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ABSTRACT 

Compiling dynamic languages via statically typed functional languages 

by 

Rajarshi Bandyopadhyay 

Dynamic languages enable rapid prototyping, but are generally not viewed as 

providing the best performance. As a result, software developers generally build a 

prototype in a dynamic language and then rewrite the application in C or Fortran 

for high performance. This costly rewriting step can be avoided by improving the 

performance of dynamic languages. Dynamic languages are usually interpreted for 

easier implementation. The traditional approach to improve their performance is to 

build an optimizing compiler. However, building a compiler from scratch is much 

more time-consuming than implementing an interpreter. Our thesis is that we can 

build effective compilers for dynamic languages by translating them into statically 

typed functional languages which have good compilers and automatic memory man

agement. In particular, we believe that modern statically typed languages provide 



precise control over data representations, and come with runtime systems that have 

competitive performance. 

To investigate the viability of this approach, we have built a compiler for the 

dynamic language Python by translating it into the statically typed functional lan

guage OCaml. An interesting practical advantage of using modern statically typed 

functional languages is that they use Hindley-Milner type systems, which means that 

there is no need for the translation to construct type terms. 

We compare the performance of our implementation, Monty, with that of CPython, 

the reference Python implementation, and with Jython, a Java implementation of 

Python, using a suite of 370 benchmarks. Our experiments show that some programs 

compiled using our approach run up to 4.6 times faster than CPython. However, 

due to a number of engineering reasons, some programs also run significantly slower 

than CPython. We pinpoint the specific causes of performance degradation and as

sess the potential for removing these causes in future work. Our implementation is 

significantly faster than Jython, up to a factor of 100 in some cases. 

A by product of our research is a proposal for an improved array copying imple

mentation in OCaml. 
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Chapter 1 

Introduction 

Dynamic languages such as Python [22], R [32] and MATLAB [37] are employed 

extensively in scientific programming due to their ease of use, large feature set and 

standard libraries. These languages are often interpreted to quickly implement all of 

their features. As a result, programmers often build prototypes of high-performance 

applications in a dynamic language, then rewrite ('harden') the application in lan

guages like C, C++ and Fortran to obtain faster execution times. Languages such 

as C, C + + and Fortran usually offer faster performance than dynamic languages for 

two reasons. First, they are closer to machine language (lower-level), providing a pro

grammer with finer control over program behavior. Second, they are statically typed, 

providing a compiler with a large amount of information about data representation 

even before execution. We believe that these features make it possible to express 

more efficient programs in statically typed languages than is possible in dynamically 

typed languages. To explore this hypothesis, this thesis studies the effect of automatic 

translation from a dynamic language to a statically typed language. 

While the focus of our work is understanding the engineering tradeoffs offered 
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by the translational approach, it is easy to see that when profitable, this approach 

can be used to build compilers as follows: the language developer first establishes a 

semantically correct translation, then she refines this translation gradually to achieve 

better performance. As such, one of the goals of this work is to characterize the 

tradeoffs that arise as clearly as we can, so that the potential gains from this approach 

can be estimated before such a translation is developed. 

1.1 Approach 

In this research, we are interested in a new method for building compilers for 

dynamic languages: translating them into a statically typed functional language. Our 

thesis is that this translational methodology has the potential for being an effective 

approach to compiling dynamic languages. We investigate the tradeoffs involved in 

our approach concretely by building a compiler for a large subset of the dynamic 

language Python that works by translating it into the statically typed functional 

language OCaml. 

The key insights underlying our approach are that functional languages such as 

OCaml have several features that make them suitable target languages for a dynamic 

language compiler: 

1. Functional languages have well-established memory management runtimes. Mem

ory allocation and memory management have significant overhead in the exe

cution of dynamic language programs. It is now widely understood that well 

2 



designed and well tuned automatic memory management systems can be far 

superior to both explicit memory management and simplistic memory man

agement schemes. For example, recent work at IBM by Bacon's group [25] 

has shown that automatic memory management can be superior not only in 

terms of performance, but also in terms of predictability. This makes auto

matic memory management more suitable for real-time systems than explicit 

memory management. 

2. Statically typed functional languages such as GCaml implement algebraic data 

types [38] efficiently. In particular, these languages use fairly minimal imple

mentations of type products and sums. 

3. As a result of several decades of research, effective compilers for functional 

languages exist for most major platforms. In particular, OCaml has a well-

supported open-source compiler that can generate efficient native code for most 

common platforms. 

4. OCaml is an implicitly typed language based on Hindley-Milner type inference 

[36]. The compiler developer using it as an intermediate language need not 

generate type annotations, greatly simplifying the translation process. 

Thus, using a statically typed functional language such as OCaml as an inter

mediate language for a compiler enables programmers to effectively leverage a vast 

existing infrastructure to build high-performance compilers for dynamic languages. 

3 



2 Related work 

In this section we review relevant work to the thesis in the area of compiling 

namic languages. 

• Jython is a Java implementation of Python [21]. It translates Python programs 

internally to Java classes with the primary goal of seamless interoperability with 

the Java development infrastructure. It is frequently used in web-based appli

cations to connect Python and Java tools. Unlike Jython, our implementation 

primarily aims to achieve high performance (Section 8.4). 

• IronPython is a Python implementation for Microsoft's .NET infrastructure 

[20]. It compiles Python to Microsoft's Dynamic Language Runtime, a common 

typed intermediate language framework, after which a program can be compiled 

to .NET based executable code. The idea of translating a dynamic language to 

a typed intermediate language is similar to our work, however, we use OCaml, 

a full-fledged implicitly typed language as our intermediate target language. 

• Psyco [39] uses a just-in-time specialization approach to speed up Python pro

grams. This approach works very well for the few programs which can be easily 

type-specialized, but shows a large overhead for other programs. In contrast, 

our approach relies on generating an optimized translation at compile time. 

• The RCC project [33] at Rice University is building a compiler for R by trans

lating it to C and using a C compiler for faster performance. This compilation 
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technique has some similarities to ours, but with some important differences: 1) 

Unlike OCaml, C is a weakly typed language with explicit type declarations. 2) 

OCaml has an automatic memory management system, in contrast to explicit 

memory management by a C programmer. We expect that comparing the re

sults of RCC (as they become available) with those of our implementation will 

provide important insights into dynamic language compilation techniques. 

In addition, many of the techniques and optimizations used in this work have 

originated with compilers for earlier object oriented languages, such as Smalltalk 80 

[30], Self [42] and Cecil [28]. For example, Smalltalk 80 uses method caching (Section 

7.6), Self implements method specialization and value caching (Section 7.3), while 

Cecil implements dynamic inheritance similar to Python (Section 7.6.2). 

1.3 The Monty Compiler 

To test our theory that translating dynamic languages to a statically typed func

tional language can lead to an effective compiler, we have implemented Monty, a 

compiler for Python, by translating it into OCaml. In this section, we describe the 

outline of our implementation and some of the challenges we encountered in the pro

cess. 

5 
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Figure 1.1: Left: the standard CPython interpreter. Right: the compilation strategy of 
our implementation, Monty. 

1.3.1 Overview and challenges 

Figure 1.1 shows the high-level architecture of the standard Python interpreter, 

CPython, as compared to our implementation, Monty. The CPython interpreter 

accepts Python source code and directly produces a result. The Monty compiler 

translates the Python source to OCaml source and links it with a runtime to generate 

a native code executable. 

While building an implementation for a large, highly-featured language like Python, 

we encounter several important software engineering challenges: 

1. How do we represent Python objects in OCaml? Python is a dynamically typed 

language. A Python object at runtime can represent a wide variety of values: 

rabbitpy 

CPython 

* 
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from simple ones such as integers to complex ones such as classes. An object 

representation in Python must be flexible enough to handle this entire range. 

2. How do We support Python built-in objects and methods? Python has an ex

tensive set of built-in types and methods. Many of its methods are capable of 

handling multiple types of values using ad hoc overloading semantics. Python 

also has about forty built-in exceptions which are thrown under different con

ditions. 

3. How do we support the extensive Python standard library? Python has a large 

standard library suite with over a hundred modules, written in a mix of Python 

and C. Any non-trivial Python program uses functions from this library at 

runtime. 

4. How do we translate Python source code? Python has a quirky grammar im

plemented in its own parser implementation. Python source code has no type 

declarations and has several syntactic features which cannot be trivially mapped 

to statically typed languages. 

5. How do we verify and maintain correctness? Python's open-source development 

model results in a plethora of syntactic and runtime features. The Python 

distribution comes with extensive documentation, but it is not necessarily up-

to-date with the latest implementation. The source code of Python is itself the 

most reliable documentation of the language. 
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Figure 1.2: The main components of the Monty implementation, including the translator, 
runtime and foreign function interface. , 

1.3.2 Our solution 

Figure 1.2 displays the various components of our implementation, which we have 

devised to address each of the above challenges. 

1. Object representation: We have used OCaml records to represent Python ob

jects. OCaml records are similar to C structures, providing a mutable set of 

fields which can be addressed by name. We have also developed a sum (union) 

type to capture the entire set of possible values in Python. This union type is 

a part of the record representing the general Python object. Our representa

tion of Python objects is type safe, but does not affect the performance of our 

implementation adversely. 
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2. Built-in types and methods: We have implemented a runtime system in OCaml, 

containing our implementation of all of Python's built-in types and their pre

defined methods. 

3. Standard Library: We have built a foreign function interface (FFI) in C between 

Python and OCaml, using the C interfaces provided by Python and OCaml. 

However, we have found that while the FFI lets us conveniently support most 

Python libraries, there is a large performance tradeoff. Natively implemented 

library modules perform much faster than those called via the FFI, but are 

more time-consuming to implement. 

4. Source-to-source translation: In order to translate Python source code, we have 

used Python's built-in parser via the FFI to generate a string-based representa

tion of the source code for further processing in OCaml. We have made effective 

use of OCaml constructs such as sum types, recursive functions, exceptions, as 

well its imperative features such as references, sequential statements and loops 

to build a source-to-source translator from Python to OCaml. 

5. Correctness: In order to evaluate and maintain correctness of our implementa

tion, we used a test-driven programming methodology consisting of (1) accep

tance testing for individual features and (2) regression testing to ensure that 

newly added features do not break existing ones. Our test suite of 425 files 

Was developed and collected by several undergraduate students. Several bugs 

in our implementation were identified by the undergraduates and fixed by the 
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developers. 

1.4 Contributions and summary of results 

In this section, we present the results of of our experiment in implementing our 

translational approach. We first present the status of the translation in terms of 

completeness, and then briefly discuss the results of a comparative performance eval

uation. Our performance results characterize some of the tradeoffs involved in our 

approach. Finally, we summarize the salient technical contributions of our work. 

1.4.1. Completeness 

At the time of writing this thesis, Monty passed 383 out of the 425 cases that were 

used to test it. Approximately one-third of test case failures are due to implementation-

specific differences between CPython and the OCaml compiler, whereas the remaining 

are due to bugs and missing features in our implementation. We do not yet support 

features such as dynamic code evaluation (exec and eval statements), context man

agers (with statement) and threads (Section 6.6.2). 

1.4.2 Comparative performance 

We evaluate the performance of our implementation, Monty, by comparing it 

against two other Python implementations: 

• CPython: Monty performed over 20 times slower than CPython in our initial 

10 



performance evaluation. We implemented several optimizations to improve per

formance (Chapter 7). As a result of these strategies, our compiler currently 

provides a speedup over CPython for about 75 percent of our benchmark suite, 

that is, 278 of 370 benchmarks (Section 8.3). We have profiled each of the 92 

benchmarks which run slower than CPython and identified specific areas of per

formance loss. The FFI, printing methods, stack management and large object 

array allocation are some of the common causes of slowdown (Appendix C). 

• Jython: On average, the latest version of Jython (2.5 beta) runs approximately 

10 times slower than Monty and approximately 5 times slower than CPython. 

However, some programs run approximately 100 times faster in Monty compared 

to Jython. Jython runs slightly faster than Monty on 7 benchmarks. In these 

cases, Jython implements a library natively in Java, whereas Monty invokes the 

CPython version of the library using the FFI (Section 8.4). 

1.4.3 Technical contributions 

The technical contributions of this thesis may be summarized as follows: 

• To our knowledge, this is the first work that uses a Hindley-Milner typed lan

guage, OCaml, as a Typed Intermediate Language for a compiler [40]. The 

type inference system in OCaml removes the burden of generating explicit type 

annotations from the compiler developer (Chapter 3). 

• As part of the translational strategy, we have developed a type safe repre-
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sentation of Python objects which does not impede the performance of our 

implementation (Section 4.3). 

• We have built a foreign function interface that is compatible with the current 

version of Python, enabling OCaml users to access functions from the Python 

interpreter and standard library (Chapter 5). 

• We have obtained a concise expression of Python semantics in the form of a 

translation to a small and well-defined subset of the target language, OCaml 

(Section 6.1). 

• Our work has shown how to translate Python into efficient OCaml code (Section 

6.2). We believe that many of our optimization strategies could be used for 

implementing other dynamic languages (Chapter 7). 

• We developed an improved version of the array copying function in the OCaml 

Standard Library while optimizing our implementation. Our version runs ap

proximately 3 times faster than the OCaml library version. Our code is under 

review for inclusion in the next release of OCaml (Section 7.9). 
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Chapter 2 

Python: A dynamic language 

Python is an open-source, object oriented dynamic language [22]. The standard 

implementation of Python, CPython, is written in C. This implementation provides 

Python users with several built-in types, each supporting many useful methods. In 

addition, much of Python's popularity derives from its extensive standard library and 

its ability to interface with existing libraries via its C API. 

2.1 An example illustrating important Python features 

The simple Python program in Figure 2.1 illustrates some basic Python features. 

An instance of the class BankAccount is initialized using the specially named con

structor i n i t . The deposit and withdraw methods of this instance are called 

with arguments of different types, an integer and a float. The p r in t statement inter

nally calls another special method, repr , which returns a string representation 

of the instance. 

This small Python example illustrates many of the important features of Python: 

class declaration, instance creation, function declaration with keyword arguments, 

13 



c lass BankAccount(object): #defines a new c la s s (type) i nhe r i t i ng 
#from base type "object" 

def i n i t ( se l f , in i t_ba lance=0) : #constructor invoked for hew instances 
se l f .ba lance = ini t_balance #ini t_balance has defaul t value of 0 

def depos i t ( se l f .amount ) : 
se l f .ba lance += amount 

def withdraw(self,amount): 
se l f .ba lance -= amount 

def __repr ( s e l f ) : # s t r i ng r ep resen ta t ion 
r e tu rn "Balance i s : " + s t r ( s e l f . b a l a n c e ) 

my_account = BankAccount(15) #creates ins tance with balance 15 
#constructor with init_balance=15 

my_account.deposit(10) 
my_account.withdraw(5.50) 

p r i n t my_account.balance #p r in t s "Balance i s : 19.50" 

Figure 2 .1: A simple Python example illustrating dynamic typing and object oriented 
features. 

method calls, arithmetic operations and string concatenation. Python also specifies 

many special method names for classes, such as repr for generating a string rep

resentation and i n i t for initializing a new instance. The + operator is overloaded 

to handle different numeric type arguments (such as integers and floats) correctly at 

runtime. These features and others which we describe in this chapter make Python 

a dynamic, object oriented language. 

14 



2.2 Objects 

All Python values are represented by a universal type called object. The behavior 

of any object is determined by the methods stored in it's type, which itself is an object. 

Python's several built-in types include integers, floats, strings and lists. Python 

programmers can create their own types by defining classes, which are syntactically 

similar to classes in other object oriented languages like C++ and Java. However, 

an important difference between Python and C++/Java is that Python classes make 

ho attempt to hide information. All the information in a class instance is accessible 

externally. There is no notion of p r iva te or protected variables in Python. 

2.3 Dictionaries 

Dictionaries, mutable mappings from objects to objects, are a critical data struc

ture in Python. Type objects store their methods in dictionaries. The methods of a 

Python class are mutable at runtime since they are stored in dictionaries. Instances 

of user-defined classes use dictionaries to store local data. 

All Python objects may be used as dictionary keys, except for mutable types such 

as lists and dictionaries themselves. CPython implements dictionaries using a hash 

table data structure. Both equality and hashing are defined in Python as methods 

implemented by objects. For example, the expression ol = = o2 is syntactic sugar for 

ol eg_(o2). Every hashable object must provide a —hash— method: hash : obj —> 

long integer. The only requirement is that two objects for which the equality method 
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returns True must have the same hash value *. 

A common use case for dictionaries is to store method names for a type. In these 

cases, the key is an object containing a string value. CPython takes advantage of this 

common case by internally using two distinct dictionary implementations: a general 

object-to-object mapping and a more specific string-to-object mapping. The string-

to-object mapping is used by default to store methods for type objects. Specializing 

for the common case provides performance benefits for CPython, but necessitates 

extra book-keeping to maintain dual implementations. 

2.4 Inheritance 

Python supports multiple inheritance. For any class, the base class hierarchy can 

be an arbitrary graph. However, Python semantics follows a specific order of method 

lookup, defined by the C3 Method resolution algorithm [26], which was originally 

created for the Dylan language [4]. In C++ and Java, inheritance is statically deter

mined. In Python, however, inheritance is determined by runtime method lookups. 

For simple programs with single inheritance, the search algorithm for a given 

method m in an object is fairly straightforward; search the dictionary of the type of 

the object, and then in its base class and so forth. However, if multiple inheritance is 

involved, the method m may have different implementations in different base classes, 

1Personal communication by Guido van Rossum, the lead developer of Python at a Google talk 
on January 22, 2007. This is an example of a language feature that is very hard to glean from 
documentation and code, and had to be communicated to us by the developers of the language. 
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each of which may be reachable by a different path. The method resolution algorithm 

disambiguates this process by ensuring that for every class, a unique priority is as

signed to each of its base classes and the methods are looked up in that order. We 

recommend the original C3 paper for details of this algorithm [26]. 

2.5 Mixed static-dynamic scoping 

A Python program can define three possible scopes: Module scope, Class scope 

and Function scope. Variables defined in the module and function scopes are lexically 

scoped, but a class variable is only available via the dictionary of the class. This results 

in an unusual mix of static and dynamic scoping rules. 

x = 5 
class C(object): 

x = 10 

def foo(self): 
return x 

c - . C O 

print c.fooO # prints "5" 
print c.x # prints "10" 

In the above example, the p r in t statement in the function f oo prints the value of 

x in the outermost scope instead of the lexically enclosing scope of the class C. These 

scoping rules lead to more involved book-keeping in the translation process in order 

to keep track of variable scoping. 
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2.6 Function parameter passing 

Python allows user-defined functions with complex argument definition and pro

cessing semantics. Python functions can be nested. Functions themselves are objects, 

like any other Python value. Python functions support several kinds of parameter 

passing: 

• Positional parameters have no default value, but are sequentially assigned values 

from the arguments of a function call. 

e Keyword or named parameters have a default value. 

• The list (*arg) parameter allows a variable number of positional arguments to 

be packed into the list arg. 

• The map (**arg) parameter allows a variable number of named arguments to 

be packed into the dictionary arg. 

def iun(xJy,z=8,*argl,**arg2): 
print x,y,z,argl ,arg2 # 2 5 4 (5, 66) {'a': 1, ' b ' : 2} 

fun(2,5,4,5,66,a=l,b=2) 

In this example, the function fun is called with both positional and keyword ar

guments. The first two positional arguments are assigned to the formal parameters 

x and y respectively, while the third argument is assigned to the keyword parameter 

z. The remaining positional arguments are absorbed in the *argl formal parameter. 

18 



Similarly, the excess keyword arguments a and b are inserted into a dictionary rep

resented by the **arg2 parameter. This example illustrates that Python's argument 

processing makes its function call semantics quite complex. 

2.7 Control flow mechanisms 

Python provides several mechanisms for control flow: 

1. Conditionals and loops: Python supports the standard imperative control 

flow constructs: i f - e l s i f - e l s e , while and for loops. As in C, loops in Python 

support the break and continue statements for non-local control flow. 

2. Exceptions: Python supports exception raising and handling. The r a i s e 

statement allows an exception to be raised, and the t ry-except syntax is used 

to implement handlers. Python defines 30 built-in exceptions. Exceptions in 

Python are objects like any other Python value. For example, the following 

function update_count updates a dictionary d which maintains a count of each 

word occurring in a document. 

def update_count(d,word): 
t r y : # if word e x i s t s , increment count 

d[word] = d[word] + 1 
with KeyError: # if new word, add i t 

d[word] = 1 

3. Generators: Python supports an imperative form of streams called generators. 

A generator looks like a function, except for the presence of one or more yie ld 
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statements in its body. A generator responds to an invocation of its next 

method by yielding a value and preserving its state. This preserved state is 

used to resume execution and yield the next value on subsequent invocations of 

next. 

def pow2(N): #defines a generator function 
i = 0 
while i < N: 

y i e ld 2~i 
i += 1 

#pr in t the f i r s t 10 powers of 2 
g = pow2(10) #create a generator ins tance 
p r i n t g . n e x t 0 #1 
p r i n t g .nex tO #2 

For example, the generator function pow2 creates a specific generator instance 

g on invocation. This instance has a built-in next method which returns the 

value of the subsequent y ie ld statement. 

2.8 Dynamic code execution 

Python allows any string to be executed as code using the exec and eval con

structs. The exec construct supports arbitrary Python code, while eval can only 

evaluate a single expression. This code can be executed in an environment speci

fied by local and global dictionaries. This feature, when used, makes it difficult for 

compilers to analyze programs. 
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2.9 Other features 

Python has several other features that are popular in scripting languages and must 

be supported by any Python implementation. Much of Python's popularity derives 

from its extensive standard library suite. The Python Standard Library contains 

over 100 modules, ranging from mathematical functions (math) to mail and web 

applications (smtpd, cgi). As shown below, a function in a Python standard library 

module is used by first making the module available in the current namespace using 

the import statement. 

import math 

print math.sin(2) 

In this example, we compute the sine of a number using the s in function of the 

math library module. Modules can be dynamically loaded into Python at any point 

in the program, even if the name of the module is known only at runtime. 

Python provides a high-level C API that allows data (object) manipulation and 

method invocation from a C program. In addition to calling functions in the Python 

runtime, the interpreter can be easily extended by defining new Python types in C. 

These C interface facilities make it simple to connect Python to existing code and 

libraries. 
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2.10 Memory management in CPython 

CPython's memory management is based on a reference counting [34] garbage 

collector. Each CPython object contains an integer count representing the number 

of references to it. When this reference count falls to zero, the object becomes inac

cessible and can be marked for deallocation. There are two main advantages to this 

reference counting scheme. First, objects can be immediately reclaimed in an incre

mental fashion without long pauses for garbage collection cycles. Second, reference 

counting is one of the easiest garbage collection schemes to implement. 

However, a significant disadvantage of a naive reference count scheme is the in

ability to reclaim objects that are part of reference cycles. Because an object in 

a reference cycle directly or indirectly refers to itself, its reference count is always 

greater than zero. CPython resolves this problem by periodically calling a cyclic 

garbage collector (available via the gc library module) which identifies and collects 

reference cycles. 
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Chapter 3 

OCaml: A statically typed language 

OCaml (Objective Categorical Abstract Machine Language) is a statically typed 

open source programming language developed mainly at INRIA, Prance, but with 

contributors around the world [17]. OCaml is fundamentally a functional language 

with some imperative and object oriented features. Since we use only the functional 

and imperative features of OCaml, we focus on those features in this chapter. 

3.1 Algebraic data types 

OCaml provides an implementation of algebraic data types [38], which can be 

defined by the following BNF: 

T := B\T + T\T*T\T-*t\ref'T 

The symbol B represents base or ground types such as booleans, integers, floats 

and strings. Sum types of the form T\ + T2 represent disjoint (tagged) union types. 

Such a type can take a value in one of two forms: either a tagged value Left v\ 

carrying a value v\ of type Ti, or a tagged value Right v% carrying a value vi of type 

T2. In practice, OCaml allows the user-defined tag names and sums can introduce 
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several tags simultaneously. Product types of the form T\ *T2 are pairs, and can have 

values of the form (^1,^2) where value v\ is of type T\ and v<i is of type T2. A type 

of the form Ti —>• T2 is a function which accepts a value vi of type Ti and returns a 

value V2 of type T2- The ref T type represents a mutable reference to a value of type 

T. 

There are two commonly used product types in OCaml: tuples and records. A 

tuple is declared with the * syntax used as follows: 

type mytuple = (int * str ing * (float -> int)) 

In the above example, the tuple mytuple has three components in the order specified 

by the type declaration: an integer, a string and a function which accepts a float and 

returns an integer. 

OCaml records are tuples with named elements, similar to C structures. This 

construct is useful when specific elements of a collection have to be conveniently 

accessed. For example, the elements of mytuple in the previous example can be 

placed in a record as follows: 

type myrecord = 
{ 

x: int; 
y: string; 

z: (float •-> int) 

} 

In the above example, the record type myrecord has the same three components as 

mytuple, but they are now individually named as x, y and z. 
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; Unlike C, OCaml does not support unchecked coercion subtyping for records, that 

is, one OCaml record cannot be cast to another. Moreover, in OCaml, two different 

record types cannot have a field with the same name. 

OCaml also allows recursive type definitions, enabling easy construction of data 

structures such as lists and hash tables. OCaml also allows parameters in type def

initions for creating polymorphic types. For example, a basic polymorphic list type 

can be easily defined in OCaml as follows: 

type 'a l i s t = Nil I Cons of 'a * ( 'a l i s t ) 

This list type defines a polymorphic list of elements, each represented by the type 

parameter 'a. The Nil tag represents the empty list, while the Cons tag recursively 

extends an existing list using a tuple consisting of a head and a tail. 

OCaml is a statically typed language with Hindley-Milner type inference. Type 

declarations are implicit: the programmer need not declare types. Explicit type 

annotations are allowed only as hints to the compiler. 

In our work, we use OCaml's algebraic data types, chiefly records and union types, 

to devise a representation for Python objects in OCaml. Using a sum type enables 

us to represent all possible Python values using one type (Section 4.3). 

3.2 Pat te rn matching 

An important feature of OCaml that we use extensively is pattern matching with 

the match statement. The match statement in OCaml is similar to the switch state-
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ment in C. Patterns in OCaml allow the match statement to select an action based 

on the structure of a value. For example, in order to determine the length of the list 

type defined earlier, we can define a recursive function. 

le t rec l i s t l en 1 = 
match 1 with 
I Nil -> 0 
I Cons (hd.tl) -> 1 + l i s t l e n ( t l ) 

The function l i s t l e n uses a match statement to iterate over the list, using pattern 

matching on the tags Nil and Cons to determine the return value. 

Pattern matching enables us to implement dynamic typing: we examine the tag 

of the value enclosed by a Python object at runtime and determine the action based 

on the tag. 

3.3 Memory management 

OCaml provides automatic memory management with garbage collection. The 

OCaml garbage collector uses a hybrid generational incremental algorithm [34]. It 

maintains two heaps: a young or minor heap, and an old or major heap. Objects 

in the minor heap are collected far more frequently than those in the major heap. 

Objects are first allocated in the minor heap and then moved to the major heap after 

they have survived a minimum number of collections. The OCaml Book [27] offers a 

detailed description of the OCaml garbage collector as well as an excellent summary 

of related algorithms. 
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3.4 Functions 

OCaml enables the user to define recursive functions with an arbitrary number 

of arguments. The OCaml language specification leaves the argument evaluation 

order unspecified. However, in the standard OCaml implementation, arguments are 

evaluated from right to left [23], unlike imperative style languages such as Python or 

C. 

Functions in OCaml are first class values, which means that they can be supplied 

as arguments to other functions, or returned by other functions. We use this fea

ture and recursion extensively to implement generator functions in Python using a 

continuation-passing style (CPS) approach (Section 6.2). 

3.5 Control constructs 

OCaml provides exception raising and handling constructs. An exception may 

be raised by the r a i s e statement. Exception handlers are implemented using the 

t ry-wi th statement. A raised exception in a try-block may be caught by the with 

statement, which provides handlers to perform specific actions based on the value of 

the exception. In OCaml, all exceptions are first class values belonging to a type 

called exn. This is an extensible sum type: it can be extended by declaring new con

structors. Exceptions are dynamically scoped: a raised exception propagates through 

the program stack from callee to caller until it finds the first handler to catch it. If 

an uncaught exception reaches the bottom of the stack, it stops program execution 
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with an error. In practice, exceptions can also be used as a control flow mechanism. 

We use exceptions in OCaml to implement Python exceptions. In addition, we 

find OCaml exceptions to be a convenient technique to implement non-local control 

flow constructs in Python such as break or continue statements in loops. 

3.6 Imperative features 

OCaml provides several features traditionally associated with imperative lan

guages. These include references which can be used to store values of a particular type 

and can be modified by assignment. OCaml also allows statements in a block to be 

executed as a sequence. The result of the last statement in the sequence determines 

the type of a block. 

OCaml defines the i f - then-e l se control flow construct, along with more im

perative style constructs such as for and while loops. Unlike loops in imperative 

style languages like C or Python, OCaml loops do not support non-local control flow 

constructs such as break or continue. 

The imperative features of OCaml enable us to implement the imperative fea

tures of Python. We use sequential statements to implement Python code blocks. 

References allow us to implement Python assignments. 
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3.7 Other features and tools 

OCaml's standard library supplies many useful data structures such as lists, arrays 

and hash tables. The library also contains a large set of string manipulation functions 

and an implementation of arbitrary-precision arithmetic. In our implementation, we 

use many OCaml libraries: the Hashtbl library for custom hash tables as the basis for 

our dictionary implementation, arrays to represent lists and tuples, string functions 

for the source-to-source translator and so on. 

OCaml provides a powerful C interface mechanism to call functions implemented 

in C and for C code to call functions back into the OCaml runtime. This is extremely 

useful in building foreign function interfaces to other languages, as we have used in 

our interface between Python and OCaml. 

The standard OCaml distribution comes bundled with some useful tools for lan

guage developers: ocamllex and ocamlyacc. These programs provide lexing and 

parsing facilities similar to the Unix utilities lex and yacc respectively. OCaml also 

supports profiling using the ocamlprof tool and by generating executables which can 

be profiled using the gprof profiler. 
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Chapter 4 

Representing Python objects in OCaml 

In this chapter, we discuss the representation of Python objects. We first re

view the existing CPython object representation using C structures. C allows unsafe 

structural subtyping; structures can be cast to one another. In our view, this leads to 

potentially type-unsafe programs. We present an object representation using OCaml 

records and sum types. Our representation is both type-safe and does not prevent 

our implementation from being sigificantly faster than CPython. 

The definition of the type object in Python presents a challenge when developing 

an appropriate OCaml representation for Python objects . An instance of a type 

object contains methods implementing a Python type or class. The definition of this 

object in CPython is unusually complex relative to other CPython objects. We devote 

a section in this chapter in order to explain our type object representation. 

4.1 Representing Python objects in CPython 

Every element in the domain of Python values is called an object. Based on 

their internal representation, Python objects can behave as numbers, strings, lists, 
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functions and other values. A special category of Python objects is type, whose main 

purpose is to contain methods designated for use by other objects. Two properties 

hold true for Python: (1) every object has a type and (2) every type is an object. Any 

particular Python object carries data specific to itself, while its type object contains 

behavior (methods) for all instances of that type. 

4.1.1 PyObject: A C structure for Python objects 

CPython uses C structures to represent Python objects. The most abstract object 

is denoted by a structure called PyObject which contains the minimal information 

needed by an object. Every Python object has some bookkeeping information for 

memory management and a pointer to its type object: 

s t r u c t PyObject 
{ 

PyObject_HEAD /* GC info */ 
PyTypeObject *ob_type; 

} 

The PyObject.HEAD macro expands into some fields internally used by Python's 

garbage collector, while the ob_type field is a pointer to the type of the instance. 

The PyObject structure serves as a template for all CPython objects. For example, 

the object representing an integer has a slightly larger C structure: 

struct PylntObject 
{ 

PyObject.HEAD /* GC info */ 
PyTypeObject *ob_type; 
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long int ival ; /* integer value */ 

The PylntObject structure is a subtype of PyObject with an extra field iva l 

containing the data distinguishing each Python integer object. The ob_type field for 

any Python integer object, such as the integer 1 below, points to an object called 

PylntType, which in turn is a specific instance of PyTypeObject. The PylntType 

structure encodes all the methods and properties describing a Python integer: 

<• . • 

PyObject_HEAD /* GC info */ 
ob_type = fePylntType; 
iva l = 1; 

} 

4.1.2 The use of unsafe structural subtyping in CPython 

Because C supports casting between s t ruc t types, all Python objects can be 

coerced to each other via the abstract structure PyObject. This technique is useful 

for implementing a dynamic language in which a function can receive different kinds 

of Python objects as valid arguments. 

Using coercion for records in this manner has several advantages. First, it saves 

memory by ensuring that every record type has exactly the data that it needs to 

carry. Second, this data can be accessed rapidly using field lookup. However, coercion 

reduces type safety. If there is a mismatch of types at runtime, a program can attempt 

to access memory illegally. Another disadvantage of using coercion indiscriminately 

is that it can create a profusion of record types in the source code. 
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4.2 The type object in CPython 

Surprisingly, the largest and most complex subtype of PyObject in CPython is 

PyTypeObj ect, which is used to denote type objects describing the behavior of each 

type or class. The PyTypeObj ect structure contains a dictionary tp_dict . In theory, 

the dictionary is sufficient to carry all the methods defined by this type. However, 

in addition to being accessible via the dictionary, several commonly used methods 

are also defined as fields of the C structure itself, making this structure large and 

complex. This design is used primarily for performance reasons; accessing the field 

of a structure is much faster than a dictionary lookup. 

The type object structure has several fields representing the most commonly used 

methods for Python objects. This includes hashing (tp_hash), string representa

tion ( tp_s t r and tp_repr) and iteration ( tp_i ter ) . In addition there are special

ized method suites for implementing numeric behavior (tp_as_number), sequence 

behavior (tp_as_sequence) and map behavior (tp_as_mapping). Other fields, as de

scribed in the code below, implement behavior for attribute access ( tp_geta t t ro and 

tp_se ta t t ro ) , instance creation (tp_new and tp_ in i t ) and comparison (tp_compare 

and tp_richcompare): 
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struct PyTypeObject { 

PyTypeObject *ob_type; 

char *tp_name; 

PyObject *tp_dict; 

/* GC and book-keeping fields */ 

/* name of this type */ 

/* dictionary */ 

/* Methods to implement standard operations */ 

destructor tp_dealloc; 

getattrfunc tp_getattro; 

setattrfunc tp_setattro; 

cmpfunc tp_compare; 

richcmpfunc tp_richcompare; 

/* destructor */ 

/* retrieving attributes */ 

/* setting attributes */ 

/*. 3-way comparison */ 

/* rich comparison */ 

/* Method suites for standard classes */ 

PyNumberMethods *tp_as_number; 

PySequenceMethods *tp_as_sequence; 

PyMappingMethods *tp_as_mapping; 

/* numeric methods */ 

'/* sequence methods */ 

/* map (dictionary) methods */ 

/* More standard operations (here for binary compatibility) */ 

hashfunc tp_hash; 

ternaryfunc tp_call; 

reprfunc tp_str; 

reprfunc tp_repr; 

getiterfunc tp_iter; 

iterhextfunc tp_iternext; 

/* hash function */ 

/* calling object as function */ 

/* string representation */ 

/* concise string representation */ 

/* iterator creation */ 

/* iterator traversal */ 

/* Methods, subclassing and instantiation */ 

struct PyMethodDef *tp_methods; /* method list */ 

struct PyMemberDef *tp_members; /* data attribute list */ 

struct PyGetSetDef *tp_getset; /* custom attributes */ 

newfunc tp_new; 

initproc tp_init; 

PyObject *tp_bases; 

PyObject *tp_mro; 

PyObject *tp_subclasses; 

/* instance creation */ 

/* instance initialization */ 

/* list of base classes */ 

/* method resolution order */ 

/* list of subclasses */ 
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4.3 Representing Python objects in OCaml 

We use OCaml records in our implementation to represent Python objects because 

they offer several of the same benefits offered by C structures: named elements and 

fast access. Unlike C, OCaml records cannot be cast to one another. Moreover, in 

OCaml, two different record types cannot have a field with the same name. These 

restrictions imply that we must define exactly one record type in OCaml to represent 

all Python objects. 

We define a single record type obj containing the basic fields that are shared 

by most Python types. Python stipulates that every object be assigned a unique 

identifier. In CPython, the memory address of an object is used as its identity. In 

OCaml, the address of a value is not constant due to garbage collection. Hence we 

generate our own unique integer identifiers and store them in each object as a field. 

In addition, the obj record contains a reference to the type of an object, the size (for 

sequences and strings) and some other fields as shown below: 

type obj = 
-C 

ob_idx 
mutable ob_type 
mutable ob_value 

i s b u i l t i n 
mutable ob_size 
mutable props 
mutable weak_wrapper 

} 

i n t ; (* object i d e n t i t y *) 
obj ; (* type object *) 
raw; (* Python value representation *) 

bool 

i n t ; (* length of sequences *) 
tp_record option; (* only for type objects *) 
pyobject; (* used by the FFI *) 

The object identifier is stored in the field (ob_idx), while the ob_type field con

tains the type of the object. The ob_size field stores the size of container objects 
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such as lists and dictionaries. A boolean field i s b u i l t i n identifies whether an object 

is an instance of a built-in type, enabling runtime optimizations relying on type-based 

specialization. For example, we can invoke specialized numeric methods for built-in 

numeric types such as integers. This kind of specialization is the biggest source of 

performance gain in our implementation (Section 8.10). 

The weak_wrapper field of the object is used by our Python-OCaml foreign 

function interface (FFI). When an instance of obj is passed to CPython, a wrap

per is created in CPython to make the instance simulate CPython behavior. The 

weak_wrapper field points to this CPython wrapper and is used to optimize memory 

management, as described in Section 5.4. 

The ob_value field represents the actual Python value, specified by a type named 

raw. An important challenge for us was to represent the entire range of Python values 

using this one OCaml type. We use an OCaml sum type (tagged union) to express 

Python values, as described in the following subsection. 

4.3.1 Representing Python values using an OCaml sum type 

OCaml's support for algebraic data types allows us to easily represent the entire 

value domain of Python using a universal value type called raw, implemented as a 

tagged union type in OCaml as shown below: 

type raw = 

I Type (* type object *) 

I Object (* general catch-all object *) 

I None_raw (* the Python 'None' object *) 
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Int of int 

Loiiglnt of Big_int.big_int (* unlimited size ints *) 

Float of float 

String of (string * int) 

Bool of bool 

Complex of Complex.t 

Char of char 

Aseq of obj array (* list and tuple *) 

Diet of diet (* dictionary *) 

Seqlter of iter_record (* sequence iterator *) 

Bfunc of (string * bfunc) (* built-in function *) 

Ufunc of (string * (obj -> obj -> obj) (* user-defined function *) 

* func_record) 

I Method of meth_record (* methods *) 
I ClassicClass of ( s t r i n g * (obj l i s t ) (* c l a s s i c c l a s s *) 

* d i e t * (obj option) * s t r i ng ) 
I NewClass of (obj option * s t r i ng ) (* new-style c lass *) 
I Class ic lns tance of dict*obj 
I Newlnstance 
I Property of property_record (* p r o p e r t i e s / t r a i t s *) 
I Module of s t r i n g * d i e t * (obj option) (* ex te rna l module *) 
I Frame of frame_record (* s tack frame *) 
I External of pyobject (* CPython objects *) 
I F i l e of pyobject (* F i l e ob jec t s ,* ) 
I PyException of pyobject (* Exception objects *) 

The raw type is a union of several tagged types. These tags include miliary 

constructors such as Type for type values, None_raw for the Python value None and 

a catch-all constructor Object for instances of user-defined classes. In addition, the 

record shows several other tagged types for specific Python built-in objects. 

As shown above, this union type definition is quite large, and raises the question 

as to whether all of these tagged types are necessary. Our answer is that that all 

these types are not necessary for achieving correct semantics; the type of an object 

can be identified by examining its type field (ob_type) and it's data can be stored in a 

dictionary. We use these tags to exploit OCaml's fast pattern matching for identifying 
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the kind of value contained by an object and to access instance data. For example, 

unboxing an integer object o to extract its value is can be easily carried out as follows: 

match o.ob_value with 

I Int i -> ... 

I ... 

Using a dictionary to extract the value i contained by the integer object would 

require an extra hash computation, resulting in performance loss. 

4.3.2 Representing Python type objects in OCaml 

The props field in the obj record definition is used only in type objects. It is 

occupied by a record of type tp .record, which contains all the methods (over 50) 

that are unique to type objects. For each type object, one copy of this record is 

instantiated. For other kinds of objects, the tp_record field is set to None, a null 

value. Breaking up the record definition ensures that only type objects allocate a 

large amount of memory to store basic information such as the name of the type 

(tp_name), the dictionary (tp_dict) and type-specific methods. 

type tp_record = 

{ 

tp_name 

mutable tp_dict 

mutable tp_bases 

mutable tp_base 

mutable tp_mro 

string; 

diet ; (* type dictionary *) 

obj list; (* base classes *) 

obj option; (* primary base class *) 

obj list; (* method resolution order *) 

(* Sets of functions for standard protocols *) 

mutable num_prot : numeric_protocol; (* numeric methods *) 
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mutable seq_prot : sequence_protocol; (* sequence methods *) 

mutable map_prot : map_protocol; (* map/dictionary methods *) 

(* Iterators *) 

mutable t p _ i t e r : unaryfunc option; 
mutable t p_ i t e rhex t : unaryfunc option; 

C* Comparison methods: r i c h and 3-way comparison *) 
mutable tp_richcmp : (obj -> obj -> i n t -> obj) opt ion; 
mutable tp_compare : (obj -> obj -> i n t ) option; 

(* Other Standard methods *) 
mutable tp_bool 
mutable tp_hash 
mutable t p _ c a l l 
mutable tp_new 
mutable t p _ i n i t 

obj -> bool; (* t r u t h value *) 
(obj -> i n t ) option; (* hash function *) 
ternaryfunc; (* ca l l ab l e objec ts *) 
ternaryfunc; (* new ins tance c rea t ion *) 
ternaryfunc; •' '(* ins tance i n i t i a l i z a t i o n *) 

mutable tp_repr : obj -> s t r i n g ; 
mutable t p _ s t r : (obj -> s t r i n g ) option; 

mutable t p_ge t a t t r o : obj -> obj -> obj ; 
mutable t p _ s e t a t t r o : obj -> obj -> obj -> u n i t ; 

> • • " 

The tp_record type contains several fields corresponding to the PyType_Object 

structure in C used to define type objects, including a dictionary ( tp_dic t ) , hash 

function (tp_hash), string representation ( tp_st r and tp_repr) , iteration ( tp_i ter ) , 

attribute access ( tp_getat t ro and tp_se ta t t ro ) , instance creation (tp_new and 

tp_ in i t ) and comparison (tp_compare and tp_richcmp). 

The tp_record type actually represents the value of a type object. As such, 

it should be part of the raw union type defining Python values, changing the Type 

miliary constructor to Type of tp_record, a non-nullary constructor. This redesign 

step is planned as part of future improvements to our runtime environment. 
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4.3.3 Creating new Python objects 

As a concrete example, we show how we combine the various types described 

earlier in this section to represent a real Python object. An instance of obj record 

representing the Python string "hello" is shown below: 

let _string_hello = 
{ 

ob_idx = 500; 
ob_type = types t r ing_obj ; 
ob.value = St r ing ("he l lo" , 14287294); 
i s b u i l t i n = t r u e ; 
ob_size = 5 ; 
props = None; 
weak_wrappper = null_wrapper; 

} 

The object identity 500 is generated by a function next id: unit -> in t which 

simply increments a counter. The value of this string object is a tuple containing the 

string "hello" and its hash value 14287294. Because string hashing is an expensive 

and frequent operation, we store the hash value of a string object as soon as it is 

created. The ob_size field contains the length of the string. The props field is None 

because this is not a type object. 

In order to instantiate new objects, our runtime defines several functions, each 

targeted to a specific object type. For example, the most general function for creating 

a string object is a function which takes a string constant and computes its length 

and hash value. 

(* unique integer id *) 
(* string type object *) 
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let pystring_new s = 

let len = String.length s in 

let hval = Hashtbl.hash s in 

• ' • ' • { • . ' • • ' . ' . . • 

ob_idx = n e x t i d O ; 
ob_type = types t r ing_obj ; 
ob_value•'= St r ing ("he l lo" , hva l ) ; 
ob_size = len; 
props = None; 
weak_wrappper = null_wrapper; 

} 

In practice, we use several variations of this function, accepting additional argu

ments such as the length and the hash value. This takes advantage of the fact that 

for string constants, the hash and length can be pre-computed at compile time. 

4.3.4 Note on using OCaml's object oriented features 

We initally attempted to represent Python objects in OCaml using OCaml's object 

oriented features such as classes, methods and inheritance. However, OCaml's classes 

and objects are static while Python's are dynamic, resulting in a mismatch between 

the two kinds of objects. As such, it is not clear that using OCaml objects offers a 

clear advantage in implementing Python's object oriented features. 

In addition to potentially gaining a natural mapping from OCaml classes to 

Python objects, we expected to use OCaml object oriented features to obtain a form of 

safe structural typing and subtyping (via inheritance). However, OCaml requires that 

all object data be accessed only through explicitly defined methods. These method 

calls are slower than the direct data access provided by fields in records, leading to 

potential performance loss at runtime. 

41 



For these reasons, we opted to use OCaml records in lieu of OCaml's object 

oriented features, despite the lack of structural subtyping in records. While this 

may seem like a severe restriction, it does ensure that our representation is type 

safe. Furthermore, as we will show in the rest of this dissertation, this type safe 

representation itself does not prevent our implementation from being significantly 

faster than the CPython implemention. 
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Chapter 5 

Supporting CPython libraries: Memory 

management and the foreign function interface 

(FFI) 

In order to study the translation from Python to OCaml and the associated per

formance tradeoffs, a practical concern must be addressed: A significant part of the 

Python language is comprised of libraries that are implemented either in C or in 

Python. While, in principle, it is possible to rewrite all these libraries in OCaml, 

there are pragmatic reasons to avoid this approach. First, some of these libraries are 

fine tuned for performance, and it may simply be more profitable to reuse them even 

when an alternative strategy is used to compile the main program. Second, the effort 

needed to map such programs into OCaml would be considerable. As a result, for 

the purposes of this work we simply ensure that the results of compilation can be 

integrated with such libraries. 

In order to achieve this integration in our implementation, we have built an FFI 

between the OCaml runtime and the CPython interpreter. This approach allows us 
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to support a large portion of the standard library in a relatively short time. We 

encounter several challenges in this process of interfacing OCaml and CPython: 

1. OCaml and CPython have very different internal representations of values, and 

different mechanisms for managing function calls. The FFI must successfully 

pass data and call functions between these two languages. 

2. Both languages have memory managed runtimes with their own garbage col

lectors. Python's garbage collector is based on reference counting, whereas 

OCaml's is a generational incremental garbage Collector. The FFI must ensure 

that these two memory management systems 'play nice' with each other without 

corrupting each other's memory. 

3. Both languages support raising and catching exceptions. Python and OCaml 

each have their own built-in exceptions and exception handling mechanisms. 

The FFI must implement exception raising and handling across language bound

aries. 

In this chapter, we discuss the architecture of the FFI and describe our solutions 

to these challenges. Since both Python and OCaml are partially implemented in C 

and provide C interfaces, we use C to construct the FFI. We first describe the C 

interfaces provided by these two languages with an emphasis on features that we 

use in the FFI. We then describe the specific ways that we communicate immutable 

and mutable Python objects between the languages. Next, we discuss our handling of 

memory management and exceptions across these two languages. Finally, we conclude 
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the chapter by presenting a limitation of our FFI in its current form, explaining the 

problem using a multilingual factorial (MLF) function example and presenting some 

potential solutions. 

5.1 Python's interface to C 

Python's popularity with programmers results in part from its large standard 

library and its ability to easily interface with other languages. This capability is 

primarily achieved by a well-defined, high-level C API which allows a C programmer 

to control and manipulate almost every aspect of the CPython interpreter, making 

Python easy to connect to existing C code. The Python-C interface supports data 

(object) manipulation, method calls to the Python interpreter and definition of new 

Python types to extend the capabilities of the interpreter. The C interface is provided 

by a large set of C functions collectively called the Python/C API [15]. This API 

allows all Python operations to be performed in C. 

We present a small example below to illustrate the use of the Python/C API. The 

Python script on the left imports the math library module and calls a function sin. 

On the right, the C version performs exactly the same operations using the Python/C 

API. 

In the example shown above, the function PyImport_ImportModule imports a 

module, the function PyObject_CallObject calls a Python function and the func

tion PyObject_GetAttrString retrieves an attribute from an object. On failure, an 
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Python C 
import math 
print math.sin(2) 

PyObject *mod; 
mod = PyImport_ImportModule("math"); 
PyObject_Print( 

PyOb j ect_CallOt> j ect ( 
PyObject_GetAttrString(mod,"sin"), 
PyInt_FromLong(2) 

) 
); 

Table 5.1: Example of the use of the Python/C API: The Python program on the left is 
functionally identical to the C program on the right, which invokes the Python interpreter 
using the Python/C API. 

API function usually returns an error value such as -1 or a NULL pointer while si

multaneously setting a Python exception. The C API provides facilities for raising, 

handling and clearing exceptions. 

The C interface also allows the CPython interpreter to be extended by defining new 

Python types in C. This is done by instantiating a new type object and implementing 

its methods. The Python documentation provides a detailed manual describing this 

facility [5]. 

5.1.1 Raising and handling CPython exceptions from C 

The Python/C API provides facilities for raising and handling Python exceptions 

from C. In order to raise a Python exception, the C function PySet_Err is used. This 

function takes three arguments, namely, an exception object, a message object and a 

traceback object, as shown in the following example: 

PyErr_Set(PyExc_KeyError, Py_None, Py_None); 

The above C code snippet is equivalent to raising the KeyError exception in 
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Python using the r a i s e statement. In order to handle the exception, we use the 

functions PyErr_Occurred and PyErr.Cleared as follows: 

exn = PyErr_0ccurredO ; 
PyErr_Clear(); 

The function PyErr_Occurred retrieves a pointer to the exception object (NULL if 

there is no exception to be handled), while PyErr_Cleared clears the exception. Note 

that it is the C programmer's responsibility to clear the exception. The Pythoh/C 

API provides several specialized variants of the functions described above, as well as 

functions to test for specific exception objects. 

5.1.2 Controlling the Python garbage collector from C 

CPython's garbage collector is based on reference counting [34]. Each object has 

a reference count indicating the number of references pointing to it. When the count 

reaches zero, the object can be collected by the garbage collector. The Python/C 

API provides two C macros, Py_INCREF and Py_DECREF, to increment and decrement 

the reference count of a CPython object respectively. Ensuring that the reference 

count of an object is positive is sufficient for the CPython garbage collector to ignore 

the object. In addition, Python's cyclic garbage collector (the gc module) can be 

completely disabled. 
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5.2 OCaml's interface to C 

OCaml provides a C interface which allows construction and manipulation of 

OCaml values at a lower level. This interface allows C functions to be called from 

OCaml and vice versa. Using this C interface requires the programmer to be ac

quainted with the representation of OCaml values in C. 

5.2.1 Representation of OCaml values in C 

All values in OCaml are represented in C by a single C type value. The value type 

in OCaml can represent either an integer or a pointer, depending on a tag bit. The 

pointer value points to a tagged block structure, which is used to represent tuples, 

arrays or records based on the tag. A custom tag allows representation of arbitrary 

types as OCaml values. Several macros are provided to examine and manipulate 

value types: 

• Macros such as Is_long and Is_block examine the tag bit of a value to deter

mine whether it is an integer or a pointer. 

• The F ie ld(a , i ) macro extracts the i th element of an array or tuple a. 

• Macros such as Val_int and Int_val convert between C values and their 

OCaml representations. 

The use of the single value type and the explicit nature of its manipulation in 

OCaml's C interface requires the C programmer to be intimately aware of the internal 
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representation of any OCaml data. Since any value type may be used in place of 

another, it also precludes any type checking. Thus the C programmer must use extra 

caution while manipulating OCaml values. 

5.2.2 Calling C from OCaml 

OCaml provides an elegant facility to call C functions. We use this facility in 

order to invoke functions in the Python interpreter from OCaml. In OCaml, functions 

implemented in C may be declared with an external keyword. The example below 

declares a simple squaring function sqr in OCaml and provides a C implementation 

caml_sqr. 

(*0Caml*) 
external sqr: int -> int : "caml_sqr" 

/*C*/ 
value caml_sqr (value arg){ 

CAMLparaml (arg); 
int inp = Val_int (arg); 
CAMLreturn( Int_val( inp*inp ) ) ; 

} 

The C macros CAMLparaml and CAMLreturn are directives to the OCaml garbage 

collector to preserve the memory allocated to locally created values for the duration 

of the function. The Val_int and Int_val macros convert between C integers and 

their OCaml representations. 
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5.2.3 Callbacks from C to OCaml 

OCaml provides a mechanism for C code to invoke functions in the OCaml run

time. We use this mechanism to allow function calls from the Python interpreter into 

the OCaml runtime. As an example of this callback mechanism, we can use OCaml's 

hash function from C. First, we register it as a global value available to the C code: 

Cal lback . reg is te r l,OCaml_hash" Hashtbl.hash;; 

This OCaml statement makes the OCaml Hashtbl. hash function available in C via 

the name OCaml_hash. Invoking the function in C is more complicated: 

f = *caml_named_value("OCaml_hash"); 
caml_callback(f, Int_val(100)); 

This invocation is the C equivalent of the call Hashtbl. hash 100 in OCaml and 

returns a value. 

5.2.4 Raising and handling OCaml exceptions from C 

The OCaml-C interface provides functions to raise exceptions in the OCaml run

time and to trap exceptions raised during callbacks to OCaml. Exceptions must 

be examined using specific C macros to determine their types and arguments. We 

demonstrate exception handling in C by extending our callback example: 

CAMLlocal2(f,v); 

f = *caml_named_value("OCaml_hash"); 
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v = caml_callback_exn (f, Int_val(100)) ; 
if (Is_exception(v)) then 
{' ' 

caml_raise(v); 
I ' 

This example traps an exception raised by OCaml during a C callback and re

raises it in OCaml. The Is_exception macro examines a value to check if it is ah 

exception, and the caml_raise function raises the supplied exception in the OCaml 

runtime. 

5.2.5 Controlling the OCaml garbage collector from C 

OCaml provides several garbage collection macros and functions in C. For C func

tions using the OCaml-C interface, every function parameter of the type value should 

be declared using the CAMLparamx macros and every local variable of type value 

should be declared using the CAMLlocalx macros. Any OCaml value that may be 

created as a result of a function call or callback should be assigned to one of the 

declared CAML variables. The CAMLreturnx macros should be used at the end of any 

such function. These macros ensure that each new OCaml value created in C is locally 

registered with the garbage collector for the duration of the function and unregistered 

at its completion. 

The OCaml-C interface also provides a global value registration facility for the 

entire duration of a program. This facility serves two main purposes. First, it is 

used internally to register OCaml functions for C callbacks. Secondly, it allows 
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registration for any memory that has been allocated outside the purview of the 

OCaml runtime. Any C pointer can be registered with the OCaml runtime using 

the caml_register_global_root function. This ensures that the memory refer

enced by this pointer is not modified by the OCaml garbage collector when it is 

registered. When the memory is no longer in use, it can be unregistered using the 

caml_unregister_global_root function. 

5.3 Passing immutable and mutable objects in the FFI 

The first problem we encounter in building an FFI is that of passing data between 

CPython and OCaml. In order to devise an effective solution, we treat immutable 

objects such as integers, floats and strings differently from mutable objects such as 

lists and dictionaries. The value encoded by an immutable object is copied across 

language boundaries to create equivalent objects in both runtimes. In the case of 

mutable objects, a reference is passed across the language boundary and enclosed in 

an appropriate wrapper object. In this section, we discuss the handling of these two 

kinds of objects. 

5.3.1 Immutable types 

We pass immutable Python objects between languages in our FFI by copying 

them across the language interface. In order to achieve this copying in practice, we 

need to solve two subproblems. First, we need a way to create CPython objects from 
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OCaml. Second, since OCaml is statically typed, we must ensure that a CPython 

object should behave as any other object in our implementation. 

OCaml Python 

immutables 17 

17 

copy 

copy '€> 

Key 

/-"s CPython 
object 

r - j OCarnl 
object 

Figure 5.1: Immutable objects are copied across language boundaries. 

Figure 5.1 shows a schematic description of our treatment of immutable objects in 

the FFI. We use the C interface functions for both CPython and OCaml to create a 

copy of the value enclosed by an immutable object when it is passed between runtimes. 

In order to create Python objects from OCaml, we implement an OCaml interface 

to the Python/C API. We illustrate the use of this mechanism with an example. We 

declare an OCaml external function which calls a function implemented in C: 

external pyint_from_long : -> int -> pyobject : "caml_pyint_fromlong" 

The pyobject type is an abstract OCaml type representing any CPython object. 

The above function pyint_f romlong is implemented in C as a thin wrapper around 

the Python/C API function which actually creates the Python integer object. 

CAMLprim value caml_pyint_fromlong(value arg) { 
CAMLparaml(arg); 
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CAMLretum(pywrap(PyInt_FromLong(Int_val (axg) ) ) ) ; 
> 

The function pyint_f rbmlong is an interface to the C function PyInt_FromLong(int) 

from the Python/C API. The function pywrap wraps a CPython object into an OCaml 

value of type pyobject. 

In order to use the CPython objects created above in OCaml, each CPython object 

of type pyobject must be further wrapped in an obj record. In our data type (raw) 

representing Python values, we use a tag called External for CPython objects. The 

methods of this object type are calls to the Python/C API via the FFI. For example, 

this Python script uses the standard library with immutable objects: 

import math 
math.sin(3.14) 

The Python code above is now translated into OCaml code which uses functions 

we have defined in our FFI: 

_math_ := pyobject2obj (pyimport_module "math"); 
pyobject_call( 

pyobject_getattrstring (!_math_,"sin"), 
obj2pyobject (pyfloat_new 3.14) 

) 
) 

The OCaml functions pyimport.module, pyobject_call and 

pyobjec t_ge ta t t r s t r ing perform the same functions as their C counterparts 

Py Import .Module, PyObject.Call and PyObject.GetAttrString in the Python/C 
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API. The marshaling functions pyobject2obj and obj2pyobject translate between 

the OCaml and CPython representations of Python objects. 

5.3.2 Mutable types 

Python has two types for mutable objects, lists and dictionaries. Classes and 

their instances are also mutable because they are fundamentally wrappers around 

dictionaries. Since these objects may be modified in place, they cannot be copied 

across the language interface. In spite of this restriction, we must ensure that the 

functions implemented in both OCaml and Python handle these objects correctly. 

Our approach is to pass a pointer to the object in one runtime across the language 

interface and wrap the pointer in a special wrapper type in the other runtime. 

OCaml Python 

mutables [1,2] 

reference 

pass •® Key 

s~\ CPython 
reference / - — - \ object 

pass ^ ~ * ( l V 2 ] ) • OCaml 
< V J object 

Figure 5.2: Mutable objects are passed as references enclosed by wrappers. 

Figure 5.2 describes our handling of mutable objects in the FFI. A reference to 

the object is passed across runtimes and enclosed in a wrapper type, whose methods 

are callbacks to the source runtime. 
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For example, the map function imap from the Python Standard Library takes 

two arguments, a function and a list. These arguments are translated into OCaml, 

whereas the function itself is implemented in Python. 

import i t e r t o o l s , math 
i t e r too l s . imap(bbo l , [1 ,2 ,3 ] ) 

In order to handle this example correctly, we must ensure that the OCaml repre

sentation of the list [1,2,3] is recognized as a valid CPython object in the Python 

Standard Library. Our approach is to build a wrapper type in CPython to wrap 

OCaml values. This CPython wrapper type is an instance of a CPython PyType_0b j ect, 

and its methods are implemented as callbacks to the OCaml runtime. The wrapper 

type is called PyMonty_Type, and its instances are called PyMonty_Objects. A mu

table object in OCaml can be represented as a Python object of type PyMonty_Type, 

and the PyMonty_Object representing it is a C s t ruc t . 

s t ruc t PyMonty_Object{ 
. . . /* Book-keeping */ 
PyObject *ob_type; /* Type object : PyMonty_Type */ 
value oc_val; /* pointer to an OCaml mutable type */ 

} 

In our translation, the OCaml list is wrapped in a PyMonty_Object and passed 

to the CPython interpreter. The CPython interpreter retrieves the elements of the 

list by calling the get i t em method of the PyMonty_Type object. This results in a 

callback to our list retrieval method in the OCaml runtime. 
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5.4 Monty FFI: Memory management and exceptions 

In this section, we address two important issues that we encounter while building 

an FFI: managing memory effectively and handling exceptions. CPythbn and OCaml 

are both garbage collected languages which support raising and handling exceptions. 

A correct FFI must ensure that the garbage collectors in both these languages co

operate with each other and that exceptions are translated correctly across language 

boundaries. 

5.4.1 Managing two garbage collectors 

CPython and OCaml both include memory-managed runtimes with their own 

garbage collectors. Each runtime keeps track of memory it has allocated and decides 

when to reclaim or compact the space. However, an FFI allows each runtime to 

carry references to blocks of memory that have been allocated externally in the other 

runtime. The garbage collectors in both CPython and OCaml provide facilities to 

ensure that these blocks of shared data remain uncorrupted by either of the runtimes 

while they are in use. 

References passed from OCaml to CPython are wrapped in CPython objects of 

type PyMonty.Type. We use the Py.INCREF and Py.DECREF CPython macros to 

ensure that the reference count for these objects is always greater than zero when 

they are in use and is decremented to zero when they are no longer in use. References 

passed from CPython to OCaml are registered with the OCaml runtime using the 
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caml_register_global_root function while they are in use and unregistered using 

the caml_unregister_global_rdot function when they are no longer needed by the 

program. 

5.4.2 Reducing memory allocation for wrappers 

One of the largest costs of the FFI is that of the allocation of wrapper objects 

around pointers. Many of these wrappers are used only for short intervals such as 

a single method call. In order to effectively utilize memory, the space allocated for 

a wrapper should be collected after the pointer it wraps is no longer used. Also, if 

a reference to the same object is passed multiple times from OCaml to CPythbn, 

we should ensure that multiple wrappers are not allocated. We accomplish these 

objectives using two approaches: 

1. Deallocation method in CPython wrapper type: The CPython type 

object definition allows the programmer to define a finalization method called 

tp_dealloc. This method in a type object is called whenever any instance of 

that type is deallocated. We have implemented the tp_deal loc method of the 

CPython wrapper type PyMonty_Type to remove the OCaml reference wrapped 

by any instance from the global list of OCaml garbage collector roots. This 

step ensures that if the CPython wrapper is no longer used, the corresponding 

OCaml object can be collected by the OCaml collector, thus effectively reusing 

allocated memory. 
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2. Weak pointers to reuse existing CPy thon wrappers : Every Python ob

ject in our OCaml runtime, represented by the OCaml obj record, has a weak 

pointer field (weak_wrapper) which is initialized to the NULL pointer. If a ref

erence to this object is passed to CPython and wrapped in a PyMontyObj ect 

wrapper object, the weak pointer is set to point to this new wrapper. Thus, if 

another reference to the same OCaml record is passed to CPython (via another 

function call, for example), the weak pointer is used to retrieve the existing 

wrapper, which is then reused instead of creating a new CPython wrapper. If 

the wrapper is deallocated, the weak pointer is reset to the NULL pointer. Figure 
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Figure 5.3: Every wrapped OCaml object has a weak pointer to its CPython wrapper. 

5.3 shows the weak pointer in our OCaml implementation of Python objects, 

pointing to its CPython wrapper after it is passed to CPython. 

Handling garbage collection correctly is important in an FFI. A program may seg-

fault should any of the garbage collectors unexpectedly modify memory. Debugging 

this kind of program crash is difficult because it may occur at points unrelated to 
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the actual bug in the code. Since garbage collector activity cannot be predicted in 

advance, these bugs are not easily reproducible. As a result, an FFI developer must 

use the appropriate garbage collector macros carefully. 

5.4.3 Exception handling in the FFI 

When the CPython intepreter is invoked by our implementation using the FFI, the 

execution of the program alternates between the Python and the OCaml runtimes. 

Both of these languages indicate errors by raising exceptions. A raised exception 

must be gracefully translated across language interfaces in order for it to be caught 

by a suitable handler in the call stack. 

A CPython function called via the Python/C API indicates an error by returning 

an error value (a NULL pointer or a - l ) and by setting the CPython error indicator. 

It is the responsibility of the calling application (the OCaml-C interface in our case) 

to handle this exception and clear the error indicator in CPython. This is done 

by a translation function, translatePyException, which retrieves this particular 

exception using PyERR_Get and raises the equivalent exception in OCaml. 

r = PyObjec t .Ca l l ( . . . ) ; 
if (r • = NULL) then { 

/ / Error case 
e = translatePyException(PyERR_Get()); 
caml_raise(e); 

} 

An OCaml exception called from CPython during a callback can be caught and 
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re-raised in Python by setting Python's error indicator. In order to maintain com

patibility with C Python we must return an appropriate error value (NULL or -1). 

PyObject *monty_repr{ 
v = caml_cal lback_exn(. . . ) ; 
if (Is_exception(v)) then { 

PySet_Err(translateOCException(v)); 
re tu rn NULL; 

} 
} 

In the above example, the function caml_callback_exn allows an exception raised 

during a C callback to be trapped in C and examined. The FFI may then set the 

equivalent exception in the CPython runtime. 

5.5 Limitations of the FFI 

In this section, we describe a limitation of our FFI in its current form, and explain 

why we believe that minor modifications to the CPython implementation would be 

sufficient to address this concern. We use a multilingual factorial (MLF) example to 

illustrate this limitation of our FFI. The MLF is a 'factorial' function in which several 

components recursively call each other. The components of the MLF are implemented 

in different languages. A correct FFI shows no observable difference in the result of 

the MLF as compared to a single-language implementation. 

Our MLF to test the OCaml-Python FFI has three component functions, f actC, 

factO and fact . The function f actC is installed in the Python library using Python's 
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•distaste facility, whereas the factO and fact are compiled by Monty. Thus facte is 

accessible to the other two functions only via the FFI. The Python code for the MLF 

is shown in Figure 5.5. 

def facte (g) : #In Python std l ib 
def h(n) : #Installed using 

if n==0 : #dis tu t i l s fac i l i ty 
return [] 

else : 
return ["C"] + g(n-l) 

return h 

def factO (g) : #Compiled using Monty 
def h(n) : 

i f n = = 0 ' : ' • • • ' 

return [] 
e l s e : • • ' . - • 

return ["0"] + g (n-1) 
return h 

def fact (n) : #Compiled using monty 
return (factO (factC (fact))) (n) 

print fact (5) #['0', »C, '0', 'C, '0'] 

The MLF function fact is first called with an integer argument n. Each call to 

fact results in a set of alternate calls to factC and factO. Each call creates an inner 

function h which decreases the value of n. The base case when n is 0 returns an empty 

list. In the return phase, the list is prepended using the + (concatenation) operation 

in Python with a string "C" or "0" depending on whether the return occurs from 

factC or factO. 

The MLF serves as an excellent stress test for the FFI in several ways. First, 
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the integer n and the strings "C" and "0" are immutable Python values created and 

passed between Python and OCaml. Second, values of the mutable Python type 

l i s t are created in both languages, built up by concatenation and passed between 

languages. Third, both factC and factO create function values which are passed 

between and called from both languages, testing function calls between Python and 

OCaml in both directions. Finally, the list concatenation operations in the MLF 

are performed between two different representations of Python lists, the CPython 

representation and the OCaml representation. 

The MLF above does not execute correctly in our implementation. This is be

cause the list concatenation (addition) operation in CPython, which is invoked in 

["C"] + g (n - l ) , raises a TypeError Python exception unless both operands belong 

to the CPython l i s t type or its subtype. The check for list subtype in CPython is 

carried out in a representation-specific manner by comparing pointers with objects in 

the type hierarchy. Since the list operand (g(n-l)) in the addition operation above 

is in OCaml's representation, it is not recognized by CPython as a valid Python list. 

We are investigating two possible solutions to this problem. 

1. Extend the definition of our OCaml wrapper type such that it is recognized as 

a subtype by all CPython built-in types. 

2. Modify the CPython interpreter itself such that subtyping is tested by calling 

a method rather than by performing pointer comparisons. 
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Chapter 6 

Translating Python into OCaml 

In this chapter, we present our translation from Python to OCaml. We first dis

cuss steps we have taken to ensure correctness, and then describe how some salient 

syntactic constructs in Python are translated to corresponding OCaml syntax. In 

the course of this discussion, we point out several engineering problems we encoun

tered such as parsing and high compilation times, along with our solutions to those 

problems. 

6.1 Building a correct translation 

When building a compiler, the correctness of the implementation is of great impor

tance. Even though the goal of compilation is usually higher performance, focusing 

on premature optimization may be unsound and lead the developer down false trails. 

It is easy to build a compiler that is high-performing but incorrect. In the case of 

Python, we have found that the source code of the reference implementation is the 

most authoritative documentation of the language. The Python web site provides 

extensive documentation such as the Python tutorial [14] and the Python reference 
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manual [13]. However, these documents caution that they are incomplete and out-of-

sync with the implementation. Thus, referring to the documentation is not sufficient 

for understanding the internals of Python. Our goals do not include debugging the 

Python documentation, so we prefer to use it only as a starting point for understand

ing the language. 

6.1.1 Overview of CPython directory structure 

The CPython source code is organized across a number of directories in the Python 

distribution. We summarize some of the important directories along with the func

tionality that they implement. 

• Python/ (69 files, 38,000 lines): CPython core interpreter and runtime 

— ceval.c (4,500 lines): Bytecode interpreter 

— bltinmodule.c (2,600 lines): Abstract interface to Python built-in functions 

— sysmodule.c (1,450 lines): Parameters for core interpreter such as recursion 

depth 

• Objects/ (39 files, 57,000 lines): Implementations of Python built-in types 

— abstract.c (2,300 lines): High-level functions to access object methods 

— typeobject.c (6,000 lines), object.c (2,000 lines): Default methods for ob

jects 
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— 28 C files implementing built-in types such as dictobject.c (2,400 lines) 

and intobject.c (1,200 lines) 

• Include/ (80 files, 11,000 lines): Various declarations 

— object.h (868 lines): Fundamental Python objects object and type 

— 28 header files (3,800 lines) containing built-in object declarations 

• Lib/ (Over 100,000 lines in Python): Standard libraries 

— compiler/ (10 files, 6,000 lines): Bytecode compiler in Python 

• Modules/ (Over 150,000 lines in C): C library and helper code for standard 

library 

6.1.2 BNF for the target subset of OCaml 

Using a small and well-defined target language results in a concise specification 

of the source language in the form of a translation. For example, our translator con

sists of 2,200 lines of OCaml in one file {translator.ml), while the CPython bytecode 

generator uses 12,279 lines of C (ast.c, ceval.c, compile.c). 

Figure 6.1 concisely describes the BNF for the subset of OCaml that we use as 

our target language. In our generated code, we use let-binding, recursive functions, 

pattern matching, exceptions, sequential statements, references and assignment. Each 

of these constructs has a simple syntax and concise semantics, especially as compared 

to Python. OCaml's algebraic data types with pattern matching provide a natural 
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Program p 

Module D 

Expressions e 

:= (A) i e / m 

:= e 

Constants c 

Patterns p 

() I c | x | e e 

<Ci> i e / | [ ( f i i>^|[ | (c i> i e / | ] 
if e then 5 e l se S1 

ref e \ \e \ x := e 
fun (zi)^7 -> e 
l e t (XJ = ej) t€ / in e 
l e t r e c (^ = ei)ieI in e 
match e with (pi—>ei)ieI 

t r y e with {p^—>ei)teI\ r a i s e e 

::= {true, fa lse , 0,0.0,"",. . .} 

::= Tag x 

Figure 6.1: BNF for generated OCaml code. 

representation of abstract syntax trees (ASTs) for both the source and the target 

languages. 

In the BNF shown in Figure 6.1, e represents a valid OCaml expression. This 

expression can be the unit type, a constant c, a variable x or an application e e. 

Expressions can be data structures such as lists, tuples or arrays. More complex 

expressions can be obtained using if conditionals, the match construct for pattern 

matching and the try construct for exceptions. The let construct binds a name to a 

value while letrec defines recursive functions. 
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6.1.3 Parsing using the CPython parser 

Like many scripting languages, Python has a complex and subtle grammar in

volving features such as indentation-sensitive rules. This makes creating a parser for 

Python a non-trivial task as well as an additional source of potential errors in the 

implementation. To avoid this problem, we chose to reuse a parser provided by the 

CPython implementation. This pragmatic choice has advantages and disadvantages. 

The advantages include that we avoid having to deal with the myriad of special rules 

that define correct parsing of Python programs, and that the parse actually produces 

a reasonable abstract syntax tree (AST). The key disadvantage is that we are tied to 

a specific representation of the AST which may not have all the desirable information. 

The CPython standard library provides a parser that is available for external 

programs such as ours. This parser generates an AST representation that is simpler 

than the one used internally by CPython; for example, it does not preserve line 

number information. The absence of this information makes providing tracebacks for 

errors and exceptions more difficult in our translation. 

Python 
source 

CPython p a r s e r ^ 
v i a FFI * 

String 
repr 
of AST 

OCami p a r s e r • 
u s i n g ocamlyaccT 

OCami 
AST repr 

t r ans l a to r fc 

in OCami "" 
OCami 
source 

Figure 6.2: Using the CPython parser via the FFI for parsing input Python source. 

As shown in Figure 6.2, we have chosen to use CPython's parser library from the 

compiler module to generate a string based AST representation of a Python source 

program. This library is invoked directly from our translator using our OCaml-Python 
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FFI. The string representation is then read into our translator by a parser created 

using the ocamllex and ocamlyacc tools. Finally, the translator generates output 

OCaml source which is further compiled to native code by the OCaml compiler. 

Figure 6.3 describes the Overall design of our implemention with code sizes for various 

components. 

rabbitpy 

CPython 
70K 

'ythoh 
Standard 

.LibrarydOOK 

answer 

Figure 6.3: Architecture of our implementation with approximate code sizes (in lines). 

6.2 The translation 

This section describes the syntactic translation of some important Python con

structs into generated OCaml code. In all of the examples presented in this chapter, 

the notation [e] represents the OCaml translation of a Python construct e. 

• Constants: The basic translation semantics for a constant is to create an 
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object representing the constant. Just before code generation, we perform a 

pass searching for constants. Since constants are immutable objects in Python, 

we rhemoize the constant object by assigning it to a uniquely named variable 

at the beginning of the file. 

Python 
"hello" 

OCaml 
le t _string_23 = pystring_new "hello" in 

_string_23 

For example, the string constant object "hel lo" is assigned to a unique name 

_string_23 at the beginning of the OCaml generated file. The name is gener

ated by incrementing a counter and used in place of "hel lo" throughout the 

file. 

• Method calls: A method call in Python is translated to a sequence of two 

OCaml function calls. We first invoke a function to retrieve a method from an 

object and then invoke another function to execute the call. For example, the 

Python method call x.m(a) is translated to the following OCaml code snippet: 

le t _m_ = pyobject_getattr _x_ "m" in 
pyobject_call _m _a_ 

The function pyobject_getat t r retrieves the method m from object x, while 

pyobject_call implements the actual Python function call. 
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• Binary operators: Binary operators such as + in Python are syntactic sugar 

for specific method calls, and as such, are translated into function calls in our 

OCaml runtime. We use let-binding in order to preserve the argument evalu

ation order. 

P y t h o n 
x + y 

OCaml 
l e t bindl = [x] in 
l e t bind2 = [y] in 

pynumber_add bindl bind2 

In this example, the creation of the local temporary variables bindl and bind2 

ensures that the arguments [x] and [y] are evaluated in an order consistent 

with Python semantics. 

• Dictionaries: Dictionaries in Python are mappings representing finite indexed 

sets of objects: diet : obj —> obj . In our implementation, we have modified 

the OCaml Hashtbl standard library to use the Python notions of equality 

and hashing. The OCaml hash table implementation uses an array of buckets, 

each containing a list of elements which hash to the same index. The array is 

periodically resized as the buckets grow larger. 

type d i e t = 

mutable size: int; 

mutable data: bucketlist array 

} 

and bucketlist = 

I Empty | Cons of obj * obj * bucketlist 
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Our hash function uses the built-in OCaml hash function internally for ground 

types such as integers, floats and strings. As a particular optimization for 

string objects, we compute the hash value exactly once and store it as part of 

the object. 

An important Python semantic requirement is that two objects whose equality 

methods return True must have the same hash value. Python has a complex 

notion of equality which relies not on object identity, but on overloaded methods 

such as .eq__ and __cmp__. A Python object defines its own hash function 

using the hash method. As a result, objects cannot be hashed by their 

identity, since equality is determined by specific methods rather than by identity. 

This makes hashing in Python much more expensive than one might expect. 

• Functions: Function definitions in Python are translated into OCaml function 

definitions. Each such OCaml function accepts exactly two arguments: a list of 

positionals and a list of keywords. 

P y t h o n 
def f (x ,y = 8 ) : 

r e tu rn x + y 

OCaml 
l e t _closure_f p i kw = 

[_x_, _y_] = process_arg <formals> <defaults> 
p i kw f a l s e f a l s e ; 

pynumber_add _x_ _y_ 

For example, the Python function f is translated into the OCaml function 

_closure_f. Creating a named closure in OCaml allows the developer to iden

tify performance bottlenecks during profiling. In the body of _closure_f, we 

first insert an argument processing step to match the supplied arguments during 
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a function call to the declared formal parameters x and y of the function. This 

results in the corresponding OCaml variables _x_ and _y_ being extracted into 

the namespace. Next, the Python body is translated and inserted into the body 

of _closure_f. 

• Exceptions: Python defines 30 built-in exceptions for specific runtime errors. 

Examples include Attr ibuteError, raised when an attribute is not found and 

IndexError which occurs when an index exceeds sequence bounds. In our 

OCaml implementation, we define a single OCaml exception called 

PythonException, which takes a tuple of Python objects as its argument. This 

enables us to use OCaml's exception raising and handling facilities. 

exception PythonException of (obj * obj * obj) 

Every Python exception has three components: the exception object itself, a 

message argument object and a traceback object. We do not yet support the 

traceback facility for exceptions. For every exception raised in the program, 

we create a tuple consisting of these three objects (the last two may be None). 

After the exception is caught, we examine the tuple to determine the exact 

exception, as the following example shows: 
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Python 

try: 
raise KeyError 

except KeyError: 
print "missing" 

OCaml 

try 
raise (PythonException (_KeyError,nullobj.nullobj)) 

with (PythonException (el,_,_) -> 
if el. = _KeyError_ then 
pyobject_print _strihg_missing 

else 0 

In the above Python example, we raise an arbitrary exception KeyError in a 

Python try-block and catch it immediately. The OCaml code on the right shows 

the translation, with the PythonException type being created by the r a i s e 

statement and pattern matching performed in the with-handler to extract the 

exception. 

• Control flow: The i f - e l s i f - e l s e statement in Python translates to the 

i f - t hen -e l se construct in OCaml with some restructuring. Loops in Python 

also translate directly to loops in OCaml, as shown in the following example: 

Python 
while e: 

si 

OCaml 
while [e] do 

[s]; 
done 

In this example, a simple while loop in Python is translated directly to one in 

OCaml. When non-local control flow constructs such as break and continue 

are used in Python, we find it convenient to implement to use OCaml exceptions 

to implement them as follows: 
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Python 

while e: 
si 
break 
s2 
continue 
s3 

OCaml 

try 
while [e] do 

try 
[si]; 

raise BreakExn; 

[s2]; 

raise ContinueExn; 

[s3]; 

with ContinueExn -> 0 • 

done 

with BreakExn -> () 

As this example shows, we enclose every loop that has break and continue 

statements with exception handlers. The break arid continue statements are 

translated into r a i s e statements for throwing exceptions. Thus, using excep

tions provides an elegant translation for while loops with break and continue 

statements. Compared to a translation using continuations, for example, we 

think that this method is lighterweight in terms of performance, especially in 

cases when the break and continue paths are taken relatively infrequently. 

• Generators: Generator functions preserve state while relinquishing control. 

Continuations allow a function to preserve state and resume execution at any 

point. However, implementing continuations requires a local continuation pass

ing style (CPS) transformation for each generator function. 

The first step of our local CPS transformation is to convert each loop in a gener

ator body to a tail-recursive function. For example, a while-loop can be easily 

transformed into its tail-recursive form as shown below. The OCaml native 

code compiler performs tail-call optimization. Each tail-recursive function is 
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internally transformed by OCaml into a loop, thus using constant stack space. 

P y t h o n 
while e: 

<body> 

OCaml 
l e t fwhile () = 

if [e] then 
[<body>] ; 
fwhile () 

e l s e () 
in fwhile() 

Once the tail-recursive transformation is performed, the rest of the generator 

body is converted to CPS. The continuations are created based on the location 

of the y ie ld statement. 

P y t h o n 
def pow2(N): 

i = 0 
while i < N: 

y i e ld 2"i 
i += 1 

p r i n t "done" 

OCaml 
l e t _closure_pow2 <args> = 

[ i = 0 ] ; 
l e t fwhile () = 

if [ i < N] then 
l e t cfuncl ()= 

[ i += 1 ] ; 
fwhile() 

in 
se t_y ie ld ( [ 2 " i ] , cfuncl) 

e l s e cfunc2 () 
in fwhile () 

and cfunc2 () = 
[pr in t "done"] 

in se t_y ie ld (null,_closure_pow2) 

In this example the generator function f executes a while-loop followed by a 

p r i n t statement. The body of the while-loop contains a y ie ld statement. Our 

CPS form uses two continuation functions: cfuncl is the continuation for the 

loop body after the yield statement and cf unc2 is the continuation after the 

loop is completed. 

76 



Implementing a local CPS transformation for generators presents several chal

lenges. 

1. Imperative style blocks: A yield statement can occur at any point 

of a generator function. This includes an inner block of statements such 

as the body of an if-statement or a loop. Each such block is recursively 

converted to CPS form. The correct continuation must be inserted at the 

end of each translated block. In our example, cf unc2 must be called at 

the end of the while-loop. 

2. Exceptions: The CPS transformation is particularly challenging in the 

presence of try-blocks and exception handlers because functions in OCaml 

are statically scoped while exceptions are dynamically scoped. We resolve 

this mismatch by defining the body of the exception handler as a func

tion. Each continuation is enclosed in a single try-block which catches an 

exception and calls the appropriate handler function via pattern matching. 

• Modules: In CPython, all modules are loaded dynamically. In our implemen

tation, locally defined Python modules are loaded during the translation phase 

and statically compiled into the main body of the program. This inlining of the 

module body must be performed carefully to avoid namespace conflicts. As a 

result of this inlining, Python programs using multiple local modules generate 

a single large OCaml file. 
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6.3 Type-checking the generated code 

A major advantage of using an implicitly typed language such as OCaml as the 

target of our translation is that we do not have to produce explicit type annotations. 

Zong Shao's thesis [40] demonstrates the difficulty of working with typed intermedi

ate languages (TILs) in having to construct and manipulate type expressions in the 

compiler. In his thesis, Shao uses hash-consing [31] and de Bruijn indices [38] to 

reduce explosion in the size of syntax trees. By using Hindley-Milner type inference, 

the most widely successful static type system, we are able to remove this burden of 

explicitly manipulating types from the compiler developer and simplify the transla

tion process. To our knowledge, this is the first work that uses a Hindley-Milner 

typed language as the intermediate language of a Compiler. 

However, implicitly typed Hindley-Milner languages do not provide the program

mer with as much lower level of control over the representation as compared to typed 

intermediate languages. This is most notably due to the absence of local existen

tial quantification, local universal quantification and indexed types in Hindley-Milner 

systems. 

Despite the convenience of implicit types, the compiler developer still must ensure 

that the generated OCaml code from Python passes the OCaml type checker. Because 

Python expressions always evaluate to a value represented by a Python object, it is 

sufficient to ensure that the translation of each Python expression results in a value 

of type obj, our version of the Python object. 
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The issue is more complex in the case of sequential statements. In OCaml, a 

block of sequential statements is given the type of the last statement in the block. In 

Python, some blocks of statements such as function bodies return the None object by 

default, whereas the return value is unspecified for other blocks. In our translation, 

we ensure that all sequential blocks return a value of type ob j by adding a reference to 

the None object (nullobj in our runtime). Our translation of sequential statements 

is as follows: 

[(si; s2)] -> {[si]; [s2]; nullobj) 

6.4 Compilation time for generated OCaml programs 

While translating some large single-file Python programs (such as an aggregate 

benchmark to measure the impact of various optimizations on our compiler), we 

encountered a quirk of the OCaml native code implementation. The compile time for 

the OCaml native code compiler increases non-linearly with file size. For very large 

OCaml files (over 20,000 lines) the compile time can extend to several minutes. In our 

case, the compile time was much greater than the execution time for large aggregates. 

In order to surmount this problem, we split the large aggregate (12,000 lines of 

Python; 73,000 lines of OCaml) into several smaller aggregates at the source Python 

level. Each of these aggregates takes only a few seconds to compile. After performing 

the experiment on each of them, we reported the summation of the compile times as 

well as the execution times. 
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For a compiler developer who uses OCaml as an intermediate language, however, 

this high compile time is an important factor in the performance of any language 

implementation. This behavior of the OCaml native code compiler limits the sizes 

of generated individual target files. Keeping the compile time for the generated code 

Within an acceptable limit may require splitting up the input source files into smaller 

sizes. We expect that this restriction of the OCaml native code compiler will be 

addressed in future releases of OCaml. 

6.5 Testing methodology 

In the course of our work, we used a testing mechanism composed of two com

ponents: (1) Acceptance testing to check each new feature using small, specific tests 

and (2) Regression testing to track progress in compiler development and to ensure 

that newly added features do not break existing ones. The testing process allowed 

several undergraduates with little or no previous experience with Python or OCaml 

to participate in the project. Their work led to the rapid development of a test suite 

consisting of over 400 files. 

Our collection of test suites, described in Table 6.1, was collected from various 

sources. The test suites reference and py-doc-tests were created by collecting Python 

programs from various web sites and online tutorials. The remaining suites were built 

by the undergraduate members of our research team. The students built test suites 

by studying the online standard Python tutorial [14] and by implementing Python 
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Test suite 

reference 

py_doc_tests 
hisham 

yilong 

pete 

raj 
specifics 

Total 

Number 
of tests 
81 

12 
158 

74 

50 

3 
49 

425 

Number 
passing 
69 

12 
150 

68 

45 

3 
36 

383 

Reasons for failure 

no support for exec, eval state
ments, missing built-in methods, 
float printing 

classic class method overloading 
bug, dictionary iteration order, 
missing copy method for lists 
bug with negative args for xrange 
function, dictionary iteration or
der, float printing 
missing built-in methods, bug 
with parsing some escaped strings 

dictionary iteration order, no sup
port for with statement 

Table 6.1: Breakdown of test suite results, with some reasons for failure of test cases. 

versions of Scheme example programs from the COMP 210 course at Rice University 

[3]. : 

6.5.1 Debugging the implementation 

Our testing methodology led us to an efficient debugging strategy for our imple

mentation. To help us expedite and decentralize the debugging of the compiler, when 

a test failed, students were asked to simplify it to the smallest possible code fragment 

that can produce the erroneous behavior. Students were able to do this without any 

inside knowledge about our compiler or how it is built. This simplification process 
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also did not require expert knowledge of Python or OCaml. Once the code fragments 

were identified, they were placed in their own suite (specifics), where the developers 

could rapidly fix the issues involved. This method made it significantly easier for us 

to localize the problems in the translation. 

6.6 Unimplemented features and known bugs 

Table 6.1 shows the results of our implementation on our test suite. Some of the 

test case failures are due to implementation-specific differences between CPython and 

Monty, while others are due to bugs or missing features in Monty. In this section, we 

summarize the reasons preventing some of these test cases from passing. 

Test suite 

reference 
py_doc_tests 
hisham 
yilong 
pete 
raj 
specifics 

Total 

Number 
of tests 
81 
12 
158 
74 
50 
3 
49 

425 

Failing 

12 
0 
8 
6 
5 
0 
7 

42 

Implementation 
differences 
3 

5 
1 
1 

3 

13 

Unknowns 

9 

3 
5 
5 

4 

29 

Table 6.2: Test failures due to implementation-specific issues. 
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6.6.1 Implementation differences between Monty and CPython 

Soirie of the failing test cases highlighted differences in results produced by CPython 

arid Monty due to implementation-specific issues. As Table 6.2 shows, approximately 

one-third of the failing test cases are affected by these differences. 

• Dictionary iteration order: In CPython and Monty, dictionaries are imple

mented using hash tables. However, Python semantics does not specify an iter

ation order over dictionaries. Since the hash table implementations in CPython 

and Monty are different, iterating over dictionaries frequently results in elements 

being accessed in a different order. 

• Sorting algorithms: CPython and Monty use different implementations of 

built-in array sorting algorithms. As a result, programs relying on the internals 

of the sorting algorithm may give different results. For example, counting the 

number of comparisons during a sort may result in different values in CPython 

and Monty. 

• CPython float printing issue: In several cases, CPython adds excess zeros 

while printing floating point numbers inside lists. For example, the float 3.5 in 

a list may be printed as 3.50000000002. This is most likely a bug in CPython 

which will be fixed in future releases. 

• Object identifiers: Objects are identified in CPython by their memory ad

dresses, whereas we assign them integer identifiers in Monty. A program which 
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depends on the value of these identifiers would usually produce different results 

in CPython and Monty. 

6.6.2 Bugs and missing features in Monty 

Here, we summarize several bugs and missing features that we found while testing 

Monty. 

• Missing methods: Some built-in type methods in our Python implementa

tion have not yet been implemented. For example, the copy method for lists 

enables a deep copy of a list object. The reduce method used for persisting 

(pickling) objects is also currently unimplemented. 

• Unsupported features: Python features such as dynamic execution (exec, 

eval statements), and context managers (with statement) are not yet sup

ported. 

• Other bugs: The testing process has exposed a variety of small bugs in our 

implementation. For example, the xrange function, which produces a sequence 

of integers within a range, does not process negative arguments correctly. 
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Chapter 7 

Building an optimizing translation 

In order to evaluate the performance of our translation, we compared the execution 

times with CPython on a 370-benchmark suite. Our initial performance evaluation 

showed our compiler to be at least 20 times slower than CPython on all bench

marks. On implementing several translator optimizations, we obtained a speedup 

over CPython for 278 benchmarks. In this chapter, we summarize the most impor

tant optimizations we implemented in our translator and the inferences we can draw 

from their impact on performance. We use examples from our benchmark suite to 

demonstrate the impact of specific optimizations, in addition to using an aggregate 

benchmark to measure the overall impact of the optimizations on the implementation. 

7.1 Profiling tools 

Profiling of executable code allows a developer to identify regions of code where 

a program spends the most time. The developer can then target optimizations spe

cific to those regions of code, thereby improving performance. Profiling tools are ah 

indispensible part of compiler implementation and optimization. 
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The OCaml native code compiler allows profiling of code using the gprof tool on 

Unix platforms. The compiler has a special -p option to generate profiling annota

tions. For example, an OCaml program foo.ml can be profiled using the following 

commands: 

ocamlopt -p <other options> -o foo foo.ml 
./foo 
gprof foo 

The gprof command produces a detailed text profile based on function call count. 

The profile provides the call graph, overall call counts and estimates of the fraction 

of time the program spent in each function. The OCaml profiling facilities have 

been invaluable in this research for identifying and implementing the optimizations 

described in the rest of this chapter. 

7.2 Improving memory allocation and use 

Profiling the results of the translation as described in the previous chapter reveals 

that memory allocation is an important source of runtime cost. This is particularly 

clear in the case of recursive functions. Python semantics requires that each function 

call maintain some extra information which is accessible via its call stack frame. This 

information includes dictionaries representing the global and local environment as 

well as exception information. In our implementation, this information is stored in 

a frame record, and the stack is a list of these records. Table 7.1 demonstrates the 
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cost of allocating this extra space for the recursive functions fibonacci, takeuchi 

and ackermann. 

function 
fibonacci 
takeuchi 
ackermann 

With stack 
1.45 s 
1.33 s 
4.51s 

Without stack 
0.67 s 
0.49 s 
1.19 s 

Table 7.1: Performance of recursive functions with and without stack management. 

Memory allocation in OCaml has a hidden cost: garbage collection. The more 

memory a program allocates, the more work the garbage collector must perform to 

manage and collect the allocated memory. Due to this large overall cost, many of our 

optimizations have focused on reducing memory allocation. 

1. Reducing sizes of records: The obj record representing a Python object 

is the most frequently allocated data structure in our implementation. Other 

important information such as stack frames for function calls is also represented 

by records. Keeping these records as small as possible improves performance 

by reducing memory allocation and the corresponding garbage collection. 

2. Storing small integers: A useful optimization that is implemented by the 

CPythOn interpreter is to create objects representing small integer values (—99 

to +99) and store them in an array, where they can be accessed by index. For 

example, the intops benchmark in our test suite, which contains basic integer 

operations, performs 4% faster with this optimization. 
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3. Interning string constants: In addition, in our implementation, all objects 

representing string constants and method names are stored in a siring —> object 

hash table. String objects are used frequently in Python programs, either ex

plicitly as string constants or implicitly to represent method names. However, 

strings created during a program (using concatenation, for example) are not 

interned since they are usually not referred to more than once. 

7.2.1 Reducing array and record modification 

OCaml provides two important mutable data structures: (1) records with mutable 

fields and (2) arrays. Every record and array must be initialized during instantiation. 

A record can be created by initializing all of its fields individually or by copying 

another record and modifying specific (mutable) fields. Arrays are usually created by 

the Array .make library function, which creates an array of length len and initializes 

all locations to a value default . 

In OCaml, we observed that initializing a record or array appeared to be faster 

than modifying the fields or indices of an existing structure. Profiling suggested that 

modification of these data structures is paired with many garbage collector calls. Ex

amining the OCaml source code revealed that modifying an array location or a record 

field invokes garbage collector functions to ensure that the memory for the previously 

stored value at that location is not lost. On the other hand, initialization is little 

more than an assignment. Thus modifying arrays or records after initialization can 

have unexpected costs. With this insight in mind, we re-implemented the Array. sub 
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function from the OCaml standard library in C. Using this improved function, we 

achieved a speedup of 3 times on the tupleops benchmark, which tests tuple slicing 

operations where array copying is used intensively. 

7.3 Common-case optimizations 

In a dynamic language such as Python, it is difficult to possess advance knowledge 

of specific methods that will be invoked or data that will be accessed during program 

execution. However, optimizing for common cases by specializing methods or caching 

commonly accessed data is highly beneficial for performance. We point out two 

examples of such common-case optimizations. 

7.3.1 Specializing methods for built-in types 

Python specifies a large number of operations for user-defined classes. For exam

ple, any class implementing an add method can be an operand for the binary + 

operator. In practice, however, arithmetic and comparison operators are frequently 

invoked with operands belonging to one of the built-in numeric types int , f loa t or 

long. Specializing these operations for numeric types is an effective optimization. 

In our implementation, the general version of arithmetic and comparison opera

tions looks for the appropriate method in a dictionary. Python defines these oper

ations using ad hoc overloading, which may result in several dictionary lookups per 

operation. However, in our object representation, every object carries a boolean flag, 
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Int binary ops 
Float binary ops 
Numeric comparisons 

General time 
9.75 s 
6.53 s 
14.02 s 

Optimized time 
1.48 s 
0.87 s 
1.07 s 

Table 7.2: Numeric binary and comparison operations are highly sped up by common-case 
Optimizations. 

i s b u i l t i n , which identifies it as a built-in type. Checking for this flag enables us to 

handle built-in objects differently, using record fields instead of dictionary lookups to 

find methods. 

Table 7.2 shows the impact of checking for the common cases (numeric types) 

in binary arithmetic and comparison operations. We see a speedup of 7 times for 

binary operations and 13 times for comparisons. Specialization of binary arithmetic 

and comparison operations has the highest overall impact on the performance of our 

aggregate benchmark. 

7.3.2 Storing string hash values 

Dictionaries are a frequently used data structure in Python due to method lookups. 

Both CPython and our implementation use hash tables for dictionaries. Since method 

objects are stored in dictionaries with their names as keys, string hashing is a common 

internal operation. 

While profiling, we observe that the OCaml hash function for strings is quite 

expensive, causing the performance of method lookups to degrade. Our solution to 

this problem is to store the hash value of each string in the corresponding string 
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object after the first time it is computed. 

pystone 
instances 
listops 
dictops 
lookups 

Without optimization 
2.93 s 
2.31 s 
2.82 s s 
2.46 s 
2.03 s 

With optimization 
2.75 s 
2.20 s 
2.64 s 
2.27 s 
1.69 s 

Table 7.3: Storing string hash values results in faster execution times (right). 

As Table 7.3 shows, this optimization yields immediate benefits for several bench

marks which use method lookups extensively. The impact of this optimization on the 

performance of our aggregate benchmark also demonstrates its effectiveness. 

7.4 Implementing modules natively in OCaml 

Calling CPython functions via the FFI incurs several costs: wrapping and un

wrapping, memory allocation and collection of wrappers and function call overhead. 

Implementing frequently used libraries and functions natively in OCaml makes the 

overall compiler faster. In order to demonstrate this hypothesis, we have implemented 

two complete Python library modules natively in OCaml: math and i t e r t d o l s . In 

addition, we have implemented several built-in Python functions such as zip, map 

and reduce in OCaml. 

91 



7.4.1 M a t h module 

The math library module contains mathematical and trigonometric functions, all 

of which accept and return floating point values. Since OCaml provides its own math

ematical functions with almost identical semantics, we could easily implement this 

library module natively. The performance improvements obtained are quite drastic: 

calls to math module functions are speeded up approximately 25 times, as demon

strated by our mathmodule benchmark. The benchmark par t ia l -sums from the 

Computer Language Shootout is speeded up over 2 times. 

mathmodule 
partial-sums 

OCaml native 
2.32 s 
1.33 s 

Via FFI 
25.56 s 
2.96 s 

Table 7.4: Functions from the math module perform much faster (left) when implemented 
natively in OCaml instead of being called via the FFI. 

Table 7.4 demonstrates that the performance of library modules using immutable 

types such as floats can benefit heavily from a native OCaml implementation of those 

modules in contrast to importing them and calling their functions via the FFI. This 

optimization has a small impact on our aggregate benchmark (approximately 4%) 

because few of the individual components of the aggregate use the math module. 

7.4.2 Itertools module 

The i t e r t o o l s library module provides several iterator functions for sequences. 

For example, i z ip takes a set of sequences and produces a sequence of tuples and 
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chain iterates over a set of sequences in order. Iterators over sequence objects are 

very expensive when invoked using CPython via the FFI. This is because Python 

sequences such as lists are mutable objects; using the FFI for iteration involves wrap

ping and unwrapping of pointers, plus callbacks between languages. We implemented 

the functions of the i t e r t o o l s module in OCaml. 

cycle 
imap 
nsieve 

OCaml native 
3.44 s 
4.16 s 
2.08 s 

Via FFI 
5.29 s 
11.20 s 
5.96 s 

Table 7.5: Functions from the itertools module perform faster when implemented natively 
in OCaml (left) instead of being called via the FFI. 

Table 7.5 shows the performance of several benchmarks using the i t e r t o o l s mod

ule, using the FFI versus a native OCaml implementation. The native OCaml im

plementation performs better in all cases, by a factor of up to 3. The performance 

improvement is not as drastic as in the case of immutable types such as f loats be

cause (a) there is less copying and (b) the semantics of iterators in Python are quite 

involved. On applying this optimization to our aggregate benchmark, we find that it 

improves overall performance by about 8%. 

7.5 Replacing exceptions with option types 

Exceptions may be used as optimizations in some cases, most notably, to break 

out of a recursive function early [27]. In our implementation, we use exceptions as a 
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1) Exception 

2) Option type 

3) Error value 

Code 
exception Exn;; 
l e t f 2 b = if b then 1 e l se r a i s e Exn 
l e t f l b = f2 b 
l e t f'O b = t r y f 1 b with Exn '-> 0 

l e t f2 b = if b then Some 1 e l se None 
l e t f l b = f2 b 
l e t fO b = match f l b with 

1 Some i -> i 
I None -> 0 

l e t f2 b = if b then 1 e l se (-1) 
l e t f l b = f2 b 
l e t fO b = 

l e t v = f l b in 
i f v = (-1) then 0 e l s e v 

fO (b = true) 
1.18 ms 

1.20 ms 

1.17 ms 

fO (b = false) 
1.59 ms 

1.01 ms 

1.04 ms 

Table 7.6: Strategies to replace use of exceptions in control flow. 

device to exit early from while- and f or-loops as well. 

However, exceptions in OCaml are dynamically scoped. Every raised exception 

results in a search down the call stack for a suitable handler. This search process 

may be expensive when the handler for the raised exception is located far up the 

call chain. This suggests that we should use other control flow mechanisms for long 

performance-critical chains of function calls. 

We have used two control flow mechanisms in our runtime to replace exceptions. 

The first mechanism uses algebraic data types and replaces the exception handler with 

a match statement. The second mechanism is inspired by error handling in CPython; 

we denote a value as an error value and return it. The handler is then replaced by 

an if-statement which checks for the error value. 
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As an example, Table 7.6 shows these 3 control flow mechanisms with a simple 

set of functions. In each case, f 0, f 1 and f 2 form a function call chain. The function 

f 0 returns 1 or 0 based on the truth value of its boolean argument b. In case 1, f 2 

returns an integer or raises an exception, caught in f 0. In case 2, f 2 returns an option 

type which is matched in f 0. In case 3, f 2 returns either the value or an error value 

-1 which is tested in f 0. We time f 0 for all three mechanisms with both t rue and 

fa l se values of b. 

We observe that in case 1, raising the exception Exn when b=f a l se is quite ex

pensive. This result demonstrates the cost of searching for the exception handler. 

When option types are used (case 2), the b=f a l se case is much cheaper than excep

tions because we return a miliary constructor None instead of raising and handling an 

exception. However, the b=true case is slightly more expensive due to the memory 

allocation overhead of the Some constructor. When an error value is used (case 3), 

this allocation overhead for option types disappears. Nevertheless, the b=f a l se case 

is slightly more expensive than option types. 

On the whole, the table shows that it is a good idea to replace exceptions with 

other mechanisms such as option types for implementing control flow. However, 

exceptions are quite efficient when they are not raised. This suggests that exceptions 

may used when handling errors or rare situations without loss of performance. 
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7.6 Using a method cache 

Method lookups are a frequent operation in object oriented languages. Due to 

inheritance, a method lookup can be particularly expensive. Dynamic languages 

such as Python incur an additional lookup cost, since all methods have to be bound 

at runtime. In Python, a method is looked up in a sequence of classes determined 

by the Method Resolution Order (MRO). Finding a single method may thus require 

several dictionary lookups, incurring a cost. 

"A simple technique called method caching can improve the performance of method 

lookups in object oriented languages. A method cache is a hash table of popular 

method addresses indexed by the pair consisting of the receiver class and the message 

selector. For example, in a Python method lookup x.m(), the receiver is the type 

of x, while the selector is the name m of the method. One of the earliest uses of the 

method cache was in Smalltalk 80 [30], where it provided a 20 to 30% benefit. An 

important dynamic feature of Python is that a method may be modified at runtime 

by modifying a class dictionary. This feature necessitates that the cache be refreshed 

to reflect such modifications and avoid inconsistency. 

In our implementation, we use an OCaml hash table for our method cache. This 

cache is a mapping: ( i n t . i n t ) -> obj. The two integers are unique identifiers for 

the receiver class and the method name, and the returned object is the method. If 

the method is not found in the cache, the actual lookup is performed according to the 

MRO and the method is added to the cache. Taking advantage of Python-specific 
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features, we have implemented two method caches: one for built-in types and one 

user-defined classes. 

7.6.1 Built-in types 

Built-in types in Python cannot be modified at runtime, thereby eliminating the 

need for cache refreshing. Thus the method cache for built-in types only needs to 

provide lookup and insert functions. Looking up and inserting in a method cache 

each incur a cost i.e. that of a hash table operation. The method cache can only be 

useful if the cost of this hash lookup is less than that of the actual dictionary lookups 

to find the method. We have found that a method cache for built-in types does not 

provide any significant benefit for our compiler. In fact, it may even hurt performance 

slightly in some cases due to two factors: 

• Built-in types in Python are ground types such as integers and floats, each of 

which fully contains most of the methods relevant to it. Thus, a method lookup 

for a built-in type usually requires only one dictionary lookup. The cost of the 

method cache lookup is comparable to the regular method lookup. 

• In our implementation, dictionary lookups are already highly optimized. In 

particular, for any string object which may be used as a key (such as a method 

name), the hash value is stored inside the object after the first time it is com

puted. As a result, we rarely invoke a hash computation. Thus, a single actual 

dictionary lookup is faster than a method cache lookup in this case. 
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simplelists 
listextend 
queuetest 

With method cache 
2.28 s 
1.89 s 
3.52 s 

Without method cache 
2.27 s 
1.94 s 
3.4 s 

Table 7.7: For built-in methods, a method cache makes little or no difference in perfor
mance. 

Table 7.7 shows the impact of a method cache on built-in methods. The three 

example benchmarks in the table all use built-in methods intensively. However, using 

a method cache shows practically no discernible impact on performance, owing to the 

cost of the hash computation while looking up the cache. 

7.6.2 User-defined classes 

In the case of user-defined classes, the method cache has a refresh function. In 

our implementation, the refresh algorithm is simple; if there is a runtime assignment 

to a method of a class, the entire method cache is cleared. While this is an expensive 

operation, most Python programs do not frequently assign to methods at runtime, 

hence the cost of refreshing the cache is amortized. We find that in this case, using 

a method cache does offer benefits over regular method lookups via the MRO. 

A simple example demonstrates the potential benefits of the method cache. We 

define a simple class hierarchy of classes CI, C2 and C3 below, containing a method 

ml, m2 and m3 respectively. 

class CI(object): 
def ml(self ,x): 
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return "ml" 

class C2(C1): 

def m2(self,y): 

return "m2" 

class C3(C2): 

def m3(self,y): 

return "m3" 

c3 = C3() 

As we see from Table 7.8, using a method cache improves performance for method 

lookups in user-defined classes. The benefits are more pronounced as the method 

being searched for exists higher in the class hierarchy and requires more dictionary 

lookups without using the cache. 

Method called 
ml 
m2 
m3 

With method cache 
3.28 s 
3.34 s 
3.28 s 

Without method cache 
5.08 s 
4.66 s 
4.01 s 

Table 7.8: A method cache can improve performance by 20-30% for user-defined classes. 

For our aggregate benchmark, using the method cache has a smaller benefit of 3 

to 5%. This is because most of our benchmarks do not use method lookups in deep 

class hierarchies. 
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7.7 Reducing printing costs 

Printing is a significant cause of performance loss in several of our benchmarks. 

The semantics of printing in Python is fairly Complex; any object that is printed has 

to be converted to a string form using the methods s t f or repr for that specific type. 

The last character of the generated string is stored in a global location. This is useful 

for formatting purposes depending when the last character is a whitespace character. 

The string representation is then printed according to the formatting specifications. 

There are several costs associated with printing in Python. Generating a string 

representation for every object involves allocation of memory for strings. These gen

erated strings are often used only for a single print operation and then discarded, 

resulting in garbage collection costs. Another cost is that of lookup for the string 

representation methods ( s t r or repr). Reducing these costs improves the perfor

mance of printing. 

We have implemented several small improvements to printing. String represen

tation methods are assigned to fields in the type record for faster lookup. Some of 

the string conversion functions, such as those for integers, have been implemented in 

C. Most importantly, we have targeted an important inefficiency in printing of lists, 

tuples and other sequence types. 

100 



7.7.1 Global buffer pool 

One particular cost observed in our experiments is that of printing lists and tu

ples. For these objects, we must recursively construct a string representation of each 

element, concatenate these representations and finally print the constructed string. 

However, string allocation is costly and frequent list printing causes performance to 

suffer. 

In order to make list and tuple printing faster, we have implemented a global 

buffer pool. This is a simple optimization consisting of a repository of string buffers, 

represented by a list of OCaml Buffer entities. When a list has to be printed, an 

available buffer is checked out of the pool, used for printing and returned to the pool. 

If no buffers are available, a new buffer is allocated. Thus, allocated string buffers 

are reused effectively instead of being collected. 

Function 
lists 
while 1 
listcomp 

With buffer pool 
4.89 s 
1.88 s 
1.22 s 

Without buffer pool 
6.16 s 
2.69 s 
1.92 s 

Table 7.9: List printing is faster using a global buffer pool for storing string representations 
of lists. 

A number of benchmarks in our suite which were slowed down due to list printing 

operations are speeded up by using the global buffer pool. Table 7.9 shows the impact 

of this optimization on a few of those benchmarks. 
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7.8 Using compile-time information 

In general, compile-time optimizations are harder to perform in dynamic languages 

as compared to statically typed languages. However, the compiler can recognize some 

commonly occuring syntactic patterns and generate better target code. In some cases, 

it is possible to pre-compute information at compile time instead Of adding to runtime 

execution cost. In this section, we discuss some of the compile-time optimizations in 

our implementation. 

7.8.1 Recognizing common syntactic patterns 

Python syntactic constructs are translated into sequences of function calls in the 

generated OCaml code. The translator can recognize frequently occurring syntactic 

patterns. For example, the composition of a particular pair of functions f (g ...) 

can be replaced with a more efficient function fog. Using a function composition 

replacement for a pair of function calls allows us to remove some superfluous boxing-

unboxing operations in the pair. We use this idea to optimize two specific syntactic 

patterns in our translation, which we call the if-compare and the get-and-call patterns 

respectively. 

If-cdmpare 

Comparison operations are frequently used as conditions for if-statements. In 

Python, a comparison operation results in a value represented by an object. This 
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object is examined and mapped to a boolean value in order to be used as a condition 

for control flow. 

Python 

Original 
translation 

Optimized 
translation 

Code 
if x < y: 

pass 
else: 

pass 

if truthval (pyobject_richcompare [x] [y] 1) then 
nullobj 

else 
nullobj 

if pyobject_richcomparebool [x] [y] 1 then 
nullobj 

else 
nullobj 

Exec time 
6.24 s 

2.11s 

1.94 s 

Table 7.10: Recognizing the if-compare pattern during compilation reduces execution 
time. 

Table 7.10 presents a small example of the if-compare pattern. The compari

son operation inside the if x < y: Python pattern is translated into a composition 

of two OCaml function calls, t ru thva l and pyobject_richcompare. The function 

pyobject_richcompare takes three arguments: the two operands of the comparison 

and the opcode. In this case, the opcode is 1, signifying the < operation. This com

parison function returns an object, which is then examined by t ru thva l and mapped 

to a boolean. 

In the optimized translation, we compose the two functions described above into 

one function pyobject_richcomparebool, which takes the three arguments for the 

comparison and directly returns a boolean value. This composition is more efficient 

103 



because we can recognize common cases such as numeric values and use OCaml 

native comparisons to return boolean values. For cases that cannot be specially 

recognized, pyobject_richcomparebool defaults to the sequential application of its 

two components, pyobject_richcompare and truthval. 

Get-and-call 

Another common syntactic pattern in Python is to look up a method in an ob

ject and then call it. For example, to append an integer 1 to a list a, we may use 

a.append(l). This call is internally executed as l i s t .append(a, 1) where a is an 

implicit self parameter. 

More generally, the syntactic pattern can be described as x.m(args), where x is an 

object, m is a method and args are the method's arguments. Executing this pattern 

involves two consecutive steps: 

1. Get: The method object m is first retrieved from a; by looking up a sequence 

of dictionaries according to Python's method lookup algorithm. If found, the 

method is used to create a bound method object mx with the same code as m, 

but with a self attribute set to x. 

2. Call: The self attribute x of the bound method object mx is extracted and the 

method is called as mx(x, args), with x prepended to the remaining arguments. 

The key point here is that whenever a method m is called immediately after 

lookup, a superfluous intermediate bound method object is created. Composing the 
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listops 
dictops 

Without optimization 
1.56s 
1.74 s 

With optimization 
1.35 s 
1.67 s 

Table 7.11: The get-and-call pattern optimization improves performance by reducing 
boxing-unboxing operations. 

two steps, get and Call, can bypass this extra boxing-unboxing operation. Thus, the 

two-step process 

mx = get(x,m) 

call(mx,x,args) 

is now replaced by a single step 

getandcall(x, m, args) 

For common cases, the creation of the intermediate object mx can be omitted. 

We have implemented this optimization for the most common case, built-in methods. 

Although it does not show a significant impact on our aggregate benchmark, several 

individual benchmarks show immediate performance gains. For example, l i s t o p s 

and dictops, which test built-in methods for lists and dictionaries, are speeded up 

by 10% and 5% respectively. 
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7.8.2 Computing lengths and hash values at compile time 

During translation, some information can be extracted for use at runtime in order 

to reduce runtime cost. For example, when a list such as [1,2] is created, we know 

its length at compile time. Similarly, we know the lengths of string constants and 

dictionaries created using the {} syntax. For function calls, we can compute the 

number of positional and keyword arguments during translation. 

For string constants, the hash value can also be computed at compile time. This 

is sound only because we use the same language, OCaml, for implementing both the 

translator and the runtime, thereby employing the same hash function for strings. 

Python 

Original 
translation 
Optimized 
translation 

Code 
1 = [1,2] 
d = {"h":l, "w",2} 

_1_ := list_new [_int_l,_int_2] 
_d_ := dict_new [(_string_h,_int_l), (_string_w,_int_2)] 

_1_ := list_new_len [_int_l,_int_2] 3 
_d_ := dict_new_len [(_string_h,_int_l), (_string_w,_int_2)] 2 

Exec time 
3.92 s 

2.50 s 

2.43 s 

Table 7.12: Computing lengths of lists and dictionaries at compile time reduces execution 
time. 

Table 7.12 shows the translation of simple Python list and dictionary creation 

statements. The original translation computes the lengths at runtime, while the opti

mized translation computes them at compile time. All three statements are executed 

5 x 106 times in a loop to obtain performance results. We observe a small but notice

able improvement in performance with the optimization. However, this optimization 
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does not have a significant impact on our aggregate benchmark. 

7.9 Byproduct: A contribution to the OCaml code base 

Optimizing our compiler uncovered an area where the performance of OCaml's 

array implementation can be improved. In evaluating the performance of the results 

of the translation, we noticed that certain benchmarks (such as those involving list and 

tuple slicing operations) suffered a slow-down. Further investigation using profiling 

tools showed that the bottleneck was the performance of the OCaml array copying 

function. Close analysis of the code suggested that a more efficient implementation is 

possible. The performance loss was due to the fact that the function is implemented 

in OCaml itself, which dictates that every array must be initialized after creation 

with a default value. 

Indeed, by developing a new implementation of array copying in C (that does not 

initialize the target array with a default value, but directly copies the source array 

into the target) for our application we are able to show that the performance of the 

routine can be improved by 3 times over the OCaml standard library version. After 

discussion on the OCaml mailing list [24], we submitted our version as a C code 

snippet. This code is currently being considered for the next release of OCaml [1]. 
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7.9.1 OCaml array copy function 

The specific OCaml function that we have re-implemented is sub in the Array 

module. This function takes three arguments: an array a, an offset of s and a length 

len. It returns a new array of length len, the elements of which are those of array 

a starting from the offset of s. The code of the Array. sub function from the OCaml 

3.10.2 distribution, is provided below. 

The Array. sub function first checks to see if the offset and the length are within 

the array bounds. If the length of the target array is 0, it simply returns an empty 

array. Otherwise, it follows a two-step process: 

1. Create a new target array of length len and initialize it with the elements of 

the source array a at index of s. 

2. Using a f or-loop, copy len elements to the target array from the source array 

starting at index of s of a. 

We believe that this implementation of the function has two drawbacks in terms 

of performance: 

1. The target array is allocated and then initialized with a default value. Each 

element of the target array is then modified with the new value. The sec

ond modification step makes the first initialization step redundant, causing the 

function to do twice as much work as necessary. However, this two-step copy is 

unavoidable because OCaml does not allow creation of an uninitialized array. 
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2. Modifying an array location in OCaml is far more expensive than initializing it. 

Modification invokes garbage collector functions to ensure that the memory for 

the previously stored value at that location is not lost. The array modification 

operations inside the f or-loop are a source of performance loss. 

The code of the Array.sub function in OCaml 3.10.2, formatted for clarity, is 

shown below. This function occurs in the file s td l ib / a r r ay .ml in the standard 

OCaml distribution. 

let sub a ofs len = 
if ofs < 0 II len < 0 I| ofs > length a - len then 

invalid_arg "Array.sub" 
else 

if len = 0 then 
[||] 

else 
begin 

let r = create len (unsafe_get a ofs) in 
for i = 1 to len - 1 
do 

unsafe_set r i (unsafe_get a (ofs + i ) ) 
done; 
r 

end 

In order to address the drawbacks in the OCaml standard library implementation 

of Array. sub, we re-implemented this function in C using the OCaml-C interface. 

7.9.2 Our C version of array copy 

We used C to reimplement the Array. sub function because the OCaml-C interface 

allows finer control over representation and modification of OCaml values as compared 

109 



to pure OCaml. The C version works in two steps. Each step directly addresses the 

drawbacks in the OCaml version. 

1. Create an uninitialized target array in C by allocating memory. The redundant 

initialization step in the OCaml version is not performed. 

2. Initialize this target array directly with values from the source array. Array 

modification is not used to assign values to the target array. 

The C code listed below results in a performance gain of approximately 3 times 

for the Array.sub operation. We have submitted this code to the OCaml project, 

and it is being considered for inclusion in the next release of OCaml. 

/* Author : Raj Bandyopadhyay, Rice Univers i ty (rajb@rice.edu) 
* Date: July 28, 2008 
* 
* This code has been developed and i s owned by the 
* Resource Aware Programming (RAP) Group, Rice Univers i ty . 
* URL: http:/ /www.resource-aware.org 
* 
* This code is offered as is, to the OCaml project without any 
* restrictions or warranties. 
* . • . 

* For further enquiries about the RAP group, please contact 

* Prof Valid Taha (tahaOrice.edu) 

• * / 

CAMLprim value caml_general_array_sub(value source, value ofs, value len) 
-C 

CAMLparam3 (source,ofs,len); 
CAMLlocal2 (res.elt); 
inlsize_t size, srcsize, wsize, i,offset; 
double d; 

srcsize = Wosize_val(source); 
size = Long_val(len); 
offset = Long_val(ofs); 
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//boundary checks 

if (offset < 0 I I size < 0 I I offset > (srcsize - size)) 
caml_invalid_argument("Array.sub"); 

//for a source array of size 0, return empty array 
if (size'== 0) 
• C •'• 

res = Atom(0); 
} 
else 
{ 

//Retrieve one element of the source array and check its type 
elt = Field(source,0); 

//specialize for arrays of doubles 
if (Is_block(elt) 

&& Is_in_value_area(elt) 
&& Tag_val(elt) == Double.tag) 

{ 
wsize = size * Double_wosize; 
if (wsize > Max_wosize) caml_invalid_argument("Array.sub"); 
res = caml_alloc(wsize, Double_array_tag); 
for (i = 0; i < size; i++) 
{ 

d = Double_val(Field(source,i+offset)); 
Store_double_field(res, i, d); 

} * 
} 
else 
{ ' 

if (size > Max_wosize) caml_invalid_argument("Array.sub"); 
//for small arrays 

if (size < Max_young_wosize) 
{ 

res = caml_alloc_small(size, 0); 
for (i = 0; i < size; i++) 
{ 

Field(res, i) = Field(source,i+offset); 
} 

}//if 
else 
{ 

if (Is_block(elt) kk Is_young(elt)) 
{ ' • ' • • 

caml_minor_collection(); 
res = caml_alloc_shr(size, 0); 
for (i = 0; i < size; i++) 
{ 

Field(res, i) = Field(sburce,i+offset); 
} 
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res = caml_check_urgent_gc (res); 

}//if 

else 

<• 

res = caml_alloc_shf(size, 0); 

for (i = 0; i < size; i++) 

• ' { . . . . 

caml_initialize(&Field(res, i), 
Field(sburce,i+offset)); 

} 

res = caml_check_urgent_gc (res); 
}//else 

}//else 
}//else 

}//else 

CAMLreturn (res); 
}//caml_general_array_sub 
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Chapter 8 

Performance results 

In this chapter, we present and analyze our experimental evaluation of Monty 

over a suite of 370 benchmarks. Our primary finding is that the current translation 

is incomparable in terms of performance to CPython. In particular, there are test 

cases where Monty is ten times slower, and there are cases when it is five times faster. 

Compared to Jython, however, our implementation is generally faster, and can be up 

to 100 times faster. 

Our investigation of the cases when Monty is slower than CPython reveals that 

there are key bottlenecks for Monty. These slowdown factors, along with the max

imum percentage of execution time that they consume in the benchmarks, are as 

follows: 

1. FFI: 80% 

2. Printing: 50% 

3. Method lookups in multiple inheritance: 35% 

4. Function stack management: 20% 
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We discuss the possibility for improving on each of these aspects in future work. 

After identifying performance bottlenecks, we investigate the impact of source code 

size on compilation and execution times of our benchmarks, and the impact of var

ious optimizations on an aggregate benchmark. We follow that by some additional 

experiments studying memory allocation for lists and arrays in Monty and CPython. 

All of our measurements above are performed with stack management turned on 

in Monty. As a final experiment at the end of this chapter, we measure the impact 

of stack allocation by presenting comparative speedups with the stack management 

code turned off. 

An interesting observation we make is that the OCaml compiler's built-in'opti

mization options such as - i n l i n e and -ccopt make little or no difference to the 

execution times of our programs. However, for large programs (over 5K lines of 

OCaml), higher values of the - i n l i n e option can increase compile time by up to 6 

times. Turning on other Monty optimizations that we have implemented also seems 

to diminish the value of using the - i n l i n e option. 

8.1 Experimental setup 

In this chapter, we present a comparative performance evaluation of different 

implementations of Python: 

1. CPython 2.5 

2. Monty, our OCaml implementation, built using OCaml 3.10.2 
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3. Jython 2.5 beta, the latest release of Jython 

The experiments were performed on an Apple Macintosh machine with the fol

lowing specifications: 

1. OS information: Mac OS X 10.4.1, Build 8S2167, Darwin Kernel Version 

8.11.1 

2. Processor information: Intel core duo, 2 GHz, 2 cores, 2 MB L2 cache per 

processor 

3. Memory: 2 GB physical memory 

4. Bus speed: 667 MHz 

The native code was generated with the dcamlopt. opt command. Two OCaml 

compiler optimization options,- inl ine <N> and-ccopt -0<N> were supplied. The 

Unix command time was used to obtain all execution times. We present the raw 

timing data for the entire benchmark suite in Appendix B. All times are measured 

in seconds. Each execution time is the minimum of 5 runs. Each translation and 

compilation time is the average of 100 runs. 

8.2 Benchmark suite 

Our suite contains 370 benchmarks (which we refer to by identifiers from 1 to 370), 

each modified to run for approximately 2 seconds in CPython. These 370 benchmarks 
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Benchmark sorted by size (Python word count) 

Figure 8.1: Benchmark sizes, sorted by increasing Python word count. 

have been combined to create a suite of aggregate benchmarks. The benchmarks cover 

a range of sizes and were obtained from different sources. They include: 

• 3 recursive functions: ackermann [2], f ibonacci [6] and takeuchi [16]. 

• Pystone [10], a standard Python benchmark which implements the dhrystone 

[43] benchmark for integer operations. 

• The standard pybench suite [11] for testing individual Python features. This 

suite is part of the standard Python distribution and contains 12 benchmarks. 

• 12 programs from the Computer Language Shootout [19] site. Each program 

in the shootout implements a pre-specified algorithm in several languages. The 
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algorithm description is usually provided by both a textual summary and a sam

ple implementation. All implementations of the algorithm can be downloaded 

or compared online for performance. 6 benchmarks from this suite, which did 

not run correctly in our compiler, were excluded from the timing experiments. 

Benchmark 
fannkuch 
n-body 
nsieve 
partial-sums 
spectral-norm 
recursive 
mandelbrot 
k-nucleotide 
regex-dna 
meteor-contest 
binary-trees 
sum-file 

Description 
Indexed-access to tiny integer-sequence permutations 
Model orbits of jovian planets using a simple integrator 
Count prime numbers from 2 to N 
Partial sums of several mathematical sequences 
Eigenvalue using the power method 
Suite of standard recursive functions 
Generate Mandelbrot set portable bitmap file 
Hashtable update and k-nucleotide strings 
Match DNA 8-mers and substitute nucleotides for IUB codes 
Search for solutions to shape packing puzzle 
Allocate large binary trees, walk and deallocate them 
Read integers from a file and compute their sum 

Lines 
52 
123 
28 
40 
40 
39 
53 
66 
43 
195 
47 
25 

• 342 benchmarks are composed of both Python programs collected from the web 

and those built by the undergraduate members of our research team. 

• We constructed a suite of 36 aggregate benchmarks by concatenating the 370 

individual benchmarks. In order to keep the compile time reasonably low, we 

had to keep each aggregate small. These aggregate benchmarks have been used 

only to investigate the effects of different optimizations. 

8.3 Speedup compared to CPython 

Monty provides a speedup over CPython for 278 out of 370 benchmarks (75%), 

but 92 benchmarks run slower than CPython. The relative performance ranges from 
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4.6 times faster to 10 times slower than CPython. 

o 

S I / 
• . if 

Benchmarks sorted in increasing order of speedup over CPython 

(a) Speedups compared to CPython wi th stack management in Monty 

* 0.14-

Benchmarks sorted in order of speedup over CPython 

(b) Speedups are higher without explicit function stack management in Monty 

Figure 8.2: Relative benchmark speedups of Monty compared to CPython (higher is 
better) 

Figure 8.2(a) shows that our implementation obtains a speedup over CPython 

for approximately 75% of our benchmark suite (278 benchmarks), with an average 
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speedup of 1.55 (55%). The highest speedup (4.62) is obtained for the benchmark 

b in t r ee_ i t e r , which traverses a binary tree using generator functions. This illus

trates the power of our local-continuations approach for generators. Some other 

sources of speedups are built-in numeric operations and array copy (tuple slicing). 

We also observe, however, that many benchmarks in our suite are slowed down: the 

lowest speedup is 0.095. We profiled each of the slower benchmarks in order to de

termine the source of performance loss. 

On disabling stack function stack management in our runtime, we obtain a higher 

average speedup of 1.65 (65%). Approximately 78% of the benchmark suite runs 

faster than CPython, as compared to 75% with explicit stack management enabled. 

8.4 Speedup compared to Jython 

The timings in Appendix B include running times for our benchmarks with Jython 

2.5 beta, the latest version. Figure 8.3 shows the speedups of Monty relative to 

Jython. 

Jython 2.5 could not run 17 out of our 370 benchmarks due to missing features or 

libraries. On an average, Monty is about 10 times faster than Jython. The highest 

speedup of Monty is 130 (overload) and the lowest is 0.4 (meteor-contest). Jython 

is faster than Monty for 7 benchmarks. In each case, it is because of slowdown suffered 

by Monty due to calls to the FFI for functions which are implemented natively in 

Jython. This demonstrates the performance benefits of implementing functionality 
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natively over calling the FFL 

150 200 260 

Benchmarks sorted by Jython speedup over CPython 

(a) Jython is about 5 times slower than CPython on average. 

Benchmarks sorted by speedups of Monty over Jython 

(b) Monty is about 10 times faster than Jython on average. 

Figure 8.3: Jython performance on our suite is much slower than both CPython and 
Monty: (a) shows Jython speedup compared to CPython, (b) shows speedup in Monty over 
Jython. 

However, in defense of Jython, it is not built with the primary goal of improved 

performance, but with the goal of seamless interoperability with Java. In addition, 

the timings shown above were generated by running Java with the Sun Java Vir

tual Machine implementation, which is the reference Java implementation. Work in 
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progress on native Java compilers such as the GNU Java Compiler (gc j) could lead 

to faster Jython performance in the future. 

8.5 Performance bottlenecks 

Profiling each of the slower benchmarks using gprof revealed some prominent fac

tors causing performance loss. In Appendix C, we present a table of the benchmarks 

in our suite which run slower than CPython. For each benchmark, we indicate the 

causes of the slowdown as obtained from the gprof profile. The rightmost column 

provides a more precise explanation of the problem. 

In this section, we discuss some of the important causes of performance loss that 

we glean from the table in Appendix C. Each subsection that follows discusses one 

particular factor which contributes to performance degradation. We pick one example 

benchmark per section and present three functions or procedures that show up as the 

most expensive ones in the gprof profile of that particular benchmark. Our aim 

is to quantify the slowdown that we observe and verify its origin. After presenting 

the example, we suggest some future steps that we would like to follow to mitigate 

the effects of the slowdown factor under discussion. The subsections are ordered in 

decreasing importance of slowdown factors. 
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8.5.1 FFI 

Using the FFI has a significant overhead due to wrapping and unwrapping op

erations at the language interface and copying data across runtimes. For example, 

the gprof profile of the wordf req benchmark (speedup 0.61, CPython time 2.46 s, 

OCaml time 4.03 s) shows that the function pywrap and its associated calls take up 

a cumulative 52.9% of execution time. This benchmark uses several built-in string 

methods which we invoke via the FFI. 

% exec time 
52.9 
34.9 
9 

Function 
pywrap 
caml_adjust_gc_speed 
caml_alloc_shr 

Descript ion 
Wrapping function for CPython objects 
Garbage collection 
Memory allocation for wrappers 

41 of our benchmarks, including many of the slowest ones, are adversely affected 

by the FFl overhead. Some of these benchmarks use modules from the Python stan

dard library such as random, hashl ib and decimal. String formatting for output is 

currently invoked via the FFI, causing a performance loss whenever p r in t statements 

format their outputs. Python has a large number of string manipulation methods, 

many of which have no equivalents in OCaml. We use the FFI to invoke these meth

ods, such as cap i t a l i ze , t i t l e and index. 

Potential for improvement: The numbers obtained from profiling the 

wordf req and similar benchmarks suggest two possible improvements for removing 

FFI overhead: (1) Reimplementing more Python functions and libraries natively in 

OCaml to eliminate the need for wrapping and (2) Reducing the memory allocation 
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overhead for wrappers further. For example, one potential improvement is to maintain 

a pool of allocated unused wrappers from which wrappers can be drawn. 

Python libraries are usually implemented in a mixture of Python and C. Reim-

plementing libraries in OCaml involves making decisions about whether we should 

implement both the Python and C components of a library in OCaml. For Python 

codes, our experience suggests that translation to OCaml is likely to provide perfor

mance benefits. However, for C codes, we have multiple options: First, we could re

implement the C code in OCaml. This step would be carried out relatively quickly, but 

we may lose the benefits of a finely-tuned C library. Second, we could re-implement 

the C library in C, but using a data representation more suitable for OCaml rather 

than Python. This option may be the best with regard to performance, allowing us 

to finely control program behavior in C and tune the code to work with the OCaml 

runtime. However, re-writing an optimized C library is usually time-consuming. 

8.5.2 Printing 

A large fraction (75%) of our benchmark suite was obtained by modifying our 

unit tests to run for approximately 2 seconds. These tests each contain several print 

statements, which currently have a high cost in our implementation. CPython se

mantics requires that all objects be converted to their string representations before 

printing, using specified str or repr methods. This requires a string to be allocated 

for every printed object. In particular, printing arrays of objects is expensive because 

due to the concatenation of the string representations of individual objects in the 
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array. For example, by profiling the l i s t s benchmark (speedup 0.52, CPython time 

2.17 s, OCaml time 4.17 s), we observe a high cost for the general printing function 

(pyobject_print) and array printing (array_repr) in our implementation. 

% exec time 
35.1 
21.5 
17.9 

Function 
pyobject_print 
array_repr 
caml_alloc_string 

Description 
Print function 
Array printing 
String allocation 

Printing is a source of performance loss in 34 of our benchmarks. 

Potential for improvement: In our implementation, print statements are im

plemented by first producing a string representation of every object to be printed, and 

then sending the string to the output file. This repeated string allocation is expensive 

because of memory usage. In addition, array printing results in a traversal down the 

array to recursively generate the string representation. 

In the case of immutable objects, the string representation may be cached inside 

the object, reducing string allocation overhead in many cases. In addition, Print 

statements can be easily recognized at compile time, allowing the compiler to call 

optimized functions for special cases such as built-in types. These two steps can 

eliminate most of the string allocation overhead that we observe in the profile. In 

the case of arrays, investigating ways to cache the string representation of the entire 

array while keeping track of when it has been modified would be a big performance 

win, since it would eliminate unnecessary memory allocation and array traversal. 
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8.5.3 MRO and classic class method lookups 

Frequent method lookups for user-defined classes can cause slowdowns in cases 

where the method is located several steps up in the class hierarchy. Searching for a 

method involves looking up several dictionaries according to the MRO of a class. For 

the intobj benchmark (speedup 0.46, CPython time 2.11 s, OCaml time 4.59 s), the 

lookup_mro function alone consumes approximately 19% of time. 

% exec time 
18.6 
16.4 
9.8 

Function 
lookup_mro 
cfreck_specialattr 
caml_string_compare 

Description 
MRO method lookup 
Looking up specially named attributes 
String comparison during method lookup 

MRO and special method lookups have a significant impact on 17 of our bench

marks. 

Potential for improvement: Currently, we use a simple list data structure 

to store the computed MRO of a class. A recursive function searches this list to 

find a specific method. The performace of this lookup could be improved using an 

array to represent the MRO. A faster dictionary implementation, such as a dictio

nary specialized for string-to-object mappings, would speed up individual dictionary 

lookups, improving the performance of MRO lookups as a whole. Using a specialized 

dictionary would reduce unboxing operations that are currently required to extract 

names of methods to be looked up. Our optimization experiments suggest that such 

a type-based specialization of dictionary methods would produce high performance 

benefits. 

125 



Potential for improvement: We must examine the implementation of the 

OCaml power operation and replace it with a more efficient version if possible. 

8.5.4 Function stack management 

In Python, the programmer can inspect the function call stack in order to de-

terming information such as local variables and any unhandled exception in the local 

scope. Supporting this introspection feature requires us to maintain a stack con

taining this local information. This stack maintenance has a significant impact on 

the performance of highly recursive functions such as L03arearing (speedup 0.9, 

CPython time 1.79 s, OCaml time 1.95 s). As the profile for L03arearing shows, the 

stack management functions add_new_locals and remove_locals, along with their 

resulting memory allocation, run for over 20% of execution time. 

% exec time 
12.3 
11.5 
8.7 

Function 
caml_minor_collection 
add_new_locals 
remove_locals 

Description 
Garbage collection 
Adding a stack entry 
Popping the stack 

3 of our benchmarks using recursive functions are affected by the stack manage

ment overhead. 

Potential for improvement: Our current stack management code is fairly sim

plistic: it is a stack of records implemented using the OCaml Stack library. Both the 

representation of the stack and the amount of memory allocated per stack entry can 

be improved. In our optimization phase, we observed that reducing the size of each 
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stack entry by one word of memory reduced execution time by approximately 5%. 

This leads us to believe that we can improve the performance of the stack further. 

8.5.5 Other factors 

Other notable causes of performance degradation include some OCaml string oper

ations such as the OCaml Str library for regular expression processing. The Big_Int 

library for OCaml, which we use to implement the Python long type for unlimited-

size integers, is a cause of slowdown in some benchmarks. In some cases, we observe 

a performance loss for functions using several keyword arguments. 

Potential for improvement: 

For string operations, we may choose to use more efficient functions in place of 

the existing OCaml ones, whether implemented by us or obtained from a library. 

Currently, keywords are stored in a dictionary object which is created and unpacked 

for every call. This excess memory allocation can be trimmed. In fact, we have already 

observed improvement in performance by implementing a similar optimization for 

positional arguments. In the case of long integers, we obtain benefits by identifying 

points where the stored integer value is within the range of native integers and use 

faster native integer operations. 

In summary, we observe that the slowest benchmarks (including the ones that 

run about 10 times slower than CPython) are those using the FFI intensively, in 

combination with other factors. For example, the slowest benchmark pr in tsys , prints 
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data from the sys module several times in a loop. The attributes of the sys module 

are mostly obtained via the FFI. Similarly, the benchmark meteor-contest relies 

on bitwise long-integer operations performed in deeply nested loops. These bitwise 

operations are imported via the FFI, since the OCaml Big_Int library does not 

support them. 

8.6 Speedups and code size 

The speedups are evenly distributed across source program sizes. 
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Figure 8.4: Speedups are evenly distributed across Python source size. 

Figure 8.4 demonstrates that the size of the input Python program is not a partic

ularly significant factor in the speedup. The benchmarks with low speedups are fairly 

evenly distributed across program sizes. The three benchmarks on the far right of the 
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plot, simplenumbers, simpleconstructs and simplelookups, test specific Python 

features by running a large number of mutually independent one-line operations in a 

for-loop. These operations include numeric comparisons, if-statements, loops and 

method lookups. Due to the efficiency of our implementation for these individual 

operations, we achieve a speedup of approximately 1.5 for each of these benchmarks. 

8.7 Compile time and code size 

Size of the generated OCaml code is determined by the constructs used in the 

source Python code. 
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Figure 8.5: Generated OCaml word count vs Python word count. 

For control flow constructs such as if-statements and loops, our code generator 

inserts extra whitespace and indentation for readability. Python function definitions 
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generate large OCaml code sizes due to argument processing operations. Generator 

functions cause an increase in code size due to a local continuation passing style 

transformation. A simple binary addition operation is translated into a function call 

with let-bindings in order to preserve order of evaluation of arguments. 

As shown in Figure 8.5, some of our benchmarks result in large OCaml code 

sizes compared to the source Python. For example, the converter benchmark 

defines several small classes with methods containing arithmetic operations. Both 

the pystone and meteor-contest benchmarks define several small functions. The 

meteor-contest benchmark also uses several deeply nested f or-loops, which add to 

its generated code size. 

Construct 
if-statement 
while-loop 
function defn 
generator defn 
class defn 
addition 

Python words 
3 
3 
3 
3 
3 
1 

OCaml words 
13 
59 
104 
177 
58 
26 

For Python constructs such as if-statements, while loops and function defini

tions, the size of the generated OCaml code is large. For example, a simple Python 

if-statement with 3 literals generates 9 OCaml literals. However, this OCaml count is 

inflated because many of these literals are simply parentheses which disappear during 

OCaml parsing. 

130 



Python 
if 1: 

pass 

OCaml 
if ( truthvaK _int_l )) then ( 

nullobj ; 
0 

) else () 

8.8 Impact of code size on translation and compilation times 

The time taken to translate from Python to OCaml depends on the size of the 

source Python code, but is small compared to compile time from OCaml to native 

code. 
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Figure 8.6: OCaml compilation time is much higher than translation time. 

As the source Python size increases, we notice that the translation time increases 

in a roughly linear fashion. However, the cost of printing the generated AST can 

take up to 50% of the translation time, which affects Python constructs where the 
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Figure 8.7: Translation time increases with Python code size. 

generated code is large. For example, in simpledictops, dictionary creation using 

{a:b, c:d} syntax in Python is translated into an OCaml function call with a list 

of pairs as the argument. In simpletupleops, sequence assignments of the form 

a, b, c = (1,2,3) are translated into multiple individual assignment statements. The 

increase in generated code size in these cases causes translation time to increase. 

As the size of the Python source code increases, the increase in compile time is 

more directly related to the size of the generated OCaml code. Benchmarks such 

as converter, pystone and meteor-contest, which produce large OCaml code sizes 

compared to the source Python size, also take longer to compile to native code. Figure 

8.8 shows the compile time against the code size in Python and generated OCaml 

respectively. 
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Figure 8.8: Compile time increases with source code size. 

8.9 Impact of OCaml compiler options 

Our next experiment examines the impact of two optimization options provided 

by the OCaml native code compiler: the - i n l i n e <N> option for inlining, and the 
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-ccopt -0<N> option for enabling optimizations in the underlying C compiler. 
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(b) Execution and compile times for - inline parameters with other optimiza
tions turned off. 

Figure 8.9: The - in l ine N option has a slight impact on execution time, but compilation 
time increases with larger values of N for large programs such as our aggregates. 

The - i n l i n e <N> option for the OCaml native code compiler enables more ag

gressive inlining for higher values of N. Figures 8.9(a) and 8.9(b) show the effect of 

different values of N on execution and compilation time of the aggregate benchmark 

with other optimizations turned on and off, respectively. For N from 0 to 20, there is 
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a slight decrease in execution time. For N greater than 20, there is no further impact. 

In both cases, compile time increases dramatically for higher values of N. 
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Figure 8.10: Using the -inline parameter for our benchmark suite, the relative change in 
compile time before and after inlining is evenly distributed around 1 for smaller programs 
such as those in our benchmark suite. 

Figure 8.10 shows the relative change in compile time for our benchmark suite, 

with and without the - i n l i n e parameter. We observe that for this suite, the relative 

change in compile time is evenly distributed around 1, in a bell-curve form. 

Our observations indicate that the impact of the - i n l i n e parameter on compile 

time is observed only for larger programs such as the aggregate benchmark (Figure 

8.9), where the size of the source Python code is greater than approximately 1000 

lines. For smaller programs such as our benchmarks, the impact on compilation time 

is quite small (Figure 8.10). 
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Figure 8.11: The -ccopt -0<N> option has a no impact on execution or compilation time 

The OCaml native code compiler translates OCaml code to low-level assembly 

language. It then invokes the gcc compiler for performing the final linking step, 

which creates a native code executable from the generated assembly, libraries and 

any C code that is part of the application. The -ccopt -0<N> option enables var

ious optimizations in gcc during this linking step [7]. These optimizations include 
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loop alignment, constant propagation and peephole optimization [29]. For our ag

gregate benchmark, changing this option did not cause any significant difference in 

the execution time or compile time, as shown in Figures 8.11(a) and 8.11(b). We 

believe that this is because both the OCaml and gcc compilers perform several sev

eral source-level optimizations on the OCaml and C sources respectively, leaving few 

optimization opportunities at the linking stage. 

8.10 Impact of Monty optimizations 

We use the aggregate benchmark to examine the impact of various optimizations 

that we implemented in our compiler. 

1. Cihp ops: Specialize comparison operators for built-in numeric types using 

method lookups via records rather than dictionaries. These specialized opera

tions were further tuned by inlining and removing exceptions. 

2. Binary ops: Similar to comparisons, specialize arithmetic binary operations 

for numeric types. 

3. Store string hash: Compute the hash value for a string object only once and 

store it in the object. 

4. Array copy: Use our modified array copy function in place of OCaml's stan

dard library function. 
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5. Native math: Use a native OCaml implementation of the Python math module 

instead of calling the Python Standard Library via the FFI. 

6. IteratorS-exh: Remove exceptions from iterator methods. This optimization 

affects the performance of f or-loops. 

7. Get^and-call: If a method lookup is immediately followed by a call to method, 

replace with an optimized function to combine the two steps. 

8. If-compare: If a comparison is used as the condition for ah if-statement, 

replace it with an optimized function which returns a boolean instead of an 

object. 

9. Records-copy: Use initialization instead of copying to instantiate record types. 

10. Unary ops: Perform unary negation for integer and float constants in transla

tor. 

11. Int subscripts: Recognize integer subscripts for arrays and use an optimized 

retrieval function. 

12. Seq length: Compute lengths of sequences (lists, dictionaries, strings) at com

pile time. 

13. String hash: Compute hash values of string constants at compile time. 

14. Native iterators: Use a native OCaml implementation of the Python i t e r t o o l s 
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module, as well as built-in iterative functions such as map, reduce and z ip in

stead of using CPython via the FFI. 

15. Method cache: Use a method cache for storing recently called method ad

dresses. Our method cache is implemented for user-defined classes and their 

methods. 

16. Print str method: Various optimizations to printing, such as looking up string 

representation methods via records rather than dictionaries. 

17. Global buffer pool: A repository of string buffers for efficient printing of lists 

and tuples. 

18. String interning: A program using strings can suffer performance loss due to 

repeated allocation of string objects. A useful optimization is to intern these 

strings, that is, preserve a string object in a hash table keyed by the string 

it represents. This ensures that we allocate the object only once and reuse 

it when needed. In our implementation, most strings are interned in order to 

reduce memory allocation. However, strings occurring as a result of operations 

such as concatenation are not likely to be used more than once, hence they are 

not interned. 

In order to study the impact of different Monty optimizations on an aggregate 

benchmark, we first measure two execution times: ALLOFF, with all optimizations 

off, and ALLONI with all optimizations on. For each optimization 0 , we measure 
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Figure 8.12: Specializing binary numeric operations, comparisons and storing string hash 
values yield the greatest benefits. 

two times: ToON, with only O turned on, and ToOFF, with only O turned off. Two 

quantities are reported in Figure 8.12 per Monty optimization: 

1. ALLOFF — ToON'- Impact of optimization O with other optimizations turned 

off. 

2. ToOFF — ALLON- Impact of optimization O with other optimizations turned 

on. 

In each case, we divide by the corresponding value of ToOFF to obtain the per

centage impact of that particular optimization. 
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The most significant of our Monty optimizations are: (1) Specializing binary arith

metic and comparison operations for numeric types; (2) Storing hash values for string 

objects to avoid recomputation; (3) Using natively implemented OCaml i t e r t o o l s 

and math modules instead of the CPython version (4) Using our implementation 

of array copying instead of the OCaml standard library version; and (5) Printing 

optimizations. The remaining optimizations have a small impact on the aggregate 

benchmark because their benefits are localized to specific components of this bench

mark. 

The store-string-hash optimization has a much greater effect with other Monty 

optimizations turned off. This is because when the binary ops and cmp ops flags are 

turned off, the runtime uses dictionary lookups to obtain the corresponding methods. 

These method lookups use string hashing extensively, resulting in a significant benefit 

from storing the hash value. When the method lookups use records rather than 

dictionaries, string hashing is not invoked as often. 

8.11 Object allocation in OCaml vs. Python 

In order to measure the efficiency of memory allocation for large numbers of 

Python objects, we estimate the time taken to allocate linked lists of size 2^. The 

elements of the list are described by the following code: 

class zero_element(object): 
pass 

zero = zero_element0 
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class succ_element(object) : 

def ^_init (self,l): 

self.rest = 1 

def succ(tl): 

return succ_element(tl) 

The zero_element class defines the base element zero of the list. The succ_element 

class contains a reference to the rest of the list. This class is instantiated by the func

tion succ. 

Figure 8.13 shows the execution time for allocating large linked lists of Python 

objects. The size of each list represents the corresponding natural number. On 

allocating lists of length 2N starting from N = 0 we find that OCaml's memory 

allocation performs much better than CPython's, especially for large N. The highest 

values of N that we can reach before running out of memory are 21 for CPython and 

23 for OCaml. This demonstrates that OCaml's garbage collection scheme manages 

large numbers of memory allocation operations efficiently. 
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Figure 8.13: OCaml allocates individual objects more efficiently than CPython: (a) shows 
the time taken to allocate linked lists of objects and (b) shows the relative speedup in 
OCaml. 

8.12 Array allocation in OCaml vs. Python 

In Figure 8.14, we show the time taken to allocate arrays of Python objects. Each 

array has size 2^. The largest possible array size in OCaml is 221 due to OCaml's 

internal upper bound on array length. In CPython, we can allocate arrays upto length 

224. OCaml's array allocation is more efficient up to N = 7. The jump in OCaml 
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execution time between N = 7 and N — 8 is because for N < 28, OCaml allocates 

arrays from its minor heap using a faster allocation function (caml_al loc_smal l ) . 

For larger sizes, OCaml allocates from its major heap using caml_alloc_shr, which 

is more expensive. 
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Figure 8.14: CPython allocates large arrays of objects more efficiently than OCaml: (a) 
shows the time taken to allocate arrays of objects, (b) shows the relative speedup in OCaml. 
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8.13 Effect of removing function stack management 

Removing function stack management improves performance. 
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Figure 8.15: The relative speedup improvement after removing stack management code 
is highest for recursive functions. The improvement is distributed in a bell-curved manner 
with a peak around 1.0. 

In order to test the effect of function stack management, we timed our benchmarks 

without generating stack management code. Figure 8.15 shows the additional rela

tive speedup obtained over the code with stack management. Most benchmarks per

form faster without stack management code. Recursive functions such as ackermann, 

f ibonacci, takeuchi and b inary- t rees have the most noticeable performance im

provement. The average speedup over all benchmarks increased to 1.65 as compared 

to 1.55 with stack management. The increase in speedup is distributed in a somewhat 
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bell-shaped manner with a peak around a speedup of 1.0. Benchmarks that are much 

slower or much faster than CPython are not noticeably affected. 
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Chapter 9 

Practical lessons that we learned about our 

approach 

In this chapter, we reflect on the experience of building a compiler for a dynamic 

language via translation to a statically typed functional language, and give advice 

to others that want to carry out similar experiments. Since compiler developers 

must focus first on the correctness and completeness of their implementation, we first 

present some our our recommendations for achieving completeness. These include 

referring to source code (if available) for understanding source language semantics, 

starting with a mostly-FFI based initial implementation and testing using existing 

standard test suites. 

In order to improve the performance of a translator to OCaml, we must leverage 

OCaml's strengths such as algebraic data types, pattern matching, recursive first-class 

functions, and avoid excessive memory allocation. Specializing runtime methods for 

common cases leads to large performance gains. Libraries perform faster if imple

mented natively instead of being called via the FFI. Using profiling tools such as 

gprof is an indispensible technique for isolating performance bottlenecks. 
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9.1 Achieving completeness 

As compiler developers, we cannot overstate the importance of making sure a 

correct implementation is built first before any attention is given to performance. It 

is trivial to implement a compiler that is high-performing but incorrect. Dynamic 

languages such as Python have a large number of built-in types and methods which 

can be onerous to implement completely, but we recommend a few approaches that 

a language developer can pursue to ease the process. 

9.1.1 Refer to source code 

In the case of Python, we have found that the source code of the reference im

plementation, CPython, is the most authoritative documentation of the language. 

Python is an open-source, collaboratively developed language. It features extensive 

manuals and documentation; however, they may not keep pace with the latest versions 

of the implementation. Our goals do not include debugging the Python documenta

tion, so we prefer to use the manuals as a starting point and refer to the source code 

to understand the internal semantics of the language. 

9.1.2 Start with the FFI for completeness 

One of the key lessons learned in this work is that dynamic language make heavy 

use of libraries, and many of these libraries may either be implemented in Python 

or in other languages such as C. Starting with a mostly-FFI implementation helps 
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make the early implementations more usable, and also help focus attention both to 

areas where performance can be improved and areas where there are no realistic 

opportunities for improvement. 

Any complete Python compiler must also implement the large set of built-in 

Python objects and their methods. In our compiler, we have implemented most 

of these built-in types from scratch in OCaml. A much more direct approach to 

achieving completeness would be to build the FFI first and use it to achieve correct 

implementations of all the built-in types. To improve performance, we would incre

mentally migrate implementations of different data types one by one from Python to 

OCaml. 

However, in our implementation, we initially postponed building the FFI because 

we wanted to focus on the core language by compiling closed programs which did not 

use libraries. Unfortunately, we faced two major issues with this approach: First, any 

nontrivial Python program uses the Python Standard Library. Some of the most com

monly used libraries are the math library containing mathematical and trigonometric 

functions, the i t e r t o o l s library containing iterator functions for different kinds of 

sequences and the re library providing regular expression match-and-replace facili

ties. Second, all Python built-in types are complex data types with many nontrivial 

methods and ad hoc overloading. Building the FFI at the outset would have bypassed 

these issues and let us achieve completeness much more rapidly. 
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9.1.3 Test constantly and systematically 

Using a good testing methodology not only enabled us to evaluate the correctness 

and completeness of a language implementation, but also allowed quick detection and 

fixing of subtle bugs. A good testing mechanism should combine two components: 

(1) Acceptance testing to check each new feature using small and specific tests and (2) 

Regression testing to track progress in compiler development and to ensure that newly 

added features do not break existing ones. Any nontrivial change to the compiler code 

must be followed by a round of testing. The results of running the test suite should 

be logged and maintained to obtain a history of development progress. 

In the case of Python, some of the testing recommendations we suggest are: 

• Cover all of the built in functions and methods of Python, including all of their 

corner cases. 

• Validate that the translator raises all the right exceptions for methods called 

with arguments designed to make them fail. This is particularly important 

because Python's built-in exceptions are a pervasive part of its semantics. Since 

exceptions are frequently used as control flow by Python programmers, raising 

the right exception is necessary for correctness. 

• Validate the implementation more thoroughly with regard to Python's unusual 

scoping mechanisms. 
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9.1.4 Start by using the test suite from the reference implementation 

When building an implementation for an existing language, the language imple-

menter should use any available test suites from the reference implementation of the 

language. It is very likely that these existing suites test the language completely, 

with all its subtle and less documented features. Moreover, these existing test suites 

are usually a valuable indicator of what the language developers (and often, users) 

consider to be important about the language. 

Python has a test suite consisting of over 300 files. This suite is executed by a 

framework (PyUnit) which is implemented in Python using many advanced features 

such as introspection and dynamic import. Since we did not support these advanced 

features at the outset, we postponed using CPython's test suite. In retrospect, it 

would have been a good idea to focus on running the suite initially. That would have 

given us a very reliable metric to evaluate the correctness of our compiler and find 

many subtle bugs in the process. 

In a language such as Python, exceptions are a pervasive part of the semantics 

and frequently used as a control flow mechanism. However, most of our test case 

builders, including myself, showed a marked preference for writing tests that did 

not raise exceptions. This, we believe, further highlights the importance of testing 

all exception-raising cases intensively. Using the reference implementation test suite 

would have bypassed this problem and directly provided us with a large test suite for 

exception-raising cases. 
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9.1.5 Use an existing parser 

Python has a large and quirky grammar defined in its own parser implementation. 

Using a standard parser guarantees correct parsing and effectively reuses software. 

In a compiled setting such as ours, a correct parser with reasonable performance 

is sufficient. However, we are bound to an existing representation of the AST and 

the information stored in it. In our implementation, we have used CPython's parser 

library from the compiler module to generate a string representation of a Python 

program AST. This library is invoked directly from our translator using our OCaml-

Python FFI. Using this approach provided us with a correct parser at little additional 

development cost. 

9.1.6 Structure the runtime into modules 

Our current implementation places all of the functionality of the runtime in one 

large OCaml file. This file is approximately 16,000 lines long. Structuring it into more 

logical compilation units using OCaml's module system would make the code easier to 

understand and maintain as well as reduce compilation time between modifications. 

The CPython implementation places each built-in object type in its own module, 

with additional modules for more abstract functionality. This structure places all of 

the functionality of each object type together, making it easier to change an object's 

semantics if it is redefined in the future. The CPython code structure appears to be 

a reasonable model for our implementation to follow. 
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9.2 Improving performance 

Based on our experience of building a compiler by translating a dynamic language 

to OCaml, we have learned some techniques to leverage OCaml's strengths and avoid 

its weaknesses. These lessons guide our approach to implementing translator opti

mizations. 

9.2.1 Reduce memory allocation 

Memory allocation is the most important source of performance loss in a language 

implementation. Allocation is expensive in any programming language, but memory-

managed languages such as OCaml have a hidden cost: garbage collection. The more 

memory a program allocates, the more work the garbage collector must perform to 

manage and collect the allocated memory. Due to this large overall cost, many of 

our optimizations have focused on reducing memory allocation. For example, our 

object representation record is carefully designed to have a small number of fields, 

since it is the most frequently allocated data structure in our implementation. Other 

optimizations that target memory allocation include interning frequently used data, 

such as integer constants and strings. 

9.2.2 Specialize for common cases 

Dynamic language semantics assumes that a function or operation can accept an 

object encoding any type of value. However, in practice we find that some cases are 

153 



more common than others. For example, numeric operations are frequently called 

with integer or float arguments. Hashing, an expensive operation, is performed most 

commonly on string objects due to method lookups. Targeting these common cases 

has provided us with the most effective optimizations. For example, we have im

plemented specialized binary operation functions for built-in numeric types such as 

integers and floats. For every string object, we store its computed hash value as part 

of the string object representation. Observing the use of specific language features 

by studying existing programs is useful for identifying common use cases of those 

features. 

9.2.3 Implement libraries natively 

Building a foreign function interface is useful to support a large number of library 

modules at once, however there is a severe performance penalty associated with FFI 

calls. Libraries which are frequently used or are performance-critical should be im

plemented in the target language. For example, in our implementation, we obtained 

performance benefits by implementing two frequently used Python library modules, 

math and i t er too l s in OCaml. 

9.2.4 Use option types instead of exceptions for control flow 

Exceptions in OCaml are dynamically scoped. When an exception is raised, 

searching the call stack for a handler can be expensive. We have used two con

trol flow mechanisms in our runtime to replace exceptions: (1) option types with 
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pattern matching and (2) using a designated e r ror value. However, exceptions may 

be used when handling errors or rare situations without performance loss. 

9.2.5 Select the appropriate control flow constructs 

OCaml has a variety of features providing a powerful hierarchy of increasingly 

expensive and expressive control flow constructs. In addition to common language 

features such as i f statements and while loops, OCaml allows the developer to 

use tail-recursion, option types, pattern matching, exceptions and continuations. In 

our implementation, we have used all these features at different points to obtain 

performance benefits. For example, using tail-recursion and continuations provides 

us with an efficient implementation of generator functions. 

9.2.6 Experiment with different profiling tools 

Profiling tools such as ocamlprof and gprof are essential in identifying areas 

of slowdown for specific programs. These tools can be used in batch mode from 

the command line to generate profiles for a large number of programs. In addition, 

interactive tools such as shark on the Mac OS X provide a wealth of information 

about program execution such as memory usage and timings. However they can only 

be used for one program at a time. 

155 



Chapter 10 

Conclusions and Future work 

Our main goal in this research is to study the engineering tradeoffs involved in 

building a compiler using automatic translation from a dynamic language to a stati

cally typed functional language. In this chapter, we first recapitulate our observations 

about the effectiveness of this translational approach to compiler development. We 

briefly describe the current results of our implementation and the lessons we have 

learned about building a complete and efficient translation. We outline several steps 

that may be taken to obtain a more complete and efficient implementation in a section 

on future work. 

10.1 Recap 

At the time of writing this dissertation, Monty passed 383 out of 425 tests in our 

test suite. Of the 42 failing tests, 29 are due to unknown bugs in our implementation. 

Our implementation does not support several Python features such as dynamic code 

execution, threads and context managers. 

We have implemented several performance optimizations in our translator and 
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runtime. The optimization techniques with the highest benefits can be placed in the 

following categories: 

1. Reducing memory allocation by careful design of object representation, and by 

efficient caching and reuse of allocated objects 

2. Specializing numeric and comparison methods for common cases such as built-in 

types 

3. Implementing libraries natively in OCaml instead of using the FFI 

4. Using OCaml's pattern matching effectively, such as implementing control flow 

with option types instead of exceptions 

The performance of Monty proved incomparable to that of CPython: Some pro

grams were 4.5 times faster, and some were 10 times slower. Most programs were 

faster (75% of our benchmarks). Compared to Jython, however, Monty generally 

produced significantly faster executables, in some cases, up to 100 times faster. 

On investigating why some programs run significantly slower in Monty than in 

CPython, we have profiled and isolated several factors. The FFI is the the most 

significant cause of performance loss, followed by printing methods and function stack 

management. OCaml suffers a penalty in allocating large arrays, which affects the 

performance of important data structures such as Python lists and tuples. From 

observing profiles of these programs, we believe that mitigating these factors can 

significantly improve the performance of our implementation. 
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In conclusion, our experiment shows that translating a dynamic language to a 

statically typed functional language does have the potential for being an effective 

technique for compiling dynamic languages for many programs, provided we can 

design our translator to leverage the efficiently implemented features of the target 

functional language. However, we have also identified potential obstacles that can 

limit the potential of the approach. In the next section, we describe opportunities for 

future work that can help us overcome these obstacles. 

10.2 Future work 

There are several areas of future research that we would like to work on in order 

to overcome the current limitations of our implementation: 

• Achieving completeness by adding unsupported features and fixing bugs 

• Optimizing the runtime 

• Improving performance of the FFI 

• Supporting large Python applications 

In this section, we discuss the above areas with specific examples. 

10.2.1 Completeness 

In order to achieve completeness, there are several Python features that we must 

support: 
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• Exec and eval: Python's exec and eval constructs allow code stored in strings 

to be evaluated at runtime in a specific environment. Our translator does 

not support this because the standard OCaml implementation cannot compile 

and load native code at runtime. However, MetaOCaml [41], a multi-stage 

extension of OCaml, supports dynamic native code loading, which may enable 

us to implement this feature in the future. 

• Dynamic import: In Python, a module whose name is known only at runtime 

may be imported dynamically. Currently, our translator assumes that imported 

modules are known at compile time and inlines their code. Dynamic import 

would require a dynamic loading facility similar to that of the case of exec and 

eval, hence MetaOCaml may serve our purpose. 

• Finalization: Python allows objects to define a del method which is 

called when the object is collected by either the garbage collector or at the end 

of the program. Generator objects define a close method for finalization. We 

do not currently support finalization because we do not manage memory explic

itly. However, OCaml does allow user-provided finalization methods for custom 

objects allocated via its C interface. This facility may be used to implement 

specialized objects which require finalization. 

• Threads: The threads module in the Python Standard Library provides an 

interface to the operating system threads. This module does not yet work 

correctly. The OCaml implementation provides a thread library, which may be 
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used to implement the Python threads module. 

• With context managers: Context managers (with-statement) allow a piece 

of code (a block) to perform a predetermined action on entry and exit. Sup

porting the with-statement in our translator requires adding support for it in 

the translator and generating the appropriate context management code. The 

following example, taken from the Python documentation [12], demonstrates 

the use of the with-statement. 

from decimal import Decimal, Context, localcontext 

# Displays with default precision of 28 digi ts 
v = Decimal('578') 
print v .sqr tO 

with localcontext(Context(prec=16)): 
# All code in th is block uses a precision of 16 d ig i t s . 
# The original context i s restored on exiting the block, 
print v .sqr tO 

• Identifying test case failures: 29 of 425 test cases in our test suite fail due 

to unknown reasons. We believe that these failures are a result of bugs in 

our implementation. Following the technique of isolating the smallest possible 

program with the failure would allow us to rapidly identify and fix these bugs. 

• Modifying CPython: Currently, the CPython implementation uses pointer 

comparison to determine subtyping. We would like to re-implement the subtyp-

ing check as a method call, which would allow our implementation of Python 
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objects to be identified as subtypes of the corresponding CPython ones. This 

requires a minor modification to one function in CPython (PyType_Subtype). 

10.2.2 Improving the source-to-source translation 

There are several improvements that we can make to the translator, both for 

performance and developer convenience: 

• Function parameters: Currently, every Python function call is translated 

to an equivalent OCaml function which takes a list and a dictionary as an 

argument. This is a source of inefficiency due to packing and unpacking of these 

function arguments. Finding more efficient ways of translating function calls, 

such as generating specialized code for common function argument patterns, is 

a potential source of improvement. 

9 Output code formatting: Currently, our generated OCaml code is quite dif

ficult to read, due to lack of attention to formatting. Generating well-formatted 

and highly human-readable output OCaml code would enable language devel

opers to better identify bugs and areas of weakness in the translation. 

10.2.3 Optimizing the FFI 

The FFI is the most outstanding performance bottleneck in our implementation. 

Programs using the FFI intensively may run over 10 times slower than CPython. We 

have identified some optimization opportunities in our FFI design. 
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1. Eliminate excess memory allocation during wrapping and unwrapping of val

ues before passing them between Python and OCaml runtimes. One way of 

achieving this is to maintain a pool of unused wrappers in both the OCaml and 

CPython runtimes. Another potential technique is to cache allocated wrappers 

so that they can be reused if the same value is passed multiple times across 

languages. Both these techniques require some book-keeping in the FFI. 

2. Some parameters of the OCaml-C interface can be tuned to control garbage 

collection for memory allocated during wrapping. For example, the 

caml_custom_alloc function which we use to allocate wrappers around Python 

pointers, allows the programmer to define a ratio indicating the frequency of 

garbage collection. This kind of perfomance tuning may provide some bene

fits, however, it requires some experimentation to find the best combination of 

parameters. 

10.2.4 Optimizing the runtime 

Profiling the benchmarks that suffered a slowdown compared to CPython revealed 

the following areas as potential bottlenecks in the runtime: 

1. Native implementation of libraries: Implementing native OCaml versions 

of Python Standard Library modules instead of using the FFI to access those 

functions provides a performance boost. For example, the math library module 

runs approximately 25 times faster using an OCaml implementation. However, 
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this is a time-consuming process as Python has over 100 libraries, consisting of 

approximately 100,000 lines of code. 

2. Print statements: Print statements can be further sped up by caching string 

representations of objects in order to reduce string allocation. 

3. Function stack management: Reducing the memory allocated per stack 

entry may improve the performance of our stack management code. Currently, 

we use OCaml's Stack library to represent the stack. This library is simply a 

thin wrapper around OCaml lists. Changing this representation, potentially by 

using arrays, may be effective in this case. 

4. MRO lookups: Representing the MRO using an array instead of a list is a 

potential strategy for improving lookup speed. Method lookups can be made 

faster by using the CPython strategy of using a specialized string-object dic

tionary internally for type objects. This CPython implementation strategy can 

be investigated by studying the source code of CPython's dictionary type. 

5. Removal of exceptions: In OCaml, exceptions can be used as a convenient 

control-flow mechanism. However, we have found that replacing this use of 

exceptions by pattern matching often leads to improved performance. Reducing 

the use of exceptions in the runtime and replacing them with option types 

usually provides some performance benefits. 

6. Hashing: Computing hash functions is a costly operation in OCaml, but must 
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be used extensively in Python for method lookups. We may consider investi

gating the performance of third-party libraries for string hashing to speed up 

dictionary lookups. 

7. Array allocation in OCaml: Improving the performance of large array al

location in OCaml, as compared to the current OCaml implementation, would 

benefit programs using list and tuple objects in our implementation. This may 

require modifying or creating a custom allocation function in C, similar to our 

re-implementation of array copying. 

In addition to the above factors, we have observed a slowdown due to the per

formance of some OCaml string operations and the numeric power operation. Our 

translation of Python functions with several keyword arguments has exposed ineffi

ciencies in argument processing, mainly due to repeated packing and unpacking of 

keywords in to dictionaries. These are some of the issues that must be addressed in 

order to obtain a more efficient implementation. 

10.2.5 Improving object representation 

Our current object representation contains some historical artifacts due to the 

evolving design process. Removing them could make our representation more elegant 

and fast. For example, we would like to move the props field in the obj record into 

the value representing the type object. This means that our universal value type 

would look like: 
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type raw = 
I Type of tp_record 
I . . . 

We believe that this redesign would not only make the object representation more 

elegant, but also may improve performance by making the obj record smaller in 

size. Since the obj record is frequently allocated, a smaller size would result in lesser 

memory allocation. However, it remains to be seen whether this reduced allocation 

would outweigh the cost of pattern matching to access methods as opposed to record 

fields. 

10.2.6 Support large applications 

Table 10.1 shows some of the large Python applications that we would like to 

support. 

Naiiie 
Mailman 
DrPython 
Natural Language Toolkit 
Frets on Fire 
Plone 
SciPy 
Matplotlib 

Type 
web, e-mail 
GUI 
Text 
GUI 
web, database 
math 
UI, math 

Description 
Mailing list manager 
Python IDE 
Natural language processing toolkit 
Guitar Hero-like game 
Content Management System 
Numerical and scientific computation library 
2D plotting library with Matlab-like syntax 

Table 10.1: Some large Python applications that we would like to support in the future. 

10.2.7 Long-term goals 

After achieving our goals for completeness and implementing our proposed opti

mizations, there are some long-term problems that we would like to address. 
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• Comparison with other Python implementations: We would like to run 

Monty on Windows and compare its performance with windows-specific imple

mentations such as IronPython. We would also like to compare the performance 

of Monty against just-in-time systems such as Psyco. 

• Type inference for Python: Our most effective optimizations have been 

those which specialize functions in the runtime for particular types. This sug

gests the importance of source-to-source compile time type inference in Python, 

which would allow us to specialize functions statically. Such a type infer

ence technique would remove the overhead of runtime type checking. However, 

Python's highly dynamic features, such as mutable methods, make such type 

inference challenging. 

• Minimal OCaml subset: The OCaml subset that we currently use as the 

target language is fairly small, but we do not know if there exists a smaller 

OCaml kernel that would suffice. A small target language makes source-to-

source optimizations easier to implement. We would therefore like to use a 

minimal OCaml subset for our generated code. 

• Evaluating the generated code: An important tool in the development of a 

translator using OCaml would be a method to evaluate whether the generated 

OCaml code is the most efficient. Such an evaluation technique would help 

estimate the limits of our compilation strategy and the effectiveness of various 

compile time optimizations. 
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Appendix A 

How to learn OCaml 

There are several free online resources available for beginners to learn OCaml 

rapidly, and for advanced users to consult as reference: 

• The OCaml manual [35]: This is a concise, comprehensive and up-to-date 

description of the OCaml language and all its features. It is extremely useful 

as a standard library reference and offers an excellent guide to OCaml's C 

interface. 

• Developing applications with Objective Caml [27]: This book is a 

comprehensive guide to OCaml. It includes a tutorial for new programmers 

and features useful descriptions of some of the internals of OCaml such as the 

garbage collector and the C interface. 

• Mailing lists: There are two important mailing lists for OCaml users: 

1. The OCaml beginners list: [9] This is used for most beginner and 

intermediate questions. 

2. The Caml list: [18] This is used mostly by advanced programmers and 
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developers. It is particularly helpful for understanding less documented 

details of OCaml and issues related to performance. 

Both the mailing lists are public; anyone with a valid email address can 

subscribe and participate in discussions. The past contents of both lists are 

available as searchable archives. 

• Source code: The source code of OCaml is publicly available [8]. The 

language is mostly implemented in a mix of OCaml and C, with some of the 

native code translator in assembly. We referred to the source code in two 

cases. First, while building our FFI, we needed to better understand the 

OCaml representation of values and the use of garbage collector functions. 

Second, in the optimization phase, we studied the implementation of standard 

library functions, particularly those for arrays, to determine why performance 

was unexpectedly poor in some cases. This study of the standard library 

source code led to some useful optimizations in our translator as well as a 

potential contribution to the OCaml code base. 
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Appendix B 

Timing data 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

N a m e 

OOlprint 
002simplearith 
003sequenceopp 
004morestrings 
005patternmatching 
0061ists 
007nestedlists 
008column 
009column2 
OlOdiagonal 
016haskey 
017tuples 
018sets 
0191istrep 
020simpleclass 
021boolops 
022conversion 
023strrepr 
024divisionfloor 
025complexnums 
026decimal 
027dynamictype 
028referencing 
029rawstring 
030triplequote 
031unicode 
032stride 
033stringconversion 
034changestrings 
035formatstrings 
036dictstringformat 
037stringfuncts 
0381istdel 
039dictionary2 
040tuples2 
041reforcopy 
042comparison 
043morerepetition 
044if 

C P y t h o n 
t ime 

2.39 
2.43 
2.35 
3.01 
3.40 
2.70 
2.62 
2.88 
2.97 
2.53 
2.32 
3.38 
2.76 
2.67 
2.79 
2.41 
3.37 
2.36 
2.88 
4.16 
4.10 
2.74 
3.39 
3.03 
2.30 
3.57 
2.70 
3.01 
2.63 
2.59 
2.36 
2.79 
2.77 
3.03 
2.91 
2.64 
3.04 
2.32 
2.72 

OCaml 
t i m e 

2.41 
7.06 
0.88 
10.35 
9.40 
3.06 
1.06 
1.90 
1.22 
0.98 
1.66 
1.79 
7.72 
1.43 
1.95 
0.71 
4.56 
4.03 
1.23 
4.20 
5.03 
2.36 
2.14 
1.34 
1.11 
2.42 
1.57 
0.95 
1.36 
4.60 
5.97 
7.58 
1.32 
2.24 
1.71 
1.82 
1.75 
1.03 
1.24 

Jython 
t i m e 

20.55 
17.51 
17.06 
17.83 
33.23 
23.45 
10.34 
NA 
14.29 
11.52 
15.92 
18.69 
13.72 
8.23 
14.25 
15.4 
38.3 
24.57 
15.87 
7.86 
19.14 
23.59 
17.94 
21.17 
43.02 
21.99 
26.77 
14.51 
17.17 
13.48 
11.25 
13.08 
11.97 
16.8 
16.84 
18.85 
19.73 
8.18 
18.66 

P y t h o n 
word 
count 
19 
14 
38 
10 
21 
11 
15 
34 
23 
18 
14 
16 
13 
26 
44 
16 
20 
9 
16 
10 
20 
37 
53 
32 
25 
26 
35 
26 
25 
41 
19 
12 
32 
20 
41 
37 
16 
20 
90 

OCaml 
word 
count 
504 
464 
694 
478 
904 
419 
501 
1036 
730 
763 
547 
480 
629 
608 
2057 
429 
553 
481 
623 
370 
599 
698 
822 
660 
466 
515 
664 
727 
611 
639 
479 
464 
586 
861 
854 
1234 
521 
560 
998 

Translate 
time 

0.026 
0.026 
0.030 
0.027 
0.028 
0.027 
0.029 
0.029 
0.029 
0.029 
0.027 
0.027 
0.027 
0.028 
0.030 
0.026 
0.028 
0.027 
0.027 
0.026 
0.028 
0.029 
0.030 
0.028 
0.027 
0.027 
0.029 
0.029 
0.029 
0.028 
0.027 
0.027 
0.029 
0.028 
0.030 
0.030 
0.027 
0.027 
0.031 

Compile 
t i m e 

0.515 
0.521 
0.520 
0.515 
0.550 
0.526 
0.531 
0.550 
0.531 
0.548 
0.528 
0.519 
0.519 
0.520 
0.641 
0.512 
0.518 
0.523 
0.511 
0.520 
0.518 
0.539 
0.523 
0.521 
0.511 
0.508 
0.536 
0.521 
0.519 
0.516 
0.519 
0.514 
0.531 
0.544 
0.538 
0.553 
0.522 
0.515 
0.548 
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40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

045assignment 
046advancedstrings 
0481istextend 
049multiline 
050truth 
051onelineif 
052while 
054fact 
055tuplefor 
056zipmap 
058enumerate 
0591istcomp 
060simplefunctions 
061scope 
062keywords 
0631ambda 
064map 
065filterreduce 
066generator 
068simpleclass 
069inheritance 
070moregenerator 
071stack 
072queue 
073smallclass 
074classinstance 
075method 
076superclass 
077override 
078extend 
079abstract 
080overload 
081getitem 
083iterationdef 
084attribute 
085returnstring 
086radd 
087call 
089scope 
091funct 
092simpleprint 
093moresimplestring 
094strings 
095count 
097eq 
097morefloat 
lOlstring 
102tuple 
Calls 
Exceptions 
L03areadisc 
L03arearing 
L03profit 
L04classcourse 
LlOQuicksort 
L4quad 
Strings 
ackerman 
ackermann 
advclassl 
apples 

2.86 
2.79 
3.53 
2.51 
2.74 
2.79 
2.21 
2.05 
2.85 
2.34 
2.97 
3.01 
2.42 
2.32 
2.81 
2.91 
0.30 
2.59 
3.48 
2.79 
2.73 
2.14 
3.02 
2.59 
2.51 
2.35 
3.05 
3.13 
3.36 
3.04 
2.56 
2.42 
3.49 
3.20 
3.39 
3.23 
2.36 
3.51 
3.53 
2.90 
2.62 
2.69 
2.48 
3.15 
3.64 
3.16 
3.17 
2.28 
2.29 
2.41 
3.24 
2.72 
2.54 
2.17 
2.76 
2.92 
2.16 
4.32 
1.80 
3.05 
2.75 

1.49 
1.06 
1.61 
1.09 
1.04 
0.78 
0.99 
1.95 
1.28 
3.98 
2.42 
1.69 
1.89 
1.18 
1.88 
1.65 
0.20 
0.84 
1.11 
2.09 
2.04 
1.75 
1.40 
1.37 
1.15 
1.24 
1.75 
1.88 
2.67 
2.07 
1.92 
1.57 
1.93 
3.30 
1.60 
2.80 
1.01 
3.95 
2.58 
4.54 
3.69 
5.79 
1.00 
15.95 
2.80 
4.41 
1.27 
1.05 
2.83 
1.72 
3.80 
3.03 
2.56 
1.56 
1.64 
1.73 
2.27 
3.18 
1.66 
2.16 
2.95 

23.27 
17.51 
13.9 
14.29 
19.62 
15.72 
15.14 
5.64 
25.6 
11.16 
16.53 
8.98 
10.01 
12.64 
18.11 
10.69 
2.42 
9.87 
17.59 
15.53 
16.17 
8.28 
13.28 
10.41 
15.21 
14.82 
19.91 
15.09 
24.25 
17.5 
16.94 
9.03 
16.76 
NA 
11.56 
18.34 
10.96 
16.6 
23.2 
38.32 
27.77 
30.46 
26.1 
14.14 
40.53 
28.85 
19.01 
16.35 
9.68 
3.46 
37.87 
26.45 
20.93 
15.44 
8.54 
13.07 
11.29 
15.63 
7.04 
18.41 
30.36 

39 
48 
54 
36 
31 
36 
38 
16 
19 
26 
41 
73 
70 
33 
53 
43 
25 
15 
17 
25 
35 
27 
23 
28 
15 
65 
16 
36 
26 
61 
24 
47 
17 
31 
20 
23 
35 
23 
36 
29 
40 
28 
36 
21 
51 
27 
56 
64 
348 
648 
19 
17 
26 
67 
46 
38 
511 
58 
48 
57 
34 

943 
1254 
994 
514 
570 
595 
731 
600 
685 
601 
1183 
1653 
2076 
908 
1567 
1579 
879 
620 
879 
1282 
1810 
1172 
778 
1191 
608 
1096 
928 
1587 
1363 
3008 
1296 
1743 
883 
1433 
968 
1168 
1642 
994 
1650 
979 
733 
639 
668 
639 
1320 
667 
1366 
1924 
13777 
8481 
746 
1119 
1734 
2532 
1378 
1075 
6219 
1234 
1211 
3943 
1042 

0.029 
0.031 
0.031 
0.029 
0.028 
0.028 
0.029 
0.027 
0.027 
0.028 
0.029 
0.031 
0.033 
0.029 
0.031 
0.031 
0.029 
0.028 
0.027 
0.029 
0.030 
0.029 
0.029 
0.030 
0.027 
0.030 
0.028 
0.029 
0.028 
0.033 
0.028 
0.030 
0.028 
0.029 
0.028 
0.028 
0.029 
0.028 
0.029 
0.029 
0.029 
0.028 
0.028 
0.028 
0.031 
0.029 
0.031 
0.034 
0.111 
0.059 
0.028 
0.029 
0.031 
0.032 
0.032 
0.030 
0.070 
0.030 
0.030 
0.036 
0.030 

0.545 
0.561 
0.534 
0.530 
0.515 
0.534 
0.515 
0.527 
0.516 
0.516 
0.557 
0.561 
0.680 
0.522 
0.584 
0.570 
0.552 
0.536 
0.518 
0.568 
0.614 
0.540 
0.550 
0.554 
0.525 
0.539 
0.535 
0.618 
0.590 
0.743 
0.575 
0.610 
0.535 
0.584 
0.562 
0.569 
0.625 
0.557 
0.604 
0.551 
0.538 
0.520 
0.548 
0.532 
0.541 
0.525 
0.584 
0.569 
1.183 
0.751 
0.539 
0.551 
0.597 
0.717 
0.618 
0.556 
0.849 
0.558 
0.559 
0.977 
0.544 

176 



101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 

areaconversion 
arguments 
argumenty 
arithmatic 
assignment 1 
assignment2 
assignments 
assignment4 
assignments 
assignment6 
bank 
basicmath 
beer 
binary-trees 
binary .numeric 
bintreejter 
bintree_rec 
bisect 
bitwise 
bool 
breaking 
builtin-inheritance 
case 
case2 
case3 
chained 
cheeseshop 
cities 
class 
classic.classjstr 
collectarg 
commandlinel 
comparison 
comparisonTests 
complexcompl 
complexcomp2 
complexcomp3 
complexrium 
comprehension 
converter 
coop 
cycle 
dlmport 
dateday 
decimal2binary 
decorator 
del 
deldup 
deranged 
diciterators 
diet 
dictcomp2 
dictionary 
diczip 
dinnerxml 
doc 
enum 
enumerate 
enumerate-segfault 
euler 
evens 

3.23 
3.11 
3.35 
3.34 
2.96 
1.99 
2.46 
1.51 
4.12 
2.39 
2.98 
2.85 
2.77 
1.67 
3.37 
2.83 
2.66 
2.80 
3.09 
3.20 
2.33 
2.06 
3.35 
2.57 
2.66 
3.69 
2.93 
2.81 
2.78 
2.94 
2.56 
3.02 
2.66 
2.13 
2.13 
2.59 
2.60 
3.47 
2.59 
3.51 
2.25 
2.38 
2.17 
3.52 
2.75 
2.93 
3.15 
2.12 
3.01 
2.35 
2.24 
3.07 
2.24 
2.50 
2.27 
2.43 
3.76 
2.83 
3.43 
8.44 
3.25 

4.72 
2.08 
2.67 
2.20 
1.26 
1.38 
0.71 
0.72 
2.25 
0.93 
2.97 
2.30 
4.30 
2.02 
4.60 
0.61 
1.15 
2.21 
1.65 
1.84 
1.86 
1.21 
3.04 
1.27 
1.74 
15.82 
2.30 
4.82 
2.77 
2.15 
3.91 
2.52 
2.18 
0.79 
1.30 
2.00 
1.87 
3.82 
1.47 
7.25 
1.55 
2.15 
2.13 
1.73 
3.21 
2.45 
1.51 
1.63 
2.71 
1.73 
4.12 
2.09 
2.55 
1.21 
3.90 
1.26 
2.48 
1.45 
1.91 
8.72 
1.69 

20.06 
13.34 
15.55 
23.1 
23.66 
21.04 
16.67 
12.8 
14.59 
15.31 
16.01 
28.36 
18.87 
6.73 
32.94 
6.78 
21.71 
25.82 
15.21 
21.03 
6.62 
11.46 
37.84 
16.15 
18.45 
8.02 
26.23 
8.61 
15.5 
13.68 
15.13 
33.48 
12.31 
14.55 
11.79 
10.05 
10.05 
7.72 
11.32 
34.16 
16.24 
4.56 
25.73 
16.11 
4.91 
24.54 
16.62 
8.91 
9.7 
18.9 
12.87 
28.12 
18.26 
13.6 
NA 
17.1 
20.92 
19.98 
21.32 
5.92 
10.45 

265 
39 
21 
40 
19 
21 
24 
16 
24 
16 
36 
12 
46 
194 
384 
145 
151 
326 
69 
9 
165 
19 
16 
24 
10 
155 
63 
463 
36 
9 
10 
146 
205 
740 
21 
35 
25 
21 
42 
483 
93 
71 
25 
247 
194 
175 
224 
63 
78 
14 
85 
14 
25 
13 
73 
35 
7 
12 
17 
134 
28 

2175 
1929 
971 
1688 
661 
950 
1104 
756 
643 
614 
1858 
1078 
525 
2659 
4934 
3871 
3638 
5059 
755 
477 
1942 
1073 
669 
584 
736 
2361 
1605 
6539 
2205 
508 
679 
1107 
7191 
6200 
1250 
1373 
1000 
954 
1462 
20043 
2402 
1389 
563 
2996 
1898 
6921 
3327 
1255 
1358 
851 
2774 
1132 
1084 
725 
1398 
829 
653 
715 
684 
952 
843 

0.041 
0.030 
0.028 
0.029 
0.028 
0.029 
0.029 
0.028 
0.028 
0.027 
0.030 
0.030 
0.028 
0.036 
0.048 
0.041 
0.037 
0.052 
0.029 
0.027 
0.032 
0.028 
0.029 
0.028 
0.029 
0.032 
0.031 
0.077 
0.033 
0.026 
0.028 
0.031 
0.050 
0.067 
0.030 
0.031 
0.029 
0.029 
0.030 
0.100 
0.031 
0.031 
0.027 
0.044 
0.034 
0.045 
0.045 
0.031 
0.031 
0.029 
0.034 
0.032 
0.031 
0.030 
0.032 
0.028 
0.027 
0.027 
0.028 
0.030 
0.029 

0.733 
0.628 
0.542 
0.619 
0.529 
0.548 
0.557 
0.537 
0.542 
0.524 
0.647 
0.550 
0.524 
0.708 
0.686 
0.802 
0.782 
0.867 
0.532 
0.533 
0.613 
0.567 
0.528 
0.530 
0.541 
0.672 
0.602 
1.917 
0.701 
0.523 
0.528 
0.555 
1.173 
0.985 
0.548 
0.560 
0.551 
0.543 
0.552 
5.592 
0.676 
0.588 
0.528 
0.873 
0.615 
1.596 
0.772 
0.582 
0.561 
0.541 
0.724 
0.592 
0.579 
0.540 
0.605 
0.533 
0.523 
0.527 
0.519 
0.551 
0.542 
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162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 

excjnfo 
exn-inherit 
fannkuch 
fibonacci 
floatcmpl 
floatcmpll 
floatcmpl2 
floatcmpl3 
floatcmpl4 
floatcmpl5 
floatcmpl6 
floatcmpl7 
floatcmp2 
floatcmp3 
floatcmp4 
floatcmp5 
floatcmp6 
floatcmp7 
floatcmp8 
floatcmp9 
floatopl 
floatop2 
floatop3 
floatop4 
format 
funcargs 
function 1 
function2 
function3 
function4 
function5 
fundefault 
generator 
global 
greet 
hashlib.test 
hello 
hellol 
hellolO 
hello2 
hello3 
hello4 
hello5 
hello6 
hello7 
hello8 
hello9 
imap 
import 1 
import2 
import4 
importerror 
indexerror 
inheritence 
inputcheck 
intersectionfunction 
intobj 
intopl 
intop2 
intop3 
intop4 

2.25 
2.21 
4.11 
1.89 
2.65 
3.64 
3.64 
3.64 
2.28 
2.56 
2.94 
2.93 
1.71 
3.65 
2.84 
2.63 
3.09 
3.09 
5.62 
5.65 
2.70 
3.58 
3.25 
2.26 
3.01 
3.12 
4.75 
2.48 
2.84 
2.72 
3.13 
3.60 
2.73 
3.09 
2.91 
2.01 
2.51 
2.53 
3.07 
3.44 
3.37 
4.66 
1.94 
2.54 
3.84 
3.70 
2.61 
3.90 
2.06 
1.86 
2.32 
9.49 
2.99 
2.90 
2.87 
2.87 
2.82 
3.46 
2.23 
3.27 
2.74 

2.11 
2.12 
3.15 
1.78 
1.08 
1.49 
1.56 
1.54 
0.77 
1.12 
1.53 
1.53 
0.60 
1.69 
0.94 
1.12 
1.26 
1.26 
2.32 
2.26 
2.49 
1.01 
1.16 
0.75 
4.55 
1.88 
3.54 
2.12 
1.66 
1.94 
2.45 
2.05 
1.04 
2.41 
1.60 
5.15 
1.61 
1.54 
1.38 
1.81 
1.60 
3.76 
1.01 
1.80 
2.26 
2.34 
3.64 
4.22 
2.20 
2.06 
2.46 
9.58 
1.00 
2.01 
5.24 
2.26 
3.71 
1.17 
0.77 
2.11 
0.87 

11.12 
6.87 
9.77 
7.35 
NA 
31.58 
30.84 
30.81 
13.83 
22.31 
24.97 
25.09 
10.69 
31.84 
16.68 
19.22 
19.46 
19.32 
30.34 
31.07 
NA 
NA .. . 
NA : 
NA . 
16.38 
31.14 
105.38 
12.69 
16.98 
12.04 
13.62 
30.94 
12.32 
16.86 
24.6 
11.21 
68.13 
68.22 
21.8 
26.02 
24.44 
NA 
14.44 
79.03 
130.92 
141.89 
17.16 
33.75 
NA 
NA 
NA 
192.41 
10.69 
20.52 
19.31 
12.41 
10.22 
13.11 
14.76 
NA 
14.7 

120 
61 
127 
35 
12 
15 
15 
15 
20 
15 
15 
15 
19 
25 
21 
15 
15 
15 
15 
15 
12 
6 
10 
10 
57 
88 
11 
13 
20 
15 
13 
14 
164 
73 
12 
34 
7 
7 
16 
10 
13 
11 
21 
8 
7 
9 
23 
76 
15 
17 
18 
21 
26 
36 
70 
30 
71 
10 
17 
8 
16 

3358 
1916 
2211 
615 
679 
511 
511 
511 
522 
511 
511 
511 
519 
541 
529 
523 
554 
554 
537 
537 
632 
381 
577 
553 
837 
1260 
584 
600 
618 
777 
763 
1034 
3674 
947 
671 
1057 
322 
322 
801 
485 
532 
502 
856 
355 
344 
380 
631 
1706 
1502 
1512 
1032 
508 
518 
3320 
830 
1422 
2376 
528 
511 
460 
595 

0.037 
0.032 
0.042 
0.027 
0.028 
0.027 
0.027 
0.027 
0.027 
0.027 
0.028 
0.027 
0.027 
0.028 
0.028 
0.027 
0.028 
0.027 
0.027 
0.027 
0.029 
0.027 
0.027 
0.027 
0.029 
0.030 
0.027 
0.027 
0.028 
0.027 
0.027 
0.029 
0.038 
0.028 
0.028 
0.029 
0.026 
0.026 
0.027 
0.027 
0.027 
0.027 
0.028 
0.026 
0.026 
0.027 
0.027 
0.031 
0.031 
0.032 
0.030 
0.027 
0.028 
0.036 
0.029 
0.031 
0.033 
0.027 
0.027 
0.027 
0.028 

0.846 
0.612 
0.634 
0.535 
0.520 
0.516 
0.520 
0.509 
0.518 
0.508 
0.519 
0.511 
0.510 
0.519 
0.511 
0.521 
0.518 
0.522 
0.508 
0.518 
0.517 
0.509 
0.515 
0.522 
0.550 
0.612 
0.519 
0.530 
0.527 
0.521 
0.523 
0.572 
0.787 
0.525 
0.533 
0.540 
0.515 
0.517 
0.538 
0.521 
0.527 
0.515 
0.529 
0.523 
0.513 
0.507 
0.528 
0.596 
0.601 
0.603 
0.545 
0.511 
0.526 
0.857 
0.539 
0.613 
0.735 
0.520 
0.521 
0.521 
0.530 
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223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245, 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 

intop5 
introspection 
isprime 
iter .test 1 
iterable 
iterators 
iterkeys 
k-nucleotide 
kargs 
kargs2 
keyerror 
keys 
lambda 
lambdal 
lambda2 
lambda3 
lambda4 
lambda5 
lambda6 
lambda7 
lambdamap 
linearsearch 
listcomp 
listcompl 
listcomp2 
listcomprevisited 
list copy 
listextend 
listextend2 
listmodify 
lists 
loopl 
lbwertri 
mandelbrot 
map2 
mapfunc 
mapord 
mappow 
math.test 
mathlib 
matrix 
max 
metaclass 
meteror-contest 
method-equality 
modifylist 
modifylist2 
multiline 
multiline2 
n-body 
names 
nameshort 
nbody 
newjnit 
none 
nsieve 
numericinput 
onelinereturn 
oop-error 
operations 
operatorreduce 

2.75 
0.26 
3.86 
3.92 
2.86 
2.11 
3.00 
3.68 
2.54 
3.21 
3.68 
3.69 
3.26 
2.81 
2.95 
3.07 
2.53 
2.01 
3.13 
3.46 
2.84 
2.24 
1.91 
3.00 
2.47 
3.47 
2.40 
2.14 
2.80 
2.89 
2.17 
3.76 
4.03 
0.90 
2.90 
2.95 
2.63 
2.28 
3.30 
6.48 
2.20 
2.68 
4.05 
2.68 
5.38 
1.63 
3.71 
3.81 
1.93 
2.41 
3.38 
2.93 
2.82 
4.69 
2.84 
1.36 
2.51 
2.85 
2.99 
3.39 
2.85 

1.13 
0.16 
8.79 
1.79 
10.38 
1.24 
5.16 
5.14 
3.15 
2.78 
0.91 
6.60 
1.35 
1.65 
2.16 
2.07 
4.05 
1.89 
1.88 
1.81 
1.50 
1.22 
0.92 
1.72 
1.11 
4.71 
1.26 
1.78 
1.39 
1.30 
4.18 
1.93 
3.08 
0.72 
2.11 
2.26 
1.67 
6.85 
3.46 
7.04 
0.97 
1.49 
1.39 
20.80 
2.32 
1.98 
3.52 
3.33 
1.68 
1.25 
6.16 
6.60 
1.61 
2.95 
1.23 
2.11 
1.52 
4.62 
2.81 
1.43 
15.10 

19.76 
20.59 
9.97 
14.14 
12.7 
16.74 
12.81 
13.12 
15.83 
22.85 
13.26 
29.24 
16.28 
12.99 
13.22 
14.77 
13.04 
12.28 
13.88 
14.8 
10.51 
10.01 
11.67 
19.57 
12.74 
17.81 
10.26 
13.59 
10.74 
9.96 
14.14 
18.97 
35.35 
3.31 
10.6 
13.47 
8.49 
8.35 
43.69 
86.72 
11.44 
12.24 
11.51. 
9.06 
27.77 
NA 
NA 
70.09 
12.35 
6.18 
12.55 
11.35 
8.22 
101 
9.75 
5.23 
16.93 
37.99 
16.05 
21.35 
10.72 

22 
125 
153 
169 
10 
20 
15 
209 
9 
12 
84 
60 
21 
10 
10 
15 
31 
23 
13 
18 
10 
24 
66 
16 
18 
31 
11 
17 
11 
14 
40 
24 
13 
162 
11 
8 
6 
6 
37 
16 
59 
23 
91 
636 
25 
13 
22 
21 
24 
389 
23 
60 
373 
117 
18 
131 
32 
22 
33 
25 
12 

633 
2203 
1363 
3645 
517 
771 
782 
4822 
669 
1035 
969 
947 
936 
844 
781 
898 
1102 
758 
874 
823 
658 
894 
1450 
643 
918 
1007 
538 
677 
484 
628 
904 
903 
539 
2319 
781 
592 
382 
426 
592 
655 
1592 
1157 
3053 
13832 
347 
891 
1350 
759 
759 
6789 
720 
1253 
6986 
4293 
605 
1856 
588 
927 
1291 
661 
491 

0.028 
0.038 
0.032 
0.044 
0.029 
0.029 
0.028 
0.045 
0.027 
0.029 
0.031 
0.031 
0.028 
0.028 
0.028 
0.028 
0.029 
0.029 
0.028 
0.028 
0.027 
0.029 
0.033 
0.029 
0.031 
0.030 
0.028 
0.029 
0.027 
0.028 
0.030 
0.029 
0.027 
0.037 
0.028 
0.028 
0.027 
0.027 
0.028 
0.028 
0.043 
0.031 
0.033 
0.084 
0.027 
0.029 
0.030 
0.029 
0.028 
0.062 
0.028 
0.030 
0.063 
0.036 
0.028 
0.032 
0.028 
0.029 
0.029 
0.028 
0.028 

0.531 
0.655 
0.576 
1.015 
0.520 
0.532 
0.549 
0.930 
0.531 
0.580 
0.531 
0.532 
0.538 
0.546 
0.541 
0.537 
0.554 
0.538 
0.535 
0.538 
0.532 
0.560 
0.576 
0.542 
0.542 
0.535 
0.536 
0.531 
0.534 
0.531 
0.542 
0.549 
0.521 
0.650 
0.535 
0.528 
0.505 
0.522 
0.519 
0.524 
0.601 
0.591 
0.833 
2.170 
0.521 
0.532 
0.551 
0.531 
0.531 
1.402 
0.530 
0.569 
1.435 
0.977 
0.529 
0.623 
0.527 
0.552 
0.584 
0.519 
0.515 
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284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 

ord 
ordcomp 
overflow 
overload .numeric 
overloading 
parrot 
partial-sums 

Pi 
piglatin 
powerset 
prime 
primes 
primetest 
print 
print 1 
print2 
printingl 
printsys 
pystone 
Pythagorean 
queens 
queuetest 
rand 
range 
range2 
recursy 
reduce 
regex-dna 
regex 
replace 
repr 
search 
sets 
simple 
simpleconstructs 
simpledictops 
simplefloatops 
simpleinstances 
simpleintops 
simplelistops 
simplelookups 
simplenumbers 
simpletupleops 
simpson 
slice 
slice2 
slice3 
slice4 
slice5 
slice6 
slot_dict 
slots 
small 
sort l 
spectral-norm 
splitlist 
splitting-none 
statements 
str-func 
string-formatting 
string.exception 

2.59 
3.94 
3.32 
4.34 
3.04 
3.10 
1.42 
1.75 
2.45 
2.56 
3.50 
2.40 
3.62 
2.15 
2.92 
2.83 
2.90 
2.31 
2.74 
3.18 
1.84 
2.97 
3.15 
2.51 
3.42 
3.48 
2.60 
1.82 
2.92 
2.22 
2.90 
2.76 
2.88 
4.02 
2.42 
2.35 
2.04 
2.22 
2.08 
2.54 
1.88 
2.67 
2.60 
2.70 
1.65 
1.72 
3.73 
3.22 
2.69 
1.64 
1.73 
2.58 
1.93 
2.62 
2.67 
3.56 
3.05 
4.29 
3.49 
3.05 
4.42 

1.26 
1.69 
1.66 
7.03 
2.26 
1.88 
0.78 
1.38 
12.21 
2.39 
1.84 
1.84 
2.45 
2.42 
1.05 
0.97 
3.63 
24.29 
3.06 
5.01 
1.87 
3.41 
5.11 
1.29 
1.43 
1.88 
0.95 
2.03 
4.98 
4.66 
2.12 
1.86 
8.30 
1.04 
2.24 
2.26 
1.12 
2.47 
1.20 
1.56 
1.24 
1.27 
1.38 
1.23 
1.09 
1.16 
1.54 
1.39 
1.18 
0.72 
1.74 
1.99 
2.38 
2.33 
2.24 
1.78 
10.03 
1.97 
2.29 
1.52 
2.19 

7.39 
13.76 
NA 
16.35 
15.63 
31.69 
3.58 
5.9 
8.25 
6.39 
15.31 
7.14 
6.5 
18.3 
30.82 
29.55 
21.98 
166.94 
12.58 
32.5 
7.29 
12.62 
8.96 
8.83 
30.23 
19.56 
10.1 
34.83 
16.8 
30.86 
11.8 
6.4 
18.77 
7.76 
20.38 
22.56 
4.01 
12.73 
4.99 
7.31 
9.69 
9.86 
8.88 
7 
14.04 
14.45 
17.46 
17.27 
14.84 
9.77 
12.93 
18.01 
NA 
10.86 
8.37 
18.55 
14.84 
18.49 
14.59 
19.85 
17.88 

12 
10 
67 
168 
31 
57 
207 
180 
390 
86 
34 
19 
33 
20 
86 
145 
259 
12 
706 
152 
63 
21 
37 
6 
14 
15 
26 
134 
27 
264 
45 
207 
28 
73 
1467 
815 
529 
92 
529 
232 
1648 
1831 
831 
105 
8 
8 
8 
9 
9 
8 
43 
186 
6 
102 
119 
10 
33 
30 
28 
51 
27 

646 
532 
1002 
3112 
2095 
1260 
2793 
2694 
4971 
2334 
913 
1354 
1029 
699 
1182 
2279 
1607 
491 
11970 
2349 
2181 
693 
1242 
489 
737 
684 
865 
2411 
762 
2286 
2204 
3909 
767 
933 
9358 
7830 
4525 
2865 
4491 
3179 
11987 
8438 
8874 
2602 
675 
685 
742 
675 
675 
700 
1490 
2786 
465 
1077 
4031 
635 
587 
825 
1443 
869 
602 

0.028 
0.028 
0.030 
0.035 
0.032 
0.030 
0.042 
0.036 
0.058 
0.035 
0.029 
0.032 
0.030 
0.027 
0.032 
0.035 
0.033 
0.027 
0.083 
0.032 
0.032 
0.028 
0.031 
0.027 
0.029 
0.027 
0.027 
0.036 
0.029 
0.036 
0.031 
0.047 
0.029 
0.029 
0.127 
0.155 
0.059 
0.040 
0.058 
0.062 
0.172 
0.171 
0.149 
0.035 
0.029 
0.028 
0.028 
0.028 
0.028 
0.028 
0.029 
0.037 
0.027 
0.029 
0.038 
0.028 
0.028 
0.028 
0.029 
0.028 
0.028 

0.526 
0.511 
0.538 
0.738 
0.670 
0.609 
0.748 
0.670 
0.988 
0.651 
0.539 
0.558 
0.534 
0.531 
0.629 
0.706 
0.607 
0.521 
3.305 
0.637 
0.613 
0.535 
0.570 
0.532 
0.530 
0.536 
0.535 
0.931 
0.527 
0.668 
0.673 
0.847 
0.541 
0.533 
0.825 
0.830 
0.611 
0.697 
0.611 
0.591 
0.961 
0.777 
0.950 
0.692 
0.538 
0.530 
0.525 
0.525 
0.525 
0.541 
0.621 
0.746 
0.516 
0.559 
0.777 
0.532 
0.512 
0.531 
0.594 
0.550 
0.515 
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345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 

sum-file 
sums 
takeuchi 
ternaryifelse 
testexceptions 
triangle 
try 
tuple 
type 
typeconversion 
union 
unpackarg 
uppertri 
valueerror 
valueintolist 
weirdfunction 
whilel 
while2 
while3 
whilebreak 
whilecontinue 
wordfreq 
wordtonum 
zerodivision 
zip 
mathmodule 

2.73 
2.21 
1.71 
3.11 
2.67 
2.98 
2.17 
2.43 
2.47 
3.17 
4.02 
3.29 
2.18 
1.51 
1.64 
3.06 
2.45 
2.70 
3.21 
3.48 
3.38 
2.47 
2.31 
2.08 
4.06 
3.76 

5.07 
2.36 
1.63 
2.62 
12.60 
1.15 
1.64 
1.55 
3.00 
3.00 
4.72 
1.97 
0.96 
0.55 
2.24 
4.17 
1.32 
1.17 
1.61 
1.36 
1.57 
4.04 
7.30 
1.05 
2.42 
1.02 

7.94 
5.15 
6.61 
68.08 
11.92 
20.57 
14.03 
10.97 
19.11 
35.39 
21.27 
23.34 
15.65 
5.91 
20.58 
13.84 
9.69 
10.67 
18.3 
17.51 
13.94 
10.47 
20.41 
11.96 
23.68 
13.65 

68 
37 
41 
12 
79 
30 
44 
11 
16 
17 
109 
11 
17 
25 
157 
17 
16 
17 
11 
19 
19 
195 
835 
146 
22 
191 

1560 
667 
934 
507 
1582 
1033 
728 
592 
774 
753 
2217 
1056 
631 
570 
3190 
1032 
700 
621 
597 
675 
579 
2163 
4779 
1173 
1281 
5863 

0.032 
0.028 
0.029 
0.027 
0.032 
0.028 
0.029 
0.028 
0.028 
0.029 
0.033 
0.029 
0.027 
0.028 
0.076 
0.028 
0.029 
0.028 
0.027 
0.028 
0.028 
0.033 
0.056 
0.031 
0.032 
0.0883 

0.609 
0.531 
0.534 
0.530 
0.598 
0.543 
0.528 
0.524 
0.530 
0.544 
0.647 
0.554 
0.510 
0.516 
1.021 
0.558 
0.531 
0.536 
0.525 
0.539 
0.531 
0.703 
1.909 
0.558 
0.601 
0.726 
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Appendix C 

Performance bottlenecks in the generated OCaml 

code 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

N a m e 
printsys 
meteror-contest 
operatorreduce 
piglatin 
095count 
testexceptions 
chained 
iterable 
004morestrings 
splitting-none 
wordtonum 
mappow 
002simplearith 
sets 
005patternmatching 
018sets 
037stringfuncts 
036dictstringformat 
hashlib.test 
nameshort 
isprime 
093moresimplestring 
converter 
replace 
lists 
sum-file 
diet 
inputcheck 
names 
keys 
035formatst rings 
cities 
dinnerxml 

Speedup 
0.09 
0.13 
0.19 
0.2 
0.2 
0.21 
0.23 
0.28 
0.29 
0.3 
0.32 
0.33 
0.34 
0.35 
0.36 
0.36 
0.37 
0.39 
0.39 
0.44 
0.44 
0.46 
0.48 
0.48 
0.52 
0.54 
0.54 
0.55 
0.55 
0.56 
0.56 
0.58 
0.58 

F
F

I 

9 

P
ri

n
t 

• 

• 
• 

• 

• 
• 

• 

• 

• 
• 
• 

L
oo

k
u

p
 

• 

P
ow

er
 

• 

• 

B
ig

ln
t 

• 

• 

A
rr

ay
 A

ll
oc

 

• 

• 

• 

• 

O
th

er
 

• 

• 

Explanat ion 
sys.stdout library module 
bitwise long int operations 
operator library module 
string library module 
CPython string methods 
string library module 
array allocation 
array printing, scanning 
CPython string methods 
OCaml Str library 
re regexp library module 
array allocation, printing 
OCaml power operation, printing 
CPython set object 
re regexp library module 
CPython set object, array allocation 
OCaml Str library 
string formatting 
hashlib library module 
OCaml Str library, string slicing 
array allocation using range() function 
OCaml BigJnt operations 
string formatting, re regexp module 
re regexp library module 
array printing, allocation 
OCaml power operation 
string formatting, MRO lookups 
CPython string methods 
string formatting, global variable update 
dictionary lookups 
string formatting 
OCaml Str library 
CPython set object 
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34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

iterkeys 
023strrepr 
056zipmap 
regex 
wordfreq 
onelinereturn 
overload-numeric 
rand 
lambda4 
Pythagorean 
beer 
nsieve 
091funct 
collectarg 
format 
areaconversion 
092simpleprint 
097morefioat 
hello9 
k-nucleotide 
weirdfunction 
valueintolist 
binary-numeric 
022conversion 
listcomprevisited 
intobj 
printingl 
Calls 
kargs 
small 
type 
026decimal 
modify list 
binary-trees 
union 
L03areadisc 
decimal2binary 
queiietest 
dictionary 
0061ists 
print 
087call 
regex-dna 
L03arearing 
import2 
complexnum 
imap 
mathlib 
apples 
import 1 
import4 
sums 
Strings 
math-test 
083iterationdef 
slot-diet 
L03proflt 
OOlprint 
importerror 

0.58 
0.59 
0.59 
0.59 
0.61 
0.62 
0.62 
0.62 
0.63 
0.63 
0.64 
0.64 
0.64 
0.66 
0.66 
0.68 
0.71 
0.72 
0.72 
0.72 
0.73 
0.73 
0.73 
0.74 
0.74 
0.76 
0.8 
0.81 
0.81 
0.81 
0.82 
0.82 
0.83 
0.83 
0.85 
0.85 
0.85 
0.87 
0.88 
0.88 
0.89 
0.89 
0.89 
0.9 
0.91 
0.91 
0.92 
0.92 
0.93 
0.93 
0.94 
0.94 
0.95 
0.95 
0.97 
0.99 
0.99 
0.99 
0.99 

• 
• 
• 
• 
• 

• 

• 
• 

• 

• 

• 

• 
• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
• 
• 
• 
• 
• 
• 

• 
• 
• 

• 

• 

• 
• 
• 
• 
• 

• 
• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
• 

• 

• 
• 

• 

• 

• 

• 

• . 

• 
• 

• 

• 

• 

• 
• 

• 
• 

• 

• 

• 

• 

• 

• 

array allocation 
global variable update 
array modification 
re regexp library module 
string formatting, string operations 
OCaml power operation 
MRO lookups, string formatting 
random library module 
OCaml power operation, printing 
OCaml power operation 
string formatting 
array allocation, modification 
OCaml power operation, printing 
array printing 
string formatting 
string formatting 
OCaml power operation, printing 
string formatting, OCaml power operation 
string printing 
dictionary lookups, string slicing 
OCaml power operation 
random library module 
OCaml BigJnt operations 
OCaml BigJnt operations 
OCaml power operation 
MRO lookups 
string formatting, printing 
method lookups for classic classes 
keyword (**arg) argument processing 
global variable update 
CPython set object 
decimal library module 
array printing 
stack management 
array printing 
stack management 
CPython integer methods 
array printing 
MRO lookups 
array printing 
string printing 
method lookups for classic classes 
re regexp library module 
stack management 
array printing 
complex number printing 
OCaml BigJnt operations 
global variable lookup, printing 
string formatting 
global variable update 
array printing 
OCaml BigJnt operations 
string library module, string slicing 
global variable lookup 
method lookups for classic classes 
dictionary lookups 
global variable update 
OCaml power operation 
exception raising 
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