
RICE UNIVERSITY

Compiling dynamic languages via statically typed functional languages
^ by

Rajarshi Bandyopadhyay

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

UkW IcvU.
Walid Taha, Chair
Assistant Professor of Computer Science

'iJ a
k.eith Cooper

Professor of Computer Science

Robert Cartwright (J
Professor of Computer Science

Vivek Sarkar
Professor of Computer Science

Marcia K. O'Malley
Assistant Professor of Mechanical Engineering

HOUSTON, T E X A S

M A R C H 2009

UMI Number: 3362128

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3362128

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Compiling dynamic languages via statically typed functional languages

by

Rajarshi Bandyopadhyay

Dynamic languages enable rapid prototyping, but are generally not viewed as

providing the best performance. As a result, software developers generally build a

prototype in a dynamic language and then rewrite the application in C or Fortran

for high performance. This costly rewriting step can be avoided by improving the

performance of dynamic languages. Dynamic languages are usually interpreted for

easier implementation. The traditional approach to improve their performance is to

build an optimizing compiler. However, building a compiler from scratch is much

more time-consuming than implementing an interpreter. Our thesis is that we can

build effective compilers for dynamic languages by translating them into statically

typed functional languages which have good compilers and automatic memory man

agement. In particular, we believe that modern statically typed languages provide

precise control over data representations, and come with runtime systems that have

competitive performance.

To investigate the viability of this approach, we have built a compiler for the

dynamic language Python by translating it into the statically typed functional lan

guage OCaml. An interesting practical advantage of using modern statically typed

functional languages is that they use Hindley-Milner type systems, which means that

there is no need for the translation to construct type terms.

We compare the performance of our implementation, Monty, with that of CPython,

the reference Python implementation, and with Jython, a Java implementation of

Python, using a suite of 370 benchmarks. Our experiments show that some programs

compiled using our approach run up to 4.6 times faster than CPython. However,

due to a number of engineering reasons, some programs also run significantly slower

than CPython. We pinpoint the specific causes of performance degradation and as

sess the potential for removing these causes in future work. Our implementation is

significantly faster than Jython, up to a factor of 100 in some cases.

A by product of our research is a proposal for an improved array copying imple

mentation in OCaml.

Acknowledgments

I take this opportunity to express my deep gratitude to my thesis advisor, Dr.

Walid Taha, for his constant guidance and enthusiastic support. Without his encour

agement and involvement, this dissertation would not be possible.

My research would not have reached this stage without the contributions of my

colleagues in Dr. Taha's research group at Rice. Jun Inoue implemented the Python

module system in OCaml. Yilong Yao and Hisham Abi Ammar collected and built

the test and benchmark suite, isolating many subtle bugs along the way. Dustin

Bachrach collected tests and crafted the testing script. Pete Hokanson built his

own suite of intricate test cases and coded some of the basic C functions in the

foreign function interface. Gregory Malecha added exception handling to the foreign

function interface. In addition, Cherif Salama and Angela Zhu fixed bugs and added

missing functionality to the code. Edwin Westbrook added several improvements to

the garbage collection mechanism in the foreign function interface, along with some

optimizations to the runtime. Ronald Garcia suggested several optimizations and

cleaned up the C code in the foreign function interface.

The OCaml developers and users on the OCaml mailing list were some of my most

effective resources. Xavier Leroy, the chief developer of OCaml, clarified some of the

internals of OCaml's garbage collector while I was building the the foreign function

interface. Thomas Fischbacher, Jon Harrop and Richard Jones explained many of the

intricacies of OCaml in their responses to my questions.

I received invaluable preliminary feedback for my research at my talk at Google

in January 2007. Chris Monson invited Dr. Taha and me. Guido van Rossum, the

creator of Python, clarified many of the subtleties of the language. Rami Bitar and

Russel Whittaker provided valuable suggestions.

I would like to thank the Department of Computer Science and all of its adminis

trative staff for the support I have received as I have contended with a repetitive stress

injury for the last year. Dr. Stacy Ware at Student Health Services and Jean Ashmore

at Student Disability Services provided invaluable assistance. The programming for

my research would not be complete without Aramis Martinez, who not only typed for

me, but also brought his systematic approach and spreadsheet wizardry to the entire

development, debugging and benchmarking process. Kirsten Jones typed and proof

read large swaths of this document and in particular, brought her meticulousness to

bear on the presentation of the tables and figures.

I am also ever grateful to the late Prof Ken Kennedy, who expressed faith in me

by persuading me to finish graduate school, and was a constant source of inspiration.

Dr. Devika Subrarhanian supervised my Master's thesis. Dr. Keith Cooper always

encouraged me in his unique ways. Dr. Robert Cartwright, Dr. Vivek Sarkar and

Dr. Marcia O'Malley gave their time to serve on my thesis committee.

My life at Rice has been enriched in endless ways by the innumerable people that

I have been fortunate to meet. Unfortunately, it is impossible to try to name them all

here, but I would like to acknowledge all the wonderful contributions they have made.

Dr. Adria Baker from the Office of International Students and Scholars has provided

invaluable help with immigration issues. I have been blessed with a multitude of

wonderful friends over the years: Anirban Mahdal, Naureen Shahid, Ivy Ghose, Koji

Otsuka, Mili Shah, Fernando Gonzalez del Cueto, Leila Issa, Rhonda Ragsdale, Ala

Alazzeh, Vica Papp, Christina Burrows and countless others. A very special thanks

goes to my partner, Kirsten Jones, for her unflagging patience, support and excellent

culinary skills.

My parents taught me that knowledge is the most important and valuable posses

sion to have; the values they instilled have made me who I am. No words can convey

how thankful I am for that. This thesis is dedicated to them.

Contents

1 Introduction 1
1.1 Approach 2
1.2 Related work 4
1.3 The Monty Compiler 5
1.4 Contributions and summary of results 10

2 Python: A dynamic language 13
2.1 An example illustrating important Python features 13
2.2 Objects 15
2.3 Dictionaries 15
2.4 Inheritance . 16
2.5 Mixed static-dynamic scoping 17
2.6 Function parameter passing • • • 18
2.7 Control flow mechanisms 19
2.8 Dynamic code execution 20
2.9 Other features . 21
2.10 Memory management in CPython 22

3 OCaml: A statically typed language 23
3.1 Algebraic datatypes . 23
3.2 Pattern matching 25
3.3 Memory management 26
3.4 Functions . . . 27
3.5 Control constructs 27
3.6 Imperative features 28
3.7 Other features and tools 29

4 Representing Python objects in OCaml 30
4.1 Representing Python objects in CPython 30
4.2 The type object in CPython 33
4.3 Representing Python objects in OCaml 35

5 Supporting CPython libraries: Memory management and the for
eign function interface (FFI) 43
5.1 Python's interface to C 45
5.2 OCaml's interface to C . . . 48
5.3 Passing immutable and mutable objects in the FFI 52

I

5.4 Monty FFI: Memory management and exceptions . . 57
5.5 Limitations of the FFI 61

6 Translating Python into OCaml 64
6.1 Building a correct translation 64
6.2 The translation 69
6.3 Type-checking the generated code 78
6.4 Compilation time for generated OCaml programs 79
6.5 Testing methodology 80
6.6 Unimplemented features and known bugs 82

7 Building an optimizing translation 85
7.1 Profiling tools 85
7.2 Improving memory allocation and use 86
7.3 Common-case optimizations . 89
7.4 Implementing modules natively in OCaml . . 91
7.5 Replacing exceptions with option types 93
7.6 Using a method cache 96
7.7 Reducing printing costs . . . 100
7.8 Using compile-time information 102
7.9 Byproduct: A contribution to the OCaml code base 107

8 Performance results 113
8.1 Experimental setup 114
8.2 Benchmark suite 115
8.3 Speedup compared to CPython 117
8.4 Speedup compared to Jython 119
8.5 Performance bottlenecks 121
8.6 Speedups and code size 128
8.7 Compile time and code size 129
8.8 Impact of code size on translation and compilation times 131
8.9 Impact of OCaml compiler options 133
8.10 Impact of Monty optimizations 137
8.11 Object allocation in OCaml vs. Python . . 141
8.12 Array allocation in OCaml vs. Python 143
8.13 Effect of removing function stack management 145

9 Practical lessons that we learned about our approach 147
9.1 Achieving completeness 148
9.2 Improving performance 153

10 Conclusions and Future work 156
10.1 Recap . 156
10.2 Future work 158

A How to learn OCaml 173

B Timing da ta 175

C Performance bottlenecks in the generated OCaml code 182

List of Figures

1.1 Left: the standard CPython interpreter. Right: the compilation strat
egy of our implementation, Monty . 6

1.2 The main components of the Monty implementation, including the
translator, runtime and foreign function interface. . 8

2.1 A simple Python example illustrating dynamic typing and object ori
ented features 14

5.1 Immutable objects are copied across language boundaries 53
5.2 Mutable objects are passed as references enclosed by wrappers 55
5.3 Every wrapped OCaml object has a weak pointer to its CPython wrapper. 59

6.1 BNF for generated OCaml code 67
6.2 Using the CPython parser via the FFI for parsing input Python source. 68
6.3 Architecture of our implementation with approximate code sizes (in

lines) 69

8.1 Benchmark sizes, sorted by increasing Python word count 116
8.2 Relative benchmark speedups of Monty compared to CPython (higher

is better) . 118
8.3 Jython performance on our suite is much slower than both CPython

and Monty: (a) shows Jython speedup compared to CPython, (b)
shows speedup in Monty over Jython 120

8.4 Speedups are evenly distributed across Python source size . 128
8.5 Generated OCaml word count vs Python word count 129
8.6 OCaml compilation time is much higher than translation time 131
8.7 Translation time increases with Python code size 132
8.8 Compile time increases with source code size 133
8.9 The - i n l i n e N option has a slight impact on execution time, but com

pilation time increases with larger values of N for large programs such
as our aggregates 134

8.10 Using the - i n l i n e parameter for our benchmark suite, the relative
change in compile time before and after inlining is evenly distributed
around 1 for smaller programs such as those in our benchmark suite. 135

8.11 The -ccopt -0<N> option has a no impact on execution or compilation
time 136

8.12 Specializing binary numeric operations, comparisons and storing string
hash values yield the greatest benefits 140

iv

8.13 OCaml allocates individual objects more efficiently than CPython: (a)
shows the time taken to allocate linked lists of objects and (b) shows
the relative speedup in OCaml. 143

8.14 CPython allocates large arrays of objects more efficiently than OCaml:
(a) shows the time taken to allocate arrays of objects, (b) shows the
relative speedup in OCaml. 144

8.15 The relative speedup improvement after removing stack management
code is highest for recursive functions. The improvement is distributed
in a bell-curved manner with a peak around 1.0 145

List of Tables

5.1 Example of the use of the Python/C API: The Python program on
the left is functionally identical to the C program on the right, which
invokes the Python interpreter using the Python/C API. 46

6.1 Breakdown of test suite results, with some reasons for failure of test
cases. 81

6.2 Test failures due to implementation-specific issues 82

7.1 Performance of recursive functions with and without stack management. 87
7.2 Numeric binary and comparison operations are highly sped up by

common-case optimizations 90
7.3 Storing string hash values results in faster execution times (right). . . 91
7.4 Functions from the math module perform much faster (left) when im

plemented natively in OCaml instead of being called via the FFI. . . 92
7.5 Functions from the itertools module perform faster when implemented

natively in OCaml (left) instead of being called via the FFI. 93
7.6 Strategies to replace use of exceptions in control flow. 94
7.7 For built-in methods, a method cache makes little or no difference in

performance 98
7.8 A method cache can improve performance by 20-30% for user-defined

classes 99
7.9 List printing is faster using a global buffer pool for storing string rep

resentations of lists. 101
7.10 Recognizing the if-compare pattern during compilation reduces exe

cution time. 103
7.11 The ge t -and-ca l l pattern optimization improves performance by re

ducing boxing-unboxing operations 105
7.12 Computing lengths of lists and dictionaries at compile time reduces

execution time 106

10.1 Some large Python applications that we would like to support in the
future. 165

vi

Chapter 1

Introduction

Dynamic languages such as Python [22], R [32] and MATLAB [37] are employed

extensively in scientific programming due to their ease of use, large feature set and

standard libraries. These languages are often interpreted to quickly implement all of

their features. As a result, programmers often build prototypes of high-performance

applications in a dynamic language, then rewrite ('harden') the application in lan

guages like C, C++ and Fortran to obtain faster execution times. Languages such

as C, C + + and Fortran usually offer faster performance than dynamic languages for

two reasons. First, they are closer to machine language (lower-level), providing a pro

grammer with finer control over program behavior. Second, they are statically typed,

providing a compiler with a large amount of information about data representation

even before execution. We believe that these features make it possible to express

more efficient programs in statically typed languages than is possible in dynamically

typed languages. To explore this hypothesis, this thesis studies the effect of automatic

translation from a dynamic language to a statically typed language.

While the focus of our work is understanding the engineering tradeoffs offered

1

by the translational approach, it is easy to see that when profitable, this approach

can be used to build compilers as follows: the language developer first establishes a

semantically correct translation, then she refines this translation gradually to achieve

better performance. As such, one of the goals of this work is to characterize the

tradeoffs that arise as clearly as we can, so that the potential gains from this approach

can be estimated before such a translation is developed.

1.1 Approach

In this research, we are interested in a new method for building compilers for

dynamic languages: translating them into a statically typed functional language. Our

thesis is that this translational methodology has the potential for being an effective

approach to compiling dynamic languages. We investigate the tradeoffs involved in

our approach concretely by building a compiler for a large subset of the dynamic

language Python that works by translating it into the statically typed functional

language OCaml.

The key insights underlying our approach are that functional languages such as

OCaml have several features that make them suitable target languages for a dynamic

language compiler:

1. Functional languages have well-established memory management runtimes. Mem

ory allocation and memory management have significant overhead in the exe

cution of dynamic language programs. It is now widely understood that well

2

designed and well tuned automatic memory management systems can be far

superior to both explicit memory management and simplistic memory man

agement schemes. For example, recent work at IBM by Bacon's group [25]

has shown that automatic memory management can be superior not only in

terms of performance, but also in terms of predictability. This makes auto

matic memory management more suitable for real-time systems than explicit

memory management.

2. Statically typed functional languages such as GCaml implement algebraic data

types [38] efficiently. In particular, these languages use fairly minimal imple

mentations of type products and sums.

3. As a result of several decades of research, effective compilers for functional

languages exist for most major platforms. In particular, OCaml has a well-

supported open-source compiler that can generate efficient native code for most

common platforms.

4. OCaml is an implicitly typed language based on Hindley-Milner type inference

[36]. The compiler developer using it as an intermediate language need not

generate type annotations, greatly simplifying the translation process.

Thus, using a statically typed functional language such as OCaml as an inter

mediate language for a compiler enables programmers to effectively leverage a vast

existing infrastructure to build high-performance compilers for dynamic languages.

3

2 Related work

In this section we review relevant work to the thesis in the area of compiling

namic languages.

• Jython is a Java implementation of Python [21]. It translates Python programs

internally to Java classes with the primary goal of seamless interoperability with

the Java development infrastructure. It is frequently used in web-based appli

cations to connect Python and Java tools. Unlike Jython, our implementation

primarily aims to achieve high performance (Section 8.4).

• IronPython is a Python implementation for Microsoft's .NET infrastructure

[20]. It compiles Python to Microsoft's Dynamic Language Runtime, a common

typed intermediate language framework, after which a program can be compiled

to .NET based executable code. The idea of translating a dynamic language to

a typed intermediate language is similar to our work, however, we use OCaml,

a full-fledged implicitly typed language as our intermediate target language.

• Psyco [39] uses a just-in-time specialization approach to speed up Python pro

grams. This approach works very well for the few programs which can be easily

type-specialized, but shows a large overhead for other programs. In contrast,

our approach relies on generating an optimized translation at compile time.

• The RCC project [33] at Rice University is building a compiler for R by trans

lating it to C and using a C compiler for faster performance. This compilation

4

technique has some similarities to ours, but with some important differences: 1)

Unlike OCaml, C is a weakly typed language with explicit type declarations. 2)

OCaml has an automatic memory management system, in contrast to explicit

memory management by a C programmer. We expect that comparing the re

sults of RCC (as they become available) with those of our implementation will

provide important insights into dynamic language compilation techniques.

In addition, many of the techniques and optimizations used in this work have

originated with compilers for earlier object oriented languages, such as Smalltalk 80

[30], Self [42] and Cecil [28]. For example, Smalltalk 80 uses method caching (Section

7.6), Self implements method specialization and value caching (Section 7.3), while

Cecil implements dynamic inheritance similar to Python (Section 7.6.2).

1.3 The Monty Compiler

To test our theory that translating dynamic languages to a statically typed func

tional language can lead to an effective compiler, we have implemented Monty, a

compiler for Python, by translating it into OCaml. In this section, we describe the

outline of our implementation and some of the challenges we encountered in the pro

cess.

5

rabbitpy

rabbitml

OCaml native"
code eompilep

i

a.out

T

T

answer

Figure 1.1: Left: the standard CPython interpreter. Right: the compilation strategy of
our implementation, Monty.

1.3.1 Overview and challenges

Figure 1.1 shows the high-level architecture of the standard Python interpreter,

CPython, as compared to our implementation, Monty. The CPython interpreter

accepts Python source code and directly produces a result. The Monty compiler

translates the Python source to OCaml source and links it with a runtime to generate

a native code executable.

While building an implementation for a large, highly-featured language like Python,

we encounter several important software engineering challenges:

1. How do we represent Python objects in OCaml? Python is a dynamically typed

language. A Python object at runtime can represent a wide variety of values:

rabbitpy

CPython

*

answer

6

from simple ones such as integers to complex ones such as classes. An object

representation in Python must be flexible enough to handle this entire range.

2. How do We support Python built-in objects and methods? Python has an ex

tensive set of built-in types and methods. Many of its methods are capable of

handling multiple types of values using ad hoc overloading semantics. Python

also has about forty built-in exceptions which are thrown under different con

ditions.

3. How do we support the extensive Python standard library? Python has a large

standard library suite with over a hundred modules, written in a mix of Python

and C. Any non-trivial Python program uses functions from this library at

runtime.

4. How do we translate Python source code? Python has a quirky grammar im

plemented in its own parser implementation. Python source code has no type

declarations and has several syntactic features which cannot be trivially mapped

to statically typed languages.

5. How do we verify and maintain correctness? Python's open-source development

model results in a plethora of syntactic and runtime features. The Python

distribution comes with extensive documentation, but it is not necessarily up-

to-date with the latest implementation. The source code of Python is itself the

most reliable documentation of the language.

7

Figure 1.2: The main components of the Monty implementation, including the translator,
runtime and foreign function interface. ,

1.3.2 Our solution

Figure 1.2 displays the various components of our implementation, which we have

devised to address each of the above challenges.

1. Object representation: We have used OCaml records to represent Python ob

jects. OCaml records are similar to C structures, providing a mutable set of

fields which can be addressed by name. We have also developed a sum (union)

type to capture the entire set of possible values in Python. This union type is

a part of the record representing the general Python object. Our representa

tion of Python objects is type safe, but does not affect the performance of our

implementation adversely.

8

2. Built-in types and methods: We have implemented a runtime system in OCaml,

containing our implementation of all of Python's built-in types and their pre

defined methods.

3. Standard Library: We have built a foreign function interface (FFI) in C between

Python and OCaml, using the C interfaces provided by Python and OCaml.

However, we have found that while the FFI lets us conveniently support most

Python libraries, there is a large performance tradeoff. Natively implemented

library modules perform much faster than those called via the FFI, but are

more time-consuming to implement.

4. Source-to-source translation: In order to translate Python source code, we have

used Python's built-in parser via the FFI to generate a string-based representa

tion of the source code for further processing in OCaml. We have made effective

use of OCaml constructs such as sum types, recursive functions, exceptions, as

well its imperative features such as references, sequential statements and loops

to build a source-to-source translator from Python to OCaml.

5. Correctness: In order to evaluate and maintain correctness of our implementa

tion, we used a test-driven programming methodology consisting of (1) accep

tance testing for individual features and (2) regression testing to ensure that

newly added features do not break existing ones. Our test suite of 425 files

Was developed and collected by several undergraduate students. Several bugs

in our implementation were identified by the undergraduates and fixed by the

9

developers.

1.4 Contributions and summary of results

In this section, we present the results of of our experiment in implementing our

translational approach. We first present the status of the translation in terms of

completeness, and then briefly discuss the results of a comparative performance eval

uation. Our performance results characterize some of the tradeoffs involved in our

approach. Finally, we summarize the salient technical contributions of our work.

1.4.1. Completeness

At the time of writing this thesis, Monty passed 383 out of the 425 cases that were

used to test it. Approximately one-third of test case failures are due to implementation-

specific differences between CPython and the OCaml compiler, whereas the remaining

are due to bugs and missing features in our implementation. We do not yet support

features such as dynamic code evaluation (exec and eval statements), context man

agers (with statement) and threads (Section 6.6.2).

1.4.2 Comparative performance

We evaluate the performance of our implementation, Monty, by comparing it

against two other Python implementations:

• CPython: Monty performed over 20 times slower than CPython in our initial

10

performance evaluation. We implemented several optimizations to improve per

formance (Chapter 7). As a result of these strategies, our compiler currently

provides a speedup over CPython for about 75 percent of our benchmark suite,

that is, 278 of 370 benchmarks (Section 8.3). We have profiled each of the 92

benchmarks which run slower than CPython and identified specific areas of per

formance loss. The FFI, printing methods, stack management and large object

array allocation are some of the common causes of slowdown (Appendix C).

• Jython: On average, the latest version of Jython (2.5 beta) runs approximately

10 times slower than Monty and approximately 5 times slower than CPython.

However, some programs run approximately 100 times faster in Monty compared

to Jython. Jython runs slightly faster than Monty on 7 benchmarks. In these

cases, Jython implements a library natively in Java, whereas Monty invokes the

CPython version of the library using the FFI (Section 8.4).

1.4.3 Technical contributions

The technical contributions of this thesis may be summarized as follows:

• To our knowledge, this is the first work that uses a Hindley-Milner typed lan

guage, OCaml, as a Typed Intermediate Language for a compiler [40]. The

type inference system in OCaml removes the burden of generating explicit type

annotations from the compiler developer (Chapter 3).

• As part of the translational strategy, we have developed a type safe repre-

11

sentation of Python objects which does not impede the performance of our

implementation (Section 4.3).

• We have built a foreign function interface that is compatible with the current

version of Python, enabling OCaml users to access functions from the Python

interpreter and standard library (Chapter 5).

• We have obtained a concise expression of Python semantics in the form of a

translation to a small and well-defined subset of the target language, OCaml

(Section 6.1).

• Our work has shown how to translate Python into efficient OCaml code (Section

6.2). We believe that many of our optimization strategies could be used for

implementing other dynamic languages (Chapter 7).

• We developed an improved version of the array copying function in the OCaml

Standard Library while optimizing our implementation. Our version runs ap

proximately 3 times faster than the OCaml library version. Our code is under

review for inclusion in the next release of OCaml (Section 7.9).

12

Chapter 2

Python: A dynamic language

Python is an open-source, object oriented dynamic language [22]. The standard

implementation of Python, CPython, is written in C. This implementation provides

Python users with several built-in types, each supporting many useful methods. In

addition, much of Python's popularity derives from its extensive standard library and

its ability to interface with existing libraries via its C API.

2.1 An example illustrating important Python features

The simple Python program in Figure 2.1 illustrates some basic Python features.

An instance of the class BankAccount is initialized using the specially named con

structor i n i t . The deposit and withdraw methods of this instance are called

with arguments of different types, an integer and a float. The p r in t statement inter

nally calls another special method, repr , which returns a string representation

of the instance.

This small Python example illustrates many of the important features of Python:

class declaration, instance creation, function declaration with keyword arguments,

13

c lass BankAccount(object): #defines a new c la s s (type) i nhe r i t i ng
#from base type "object"

def i n i t (se l f , in i t_ba lance=0) : #constructor invoked for hew instances
se l f .ba lance = ini t_balance #ini t_balance has defaul t value of 0

def depos i t (se l f .amount) :
se l f .ba lance += amount

def withdraw(self,amount):
se l f .ba lance -= amount

def __repr (s e l f) : # s t r i ng r ep resen ta t ion
r e tu rn "Balance i s : " + s t r (s e l f . b a l a n c e)

my_account = BankAccount(15) #creates ins tance with balance 15
#constructor with init_balance=15

my_account.deposit(10)
my_account.withdraw(5.50)

p r i n t my_account.balance #p r in t s "Balance i s : 19.50"

Figure 2 .1: A simple Python example illustrating dynamic typing and object oriented
features.

method calls, arithmetic operations and string concatenation. Python also specifies

many special method names for classes, such as repr for generating a string rep

resentation and i n i t for initializing a new instance. The + operator is overloaded

to handle different numeric type arguments (such as integers and floats) correctly at

runtime. These features and others which we describe in this chapter make Python

a dynamic, object oriented language.

14

2.2 Objects

All Python values are represented by a universal type called object. The behavior

of any object is determined by the methods stored in it's type, which itself is an object.

Python's several built-in types include integers, floats, strings and lists. Python

programmers can create their own types by defining classes, which are syntactically

similar to classes in other object oriented languages like C++ and Java. However,

an important difference between Python and C++/Java is that Python classes make

ho attempt to hide information. All the information in a class instance is accessible

externally. There is no notion of p r iva te or protected variables in Python.

2.3 Dictionaries

Dictionaries, mutable mappings from objects to objects, are a critical data struc

ture in Python. Type objects store their methods in dictionaries. The methods of a

Python class are mutable at runtime since they are stored in dictionaries. Instances

of user-defined classes use dictionaries to store local data.

All Python objects may be used as dictionary keys, except for mutable types such

as lists and dictionaries themselves. CPython implements dictionaries using a hash

table data structure. Both equality and hashing are defined in Python as methods

implemented by objects. For example, the expression ol = = o2 is syntactic sugar for

ol eg_(o2). Every hashable object must provide a —hash— method: hash : obj —>

long integer. The only requirement is that two objects for which the equality method

15

returns True must have the same hash value *.

A common use case for dictionaries is to store method names for a type. In these

cases, the key is an object containing a string value. CPython takes advantage of this

common case by internally using two distinct dictionary implementations: a general

object-to-object mapping and a more specific string-to-object mapping. The string-

to-object mapping is used by default to store methods for type objects. Specializing

for the common case provides performance benefits for CPython, but necessitates

extra book-keeping to maintain dual implementations.

2.4 Inheritance

Python supports multiple inheritance. For any class, the base class hierarchy can

be an arbitrary graph. However, Python semantics follows a specific order of method

lookup, defined by the C3 Method resolution algorithm [26], which was originally

created for the Dylan language [4]. In C++ and Java, inheritance is statically deter

mined. In Python, however, inheritance is determined by runtime method lookups.

For simple programs with single inheritance, the search algorithm for a given

method m in an object is fairly straightforward; search the dictionary of the type of

the object, and then in its base class and so forth. However, if multiple inheritance is

involved, the method m may have different implementations in different base classes,

1Personal communication by Guido van Rossum, the lead developer of Python at a Google talk
on January 22, 2007. This is an example of a language feature that is very hard to glean from
documentation and code, and had to be communicated to us by the developers of the language.

16

each of which may be reachable by a different path. The method resolution algorithm

disambiguates this process by ensuring that for every class, a unique priority is as

signed to each of its base classes and the methods are looked up in that order. We

recommend the original C3 paper for details of this algorithm [26].

2.5 Mixed static-dynamic scoping

A Python program can define three possible scopes: Module scope, Class scope

and Function scope. Variables defined in the module and function scopes are lexically

scoped, but a class variable is only available via the dictionary of the class. This results

in an unusual mix of static and dynamic scoping rules.

x = 5
class C(object):

x = 10

def foo(self):
return x

c - . C O

print c.fooO # prints "5"
print c.x # prints "10"

In the above example, the p r in t statement in the function f oo prints the value of

x in the outermost scope instead of the lexically enclosing scope of the class C. These

scoping rules lead to more involved book-keeping in the translation process in order

to keep track of variable scoping.

17

2.6 Function parameter passing

Python allows user-defined functions with complex argument definition and pro

cessing semantics. Python functions can be nested. Functions themselves are objects,

like any other Python value. Python functions support several kinds of parameter

passing:

• Positional parameters have no default value, but are sequentially assigned values

from the arguments of a function call.

e Keyword or named parameters have a default value.

• The list (*arg) parameter allows a variable number of positional arguments to

be packed into the list arg.

• The map (**arg) parameter allows a variable number of named arguments to

be packed into the dictionary arg.

def iun(xJy,z=8,*argl,**arg2):
print x,y,z,argl ,arg2 # 2 5 4 (5, 66) {'a': 1, ' b ' : 2}

fun(2,5,4,5,66,a=l,b=2)

In this example, the function fun is called with both positional and keyword ar

guments. The first two positional arguments are assigned to the formal parameters

x and y respectively, while the third argument is assigned to the keyword parameter

z. The remaining positional arguments are absorbed in the *argl formal parameter.

18

Similarly, the excess keyword arguments a and b are inserted into a dictionary rep

resented by the **arg2 parameter. This example illustrates that Python's argument

processing makes its function call semantics quite complex.

2.7 Control flow mechanisms

Python provides several mechanisms for control flow:

1. Conditionals and loops: Python supports the standard imperative control

flow constructs: i f - e l s i f - e l s e , while and for loops. As in C, loops in Python

support the break and continue statements for non-local control flow.

2. Exceptions: Python supports exception raising and handling. The r a i s e

statement allows an exception to be raised, and the t ry-except syntax is used

to implement handlers. Python defines 30 built-in exceptions. Exceptions in

Python are objects like any other Python value. For example, the following

function update_count updates a dictionary d which maintains a count of each

word occurring in a document.

def update_count(d,word):
t r y : # if word e x i s t s , increment count

d[word] = d[word] + 1
with KeyError: # if new word, add i t

d[word] = 1

3. Generators: Python supports an imperative form of streams called generators.

A generator looks like a function, except for the presence of one or more yie ld

19

statements in its body. A generator responds to an invocation of its next

method by yielding a value and preserving its state. This preserved state is

used to resume execution and yield the next value on subsequent invocations of

next.

def pow2(N): #defines a generator function
i = 0
while i < N:

y i e ld 2~i
i += 1

#pr in t the f i r s t 10 powers of 2
g = pow2(10) #create a generator ins tance
p r i n t g . n e x t 0 #1
p r i n t g .nex tO #2

For example, the generator function pow2 creates a specific generator instance

g on invocation. This instance has a built-in next method which returns the

value of the subsequent y ie ld statement.

2.8 Dynamic code execution

Python allows any string to be executed as code using the exec and eval con

structs. The exec construct supports arbitrary Python code, while eval can only

evaluate a single expression. This code can be executed in an environment speci

fied by local and global dictionaries. This feature, when used, makes it difficult for

compilers to analyze programs.

20

2.9 Other features

Python has several other features that are popular in scripting languages and must

be supported by any Python implementation. Much of Python's popularity derives

from its extensive standard library suite. The Python Standard Library contains

over 100 modules, ranging from mathematical functions (math) to mail and web

applications (smtpd, cgi). As shown below, a function in a Python standard library

module is used by first making the module available in the current namespace using

the import statement.

import math

print math.sin(2)

In this example, we compute the sine of a number using the s in function of the

math library module. Modules can be dynamically loaded into Python at any point

in the program, even if the name of the module is known only at runtime.

Python provides a high-level C API that allows data (object) manipulation and

method invocation from a C program. In addition to calling functions in the Python

runtime, the interpreter can be easily extended by defining new Python types in C.

These C interface facilities make it simple to connect Python to existing code and

libraries.

21

2.10 Memory management in CPython

CPython's memory management is based on a reference counting [34] garbage

collector. Each CPython object contains an integer count representing the number

of references to it. When this reference count falls to zero, the object becomes inac

cessible and can be marked for deallocation. There are two main advantages to this

reference counting scheme. First, objects can be immediately reclaimed in an incre

mental fashion without long pauses for garbage collection cycles. Second, reference

counting is one of the easiest garbage collection schemes to implement.

However, a significant disadvantage of a naive reference count scheme is the in

ability to reclaim objects that are part of reference cycles. Because an object in

a reference cycle directly or indirectly refers to itself, its reference count is always

greater than zero. CPython resolves this problem by periodically calling a cyclic

garbage collector (available via the gc library module) which identifies and collects

reference cycles.

22

Chapter 3

OCaml: A statically typed language

OCaml (Objective Categorical Abstract Machine Language) is a statically typed

open source programming language developed mainly at INRIA, Prance, but with

contributors around the world [17]. OCaml is fundamentally a functional language

with some imperative and object oriented features. Since we use only the functional

and imperative features of OCaml, we focus on those features in this chapter.

3.1 Algebraic data types

OCaml provides an implementation of algebraic data types [38], which can be

defined by the following BNF:

T := B\T + T\T*T\T-*t\ref'T

The symbol B represents base or ground types such as booleans, integers, floats

and strings. Sum types of the form T\ + T2 represent disjoint (tagged) union types.

Such a type can take a value in one of two forms: either a tagged value Left v\

carrying a value v\ of type Ti, or a tagged value Right v% carrying a value vi of type

T2. In practice, OCaml allows the user-defined tag names and sums can introduce

23

several tags simultaneously. Product types of the form T\ *T2 are pairs, and can have

values of the form (^1,^2) where value v\ is of type T\ and v<i is of type T2. A type

of the form Ti —>• T2 is a function which accepts a value vi of type Ti and returns a

value V2 of type T2- The ref T type represents a mutable reference to a value of type

T.

There are two commonly used product types in OCaml: tuples and records. A

tuple is declared with the * syntax used as follows:

type mytuple = (int * str ing * (float -> int))

In the above example, the tuple mytuple has three components in the order specified

by the type declaration: an integer, a string and a function which accepts a float and

returns an integer.

OCaml records are tuples with named elements, similar to C structures. This

construct is useful when specific elements of a collection have to be conveniently

accessed. For example, the elements of mytuple in the previous example can be

placed in a record as follows:

type myrecord =
{

x: int;
y: string;

z: (float •-> int)

}

In the above example, the record type myrecord has the same three components as

mytuple, but they are now individually named as x, y and z.

24

; Unlike C, OCaml does not support unchecked coercion subtyping for records, that

is, one OCaml record cannot be cast to another. Moreover, in OCaml, two different

record types cannot have a field with the same name.

OCaml also allows recursive type definitions, enabling easy construction of data

structures such as lists and hash tables. OCaml also allows parameters in type def

initions for creating polymorphic types. For example, a basic polymorphic list type

can be easily defined in OCaml as follows:

type 'a l i s t = Nil I Cons of 'a * ('a l i s t)

This list type defines a polymorphic list of elements, each represented by the type

parameter 'a. The Nil tag represents the empty list, while the Cons tag recursively

extends an existing list using a tuple consisting of a head and a tail.

OCaml is a statically typed language with Hindley-Milner type inference. Type

declarations are implicit: the programmer need not declare types. Explicit type

annotations are allowed only as hints to the compiler.

In our work, we use OCaml's algebraic data types, chiefly records and union types,

to devise a representation for Python objects in OCaml. Using a sum type enables

us to represent all possible Python values using one type (Section 4.3).

3.2 Pat te rn matching

An important feature of OCaml that we use extensively is pattern matching with

the match statement. The match statement in OCaml is similar to the switch state-

25

ment in C. Patterns in OCaml allow the match statement to select an action based

on the structure of a value. For example, in order to determine the length of the list

type defined earlier, we can define a recursive function.

le t rec l i s t l en 1 =
match 1 with
I Nil -> 0
I Cons (hd.tl) -> 1 + l i s t l e n (t l)

The function l i s t l e n uses a match statement to iterate over the list, using pattern

matching on the tags Nil and Cons to determine the return value.

Pattern matching enables us to implement dynamic typing: we examine the tag

of the value enclosed by a Python object at runtime and determine the action based

on the tag.

3.3 Memory management

OCaml provides automatic memory management with garbage collection. The

OCaml garbage collector uses a hybrid generational incremental algorithm [34]. It

maintains two heaps: a young or minor heap, and an old or major heap. Objects

in the minor heap are collected far more frequently than those in the major heap.

Objects are first allocated in the minor heap and then moved to the major heap after

they have survived a minimum number of collections. The OCaml Book [27] offers a

detailed description of the OCaml garbage collector as well as an excellent summary

of related algorithms.

26

3.4 Functions

OCaml enables the user to define recursive functions with an arbitrary number

of arguments. The OCaml language specification leaves the argument evaluation

order unspecified. However, in the standard OCaml implementation, arguments are

evaluated from right to left [23], unlike imperative style languages such as Python or

C.

Functions in OCaml are first class values, which means that they can be supplied

as arguments to other functions, or returned by other functions. We use this fea

ture and recursion extensively to implement generator functions in Python using a

continuation-passing style (CPS) approach (Section 6.2).

3.5 Control constructs

OCaml provides exception raising and handling constructs. An exception may

be raised by the r a i s e statement. Exception handlers are implemented using the

t ry-wi th statement. A raised exception in a try-block may be caught by the with

statement, which provides handlers to perform specific actions based on the value of

the exception. In OCaml, all exceptions are first class values belonging to a type

called exn. This is an extensible sum type: it can be extended by declaring new con

structors. Exceptions are dynamically scoped: a raised exception propagates through

the program stack from callee to caller until it finds the first handler to catch it. If

an uncaught exception reaches the bottom of the stack, it stops program execution

27

with an error. In practice, exceptions can also be used as a control flow mechanism.

We use exceptions in OCaml to implement Python exceptions. In addition, we

find OCaml exceptions to be a convenient technique to implement non-local control

flow constructs in Python such as break or continue statements in loops.

3.6 Imperative features

OCaml provides several features traditionally associated with imperative lan

guages. These include references which can be used to store values of a particular type

and can be modified by assignment. OCaml also allows statements in a block to be

executed as a sequence. The result of the last statement in the sequence determines

the type of a block.

OCaml defines the i f - then-e l se control flow construct, along with more im

perative style constructs such as for and while loops. Unlike loops in imperative

style languages like C or Python, OCaml loops do not support non-local control flow

constructs such as break or continue.

The imperative features of OCaml enable us to implement the imperative fea

tures of Python. We use sequential statements to implement Python code blocks.

References allow us to implement Python assignments.

28

3.7 Other features and tools

OCaml's standard library supplies many useful data structures such as lists, arrays

and hash tables. The library also contains a large set of string manipulation functions

and an implementation of arbitrary-precision arithmetic. In our implementation, we

use many OCaml libraries: the Hashtbl library for custom hash tables as the basis for

our dictionary implementation, arrays to represent lists and tuples, string functions

for the source-to-source translator and so on.

OCaml provides a powerful C interface mechanism to call functions implemented

in C and for C code to call functions back into the OCaml runtime. This is extremely

useful in building foreign function interfaces to other languages, as we have used in

our interface between Python and OCaml.

The standard OCaml distribution comes bundled with some useful tools for lan

guage developers: ocamllex and ocamlyacc. These programs provide lexing and

parsing facilities similar to the Unix utilities lex and yacc respectively. OCaml also

supports profiling using the ocamlprof tool and by generating executables which can

be profiled using the gprof profiler.

29

Chapter 4

Representing Python objects in OCaml

In this chapter, we discuss the representation of Python objects. We first re

view the existing CPython object representation using C structures. C allows unsafe

structural subtyping; structures can be cast to one another. In our view, this leads to

potentially type-unsafe programs. We present an object representation using OCaml

records and sum types. Our representation is both type-safe and does not prevent

our implementation from being sigificantly faster than CPython.

The definition of the type object in Python presents a challenge when developing

an appropriate OCaml representation for Python objects . An instance of a type

object contains methods implementing a Python type or class. The definition of this

object in CPython is unusually complex relative to other CPython objects. We devote

a section in this chapter in order to explain our type object representation.

4.1 Representing Python objects in CPython

Every element in the domain of Python values is called an object. Based on

their internal representation, Python objects can behave as numbers, strings, lists,

30

functions and other values. A special category of Python objects is type, whose main

purpose is to contain methods designated for use by other objects. Two properties

hold true for Python: (1) every object has a type and (2) every type is an object. Any

particular Python object carries data specific to itself, while its type object contains

behavior (methods) for all instances of that type.

4.1.1 PyObject: A C structure for Python objects

CPython uses C structures to represent Python objects. The most abstract object

is denoted by a structure called PyObject which contains the minimal information

needed by an object. Every Python object has some bookkeeping information for

memory management and a pointer to its type object:

s t r u c t PyObject
{

PyObject_HEAD /* GC info */
PyTypeObject *ob_type;

}

The PyObject.HEAD macro expands into some fields internally used by Python's

garbage collector, while the ob_type field is a pointer to the type of the instance.

The PyObject structure serves as a template for all CPython objects. For example,

the object representing an integer has a slightly larger C structure:

struct PylntObject
{

PyObject.HEAD /* GC info */
PyTypeObject *ob_type;

31

long int ival ; /* integer value */

The PylntObject structure is a subtype of PyObject with an extra field iva l

containing the data distinguishing each Python integer object. The ob_type field for

any Python integer object, such as the integer 1 below, points to an object called

PylntType, which in turn is a specific instance of PyTypeObject. The PylntType

structure encodes all the methods and properties describing a Python integer:

<• . •

PyObject_HEAD /* GC info */
ob_type = fePylntType;
iva l = 1;

}

4.1.2 The use of unsafe structural subtyping in CPython

Because C supports casting between s t ruc t types, all Python objects can be

coerced to each other via the abstract structure PyObject. This technique is useful

for implementing a dynamic language in which a function can receive different kinds

of Python objects as valid arguments.

Using coercion for records in this manner has several advantages. First, it saves

memory by ensuring that every record type has exactly the data that it needs to

carry. Second, this data can be accessed rapidly using field lookup. However, coercion

reduces type safety. If there is a mismatch of types at runtime, a program can attempt

to access memory illegally. Another disadvantage of using coercion indiscriminately

is that it can create a profusion of record types in the source code.

32

4.2 The type object in CPython

Surprisingly, the largest and most complex subtype of PyObject in CPython is

PyTypeObj ect, which is used to denote type objects describing the behavior of each

type or class. The PyTypeObj ect structure contains a dictionary tp_dict . In theory,

the dictionary is sufficient to carry all the methods defined by this type. However,

in addition to being accessible via the dictionary, several commonly used methods

are also defined as fields of the C structure itself, making this structure large and

complex. This design is used primarily for performance reasons; accessing the field

of a structure is much faster than a dictionary lookup.

The type object structure has several fields representing the most commonly used

methods for Python objects. This includes hashing (tp_hash), string representa

tion (tp_s t r and tp_repr) and iteration (tp_i ter) . In addition there are special

ized method suites for implementing numeric behavior (tp_as_number), sequence

behavior (tp_as_sequence) and map behavior (tp_as_mapping). Other fields, as de

scribed in the code below, implement behavior for attribute access (tp_geta t t ro and

tp_se ta t t ro) , instance creation (tp_new and tp_ in i t) and comparison (tp_compare

and tp_richcompare):

33

struct PyTypeObject {

PyTypeObject *ob_type;

char *tp_name;

PyObject *tp_dict;

/* GC and book-keeping fields */

/* name of this type */

/* dictionary */

/* Methods to implement standard operations */

destructor tp_dealloc;

getattrfunc tp_getattro;

setattrfunc tp_setattro;

cmpfunc tp_compare;

richcmpfunc tp_richcompare;

/* destructor */

/* retrieving attributes */

/* setting attributes */

/*. 3-way comparison */

/* rich comparison */

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;

PySequenceMethods *tp_as_sequence;

PyMappingMethods *tp_as_mapping;

/* numeric methods */

'/* sequence methods */

/* map (dictionary) methods */

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;

ternaryfunc tp_call;

reprfunc tp_str;

reprfunc tp_repr;

getiterfunc tp_iter;

iterhextfunc tp_iternext;

/* hash function */

/* calling object as function */

/* string representation */

/* concise string representation */

/* iterator creation */

/* iterator traversal */

/* Methods, subclassing and instantiation */

struct PyMethodDef *tp_methods; /* method list */

struct PyMemberDef *tp_members; /* data attribute list */

struct PyGetSetDef *tp_getset; /* custom attributes */

newfunc tp_new;

initproc tp_init;

PyObject *tp_bases;

PyObject *tp_mro;

PyObject *tp_subclasses;

/* instance creation */

/* instance initialization */

/* list of base classes */

/* method resolution order */

/* list of subclasses */

34

4.3 Representing Python objects in OCaml

We use OCaml records in our implementation to represent Python objects because

they offer several of the same benefits offered by C structures: named elements and

fast access. Unlike C, OCaml records cannot be cast to one another. Moreover, in

OCaml, two different record types cannot have a field with the same name. These

restrictions imply that we must define exactly one record type in OCaml to represent

all Python objects.

We define a single record type obj containing the basic fields that are shared

by most Python types. Python stipulates that every object be assigned a unique

identifier. In CPython, the memory address of an object is used as its identity. In

OCaml, the address of a value is not constant due to garbage collection. Hence we

generate our own unique integer identifiers and store them in each object as a field.

In addition, the obj record contains a reference to the type of an object, the size (for

sequences and strings) and some other fields as shown below:

type obj =
-C

ob_idx
mutable ob_type
mutable ob_value

i s b u i l t i n
mutable ob_size
mutable props
mutable weak_wrapper

}

i n t ; (* object i d e n t i t y *)
obj ; (* type object *)
raw; (* Python value representation *)

bool

i n t ; (* length of sequences *)
tp_record option; (* only for type objects *)
pyobject; (* used by the FFI *)

The object identifier is stored in the field (ob_idx), while the ob_type field con

tains the type of the object. The ob_size field stores the size of container objects

35

such as lists and dictionaries. A boolean field i s b u i l t i n identifies whether an object

is an instance of a built-in type, enabling runtime optimizations relying on type-based

specialization. For example, we can invoke specialized numeric methods for built-in

numeric types such as integers. This kind of specialization is the biggest source of

performance gain in our implementation (Section 8.10).

The weak_wrapper field of the object is used by our Python-OCaml foreign

function interface (FFI). When an instance of obj is passed to CPython, a wrap

per is created in CPython to make the instance simulate CPython behavior. The

weak_wrapper field points to this CPython wrapper and is used to optimize memory

management, as described in Section 5.4.

The ob_value field represents the actual Python value, specified by a type named

raw. An important challenge for us was to represent the entire range of Python values

using this one OCaml type. We use an OCaml sum type (tagged union) to express

Python values, as described in the following subsection.

4.3.1 Representing Python values using an OCaml sum type

OCaml's support for algebraic data types allows us to easily represent the entire

value domain of Python using a universal value type called raw, implemented as a

tagged union type in OCaml as shown below:

type raw =

I Type (* type object *)

I Object (* general catch-all object *)

I None_raw (* the Python 'None' object *)

36

Int of int

Loiiglnt of Big_int.big_int (* unlimited size ints *)

Float of float

String of (string * int)

Bool of bool

Complex of Complex.t

Char of char

Aseq of obj array (* list and tuple *)

Diet of diet (* dictionary *)

Seqlter of iter_record (* sequence iterator *)

Bfunc of (string * bfunc) (* built-in function *)

Ufunc of (string * (obj -> obj -> obj) (* user-defined function *)

* func_record)

I Method of meth_record (* methods *)
I ClassicClass of (s t r i n g * (obj l i s t) (* c l a s s i c c l a s s *)

* d i e t * (obj option) * s t r i ng)
I NewClass of (obj option * s t r i ng) (* new-style c lass *)
I Class ic lns tance of dict*obj
I Newlnstance
I Property of property_record (* p r o p e r t i e s / t r a i t s *)
I Module of s t r i n g * d i e t * (obj option) (* ex te rna l module *)
I Frame of frame_record (* s tack frame *)
I External of pyobject (* CPython objects *)
I F i l e of pyobject (* F i l e ob jec t s ,*)
I PyException of pyobject (* Exception objects *)

The raw type is a union of several tagged types. These tags include miliary

constructors such as Type for type values, None_raw for the Python value None and

a catch-all constructor Object for instances of user-defined classes. In addition, the

record shows several other tagged types for specific Python built-in objects.

As shown above, this union type definition is quite large, and raises the question

as to whether all of these tagged types are necessary. Our answer is that that all

these types are not necessary for achieving correct semantics; the type of an object

can be identified by examining its type field (ob_type) and it's data can be stored in a

dictionary. We use these tags to exploit OCaml's fast pattern matching for identifying

37

the kind of value contained by an object and to access instance data. For example,

unboxing an integer object o to extract its value is can be easily carried out as follows:

match o.ob_value with

I Int i -> ...

I ...

Using a dictionary to extract the value i contained by the integer object would

require an extra hash computation, resulting in performance loss.

4.3.2 Representing Python type objects in OCaml

The props field in the obj record definition is used only in type objects. It is

occupied by a record of type tp .record, which contains all the methods (over 50)

that are unique to type objects. For each type object, one copy of this record is

instantiated. For other kinds of objects, the tp_record field is set to None, a null

value. Breaking up the record definition ensures that only type objects allocate a

large amount of memory to store basic information such as the name of the type

(tp_name), the dictionary (tp_dict) and type-specific methods.

type tp_record =

{

tp_name

mutable tp_dict

mutable tp_bases

mutable tp_base

mutable tp_mro

string;

diet ; (* type dictionary *)

obj list; (* base classes *)

obj option; (* primary base class *)

obj list; (* method resolution order *)

(* Sets of functions for standard protocols *)

mutable num_prot : numeric_protocol; (* numeric methods *)

38

mutable seq_prot : sequence_protocol; (* sequence methods *)

mutable map_prot : map_protocol; (* map/dictionary methods *)

(* Iterators *)

mutable t p _ i t e r : unaryfunc option;
mutable t p_ i t e rhex t : unaryfunc option;

C* Comparison methods: r i c h and 3-way comparison *)
mutable tp_richcmp : (obj -> obj -> i n t -> obj) opt ion;
mutable tp_compare : (obj -> obj -> i n t) option;

(* Other Standard methods *)
mutable tp_bool
mutable tp_hash
mutable t p _ c a l l
mutable tp_new
mutable t p _ i n i t

obj -> bool; (* t r u t h value *)
(obj -> i n t) option; (* hash function *)
ternaryfunc; (* ca l l ab l e objec ts *)
ternaryfunc; (* new ins tance c rea t ion *)
ternaryfunc; •' '(* ins tance i n i t i a l i z a t i o n *)

mutable tp_repr : obj -> s t r i n g ;
mutable t p _ s t r : (obj -> s t r i n g) option;

mutable t p_ge t a t t r o : obj -> obj -> obj ;
mutable t p _ s e t a t t r o : obj -> obj -> obj -> u n i t ;

> • • "

The tp_record type contains several fields corresponding to the PyType_Object

structure in C used to define type objects, including a dictionary (tp_dic t) , hash

function (tp_hash), string representation (tp_st r and tp_repr) , iteration (tp_i ter) ,

attribute access (tp_getat t ro and tp_se ta t t ro) , instance creation (tp_new and

tp_ in i t) and comparison (tp_compare and tp_richcmp).

The tp_record type actually represents the value of a type object. As such,

it should be part of the raw union type defining Python values, changing the Type

miliary constructor to Type of tp_record, a non-nullary constructor. This redesign

step is planned as part of future improvements to our runtime environment.

39

4.3.3 Creating new Python objects

As a concrete example, we show how we combine the various types described

earlier in this section to represent a real Python object. An instance of obj record

representing the Python string "hello" is shown below:

let _string_hello =
{

ob_idx = 500;
ob_type = types t r ing_obj ;
ob.value = St r ing ("he l lo" , 14287294);
i s b u i l t i n = t r u e ;
ob_size = 5 ;
props = None;
weak_wrappper = null_wrapper;

}

The object identity 500 is generated by a function next id: unit -> in t which

simply increments a counter. The value of this string object is a tuple containing the

string "hello" and its hash value 14287294. Because string hashing is an expensive

and frequent operation, we store the hash value of a string object as soon as it is

created. The ob_size field contains the length of the string. The props field is None

because this is not a type object.

In order to instantiate new objects, our runtime defines several functions, each

targeted to a specific object type. For example, the most general function for creating

a string object is a function which takes a string constant and computes its length

and hash value.

(* unique integer id *)
(* string type object *)

40

let pystring_new s =

let len = String.length s in

let hval = Hashtbl.hash s in

• ' • ' • { • . ' • • ' . ' . . •

ob_idx = n e x t i d O ;
ob_type = types t r ing_obj ;
ob_value•'= St r ing ("he l lo" , hva l) ;
ob_size = len;
props = None;
weak_wrappper = null_wrapper;

}

In practice, we use several variations of this function, accepting additional argu

ments such as the length and the hash value. This takes advantage of the fact that

for string constants, the hash and length can be pre-computed at compile time.

4.3.4 Note on using OCaml's object oriented features

We initally attempted to represent Python objects in OCaml using OCaml's object

oriented features such as classes, methods and inheritance. However, OCaml's classes

and objects are static while Python's are dynamic, resulting in a mismatch between

the two kinds of objects. As such, it is not clear that using OCaml objects offers a

clear advantage in implementing Python's object oriented features.

In addition to potentially gaining a natural mapping from OCaml classes to

Python objects, we expected to use OCaml object oriented features to obtain a form of

safe structural typing and subtyping (via inheritance). However, OCaml requires that

all object data be accessed only through explicitly defined methods. These method

calls are slower than the direct data access provided by fields in records, leading to

potential performance loss at runtime.

41

For these reasons, we opted to use OCaml records in lieu of OCaml's object

oriented features, despite the lack of structural subtyping in records. While this

may seem like a severe restriction, it does ensure that our representation is type

safe. Furthermore, as we will show in the rest of this dissertation, this type safe

representation itself does not prevent our implementation from being significantly

faster than the CPython implemention.

42

Chapter 5

Supporting CPython libraries: Memory

management and the foreign function interface

(FFI)

In order to study the translation from Python to OCaml and the associated per

formance tradeoffs, a practical concern must be addressed: A significant part of the

Python language is comprised of libraries that are implemented either in C or in

Python. While, in principle, it is possible to rewrite all these libraries in OCaml,

there are pragmatic reasons to avoid this approach. First, some of these libraries are

fine tuned for performance, and it may simply be more profitable to reuse them even

when an alternative strategy is used to compile the main program. Second, the effort

needed to map such programs into OCaml would be considerable. As a result, for

the purposes of this work we simply ensure that the results of compilation can be

integrated with such libraries.

In order to achieve this integration in our implementation, we have built an FFI

between the OCaml runtime and the CPython interpreter. This approach allows us

43

to support a large portion of the standard library in a relatively short time. We

encounter several challenges in this process of interfacing OCaml and CPython:

1. OCaml and CPython have very different internal representations of values, and

different mechanisms for managing function calls. The FFI must successfully

pass data and call functions between these two languages.

2. Both languages have memory managed runtimes with their own garbage col

lectors. Python's garbage collector is based on reference counting, whereas

OCaml's is a generational incremental garbage Collector. The FFI must ensure

that these two memory management systems 'play nice' with each other without

corrupting each other's memory.

3. Both languages support raising and catching exceptions. Python and OCaml

each have their own built-in exceptions and exception handling mechanisms.

The FFI must implement exception raising and handling across language bound

aries.

In this chapter, we discuss the architecture of the FFI and describe our solutions

to these challenges. Since both Python and OCaml are partially implemented in C

and provide C interfaces, we use C to construct the FFI. We first describe the C

interfaces provided by these two languages with an emphasis on features that we

use in the FFI. We then describe the specific ways that we communicate immutable

and mutable Python objects between the languages. Next, we discuss our handling of

memory management and exceptions across these two languages. Finally, we conclude

44

the chapter by presenting a limitation of our FFI in its current form, explaining the

problem using a multilingual factorial (MLF) function example and presenting some

potential solutions.

5.1 Python's interface to C

Python's popularity with programmers results in part from its large standard

library and its ability to easily interface with other languages. This capability is

primarily achieved by a well-defined, high-level C API which allows a C programmer

to control and manipulate almost every aspect of the CPython interpreter, making

Python easy to connect to existing C code. The Python-C interface supports data

(object) manipulation, method calls to the Python interpreter and definition of new

Python types to extend the capabilities of the interpreter. The C interface is provided

by a large set of C functions collectively called the Python/C API [15]. This API

allows all Python operations to be performed in C.

We present a small example below to illustrate the use of the Python/C API. The

Python script on the left imports the math library module and calls a function sin.

On the right, the C version performs exactly the same operations using the Python/C

API.

In the example shown above, the function PyImport_ImportModule imports a

module, the function PyObject_CallObject calls a Python function and the func

tion PyObject_GetAttrString retrieves an attribute from an object. On failure, an

45

Python C
import math
print math.sin(2)

PyObject *mod;
mod = PyImport_ImportModule("math");
PyObject_Print(

PyOb j ect_CallOt> j ect (
PyObject_GetAttrString(mod,"sin"),
PyInt_FromLong(2)

)
);

Table 5.1: Example of the use of the Python/C API: The Python program on the left is
functionally identical to the C program on the right, which invokes the Python interpreter
using the Python/C API.

API function usually returns an error value such as -1 or a NULL pointer while si

multaneously setting a Python exception. The C API provides facilities for raising,

handling and clearing exceptions.

The C interface also allows the CPython interpreter to be extended by defining new

Python types in C. This is done by instantiating a new type object and implementing

its methods. The Python documentation provides a detailed manual describing this

facility [5].

5.1.1 Raising and handling CPython exceptions from C

The Python/C API provides facilities for raising and handling Python exceptions

from C. In order to raise a Python exception, the C function PySet_Err is used. This

function takes three arguments, namely, an exception object, a message object and a

traceback object, as shown in the following example:

PyErr_Set(PyExc_KeyError, Py_None, Py_None);

The above C code snippet is equivalent to raising the KeyError exception in

46

Python using the r a i s e statement. In order to handle the exception, we use the

functions PyErr_Occurred and PyErr.Cleared as follows:

exn = PyErr_0ccurredO ;
PyErr_Clear();

The function PyErr_Occurred retrieves a pointer to the exception object (NULL if

there is no exception to be handled), while PyErr_Cleared clears the exception. Note

that it is the C programmer's responsibility to clear the exception. The Pythoh/C

API provides several specialized variants of the functions described above, as well as

functions to test for specific exception objects.

5.1.2 Controlling the Python garbage collector from C

CPython's garbage collector is based on reference counting [34]. Each object has

a reference count indicating the number of references pointing to it. When the count

reaches zero, the object can be collected by the garbage collector. The Python/C

API provides two C macros, Py_INCREF and Py_DECREF, to increment and decrement

the reference count of a CPython object respectively. Ensuring that the reference

count of an object is positive is sufficient for the CPython garbage collector to ignore

the object. In addition, Python's cyclic garbage collector (the gc module) can be

completely disabled.

47

5.2 OCaml's interface to C

OCaml provides a C interface which allows construction and manipulation of

OCaml values at a lower level. This interface allows C functions to be called from

OCaml and vice versa. Using this C interface requires the programmer to be ac

quainted with the representation of OCaml values in C.

5.2.1 Representation of OCaml values in C

All values in OCaml are represented in C by a single C type value. The value type

in OCaml can represent either an integer or a pointer, depending on a tag bit. The

pointer value points to a tagged block structure, which is used to represent tuples,

arrays or records based on the tag. A custom tag allows representation of arbitrary

types as OCaml values. Several macros are provided to examine and manipulate

value types:

• Macros such as Is_long and Is_block examine the tag bit of a value to deter

mine whether it is an integer or a pointer.

• The F ie ld(a , i) macro extracts the i th element of an array or tuple a.

• Macros such as Val_int and Int_val convert between C values and their

OCaml representations.

The use of the single value type and the explicit nature of its manipulation in

OCaml's C interface requires the C programmer to be intimately aware of the internal

48

representation of any OCaml data. Since any value type may be used in place of

another, it also precludes any type checking. Thus the C programmer must use extra

caution while manipulating OCaml values.

5.2.2 Calling C from OCaml

OCaml provides an elegant facility to call C functions. We use this facility in

order to invoke functions in the Python interpreter from OCaml. In OCaml, functions

implemented in C may be declared with an external keyword. The example below

declares a simple squaring function sqr in OCaml and provides a C implementation

caml_sqr.

(*0Caml*)
external sqr: int -> int : "caml_sqr"

/*C*/
value caml_sqr (value arg){

CAMLparaml (arg);
int inp = Val_int (arg);
CAMLreturn(Int_val(inp*inp)) ;

}

The C macros CAMLparaml and CAMLreturn are directives to the OCaml garbage

collector to preserve the memory allocated to locally created values for the duration

of the function. The Val_int and Int_val macros convert between C integers and

their OCaml representations.

49

5.2.3 Callbacks from C to OCaml

OCaml provides a mechanism for C code to invoke functions in the OCaml run

time. We use this mechanism to allow function calls from the Python interpreter into

the OCaml runtime. As an example of this callback mechanism, we can use OCaml's

hash function from C. First, we register it as a global value available to the C code:

Cal lback . reg is te r l,OCaml_hash" Hashtbl.hash;;

This OCaml statement makes the OCaml Hashtbl. hash function available in C via

the name OCaml_hash. Invoking the function in C is more complicated:

f = *caml_named_value("OCaml_hash");
caml_callback(f, Int_val(100));

This invocation is the C equivalent of the call Hashtbl. hash 100 in OCaml and

returns a value.

5.2.4 Raising and handling OCaml exceptions from C

The OCaml-C interface provides functions to raise exceptions in the OCaml run

time and to trap exceptions raised during callbacks to OCaml. Exceptions must

be examined using specific C macros to determine their types and arguments. We

demonstrate exception handling in C by extending our callback example:

CAMLlocal2(f,v);

f = *caml_named_value("OCaml_hash");

50

v = caml_callback_exn (f, Int_val(100)) ;
if (Is_exception(v)) then
{' '

caml_raise(v);
I '

This example traps an exception raised by OCaml during a C callback and re

raises it in OCaml. The Is_exception macro examines a value to check if it is ah

exception, and the caml_raise function raises the supplied exception in the OCaml

runtime.

5.2.5 Controlling the OCaml garbage collector from C

OCaml provides several garbage collection macros and functions in C. For C func

tions using the OCaml-C interface, every function parameter of the type value should

be declared using the CAMLparamx macros and every local variable of type value

should be declared using the CAMLlocalx macros. Any OCaml value that may be

created as a result of a function call or callback should be assigned to one of the

declared CAML variables. The CAMLreturnx macros should be used at the end of any

such function. These macros ensure that each new OCaml value created in C is locally

registered with the garbage collector for the duration of the function and unregistered

at its completion.

The OCaml-C interface also provides a global value registration facility for the

entire duration of a program. This facility serves two main purposes. First, it is

used internally to register OCaml functions for C callbacks. Secondly, it allows

51

registration for any memory that has been allocated outside the purview of the

OCaml runtime. Any C pointer can be registered with the OCaml runtime using

the caml_register_global_root function. This ensures that the memory refer

enced by this pointer is not modified by the OCaml garbage collector when it is

registered. When the memory is no longer in use, it can be unregistered using the

caml_unregister_global_root function.

5.3 Passing immutable and mutable objects in the FFI

The first problem we encounter in building an FFI is that of passing data between

CPython and OCaml. In order to devise an effective solution, we treat immutable

objects such as integers, floats and strings differently from mutable objects such as

lists and dictionaries. The value encoded by an immutable object is copied across

language boundaries to create equivalent objects in both runtimes. In the case of

mutable objects, a reference is passed across the language boundary and enclosed in

an appropriate wrapper object. In this section, we discuss the handling of these two

kinds of objects.

5.3.1 Immutable types

We pass immutable Python objects between languages in our FFI by copying

them across the language interface. In order to achieve this copying in practice, we

need to solve two subproblems. First, we need a way to create CPython objects from

52

OCaml. Second, since OCaml is statically typed, we must ensure that a CPython

object should behave as any other object in our implementation.

OCaml Python

immutables 17

17

copy

copy '€>

Key

/-"s CPython
object

r - j OCarnl
object

Figure 5.1: Immutable objects are copied across language boundaries.

Figure 5.1 shows a schematic description of our treatment of immutable objects in

the FFI. We use the C interface functions for both CPython and OCaml to create a

copy of the value enclosed by an immutable object when it is passed between runtimes.

In order to create Python objects from OCaml, we implement an OCaml interface

to the Python/C API. We illustrate the use of this mechanism with an example. We

declare an OCaml external function which calls a function implemented in C:

external pyint_from_long : -> int -> pyobject : "caml_pyint_fromlong"

The pyobject type is an abstract OCaml type representing any CPython object.

The above function pyint_f romlong is implemented in C as a thin wrapper around

the Python/C API function which actually creates the Python integer object.

CAMLprim value caml_pyint_fromlong(value arg) {
CAMLparaml(arg);

53

CAMLretum(pywrap(PyInt_FromLong(Int_val (axg)))) ;
>

The function pyint_f rbmlong is an interface to the C function PyInt_FromLong(int)

from the Python/C API. The function pywrap wraps a CPython object into an OCaml

value of type pyobject.

In order to use the CPython objects created above in OCaml, each CPython object

of type pyobject must be further wrapped in an obj record. In our data type (raw)

representing Python values, we use a tag called External for CPython objects. The

methods of this object type are calls to the Python/C API via the FFI. For example,

this Python script uses the standard library with immutable objects:

import math
math.sin(3.14)

The Python code above is now translated into OCaml code which uses functions

we have defined in our FFI:

math := pyobject2obj (pyimport_module "math");
pyobject_call(

pyobject_getattrstring (!_math_,"sin"),
obj2pyobject (pyfloat_new 3.14)

)
)

The OCaml functions pyimport.module, pyobject_call and

pyobjec t_ge ta t t r s t r ing perform the same functions as their C counterparts

Py Import .Module, PyObject.Call and PyObject.GetAttrString in the Python/C

54

API. The marshaling functions pyobject2obj and obj2pyobject translate between

the OCaml and CPython representations of Python objects.

5.3.2 Mutable types

Python has two types for mutable objects, lists and dictionaries. Classes and

their instances are also mutable because they are fundamentally wrappers around

dictionaries. Since these objects may be modified in place, they cannot be copied

across the language interface. In spite of this restriction, we must ensure that the

functions implemented in both OCaml and Python handle these objects correctly.

Our approach is to pass a pointer to the object in one runtime across the language

interface and wrap the pointer in a special wrapper type in the other runtime.

OCaml Python

mutables [1,2]

reference

pass •® Key

s~\ CPython
reference / - — - \ object

pass ^ ~ * (l V 2]) • OCaml
< V J object

Figure 5.2: Mutable objects are passed as references enclosed by wrappers.

Figure 5.2 describes our handling of mutable objects in the FFI. A reference to

the object is passed across runtimes and enclosed in a wrapper type, whose methods

are callbacks to the source runtime.

55

For example, the map function imap from the Python Standard Library takes

two arguments, a function and a list. These arguments are translated into OCaml,

whereas the function itself is implemented in Python.

import i t e r t o o l s , math
i t e r too l s . imap(bbo l , [1 ,2 ,3])

In order to handle this example correctly, we must ensure that the OCaml repre

sentation of the list [1,2,3] is recognized as a valid CPython object in the Python

Standard Library. Our approach is to build a wrapper type in CPython to wrap

OCaml values. This CPython wrapper type is an instance of a CPython PyType_0b j ect,

and its methods are implemented as callbacks to the OCaml runtime. The wrapper

type is called PyMonty_Type, and its instances are called PyMonty_Objects. A mu

table object in OCaml can be represented as a Python object of type PyMonty_Type,

and the PyMonty_Object representing it is a C s t ruc t .

s t ruc t PyMonty_Object{
. . . /* Book-keeping */
PyObject *ob_type; /* Type object : PyMonty_Type */
value oc_val; /* pointer to an OCaml mutable type */

}

In our translation, the OCaml list is wrapped in a PyMonty_Object and passed

to the CPython interpreter. The CPython interpreter retrieves the elements of the

list by calling the get i t em method of the PyMonty_Type object. This results in a

callback to our list retrieval method in the OCaml runtime.

56

5.4 Monty FFI: Memory management and exceptions

In this section, we address two important issues that we encounter while building

an FFI: managing memory effectively and handling exceptions. CPythbn and OCaml

are both garbage collected languages which support raising and handling exceptions.

A correct FFI must ensure that the garbage collectors in both these languages co

operate with each other and that exceptions are translated correctly across language

boundaries.

5.4.1 Managing two garbage collectors

CPython and OCaml both include memory-managed runtimes with their own

garbage collectors. Each runtime keeps track of memory it has allocated and decides

when to reclaim or compact the space. However, an FFI allows each runtime to

carry references to blocks of memory that have been allocated externally in the other

runtime. The garbage collectors in both CPython and OCaml provide facilities to

ensure that these blocks of shared data remain uncorrupted by either of the runtimes

while they are in use.

References passed from OCaml to CPython are wrapped in CPython objects of

type PyMonty.Type. We use the Py.INCREF and Py.DECREF CPython macros to

ensure that the reference count for these objects is always greater than zero when

they are in use and is decremented to zero when they are no longer in use. References

passed from CPython to OCaml are registered with the OCaml runtime using the

57

caml_register_global_root function while they are in use and unregistered using

the caml_unregister_global_rdot function when they are no longer needed by the

program.

5.4.2 Reducing memory allocation for wrappers

One of the largest costs of the FFI is that of the allocation of wrapper objects

around pointers. Many of these wrappers are used only for short intervals such as

a single method call. In order to effectively utilize memory, the space allocated for

a wrapper should be collected after the pointer it wraps is no longer used. Also, if

a reference to the same object is passed multiple times from OCaml to CPythbn,

we should ensure that multiple wrappers are not allocated. We accomplish these

objectives using two approaches:

1. Deallocation method in CPython wrapper type: The CPython type

object definition allows the programmer to define a finalization method called

tp_dealloc. This method in a type object is called whenever any instance of

that type is deallocated. We have implemented the tp_deal loc method of the

CPython wrapper type PyMonty_Type to remove the OCaml reference wrapped

by any instance from the global list of OCaml garbage collector roots. This

step ensures that if the CPython wrapper is no longer used, the corresponding

OCaml object can be collected by the OCaml collector, thus effectively reusing

allocated memory.

58

2. Weak pointers to reuse existing CPy thon wrappers : Every Python ob

ject in our OCaml runtime, represented by the OCaml obj record, has a weak

pointer field (weak_wrapper) which is initialized to the NULL pointer. If a ref

erence to this object is passed to CPython and wrapped in a PyMontyObj ect

wrapper object, the weak pointer is set to point to this new wrapper. Thus, if

another reference to the same OCaml record is passed to CPython (via another

function call, for example), the weak pointer is used to retrieve the existing

wrapper, which is then reused instead of creating a new CPython wrapper. If

the wrapper is deallocated, the weak pointer is reset to the NULL pointer. Figure

OCaml Python

reference

mutables P,2]

Key

weak pointer Q PyMontyObject
wrapper

• OCaml obj

Figure 5.3: Every wrapped OCaml object has a weak pointer to its CPython wrapper.

5.3 shows the weak pointer in our OCaml implementation of Python objects,

pointing to its CPython wrapper after it is passed to CPython.

Handling garbage collection correctly is important in an FFI. A program may seg-

fault should any of the garbage collectors unexpectedly modify memory. Debugging

this kind of program crash is difficult because it may occur at points unrelated to

59

the actual bug in the code. Since garbage collector activity cannot be predicted in

advance, these bugs are not easily reproducible. As a result, an FFI developer must

use the appropriate garbage collector macros carefully.

5.4.3 Exception handling in the FFI

When the CPython intepreter is invoked by our implementation using the FFI, the

execution of the program alternates between the Python and the OCaml runtimes.

Both of these languages indicate errors by raising exceptions. A raised exception

must be gracefully translated across language interfaces in order for it to be caught

by a suitable handler in the call stack.

A CPython function called via the Python/C API indicates an error by returning

an error value (a NULL pointer or a - l) and by setting the CPython error indicator.

It is the responsibility of the calling application (the OCaml-C interface in our case)

to handle this exception and clear the error indicator in CPython. This is done

by a translation function, translatePyException, which retrieves this particular

exception using PyERR_Get and raises the equivalent exception in OCaml.

r = PyObjec t .Ca l l (. . .) ;
if (r • = NULL) then {

/ / Error case
e = translatePyException(PyERR_Get());
caml_raise(e);

}

An OCaml exception called from CPython during a callback can be caught and

60

re-raised in Python by setting Python's error indicator. In order to maintain com

patibility with C Python we must return an appropriate error value (NULL or -1).

PyObject *monty_repr{
v = caml_cal lback_exn(. . .) ;
if (Is_exception(v)) then {

PySet_Err(translateOCException(v));
re tu rn NULL;

}
}

In the above example, the function caml_callback_exn allows an exception raised

during a C callback to be trapped in C and examined. The FFI may then set the

equivalent exception in the CPython runtime.

5.5 Limitations of the FFI

In this section, we describe a limitation of our FFI in its current form, and explain

why we believe that minor modifications to the CPython implementation would be

sufficient to address this concern. We use a multilingual factorial (MLF) example to

illustrate this limitation of our FFI. The MLF is a 'factorial' function in which several

components recursively call each other. The components of the MLF are implemented

in different languages. A correct FFI shows no observable difference in the result of

the MLF as compared to a single-language implementation.

Our MLF to test the OCaml-Python FFI has three component functions, f actC,

factO and fact . The function f actC is installed in the Python library using Python's

61

•distaste facility, whereas the factO and fact are compiled by Monty. Thus facte is

accessible to the other two functions only via the FFI. The Python code for the MLF

is shown in Figure 5.5.

def facte (g) : #In Python std l ib
def h(n) : #Installed using

if n==0 : #dis tu t i l s fac i l i ty
return []

else :
return ["C"] + g(n-l)

return h

def factO (g) : #Compiled using Monty
def h(n) :

i f n = = 0 ' : ' • • • '

return []
e l s e : • • ' . - •

return ["0"] + g (n-1)
return h

def fact (n) : #Compiled using monty
return (factO (factC (fact))) (n)

print fact (5) #['0', »C, '0', 'C, '0']

The MLF function fact is first called with an integer argument n. Each call to

fact results in a set of alternate calls to factC and factO. Each call creates an inner

function h which decreases the value of n. The base case when n is 0 returns an empty

list. In the return phase, the list is prepended using the + (concatenation) operation

in Python with a string "C" or "0" depending on whether the return occurs from

factC or factO.

The MLF serves as an excellent stress test for the FFI in several ways. First,

62

the integer n and the strings "C" and "0" are immutable Python values created and

passed between Python and OCaml. Second, values of the mutable Python type

l i s t are created in both languages, built up by concatenation and passed between

languages. Third, both factC and factO create function values which are passed

between and called from both languages, testing function calls between Python and

OCaml in both directions. Finally, the list concatenation operations in the MLF

are performed between two different representations of Python lists, the CPython

representation and the OCaml representation.

The MLF above does not execute correctly in our implementation. This is be

cause the list concatenation (addition) operation in CPython, which is invoked in

["C"] + g (n - l) , raises a TypeError Python exception unless both operands belong

to the CPython l i s t type or its subtype. The check for list subtype in CPython is

carried out in a representation-specific manner by comparing pointers with objects in

the type hierarchy. Since the list operand (g(n-l)) in the addition operation above

is in OCaml's representation, it is not recognized by CPython as a valid Python list.

We are investigating two possible solutions to this problem.

1. Extend the definition of our OCaml wrapper type such that it is recognized as

a subtype by all CPython built-in types.

2. Modify the CPython interpreter itself such that subtyping is tested by calling

a method rather than by performing pointer comparisons.

63

Chapter 6

Translating Python into OCaml

In this chapter, we present our translation from Python to OCaml. We first dis

cuss steps we have taken to ensure correctness, and then describe how some salient

syntactic constructs in Python are translated to corresponding OCaml syntax. In

the course of this discussion, we point out several engineering problems we encoun

tered such as parsing and high compilation times, along with our solutions to those

problems.

6.1 Building a correct translation

When building a compiler, the correctness of the implementation is of great impor

tance. Even though the goal of compilation is usually higher performance, focusing

on premature optimization may be unsound and lead the developer down false trails.

It is easy to build a compiler that is high-performing but incorrect. In the case of

Python, we have found that the source code of the reference implementation is the

most authoritative documentation of the language. The Python web site provides

extensive documentation such as the Python tutorial [14] and the Python reference

64

manual [13]. However, these documents caution that they are incomplete and out-of-

sync with the implementation. Thus, referring to the documentation is not sufficient

for understanding the internals of Python. Our goals do not include debugging the

Python documentation, so we prefer to use it only as a starting point for understand

ing the language.

6.1.1 Overview of CPython directory structure

The CPython source code is organized across a number of directories in the Python

distribution. We summarize some of the important directories along with the func

tionality that they implement.

• Python/ (69 files, 38,000 lines): CPython core interpreter and runtime

— ceval.c (4,500 lines): Bytecode interpreter

— bltinmodule.c (2,600 lines): Abstract interface to Python built-in functions

— sysmodule.c (1,450 lines): Parameters for core interpreter such as recursion

depth

• Objects/ (39 files, 57,000 lines): Implementations of Python built-in types

— abstract.c (2,300 lines): High-level functions to access object methods

— typeobject.c (6,000 lines), object.c (2,000 lines): Default methods for ob

jects

65

— 28 C files implementing built-in types such as dictobject.c (2,400 lines)

and intobject.c (1,200 lines)

• Include/ (80 files, 11,000 lines): Various declarations

— object.h (868 lines): Fundamental Python objects object and type

— 28 header files (3,800 lines) containing built-in object declarations

• Lib/ (Over 100,000 lines in Python): Standard libraries

— compiler/ (10 files, 6,000 lines): Bytecode compiler in Python

• Modules/ (Over 150,000 lines in C): C library and helper code for standard

library

6.1.2 BNF for the target subset of OCaml

Using a small and well-defined target language results in a concise specification

of the source language in the form of a translation. For example, our translator con

sists of 2,200 lines of OCaml in one file {translator.ml), while the CPython bytecode

generator uses 12,279 lines of C (ast.c, ceval.c, compile.c).

Figure 6.1 concisely describes the BNF for the subset of OCaml that we use as

our target language. In our generated code, we use let-binding, recursive functions,

pattern matching, exceptions, sequential statements, references and assignment. Each

of these constructs has a simple syntax and concise semantics, especially as compared

to Python. OCaml's algebraic data types with pattern matching provide a natural

66

Program p

Module D

Expressions e

:= (A) i e / m

:= e

Constants c

Patterns p

() I c | x | e e

<Ci> i e / | [(f i i>^|[| (c i> i e / |]
if e then 5 e l se S1

ref e \ \e \ x := e
fun (zi)^7 -> e
l e t (XJ = ej) t€ / in e
l e t r e c (^ = ei)ieI in e
match e with (pi—>ei)ieI

t r y e with {p^—>ei)teI\ r a i s e e

::= {true, fa lse , 0,0.0,"",. . .}

::= Tag x

Figure 6.1: BNF for generated OCaml code.

representation of abstract syntax trees (ASTs) for both the source and the target

languages.

In the BNF shown in Figure 6.1, e represents a valid OCaml expression. This

expression can be the unit type, a constant c, a variable x or an application e e.

Expressions can be data structures such as lists, tuples or arrays. More complex

expressions can be obtained using if conditionals, the match construct for pattern

matching and the try construct for exceptions. The let construct binds a name to a

value while letrec defines recursive functions.

67

6.1.3 Parsing using the CPython parser

Like many scripting languages, Python has a complex and subtle grammar in

volving features such as indentation-sensitive rules. This makes creating a parser for

Python a non-trivial task as well as an additional source of potential errors in the

implementation. To avoid this problem, we chose to reuse a parser provided by the

CPython implementation. This pragmatic choice has advantages and disadvantages.

The advantages include that we avoid having to deal with the myriad of special rules

that define correct parsing of Python programs, and that the parse actually produces

a reasonable abstract syntax tree (AST). The key disadvantage is that we are tied to

a specific representation of the AST which may not have all the desirable information.

The CPython standard library provides a parser that is available for external

programs such as ours. This parser generates an AST representation that is simpler

than the one used internally by CPython; for example, it does not preserve line

number information. The absence of this information makes providing tracebacks for

errors and exceptions more difficult in our translation.

Python
source

CPython p a r s e r ^
v i a FFI *

String
repr
of AST

OCami p a r s e r •
u s i n g ocamlyaccT

OCami
AST repr

t r ans l a to r fc

in OCami ""
OCami
source

Figure 6.2: Using the CPython parser via the FFI for parsing input Python source.

As shown in Figure 6.2, we have chosen to use CPython's parser library from the

compiler module to generate a string based AST representation of a Python source

program. This library is invoked directly from our translator using our OCaml-Python

68

FFI. The string representation is then read into our translator by a parser created

using the ocamllex and ocamlyacc tools. Finally, the translator generates output

OCaml source which is further compiled to native code by the OCaml compiler.

Figure 6.3 describes the Overall design of our implemention with code sizes for various

components.

rabbitpy

CPython
70K

'ythoh
Standard

.LibrarydOOK

answer

Figure 6.3: Architecture of our implementation with approximate code sizes (in lines).

6.2 The translation

This section describes the syntactic translation of some important Python con

structs into generated OCaml code. In all of the examples presented in this chapter,

the notation [e] represents the OCaml translation of a Python construct e.

• Constants: The basic translation semantics for a constant is to create an

69

object representing the constant. Just before code generation, we perform a

pass searching for constants. Since constants are immutable objects in Python,

we rhemoize the constant object by assigning it to a uniquely named variable

at the beginning of the file.

Python
"hello"

OCaml
le t _string_23 = pystring_new "hello" in

_string_23

For example, the string constant object "hel lo" is assigned to a unique name

_string_23 at the beginning of the OCaml generated file. The name is gener

ated by incrementing a counter and used in place of "hel lo" throughout the

file.

• Method calls: A method call in Python is translated to a sequence of two

OCaml function calls. We first invoke a function to retrieve a method from an

object and then invoke another function to execute the call. For example, the

Python method call x.m(a) is translated to the following OCaml code snippet:

le t _m_ = pyobject_getattr _x_ "m" in
pyobject_call _m _a_

The function pyobject_getat t r retrieves the method m from object x, while

pyobject_call implements the actual Python function call.

70

• Binary operators: Binary operators such as + in Python are syntactic sugar

for specific method calls, and as such, are translated into function calls in our

OCaml runtime. We use let-binding in order to preserve the argument evalu

ation order.

P y t h o n
x + y

OCaml
l e t bindl = [x] in
l e t bind2 = [y] in

pynumber_add bindl bind2

In this example, the creation of the local temporary variables bindl and bind2

ensures that the arguments [x] and [y] are evaluated in an order consistent

with Python semantics.

• Dictionaries: Dictionaries in Python are mappings representing finite indexed

sets of objects: diet : obj —> obj . In our implementation, we have modified

the OCaml Hashtbl standard library to use the Python notions of equality

and hashing. The OCaml hash table implementation uses an array of buckets,

each containing a list of elements which hash to the same index. The array is

periodically resized as the buckets grow larger.

type d i e t =

mutable size: int;

mutable data: bucketlist array

}

and bucketlist =

I Empty | Cons of obj * obj * bucketlist

71

Our hash function uses the built-in OCaml hash function internally for ground

types such as integers, floats and strings. As a particular optimization for

string objects, we compute the hash value exactly once and store it as part of

the object.

An important Python semantic requirement is that two objects whose equality

methods return True must have the same hash value. Python has a complex

notion of equality which relies not on object identity, but on overloaded methods

such as .eq__ and __cmp__. A Python object defines its own hash function

using the hash method. As a result, objects cannot be hashed by their

identity, since equality is determined by specific methods rather than by identity.

This makes hashing in Python much more expensive than one might expect.

• Functions: Function definitions in Python are translated into OCaml function

definitions. Each such OCaml function accepts exactly two arguments: a list of

positionals and a list of keywords.

P y t h o n
def f (x ,y = 8) :

r e tu rn x + y

OCaml
l e t _closure_f p i kw =

[_x_, _y_] = process_arg <formals> <defaults>
p i kw f a l s e f a l s e ;

pynumber_add _x_ _y_

For example, the Python function f is translated into the OCaml function

_closure_f. Creating a named closure in OCaml allows the developer to iden

tify performance bottlenecks during profiling. In the body of _closure_f, we

first insert an argument processing step to match the supplied arguments during

72

a function call to the declared formal parameters x and y of the function. This

results in the corresponding OCaml variables _x_ and _y_ being extracted into

the namespace. Next, the Python body is translated and inserted into the body

of _closure_f.

• Exceptions: Python defines 30 built-in exceptions for specific runtime errors.

Examples include Attr ibuteError, raised when an attribute is not found and

IndexError which occurs when an index exceeds sequence bounds. In our

OCaml implementation, we define a single OCaml exception called

PythonException, which takes a tuple of Python objects as its argument. This

enables us to use OCaml's exception raising and handling facilities.

exception PythonException of (obj * obj * obj)

Every Python exception has three components: the exception object itself, a

message argument object and a traceback object. We do not yet support the

traceback facility for exceptions. For every exception raised in the program,

we create a tuple consisting of these three objects (the last two may be None).

After the exception is caught, we examine the tuple to determine the exact

exception, as the following example shows:

73

Python

try:
raise KeyError

except KeyError:
print "missing"

OCaml

try
raise (PythonException (_KeyError,nullobj.nullobj))

with (PythonException (el,_,_) ->
if el. = _KeyError_ then
pyobject_print _strihg_missing

else 0

In the above Python example, we raise an arbitrary exception KeyError in a

Python try-block and catch it immediately. The OCaml code on the right shows

the translation, with the PythonException type being created by the r a i s e

statement and pattern matching performed in the with-handler to extract the

exception.

• Control flow: The i f - e l s i f - e l s e statement in Python translates to the

i f - t hen -e l se construct in OCaml with some restructuring. Loops in Python

also translate directly to loops in OCaml, as shown in the following example:

Python
while e:

si

OCaml
while [e] do

[s];
done

In this example, a simple while loop in Python is translated directly to one in

OCaml. When non-local control flow constructs such as break and continue

are used in Python, we find it convenient to implement to use OCaml exceptions

to implement them as follows:

74

Python

while e:
si
break
s2
continue
s3

OCaml

try
while [e] do

try
[si];

raise BreakExn;

[s2];

raise ContinueExn;

[s3];

with ContinueExn -> 0 •

done

with BreakExn -> ()

As this example shows, we enclose every loop that has break and continue

statements with exception handlers. The break arid continue statements are

translated into r a i s e statements for throwing exceptions. Thus, using excep

tions provides an elegant translation for while loops with break and continue

statements. Compared to a translation using continuations, for example, we

think that this method is lighterweight in terms of performance, especially in

cases when the break and continue paths are taken relatively infrequently.

• Generators: Generator functions preserve state while relinquishing control.

Continuations allow a function to preserve state and resume execution at any

point. However, implementing continuations requires a local continuation pass

ing style (CPS) transformation for each generator function.

The first step of our local CPS transformation is to convert each loop in a gener

ator body to a tail-recursive function. For example, a while-loop can be easily

transformed into its tail-recursive form as shown below. The OCaml native

code compiler performs tail-call optimization. Each tail-recursive function is

75

internally transformed by OCaml into a loop, thus using constant stack space.

P y t h o n
while e:

<body>

OCaml
l e t fwhile () =

if [e] then
[<body>] ;
fwhile ()

e l s e ()
in fwhile()

Once the tail-recursive transformation is performed, the rest of the generator

body is converted to CPS. The continuations are created based on the location

of the y ie ld statement.

P y t h o n
def pow2(N):

i = 0
while i < N:

y i e ld 2"i
i += 1

p r i n t "done"

OCaml
l e t _closure_pow2 <args> =

[i = 0] ;
l e t fwhile () =

if [i < N] then
l e t cfuncl ()=

[i += 1] ;
fwhile()

in
se t_y ie ld ([2 " i] , cfuncl)

e l s e cfunc2 ()
in fwhile ()

and cfunc2 () =
[pr in t "done"]

in se t_y ie ld (null,_closure_pow2)

In this example the generator function f executes a while-loop followed by a

p r i n t statement. The body of the while-loop contains a y ie ld statement. Our

CPS form uses two continuation functions: cfuncl is the continuation for the

loop body after the yield statement and cf unc2 is the continuation after the

loop is completed.

76

Implementing a local CPS transformation for generators presents several chal

lenges.

1. Imperative style blocks: A yield statement can occur at any point

of a generator function. This includes an inner block of statements such

as the body of an if-statement or a loop. Each such block is recursively

converted to CPS form. The correct continuation must be inserted at the

end of each translated block. In our example, cf unc2 must be called at

the end of the while-loop.

2. Exceptions: The CPS transformation is particularly challenging in the

presence of try-blocks and exception handlers because functions in OCaml

are statically scoped while exceptions are dynamically scoped. We resolve

this mismatch by defining the body of the exception handler as a func

tion. Each continuation is enclosed in a single try-block which catches an

exception and calls the appropriate handler function via pattern matching.

• Modules: In CPython, all modules are loaded dynamically. In our implemen

tation, locally defined Python modules are loaded during the translation phase

and statically compiled into the main body of the program. This inlining of the

module body must be performed carefully to avoid namespace conflicts. As a

result of this inlining, Python programs using multiple local modules generate

a single large OCaml file.

77

6.3 Type-checking the generated code

A major advantage of using an implicitly typed language such as OCaml as the

target of our translation is that we do not have to produce explicit type annotations.

Zong Shao's thesis [40] demonstrates the difficulty of working with typed intermedi

ate languages (TILs) in having to construct and manipulate type expressions in the

compiler. In his thesis, Shao uses hash-consing [31] and de Bruijn indices [38] to

reduce explosion in the size of syntax trees. By using Hindley-Milner type inference,

the most widely successful static type system, we are able to remove this burden of

explicitly manipulating types from the compiler developer and simplify the transla

tion process. To our knowledge, this is the first work that uses a Hindley-Milner

typed language as the intermediate language of a Compiler.

However, implicitly typed Hindley-Milner languages do not provide the program

mer with as much lower level of control over the representation as compared to typed

intermediate languages. This is most notably due to the absence of local existen

tial quantification, local universal quantification and indexed types in Hindley-Milner

systems.

Despite the convenience of implicit types, the compiler developer still must ensure

that the generated OCaml code from Python passes the OCaml type checker. Because

Python expressions always evaluate to a value represented by a Python object, it is

sufficient to ensure that the translation of each Python expression results in a value

of type obj, our version of the Python object.

78

The issue is more complex in the case of sequential statements. In OCaml, a

block of sequential statements is given the type of the last statement in the block. In

Python, some blocks of statements such as function bodies return the None object by

default, whereas the return value is unspecified for other blocks. In our translation,

we ensure that all sequential blocks return a value of type ob j by adding a reference to

the None object (nullobj in our runtime). Our translation of sequential statements

is as follows:

[(si; s2)] -> {[si]; [s2]; nullobj)

6.4 Compilation time for generated OCaml programs

While translating some large single-file Python programs (such as an aggregate

benchmark to measure the impact of various optimizations on our compiler), we

encountered a quirk of the OCaml native code implementation. The compile time for

the OCaml native code compiler increases non-linearly with file size. For very large

OCaml files (over 20,000 lines) the compile time can extend to several minutes. In our

case, the compile time was much greater than the execution time for large aggregates.

In order to surmount this problem, we split the large aggregate (12,000 lines of

Python; 73,000 lines of OCaml) into several smaller aggregates at the source Python

level. Each of these aggregates takes only a few seconds to compile. After performing

the experiment on each of them, we reported the summation of the compile times as

well as the execution times.

79

For a compiler developer who uses OCaml as an intermediate language, however,

this high compile time is an important factor in the performance of any language

implementation. This behavior of the OCaml native code compiler limits the sizes

of generated individual target files. Keeping the compile time for the generated code

Within an acceptable limit may require splitting up the input source files into smaller

sizes. We expect that this restriction of the OCaml native code compiler will be

addressed in future releases of OCaml.

6.5 Testing methodology

In the course of our work, we used a testing mechanism composed of two com

ponents: (1) Acceptance testing to check each new feature using small, specific tests

and (2) Regression testing to track progress in compiler development and to ensure

that newly added features do not break existing ones. The testing process allowed

several undergraduates with little or no previous experience with Python or OCaml

to participate in the project. Their work led to the rapid development of a test suite

consisting of over 400 files.

Our collection of test suites, described in Table 6.1, was collected from various

sources. The test suites reference and py-doc-tests were created by collecting Python

programs from various web sites and online tutorials. The remaining suites were built

by the undergraduate members of our research team. The students built test suites

by studying the online standard Python tutorial [14] and by implementing Python

80

Test suite

reference

py_doc_tests
hisham

yilong

pete

raj
specifics

Total

Number
of tests
81

12
158

74

50

3
49

425

Number
passing
69

12
150

68

45

3
36

383

Reasons for failure

no support for exec, eval state
ments, missing built-in methods,
float printing

classic class method overloading
bug, dictionary iteration order,
missing copy method for lists
bug with negative args for xrange
function, dictionary iteration or
der, float printing
missing built-in methods, bug
with parsing some escaped strings

dictionary iteration order, no sup
port for with statement

Table 6.1: Breakdown of test suite results, with some reasons for failure of test cases.

versions of Scheme example programs from the COMP 210 course at Rice University

[3]. :

6.5.1 Debugging the implementation

Our testing methodology led us to an efficient debugging strategy for our imple

mentation. To help us expedite and decentralize the debugging of the compiler, when

a test failed, students were asked to simplify it to the smallest possible code fragment

that can produce the erroneous behavior. Students were able to do this without any

inside knowledge about our compiler or how it is built. This simplification process

81

also did not require expert knowledge of Python or OCaml. Once the code fragments

were identified, they were placed in their own suite (specifics), where the developers

could rapidly fix the issues involved. This method made it significantly easier for us

to localize the problems in the translation.

6.6 Unimplemented features and known bugs

Table 6.1 shows the results of our implementation on our test suite. Some of the

test case failures are due to implementation-specific differences between CPython and

Monty, while others are due to bugs or missing features in Monty. In this section, we

summarize the reasons preventing some of these test cases from passing.

Test suite

reference
py_doc_tests
hisham
yilong
pete
raj
specifics

Total

Number
of tests
81
12
158
74
50
3
49

425

Failing

12
0
8
6
5
0
7

42

Implementation
differences
3

5
1
1

3

13

Unknowns

9

3
5
5

4

29

Table 6.2: Test failures due to implementation-specific issues.

82

6.6.1 Implementation differences between Monty and CPython

Soirie of the failing test cases highlighted differences in results produced by CPython

arid Monty due to implementation-specific issues. As Table 6.2 shows, approximately

one-third of the failing test cases are affected by these differences.

• Dictionary iteration order: In CPython and Monty, dictionaries are imple

mented using hash tables. However, Python semantics does not specify an iter

ation order over dictionaries. Since the hash table implementations in CPython

and Monty are different, iterating over dictionaries frequently results in elements

being accessed in a different order.

• Sorting algorithms: CPython and Monty use different implementations of

built-in array sorting algorithms. As a result, programs relying on the internals

of the sorting algorithm may give different results. For example, counting the

number of comparisons during a sort may result in different values in CPython

and Monty.

• CPython float printing issue: In several cases, CPython adds excess zeros

while printing floating point numbers inside lists. For example, the float 3.5 in

a list may be printed as 3.50000000002. This is most likely a bug in CPython

which will be fixed in future releases.

• Object identifiers: Objects are identified in CPython by their memory ad

dresses, whereas we assign them integer identifiers in Monty. A program which

83

depends on the value of these identifiers would usually produce different results

in CPython and Monty.

6.6.2 Bugs and missing features in Monty

Here, we summarize several bugs and missing features that we found while testing

Monty.

• Missing methods: Some built-in type methods in our Python implementa

tion have not yet been implemented. For example, the copy method for lists

enables a deep copy of a list object. The reduce method used for persisting

(pickling) objects is also currently unimplemented.

• Unsupported features: Python features such as dynamic execution (exec,

eval statements), and context managers (with statement) are not yet sup

ported.

• Other bugs: The testing process has exposed a variety of small bugs in our

implementation. For example, the xrange function, which produces a sequence

of integers within a range, does not process negative arguments correctly.

84

Chapter 7

Building an optimizing translation

In order to evaluate the performance of our translation, we compared the execution

times with CPython on a 370-benchmark suite. Our initial performance evaluation

showed our compiler to be at least 20 times slower than CPython on all bench

marks. On implementing several translator optimizations, we obtained a speedup

over CPython for 278 benchmarks. In this chapter, we summarize the most impor

tant optimizations we implemented in our translator and the inferences we can draw

from their impact on performance. We use examples from our benchmark suite to

demonstrate the impact of specific optimizations, in addition to using an aggregate

benchmark to measure the overall impact of the optimizations on the implementation.

7.1 Profiling tools

Profiling of executable code allows a developer to identify regions of code where

a program spends the most time. The developer can then target optimizations spe

cific to those regions of code, thereby improving performance. Profiling tools are ah

indispensible part of compiler implementation and optimization.

85

The OCaml native code compiler allows profiling of code using the gprof tool on

Unix platforms. The compiler has a special -p option to generate profiling annota

tions. For example, an OCaml program foo.ml can be profiled using the following

commands:

ocamlopt -p <other options> -o foo foo.ml
./foo
gprof foo

The gprof command produces a detailed text profile based on function call count.

The profile provides the call graph, overall call counts and estimates of the fraction

of time the program spent in each function. The OCaml profiling facilities have

been invaluable in this research for identifying and implementing the optimizations

described in the rest of this chapter.

7.2 Improving memory allocation and use

Profiling the results of the translation as described in the previous chapter reveals

that memory allocation is an important source of runtime cost. This is particularly

clear in the case of recursive functions. Python semantics requires that each function

call maintain some extra information which is accessible via its call stack frame. This

information includes dictionaries representing the global and local environment as

well as exception information. In our implementation, this information is stored in

a frame record, and the stack is a list of these records. Table 7.1 demonstrates the

86

cost of allocating this extra space for the recursive functions fibonacci, takeuchi

and ackermann.

function
fibonacci
takeuchi
ackermann

With stack
1.45 s
1.33 s
4.51s

Without stack
0.67 s
0.49 s
1.19 s

Table 7.1: Performance of recursive functions with and without stack management.

Memory allocation in OCaml has a hidden cost: garbage collection. The more

memory a program allocates, the more work the garbage collector must perform to

manage and collect the allocated memory. Due to this large overall cost, many of our

optimizations have focused on reducing memory allocation.

1. Reducing sizes of records: The obj record representing a Python object

is the most frequently allocated data structure in our implementation. Other

important information such as stack frames for function calls is also represented

by records. Keeping these records as small as possible improves performance

by reducing memory allocation and the corresponding garbage collection.

2. Storing small integers: A useful optimization that is implemented by the

CPythOn interpreter is to create objects representing small integer values (—99

to +99) and store them in an array, where they can be accessed by index. For

example, the intops benchmark in our test suite, which contains basic integer

operations, performs 4% faster with this optimization.

87

3. Interning string constants: In addition, in our implementation, all objects

representing string constants and method names are stored in a siring —> object

hash table. String objects are used frequently in Python programs, either ex

plicitly as string constants or implicitly to represent method names. However,

strings created during a program (using concatenation, for example) are not

interned since they are usually not referred to more than once.

7.2.1 Reducing array and record modification

OCaml provides two important mutable data structures: (1) records with mutable

fields and (2) arrays. Every record and array must be initialized during instantiation.

A record can be created by initializing all of its fields individually or by copying

another record and modifying specific (mutable) fields. Arrays are usually created by

the Array .make library function, which creates an array of length len and initializes

all locations to a value default .

In OCaml, we observed that initializing a record or array appeared to be faster

than modifying the fields or indices of an existing structure. Profiling suggested that

modification of these data structures is paired with many garbage collector calls. Ex

amining the OCaml source code revealed that modifying an array location or a record

field invokes garbage collector functions to ensure that the memory for the previously

stored value at that location is not lost. On the other hand, initialization is little

more than an assignment. Thus modifying arrays or records after initialization can

have unexpected costs. With this insight in mind, we re-implemented the Array. sub

88

function from the OCaml standard library in C. Using this improved function, we

achieved a speedup of 3 times on the tupleops benchmark, which tests tuple slicing

operations where array copying is used intensively.

7.3 Common-case optimizations

In a dynamic language such as Python, it is difficult to possess advance knowledge

of specific methods that will be invoked or data that will be accessed during program

execution. However, optimizing for common cases by specializing methods or caching

commonly accessed data is highly beneficial for performance. We point out two

examples of such common-case optimizations.

7.3.1 Specializing methods for built-in types

Python specifies a large number of operations for user-defined classes. For exam

ple, any class implementing an add method can be an operand for the binary +

operator. In practice, however, arithmetic and comparison operators are frequently

invoked with operands belonging to one of the built-in numeric types int , f loa t or

long. Specializing these operations for numeric types is an effective optimization.

In our implementation, the general version of arithmetic and comparison opera

tions looks for the appropriate method in a dictionary. Python defines these oper

ations using ad hoc overloading, which may result in several dictionary lookups per

operation. However, in our object representation, every object carries a boolean flag,

89

Int binary ops
Float binary ops
Numeric comparisons

General time
9.75 s
6.53 s
14.02 s

Optimized time
1.48 s
0.87 s
1.07 s

Table 7.2: Numeric binary and comparison operations are highly sped up by common-case
Optimizations.

i s b u i l t i n , which identifies it as a built-in type. Checking for this flag enables us to

handle built-in objects differently, using record fields instead of dictionary lookups to

find methods.

Table 7.2 shows the impact of checking for the common cases (numeric types)

in binary arithmetic and comparison operations. We see a speedup of 7 times for

binary operations and 13 times for comparisons. Specialization of binary arithmetic

and comparison operations has the highest overall impact on the performance of our

aggregate benchmark.

7.3.2 Storing string hash values

Dictionaries are a frequently used data structure in Python due to method lookups.

Both CPython and our implementation use hash tables for dictionaries. Since method

objects are stored in dictionaries with their names as keys, string hashing is a common

internal operation.

While profiling, we observe that the OCaml hash function for strings is quite

expensive, causing the performance of method lookups to degrade. Our solution to

this problem is to store the hash value of each string in the corresponding string

90

object after the first time it is computed.

pystone
instances
listops
dictops
lookups

Without optimization
2.93 s
2.31 s
2.82 s s
2.46 s
2.03 s

With optimization
2.75 s
2.20 s
2.64 s
2.27 s
1.69 s

Table 7.3: Storing string hash values results in faster execution times (right).

As Table 7.3 shows, this optimization yields immediate benefits for several bench

marks which use method lookups extensively. The impact of this optimization on the

performance of our aggregate benchmark also demonstrates its effectiveness.

7.4 Implementing modules natively in OCaml

Calling CPython functions via the FFI incurs several costs: wrapping and un

wrapping, memory allocation and collection of wrappers and function call overhead.

Implementing frequently used libraries and functions natively in OCaml makes the

overall compiler faster. In order to demonstrate this hypothesis, we have implemented

two complete Python library modules natively in OCaml: math and i t e r t d o l s . In

addition, we have implemented several built-in Python functions such as zip, map

and reduce in OCaml.

91

7.4.1 M a t h module

The math library module contains mathematical and trigonometric functions, all

of which accept and return floating point values. Since OCaml provides its own math

ematical functions with almost identical semantics, we could easily implement this

library module natively. The performance improvements obtained are quite drastic:

calls to math module functions are speeded up approximately 25 times, as demon

strated by our mathmodule benchmark. The benchmark par t ia l -sums from the

Computer Language Shootout is speeded up over 2 times.

mathmodule
partial-sums

OCaml native
2.32 s
1.33 s

Via FFI
25.56 s
2.96 s

Table 7.4: Functions from the math module perform much faster (left) when implemented
natively in OCaml instead of being called via the FFI.

Table 7.4 demonstrates that the performance of library modules using immutable

types such as floats can benefit heavily from a native OCaml implementation of those

modules in contrast to importing them and calling their functions via the FFI. This

optimization has a small impact on our aggregate benchmark (approximately 4%)

because few of the individual components of the aggregate use the math module.

7.4.2 Itertools module

The i t e r t o o l s library module provides several iterator functions for sequences.

For example, i z ip takes a set of sequences and produces a sequence of tuples and

92

chain iterates over a set of sequences in order. Iterators over sequence objects are

very expensive when invoked using CPython via the FFI. This is because Python

sequences such as lists are mutable objects; using the FFI for iteration involves wrap

ping and unwrapping of pointers, plus callbacks between languages. We implemented

the functions of the i t e r t o o l s module in OCaml.

cycle
imap
nsieve

OCaml native
3.44 s
4.16 s
2.08 s

Via FFI
5.29 s
11.20 s
5.96 s

Table 7.5: Functions from the itertools module perform faster when implemented natively
in OCaml (left) instead of being called via the FFI.

Table 7.5 shows the performance of several benchmarks using the i t e r t o o l s mod

ule, using the FFI versus a native OCaml implementation. The native OCaml im

plementation performs better in all cases, by a factor of up to 3. The performance

improvement is not as drastic as in the case of immutable types such as f loats be

cause (a) there is less copying and (b) the semantics of iterators in Python are quite

involved. On applying this optimization to our aggregate benchmark, we find that it

improves overall performance by about 8%.

7.5 Replacing exceptions with option types

Exceptions may be used as optimizations in some cases, most notably, to break

out of a recursive function early [27]. In our implementation, we use exceptions as a

93

1) Exception

2) Option type

3) Error value

Code
exception Exn;;
l e t f 2 b = if b then 1 e l se r a i s e Exn
l e t f l b = f2 b
l e t f'O b = t r y f 1 b with Exn '-> 0

l e t f2 b = if b then Some 1 e l se None
l e t f l b = f2 b
l e t fO b = match f l b with

1 Some i -> i
I None -> 0

l e t f2 b = if b then 1 e l se (-1)
l e t f l b = f2 b
l e t fO b =

l e t v = f l b in
i f v = (-1) then 0 e l s e v

fO (b = true)
1.18 ms

1.20 ms

1.17 ms

fO (b = false)
1.59 ms

1.01 ms

1.04 ms

Table 7.6: Strategies to replace use of exceptions in control flow.

device to exit early from while- and f or-loops as well.

However, exceptions in OCaml are dynamically scoped. Every raised exception

results in a search down the call stack for a suitable handler. This search process

may be expensive when the handler for the raised exception is located far up the

call chain. This suggests that we should use other control flow mechanisms for long

performance-critical chains of function calls.

We have used two control flow mechanisms in our runtime to replace exceptions.

The first mechanism uses algebraic data types and replaces the exception handler with

a match statement. The second mechanism is inspired by error handling in CPython;

we denote a value as an error value and return it. The handler is then replaced by

an if-statement which checks for the error value.

94

As an example, Table 7.6 shows these 3 control flow mechanisms with a simple

set of functions. In each case, f 0, f 1 and f 2 form a function call chain. The function

f 0 returns 1 or 0 based on the truth value of its boolean argument b. In case 1, f 2

returns an integer or raises an exception, caught in f 0. In case 2, f 2 returns an option

type which is matched in f 0. In case 3, f 2 returns either the value or an error value

-1 which is tested in f 0. We time f 0 for all three mechanisms with both t rue and

fa l se values of b.

We observe that in case 1, raising the exception Exn when b=f a l se is quite ex

pensive. This result demonstrates the cost of searching for the exception handler.

When option types are used (case 2), the b=f a l se case is much cheaper than excep

tions because we return a miliary constructor None instead of raising and handling an

exception. However, the b=true case is slightly more expensive due to the memory

allocation overhead of the Some constructor. When an error value is used (case 3),

this allocation overhead for option types disappears. Nevertheless, the b=f a l se case

is slightly more expensive than option types.

On the whole, the table shows that it is a good idea to replace exceptions with

other mechanisms such as option types for implementing control flow. However,

exceptions are quite efficient when they are not raised. This suggests that exceptions

may used when handling errors or rare situations without loss of performance.

95

7.6 Using a method cache

Method lookups are a frequent operation in object oriented languages. Due to

inheritance, a method lookup can be particularly expensive. Dynamic languages

such as Python incur an additional lookup cost, since all methods have to be bound

at runtime. In Python, a method is looked up in a sequence of classes determined

by the Method Resolution Order (MRO). Finding a single method may thus require

several dictionary lookups, incurring a cost.

"A simple technique called method caching can improve the performance of method

lookups in object oriented languages. A method cache is a hash table of popular

method addresses indexed by the pair consisting of the receiver class and the message

selector. For example, in a Python method lookup x.m(), the receiver is the type

of x, while the selector is the name m of the method. One of the earliest uses of the

method cache was in Smalltalk 80 [30], where it provided a 20 to 30% benefit. An

important dynamic feature of Python is that a method may be modified at runtime

by modifying a class dictionary. This feature necessitates that the cache be refreshed

to reflect such modifications and avoid inconsistency.

In our implementation, we use an OCaml hash table for our method cache. This

cache is a mapping: (i n t . i n t) -> obj. The two integers are unique identifiers for

the receiver class and the method name, and the returned object is the method. If

the method is not found in the cache, the actual lookup is performed according to the

MRO and the method is added to the cache. Taking advantage of Python-specific

96

features, we have implemented two method caches: one for built-in types and one

user-defined classes.

7.6.1 Built-in types

Built-in types in Python cannot be modified at runtime, thereby eliminating the

need for cache refreshing. Thus the method cache for built-in types only needs to

provide lookup and insert functions. Looking up and inserting in a method cache

each incur a cost i.e. that of a hash table operation. The method cache can only be

useful if the cost of this hash lookup is less than that of the actual dictionary lookups

to find the method. We have found that a method cache for built-in types does not

provide any significant benefit for our compiler. In fact, it may even hurt performance

slightly in some cases due to two factors:

• Built-in types in Python are ground types such as integers and floats, each of

which fully contains most of the methods relevant to it. Thus, a method lookup

for a built-in type usually requires only one dictionary lookup. The cost of the

method cache lookup is comparable to the regular method lookup.

• In our implementation, dictionary lookups are already highly optimized. In

particular, for any string object which may be used as a key (such as a method

name), the hash value is stored inside the object after the first time it is com

puted. As a result, we rarely invoke a hash computation. Thus, a single actual

dictionary lookup is faster than a method cache lookup in this case.

97

simplelists
listextend
queuetest

With method cache
2.28 s
1.89 s
3.52 s

Without method cache
2.27 s
1.94 s
3.4 s

Table 7.7: For built-in methods, a method cache makes little or no difference in perfor
mance.

Table 7.7 shows the impact of a method cache on built-in methods. The three

example benchmarks in the table all use built-in methods intensively. However, using

a method cache shows practically no discernible impact on performance, owing to the

cost of the hash computation while looking up the cache.

7.6.2 User-defined classes

In the case of user-defined classes, the method cache has a refresh function. In

our implementation, the refresh algorithm is simple; if there is a runtime assignment

to a method of a class, the entire method cache is cleared. While this is an expensive

operation, most Python programs do not frequently assign to methods at runtime,

hence the cost of refreshing the cache is amortized. We find that in this case, using

a method cache does offer benefits over regular method lookups via the MRO.

A simple example demonstrates the potential benefits of the method cache. We

define a simple class hierarchy of classes CI, C2 and C3 below, containing a method

ml, m2 and m3 respectively.

class CI(object):
def ml(self ,x):

98

return "ml"

class C2(C1):

def m2(self,y):

return "m2"

class C3(C2):

def m3(self,y):

return "m3"

c3 = C3()

As we see from Table 7.8, using a method cache improves performance for method

lookups in user-defined classes. The benefits are more pronounced as the method

being searched for exists higher in the class hierarchy and requires more dictionary

lookups without using the cache.

Method called
ml
m2
m3

With method cache
3.28 s
3.34 s
3.28 s

Without method cache
5.08 s
4.66 s
4.01 s

Table 7.8: A method cache can improve performance by 20-30% for user-defined classes.

For our aggregate benchmark, using the method cache has a smaller benefit of 3

to 5%. This is because most of our benchmarks do not use method lookups in deep

class hierarchies.

99

7.7 Reducing printing costs

Printing is a significant cause of performance loss in several of our benchmarks.

The semantics of printing in Python is fairly Complex; any object that is printed has

to be converted to a string form using the methods s t f or repr for that specific type.

The last character of the generated string is stored in a global location. This is useful

for formatting purposes depending when the last character is a whitespace character.

The string representation is then printed according to the formatting specifications.

There are several costs associated with printing in Python. Generating a string

representation for every object involves allocation of memory for strings. These gen

erated strings are often used only for a single print operation and then discarded,

resulting in garbage collection costs. Another cost is that of lookup for the string

representation methods (s t r or repr). Reducing these costs improves the perfor

mance of printing.

We have implemented several small improvements to printing. String represen

tation methods are assigned to fields in the type record for faster lookup. Some of

the string conversion functions, such as those for integers, have been implemented in

C. Most importantly, we have targeted an important inefficiency in printing of lists,

tuples and other sequence types.

100

7.7.1 Global buffer pool

One particular cost observed in our experiments is that of printing lists and tu

ples. For these objects, we must recursively construct a string representation of each

element, concatenate these representations and finally print the constructed string.

However, string allocation is costly and frequent list printing causes performance to

suffer.

In order to make list and tuple printing faster, we have implemented a global

buffer pool. This is a simple optimization consisting of a repository of string buffers,

represented by a list of OCaml Buffer entities. When a list has to be printed, an

available buffer is checked out of the pool, used for printing and returned to the pool.

If no buffers are available, a new buffer is allocated. Thus, allocated string buffers

are reused effectively instead of being collected.

Function
lists
while 1
listcomp

With buffer pool
4.89 s
1.88 s
1.22 s

Without buffer pool
6.16 s
2.69 s
1.92 s

Table 7.9: List printing is faster using a global buffer pool for storing string representations
of lists.

A number of benchmarks in our suite which were slowed down due to list printing

operations are speeded up by using the global buffer pool. Table 7.9 shows the impact

of this optimization on a few of those benchmarks.

101

7.8 Using compile-time information

In general, compile-time optimizations are harder to perform in dynamic languages

as compared to statically typed languages. However, the compiler can recognize some

commonly occuring syntactic patterns and generate better target code. In some cases,

it is possible to pre-compute information at compile time instead Of adding to runtime

execution cost. In this section, we discuss some of the compile-time optimizations in

our implementation.

7.8.1 Recognizing common syntactic patterns

Python syntactic constructs are translated into sequences of function calls in the

generated OCaml code. The translator can recognize frequently occurring syntactic

patterns. For example, the composition of a particular pair of functions f (g ...)

can be replaced with a more efficient function fog. Using a function composition

replacement for a pair of function calls allows us to remove some superfluous boxing-

unboxing operations in the pair. We use this idea to optimize two specific syntactic

patterns in our translation, which we call the if-compare and the get-and-call patterns

respectively.

If-cdmpare

Comparison operations are frequently used as conditions for if-statements. In

Python, a comparison operation results in a value represented by an object. This

102

object is examined and mapped to a boolean value in order to be used as a condition

for control flow.

Python

Original
translation

Optimized
translation

Code
if x < y:

pass
else:

pass

if truthval (pyobject_richcompare [x] [y] 1) then
nullobj

else
nullobj

if pyobject_richcomparebool [x] [y] 1 then
nullobj

else
nullobj

Exec time
6.24 s

2.11s

1.94 s

Table 7.10: Recognizing the if-compare pattern during compilation reduces execution
time.

Table 7.10 presents a small example of the if-compare pattern. The compari

son operation inside the if x < y: Python pattern is translated into a composition

of two OCaml function calls, t ru thva l and pyobject_richcompare. The function

pyobject_richcompare takes three arguments: the two operands of the comparison

and the opcode. In this case, the opcode is 1, signifying the < operation. This com

parison function returns an object, which is then examined by t ru thva l and mapped

to a boolean.

In the optimized translation, we compose the two functions described above into

one function pyobject_richcomparebool, which takes the three arguments for the

comparison and directly returns a boolean value. This composition is more efficient

103

because we can recognize common cases such as numeric values and use OCaml

native comparisons to return boolean values. For cases that cannot be specially

recognized, pyobject_richcomparebool defaults to the sequential application of its

two components, pyobject_richcompare and truthval.

Get-and-call

Another common syntactic pattern in Python is to look up a method in an ob

ject and then call it. For example, to append an integer 1 to a list a, we may use

a.append(l). This call is internally executed as l i s t .append(a, 1) where a is an

implicit self parameter.

More generally, the syntactic pattern can be described as x.m(args), where x is an

object, m is a method and args are the method's arguments. Executing this pattern

involves two consecutive steps:

1. Get: The method object m is first retrieved from a; by looking up a sequence

of dictionaries according to Python's method lookup algorithm. If found, the

method is used to create a bound method object mx with the same code as m,

but with a self attribute set to x.

2. Call: The self attribute x of the bound method object mx is extracted and the

method is called as mx(x, args), with x prepended to the remaining arguments.

The key point here is that whenever a method m is called immediately after

lookup, a superfluous intermediate bound method object is created. Composing the

104

listops
dictops

Without optimization
1.56s
1.74 s

With optimization
1.35 s
1.67 s

Table 7.11: The get-and-call pattern optimization improves performance by reducing
boxing-unboxing operations.

two steps, get and Call, can bypass this extra boxing-unboxing operation. Thus, the

two-step process

mx = get(x,m)

call(mx,x,args)

is now replaced by a single step

getandcall(x, m, args)

For common cases, the creation of the intermediate object mx can be omitted.

We have implemented this optimization for the most common case, built-in methods.

Although it does not show a significant impact on our aggregate benchmark, several

individual benchmarks show immediate performance gains. For example, l i s t o p s

and dictops, which test built-in methods for lists and dictionaries, are speeded up

by 10% and 5% respectively.

105

7.8.2 Computing lengths and hash values at compile time

During translation, some information can be extracted for use at runtime in order

to reduce runtime cost. For example, when a list such as [1,2] is created, we know

its length at compile time. Similarly, we know the lengths of string constants and

dictionaries created using the {} syntax. For function calls, we can compute the

number of positional and keyword arguments during translation.

For string constants, the hash value can also be computed at compile time. This

is sound only because we use the same language, OCaml, for implementing both the

translator and the runtime, thereby employing the same hash function for strings.

Python

Original
translation
Optimized
translation

Code
1 = [1,2]
d = {"h":l, "w",2}

1 := list_new [_int_l,_int_2]
d := dict_new [(_string_h,_int_l), (_string_w,_int_2)]

1 := list_new_len [_int_l,_int_2] 3
d := dict_new_len [(_string_h,_int_l), (_string_w,_int_2)] 2

Exec time
3.92 s

2.50 s

2.43 s

Table 7.12: Computing lengths of lists and dictionaries at compile time reduces execution
time.

Table 7.12 shows the translation of simple Python list and dictionary creation

statements. The original translation computes the lengths at runtime, while the opti

mized translation computes them at compile time. All three statements are executed

5 x 106 times in a loop to obtain performance results. We observe a small but notice

able improvement in performance with the optimization. However, this optimization

106

does not have a significant impact on our aggregate benchmark.

7.9 Byproduct: A contribution to the OCaml code base

Optimizing our compiler uncovered an area where the performance of OCaml's

array implementation can be improved. In evaluating the performance of the results

of the translation, we noticed that certain benchmarks (such as those involving list and

tuple slicing operations) suffered a slow-down. Further investigation using profiling

tools showed that the bottleneck was the performance of the OCaml array copying

function. Close analysis of the code suggested that a more efficient implementation is

possible. The performance loss was due to the fact that the function is implemented

in OCaml itself, which dictates that every array must be initialized after creation

with a default value.

Indeed, by developing a new implementation of array copying in C (that does not

initialize the target array with a default value, but directly copies the source array

into the target) for our application we are able to show that the performance of the

routine can be improved by 3 times over the OCaml standard library version. After

discussion on the OCaml mailing list [24], we submitted our version as a C code

snippet. This code is currently being considered for the next release of OCaml [1].

107

7.9.1 OCaml array copy function

The specific OCaml function that we have re-implemented is sub in the Array

module. This function takes three arguments: an array a, an offset of s and a length

len. It returns a new array of length len, the elements of which are those of array

a starting from the offset of s. The code of the Array. sub function from the OCaml

3.10.2 distribution, is provided below.

The Array. sub function first checks to see if the offset and the length are within

the array bounds. If the length of the target array is 0, it simply returns an empty

array. Otherwise, it follows a two-step process:

1. Create a new target array of length len and initialize it with the elements of

the source array a at index of s.

2. Using a f or-loop, copy len elements to the target array from the source array

starting at index of s of a.

We believe that this implementation of the function has two drawbacks in terms

of performance:

1. The target array is allocated and then initialized with a default value. Each

element of the target array is then modified with the new value. The sec

ond modification step makes the first initialization step redundant, causing the

function to do twice as much work as necessary. However, this two-step copy is

unavoidable because OCaml does not allow creation of an uninitialized array.

108

2. Modifying an array location in OCaml is far more expensive than initializing it.

Modification invokes garbage collector functions to ensure that the memory for

the previously stored value at that location is not lost. The array modification

operations inside the f or-loop are a source of performance loss.

The code of the Array.sub function in OCaml 3.10.2, formatted for clarity, is

shown below. This function occurs in the file s td l ib / a r r ay .ml in the standard

OCaml distribution.

let sub a ofs len =
if ofs < 0 II len < 0 I| ofs > length a - len then

invalid_arg "Array.sub"
else

if len = 0 then
[||]

else
begin

let r = create len (unsafe_get a ofs) in
for i = 1 to len - 1
do

unsafe_set r i (unsafe_get a (ofs + i))
done;
r

end

In order to address the drawbacks in the OCaml standard library implementation

of Array. sub, we re-implemented this function in C using the OCaml-C interface.

7.9.2 Our C version of array copy

We used C to reimplement the Array. sub function because the OCaml-C interface

allows finer control over representation and modification of OCaml values as compared

109

to pure OCaml. The C version works in two steps. Each step directly addresses the

drawbacks in the OCaml version.

1. Create an uninitialized target array in C by allocating memory. The redundant

initialization step in the OCaml version is not performed.

2. Initialize this target array directly with values from the source array. Array

modification is not used to assign values to the target array.

The C code listed below results in a performance gain of approximately 3 times

for the Array.sub operation. We have submitted this code to the OCaml project,

and it is being considered for inclusion in the next release of OCaml.

/* Author : Raj Bandyopadhyay, Rice Univers i ty (rajb@rice.edu)
* Date: July 28, 2008
*
* This code has been developed and i s owned by the
* Resource Aware Programming (RAP) Group, Rice Univers i ty .
* URL: http:/ /www.resource-aware.org
*
* This code is offered as is, to the OCaml project without any
* restrictions or warranties.
* . • .

* For further enquiries about the RAP group, please contact

* Prof Valid Taha (tahaOrice.edu)

• * /

CAMLprim value caml_general_array_sub(value source, value ofs, value len)
-C

CAMLparam3 (source,ofs,len);
CAMLlocal2 (res.elt);
inlsize_t size, srcsize, wsize, i,offset;
double d;

srcsize = Wosize_val(source);
size = Long_val(len);
offset = Long_val(ofs);

110

mailto:rajb@rice.edu
http://www.resource-aware.org
http://tahaOrice.edu

//boundary checks

if (offset < 0 I I size < 0 I I offset > (srcsize - size))
caml_invalid_argument("Array.sub");

//for a source array of size 0, return empty array
if (size'== 0)
• C •'•

res = Atom(0);
}
else
{

//Retrieve one element of the source array and check its type
elt = Field(source,0);

//specialize for arrays of doubles
if (Is_block(elt)

&& Is_in_value_area(elt)
&& Tag_val(elt) == Double.tag)

{
wsize = size * Double_wosize;
if (wsize > Max_wosize) caml_invalid_argument("Array.sub");
res = caml_alloc(wsize, Double_array_tag);
for (i = 0; i < size; i++)
{

d = Double_val(Field(source,i+offset));
Store_double_field(res, i, d);

} *
}
else
{ '

if (size > Max_wosize) caml_invalid_argument("Array.sub");
//for small arrays

if (size < Max_young_wosize)
{

res = caml_alloc_small(size, 0);
for (i = 0; i < size; i++)
{

Field(res, i) = Field(source,i+offset);
}

}//if
else
{

if (Is_block(elt) kk Is_young(elt))
{ ' • ' • •

caml_minor_collection();
res = caml_alloc_shr(size, 0);
for (i = 0; i < size; i++)
{

Field(res, i) = Field(sburce,i+offset);
}

111

res = caml_check_urgent_gc (res);

}//if

else

<•

res = caml_alloc_shf(size, 0);

for (i = 0; i < size; i++)

• ' {

caml_initialize(&Field(res, i),
Field(sburce,i+offset));

}

res = caml_check_urgent_gc (res);
}//else

}//else
}//else

}//else

CAMLreturn (res);
}//caml_general_array_sub

112

Chapter 8

Performance results

In this chapter, we present and analyze our experimental evaluation of Monty

over a suite of 370 benchmarks. Our primary finding is that the current translation

is incomparable in terms of performance to CPython. In particular, there are test

cases where Monty is ten times slower, and there are cases when it is five times faster.

Compared to Jython, however, our implementation is generally faster, and can be up

to 100 times faster.

Our investigation of the cases when Monty is slower than CPython reveals that

there are key bottlenecks for Monty. These slowdown factors, along with the max

imum percentage of execution time that they consume in the benchmarks, are as

follows:

1. FFI: 80%

2. Printing: 50%

3. Method lookups in multiple inheritance: 35%

4. Function stack management: 20%

113

We discuss the possibility for improving on each of these aspects in future work.

After identifying performance bottlenecks, we investigate the impact of source code

size on compilation and execution times of our benchmarks, and the impact of var

ious optimizations on an aggregate benchmark. We follow that by some additional

experiments studying memory allocation for lists and arrays in Monty and CPython.

All of our measurements above are performed with stack management turned on

in Monty. As a final experiment at the end of this chapter, we measure the impact

of stack allocation by presenting comparative speedups with the stack management

code turned off.

An interesting observation we make is that the OCaml compiler's built-in'opti

mization options such as - i n l i n e and -ccopt make little or no difference to the

execution times of our programs. However, for large programs (over 5K lines of

OCaml), higher values of the - i n l i n e option can increase compile time by up to 6

times. Turning on other Monty optimizations that we have implemented also seems

to diminish the value of using the - i n l i n e option.

8.1 Experimental setup

In this chapter, we present a comparative performance evaluation of different

implementations of Python:

1. CPython 2.5

2. Monty, our OCaml implementation, built using OCaml 3.10.2

114

3. Jython 2.5 beta, the latest release of Jython

The experiments were performed on an Apple Macintosh machine with the fol

lowing specifications:

1. OS information: Mac OS X 10.4.1, Build 8S2167, Darwin Kernel Version

8.11.1

2. Processor information: Intel core duo, 2 GHz, 2 cores, 2 MB L2 cache per

processor

3. Memory: 2 GB physical memory

4. Bus speed: 667 MHz

The native code was generated with the dcamlopt. opt command. Two OCaml

compiler optimization options,- inl ine <N> and-ccopt -0<N> were supplied. The

Unix command time was used to obtain all execution times. We present the raw

timing data for the entire benchmark suite in Appendix B. All times are measured

in seconds. Each execution time is the minimum of 5 runs. Each translation and

compilation time is the average of 100 runs.

8.2 Benchmark suite

Our suite contains 370 benchmarks (which we refer to by identifiers from 1 to 370),

each modified to run for approximately 2 seconds in CPython. These 370 benchmarks

115

10000

0 50 100 150 200 250 300 350

Benchmark sorted by size (Python word count)

Figure 8.1: Benchmark sizes, sorted by increasing Python word count.

have been combined to create a suite of aggregate benchmarks. The benchmarks cover

a range of sizes and were obtained from different sources. They include:

• 3 recursive functions: ackermann [2], f ibonacci [6] and takeuchi [16].

• Pystone [10], a standard Python benchmark which implements the dhrystone

[43] benchmark for integer operations.

• The standard pybench suite [11] for testing individual Python features. This

suite is part of the standard Python distribution and contains 12 benchmarks.

• 12 programs from the Computer Language Shootout [19] site. Each program

in the shootout implements a pre-specified algorithm in several languages. The

116

algorithm description is usually provided by both a textual summary and a sam

ple implementation. All implementations of the algorithm can be downloaded

or compared online for performance. 6 benchmarks from this suite, which did

not run correctly in our compiler, were excluded from the timing experiments.

Benchmark
fannkuch
n-body
nsieve
partial-sums
spectral-norm
recursive
mandelbrot
k-nucleotide
regex-dna
meteor-contest
binary-trees
sum-file

Description
Indexed-access to tiny integer-sequence permutations
Model orbits of jovian planets using a simple integrator
Count prime numbers from 2 to N
Partial sums of several mathematical sequences
Eigenvalue using the power method
Suite of standard recursive functions
Generate Mandelbrot set portable bitmap file
Hashtable update and k-nucleotide strings
Match DNA 8-mers and substitute nucleotides for IUB codes
Search for solutions to shape packing puzzle
Allocate large binary trees, walk and deallocate them
Read integers from a file and compute their sum

Lines
52
123
28
40
40
39
53
66
43
195
47
25

• 342 benchmarks are composed of both Python programs collected from the web

and those built by the undergraduate members of our research team.

• We constructed a suite of 36 aggregate benchmarks by concatenating the 370

individual benchmarks. In order to keep the compile time reasonably low, we

had to keep each aggregate small. These aggregate benchmarks have been used

only to investigate the effects of different optimizations.

8.3 Speedup compared to CPython

Monty provides a speedup over CPython for 278 out of 370 benchmarks (75%),

but 92 benchmarks run slower than CPython. The relative performance ranges from

117

4.6 times faster to 10 times slower than CPython.

o

S I /
• . if

Benchmarks sorted in increasing order of speedup over CPython

(a) Speedups compared to CPython wi th stack management in Monty

* 0.14-

Benchmarks sorted in order of speedup over CPython

(b) Speedups are higher without explicit function stack management in Monty

Figure 8.2: Relative benchmark speedups of Monty compared to CPython (higher is
better)

Figure 8.2(a) shows that our implementation obtains a speedup over CPython

for approximately 75% of our benchmark suite (278 benchmarks), with an average

118

speedup of 1.55 (55%). The highest speedup (4.62) is obtained for the benchmark

b in t r ee_ i t e r , which traverses a binary tree using generator functions. This illus

trates the power of our local-continuations approach for generators. Some other

sources of speedups are built-in numeric operations and array copy (tuple slicing).

We also observe, however, that many benchmarks in our suite are slowed down: the

lowest speedup is 0.095. We profiled each of the slower benchmarks in order to de

termine the source of performance loss.

On disabling stack function stack management in our runtime, we obtain a higher

average speedup of 1.65 (65%). Approximately 78% of the benchmark suite runs

faster than CPython, as compared to 75% with explicit stack management enabled.

8.4 Speedup compared to Jython

The timings in Appendix B include running times for our benchmarks with Jython

2.5 beta, the latest version. Figure 8.3 shows the speedups of Monty relative to

Jython.

Jython 2.5 could not run 17 out of our 370 benchmarks due to missing features or

libraries. On an average, Monty is about 10 times faster than Jython. The highest

speedup of Monty is 130 (overload) and the lowest is 0.4 (meteor-contest). Jython

is faster than Monty for 7 benchmarks. In each case, it is because of slowdown suffered

by Monty due to calls to the FFI for functions which are implemented natively in

Jython. This demonstrates the performance benefits of implementing functionality

119

natively over calling the FFL

150 200 260

Benchmarks sorted by Jython speedup over CPython

(a) Jython is about 5 times slower than CPython on average.

Benchmarks sorted by speedups of Monty over Jython

(b) Monty is about 10 times faster than Jython on average.

Figure 8.3: Jython performance on our suite is much slower than both CPython and
Monty: (a) shows Jython speedup compared to CPython, (b) shows speedup in Monty over
Jython.

However, in defense of Jython, it is not built with the primary goal of improved

performance, but with the goal of seamless interoperability with Java. In addition,

the timings shown above were generated by running Java with the Sun Java Vir

tual Machine implementation, which is the reference Java implementation. Work in

120

progress on native Java compilers such as the GNU Java Compiler (gc j) could lead

to faster Jython performance in the future.

8.5 Performance bottlenecks

Profiling each of the slower benchmarks using gprof revealed some prominent fac

tors causing performance loss. In Appendix C, we present a table of the benchmarks

in our suite which run slower than CPython. For each benchmark, we indicate the

causes of the slowdown as obtained from the gprof profile. The rightmost column

provides a more precise explanation of the problem.

In this section, we discuss some of the important causes of performance loss that

we glean from the table in Appendix C. Each subsection that follows discusses one

particular factor which contributes to performance degradation. We pick one example

benchmark per section and present three functions or procedures that show up as the

most expensive ones in the gprof profile of that particular benchmark. Our aim

is to quantify the slowdown that we observe and verify its origin. After presenting

the example, we suggest some future steps that we would like to follow to mitigate

the effects of the slowdown factor under discussion. The subsections are ordered in

decreasing importance of slowdown factors.

121

8.5.1 FFI

Using the FFI has a significant overhead due to wrapping and unwrapping op

erations at the language interface and copying data across runtimes. For example,

the gprof profile of the wordf req benchmark (speedup 0.61, CPython time 2.46 s,

OCaml time 4.03 s) shows that the function pywrap and its associated calls take up

a cumulative 52.9% of execution time. This benchmark uses several built-in string

methods which we invoke via the FFI.

% exec time
52.9
34.9
9

Function
pywrap
caml_adjust_gc_speed
caml_alloc_shr

Descript ion
Wrapping function for CPython objects
Garbage collection
Memory allocation for wrappers

41 of our benchmarks, including many of the slowest ones, are adversely affected

by the FFl overhead. Some of these benchmarks use modules from the Python stan

dard library such as random, hashl ib and decimal. String formatting for output is

currently invoked via the FFI, causing a performance loss whenever p r in t statements

format their outputs. Python has a large number of string manipulation methods,

many of which have no equivalents in OCaml. We use the FFI to invoke these meth

ods, such as cap i t a l i ze , t i t l e and index.

Potential for improvement: The numbers obtained from profiling the

wordf req and similar benchmarks suggest two possible improvements for removing

FFI overhead: (1) Reimplementing more Python functions and libraries natively in

OCaml to eliminate the need for wrapping and (2) Reducing the memory allocation

122

overhead for wrappers further. For example, one potential improvement is to maintain

a pool of allocated unused wrappers from which wrappers can be drawn.

Python libraries are usually implemented in a mixture of Python and C. Reim-

plementing libraries in OCaml involves making decisions about whether we should

implement both the Python and C components of a library in OCaml. For Python

codes, our experience suggests that translation to OCaml is likely to provide perfor

mance benefits. However, for C codes, we have multiple options: First, we could re

implement the C code in OCaml. This step would be carried out relatively quickly, but

we may lose the benefits of a finely-tuned C library. Second, we could re-implement

the C library in C, but using a data representation more suitable for OCaml rather

than Python. This option may be the best with regard to performance, allowing us

to finely control program behavior in C and tune the code to work with the OCaml

runtime. However, re-writing an optimized C library is usually time-consuming.

8.5.2 Printing

A large fraction (75%) of our benchmark suite was obtained by modifying our

unit tests to run for approximately 2 seconds. These tests each contain several print

statements, which currently have a high cost in our implementation. CPython se

mantics requires that all objects be converted to their string representations before

printing, using specified str or repr methods. This requires a string to be allocated

for every printed object. In particular, printing arrays of objects is expensive because

due to the concatenation of the string representations of individual objects in the

123

array. For example, by profiling the l i s t s benchmark (speedup 0.52, CPython time

2.17 s, OCaml time 4.17 s), we observe a high cost for the general printing function

(pyobject_print) and array printing (array_repr) in our implementation.

% exec time
35.1
21.5
17.9

Function
pyobject_print
array_repr
caml_alloc_string

Description
Print function
Array printing
String allocation

Printing is a source of performance loss in 34 of our benchmarks.

Potential for improvement: In our implementation, print statements are im

plemented by first producing a string representation of every object to be printed, and

then sending the string to the output file. This repeated string allocation is expensive

because of memory usage. In addition, array printing results in a traversal down the

array to recursively generate the string representation.

In the case of immutable objects, the string representation may be cached inside

the object, reducing string allocation overhead in many cases. In addition, Print

statements can be easily recognized at compile time, allowing the compiler to call

optimized functions for special cases such as built-in types. These two steps can

eliminate most of the string allocation overhead that we observe in the profile. In

the case of arrays, investigating ways to cache the string representation of the entire

array while keeping track of when it has been modified would be a big performance

win, since it would eliminate unnecessary memory allocation and array traversal.

124

8.5.3 MRO and classic class method lookups

Frequent method lookups for user-defined classes can cause slowdowns in cases

where the method is located several steps up in the class hierarchy. Searching for a

method involves looking up several dictionaries according to the MRO of a class. For

the intobj benchmark (speedup 0.46, CPython time 2.11 s, OCaml time 4.59 s), the

lookup_mro function alone consumes approximately 19% of time.

% exec time
18.6
16.4
9.8

Function
lookup_mro
cfreck_specialattr
caml_string_compare

Description
MRO method lookup
Looking up specially named attributes
String comparison during method lookup

MRO and special method lookups have a significant impact on 17 of our bench

marks.

Potential for improvement: Currently, we use a simple list data structure

to store the computed MRO of a class. A recursive function searches this list to

find a specific method. The performace of this lookup could be improved using an

array to represent the MRO. A faster dictionary implementation, such as a dictio

nary specialized for string-to-object mappings, would speed up individual dictionary

lookups, improving the performance of MRO lookups as a whole. Using a specialized

dictionary would reduce unboxing operations that are currently required to extract

names of methods to be looked up. Our optimization experiments suggest that such

a type-based specialization of dictionary methods would produce high performance

benefits.

125

Potential for improvement: We must examine the implementation of the

OCaml power operation and replace it with a more efficient version if possible.

8.5.4 Function stack management

In Python, the programmer can inspect the function call stack in order to de-

terming information such as local variables and any unhandled exception in the local

scope. Supporting this introspection feature requires us to maintain a stack con

taining this local information. This stack maintenance has a significant impact on

the performance of highly recursive functions such as L03arearing (speedup 0.9,

CPython time 1.79 s, OCaml time 1.95 s). As the profile for L03arearing shows, the

stack management functions add_new_locals and remove_locals, along with their

resulting memory allocation, run for over 20% of execution time.

% exec time
12.3
11.5
8.7

Function
caml_minor_collection
add_new_locals
remove_locals

Description
Garbage collection
Adding a stack entry
Popping the stack

3 of our benchmarks using recursive functions are affected by the stack manage

ment overhead.

Potential for improvement: Our current stack management code is fairly sim

plistic: it is a stack of records implemented using the OCaml Stack library. Both the

representation of the stack and the amount of memory allocated per stack entry can

be improved. In our optimization phase, we observed that reducing the size of each

126

stack entry by one word of memory reduced execution time by approximately 5%.

This leads us to believe that we can improve the performance of the stack further.

8.5.5 Other factors

Other notable causes of performance degradation include some OCaml string oper

ations such as the OCaml Str library for regular expression processing. The Big_Int

library for OCaml, which we use to implement the Python long type for unlimited-

size integers, is a cause of slowdown in some benchmarks. In some cases, we observe

a performance loss for functions using several keyword arguments.

Potential for improvement:

For string operations, we may choose to use more efficient functions in place of

the existing OCaml ones, whether implemented by us or obtained from a library.

Currently, keywords are stored in a dictionary object which is created and unpacked

for every call. This excess memory allocation can be trimmed. In fact, we have already

observed improvement in performance by implementing a similar optimization for

positional arguments. In the case of long integers, we obtain benefits by identifying

points where the stored integer value is within the range of native integers and use

faster native integer operations.

In summary, we observe that the slowest benchmarks (including the ones that

run about 10 times slower than CPython) are those using the FFI intensively, in

combination with other factors. For example, the slowest benchmark pr in tsys , prints

127

data from the sys module several times in a loop. The attributes of the sys module

are mostly obtained via the FFI. Similarly, the benchmark meteor-contest relies

on bitwise long-integer operations performed in deeply nested loops. These bitwise

operations are imported via the FFI, since the OCaml Big_Int library does not

support them.

8.6 Speedups and code size

The speedups are evenly distributed across source program sizes.

5

4.5

4

3.5

o. 3

T3
03 2.5
<D

a.
CO 2

1.5

1

0.5

0

•

•

i
* • "

'r '

mm •

•

•
•

•

m •
• • •

•
•

•

comparisonTests

• simpletupleops j

• simpledictops j

. wordtohum I

simplelookups

simpleconstructs

simplenumbers

600 00 1000 1200

Python word count

1800 2000

Figure 8.4: Speedups are evenly distributed across Python source size.

Figure 8.4 demonstrates that the size of the input Python program is not a partic

ularly significant factor in the speedup. The benchmarks with low speedups are fairly

evenly distributed across program sizes. The three benchmarks on the far right of the

128

plot, simplenumbers, simpleconstructs and simplelookups, test specific Python

features by running a large number of mutually independent one-line operations in a

for-loop. These operations include numeric comparisons, if-statements, loops and

method lookups. Due to the efficiency of our implementation for these individual

operations, we achieve a speedup of approximately 1.5 for each of these benchmarks.

8.7 Compile time and code size

Size of the generated OCaml code is determined by the constructs used in the

source Python code.

c
3
O
o
"E

I
E
M
O
O
T3
(D
C

(3

200

i
20000 A

:
1
i

15000 f

i

•

I
•

. * &

cc

•

1

•
•

• «

>nverter

•

•

i

i
1
1

• i

• :
j

I •

" 1
i •
1

simpl

simp econstruct
•

•

en umbers simf

5

Jelookups

400 600 800 1000 1200 1400 1600 1800 2000

Python word count

Figure 8.5: Generated OCaml word count vs Python word count.

For control flow constructs such as if-statements and loops, our code generator

inserts extra whitespace and indentation for readability. Python function definitions

129

generate large OCaml code sizes due to argument processing operations. Generator

functions cause an increase in code size due to a local continuation passing style

transformation. A simple binary addition operation is translated into a function call

with let-bindings in order to preserve order of evaluation of arguments.

As shown in Figure 8.5, some of our benchmarks result in large OCaml code

sizes compared to the source Python. For example, the converter benchmark

defines several small classes with methods containing arithmetic operations. Both

the pystone and meteor-contest benchmarks define several small functions. The

meteor-contest benchmark also uses several deeply nested f or-loops, which add to

its generated code size.

Construct
if-statement
while-loop
function defn
generator defn
class defn
addition

Python words
3
3
3
3
3
1

OCaml words
13
59
104
177
58
26

For Python constructs such as if-statements, while loops and function defini

tions, the size of the generated OCaml code is large. For example, a simple Python

if-statement with 3 literals generates 9 OCaml literals. However, this OCaml count is

inflated because many of these literals are simply parentheses which disappear during

OCaml parsing.

130

Python
if 1:

pass

OCaml
if (truthvaK _int_l)) then (

nullobj ;
0

) else ()

8.8 Impact of code size on translation and compilation times

The time taken to translate from Python to OCaml depends on the size of the

source Python code, but is small compared to compile time from OCaml to native

code.

E

.22
a.
E
o
O

!

i

!

•

•

\Jt J'' • •
.....a

•

•

•

, converter

•

i

•

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Translate time

Figure 8.6: OCaml compilation time is much higher than translation time.

As the source Python size increases, we notice that the translation time increases

in a roughly linear fashion. However, the cost of printing the generated AST can

take up to 50% of the translation time, which affects Python constructs where the

131

0.2-

I
I

I

0,14

0.12

0.1

0.08

0.06

0.04

0.02

0

si triplet upleops

~Sttr^M<Mpir

•

• . • . ' • • • ,

200 600 800 1000 1200

Python word count

1400 1600 1800 2000

Figure 8.7: Translation time increases with Python code size.

generated code is large. For example, in simpledictops, dictionary creation using

{a:b, c:d} syntax in Python is translated into an OCaml function call with a list

of pairs as the argument. In simpletupleops, sequence assignments of the form

a, b, c = (1,2,3) are translated into multiple individual assignment statements. The

increase in generated code size in these cases causes translation time to increase.

As the size of the Python source code increases, the increase in compile time is

more directly related to the size of the generated OCaml code. Benchmarks such

as converter, pystone and meteor-contest, which produce large OCaml code sizes

compared to the source Python size, also take longer to compile to native code. Figure

8.8 shows the compile time against the code size in Python and generated OCaml

respectively.

132

I
l:

I r
2

W:i

200 400 600 800 1000 1200 1400 1600 1600 2000

Python word count

(a) Compile time versus Python code size.

10000 16000

OCaml word count

(b) Compile time versus OCaml code size.

Figure 8.8: Compile time increases with source code size.

8.9 Impact of OCaml compiler options

Our next experiment examines the impact of two optimization options provided

by the OCaml native code compiler: the - i n l i n e <N> option for inlining, and the

133

-ccopt -0<N> option for enabling optimizations in the underlying C compiler.

700

600

500
o
E

= 400

.o

| 300
Q.
E

Q 200

100

0

0 10 20 30 40 50 GO 70 80 90 100

Inline parameter

0 10 20 30 40 50 60 70 80 90 100

Inline parameter

(a) Execution and compile times for - inline parameters with other optimiza
tions turned on.

£ zoo +
B

"3 100
o

E

700

800

500

E
o 200

100

0 "

0 10 20 30 40 50 60 70 80 90 100

inline parameter

0 10 20 30 40 50 60 70 80 90 100

inline parameter

(b) Execution and compile times for - inline parameters with other optimiza
tions turned off.

Figure 8.9: The - in l ine N option has a slight impact on execution time, but compilation
time increases with larger values of N for large programs such as our aggregates.

The - i n l i n e <N> option for the OCaml native code compiler enables more ag

gressive inlining for higher values of N. Figures 8.9(a) and 8.9(b) show the effect of

different values of N on execution and compilation time of the aggregate benchmark

with other optimizations turned on and off, respectively. For N from 0 to 20, there is

134

a slight decrease in execution time. For N greater than 20, there is no further impact.

In both cases, compile time increases dramatically for higher values of N.

E

«
a.
©

c

JC +±

'5
(D

E
'•S3
J£
'Q.
E o o
©

©

1.4"

1.2

0.8 -

0.6

0.4

0.2

0

Sf"

(p1
— —

' . "
• • • • f

1

• « , • ,

•

•

" . •

- —-

• •

200 4Q0 600 800 1000 1200 1400 1600

Benchmark size (Python word count)

1800 2000

Figure 8.10: Using the -inline parameter for our benchmark suite, the relative change in
compile time before and after inlining is evenly distributed around 1 for smaller programs
such as those in our benchmark suite.

Figure 8.10 shows the relative change in compile time for our benchmark suite,

with and without the - i n l i n e parameter. We observe that for this suite, the relative

change in compile time is evenly distributed around 1, in a bell-curve form.

Our observations indicate that the impact of the - i n l i n e parameter on compile

time is observed only for larger programs such as the aggregate benchmark (Figure

8.9), where the size of the source Python code is greater than approximately 1000

lines. For smaller programs such as our benchmarks, the impact on compilation time

is quite small (Figure 8.10).

135

| :

fe 30

J .
J " "

8 200
CO

e
J 15°
c
.s
J 100
a.
£
o
o 50

20 20

ccopt parameter

1 2

ccopt parameter

(a) Execution and compile times for -ccopt parameters with other optimiza
tions turned on

<L>

E 50

•

0

• •

1 2 :

ccopt parameter

C
om

pi
la

ti
on

 t
im

e

•
250 -!

200

150

100

50

0

0

• • I

1 2 3

ccopt parameter

(b) Execution and compile times for -ccopt parameters with other optimiza
tions turned off

Figure 8.11: The -ccopt -0<N> option has a no impact on execution or compilation time

The OCaml native code compiler translates OCaml code to low-level assembly

language. It then invokes the gcc compiler for performing the final linking step,

which creates a native code executable from the generated assembly, libraries and

any C code that is part of the application. The -ccopt -0<N> option enables var

ious optimizations in gcc during this linking step [7]. These optimizations include

136

loop alignment, constant propagation and peephole optimization [29]. For our ag

gregate benchmark, changing this option did not cause any significant difference in

the execution time or compile time, as shown in Figures 8.11(a) and 8.11(b). We

believe that this is because both the OCaml and gcc compilers perform several sev

eral source-level optimizations on the OCaml and C sources respectively, leaving few

optimization opportunities at the linking stage.

8.10 Impact of Monty optimizations

We use the aggregate benchmark to examine the impact of various optimizations

that we implemented in our compiler.

1. Cihp ops: Specialize comparison operators for built-in numeric types using

method lookups via records rather than dictionaries. These specialized opera

tions were further tuned by inlining and removing exceptions.

2. Binary ops: Similar to comparisons, specialize arithmetic binary operations

for numeric types.

3. Store string hash: Compute the hash value for a string object only once and

store it in the object.

4. Array copy: Use our modified array copy function in place of OCaml's stan

dard library function.

137

5. Native math: Use a native OCaml implementation of the Python math module

instead of calling the Python Standard Library via the FFI.

6. IteratorS-exh: Remove exceptions from iterator methods. This optimization

affects the performance of f or-loops.

7. Get^and-call: If a method lookup is immediately followed by a call to method,

replace with an optimized function to combine the two steps.

8. If-compare: If a comparison is used as the condition for ah if-statement,

replace it with an optimized function which returns a boolean instead of an

object.

9. Records-copy: Use initialization instead of copying to instantiate record types.

10. Unary ops: Perform unary negation for integer and float constants in transla

tor.

11. Int subscripts: Recognize integer subscripts for arrays and use an optimized

retrieval function.

12. Seq length: Compute lengths of sequences (lists, dictionaries, strings) at com

pile time.

13. String hash: Compute hash values of string constants at compile time.

14. Native iterators: Use a native OCaml implementation of the Python i t e r t o o l s

138

module, as well as built-in iterative functions such as map, reduce and z ip in

stead of using CPython via the FFI.

15. Method cache: Use a method cache for storing recently called method ad

dresses. Our method cache is implemented for user-defined classes and their

methods.

16. Print str method: Various optimizations to printing, such as looking up string

representation methods via records rather than dictionaries.

17. Global buffer pool: A repository of string buffers for efficient printing of lists

and tuples.

18. String interning: A program using strings can suffer performance loss due to

repeated allocation of string objects. A useful optimization is to intern these

strings, that is, preserve a string object in a hash table keyed by the string

it represents. This ensures that we allocate the object only once and reuse

it when needed. In our implementation, most strings are interned in order to

reduce memory allocation. However, strings occurring as a result of operations

such as concatenation are not likely to be used more than once, hence they are

not interned.

In order to study the impact of different Monty optimizations on an aggregate

benchmark, we first measure two execution times: ALLOFF, with all optimizations

off, and ALLONI with all optimizations on. For each optimization 0 , we measure

139

PToff-ALLon • ALLaff-Ton

50
c
2 45
O

=5 40

c
o

a o

35

30

25

20

I 15

CD

O
<D
X
a>
c
o

a.
£

10

5

0

n

t-.J ^LJ. • i l _CJ I L
CO

a o

ar
y

_c "n
•w

ra
O

o

•g
co

.£ i :
CO

or
e

to

O
x:

m
et

^ cri

Q.

•i n

te
rt(

CD

.>
c

Optimizations

0)

o
CD
(J |
TJ
o

x :
•(5

E

O
O
>s i

Figure 8.12: Specializing binary numeric operations, comparisons and storing string hash
values yield the greatest benefits.

two times: ToON, with only O turned on, and ToOFF, with only O turned off. Two

quantities are reported in Figure 8.12 per Monty optimization:

1. ALLOFF — ToON'- Impact of optimization O with other optimizations turned

off.

2. ToOFF — ALLON- Impact of optimization O with other optimizations turned

on.

In each case, we divide by the corresponding value of ToOFF to obtain the per

centage impact of that particular optimization.

140

The most significant of our Monty optimizations are: (1) Specializing binary arith

metic and comparison operations for numeric types; (2) Storing hash values for string

objects to avoid recomputation; (3) Using natively implemented OCaml i t e r t o o l s

and math modules instead of the CPython version (4) Using our implementation

of array copying instead of the OCaml standard library version; and (5) Printing

optimizations. The remaining optimizations have a small impact on the aggregate

benchmark because their benefits are localized to specific components of this bench

mark.

The store-string-hash optimization has a much greater effect with other Monty

optimizations turned off. This is because when the binary ops and cmp ops flags are

turned off, the runtime uses dictionary lookups to obtain the corresponding methods.

These method lookups use string hashing extensively, resulting in a significant benefit

from storing the hash value. When the method lookups use records rather than

dictionaries, string hashing is not invoked as often.

8.11 Object allocation in OCaml vs. Python

In order to measure the efficiency of memory allocation for large numbers of

Python objects, we estimate the time taken to allocate linked lists of size 2^. The

elements of the list are described by the following code:

class zero_element(object):
pass

zero = zero_element0

141

class succ_element(object) :

def ^_init (self,l):

self.rest = 1

def succ(tl):

return succ_element(tl)

The zero_element class defines the base element zero of the list. The succ_element

class contains a reference to the rest of the list. This class is instantiated by the func

tion succ.

Figure 8.13 shows the execution time for allocating large linked lists of Python

objects. The size of each list represents the corresponding natural number. On

allocating lists of length 2N starting from N = 0 we find that OCaml's memory

allocation performs much better than CPython's, especially for large N. The highest

values of N that we can reach before running out of memory are 21 for CPython and

23 for OCaml. This demonstrates that OCaml's garbage collection scheme manages

large numbers of memory allocation operations efficiently.

142

1000]

100

10

1

0.1

0.01

0.001

0.0001

0.00001 -

0.000001 *
0

:

•

• •

a .
• *

A • !
t

I •
•

t

. . • '

2 4 6 8 10 12 14 16 18 20 22

N (List of length 2»N)

•

k

- -

24

• Python tima
* Monty time

26

(a) Time taken to allocate linked lists of objects in CPython and Monty.

N (list of length 2"N)

(b) Speedup in Monty relative to CPython for allocating linked lists.

Figure 8.13: OCaml allocates individual objects more efficiently than CPython: (a) shows
the time taken to allocate linked lists of objects and (b) shows the relative speedup in
OCaml.

8.12 Array allocation in OCaml vs. Python

In Figure 8.14, we show the time taken to allocate arrays of Python objects. Each

array has size 2^. The largest possible array size in OCaml is 221 due to OCaml's

internal upper bound on array length. In CPython, we can allocate arrays upto length

224. OCaml's array allocation is more efficient up to N = 7. The jump in OCaml

143

execution time between N = 7 and N — 8 is because for N < 28, OCaml allocates

arrays from its minor heap using a faster allocation function (caml_al loc_smal l) .

For larger sizes, OCaml allocates from its major heap using caml_alloc_shr, which

is more expensive.

10

1

0.1

0.01

0.001

0.0001

0.00001

0.000001 »•••»!-•••-

0.0000001 •*••••

0 .00000001

+ - * • , 4 1
4 • ! ! i

i ' * ! i f
• Python time

* OCaml time

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

N (array of length 2*N)

(a) Time taken to allocate arrays of objects in CPython and Monty.

100 -.—

O
O

10 12 14 16

N (array of length 2AN)

20 22

(b) Speedup in Monty relative to CPython for allocating arrays.

Figure 8.14: CPython allocates large arrays of objects more efficiently than OCaml: (a)
shows the time taken to allocate arrays of objects, (b) shows the relative speedup in OCaml.

144

8.13 Effect of removing function stack management

Removing function stack management improves performance.

O 10

a

o

&
"8
(U a.

0.0100 0.1000 1.0000

Speedups over CPython

10.0000

Figure 8.15: The relative speedup improvement after removing stack management code
is highest for recursive functions. The improvement is distributed in a bell-curved manner
with a peak around 1.0.

In order to test the effect of function stack management, we timed our benchmarks

without generating stack management code. Figure 8.15 shows the additional rela

tive speedup obtained over the code with stack management. Most benchmarks per

form faster without stack management code. Recursive functions such as ackermann,

f ibonacci, takeuchi and b inary- t rees have the most noticeable performance im

provement. The average speedup over all benchmarks increased to 1.65 as compared

to 1.55 with stack management. The increase in speedup is distributed in a somewhat

145

bell-shaped manner with a peak around a speedup of 1.0. Benchmarks that are much

slower or much faster than CPython are not noticeably affected.

146

Chapter 9

Practical lessons that we learned about our

approach

In this chapter, we reflect on the experience of building a compiler for a dynamic

language via translation to a statically typed functional language, and give advice

to others that want to carry out similar experiments. Since compiler developers

must focus first on the correctness and completeness of their implementation, we first

present some our our recommendations for achieving completeness. These include

referring to source code (if available) for understanding source language semantics,

starting with a mostly-FFI based initial implementation and testing using existing

standard test suites.

In order to improve the performance of a translator to OCaml, we must leverage

OCaml's strengths such as algebraic data types, pattern matching, recursive first-class

functions, and avoid excessive memory allocation. Specializing runtime methods for

common cases leads to large performance gains. Libraries perform faster if imple

mented natively instead of being called via the FFI. Using profiling tools such as

gprof is an indispensible technique for isolating performance bottlenecks.

147

9.1 Achieving completeness

As compiler developers, we cannot overstate the importance of making sure a

correct implementation is built first before any attention is given to performance. It

is trivial to implement a compiler that is high-performing but incorrect. Dynamic

languages such as Python have a large number of built-in types and methods which

can be onerous to implement completely, but we recommend a few approaches that

a language developer can pursue to ease the process.

9.1.1 Refer to source code

In the case of Python, we have found that the source code of the reference im

plementation, CPython, is the most authoritative documentation of the language.

Python is an open-source, collaboratively developed language. It features extensive

manuals and documentation; however, they may not keep pace with the latest versions

of the implementation. Our goals do not include debugging the Python documenta

tion, so we prefer to use the manuals as a starting point and refer to the source code

to understand the internal semantics of the language.

9.1.2 Start with the FFI for completeness

One of the key lessons learned in this work is that dynamic language make heavy

use of libraries, and many of these libraries may either be implemented in Python

or in other languages such as C. Starting with a mostly-FFI implementation helps

148

make the early implementations more usable, and also help focus attention both to

areas where performance can be improved and areas where there are no realistic

opportunities for improvement.

Any complete Python compiler must also implement the large set of built-in

Python objects and their methods. In our compiler, we have implemented most

of these built-in types from scratch in OCaml. A much more direct approach to

achieving completeness would be to build the FFI first and use it to achieve correct

implementations of all the built-in types. To improve performance, we would incre

mentally migrate implementations of different data types one by one from Python to

OCaml.

However, in our implementation, we initially postponed building the FFI because

we wanted to focus on the core language by compiling closed programs which did not

use libraries. Unfortunately, we faced two major issues with this approach: First, any

nontrivial Python program uses the Python Standard Library. Some of the most com

monly used libraries are the math library containing mathematical and trigonometric

functions, the i t e r t o o l s library containing iterator functions for different kinds of

sequences and the re library providing regular expression match-and-replace facili

ties. Second, all Python built-in types are complex data types with many nontrivial

methods and ad hoc overloading. Building the FFI at the outset would have bypassed

these issues and let us achieve completeness much more rapidly.

149

9.1.3 Test constantly and systematically

Using a good testing methodology not only enabled us to evaluate the correctness

and completeness of a language implementation, but also allowed quick detection and

fixing of subtle bugs. A good testing mechanism should combine two components:

(1) Acceptance testing to check each new feature using small and specific tests and (2)

Regression testing to track progress in compiler development and to ensure that newly

added features do not break existing ones. Any nontrivial change to the compiler code

must be followed by a round of testing. The results of running the test suite should

be logged and maintained to obtain a history of development progress.

In the case of Python, some of the testing recommendations we suggest are:

• Cover all of the built in functions and methods of Python, including all of their

corner cases.

• Validate that the translator raises all the right exceptions for methods called

with arguments designed to make them fail. This is particularly important

because Python's built-in exceptions are a pervasive part of its semantics. Since

exceptions are frequently used as control flow by Python programmers, raising

the right exception is necessary for correctness.

• Validate the implementation more thoroughly with regard to Python's unusual

scoping mechanisms.

150

9.1.4 Start by using the test suite from the reference implementation

When building an implementation for an existing language, the language imple-

menter should use any available test suites from the reference implementation of the

language. It is very likely that these existing suites test the language completely,

with all its subtle and less documented features. Moreover, these existing test suites

are usually a valuable indicator of what the language developers (and often, users)

consider to be important about the language.

Python has a test suite consisting of over 300 files. This suite is executed by a

framework (PyUnit) which is implemented in Python using many advanced features

such as introspection and dynamic import. Since we did not support these advanced

features at the outset, we postponed using CPython's test suite. In retrospect, it

would have been a good idea to focus on running the suite initially. That would have

given us a very reliable metric to evaluate the correctness of our compiler and find

many subtle bugs in the process.

In a language such as Python, exceptions are a pervasive part of the semantics

and frequently used as a control flow mechanism. However, most of our test case

builders, including myself, showed a marked preference for writing tests that did

not raise exceptions. This, we believe, further highlights the importance of testing

all exception-raising cases intensively. Using the reference implementation test suite

would have bypassed this problem and directly provided us with a large test suite for

exception-raising cases.

151

9.1.5 Use an existing parser

Python has a large and quirky grammar defined in its own parser implementation.

Using a standard parser guarantees correct parsing and effectively reuses software.

In a compiled setting such as ours, a correct parser with reasonable performance

is sufficient. However, we are bound to an existing representation of the AST and

the information stored in it. In our implementation, we have used CPython's parser

library from the compiler module to generate a string representation of a Python

program AST. This library is invoked directly from our translator using our OCaml-

Python FFI. Using this approach provided us with a correct parser at little additional

development cost.

9.1.6 Structure the runtime into modules

Our current implementation places all of the functionality of the runtime in one

large OCaml file. This file is approximately 16,000 lines long. Structuring it into more

logical compilation units using OCaml's module system would make the code easier to

understand and maintain as well as reduce compilation time between modifications.

The CPython implementation places each built-in object type in its own module,

with additional modules for more abstract functionality. This structure places all of

the functionality of each object type together, making it easier to change an object's

semantics if it is redefined in the future. The CPython code structure appears to be

a reasonable model for our implementation to follow.

152

9.2 Improving performance

Based on our experience of building a compiler by translating a dynamic language

to OCaml, we have learned some techniques to leverage OCaml's strengths and avoid

its weaknesses. These lessons guide our approach to implementing translator opti

mizations.

9.2.1 Reduce memory allocation

Memory allocation is the most important source of performance loss in a language

implementation. Allocation is expensive in any programming language, but memory-

managed languages such as OCaml have a hidden cost: garbage collection. The more

memory a program allocates, the more work the garbage collector must perform to

manage and collect the allocated memory. Due to this large overall cost, many of

our optimizations have focused on reducing memory allocation. For example, our

object representation record is carefully designed to have a small number of fields,

since it is the most frequently allocated data structure in our implementation. Other

optimizations that target memory allocation include interning frequently used data,

such as integer constants and strings.

9.2.2 Specialize for common cases

Dynamic language semantics assumes that a function or operation can accept an

object encoding any type of value. However, in practice we find that some cases are

153

more common than others. For example, numeric operations are frequently called

with integer or float arguments. Hashing, an expensive operation, is performed most

commonly on string objects due to method lookups. Targeting these common cases

has provided us with the most effective optimizations. For example, we have im

plemented specialized binary operation functions for built-in numeric types such as

integers and floats. For every string object, we store its computed hash value as part

of the string object representation. Observing the use of specific language features

by studying existing programs is useful for identifying common use cases of those

features.

9.2.3 Implement libraries natively

Building a foreign function interface is useful to support a large number of library

modules at once, however there is a severe performance penalty associated with FFI

calls. Libraries which are frequently used or are performance-critical should be im

plemented in the target language. For example, in our implementation, we obtained

performance benefits by implementing two frequently used Python library modules,

math and i t er too l s in OCaml.

9.2.4 Use option types instead of exceptions for control flow

Exceptions in OCaml are dynamically scoped. When an exception is raised,

searching the call stack for a handler can be expensive. We have used two con

trol flow mechanisms in our runtime to replace exceptions: (1) option types with

154

pattern matching and (2) using a designated e r ror value. However, exceptions may

be used when handling errors or rare situations without performance loss.

9.2.5 Select the appropriate control flow constructs

OCaml has a variety of features providing a powerful hierarchy of increasingly

expensive and expressive control flow constructs. In addition to common language

features such as i f statements and while loops, OCaml allows the developer to

use tail-recursion, option types, pattern matching, exceptions and continuations. In

our implementation, we have used all these features at different points to obtain

performance benefits. For example, using tail-recursion and continuations provides

us with an efficient implementation of generator functions.

9.2.6 Experiment with different profiling tools

Profiling tools such as ocamlprof and gprof are essential in identifying areas

of slowdown for specific programs. These tools can be used in batch mode from

the command line to generate profiles for a large number of programs. In addition,

interactive tools such as shark on the Mac OS X provide a wealth of information

about program execution such as memory usage and timings. However they can only

be used for one program at a time.

155

Chapter 10

Conclusions and Future work

Our main goal in this research is to study the engineering tradeoffs involved in

building a compiler using automatic translation from a dynamic language to a stati

cally typed functional language. In this chapter, we first recapitulate our observations

about the effectiveness of this translational approach to compiler development. We

briefly describe the current results of our implementation and the lessons we have

learned about building a complete and efficient translation. We outline several steps

that may be taken to obtain a more complete and efficient implementation in a section

on future work.

10.1 Recap

At the time of writing this dissertation, Monty passed 383 out of 425 tests in our

test suite. Of the 42 failing tests, 29 are due to unknown bugs in our implementation.

Our implementation does not support several Python features such as dynamic code

execution, threads and context managers.

We have implemented several performance optimizations in our translator and

156

runtime. The optimization techniques with the highest benefits can be placed in the

following categories:

1. Reducing memory allocation by careful design of object representation, and by

efficient caching and reuse of allocated objects

2. Specializing numeric and comparison methods for common cases such as built-in

types

3. Implementing libraries natively in OCaml instead of using the FFI

4. Using OCaml's pattern matching effectively, such as implementing control flow

with option types instead of exceptions

The performance of Monty proved incomparable to that of CPython: Some pro

grams were 4.5 times faster, and some were 10 times slower. Most programs were

faster (75% of our benchmarks). Compared to Jython, however, Monty generally

produced significantly faster executables, in some cases, up to 100 times faster.

On investigating why some programs run significantly slower in Monty than in

CPython, we have profiled and isolated several factors. The FFI is the the most

significant cause of performance loss, followed by printing methods and function stack

management. OCaml suffers a penalty in allocating large arrays, which affects the

performance of important data structures such as Python lists and tuples. From

observing profiles of these programs, we believe that mitigating these factors can

significantly improve the performance of our implementation.

157

In conclusion, our experiment shows that translating a dynamic language to a

statically typed functional language does have the potential for being an effective

technique for compiling dynamic languages for many programs, provided we can

design our translator to leverage the efficiently implemented features of the target

functional language. However, we have also identified potential obstacles that can

limit the potential of the approach. In the next section, we describe opportunities for

future work that can help us overcome these obstacles.

10.2 Future work

There are several areas of future research that we would like to work on in order

to overcome the current limitations of our implementation:

• Achieving completeness by adding unsupported features and fixing bugs

• Optimizing the runtime

• Improving performance of the FFI

• Supporting large Python applications

In this section, we discuss the above areas with specific examples.

10.2.1 Completeness

In order to achieve completeness, there are several Python features that we must

support:

158

• Exec and eval: Python's exec and eval constructs allow code stored in strings

to be evaluated at runtime in a specific environment. Our translator does

not support this because the standard OCaml implementation cannot compile

and load native code at runtime. However, MetaOCaml [41], a multi-stage

extension of OCaml, supports dynamic native code loading, which may enable

us to implement this feature in the future.

• Dynamic import: In Python, a module whose name is known only at runtime

may be imported dynamically. Currently, our translator assumes that imported

modules are known at compile time and inlines their code. Dynamic import

would require a dynamic loading facility similar to that of the case of exec and

eval, hence MetaOCaml may serve our purpose.

• Finalization: Python allows objects to define a del method which is

called when the object is collected by either the garbage collector or at the end

of the program. Generator objects define a close method for finalization. We

do not currently support finalization because we do not manage memory explic

itly. However, OCaml does allow user-provided finalization methods for custom

objects allocated via its C interface. This facility may be used to implement

specialized objects which require finalization.

• Threads: The threads module in the Python Standard Library provides an

interface to the operating system threads. This module does not yet work

correctly. The OCaml implementation provides a thread library, which may be

159

used to implement the Python threads module.

• With context managers: Context managers (with-statement) allow a piece

of code (a block) to perform a predetermined action on entry and exit. Sup

porting the with-statement in our translator requires adding support for it in

the translator and generating the appropriate context management code. The

following example, taken from the Python documentation [12], demonstrates

the use of the with-statement.

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digi ts
v = Decimal('578')
print v .sqr tO

with localcontext(Context(prec=16)):
All code in th is block uses a precision of 16 d ig i t s .
The original context i s restored on exiting the block,
print v .sqr tO

• Identifying test case failures: 29 of 425 test cases in our test suite fail due

to unknown reasons. We believe that these failures are a result of bugs in

our implementation. Following the technique of isolating the smallest possible

program with the failure would allow us to rapidly identify and fix these bugs.

• Modifying CPython: Currently, the CPython implementation uses pointer

comparison to determine subtyping. We would like to re-implement the subtyp-

ing check as a method call, which would allow our implementation of Python

160

objects to be identified as subtypes of the corresponding CPython ones. This

requires a minor modification to one function in CPython (PyType_Subtype).

10.2.2 Improving the source-to-source translation

There are several improvements that we can make to the translator, both for

performance and developer convenience:

• Function parameters: Currently, every Python function call is translated

to an equivalent OCaml function which takes a list and a dictionary as an

argument. This is a source of inefficiency due to packing and unpacking of these

function arguments. Finding more efficient ways of translating function calls,

such as generating specialized code for common function argument patterns, is

a potential source of improvement.

9 Output code formatting: Currently, our generated OCaml code is quite dif

ficult to read, due to lack of attention to formatting. Generating well-formatted

and highly human-readable output OCaml code would enable language devel

opers to better identify bugs and areas of weakness in the translation.

10.2.3 Optimizing the FFI

The FFI is the most outstanding performance bottleneck in our implementation.

Programs using the FFI intensively may run over 10 times slower than CPython. We

have identified some optimization opportunities in our FFI design.

161

1. Eliminate excess memory allocation during wrapping and unwrapping of val

ues before passing them between Python and OCaml runtimes. One way of

achieving this is to maintain a pool of unused wrappers in both the OCaml and

CPython runtimes. Another potential technique is to cache allocated wrappers

so that they can be reused if the same value is passed multiple times across

languages. Both these techniques require some book-keeping in the FFI.

2. Some parameters of the OCaml-C interface can be tuned to control garbage

collection for memory allocated during wrapping. For example, the

caml_custom_alloc function which we use to allocate wrappers around Python

pointers, allows the programmer to define a ratio indicating the frequency of

garbage collection. This kind of perfomance tuning may provide some bene

fits, however, it requires some experimentation to find the best combination of

parameters.

10.2.4 Optimizing the runtime

Profiling the benchmarks that suffered a slowdown compared to CPython revealed

the following areas as potential bottlenecks in the runtime:

1. Native implementation of libraries: Implementing native OCaml versions

of Python Standard Library modules instead of using the FFI to access those

functions provides a performance boost. For example, the math library module

runs approximately 25 times faster using an OCaml implementation. However,

162

this is a time-consuming process as Python has over 100 libraries, consisting of

approximately 100,000 lines of code.

2. Print statements: Print statements can be further sped up by caching string

representations of objects in order to reduce string allocation.

3. Function stack management: Reducing the memory allocated per stack

entry may improve the performance of our stack management code. Currently,

we use OCaml's Stack library to represent the stack. This library is simply a

thin wrapper around OCaml lists. Changing this representation, potentially by

using arrays, may be effective in this case.

4. MRO lookups: Representing the MRO using an array instead of a list is a

potential strategy for improving lookup speed. Method lookups can be made

faster by using the CPython strategy of using a specialized string-object dic

tionary internally for type objects. This CPython implementation strategy can

be investigated by studying the source code of CPython's dictionary type.

5. Removal of exceptions: In OCaml, exceptions can be used as a convenient

control-flow mechanism. However, we have found that replacing this use of

exceptions by pattern matching often leads to improved performance. Reducing

the use of exceptions in the runtime and replacing them with option types

usually provides some performance benefits.

6. Hashing: Computing hash functions is a costly operation in OCaml, but must

163

be used extensively in Python for method lookups. We may consider investi

gating the performance of third-party libraries for string hashing to speed up

dictionary lookups.

7. Array allocation in OCaml: Improving the performance of large array al

location in OCaml, as compared to the current OCaml implementation, would

benefit programs using list and tuple objects in our implementation. This may

require modifying or creating a custom allocation function in C, similar to our

re-implementation of array copying.

In addition to the above factors, we have observed a slowdown due to the per

formance of some OCaml string operations and the numeric power operation. Our

translation of Python functions with several keyword arguments has exposed ineffi

ciencies in argument processing, mainly due to repeated packing and unpacking of

keywords in to dictionaries. These are some of the issues that must be addressed in

order to obtain a more efficient implementation.

10.2.5 Improving object representation

Our current object representation contains some historical artifacts due to the

evolving design process. Removing them could make our representation more elegant

and fast. For example, we would like to move the props field in the obj record into

the value representing the type object. This means that our universal value type

would look like:

164

type raw =
I Type of tp_record
I . . .

We believe that this redesign would not only make the object representation more

elegant, but also may improve performance by making the obj record smaller in

size. Since the obj record is frequently allocated, a smaller size would result in lesser

memory allocation. However, it remains to be seen whether this reduced allocation

would outweigh the cost of pattern matching to access methods as opposed to record

fields.

10.2.6 Support large applications

Table 10.1 shows some of the large Python applications that we would like to

support.

Naiiie
Mailman
DrPython
Natural Language Toolkit
Frets on Fire
Plone
SciPy
Matplotlib

Type
web, e-mail
GUI
Text
GUI
web, database
math
UI, math

Description
Mailing list manager
Python IDE
Natural language processing toolkit
Guitar Hero-like game
Content Management System
Numerical and scientific computation library
2D plotting library with Matlab-like syntax

Table 10.1: Some large Python applications that we would like to support in the future.

10.2.7 Long-term goals

After achieving our goals for completeness and implementing our proposed opti

mizations, there are some long-term problems that we would like to address.

165

• Comparison with other Python implementations: We would like to run

Monty on Windows and compare its performance with windows-specific imple

mentations such as IronPython. We would also like to compare the performance

of Monty against just-in-time systems such as Psyco.

• Type inference for Python: Our most effective optimizations have been

those which specialize functions in the runtime for particular types. This sug

gests the importance of source-to-source compile time type inference in Python,

which would allow us to specialize functions statically. Such a type infer

ence technique would remove the overhead of runtime type checking. However,

Python's highly dynamic features, such as mutable methods, make such type

inference challenging.

• Minimal OCaml subset: The OCaml subset that we currently use as the

target language is fairly small, but we do not know if there exists a smaller

OCaml kernel that would suffice. A small target language makes source-to-

source optimizations easier to implement. We would therefore like to use a

minimal OCaml subset for our generated code.

• Evaluating the generated code: An important tool in the development of a

translator using OCaml would be a method to evaluate whether the generated

OCaml code is the most efficient. Such an evaluation technique would help

estimate the limits of our compilation strategy and the effectiveness of various

compile time optimizations.

166

Bibliography

[1] 004591-A faster version of Array.sub implemented in C.

http://caml.inria.fr/mantis/view.php?id=4591/. OCaml bug report: Accessed

on August 20, 2008.

[2] Ackermann Function from Wolfram MathWorld.

http://mathworld.wolfram.com/AckermannFunction.html. Accessed on August

27, 2008.

[3] COMP 210: Principles of Computing and Programming.

http://hope.cs.rice.edu/twiki/bin/view/Teaching/210. Accessed on August 21,

2008.

[4] Dylan: Overview, http://www.opendylan.org/. Accessed on August 26, 2008.

[5] Extending and Embedding the Python Interpreter.

http://docs.python.org/ext/ext.html. Accessed on September 1, 2008.

[6] Fibonacci Number from Wolfram MathWorld.

http://mathworld.wolfram.com/FibonacciNumber.html. Accessed on August

27, 2008.

167

http://caml.inria.fr/mantis/view.php?id=4591/
http://mathworld.wolfram.com/AckermannFunction.html
http://hope.cs.rice.edu/twiki/bin/view/Teaching/210
http://www.opendylan.org/
http://docs.python.org/ext/ext.html
http://mathworld.wolfram.com/FibonacciNumber.html

[7] GCC Options that control optimization.

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html. Accessed on March

15, 2009.

[8] Latest Objective Caml release, http://caml.inria.fr/ocaml/release.en.html.

Accessed on August 24, 2008.

[9] The OCaml Beginners List.

http://tech.groups.yahoo.com/group/ocaml-beginners. Accessed on August 20,

2008.

[10] Pystone numbers for different Macs.

http://mail.python.org/pipermail/pythonmac-sig/2008-January/019659.html.

Accessed on August 28, 2008.

[11] Python Benchmark Suite - pybench 1.0.

http://mail.python.org/pipermail/python-announce-list/2001-

November/001081.html. Accessed on September 10,

2008.

[12] Python Enhancement Proposal 343: The 'with' statement.

http://docs.python.org/whatsnew/pep-343.html. Accessed on August 28, 2008.

[13] Python Reference Manual, http://docs.python.org/ref/ref.html. Accessed on

August 26, 2008.

168

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://caml.inria.fr/ocaml/release.en.html
http://tech.groups.yahoo.com/group/ocaml-beginners
http://mail.python.org/pipermail/pythonmac-sig/2008-January/019659.html
http://mail.python.org/pipermail/python-announce-list/2001-
http://docs.python.org/whatsnew/pep-343.html
http://docs.python.org/ref/ref.html

[14] Python Tutorial, http://docs.python.org/tut/tut.html. Accessed on August 26,

2008.

[15] Python/C API Reference Manual, http://docs.python.org/api/api.html.

Accessed on September 1, 2008.

[16] TAK Function from Wolfram MathWorld.

http://mathworld.wolfram.com/TAKFunction.html. Accessed on August 27,

2008.

[17] The Caml language, http://caml.inria.fr/. Accessed on March 10, 2009.

[18] The Caml List, http://yquem.inria.fr/cgi-bin/mailman/listinfo/caml-list.

Accessed on August 20, 2008.

[19] The Computer Language Benchmarks Game.

http://shootout.alioth.debian.org/u64q/. Accessed on August 24, 2008.

[20] The Ironpython Project.

http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython.

Accessed on August 5, 2008.

[21] The Jython Project, http://www.jython.org/. Accessed on August 5, 2008.

[22] The Python Programming language, http://www.python.org/. Accessed on

August 17, 2008.

169

http://docs.python.org/tut/tut.html
http://docs.python.org/api/api.html
http://mathworld.wolfram.com/TAKFunction.html
http://caml.inria.fr/
http://yquem.inria.fr/cgi-bin/mailman/listinfo/caml-list
http://shootout.alioth.debian.org/u64q/
http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://www.jython.org/
http://www.python.org/

[23] Caml weekly news, http://alan.petitepomme.net/cwn/2004.ll.09.html,

November 2004. Accessed on August 20, 2008.

[24] Array Copying in OCaml. http://caml.inria.fr/pub/ml-archives/caml-

list/2008/07/22872bb9f27ae2333def9c664707eaa0.en.html, July 2008. Accessed

on August 26, 2008.

[25] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector

with low overhead and consistent utilization. In POPL '03: Proceedings of the

30th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 285-298, New York, NY, USA, 2003. ACM.

[26] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and

P. Tucker Withington. A monotonic superclass linearization for dylan. In

Conference on Object-Oriented Languages, pages 69-82, 1996.

[27] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano. Developpement

d'applications avec Objective CAML. O'Reilly, France, 2003. Preliminary

English translation at http://caml.inria.fr/pub/docs/oreilly-book/.

[28] Craig Chambers. Object-oriented multi-methods in cecil. In In ECOOP 92

Conference Proceedings, pages 33-56. Springer-Verlag, 1992.

[29] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan

Kaufmann, 2004.

170

http://alan.petitepomme.net/cwn/2004.ll.09.html
http://caml.inria.fr/pub/ml-archives/caml-
http://caml.inria.fr/pub/docs/oreilly-book/

[30] L Peter Deutsch and Allan M Schiffman. Efficient implementation of the

smalltalk-80 system. In POPL '84: Proceedings of the 11th ACM symposium

On Principles of programming languages, New York, NY, USA, 2003. ACM.

[31] Jean-Christophe Filliatre and Sylvain Conchon. Type-safe modular

hash-consing. In ML '06: Proceedings of the 2006 workshop on ML, pages

12-19, New York, NY, USA, 2006. ACM.

[32] The R Project for Statistical Computing, http://www.r-project.org/. Accessed

on August 17, 2008.

[33] John Garvin. RCC: A Compiler for the R Language for Statistical Computing.

Master's thesis, Rice University, May 2004.

[34] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for automatic

dynamic memory management. Wiley, 1996.

[35] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Remy, and Jerome

Vouillon. The Objective Caml system, release 3.10: Documentation and user's

manual. INRIA, France, May 2007.

[36] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348-375, 1978.

[37] MATLAB The Language of Technical Computing.

http://www.mathworks.com/products/matlab/. Accessed on August 17, 2008.

171

http://www.r-project.org/
http://www.mathworks.com/products/matlab/

[38] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[39] Armin Rigo. Representation-based just-in-time specialization and the psyco

prototype for python. In PEPM, pages 15-26, 2004.

[40] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed

intermediate languages, pages 313-323. ACM Press, 1998.

[41] Walid Taha. A gentle introduction to multi-stage programming, pages 30-50.

Springer-Verlag, 2003.

[42] David Ungar and Randall B. Smith. Self: The power of simplicity. In In

OOPSLA 87 Conference Proceedings. Published as SIGPLAN Notices, page

227, 1987.

[43] Reinhold Weicker. Dhrystone: A synthetic systems programming benchmark.

In Communications of the ACM (CACM), pages 1013-1030, October 1984.

172

Appendix A

How to learn OCaml

There are several free online resources available for beginners to learn OCaml

rapidly, and for advanced users to consult as reference:

• The OCaml manual [35]: This is a concise, comprehensive and up-to-date

description of the OCaml language and all its features. It is extremely useful

as a standard library reference and offers an excellent guide to OCaml's C

interface.

• Developing applications with Objective Caml [27]: This book is a

comprehensive guide to OCaml. It includes a tutorial for new programmers

and features useful descriptions of some of the internals of OCaml such as the

garbage collector and the C interface.

• Mailing lists: There are two important mailing lists for OCaml users:

1. The OCaml beginners list: [9] This is used for most beginner and

intermediate questions.

2. The Caml list: [18] This is used mostly by advanced programmers and

173

developers. It is particularly helpful for understanding less documented

details of OCaml and issues related to performance.

Both the mailing lists are public; anyone with a valid email address can

subscribe and participate in discussions. The past contents of both lists are

available as searchable archives.

• Source code: The source code of OCaml is publicly available [8]. The

language is mostly implemented in a mix of OCaml and C, with some of the

native code translator in assembly. We referred to the source code in two

cases. First, while building our FFI, we needed to better understand the

OCaml representation of values and the use of garbage collector functions.

Second, in the optimization phase, we studied the implementation of standard

library functions, particularly those for arrays, to determine why performance

was unexpectedly poor in some cases. This study of the standard library

source code led to some useful optimizations in our translator as well as a

potential contribution to the OCaml code base.

174

Appendix B

Timing data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

N a m e

OOlprint
002simplearith
003sequenceopp
004morestrings
005patternmatching
0061ists
007nestedlists
008column
009column2
OlOdiagonal
016haskey
017tuples
018sets
0191istrep
020simpleclass
021boolops
022conversion
023strrepr
024divisionfloor
025complexnums
026decimal
027dynamictype
028referencing
029rawstring
030triplequote
031unicode
032stride
033stringconversion
034changestrings
035formatstrings
036dictstringformat
037stringfuncts
0381istdel
039dictionary2
040tuples2
041reforcopy
042comparison
043morerepetition
044if

C P y t h o n
t ime

2.39
2.43
2.35
3.01
3.40
2.70
2.62
2.88
2.97
2.53
2.32
3.38
2.76
2.67
2.79
2.41
3.37
2.36
2.88
4.16
4.10
2.74
3.39
3.03
2.30
3.57
2.70
3.01
2.63
2.59
2.36
2.79
2.77
3.03
2.91
2.64
3.04
2.32
2.72

OCaml
t i m e

2.41
7.06
0.88
10.35
9.40
3.06
1.06
1.90
1.22
0.98
1.66
1.79
7.72
1.43
1.95
0.71
4.56
4.03
1.23
4.20
5.03
2.36
2.14
1.34
1.11
2.42
1.57
0.95
1.36
4.60
5.97
7.58
1.32
2.24
1.71
1.82
1.75
1.03
1.24

Jython
t i m e

20.55
17.51
17.06
17.83
33.23
23.45
10.34
NA
14.29
11.52
15.92
18.69
13.72
8.23
14.25
15.4
38.3
24.57
15.87
7.86
19.14
23.59
17.94
21.17
43.02
21.99
26.77
14.51
17.17
13.48
11.25
13.08
11.97
16.8
16.84
18.85
19.73
8.18
18.66

P y t h o n
word
count
19
14
38
10
21
11
15
34
23
18
14
16
13
26
44
16
20
9
16
10
20
37
53
32
25
26
35
26
25
41
19
12
32
20
41
37
16
20
90

OCaml
word
count
504
464
694
478
904
419
501
1036
730
763
547
480
629
608
2057
429
553
481
623
370
599
698
822
660
466
515
664
727
611
639
479
464
586
861
854
1234
521
560
998

Translate
time

0.026
0.026
0.030
0.027
0.028
0.027
0.029
0.029
0.029
0.029
0.027
0.027
0.027
0.028
0.030
0.026
0.028
0.027
0.027
0.026
0.028
0.029
0.030
0.028
0.027
0.027
0.029
0.029
0.029
0.028
0.027
0.027
0.029
0.028
0.030
0.030
0.027
0.027
0.031

Compile
t i m e

0.515
0.521
0.520
0.515
0.550
0.526
0.531
0.550
0.531
0.548
0.528
0.519
0.519
0.520
0.641
0.512
0.518
0.523
0.511
0.520
0.518
0.539
0.523
0.521
0.511
0.508
0.536
0.521
0.519
0.516
0.519
0.514
0.531
0.544
0.538
0.553
0.522
0.515
0.548

175

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

045assignment
046advancedstrings
0481istextend
049multiline
050truth
051onelineif
052while
054fact
055tuplefor
056zipmap
058enumerate
0591istcomp
060simplefunctions
061scope
062keywords
0631ambda
064map
065filterreduce
066generator
068simpleclass
069inheritance
070moregenerator
071stack
072queue
073smallclass
074classinstance
075method
076superclass
077override
078extend
079abstract
080overload
081getitem
083iterationdef
084attribute
085returnstring
086radd
087call
089scope
091funct
092simpleprint
093moresimplestring
094strings
095count
097eq
097morefloat
lOlstring
102tuple
Calls
Exceptions
L03areadisc
L03arearing
L03profit
L04classcourse
LlOQuicksort
L4quad
Strings
ackerman
ackermann
advclassl
apples

2.86
2.79
3.53
2.51
2.74
2.79
2.21
2.05
2.85
2.34
2.97
3.01
2.42
2.32
2.81
2.91
0.30
2.59
3.48
2.79
2.73
2.14
3.02
2.59
2.51
2.35
3.05
3.13
3.36
3.04
2.56
2.42
3.49
3.20
3.39
3.23
2.36
3.51
3.53
2.90
2.62
2.69
2.48
3.15
3.64
3.16
3.17
2.28
2.29
2.41
3.24
2.72
2.54
2.17
2.76
2.92
2.16
4.32
1.80
3.05
2.75

1.49
1.06
1.61
1.09
1.04
0.78
0.99
1.95
1.28
3.98
2.42
1.69
1.89
1.18
1.88
1.65
0.20
0.84
1.11
2.09
2.04
1.75
1.40
1.37
1.15
1.24
1.75
1.88
2.67
2.07
1.92
1.57
1.93
3.30
1.60
2.80
1.01
3.95
2.58
4.54
3.69
5.79
1.00
15.95
2.80
4.41
1.27
1.05
2.83
1.72
3.80
3.03
2.56
1.56
1.64
1.73
2.27
3.18
1.66
2.16
2.95

23.27
17.51
13.9
14.29
19.62
15.72
15.14
5.64
25.6
11.16
16.53
8.98
10.01
12.64
18.11
10.69
2.42
9.87
17.59
15.53
16.17
8.28
13.28
10.41
15.21
14.82
19.91
15.09
24.25
17.5
16.94
9.03
16.76
NA
11.56
18.34
10.96
16.6
23.2
38.32
27.77
30.46
26.1
14.14
40.53
28.85
19.01
16.35
9.68
3.46
37.87
26.45
20.93
15.44
8.54
13.07
11.29
15.63
7.04
18.41
30.36

39
48
54
36
31
36
38
16
19
26
41
73
70
33
53
43
25
15
17
25
35
27
23
28
15
65
16
36
26
61
24
47
17
31
20
23
35
23
36
29
40
28
36
21
51
27
56
64
348
648
19
17
26
67
46
38
511
58
48
57
34

943
1254
994
514
570
595
731
600
685
601
1183
1653
2076
908
1567
1579
879
620
879
1282
1810
1172
778
1191
608
1096
928
1587
1363
3008
1296
1743
883
1433
968
1168
1642
994
1650
979
733
639
668
639
1320
667
1366
1924
13777
8481
746
1119
1734
2532
1378
1075
6219
1234
1211
3943
1042

0.029
0.031
0.031
0.029
0.028
0.028
0.029
0.027
0.027
0.028
0.029
0.031
0.033
0.029
0.031
0.031
0.029
0.028
0.027
0.029
0.030
0.029
0.029
0.030
0.027
0.030
0.028
0.029
0.028
0.033
0.028
0.030
0.028
0.029
0.028
0.028
0.029
0.028
0.029
0.029
0.029
0.028
0.028
0.028
0.031
0.029
0.031
0.034
0.111
0.059
0.028
0.029
0.031
0.032
0.032
0.030
0.070
0.030
0.030
0.036
0.030

0.545
0.561
0.534
0.530
0.515
0.534
0.515
0.527
0.516
0.516
0.557
0.561
0.680
0.522
0.584
0.570
0.552
0.536
0.518
0.568
0.614
0.540
0.550
0.554
0.525
0.539
0.535
0.618
0.590
0.743
0.575
0.610
0.535
0.584
0.562
0.569
0.625
0.557
0.604
0.551
0.538
0.520
0.548
0.532
0.541
0.525
0.584
0.569
1.183
0.751
0.539
0.551
0.597
0.717
0.618
0.556
0.849
0.558
0.559
0.977
0.544

176

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

areaconversion
arguments
argumenty
arithmatic
assignment 1
assignment2
assignments
assignment4
assignments
assignment6
bank
basicmath
beer
binary-trees
binary .numeric
bintreejter
bintree_rec
bisect
bitwise
bool
breaking
builtin-inheritance
case
case2
case3
chained
cheeseshop
cities
class
classic.classjstr
collectarg
commandlinel
comparison
comparisonTests
complexcompl
complexcomp2
complexcomp3
complexrium
comprehension
converter
coop
cycle
dlmport
dateday
decimal2binary
decorator
del
deldup
deranged
diciterators
diet
dictcomp2
dictionary
diczip
dinnerxml
doc
enum
enumerate
enumerate-segfault
euler
evens

3.23
3.11
3.35
3.34
2.96
1.99
2.46
1.51
4.12
2.39
2.98
2.85
2.77
1.67
3.37
2.83
2.66
2.80
3.09
3.20
2.33
2.06
3.35
2.57
2.66
3.69
2.93
2.81
2.78
2.94
2.56
3.02
2.66
2.13
2.13
2.59
2.60
3.47
2.59
3.51
2.25
2.38
2.17
3.52
2.75
2.93
3.15
2.12
3.01
2.35
2.24
3.07
2.24
2.50
2.27
2.43
3.76
2.83
3.43
8.44
3.25

4.72
2.08
2.67
2.20
1.26
1.38
0.71
0.72
2.25
0.93
2.97
2.30
4.30
2.02
4.60
0.61
1.15
2.21
1.65
1.84
1.86
1.21
3.04
1.27
1.74
15.82
2.30
4.82
2.77
2.15
3.91
2.52
2.18
0.79
1.30
2.00
1.87
3.82
1.47
7.25
1.55
2.15
2.13
1.73
3.21
2.45
1.51
1.63
2.71
1.73
4.12
2.09
2.55
1.21
3.90
1.26
2.48
1.45
1.91
8.72
1.69

20.06
13.34
15.55
23.1
23.66
21.04
16.67
12.8
14.59
15.31
16.01
28.36
18.87
6.73
32.94
6.78
21.71
25.82
15.21
21.03
6.62
11.46
37.84
16.15
18.45
8.02
26.23
8.61
15.5
13.68
15.13
33.48
12.31
14.55
11.79
10.05
10.05
7.72
11.32
34.16
16.24
4.56
25.73
16.11
4.91
24.54
16.62
8.91
9.7
18.9
12.87
28.12
18.26
13.6
NA
17.1
20.92
19.98
21.32
5.92
10.45

265
39
21
40
19
21
24
16
24
16
36
12
46
194
384
145
151
326
69
9
165
19
16
24
10
155
63
463
36
9
10
146
205
740
21
35
25
21
42
483
93
71
25
247
194
175
224
63
78
14
85
14
25
13
73
35
7
12
17
134
28

2175
1929
971
1688
661
950
1104
756
643
614
1858
1078
525
2659
4934
3871
3638
5059
755
477
1942
1073
669
584
736
2361
1605
6539
2205
508
679
1107
7191
6200
1250
1373
1000
954
1462
20043
2402
1389
563
2996
1898
6921
3327
1255
1358
851
2774
1132
1084
725
1398
829
653
715
684
952
843

0.041
0.030
0.028
0.029
0.028
0.029
0.029
0.028
0.028
0.027
0.030
0.030
0.028
0.036
0.048
0.041
0.037
0.052
0.029
0.027
0.032
0.028
0.029
0.028
0.029
0.032
0.031
0.077
0.033
0.026
0.028
0.031
0.050
0.067
0.030
0.031
0.029
0.029
0.030
0.100
0.031
0.031
0.027
0.044
0.034
0.045
0.045
0.031
0.031
0.029
0.034
0.032
0.031
0.030
0.032
0.028
0.027
0.027
0.028
0.030
0.029

0.733
0.628
0.542
0.619
0.529
0.548
0.557
0.537
0.542
0.524
0.647
0.550
0.524
0.708
0.686
0.802
0.782
0.867
0.532
0.533
0.613
0.567
0.528
0.530
0.541
0.672
0.602
1.917
0.701
0.523
0.528
0.555
1.173
0.985
0.548
0.560
0.551
0.543
0.552
5.592
0.676
0.588
0.528
0.873
0.615
1.596
0.772
0.582
0.561
0.541
0.724
0.592
0.579
0.540
0.605
0.533
0.523
0.527
0.519
0.551
0.542

177

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

excjnfo
exn-inherit
fannkuch
fibonacci
floatcmpl
floatcmpll
floatcmpl2
floatcmpl3
floatcmpl4
floatcmpl5
floatcmpl6
floatcmpl7
floatcmp2
floatcmp3
floatcmp4
floatcmp5
floatcmp6
floatcmp7
floatcmp8
floatcmp9
floatopl
floatop2
floatop3
floatop4
format
funcargs
function 1
function2
function3
function4
function5
fundefault
generator
global
greet
hashlib.test
hello
hellol
hellolO
hello2
hello3
hello4
hello5
hello6
hello7
hello8
hello9
imap
import 1
import2
import4
importerror
indexerror
inheritence
inputcheck
intersectionfunction
intobj
intopl
intop2
intop3
intop4

2.25
2.21
4.11
1.89
2.65
3.64
3.64
3.64
2.28
2.56
2.94
2.93
1.71
3.65
2.84
2.63
3.09
3.09
5.62
5.65
2.70
3.58
3.25
2.26
3.01
3.12
4.75
2.48
2.84
2.72
3.13
3.60
2.73
3.09
2.91
2.01
2.51
2.53
3.07
3.44
3.37
4.66
1.94
2.54
3.84
3.70
2.61
3.90
2.06
1.86
2.32
9.49
2.99
2.90
2.87
2.87
2.82
3.46
2.23
3.27
2.74

2.11
2.12
3.15
1.78
1.08
1.49
1.56
1.54
0.77
1.12
1.53
1.53
0.60
1.69
0.94
1.12
1.26
1.26
2.32
2.26
2.49
1.01
1.16
0.75
4.55
1.88
3.54
2.12
1.66
1.94
2.45
2.05
1.04
2.41
1.60
5.15
1.61
1.54
1.38
1.81
1.60
3.76
1.01
1.80
2.26
2.34
3.64
4.22
2.20
2.06
2.46
9.58
1.00
2.01
5.24
2.26
3.71
1.17
0.77
2.11
0.87

11.12
6.87
9.77
7.35
NA
31.58
30.84
30.81
13.83
22.31
24.97
25.09
10.69
31.84
16.68
19.22
19.46
19.32
30.34
31.07
NA
NA .. .
NA :
NA .
16.38
31.14
105.38
12.69
16.98
12.04
13.62
30.94
12.32
16.86
24.6
11.21
68.13
68.22
21.8
26.02
24.44
NA
14.44
79.03
130.92
141.89
17.16
33.75
NA
NA
NA
192.41
10.69
20.52
19.31
12.41
10.22
13.11
14.76
NA
14.7

120
61
127
35
12
15
15
15
20
15
15
15
19
25
21
15
15
15
15
15
12
6
10
10
57
88
11
13
20
15
13
14
164
73
12
34
7
7
16
10
13
11
21
8
7
9
23
76
15
17
18
21
26
36
70
30
71
10
17
8
16

3358
1916
2211
615
679
511
511
511
522
511
511
511
519
541
529
523
554
554
537
537
632
381
577
553
837
1260
584
600
618
777
763
1034
3674
947
671
1057
322
322
801
485
532
502
856
355
344
380
631
1706
1502
1512
1032
508
518
3320
830
1422
2376
528
511
460
595

0.037
0.032
0.042
0.027
0.028
0.027
0.027
0.027
0.027
0.027
0.028
0.027
0.027
0.028
0.028
0.027
0.028
0.027
0.027
0.027
0.029
0.027
0.027
0.027
0.029
0.030
0.027
0.027
0.028
0.027
0.027
0.029
0.038
0.028
0.028
0.029
0.026
0.026
0.027
0.027
0.027
0.027
0.028
0.026
0.026
0.027
0.027
0.031
0.031
0.032
0.030
0.027
0.028
0.036
0.029
0.031
0.033
0.027
0.027
0.027
0.028

0.846
0.612
0.634
0.535
0.520
0.516
0.520
0.509
0.518
0.508
0.519
0.511
0.510
0.519
0.511
0.521
0.518
0.522
0.508
0.518
0.517
0.509
0.515
0.522
0.550
0.612
0.519
0.530
0.527
0.521
0.523
0.572
0.787
0.525
0.533
0.540
0.515
0.517
0.538
0.521
0.527
0.515
0.529
0.523
0.513
0.507
0.528
0.596
0.601
0.603
0.545
0.511
0.526
0.857
0.539
0.613
0.735
0.520
0.521
0.521
0.530

178

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245,
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

intop5
introspection
isprime
iter .test 1
iterable
iterators
iterkeys
k-nucleotide
kargs
kargs2
keyerror
keys
lambda
lambdal
lambda2
lambda3
lambda4
lambda5
lambda6
lambda7
lambdamap
linearsearch
listcomp
listcompl
listcomp2
listcomprevisited
list copy
listextend
listextend2
listmodify
lists
loopl
lbwertri
mandelbrot
map2
mapfunc
mapord
mappow
math.test
mathlib
matrix
max
metaclass
meteror-contest
method-equality
modifylist
modifylist2
multiline
multiline2
n-body
names
nameshort
nbody
newjnit
none
nsieve
numericinput
onelinereturn
oop-error
operations
operatorreduce

2.75
0.26
3.86
3.92
2.86
2.11
3.00
3.68
2.54
3.21
3.68
3.69
3.26
2.81
2.95
3.07
2.53
2.01
3.13
3.46
2.84
2.24
1.91
3.00
2.47
3.47
2.40
2.14
2.80
2.89
2.17
3.76
4.03
0.90
2.90
2.95
2.63
2.28
3.30
6.48
2.20
2.68
4.05
2.68
5.38
1.63
3.71
3.81
1.93
2.41
3.38
2.93
2.82
4.69
2.84
1.36
2.51
2.85
2.99
3.39
2.85

1.13
0.16
8.79
1.79
10.38
1.24
5.16
5.14
3.15
2.78
0.91
6.60
1.35
1.65
2.16
2.07
4.05
1.89
1.88
1.81
1.50
1.22
0.92
1.72
1.11
4.71
1.26
1.78
1.39
1.30
4.18
1.93
3.08
0.72
2.11
2.26
1.67
6.85
3.46
7.04
0.97
1.49
1.39
20.80
2.32
1.98
3.52
3.33
1.68
1.25
6.16
6.60
1.61
2.95
1.23
2.11
1.52
4.62
2.81
1.43
15.10

19.76
20.59
9.97
14.14
12.7
16.74
12.81
13.12
15.83
22.85
13.26
29.24
16.28
12.99
13.22
14.77
13.04
12.28
13.88
14.8
10.51
10.01
11.67
19.57
12.74
17.81
10.26
13.59
10.74
9.96
14.14
18.97
35.35
3.31
10.6
13.47
8.49
8.35
43.69
86.72
11.44
12.24
11.51.
9.06
27.77
NA
NA
70.09
12.35
6.18
12.55
11.35
8.22
101
9.75
5.23
16.93
37.99
16.05
21.35
10.72

22
125
153
169
10
20
15
209
9
12
84
60
21
10
10
15
31
23
13
18
10
24
66
16
18
31
11
17
11
14
40
24
13
162
11
8
6
6
37
16
59
23
91
636
25
13
22
21
24
389
23
60
373
117
18
131
32
22
33
25
12

633
2203
1363
3645
517
771
782
4822
669
1035
969
947
936
844
781
898
1102
758
874
823
658
894
1450
643
918
1007
538
677
484
628
904
903
539
2319
781
592
382
426
592
655
1592
1157
3053
13832
347
891
1350
759
759
6789
720
1253
6986
4293
605
1856
588
927
1291
661
491

0.028
0.038
0.032
0.044
0.029
0.029
0.028
0.045
0.027
0.029
0.031
0.031
0.028
0.028
0.028
0.028
0.029
0.029
0.028
0.028
0.027
0.029
0.033
0.029
0.031
0.030
0.028
0.029
0.027
0.028
0.030
0.029
0.027
0.037
0.028
0.028
0.027
0.027
0.028
0.028
0.043
0.031
0.033
0.084
0.027
0.029
0.030
0.029
0.028
0.062
0.028
0.030
0.063
0.036
0.028
0.032
0.028
0.029
0.029
0.028
0.028

0.531
0.655
0.576
1.015
0.520
0.532
0.549
0.930
0.531
0.580
0.531
0.532
0.538
0.546
0.541
0.537
0.554
0.538
0.535
0.538
0.532
0.560
0.576
0.542
0.542
0.535
0.536
0.531
0.534
0.531
0.542
0.549
0.521
0.650
0.535
0.528
0.505
0.522
0.519
0.524
0.601
0.591
0.833
2.170
0.521
0.532
0.551
0.531
0.531
1.402
0.530
0.569
1.435
0.977
0.529
0.623
0.527
0.552
0.584
0.519
0.515

179

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

ord
ordcomp
overflow
overload .numeric
overloading
parrot
partial-sums

Pi
piglatin
powerset
prime
primes
primetest
print
print 1
print2
printingl
printsys
pystone
Pythagorean
queens
queuetest
rand
range
range2
recursy
reduce
regex-dna
regex
replace
repr
search
sets
simple
simpleconstructs
simpledictops
simplefloatops
simpleinstances
simpleintops
simplelistops
simplelookups
simplenumbers
simpletupleops
simpson
slice
slice2
slice3
slice4
slice5
slice6
slot_dict
slots
small
sort l
spectral-norm
splitlist
splitting-none
statements
str-func
string-formatting
string.exception

2.59
3.94
3.32
4.34
3.04
3.10
1.42
1.75
2.45
2.56
3.50
2.40
3.62
2.15
2.92
2.83
2.90
2.31
2.74
3.18
1.84
2.97
3.15
2.51
3.42
3.48
2.60
1.82
2.92
2.22
2.90
2.76
2.88
4.02
2.42
2.35
2.04
2.22
2.08
2.54
1.88
2.67
2.60
2.70
1.65
1.72
3.73
3.22
2.69
1.64
1.73
2.58
1.93
2.62
2.67
3.56
3.05
4.29
3.49
3.05
4.42

1.26
1.69
1.66
7.03
2.26
1.88
0.78
1.38
12.21
2.39
1.84
1.84
2.45
2.42
1.05
0.97
3.63
24.29
3.06
5.01
1.87
3.41
5.11
1.29
1.43
1.88
0.95
2.03
4.98
4.66
2.12
1.86
8.30
1.04
2.24
2.26
1.12
2.47
1.20
1.56
1.24
1.27
1.38
1.23
1.09
1.16
1.54
1.39
1.18
0.72
1.74
1.99
2.38
2.33
2.24
1.78
10.03
1.97
2.29
1.52
2.19

7.39
13.76
NA
16.35
15.63
31.69
3.58
5.9
8.25
6.39
15.31
7.14
6.5
18.3
30.82
29.55
21.98
166.94
12.58
32.5
7.29
12.62
8.96
8.83
30.23
19.56
10.1
34.83
16.8
30.86
11.8
6.4
18.77
7.76
20.38
22.56
4.01
12.73
4.99
7.31
9.69
9.86
8.88
7
14.04
14.45
17.46
17.27
14.84
9.77
12.93
18.01
NA
10.86
8.37
18.55
14.84
18.49
14.59
19.85
17.88

12
10
67
168
31
57
207
180
390
86
34
19
33
20
86
145
259
12
706
152
63
21
37
6
14
15
26
134
27
264
45
207
28
73
1467
815
529
92
529
232
1648
1831
831
105
8
8
8
9
9
8
43
186
6
102
119
10
33
30
28
51
27

646
532
1002
3112
2095
1260
2793
2694
4971
2334
913
1354
1029
699
1182
2279
1607
491
11970
2349
2181
693
1242
489
737
684
865
2411
762
2286
2204
3909
767
933
9358
7830
4525
2865
4491
3179
11987
8438
8874
2602
675
685
742
675
675
700
1490
2786
465
1077
4031
635
587
825
1443
869
602

0.028
0.028
0.030
0.035
0.032
0.030
0.042
0.036
0.058
0.035
0.029
0.032
0.030
0.027
0.032
0.035
0.033
0.027
0.083
0.032
0.032
0.028
0.031
0.027
0.029
0.027
0.027
0.036
0.029
0.036
0.031
0.047
0.029
0.029
0.127
0.155
0.059
0.040
0.058
0.062
0.172
0.171
0.149
0.035
0.029
0.028
0.028
0.028
0.028
0.028
0.029
0.037
0.027
0.029
0.038
0.028
0.028
0.028
0.029
0.028
0.028

0.526
0.511
0.538
0.738
0.670
0.609
0.748
0.670
0.988
0.651
0.539
0.558
0.534
0.531
0.629
0.706
0.607
0.521
3.305
0.637
0.613
0.535
0.570
0.532
0.530
0.536
0.535
0.931
0.527
0.668
0.673
0.847
0.541
0.533
0.825
0.830
0.611
0.697
0.611
0.591
0.961
0.777
0.950
0.692
0.538
0.530
0.525
0.525
0.525
0.541
0.621
0.746
0.516
0.559
0.777
0.532
0.512
0.531
0.594
0.550
0.515

180

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

sum-file
sums
takeuchi
ternaryifelse
testexceptions
triangle
try
tuple
type
typeconversion
union
unpackarg
uppertri
valueerror
valueintolist
weirdfunction
whilel
while2
while3
whilebreak
whilecontinue
wordfreq
wordtonum
zerodivision
zip
mathmodule

2.73
2.21
1.71
3.11
2.67
2.98
2.17
2.43
2.47
3.17
4.02
3.29
2.18
1.51
1.64
3.06
2.45
2.70
3.21
3.48
3.38
2.47
2.31
2.08
4.06
3.76

5.07
2.36
1.63
2.62
12.60
1.15
1.64
1.55
3.00
3.00
4.72
1.97
0.96
0.55
2.24
4.17
1.32
1.17
1.61
1.36
1.57
4.04
7.30
1.05
2.42
1.02

7.94
5.15
6.61
68.08
11.92
20.57
14.03
10.97
19.11
35.39
21.27
23.34
15.65
5.91
20.58
13.84
9.69
10.67
18.3
17.51
13.94
10.47
20.41
11.96
23.68
13.65

68
37
41
12
79
30
44
11
16
17
109
11
17
25
157
17
16
17
11
19
19
195
835
146
22
191

1560
667
934
507
1582
1033
728
592
774
753
2217
1056
631
570
3190
1032
700
621
597
675
579
2163
4779
1173
1281
5863

0.032
0.028
0.029
0.027
0.032
0.028
0.029
0.028
0.028
0.029
0.033
0.029
0.027
0.028
0.076
0.028
0.029
0.028
0.027
0.028
0.028
0.033
0.056
0.031
0.032
0.0883

0.609
0.531
0.534
0.530
0.598
0.543
0.528
0.524
0.530
0.544
0.647
0.554
0.510
0.516
1.021
0.558
0.531
0.536
0.525
0.539
0.531
0.703
1.909
0.558
0.601
0.726

181

Appendix C

Performance bottlenecks in the generated OCaml

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

N a m e
printsys
meteror-contest
operatorreduce
piglatin
095count
testexceptions
chained
iterable
004morestrings
splitting-none
wordtonum
mappow
002simplearith
sets
005patternmatching
018sets
037stringfuncts
036dictstringformat
hashlib.test
nameshort
isprime
093moresimplestring
converter
replace
lists
sum-file
diet
inputcheck
names
keys
035formatst rings
cities
dinnerxml

Speedup
0.09
0.13
0.19
0.2
0.2
0.21
0.23
0.28
0.29
0.3
0.32
0.33
0.34
0.35
0.36
0.36
0.37
0.39
0.39
0.44
0.44
0.46
0.48
0.48
0.52
0.54
0.54
0.55
0.55
0.56
0.56
0.58
0.58

F
F

I

9

P
ri

n
t

•

•
•

•

•
•

•

•

•
•
•

L
oo

k
u

p

•

P
ow

er

•

•

B
ig

ln
t

•

•

A
rr

ay
 A

ll
oc

•

•

•

•

O
th

er

•

•

Explanat ion
sys.stdout library module
bitwise long int operations
operator library module
string library module
CPython string methods
string library module
array allocation
array printing, scanning
CPython string methods
OCaml Str library
re regexp library module
array allocation, printing
OCaml power operation, printing
CPython set object
re regexp library module
CPython set object, array allocation
OCaml Str library
string formatting
hashlib library module
OCaml Str library, string slicing
array allocation using range() function
OCaml BigJnt operations
string formatting, re regexp module
re regexp library module
array printing, allocation
OCaml power operation
string formatting, MRO lookups
CPython string methods
string formatting, global variable update
dictionary lookups
string formatting
OCaml Str library
CPython set object

182

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

iterkeys
023strrepr
056zipmap
regex
wordfreq
onelinereturn
overload-numeric
rand
lambda4
Pythagorean
beer
nsieve
091funct
collectarg
format
areaconversion
092simpleprint
097morefioat
hello9
k-nucleotide
weirdfunction
valueintolist
binary-numeric
022conversion
listcomprevisited
intobj
printingl
Calls
kargs
small
type
026decimal
modify list
binary-trees
union
L03areadisc
decimal2binary
queiietest
dictionary
0061ists
print
087call
regex-dna
L03arearing
import2
complexnum
imap
mathlib
apples
import 1
import4
sums
Strings
math-test
083iterationdef
slot-diet
L03proflt
OOlprint
importerror

0.58
0.59
0.59
0.59
0.61
0.62
0.62
0.62
0.63
0.63
0.64
0.64
0.64
0.66
0.66
0.68
0.71
0.72
0.72
0.72
0.73
0.73
0.73
0.74
0.74
0.76
0.8
0.81
0.81
0.81
0.82
0.82
0.83
0.83
0.85
0.85
0.85
0.87
0.88
0.88
0.89
0.89
0.89
0.9
0.91
0.91
0.92
0.92
0.93
0.93
0.94
0.94
0.95
0.95
0.97
0.99
0.99
0.99
0.99

•
•
•
•
•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•
•
•
•
•
•

•
•
•

•

•

•
•
•
•
•

•
•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

• .

•
•

•

•

•

•
•

•
•

•

•

•

•

•

•

array allocation
global variable update
array modification
re regexp library module
string formatting, string operations
OCaml power operation
MRO lookups, string formatting
random library module
OCaml power operation, printing
OCaml power operation
string formatting
array allocation, modification
OCaml power operation, printing
array printing
string formatting
string formatting
OCaml power operation, printing
string formatting, OCaml power operation
string printing
dictionary lookups, string slicing
OCaml power operation
random library module
OCaml BigJnt operations
OCaml BigJnt operations
OCaml power operation
MRO lookups
string formatting, printing
method lookups for classic classes
keyword (**arg) argument processing
global variable update
CPython set object
decimal library module
array printing
stack management
array printing
stack management
CPython integer methods
array printing
MRO lookups
array printing
string printing
method lookups for classic classes
re regexp library module
stack management
array printing
complex number printing
OCaml BigJnt operations
global variable lookup, printing
string formatting
global variable update
array printing
OCaml BigJnt operations
string library module, string slicing
global variable lookup
method lookups for classic classes
dictionary lookups
global variable update
OCaml power operation
exception raising

183

