
RICE UNIVERSITY

Linear vs. Branching Time: A Semantical Perspective

by

Sumit Nain

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE Master of Science

APPROVED, THESIS COMMITTEE:

Professor Moshe Y. Vardi, Chair
Karen Ostrum George Professor
Department of Computer Science

Professor Keith Cobper
Department of Computer Science

0<KW
Assistant Professor Walid Taha
Department of Computer Science

HOUSTON, TEXAS

MARCH 2009

UMI Number: 1466809

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1466809

Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Linear vs. Branching Time: A Semantical Perspective

by

SumitNain

The discussion of the relative merits of linear versus branching-time goes back to early

1980s. The dominating belief has been that the linear-time framework is not expressive

enough semantically, marking linear-time logics as weak. Here we examine this issue from

the perspective of process equivalence, one of the most fundamental notions in concur­

rency theory. We postulate three principles that we view as fundamental to any discussion

of process equivalence. First, we take contextual equivalence as the primary notion of

equivalence. Second, we require the description of a process to fully specify all relevant

behavioral aspects of the process. Finally, we require observable process behavior to be re­

flected in input/output behavior. Under these postulates the distinctions between the linear

and branching semantics tend to evaporate. Applying them to the framework of transduc­

ers, we show that our postulates result in a unique notion of process equivalence, which is

trace based, rather than tree based.

Acknowledgments

I am very grateful for the support and guidance of my advisor, Dr. Moshe Vardi. I would

like to thank the other members of my thesis committee, Dr. Walid Taha and Dr. Keith

Cooper. Finally, I must also thank my office-mates, Deian Tabakov and Seth Fogarty.

Contents

1 Introduction 1

2 A Principled Approach to Process Semantics 5
2.1 The Case Against Linear Time 5
2.2 Process Equivalence Revisited 6

3 Nondeterministic Transducers 15
3.1 Definition of Transducers 15
3.2 Synchronous Parallel Composition 17
3.3 Executions and Traces . . 23
3.4 Full Abstraction 27

4 Probabilistic Transducers 32
4.1 Preliminaries . 32

4.1.1 Measure and Probability 32
4.1.2 Measure On Infinite Words 35

4.2 Definition of Probabilistic Transducers 37
4.3 Probabilistic Executions and Traces 39
4.4 Full Abstraction 48

5 Conclusion 53

Chapter 1

Introduction

One of the most significant recent developments in the area of formal design verifi­

cation is the discovery of algorithmic methods for verifying temporal-logic properties of

finite-state systems [19, 44, 55, 65]. In temporal-logic model checking, we verify the cor­

rectness of a finite-state system with respect to a desired property by checking whether

a labeled state-transition graph that models the system satisfies a temporal logic formula

that specifies this property (see [21]). Model-checking tools have enjoyed a substantial and

growing use over the last few years, showing ability to discover subtle flaws that result

from extremely improbable events. While early on these tools were viewed as of academic

interest only, they are now routinely used in industrial applications [31].

A key issue in the design of a model-checking tool is the choice of the temporal lan­

guage used to specify properties, as this language, which we refer to as the temporal

property-specification language, is one of the primary interfaces to the tool. (The Other

primary interface is the modeling language, which is typically the hardware description

1

language used by the designers). One of the major aspects of all temporal languages is

their underlying model of time. Two possible views regarding the nature of time induce

two types of temporal logics [43]. In linear temporal logics, time is treated as if each

moment in time has a unique possible future. Thus, linear temporal logic formulas are in­

terpreted over linear sequences and we regard them as describing the behavior of a single

computation of a program. In branching temporal logics, each moment in time may split

into various possible futures. Accordingly, the structures over which branching temporal

logic formulas are interpreted can be viewed as infinite computation trees, each describing

the behavior of the possible computations of a nondeterministic program.

In the linear temporal logic LTL, formulas are composed from the set of atomic proposi­

tions Using the usual Boolean connectives as well as the temporal connectives G ("always"),

F ("eventually"), X ("next"), and U ("until"). The branching temporal logic CTL* aug­

ments LTL by the path quantifiers E ("there exists a computation") and A ("for all com­

putations"). The branching temporal logic CTL is a fragment of CTL* in which every

temporal connective is preceded by a path quantifier. Note that LTL has implicit universal

path quantifiers in front of its formulas. Thus, LTL is essentially the linear fragment of

CTL*.

The discussion of the relative merits of linear versus branching temporal logics in the

context of system specification and verification goes back to the 1980s [43, 26, 7, 54, 28,

27,57,18,16, 62,63]. As analyzed in [54], linear and branching time logics correspond to

two distinct views of time. It is not surprising therefore that LTL and CTL are expressively

2

incomparable [18,27,43]. The LTL formula FGp is not expressible in CTL, while the CTL

formula AFAGp is not expressible in LTL. On the other hand, CTL seems to be superior

to LTL when it comes to algorithmic verification, as we now explain.

Given a transition system M and a linear temporal logic formula <p, the model-checking

problem for M and <p is to decide whether </? holds in all the computations of M. When ip is

a branching temporal logic formula, the problem is to decide whether <p holds in the compu­

tation tree of M. The Complexity of model checking for both linear and branching temporal

logics is well understood: suppose we are given a transition system of size n and a temporal

logic formula of size m. For the branching temporal logic CTL, model-checking algorithms

run in time 0(nm) [19], while, for the linear temporal logic LTL, model-checking algo­

rithms run in time n2° (m) [44]. Since LTL model checking is PSPACE-complete [56], the

latter bound probably cannot be improved.

The difference in the complexity of linear and branching model checking has been

viewed as an argument in favor of the branching paradigm. In particular, the computational

advantage of CTL model checking over LTL model checking made CTL a popular choice,

leading to efficient model-checking tools for this logic [20]. Through the 1990s, the domi­

nant temporal specification language in industrial use was CTL. This dominance stemmed

from the phenomenal success of SMV, the first symbolic model checker, which was CTL-

based, and its follower VIS, also originally CTL-based, which served as the basis for many

industrial model checkers.

In [64] we argued that in spite of the phenomenal success of CTL-based model check-

3

ing, CTL suffers from several fundamental limitations as a temporal property-specification

language, all stemming from the fact that CTL is a branching-time formalism: the lan­

guage is unintuitive and hard to use, it does not lend itself to compositional reasoning, and

it is fundamentally incompatible with semi-formal verification. In contrast, the linear-time

framework is expressive and intuitive, supports compositional reasoning and semi-formal

verification, and is amenable to combining enumerative and symbolic search methods. In­

deed, the trend in the industry during this decade has been towards linear-time languages,

such as ForSpec [6], PSL [25], and SVA [66].

In spite of the pragmatic arguments in favor of the linear-time approach, one still hears

the arguments that this approach is not expressive enough, pointing out that in semantical

analyses of concurrent processes, e.g., [60], the linear-time approach is considered to be

the weakest semantically. In this dissertation we address the semantical arguments against

linear time and argue that even from a semantical perspective the linear-time approach is

quite adequate for specifying systems.

The gist of our argument is that branching-time-based notions of process equivalence

are not reasonable notions of process equivalence, as they distinguish between processes

that are not contextually distinguishable. In contrast, the linear-time view does yield an

appropriate notion of contextual equivalence.

4

Chapter 2

A Principled Approach to Process

Semantics

2.1 The Case Against Linear Time

The most fundamental approach to the semantics of programs focuses on the notion of

equivalence. Once we have defined a notion of equivalence, the semantics of a program can

be taken to be its equivalence class. In the context of concurrency, we talk about process

equivalence. The study of process equivalence provides the basic foundation for any theory

of concurrency [51], and it occupies a central place in concurrency-theory research, cf.

[60].

The linear-time approach to process equivalence focuses on the traces of a process. Two

processes are defined to be trace equivalent if they have the same set of traces. It is widely

accepted in concurrency theory, however, that trace equivalence is too weak a notion of

5

equivalence, as processes that are trace equivalent may behave differently in the same con­

text [50]. An an example, using CSP notation, the two processes

if (true —> alx; /i!x)D(true —* b?x; h\x)fi

if (alx - • h\x)n(b?x -> /*b)fi

have the same set of communication traces, but only the first one may deadlock when

run in parallel with a process such as 6!0.

In contrast, the two processes above are distinguished by bisumulation, highly popular

notion of process equivalence [51,53,58]. It is known that CTL characterizes bisimulation,

in the sense that two states in a transition system are bisimilar iff they satisfy exactly the

same CTL formulas [15] (see also [39]). This is sometime mentioned as an important

feature of CTL.

This contrast, between the pragmatic arguments in favor of the adequate expressiveness

of the linear-time approach [64] and its accepted weakness from a process-equivalence

perspective, calls for a re-examination of process-equivalence theory.

2.2 Process Equivalence Revisited

While the study of process equivalence occupies a central place in concurrency-theory

research, the answers yielded by that study leave one with an uneasy feeling. Rather than

6

providing a definitive answer, this study yields a profusion1 of choices [3]. This situation

led to statement of the form "It is not the task of process theory to find the 'true' semantics

of processes, but rather to determine which process semantics is suitable for which appli­

cations" [60]. This situation should be contrasted with the corresponding one in the study

of sequential-program equivalence. It is widely accepted that two programs are equivalent

if they behave the same in all contexts, this is referred to as contextual or observational

equivalence, where behavior refers to input/output behavior [67]. In principle, the same

idea applies to processes: two processes are equivalent if they pass the same tests, but there

is no agreement on what a test is and on what it means to pass a test.

We propose to adopt for process-semantics theory precisely the same principles ac­

cepted in program-semantics theory.

Principle of Contextual Equivalence: Two processes are equivalent if they behave the

same in all contexts, which are processes with "holes".

As in program semantics, a context should be taken to mean a process with a "hole",

into which the processes under consideration can be "plugged". This agrees with the point

of view taken in testing equivalence, which asserts that tests applied to processes need to

themselves be defined as processes [23]. Furthermore, all tests defined as processes should

be considered. This excludes many of the "button-pushing experiments" of [50]. Some

of these experiments are too strong-they cannot be defined as processes, and some are too

weak-they consider only a small family of tests [23].

^his is referred to as the "Next '700 ... ' Syndrome." [3]

7

In particular, the tests required to define bisimulation equivalence [2, 50] are widely

known to be too strong [10,11, 12, 32].

In spite of its mathematical elegance [5, 58] and ubiquity in logic [8, 4], bisimulation

is hot a reasonable notion of process equivalence, as it makes distinctions that cannot be

observed. Bisimulation is a structural similarity relation between states of the processes

under comparison, rather than an observational comparison relation.

The most explicit advocacy of using bisimulation-based equivalence (in fact, branching

bisimulation) appears in [61], which argues in favor of using equivalence concepts that are

based on internal structure because of their context independence: "if two processes have

the same internal structure they surely have the same observable behavior." It is hard to ar­

gue with the last point, but expecting an implementation to have the same internal structure

as a specification is highly unrealistic and impractical, as it requires the implementation to

be too close to the specification. In fact, it is clear from the terminology of "observational

equivalence' used in [51] that the intention there was to formulate a concept of equivalence

based on observational behavior, rather than on internal structure. Nevertheless, the terms

"observational equivalence" for bisimulation-based equivalence in [51] is, perhaps, unfor­

tunate, as weak-bisimulation equivalence is in essence a notion of structural similarity.

Remark 1 One could argue that bisimulation equivalence is not only a mathematically el­

egant concept; it also serves as the basis for useful sound proof techniques for establishing

process equivalence, cf. [39]. The argument here, however, is not against bisimulation as

a useful mathematical concept; such usefulness ought to be evaluated on its own merits, cf

8

[30]. Rather, the argument is against viewing bisimulation-based notions of equivalence

as reasonable notions of process equivalence.

The Principle of Contextual Equivalence does not fully resolve the question of process

equivalence. In additional to defining the tests to which we subject processes, we need to

define the observed behavior of the tested processes. It is widely accepted, however, that

linear-time semantics results in important behavioral aspects, such as deadlocks and live-

locks, being non-observable [50]. It is this point that contrasts sharply with the experience

that led to the adoption of linear time in the context of hardware model checking [64];

in today's synchronous hardware all relevant behavior, including deadlock and livelock is

observable (observing livelock requires the consideration of infinite traces). Compare this

with our earlier example, where the process

if (true —• a?x; h\x)0(true —> b?x; h\x)fi

may deadlock when run in parallel with a process such as b\0. The problem here is that

the description of the process does not tell us what happens when the first guard is selected

in the context of the parallel process 6!0. The deadlock here is not described explicitly;

rather it is implicitly inferred from a lack of specified behavior. This leads us to our second

principle.

Principle of Comprehensive Modeling: A process description should model all relevant

aspects of process behavior.

9

The rationale for this principle is that relevant behavior, where relevance depends on

the application at hand, should be captured by the description of the process, rather than

inferred from lack of behavior by a semantical theory proposed by a concurrency theorist.

It is the usage of inference to attribute behavior that opens the door to numerous interpre­

tations, and, consequently, to numerous notions of process equivalence.

Remark 2 // is useful to draw an analogy here to another theory, that of nonmonotonic

logic, whose main focus is on inferences from absence of premises. The field started with

some highly influential papers, advocating, for example "negation as failure" [17] and

"circumscription"[48]. Today, however, there is a profusion of approaches to nonmono­

tonic logic, including numerous extensions to negation as failure and to circumscription

[47]. One is forced to conclude that there is no universally accepted way to draw conclu­

sions from absence of premises. (Compare also to the discussion of negative premises in

transition-system specifications [12, 32].)

Going back to our problematic process

if (true '—• alx\h\x)U (true -+b?x; h\x)fi.

The problem here is that the process is not receptive to communication on channel b, when

it is in the left branch. The position that processes need to be receptive to all allowed inputs

from their environment has been argued by many authors [1, 24, 45]. It can be viewed

as an instance of our Principle of Comprehensive Modeling, which says that the behavior

10

that results from a write action on channel b when the process is in the left branch needs

to be specified explicitly. From this point of view, process-algebraic formalisms such as

CCS [50] and CSP [40] are underspecified, since they leave important behavioral aspects

unspecified. For example, if the distinction between normal termination and deadlocked

termination is relevant to the application, then this distinction ought to be explicitly mod­

eled.

Rather, in CCS and CSP there is no observable distinction between normal and dead­

locked termination, as both situations are characterized only by the absence of outgoing

transitions. (The formalism of Kripke structures, often used in the model-checking litera­

ture [21], also suffers from lack of receptiveness, as it does not distinguish between inputs

and outputs.)

It is interesting to note that transducers, which were studied in an earlier work of Milner

[49], which led to [50], are receptive. Transducers are widely accepted models of hardware.

We come back to transducers in the next section.

Remark 3 The Principle of Comprehensive Modeling is implicit in a paper by Halpern on

modeling game-theoretic situations [36]. The paper shows that a certain game-theoretic

paradox is, in fact, a consequence of deficient modeling, in which states of agents do not

capture all relevant aspects of their behavior. Once the model is appropriately enriched,

the paradox evaporates away. For extensive discussions on modeling multi-agent systems,

see Chapters 4 and 5 in [29] and Chapter 6 in [35J.

The Principle of Comprehensive Modeling can be thought of as the "Principle of Ap-

11

propriate Abstraction". Every model is an abstraction of the situation being modeled. A

good model necessarily abstracts away irrelevant aspects, but models explicitly relevant

aspects. The distinction between relevant and irrelevant aspects is one that can be made

only by the model builder and users. For example, a digital circuit is a model of an analog

circuit in which only the digital aspects of the circuit behavior are captured [33]. Such a

model should not be used to analyze non-digital aspects of circuit behavior, such as timing

issues or issues of metastable states. Such issues require richer models. The Principle of

Comprehensive Modeling does not call for infinitely detailed models; such models are use­

less as they offer no abstraction. Rather, the principle calls for models that are rich enough,

but not too rich, dependning on the current level of abstraction. Whether or not deadlocked

termination should be considered distinct from normal termination depends on the the cur­

rent level of abstraction; at one level of abstraction this distinction is erased, but at a finer

level of abstraction this distinction is material. For further discussion of abstraction see

[42].

The Principle of Comprehensive Modeling requires a process description to model all

relevant aspects of process behavior. It does not spell out how such aspects are to be

modeled. In particular, it does not address the question of what is observed when a process

is being tested. Here again we propose to follow the approach of program semantics theory

and argue that only the input/output behavior of processes is observable. Thus, observable

relevant aspects of process behavior ought to be reflected in its input/output behavior.

Principle of Observable I/O: The observable behavior of a tested process is precisely its

12

input/output behavior.

Of course, in the case of concurrent processes, the input/output behavior has a temporal

dimension. That is, the input/output behavior of a process is a trace of input/output actions.

The precise "shape" of this trace depends of course on the underlying semantics, which

would determine, for example, whether we consider finite or infinite traces, the temporal

granularity of traces, and the like. It remains to decide how nondeterminism is observed,

as, after all, a nondeterministic process does not have a unique behavior. This leads to

notions such as may testing and must testing [23]. We propose here to finesse this issue by

imagining that a test is being run several times, eventually exhibiting all possible behaviors.

Thus, the input/output behavior of a nondeterministic test is its full set of input/output

traces.

(One could argue that by allowing a test to observe all input/output traces, our notion

of test is too strong, resulting in an overly fine notion of process equivalence. Since our

focus here is on showing that trace equivalence is not too coarse, we do not pursue this

point further here.)

It should be rioted that the approach advocated here is diametrically opposed to that of

[61], who argues against contextual equivalence: "In practice, however, there appears to

be doubt and difference of opinion concerning the observable behaviour of systems. More­

over, what is observable may depend on the nature of the systems on which the concept

will be applied and the context in which they will be operating." In contrast, our guiding

principles say that (1) by considering all possible contexts, one need not worry about iden-

13

tifying specific contexts or testing scenarios, and (2) process description ought to describe

the observable behavior of the process precisely to remove doubts about that behavior. In

our opinion, the "doubt and difference of opinion" about process behavior stem from the

underspecificity for formalisms such as CCS and CSP.

Remark 4 In the same way that bisimulation is not a contextual equivalence relation,

branching-time properties are not necessarly Contextually observable. Adapting our prin­

ciples to property observability we should expect behavioral properties to be observable

in the following sense. If two processes are distinguished by a property ip, that is, Pi

satisfies <p, but Pi does not satisfy <p, there has to be a context C such that the set of input-

output traces ofC[Pi] is different than that ofC[Pi}. Consider, however, the CTL property

AGEFp, which says that from all given states of the process it is possible to reach a state

where p holds. It is easy to construct processes P\ and P% one satisfying AGEFp and

one falsifying it, such that C[P\\ and C[Pi] have the same set of input-output traces for all

contexts C. Thus, AGEFp is a structural property rather than an observable property.

In the next section we apply our approach to transducers; we show that once our three

principles are applied we obtain that trace-based equivalence is adequate and fully abstract;

that is, it is precisely the unique observational equivalence for transducers.

We believe that this holds in general; that is, under our three principles, trace-based

equivalence provides the "right" notion of process equivalence.

14

Chapter 3

Nondeterministic Transducers

Transducers constitute a fundamental model of discrete-state machines with input and

output channels [37]. They are still used as a basic model for sequential computer circuits

[33]. We use nondeterministic transducers as our model for processes. We define a syn­

chronous composition operator for such transducers, which provides us a notion of context.

We then define linear observation semantics and give adequacy and full-abstraction results

for trace equivalence in terms of it.

3.1 Definition of Transducers

A nondeterministic transducer is a state machine with input and output channels. The

state-transition function depends on the current state and the input, while the output de­

pends solely on the current state (thus, our machines are Moore machines [37]).

Definition 1 A transducer is a tuple, M = (Q, q0,1,0, E, a, A, 6), where

15

• Q is a countable set of states.

• qo is the start state.

• / is a finite set of input channels.

• O is a finite set of output channels.

• E is a finite alphabet of actions (or values).

• a : IU O —* 2 s — {0} is a function that allocates an alphabet to each channel.

• \ : Q x O —*His the output function of the transducer. \(q, o) € a(o) is the value

that is output on channel o when the transducer is in state q.

• 8 : Q x a{i\) x • • • x a(in) —> 2^, where I = { i i , . . . , in}, is the transition function,

mapping the current state and input to the set of possible next states.

Both / and O can be empty. In this case 5 is a function of state alone. This is important

because the composition operation that we define usually leads to a reduction in the number

of channels. Occasionally, we refer to the set of allowed values for a channel as the channel

alphabet. This is distinct from the total alphabet of the transducer (denoted by E).

We represent a particular input to a transducer as an assignment that maps each input

channel to a particular value. Formally, an input assignment for (Q, q0,1,0, E, a, A, 5)

is a function / : / —> E, such that for all i e I, f(i) G a(i). The entire input can

then, by a slight abuse of notation, be succinctly represented as / (/) . The set of all input

assignments of transducer M is denoted In(M). Similarly, an output assignment is a

16

mapping g : O —> E such that there exists q G Q, for all o G 0 , #(o) = A(#, o). The set of

all output assignments of M is denoted Out(M). The output mapping of M is the function

h : Q —• Out(M) that maps a state to the output produced by the machine in that state: for

all q G Q, o G O, %) (o) = A(g, o).

We point to three important features of our definition. First, note that transducers are

receptive. That is, the transition function 5(q, f) is defined for all states q G Q and input

assignments / . There is no implicit notion of deadlock here. Deadlocks need to be modeled

explicitly, e.g., by a special sink state d whose output is, say, "deadlock". Second, note that

inputs at time k take effect at time k + 1. This enables us to define composition without

worrying about causalilty loops, unlike, for example, in Esterel [9]. Thirdly, note that the

internal state of a transducer is observable only through its output function. How much of

the state is observable depends on the output function.

3.2 Synchronous Parallel Composition

In general there is no canonical way to compose machines with multiple channels. In

concrete devices, connecting components requires as little as knowing which wires to join.

Taking inspiration from this, we say that a composition is defined by a particular set of

desired connections between the machines to be composed. This leads to an intuitive and

flexible definition of composition.

A connection is a pair consisting of an input channel of one transducer along with an

output channel of another transducer. We require, however, sets of connections to be well

. 17

formed. This requires two things:

• no two output channels are connected to the same input channel, and

• an output channel is connected to an input channel only if the output channel alphabet

is a subset of the input channel alphabet.

These conditions guarantee that connected input channels only receive well defined values

that they can read. We now formally define this notion.

Definition 2 (Connections) Let' M be a set of transducers. Then

Conn(M) = {X C C(M)\(a, b) e X, (a, c) e X^b = c}

where C(M) = {(IA,OB) \{A,B} C M,iA £ IA,OB € OB,CTB(OB) Q OA^A)} is

the set of all possible input/output connections for A4. Elements of Conn(M) are valid

connection sets.

Given a set of connections between a set of transducers, we can obtain a composite

transducer in a natural way using the cartesian product. The state space is just the cartesian

product of the states of the individual transducers. Every channel involved in a connection

is removed, and the remaining channels become channels of the composite.

Definition3(Composition) LetM ='{Mit.:.,Mn}, Mk = (Qk,$,Ik,Ok,T,k,ak,\k,Sk),

be a set of transducers, and C 6 Conn(M). Then the composition of M. with respect to

C, denoted by | \c{M), is a transducer (Q, %, / , O, S, a, A, 5) defined as follows:

18

• Q = Q\ x . . . x Qn

• qo = Qo x . . . x ^

••/ = U L i A - { » I M ' e C }

-0 = [)n
k=1Ok-{o\(i,o)eC}

• cr(u) = crk(u), where u G ^UOfc

• A(?i,..., <?n, o) = Xk(qk, 6) where o G Ok

• 5(qi,...,qn,f(I)) = U^=1(5k(qk,g(Ik)))

where g{%) = \j(qj, o) if(i, 6) G C, 0 6 Oj, and g(i) = f(i) otherwise.

Definition 4 (Binary Composition) The binary composition of Mi and M2 with respect

toCt Conn{{Mx, M2}) is Mi\\cM2 = ||c({Afi, M2}).

The following theorem shows that a general composition can be built up by a sequence

of binary compositions. Thus binary composition is as powerful as general composition

and henceforth we switch to binary composition as our default composition operation.

Theorem 1 (Composition Theorem) Let M = {Mi,..., Mn} be a set of transducers,

where Mk = (Qk, q$, Ik, Ok, Sfe, ak, Xk, Sk), and C G Conn(M). Let M' = M - {Mn},

C = {(ito) G C\i G Ij}oeOk,j <n,k< n} andC" = C - C. Then

\\c(M) = \\c»({\\a(M'),Mn}).

19

Proof. Let

M=\\c(M) = (Q,q0,I,O,E,a,X,5)

M' = \\c,(M') = (Q,,q'0,I',O
>,X',a',\',8')

M" = \\c»({M', Mn}) = (Q'\ ql I", O", E", a", A", 8")

To prove that M" = M we need to show that each component of M" is identical

to the corresponding component of M. Below we give such a proof for each separate

compbnent.The proofs depend entirely on Definition 3.

• Q" = Q' x Qn = (Q1 x ... x Qn-i) xQn = Q (using Defn. 3).

• Qo = Qo x Qo = (Qo x • • • x 9o_1) x ?o = Qo (using Defn- 3)-

. I" = I'u ln - {i\(i,o)e C"} = (\Jn
kzlh-{i\ (i,o) e C}) u /„ - {i\(i,o) e

C"} = (UlZl h) UIn~ {i | (i, o) G C'} - {t|(t, o) e C"} = ULi h~{i\ («, o) €

c"uc"} = /.

• O" = O. Proof is identical to the input case, because of the symmetry between the

definition of inputs and outputs of a composition (see Defn. 3).

• £" = V U Sn = (U£j Efc) U En = ULi Sfc = S.

• a" = a. This is true because composition does not change any channel alphabet.

• A" = A. Composition simply projects the outputs of the individual automata on the

remaining output channels.

20

• 5" = 8.

<*"(9i, • • •, On, / (/)) = S'(qu ..., qn_ug(r)) x 5n(qn, g(In)), where

gii) = {

\'(qu ..,, &_!, o) if (i, o) G C", o G O'

K(qn, o) if (i, 6) eC",oe On

f(i) otherwise.

Now X'(qi,..., qn-i, o) = Xk(qk, o) for o E Ok and 1 < k < n. We use this fact to

rewrite g as follows:

9(i) =
Afc(gfc,o) if (z,o) € C " , o e O k , k < n

f(i) otherwise.

Next we see that S'(qu .. .,qn-i,g{I')) = ^=l(sk(qk, h(h))), where

(*j(qj,o)if(i,o]) G C',oe Oj,j < n

g(i) otherwise.

21

Now we can simply expand g(i) in the definition of h(i) and we get

h{i) = I

Xj(qj, o) if (i, o) e C',o€: Oj, j < n

\j(qj, o) if (i, 6) e C", o G Oj,j < n

f(i) otherwise.

We can write 8" and 8 as follows:

8"(qi,...,qn,f(I)) = (Un
kzl(8k(qk,h(Ik)))) x 8n(qn,g(In))

S(qi, • • -, qn, /(/)) = njUC&Gfc, e(/fc)))

where

e(0 = i
Xj(qj,o) if (z, o) G C, o G Oj, j < n

f(i) otherwise.

Finally, to prove that 8" and 8 are the same function, it suffices to show that e(i)

agrees with h(i) on / ' and agrees with g(i) on In.

The upshot of Theorem 1 is that in the framework of transducers a general context,

which is a network of transducers with a hole, is equivalent to a single transducer. Thus,

for the purpose of contextual equivalence it is sufficient to consider testing transducers.

22

3.3 Executions and Traces

Definition 5 (Execution) An execution for transducer M = (Q, go,1,0, E, a, A, 5) is a

countable sequence of pairs (SJ, fi)\=oSuch that SQ = q0, and for alii > 0,

• SiEQ.

• fi : I —> E such that for all u £ I, f(u) G a{u).

• Si e S(si-U fi-i{l)).

If I € Â , the execution is finite and its length is I. If I = 00, the execution is infinite and its

length is defined to be 00. The set of all executions of transducer M is denoted exec(M).

Definition 6 (Trace) Let a = (SJ , / J) - = 0 £ exec(M). The trace of a, denoted by [a], is

the sequence of pairs (ui, fi) -=0, where for all i > 0, u>i : O —• S and for all o G O,

u>i(o) = A(SJ, o). The set of all traces of a transducer M, denoted by Tr(M), is the set

{[a]|o; € exec(M)}. An element of'Tr(M) is called a trace of M.

Thus a trace is a sequence of pairs of output and input actions. While an execution captures

the real underlying behavior of the system, a trace is the Observable part of that behavior.

The length of a trace a is defined to be the length of the underlying execution and is denoted

by |a|.

Definition 7 (Trace Equivalence) Two transducers Mi and M2 are trace equivalent, de­

noted by M\ ~ T M2, ifTr(Mi) = Tr(M2). Note that this requires that they have the same

set of input and output channels.

23

We now study the properties of trace equivalence with respect to composition. In order

to do so, we need a way to match traces of a composition to traces of its components. We

first define the composition of executions and traces.

Definition8 Given a — (SJ , / J)" = 0 £ exec(M\) and ft = {ri,gi)f=0 G exec{M2), we

define the composition of a and (5 w.r.t C G Conn({Mi, M2}) as follows

a\\c0= ((si,ri),hi)i^

where hi(u) = /,(«) ifu G I\ — {i\(i,o) G C} andhi(u) = giiu) ifu £ l2 — {i\(i,o) £ C}.

Definition 9 Given t = (ui,fi)?=6 £ Tr{Mx) andu = (^,&)?=0 £ Tr(M2), we define

the composition oft and u w.r.t C G Conn{{M\, M2}) as follows

t\\cu=(lk,hi)?=Q

where fii(o) = Ui(o) if o G 0\ — {o\(i, o) G C} and p,i(o) = Ui(o) if o G 02 — {o\(i, o) G

C}, and hi is as defined in Definition 8 above.

Note that the composition operation defined on traces is purely syntactic. There is no

guarantee that the composition of two traces is a trace of the composition of the transducers

generating the individual traces. The following simple property is necessary and sufficient

to achieve this.

Definition 10 (Compatible Traces) Given C G Conn({Mu M2}), h = {u\,fl%Q G

24

Tr(Mi) and t2 = (uf, f?)™=Q G Tr(M2), we say that t\ and t2 are compatible with respect

to C if for all (u, o) G C and for all i > 0, we have

• Ifu G Ij ando G Ok then f({u) — o;f(o), for all i > 0andforj,k E {1,2}.

Lemma 1 Let C G Conn({Mi,M2}), t G Tr(Mi) and u G Tr(M2). Then t\\cu G

Tr(M\ | |cM2) if and only ift and u are compatible with respect to C.

We now extend the notion of trace composition to sets of traces.

Definition 11 Let 7\ C Tr(Mi), T2 C Tr(M2) and C G Conn{{Mu M2}). We define

TxWcTi = {hWcti I h G Tr{Mx)M G Tr(M2), \h\ = \t2\}

The next theorem is an important intermediate result on the way to proving the congru-

ency w.r.t. composition of not just trace equivalence, but of a general class of linear-time

semantics derived from trace equivalence. The result can be thought of as an invariance

theorem. Suppose Mi and M2 are transducers, Ti is a subset of the traces of Mi, T2 is a

subset of the traces of M2 and C G Conn({Mi, M2}). Then the theorem says that those

elements of Ti||cT2 which are also valid traces of M1||C7M2, only depend on Ti and T2,

and are independent of M\ and M2.

Theorem 2 (Syntactic theorem of traces) LetTx C Tr(Mi)nTV(M3) andT2 C TV(M2)n

Tr{MA), andC G Conn({MuM2}) D Conn{{Mz,M^}). Then

(T1\\cT2)nTr(M1\\cM2) = (T1\\cT2)nTr(M3\\cM4)

25

Proof. Let t G (Ti\\cT2) D Tr(M1\\cM2). Then t = ti\\ct2, where h G 2\ and t2 G T2.

Since £i||c*2 '£ Tr{Mi\\cM2), by Lemma 1, t\ and £2 are compatible with respect to C.

Since Tx C Tr(M3) and T2 C Tr(MA), again by Lemma 1, ti\\ct2 G Tr(M3 | |cM4).

Therefore (Ti\\cT2) n r r (Mi | | c M 2) C (ri | | cT2) n Tr(M3\\cM4). By symmetry, set

inclusion, and thus equality, holds in the reverse direction too. Kl

Using Theorem 2, we show now that any equivalence defined in terms of sets of traces

is automatically a congruence with respect to composition, if it satisfies a certain natural

property.

Definition 12 (Trace-based equivalence) Let M be the set of all transducers. Let R :

M -> {A C Tr(M)\M e M) such that for all M e M, R{M) C Tr(M). Then

R defines an equivalence relation on M., denoted by ~R, such that for all Mi,M2 G

M., M\ ~R M2 if and only if R{M\) = R(M2). Further, the function R is called an

equivalence-based invariance, and the relation ~R is called a trace-based equivalence.

Trace-based equivalences enable us to relativize trace equivalence to "interesting" traces.

For example, one may want to consider finite traces only, infinite traces only, fair traces

only, and the like. Of course, not all such relativizations are appropriate.

We require traces to be compositional, in the sense described below. This covers finite,

infinite, and fair traces.

Definition 13 (Compositionality) Let ~# be a trace-based equivalence. We say that ~ #

is compositional if given transducers Mi, M2 and C G Conn({Mi, M2}), the following

26

hold:

1. R{Ml\\cM2) C R(M1)\\CR(M2).

2. If t\ G R{M\), t2 G R{M2), and'ti, t2 are compatible w.r.t. C, then ti\\ch G

R(M1\\CM2).

The two conditions in Definition 13 are, in a sense, soundness and completeness conditions,

as the first ensures that no inappropriate traces are present, while the second ensures that all

appropriate traces are present. That is, the first condition ensures that the trace set captured

by R is not too large, while the second ensures that it is not too small.

Note, in particular, that trace equivalence itself is a compositional trace-based equiva­

lence. We are now in a position to obtain full abstraction results for our notion of compo­

sitional trace-based equivalence

3.4 Full Abstraction

There are two aspects to full abstraction. The first lies in showing that the semantics

makes all the needful distinctions, and the second in showing that it makes no unnecessary

ones. Thus we want to show that if two transducers are equivalent by our semantics, then

no context can distinguish between them. Here we prove the stronger condition that trace

semantics is a congruence with respect to composition. Then we next show that if two

machines are inequivalent under trace semantics, then some context (i.e., composition with

a transducer) will be able distinguish between the two. The following theorem asserts that

27

~# is a congruence with respect to composition.

Theorem 3 (Congruence Theorem) Let ~R be a compositional trace-based equivalence.

Let Mx ~ f i M3) Mi ~R MA,andC e Conn({M1,M2}) = Conn({M3, M4}). Then

Mi\\cM2 ~R M3 | |cM4.

Proof. We prove this by showing R(M1\\CM2) = (R(Mi)\\cR{M2)) nTr(M1\\cM2) =

(R(M3)I\CR(MA)) n Tr(M3\\CMA) = R(M3\\CM4). We prove the first equality by show­

ing set inclusion from both directions. The second equality is an instance of Theorem 2.

The third equality follows from the first by symmetry.

• R(Mi|\CM2) C (R(Mi)\\cR(M2)) n Tr{Mx|\CM2), because by Definition 13, '";.

R{Mi\\cM2) C R{M1)\\CR{M2), and by Definition 12, i?(Mi||cM2) C 7V(Mi||c?Af2):-

• JR(M1||CM2) D {R{Ml)\\cR{M2)) nTr(M 1 | | c M 2) ,

because if t i | | c ^ G (i?(Mi)||ci?(M2)) n Tr(Mi| |cM2) then, by Lemma 1, ti and

t2 are compatible w.r.t C, and, by Definition 13, *i| |o*2 £ -R(Mi||cM2).

An immediate corollary of Theorem 3 is the fact that no context can distinguish between

two trace-based equivalent transducers. The corollary is fact a special case of the theorem,

obtained by setting M2 = M4.

Corollary 1 Let M\ and M2 be transducers, R be a compositional trace-based equiva­

lence and Mi ~ ^ M2. Then for all transducers M and all C € Conn({M,Mi}) =

Cdnn({M, M2}), we have that M\\cMi ~R M\\CM2.

28

Finally, it is also the case that some context can always distinguish between two in-

equivalent transducers. If we choose a composition with an empty set of connections, all

original traces of the composed transducers are present in the traces of the composition.

If Mi ^R M2, then Mi||oM ^R M2\\<DM. We claim the stronger result that given two

inequivalent transducers with the same interface, we can always find a third transducer that

distinguishes between the first two, when it is maximally connected with them.

But first we need to slightly restrict the form that the semantics R can take by impos­

ing an additional naturalness condition, that essentially says that R should not be able to

discriminate between identical traces produced by machines with the same interface.

Definition 14 (Interface-respecting Semantics) Let M\ and M2 be such that In(Mi) =

In(M2) and Out(Mi) =' Out(M2), and R be a trace-based equivalence. We say that R is

interface-respecting, ift G R(Mi) and t G Tr(M2) necessarily imply that t G R(M2).

Definition 15 (Tester) Given transducers M and M', we say that M' is a tester for M, if

there exists C G Conn({M, M'}) such that M\\cM' has no input channels and exactly

one output channel o with o G 0'M. We also say M' is a tester for M w.r.t. C.

Theorem 4 Let Mi and M2 be transducers with In(Mi) = In(M2) and Out(Mi) =

Out(M2), Rbe a compositional interface-respecting trace-based equivalence and Mi ^R

M2. Then there exists a transducer M and C G Conn({M, Mi}) = Conn({M, M2}),

such that M is a tester for Mx and M2 w.r.t. C, and M\ \cMi <^R M\\CM2.

29

Proof. Let Mi = (Q i . ^ . A . O i . E , ^ , A i A) and M2 = (Q2,qlh,02,'E,a2,X2,S2).

Since Mi 7 ^ M2, we assume without loss of generality that there exists r G -ft(Mi) \

&(M2). Let r - (wis /i)JL0 G Tr(Mi). We define M = (Q, q0,1,0, S, a, A, (5) as follows:

' • <2 = {<& : i G N} U {<?/}, is a countable set of states with a special failure state.

• For each o 6 Oj, we create an input channel in0 in / and assign alphabet a(in0) =

ai(o)toit.

• For each in G I\, we create an output channel oin in O and assign alphabet <j[pin) =

61 (in) to it.

• An extra output channel ot, with alphabet {a, b} C £, that will be the only visible

channel remaining after composition.

• A(<7i, oin) — fi(in), X(qi, ot) = a and X(q/, ot) = b. In all other cases, we don't care

what output M produces, and A can be assumed to be arbitrary.

• For state q £ Q, and input assignment g : / —*• E,

S(q,9(I)) = {
qi+1, ifq = qi and Vm0 G I,g{in0) = u>i{o),

qf, otherwise.

We define the set of connections C eConn({M, Mi}) as follows: for all in G h,o G 0\,

(in, oin) G C and (in0,o) G C, and nothing else is in C. Now M||cMi has exactly

one channel, which is the output channel ot belonging to M, and so M is a tester for Mi

30

w.r.t. C. The transducer M is deterministic and designed to follow the execution of the

distinguishing trace r. As soon as the computation of the machine being tested diverges

from this trace, M will enter its failure state and switch its visible output from a to b. Thus

if M2 does not produce the trace r, then we can clearly distinguish it from M\ using M.

The only remaining case to consider is when M2 does produce this trace but it does not

fall under the set distinguished by R. That is, r G Tr(M2) and r g R(M2). But this is

impossible as R is interface-respecting by definition. M

31

Chapter 4

Probabilistic Transducers

4.1 Preliminaries

In order to rigorously construct a probabilistic model of transducer behavior, we will

require certain concepts from measure theory and its application to the space of infinite

sequences over some alphabet (i.e., Cantor and Baire spaces). This is because our proba­

bilistic notion of behavior will be defined by probability distributions, which are measures,

over Q", the set of infinite sequences of states. We briefly cover the required mathemati­

cal background in this section. All lemmas and theorems in this section are stated without

proof. The interested reader should consult any standard text in measure theory ([34], [22]).

4.1.1 Measure and Probability

Intuitively, a probability distribution over some set X should satisfy the following prop­

erties: the probability of any event (a subset of X) should be non-negative, the probability

32

of the entire set X as an event should be 1, and the probability of the union of two dis­

joint events should be the sum of the probabilities of the events. For technical reasons, the

third condition is actually replaced by a stronger condition requiring countable additivity.

It turns out that this combination of desired properties cannot always be achieved if the

events are allowed to be arbitrary subsets of X. For the properties to hold simultaneously,

the set of events has to be restricted to a subset of 2X that is closed under complements and

countable unions. Such a subset of the power set is called a <r-algebra.

Definition 16 (a-algebra) Let X be a set and T be a set of subsets ofX. We say that J-'is

an algebra over X if it is closed under taking complements and finite unions. A a-algebra

over X is an algebra that is closed under countable unions. Given a subset A of 2X, the

a-algebra generated by A is the smallest o -algebra containing A and can be obtained as

the intersection of all o-algebras containing A

Definition 17 (Measure) Let X be a set and T be a a-algebra over X. A measure over

{X,T) is a function p : T —* [0, oo] from T to the extended positive reals, that satisfies

the following conditions:

Nullity. /i(0) = 0.

Countable additivity. p(\JieI Ai) = Yltei //(-^-*)/or every countable set ofpairwise dis­

joint sets Ai € J7.

The triple (X, J7, p) is called a measure space. Ifp{X) = 1 then p is a probability measure.

A probability space is a measure space with a probability measure.

33

Frequently, when there is some relation between sets X and Y, we can use a measure

defined on X to obtain a measure on Y. The rest of this subsection deals with two such

instances.

Given a function from X to Y that preserves measurable subsets in the inverse, we

can use it to generate a measure on Y from any measure on X. Such a function is called

a measurable function. In particular, the function mapping Qw to Out(My, which is a

generalization of the output mapping of a transducer, is measurable. Later, we crucially

exploit this fact while defining probabilistic analogues of executions and traces.

Definition 18 (Measurable function) Let X, Y be sets and J7, Q be a-algebras over X

and Y, respectively. A function f : X —> Y is called measurable, if for all A G Q,

Lemma 2 If p, : T —* [0, oo] w a measure over T, and f : X —* Y is a measurable

function, then pf : Q —*• [0, oo], defined as pf (A) = p(f~1(A)) for all A e Q, is a measure

over Q.

Finally, a measure on the product of spaces can be defined in the natural way as the

product of the measures on the individual spaces. This product measure will be used in the

composition of probabilistic transducers.

Theorem 5 (Product Measure) Let (Xi, FuHi) be a measure space for i E I. Then the

product space (Yli€i Xi, YlieI F{, Wiei AO. defined as follows, is a measure space.

• Yliei -^i ™ tne cartes^an product of sets.

34

• ILe/ ?i = illiei -Sj : Vi G / , Bi e Fi} is the product a-algebra,.

• (ILe/AOCfat : « € / }) = Ilie/(A*i(^i)) / o r x i G ^ - is the product measure.

If the fa are probability measures, then the product measure is also a probability measure.

4.1.2 Measure on Infinite Words

In the previous subsection we dealt with measures on arbitrary spaces. However, in

defining the behavior of probabilistic transducers, we will have to work with a highly

structured set: the space of infinite sequences over some alphabet. This is because, when

the transition function of the transducer is probabilistic instead of nondeterministic, a se­

quence of inputs induces a probability distribution over the set of state sequences of the

same length, which in turn defines a distribution over the set of Output sequences. In this

subsection we briefly review some useful properties of such spaces.

In order to define a measure on the space of infinite sequences over some alphabet E,

we must first choose a suitable a-algebra. The natural choice here is to use the a-algebra

generated by the basic open sets of the natural topology on Ew. The basic open set is called

a cylinder and is defined as the set of all possible infinite extensions of a given finite word.

Intuitively, if we view E*" as an infinite tree, then a cylinder is a finite path followed by a

complete infinite subtree.

Definition 19 (Cylinders) Given an alphabet E, and a finite word (3 e E*, the cylinder

Cp is defined as the set {(3 • a : a € E"}, where Ew is the set of all infinite words over E.

The finite word generating a cylinder is called the handle of the cylinder.

35

Definition 20 (Borel cr-algebra) Given an alphabet E, the Borel o-algebra over Sw, de­

noted by 23(E), is the o-algebra generated by the set of cylinders ofE".

We want to define a probability measure on E". Consider what such a measure \i

would look like, and the value it would take on cylinders. Given a cylinder Cp, we can

write it as a disjoint union of cylinders Cp = Lbes Cp.x. Then, by countable additivity,

fJ*(Cp) = j ^ - x e E y(Cp.x). Now, we can interpret the function p on cylinders as a function

/ on finite words, since there is a one to one correspondence between cylinders and finite

words. Turning things around, such a function / : E* —• [0,1] can be used to define the

measure on cylinders. The value that the measure takes on cylinders can in turn define the

value it takes on other sets in the cr-algebra. This intuition is captured by the next definition

and the theorem following it.

Definition 21 (Prefix function) Let Y be a countable alphabet and T* be the set of all

finite words over T. A prefix function over T is a function f : T* —*• [0,1] that satisfies the

following properties:

- m = i.

• f(a) = Zxerf(a-x)forallaeT*.

Theorem 6 Given an alphabet E, and a prefix function f over E, there is a unique proba­

bility measure p,: #(E) —* [0,1] such that for every cylinder Cp ofYF, p(Cp) = /(/?).

36

4.2 Definition of Probabilistic Transducers

We would like to extend the results of the nondeterministic case to the case where the

transition function of the machine is probabilistic, that is, the transitions that the machine

takes have probabilities associated with them. We do this by associating each distinct input

and state combination with a probability measure on the set of states.

Definition 22 (Probabilistic Transducer) A probabilistic transducer is a tuple,

M = (Q, q0,1,0, E, a, A, S) where

• Q is a countable set of states.

• qo is the start state.

• I is a finite set of input channels.

• O is a finite set of output channels.

• E is a finite alphabet of actions (or values).

• o : I U O —> 2 s is a function that allocates a channel alphabet to each channel.

• A : Q x O —> E is the output function of the machine. X(q: o) G cr(o) is the value

that is output on channel o when the machine is in state q.

• S : Q x cr(ii) x . . . x o(in) —> Q,, where I = {zi,.. .,in} and £1 is the set of all

probability measures on Q, is the transition function mapping the current state and

input to a probability distribution on the set of states.

37

Input assignments, output assignments, output mapping, In(M) and Out(M) are de­

fined just as for the nondeterministic case (Section 3.1).

Note that the only difference between a probabilistic transducer and a non-deterministic

one is in the definition of the transition function 8. Also note that in Definition 3 in Sec­

tion 3.2, the transition function of the composition is defined as the cartesian product of

the transition functions of the component transducers. So if we can define a cartesian

product operation for the transition function of probabilistic transducers, then the defini­

tions for general and binary composition, as well as the composition theorem and its proof,

which equates the two, will carry over in their entirety without any change from the non-

deterministic case. Such a product operation is provided by the product measure (Theorem

5). Intuitively, a transition of a composite machine can be viewed as multiple independent

transitions of its components, one for each component. Then the probability of making

such a composite transition must be the same as the probability of the multiple independent

transitions occurring at the same time, which is just the product of the individual probabil­

ities. This is formally captured by the product measure construction.

We will not restate the definitions for general and binary composition, as well as the

composition theorem. From here on, transducer will mean probabilistic transducer and

composition will mean binary composition of probabilistic transducers. In the next section,

we define appropriate notions of probabilistic behavior for transducers.

38

4.3 Probabilistic Executions and Traces

A single input assignment / (/) to a transducer M in state qo, induces a probability

distribution on the set of states Q, given by S(qo, / (/)) . Similarly, a pair of input assign­

ments f(I),g(I) applied in sequence should give a probability distribution on the set of

all pairs of states Q2. Intuitively, the probability assigned to the pair (qi, q2) should be the

probability that M steps through q\ and q2 in sequence as we input / (/) followed by g(I),

which is 5(qo, f(I))(qi) x <5(gi, g(I))(q2). If we assign such a probability to each pair of

states, we find that the resultant distribution turns out to be a probability measure. A similar

procedure can be applied to any finite length of input sequence. Thus, given an input se­

quence of finite length n, we can obtain a probability distribution on the set Qn, where the

probability assigned to an element of Qn can be intuitively interpreted as the probability of

the transducer going through that sequence of states in response to the input sequence.

This procedure breaks down when we consider an infinite sequence of inputs, because

<3"\ the set of infinite sequences over Q, is uncountable and defining the probability for

singleton elements is not sufficient to define a distribution. In fact, the probability of each

individual infinite sequence of states could very well be zero (similar to the case of the

uniform distribution over a finite interval of the real line). In order to obtain a distribution,

we need to define the probability for all measurable subsets of Q". We know from Section

4.1.2 that the suitable <r-algebra to use here is the Borel a-algebfa over Qw.

Theorem 6 is the bridge between the case of finite sequences of states, which we intu­

itively know how to handle, and the infinite case where the procedure of looking at individ-

39

ual sequences breaks down. The theorem tells us that if we can obtain a prefix function on

the set of states Q, then we can use it to obtain a measure on Q". Note that a prefix func­

tion deals only with finite sequences, and essentially captures the idea that the probability

of visiting a particular state q must be the same as the probability of visiting q and then

going to some arbitrary state. In a similar vein, the probability of heads in a single toss of a

coin must be the same as the probability of heads in the first of two tosses, when we do not

care about the results of the second toss. We use the transition function of the transducer to

define the prefix function on Q.

Definition 23 LetM = {Q, q0,J,0, E, a, A, 5) be a transducer, andir = (/i)~0 €ln(M)w

be an infinite sequence of inputs. Then we can inductively define a prefix function p(M, ir)

over Q as follows:

• p(M,7r)(e) = l.

• p(M,7r)(q) = 5(qQ,fo(I))(q)forq E Q.

• p(M, ir){a-p-q)= p(M, 7r)(a • p) x 5(p, f\a.pl(I))(q)for q G Q.

Proposition 1 p(M, TT) is a prefix function over Q.

Proof. Let M = (Q, qQ, I, O, S, a, A, S) and TT =' (fi)%L0 e ln(M)u. By Definition

23,p(M,7r)(e) = 1. Also, ZqeQp(M,ir)(e • q) = £ 9 6 Q % O , /„ (I))(q) = 1, because

5(qo, /o(-O) is a probability measure on Q. So the definition of prefix function is satisfied

for the case of the empty word. Now let a e Q* such that a ^ e. Then a = (3 • p for

some ft e Q* and p e Q. Then, by Definition 23, for any q e Q, p(M,n)(a • q) =

40

p(M,Tr)(/3-p-q) = p(M,TT)(/3• p) x SipJw(/))(</). Therefore £9GQp(M,ir)(a • q) =

p(M, 7r)(a) x Y,qeQ <*(p. /|/3-p| (•?")) (?) • S i n c e
 <*(P> / |/3-P|(/)) is a probability measure over Q,

its total measure over Q must be 1. Hence we have, J2q£Q p(M, TT){OL • q) — p(M, TT)(Q),

and so p(M, w) is a prefix function over Q. IEI

So given any infinite sequence of inputs, we can obtain a prefix function on the set of

states and thus obtain a unique probability measure on B(Q). We call such a measure an

execution measure, since it plays the same role in defining the behavior of the transducer

that executions did in the non-deterministic case.

Definition 24 (Execution Measure) Let M — (Q, qo, 1,0, E, o, A, 8) be a transducer, and

re 6 In^MY be an infinite sequence of inputs. The execution measure ofn over M, denoted

/i(M, 7r), is the unique probability measure on B(Q) such that for every cylinder Cp ofQ",

MM,7r)(C^) = p(M,7r)(/3).

Since the output of a transducer depends only on its state, each state q maps to an

output assignment h(q) : O —• E such that h(q)(o) = \(q, o) for all o £ O. Then we can

extend h : Q —> Out(M) to a mapping from sequences of states to sequences of output

assignments in the natural way: for a,p£ Q*, h(a • (3) = h(a) • h(0). We can also extend

it to the case of infinite sequences. Since an infinite sequence of states is just a mapping

g : N —>• Q from the natural numbers to the set of states, then h.0 g : N —*• Out(M) is a

mapping from the naturals to the set of outputs. We now show that h : Qw —• Out{M)w

is a measurable function, that is hrl maps measurable subsets of Out(My to measurable

subsets of Qw.

41

Lemma 3 The extended output mapping, h : Q" —• Out{M)w, of a transducer M is a

measurable function.

Proof. It suffices to show that hr1 maps cylinders of Out{M)w to measurable subsets of

Qw. Let a G Out(M)*, and consider hrl(Ca). Now hrx{Ca) = {(3 G Q* : -h(0) G

Ca} = {ft • ft • Pi e Q*,Mft) = a, ft G Qw,MA0 e Oixt(M)w} = {A • ft : A G

<2*,MA) = a, ft G Q"} = UreA^r. where ^ = {/? G Q* : /*(/?) = a} . Therefore

/ i - 1 maps a cylinder to a union of cylinders, which is a measurable set, and thus h is a

measurable function. M

The above result allows us to use h to translate a measure on Qu into a measure on

Out(M)u'. So for each execution measure, we can define a trace measure, which is the

analog of a trace in the non-deterministic case.

Definition 25 (Trace Measure) Let M = (Q, qo, I, O, E, a, A, 8) be a transducer, ir be an

infinite sequence of inputs, and h : Q —> Out(M) be the output mapping. The trace mea­

sure ofn over M, denoted by /J,T(M, -K), is the unique probability measure on B(Out(M))

defined as follows: for all A € B{Out(M)), HT{M,TT)(A) = /i(M,7r)(/i-1(A)).

The trace measures of a transducer are the observable part of its behavior. We define

the probabilistic version of trace semantics in terms of trace measures.

Definition 26 (Trace Equivalence) Two transducers Mi and M2 are trace equivalent, de­

noted by Mi ~ T M2, if

• In(Mi) = In(M2) andOut(Mi) = Out(M2).

42

• For all -K G In(Mi)u, /*r(Afi,7r) = A*r(M2,7r).

The first condition is purely syntactic, and is essentially the requirement that the two trans­

ducers have the same input/output interface. The second condition says that they must have

identical trace measures.

In contrast to the the non-deterministic case, instead of linear traces and executions, the

basic semantic object here is a probability distribution over the set of all infinite words over

some alphabet (in other words, an infinite tree). Before attempting to obtain full abstraction

results, we show that the semantics defined above has an equivalent formulation in terms

of finite linear traces and executions. The key insight involved in reducing an infinitary

semantics to a finitary one is that each trace and execution measure is defined completely

by the value it takes on cylinders, and the cylinders have a one-to-one correspondence with

the set of finite words. Each cylinder is in some sense equivalent to its handle.

Definition 27 (Execution) Let M = (Q, qo, I, O, E, a, A, 5) be a probabilistic transducer.

An execution of M is a sequence of pairs (/;, Sj)™=0 such that n G N, and for all i > 0,

Si G Q and fa G In{M). The set of all executions of machine M is denoted exec(M).

Note that in contrast to the non-deterministic case, the definition of execution does not

depend on the transition function S. Also, all executions are finite in length.

Definition 28 (Likelihood of an execution) Let a = (/i,Si)"=0 G exec(M). Then the

likelihood o/a, denoted by XM{CX)> is defined as follows:

XM(a) = 5(qo,fo(I))(s0)xI^=1(5(Si^,fi(I))(si))

43

where the product II™=1 is defined to have value 1 for n = 0.

Definition 29 (Trace) Let a = (/*, Sj)"=0 £ exec(M). The trace of a, denoted by [a], is

a sequence of pairs {/j, /I(SJ))"=0, where h : Q —> Out(M) is the output mapping of M.

The set of all traces of machine M, denoted by Tr{M), is the set {[oi\\a G exec(M)}. An

element ofTr(M) is called a trace ofM.

Definition 30 (Likelihood of a Trace) Let t e Tr{M) be a finite trace of M. Then the

likelihood oft, denoted by XM(t), is defined as follows:

XM{t) = ^ .XM(a)
aeExec(M),[a]=t

Note that in our definition of trace, we ignore h(q0), since the initial state of a transducer

is unique.

The length of a trace a is defined to be the length of the underlying execution and

is denoted by \a\. Once again, the transition function is not needed to define traces, and

so a trace is a purely syntactic object. The semantical nature of a trace is now completely

captured by the likelihood of the trace. Note that if two transducers have the same interface,

they have the same set of traces: Tr(Mi) = Tr(M2) if and only if In{Mx) = In{M2) and

Out(Mx) = Out(M2).

The next theorem offers a simpler definition of trace equivalence. We need the follow­

ing propositions for its proof.

44

Proposition 2 Let M = (Q, q0,J,0, E, a, A, 6), ir = (/<)£,, G In{Mf, a = (fh Si)?=0 e

exec(M), and (3 = (si)?=0 G Q*. Then XM(<X) = p{M, TT)(/?).

Proof. We prove the desired equality by induction on the length of the execution. If n = 0,

then by Definitions 28 and 23, XM(®) = <K<7o, /o(-0)(so) = p(M, 7r)(s0). Let n > 0,

a = 7 • (/„_!, s„_i) • (/„, sn), P = v sn-i • sn. Then, by Definition 28, XM(<X) = XM{I •

(/n_i, s„_ij) x«J(a„_i, fn(I))(sn), and by the induction hypothesis, XM(7"(/n-i, «n-i)) =

p(M,?r)(?7 • sn_i). So XM(O) = P(M,TT)(?7 • sn_i) x 5(s„-i,/n(i '))(sn) = p(M,ir)(r] •

sn-i • sn) = p(M, 7r)(/?) (the second equality follows from Definition 23). E3

Proposition 3 Let M = (Q, q0,1,0, E, a, A, 8), TT = <£)£„ e / n W , t = (/,, Wi)?=0 e

Tr(M), andf/3 = <w;)?=0 e Out(M)*. ThenXM(t) = ^{M,ir)[Cp).

Proof. Let h : Q —> Out(M) be the output mapping of M. Then, by Definition 30 and

Proposition 2, XM(*) = £aeexec(M),[«j=tXAf(a) = E7gh-i wP(M,ir) (7) -Also, by Def­

inition 25, pT(M,n)(Cp) = n{M,ic){h-\C(i)) = n{M,Tr)([jieh-1(l3)Cy). Since cylin­

ders with handles of the same length are necessarily disjoint, and p(M, TC) is a measure,

using countable additivity we get/i(M,7r)(U7e/l-i(/3)C7) = £76 / l-i (/3) /x(Af,7r)(C7) =

5Z7e/i-» (a) P(^>7r) (7) (t n e second equality follows from Definition 24). Therefore, XM (t) =

liT(M,n){Cp). B

Theorem 7 Let Mi and M2 be probabilistic transducers with Tr(Mi) — Tr(M2). Then

M1~TM2ifandonlyif,forallteTr(Ml),XM1(t) = XM2(t).

Proof.

45

If: Let Mi ~ T M2 and t = (fi,Wi)?=0 G Tr(Mi). Let TT = (/<)£„ G Jn(Mi)w and

/? = (tf j)?=o e Out(Mi)*. Since Mx ~y M%, then the trace measure induced by it

must be the same for both transducers, i.e., / / T (M I , -K) = /J,T(M2, TT). In particular,

/ / r(Mi, 7r)(C/3) = Atr(M2,7r)(C/3). By Proposition 3, we have XM^t) = XM2(t).

Only If: Let Tr{Mx) = Tr(M2), and for all t G Tr(Mi), xMl(<) = XM2(*)- Given

any TT = (/ ^ Q €E M M) " J = W?=o e Out(Mi)*, and u = (/ e ^ S U G

Tr(Mi), we have by assumption, XMi(w) = XM2(«)> and therefore, by Proposition

3, (J,T(MI, ir){Cp)••= HT(M2, Tr){Cp). Since the measures are completely determined

by their value on cylinders, we have /ix(Mi,7r) = /ir(M2,7r) for all 7r G In(Mi)w

and so Mi ~ r M2.

The theorem above allows us to reason in terms of single finite traces. This is a signif­

icant reduction in complexity from the original definition in terms of probability distribu­

tions on infinite trees. In particular this simplifies the proof of the full abstraction results to

follow.

In the next section, we use this alternative characterization of trace equivalence to show

that it is fully abstract with respect to contextual equivalence. First we need to be able

to calculate the likelihoods of traces of a composition from the likelihoods of traces of

its components. In the propositions that follow, composition of traces and executions is

defined exactly as for the non-deterministic case (see Definitions 8 and 9 in Section 3.3).

46

Proposition 4 Let M\ and M2 be transducers, C G Conn{{M\, M2}), a G exec(Mi) and

P G exec(M2) such that a\\cP G exec{Mi\\cM2). Then

XM1\\cM2(®\\cP) = XMM) X XM2(P)

Proof. Let Mk = (Qk, q%, Ik, Ok, Efc, ak, Xk, Sk), k G {1,2}, and M = (Q, q0,1,0, E, a, A, 5) =

Mi ||CM2, where C G Conn({M!,M2}). Let a = (/i,s*)r=o G exec(Mi),/? = {guu)^ G

e£ec(M2), and a||c/3 G exec(M). We define e, : / —>• Ex U E2 as ej(m) = fi(in), if

in G 7i, and ej(m) = gi(in), otherwise.

By the definition of composition, 5((SJ, Vj), ej+i(I)) = SI(SJ, fj+i(Ii)) x52(rj, gj+i(I2)).

Applying this to the expansion of XM («11 cP). given by Definition 28, and then rearranging

the terms in the product, we obtain the desired equality.

XM((X\\CP)

= <J((9o,?o). eo(/))(s0,rQ) x n ^ ^ f o - i , r v i) , e i (/)) (s i) n))

=MdJo(Ii)) x 52(<*Uo(/2)) x T^M'^-i, fifa)) x ^ (r ^ . ^ C / a)))

= (WoJo(h)) x n ^ ^ C a i - i , / , (/ i)) j x (62(«g,flb(/2)) x Ikxfc fc - i , <&(/a)))

= XMi(a) X X M 2 (^)

B

Proposition 5 LefMi andM2&etransducers, C G Conn{{Mu M2}) andt G Tr(M1 | |cM2).

TTien XMi||cW(*) = Eu,„XiWiH X XM2(W) where u G Tr(Mi), w G Tr(M2) such that

47

u\\cv = t.

Proof.

Y XMi{u) XXMJ(")
u\\cv=t

= Y ((Y, Mi*)) * (Y,XMM))
u\\cv=t [a]=u [0\=v

= Y (5Z (XM, (a) XXM2(/?)))
u||c«=* [a]=u,[/3]=i>

= S (51 (XM1\\CM2(OC\\CP)))
u\\cv=t [a]=u,[0\=v

- Y XMI\\CM3{OI\\C0)

[<x\\c0\=t

= XM1\\cM2(t)

(using Dfn. 30)

(rearranging terms)

(using Prop. 4)

(rearranging terms)

4.4 Full Abstraction

m

As in the nondeterministic case, here again we want to show that our semantics recog­

nizes exactly the distinctions that can be detected by some context and vice versa. The two

sides of this property are often called, resp., observational congruence and adequacy. Here

we first prove the stronger condition that trace semantics is a congruence with respect to

the composition operation. Then the property of observational congruence with respect to

contexts automatically follows as a corollary.

48

Theorem 8 (Congruence Theorem) Let Mi ~ T M3, M2 ~ T M4 andC e Conn({Mu M2}).

Then Mi \ \cM2 ~ r M31 \cM±. We say that ~y is congruent with respect to composition.

Proof. Let t E Tr(Mi\\cM2). Since Tr(Mi) = Tr(M3) and Tr{M2) = Tr(M4), we

have {(u,v) : u e Tr(Mi),v E Tr(M2),u\\cv = t] = {(u,v) : u e Tr(M3),v 6

Tr{M±), u\\cv = t). Then, by Proposition 5 and Theorem 7,

XM1\\cM2(t) = E{(u ,u):U | |cr=t}XM1(w) X XM2(v) = E{(u,«):«||c«=t} XM3(«) X X M » =

XM3 | |CM4(*)- Again, by Theorem 7, we have Mi||cM2 ~ r M3 | |cM4. IEI

Similar to the nondeterministic case, an immediate corollary of Theorem 8 is the fact

that no context can distinguish between two trace-based equivalent transducers.

Corollary 2 Let Mi and M2 be transducers, and Mi ~x M2. Then for all transducers M

and all C e Conn({M, Mi}) = Conn({M, M2}), we have that M\\cMi ~ r M\\CM2.

We can easily complete the other requirement of showing full abstraction of trace se­

mantics with respect to contextual equivalence, by demonstrating a trivial context that

makes a distinction between trace inequivalent transducers. Let Mi and M2 be transducers

such that Mi fa M2. Now we can simply choose an empty set of connections C, aiid

a completely deterministic transducer M, as the basis of our testing context. In this case

the trace measures of the composition Mi| |cM will be the same as the trace measures of

Mi alone, and full abstraction would be trivially achieved. Here we give a stronger result,

similar to that already described for the nondeterministic case. We show that given two

inequivalent transducers with the same interface, we can always find a third transducer that

49

is a tester (see Section 3.4) for them and that distinguishes between the first two, when it is

maximally connected with them.

Theorem 9 Let Mi and M2 be transducers with Tr(Mi) = Tr(M2) and Mi fa M2.

Then there exists a transducer M and C € Conn({M, Mi}) = Conn({M, M2}), such

that M is a tester for Mi and M2 w.r.t. C, and M\ \cMi fa M\ \CM2.

Proof. Let Mi = (Quqlr,0',E,ai,Xu6i) and M2 = (Q2,qlI',0',E,a2,\2,82).

Since Mi fa M2, by Theorem 7, there exists t e Tr(Mi) = Tr(M2), such that XMX (t) ^

XM2 (t)- Let t = (fi, u)i)™=0 for finite n. We define the testing transducer (Q, q0,1,0, E, a, A, 5)

as follows:

• Q = {<7o, <Zi, • • •, qn+i} U {<?/} is a finite set of states, with qf being a special sink

state.

• For each o G O', we create an input channel in0 in J and assign alphabet a(in0) =

oi (o) to it.

• For each in £ I', we create an output channel oin in O and assign alphabet a(oin) =

o"i (in) to it.

• An extra output channel ou with alphabet {a, b} C E, that will be the only visible

channel remaining after composition.

• X(qi, oin) = fi(in), X(qi, ot) = a and A(g/, ot) — b. In all other cases, we don't care

what output M produces, and A can be assumed to be arbitrary.

50

• The transition function 5 is defined as follows

- S(qi, h(I))(qi+i) = 1, if for all in0 G I, h(in0) = Ui(o).

- 8(qi, h(I))(q) = 0, if q ^ qi+1 and for all in0 G / , h(in0) = u>i(o).

- S(q, h(I))(qf) = 1, if for some in0 G / , h(in0) ^ Ui(o).

- S(q, /i(/))(^) = 0, if q' ^ qf and for some in0 G / , h{in0) ^ o»i(o).

We define the set of connections C G Conn({M, Mi}) = CWi({M, M2}) as follows:

for all in G / ' , o G O', (m, oin) G C and (m0,o) G C, and nothing else is in C. Now

both M| \cMi and M||cM2 have exactly one channel each, which is the output channel ot

belonging to M, and so M is a tester for M\ and Mi w.r.t. C.

The transducer M simulates a deterministic transducer in that from each state and input

combination, a single transition has probability 1 and all other transitions have zero proba­

bility. Further it is designed to follow the execution of the distinguishing trace t. As soon as

the computation of the machine being tested diverges from this trace, M will enter its sink

state and switch its visible output from a to b. When the machine being tested undergoes an

execution corresponding to the trace t, the composition will output the trace an+1. We now

show that the likelihood of this trace is different for M||cMi and M||crM2, and this will

complete the proof. By Proposition 5, we have XM\\cMi(an+1) = Y.U,VXM(U) X XMI(V)

where u G Tr(M), v G Tr(Mi) such that u\\cv = an+1. Now, by design, there is only

a single such u G Tr(M), and a single such v G Tr(Mi), and we also have XM{V) = 1.

and v = t. So XM||cMi(an+1) = XMx{t)- But since, by symmetry, this argument ap­

plies to M2 as well, we have XM||cM2(a
n+1) = XM„(*). and therefore XMWCMA^1) ±

51

XM\\CM2 (an+l). Thus the testing transducer M can distinguish between Mi and M2. G3

The previous two theorems, taken together, show that trace equivalence is fully abstract

with respect to contextual equivalence.

52

Chapter 5

Conclusion

It could be fairly argued that the arguments raised here have been raised before.

• Testing equivalence, introduced in [23], is clearly a notion of contextual equivalence.

Their answer to the question, "What is a test?", is that a test is any process that can

be expressed in the formalism. So a test is really the counterpart of a context in

program equivalence. (Though our notion of context in Section 3.2, as a network of

transducers, is, a priori, richer.) At the same time, bisimulation equivalence has been

recognized as being too fine a relation to be considered as contextual equivalence

[10,11,12,32].

• Furthermore, it has also been shown that many notions of process equivalence studied

in the literature can be obtained as contextual equivalence with respect to appropri­

ately defined notions of directly observable behavior [13,41,46, 52]. These notions

fall under the title of decorated trace equivalence, as they all start with trace seman-

53

tics and then endow it with additional observables. These notions have the advantage

that, like bisimulation equivalence, they are not blind to issues such as deadlock be­

havior.

With respect to the first point, it should be noted that despite the criticisms leveled at

it, bisimulation equivalence still enjoys a special place of respect in concurrency theory

as a reasonable notion of process equivalence [3, 60]. In fact, the close correspondence

between bisimulation equivalence and the branching-time logic CTL has been mentioned

as an advantage of CTL. Thus, it is not redundant, in our opinion, to reiterate the point that

bisimulation and its variants are not contextual equivalences.

With respect to the second point we note that our approach is related, but quite different,

than that taken in decorated trace equivalence. In the latter approach, the "decorated" of

traces is attributed by concurrency theorists. As there is no unique way to decorate traces,

one is left with numerous notions of equivalence and with the attitude quoted above that "It

is not the task of process theory to find the 'true' semantics of processes, but rather to de­

termine which process semantics is suitable for which applications" [60]. In our approach,

only the modelers know what the relevant aspects of behavior are in their applications and

only they can decorate traces appropriately, which led to our Principles of Comprehensive

Modeling and Observable I/O. In our approach, there is only one "right" of contextual

equivalence, which is trace-based equivalence.

Admittedly, the comprehensive-modeling approach is not wholly original, and has been

foretold by Brookes [14], who said: "We do not augment traces with extraneous book-

54

keeping information, or impose complex closure conditions. Instead we incorporate the

crucial information about blocking directly in the internal structure of traces. " Still, we

believe that it is valuable to carry Brookes's approach further, substantiate it with our three

guiding principles, and demonstrate it in the framework of transducers.

An argument that may be leveled at our comprehensive-modeling approach is that it

requires a low-level view of systems, one that requires modeling all relevant behavioral

aspects. This issue was raised by Vaandrager in the context of I/O Automata [59]. Our re­

sponse to this criticism is twofold. First, if these low level details (e.g., deadlock behavior)

are relevant to the application, then they better be spelled out by the modeler rather than by

the concurrency theorist.

As discussed earlier, whether deadlocked termination should be distinguished from nor­

mal termination depends on the level of abstraction at which the model operates. It is a

pragmatic decision rather than a theoretical decision. Second, if the distinction between

normal termination and deadlocked termination is important to some users but not oth­

ers, one could imagine language features that would enable explicit modeling of deadlocks

when such modeling is desired, but would not force users to apply such explicit modeling.

The underlying semantics of the language, say, in terms of structured operational seman­

tics [38], can expose deadlocked behavior for some language features and not for others.

In other words, Vaandrager's concerns about users being force to adopt a low-level view

should be addressed by designing more flexible languages, and not by introducing new

notions of process equivalence.

55

Note that the alternative to our approach is to accept formalisms for concurrency that

are not fully specified and admit a profusion of different notions of process equivalence.

In conclusion, this dissertation puts forward an admittedly provocative thesis, which

is that process-equivalence theory allowed itself to wander in the "wilderness" for lack

of accepted guiding principles. The obvious definition of contextual equivalence was not

scrupulously adhered to, and the underspecificity of the formalisms proposed led to too

many interpretations of equivalence. While one may not realistically expect a single dis­

sertation to overwrite about 30 years of research, a more modest hope would be to stimulate

a lively discussion on the basic principles of process-equivalence theory.

56

Bibliography

[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming

Languagues and Systems, 15(1):73—132, 1993.

[2] S. Abramsky. Observation equivalence as a testing equivalence. Theor. Comput. Sci., 53:225-

241,1987.

[3] S. Abramsky. What are the fundamental structures of concurrency?: We still don't know!

Electr. Notes Theor. Comput. Sci., 162:37-41, 2006.

[4] P. Aczel. Non-well-founded sets. Technical report, CSLI Lecture Notes, no. 14, Stanford

University, 1988.

[5] P. Aczel and N.P. Mendler. A final coalgebra theorem. In Category Theory and Computer

Science, volume 389 of Lecture Notes in Computer Science, pages 357-365. Springer, 1989.

[6] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,

E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec temporal logic: A new

temporal property-specification logic. In Proc. 8th Int. Conf. on Tools and Algorithms for the

Construction and Analysis of Systems, volume 2280 of Lecture Notes in Computer Science,

pages 296-211. Springer, 2002.

57

[7] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta Informatica,

20:207-226,1983.

[8] J. F. A. K. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.

[9] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design, se­

mantics, implementation. Science of Computer Programming, 19(2):87-152, 1992.

[10] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced. /. ACM, 42(l):232-268,

1995.

[11] B. Bloom and A. R. Meyer. Experimenting with process equivalence. Thedr. Comput. Sci.,

101(2):223-237, 1992.

[12] R.N. Bol and J.F. Groote. The meaning of negative premises in transition system specifica­

tions. J. ACM, 43(5):863-914,1996.

[13] M. Boreale and R. Pugliese. Basic observables for processes. Information and Computation,

149(l):77-98, 1999.

[14] S.D. Brookes. Traces, pomsets, fairness and full abstraction for communicating processes. In

Proc. 13th Int'l Conf. on Concurrency Theory, volume 2421 of Lecture Notes in Computer

Science, pages 466-482. Springer, 2002.

[15] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in

propositional temporal logic. Theoretical Computer Science, 59:115-131, 1988.

[16] J. Carmo and A. Semadas. Branching vs linear logics yet again. Formal Aspects of Computing,

2:24-59,1990.

58

[17] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,

pages 293-322. Plenum Press, 1978.

[18] E.M. Clarke and-LA. Draghicescu. Expressibility results for linear-time and branching-time

logics. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Proc. Workshop on Lin­

ear Time, Branching Time, and Partial Order in Logics and Models for Concurrency, volume

354 of Lecture Notes in Computer Science, pages 428^4-37. Springer, 1988.

[19] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Transactions on Programming Languagues

and Systems, S(2):244-263,19S6.

[20] E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent systems.

In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Decade of Concurrency -

Reflections and Perspectives (Proceedings of REX School), volume 803 of Lecture Notes in

Computer Science, pages 124—175. Springer, 1993.

[21] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[22] D.L. Cohn. Measure Theory. Birkhauser Boston, 1994.

[23] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comput. Sci.,

34:83-133,1984.

[24] D.L. Dill. Trace theory for automatic hierarchical verification of speed independent circuits.

MIT Press, 1989.

[25] C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.

59

[26] E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel programs

using fixpoints. In Proc. 7th Int. Colloq. on Automata, Languages, and Programming, pages

169-181, 1980.

[27] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branching versus

linear time. Journal of the ACM, 33(1):151-178,1986.

[28] E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes

back. In Proc. 12th ACM Symp. on Principles of Programming Languages, pages 84-96,

1985.

[29] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT Press,

Cambridge, Mass., 1995.

[30] K. Fisler and M.Y. Vardi. Bisimulation minimization and symbolic model checking. Formal

Methods in System Design, 21(l):39-78, 2002.

[31] R. Goering. Model checking expands verification's scope. Electronic Engineering Today,

February 1997.

[32] J.F. Groote. Transition system specifications with negative premises. Theor. Comput. Sci.,

118(2):263-299,1993.

[33] G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer Academic

Publishers, 1996.

[34] P.R. Halmos. Measure Theory. Springer Verlag, 1978.

[35] J. Y. Halpern. Reasoning About Uncertainty. MIT Press, Cambridge, Mass., 2003.

60

[36] J.Y. Halpern. On ambiguities in the interpretation of game trees. Games and Economic Be­

havior, 20:66-96,1997.

[37] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice

Hall, 1966.

[38] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[39] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of

the ACM, 32:137-161,1985.

[40] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[41] B. Jdnsson. A fully abstract trace model for dataflow networks. In POPL '89: Proceedings of

the 16th ACM SIGPLAN-SIGACTsymposium on Principles of programming languages, pages

155-165,1989.

[42] J. Kramer. Is abstraction the key to computing? Comm. ACM, 50(4):36-42, 2007.

[43] L. Lamport. "Sometimes" is sometimes "not never" - on the temporal logic of programs. In

Proc. 7th ACM Symp. on Principles of Programming Languages, pages 174-185, 1980.

[44] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their

linear specification. In Proc. 12th ACM Symp. on Principles of Programming Languages,

pages 97-107,1985.

[45] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly,

2(3):219-246,1989.

61

[46] M.G. Main. Trace, failure and testing equivalences for communicating processes. Int'l J. of

Parallel Programming, 16(5):383-400,1987.

[47] W.W. Marek and M. Trusczynski. Nonmonotonic Logic: Context-Dependent Reasoning.

Springer, 1997.

[48] J. McCarthy. Circumscription - a form of non-monotonic reasoning. Artif. Intell., 13(l-2):27-

39,1980.

[49] R. Milner. Processes: a mathematical model of computing agents. In Logic Colloquium, pages

157-173. North Holland, 1975.

[50] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer

Science. Springer, 1980.

[51] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[52] E.R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating pro­

cesses. Acta Inf., 23(l):9-66, 1986.

[53] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Proc. 5th

GI Conf. on Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 104.

Springer, Berlin/New York, 1981.

[54] A. Pnueli. Linear and branching structures in the semantics and logics of reactive systems. In

Proc. 12th Int. Colloq. on Automata, Languages, and Programming, volume 194 of Lecture

Notes in Computer Science, pages 15-32. Springer, 1985.

62

[55] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In

Proc. 8th ACM Symp. on Principles of Programming Languages, volume 137 of Lecture Notes

in Computer Science, pages 337-351. Springer, 1982.

[56] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic. Journal

of the ACM, 32:733-749, 1985.

[57] C. Stirling. Comparing linear and branching time temporal logics. In B. Banieqbal, H. Bar-

ringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398, pages 1-20. N

Springer, 1987.

[58] C. Stirling. The joys of bisimulation. In 23th Int. Symp. on Mathematical Foundations of Com­

puter Science, volume 1450 of Lecture Notes in Computer Science, pages 142-151. Springer,

1998.

[59] F.W. Vaandrager. On the relationship between process algebra and input/output automata. In

Proc. 6th IEEE Symp. on Logic in Computer Science, pages 387-398,1991.

[60] R.J. van Glabbeek. The linear time - branching time spectrum I; the semantics of concrete,

sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of

Process Algebra, chapter 1, pages 3-99. Elsevier, 2001.

[61] R.J. van Glabbeek. What is branching time and why to use it? In G. Paun, G. Rozenberg,

and A. Salomaa, editors, Current Trends in Theoretical Computer Science; Entering the 21st

Century, pages 469-479. World Scientific, 2001.

[62] M.Y. Vardi. Linear vs. branching time: A complexity-theoretic perspective. In Proc. 13th

IEEE Sym.. on Logic in Computer Science, pages 394-405, 1998.

63

[63] M.Y Vardi. Sometimes and not never re-revisited: on branching vs. linear time. In D. San-

giorgi and R. de Simone, editors, Proc. 9th Int'l Conf. on Concurrency Theory, Lecture Notes

in Computer Science 1466, pages 1-17,1998.

[64] M.Y. Vardi. Branching vs. linear time: Final showdown. In Proc. 7th Int. Conf. on Tools and

Algorithms for the Construction and Analysis of Systems, volume 2031 of Lecture Notes in

Computer Science, pages 1-22. Springer, 2001.

[65] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.

In Proc. 1st IEEE Symp. on Logic in Computer Science, pages 332-344,1986.

[66] S. Vijayaraghavafi and M. Ramanathan. A Practical Guide for SystemVerilog Assertions.

Springer, 2005.

[67] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

64

