

400
10.6

500
15.2

Each simulation run contains unicast packets sent toward a sink node that are

triggered by a series of 100 events, and each average value is calculated from the

results of 30 random runs. Confidence intervals of the average values are not

shown because even 99% confidence intervals are so close to average values that

they overlap with the data point markers. The curves labeled X-MAC w/Retrans

and X-MAC-UPMA w/Retrans show the results when the original X-MAC and

X-MAC-UPMA protocols, respectively, are augmented with retransmission.

The performance comparison in these grid network scenarios is shown in Fig­

ure 6.2. Figure 6.2(a) shows the average and maximum end-to-end latency of pack­

ets in the RCE model as the sensing range (and thus traffic load) increases. RI-MAC

has a much smaller rate of increase than do X-MAC and X-MAC-UPMA, regard­

less of whether or not retransmission is used. When there are about 15 packets

generated for each event (a 500-meter sensing range), RI-MAC reduces average

end-to-end delay by 85% compared to X-MAC-UPMA with retransmission, and

by around 50% compared to the other protocols.

RI-MAC outperforms X-MAC and X-MAC-UPMA because it greatly increases

idle medium time, allowing more competing flows to transmit in single a cycle.

End-to-end latency increases when X-MAC and X-MAC-UPMA are augmented

CD
Q
T3
C
HI

I
o
T
TJ
c
HI

ISX-MAC
•X-.MAC-UPMA
i . X-MAC w/ Retrans
II!X-MAC-UPMA w/ Retrans
f IRI-MAC

MMmMi
100 200 300

Sensing Range (m)

JJJU
400

U
500

(a) Average and maximum end-to-end delay versus sensing range.

&

I 40

20

X-MAC
X-MAC-UPMA
X-MAC w/ Retrans
X-MAC-UPMA w/ Retrans
RI-MAC

100 200 300 400
Sensing Range (m)

500

(b) Delivery ratio versus sensing range.

100 200 300 400
Sensing Range (m)

500

(c) Average duty cycle of sensors versus sensing range.

Figure 6.2. Performance for unicast traffic in 49-node (7 x 7) grid network scenar­
ios in simulation.

85

with retransmission, due to the added effort to recover packets that would other­

wise be lost in collisions. Under the very light traffic load when sensing range is

100 m, X-MAC shows lower latency due to how it handles undecodable signals.

For example, consider a chain consisting of nodes A, B and C, where node A can

reach B, and B can reach C. Nodes A and C cannot reach each other but can sense

each other's transmission. When A sends short preambles followed by a DATA

frame to B, node C will remain active after sensing the medium busy, even though

no incoming packet can be decoded. If C still has its radio on when B immediately

starts forwarding the just-received packet to C, the forwarding will experience less

delay. Because C turns off its radio if no packet is successfully received for 100ms

in X-MAC-UPMA, even though the medium is still busy, node C can be either ac­

tive or sleep when B starts forwarding, depending on when C starts the 100 ms

timer. This is why X-MAC-UPMA shows lower latency than does RI-MAC but

higher latency than X-MAC under very light traffic load. However, as traffic load

increases when sensing range is greater than 100 m, RI-MAC achieves the lowest

latency on average due to increased idle medium time.

The packet delivery ratios corresponding to Figure 6.2(a) are shown in Fig­

ure 6.2(b). RI-MAC maintains 100% packet delivery ratio and outperforms X-MAC

and X-MAC-UPMA across all sensing ranges. RI-MAC achieves these high deliv­

ery ratios mainly by efficient collision detection and retransmission control. The

delivery ratios with X-MAC and X-MAC-UPMA drop quickly, since the larger the

86

sensing range, the more collisions caused by transmissions from hidden nodes.

When X-MAC and X-MAC-UPMA are augmented with retransmission, packet de­

livery ratio increases. X-MAC with retransmission shows lower delivery ratios

than does X-MAC-UPMA due to the lack of an ACK after DATA transmission. If a

DATA frame is lost due to collision at a receiver, the corresponding sender has no

way to detect the collision and thus the DATA will not be retransmitted.

RI-MAC, in addition to achieving 100% packet delivery ratios, at the same time

achieves lower duty cycles. The improved packet delivery ratios by retransmission

in X-MAC and X-MAC-UPMA, however, come at the cost of higher energy con­

sumption, as shown in Figure 6.2(c). All protocols show larger duty cycles as sens­

ing range, and thus traffic load, increases. However, RI-MAC has a much smaller

rate of increase than do the other protocols. For example, when sensing range

is 500 m, RI-MAC's duty cycle is only 15% that of X-MAC-UPMA with retrans­

mission and 27% that of X-MAC with retransmission. At the same time, RI-MAC

achieves much lower latency and higher packet delivery ratio, as discussed above.

With retransmission, X-MAC shows lower duty cycle than does X-MAC-UPMA,

mainly due to less retransmission effort because of undetectable DATA collisions.

6.1.3 Results in Random Networks

This set of simulations compares RI-MAC, X-MAC, and X-MAC-UPMA in 100 ran­

dom networks, each with 50 nodes randomly located in a 1000 mxlOOO m area. For

each network, one of these nodes is randomly selected as the sink, and the RCE

87

model with 250-meter sensing range is used to generate 100 events, one every 60

seconds, one simulation run is conducted for each of these 100 networks, with 763

packets on average generated in each run.

The results for these simulations are shown in Figure 6.3. Figure 6.3(a) shows

the CDF of end-to-end latency for all packets in all 100 runs, Figure 6.3(b) shows

the CDF of packet delivery ratios in these 100 runs, and Figure 6.3(c) shows the

average duty cycles of the sensors. To improve clarity in these graphs, the pro­

tocols are listed in each graph's legend, from top to bottom, in the same order as

the curves appear in the graph, from left to right. The X-MAC and X-MAC-UPMA

curves in Figure 6.3(a) are almost indistinguishable from each other in the graph,

and the curves for these two protocols with retransmissions are likewise almost

indistinguishable from each other in this same graph.

For the same reasons as discusses above, RI-MAC outperforms the other pro­

tocols in each of these metrics. For end-to-end latency (Figure 6.3(a)), the aver­

age values for RI-MAC, X-MAC, X-MAC-UPMA, X-MAC with retransmission,

and X-MAC-UPMA with retransmission, are 2.21, 2.88, 3.02, 4.19, and 4.40 sec­

onds, respectively. Although the addition of retransmissions in X-MAC and

X-MAC-UPMA improves packet delivery ratios by helping to recover packets that

would otherwise be lost due to collisions (Figure 6.3(b)), these retransmitted pack­

ets have higher delivery latency than other packets, producing higher average

end-to-end latency for these protocol versions. The average packet delivery ratios

88

RI-MAC
X-MAC

-X-MAC-UPMA
X-MAC w/ Retrans
X-MAC-UPMA w/ Retrans

10 20 30
End-to-End Delay (s)

(a) CDF of end-to-end delays

40

0.8

0.6

3 0.4

0.2

-X-MAC
-X-MAC-UPMA
• X-MAC w/Retrans
-X-MAC-UPMA w/ Retrans
•RI-MAC

20 40 60
Delivery Ratio (%)

80

(b) CDF of delivery ratios

100

0.8

:o.6

^ 0 . 4
E
O

0.2

, "RI-MAC
,? —X-MAC-UPMA

^ X-MAC
• -X-MAC-UPMA w/ Retrans

r/ X-MAC w/Retrans

0.5 1 1.5 2
Average Duty Cycle (%)

2.5

(c) CDF of average duty cycles

Figure 6.3. Performance for random correlated-event traffic in 50-node networks
with sensing range of 250 m in simulation.

89

for X-MAC, X-MAC-UPMA, X-MAC with retransmission, X-MAC-UPMA with re­

transmission, and RI-MAC are 70.5%, 72.6%, 97.7%, 99.4%, and 100%, respectively.

The addition of retransmissions in X-MAC and X-MAC-UPMA also come at the

cost of increased energy consumption (Figure 6.3(c)). The average values for the

duty cycles of all sensors for RI-MAC, X-MAC-UPMA, X-MAC, X-MAC-UPMA

with retransmission, and X-MAC with retransmission are 0.37%, 0.89%, 0.95%,

1.21%, and 1.23%, respectively. The trends observed in these random networks

for each of these three metrics are consistent with those observed in the 49-node

(7 x 7) grid network, discussed above in Section 6.1.2.

6.2 Experimental TinyOS Evaluation

To validate the simulation-based evaluation reported above, and to explore hard­

ware platform-dependent trends and problems, I also compared RI-MAC with

X-MAC and X-MAC-UPMA in an implementation in TinyOS on MICAz motes.

RI-MAC is implemented under the UPMA framework in TinyOS as described in

Section 5.7.

Although both X-MAC and X-MAC-UPMA use short preambles to achieve

LPL, I also implemented X-MAC under the UPMA framework, as X-MAC-UPMA

differs from the original X-MAC design in several aspects, as discussed in Sec­

tions 2.2 and 6.1. The configuration of X-MAC is the same as that used in the sim­

ulations, except for the continuous CCA check interval, the duration to wait for an

X-MAC
X-MAC-UPMA
RI-MAC

Number of Flows

(a) Average Packet Delivery Ratio

2 3
Number of Flows

(c) Average Duty Cycle of Receivers

X-MAC
X-MAC-UPMA
RI-MAC

Number of Flows

(b) Average Duty Cycle of Senders

20,

•Sf15h

10
2 13 _,
IB
O)
CO

o
>
< 5

-"-X-MAC
-a-X-MAC-UPMA
-A-RI-MAC

1 2 3
Number of Flows

(d) Average Latency

Figure 6.4. Performance comparison in clique networks of MICAz motes with
contending flows in TinyOS implementation.

91

ACK after each short preamble transmission, and the dwell time. As the duration

of the continuous CCA check interval prior to preamble transmission should be

longer than the gap between adjacent short preamble transmissions, the interval

is set to the sum of the ACK transmission time, SIFS, and maximum propagation

delay in the simulation. As discussed by Klues et al. [2G], however, a longer inter­

val is used in the TinyOS implementation in order to account for processing delays

and to minimize false negatives. Therefore, the default value of 5.25 ms is used

in the X-MAC-UPMA code for X-MAC. For the same reason, the duration to wait

for an ACK after each short preamble transmission is set to 4 ms, which is also the

default value in the X-MAC-UPMA code. Lastly, the dwell time should also be

longer than the backoff window size in X-MAC, in order to account for possible

processing delays such as post-processing of a just-transmitted packet, moving a

queued packet to the MAC layer, and loading the packet to the hardware buffer.

Therefore, the dwell time defined in X-MAC needs to be extended to account for

these delays. For fair comparison, the extra dwell time for X-MAC is also 10 ms,

the same with that in my implementation of RI-MAC. In order to minimize change

to underlying radio core of TinyOS, a packet that contains only the CC2420 header

is used as a short preamble. Both a short preamble of X-MAC and a beacon of

RI-MAC are 12 bytes, although their minimum sizes could be 6 bytes, as discussed

in Section 6.1. The default configuration of X-MAC-UPMA is used in the exper-

92

iments. Beacon-on-request is not included in the RI-MAC implementation, since

nodes do not use multihop communication in these experiments.

6.2.1 Results in Clique Networks

In order to verify my simulation models, I present first experiments on MICAz

motes in clique networks; these TinyOS experiments are intended to replicate the

simulation experiments performed for clique networks, discussed in Section 6.1.1.

The network configurations and traffic model are the same as those used in sim­

ulations. The results are shown in Figure 6.4 and match closely the trends and

results shown earlier in Figure 6.1 for the clique network simulations.

The duty cycles at sending nodes and at receiving nodes (Figures 6.4(b) and 6.4(c),

respectively) are slightly higher than those in the simulations (Figure 6.1(b) and

Figure 6.1(c)). This increase is mainly because the MICAz-specific processing de­

lays in software are not simulated. For example, in my TinyOS implementation of

RI-MAC, it takes around 3.75 ms for a DATA frame to arrive after a beacon trans­

mission, mainly due to the processing delay of the beacon at a sender in software

before it starts transmitting the DATA. In simulation, however, the beacon is as­

sumed to be handled in hardware, so a DATA frame arrives just SIFS plus some

propagation delay after the beacon transmission. In addition, in the TinyOS imple­

mentation of X-MAC and RI-MAC, I also add 10 ms to the dwell time from their

original design to account for processing delays to handle the transmitted packet

and to start transmitting new packets as discussed above. Although the simulation

93

model does not account for these platform-specific delays, the simulation results

still agree well with these TinyOS experimental results.

6.2.2 Results in a Network with Hidden Nodes

I evaluate here RI-MAC, X-MAC, and X-MAC-UPMA on networks of MICAz

motes to determine how efficiently each of them detects collisions and performs

retransmission to recover packets lost due to collisions; I chose to evaluate this on

the TinyOS implementation rather than in simulation due to the simplified radio

model used by ns-2.

In this set of experiments, each average value is calculated from the results of

10 experimental runs, in the same way as that for clique networks. Error bars show

the 95% confidence intervals.

In this evaluation, I experimented with two separate network topologies: one

in which hidden nodes were present, and one with no hidden nodes. Specifically,

for each topology, I set up a network of 3 motes in which two senders transmit

packets to a single receiver node. The distance from each sender to the receiver is

the same and is within the transmission range of each sender. In the case with no

hidden nodes, the two senders are also within range of each other, whereas in the

case in which hidden nodes were present, the two senders are hidden to each other

(i.e., the CCA check at each sender almost always indicates a clear channel, even

while the other sender is transmitting packets). The two network topologies were

otherwise identical. The same traffic model is used as that for clique networks in

CO
Q .

•a
en
>
"55
T3
c
Z)
"o
g

cc
0
O)
2
CD

3
K5*L22i

• X - M A C
•X-MAC-UPMA

"HlRl-MAC
• RI-MAC W/O Retrans

i Packets still in queue

Hidden Not Hidden

(a) Average Ratio of Undelivered Packets

100

-s- 80

o

!

60

40

20

• X-MAC
LjX-MAC-UPMA
H I RI-MAC
• RI-MAC w/o Retrans

II
Hidden Not Hidden

(b) Average Duty Cycle of The Receiver

100

-s- 80

o
>•
Q
CD
D)
CO

60

40

20

I jX-MAC
.X-MAC-UPMA

^ R I - M A C
• RI-MAC w/o Retrans

r r h
. - i - Ti l *

Hidden Not Hidden

(c) Average Duty Cycle of Senders

Figure 6.5. Performance comparison when two sender are hidden to
and when they are not in a 3-node network in TinyOS implementation.

95

Section 6.2.1. To also evaluate how efficiently RI-MAC detects collisions, a varia­

tion of RI-MAC, in which a sender does no retransmissions or retries as defined in

Section 5.5, is included in these experiments. This variation of RI-MAC is referred

to as RI-MAC w/o Retrans.

Results for this set of experiments on MICAz motes are shown in Figure 6.5. I

compare the ratio of undelivered packets for X-MAC, X-MAC-UPMA, and RI-MAC

in Figure 6.5(a). A packet may be undelivered because of collisions; it is also pos­

sible that the packet is still in the transmission queue or is being transmitted at

the end of experimental measurement period. Therefore, the ratio of undelivered

packets for each protocol that are still in the queue (including those being transmit­

ted) is indicated separately in Figure 6.5(a). In this way, it possible to evaluate sep­

arately how many packets are not delivered due to collisions. The labeling along

the x-axis in Figure 6.5(a) indicates whether or not the two senders are hidden to

each other.

In both network topologies (with hidden nodes present and without), all pro­

tocols had a small fraction of undelivered packets still in the queue or still in

transmission at the end of the experimental measurement period (Figure 6.5(a)).

With hidden nodes present, X-MAC and X-MAC-UPMA both experienced a much

larger number of additional undelivered packets due to other causes, though: about

20% of the generated packets are lost with X-MAC and 15% with X-MAC-UPMA.

RI-MAC, on the other hand, experienced almost no such losses with hidden nodes.

96

In order to confirm that these losses with X-MAC and X-MAC-UPMA are likely-

due to the collisions caused by the hidden node senders, these results are com­

pared to those for the topology with no hidden nodes. In this case, almost all of

these additional losses with X-MAC and X-MAC-UPMA were eliminated. With

RI-MAC, however, with hidden nodes and without, no packets were lost other

than those still in queue, indicating that no packets are lost due to collisions with

RI-MAC.

In addition to a much higher packet delivery ratio, RI-MAC achieves lower

duty cycles both at the receiver and at the senders. The shorter dwell time in

RI-MAC is the major reason for the lower duty cycles at the receiver with RI-MAC,

as discussed above. Fast collision detection and retransmission with RI-MAC also

helps to achieve lower duty cycles at the senders. With X-MAC, if short preambles

from the two senders repeatedly collide with each other, each sender can do noth­

ing but retransmit its short preamble. In RI-MAC, the receiver detects the collision

quickly and uses a larger sender backoff window to avoid further collisions.

6.2.3 Extra Ending Beacons for MICAz

In Figure 6.5, the results for RI-MAC w/o Retrans are close to those for RI-MAC,

except that around 2% of the packets are lost due to collisions. After extensive

experimentation, this packet loss is discovered to be caused by a combination of

the capture effect and the processing delays on the MICAz motes.

97

RI-MAC+
RI-MAC+ w/o Retrans
RI-MAC

• R I - M A C w/o Retrans

Packets still in queue

Hidden
w^m ^mi Kfoa wA

Not Hidden

(a) Average Ratio of Undelivered Packets

100

^ 80

s
I
>
<

60

40!

20

• RI-MAC+
• RI-MAC+ w/o Retrans
H I RI-MAC
• R I - M A C W/O Retrans

Hidden Not Hidden

(b) Average Duty Cycle of The Receiver

100

^ 80

o
o
d1 so

Q
2. 40
2

20

• RI-MAC+
• RI-MAC+w/o Retrans
M l RI-MAC
• RI-MAC w/o Retrans

. 1 - .

i
i

i i
i

r I -+- r+-
i !

! j

1
: i

1

l+i -I-

|
j

r+

Hidden Not Hidden

(c) Average Duty Cycle of Senders

Figure 6.6. Effectiveness of using an extra ending beacon in RI-MAC in TinyOS
implementation.

98

For example, suppose two sender nodes, A and B, each have 2 packets in their

queue to send to receiver C before they receive the first beacon without backoff

window from C. Then A and B each start transmitting their DATA frames at the

same time. Assume C receives the DATA from A but loses the DATA from B due

to the capture effect in C's radio. As C believes that no collision occurred since it

received a DATA frame following its beacon, it sends an acknowledgment beacon

without backoff window to A. Now A and B both are allowed to transmit DATA

immediately. B has a DATA frame already loaded in its hardware buffer that is

waiting for an acknowledgment beacon, but A has to get a DATA from its upper

layer protocol or application and load it to its hardware buffer. Thus, B starts

transmission immediately, but A can only start after this processing delay. If the

later DATA transmission from A happens to overlap with the acknowledgment

beacon transmission from C to B, C will not know that there is a sender with

pending DATA for it and thus will not generate another beacon. As a result, A

discards the DATA due to timeout.

This problem occurs on the MICAz motes because the CC2420 hardware trans­

mission buffer can hold only one DATA frame. Thus, there is some delay before

the queued DATA can be transmitted. If a radio could hold multiple queued pack­

ets in its hardware buffer and thus supported back-to-back DATA transmission,

this problem would be much less likely to occur.

99

Although even on the MICAz hardware, this problem occurs only infrequently,

to better handle this case, I experimented with adding an extra ending beacon to the

original RI-MAC design. Suppose a node detects no incoming packet or collisions

after the previous beacon transmission. In my original RI-MAC design, this node

goes to sleep immediately. With this modification, instead, I let the node send an­

other beacon without backoff window if the node has received at least one DATA

frame after waking up in the current cycle. The node treats the beacon in the same

way as the first beacon after waking up.

I compared this solution with the original RI-MAC design and show the re­

sults in Figure 6.6. RI-MAC with the extra ending beacon modification is referred to

as RI-MAC+, and the modified RI-MAC without retransmissions is referred to as

RI-MAC+ w/o Retrans. Figure 6.6(a) shows the average ratio of undelivered pack­

ets, Figure 6.6(b) shows the average duty cycle of the receiver, and Figure 6.6(c)

shows the average duty cycle of senders. RI-MAC with this modification now

does not lose any packets due to collisions, even with retransmission at the senders

disabled (RI-MAC+ w/o Retrans). RI-MAC is thus very effective in detecting and

recovering from collisions, even with the limitations of the real hardware in the

MICAz motes.

The receiver with RI-MAC+ or RI-MAC+ w/o Retrans consumes more energy, as

shown in Figure 6.6(b), due to the extra ending beacons, but these beacons help

to reduce energy consumption at the senders, as shown in Figure 6.6(c), as some

100

DATA frames are delivered immediately following the ending beacons rather than

waiting until the next cycle.

101

Chapter 7

ADB Design

This chapter presents the design of ADB. In addition to providing multihop broad­

cast support, ADB optionally maintains neighbor lists and estimates link quality

in a power-efficient manner; these additional services may be used when they are

not provided by other components in the system.

7.1 Design Motivation

Multihop broadcast over asynchronous duty cycling is challenging for many rea­

sons. For example, the neighbors of a transmitter wake up asynchronously, requir­

ing the transmitter to stay active long enough so that each neighbor has chance

to receive the broadcast packet, resulting in increased energy consumption. In

addition, transmission attempts over poor quality links can significantly decrease

delivery ratio and increases delivery latency and energy consumption. When a

transmission fails and the intended receiver goes to sleep, if the transmitter is to

retransmit, it must wait until the receiver wakes up in next cycle. A transmit­

ter may also substantially delay forwarding by other neighbors, if the transmitter

occupies the medium while waiting to reach all of its neighbors. Finally, informa­

tion about the progress a broadcast is often crucial for a node to avoid redundant

102

transmissions, but a node that has just waken up has no up-to-date progress in­

formation. A node cannot simply use overhearing to learn the information, as the

progress may change when the node has its radio off.

To address these challenges, I made a number of basic decisions in designing

ADB. First, since with asynchronous duty cycling, the neighbors of a node wake

up at different times, I chose to use unicast transmission of the DATA packet to

each neighbor node as it wakes up. The acknowledgment in a unicast transmission

also helps a transmitter to accurately learn whether a neighbor has been reached

by the broadcast, and allows the transmitter to use retransmissions to increase the

reliability of the broadcast to wireless transmission errors and collisions. Second,

in order to avoid the transmitter occupying the wireless medium while waiting for

each neighbor to wake up, I chose to integrate ADB with RI-MAC, in which each

receiver announces its wakeup with a beacon packet, as described in Chapter 5. A

transmitter starts DATA transmission upon receiving a beacon from its intended

receiver, and then waits for an acknowledgment beacon (ACK) from the receiver.

While waiting for the beacon before the DATA, the wireless channel is available

for use by other nodes, such as neighbor nodes that have already received the

DATA rebroadcasting it to their neighbors, helping to reduce delivery latency. By

integrating with RI-MAC's unicast support, ADB can efficiently support multihop

broadcast in the same system. Finally, I chose in ADB to passively measure link

103

quality based on the beacons, helping to avoid DATA transmission over a poor

link when there is a better alternative.

7.2 Overview of ADB Operation

Figure 7.1 gives an overview of the operation of ADB. In this simple example,

the network consists of three nodes, nodes S, Rl, and R2, all within transmission

ranges of each other. Node S wants to broadcast a DATA packet to all nodes.

When Rl wakes up, node S transmits the packet upon receiving Rl's beacon in

the same way as for unicast in RI-MAC. However, ADB includes a new "footer"

in DATA frames and acknowledgment beacons (ACKs), indicating the progress of

the broadcast, including some transmissions that are about to happen. A receiv­

ing node uses this information to avoid unnecessary transmissions and to decide

whether it should forward the packet to a neighbor that has not received it. In this

example, the ADB footer in the DATA frame from S informs Rl that R2 has not

been reached yet by the broadcast and that the quality of the link (S, JR2) is poor.

Suppose the quality of link (R1,R2) is good (e.g., because of the short distance).

Node Rl decides to delivery the packet to R2 and indicates the good quality of

(Rl, R2) in the footer of the ACK to Rl. Upon receiving this ACK, S learns that it is

better for Rl to transmit the packet to Rl, so S "delegates" handling of R2 to Rl. As

S has no other neighbor to be reached, S then goes to sleep immediately. When R2

wakes up, Rl unicasts the DATA frame to R2 in the same way, except that the ADB

104

>*%; Network topology (R2JJ n

sj« , %# la RI"MAC beacon

ADB footer

s

R1

R?

lEESM
**'• "R1 and R2 unreached, poor links to R1 and R2"

."S reached, R2 unreached, good link to R2"

ft DATA! H

Figure 7.1. Overview of ADB. Node S broadcasts a DATA frame to node Rl and
R2 via unicast transmission. The footer in DATA and ACK beacons helps S and Rl
to decide which node will deliver the DATA to R2 and helps R2 to learn that both
S and Rl have received the DATA.

footer in the DATA frame indicates that S has received the DATA frame, allowing

R2 to sleep immediately because all neighbors of R2 have been reached.

The above example shows the following features of ADB:

• ADB allows a node to go to sleep once all its neighbors have been reached or

have been delegated to other nodes;

• ADB attempts to avoid transmissions over poor links;

• ADB delivers a broadcast packet without occupying the medium while wait­

ing for each receiver to wake up, to allow a neighbor to start rebroadcasting

the packet immediately; and

• ADB informs a neighbor that has just waken up on the progress of a broad­

cast, to avoid unnecessary waiting and transmissions.

105

The coordination among direct neighbors is opportunistic, without relying on

any network structure such as a tree or connected dominating set, allowing ADB

to be efficient in handling broadcasts originated by any node in a network.

7.3 ADB Algorithm Details

ADB is composed of three basic procedures: (i) Neighbor Detection and Link Quality

Estimation, which builds and distributes the neighbor list at each node and main­

tains the link quality to each neighbor on this list; (ii) Coherent Encoding of ADB Con­

trol Information, which helps to efficiently distribute information on the progress of

a broadcast and information for delegation decisions; and (iii) Delegation Procedure,

the basic procedure which runs whenever a broadcast packet or a beacon with an

ADB footer is received or overheard; this procedure determines which nodes the

packet should be forwarded to and which nodes should be delegated. Each proce­

dure is described in turn below.

7.3.1 Neighbor Detection and Link Quality Estimation

A node using ADB needs knowledge of its neighbors and the quality of the wireless

link to each. Such information may be provided by existing mechanisms in the

sensor node or by mechanisms provided by ADB. Packet delivery radio (PDR) is

used to estimate link quality in this thesis, as PDR can be measured in an energy

efficient way and provides enough information for ADB to avoid poor links.

106

When a node v begins execution, it stays awake continuously for a short period

of time, during which it counts the base beacons received from other nodes; each

node transmits base beacons according to its normal schedule during this time,

as shown in Figure .7.1. Let T denote the nominal duty cycle interval. Suppose

the period of time for which node v counts base beacons in this way is 10 cycles

(10 x T), and let n denote the number of base beacons received from some node

w during this time. If n > 2, node v appends w to its neighbor list, denoted as

N(v). The estimated one-way link quality over link (w, v), denoted as q(w, v), is

set to min(l, rc/10), as on average 10 beacons should be expected. Initially, node v

assumes that q(v, w) = q(w, v); its value will be updated passively later based on

ongoing traffic. Subsequently, v begins normal operation. It waits for a random

number of cycles before sending its neighbor list to its direct neighbors. When a

node u receives the neighbor list of node v, node u will send its own neighbor list

to v if it has not done so.

After the above initialization, ADB maintains the neighbor lists and updates

link qualities passively. Whenever a node v is awake, it passively monitors the

quality of the link between itself and each neighbor node w by counting (i) n, the

number of base beacons received from w; (ii) Ae, the number of DATA packets

it transmits to w and thus the number of ACKs expected from w, and (iii) Ar, the

number of ACKs received from w. Each of these counts are reset each time v wakes

up. When v later goes to sleep, define t as the time for which v had been awake.

107

If node v has been awake because it was transmitting a broadcast DATA packet

to its neighbors, these neighbors will have all woken up and had an opportunity to

receive the packet in less than 1.5 x T, since each neighbor wakes up and transmits

a base beacon at randomized intervals varying between 0.5 x T and 1.5 x T.

However, if due to transmission errors or collisions, node v is unable to deliver

the DATA to one or more neighbors on the first attempt, node v may remain awake

in order to complete deliver, thus remaining awake longer than 1.5 x T.

When v goes to sleep, if t > 1.5 x T, then node v has had an opportunity to

receive at least one base beacon from each of its neighbors w while being awake; in

this case, node v has information it can use to update v's estimate of q(w, v) for each

of its neighbors w. If node v has been awake for less time (t < 1.5 x T) but, for some

particular neighbor w, Ae > 0, then v has transmitted at least one DATA packet to

w while being awake, giving v an opportunity to receive the ACK following this

DATA; in this case, node v has information it can use to update v's estimate of

q(w, v) for this particular neighbor w. To update the one-way link quality estimate

q(w, v) for some neighbor w, node v uses the weighted moving average function

q(w, v) = a(t) x ((n + Ar)/(Ae + t/T)) + (1 - a(t)) x q(w, v) , (7.1)

where a(t) — 1 — e~J°><T.

In order to ensure that each node v updates its link quality estimates for all of

its neighbors from time to time when there is ongoing broadcast traffic, if v has

108

not recently been active for any period of at least 1.5 x T, then the next time node

v transmits (originates or forwards) a broadcast DATA packet, node v is forced to

remain active for at least 1.5 x T (v may be awake most of this time, or longer, sim­

ply transmitting this broadcast). When node v subsequently goes to sleep, q(w, v)

is updated using Equation 7.1 for all neighbors w. The period of time considered

"recent" above may be adaptively selected based on the rate of recent changes

observed in the link quality estimates or may be a fixed interval. In my current

design, an interval of 15 minutes is used, in order to reduce energy consumption

from these measurements while still tracking long-term changes in link qualities.

The above procedure has measured the link quality estimate for the link (w, v)

for each of v's neighbor nodes w. For the reverse link (v, w), ACK is used to piggy­

back the information needed. When node w sends an ACK beacon for a broadcast

DATA received from v, node w includes its local q(v, w) in the ACK. Node v then

replaces its local q(v, w) with this new value.

With the estimated one-way link quality for both directions over a link between

v and w, the total link quality estimate for a DATA frame transmission over this

link, denoted as Q(v, w), is defined as

Q(v, w) = q(w, v) x q(v, w) x q(w, v) , (7.2)

since a successful DATA transmission from v to w requires a 3-way handshake

between these nodes: w first sends a wake-up beacon which is received by v; v

109

then sends the DATA which is received by w; and finally, w sends the ACK beacon

which is received by v.

When node v broadcasts a DATA, it defines a deadline time for its delivery

effort. If v fails to reach one of its neighbor, say w, by this deadline, v reduces

q(v, w) as described in the following section. The deadline time is calculated using

the equation

T x l . 5 x 3 x — l— — . (7.3)
(mmweAr(,,)(Q(t;,w)))

The value l/(min„,Gjv(u)(<3(^,w))) is the expected number of duty cycles to success­

fully deliver a DATA over the poorest link. The maximum interval between two

consecutive beacons is 1.5 x T, which are added to the equation to account for

the worst case. The factor 3 is used to further increase reliability. Needed effort is

estimated very conservatively in Equation 7.3. However, despite of the estimated

long deadline time, a node rarely needs to wait this long, as it can go to sleep once

all its neighbors are either reached or have been delegated to other nodes.

7.3.2 Coherent Encoding of ADB Control Information

When a node wakes up and receives a broadcast DATA packet, the node must

decide whether or not to transmit it to each of its neighbors. To facilitate this deci­

sion, each node v includes the status of each of its neighbors in the footer of DATA

and ACK frames, as illustrated in Figure 7.1. Node v assigns one of the following

values as the status of each neighbor w: REACHED, if w has received the packet;

110

DELEGATED, if some other node is going to deliver the packet to w; or P(v, w), an

integer representation of Q(v, w), otherwise. P(v, w) is referred to as the priority of

this link. If node w's status is REACHED or DELEGATED, v does not attempt to

transmit the packet to w.

Otherwise, v attempts to transmit the packet to w, and the quality of link (v, w)

is indicated by priority P(v, w). ADB includes the status of all direct neighbors in

the footer of a frame to a node, rather than the status of a subset of neighbors that

the receiver node might be interested in. This design choice is made for two prac­

tical reasons. First, in an environment with many packet losses due to link errors

or collisions, overhearing any footer allows nodes to learn about the progress of

the corresponding broadcast. Second, having the transmitter instead include only

the status update that a receiver is interested in would add significant processing

delays for the transmitter on sensor nodes with limited CPU resources. In partic­

ular, since a transmitter does not in general know which neighbor will wake up

next, the transmitter could generate the appropriate footer only after receiving the

beacon from a neighbor. In order to allow a node to go to sleep as soon as possible

after transmitting a beacon (particularly in the common case in which no packet

needs to be sent to this node after its beacon), we generate the footer in advance

and include the same status update in the footer for any neighbor.

It is often impractical to put the node ID and status of each neighbor in a frame

due to the transmission overhead and the limited frame size. For example, with the

I l l

CC2420 radio that is widely used by popular sensor nodes, the maximum frame

size is 128 bytes.

To efficiently encode ADB footers, a node v lists the status of neighbors using a

bitmap with segments of equal length, with each segment corresponds to a node

in N(v), the set of neighbors of node v. In order to refer to a node by its position in

N(v), N(v) is organized as an array. The segments are arranged in the same order

as the corresponding node in N(v). In order for a recipient node to decode this

bitmap, node v distributes the neighbor list to direct neighbors. Let Nw(v) denote

w's local view of v's neighbor list. Due to packet losses caused by collisions or

dynamics of wireless channels, Nw(v) could be stale and different from N(v). ADB

ensures that Nw(v) is a prefix of N(v), denoted Nw(v) C N(v), by employing an

incremental neighbor list.

In ADB, once a node v detects a new neighbor, it appends the neighbor to the

end of its neighbor list N(v). Since sensor nodes are stationary in most WSNs, N(v)

will converge quickly. Even if a node w does not have the up-to-date copy of node

v's neighbor list, w can still decode the beginning portion of a received bitmap

without ambiguity. In a more dynamic network such as with mobility, we could

assign a version number to each neighbor list and to avoid ambiguity, but I chose

to use the incremental neighbor list to efficiently handle the common case. Also,

a node v will not remove any existing neighbor, say w, from its neighbor list N(v)

even if node w has moved away or has failed. Instead, a node v will use the value

112

zero for P(v, w) in its bitmap to tell its neighbors it does not currently have a valid

link to the node w.

In my implementation, each segment of a bitmap has 3 bits, which is able to

represent node status value from 0 to 7. The value 7 is reserved for REACHED,

the value 6 for DELEGATED, and the value 0 to indicate an unreachable neighbor.

The priority of w at v, P(v, w), is thus in the range of 1 to 5. The total link quality

estimate Q(v, w) is used to assign priority P(v, w) values using the equation

{ 0 if Q(v, w) < 2%

(7.4)
min(5,l+lQ(v,w)x5\)) i£Q(v,w)>2%

As a node updates some Q(v, w), it also updates P(v,w). Especially when a node

fails to deliver a packet to a neighbor by the deadline calculated by Equation 7.3,

q(v, w) is reduced so that the corresponding P(v, w) can be mapped to a lower

priority, increasing the chance that the neighbor can be delegated to another node

next time. In order to avoid using very poor links, when Q(v, w) is less than 2%,

P(v,w) is also set to 0. Also, if v fails to deliver its neighbor list to w due to reasons

such as asymmetric links, P(v, w) is set to 0 directly. When P(v, w) is 0, node w

is added to set B(v) of "bad" neighbors. Node v still attempts to transmit to w

but v will go to sleep if all neighbors whose priorities are greater than 0 have been

reached or delegated, regardless of w's status. If a DATA and the corresponding

113

ACK have been successfully exchanged over link (v, w), Equation 7.4 will be used

to calculate status of w, and w is removed from B(v).

7.3.3 Delegation Procedure

The goal of ADB is to minimize redundant transmissions and to allow a node to

sleep as early as possible. ADB also attempts to avoid transmissions over poor

links.

ADB uses the following data structures to achieve these goals. For a broadcast

packet i, node v maintains Rdl as the set of nodes whose status is REACHED, and

Dll as the set of nodes whose current status is DELEGATED. Initially, both Rd?

and Dl% are empty. A node updates these two sets when receiving or overhearing

a frame with an ADB footer that contains information about the progress of the

broadcast. If either set changes, ADB makes the following decisions:

• If Rdl U Dll = N(v) — B(v), v can go to sleep immediately, as all neighbors

are either REACHED or DELEGATED.

• Otherwise, if w e N(v) — B{v) and w £ Rdl U DP, node v transmits the DATA

to w on receiving a beacon from w.

Figure 7.2 shows the way in which node v analyzes an ADB footer that contains

information about the progress of packet i. This footer is received or overheard from

w and contains an array Sw that lists the status of w's neighbors. The separate Sl

local array at v lists the priority of each of v's neighbors with respect to packet i.

114

Each entry S^u) is initially set to P(v,u). The variable Nv(w) denotes the most

recent neighbor list v has received from w.

The procedure ANALYZE-FOOTER is composed of three parts. First (lines 1-

6), node v finds common neighbors with w that have been reached and adds each

to Rdl. Second (lines 7-14), if v has not received any ADB footer regarding packet

i, then lines 9-13 are executed. If some common neighbor u's status is equal to

DELEGATED, some other node is about to transmit to u; in order to avoid colli­

sions, node v also sets u's status to DELEGATED by adding u to Dl\ Third (lines

15-28), node v and w negotiate which node is transmitting to a node that is neither

REACHED nor DELEGATED. Line 19 is executed when v does not have better

link quality to a common neighbor u compared with w. Thus, v gives up trans­

mission to u and marks u as DELEGATED. Lines 21-25 are executed when v has

better link quality to u compared with w. If this footer is from a DATA frame that

is intended for v, node v removes u from Dll so that u's status is set to P(v, u) in

future outgoing frames (e.g., the ACK to this DATA). Once node w receives the

ACK, node w will find that v has a better link quality to u and thus give up its own

transmission to u. When the footer is from an overheard frame, node v sets u's sta­

tus to DELEGATED. There are two reasons for this design choice. First, if v wants

to transmit the packet i to u itself, v would have to send a separate frame to notify

w that v is in a better position to transmit i to u. Second, even if v decides not to

transmit the packet i to u, u may still delegate the transmission to some node that

115

procedure ANALYZE-FOOTER(w, Sw, i, v):

11 find neighbors that are REACHED
for each vertex u G Nv(w) n N(v) do

if Sw[u] = REACHED then
Rdi <- {u} U Rdl

end if
end for

if v has never received any ADB footer regarding i before then
/ / find neighbors that are DELEGATED
for each vertex u £ N(v) n Nv(w) do

if Sw[u] = DELEGATED then
Dl* *- {u} U Dll

end if
end for

end if

/ / delegation negotiation with w on unreached neighbors
for each vertex u e (N(v) - Rdl) D Nv(w) do

if Sw[u] ^ DELEGATED then
ifS*[u] <Sw[u] then

DP <- {«} U Dl1

else
if Sw is from a DATA intended to v then

DP <- DP - {«}
else

DP <- DI* U {«}
end if

end if
end if

end for

Figure 7.2. Node t> analyzes an ADB footer that contains information about the
progress of packet i. This footer is received or overheard from w, containing an array
Sw that lists the status of w's neighbors. The separate Sl local array lists the status
of v's neighbors with respect to packet i.

116

has a better link quality to u. In order to minimize message overhead, u's status is

set to DELEGATED at v.

Once a node starts forwarding of packet i, the node does not reflect any change

of link status into local array S% until the node stops the forwarding, so that the

node and its neighbors make consistent decisions on the delivery of packet i. An

ACK beacon to a DATA might get lost due to collisions or link errors. To make ADB

robust to such packet losses, a node continues to include in each beacon the source

address and sequence number of the most recently received broadcast packet for

some period of time. In my implementation, this duration is set to 3 duty cycles.

7.4 Analysis of End-to-End Delivery Latency

To gain insight into the latency of ADB, I considered a simplified model in which

the actual transmission time of a broadcast packet is negligible (0 time), and in

which no collisions or link errors occur; that is, if two nodes transmit to the same

node at the same time, the receiver will receive both packets successfully. Further­

more, each node is assumed to randomly pick a wakeup time that is independent

of other nodes' wakeup times and of the traffic load. As shown later in this section

and in the simulation evaluation in Section 8, the results based on this simplified

model give good insights and are close to my simulation results based on a realistic

simulation model.

117

h ta *p *y h ti tj Vkl ft] *£

(a) Packet receipt time with ADB.

J t t t ' " t • " j t j — t t timl
f0 % f'a ty fi VkJ '% t'n

(b) Packet receipt time with some protocol.

Figure 7.3. ADB achieves optimal latency under simplified assumptions.

Theorem 2 Under the assumptions of 0 packet-transmission duration and error- and

collision-free channels, each node receives, for the first time, each broadcast packet in mini­

mum possible time using ADB.

Proof: By contradiction. Assume without loss of generality that a node 0 in

a network G = (V,E) originates a broadcast packet in the network; call this node

the source node. Also assume that there exists at least one node that receives its

broadcast packet with ADB later than it would with some other protocol. We run

an instance of both protocols, ADB and the other protocol, and compare the time

at which each node receives the packet for the first time.

Denote the times at which node j e V received the broadcast packet for the

first time based on ADB and the other protocol by i, and t'jr respectively, as shown

in Figure 7.3. As t0 is equal to t'0, the time the broadcast packet is originated by

the source node 0 in both protocols, t'0 is replaced with t0 in the figure. Assume,

118

without loss of generality, that the first node that received the packet with the other

algorithm before the time it would have received it with ADB, is node k, i.e., tk > t'k

and U < tl {Vz|̂ < t'k}. For example, in Figure 7.3(a), all nodes a, j3,7, S,..., i, j

received the packet with ADB no later than the time they received the packet with

the other protocol (ta < t'a, tp < t'p,... tj < t'j); node k is the first node that received

the packet with the other protocol earlier than with ADB (tk > t'k). Although there

might be multiple nodes that receive the packet with the other protocol earlier than

with ADB (e.g., node £ in Figure 7.3(b)), we concentrate here on only the first of

such node, that is k.

Assume that with the other protocol, node k received the broadcast from node v

(node v could potentially be node 0). Since node k received the packet from v, then

t'v <t'k. Hence, based on our assumption that k was the first node that received the

packet with the other protocol earlier than with ADB, node v received the packet

with ADB not later than when v got the packet with the other protocol, i.e., tv < t'v.

Furthermore, with ADB, a transmitter delegates a neighbor to some other node if

and only if this other node wakes up and receives the broadcast packet prior to

the wakeup time of the delegated neighbor as shown in Figure 7.2. This means

that with ADB, from time tv < t'v until node k receives the packet, there is at all

times at least one of k's neighbors that is awake waiting for k to wake up in order

to deliver the packet (it can be either v itself or some other node that has already

received the packet such as node j in Figure 7.3(a)). Since a node's wakeup time

119

is determined independently from broadcast protocols, and since there is at least

one node waiting for k to wake up in order to deliver the packet, at time t'k when k

is awake, it must either have already received the packet with ADB or it much be

receiving the packet. Since there are no collisions, the packet will be delivered to

node k successfully, which means that tk < t'k, contradicting the assumption that

node k received the broadcast packet with the other protocol earlier than the node

does with ADB. •

Remarks: (i) The delivery times with to ADB as shown in the theorem are the

optimal delivery times, as a node receives the packet as soon as it wakes up, and

one of its neighbors has already received the broadcast packet, (ii) The assumption

of zero packet transmission duration implies that nodes do not defer due to other

transmissions; in a real system, the duration to transmit a packet is relatively small

compared to a duty cycle interval, so the probability that two neighboring nodes

wakes up within a packet transmission is low. It is true that the denser the net­

work, the more likely that nodes will have to defer due to other transmissions. In

the worst case, a transmitter cannot start transmission even if the intended receiver

wakes up, as the transmitter is deferring due to some other transmissions. In this

case, the receiver goes back to sleep immediately, unaware of the waiting trans­

mitter, resulting in a penalty in latency of one duty cycle, (iii) ADB is not immune

to collisions, but ADB can take advantage of the collision resolution mechanism of

the underlying RI-MAC, resulting in small delivery latency.

120

LowPowerListening AsyncSend AsyncReceive

MacControlC

ADB
ManagerC

-LowPowerListening

-AsyncSend—^
AsyncReceive—4.

RI-MAC

MacC

\BitmapOperation
Neighborlnfo \

, X -
RadioPower AsyncSend AsyncReceive

Control I -* "V" ADB Adaptation Code

Radio Core

Figure 7.4. Interaction between ADB, RI-MAC, and the UPMA framework in
TinyOS.

7.5 ADB Implementation in TinyOS

I implemented ADB under the UPMA framework [20] of TinyOS, integrated with

the RI-MAC implementation described in Section 5.7.1 tested this implementation

on MICAz motes equipped with CC2420 radios [5]; these radios are also used in

the popular TelosB motes. Figure 7.4 shows how the portions of the ADB imple­

mentation interact with RI-MAC and the UPMA framework.

The ADBManagerC module in Figure 7.4 provides most of the functionality

of ADB, maintaining the neighbor list and status, encoding and decoding ADB

footers, checking whether neighbors have been reached or delegated, and decid­

ing whether to transmit to a neighbor that has just woken up. This module uses

the AsyncSend and AsyncReceive interfaces to distribute and receive neighbor lists

through RI-MAC. In order to minimize processing delays of ADB operations, I

file:///BitmapOperation

121

added additional code to the radio core of TinyOS, indicated by ADB Adaptation

Code in the figure. This adaptation code reports bitmaps in received frames to

ADBManagerC directly and retrieves the most up-to-date bitmaps for packets to be

transmitted. The adaptation code also notifies ADBManagerC of incoming beacons

and ACKs for neighbor detection and link quality estimation.

I use a reserved bit in the Frame Control Field (FCF) of an IEEE 802.15.4 frame

to indicate whether an ADB footer is included in the frame. I also add one byte

named bitmapslength to the MAC header of the frame. The bitmapslength field gives

the number of bytes used by the ADB footer in the corresponding frame. The

footer is placed after the original data payload of the frame and before the Frame

Check Sequence (FCS) field. Therefore, the additional number of bytes introduced

by ADB is (bitmapslength + 1) if a footer is included. For a beacon with an ADB

footer, the network layer source address and sequence number must be included,

in order to identify the corresponding broadcast packet. In my experiments, I use

1 byte for the source address and 2 bytes for the sequence number.

Since ADB operations are handled by software and since a node goes to sleep

soon after its beacon transmission, one challenge I faced in this ADB implementa­

tion is limited time in updating destination address and footer of a pending DATA frame.

In order to update the destination or footer of the pending frame that is already

in the CC2420 radio's TX buffer, ADB has to discard the packet in the buffer and

load an updated frame into the buffer. Before loading, ADB also needs to secure

122

the SPI bus. All these operations take time, and thus ADB may not be able to start

transmission before the intended receiver has gone back to sleep.

A slight increase in the waiting time after beacon transmission at each node

does not completely solve this problem. This will make room for change the desti­

nation to the intended receiver, at the cost of more energy consumption at all nodes

when there is not traffic. However, we may still not have enough time for footer

update. As a node may update the footer of a pending frame upon receiving or

overhearing frames. The footer may need multiple updates during a very short

period of time in order to keep up-to-date information in the footer. If a beacon

is received from an intended receiver but the updates haven't been finished, we

either has to wait until the receiver wakes up next time at the cost of much larger

energy consumption and delivery latency, or transmits a frame with stale informa­

tion in its footer.

To optimize the implementation for most common cases, I always use broadcast

address as destination in each DATA frame and do not delay DATA transmission

due to pending updates. When a DATA frame is received, a node sends back

an acknowledgement beacon only if the node has just transmitted a beacon and

waiting for incoming packets. It is possible that two nodes send their beacons

almost at the same time and both send acknowledgement beacons upon receiving

a DATA frame. When these beacons collide at the transmitter of the DATA, the

transmitter cannot learn the successfully delivery until it overhears transmissions

123

from those nodes. However, this is a rare event when a network operates with

a low duty cycle configuration. If a frame with stale information in the footer is

sent out, ADB could have more redundant messages or even unreached nodes.

For example, node A transmits a DATA to node B and B has better link quality to

their common neighbor C. In this case, node B will indicate the good link quality

in the acknowledgement beacon to A. If A failed to receive this beacon due to

link errors, both A and B will transmit to C, leading to collisions. Now suppose

A has successfully received the beacon from B and decides not to transmit to C.

However, before A finishes updating the footer of the DATA, a beacon from node D

is received. If we let A start transmission immediately, with a stale footer indicating

that A will transmit to C, node B will suppress its transmission to C to avoid

collisions. As a result, neither A nor B will transmit to C any more. As such

scenario was rarely observed in my experiments, and in order to avoid the large

energy consumption and delivery latency at A when A waits for next beacon from

D, I chose to allow DATA transmission with stale information in the footer. With

future hardware support in efficiently updating destination and footers, all the

above problem would avoided.

124

Chapter 8

Evaluation of ADB

In this chapter, I evaluate ADB both in detailed ns-2 simulations and in a testbed

running TinyOS on MICAz motes. Simulation is used to evaluate networks that

are hard to deploy and experiment with, and use the testbed in order to explore

the details not completely captured by simulation.

ADB is compared with X-MAC-UPMA rather than the original X-MAC, since

the X-MAC paper did not explicitly explain how broadcast is supported and its

code is not available in TinyOS. The RESEND_WITHOUT_CCA option in UPMA

is used so that when a node repeatedly transmits a DATA frame to broadcast it

in X-MAC-UPMA, only the first of the sequence uses backoff before transmission.

Without this option used, each DATA transmission in the sequence is subject to

backoff, as is the default in the TinyOS code. However, I found that the backoffs

within the sequence could often lead to unreached nodes even in a simple chain

topology, and I confirmed this problem with the author of the TinyOS code [30].

The problem occurs because the sequence from a transmitter could be interrupted

by a neighbor's transmissions when the transmitter is doing backoff; if an intended

receiver wakes up during the transmitter's backoff, the receiver cannot detect in­

coming packets and thus goes to sleep immediately. Since an improved TinyOS

125

code to solve this problem is under construction, RESEND_WITHOUT_CCA is

used to get the best performance for X-MAC-UPMA. Two possible schemes to

support broadcast with RI-MAC are also simulated. ADB specific features are not

used in these schemes, so that we can tell how much the new features of ADB

contribute to performance gains. Details of these two schemes are discussed in

Section 8.1.

As in prior work [3, 20], Effective duty cycle, the percentage of time a node has

its radio on, is used in evaluating power efficiency. When a broadcast packet has

reached all nodes in a network, End-to-end delay used to indicate the time between

when the that packet was first generated and the time when the packet reaches the

last node. If the packet fails to reach all nodes in a network, the end-to-end delay

value is infinity and is not included in the following figures. In order to evaluate

reliability, the percentage of nodes that have been reached by each broadcast packet

is reported as delivery ratio.

In both the simulation and testbed evaluations, 1 second is used as the duty

cycle interval for all MAC protocols, and randomize the initial wakeup time of

each node. Data payload size is always 28 bytes, the default value in the UPMA

package.

126

8.1 Simulation Evaluation

I use the ns-2 network simulator to evaluate ADB's performance in 100 random

networks. As with the other simulation evaluations presented in this thesis, I used

version 2.29 of the ns-2 network simulator, using the standard combined free space

and two-ray ground reflection radio propagation model commonly used with ns-

2. Each sensor node is simulated with a single omni-directional antenna. In each

simulated network, 50 nodes randomly deployed in a 1000 m x 1000 m area. Each

of these networks is connected. In each network, a random node is chosen as sink,

which initiates 100 broadcast packets during each run. The interval between two

consecutive broadcast originations is 100 seconds so that all forwarding for one

packet completes before the next packet is originated. The simulation uses the

default ns-2 combined free space and two-ray ground reflection radio model and

the same radio parameters used in RI-MAC's evaluation shown in Section 6, in

order to simulation the CC2420 radio used in popular MICAz and TelosB motes.

ADB is compared with X-MAC-UPMA in each random network in support­

ing the 100 network-wide broadcasts. With X-MAC-UPMA, Two versions of

X-MAC-UPMA are considered. First, in the standard version of the protocol,

which is referred to as X-MAC-UPMA-1 in the rest of this work, a transmitter of

a broadcast packet transmits the packet repeatedly over the duration of one duty

cycle. Second, as discussed in Section 2.3, X-MAC-UPMA could experience colli­

sions caused by transmissions from hidden nodes. In order to compensate for the

127

packet losses caused by these collisions, each node transmits the packet over two

different duty cycles, indicated by X-MAC-UPMA-2: the first transmission cycle

takes place in the same way as in X-MAC-UPMA-1, and the second takes place

after a randomly chosen delay, up to 5 duty cycle intervals, following the first one.

As ADB is integrated into RI-MAC, in order to show the advantage brought by

ADB-specific features, such as delegation and the ability to adapt to link qualities,

I simulated two schemes for broadcasting for RI-MAC, by varying the amount of

effort each node spends in attempting to reach its neighbors. In the first scheme,

when a node receives a new broadcast packet, the node stays awake for 1.5 x T

(RI-MAC varies duty cycle interval between 0.5 x T and 1.5 x T), during which each

neighbor generates at least one beacon. When a beacon is received from a neighbor,

the node unicasts the packet to the neighbor and waits for an ACK corresponding

to this packet. If an ACK is received, the node does not attempt to transmit the

packet to the same neighbor again during this time. After staying awake for 1.5 x T,

the node discards the packet and goes to sleep if the medium is idle. This scheme

is referred to as RI-MAC-1.5. A duration of 1.5 duty cycles (1.5 x T) was chosen

as that is the minimum duration the node has to stay awake in order to be able to

receive a beacon from all neighbors. This duration may be too short for reliable

packet deliveries in case some beacons or DATA frames are lost, so in the second

scheme, this duration is increased to 4.5 x T; in the rest of this thesis, this scheme

is referred to as RI-MAC-4.5.

128

With the default channel model of ns-2, if a receiver is within 250-meters of a

sender, packets from the sender will be successfully received by the receiver unless

there is a collision. Results in this channel model are shown in section 8.1.1. In a

real network, in addition to collisions, errors caused by factors such as wireless

fading and interference could also cause packet losses. In order to evaluate ADB's

robustness and efficiency with such packet losses, in Section 8.1.2, the simulation

uses a modified channel model in which additional packet losses are introduced.

8.1.1 Results with Default Channel Model in ns-2

Figure 8.1 shows our simulation results with the default channel model in ns-2.

The results are shown as cumulative distribution functions calculated based on

the results from the 100 random runs.

Energy efficiency is shown in Figure 8.1(a) as average duty cycles. The

average values with ADB, RI-MAC-1.5, RI-MAC-4.5, X-MAC-UPMA-1 and

X-MAC-UPMA-2 are 0.46%, 1.62%, 4.61%, 9.08% and 21.30%, respectively. The en­

ergy consumption of ADB is only around 28% of that of RI-MAC-1.5,10% of that of

RI-MAC-4.5,5% of that of X-MAC-UPMA-1, and 2% of that of X-MAC-UPMA-2.

ADB achieves such substantial savings by putting a node to sleep immediately

when all of its neighbors are reached or delegated. Such optimization is not possi­

ble with RI-MAC, as a transmitter only knows which neighbors have been reached;

the transmitter does not know whether all neighbors have been reached due to

the lack of a complete neighbor list. Moreover, the transmitter with RI-MAC at-

129

tempts to send a broadcast packet to a neighbor, regardless whether the neigh­

bor has received the packet or will receive a copy from some other node. With

X-MAC-UPMA, a transmitter must continue sending a DATA packet for a whole

duty cycle interval, as feedback from neighbors is unavailable. Moreover, over­

hearing consumes significant energy. Suppose a node has finished broadcasting a

DATA packet, and then one neighbor starts rebroadcasting this packet. It is likely

that the rebroadcast is still ongoing when this node wakes up again for its next cy­

cle, and thus the node will receive duplicate copies of the DATA from the neighbor.

This node could have used some bookkeeping to avoid receiving such duplicated

broadcast packets and go to sleep immediately, but this would require careful con­

sideration as to when to turn the node on again later. If the transmitting neighbor

has some queued packets to this node, they cannot get delivered until this node

wakes up again.

Figure 8.1(b) shows the packet delivery ratios achieved by these protocols. The

average delivery ratios with ADB, RI-MAC-1.5, RI-MAC-4.5, X-MAC-UPMA-1

and X-MAC-UPMA-2 are 100%, 99.64%, 100%, 96.55% and 99.78%, respectively.

ADB always achieved 100% delivery ratios, as ADB footers provide information

on the progress of a multihop broadcast, which reduces many redundant transmis­

sions that could cause collisions. These collisions are not avoided with RI-MAC.

Sometimes collisions caused by transmissions from multiple neighbors to a node

cannot be resolved in time and the node goes to sleep after that. When the node

130

j I
1
1 : •

» :

i :
« :
i -
i :

» • • :

! \\
i H
; ; i
: J 1

i
3
S
a
i * * -

: I
£

. t
• »

• s
! / • • • 1 : *
:f

f

1
10 15 20

Average Duty Cycle (%)
25

(a) CDF of average duty cycles.

0.8

S0 .6 -

3 0.4I

O

0.2!

!

. . - ;

...

20 40 60
Delivery Ratio

80 100

(b) CDF of delivery ratios.

f \ ': : »*— r „***"

1 * *:
1 * * :
S] / • : * •
1 f • t
| ; • # ; • :

1 * ; *
I # : / I : : * * 1 : * *

. I : » f:
f :* • : 1 1 t / !
I * / : 1 » # •

I * A
% * J?

0.8

2 0.6-

e
o

i 0.4-

10 20 30
End-to-End Delay (s)

40 50

0.2

'

1

I

. 1.

e jj

> i
* 5 "

« i

D ;

• i
I :
• :
• i

. • • « 10' 10° 10°
Message Overhead (# of data packets)

10

(c) CDF of end-to-end delays. (d) Number of DATA frames transmitted.

; \-

T. '• •
,- a :
J i « :

• l l - : I
I! : I
l • :

. . fc: . . . « =
> « I
i i i « :
i l l • :
• « s

Ill J §
l.:... » ;
1 » :
i • :
J t ;
iu J. ?

I f l l l l l f l l l

11 • I • I •

aassssiS8&

10° 10' 10°
Message Overhead (bytes)

(e) Number of bytes transmitted

10

ADB
RI-MAC-1.5
RI-MAC-4.5
X-MAC-UPMA-1
X-MAC-UPMA-2

Figure 8.1. Performance comparison in 50-node networks with default channel
model in ns-2.

131

wakes up again, all of its neighbors have finished their broadcasts and gone to

sleep already. This is why RI-MAC-1.5 experienced some undelivered packets.

With longer waiting time and thus more effort spent in delivering a broadcast

packet, RI-MAC-4.5 allows a node to receive the broadcast packet when it wakes

up again, which helped to improve the delivery ratio. However, this improve­

ment comes at the cost of much increased energy consumption, as shown in Fig­

ure 8.1(a). X-MAC-UPMA shows the worst delivery ratios, as a node may miss

an incoming packet due to collisions caused by overlapping transmissions from

hidden nodes, as discussed in Section 2.3. By rebroadcasting each newly received

broadcast packet over two duty cycles with random backoffs, X-MAC-UPMA-2

improves delivery ratios, but the improvement also comes at the cost of much

more energy consumption.

Figure 8.1(c) shows the CDF of end-to-end delays for all packets in the 100 runs.

The average values with ADB, RI-MAC-1.5, RI-MAC-4.5, X-MAC-UPMA-1 and

X-MAC-UPMA-2 are 3.08, 3.34, 3.39, 22.61 and 30.61 seconds, respectively. ADB

shows an average end-to-end latency that is around 14% of that of X-MAC-UPMA-1,

and 10% of that of X-MAC-UPMA-2. With ADB, because a transmitter occupies

the wireless medium only for a small amount of time, neighbors of this trans­

mitter can start rebroadcasting the received packet immediately, whereas with

X-MAC-UPMA, the neighbors have to wait until the end of the long transmitting

sequence from the current transmitter. The long repeated transmission sequences

132

may even block transmission of nodes that are not direct neighbors of the current

transmitter when they can sense the busy medium caused by the transmitting se­

quence. RI-MAC-1.5 and RI-MAC-4.5 show only slightly larger end-to-end delays

than does ADB. The extra delays are mainly caused by collisions. As collisions can

be quickly solved by RI-MAC, the extra delays are small.

Figure 8.1(d) shows the number of DATA frames transmitted over the air

with these protocols. Due to the wide range among the results, a log scale is

used for the x-axis. The average numbers with ADB, RI-MAC-1.5, RI-MAC-4.5,

X-MAC-UPMA-1 and X-MAC-UPMA-2 are 6.19e+3,3.48e+4,3.62e+4,2.61e+6 and

4.79e+6, respectively. ADB shows the lightest network load in this set of experi­

ments. The number with ADB is only 18% of that with RI-MAC-1.5 and 17% of

that with RI-MAC-4.5, for two reasons. First, delegation in ADB greatly helps in

reducing redundant transmissions. Second, the reduced redundancy also helps

to reduce collisions and thus the number of retransmissions. There are signif­

icantly more DATA frames transmitted over the air with X-MAC-UPMA-1 and

X-MAC-UPMA-2, as copies of a broadcast packet must be repeatedly transmitted

for 1 or 2 duty cycle intervals, respectively, from each node.

Besides DATA frames, beacons are also transmitted over the air with ADB,

RI-MAC-1.5, and RI-MAC-4.5. For a fair comparison, Figure 8.1(e) shows the

total number of bytes transmitted by each protocol, which include all DATA

and control frames. The average numbers with ADB, RI-MAC-1.5, RI-MAC-4.5,

133

X-MAC-UPMA-1 and X-MAC-UPMA-2 are 6.96e+6,8.18e+6,8.24e+6,1.07e+8 and

2.31e+8 bytes. ADB still shows the lightest network load among these protocols.

8.1.2 Results with Increased Packet Losses

In a real wireless sensor network, a packet may be lost due to errors caused by

factors such as wireless fading and interference. To evaluate the effect of such

increased packet losses, a simple model is used to introduce random losses based

on the distance between transmitter and receiver, as longer distances will generally

result in lower received signal strength and thus increased probability of loss. In

these simulations, a link with a span of 0 meters has 0% probability of additional

packet loss, and a link with a span of 250 meters has 50% probability of additional

loss; these probabilities refer to the random losses introduced by this modified

channel model, beyond those caused by any collisions in the default ns-2 channel

model, for each individual transmission (e.g., of a DATA frame or an ACK). Then

linear interpolation is used to calculate the probability of loss based on a link's

span. The maximum communication range possible is still 250 meters, the default

value in ns-2. The results with this modified channel model are shown as CDFs in

Figure 8.2.

Figure 8.2(a) shows the average duty cycles. The average values with ADB,

RI-MAC-1.5, RI-MAC-4.5, X-MAC-UPMA-1 and X-MAC-UPMA-2 are 1.22%,

1.50%, 4.60%, 9.11% and 21.29%, respectively. Compared with the results using

the default ns-2 channel model shown in Figure 8.1(a), all protocols except for

134

ADB show similar energy efficiency because each node stays awake for essentially

a fixed amount of time regardless of channel condition. Some runs even show

smaller energy consumption between RI-MAC-1.5 and RI-MAC-4.5, since signif­

icantly more packets fail to reach the whole network, as shown in Figure 8.2(b);

thus, some nodes do not receive the packets and thus do not stay awake to rebroad-

cast them. As ADB adapts to link qualities, ADB attempts more retransmissions,

as needed, in order to compensate for increased packet losses. ADB thus con­

sumes more energy with this channel model than it does with the default model

as shown in Figure 8.1(a). Even though, ADB still shows the lowest average duty

cycle among these protocols.

With increased packet losses over the wireless channel, ADB still main­

tains 100% delivery ratios, as shown in Figure 8.2(b). Average delivery ratios

achieved by the other protocols, RI-MAC-1.5, RI-MAC-4.5, X-MAC-UPMA-1 and

X-MAC-UPMA-2 are 90.09%, 99.33%, 96.70% and 99.78%, respectively. Delivery

ratios with RI-MAC-1.5 and RI-MAC-4.5 decrease as these protocols do not adapt

to channel conditions. With more redundancy, RI-MAC-4.5 shows much higher

delivery ratios than RI-MAC-1.5, with the trade-off that RI-MAC-4.5 consumes

more energy. Both X-MAC-UPMA-1 and X-MAC-UPMA-2 show almost the same

performance compared to the results in Figure 8.1(b), because of extraordinary re­

dundancy in their DATA transmissions. Even with increased packet losses, when

a DATA is retransmitted repeatedly for a whole duty cycle in X-MAC-UPMA-1,

135

-

i I! !-•
: ! : '•*

: •': a
• i *
- •;• t :

• !: «:
: ! «:
: !: ';
• -; • [

: •: a .
: i a
'• i 1

1 ! * :
: ! s
: r * :

i t
: • »

;: •

!': •
J »

£
t
s
I
r *

3
3

; *
• i

: t

:/
3
3
s

j

10 15 20
Average Duty Cycle (%)

25

(a) CDF of average duty cycles.

0.8

2 0.6

E
o

0.4

0.2

" • *•— — f - r — r f l f f W l T l f l l l | l ^ ^ - ^ - * * - ^ ^ - W . . J » » « m A « m • WtfS»l

20 40 60
Delivery Ratio

80 100

(b) CDF of delivery ratios.

20 30
End-to-End Delay (s)

(c) CDF of end-to-end delays.

0.8

2 0.6

E
o

! 0.4

0.2-

10"

• l i f •.!!!i ! : : ! : • • : ! r-f.—:
ii • J
:! • !
*< « i
5! i : -
z! » i
: • a S

•!! ' I
; I i :

= ! < !
: ! • ;
= ! • !
:! • :
:'! a 5 -
: ! i ;

: : j « :
= • i s

ii ' !
: • » S

• ! ' -
;" i J J

10' 10° 10°
Message Overhead (# of data packets)

10

(d) Number of DATA frames transmitted.

I : : : ! : | S ! • ' t
: ; 5 : • :

a • :

i si
I : I
i • :
3 » :
5 » :
3 ' 5
i » :
i > :

i ; i
? « s
'•: . - S

_ A D B

RI-MAC-1.5
— RI-MAC-4.5
. X-MAC-UPMA-1
" '»»"« X-MAC-UPMA-2

10 10
Message Overhead (bytes)

(e) Number of bytes transmitted

10

Figure 8.2. Performance comparison in 50-node networks with increased packet
losses.

136

a receiver is very likely to get at least one copy of the DATA; X-MAC-UPMA-2

increases that likelihood. Therefore, broadcast using X-MAC-UPMA is more ro­

bust to packet losses, but this redundancy still causes many collisions, resulting in

lower delivery ratios than with ADB.

Figure 8.2(c) shows the CDF of end-to-end delays for all packets in the

100 runs. The average end-to-end delays with ADB, RI-MAC-1.5, RI-MAC-4.5,

X-MAC-UPMA-1 and X-MAC-UPMA-2 are 8.89, 5.38, 5.99, 22.63 and 30.69 sec­

onds, respectively. ADB, RI-MAC-1.5 and RI-MAC-4.5 show much longer end-to-

end latency than they do with the default channel model in ns-2, since when a

beacon from the intended receiver is lost, a transmitter has to wait until another

beacon arrives in the next cycle. With extraordinary redundancy, X-MAC-UPMA-1

and X-MAC-UPMA-2 show similar results to those in Figure 8.1(c), for the same

reason I've discussed above. RI-MAC-1.5 and RI-MAC-4.5 show lower end-to-end

latency than does ADB for this channel model since the latency is not included for

any broadcast packets that have not reached all nodes; For those packets, which

occur with RI-MAC but not with ADB, the end-to-end delay is infinity.

Finally, Figure 8.2(d) shows the overhead in terms of number of DATA frames

transmitted from all nodes, and Figure 8.2(e) shows the total number of bytes

transmitted with each protocol. The average number of DATA transmissions

with ADB, RI-MAC-1.5, RI-MAC-4.5, X-MAC-UPMA-1 and X-MAC-UPMA-2 are

8.20e+3, 2.73e+4, 3.65e+4, 2.61e+6 and 4.79e+6, respectively. Compared with the

137

results in the default channel model, more DATA frames have been transmitted

with ADB, RI-MAC-1.5 and RI-MAC-4.5 due to more retransmissions. In some

random runs RI-MAC-1.5 shows a much smaller value than its average value,

as many packets fail to reach all nodes in the network, and thus there are fewer

rebroadcasts. The similar trend can be observed for the number of bytes trans­

mitted (Figure 8.2(e)). The average numbers of bytes transmitted with ADB,

RI-MAC-1.5, RI-MAC-4.5, X-MAC-UPMA-1 and X-MAC-UPMA-2 are 7.12e+6,

7.90e+6,8.38e+6,1.07e+8 and 2.31e+8, respectively.

8.1.3 Comparison to Optimal Latency

Figure 8.3 shows the difference between the delivery latency achieved by ADB and

the optimal delivery latency to each node. The optimal delivery latencies are cal­

culated based on the topology of a network, wakeup schedules of each node, and

origination time of each broadcast; transmission delay, link errors and collisions

are ignored in calculating the optimal delivery latency. The latencies achieved by

ADB used in this figure are those for the 100 broadcast packets originated dur­

ing one randomly selected run for each wireless channel model described above;

the default ns-2 model (Section 8.1.1) and the model with increased packet losses

(Section 8.1.2).

With the default ns-2 channel model, the differences from optimal are essen­

tially 0 for more that 80% of the packet deliveries. For around 15% of the packet

deliveries, the latencies with ADB are slightly larger due to the delays for ADB to

138

0.8

c
g

2 0.6
u.

>
'•s
"5 0.4
E
o

0.2

—

•
/

•
/

; /
: /
: J >

1
t :

t
1

1

1
1

/
1

i

— n s - 2 default ichannel model
—with increased packet losses

i i i

2 4 6 8
Difference (seconds)

10 12

Figure 8.3. Difference between optimal delivery latency to each node and that with
ADB.

resolve collisions. For the remaining 5%, the differences increase almost uniformly

between 0.5 and 1.5 seconds. These increases occur when a transmitter missed

the opportunity to deliver a packet immediately when an intended receiver wakes

up, either due to failure to receive the beacon from the receiver or due to busy

medium around the transmitter which stops the transmitter from transmitting the

packet in time. Once the transmitter is unable to deliver the packet while the re­

ceiver is still awake, the transmitter must wait until the receiver wakes up for the

next cycle. The next wakeup time is a uniform distribution between 0.5 and 1.5

seconds, which matches well with the distribution of the large differences at the

top of the figure. When using the modified channel model with increased packet

139

losses, delivery latencies get larger due to the greater number of lost beacons and

DATA frame transmissions.

8.2 Experimental Evaluation on MICAz Motes

In order to explore platform-dependent issues and details not completely captured

in simulation, I implemented ADB in TinyOS and evaluated it on MICAz motes in

a clique network and in a random network. As described in Section 7.5, this ADB

implementation uses the UPMA framework [20,43] in TinyOS, integrated with the

RI-MAC unicast module [41]. The configuration of payload size and duty cycle

interval are the same as those in the simulations described in Section 8.1.

In each experiment with the testbed, no DATA packets are generated for the

first 2 minutes, during which time ADB collects and distributes information for

the neighbor lists. Clock synchronization among nodes is also done during this

time for later trace analysis; this clock synchronization is not used by the proto­

cols. As all the operations during the first 2 minutes happen only once during

the lifetime of a network and are protocol dependent, count energy consumption

and message overhead are not counted during this time. After this initialization,

the sink node periodically originates a broadcast DATA packet, for a total of 75

originated broadcast packets.

140

8.2.1 Results in a Clique Network

I first present the experimental results for a clique network of 5 nodes, where all

nodes are placed close to each other, one random node is chosen as sink, which

originates a broadcast packet every 10 seconds. This interval is large enough to

ensure that a new broadcast packet is originated only after all transmissions of the

previous broadcast packet have finished.

The measured performance for X-MAC-UPMA and ADB in this clique network

is shown in Table 8.1. The average duty cycle with ADB is only 6.2% of that with

X-MAC-UPMA, since a node with ADB goes to sleep immediately once all its

neighbors are either reached or delegated for a given broadcast, but X-MAC-UPMA

must repeatedly transmit the DATA over an entire duty cycle. Both ADB and

X-MAC-UPMA achieve 100% delivery ratio, but ADB uses much less energy. The

average delivery latencies with both X-MAC-UPMA and ADB are about half a

duty cycle interval, as nodes wakes up asynchronously. ADB shows slightly larger

latency, which is mainly due to the difference in generated random numbers that

determine the wakeup schedules of each node.

As a node with X-MAC-UPMA repeatedly transmits copies of a DATA packet

for an entire duty cycle interval, many more frames are transmitted over the air

compared with ADB. The number of bytes transmitted with ADB is only 2.3%

of that with X-MAC-UPMA, substantially reducing channel contention and leav­

ing additional capacity for traffic from other nodes, if needed. There are 300 total

141

Table 8.1. Performance comparison in a 5-node TinyOS clique network

Average duty cycle (%)
Delivery ratio
Average latency (s)
Message overhead (bytes)
DATAs transmitted
ACK beacons transmitted
Other beacons transmitted

X-MAC-UPMA
53.47

100
0.53

2,875,125
70,125

-
-

ADB
3.36
100

0.60
65,586

300
302

3,332

DATA frame transmissions with ADB, translating to exactly 4 DATA frame trans­

missions (one to each non-sink node) per originated broadcast packet. This result

shows that ADB efficiently avoids redundant transmissions.

The total number of ACKs is 302 rather than 300 because, following 2 differ­

ent DATA transmissions, two nodes returned an ACK rather than just one node.

As discussed in Section 7.5, The implementation uses a broadcast destination ad­

dress for all DATA transmissions. Infrequently, a node may mistakenly believe the

DATA was intended for it and return an ACK in addition to the ACK from the

intended receiver, causing a collision. Such a collision is not very harmful, as the

receiver has received the DATA and the following beacon or a frame with an ADB

footer from that receiver will notify the transmitter of this.

8.2.2 Results in a Random Network

Finally, I also evaluated ADB in a multihop random network deployed in an apart­

ment, as show in Figure 8.4. Each node is placed below a wall power outlet,

142

Figure 8.4. Topology of a 10-node random network deployed in an apartment.

in order imitate (for example) a sensor network deployment for monitoring en­

ergy consumption of household appliances. Node 1 is the sink and generates one

broadcast packet every 20 seconds. This interval is twice the interval used for the

clique network above, as the number of nodes is doubled. In this way we ensure

the transmissions for one broadcast packet have finished before another broadcast

packet is originated.

The performance of X-MAC-UPMA and ADB in this 10-node network is shown

in Table 8.2. As it is difficult to sniff all packets in a multihop network, the message

overhead is not compared here. The average duty cycle with ADB is about 10% of

that with X-MAC-UPMA. Unlike the results in the clique network, ADB shows

a smaller average delivery latency than with X-MAC-UPMA, as each node occu-

143

Table 8.2. Performance comparison in the 10-node TinyOS network

Average duty cycle (%)
Delivery ratio
Average latency (s)

X-MAC-UPMA
27.00
99.47
0.71

ADB
2.77

99.47
0.64

pies the medium for a duty cycle interval with X-MAC-UPMA, which introduces

longer delay before next node can begin forwarding the packet.

Both X-MAC-UPMA and ADB achieved high packet delivery ratio of 99.47%.

X-MAC-UPMA was able to maintain a high delivery ratio since in this network, it

is unlikely to have transmissions from hidden nodes, avoiding the problems from

collisions observed in the larger networks in the simulations. Unlike in the simu­

lations where ADB always achieved 100% delivery radio, a few packets failed to

reach all nodes in the experiments. This is due to the design choice made in my

TinyOS implementation that allows a footer with stale information to be transmit­

ted. This design choice is made to reduce delivery latency and energy consump­

tion as discussed in Section 7.5. In simulations, no delay is assumed in updating

ADB footers; with hardware support for quickly updating destination and ADB

footers, the above problems should be eliminated in the implementation. Even

with platform-specific limitations, ADB still achieves the same delivery radio with

X-MAC-UPMA with much less energy consumption.

144

Table 8.3. Average duty cycle % of each node in the 10-node TinyOS network

Node ID
X-MAC-UPMA
ADB

1
22.8

7.2

2
25.8
4.8

3
25.5

2.5

4
28.2

1.9

5
24.9
3.6

6
26.9

1.5

7
28.2

1.7

8
29.3

1.1

9
29.6

2.0

10
28.8

1.4

Table 8.3 shows average duty cycle at each node. With X-MAC-UPMA, the

average duty cycles are all above 22%, mainly due to unnecessary overhearing.

Nodes 1,2, and 3 show slightly lower energy consumption, as they are at one side

of the network that has lower density, and thus they overhear fewer redundant

transmissions. Nodes at the other side of the network (nodes 6, 7, 8, 9 and 10),

however, show higher energy consumption due to increased overhearing.

145

Chapter 9

Conclusions

In this thesis, I have presented both a synchronous duty cycle MAC protocol,

DW-MAC, and an asynchronous duty cycle MAC protocol, RI-MAC, which are

designed to efficiently operate under a wide range of traffic loads. In addition, I

have presented a multihop broadcast protocol, ADB, to efficiently distribute small

messages in a wireless sensor network using asynchronous duty cycling.

DW-MAC is an energy efficient protocol designed to reduce packet delivery

latency for a wide range of traffic loads, including both unicast and broadcast traf­

fic. Compared to prior protocols, DW-MAC adaptively increases effective channel

capacity during an operational cycle as traffic load increases, allowing DW-MAC

to achieve low delivery latency under dynamic traffic loads. The scheduling al­

gorithm in DW-MAC integrates scheduling and access control to maintain a pro­

portional one-to-one mapping function between a Data period and the subsequent

Sleep period, whichminimizes scheduling overhead while ensuring that data trans­

missions do not collide at their intended receivers. I compared DW-MAC with

S-MAC (with and without adaptive listening) and with RMAC through extensive

simulations. I found that DW-MAC outperforms these protocols, with lower la­

tency, higher power efficiency, and higher packet delivery ratios, and with increas-

146

ing benefits as traffic load increases. For example, under high unicast traffic load,

DW-MAC reduces delivery latency by 70% compared to S-MAC and RMAC, and

uses only 50% of the energy consumed with S-MAC with adaptive listening. Un­

der broadcast traffic, DW-MAC reduces latency by more than 50% on average,

always reducing energy consumption by more than 15%. In addition, DW-MAC

improves packet delivery ratios under all scenarios in my simulations.

RI-MAC uses receiver initiated data transmission in order to efficiently and

effectively operates over a wide range of traffic loads. To achieve this, RI-MAC at­

tempts to minimize the time a sender and its intended receiver occupy the wireless

medium to find a rendezvous time for exchanging data, while still decoupling

the sender and receiver's duty cycle schedules. I evaluated RI-MAC through de­

tailed ns-2 simulation and through measurements of an implementation in TinyOS

in a testbed of MICAz motes. Compared to X-MAC, RI-MAC achieves higher

throughput, packet delivery ratio, and power efficiency under a wide range of

traffic loads. Especially when there are contending flows, such as bursty traffic or

transmissions from hidden nodes, RI-MAC significantly improves throughput and

packet delivery ratio. In my experimental evaluation in my TinyOS testbed, when

there are 4 contending flows in clique networks, RI-MAC improves throughput by

100%, reduces delivery latency by 90%, and reduces duty cycle by 50% at sending

nodes compared to X-MAC. In the 3-node network with hidden senders, RI-MAC

achieves 0 packet loss compared to the more than 15% packet loss in X-MAC. Sim-

147

ilar trends were also observed in my simulations for large networks. Even under

light traffic load for which X-MAC is optimized, RI-MAC achieves the same high

performance.

Finally, ADB provides efficient multihop broadcast support, despite the chal­

lenges of broadcast over asynchronous duty cycling. ADB optimizes the progress

of a broadcast at the level of transmission from a node to each of its neighbors indi­

vidually. Information about the progress is efficiently distributed, based on which

ADB uses delegation to avoid redundant transmissions and transmissions over

poor links. In my evaluation of ADB using ns-2 simulation in 100 random net­

works, compared to network-wide broadcast with X-MAC-UPMA and RI-MAC,

ADB shows much higher energy efficiency, 100% delivery ratio, and lowest net­

work load. I also implemented ADB in TinyOS on a testbed of MICAz motes and

evaluated it in a clique network and a multihop random network. Compared to an

implementation of multihop broadcast X-MAC-UPMA, ADB shows much higher

energy efficiency and significantly reduces network load, while maintaining low

delivery latency and high packet delivery ratio.

148

Bibliography

[1] Muneeb Ali, Umar Saif, Adam Dunkels, Thiemo Voigt, Kay Romer, Koen Lan-

gendoen, Joseph Polastre, and Zartash Afzal Uzmi. Medium Access Con­

trol Issues in Sensor Networks. SIGCOMM Computer Communications Review,

36(2):33-36,2006.

[2] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori. Performance

Measurements of Motes Sensor Networks. In Proceedings of the 7th ACM Inter­

national Symposium on Modeling, Analysis and Simulation of Wireless and Mobile

Systems (MSWiM 2004), pages 174-181, October 2004.

[3] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. X-MAC:

A Short Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks.

In Proceedings of the 4th International Conference on Embedded Networked Sensor

Systems, pages 307-320,2006.

[4] Qing Cao, Tarek Abdelzaher, Tian He, and John Stankovic. Towards Optimal

Sleep Scheduling in Sensor Networks for Rare-Event Detection. In Proceed­

ings of the Fourth International Symposium on Information Processing in Sensor

Networks (IPSN2005), pages 20-27, April 2005.

149

[5] CC2420 Datasheet, http://www.ti.com.

[6] Chipcon. Single Chip Very Low Power RF Transceiver (CC1000 Datasheet),

April 2002.

[7] Crossbow MICAz motes, http://www.xbow.com.

[8] Tijs van Dam and Koen Langendoen. An Adaptive Energy-Efficient MAC

Protocol for Wireless Sensor Networks. In Proceedings of the First International

Conference On Embedded Networked Sensor Systems (SenSys 2003), pages 171-

180, November 2003.

[9] Shu Du, Amit Kumar Saha, and David B. Johnson. RMAC: A Routing-

Enhanced Duty-Cycle MAC Protocol for Wireless Sensor Networks. In Pro­

ceedings of the 26th Annual IEEE Conference on Computer Communications (IN-

FOCOM 2007), pages 1478-1486, May 2007.

[10] Amre El-Hoiydi and Jean-Dominique Decotignie. WiseMAC: An Ultra Low

Power MAC Protocol for Multi-hop Wireless Sensor Networks. In Proceedings

of the First International Workshop on Algorithmic Aspects of Wireless Sensor Net­

works (ALGOSENSORS 2004), Lecture Notes in Computer Science, LNCS 3121,

pages 18-31, July 2004.

http://www.ti.com
http://www.xbow.com

150

[11] Amre El-Hoiydi and Jean-Dominique Decotignie. Low Power Downlink

MAC Protocols for Infrastructure Wireless Sensor Networks. Mobile Networks

and Applications, 10(5):675-690,2005.

[12] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-Grained Network Time

Synchronization using Reference Broadcasts. In Proceedings of the Fifth Sympo­

sium on Operating Systems Design and Implementation (OSDI2002), pages 147-

163, December 2002.

[13] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar.

Next Century Challenges: Scalable Coordination in Sensor Networks. In Pro­

ceedings of the Fifth Annual International Conference on Mobile Computing and

Networking (MobiCom 1999), pages 263-270, August 1999.

[14] Rajiv Gandhi, Srinivasan Parthasarathy, and Arunesh Mishra. Minimizing

Broadcast Latency and Redundancy in Ad Hoc Networks. In Proceedings of

the Fourth ACM International Symposium on Mobile Ad Hoc Networking and Com­

puting (MobiHoc 2003), pages 222-232, June 2003.

[15] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-Sync Proto­

col for Sensor Networks. In Proceedings of the First International Conference On

Embedded Networked Sensor Systems (SenSys 2003), pages 138-149, November

2003.

151

[16] J. J. Garcia-Luna-Aceves and Asimakis Tzamaloukas. Reversing the Collision-

Avoidance Handshake in Wireless Networks. In Proceedings of the 5th Annual

ACM/IEEE International Conference on Mobile Computing and Networking, pages

120-131,1999.

[17] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating Congestion in

Wireless Sensor Networks. In Proceedings of the Second International Conference

On Embedded Networked Sensor Systems (SenSys 2004), pages 134-147, Novem­

ber 2004.

[18] Kyle Jamieson, Hari Balakrishnan, and Y.C. Tay. Sift: a MAC Protocol for

Event-Driven Wireless Sensor Networks. In Third European Workshop on

Wireless Sensor Networks (EWSN), 2006.

[19] Abtin Keshavarzian, Huang Lee, and Lakshmi Venkatraman. Wakeup

Scheduling in Wireless Sensor Networks. In Proceedings of the Seventh ACM

International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc

2006), pages 322-333, May 2006.

[20] Kevin Klues, Gregory Hackmann, Octav Chipara, and Chenyang Lu. A

Component-Based Architecture for Power-Efficient Media Access Control in

Wireless Sensor Networks. In Proceedings of the 5th International Conference on

Embedded Networked Sensor Systems, pages 59-72,2007.

152

[21] Andrzej Kochut, Arunchandar Vasan, A. Udaya Shankar, and Ashok

Agrawala. Sniffing Out the Correct Physical Layer Capture Model in 802.11b.

In Proceedings of the Network Protocols, 12th IEEE International Conference (ICNP

2004), pages 252-261,2004.

[22] Sandeep S. Kulkarni and Mahesh Arumugam. TDMA Service for Sensor Net­

works. In Proceedings of the 24th International Conference on Distributed Comput­

ing Systems Workshops (ICDCSW 2004), pages 604-609, March 2004.

[23] Jeongkeun Lee, Wonho Kim, Sung-Ju Lee, Daehyung Jo, Jiho Ryu, Taekyoung

Kwon, and Yanghee Choi. An Experimental Study on the Capture Effect in

802.11a Networks. In Proceedings of the the Second ACM International Work­

shop on Wireless Network Testbeds, Experimental Evaluation and Characterization

(WinTECH 2007), pages 19-26,2007.

[24] Philip Levis. TEP 111: message_t. TinyOS 2.0 Documentation,

http://www.tinyos.net/tinyos-2.x/doc/.

[25] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: a self-

regulating algorithm for code propagation and maintenance in wireless sen­

sor networks. In Proceedings of the 1st conference on Symposium on Networked

Systems Design and Implementation (NSDI2004), 2004.

http://www.tinyos.net/tinyos-2.x/doc/

153

[26] Yuan Li, Wei Ye, and John Heidemann. Energy and Latency Control in Low

Duty Cycle MAC Protocols. In Proceedings of the 2005 IEEE Wireless Communi­

cations and Networking Conference (WCNC 2005), March 2005.

[27] Kaisen Lin and Philip Levis. Data Discovery and Dissemination with DIP. In

Proceedings of the 7th international conference on Information processing in sensor

networks (IPSN 2008), pages 433-4M, 2008.

[28] Gang Lu, Bhaskar Krishnamachari, and Cauligi S. Raghavendra. An Adap­

tive Energy-Efficient and Low-Latency MAC for Data Gathering in Wireless

Sensor Networks. In Proceedings of the 18th International Parallel and Distributed

Processing Symposium (IPDPS 2004), April 2004.

[29] Gang Lu, Narayanan Sadagopan, Bhaskar Krishnamachari, and Ashish Goel.

Delay Efficient Sleep Scheduling in Wireless Sensor Networks. In Proceedings

of the 24th Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM 2005), pages 2470-2481, March 2005.

[30] David Moss, personal communication, 2008.

[31] David Moss, Jonathan Hui, Philip Levis, and Jung II Choi. TEP 126: CC2420

Radio Stack. http://www.tinyos.net/tinyos-2.x/doc/, 2007.

[32] Razvan Musaloiu-E., Chieh-Jan Mike Liang, and Andreas Terzis. Koala:

Ultra-Low Power Data Retrieval in Wireless Sensor Networks. In Proceedings

http://www.tinyos.net/tinyos-2.x/doc/

154

of the 2008 International Conference on Information Processing in Sensor Networks

(IPSN 2008), pages 421-432, April 2008.

[33] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The

Broadcast Storm Problem in a Mobile Ad Hoc Network. In Proceedings of

the Fifth Annual International Conference on Mobile Computing and Networking

(MobiCom 1999), pages 151-162, August 1999.

[34] Stefan Pleisch, Mahesh Balakrishnan, Ken Birman, and Robbert van Renesse.

MISTRAL: Efficient Flooding in Mobile Ad-Hoc Networks. In Proceedings

of the Seventh ACM International Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc 2006), pages 1-12, May 2006.

[35] Joseph Polastre, Jason Hill, and David Culler. Versatile Low Power Media

Access for Wireless Sensor Networks. In Proceedings of the Second International

Conference On Embedded Networked Sensor Systems (SenSys 2004), pages 95-107,

November 2004.

[36] Nazanin Rahnavard and Faramarz Fekri. CRBcast: A Collaborative Rate-

less Scheme for Reliable and Energy-Efficient Broadcasting in Wireless Sen­

sor Networks. In Proceedings of the Fifth International Conference on Information

Processing in Sensor Networks (IPSN 2006), pages 276-283, April 2006.

155

[37] Venkatesh Rajendran, Katia Obraczka, and J. J. Garcia-Luna-Aceves. Energy-

Efficient Collision-Free Medium Access Control for Wireless Sensor Net­

works. In Proceedings of the First International Conference On Embedded Net­

worked Sensor Systems (SenSys 2003), pages 181-192, November 2003.

[38] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and

Matt Welsh. Simulating the Power Consumption of Large-Scale Sensor Net­

work Applications. In Proceedings of the Second International Conference On

Embedded Networked Sensor Systems (SenSys 2004), pages 188-200, November

2003.

[39] Fred Stann, John Heidemann, Rajesh Shroff, and Muhammad Zaki Murtaza.

RBP: Robust Broadcast Propagation in Wireless Networks. In Proceedings of the

Fourth International Conference On Embedded Networked Sensor Systems (SenSys

2006), pages 85-98, October 2006.

[40] Fred Stann, John Heidemann, Rajesh Shroff, and Muhammad Zaki Murtaza.

RBP: Robust Broadcast Propagation in Wireless Networks. In Proceedings of the

Fourth International Conference On Embedded Networked Sensor Systems (SenSys

2006), pages 85-98, October 2006.

[41] Yanjun Sun, Omer Gurewitz, and David B. Johnson. RI-MAC: A Receiver Ini­

tiated Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads in

156

Wireless Sensor Networks. In SenSys '08: Proceedings of the 6th ACM Conference

on Embedded Networked Sensor Systems, 2008.

[42] Y.C. Tay, Kyle Jamieson, and Hari Balakrishnan. Collision-Minimizing CSMA

and its Applications to Wireless Sensor Networks. IEEE Journal on Selected

Areas in Communications, 22(6), 2004.

[43] UPMA Package. http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x-

contrib/wustl/upma/.

[44] Feng Wang and Jiangchuan Liu. RBS: A Reliable Broadcast Service for Large-

Scale Low Duty-Cycled Wireless Sensor Networks. In Proceedings of the 2008

IEEE International Conference on Communications (ICC 2008), May 2008.

[45] Feng Wang and Jiangchuan Liu. Duty-Cycle-Aware Broadcast in Wireless

Sensor Networks. In Proceedings of the 28th Annual IEEE Conference on Com­

puter Communications (INFOCOM 2009), April 2009. To appear.

[46] Brad Williams and Tracy Camp. Comparison of Broadcasting Techniques for

Mobile Ad Hoc Networks. In Proceedings of the Third ACM International Sym­

posium on Mobile Ad Hoc Networking and Computing (MobiHoc 2002), pages 194-

205, June 2002.

http://tinyos.cvs.sourceforge.net/tinyos/tinyos-2.x-

157

[47] Wei Ye, John Heidemann, and Deborah Estrin. Medium Access Control with

Coordinated Adaptive Sleeping for Wireless Sensor Networks. IEEE/ACM

Transactions on Networking, 12(3):493-506,2004.

[48] Wei Ye, John S. Heidemann, and Deborah Estrin. An Energy-Efficient MAC

Protocol for Wireless Sensor Networks. In Proceedings of the list Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM 2002),

pages 1567-1576, June 2002.

[49] Wei Ye, Fabio Silva, and John Heidemann. Ultra-Low Duty Cycle MAC with

Scheduled Channel Polling. In Proceedings of the Fourth International Conference

On Embedded Networked Sensor Systems (SenSys 2006), pages 321-334, October

2006.

[50] Hongwei Zhang, Anish Arora, Young-ri Choi, and Mohamed G. Gouda. Re­

liable Bursty Convergecast in Wireless Sensor Networks. In Proceedings of the

Sixth ACM International Symposium on Mobile Ad Hoc Networking and Comput­

ing (MobiHoc 2005), pages 266-276, May 2005.

