
RICE UNIVERSITY 

MULTISPECTRAL OPTICAL IMAGING FOR THE DETECTION 

AND DELINEATION OF ORAL NEOPLASIA 

by 

Darren Michael Roblyer 

A THESIS SUBMITTED 
IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE 

Doctor of Philosophy 

APPROVED, THESIS COMMITTEE: 

^u^2£^^-^ 
Rebecca Ricfiards-Kortum, Stanley C. Moore Professor 
Bioengineering 

/<VU 
Ann M. Gillenwater, Associate Professor 
The University of Texas M.D. Anderson Cancer Center 

/ — " / 
Tomasz Tkaczyk, Assistant Professor 
Bioengineering & Electricaf^and Computer Engineering 

TZP5& 
Richard Baraniuk, Victor E. Cameron Professor 
Electrical and Computer Engineering 

HOUSTON, TEXAS 
APRIL, 2009 



UMI Number: 3362395 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 3362395 

Copyright 2009 by ProQuest LLC 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



ABSTRACT 

Multispectral Optical Imaging for the Detection and Delineation of Oral Neoplasia 

by 

Darren Michael Roblyer 

Despite the accessibility of the oral cavity to inspection, patients with oral cancer 

most often present at a late stage, leading to high morbidity and mortality. Multispectral 

widefield optical imaging has emerged as a promising technology to aid clinicians in 

screening and resection of oral neoplasia, but current approaches rely on subjective 

interpretation. This work focuses on the design, construction, and clinical testing of a 

novel multispectral widefield optical imaging device for objective screening and 

delineation of oral neoplasia. 

The Multispectral Digital Microscope (MDM) acquires in vivo images of oral tissue 

in autofluorescence, narrow band reflectance, and orthogonal polarized reflectance modes 

that the diagnostic value of each modality may be qualitatively and quantitatively evaluated 

alone and in combination. 

Using in vivo imaging data collected from 56 patients and 11 normal volunteers, 

combined with computer aided diagnostics, a sensitivity of 100% and a Specificity of 

91.4% was achieved for discriminating oral dysplasia and cancer from normal tissue in an 

independent validation set. A single feature calculated from the autofluorescence images 

at 405 nm excitation was used to achieve this performance. Disease probability maps 



were constructed using this feature to help identify areas with a high probability of 

abnormality. Autofiuorescence imaging at 405 nm excitation also provided the greatest 

image contrast which was significantly higher than that using standard white-light 

illumination. Features extracted from other imaging types did not appear to aid in 

diagnosis. 

Ex vivo image data from the MDM was combined with image data from a high-

resolution microendoscope (HRME) in order to determine if a synergistic relationship 

existed between these devices. The ability to objectively diagnose oral lesions 

substantially increased when using both devices in combination compared to using either 

alone. This combination of devices provides a practical means of screening the entire 

mucosal surface for suspicious regions, using the MDM, and then using the HRME for 

confirmation of diagnosis. 

This work has demonstrated that widefield autofiuorescence imaging at 405 nm 

excitation can be highly effective for the objective discrimination of oral lesions. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

One in three Americans will be diagnosed with cancer within their lifetimes [1]. 

Although there have been significant improvements in treatment during the last 50 years, 

there has only recently been a slight decline in cancer mortality in the United States [2]. 

Early detection, however, can greatly increase a patient's chance of survival and often 

responds to simpler, less expensive, and less invasive interventions. When implemented 

correctly, early detection programs have the added benefit of reducing the burden on our 

national healthcare system. Early detection methods which are robust, relatively 

inexpensive, and require minimal expertise and training have the added potential to help 

combat rising mortality due to cancer in developing countries. 

Oral cancer contributes significantly to the global cancer burden. In the US alone, 

there are an estimated 30,000 cases of oral cancer diagnosed and 7,320 deaths annually 

[3]. The incidence of disease increases dramatically in some developing nations and 

ranks as the sixth most common cancer globally [4]. The accessibility of the oral cavity 

makes is an ideal location for inspection and early detection, which can greatly improve 

survival. The five-year survival rate for oral cancer patients with advanced stages of 

disease is 17% but improves to 80% if diagnosed at local stages of development [5]. 

The most common detection methods for oral cancer in the US include visual 

inspection during routine dental visits and self referral by patients followed by invasive 

biopsy for confirmation. There are currently no widely implemented standards for oral 

cancer screening by dental practitioners and often decisions for further investigation of 
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suspicious areas are made based on experience. The situation is further complicated by 

the plethora of common benign conditions which can occur in the oral cavity. There are 

several screening aids commercially available but to date, all remain subjective in nature 

and confirmatory biopsies are still required. 

An accurate and objective screening technique would provide great benefit to the 

global population and high risk populations in particular. Additionally, methods for 

improving the delineation of the extent or margin of malignant lesions in the oral cavity 

would aid in treatment methods such as surgical resection. 

The vast majority of malignancies in the oral cavity begin in the epithelium at the 

junction between the epithelial and stromal tissue layers called the basement membrane. 

Growth of abnormal cells then progresses upward to the tissue surface before breaking 

through the basement membrane. The tissue depth of morphologic and biochemical 

changes in tissue (typically several hundred micrometers) which accompany malignant 

progression, coupled with the accessibility of the oral cavity, make oral cancer an ideal 

candidate for inspection with optical technologies. Visible light has a penetration depth 

in tissue which corresponds to the location of these changes. Recent advances in the 

understanding of the biological basis of the optical changes which occur in tissue during 

malignant progression, including autofluorescence signatures, help provide support to the 

idea that optical imaging, with appropriate illumination and collection conditions and 

wavelengths, can greatly improve the detection and delineation of oral premalignancies 

and malignancies [6]. 
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1.2 Specific Aims 

The overall goal of this dissertation was to elucidate the extent to which widefield 

multispectral optical imaging could improve diagnosis and delineation of oral neoplasia. 

The specific aims of the work were to: 

Specific Aim 1: Design, construct, and characterize the performance of a widefield 

multimodal optical microscope capable of narrowband reflectance, polarized reflectance, 

and autofluorescence imaging. Use this system to study both endogenous elastic light 

scattering and autofluorescence features of precancerous and cancerous lesion in the oral 

cavity. Additionally, determine resolution, field of view, exposure times and other 

performance indicators of the MDM. 

Specific Aim 2: Test the performance of the MDM for detecting pre-cancerous and 

cancerous lesions in the oral cavity using criteria such as sensitivity and specificity. 

Using data from an in vivo pilot clinical study of 72 consenting patients, extract 

quantitative image features and use computer aided diagnosis algorithms to determine 

performance. Intrinsic in this analysis are the determination of the imaging modalities 

and specific illumination and collection wavelengths which provide the greatest 

diagnostic utility. Additionally, determined to what extend the MDM can provide a 

specific graded diagnosis (i.e. grades of dysplasia). Finally, quantify image contrast to 

determine the modalities/wavelengths which provide the highest image contrast. 
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Specific Aim 3: Combine imaging results from the MDM with a high resolution 

microendoscope developed in our lab to reveal if this combination can provide increased 

diagnostic performance. Analyze data from resected tissue from 14 patients and utilize 

hybrid consensus techniques to determine diagnostic performance from the synthesis of 

two separate classification algorithms for the devices. 

1.3 Chapter Summaries 

This dissertation describes the development and usage of a novel, objective, oral 

cancer screening device based on multispectral optical imaging. The device was 

designed as a research grade scientific tool to explore the optical modalities and 

conditions which could provide improved information on the presence and location of 

oral lesions in vivo. Although previous studies have been conducted to investigate the 

ability of some specific imaging modalities to identify lesions, this is the first work to 

combine multiple modalities including autofluorescence, narrowband, and polarized 

imaging at multiple illumination and collection wavelengths and quantitatively compare 

results. Additionally, this work is the first to attempt quantification of the most common 

observations and implementation of computer aided diagnostics for the diagnosis of 

malignant lesions in the oral cavity with the aim of developing an objective screening and 

delineation tool. This work is extended by combining widefield multispectral imaging 

results with a high resolution optical imaging device, with the aim of further improving 

detection. 

Chapter 2 provides background on the motivation for this work, and briefly 

reviews the biology of oral cancer. The biochemical and morphological changes which 
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occur during malignant progression are described as well as how these changes can be 

exploited by optical technologies for improved detection. Additionally, this chapter 

provides an overview of the current screening and detection methods available for oral 

cancer and limitations of these techniques. Finally, Chapter 2 provides a description of 

how computer aided diagnostics can be implemented with optical imaging. 

Chapter 3 details the design criteria and construction of the device which will now 

be referred to as the Multispectral Digital Microscope (MDM), as well as initial 

qualitative observations from study subjects. This chapter describes the specific 

modalities of the MDM, including autofluorescence, narrow reflectance, and orthogonal 

polarized reflectance modes, which were used to acquired in vivo image data from oral 

tissue to allow evaluation of lesions which may not exhibit high contrast under standard 

white light illumination. The chapter continues with qualitative observations of the 

visual appearance of oral lesions using different imaging modalities. For example, 

changes in vascular patterns, contrast, and color are described on lesions and tissue from 

normal volunteers. 

Chapter 4 provides an in depth analysis of autofluorescence imaging mode, which 

appeared to be highly useful based on results presented in Chapter 3. This chapter 

describes a quantitative method to extract image features and their use for objective, 

computer aided diagnosis of tissue regions. Data collected from an in vivo clinical study 

of 56 patients with oral lesions and 11 normal volunteers was utilized. From these 

images, 276 measurements from 159 unique regions of interest (ROI) sites corresponding 

to normal and confirmed neoplastic areas were identified. Data from ROls in the first 46 

subjects was used»to develop a simple classification algorithm based on the ratio of red-
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to-green fluorescence; performance of this algorithm was then validated using data from 

the ROIs in the last 21 subjects. This algorithm was applied to patient images to create 

visual disease-probability maps across the field of view. Histologic sections of resected 

tissue were used to validate the disease-probability maps. 

Chapter 5 expands on the analysis conducted in Chapter 4 and includes the other 

imaging modalities and image types provided by the MDM in the computer aided 

diagnosis analysis. This chapter also quantifies the increase in optical image contrast 

seen using the different imaging modalities. Five new patients were added from Chapter 

4 so that analysis was conducted on 61 patients with oral dysplasia and/or cancer and 11 

normal volunteers. Image contrast of oral lesions compared to healthy tissue was 

computed and compared for all image types. Computer aided diagnosis was performed 

on the image data using a linear classifier and a decision tree classifier to explore the 

image types and extracted features which provide the best objective diagnosis. 

Based on results from the previous chapters it was clear that the MDM could 

provide accurate identification of oral lesions in a tertiary care patient population. There 

are several questions and foreseeable limitations that this technology could encounter in a 

more diverse screening population. With this in mind, Chapter 6 explores combining the 

MDM analysis with results obtained from a high resolution microendoscope developed 

by our group. An underlying practical implication of combining these devices is that the 

MDM can provide rapid screening of the entire oral mucosal surface, or in this case, an 

entire resected specimen, and suspicious areas can be identified. The high resolution 

system can then interrogate these areas to help confirm a diagnosis. 
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This study involved a combined analysis including image data collected by the 

MDM and the high resolution microendocope system from ex-vivo tissue resected from 

14 patients with oral precancers and cancer. Several methods of combining extracted 

image feature data from both devices were explored based on hybrid consensus 

techniques. 

Chapter 7 provides a discussion of the implications of results from this 

dissertation work as well as potential future work. Chapter 8 provides a conclusion for 

the Work. 
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CHAPTER 2: BACKGROUND 

2.1 Motivation 

Oral cancer poses a significant and largely preventable world health problem. Oral 

and pharyngeal cancer ranks as the sixth most common cancer globally [4]. In the US, 

there were an estimated 30,000 cases of oral cancer diagnosed and 7,320 deaths in 2005 

[3]. The incidence is two times greater in men than woman and risk factors such as 

tobacco, including cigarettes, cigars, pipes, and smokeless tobacco, as well as alcohol, 

ultraviolet light, and poor nutrition greatly increase chances of developing oral cancers. 

Specific regional practices such as chewing of the betel nut in some parts of the world, 

and the areca quid chewing habit popular in Taiwan, can also increase incidence [7,8]. 

Oral cancer has a high mortality rate because it is often diagnosed during late stage 

disease, when symptoms normally occur. If not caught by routine dental or doctor's visit, 

oral cancers are often only diagnosed after a patient complains of pain or irritation 

resulting due to the cancer. In the US, the five-year survival rate for localized disease is 

81% but for those with distant metastases is only 17% [5] showing that early detection 

has the ability to save a large number of lives. 

2.2 Anatomy, Etiology, Histology and Progression of Disease 

In the US, oral cancer occurs most frequently in the tongue (30% of cases) 

followed by lip (17%), floor of mouth (14%), gingiva, hard palate, soft palate, and buccal 

mucosa [4]. Over 90% of oral cancers are squamous cell carcinomas (SCCs) whose 

tissue of origin is the epithelial lining of the oral cavity or oropharynx. Differences in the 

epithelial lining of the regions of the oral cavity include a nonkeratinized mucosal lining 



9 

and loose lamina propria in the buccal, soft palate, floor of mouth and inner lip, and a 

superficial keratin layer on the dorsal tongue, hard palate, and gingiva. [9] The 

transformation from normal tissue to cancer may occur over a widely varying amount of 

time from several months to many years and includes abnormal cellular changes. 

Cellular transformations often begin at the basal layer and progress upward through the 

epithelium. This upward progression of cellular changes is called dysplasia. There is 

uncontrolled cell division and the typical progression from tall cells in the basal layer to 

flattened squamous cells on the surface may be replaced by disordered and abnormally 

shaped basal cells which are mitotic. There are several common cellular morphological 

and anatomical changes at this stage such as a variation in cell shape and size 

(pleomorphism), an increase of DNA content due to increased mitosis causing an 

increased nuclear to cytoplasmic ratio, and changes in chromatin texture which may 

cause nuclei to be deeply stained (hyperchromatism) [10-12]. Changes due to increased 

metabolic activity associated with malignant transformations occur and an increase of 

metabolic co-factors such as reduced forms of nicotinamide adenine dinucleotide 

(NADH), flavin adenine dinucleotide (FAD) [13]. Levels of aromatic amino acids such 

as tryptophan, tyrosine, and phenylalanine as well as porphyrins may also increase[14]. 

Stromal changes such as increase in collagen content or the breakdown of collagen 

crosslinks may occur during the transformation [10]. 

Since the progression of cancer is intimately linked to increased environmental stimuli 

and a cell's ability to replicate uncontrollably, certain biomarkers have been identified 

which are over expressed in cancers. In many cancers, including cancer of the oral 

cavity, it has been shown that epithelial growth factor receptor (EGFR), a tyrosine kinase 
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protein is expressed in proportion to the stage of malignant transformation [15,16]. 

Additionally, matrix-metalloproteases such as MMP-2 and MMP-9 have been shown 

through studies of immunohistochemical staining of oral cancer tissue sections to be 

overexpressed in a majority of oral cancers [17,18] 

2.3 Optically Detectable Changes in Tissue 

Optically detectable changes which occur in oral mucosal tissue during malignant 

transformation include changes in light scattering properties in bulk tissue due to 

underlying cellular changes, vasculature pattern changes due to angiogenesis, changes in 

native tissue fluorescence, and changes in the content of absorbers such as hemoglobin 

[19][6]. 

Modeling efforts have shown that the scattering cross section of dysplastic cells in 

the cervix is increased in comparison to normal cells due to nuclear morphology [12]. 

These changes may be analogous in the oral cavity and may be detectable using 

reflectance imaging modalities. 

Changes in the autofluorescence of dysplastic and malignant tissue have been 

observed optically and there has been significant investigation into the cause of these 

changes. Changes in metabolic activity in premalignant tissue may be responsible for 

changes in the concentration of fluorescent metabolic byproducts. Among those 

substances, structures, or molecules suspected of being responsible for increased 

fluorescence are NADH, FAD, porphyrins, tryptophan, tyrosine, and phenylalanine. 

Tissue remodeling may also cause reduced fluorescence intensity due to the breakdown 

of collagen and elastin crosslinks. There has been significant research done into 
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discovering what excitation and emission wavelengths can be used to visualize these 

fluorophores. These wavelengths as well as the peaks of some of these fluorophores 

excitation and emission wavelengths are shown in table 1. 

A study examining autofluorescence confocal imaging of freshly resected oral 

tissue by Pavlova et al. demonstrated that there is a strong autofluorescence signal from 

the stroma in normal tissue likely from structural components such as collagen and 

elastin crosslinks. This autofluorescence decreases significantly in both benign and 

dysplastic tissue. In the epithelium, dysplastic tissue showed an increase in 

autofluorescence whereas benign tissue showed a decrease [6]. 

Studies from dysplastic tissue from the cervix, with is histologically similar to 

oral tissue, showed a similar decrease in stromal autofluorescence. Pavlova et. al. 

showed that precancerous cervical tissue shows increased fluorescence in the epithelium 

due to NADH and mitochondrial FAD and decreased fluorescence in the stroma due to 

decreased density of matrix fibers [10]. Drezek et. al. showed increased epithelial 

fluorescence in cervical tissue sections due to NADH and a decrease in stromal 

fluorescence due to fewer collagen cross-links [20]. 
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Table 1. Excitation and emission wavelengths for endogenous 
fluorophores and the tissue discussed in reference. 

Fluorophore Excitation >. Emission >. Tissue Reference 

NADH 290-370 

FAD 430-460 

Collagen & Elastin 300-3 70 

Tryptophan 280-290 

Protoporphyrin IX 410 

Tyrosine 270 

2.4 Current Detection Methods 

Visual preclinical indicators of cancer in the oral cavity may include leukoplakia 

(white pathes) or erythroplakia (red patches) [4,21]. Because of the accessibility of the 

oral cavity to identify these conditions, visual inspection at a routine dental visit is 

currently the most common detection method. This method relies heavily on the 

experience and skill of the physician. Mistakes are easily made, however, because many 

benign conditions mimic the physical presentation of precancerous lesions. The 

sensitivity and specificity of visual oral examination has been systematically reviewed 

by Downer et al [22]. Downer identified eight prospective studies between 1980 and 

2002 that involved conventional oral exam with gold standard verification provided by an 

expert observer. In four of the studies the screeners were general dentists and in four of 

the studies the screeners were trained health workers. Sensitivity ranged from 59% to 

97%, specificity ranged from 75% to 99%, and meta-analysis resulted in a weighted 

pooled sensitivity of 85% and a specificity of 97%. Other reports of the performance of 

440,460 Oral, CervicaLBreast 

515-520 Oral, CervicaLBreast 

400,440 CervicaLBreast 

340 Cervical,Breast 

635 Oral 

300 Cervical 

Pavlova et al. 2003, Drezek et al 2003, Palmer et 

al. 3X13, Rkhards-Kortum et al, 1996 

Pavlova et a l 2003, Drezek et al. 2003, Palmer et 

al. 2003, Richards-Kortum et al. 1996 

Drezek et al 2003, Palmer et al. 2003, 

Richards-lvortutn et al. 1996 

Ingrains el al. 1997, Palmer etal. 2003 

Ingrains el al 1997, Belz et al. 2002 

Drezek et al., 200.1, Richards-Komun el al. 1996 
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visual oral screening include Sankaranarayanan et al (sensitivity 77%, specificity 76%) 

[23], Ramadas et al (sensitivity 82%, specificity 85%) [24], and Nagao et al (sensitivity 

92%, specificity 64%) [25]. 

Invasive biopsy with histological examination is standard clinical practice but this 

method has drawbacks such as pain induced by physical biopsy and reluctance of 

physicians to perform biopsies for a condition that very well may be benign. To increase 

sensitivity of visual inspection, studies using vital dyes such as toluidine blue and Lugol's 

iodine solution have been performed with the drawback of having a high specificity 

[26,27]. 

Fluorescence and reflectance spectroscopy has been explored as a noninvasive 

detection method in several epithelial cancers including oral cancer [8,28-33]. The 

procedure generally involves collecting a spectrum from tissue using a point prove device 

either in vivo or ex vivo from a pre-malignant or malignant region and comparing it to a 

normal tissue spectrum from the same patient or study subject. This technique has shown 

promise in distinguishing normal tissue from dysplastic tissue but has the weakness of 

being able to sample only a small portion of. In vivo confocal and optical coherence 

tomography of the oral cavity to visualize malignant transformations at the cellular level 

are being investigated and show promise but may also be limited by a small field of view 

(typically 200-400um) [34,35]. 

Widefield optical imaging has been studied in the cervix, gastrointestinal tract, 

lung, and oral mucosa and this method has the advantage of a large field of view (several 

centimeters) with the potential to detect changes in scattering properties of tissue as well 

to detect native tissue autofluorescence [14,36-50]. In the oral cavity, sensitivity and 
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specificity of diagnosis of severe dysplasia and cancer have been reported as high as 98% 

and 100% respectively for small sample sizes using visual autofluorescence techniques 

[21]. The device used in this study is currently FDA approved and excites tissue in 

autofluorescence mode between 400 and 450 nm. Other studies from both in-vivo and 

ex-vivo tissue have reported optimal excitation wavelengths for imaging oral cavity 

autofluorescence as 350, 380, 400, 420-440 nm excitation [51-54]. Most studies of 

autofluorescence imaging report qualitative observations of a decrease in blue/green 

fluorescence signal on oral lesions and/or and increase in red fluorescence [55]. 

Currently, these qualitative changes have not been described quantitatively. 

2.5 Computer Aided Diagnostics 

2.5.1 Overview 

Automated or computer aided diagnosis based on imaging data has been 

demonstrated in multiple organ sites using instrumentation systems such as optical 

coherence tomography, mammography, and colposcopic images [56,57][58]. Numeric 

features are extracted from images or regions of images either in an automated manner or 

with a user selected region of interest (ROI). These features can describe any number of 

properties of the image data including statistical measures, textural measures, frequency 

domain measures, and colormetric measures. Often these features attempt to quantify 

some qualitative observation made from the imaging data. For example, texture analysis 

attempt to quantify qualitative descriptors such as smooth or rough. A classification 

algorithm can be trained using these features extracted from collected measurements, and 

used to discriminate new measurements into two or more classes. Classes may be 
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diagnostic categories such as normal and abnormal, where the abnormal class could 

contain data collected from the disease tissue the user is attempting to detect. The gold 

standard for this case is often histopathology. 

There are many different kinds of classification algorithms. In this work I will 

limit the background discussion to a linear discriminant classifier which is based on 

estimating the statistical distribution of the measurements, and a decision tree classifier, 

which is a non-parametric classifier. The feature values extracted from the each image or 

image region form a measurement vector. Measurements may be separated into a 

training set and a test set. The classification algorithm is trained on the training set and 

the performance of the algorithm is determined from the test set. In the case of a small 

sample size, resampling methods such as cross-validation may be used. 

2.5.2 Classification Algorithms 

The linear discriminant function utilizes the Bayes decision rule for minimum-

error-rate classification [59-61]. Multivariate normal densities and equal covariance 

matrices are assumed for each class co;. A training set is used to estimate the mean u; for 

each class and a pooled covariance matrix £ for all classes. A priori probabilities P(o)i) 

are provided as input indicating the relative prevalence of each class. As an example, the 

percentage of normal and abnormal measurements determined by histopathology may be 

used. Posterior probabilities, P(G)J|X), the probability of a measurement vector x 

belonging in class coj, is calculated from the Bayes formula for each measurement in the 

test set and this value is normalized to fall between [0 1]. For the 2 class case, a linear 
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discriminant function is then used to classify the test observations, x, into one of the two 

classes based on comparing the output of the two discriminant functions for / = 1,2 : 

The two discriminant functions are then combined into a single discriminant function 

g(x) = g{(x)- g2(x), 

so that observation, x, is assigned class a>i if g(x) > 0 and assigned to class 002 otherwise. 

If the threshold for the discriminant function is varied, or equivalently, if the decision 

boundary in varied between [0, 1] based on the posterior probabilities calculated from the 

test set, one may construct a receiver-operating characteristic (ROC) curve. 

An ROC curve is a plot of the sensitivity versus 1-specificity for the classifier. 

This is equivalent to counting and plotting the true positives (TP) and false positives (FP) 

as the decision threshold is varied. One can choose a threshold at which to operate the 

classifier. Often this point is chosen to maximize both the sensitivity and specificity. The 

area under the curve (AUC) of the ROC is an often used figure-of-merit (FOM) for 2-

class classifiers. An AUC of .5 indicates no diagnostic performance while an AUC of 1.0 

indicates perfect diagnostic performance. The AUC can be used to evaluate and compare 

the performance of different classifiers. 

A limitation of the linear discriminant classifier is that normal distributions for the 

observations are assumed. If the parameters for the normal distributions are estimated 

from a small training set, this assumption may cause the classifier to poorly generalize to 
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additional new data. Decision trees are a commonly used nonparametric method for 

multiclass classification which help to classify the data in an intuitive manner and make 

no assumptions about the distributions of the observations [62]. Decision trees are 

structured from a collection of nodes connected by branches. Each node 'asks a 

question' concerning the value of a single feature, for example, whether the value of a 

particular feature if above or below a specific threshold. The tree begins with a root 

node. The root node is connected, by branches, to other nodes which eventually 

terminate at leaf nodes where observations are put into a class. For a particular decision 

tree, one must specify how the tree is constructed from the training data, including how 

splits are made (i.e. what feature to use to make new branches), and how to determine 

when to declare leaf nodes. Feature selection is implicit in the construction of the tree as 

a decision needs to be made about which feature to test at each node. 

It is possible to allow the tree to grow until all training data is classified perfectly, 

but this is likely to generalize poorly to new data, especially with small training sets. In 

order to avoid overtraining, a decision tree may be pruned using cross-validation to find 

the smallest tree at which adding further nodes does not statistically decrease the cost of 

the tree. One way to define the cost of the tree is in the zero-one sense, where the cost of 

misclassifying an observation is 1 and the cost of correctly classifying an observation is 

0. 

It is not intuitive to create ROC curves using decisions tree classification methods 

and therefore the AUC criterion is not often used as a FOM for evaluating the 

classification performance. Sensitivity, specificity, positive predictive values, and 
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negative predictive values are commonly used to evaluate decision tree classification 

performance. 

2.5.3 Feature Selection and Resampling methods 

Using an excessive number of features with a small data set may result in 

overtraining a classification algorithm [59,63]. A feature selection algorithm can be used 

in order to determine the most important and diagnostically relevant features which can 

then be used for classification. An important attribute of a feature selection algorithm is 

that it preserves the feature set. This differs from feature extraction methods, such as 

principle component analysis (PCA), which transforms the original feature space in a 

new feature space. 

The feature selection method used in this work is termed a forward sequential 

search (FSS) algorithm. This method starts with an empty feature set and adds features 

one at a time to maximize a specified criterion determined by a mining algorithm until 

some defined threshold or a specified feature set size is reached. This method is not 

exhaustive and risks missing optimal subsets but is much less computationally expensive 

than a complete search which searches all possible combinations of features [64]. 

An example of a criteria which may be used by a FSS algorithm is the area under 

the curve (AUC) of the receiver-operating characteristic (ROC) produced by a classifier. 

This type of criteria is termed a dependent criteria because it is utilizes a mining 

algorithm based on classification accuracy and therefore tends to pick features which 

achieve higher final performance compared to a search algorithm using independent 

criteria such as distance measures or correlation measures [64]. 
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The FSS algorithm works as follows: Starting with a set of one feature, 

classification of the training set is performed with cross-validation utilizing the FSS 

algorithm to find the single feature which produces the most accurate classification. This 

is repeated with two features, then three, four, ect. The optimal number of features is 

determined when adding additional features does not increase the classifier performance. 

This entire procedure may be repeated many times to provide statistically significant 

results. The AUC values from each iteration may then be compared using statistical 

methods to determine when no statistically improvement is achieved by adding additional 

features. Once the optimal number of features is determined, the specific optimal feature 

subset can be determined by selecting the most commonly chosen features. 

Resampling methods are useful for avoiding overly optimistic estimation of 

classifier performance due to overtraining. K-fold cross-validation is a commonly used 

method. It consists of separating an available data set into k, approximately equal sized, 

subsets or folds. 

k-1 folds are then used to train a classification algorithm and the remaining fold is used 

for validation. This is repeated k times so that the validation set is a different fold at each 

iteration. The classifier performance is then averaged over the k-folds to produce a 

performance estimate with minimal optimistic bias [63]. 
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CHAPTER 3: A MULTISPECTRAL OPTICAL IMAGING DEVICE FOR IN 

VIVO DETECTION OF ORAL NEOPLASIA1 

3.1 Introduction 

Oral cancer poses a significant world health problem, ranking as the sixth most 

common cancer globally [4], causing over 127,000 deaths worldwide each year [65]. In 

the United States alone, there were an estimated 30,990 cases of oral cancer diagnosed 

and 7,430 deaths in 2006 [3]. Oral cancer often goes undiagnosed until the later stages of 

development, resulting in high mortality. In the United States, the five-year survival rate 

for localized oral cancer is 81%, but this drops to only 30% for advanced disease [66], 

suggesting that early detection has the ability to save many lives. In addition, patients 

who survive an initial occurrence of oral cancer are known to be at an increased risk of 

developing a second malignancy highlighting the importance of continued surveillance of 

this population [67]. 

The most common screening method for oral cancer is visual inspection and 

palpation of the mouth. Physicians inspect for clinically evident oral lesions such as 

leukoplakia (white patches) or erythroplakia (red patches) which are associated with 

increased risk of oral cancer [4,21]. Visual examination relies heavily on the experience 

and skill of the physician to identify and delineate early premalignant and cancerous 

changes. Several benign conditions, such as lichen planus, inflammation and 

hyperkeratosis, mimic the clinical presentation of precancerous lesions, and visual 

1 This chapter has been published in the following journal article: Darren Roblyer, Sokolov KV, El-Naggar 
A, Williams M , Kurachi C , Gillenwater A, Rebecca Richards-Kortum, "A Multispectral Optical Imaging 
Device for In Vivo Detection of Oral Neoplasia", Journal of Biomedical Optics. 2008 Mar-Apr; 13(2) 
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inspection with standard white light illumination may not yield sufficient contrast 

between normal and abnormal tissues. Once a suspicious lesion is identified, biopsy and 

histological examination is required for definitive diagnosis. Biopsies are invasive, 

painful, costly, and require familiarity and skill, and are therefore typically limited to 

highly suspicious lesions. Additionally, many lesions are heterogeneous in morphology 

and visual appearance, and biopsy diagnosis may not be representative of the entire lesion 

due to the small sampling area [68]. Approaches which can help differentiate between 

normal and neoplastic areas and which can reduce the need for evaluator experience have 

the potential to greatly facilitate and improve early diagnosis of oral cancer. 

Optical imaging has the potential to address these clinical challenges. Contrast 

between normal and neoplastic areas can be increased beyond that which is available 

with standard white light by tuning the illumination and detection conditions. 

Reflectance imaging can detect local changes in scattering and absorption of tissue and 

fluorescence imaging can probe changes in the biochemical composition of tissue by 

revealing levels of endogenous fluorophores. These changes have shown to be indicative 

of malignant progression [55] and are targeted in a variety of imaging modalities to detect 

and diagnose premalignant changes in different anatomic sites including the cervix [50], 

gastrointestinal tract [41], lung [69], and oral mucosa [21,38,44,53,55,70-72]. High 

resolution optical imaging techniques such as confocal microscopy, and optical 

coherence tomography have the potential to image changes in tissue architecture and 

cellular morphology. A drawback to in vivo cellular resolution microscopy however, is 

the small field-of-view (FOV) interrogated, making screening of an entire mucosal 

surface impractical without an initial means of guidance towards suspicious areas. Wide-
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field optical imaging techniques allow clinicians to screen several centimeters at a time 

for identification of margins and optimal sites for further interrogation by small FOV 

imaging techniques or biopsy. 

Several wide-field optical imaging systems have shown promise to improve 

detection of neoplastic lesions in the oral and oropharyngeal regions. Lane et al. 

presented a non-magnifying hand-held device for direct visualization of oral cavity tissue 

fluorescence [21]. The system uses a metal-halide lamp with emission peaks at 405 and 

436 nm to excite tissue autofluorescence. Images obtained using this device showed a 

characteristic decrease of green fluorescence associated with oral precancer and cancer. 

Decreased green fluorescence distinguished normal tissue from severe dysplasia, 

carcinoma in situ, or invasive carcinoma in 50 biopsy sites from 44 patients with a 

sensitivity of 98% and specificity of 100%, using histology as the gold standard. This 

device is available commercially as the VELscope®, which is FDA approved and is 

currently in clinical use. De Veld et al. provide an excellent review of the status of in 

vivo autofluorescence imaging for oral oncology [55]. 

While fluorescence imaging alone has shown great promise for detection of 

neoplastic lesions in the oral cavity, incorporating additional imaging techniques may 

increase the effectiveness and sensitivity of wide-field optical devices. Techniques which 

are capable of detecting increases in vascular density and changes in light scattering 

properties may be particularly useful, since these features have previously been 

associated with the development of cancer, and are not easily detected by fluorescence 

imaging alone [73]. Additionally, reflectance imaging systems tend to be simpler in 

design compared to fluorescence devices, thereby reducing instrument complexity and 
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cost. In narrow band (NB) reflectance imaging, tissue is illuminated using a narrow 

wavelength band (e.g. 10-20 nm) and reflected light is imaged. The optical contrast of 

microvasculature close to the epithelial surface may be increased by selecting an 

illumination band which matches peaks in the absorption spectrum of hemoglobin [74]. 

Another approach to increase contrast is to control the polarization of the illumination 

source and detected light. In orthogonal polarization reflectance (OPR) imaging, tissue is 

illuminated with linearly-polarized light; a second linear polarizer is placed in front of the 

detector and oriented so that only remitted light with a polarization orthogonal to the 

illumination is captured. This has the effect of selectively detecting photons which have 

undergone multiple scattering events in the tissue (resulting in a reduction in degree of 

polarization), and rejecting those singly-scattered photons returning from the surface of 

the tissue. This technique enables observation of deeper or birefringent tissue structures 

and enhances the prominence of microvasculature due to increased hemoglobin 

absorption [75]. When both orthogonal and parallel polarization images are captured, 

they can be mathematically combined to form a composite image which has been shown 

useful for imaging skin pathologies [75]. Lindeboom et al. have described orthogonal 

polarization spectral (OPS) imaging of oral tumor sites using a magnifying handheld 

device coupled to a CCD camera, designed to provide maximum contrast between the 

microvasculature and surrounding tissue [76]. 

The Multispectral Digital Microscope, or MDM, was developed to investigate the 

diagnostic effectiveness of combining multiple imaging modalities in a single device 

compared to measuring reflectance or fluorescence signals alone. The MDM acquires 

high-resolution, wide-field images in vivo, using white light illumination, fluorescence 
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excitation, NB, and OPR modes. The MDM employs a wide range of illumination 

wavelengths to investigate which provides the greatest contrast between normal and 

neoplastic areas for each imaging mode. In this paper, we describe the design of the 

device, evaluate its optical performance, and present sample images obtained in human 

subjects with the MDM system. 

3.2 Materials and Methods 

3.2.1 Instrumentation 

Figure 1 shows an optical schematic of the Multispectral Digital Microscope 

(MDM). The OPMI® pico dental microscope (Carl Zeiss, Jena, Germany) is used as the 

core optical component of the MDM. These is a single objective lens and the 

magnification setting is adjusted by turning a turret to one of five positions. Light is 

routed from the source to the microscope head by a fiber optic light guide. The working 

distance of the microscope is 25 cm. The field of view (FOV) of the device is dependent 

on the choice of magnification setting and ranges between 1 cm and 4 cm in diameter. 

With a monitor size of 17 inches, the system magnification ranges from 8.5 times to 34.7 

times. 
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Figure 1 A. The Multispectral Digital Microscope (MDM) in the 

Head and Neck Clinic at the MD Anderson Cancer Center. B. 

System optical schematic. 

We replaced the original light source with an air-cooled 100 Watt mercury arc 

lamp (Photon Technology International, Birmingham, NJ), housed in a custom light box. 

The lamp and ellipsoidal reflector produce a converging beam which is collimated using 

a 25 mm plano-convex lens (Lambda Optics, Costa Mesa, CA). To protect both the 

patient and optical components from excessive heating, a custom cold mirror (Barr 

Associates, Westford, MA) eliminates unwanted IR radiation from the lamp, and an 

absorbing glass filter removes UV light at wavelengths below 350 nm. The beam then 

passes through a ten-position excitation filter wheel (Sutter Instruments, Novato, CA) and 
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through a second plano-cOnvex lens which focuses the beam onto the proximal face of a 

5 mm diameter fused quartz light guide (Fiberoptic Systems, Simi Valley, CA), which 

routes the light to the microscope head. Since the microscope was not originally designed 

to support near UV excitation, a custom machined adaptor was implemented to bypass 

the original illumination optics and to hold the distal end of the light guide and a fused 

quartz focusing lens (Newport Optics, Stratford, CT). This adaptor provides a significant 

increase in near UV excitation power and subsequently reduces exposure times required 

for fluorescence imaging. The adaptor also holds a linear polarizer (Chroma 

Technologies, Rockingham, VT) which is servo controlled and engaged by the Lab View 

(Austin, TX) interface. 

The illumination filter wheel contains narrow band illumination filters at 420 nm, 

430 nm, 530 nm, and 600 nm for NB imaging. These wavelengths were selected to 

match hemoglobin absorption features, and also to provide multiple wavelengths 

throughout the visible spectrum to study the effects of wavelength on penetration depth. 

The illumination filter wheel also contains narrow band illumination filters at 365 nm, 

380 nm, 405 nm, and 450 nm for autofluorescence excitation. These excitation 

wavelengths were chosen based on previous work by Heinzelman et al. and Utzinger et 

al. [53,77]. The full-width at half-maximum (FWHM) transmission bandwidth for the 

excitation filters ranges from 20 nm for NB imaging, to 50 nm for UV illumination 

(Chroma Technologies, Omega Optics). A 1.0 neutral density filter is used to attenuate 

the white light illumination power. A light-blocking disk occupies one position in the 

excitation filter wheel and is used for measurement of the background light level. 
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Table 2. Irradiance and typical exposure times for each illumination 
condition. 

Illumination 
X (nm) 

365 

380 

405 

450 

white 

420 

430 

530 

600 

white 
polarized 

Imaging 
Modality 

fluor. 

fluor. 

fluor. 

fluor. 

reflect. 

reflect. 

reflect. 

reflect. 

reflect. 

polarized 

Irradiance 
(mW/cm2) 

11.15 

8.86 

7.00 

5.10 

12.02 

3.13 

9.62 

1.91 

4.17 

3.47 

Typical 
Exposure 

(ms) 

100 

160 

400 

500 

16 

64 

13 

24 

64 

100 

The emission arm of the MDM consists of a Zeiss objective lens and 50/25/25 

beam splitter which passes 50% of the emission light to the microscope eyepieces and 

25% each to two CCD detectors. An emission filter wheel (Oriel Optics, Stratford, CT) is 

located in one detection arm and contains longpass filters and a linear polarizer. A 

longpass filter with a 50% transmission at 410 nm is used with the 365 nm and 380 nm 

excitation, one centered at 430 nm is used with 405 nm excitation wavelength, and one 

with a 50% transmission at 475 nm is used with 450 nm excitation. An additional linear 
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polarizer is placed in the opposing detector arm as shown in Figure 1. In one arm, the 

polarizer is oriented parallel to the excitation polarizer and in the other, the polarizer is 

oriented perpendicular. The opposing polarizers allow for simultaneous OPR and parallel 

polarization imaging; this feature is useful for reducing changes in FOV which can occur 

due to patient movement. 

Two Retiga Exi (Qlmaging, Burnaby, BC Canada) 12-bit color cooled cameras 

are used to collect image data. This camera model was chosen because of its low light 

sensitivity and compatibility with the Lab View programming environment. The sensor is 

a Sony ExHAD ICX285 progressive-scan high-sensitivity CCD chip, providing adequate 

spectral sensitivity at chosen wavelengths of interest, from 400 nm to 650 nm. The chip is 

covered by a Bayer Mask mosaic for color imaging. Image data is saved in raw Bayer 

format and color interpolation is performed in post-processing based on color balancing 

standards. 

Control of the MDM system is by accomplished by a custom Lab View graphical 

interface. The interface provides the operator with the ability to image with one 

excitation/emission wavelength pair at a time, or to collect a rapid sequence of image 

data over the range of the MDM's capabilities. The interface also allows the user to store 

information such as study number and patient data which are linked and saved with the 

optical data. Imaging parameters are recorded for all data collected, and background 

measurements are taken with each sequence. 

The MDM takes about one minute to collect a complete image sequence. The 

sequence is composed of white light reflectance, fluorescence, NB, OPR, parallel 

polarization reflectance, and background data sets. A predefined set of exposure and gain 
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settings was established for each image in the sequence based on measurements of 

normal volunteers. In order to account for inter-patient variability, measurement site 

variability, and changes due to disease, the predefined set of exposure times could be 

manually scaled up or down in 20 percent intervals during imaging. Additionally, four 

duplicate images were taken for each illumination/emission setting at lower and higher 

exposure times relative to the initial choice. Table 2 shows typical exposure times based 

on the most commonly used exposure settings used in the pilot clinical trial. 

A set of standards was chosen to quantify the performance of the MDM as well as 

to track any changes occurring in the device over time. Positive reflectance standards 

include 99%, 75%, and 50% reflectance spectralon disks (Labsphere, North Sutton, NH), 

and red, green, and blue portions of a Macbeth Color Chart (GretaMacbeth LLC, New 

Windsor, NY). A 2% spectralon disk serves as a negative reflectance standard. Positive 

fluorescence standards include a set of four fluorescent slides (Microscopy/Microscopy 

Education, microscopyeducation.com) and the negative fluorescence standard is a frosted 

quartz disk (Mark Optics, Santa Ana, CA). 

For white light illumination, color balance was achieved by imaging a white 

balance sheet and adjusting the RGB ratio in software so that equal pixel intensity values 

were obtained in the red, green, and blue channels. For fluorescence imaging, a constant 

color balance was used throughout the study to maximize qualitative diagnostic ability 

and to reflect the natural blue-green tissue fluorescence color. The fluorescence color 

slides were used as a standard to track any changes in color response of the camera over 

time in fluorescence mode. 

http://microscopyeducation.com
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3.2.2 Pilot Clinical Study 

Several sites within the oral cavity of normal subjects were imaged using the 

MDM as part of an IRB approved protocol at Rice University. In a separate, ongoing 

pilot clinical study conducted at The University of Texas MD Anderson Cancer Center 

(MDACC), the MDM was used to image clinically abnormal and normal oral mucosal 

sites in patients. This protocol was approved by the Institutional Review Boards at both 

Rice University and MDACC. 

The measurements were performed either in the outpatient clinic or in the 

operating room on patients under general anesthesia prior to surgery. The areas to be 

imaged were chosen by the clinician and included areas that had previously been 

identified as abnormal by clinical examination and/or biopsy. The physician first 

evaluated these targeted areas using the MDM under white light illumination, adjusting 

the focus and FOV. Several measurement sequences were then taken from each subject 

including abnormal sites, and when possible, a corresponding contralateral normal site. 

Excess saliva was suctioned prior to imaging. Because teeth exhibit particularly strong 

autofluorescence, attempts were made to cover any teeth in the FOV with low-

fluorescence gloves or a mouth guard. The head of the patient was positioned and held by 

the physician during imaging in order to reduce motion artifacts. In patients seen in the 

clinic, biopsies were obtained from clinically abnormal sites and a contralateral normal 

site. In patients who underwent surgical excision, the resected specimens were 

histologically examined. A clinical diagnosis for normal and abnormal-appearing areas 

(graded as normal, abnormal but not suspicious for neoplasia, suspicious for neoplasia, or 
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cancer) was rendered by the clinician. The histopathology diagnosis of biopsy sites and 

resected tissue from imaged areas were considered the gold standard for diagnosis. 

Four observers (DR, CK, AG, RRK) examined the images to identify features that 

differed in abnormal sites compared to clinically normal areas, and which might be 

further explored for diagnostic relevance. Qualitative observations of image data were 

correlated with clinical observations regarding peripheral extent of abnormal changes and 

clinical diagnostic category. Pathology results from resected tissue and biopsies allowed 

comparison between MDM image data and histopathologic diagnosis of lesions. 

3.3 Results 

3.3.1 Instrument Performance 

The resolution of the MDM was determined by imaging a USAF spatial 

resolution target, as shown in Fig. 2. A line spacing of 15.6 um (group 5, element 1) can 

clearly be discriminated at the highest magnification. The appearance of shadowing 

behind each element is due to the finite thickness of the glass substrate, and is not 

intrinsic to the MDM system. Measurements of white light illumination on a 99% 

reflectance spectralon standard (Labsphere, North Sutton, NH) show a 4 cm diameter 

illumination spot size. This is adequate to illuminate all but the edges of the FOV at the 

most commonly used magnification. The illumination pattern is Gaussian due to light 

guide coupling with the highest intensities in the center of the FOV. 

To confirm the absence of excitation filter leakage and adequacy of performance 

of longpass filters, a 2 inch diameter frosted quartz disk was imaged in fluorescence 

mode. Exposure times and gain settings matching or exceeding those used for normal 
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tissue fluorescence imaging were used at each excitation/emission wavelength pair to 

confirm the absence of signal from the non-fluorescent frosted quartz disk. The ratio of 

autofluorescence signal from tissue to frosted quartz was always greater than 10:1. 

Figure 2. A USAF Resolution target imaged at high magnification. 

Element 5 group line spacings are 15.6um (shown in the dashed 

box) are easily discriminated in the zoomed-in image on the right. 

Intra-sequence image registration was affected by patient movement, generally 

causing some changes in the FOV during the course of the image sequence. Figure 4 

shows several images taken from a typical sequence in a clinical setting at the most 

common magnification setting. Using user-defined selection of points common to both 

images, the linear translation was less than 60 pixels (less than 5% of the FOV) between 

any two of the images in the sequence in both the x and y directions. 

UV radiation during all human measurements is well below the American 

Conference of Governmental Industrial Hygienists maximum allowed rating [78]. 
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3.3.2 MDM Images of Normal Oral Sites 

Sites imaged in the oral cavity from four normal volunteers included tongue, 

buccal, lip, gingiva, hard palate, soft palate, and floor of mouth. Fine vasculature was 

clearly identifiable in images acquired from the lip, floor of mouth, hard palate and soft 

palate using white light, NB, OPR and fluorescence techniques. These images serve as 

further examples of the resolution capabilities of the MDM. Figure 3 shows an image of 

the lower lip of a normal volunteer under several illumination conditions. The white light 

image (3A) shows microvasculature from a variety of depths beneath the epithelial 

surface. The OPR image illustrates similar vascular patterns; specular reflection is no 

longer visible in the image, and spatial resolution is somewhat reduced because the OPR 

technique selectively records photons that have undergone more scattering events in the 

tissue. The NB image obtained with 420 nm illumination (3B) shows only the 

superficial, fine vasculature due to the reduced penetration of this wavelength; vessel 

contrast is also increased because this wavelength matches the Soret absorption band of 

hemoglobin. As the illumination wavelength is increased from green (3D) to red (3F), 

vessels deeper within the tissue are visible in the image. The NB image obtained with 

600 nm illumination shows a loss of contrast and spatial resolution due to the increased 

ratio of scattering to absorption and increased mean free path between scattering events at 

this wavelength. Vasculature was not as apparent in the buccal and tongue. 

Tissue autofluorescence is predominantly blue at UV excitation wavelengths (3E) 

and blue-green at the longer 450 nm excitation. The hard palate, soft palate, floor of 

mouth, and buccal mucosa provided a higher fluorescence signal than the tongue, 

gingiva, and lip. The midline of the hard palate was particularly bright. Teeth were 
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highly fluorescent and tooth fluorescence could be seen through portions of the gingival 

mucosa. Blood vessels appeared dark under fluorescence mode compared to the 

surrounding tissue. Red fluorescence occasionally appeared on the dorsal tongue. 



365 nm 11. 600 nm 

Figure 3. Images of normal volunteer inner lip. A. White light 

illumination image. B. 420 nm NB image. C. OPR image. D. 530 

nm NB image. E. 365 nm excited fluorescence image. F. 600 nm 

NB image. Note increased contrast of vasculature in C. compared to 

white light image. Fine vasculature is visible in B., whereas, deep, 

larger diameter vasculature is visible in F. Scale bars indicate 2.5 

mm. 
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3.3.3 MDM Images of Oral Dysplasia and Cancer 

Images of a premalignant lesion and an invasive cancer are presented as 

representative examples to demonstrate the capabilities of the MDM system for 

examination of the oral cavity. Some images were cropped to only show relevant areas. 

Figure 4 shows images obtained from a thin leukoplakia lesion (indicated by 

arrows) on the right mandibular gingiva. The thin leukoplakia in the OPR image (4C) is 

less evident demonstrating the ability of OPR imaging to selectively detect photons that 

have scattered more deeply into the tissue. The blue NB image (4D) shows the 

leukoplakia as brighter in reference to surrounding tissue compared to the white light 

image. 

Figure 5 shows images acquired from a subtle lesion on the right lateral tongue. 

The clinical impression of the lesion was leukoplakia, but not overly suspicious for 

dysplasia or cancer. Following imaging, a 2.4 x 1.0 x 0.4 cm volume was surgically 

resected and histopathology showed moderate squamous dysplasia (Fig. 5H). The 

standard white light image (5A) shows some patchy irregularities in the mucosal surface. 

Using the green NB (5E) and the OPR imaging conditions (5C), an apparent increase in 

visual contrast was observed between the lesion and surrounding normal areas (indicated 

by arrows in each case). A decreased blue/green autofluorescence (DA) was observed in 

the area of the lesion in fluorescence images at 365 nm, 380 nm and 405 nm excitation 

(5B, D, F). An image of a contralateral normal area imaged using white light is shown in 

5G for comparison. 
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Figure 4. Images of leukoplakia lesion on right gingiva. A. White 

light illumination image. Arrows indicate area of leukoplakia. B. 

Parallel polarization image. C. OPR image. D. 420 nm NB image. 

Note that the OPR (C) allows visualization of tissue below the thin 

leukoplakia and the 420 nm OPR image (D) accentuates areas of 

leukoplakia. Scale bars indicate 2.5 mm 

Figure 6 shows images acquired from a premalignant lesion on the left lateral 

tongue. The clinical impression was erythroplakia; a reddish lesion associated with a 

high risk of dysplasia or early carcinoma. Histopathology from a biopsy of the lesion 

indicated severe squamous dysplasia with a focal ulceration and chronic inflammation 

(6H). Both the OPR image (6C) and the green NB image (6E) showed an area of 

abnormality (appearing darker red on OPR and darker on NB images as indicated by 

arrows) which is more extensive in peripheral extent and has increased contrast as viewed 

against the surrounding mucosa. In the images obtained using all four fluorescence 
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excitation wavelengths a comparative decrease or loss of blue or green fluorescence was 

seen in the abnormal site. The total area of DA was larger at 405 nm excitation (6F) than 

at 365 nm (6B) and 380 nm excitation (6D). In addition, a striking ring of increased red 

fluorescence surrounding the lesion was observed in the fluorescence images, and is most 

apparent at 405 nm excitation. This red fluorescence is consistent with the presence of 

endogenous porphyrins. A white light image obtained from a contralateral normal area is 

shown in 6G for comparison. 



Figure 5. Images from tongue of patient with leukoplakia. A-F 

show a FOV containing areas along the lateral aspect of the tongue 

which were resected and found to contain moderate dysplasia. A. 

White light illumination image. B. 356 nm excited fluorescence 

image. C. OPR image. D. 380 nm excited fluorescence image. D. 

530 nm NB image. F. 405 nm excited fluorescence image. G. White 

light illumination image of contralateral normal site. H. H&E 

stained tissue from abnormal area indicating moderate dysplasia. 
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Arrows indicate areas with loss of fluorescence or increased 

contrast. Scale bars indicate 5 mm in A-G and 200 urn in H. 
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Figure 6. Images from ventral tongue of patient with erythroplakia. 

A-F show a FOV of the left lateral tongue containing erythroplakia 

from clinical appearance and severed dysplasia from 
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histophathology of biopsy site. A. White light illumination image. B. 

356 nm excited fluorescence image. C. OPR image. D. 380 nm 

excited fluorescence image. D. 530 nm NB image. F. 405 nm 

excited fluorescence image. G. White light illumination image of 

contralateral normal site. H. H&E stained tissue from abnormal area 

indicating severe dysplasia. Arrows indicate areas with loss of 

fluorescence or increased contrast. Scale bars indicate 5 mm in A-G 

and 200 jxm in H. 

Figure 7 shows images from the right lateral tongue in a subject with 

histologically confirmed carcinoma. A previously biopsied and ulcerative lesion is 

shown in the center of the FOV. In the OPR image (7B), the blue NB image (7C), and 

the green NB image (7C), increased contrast is noted by arrows in the tissue surrounding 

the ulcer. The blue NB image (7C) shows larger dark areas in the ulcerative lesion and in 

the bottom right compared to the white light image (7A). The red NB image (7G) shows 

smaller dark areas compared to white light. The fluorescence images show a decrease of 

blue/green fluorescence surrounding the ulcerative lesion, and this DA is more apparent 

for 405 nm and 450 nm excitation (7F, 7H) than at 365 nm excitation (7ED). Following 

imaging a 3.2 x 2.5 x 1.0 cm3 portion was resected and was determined by histopathology 

to contain invasive squamous carcinoma centrally, with dysplasia near the margins of 

resection. 
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In these representative examples, we observe one or more of the following 

features in areas histologically determined to be abnormal: a decrease of blue/green 

fluorescence, increased red fluorescence, and an increase of contrast in highly vascular 

regions. Blood on the surface of the tissue also appeared dark compared to white light 

under blue and green narrow band illumination. Teeth and gloves occasionally interfered 

with fluorescence imaging of tissue due to their autofluorescence, as can be seen in the 

lower left corner of the fluorescence frames in Figure 5. 
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Figure 7. Images from cancer on right lateral tongue. A. White light 

illumination image. B. OPR image. C. 430 nm NB image.. D. 365 

nm excited fluorescence image. E. 530 nm NB image F. 405 nm 

excited fluorescence image. G. 600 nm NB image. H. 450 nm 
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excited fluorescence image. Arrows indicate increased contrast or 

decreased autofluorescence. Scale bars indicate 2.5 mm. 

3.4 Discussion 

In this study, DA was observed in many clinically abnormal areas compared to 

surrounding normal tissue, and this finding was common to all four fluorescence 

excitation wavelengths. DA was also observed surrounding submucosal, exophytic or 

hyperkeratotic abnormal areas as well as in clinical lesions lacking the white keratotic 

surface associated with leukoplakia. Areas with DA did not always correspond to areas 

where increased contrast was seen using other modalities. Increased red fluorescence 

was observed in about half the patients imaged to date. It appeared most often on 

cancerous regions and on necrotic tissue but occasionally appeared in clinically 

dysplastic or precancerous areas. Red fluorescence did not usually correlate with DA or 

with increased contrast from NB or OPR imaging. 

Blue and green NB images tended to increase contrast of visible blood vessels and 

areas suspected of containing a high density of superficial microvasculature. Blue 

illumination revealed fine vasculature which appeared superficial whereas illumination at 

green or red wavelengths revealed larger diameter, deeper vasculature. 530 nm 

illumination was most useful in increasing negative contrast in lesions in study patients. 

Blood on the surface of the tissue also appeared dark under blue and green narrow band 

excitation. OPR had the effect of reducing specular reflection and increasing negative 

contrast in some abnormal regions compared to imaging under conventional white light 

illumination. Both OPR and NB appear useful for detecting areas with high 
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microvascular density, and in many cases, the resulting images showed extended margins 

of clinically abnormal areas compared to white light imaging. In most cases, discrete 

vessels were observed in normal contralateral measurements and at the periphery of 

abnormal areas, while diffuse, homogeneous red areas were observed on abnormal 

lesions with flat contours. Elevated lesions in cancerous or precancerous areas often 

obscured vascular detail. 

The characteristic DA associated with neoplasia has been extensively explored to 

determine abnormal areas in previous imaging studies in the oral cavity [21,38,72,79]. It 

has been suggested that a decrease of collagen cross-links and decreased density of 

matrix fibers is the major contributor to loss of green fluorescence; these are important 

features that may be associated to malignant progression. Pavlova et al. and Drezek et al. 

have shown that precancerous cervical tissue exhibits decreased stromal fluorescence due 

to a decreased density of matrix fibers [10]. Lane et al., who used excitation light from 

400 nm to 460 nm, suggest collagen-related DA as a major mechanism enabling contrast 

between the appearance of neoplastic areas and normal tissue using the Velscope® 

[21,80]. 

Increased red fluorescence in the oral cavity is well documented for carcinoma, 

and in previous imaging studies [38,39,70,71], red fluorescence was best observed when 

excited at approximately 410 nm. Inaguma and Hashimoto found the presence of fed 

fluorescence in eighty-five percent of the 78 lesions of oral carcinomas they investigated 

[70]. Ingrams et al. have obtained 90% sensitivity and 91% specificity for the 

discrimination of normal and dysplastic/malignant mucosa using the presence of red 

fluorescence [54]. This red fluorescence is generally attributed to the presence of 
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porphyrins whose origins in biological tissue are disputed. It is unclear whether they are a 

byproduct of abnormal metabolism in tissue or if it is produced by bacteria contaminating 

the surface of the tissue. 

Changes in contrast using NB and OPR have been previously observed in oral 

tissue and are likely due to increased microvasculature density and structure associated 

with malignant transformation. Pazouki et al. have shown an increase in vascularity in 

oral tissue throughout malignant progression [73]. By choosing reflectance excitation 

wavelengths which correspond to hemoglobin spectral features, the narrow band 

reflectance images maximize microvasculature visualization and contrast. Subhash et al. 

used this technique to detect abnormal tissue in the oral cavity. They showed that the 

ratio of two oxygenated hemoglobin dips at 540 nm and 575 nm decreased in excised 

malignant tissue compared to normal [74]. De Felice et al. speculated that observed 

optical changes in the color spectrum observed in bronchopulmonary dysplasia may be 

caused by an altered microvasculature network [81]. Wavelength dependent photon 

penetration depth utilized in narrow band reflectance imaging may also provide useful 

depth dependent diagnostic information. 

OPR techniques enabled us to look deeper into tissue by utilizing the ability to 

reject singly-scattered photons that have retained their polarization state. Photons that 

have had their polarization state altered either by multiple scattering events or by 

birefringent properties of the tissue are selectively detected. This can have the effect of 

providing negative contrast against surrounding tissue when imaging vasculature, and of 

making vasculature networks lying deep to the surface appear visible. Lindeboom et al. 

used orthogonal polarization spectral imaging to observe vascular patterns in patients 
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with oral SCC [76]. They found that in 80% of the cases from ten patients, capillary 

density was increased in tumorous areas and in 90% of the cases, disarrangement of 

capillary morphology correlated with tumorous areas. 

This pilot trial was trial was designed to demonstrate the capabilities of the MDM 

as well as to make preliminary qualitative observations of abnormal lesions in humans. 

Further studies of larger groups of patients is required to determine the utility of each 

imaging technique compared to white light inspection, as well as to determine which 

combinations of techniques afford the most useful predictive information. Contributions 

from inflammation or benign conditions to DA or increased contrast in NB imaging will 

affect the specificity of detection and it will be important to determine these effects. 

Additionally, precise pathology correlations will be key to future studies. Correlations in 

this study were made using histopathologically-diagnosed biopsy or resected tissue data 

which was known to be within the FOV during image collection. Biopsy data provides 

information on only a small fraction of the imaged FOV and represents a limitation of 

this pilot study. Improved techniques for spatial correlation between histopathologic 

sections and image data will be needed in future work. 

The MDM described here can obtain high quality images of the oral cavity using multiple 

imaging modalities. To facilitate comparison between modalities, images were collected 

in rapid sequences from the same field of view. Pilot clinical data indicate that additional 

imaging modalities such as NB and OPR may provide information not available in 

fluorescence mode alone, and may be useful in discriminating precancerous and 

cancerous tissue from normal and benign or inflammatory regions. 
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CHAPTER 4: OBJECTIVE DETECTION AND DELINEATION OF ORAL 

NEOPLASIA USING AUTOFLUORESCENCE IMAGING2 

4.1 Introduction 

Head and neck cancer, including cancers of the oral cavity, currently ranks as the 

sixth most common malignancy in the world. There were more than 270,000 new cases 

of oral cancer reported in 2002 [65]. Approximately 60% of these individuals present 

with stage III or IV disease, and about half will die within five years of diagnosis [7]. 

Screening individuals at risk for oral cancer and its precursors has the potential to 

improve early detection, providing the opportunity to intervene when treatment is most 

effective. In addition, surveillance of patients who have survived their initial oral cancer 

is important to identify local recurrences and second primary oral tumors, which occur at 

a higher rate than for any other tumor [82,83]. 

Conventional oral examination using incandescent white light is the current 

standard of care for screening and surveillance for oral cancer and precancerous lesions. 

The sensitivity of visual examination is limited by several factors including the 

experience and index of suspicion of the examiners. In primary care situations, cases of 

malignancy may be seen rarely and clinicians may have difficulty discriminating the 

sometimes subtle mucosal changes associated with premalignant lesions and early 

2 This chapter has been published in the following journal article: Darren Roblyer, C. Kurachi, V. 
Stepanek, M. Williams , A. El-Naggar, J. Jack Lee , A. Gillenwater, R. Richards-Kortum, "Objective 
Detection and Delineation of Oral Neoplasia Using Autofluorescence Imaging," Accepted for Publication 
in The Journal of Cancer Prevention Research, February 2008 
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cancers from more common benign inflammatory conditions [84]. Furthermore, it can be 

challenging to delineate the boundaries of neoplastic lesions using conventional oral 

examination making the choice of a biopsy location difficult. 

Several new approaches have been proposed to address the limitations of the 

conventional oral examination, including the use of toluidine blue, brush cytology, 

reflectance visualization after acetic acid application, and illumination with a chemi-

luminescent light source. While useful in certain situations, each of these approaches is 

associated with a high rate of false-positives [84-87]. Recently, several studies have 

demonstrated that autofluorescence imaging may improve the ability to distinguish 

normal from premalignant and malignant oral tissue [21,38,45,51,55,88,89]. When tissue 

is illuminated in the ultraviolet-visible region, a portion of photons are absorbed by 

molecules within the tissue called fluorophores which then emit lower energy photons 

that can be detected as fluorescence from the mucosal surface. Examples of fluorophores 

which produce autofluorescence signals in tissue include NADH and FAD in the 

epithelial layer, and collagen and elastin crosslinks in the stroma [19]. In comparison to 

normal oral tissue, neoplastic lesions are associated with a decrease of green fluorescence 

when excited with ultraviolet (UV) or near-UV light [14,51,55,88] that is attributed to 

decreased signal from collagen crosslinks in the stroma [6]. Increased red fluorescence 

has also been observed by several groups in oral lesions and is frequently attributed to 

porphyrins [90]. Several groups have proposed that this perceived loss of green 

fluorescence and increase in red fluorescence can be useful as a diagnostic aid to help 

detect and diagnose early neoplastic disease in several anatomic sites including the oral 

cavity, bronchus, cervix, esophagus and colon [21,91-94]. In addition, the changes in 
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fluorescence may aid in surgical resection by delineating the extent of neoplastic changes 

beyond the clinically apparent margins [55,88]. 

Recently, the U.S. Food and Drug Administration approved an autofluorescence 

imaging device for early detection of oral neoplasia. The device, marketed as the 

VELscope® (LED Dental, Inc., White Rock, BC, Canada), uses a blue/violet light (400 -

460 nm wavelengths) to illuminate oral tissue and long pass and notch filters to enable 

clinicians to directly visualize fluorescence in the oral cavity [21,88]. The VELscope and 

other proposed fluorescence imaging devices rely on qualitative observations to detect 

and delineate neoplastic oral lesions and therefore reliable screening with these 

instruments necessitates well-defined and standardized image interpretation criteria, and 

appropriate user training. This may not be feasible in many primary care situations. We 

hypothesize that the application of digital image processing techniques to 

autofluorescence imaging of oral tissue will provide the ability to objectively identify and 

delineate the peripheral extent of neoplastic lesions in the oral cavity. This will provide a 

powerful tool in patient care locations where experts are not available or where 

physicians encounter few cases of malignant and premalignant neoplasia. Low-cost 

digital cameras with sufficient sensitivity to record tissue autofluorescence in near real 

time are now readily available [95], making clinical application of such automated image 

processing feasible. 

The primary goal of the present study was to evaluate the use of quantitative 

autofluorescence imaging for the detection and delineation of oral neoplastic lesions. We 

demonstrate that a simple, objective method can be used to accurately classify regions of 

interest within an autofluorescence image with 100% sensitivity and 91.4% specificity 
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relative to histopathology. This method can delineate the presence and extent of 

neoplastic lesions within a field of view and provide results which correlate with the 

histopathologic assessment of extent of disease. Thus, quantitative autofluorescence 

imaging may provide a nOn-invasive and objective method to improve screening and 

margin delineation of oral cancers and precancers. 

4.2 Methods 

4.2.1 Human Subjects 

Study subjects were enrolled in a clinical protocol reviewed and approved by the 

Internal Review Boards at The University of Texas MD Anderson Cancer Center and 

Rice University. Patients were eligible and recruited if they were 18 years of age or 

older and had known or suspected precancerous or cancerous squamous lesions located in 

the oral mucosa. Patients may have had previous surgical, radiation, or chemotherapeutic 

treatments. Normal volunteers were eligible and recruited if they were 18 years of age or 

older and had no history of oral pathology. All subjects enrolled in the study gave 

written informed consent. The average age of patients in this study was 59. 42% of the 

patients were female and 58% were male. The average age of normal volunteers in this 

study was 27.4. 27% were female and 73% were male. 

4.2.2 Imaging Procedure 

Autofluorescence images were obtained from the oral cavity of 56 patients with 

clinically abnormal lesions and 11 normal volunteers. Data were divided into a training 

set and a validation set. Data acquired from the first 39 patients and 7 normal volunteers 
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imaged between June 2006 and January 2008 were allocated to the training set and used 

to develop an algorithm for detection of neoplasia. Data acquired from the subsequent 17 

patients and 4 normal volunteers imaged between March and June 2008 formed a 

validation set and were used to test the performance of this algorithm relative to 

histopathology. 

White light and autofluorescence images were obtained at 365 nm, 380 nm, 405 

nm, and 450 nm excitation using a Multispectral Digital Microscope (MDM). This 

device is described in detail elsewhere [96] but briefly, the MDM is a wide-field optical 

microscope which collects digital autofluorescence and reflectance images with a color 

CCD camera from a variable field of view, ranging in size from approximately 1 to 7 cm. 

Patients were imaged either in an outpatient clinic or in the operating room under general 

anesthesia prior to surgery. A physician positioned the patient and microscope so that the 

suspicious lesion or area of interest was clearly in the field of view of the device. 

Clinically normal areas distant from or contralateral to the lesion were also imaged. 

Following imaging in the clinic, suspicious lesions were biopsied. In the operating room, 

previously biopsied lesions were surgically resected. 

4.2.3 Histopathologic Correlation 

Biopsies and resected tissues were evaluated using standard histopathologic 

analysis by a board certified pathologist (either AEN or MDW). The location of 

biopsies and resected lesions was recorded using digital photography so that pathology 

results could later be correlated to multispectral imaging results. In addition, the 

locations of gross anatomical features were noted in both autofluorescence images and 
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histology specimens to aid in correlation. The resulting histopathology sections were 

evaluated to provide a diagnosis along the entire length of the epithelium, also noting any 

submucosal abnormalities in each slide. Histopathology diagnosis included the following 

categories: normal, mild dysplasia, moderate dysplasia, severe dysplasia/carcinoma in 

situ, and invasive carcinoma. For the purposes of diagnostic algorithm development, two 

major categories were defined: normal tissue (including inflammation and hyperplasia) 

and neoplastic tissue (including dysplasia, carcinoma in situ and cancer). 

4.2.4 Analysis and Statistical methods 

Images were preprocessed to subtract signal from ambient room light and 

translated so that white light and fluorescence images of the same field of view were 

spatially registered. 276 measurements corresponding to 159 unique regions of interest 

(ROIs) sites of clinically normal and suspicious regions of tissue were selected from 

white light images by a head and neck surgeon (AMG) blinded to the results of the 

autofluorescence imaging. In some cases, repeat measurements were obtained from the 

same ROI site to help ensure image data was collected without motion artifacts; often 

both the first and repeat measurements were included in the analysis. These repeat 

measurements account for the difference between the number of measurements and the 

number of ROI sites. Heterogeneity in pathologic diagnoses may occur within relatively 

small areas of diseased oral mucosa [68,97] so ROIs were stringently selected from 

suspicious areas using one of following four criteria: 1) areas corresponding to the same 

size and location as a biopsy with a pathological diagnosis, 2) ROIs from locations 

which could be correlated to a histopathology slide with a corresponding pathological 
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diagnosis, 3) areas within well-defined exophytic tumors confirmed by pathological 

diagnosis and 4) ROIs from a location which was clinically normal and deemed by the 

physician to be sufficiently distant from the lesion. 

Autofluorescence images from the training set were analyzed to determine 

whether specific image features could be used to classify a measurement site as normal or 

neoplastic. The autofluorescence images and white light images were spatially registered 

so that the ROIs chosen in the white light images corresponded to the same region of 

tissue in the autofluorescence images. The training set included data from the first 39 

patients and 7 normal volunteers and included measurements from 173 measurements 

from 102 unique ROIs. Qualitatively, neoplastic ROIs were associated with a decrease in 

average green fluorescence intensity and often an increase in red fluorescence intensity. 

The mean ratio of red-to-green pixel intensities inside each of the ROIs was calculated 

from the fluorescence images at each excitation wavelength. Red and green pixel 

intensities were obtained from the collected Red-Green-Blue color images, created by the 

Bayer color mask on the CCD detector. A classifier was developed to distinguish 

neoplastic and normal ROIs using linear discriminant analysis with the single input 

feature of average ratio of red-to-green fluorescence. When more than one measurement 

corresponded to a ROI site, the mean of the feature values was used for classification. 

The classifier was trained using all of the ROI sites in training set and the prior 

probability input into the classifier was chosen to represent the percentage of abnormal to 

normal measurements in the data set. The classifier was developed after images were 

acquired from patients in the training set but before measurements were acquired from 

patients in the validation set. Classifier accuracy in the training set was assessed by 
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plotting the receiver operating characteristic (ROC) curve, the area under the ROC curve 

(AUC), and the sensitivity and specificity at a particular operating point on the ROC 

curve [59,63,98]. The positive and negative predictive values were also calculated at the 

operating point. Confidence intervals were calculated for operating characteristics using 

the Wilson 'score' method including a continuity correction [99]. 

The algorithm was then applied to data from the validation set using the red-to-

green ratio threshold found to produce the highest combination of sensitivity and 

specificity in the training set. The validation set was designed to rigorously test the 

algorithm and for most patients, ROI and biopsy pairs were collected on the clinical 

margins of the lesion in addition to directly on the lesion and in clinically normal areas. 

The validation set included 103 measurements from 57 unique ROIs in a second group of 

17 patients and 4 normal volunteers. 

An additional analysis step was explored to increase the performance of the 

classifier by normalizing the red-to-green ratio measurements for each patient. An 

additional unique and non-overlapping ROI of clinically normal tissue was chosen from 

the same anatomical site and in the same field of view for each of the ROIs described 

above. At each excitation wavelength, the mean red-to-green autofluorescence ratio was 

calculated in this ROI; the mean red-to-green ratios from the other ROIs were normalized 

by this value. This method provides a way to compensate for anatomical and patient to 

patient variations in red-to-green fluorescence intensity ratio. Identical statistical analysis 

was performed using this measured feature with both the training set and the validation 

set. The method utilizing the magnitude of the red-to-green fluorescence intensity ratio is 
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termed the raw red-to-green method and the method utilizing a normalized red-to-green 

fluorescence intensity ratio is termed normalized red-to-green method. 

4.2.5 Disease Probability Maps 

The classification algorithms described above provided a relationship between the 

magnitude of the red-to-green fluorescence intensity ratio for a particular region of 

interest within the image and the probability of that region having a diagnosis of 

abnormal. This relationship was used to predict the probability of a diagnosis of 

dysplasia or cancer for each pixel in an image, given the red-to-green fluorescence 

intensity ratio at that pixel. The posterior probability values at each pixel in the image 

were computed and pixels which corresponded to a 50% or greater probability of being 

classified as dysplastic or cancerous were color coded and digitally overlaid onto the 

white light images. This method provides a means to illustrate areas of tissue with the 

highest probability of being neoplastic. The assumption was made that the region of 

interest method described above could be generalized on a pixel by pixel basis. Disease 

probability maps were compared to histologic images of tissue resected from the field of 

view to confirm the accuracy of this method. 
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Table 3. Anatomic sites of ROIs in the training and validation set. 
Note: Percentages may not add up to 100 % because of rounding. 

Anatomical Site 

Tongue 

Buccal mucosa 

Floor of mouth 

Gingiva 

Lip 

Palate 

Total 

No. of sites in 
training set (%) 

37 (36.3) 

12(11.8) 

22 (21.6) 

2 (2.0) 

14(13.7) 

15 (14.7) 

102(100) 

No. of sites in 
validation set (%) 

19(33.3) 

15 (26.3) 

4 (7.0) 

7(12.3) 

4 (7.0) 

8(14.0) 

57(100) 

Table 4. Pathology diagnosis of ROI sites in training and validation 
set. 

Diagnosis 

Normal 

Mild dysplasia 

Moderate dysplasia 

Severe dysplasia/CIS 

Invasive carcinoma 

Total 

No. of sites in 
training set (%) 

53 (52.0) 

11(10.8) 

6(5.9) 

12(11.8) 

20 (19.6) 

102 (100) 

No. of sites in 
validation set (%) 

35 (61.4) 

5 (8.8) 

4 (7.0) 

6(10.5) 

7(12.3) 

57(100) 



58 

4.3 Results 

Tables 3 and 4 summarize the anatomic site and histopathologic diagnoses of the 

159 sites included in this analysis. The most common sites were tongue, buccal mucosa 

and floor of mouth, followed by palate, lip, and gingiva. The training set contained 52% 

normal, 28% dysplastic, and 20% invasive carcinoma sites while the validation set 

contained 61% normal, 26% dysplastic, and 12% invasive carcinoma sites. The normal 

histopathologic category could include tissue with hyperkeratosis, hyperplasia, and/or 

inflammation as long as there was no dysplasia or carcinoma. The normal sites in the 

training set, based on available pathology (not including normal volunteers and normal 

sites where no biopsy was taken), included 7 sites (13.2% of normal sites) with 

hyperplasia and hyperkeratosis, 4 sites (7.5% of normal sites) with hyperkeratosis, and 3 

sites (5.7% of normal sites) with hyperplasia and/or fibroadipose tissue. The validation 

set included 3 sites (8.6% of normal sites) with hyperplasia and hyperkeratosis, 1 sites 

(2.9% of normal sites) with hyperplasia, 1 site (2.9% of normal sites) with a submucosal 

hemorrhage, and 1 site (2.9% of normal sites) with marked inflammation and 

osteonecrosis. The abnormal histopathology category could include dysplasia and 

carcinoma. In the training set 59.2% of the abnormal sites were premalignant (mild, 

moderate, or severe dysplasia), in the validation set 68.2% of the abnormal sites were 

premalignant. 

Figure 8 shows white light and autofluorescence images from the buccal mucosa 

of a patient with pathologically confirmed invasive carcinoma. The white light image 

(Fig. 1 A) shows two ROIs, one which corresponds to a pathologically confirmed invasive 

carcinoma, and the other which was clinically normal and outside of the pathologically 
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confirmed clear resection margin. Figures 8B-8D show autofluorescence images at 

different excitation wavelengths that were taken before surgery from the same field of 

view. The autofluorescence image obtained at 405 nm excitation qualitatively shows the 

greatest visual contrast between the normal and neoplastic ROI. This observation was 

typical for study patients. 

Figure 8. Autofluorescence and white light images of the buccal 

mucosa of a typical study patient. A. White light image showing 

regions of interest of histopathologically confirmed normal tissue 

and invasive carcinoma. B. Fluorescence image at 365 nm 

excitation. C. Fluorescence image at 405 nm excitation. D. 

Fluorescence image at 450 nm excitation. 
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Table 5 summarizes the performance of both diagnostic algorithms, based on 

either the raw or the normalized mean red to green fluorescence intensity ratios, for 

classifying lesions in the training set. At each excitation wavelength, the classifier that 

used the normalized red-to-green fluorescence intensity ratio (Normalized R/G ratio) had 

slightly higher AUC than the algorithm based on the raw red/green fluorescence intensity 

ratio (Raw R/G ratio). In all cases, the highest AUC was obtained at 405 nm excitation. 

The sensitivity and specificity values at the point on the ROC curve nearest the gold 

standard (Q-point) are also reported in Table 5. 

Table 5. Classification results at each fluorescence excitation 
wavelength using both the Raw R/G Ratio method and the 
Normalized R/G ratio method in the training set. 

Fluorescence 
excitation 
wavelength 

365 nm 

380 nm 

405 nm 

450 nm 

AUC 

.799 

.871 

.966 

.887 

Raw R/G ratio 

Sensitivity (%) 

91.1 

75.9 

89.3 

83.9 

Specificity (%) 

60.7 

83.6 

95.1 

82.0 

AUC 

.858 

.902 

.982 

.897 

Normalized R/G ratio 

Sensitivity (%) 

79.5 

84.0 

93.8 

84.0 

Specificity (%) 

86.9 

88.5 

95.1 

90.2 

A scatter plot of the normalized red-to-green ratio at 405 nm excitation for each of 

the 102 sites in the training set, as well as the threshold of 1.19 used in the classification 

algorithm is shown in Figure 9A. Of the 102 sites, 4 were misclassified including one 

site of fibroadipose tissue on the lower lip misclassified at abnormal, one hyperkeratotic 

site on the right buccal misclassified at abnormal, one cancer site on the right lateral 

tongue misclassified as normal, and one site on the left soft palate with focal ulceration 
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and dysplasia misclassified as normal. Figure 9B shows the ROC curve for this classifier; 

the AUC is 0.988, and at the Q-point, the sensitivity is 95.9% (95% confidence interval 

(CI) 84.9% - 99.3%) and the specificity is 96.2% (95% CI 85.9% - 99.3%). The positive 

predictive value is 95.9% (95% CI 84.9% - 99.3%) and the negative predictive value is 

96.2% (95% CI 85,9% - 99.3%). This operating point is indicated on the ROC curve. 

The algorithm using the normalized red-to-green fluorescence intensity ratio at 

405 nm excitation was applied to the validation set. In Figure 9C a scatterplot of the 

normalized R/G ratio for each site in the validation set is shown along with the threshold 

that had been previously selected for the training set. Figure 9D depicts the ROC curve 

with the operating point selected for the training set indicated. A 100% sensitivity (95% 

CI 81.5% - 99.6%) and 91.4% specificity (95% CI 75.8% - 97.8%) and an AUC of .987 

were achieved at this operating point for the validation set. The positive predictive value 

is 88.0% (95% CI 67.7% - 96.9%) and the negative predictive value is 100% (95% CI 

86.7% - 99.7%). Of the 57 sites in the validation set, 3 were misclassified as abnormal 

including one site on the left buccal with hyperplasia, one site on the right buccal, and 

another site on the left buccal. 
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Figure 9. A. Scatter plot of normalized red-to-green ratios at 405 nm 

excitation for the 102 ROI sites in the training set. The horizontal 

line indicates the threshold used to obtain 95.9% sensitivity and 

96.2% specificity. Note that 2 additional abnormal data points had a 

red-to-green fluorescence intensity ratio greater than 3 but are not 

shown on this plot. B. Receiver-operating characteristic (ROC) 

curve of the classifier based on the normalized red-to-green ratio. 

The operating point used for classification is indicated by a dot and 
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arrow. C. Scatter plot of the red-to-green ratio for the 57 sites in the 

validation set with threshold selected from the training set indicated. 

Note that 3 additional abnormal data points had a red-to-green 

fluorescence intensity ratio greater than 3 but are not shown on this 

plot. D. ROC curve obtained for the validation set. The operating 

point is indicated and corresponds to the threshold chosen from the 

training set. 

Figure 10 shows white light and 405 nm excited autofluorescence images from a 

study patient with moderate dysplasia and carcinoma in situ located in the floor of mouth. 

The white light image is also shown with an overlay of the calculated disease probability 

map; regions corresponding to a predictive probability of a neoplastic lesion greater than 

50% are shaded as indicated by the color bar. The disease probability map indicates the 

probability that a particular pixel in the image corresponds to a neoplastic area of tissue. 

Histologic sections obtained at six areas in the tissue are also shown. Only one of these 

areas was included in the previous classification analysis. The disease probability map 

shows qualitative agreement with the presence of dysplasia and cancer in the areas 

corresponding to the histologic sections. 
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Figure 10. A. White light image of floor of mouth with 

histopathologically confirmed dysplasia and carcinoma in situ. B. 

405 nm excitation fluorescence image showing areas with deceased 

autofluorescence. C. White light image with disease probability 

map showing the predictive probability of a neoplastic lesion 

superimposed. Letters indicate specific locations were pathology is 

known. The key to the right of C. indicates pathology. The 

histology slides below show tissue sections from these areas. 

Marking bar at the lower right-hand corner = 1 mm. 

Figure 11 shows representative white light images with and without superimposed 

disease probability maps from four study patients. Images in the first three rows 

correspond to patients with histologically confirmed neoplasia, while the image in the 

bottom row is from a normal volunteer with no clinically suspicious lesions. Although 

the lesion in Figure 11A is obvious, those in Figures B and C are less so, highlighting the 

potential to aid clinicians in identifying the presence of neoplasia and identifying optimal 

sites for further evaluation with biopsy. Images in Figures 11A and B are from a patient 

with an invasive carcinoma in the floor of mouth. Images in Figures 11C and D are from 

a patient with a region of severe dysplasia on the tongue. The images in Figures 1 IE and 

F are from a patient with a region of moderate dysplasia on the gingiva. In all three 

cases, the disease probability map delineates the suspicious regions identified clinically 

by an oral cancer specialist blinded to the results of the autofluorescence imaging and are 

consistent with histopathologic sections obtained. Figures 11G and H are from the inner 

lip of a normal volunteer and the disease probability map does not indicate any lesions. 
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Figure 11. A. and B. show images from a patient with an invasive 

carcinoma in the floor of mouth. A. White light image B. White 

light image with disease probability mapping showing the predictive 

probability of a neoplastic lesion. C. and D. show images from a 
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patient with a region of severe dysplasia on the tongue. E and F 

show images from a patient with a region of moderate dysplasia on 

the gingiva. G. and H. show images from inner lip of a normal 

volunteer. 

4.4 Discussion 

Our results illustrate how autofiuorescence imaging may enhance the ability of 

clinicians to detect and delineate areas of oral dysplasia and carcinoma. Although all four 

illumination conditions tested allowed visualization of changes in autofiuorescence with 

neoplasia, illumination with 405 nm wavelength produced the highest discriminatory 

capability. This corresponds to previous findings comparing illumination wavelengths 

for autofiuorescence imaging in freshly resected oral cancer surgical specimens [14]. 

While subjective interpretation of loss of autofiuorescence has been shown to be useful 

[21,88], there are several important advantages associated with objective and quantitative 

analysis of changes in autofiuorescence signal. First, quantitative analysis methods 

provide a rigorous and repeatable way to determine the threshold for demarcating a 

lesion, even for providers with less experience. Second, digital imaging allows the 

operator to save and process images, directly comparing data from multiple patients in a 

series or from a single patient over time. Third, ratios of fluorescence intensity values 

provide a way to reduce variations in images associated with spatial non-uniformities in 

illumination. 

In the present study, the performance of a simple classifier based on the ratio of 

red-to-green autofiuorescence intensity at 405 nm excitation was tested and found to 
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discriminate neoplastic and non-neoplastic tissue with a sensitivity and specificity of 96% 

in the training set and 100% sensitivity and 91.4% specificity in the validation set. These 

results compare favorably with the performance of visual oral examination, which has 

been systematically reviewed by Downer et al [22]. Downer identified eight prospective 

studies between 1980 and 2002 that involved conventional oral exam with gold standard 

verification provided by an expert observer. In four of the studies the screeners were 

general dentists and in four of the studies the screeners were trained health workers. 

Sensitivity ranged from 59% to 97%, specificity ranged from 75% to 99%, and meta­

analysis resulted in a weighted pooled sensitivity of 85% and a specificity of 97%. Other 

reports of the performance of visual oral screening include Sankaranarayanan et al 

(sensitivity 77%, specificity 76%) [23], Ramadas et al (sensitivity 82%, specificity 85%) 

[24], and Nagao et al (sensitivity 92%, specificity 64%) [25]. The classifier in this study 

can be applied to entire images of the oral cavity to visualize areas with a high probability 

of being neoplastic; disease probability maps are consistent with histologic sections 

obtained from tissue in the field of view. 

Autofluorescence imaging has shown great promise for enhancing visualization of 

neoplastic areas in recent studies [14,21,38,45,55,88] . In a study of 44 patients, Lane et 

al. demonstrated high sensitivity and specificity at discriminating normal oral mucosa 

from severe dysplasia, carcinoma in situ, or invasive carcinoma based on visual 

assessment of loss of autofluorescence in diseased mucosa at excitation wavelengths 

between 400 nm and 460 nm [21]. In another study by the same group, the potential for 

autofluorescence imaging to enhance delineation of the margins of neoplastic changes 

was demonstrated. In some cases fluorescence loss extended as far as 25 mm beyond the 
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clinically apparent margin [88]. Autofluorescence endoscopic imaging technologies for 

lung and the GI tract utilizing ratios of red and green signal have been available for over 

a decade and have greatly increased sensitivity of disease detection in these organ 

systems [41,91,100,101]. The LIFE™ (laser induced fluorescence emission) system is an 

autofluorescence bronchoscopy device which provides the user with a real time image in 

which changes in hue correspond to suspicious and/or abnormal areas. Users of the 

device must be trained in order to interpret these changes in image hue [100]. 

A potential confounding factor which may limit specificity of classifiers based on 

the red-to-green fluorescence intensity ratio for automated image analysis software is the 

frequent presence of red fluorescence on normal papillae of the dorsal aspect of the 

tongue. At 405 nm excitation, increased fluorescence above 600 nm emission has been 

observed in oral lesions and is thought to originate from porphyrins, although it is 

uncertain whether the origins of these porphyrins are intrinsic or derived from bacterial 

contamination [70]. Red porphyrin-like fluorescence has been shown to correlate with 

neoplastic disease in other regions of the oral cavity [55,70]. However, normal red 

fluorescence is limited to the dorsal tongue; it is not observed on normal areas on the 

lateral and ventral tongue where there is a much higher propensity for developing 

neoplastic disease [102]. In this study, a single site in the training set was imaged on the 

dorsal tongue and corresponded to cancer. Bright red fluorescence was visible at this 

site. 

Our results demonstrate the potential of quantitative fluorescence imaging as an 

objective approach to non-invasively identify and delineate the mucosal extent of 

neoplastic lesions in the oral cavity. It should be noted that the images were obtained 
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with a reSearch-grade device and the disease probability maps described here were 

constructed subsequent to the image acquisition and compared to only a limited number 

of sites with diagnosis confirmed with histopathology. Unfortunately, it is difficult to 

obtain pathology diagnosis for the entire surface of a resected specimen. Additionally, in 

order to provide optimal benefit to clinicians both for detection and margin delineation of 

oral dysplasia and carcinoma, these disease probability maps need to be available to view 

in real or near real-time. We are currently making software improvements and developing 

quantitative fluorescence imaging devices that can show false color disease-probability 

maps based on red/green fluorescence intensity ratios at 405 nm excitation at the time of 

the examination. In addition, we recognize that our results were obtained from a small 

group of subjects with disease prevalence that might be expected in a treatment 

population rather than a screening population. Future studies are planned to evaluate this 

method of quantitative fluorescence imaging in community settings in a larger subject 

group with a wide spectrum of oral pathologies including oral dysplasia and early 

invasive disease, benign conditions and inflammation. 

In summary, the present study provides proof-of-principle for the use of a 

practical tool for the quantitative fluorescence imaging as an objective technique for 

detection and delineation of oral neoplasia. The use of objective disease probability maps 

represents an important advance toward integration of optical imaging technologies into 

the clinical practice of dentists and primary health care workers. Development of non­

invasive and objective diagnostic aids based on these findings may facilitate early 

detection and diagnosis of oral cancer and its precursors by less experienced personnel at 

the point of care. 
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CHAPTER 5: COMPUTER AIDED DIAGNOSIS OF ORAL CANCER AND 

PRECANCER USING MULTISPECTRAL WIDEFIELD OPTICAL 

IMAGING3 

5.1 Introduction 

There is an important need to improve the ability to identify and delineate the 

presence and extent of precancerous oral lesions and cancers so that they can be 

adequately treated [7,68,82,83]. Multispectral widefield imaging is emerging as an 

attractive, non-invasive means to visualize the mucosal surface at risk and identify early 

oral cancer and precancers. Direct autofluorescence visualization has been shown to 

reveal biochemical changes associated with oral precancer and cancer 

[6,21,38,39,42,44,51,87,89]. Reflectance imaging, including narrowband illumination 

imaging and polarized imaging, has been shown to aid in visualizing vasculature in the 

oral cavity [74,76] which increases during malignant progression [73]. It is important to 

identify the imaging modalities, illumination and collection conditions, and/or 

combinations of modalities which provide the most useful diagnostic information. This 

information is valuable both for direct visualization of the tissue with multispectral 

devices and for computer aided diagnosis of lesions based on multispectral digital 

images. 

3 The content for this chapter is being prepared for publication for the journal IEEE Transaction On Medical 
Imaging. The following authors have contributed: Darren Roblyer, Cristina Kurachi, Vanda Stepanek, 

Richard A. Schwarz, Michelle D. Williams, Adel K. El-Naggar, J. Jack Lee, Ann M. Gillenwater, Rebecca 
Richards-Kortum. 
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An important goal of multispectral optical imaging is to increase the visual 

contrast between normal and neoplastic tissue beyond that available using conventional 

white-light screening techniques. Several studies have shown that illuminating tissue 

with blue light and viewing the autofluorescence from the tissue enhances the ability to 

visually identify neoplastic lesions based on loss of autofluorescence [14,21,55,88]. 

While these results are encouraging, to date, only qualitative observations of image 

contrast between normal and neoplastic oral lesions have been reported; quantitative 

assessment across multiple modalities is needed to optimize performance. 

Computer aided diagnostics (CAD) have been successfully implemented to aid 

automated diagnosis in a variety of organ systems including the prostate [103], pancreas 

[104], cervix [56], liver [105], bladder [106], skin [107], and ovary [108]. CAD 

techniques have been previously applied to analyze white light images of the oral cavity 

to discriminate oral lichenoid reactions and luekoplakia and to segment these lesions 

based on color and morphologic features [109,110]. Our group has previously 

demonstrated that the normalized ratio of red-to-green autofluorescence intensity at 405 

nm excitation is useful to objectively discriminate normal oral tissue and dysplastic and 

cancerous lesions [111]. 

The goals of this study were twofold. The first was to quantify and compare 

optical image contrast available using autofluorescence, narrowband reflectance, and 

cross polarized reflectance imaging modalities for neoplastic lesions in the oral cavity. 

Results of this analysis can help guide the choice of imaging modalities and 

illumination/collection wavelengths for visual examination to detect neoplastic oral 

lesions. The second goal was to develop and evaluate computer aided diagnostic 



73 

algorithms to detect neoplastic lesions from analysis of multispectral images of the oral 

cavity. Results will aid in determining the modalities and features which contain the 

most diagnostic information and will inform the design and construction of new imaging 

devices for objective diagnosis and delineation of neoplastic oral lesions. 
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Normal Severe Dysplasia 

Feature Normal Severe Dysplasia 

White light Michaelson Contrast 

White light Red to Green Ratio 

NB 530 nm Michaelson Contrast 

405 nm Michaelson Contrast 

405 nm Red to Green Ratio 

Cross Michaelson Contrast 

.048 

1.01 

.052 

.017 

1.02 

.026 

.13 

1.08 

.091 

.37 

1.23 

.095 
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Figure 12. A., C , E., and G. are white light, narrowband 530 nm 

reflectance, 405 nm excitation autofluorescence, and cross polarized 

images of the palate of a normal volunteer. Approximate ROIs are 

shown. B., D., F., and H are images from the palate of a patient 

with severe dysplasia. ROIs of the biopsy location and a 

corresponding clinically normal area are shown. Several feature 

values from these images, computed from the indicated ROIs are 

shown in the table. 

5.2 Methods 

5.2.1 Instrumentation and Data Acquisition 

Widefield images were collected in four different modalities from patients and 

normal volunteers using a Multispectral Digital Microscope (MDM) [96]. The MDM 

consists of a commercially available surgical microscope modified to capture digital 

images in white-light reflectance, autofluorescence, narrowband reflectance, and cross 

polarized imaging modalities. Autofluorescence images were acquired at four different 

excitation wavelengths: 365 nm, 380 nm, 405 nm, and 450 nm. Narrowband reflectance 

images were acquired using illumination wavelengths of 430 nm and 530 nm. In a subset 

of patients, narrowband reflectance images were also acquired at 575 nm illumination. 

White-light reflectance and cross polarized white-light reflectance images were also 

captured. Cross polarized polarization reflectance imaging is achieved by illuminating 

the tissue with linearly-polarized light and collecting remitted light through a second 

linear polarizer, oriented orthogonal to the illumination polarization. In total, there were 
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9 image types which could be collected by the MDM, accounting for the different 

excitation or illumination wavelengths in each modality. 

The MDM captures images of tissue with a rectangular field-of-view of 

approximately 5 X 7 centimeters. The CCD camera utilizes a Bayer mask to collect color 

images. Images are collected as 12-bit RGB tiff files. Camera integration times and gain 

settings were standardized for each subject so that quantitative intrapatient image analysis 

could be performed. 

In this study, the MDM was used to acquire images from patients with 

pathologically confirmed oral lesions and normal volunteers with no history of oral 

lesions, under a protocol reviewed and approved by the Institutional Review Boards at 

Rice University and the University of Texas MD Anderson Cancer Center. Each 

measurement sequence consisted of a serial collection of the aforementioned image types. 

One or more measurements were taken from each study participant, at the lesion site and, 

when possible, at contralateral or distal clinically normal sites. To ensure that high 

quality measurements were obtained, measurements of sites were usually repeated one 

time. 

For purposes of algorithm development and evaluation, data were divided into a 

training set and a validation set. Data from the training set were collected prior to the 

validation set. 

5.2.2 Preprocessing 

Images were collected in vivo and there was often some subject movement 

between image capture of different image types. To account for this, image registration 
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was performed for each measurement sequence. An affine transformation was used to 

translate all of the images taken in a sequence to the white-light base image using up to 8 

common reference points chosen manually. 

Regions of Interest (ROIs) corresponding to normal and neoplastic areas were 

chosen from the white-light images by an expert physician (AG) blinded to the other 

image types. These ROIs were chosen to correspond to one of the following three 

categories: (1) a histopathologically confirmed lesion, (2) a histopathologically confirmed 

non-neoplastic region, or (3) a clinically determined normal region either from a normal 

volunteer or determined by expert physician (AG) to be sufficiently distal to a lesion in a 

patient. ROIs were the approximate size of a 2 mm circular biopsy if biopsy was used for 

histopathology and for clinically determined normal areas, and were the surgical lesion 

size if surgical tissue resection occurred. For each patient, an additional clinically normal 

ROI was selected; image data from these ROIs were used to explore whether normalizing 

data from the aforementioned ROIs to account for interpatient variability could increase 

image contrast and/or diagnostic performance. These normalization ROIs were selected 

either from the contralateral anatomic site or from an area which was sufficiently distal 

from any lesion on the same anatomic site. 

5.2.3 Optical Image Contrast 

The optical image contrast between histopathologically determined lesions and 

normal tissue was calculated and compared for each image type. The contrast was 

computed from ROIs chosen from lesions with a pathologic diagnosis of dysplasia or 
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cancer relative to the corresponding clinically normal ROI. Grayscale versions of the 

collected images were used to compute the contrast. 

Several methods have been proposed to compute image contrast [112,113]; in this 

study we explored four different contrast metrics. Simple contrast was calculated as the 

ratio of the mean grayscale pixel values from the abnormal and normal ROIs. Difference 

contrast was calculated as the difference between the mean grayscale pixel value from the 

abnormal and normal ROIs. We calculated the Weber contrast as the mean grayscale 

pixel value from the abnormal ROI divided by the sum of the mean grayscale pixel 

values from the abnormal and normal ROI. Michaelson contrast was calculated as the 

difference divided by the sum of the mean grayscale pixel values from the abnormal and 

normal ROI. 

The four contrast metrics were computed from dysplastic and cancerous lesion 

sites. The contrast metrics for the autofluorescence, narrowband reflectance, and cross 

polarized reflectance image types are reported relative to the same contrast metric for the 

white-light image obtained from that site. For each image type, the percentage of lesions 

with a higher optical contrast than white-light was computed. One-way ANOVA was 

used to compare the mean contrast metrics for each image type to that for white light. 

In order to explore the relationship between optical contrast and pathologic grade, 

a scatter plot of the contrast metrics versus pathologic diagnosis was made for image 

types with the greatest image contrast. Unbalanced one-way ANOVA was used to 

compare the statistical difference in mean optical contrast between diagnostic categories. 
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5.2.4 Computer Aided Diagnosis 

Figure 13 provides an overview of the algorithm development and 

evaluation procedure used in this study. After image acquisition, registration, and ROI 

selection, image features were extracted from each ROI. In cases where image 

acquisition was repeated from the same tissue location, feature values extracted from the 

repeat images were averaged and considered as a single measurement site. Image features 

were designed to quantify statistical measures, texture, and frequency content 
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In order to determine the image types and modalities or combination of modalities 

most capable of discriminating neoplastic lesions, algorithms were developed and 

evaluated using features extracted from five groups, including: (1) Features obtained 

from white-light reflectance images; (2) Features obtained from narrowband reflectance 

images at 430 nm and 530 nm illumination; (3) Features obtained from cross polarized 

reflectance images; (4) Features obtained from autofluorescence images at 365 nm, 380 

nm, 405 nm, and 450 nm excitation; and (5) Features obtained from all of the modalities 

and image types. 

Two different supervised classifiers (a linear classifier and a decision tree 

classifier) were then used to construct diagnostic algorithms based on features from 

images in the training set. For each classifier, features were chosen using a feature 

selection algorithm. The results from the two methods were compared to the gold 

standard of histopathology and the algorithm with the highest performance was then used 

to classify data from the validation set. 

Algorithms were designed first to classify the ROIs into one of two diagnostic 

categories: non-neoplastic and neoplastic. The neoplastic class included lesions 

diagnosed histopathologically as mild, moderate, or severe dysplasia, carcinoma in situ, 

or invasive carcinoma. The non-neoplastic class included clinically normal sites in 

patients and normal volunteers. We then attempted the more difficult problem of 

designing classifiers to assign ROIs into one of three diagnostic categories: non­

neoplastic, dysplasia, and cancer. 
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5.2.5 Feature Extraction: 

For each ROI site, 98 image features were computed for each image type, 

as described in detail below. 

The Michaelson and Weber contrast were computed from the grayscale images 

and from each color channel of the RGB images, resulting in 8 features for each image 

type. 

18 first-order statistical features were calculated using the grayscale pixel values 

from the ROIs, including the mean, standard deviation, entropy, variance, skewness, and 

kurtosis. These features were calculated for each ROI and as normalized by features from 

the normalization ROIs selected from clinically normal areas. Normalization was 

performed in two ways; the first was calculated as the difference between the ROIs 

(difference-normalization), and the second was the ratio of the ROIs (ratio-

normalization). 

18 features were obtained using the color channels of measurements. The mean 

values of the red, green, and blue channels of each ROI were used as features. The ratio 

of the mean red-to-green, red-to-blue, and green-to-blue pixel values were also utilized. 

Both normalized and non-normalized feature values were calculated. 

Features representing texture in the images were obtained by using grayscale-

level co-occurrence matrices (GLCM). GLCMs are useful for quantifying how pixel 

intensities vary spatially. A pixel separation, d, and angle, 0, are specified for a particular 

GLCM. The size of the GLCM is determined by the number of discrete intensity values 

contained in the grayscale image. Each entry (i,j) in the GLCM is a count of the number 

of times a pixel of intensity i occurred at a distance d and angle 9 away from a pixel with 
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intensity/. Statistical measures including contrast, correlation, energy, and homogeneity 

were computed from the GLCMs. More detail is provided in Argenti et al. [114]. 

24 features were created based on these statistical measures from GLCMs where d 

varied from 1 to 6. The features were averaged at angles 9 = 0° , 45°, 90°, and 135° to 

account for the fact that these multispectral images do not have a specific spatial 

orientation. 

A 2-D DFT was performed on a rectangular region whose center corresponded to 

the approximate center location of the selected ROIs. This 2-D DFT was converted into a 

1-D plot of frequency content by integrating the pixel intensities at discrete radii from the 

origin. The 1-D plot was then partitioned into 10 frequency ranges and the frequency 

content was integrated inside each range. The contribution of each partition was 

calculated by dividing by the total integrated 1-D plot so that the sum for all 10 partitions 

added to unity. 

30 features were computed using the relative frequency content for the partitions. 

Normalized and non-normalized feature values were included. Variations of this method 

have been used by Gossage et al. and Srivastava et al. [57,108] 

5.2.6 Linear Classifier 

We implemented a linear classifier (LC) based on Bayesian parameter estimation. 

This method assumes multivariate normal densities and equal covariance for each class. 

The LC is trained on a data set which is used to estimate the mean Uj for each class and a 

pooled covariance matrix £ for all classes. A priori probabilities are determined from the 

relative proportion of each class in the training set; posterior probabilities are output for 
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each measurement and used by a linear discriminant function to separate the 

measurements into classes. 

5.2.7 Decision Tree Classifier 

We utilized a decision tree classification method based on the widely used 

Classification and Regression Tree (CART) induction technique. This method has the 

attractive attribute of classifying data without the need to make assumptions about the 

underlying statistical distributions of the observations [62]. We used the Gini impurity to 

determine splits [59,62]. To help avoid overtraining the decision tree in the training set it 

was pruned to find the smallest tree at which adding further nodes does not statistically 

decrease the cost of the tree. The cost of the tree is defined in the zero-one sense, where 

the cost of misclassifying an observation is 1 and the cost of correctly classifying an 

observation is 0. 

5.2.8 Feature Dimension and Selection 

A forward sequential search (FSS) algorithm based on the wrapper model was 

used on the training set to determine the optimal feature dimension: the minimum number 

of features needed to maximize a chosen classifier performance criterion without 

overtraining [59,63]. Starting with one feature, classification of the training set was 

performed with 5-fold cross-validation using the FSS algorithm to find the single feature 

which maximized the criterion value. The area under the curve (AUC) of the receiver-

operating characteristic (ROC) was used as the criteria for the FSS algorithm for the LC. 

For the decision tree, the sum of the sensitivity and specificity was used. This was 
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repeated with additional features until classifier performance did not increase. This entire 

procedure was repeated 25 times to provide statistically significant results. One-way 

ANOVA with multiple comparison tests were used to determine the optimal feature 

dimension. The final features sets for each classifier were determined by the most 

commonly chosen features by the FSS algorithm in the 25-iterations. This entire 

procedure was repeated for each of the five imaging modality-based feature subsets. 

5.2.9 Classification Performance 

The classifier performance for the training set was determined using 5-fold cross-

validation. For 2-class classification, we utilized sensitivity and specificity as the figures-

of-merit (FOM) to evaluate and compare the performance of the classifiers on the 

training set for each of the feature subsets. For 3-class classification we utilized the FOM 

of total correct classification rates and correct classification rates for each class. Based 

on these results, the best performing classifier for the 2-class and 3-class problem was 

retrained on the entire training set and then applied without change to evaluate the 

validation set. 

5.3 Results 

5.3.1 Data Collection 

In total, images were acquired from 72 subjects, including 61 patients with 

pathologically confirmed oral lesions and 11 normal volunteers. From these images, we 

defined 350 ROI measurements sites in the study. There were 93 non-neoplastic ROIs, 

and 82 neoplastic ROIs each with a corresponding normalization ROI. The neoplastic 
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ROIs consisted of 22 ROIs with mild dysplasia, 13 ROIs with moderate dysplasia, 16 

ROIs with severe dysplasia or carcinoma in situ, and 31 ROIs with invasive cancer. 

The ROIs were divided into training and validation sets. Not including 

normalization ROIs, there were 102 ROIs from 46 patients in the training set and 73 

ROIs from 26 patients in the validation set. The training set was collected on dates 

before the validation set. No data was repeated in both sets. 

5.3.2 Optical Contrast 

Figure 12 illustrates selection of ROIs from multispectral images from the 

palate of a normal volunteer and the palate of a patient with severe dysplasia. White-

light, 530 nm narrowband reflectance, 405 nm autofluorescence, and white-light cross 

polarized reflectance images are shown. ROI locations are indicated by circles in the 

white-light images. The image in IE shows red fluorescence on the dorsal tongue of the 

normal volunteer. This was a common observation on the dorsal tongue of both normal 

volunteers and patients. A chart of example features and contrast metric values, which 

will be described below, are shown. In this example, all contrast and feature values are 

increased in the patient with severe dysplasia. 

The results obtained using different definitions of image were similar (data not 

shown); thus, we report only results from a single contrast metric. Figure 14A shows a 

box plot of the Michaelson contrast metric by image type; contrast for each image type is 

reported relative to the contrast achieved using white-light illumination. For each image 

type, Fig. 3A also indicates the percentage of lesions where contrast was greater in that 

image type than in white light. On average, the contrast for each of the image types is 
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greater than that available in white light mode. Autofluorescence imaging at 405 nm 

showed the greatest average increase in contrast and the greatest percentage of abnormal 

lesions with increased contrast relative to white-light imaging. The mean contrast value 

for autofluorescence at 365 nm, 380 nm, 405 nm, and 450 nm excitation was found to be 

statistically different than that of white light imaging, using one-way balanced ANOVA 

with a 95% confidence interval. 

A subset of 26 patients was imaged with narrowband illumination at 575 nm. 

From this subset there were 41 lesion sites. The 575 nm narrowband imaging provided 

an increase in Michaelson contrast over white light in 80% of these lesions. The median 

increase was 1.15, which was similar to the other narrowband illuminations but was 

significantly less than that achieved from the autofluorescence modality. 

Autofluorescence images at 405 nm excitation show the greatest increase in 

optical contrast compared to white light images when discriminating non-neoplastic from 

neoplastic tissue. In order to explore whether optical contrast in this image type 

increased with increasing grade of dysplasia or cancer, we plotted the contrast of each 

lesion by diagnostic category (Fig. 3b). The means for the diagnostic categories are 

shown in the shaded boxes. The mean contrast of normal tissue is a significantly lower 

than that of dysplasia and cancer, when calculated using one-way unbalanced ANOVA 

with 95% confidence interval. However, the mean contrast values for each of the 

dysplastic categories and cancer were not statistically different from each other. 
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Figure 14. A shows a boxplot of the increase in Michaelson contrast 

compared to white light when using narrowband reflectance 

imaging, autofluorescence imaging, and cross polarized reflectance 

imaging. The imaging modality is indicated on the x-axis. For each 

modality, the percentage of lesions where the contrast was increased 

over white light is indicated near the top of the plots. The three 

horizontal lines on each of the boxes represent the lower quartile, 

median, and upper quartile of the data from bottom to top. The 

whiskers extending from the box indicate the rest of the data except 

for outliers, which are indicated with the "." symbol. 2B shows the 

Michaelson grayscale contrast computed from the 405 nm 

autofluorescence images. The contrast values are displayed by 

graded diagnostic category. The shaded squares in each diagnostic 

cluster indicate the location of the mean contrast value. There is a 

statistically significant difference in contrast between normal and 

the other diagnostic categories, but not between the grades of 

dysplasia or the carcinoma. 



88 

5.3.3 Computer Aided Diagnosis 

5.3.3.1 2-class classification 

Table 6 lists the number of features selected and summarizes the classifier 

performance for both the LC and decision tree methods using 5-fold cross validation for 

the training set. For both classifiers, the best performance was obtained using the 

autofluorescence feature subset. Furthermore, the only feature chosen by the FSS in the 

combined feature subset was a single feature from the autofluorescence modality subset. 

Features extracted from white-light images provided the second best performance 

after autofluorescence for both of the classifiers on the training set; classification required 

five features for the LC and 3 features for the decision tree. Narrowband reflectance 

provided the third best classification with 4 features. Cross-polarized provided the worst 

classification with 6 features for the LC and 3 features for the decision tree. 

Figure 15 shows ROC curves produced from the LC on the training set using 5-

fold cross-validation and the same features used above. The autofluorescence feature 

subset produced the highest AUC followed by white-light, narrowband, and cross 

polarized features. 

The autofluorescence feature chosen for the LC was the ratio of red-to-green 

intensity (difference-normalized). For the training set, this single feature provided an 

AUC of .981 and a sensitivity of 93.9% and a specificity of 98.1%. The feature chosen 

from the decision tree was very similar, the ratio of ratio of red-to-green intensity (ratio-

normalized). For the training set, this single feature provided a sensitivity of 95.9% and a 

specificity of 92.5%. 
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The LC was used on the validation set because it provided a slightly higher sum 

of sensitivity and specificity than the decision tree. Using these same features, the 

algorithm was retrained on the entire training set and applied to the validation set yielding 

an AUC of .949, a sensitivity of 100%, a specificity of 85.0%, a PPV of 84.6%, and a 

NPVofl00%. 

Table 6. Two-class classification results of the training data for the 
linear classifier (LC) and the decision tree classifiers. The area 
under the curve (AUC) of the receiver operating characteristic curve, 
sensitivity, and specificity are shown for the LC. Sensitivity and 
specificity are indicated at the q-point on the ROC curve. The 
sensitivity and specificity are shown for the decision tree classifier. 
The number of features chosen is indicated for each feature subset. 

Feature Subset 

White Light 

Narrowband 

Cross Polarized 

Autofluorescence 

Numof 
Feats. 

5 

4 

6 

1 

LDA 

AUC 

.931 

.847 

.898 

.981 

Se (%) 

87.8 

81.6 

83.7 

93.9 

Sp(%) 

88.7 

75.7 

75.5 

98.1 

Decision Tree 

Numof 
Feats. 

3 

4 

3 

1 

Se (%) 

87.8 

83.7 

85.7 

95.9 

Sp(%) 

84.9 

83.0 

77.4 

92.5 

Combined 1 .981 93.9 98.1 1 95.9 92.5 
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Figure 15. ROC curves from the 2-class LC for different feature 

subsets on the training set. When considering the AUC of the ROC 

plots, the autofluorescence features performed the best, followed by 

white light, narrowband, and cross polarized. Note that these ROC 

plots are from a single iteration of LC classification on the training 

set and therefore the parameters may not match exactly to table 6. 
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5.3.3.2 3-class classification 

Table 7 lists the number of features chosen for the three-class LC and the decision 

tree classifier using 5-fold cross-validation. Algorithm performance is also summarized 

in Table 7, as the percent of sites correctly classified for all sites and for each of the 

three diagnostic categories. 

The best performance from both classifiers was from the autofluorescence feature 

subset using the decision tree; in the training set this classifier correctly classified 94.3% 

of the non-neoplastic ROIs, 75.9% of the dysplasia ROIs, and 80% of the cancer ROIs. 

The first feature chosen was the ratio of red-to-green intensity (ratio normalized) from the 

405 nm autofluorescence image; this was the same feature chosen for the 2-class problem 

by the decision tree. The second feature was the GLCM homogeneity with d=6 

calculated from the 380 nm autofluorescence image. For both classifiers in the training 

set, autofluorescence features and white-light features were chosen in the combined 

feature subset, but this combination did not improve performance, based on overall 

correct classification rate, over the autofluorescence only feature subset. 

The decision tree classifier was then retrained on the entire training set and 

applied to the validation set. Results are summarized in Table 8. In the training set, this 

method misclassifies 5.7% (3 of 53) non-neoplastic ROIs as dysplasia, 17.2% (5 of 29) 

dysplasia ROIs as cancer, 3.4% (1 of 29) dysplasia ROIs as non-neoplastic, and 20% (4 

of 20) cancer ROIs as dysplasia. No cancerous ROIs were misclassified as non­

neoplastic and no non-neoplastic ROIs were misclassified as cancer. 

In the validation set, 20% (8 of 40) non-neoplastic ROIs were misclassified as 

dysplasia and 81.8% (9 of 11) cancerous ROIs were misclassified at dysplasia. 100% (22 
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of 22) dysplastic ROIs were correctly classified. No cancerous ROIs were misclassified 

as non-neoplastic and no non-neoplastic ROIs were misclassified as cancer. 

Table 7. Three-class classification results of training set for LC and 
decision tree classifier. All results are computed using 5-fold cross-
validation. 

Feature Subset 
Linear Classifier Decision Tree 

Nutn of Tolal Normal Dys. Cancer 
Feats. Correct Correct Correct Correct 

(%> (%) («„) m 

Num of Total Normal Dys. Cancer 
Feats. Correct Correct Correct Correct 

{%) (%) (»i.) (%) 

White Light 

Narrowband 

Cross Polarized 

\utofluorescence 

4 

5 

5 

4 

81.4 

65.6 

61.8 

84.1 

92.5 

88.7 

90.6 

98.1 

65.5 

37.9 

34 5 

79.3 

75.0 

45.0 

25.0 

55.0 

2 

2 

3 

2 

72.6 81.1 75.9 45.0 

72.6 79.3 69.0 60.0 

69.6 84.9 58.6 45.0 

86.3 94.3 75.9 80.0 

Combined 77.5 943 69.0 45.0 83.3 96.2 79.3 550 

Table 8. Confusion matrices of 3-class classification results from the 
decision tree using two autofluorescence features. Numeric values 
indicate the number of classified measurement sites. Results from 
both the training set and validation set are shown without cross-
validation. 

Decision Tree 
Results 

Training Set Validation Set 
Truth Truth 

Normal Dysplasia Cancer Normal Dysplasia Cancer 

•o 
3 

! £ 

Normal 

Dysplasia 

Cancer 

50 

3 

0 

1 

23 

5 

0 

4 

16 

32 

8 

0 

0 

22 

0 

0 

9 

2 

file:///utofluorescence
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5.4 Discussion 

In this study multispectral widefield imaging data from 72 study subjects were 

analyzed to determine the imaging modalities, illumination/detection conditions, and 

image features which provide the greatest optical image contrast between oral lesions and 

surrounding non-neoplastic tissue, and to determine if objective classification algorithms 

could be used to diagnostically classify oral lesions. 

78% of the lesions imaged showed greater contrast when imaged in 

autofluorescence mode at 405 nm illumination that in white light mode. These lesions 

included all grades of dysplasia and carcinoma. When the contrast was analyzed by 

diagnostic category, contrast was significantly greater for all pathologies compared to 

non-neoplastic areas but contrast was not significantly different for images of lesions 

with different pathologic grades. This suggests the contrast observed using 

autofluorescence may be due to changes which occur early in malignant transformation. 

Narrowband images and cross-polarized images showed an increase in contrast over 

white light in the majority of images but not to the extent of the autofluorescence images. 

2-class classification performance using both the LC and decision trees was 

excellent in the training set, providing sensitivities and specificities exceeding 90% for 

both classifiers. It is clear from the analysis that color-based features extracted from 

autofluorescence images at 405 nm were highly dominant, demonstrated by the fact that a 

single feature of this type was chosen using both classifiers, even with access to the entire 

feature set. The combination of features from multiple subsets did not improve 2-class 

classifier performance above that from the autofluorescence feature subset alone. The 

LC was applied to data from the validation set, yielding 100% sensitivity and 85% 
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specificity, helping to confirm the diagnostic capability of the 405 nm autofluorescence 

image type. 

For the 3-class problem, the decision tree modestly outperformed the LC 

in the training set. Two features based on autofluorescence were selected after pruning in 

the two-step decision tree. The first feature, the ratio of red-to-green intensity (ratio-

normalized) at 405 nm excitation, was Used to classify non-neoplastic sites from 

dysplastic and carcinoma sites, just as in the 2-class problem. The second feature was 

then used to separate the dysplastic lesions from the carcinoma lesions. This second 

feature was produced by texture analysis and was from the 380 run excitation 

autofluorescence image. In the validation set, 0% (0 of 22) of the dysplastic lesions were 

misclassified but 81.8% (9 of 11) of the carcinoma lesions were misclassified as 

dysplasia. This suggests that the second feature may not generalize well to new data to 

discriminate dysplasia from cancer. 

These data suggest that it may not be feasible for widefield multispectral optical imaging 

to discriminate different abnormal diagnostic categories using the specific modalities and 

wavelengths tested here. Based on results from Pavlova et al., it may be necessary to 

selectively probe the epithelial in order to obtain a more specific diagnosis using optical 

techniques [6,115]. Results from both the contrast analysis and classification portions 

of this study indicate that dysplastic and cancerous oral lesions can be discriminated from 

normal tissue using the autofluorescence imaging modality at 405 nm excitation. It was 

shown that the reflectance white light, narrowband, and cross-polarized images included 

in this analysis did not improve the diagnostic ability available from the autofluorescence 

images. This is somewhat surprising given that the signal from autofluorescence and 
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reflectance modalities are likely dominated by two different biological phenomenon 

during malignant progression: the breakdown of the supporting tissue structure in the 

stroma [6], and the increase in vascularity in and around lesions [73] respectively. 

Several groups have previously demonstrated that increased contrast of lesions 

observed using autofluorescence imaging with blue excitation light (400 nm - 460 nm) is 

an effective diagnostic means for high-grade oral lesions [14,51,55]. Poh et al. reported 

that an observed visual decrease in autofluorescence signal often extended beyond 

clinical tumor margins up to 25mm [88]. Lane et al. showed a sensitivity of 98% and a 

specificity of 100% for the discrimination of severe dysplasia and carcinoma from direct 

autofluorescence visualization [21]. This work has achieved comparable diagnostic 

performance using an objective discrimination technique while including low-grade as 

well as high-grade lesions. 

Multispectral widefield optical imaging has the potential to improve upon current 

oral cancer screening and delineation methods. The use of 405 nm excitation 

autofluorescence imaging of the oral mucosa can increase the optical image contrast of 

lesions above that observed using white light and can provide objective classification of 

neoplastic lesions with high accuracy. 
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CHAPTER 6: WIDEFIELD MULTISPECTRAL IMAGING AND HIGH 

RESOLUTION MICROENDOSCOPE IMAGING FOR DETECTION OF 

ORAL NEOPLASIA4 

6.1 Introduction 

Squamous carcinoma of the head and neck is associated with poor five-year 

survival, usually a consequence of late-stage disease at diagnosis [1]. Treatment of oral 

cancer is associated with severe morbidity; surgical removal of oral tissue often results in 

disfigurement and impairs speech and the ability to swallow. Diagnosis of head and neck 

cancers at an earlier stage can improve reduce morbidity and improve efficacy of therapy, 

leading to improved patient survival and quality of life. 

The current standard-of-care to screen for oral cancer is white light inspection of 

the oral cavity by an expert clinician, followed by biopsy and histologic analysis of 

suspicious lesions. Subjective visual examination requires adequately trained personnel, 

as well as the availability of histopathology labs to analyze biopsy specimens of 

suspicious lesions. Even in developed nations, lesions are commonly not discovered until 

a late stage because of the relative lack of screening. 

Optical methods offer a means to improve screening for oral neoplasia at the point 

of care without the need for extensive infrastructure. Autofluorescence visualization is a 

promising tool to detect early neoplastic changes in the oral epithelium. The Velscope is 

4 The content for this chapter is being prepared for publication. Both I and Timothy Muldoon have 
contributed equally to the work presented in this chapter. The following authors have also contributed: 
Kelsey Rosbach, Vanda Stepanek, Michelle D. Williams, Ann M. Gillenwater, Rebecca Richards-Kortum. 
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a commercial system that uses blue light to excite autofluorescence in the oral mucosa; a 

clinician can then visually inspect the mucosa and identify suspicious areas based on loss 

of autofluorescence [21,80]. It has been demonstrated that precancer and cancer are 

associated with loss of stromal collagen fluorescence [6]. 

Computer-aided tools and quantitative classification algorithms can be used to 

further improve the screening process and provide an objective diagnosis. Digital 

imaging of the autofluorescence signal from the oral mucosa allows quantifiable image 

parameters to be calculated; the red-to-green pixel intensity ratio has been of particular 

importance in distinguishing between neoplastic and non-neoplastic sites. A recent study 

by our group using this technique achieved a sensitivity of 100% and specificity of 91.4% 

in an independent validation data set [111]. 

A potential limitation of widefield imaging and analysis of the bulk tissue 

autofluorescence signal is that this modality does not directly sample some of important 

pathologic features, such as changes in cellular and nuclear morphology. High-resolution 

imaging may be used to complement the diagnostic capability of widefield imaging. 

High-resolution imaging can be used to directly observe changes in epithelial cell 

morphology and epithelial architecture over small fields-of-view. These changes include 

increased nuclear-to-cytoplasmic ratios, pleomorphism, and alterations in the gradation of 

cellular differentiation throughout the epithelium. A variety of high resolution optical 

imaging modalities are available to sample these morphologic and architectural changes, 

including confocal micrscopy, optical coherence microscopy and high resolution 

microendoscopy [116-118]. 
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Multimodal imaging approaches which combine images from wide field and high-

resolution modalities have the potential to improve early detection of neoplastic changes. 

Wide field imaging allows for rapid inspection of nearly the entire oral cavity, while 

high-resolution imaging can be used to interrogate suspicious regions with higher spatial 

resolution. 

The goal of this study was to explore the complementary diagnostic ability of 

widefield autofluorescence imaging ad high resolution microendoscopy for early 

detection of oral neoplasia. Widefield autofluorescence images were obtained from 

resected oral tumors; high resolution images were then obtained following topical 

application of a fluorescent contrast agent to visualize changes in nuclear morphbmetric 

and density. The ability to classify oral tissue as normal or neoplastic was explored 

using data from widefield imaging along, high resolution imaging alone and the 

combination of the two modalities. Multimodal approaches yielded the greatest 

sensitivity and specificity relative to the gold standard of histopathology, supporting the 

complementary role of these two imaging approaches. 

6.2 Methods 

6.2.1 Data Acquisition and Instrumentation 

Data was collected under a clinical protocol approved by the Institutional Review 

Boards at the University of Texas MD Anderson Cancer Center and Rice University. All 

participating subjects gave written informed consent. Patients were eligible if they were 

18 years old or older and were scheduled for surgical resection of a known precancerous 

or cancerous lesion in the oral cavity. 
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Following resection, tissue was imaged in the laboratory using first a widefield 

multispectral digital microscope (MDM) and then a high resolution microendoscope 

(HRME) system. The MDM is described in detail elsewhere [96]. Briefly, the MDM 

system is a modified clinical microscope which collects digital images with an 

approximate 5 cm by 7 cm field of view (FOV). The system is capable of collecting data 

in several different imaging modalities but for this study only white light reflectance and 

autofluorescence images at 405 nm excitation were utilized. The entire mucosal surface 

of the resected tissue was imaged using the MDM. 

The HRME system is described in detail elsewhere [119]. Briefly, the system can 

image cellular detail of the upper epithelium by placing a fiber optic image guide guide 

into direct contact with the tissue. Contrast is achieved by applying a topical solution of 

proflavine (0.01% in water) with a cotton swab immediately before imaging. Proflavine 

is a fluorescent agent that binds to DNA, yielding bright nuclei surrounded by dark 

cytoplasm. The HRME system uses an LED with a center wavelength of 455 nm as an 

excitation source; this is directed through an objective lens and coupled to the fiber optic 

image guide, which delivers it to the tissue surface. Fluorescence emission light travels 

back though the image guide, is magnified by the objective lens, arid is imaged to a CCD 

camera, where it is digitally stored and sent to a PC. The HRME system has a circular 

field of view with a diameter of 750 microns, and collects image data at 4 frames per 

second. 

Both clinically normal and suspicious areas were measured with both the MDM 

system and the HRME system. Several suspected non-neoplastic and neoplastic sites 

were imaged on each resected specimen. HRME images were qualitatively assessed by 
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the authors (TJM and DMR) for the presence of nuclear detail. Only HRME images 

which revealed nuclear detail were included in this study. For each interrogated tissue 

site, one or more HRME images were collected inside a small, approximately 2 

millimeter diameter area. 

Histopathology diagnosis was obtained from the sites imaged with the MDM and 

HRME. The locations of regions imaged with the HRME were recorded using digital 

photography, and these locations were tracked throughout histopathology processing. 

The resected tissue was sectioned and stained according to standard histopathology 

practice and diagnosis was obtained from prepared slides by an expert Head and Neck 

pathologist (M.D.W.). 

6.2.2 Computer Aided Diagnostics 

Image data obtained with both the MDM and HRME were used to develop 

objective classifiers to identify neoplastic tissue. Images from each device were first 

processed and used to train a linear discriminant classifier based on a single imaging 

modality. MDM and HRME results were then combined using multiple hybrid 

consensus techniques to train multimodal classifiers. Tissue sites imaged with both the 

MDM and HRME and with a corresponding pathologic diagnosis were included in this 

analysis. 

For analysis of MDM data, circular regions of interest (ROIs) with a 20 pixel 

diameter, which correspond to an approximate 1mm diameter circular region of tissue, 

were selected from MDM images at sites imaged by the HRME. In addition, a 

normalization ROI was identified in each specimen from a pathologically normal area, 
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distant from any lesion. Features obtained from the pixel values inside these regions 

were then extracted. Previous in vivo studies have shown that the mean ratio of red to 

green autofluorescence at 405 nm excitation, normalized to a known non-neoplastic 

region, provides a high degree of discrimination between non-neoplastic and neoplastic 

tissue [96,120]. This feature was extracted from the ROIs of MDM images collected in 

this study; these values were normalized by the mean red to green autofluorescence ratio 

from the normalization ROIs. 

This feature was used as input to a 2-class linear classifier based on Bayesian 

parameter estimation in order to obtain a predicted diagnosis of either non-neoplastic or 

neoplastic. The neoplastic class includes ROIs with diagnoses of mild, moderate, and 

severe dysplasia as well as carcinoma in situ and invasive carcinoma. The non-neoplastic 

class included epithelial tissue which was histopathologically normal with or without 

hyperplasia, hyperkeratosis, or inflammation. Leave-one- patient-out cross-validation 

was used avoid overtraining the algorithm [63]. A posterior probability was obtained for 

each site which is the predicted probability that the site is in the neoplastic class. A 

receiver-operating-characteristic (ROC) curve was generated by changing the threshold 

of the posterior probability value used to determine if a measurement was in the first or 

second class, and then plotting 1-specificity versus sensitivity at each threshold value or 

operating point. The area under the curve (AUC) of the ROC plot was used as a figure-

of-merit (FOM) to determine classification performance. Sensitivity, specificity, positive 

predictive value, and negative predictive value were also determined at the operating 

point which maximized the sum of sensitivity and specificity and reported. 
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A variety of features were extracted from the HRME images at each site and used 

as input to a linear classifier. Regions of interest were manually selected from each 

HRME image, corresponding to regions subjectively showing the most nuclear detail. In 

addition, this ROI selection was done to eliminate the boundaries of the images, which 

did not contain any information. Features were extracted from these rectangular ROIs. In 

the cases where there was more than one HRME image collected from a site, the mean of 

these feature values was used for classification. First order statistical features such as the 

mean, standard deviation, and entropy of pixel values were extracted from the ROIs. 

Textural features obtained from gray-level co-occurrence matrices with pixel offsets from 

1 to 10 pixels were also obtained. Spatial frequency content features were extracted by 

performing a 2-D Fourier transform on the image data inside the ROIs. Further detail 

about these features is provided in [120]. 

In order to select the most diagnostically valuable features from the HRME data, a 

forward sequential feature selection algorithm was implemented [63]. This algorithm 

tested each feature separately and then in combination using the linear classifier to 

determine the two features which classified the data most accurately based on maximal 

area under the ROC curve. Two features were chosen because adding additional feature 

did not statistically improve classification performance. The HRME data were classified 

using the linear classifier with the two selected features using leave-one-out cross-

validation. Again, a posterior probability was obtained for each site An ROC plot, AUC, 

sensitivity, specificity, positive predictive value, and negative predictive value were 

obtained. 
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6.2.3 Combinatorial Methods 

Two separate strategies were implemented to combine data from both imaging 

modalities to yield a single diagnosis. The first approach used was to develop a classifier 

using input from both imaging modalities to obtain a single diagnosis. We refer to this 

technique as the Nondirected Combinatorial Technique. The second strategy, referred to 

as the Directed Combinatorial Technique, used data from the MDM to first identify 

potentially neoplastic sites. At these sites, data from both the MDM and HRME 

modalities were used to classify the site as neoplastic or non-neoplastic. The Directed 

Combinatorial Technique was implemented by first using data from the MDM to train 

and test a linear classifier using input from all of the measurement sites. The operating 

point for this classifier was selected such that a sensitivity of 90% was achieved. Sites 

classified as non-neoplastic by this algorithm were not analyzed further. Sites classified 

as potentially neoplastic by this algorithm were analyzed further. A second algorithm 

was developed using both MDM and HRME data from these sites. 

For both the Directed and Nondirected Combinatrorial Techniques, we explored 

eleven different methods to combine the results from two devices. Eight of these 

methods rely on combining the posterior probabilities obtained from each device for each 

site to produce a new metric which can be used to discriminate the classes. Many of 

these methods are described by Bendiktsson et al. [121]. The other three methods 

explored involve utilizing one or more classifiers in a different way, as described below. 

The posterior probabilities (pp) per site were combined from the two devices in 

the following eight ways: 

1. The maximum of the two pp's was used, 
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2. The minimum of the two pp's was used, 

3. The mean of the two pp's was used, 

4. The weighted sum of the two pp's was used where the weights were determined 

heuristically by the relative performance of each device. We have used the AUC 

obtained from each device as the FOM to determine the weights. This method is 

called Linear Opinion Pool (LOP). 

5. The weighted sum of the two pp's (LOP) was used where the weights were 

determined by a search of different weights. The weights of each device were 

between 0 and 1 and the weight from the second device W2, was equal to 1-w;, 

where wi is the weight for the first device. Weights were tested in .01 increments. 

6. The product of the two pp's was used. This method is called Logarithmic Opinion 

Pool(LOGP). 

7. The weighted product of the two pp's (LOGP) was used where the weights were 

determined by a search. The weights were applied as exponents for the pp's. 

8. The weighted sum of the two pp's (LOP) was used where weights were 

determined both per device and per class. This method is described in 

reference[121]. 

In addition to these methods, three other methods were used to synthesize the 

data. The pp from the MDM was used as the prior probability for the HRME linear 

classifier; extracted features from both devices were used in a single linear classifier; and 

the pp from the MDM was used as an additional feature for the HRME linear classifier. 
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6.3 Results 

In total, resected specimens were obtained from 14 patients. Six of the resected 

specimens primarily involved the tongue, three primarily involved the floor of mouth, 

two primarily involved the buccal mucosa, one primarily involved the retromolar trigone, 

one involved the tongue and floor of mouth and one involved the gingiva and floor of 

mouth. From these specimens, 69 unique measurement sites were matched to a 

corresponding pathology diagnosis. These sites included 26 sites with a diagnosis of non­

neoplastic, 3 sites with mild dysplasia, 4 sites with moderate dysplasia, 13 sites with 

severe dysplasia or carcinoma in situ, and 23 sites with invasive squamous cell 

carcinoma. When divided into two classes: the non-neoplastic class contains 26 sites and 

the neoplastic class contains 43 sites. 

A ROI from the MDM autofluorescence images was selected at the each of the 69 

sites. A normalization ROI was chosen for each patient and corresponded to a 

histopathologically normal area. 126 HRME ROIs were obtained from the 69 sites; when 

multiple ROIs were available, the features were averaged together. 
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Figure 16. A. MDM Autofluorescence image at 405 nm excitation 

from resected tissue from the floor of mouth. MDM ROIs from a 

squamous cell carcinoma (SCC) site and a non-neopalstic site are 

indicated. B. HRME image collected from the SCC site. C. HRME 

image collected from the non-neoplastic site. 
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Table 9. This combinatorial methods and the AUC achieved. Both 
devices were used to measure all measurement sites. The percent 
increase in AUC values over each device alone is shown. Method 5 
produced the highest AUC. 

Combination Method 

1. Maximum posterior probability. 

2. Minimum posterior probability. 

3. Mean posterior probability. 

4. LOP, Weighted sum of posterior probabilities, 
weights determined from individual AUC for devices. 

5. LOP, Weighted sum of posterior probabilities. 
weights determined from search. 
« W = . 8 9 , W W = . H 

6. LOGP, Product of posterior probabilities. 

7. LOGP, Weighted Product of posterior probabilities, 
weights determined from search. 
WMD^.H, W//RAffi=13 

8. Weights determined for device and class. 

9. MDM posterior probability used as HRME prior probability. 

10. MDM posterior probability used as feature in HRME classifier. 

11. One classifier using features from both devices. 

AUC 

.794 

.824 

.810 

.772 

.875 

.811 

.819 

.789 

.817 

.784 

.790 

% increase 
over MDM 

.68 

4.4 

2.7 

-2.2 

10.9 

2.8 

3.9 

-.06 

3.5 

-.68 

.11 

% increase 
over HRME 

5.6 

9.6 

7.8 

2.6 

16.4 

7.9 

9.0 

4.9 

8.6 

4.2 

5.1 
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Figure 17. Results from the Nondirected Combinatorial Technique. 

Each device was used to measure all of the measurement sites. A. 

Scatterplot of normalized red to green ratio per measurement site 

calculated from MDM images. The indicated discrimination line 

yields a sensitivity of 79.1% and a specificity of 69.2%. B. ROC 

curve produced by the linear classifier using this feature. The 

indicated operating point corresponds to the discrimination line in 

A. C. Scatterplot of the two selected features from the HRME. The 

indicated discrimination line yields a sensitivity of 69.8% and a 

specificity of 80.8%. D ROC curve produced by the linear classifier 

using these features. The indicated operating point corresponds to 

the discrimination line in C. E. The ROC curves in B. and D. with 

the ROC curve produced by combination method 5 in table 9: the 

weighted linear opinion pool of posteriors probabilities from each 

device. 
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Figure 16A shows a representative MDM autofluorescence image at 405 nm 

excitation collected from resected tissue from the floor of mouth. MDM ROIs are 

indicated from a site with squamous cell carcinoma (red circle) and a site which is non­

neoplastic (blue circle). Note the relative decrease in autofluorescence at the carcinoma 

site. Figure 16B shows an HRME image collected at the carcinoma site. Figure 16C 

shows an HRME image for the non-neoplastic site. Note the nuclear crowding and 

disorganized architecture in 16B compared to 16C. 

Figure 17 shows results from the Nondirected Combinatorial Technique where 

data from both devices was used from all measurement sites. Figure 17A is a scatterplot 

of normalized red to green ratio per measurement site calculated from MDM images. 

The indicated discrimination line yields a sensitivity of 79.1% and a specificity of 69.2%. 

Figure 17B is the ROC curve produced by the linear classifier using this feature alone. 

The indicated operating point corresponds to the discrimination line in Figure 17 A. and is 

located at the Qpoint, the point on the ROC curve which is the minimum distance from 

the upper left hand corner of the plot. Figure 17C is the scatter plot of the two selected 

feature values from the HRME. The two features chosen by the sequential feature 

selection algorithm were pixel grayscale variance (a first-order feature) and the pixel pair 

correlation value calculated from the gray level co-occurrence matrix at an offset of 1. 

The indicated discrimination line yields a sensitivity of 69.8% and a specificity of 80.8%. 

Figure 17D is the ROC curve produced by the linear classifier using these features. The 

indicated operating point corresponds to the discrimination line in 17C and is also at the 

Qpoint. 
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Table 9 indicates the AUC achieved using each of the 11 methods to combine 

data from the two modalities. Table 9 also summarizes the change in AUC for the 

combined modalities relative to the AUC achieved using each device by itself. Method 5 

produces the highest AUC of all of the combination methods. This method highly favors 

the MDM posterior probabilities by a factor of 8. Figure 17E shows the ROC curve 

produced using Method 5, the weighted linear opinion pool of posteriors probabilities 

from each device. This combined method produced an AUC of .875, a sensitivity of 

74.4% and a specificity of 87.5%. This AUC is a 10.9% increase of the MDM alone and 

a 16.4% increase over the HRME alone. The second highest AUC (.824) was produced 

by method 2 where the lower posterior probability was chosen from the devices for each 

measurement site. The third highest AUC (.819) was produced by the weighted product 

of posterior probabilities where the MDM was again weighted highly favorably. 
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Table 10. The combinatorial methods and the performance achieved. 
The MDM was used to identify measurement sites with a greater 
than 90.7% probability of being neoplastic and the HRME was used 
to measure only these sites. The percent increase in AUC, 
sensitivity, and specificity values over the MDM alone are shown. 
The sensitivity of the MDM by itself was 90.7%, the specificity was 
38.5%, and the AUC was .789. Method 5 produced the highest 
increase in AUC. 

Combination Method 

] . Maximum posterior probability. 

2. Minimum posterior probability. 

3. Mean posterior probability. 

4. LOP. Weighted sum of posterior probabilities, 
weights determined from individual AUC for devices 

5. LOP. Weighted sum of posterior probabilities, 
weights determined from search. 

»;>»»<=•»* »'««»=. i i 

6. LOCiP. Product ol posterior probabilities. 

7. LOGP. Weighted Product o f posterior probabilities, 
weights determined from search. 
l * W r S 7 , I F , m „ - l 3 

8. Weights determined for device and class. 

9, MDM posterior probability used as HKMK prior probability. 

10. MDM posterior probability used as feature in HRME classifier. 

11. One classifier using features from both devices 

AUC 

.830 

.828 

.832 

.832 

.847 

.830 

.833 

.827 

.827 

.809 

818 

% inc. over 
MOM 

• 5.16 

<4.99 

+5.44 

+5.50 

+7.37 

+5.22 

+5.56 

+4,82 

+4.88 

+2.58 

+3,74 

Se 

76.7 

76.7 

76.7 

76.7 

86.1 

76.7 

83.7 

76.7 

76.7 

84.6 

744 

% Inc over 
MOM 

-14.7 

-14.7 

-14.7 

-14.7 

-44 

-14.7 

-6.98 

-14.7 

-14.7 

-5.98 

-17.3 

Sp 

84.6 

88.5 

84.6 

84.6 

80.8 

84.6 

80.8 

84.6 

84.6 

75,0 

84 6 

% inc over 
MOM 

+ 119.8 

+ 129.8 

+ 119.8 

+119.8 

+ 109.8 

+ 119.8 

+ 109.8 

+ 119 8 

+ 119 8 

+94.8 

+ 119.8 
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Figure 18. Results from the Directed Combinatorial Technique: 

when the MDM is first used to identify measurement sites with a 

sensitivity of 90%, and then the HRME is used to aid diagnosis of 

these measurement sites. A. Scatterplot of posterior probabilities 

per measurement site produced from data only from the MDM. The 

indicated discrimination line yields a sensitivity of 90.7% and a 

specificity of 38.5%. Measurements above this line are tested using 

the HRME. Measurements below this line are assumed non-
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neoplastic and assigned a posterior probability of 0. B. ROC curves 

produced by the MDM alone and from the 2 step method described. 

The AUC increases from .789 to .847 using this two step method. 

The qpoint is indicated on both ROC curves. The operating point 

yielding 90.7% sensitivity is also shown on the ROC produced from 

the MDM alone. 

Figure 18 and Table 10 show results from the Directed Combinatorial Technique. 

The MDM was first used to identify measurement sites with a sensitivity of 90.0%. For 

this analysis however, the closest operating point available from the linear classifier 

trained on the MDM data was at 90.7% sensitivity. The HRME data was then used to aid 

in diagnosis of only these measurement sites. Figure 18A is a scatter plot of posterior 

probabilities per measurement site produced from data only from the MDM. The 

indicated discrimination line yields a sensitivity of 90.7% and a specificity of 38.5%. 

Measurements below this line are assumed non-neoplastic. There are 14 measurement 

sites below the threshold, 10 sites are non-neoplastic and 4 are neoplastic confirmed by 

histopathology. HRME data is utilized in the combination methods with measurements 

above this line. ROC curves and performance metrics were computed from the 

combination of posterior probabilities from all measurement sites. 

The highest AUC from the Directed Combinatorial Technique was achieved using 

the weighted linear opinion pool of posteriors probabilities from each device (Table 10). 

The same weights used for both the Directed and Nondirected Combinatorial Techniques. 

Figure 18B shows the ROC curves produced by the MDM alone and from the Directed 
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Combinatorial Technique. The AUC increases from .789 to .847 using this method. The 

sensitivity drops from 90.7% to 86.1%. The specificity increases from 36.5% to 80.8%. 

The qpoint is indicated on both ROC curves. The operating point yielding 90.7% 

sensitivity is also shown on the ROC produced from the MDM alone. 

The highest AUC produced from the Nondirected Combinatorial Technique was 

.875 whereas the highest AUC achieved from the Directed Combinatorial Technique was 

.847. Data from 14 (20.3%) fewer measurements sites were required from the HRME for 

the Directed Combinatorial Technique. 

6.4 Discussion 

In this study, image data from two optical imaging devices were combined to 

make a quantitative, objective classification algorithm to distinguish between neoplastic 

and non-neoplastic oral mucosa. Both of the combination strategies improved 

classification performance over either device alone. The non-directed combinatorial 

technique yielded a 10.9% increase in AUC over the MDM alone and a 16.4% increase 

over the HRME alone. In addition to the combination of physically different 

measurement data provided by two different imaging modalities, independent imaging 

systems allow for the development of classification algorithms tailored to provide a 

desired sensitivity or specificity value. The Directed Combinatorial Technique described 

in this paper used the wide field imaging data alone, with a decision line set at 90% 

sensitivity as an initial screen. The abundant false positives remaining after this screen 

were reduced in a second step using combined wide field and high resolution imaging 

data. The selection of 90% sensitivity during the initial screen was made so that most of 
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the true positives would be captured while the number of measurements sites to be 

measured by the HRME is reduced. While the final result following the second screen 

did not achieve a 90% sensitivity (impossible unless the second method was able to 

classify with a 100% sensitivity at a nonzero specificity), the combined result still yields 

a significant improvement, 7.4% increase in AUC, over the MDM alone. Additionally, 

the final sensitivity at the Qpoint was higher and more reflective of the initial sensitivity 

threshold for the Directed Combinatorial Technique compared to the Nondirected (86.1% 

sensitivity for the Directed compared to 74.4% for the Nondirected). These results 

compared well to the weighted LOP classification results from the Nondirected 

Combinatorial Technique, but allows the user to better control the desired prediction 

efficiency, and in this case required measurement 20.3% fewer sites with the HRME. 

In a previous in vivo study using the MDM a sensitivity of 100% and specificity 

of 91.4% was achieved for discriminating neoplastic from non-neoplastic tissue [111]. 

The MDM performance was significantly worse in this study which yielded a sensitivity 

of 79.1% and a specificity of 69.2%. These differences may be due to the changes in 

resected specimens compared to in vivo tissue. Qualitative comparisons of the same 

tissue in vivo and ex vivo show differences in autofluorescence intensity which may 

correlate with the cessation of blood flow and other biochemical changes. 

Quantitative screening tools, such as the combinatorial wide field and high-

resolution imaging algorithm presented in the text, offers clinicians an objective means of 

examining the oral cavity. Since this technique requires minimal input from the user and 

a carries a very low per-use cost, higher volume and more frequent screening could be 

implemented, with the goal of discovering neoplastic lesions of the oral cavity at an 
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earlier, more treatable stage. Such early diagnosis would enable more conservative, 

tissue-sparing treatment options, with a better overall outcome for the patient. 
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CHAPTER 7: CONCLUSION 

7.1 Summary and Research Contributions 

Widefield optical imaging is an attractive technology for improving oral cancer 

detection and delineation. This method allows the for relatively fast inspection of the 

entire oral mucosal surface and can be implemented inexpensively compared to other 

biomedical imaging screening and diagnostic technologies such as MRI, CT, and 

mammography. Optical imaging has the potential to exploit anatomical and biochemical 

changes which occur during malignant progression in order to detect disease. Examples 

of these changes include increased vessel growth due to angiogenesis and the remodeling 

of the basement membrane. In order to successfully implement widefield optical imaging 

as a diagnostic tool for oral neoplasia, it is necessary to investigate and quantify the 

performance of this method as well as determine an ideal instrumentation design. These 

issues were the primary objectives of this dissertation work. 

The first part of this work, described in Chapter 3, was to design and construct a 

scientific grade widefield optical microscope with the capability of narrowband, 

autofluorescence, and polarized imaging modalities at a variety of exploratory 

illumination and collections wavelengths. This device is referred to as the Multipsectral 

Digital Microscope (MDM). The MDM can capture digital images at four narrowband 

illumination wavelengths, four autofluorescence excitation wavelengths, and with 

orthogonal and parallel polarization. The field of view is adjustable and can varied 

between approximately 1 cm to 7 cm. The spatial resolution is sufficient to capture 

vascular patterns common on the surface of oral mucosa. The MDM was constructed so 
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as to be portable and robust enough for in vivo imaging of patients. A custom mercury 

arc lamp illumination system was designed to provide sufficient illumination power for 

practical in vivo autofluorescence imaging with minimal motion artifacts, with exposure 

times of approximately .5 seconds. 

Qualitative observations were made from image data from normal volunteers and 

cancer patients. Under narrowband illumination conditions, differences in visible 

vascular patterns were apparent in normal volunteers. At blue illumination, fine vascular 

patterns were visible on anatomic regions such as the hard palate, soft palate, inner lip, 

and floor of mouth. Vessels appeared dark compared to surrounding tissue. As 

illumination went from blue to green to yellow to red, finer vasculature increasingly 

became less visible and while larger, deeper vessels became more visible. These 

observations were likely a due to a combination of increased penetration depth at longer 

wavelengths and differences in hemoglobin absorption at the illumination wavelengths. 

Orthogonal, or cross polarization imaging had the general effect of revealing increased 

vascularity. Autofluorescence imaging revealed differences in fluorescence intensity at 

different anatomical sites but relatively uniform intensity within each site. Highly 

keratinized sites such as the hard palate generally had a higher autofluorescence intensity. 

Vessels were often visible under autofluorescence mode. 

Multispectral imaging of oral lesions from patients revealed several qualitative 

observations which increased their visibility compared to white light. Relatively flat 

lesions without exophytic tumor growth commonly appeared to have negative contrast 

when compared to surrounding normal tissue using narrowband, autofluorescence, and 

cross polarized imaging. In narrowband imaging mode the negative contrast was more 
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easily observed using green and yellow illuminations and appeared to correlate with 

increased vasculature and vessel networks. In cross polarized, white light mode, these 

lesions appeared to be a darker red than surrounding tissue, also likely a result of 

vasculature networks below the mucosal surface. In autofluorescence mode, almost all 

lesions, including exophytic tumors, either appeared dark compared to surrounding 

normal tissue, or had an increased red fluorescence. These two observations have been 

previously reported in the literature. The decreased autofluorescence signal is most 

commonly attributed to the breakdown of collagen and elastin crosslinks in the 

extracellular matrix of the mucosal tissue. These crosslinks are brightly fluorescent and 

as tissue is remodeled during malignant progression, these crosslinks are thought to be 

degraded and restructured to allow new growth. A recent publication by our group helps 

to support this theory [6]. The decrease in autofluorescence appeared to be the most 

consistent observation which discriminated oral lesions with a diagnosis of dysplasia or 

cancer, from non-neoplastic tissue. The red fluorescence is commonly attributed to 

porphyrins, although it is unclear if the origins are endogenous or from bacterial growth. 

Based on these qualitative observations, image processing and computer aided 

diagnostics were implemented to determine an objective diagnosis. This part of the work 

is detailed in Chapters 4 and 5. This work began with an analysis of the autofluorescence 

images from 56 patients with previously determined oral lesions and 11 normal 

volunteers. Regions of interest (ROIs) of lesions areas and clinically normal areas were 

selected by a physician blinded to the autofluorescence images. The mean red to green 

ratio of pixel intensities of these regions, normalized to ROIs with a non-neoplastic 

diagnosis, were compared and it was found that using this single feature, dysplastic and 
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cancerous lesions could be discriminated from non-neopalstic regions with a sensitivity 

of 100% and a specificity of 91.4%. 

Probability maps of disease constructed from the classification results are also 

presented in Chapter 4. For the small number of samples tested, these maps qualitatively 

agree with histopathology and present an additional analysis tool for detection and/or 

delineation of the lesion extent. 

Previous studies have reported high sensitivity and specificity of oral lesion 

detection using autofluorescence based on qualitative observation and discrimination 

[21,55]. This work is the first in which the instrument performance was determined 

objectively using computer aided diagnosis. The accuracy of detection based only from 

the ratio of mean red to green feature suggests that this feature is highly conserved among 

premalignant and malignant lesions in the oral cavity. 

Chapter 5 significantly extends the computer aided diagnosis by including images 

from the narrowband and polarized imaging modalities. A plethora of features were 

extracted from these images based in part on the observations made in Chapter 3. 

Textural and frequency domain features were extracted under the hypothesis that these 

features might quantify the vascular pattern observations seen from lesions described in 

Chapter 3. Additional statistical and colorimetric features were also included in the 

analysis. Ultimately, features from the other modalities caused no increase in 

performance over the single feature of red to green ratio from the 405 nm excitation 

autofluorescence image, and no other features performed as well as this single feature. 

This finding suggests that features produced by vascular pattern increases observed in 

some oral lesions, and abnormal textural appearance of tumors, do not translate into a 
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quantitative features which are universal enough to provide an accurate diagnosis for a 

variety of oral lesions with a spectrum of diagnoses. This finding also supports the 

dominance of the decreased autofluorescence and the feature of red to green ratio for 

discrimination of non-neoplastic and neoplastic tissue. 

The analysis in Chapter 5 also included a comparison of image contrast computed 

from the different imaging modalities from lesions with different diagnostic grades, as 

well an attempt to classify lesions into one of three classes: non-neoplastic, dysplasia, or 

cancer. The largest majority of lesions had an increased contrast compared to white light 

at 405 nm excitation autofluorescence mode. Importantly, while this increase was 

statistically significant between non-neoplastic tissue and neoplastic tissue, there was no 

statistical difference between diagnostic grades within the neoplastic class. Similarly, 3-

class classification by computer aided diagnostics was largely unsuccessful. These 

results suggest that the tested imaging modalities, and the red to green ratio from 405 nm 

autofluorescence images in particular, are capable of discriminating non-neoplastic tissue 

from neoplastic tissue, but are not capable of making a more specific diagnosis. This 

finding may have significant implications concerning the clinical use of this technology. 

In Chapter 6, a high resolution microendoscope (HRME), capable of imaging 

cellular detail when used with a nuclear fluorescent dye, was used simultaneously with 

the MDM in a study of ex vivo oral resections presented. This work was conducted to 

determine if these two different optical devices could improve diagnostic performance 

over either alone. The quantities measured by the two devices are fundamentally 

different. The difference in the red to green ratio feature extracted from MDM images in 

normal and abnormal tissue was likely based on changes in the basement membrane of 
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tissue. The HRME system, conversely, images only the upper layers of the epithelium 

and the information content in largely based on cell-to-cell spacing and nuclear-to-

cytoplasmic ratio. Additionally, the MDM can be used to scan the entire oral mucosal 

surface quickly where as the HRME has a small field of view suggesting that it may be 

used for confirming or denying suspicious areas identified by the MDM. 

A pilot study of ex vivo tissue from 14 patients was conducted using image data 

collected from both the MDM and HRME. Multiple consensus hybrid techniques, which 

are methods of combining data from both devices to make a single diagnosis, were tested 

to explore the benefits of using the two devices together. An 11% increase in 

performance over the MDM alone and a 16% increase over the HRME alone was 

achieved using one combination strategy. While these are substantial increases, the final 

sensitivity and specificity achieved were only 74.4% and 84.6% respectively suggesting 

that the MDM analysis methods developed for in vivo tissue may not be as effective in ex 

vivo tissue. This performance difference could also conceivably be due to the small 

sample size in this study. A second combination strategy achieved similar results but 

required approximately 20% fewer measurements sites with the HRME. 

7.2 Future Research Directions 

There are several future research directions which would behoove the further 

development of widefield optical imaging for detection and delineation of oral neoplasia. 

Firstly, the MDM or another analogous portable system with autofluorescence capability 

at 405 nm excitation should be tested on a population with a high incidence of focal 

inflammation and other common benign conditions which are likely to occur in a 
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screening population. The patient population tested in the clinical studies in Chapters 3-6 

were from a tertiary care center where malignant and premalignant lesions had already 

been verified by biopsy. While the non-neoplastic regions selected for analysis almost 

always contained either inflammation, hyperkeratosis, hyperplasia, or a combination of 

these conditions, it was not tested if other common benign conditions would produce 

false positives. Furthermore, testing this technology on a larger patient population and in 

different geographic locations will help to confirm its effectiveness. 

Secondly, further analysis should be conducted into the selection of the clinically 

normal area used to normalize the red to green ratio. It was observed, but not quantified 

during the analysis conducted in this work, that the classification algorithm accuracy was 

dependent on the choice of location for this selected clinically normal region. While 

there was an attempt to select a clinically normal region contralateral to the lesions or 

distal, but oh the same anatomic site as the lesion of interest, this was not always possible 

because of the captured field of view available in the collected images. The classification 

was particularly sensitive to selected region when it was chosen near the dorsal tongue, 

which often had increased red fluorescence even in normal volunteers. 

Thirdly, the probability mapping analysis described in Chapter 4 should be 

expanded to reveal any greater potential. The probability mapping procedure was only 

demonstrated on a few patients, largely because of the practical limitations of obtaining 

histopathology for entire resected specimens. Histopathology may be easier to correlate 

to images of resected tissue and this may provide a viable pathway to further this 

analysis. Additionally, work should be conducted to help segment the lesion and define 

the lesion border based on the probability mapping. K-means clustering and other 
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unsupervised learning techniques may aid in this problem. The threshold for the lesion 

border can be altered and compared to full resection pathology maps to find appropriate 

values. Furthering this area has the potential of extending the use of widefield imaging to 

margin detection in addition to screening. 

Fourth, the instrument hybrid analysis described in Chapter 6 should be extended to 

other secondary instruments to help answer of the limitations of the MDM. Results from 

Chapter 5 indicate that the red to green ratio can discriminate non-neoplastic tissue from 

neoplastic tissue well, but likely cannot make a more specific diagnosis with the tested 

configuration. Clinically, more diagnostic information would be beneficial to guide 

treatment. Additionally, a confirmation of the MDM diagnosis by a device which 

measures a fundamentally different morphological or biochemical feature would be 

beneficial. Depth sensitive point probe fluorescence and reflectance spectroscopy is a 

well tested technology which could be combined with the widefield approach. In a 

complementary fashion, the widefield imaging may help to answer some of the 

limitations of point probe devices by identifying suspicious lesions after screening the 

entire oral mucosa, a procedure which is impractical with any device with a small field of 

view or measurement area. 

Finally, closer investigation into the biological origins of the most important 

imaging features observed in this work would help in understanding why this method 

works well in a tertiary care patient population, and if it should generalize to larger, more 

diverse populations with more benign conditions. Additionally, understanding the origins 

of these observations may help to explain why the natural discrimination line when using 

the red to green ratio appears to be between non-neopalstic tissue and lesions with any 
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grade of dysplasia or cancer, including mild dysplasia. In order to supplement the work 

already done by Pavlova et al. in this area [6] I would recommend conducting a tissue 

microarray study to compare regions with decreased autofluorescence to regions with 

normal autofluorescence. Immunohistochemical staining of suspected causes such as 

MMPs, known to breakdown the basement membrane, and collagen and elastin fibers 

could shine light on the underlying biological functions being measured with the 

autofluorescence imaging. 
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