RICE UNIVERSITY
Linear vs. Branching Time: A Semantical Perspective
by |

Sumit Nain

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE Master of Science

APPROVED, THESIS COMMITTEE:

Ay Vavds

Professor Moshe Y. Vardi, Chair
Karen Ostrum George Professor
Department of Computer Science

D4

Professor Keith Co\)per
Department of Computer Science

iz ranl

Assistant Professor Walid Taha
Department of Computer Science

HOUSTON, TEXAS -

MARCH 2009

UMI Number: 1466809

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, priht bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

@

UMI

UMI Microform 1466809
Copyright 2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Mi 48106-1346

Abstract

Linear vs. Branching Time: A Semantical Perspective
by

Sumit Nain

The discussion of the relative merits of linear versus branching-time goes back to early
1980s. Thé dominating belief has been that the linear-time framework is not expressive
enough semantically, marking linear-time lbgics as weak. Here we examine this issue from

r‘th'e perSpectivé of process equivalence, one of the most fundamental notioﬁs in concur-
rency théOry. We postulate three principles that we view as fundamental to any discussion
of process equivalence. First, we take contextual equivalence as the primary notion of
equivalence. Second, we require the description of a process to fully specify all relevant
behavioral aspects of the process. Finally, we require observable process behavior to be re-
ﬂected in inpm/qutput behavior. Under these postulate‘s the distinétiOns between the linear
' and branching semantics tend to evaporate. Applying them to the framework of transduc-
‘ers, we vshow that our postulates result in a uniqu¢ notion of process equivalence, whiéh 18

trace based, rather than tree based.

Acknowledgments

I am very grateful for the support and guidance of 'my advisor, Dr. Moshe Vardi. [would
like to thank the other members of my thesis committee, Dr. Walid Taha and Dr. Keith

Cooper. Finally, I must also thank my office-mates, Deian Tabakov and Seth Fogarty.

Coht’ents

1 Introduction

2 A Principled Approach to Process Semantics ,
2.1 The Case AgainstLinear Time
2.2 Process Equivalence Revisited

3 Nondeterministic Transducers
3.1 Definition of Transducers« v v v i v e e
3.2 Synchronous Parallel Composition
3.3 ExecutionsandTraces
34 Full Abstraction i i it e e e e e e e e e

4 Probabilistic Transducers v
4.1 Preliminaries
' 4.1.1 Measure and Probability I
- 412 MeasureonInfinite Words
4.2 Definition of Probabilistic Transducers
4.3 Probabilistic Executionsand Traces
44 Full Abstraction 0 i e e e e e e e e e e e

5 Conclusion

15
15
17
23
27

32
32
32
35
37
39
48

53

Chapter 1
Introduction

One of the most signiﬁéant recent developments in the area of formal design verifi-

| dation is the discovery of algorithmic methods for verifying temporal-logic propcrtie‘s of |
ﬁnite-State systems [19, 44, 55, 65]. In temporal-logic model checking, We verify the cor-
rectness of a finite-state system with respect to a desired property by checking whether
a labeled State—transition graph that models the system satisfies a temporal logic formula
that specifies this property (see [21]). Model-checking tools have enjoyed a substantial and
growing use over the last few years, showing ability to discover subtle flaws that result
from ¢xtremely' improbable events. While early on these tools were viewed as of academic
interést §n1y, they are ﬁow routinely used in iﬁdustrial applications [3 1'].

A ‘key iésue in the design of a rﬂodel-checking tool is the choice of the temporal lan-
| guége uséd ‘to sp¢cify prbpg:rties, as this lénguagg, which we refer to as the temqual
pvrol.)erty‘fsPeci]‘ication language, is one of ‘the primary inteﬁéées fo the‘ téol. (The other
brimafy iﬁterfaée 1s the rﬁodeiing lénguage, wh1ch is typica}llyi the hardWarevde‘sbc'ription

1

language used by the designers). One of the major aspects of all temporal languages is
‘their underlying model of time. Two possible views regarding tlie nature of time induce
tWQ types of temporal logics [43]. In linear temporal logics, time is treated as if each
moment in time has a unique possible future. Thus, linear temporal logic formulas are in-
terpreted over linear sequences and we regard them as describing the behavior of a single
| computation of a program. In branching temporal logics, each moment in time may split
into various possible futures. Accordingly, the structures over which branching temporal
logic formulas are inte‘rpreted can be viewed as inﬁnite coinputation trees, each describing
the:behavioi' of the i)ossible comi)utations ofa nondeterministie pregraiil. |

Iii the linear temporal logic LTL, formules are eomposed frem the set of ’atomic proposi-
tions using ‘the usual Boolean connectives as well as the temporal connecti\(es G (“always™),
F (“eventually”), X (“next”j, and U (“until”). The branching temppral logic CTL* aug-
ments LTL by the path quantifiers E (“there exists a eomputation”) and A (“for all com-
putations’i’). The branching iemporal logic CTL is a fragment of CTL* in which every
temporel connective is preceded by a path quantifier. Note that LTL has implicit universal
‘ pzith quantifiers in front of its formulas. Thus, LTL is essentially the linear fragment of
CTL*.

The disctission of the reiative meritsv of linear versus branching temporal logics in the
context of system specification and verification goes back to the 1980s [43, 26, 7, 54, 28,
27,57, 18, 16, 62, 63] As analyzed.in [54], linear and‘ branchiné time logics correspond to

tWo distinet views of time. It is not surprising therefore that LTL and CTL are expressively

incomparable [18,27,43]. The LTL formula F'Gp is not expressible in CTL, while the CTL
formula AFAGp is not expressible in LTL. On the other hand, CTL seems to be superior
- to LTL when it comes to algorithmic verification, as we now explain.

Given a transition system M and a linear temporal logic formula ¢, the model-checking
problem for M and ¢ is to decide whether ¢ holds in all the computations of M. When ¢ is
a branching temporal logic formula, the problem is to decide whether ¢ holds in the compu-
tation tree of M. The complexity of model checking‘ fcr both linear and branching temporal
Icgics ivs‘Well understood: suppose we are giyen a transition system of size n and a temporal
lcgic formula ef eize m. For the branching temporal iogic CTL;‘model-checking allgorivthm-s
nun m time O(nm) [191, While, for the linear temporal iogic LTL, model-cnechng algo-

| rithms run in time n2°(™ [44]. Since LTL model checking ie PSPACE-complete [56], the
latter bound probably cannot be improved. o |

The difference in the complexity ‘of linear and branching model checking has been
viewed as an argument in favor of the branching paradigm. In particular? the computational
advantage of CTL Inodel checking over LTL model checking made CTL a popuiar choice,
leading to efficient rnodel-checking tools for this logic [20]. Through the 1990s,_ the domi-
nént temnofal specification language in industrial nse was CTL. This dOminance stemmed
fromthe phenomenal success of SMV, the first symbolic model checker, which was CTL-
based, and its follower VIS, aleo originnlly CTL-based, which served as the basis for many
induétrial model checkers.

In [64] we argued that in spite of the phenomenal success of CTL-based model check-

ing, CTL suffe’ré from several fundamental limitations as a temporal property-specification
language, all stemming from the fact that CTL is a branching-time formalism: the lan-
guage is unintuitive and hard to use, it does not lend itself to corhpositiohal reasoning, and
itis fundamentally incompatible with semi-formal verification. In contrast, the linear-time
framework is expressive and intuitive, supports compositional reasoning and semi-formal
Veriﬁcation, and is amenable to combining enumerative and symbolic search methods. In-
deed, the trend in the industry during this decade has been towards linear-time languages,
such as _quSpec [6], PSL [25], and SVA [66].
N In spiie of the pragr;latic argun‘lent-sv iﬁ favor of fhe linear-time apbmach, on¢ sﬁll hears
thebarguments fhat this apprdach is npt expressive enough, p’oiﬁtmg out that in semaﬁtical
analyses of coﬁcu‘rrent processes, e.g., [6b], the lineér-time approachv is consideredv to be -
the weai(cst semantically. In this dissertation we address the semantical arguments against
linear time and argue that even from a semantical perspective the linear-time approach is
quite adequate for specifying systems. |
The gist of our argument is that branching-time-based notions of process equivalence
are not reasonable notions of process equiflalehce, as they distinguish between processes
that are not contextually distinguishablé. In contrast, the linear-time view does yield an

appropriate notion of contextual equivalence.

Chapter 2

A Principled Approach to Process

Semantics

2.1 The Case Against Linear Time

The most fundamental approach to the semantics of programs focuses on the notion of
equivalence. Once we have defined a notion of equivalence, the semantics of a program can
be taken to be its equivalence class. In the context of concurrency, we talk about process
equivalencé. The study of process equivalence provides the basic foundation for any theory
of concurrency [51], and it occupies a central place in concurrency-theory research, cf.
[60].

The linear-time approach to process equivalence focuses on the traces of a process. Two
processes are d¢ﬁn§d to be trace equivalent if they haVe the same set»of traces. It is widely
aécepged in concurrency theory, howevér, thatv tracé équivﬁiénce isj too weak a notion of

5 .

equivalence, as processes that are trace equivalent may behave differently in the same con-

text [SO]. An an example, using CSP notation, the two processes

- if (true — a?z; hlz)O(true — b?z; hlz)fi

if(a?z — hlz)0(b?z — hlz)fi

haVe thg same set of communication traces, but only _the first one may deadlock when
1"u'ﬁ in parallel \x;ith a process such as b!0. | | | |

In contfast, the two précesses above are distinguished by bisumulation, highly popular
notion of process equivalence [51, 53; 58]. It is known that CTL characteriies bisimulation,
in the sense that two states in a transition system are bisimilar iff they satisfy exactly the
same CTL formuias [15] (see also [39]). This is sometime mentioned as an important
feature of CTL. |

This contrast, between the pragmatic arguments in favor of the adequate expressiveness
of the linéar-time approéch [64] and its Q§Ceptéd weakness from a process—kequ’i\}alenc‘e

perspective, calls for a re-examination of process-equivalence theory.

2.2 Process Equivalence Revisited

While the Study of process equivalence occupies a central place in concurrency-theory

research, the answers yielded by that study leave one with an uneasy feeling. Rather than

providing a definitive answer, this study yields a profusion® of choices [3]. This situation
led to statement of the form “It is not the task of process theory to find the ‘true’ semantics
of processes, but rather to determine which process semantics is suitable for which appli-
cations” [60]. This situation should be contrasted with the corrgsponding one in the sfudy
of sequential-program equivalence. It is widely accepted that two programs are equivalent
if they behave the same in all contexts, this is referred to as contextual or observational
equivalencé, where behavior refers to input/output behavior [67]. In p‘rinciplé, the same
jde’a applies to processes: two processes are equivalent‘if‘ they pass the same tests, but there
is no agreement on what a test is and on what it means to pass a test. |

We vprop»ose to adopt for process—semantics theory precisely the same principles ac-

cepted in program-semantics theory.

Principle of Contextual Equivalence: Two processes are equivalent if they behave the

same in all contexts, which are processes with “holes”.

As in program semantics, a context should be taken to mean a process with a “hole”,
into which the processes under consideration can be “plugged”. This agrees with the point
of view taken in testing equivalence, which asserts that tests applied to processes need to -
themselves be deﬁ‘ﬁed as prbcesses [23]. Furthermore, all tests defined as p'rocessés should
be considered. This excludes many of the “button-pushing experiments” of [5S0]. Some |
of these experiments are tod strong—they cannot be defined as processes, and some are too

weak—they consider only a small family of tests [23]. v

IThis is referred to as the “Next “700 ...’ Syndrome.” [3]

In particular, the tests required to define bisimulation equivalerice [2, 50] are widely
kn(v>wn’to be too strong [10, 11, 12, 32].

In spite of its mathematical elegance [5, 58] and ubiquity in logic [8, 4], bisimulation
is not a reasonable notion of process eduivalence, as it makes distinctions that cannot be
observed. Bisimulation is a structural similarity relation between states of the processes
under comparison, rather than an observational comparison relation.

The most explicit advocacy of using bisimulation-based equivalence (in fact, branching
bisimulqti_o‘n) appears in‘[61], whic;_h argues in favor of using eqpivalcncg: concepts that are
based on intgmal structure bécause of their context in(iependence: “if two processes héwe
~ the same internal Stfucfure they surely have the same observable behéyior.” It is hard to ar-
gue with the last péint, but expecting an imﬁlemgntati;)n to have the same internal structure
as a specification is highly unrealistic and impracﬁcal, as it requires the implementation to
b¢ too clqse to the Speciﬁcation. In fact, it is clear from the terminology of “observational
equivalenée’ used in [5 1‘] that the intentionkthere was to formulate a concept of equivalence
based on observational behavior, rather than on internal structure. Nevertheless, the terins
“observational eciuivalence” for bisimulation-based equivalénce in [51] is, perhaps, unfor-

tunate, as weak-bisimulation equivalence is in essence a notion of structural similarity.

Remark 1 One could argue that bisimulation equivalence is not only a mathematically el-
egant concept; it also serves as the basis for useful sound proof techniques for establishing
process equivalence, cf. [39]. The argument here, however, is not against bisimulation as

a useful mathematical concept; such usefulness ought to be evaluated on its own merits, cf.

[30]. Rather, the argument is against viewing bisimulation-based notions of equivalence

as reasonable notions of process equivalence.

The Principle of Contextual Equivalence does not fully resolve the questio’ﬁ of process
‘equiValenée. In additional to defining the tests to which we subjéct processes, we need to
- define the observed behavior of the tested processes. It is widely accepted, however, that
linear-time semantics results in important behavioral aspects, such as deadlocks and live-
locks, being non-observable [50]. It is this point that contrasts sharply with the experiénce
that led to. the adoption of linear time in the context of hardware model checking [64];
~in today’s synchronous hardware.all relevant behavior, including deadlock and livelock is
observable (obsewing livelock requires the consideration of infinite traces). Compare this

with our earlier example, where the process
~if(true — a?z; hlz)O(true — b7z; hlz)fi

may deadlock when run in parallel with a process such as b!‘O. The problem here ’is that
the description of the process does not teli us what happens when tﬁe first guard is selected
in the context of the parallgl prbcess 5!0. The dgadlock here is not described explicitiy;
r@thér itis implicitly inferred from a lack of specified behavior. This leads us to c;ur second
pi‘inéiﬁle. |

Principle of Comprehensive Modeling: A process description should model all relevant

aspects of process behavior.

"The rationale for this principle is that relevant behavior, where r‘eleifance depends on
the“applicatio‘n at hand, should be captured by the description of the process, rather than .
inferred from lack of behavior by a semantical theory proposed by a concurrency theorist.
It is the usage of inference to attribute behavior that opens the door to numerous interpre-

tations, and, consequently, to numerous notions of process equivalence.

* Remiark 2 It is useful to draw an analogy here to another theory, that of nonmonotonic
lvogic, whose main focus is on inferences from absence of premises. The field started with
some highly influential papers, advocating,. fof example “negation as failufe ” [17] and
» circumscription” [48]. Today, hdwever, there is a profusion of approaches to nonmono-
tbni'c logic, including numerous extensions to negation as failure and to circumscription
[47]. One is forced to conclude that there is no universally accepted way to draw conclu-
sions frbni absence of prgzmises. (Compare also to the discussion of negative premises in

transition-system specifications [12, 32].)

Going back to our problematic process
if(true — a?z; hlz)O(true — b?z; hlz)fi

The problem here is that the process is not receptive to communication on channel b, when
it is in the left branch. The position that processes need to be receptive to all allowed inputs
from their environment has been argued by many authors [1, 24, 45]. It can be viewed

as an instance of our Principle of Comprehensive Modeling, which says that the behavior

10

that results from a write action on channel b when the process is in the left branch needs
to be specified explicitly. From this point of view, process-algebraic formalisms such as
CCS [50] and CSP [40] are underspecified, since they leave important behavioral aspects
unspecified. For example, if the distinction between normal termination and deadlocked
terminétion is relevant to the application, then this distinction ought to be explicitly mod-
eled.

Rather, in CCS and CSP there is no observable distinction betwéen normal and dead-
locked terminaiion, as both situatiqns are‘character'ized oilly by the absence of oiltgoing
t.r'aiis:itionls. (’i‘he formalism of vKripke‘ structiires, often used in tlie modei-checkiﬁg litcra; ‘
ture [2i], also 'suffers from lack of receptiveness, aé it does nbt distinguish tietweeh inputs -
and outputs.) | |

| It is iritgipstin g to note that transducer;v, which were studied in an earlier wqu of Milner
[49], which led to [50], are receptive. Transdui:e'rs are widely eiccepted models of hardware.

We come back to transducers in the next section.

Remark 3 The Principle of Comprehensive Modeling is implicit in a paper by Halpern on
modeling géme-theoretic situations [36]. The paper sh(iws that a certain game-theoretic
paradox is, in faCt, a conSequence of deficient modeling, in which states of dgents do not
capture all relevant aspects of their behavior. Once the model is appropriately enriched,
the paradox evaporates away. For extensive discussions on modeling multi-agent systems,

see Chapters 4 and 5 in [29] and Chapter 6 in [35]. .
The Principle of Comprehensive Mbdeling can be thought of as the “Principle of Ap-

11

prop‘riate Abstraction”. Every modei is an abstraction of the situation being modeled. A
good model necessarily ‘abstrac‘ts away irrelevant ‘aspects, but models explicitly relevant -
‘aspects. The distinction between relevant and irrelevant aspects is one that can be made
only by the model builder and users. For example, a digital circuit is a model of an analog .
circuit in which only the digital aspects of the circuit behavior are captured {33]. Such a
| model should not be used to analyze non-digital aspects of circuit behavior, such as timing
issues or issues of metastable states. Such issues require richer models. The Principle of
Ckbomprehensive -M‘od’eling does not call for inﬁnitely detailed models; su‘eh models are use-
less as rhey offer'no abstraction. Rather, the principle calls for models that are richenorlg'h,
brlt not tboorie‘h,‘ dependning on the current level of abstractron.. Whether or not deedlo'cked
termination should be considered distinct from normal termine.tierr depends on the rhe cur-
rent level of abstraction; at one level of abstraction this distincﬁon is erased, but at a ﬁner
level ef abstraction this distinction is material. vFvor further discu‘ssion ef abstraction see
[42]. |

J - The Principle of Comprehensive Modeling requires a procesé description to model all
'relevent aspects of process behavror. Ir does not spell out how such 'aspects‘ are to be
modeled. In particular, it does not address the qﬁestion of vr/hat is observed when a process
is being tested. Here again we propose to follow the approach of program semantics theory
and ﬁrgue that only the input/output behavior of processes is observable. Thus, observable

relevant aspects of process behavior ought to be reflected in its input/output behavior.

| Principle of Observable I/O: The observable behavior of a tested process is precisely its -

12

input/output behavior.

Of course, in the case of concurrent processes, the input/output behavior has a temporal
dimension. That is, the input/output behavior of a process is a trace of input/output actions.
The precise “shape” of this trace depends of course on the underlying semantics, which
would determine, for example, whether we consider finite or infinite traces, the temporal
granularity of traces, and the like. It remains to decide how nondeterminism is observed,
as, after all, a nondeterministic process does not have a unique behavior. This leads to
nqtions such as may testing and must testing [23]. We propose here to finesse this issue by |
imagining tilai a iest is being run Several times, gventually exhibiting ali possible behaviors.
Thus,‘ ihe input/output béhavior of a ﬁondet'erministic test is its full set of input/output
traces. | : -

(One could argue that by allowing a test to observe all input/output traces, our notion
of test is too strong, resillting in an overly ﬁrie notion of process equivalence. Since our
focus here is on showing that trace equivalence is not too coarse, we do not pursue this
point‘ further here.)

It should be noied that the approach advqcated here is‘diametrically opposed to that of
[61], who argues against cbntextual equivalence: “In practice, howei'er, there eippears to
be doubt and difference of opinion concerning the observable behaviour of systems. More-
over, what is observable may depend on the nature of the systems on which the concept
Will be applied and the context in which they will be operating.” In contrast, our guiding

principles say that (1) by considering all possible contexts, one need not worry about iden-

13

tifying specific contexts or testing scenarios, and (2) process description ought to describe
the observable behavior of the process precisely to remove doubts about that behavior. In
our opinion, the “doubt and difference of opinion” about process behavior stem from the

underspecificity for formalisms such as CCS and CSP.

Remérk 4 In the same way that bisimulation is not a contextual equivalence relation,
branching-time properties are not necessarly contextually observable. Adapting'our prin-
ciples to property observability we should expect behavioral properties to be observable
in the following sense.. If two processes are distinguished by a property o, that is, P
satisfies o, but P, does not satisfy o, there has to be a context C' such that the set of input-
loutput traces of C[Py] is different than that of C [Pg] Consider, however, the CTL property
AGEFp, which says that ffom all given states of the process it is possible to reach a state
‘where p holds. It is easy to vconstruct processes P, and P,, one satisfying AGEFp and
one falsifying it, such that‘ C [Pl] and C|[Py) vhave the same set of input-output traces for all

contexts C. Thus, AGEF'p is a structural property rather than an observable property.

In the next section we apply our approach to transducers; we show that once our three
principles are applied ‘we obtain that trace-based equivalence is adequate and fully abstract;
that is, it is precisely the unique observaﬁonal equivalence for transducers.

We believe that this hplds in general; that is, under our three principles, trace-based

equivalence provides the “right” notion of process equivalence.

14

Chaptér 3
"Nondeterministic Transducers

Transducers constitute a fundatﬁental model of discrete-state machines with input and g
output channels t37]. They are still used as a basic model for sequential computer circuits
[33]. We use nondeterministic transducers as our model for processes. We define a syn-
chronous composition operator for such transducers, which provides us a notion of coniext.
We then define linear observation semantics and give adequacy and full-abstraction results

for trace equivalence in terms of it.

3.1 Definition of Transducers

‘A nondeterministic transducer is a state machine with input and output channels. The
state-transition function depends on the current state and the input, while the output de-

‘penids solely on the current state (thus, our machines are Moore machines [37]).

Definition 1 A transducer is a tuple, M = (Q, qo, 1,0, %, 0, A, §), where

15

* QQ is a countable set of states.

* qo is the staﬂ state.

e [is a finite s'e’t of input chénnels.

* O is a finite set of output channels.

* Y is afinite alphabet of actions (or values).

e 0: 1UO — 2% — {8} is a function that allocates an alphabet to each channel.

A : Q x O — X is the output function of the transducer. \(q,0) € o(0) is the value

that is output on channel o when the transducer is in state q.

§:Qx0(iy) X X 0(in) = 29, where I = {i1, ..., i}, is the transition function,

mapping the current state and input to the set of possible next states.

Both I and O can be empty. In this case § is a function of state alone. This is important
because the composition operation that we define usually leads to a reduction in the number
. of channels. Occasionally, we refer to the set of allowed values for a channel as the channel
| alphabet. This is disﬁnct from the total alphabet of the transducér (denoted by X).

We répresent a particular input to a transducer as an assignment that maps each input
channel to a particular value. Formally, an input assignment for (Q, qo, I, 0,%,0, A, d)
is a function f : I — T, such that for all ¢ € I, f(i) € o(i). The entire ihput can
then, by a slight abuse of notation, be succinctly represented as f(I). The set of all input

assignments of transducer M is denoted In(M). Similarly, an output assignment is a

16

mapping g : O — X such that there exists.q € @, forall o € O, g(o) = (g, 0). The set of

| all Outpﬁt assignments of M is denoted Out(M). The output mapping of M is the function
h:Q— Oubt'(M) that maps a stéte to the output produced by the machine in that state: for
allg € Q,0 € O, h(q)(0) = A(g,0).

We point to three important features of our definition. First, note that transducers are
receptive. That is, the transition function é(q, f) is defined for all states ¢ € @ and input
| assignmenté f. There is no implicit notion of deadlock here. Deadlocks need to be modeled

explici';ly, é.vg.,’ by a special sink state d whose output is, say, “deadlock™. Second, note that
inputsat time k take effect at time k + 1.‘ >This enables ﬁs to define comﬁosiinn without
‘wofrying about c#ﬁsalilfy loops, uﬁlike,‘ for examplé, iﬁ Esterei ;[‘9]' ‘Thirdly, note thaf the
interﬁai staté of a transduéer is observabie oﬁly througﬁ its output funétion. How much of

the state is observable depends on the output function.

3.2 Synchronous Parallel Composition

’ Inv general there is no canonical way to compose machines with multiple channels. In
‘co'ncrete' devices, COnnecting' components requires as 1itt1¢ as knowing which wires to join.
Takin‘g ihspiration from this, we say fhat a composition is defined by a particular set of
desired connections between the machines to be composed. This leads to an intuitive and
flexible definition of composition.

A connection is a pair consisting of an iﬁput éhannel of Ohe transducer along with an

output channel of another transducer. We require, however, sets of connections to be well

17

formed. This requires two things:
e 10 two ontput channels are connected to the same input channel, and

* an output channel is connected to an input channel only if the output channel alphabet

isa subsét of the input channel alphabet.

These conditions guarantee that connected input channels only receive well defined values

that they can read. We now formally define this notion.

Definition 2 (Connections) Let M be a set of transducers. Then
Conn(M) = {X C C(M)|(a,b) € X, (a,c) € X=b=c}

where C(M) = {(ia,0B) |{A, B} C M,is € I4,08 € Op,08(0B) C UA(iA)} is
the set of all possible input/output connections for M. Elements of Comi(M) are valid
connection sets.

_Given a set of connections between a set of transducers, we can obtain a composite
transducer in a natural way using the cartesian product. The state space is just the cartesian

product of the states of the individual transducers. Every channel involved in a connection

is removed, and the remaining channels become channels of the composite.

Definition 3 (Composition) Let M = {Mi, ..., My}, My = (Qx, g, Ir, Ox, St 0y e 04)s
be a set of transducers, and C € Conn(M). Then the composition of M with respect to

C, denoted by ||c(M), is a transducer (Q, go, I, O, £, 0,), §) defined as follows:

18

cQ=Q1%...xQn

s Q=g X...xXq}

I=Up B~ {il o) € C}
+ 0=Up,0u— {0 (i,0) €)
* T =Up=1 2k

* o(u) = or(u), where u € I}, U Oy

* Mg, -'-‘-,Qn,O) = Ak(qk,o) where o € Oy,

e 8(q1s- o s FI)) = Ty (B 9(11))

where (i) = \;(g;,0) if (i,0) € C, 0 € O}, and g(i) = f(3i) otherwise.

Definition 4 (Binary Compo‘sition) The binary composition of M, and M, with respect -

toC e CO’I’l’I’L({Ml, Mg}) is M1||0M2 = ||C({M1, Mg})

The following theorem shows that a general composition can be built up by a sequence
of binary compositions. Thus binary composition is as powerful as general composition

- and henceforth we switch to binary composition as our default composition operation.

Theorem 1 (Composition‘Tlieorem)A Let M = {Mll, e Mn} be a set of tfansducers,
where My, = (Q4, g%, I, Ok, Zk, Ok, Ak, 0%), and C € Conn(M). Let M' = M — {M,},

- C'"={(i,0) € Cli€ I;,0 € O,j <n,k<n}and C" = C — C'. Then

lle(M) = ller({ller(M'), Mp}).

19

Proof. Let

M = [|o(M) = (@60, 1,0,%,0,1,)
M =|lo(M') = (@, q,I',0", T, 0", X, ')
MY = lon (M M) = (@'l 1,07, 57,0, X0, 8
To prove that M” = M we need to show that each component of M” is identical

to the corresPdnding component of M. Below we give such a proof for each separate

-component.The proofs depend entirely on Definition 3;

e Q"=Q xQn=(Q1X... X Qpn_1) X ‘Qn =Q (using Defn. 3).

* g =q0%x g5 =(a5%... xgg") X g§ = go (using Defn. 3).

o I"=IUIL,—{i|({,0) € C"} = (UZ;} I, —{i | (z’,‘o) E C'H U I, — {i|(i,0) €
C"} = (UiZt L) UL~ {i | (5,0) € €'}~ {il(i,0) € C"} = Uy e~ {i | (i,0) €
C'u C”}‘ =TI

« 0" = O. Proof is identical to the input case, because of the symmetry between the

definition of inputs and outputs of a composition (see Defn. 3).
Y =2 U, =i S U = U Sk =2
* ¢” = o. This is true because composition does not changé any channel alphabet.

« M = \. Composition simply projects the outputs of the individual automata on the

- remaining output channels.

20

. §" =3

8"(q1y- -+ s F1)) = 8(q1, - - 2 Gn1, 9(I')) X 8 (qn, 9(I2)), Where

.
N(q1y .-, Gno1,0) if (i,0) € C",0 € O’

9(8) = { \u(ga, 0) if (i,0) € C",0 € O,

f (i) otherwise.

\

Now X (g1, .-+, Gn—1,0) = Ax(gr,0) foro € O and 1 < k < n. We use this fact to

rewrite g as follows:

Me(gx, 0) if (i,0) € C",0 € O,k < n
g9(i) = | '
f(z) otherwise.

Next we see that §'(qy, . - -, -1, 9(I")) = 721 (6 (qx, h(Ix))), where

Ai(gj,0)if (1,0) € C',0€ Oj,j <n
h(i) =

g(?) otherwise.

21

Now we can simply expand g¢(¢) in the definition of h(z) and we get

4

Aj(g;,0) if (i,0) € C",0 € 04,5 < n

Ali) =\ Ai(gj,0) if (i,0) € C",0€ 0,5 <

L f(@) otherwise.

* We can write 8" and § as follows:

@ FD)) = (T Gl A (I))) X Bl 9(1))
(a1 - -+ @y F(I)) = T2 (kg e(1x)))

where

Aj(gj,0) if (,0) € C,0€ 0,7 <n
e(i) = .

f (%) otherwise. -

Finally, to prove that §” and ¢ are the same function, it suffices to show that e(7)

agrees with h(i) on I' and agfces with g(¢) on I,,.
X

The upshot of Theorem 1 is that in the framework of transducers a general context,
which is a network of transducers with a hole, is equivalent to a single transducer. Thus,

for the purpose of contextual equivalence it is sufficient to consider testing transducers. -

22

3.3 Executions and Traces

Definition 5 (Executibn) An execution for transducer M = (Q, q, 1,0, %, o, A, 0) isa

countable sequence of pairs (s;, f;)'_, such that sy = qo, and for all i > 0,
-8 € Q.
o fi: I — X suchthat forallu € I, f(u) € o(u).

> 8 € 6(8i-1, fi-1(1)).

Ifl € N, the execution is finite and its length is . If | = oo, the execution is infinite and its

'length is defined to be co. The set of all executions of transducer M is denoted exec(M).

Definition 6 (Trace) Let o = (é,-, fi)l o € ewec(M). The trace of o, ‘denoted by [a], is
the sequence of pairs (w;, fi)t_o, where for all i > 0, w; : O — X and for all 0 € O,
wi(0) = A(si,0). The set of all traces of a transducer M, denoted by Tr(M), is the set

{lo]|a € exec(M)}. An element of Tr(M) is called a trace of M.

Thus a trace is a sequence of pairs of output and input actions. While an execution captures
‘the‘real underlying behavior of the system, a trace is the 6bservab1e'part of that behavior.
The length of a trace « is defined to be the length of the underlying execution and is denoted

by |a.

Definition 7 (Tracé Equivalence) Two transducers M, and M, are trace equivalent, de-
noted by My ~p My, if Tr(My) = Tr(Ms,). Note that this requires that they have the same
set of input and outpui channels.

23

" We now study the properties of trace equivalence with respect to composition. In order
to'do so, we need a way to match traces of a composition to traces of its components. We

first define the composition of executions and traces.

Definition 8 Given o = (s;, fi)ly € exec(M;) and B = (r;, g:)y € exec(My), we

define the composition of a and 3 w.r.t C € Conn({ M, Ms}) as follows
allcﬁ = ((si’ Ti)’ hi>?=0

Wg hi(u) = fi(u) ifu € L—{i|(i,0) € C} and hi(u) = gi(v) ifu € L—{i|(i,0) € C}.

Definition 9 Given t = (w;, fi)ig € Tr(M:) and u = (v;, g:)7o € Tr(My), we define

the composition of t and u w.r.t C € Conn({ M, Ms}) as follows

t“Cu = (ﬂ'i» hi);;o

‘where p;(0) = w;(0) if o € O1 — {0|(i,0) € C} and p;(0) = v;(0) if o € Oz — {0|(4,0) €

C}, and h; is as defined in Definition 8 above.

Note that the composition operation defined on traces is purely syntactic. There is no
guarantee that the composition of two traces is a trace of the composition of the transducers
generating the individual traces. The following simple property is necessary and sufficient

" to achieve this.

Definition 10 (Compatible Traces) Given C € Conn({M, Mz}), t; = (W}, I, €

IR

24

Tr(M)and ty = (W2, f2)*, € Tr(M,), we say that t, and t, are compatible with respect
to C if for all (u,0) € C and for all i > 0, we have
e Ifu € I;and o € Oy then f(u) = wF(o), for all i > 0 and for j, k € {1,2}.

Lemmal Let C € Conn({Mi, Ms}), t € Tr(My) and u € Tr(M,). Then t||cu €

Tr(M||c M) if and only if t and u are compatible with respect to C.

We now extend the notion of trace composition to sets of traces.

Definition 11 Let T, C Tr(My), T, C Tr(My) and C € Conn({M;, My}). We define
T1Hc'T2 = {t1||ct2 | it € T’I‘(M]),tz € TT(MQ), |t1| = Itgl}

The next theorem is an important intermediate result on the wdy to proving the congru-
ency w.r.t. composition of not just trace equivalence, but of a general class of linear-time
semantics derived from trace equivalence. The result can be thought of as an invariance
| -theorem. Suppose M; and M, are transduce'rs’, Tiisa subeet of the traces of M, Ty is a
subset of fhe traces of M2 and C € C’onn({Ml, M,}). Then the tneorem says that those
elemenfs of T1||cT> which are also valid traces of M;||c M3, only depend on T} and T3,

~and are independent of M1 and Mo.

Theorem 2 (Syntactic theorem of traces) Let Ty C Tr(M;)NTr(Ms) and Ty C Tr(Ms)N

Tr(M,), and C € Conn({ My, M2}) N Conn({Ms, My}). Then

L (T1||CT2) NTr(M|lcMp) = (ThlleTz) N Tr(Ms|loMa)

25

Proof. Lett € (T1||cT2) N Tr(My||cMs). Then t = ty||cto, where t; € Ty and ty € To.
Since ty|cts € Tr(M;||cMs), by Lemma 1, ¢; and ¢, are compatible with respect to C.
Since T} C Tr(M3) and To C Tr(M,), again by Lemma 1, ¢1|jcty € Tr(Ms||cMy).
Therefore (T1||cT2) N Tr(M|lcMs2) C (Th||cT2) n Tr(Ms||cM,). By symmetry, set

inclusion, and thus equality, holds in the reverse direction too. X

Using Theorem 2, we show now that any equivalence defined in terms of sets of traces

is automatically a congruence with respect to composition, if it satisfies a certain natural

property.:

‘Definitioh 12 tTrace;i)aéed équi?alenée) Let M be the set of all transducers. Let R : -~ |
' M—> {A - Tr(M)|M € M} such that for all Me M, R(M) C YT’r(M). Then
‘R defines an ecjuivalence relation oﬁ M, >de‘noted be ~p, such tﬁat for all M, M, €
M, My ~gp M, ifdnd only if R(M1) = R(M;). Further, the function R is called an

equivalence-based invariance, and the relation ~ g, is called a trace-based equivalence.

Trace-based equivalences enable us to relativize trace equivalence to “interesting” traces.
For exar"nﬁle, one may want to consider finite traces only, infinite traces only, fair traces
only, and the like. Of course, not all such relativizations are appropriéte.

. We require traces to be compositional, in the sense described below. This covers finite,

infinite, and fair traces.

Definition 13 (Compositionality) Let ~p be a trace-based equivalence. We say that ~p

is compositional 'if given transducers My, My and C € Co‘nn({Mlk, M,}), the folldwing

26

hold:
1. R(M||cM;) C R(M)||cR(Ms).

2. Ift; € R(My), ty € R(Ms), and t,, ty are compatible w.rt. C, then t||cty €

R(M||c M2).

The two conditions in Definition 13 are, in a sense, soundness and completeness conditions,
as the first enéures that no inappropriate traces are present, while the second ensures that all
appropriate traces are present. That is, the first condition ensures that the trace set captured
by R is not too large, while the second ensures that it is not too small.

Note, in parﬁcular, that trace equi‘\?alence itself is a compositional trace-based equiva-
lence. We are now in a i)osition to obtain full abstraction results for our notion 6f compo-

 sitional trace-based equivalence

3.4 Full Abstraction

There are two aspects fo full abstraction. The first lies in showing that the semantics
makes all ihe needful distinctions, and the second in showing that it makes no unnecessary
ones. Thus we want to show that if two transducers are equivalent by our semantics, then
no context éan distinguish between them. Here we prove the stronger condition that trace
semantics is a congruence wifh respect to composition. Then we next show that if two
machines are inequivalent under trace semantics, then some context (i.e., composition with

a transducer) will be able distinguish between the two. The following theorem asserts that

27

~p is a congruence with respect to composition.

Theorem 3 (Congruence Theorem) Let ~g be a compositional trace-based equivalence.
Let My ~p Mg,‘Mg' ~r My, and C € Conn({My, M,}) = Conn({Mg,M4}). Then

Mi|lcMy ~r Ms||cM;.

Proof. We prove this by showing R(M;||cM2) = (R(M)||cR(Ms)) N Tr(M||cMs) =
(R(Ms)||cR(My)) NTr(M;| |cMa) = R(Msl|cMa). We prove the first equality by show-
ing set inclusion from both directions. The second equality is an instance of Theorem 2.
The third equality follows from the first by symmetry.

o R(Mi||cM5) C (R(M,)||cR(My)) N Tr(Mi||cM,), because by Definition 13,

R(M;||cMs) € R(M;)||cR(My), and by Definition 12, R(Mi||cMs) C Tr(M,||cMz):

* R(My||cMy) D (R(My)||cR(M2)) N Tr(Mi|lc M),
because if t1||cta € (R(M1)||cR(Ma)) N Tr(Mj||cMs,) then, by Lemma 1, ¢, and
to are compatible w.r.t C, and, by Definition 13, ¢;||cts € R(M;||cMa). -
X
An immediate corollary of Theorem 3 is the fact that no context can distinguish between
two trace-based equivalent trarisducers. The corollary‘ is fact a special case of the theorem,
obtained by setting M, = M.
Corollary 1 Let M, and M2 be transducers Rbea compositional trace-based equiva-
lence and Ml ~R M2 Then for all transducers M and all C € Conn({M M}) =

Conn({M Mg}) we have that M||CM1 ~R M||CM2

28

~ Finally, it is also the case that some context can alwaysv distinguish between two in-
equivalé‘nt transducers. If we choose a composition with an empty set of connections, all
original traces of the composed transducers are present in the traces of the composition.
If M1 *r My, then My||pM +p Ms||pM. We claim the stronger result that given two
inequivalent transducers with the same interface, we can always find a third transducer that
distinguishes between the first two, when it is maximally connected with them.
But first we need to slightly restrict the form that the semantics R can take by impos-
ing an additional -naturallne’sbs condition, that essentiglly says that R vshould not be vab{le to

discriminate between identical traces produced by machines with the same interface.

Definition 14 (Interface-respecting Semantics) Let My and M, be such that In(M;) =
In(Mz) and Out(M;) = Out(My), and R be a trace-based equivalence. We say that R is

interface-respecting, if t € R(My) and t € Tr(M,) necessarily imply that t € R(M,). -

Definition 15 (Tester) Given transducers M and M !, we say that M’ is a tester for M, if
there exists C € Conn({M, M'}) such that M||c M’ has no input channels and exactly

one output channel o with o € O'y;. We also say M’ is a tester for M w.rt. C.

Theorem 4 Let M, and M, be transducers with In(M;) = In(M,) and Out(M,) =
Out(Ms), R be a compositional interface-respeéting trace-based equivalence and M, g
M. Then there exists a transducer M and C € Conn({M, M:}) = Conn({M, M;}),

such that M is a tester for My and My w.rt. C, and M||cM; g M||c M.

29

Proof. Let M; = (Q1,48,51,01,%,01,A\,01) and My = (Qg,q2, I, 03, %, 02, Ag, 52).
" Since My g M, we assume without loss of generality that there exists 7 € R(M;) \

R(M,). Let 7 = (w;, fi)?o € Tr(M;). We define M = (Q, go, I, 0,3, 0, A,) as follows:
e Q={q:ieN}U{qg} isa countable set of states with a special failure state.

» For each 0 € O, we create an input channel in,, in I and assign alphabet o (in,) =

a1(0) to it.

« For each in € I, , we create an output channel o;, in O and assign alphabet o(0i,) =
o1 (m) to it.

* An extra output channel o;, with alphabet {a,b} C 3, that will be the only visible

channel remaining after composition.

©* M@, 0im) = fi(in), Mqi, 0) = a and A(gy, 0;) = b. In all other cases, we’vdon’vt care

what output M produces, and A can be assumed to be arbitrary.

» For state ¢ € (), and input assignment g :] — ¥,

giv1, if ¢ = ¢; and Vin, € I, g(in,) = w;(0),
(g, 9(I)) =

gy, otherwise.

We define the set of connections C' € Conn({M, M}) as follows: forallin € I1,0 € Oy,
(in,04,) € C and (in,,0) € C, and nothing else is in C. Now M||cM; has exactly

one channel, which is the output channel o; belonging to M, and so M is a tester for M;

30

’ .w.f.t. C. The transducer M is deterministic and designed to follow the execution of the
distinguis}hing traée 7. As soon as the computation of the machine being tested diverges
- from this trace, M will enter its failure state and switch its visible output from a to b. Thus
if My doés not produce the trace 7, then we can clearly distinguish it from M using M.
The only remaining case to consider is when My vdo-es produce this trace but it does not
fall under the set distinguished by R. That is, 7 € Tr(M,) and 7 ¢ R(Ms). But this is

impossible as R is interface-respecting by definition. X

31

Chapter 4
Probabilistic Transducers |

4.1 Preliminaries

In order to rigorously construct a probabilistic model of transducer behavior, we will
require certain concepts from measure theory and its af)plication to the space of infinite
sequences over some alphabet (i.e., Cantor and Baire spaces). This is because our proba-
bilistic notion of behavior will be defined by probability distributions, which are measures,
over “, the set of infinite sequences of states. We briefly cover the reqﬁired mathemati-
cal background in this section. All lemmas and theorems in this section are stated without

proof. The interested reader should consult any standard text in measure theory ([34], [22]).

4.1.1 Measure and Probability
Intuitively, éprobability distribution over some set X should satisfy the following prop-

erties: the probability of any event (a subset of X) should be non-negative, the probability

32

of the entire set X as an event should be 1, and the probability of the union of two dis-
joint events should be the sum of the probabilities of the events. For technical reasons, the
M third condition is actually replaced by a stronger condition requiring countable additivity.
It turné out that this combination of desired properties cannot always be achieved if the
events are allowed to be arbitrary subsets of X. For the properties to hold simultaneously,
the set of events has to be restricted to a subset of 2% that is closed under complements and

countable unions. Such a subset of the power set is called a o-algebra.

Definition 16 (c-algebra) Let X be a set and F be a set of subsets of X. We say that F is
“an-algebra over X if it is closed under taking complements and finite unions. A o-algebra
over X is an algebra that is closed under countable unions. Given a subset A bf 2%, the
o-algebra generated by A is the smallest o-algebra containing .A,' and can be obtained as

the intersection of all o-algebras containing A.

Definition 17 (Measure) Let'X be a set and F be a o-algebra over X. A measure over
(X, F) is a function p : F - [0, 00] from F to the extended positive reals, that satisfies

the following conditions:
Nullity. x(0) = 0.

Countable additivity. p(U;c; Ai) = > icr ,u‘(Ai) for every countable set of pairwise dis-

joint sets A; € F.

The triple (X, F, u) is called a measure space. If u(X) = 1 then p is a probability measure.

- A probability space is a measure space with a probability measure.

33

Frequently, when there is some relation between sets X and Y, we can use a measure
~defined on X to obtain a measure on Y. The rest of this subsection deals with two such
instances.

Given a function from X to Y that preserves measurable subsets in the inverse, we
can use it to generate a measure on Y from any measure on X. Such a function is called
a measurable function. In particular, the function mapping Q“ to Out(M)“, which is a
_generalizétion of the output mapping of a transducer, is measurable. Later, we crucially

exploit this fact while defining probabilistic analogues of executions and traces.

Definition 18 (Measurable function) Let X,Y be sets and F, G be o-algebras over X
and Y, respectively. A function f : X — Y is called measurable, if for all A € G, |

YA erF

Lemma 2 Ifp : F — [0,00] is a measure over F, and f : X — Y is a measurable
function, then ps : G — [0, 00|, defined as pg(A) = p(f~1(A)) for all A € G, is a measure

over G.

Finally, a measure on the product of spaces can be defined in the natural way as the
product of the measures on the individual spaces. This product measure will be used in the

composition of probabilistic transducers.

Theorem 5 (Product Measure) Let (X, F;, u;) be a measure space for i € I. Then the

product space‘ (TTicr Xi TLicr Fis Ties i), defined as follows, is a measure space.

. [Lic; Xi is the cartesian product of sets.

34

* [Ler Fi = {ILic; Bi : Vi €1, B; € F;} is the product o-algébra, .

o (ILer)= 2 i € I}) = [1;e;(ui(z:)) for x; € X, is the product measure.

If the p; are probability measures, then the product measure is also a probability measure.

4.1.2 Measure on Infinite Words

In the previous subsection we dealt with measures on arbitrary spaces. However, in
defining the behavior of probabilistic transducers, we will have to work with a highly
structured set: the gpace':of infinite sequeﬁéés over some alphabet. This is because, when
the transition function of the transducer is probabilistic instead of nondeterministic, a se- ‘, :
'qué_nce of inputsinduces a probability distribution over the set of state sequences of | the
same length, which in turn defines a distribution over the set of output sequences. In this
subsection we briefly review some useful properties of such spaces.

In order to define a measure on the space of infinite sequences over some alphabet ¥,
we must first choose a suitable a-algebia. The natural choice here is to use the o-algebra
generated by the basic open sets of the natural topology on >*. The basic open set is called
a cyliﬁder anii is defined as the set of all possible infinite extensions of a given finite word.
Intuitively, if we view 3 as an infinite tree, thén a cylinder is a finite path foliowed by a

complete infinite subtree.

Definition 19 (Cylinders) Given an alphabet %, and a finite word 3 € X*, the cylinder
Cp is defined as the set {3 - o : a € X*}, where X is the set of all infinite words over X.
The finite word generating a cylinder is called the handle of the cylinder.

35

Definition 20 (Borel o-algebra) Given an alphabet T, the Borel o-algebra over %, de-

noted by B(X), is the o-algebra generated by the set of cylinders of ©*.

We want to define a pfobability measure on X*. Considér what sﬁch a measure p
would loék like,b and the value it would take on cylinders. Gi\}en a cylinder Cg, we can
write it as a disjoint union of cylinders Cs = |J, 5, Cp.o. Then, by countable additivity,
1(Cs) = ¥ ,cx #(Cp.2). Now, we can interpret the function x on cyiinders as a function
fon ﬁnite wofds, since there is a one to one correspondence between cylinders and finite
words. ‘Turning things around, such a function f : £* — [0, 1] can be used to define the
measure on cylinders. The value that the measure takes on cylinders can in turn define the

value it takes on other sets in the o-algebra. This intuition is captured by the next definition

and the theorem following it.

Definition 21 (Prefix function) Let ' be a countable alphabet and T* be the set of all
finite words over I'. A prefix function oi)er [is a function f : I'* — [0, 1] that satisfies the

following properties:
e fl9=1
s fla) = er fla-x)foralla e T,

Theorem 6 Given an alphabet ¥, and a prefix function f over X, there is a unique proba-

bility measure i : B(X) — [0, 1] such that for every cylinder Cg of 2, u(Cp) = f(8).

36

4.2 Definition of Probabilistic Transducers

We would like to extend the results of the nondeterministic case to the case where the
transition function of the machine is probabilistic, that is, the transitions that the machine
takes have probabilities associated with them. We do this by associating each distinct input

“and state combination with a probability measure on the set of states.

Definition 22 (Probabilistic Transducer) A probabilistic transducer is a tuple,

M = (Q,q,I,0,%,0,\0) where
* @) is a countable set of states.

. qq is the start state.

1 is a finite set of input channels.

O is a finite set of output channels.

* . is a finite alphabet of actions (or values).

o : I UO — 2% is a function that allocates a channel alphabet to each channel.

A:Q x O — Zisthe output function of the machine. \(q,0) € o(0) is the value

that is output on channel o when the machine is in state q.

¢ 6:Q xa(i) X ... X 0(in) — Q where I = {iy,...,i,} and is the set of all
probability measures on Q, is the transition function mapping the current state and

input to a probability distribution on the set of states.

37

Input assignments, output assignments, output mapping, In(M) and Out(M) are de-
fined just as for the nondeterministic case (Section 3.1). |
‘Note that the only difference between a probabilistic transducer and a non-deterministic
one is in the definition of the trénsition function 4. Also note that in Definition 3 in Sec-
tion 3.2, the transition function of the composition is defined as the cartesian product of
the transition functions of the component transducers. So if we can define a cartesian
product operation for the transition function of probabilistic transducers, then the defini-
tions for gengral and binary composition, as Weu as the composition theorem and its proof,
which equateé fhe t§vo, wi_il carry over 1n théir eﬁtirety without any change from fhe ﬁon—
determiﬁistic c’asé. Such a product operation is provided by the product measure (Theorem
5) ‘Intuitively, a transition of a composite machine can be viéwed as multiple independent
transitions of its compoﬁeﬁts, one for each component. Then the probability of making
such a composite transition must be the same as the probability of the multiple independent
transitions occurring at the same time, which is just the product of the individual probabil-
ities. This is formally captured by the product measure ponstruction.
A»We‘will not restate the deﬁhitions for general and binary.c'omposition, as well as the
compositién theorem. From here on, transducer will mean probabilistic transducer and
composition will mean binary composition of probabilistic transducers. In the next séction,

we define appropriate notions of probabilistic behavior for transducers.

38

4.3 | Probabilistic Executions and Traces

A single input assignment f(I) to a transducer M in state go, induces a probability
distribution on the set of states @, given by 6(qo, f(I)). Similarly, a pair of input assign-
ments f(I), g(I) applied in sequence should give a probability distribution on the set of
all pairs of states 2. Intuitively, the probability assigned to the pair (g, g2) should be the
probability that M steps through ¢; and ¢, in sequence as we input f(I) followed by g(I),
which is 8(qo, f())(q1) x § (g1, 9(I))(g2). If we assign such a probability to each pair of
states, we find that the resultant distribution turns out to be a probability measure. A similar

ptoCedure can be applied to any finite length of input sequence. Thus, given an input se-
cluence of finite length n, we can obtain a probability distribution on the set Q", where the
probability assigned to an element of @ can be intuitively interpreted as the probabihty of
the transducer going through that sequence of states in response to the input sequence.
This procedure breaks do'wn when we consider an inﬁhite sequence of inputs, because
| Q*, the set of ihﬁnite sequences over (), is unceuntable and deﬁnihg the probability for
singletoh elements is not sufﬁcient to deﬁhe a distribution. In fact, the probability of each
individual infinite sequence of states could very well be zero (similar to the case of the
uniform distribution over a finite interval of the real line). In order to obtain a distribution,
iwe need t}ov define the probability for all measurable subsets of . We know from Section
4.12 fhat fhe suitable o-algebra to use here is the Borel o-algebra ovef Q.
Theorem 6 is the bridge between the case of finite sequences of states, which we intu-

itively know how to handle, and the infinite case where the procedure of looking at individ-

39

ual Sequences breaks down. The theorem tells us that if we can obtain a prefix function on
the set of states (), then we can use it to obtain a measure on QQ“. Note that a prefix func-
tion deals only with finite sequences, and esseﬁtially captures the idea that the probability
of visiting a particular state ¢ must be fhe same as the probability of visiting ¢ and then
going to some arbitrary state. In a similar vein, the probability of heads in a single toss of a
coin must be the same as the probability of heads in the first of two tosses, when we do not
care about the results of the second toss. We use the transition function of the transducer to
define thepr‘eﬁx function on Q.

Definition 23 Let M = (Q, qo, I, 0, %, 0, A, §) be atransducer, and t = (f;)2, € In(M)*

be an infinite sequence of inputs. Then we can inductively define a prefix function p(M,)

over) as follows:

* p(M,7)(e) = 1.

+ p(M,7)(a) = 8(ao. Fo1)) (@) for € @
* p(M,m)(c-p-q) = p(M,m)(cp) X 8(p, fiap({))(q) for g € Q.
Proposition 1 p(M, 7) is a prefix function over Q.

Proof. Let M = (Q, qd,’I, 0,%,0,)\,0) and 7 = (f,)fio € In(M)“. By Definition
23, p(M,m)(e) = 1. Also, 35 o p(M,7)(€- q) = D cq (g0, fo(1))(g) = 1, because |
8(qo, fo(I)) is a probability measure on Q. So the definition of prefix function is satisfied
for the case of the empty word. Now let a € Q* such that o # €. Then o = - p for
some 3 € Q*. and p € @. Then, By Definition 23, for eny q € | Q, p(M,7)(a - q) =

40

p(M,7)(B-p-q) = p(M,m)(B-p) x 6(p, fi85/(I))(q). Therefore 3 .o p(M,7) (- q) =
p(M,m) () X 3 e 0Py fiap1(1))(q)- Since 6(p, fig.p(I)) is a probability measure over @,
its total measure over) must be 1. Hence we have, > e PM,m)(a - q) = p(M,) (a),

and so p(M, m) is a prefix function over Q. X

So given any infinite sequence of inputs, we can obtain a prefix function on the set of
states and thus obtain a unique probability measure on B(Q). We call such a measure an
execution measure, since it plays the same role in defining the behavior of the transducer

that executions did in the non-deterministic.case.

Definition 24 (Execution Measure) Let M = (Q, qo, I, 0, £, 0, \,) be a transducer, and
rel n(M)Q be an infinite sequence of inputs. The execution measure of & over M, , denoted
p(M,), is the unique probability measure on B(Q) such that for every cylinder Cg of Q,

#(M,m)(Cp) = p(M,m)(B)-

Since the output of a transducer depends only on its state, each state ¢ maps to an
output assignment h(q) : O — X such that h(q)(0) = A(g,0) for all 0 € O. Then we can
extend h : Q — Out(bM) toa mapping from sequences of states to sequences of output
assignments in the natural way: for o, 8 € Q*, h(a - 8) = h(a) - h(). We can also extend
it to the case of infinite sequences. Since an infinite sequence of states is just a mapping
g : N = @ from the natural numbers to the set of states, then hog: N — Out(M)isa
mapping from the naturals to the set of outputs. We now show that h : Q¥ — OQut(M)*
is a measurable function, that is h~! maps measurable subsets Qf Out(M)“ to measurable
subsets Qf »Q“’. | | | | | | i

41

Lemma 3 The extended output mapping, h : Q¥ — Out(M)“, of a transducer M is a

- measurable function.

Proof. It suffices to show that ~~! maps cylinders of Out(M)“ to measurable subsets of
Q“. Let a € Out(M)*, and consider h~1(C,). Now h™1(C,) = {8 € Q“ : h(B) €
Co} ={B1-B2: Bi € Q" h(B1) = o, B2 € Q“, h(Br) € Out(M)*} = {B1- B2 : B €
Q*,h(ﬁl) =a,f € Q“} = U,YGA C,, where A = {§ € Q* : h(B) = a}. Therefore
h~! maps a cylinder to a union of cylinders, which is a measurable set, and thus A is a

measurable function. - . - . K

The above result allows us to use h to translate a measure on Q¥ into a measure on
Out(M)“. So for each execution measure, we can define a trace measure, which is the

analog of a trace in the non-deterministic case.

Definition 25 (Trace Measure) Let M = (Q, qo, [, 0,%,0,)\,0) be a trdnsducer, 7 be an
infinite sequence of inputs, and h : Q — Out(M) be the output mapping. The trace mea-
sure of w over M, denoted by ur(M,), is the unique probability measure on B(Out(M))

defined asfoﬁows: for all A € B(Out(M)), pr(M,7)(A) = (M, n)(h~1(A)).

The trace measures of a transducer are the observable part of its behavior. We define

the probabilistic version of trace semantics in terms of trace measures.

Definition 26 (Trace Equivalence) Two transducers M, and M, are trace equivalent, de-
noted by My ~1 M, if
o In(M;) = In(M,) and Out(M,) = Out(M,).

42

e ForallT € In(My)*, pr(My,) = pr(Ms,).

The first conditioh is purely syntactic, and is essentially the requirement that the two trans-
| ducérs have the same input/output ihterface. The second condition says that they must have
identical trace measures.

In contrast to the the non-deterministic case, instead of linear traces and executions, the
basic semantic object here is a probability distribution over the set of all infinite words over
some alphabet (in other words, an infinite tree). Before attempting to obtain full abstraction
results, we show thag thg semantics defined above has an equivalent formulation in terms
of finite linear traces and exegutions. The key insight involved in reducing an infinitary .
semantics to a ﬁnitary one is that eaéh trace aﬁd exeéution measufe is defined coniplet‘elly’
by the value it takes on 'cylinders, and fhe cylinders have a oné-to-one correspondence with

the set of finite words. Each cylinder is in some sense equivalent to its handle.

Definition 27 (Execution) Let M = (@, qo, 1,0, %, 0,),0) be a probabilistic transducer.
An execution of M is a sequence of pairs (fi, s;)7_o such that n € N, and for all i > 0,

8; € Q and f; € In(M). The set of all executions of machine M is denoted exec(M)..

Note that in contrast to the non-deterministic case, the definition of execution does not

depend on the transition function §. Also, all executions are finite in length.
Definition 28 (Likelihood of an execution) Let o = (f;,s:)%, € exec(M). Then the
likelihood of o, denoted by x (@), is defined as follows:

xu(a) = 8(qo, fo(1))(s0) x Ty (8(si—1, £ill))(s:))

43

where the product II7_, is defined to have value 1 for n = 0.

Definition 29 (Trace) Let a = (f;, ;) € exec(M). The trace of o, denoted by [a], is
a sequence of pairs {f;, h(s;))’q, where h : Q@ — Out(M) is the output mapping of M.
The set of all traces of machine M, denoted by Tr(M), is the set {[a]|a € exec(M)}. An

“element of Tr(M) is called a trace of M.

Definition 30 (Likelihood of a Trace) Let t € Tr(M) be a finite trace of M. Then the

likelihood of t, denoted by x\(t), is defined as follows:

xu® = Y, xmle)

dEEzec(M),[a]=t

Note that in our definition of tracé, we ignore h(qq), since the initial state Qf é transducer
is unique. '

The length of a trace « is defined to be the length of the underlying execution and
is deﬁoted by |a|. Once again, the transition function is not needed to define traces, and
soa traqe is a:pdrely syntactic object. The semantical nature of a trace is now completely
captured by the likelihood of the trace. Note that if two transducers have the same interface,
they have the same set of traces: T'r(M;) = Tf(M2) if and only if In(M;) = In(M,) and
Out(M;) = Out(My).

The next theorem éffers a sinipler definition of trace equivalence. We need the follow-

ing propositions for its proof.

44

Proposition 2 Let M = (Q, qo, I,0,%,0,\,8), m = ()20 € In(M), a = (f;, 8:)1p €

exec(M), and 3 = (8} € Q*. Then xu(a) = p(M, 7)(B).

" Proof. We prove the desired equality by‘ induction on the length of the execution. If n = 0,
then by Definitions 28 and 23, xa(a) = 8(go, fo(I))(s0) = p(M,7)(s0). Let n > 0,
=9 (fa-1,52-1) * (fas 8n), B = - $n—1 - 8. Then, by Definition 28, (@) = xa (7 -
(fa-1, 8n-1)) X 6(8n—1, fn(I))(sn), and by the induction hypothesis, xar (Y- (fa-1, $n-1)) =
p(M,)0 - $n-1). S0 xm(a) = p(M,7)(n - $n-1) X 8(sn—1, fa(1))(sn) = p(M,7)(n -

Sn—1+ 8n) = p(M,7)(B) (the second equality follows from Definition 23). 0 K

Proposition3 Let M = (Q,q@,I, 0,%,0,), 6); T = (f,-)g’io € In(M)*, t = (fi,wi)?, €

Tr(M), and B = (w;)2 o € Out(M)*. Then xu(t) = pr (M, 7)(Cs).

Pr00f. Leth: Q — Out(M) be the output mapbing of M. vTherll, by Definition 30 and
Proposition 2, xm(t) = Zaeéxevc(M), fa]=t xirle) = > eh-1(8) p(M,7)(7). Also, by Def-
inition 25, [IIT(M,TF)(C’@) = p(M,7)(h~}Cp)) = ,u(M,vr)(U,yeh_l(ﬁ) C,). Since cylin-
ders wifh handIes of fhe same length are necessarily disjoint, and (M ,) is a measure,
using co‘lim‘tvable‘ addiﬁvity we get v,u(M,.w)(U,yeh_l(ﬂ) C,,) ‘= Zvelh_l(ﬁ) w(M,7)(Cy) =
> _en-1(g) P(M, m)(7) (the second equality follows from Deﬁnition-24). Therefore, xn(t) =

ur (M, m)(Cp). L =

Theorem 7 Let M, and M, be probabilistic transducers with Tr(M,) = Tr(M,). Then
My ~1 M, if and only if, for all t € Tr(My), xum,(t) = X, (2).
Proof.

45

If: Let My ~7 Myandt = (f,-,wi);;O € TT(Ml) Let m = (f,)zoio € In(Ml)“’ and
Jé] = {(w;)?y € Out(M;)*. Since My ~7 My, then the trace measure induced by =
must be the same for both transducers, i.e., pr(Mi, 7) = ,uT(Mz, m). In particular,

pr(My, 7)(Cg) = pr(Ma, w)(Cg). By Proposition 3, we have xar, (t) = xu,(t)-

Only If: Let Tr(M;) = Tr(Ms,), and for all ¢ € Tr(Mi), xa(t) = Xar,(t). Given
any m = <f1>$io € I’I’L(Ml)w, ,8= (wz—)?:(, S Out(Ml)*, and u = (fi,wz')?:() €
Tr(M;), we have by assumption, xas, (u) = xa,(u), and therefore, by Proposition

3, pr(My,) (Cs)-= pr(Ms,m)(Cp). Since the measures are completely determined

by their value on cylinders, we have ur(My,) = pr(Ms,) forallm € In(Mp)*

and so Ml ~T Mg. ‘

X

The théoretﬁ abbve ailowé us to reason in terms of éinglé finite traces. This is a signif-
icant reductioh in complexity from thei original deﬁnitibri in téﬁns of probébility‘ diétrib‘u-
tions on infinite trees. iIn particular this simplifies the probf of the full absfraction results to
follow. |

In the next sectibn, wé use this altemative éharécterization of tr’ace‘equivalence to show
that it is fully abstract with respect to contextual equivalence. First we need to be able
to calculate the likelihoods of traces of a composition from the likelihoods of traces of
its components. In the propqsitions that follow, ‘composition of traces and executions is

defined exactly as for the non-deterministic case (see Definitions 8 and 9 in Section 3.3).

46

Proposition 4 Let M, and M, be transducers, C € Conn({ My, Ma}), o € exec(M1) and

- B € exec(My) such that o||cf € exec(Mi||cMz). Then

xalo (@lloB) = xan (@) X xa1y ()

Proof. Let My, = (Qx, g, Ix, Ok, Tk, 0k, Mk, 0k), k € {1,2},and M = (Q,q0,1,0,%,0,\,8) =
M, ||c M, where C € Conn({ My, Ma}). Leta = (f;, s} € exec(Mi), B = {gi,)" €
exec(Mgr), and of|cB € exec(M). We define ¢; : I — £, U Xy as e;(in) = fi(in), if
in € I, and e;(in) = g;(in), otherwise. | |

By the deﬁnitibn-ofcovmpositiovn‘, 5(‘(3‘]», r7), €i+1(I)) = 61(85, fi+1(11)) x8a(rj, gi+1(12))-
Applying this to the expansion of x s (c||c5), given by Definition 28, and then rearranging |

the terms in the product, we obtain the desired equality.

xar(al|ch)
= 6((ah) a0 70 X TS D))
= B, A1) X o (1) X (B, (1) i, (1)
(B, (1)) X T s,) (5l o) X T, (1)

= XM (@) X xa(B)

X

Pro'poSitidn 5 Let My and M, b‘e transducers, C € Conn({ My, Ma}) andt € Tr(M||c M)
Then Xan|icma(t) = Doy, X, (u) X Xas (v) where u € Tr(M,), v € Tr(My) such that

47

ul|ov = t.

" Proof.

Z XMI (u) X XM (U)

ul|cv=t
= Z ((Z X (@) x (Z xM:(6))) (using Dfn. 30)
ullov=t [a]=u [8l=v |
= Z (Z (XMI (a) X XM, (:8))) (rearranging terms)
ullcv=t [e]=ulf)=v | |
= Z (Z (mliema(@lleB))) (using Prop. 4)
" ullcv=t [a]=u,[f]=v
= Z XMilleM: (@|c) (rearranging terms)
[ellcBl=t : ,
= XMchMz(t)

4.4 Full Abstraction

As in the nondeterminiStic case, here again we want to show tha_t our semantics recog-
nizes exactly the distinctions that can be detected by some contexf and vice versa. The two
sides of this property are often called, resp., observational éongruence and adequacy. Here
we first prove the stronger condition that trace semantics is a congruence with respect to
the composition operation; Then the property of observationai congruence with respect to
contexts automatically follows as a corollary.

48

Theorem 8 (Congruence Theorem) Let M; ~r Ms, My ~7 Myand C € Conn({ My, Ma}).

" Then My||c My ~r Ms||cMy. We say that ~r is congruent with respect to composition.

Proof. Let t € Tr(M||cMz). Since Tr(M;) = Tr(Ms) and Tr(Ms) = Tr(M,), we
have {(u,v) : u € Tr(M),v € Tr(M),ullcv = t} = {(u,v) : v € Tr(M;),v €
Tr(My), ul||cv = t}. Then, by Proposition 5 and Theorem 7,

XMyl () = Z{(u,v):u”cvzt} xm, (u) X xap (v) = E{(u,v):u”crv:t} X (1) X Xn(v) =

X Ms||oMs(t)- Again, by Theorem 7, we have M ||c My ~1 Ms||c M. X

* Similar to the nondeterministic case, an immediate corollary of Theorem 8 is the fact '

that no context can distinguish between two trace-based equivalent transducers.

Corollary 2 Let M 1 and M, be transducers, rmd My ~7 Ms. Then for all transducers M

~and all C € Conn({M, Ml}) = Conn({M, Ms}), we have that M||c M, ~r M||CM2.

vWe can easily co‘m’plete the other requirement of showing full abstraction of trace se-
mantics with respect to contextual equivalence, by demonstrating a trivial context that
makes a distinction between trace inequivalent transducers. Let M; and M, be transducers
such that My ®7 M. ’Now we can simply choose an empty set of connections C, and
a cornpretely deterministic transducer M, as the basis of our testing context. In this case
the trace measures of the composition M ||cM will be the same as the trace measures of
- M, alone, and full abstraction would be trivially achieved. Here we give a stronger result,
similar to rhat already described for the nondeterministic case. We show that given two

inequivalent transducers with the same interface, we can always find a third transducer that

49

is a tester (see Section 3.4) for them and that distinguishes between the first two, when it is

maximally connected with them.

Theorem 9 Let My and M, be transducers with Tr(M,) = Tr(M,) and My &1 Ms.
Then there exists a transducer M and C € Conn({M, M}) = C’onn({M, M,}), such

that M is a tester for My and My w.r.t. C, and M||c My 1 M||cMo.

Proof. YLCt M1 = (Ql,qO,I’ Ol by 0’1,}\1,51) and M2 = (Qz,qo,ll O’ E 0'2,/\2,(52)
Since M; 76T Mz, by Theorem 7, there exists t € Tr(Ml) Tr(Ms), such that x s, (t) #
, ‘XMz (t) Lett = (f,,wz)z Oforﬁmten We deﬁne the testing transducer (Q,qo,I 0,%,0,\ 6)

as follows

* Q = {g0,q1,- .-, n+1} U {gy} is a finite set of states, with qf being a special sink

state.

« For each o € O', we create an input channel in, in I and assign alphabet o(in,) =

o1(0) to it.

e For each in € I’, we create an output channel o;, in O and assign alphabet (0;5,) =

o1(in) to it.

e An extra output channel o;, with alphabet {a,b} C L, that will be the only visible

channel remaining after composition.

o Xgi,0in) = f,('m) (q,, 0;) = a and A(gs,0;) = b. In all other cases, we don’t care

what output M produces, and A can be assumed to be arbitrary.

50

. Thé transition function 4§ is defined as follows

- 0(qi, h(I))(gi+1) = 1, if for all in, € I, h(in,) = w;(0).
- &8(qi;, h(I))(q) = 0, if ¢ # g;41 and for all in, € I, h(in,) = w;(0).
- 0(q, h(I))(g¢) = 1, if for some in, € I, h(in,) # w;(o).

- 8(q, h(D))(¢) =0, if ¢’ # g and for some in, € I, h(in,) # w;(0).

We define the set of connections C' € Conn({M, M1}) = Conn({M, M,}) as follows:
for all in = I’, o € O, (in,0;,) € C’ and (z'no, o) € C, and nothing else is in C. Now
both M |lc My aﬁd M | |CM2 have exactly one chanﬁel each, which is the output channel o,
bélonging to M, ahd so M is a tester for My and M, w.rt. C.

The transrduce'rv M simulates a deterministic transducer in that ffom each state and input
combination, a single transition has probability 1 and all other transitions have zero proba-
bility. Further itis designed to follow the execution of the distinguishing trace ¢. As soon as
the computation of the machine being tested diverges from this trace, M will enter its sink
state and switéh its visible output from a to b. When the machine béing tested undergoes an
e#ecution corresponding to the trace ¢, the cémposition will output the trace a™*!. We now
show that thé likelihood o.f this trace is different for M l|cM; and M||c M, and this will
complete ‘bthe proof. By Proposition 5, we have XM, (@™1) = 32, , xar(u) X xa1,(v)
where u € T’I‘(M), v € T r(My) such that u||cv = a™*1. Now, by de‘sign, there is only
a single such u € T’I‘(M), and a single such v € T'r(M;), and we also have xp(u) = 1,
and v = t. vlSo XMl (@™H) = XMy (t). But since, by sylﬁmetry, this argument ap-
plies t(; M, as well, we haQe XuljeMz (@™ = xap(t), and therefore xjicm, (a™*1) #

51

XMjjc M, (@™ Th). Thus the testing transducer M can distinguish between M; and M,. X

The previous two theorems, taken together, show that trace equivalence is fully abstract

with respect to contextual equivalence.

52

Chapter 5
~ Conclusion

It could be fairly argued that the arguments raised here have been raised before.

y Testing equivalence, introduced in [231, is clearly a notion of conte);tual equivalence. -
Their answer to the question, “Whét is a test?”, is that a test is any process that can
be expressed in the formalism. So a test is really the counterpart of a context in
program equivalence. (Though our notion of context in Section 3.2, as a network of
transducers, is, a priori, richer.) At the same time, bisimulation equivalence has been
recognized as being too fine a relation to be considered as contextual equivalence

[10, 11, 12, 32].

* Furthermore, it has also been shown that many notions of process equivalence studied
in the literature can be obtained as contextual equivalence with respect to appropri-
ately defined notions of directly observable behavior [13, 41, 46, 52). These notions

fall under the title of decorated trace equivalence, as they all start with trace seman-

53

tics and then endow it with additional observables. These notions have the advantage
that, like bisimulation equivalence, they are not blind to issues such as deadlock be-

havior.

With respect to the first point, it should be noted that despite the criﬁcisms leveled at
it, bisimulation equivalence still enjoys a special place of respect in concurrency theory
as a reasonable notion of process equivalence [3, 60]. In ‘fact, the close correspondence
between bisimulation equivalence and the branching-time logic CTL has been mentioned
as an advantage of CTL. Thus, it is not redundant, in our Opinidn, to reiterate the point that
bisimulation and its variants are not contextual equivalences..

With respect to vthevsecond point we note that our approach is related, but unite different,
than that taken in dec'orated trace equivalence. In the latter approach, the f‘decorated” of
traces is aﬁributed by concurrency theorists. As there is no unique way to decorate traces,
one is left with numerous notions of equivalence and with the attitude quoted abdve that “It
is not the task of process theory to find the ‘true’ semantics of processes, but rather to de-
termine which process semantics is suitable for which applications” [60]. In our approach,
only the mbdelers know what the relevant aspects of behavior are in their applications and
oﬁly they caﬁ decorate traces appropriately, which led to our Principles of Comprehensive
Modeling and Observable I/0. In our approach, there is oﬁly one “right” of contextual
equivalence, which is trace-based equivalence.

Admittedly, the comprehensive-modeling approacﬁ is not wholly original, and has been

foretold by Brookes [14], who said: “We do not augment traces with extraneous book-

54

keeping information, or impose complex closure conditions. Instead we incorporate the
crucial information about blocking directly in the internal structure of traces. ” Still, we
believe that it is valuable to carry Brookes’s approach further, substantiate it with our three
guiding principles, and demonstrate it in the framework of transducers.

An argument that may be leveled at our comprehensive-modeling approach is that it
requires a low-level view of systems, one that requires modeling all relevant behavioral
aspects. This issue was raised by Vaandrager in the context of I/O Automata [59]. Our re-
Sponse to this criticism is twofold. First, if t_hese low level details (e.g., deadlock behayiqr)
are‘ ;elevant to vthe aﬁplicafien, thel} they better be spelled ‘out by the fnodeler ratvh‘ervthan by
the concuneﬁcy fﬁeoﬁet. |

As discussed earlier, whether deadlocked termination sﬁould bedistinguished from nor-
mal t’erminatioﬁ depends on the level of abstractien at which the model operates. It isa
bragmatic decision rather than a theoretical decision. Second, if the distinction between
normal termination and deadlocked termination is important to some users but not oth-
eré, one could imagine language features that would enable explicit modeling of deadlocks
when sueh modeling is desired, but would not force users to apply s‘ueh explicit modeling.
The underlying semantics of the language, say, in terms of structured operafional seman-
- tics [38], can expose deadlocked behavior for some language _features and not for others.
In other words, Vaandrager’s concerns about users being force to adopt a leW-level view
should be addressed vby designing more flexible languages, and net by introducing new

notions of process equivalence.

55

Note that the alternative to our approach is to accept formalisms for concurrency that
are not fully specified and admit a profusion of different notions of process equivalence.

In conclusion, this dissertation puts forward an admittedly provocative thesis, which
is that process-equivalence theory allowed itself to wander in the “wilderness” for lack
of accepted guiding principles. The obvious definition of contextual equivalence was nof
scrupulously adhered to, and the underspecificity of the formalisms proposed led to too
many interpretations of equivalence. While one may not realistically expect a singlé dis-
s‘értation to oyerwﬁte about 73(') years of resegrch,. amore modest hope‘ would be to s';imulate

a lively discussion on the basic principles of process-equivalence theory.

56

Bibliography

[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming

Languagues and Systenis, 15(1):73-132, 1993.

[2] S. Abramsky. Observation equivalence as a testing equivalence. Theor. Comput. Sci., 53:225~

241, 1987.

[3] S. Abramsky. What are the fundamental structures of concurrency?: We still don’t know!

Electr. Notes Theor: Comput. Sci., 162:37-41, 2006.

[4] P. Aczel. Non-well-founded sets. Technical report, CSLI Lecture Notes, no. 14, Stanford

University, 1988.

[5] P. Aczel and N.P. Mendler. A ﬁnalrco'algebra theorem. In Category Theory and Computer

Science, volume 389 of Lecture Notes in Computer Science, pages 357-365. Springer, 1989.

(6] R Arméni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
-+ E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The 'ForSpec temporal logic: A new
temporal pr0pérty-spe(:iﬁcation logic. In Proc. 8th Int. Conf. on Tools and Algorithms for the

v Constr_uction and Analysis of Systems, volume 2280 of Lecture Notes in Computer, Sciernice,

pages 296-211. Springer, 2002.

57

(7]

[8]

(9]

[10]

[1lj

[12]

M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta Informatica,

20:207-226, 1983.
I.E A K van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.

G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design, se-

mantics, implementation. Science of Computer Prograinming, 19(2):87-152, 1992.

B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. J. ACM, 42(1):232-268,

1995.

B. Bloom and A. R. Meyer. Experimenting with process équivalenée. Theor. Comput. Sci.,

101(2):223-237, 1992.

R.N. Bol and J.F. Groote. The meaning of negative premises in transition system specifica-

~ tions. J. ACM, 43(5):863-914, 1996.

[13]

[14]

M. Boreale and R. Pugliese. Basic observables for processes. Inforination aﬁd Computation,

149(1):77-98, 1999.

S.D. Brookes. Traces, pomsets, fairness and full abstraction for communicating processes. In

" Proc. 13th Int’l Conf. on Concurrency Theory, volume 2421 of Lecture Notes in Computer

[15]

Science, pages 466-482. Springer, 2002.

M.C. Browne, EM. Clarke, and O. Grumberg. Characterizing finite Kripke structures in

* propositional temporal logic. Theoretical Computer Science, 59:115-131, 1988.

(16]

J. Carmo and A. Sernadas. Branching vs linear logics yet again. Formal Aspects of Computing,

2:24-59, 1990.

a8

[17] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,

~ pages 293-322. Plenum Press, 1978.

[18] E.M. Clarke and LA. Draghicescu. Expressibility results for linear-time and branching-time
logics. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Proc. Workshop on Lin-
ear Time, Branching Time, and Partial Order in Logics and Models for Concurrency, volume

354 of Lecture Notes in Computer Science, pages 428—437. Springer, 1988.

[19] EM. Clarke, E.A. Emerson, and A P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languagues

and Systems, 8(2):244-263, 1986.

[20] E.M. Clarke, O. Grumbefg, and D. Long. Verification tools for finite-state concurrent systems.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Decade of Concurrency —
Reflections and Perspectives (Proceedings of REX School), volume 803 of Lecture Notes in

Computer Science, pages 124-175. Springer, 1993.
[21] EM. Clarkc, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[22] D.L. Cohn. Measure Theory. Birkhiuser Boston, 1994,

[23] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comput. Sci.,

34:83-133, 1984.

[24] D.L. Dill. Trace theory for automatic hierarchical verification of speed independent circuits.

MIT Press, 1989.

[25] C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.

59

[26] E.A. Emerson and E.M. Clarke. Characterizing correctness properties of parallel programs
using fixpoints. In Proc. 7th Int. Collog. on Automata, Languages, and Programming, pages

169-181, 1980.

[27] E.A. Emerson and J1.Y. Halperh. Sometimes and not never revisited: On branching versus

linear time. Journal of the ACM, 33(1):151-178, 1986.

[28] E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes
back. In Proc. 12th ACM Symp. on Principles of Programming Languages, pages 84-96,

1985.

[29] R. Fagin, 1.Y. Halpern, Y.'Moses, and M.Y. Vardi. Reasoning about Knbwledge. MIT Press,

'Cambridge, Mass., 1995.

[30] K. Fisler and M.Y. Vardi. Bisimulation minimization and symbolic model checking. Formal

Methods in System Design, 21(1):39-78, 2002.

[31] R. Goering. Model checking expands verification’s scope. Electronic Engineering Today,

February 1997.

[32] J.F. Groote. Transition system specifications with negative premises. Theor. Comput. Sci.,

118(2):263-299, 1993.

[33] G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer Academic

" Publishers, 1996.
[34] PR. Halmos. Measure Theory. Springer Verlag, 1978.

[35] J.Y. Halpern. Reasoning About Uncertainty. MIT Press, Cambridge, Masé., 2003.

60

[36] J.Y. Halpern. On ambiguities in the interpretation of game trees. Games and Economic Be-

havior, 20:66-96, 1997.

[37] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines. Prentice

Hall, 1966.
[38]: M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[39] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of

the ACM, 32:137-161, 1985.
[40] C.A.R. Hoare. Cyom‘mu‘ﬁican;ngVSequential Processes. Prentice-Hall, 1985.
[41] B. J.o‘nsson. A fully abstract trace model for dataflow networks. In POPL ’89: Proceedings of

the 16th ACM SIGPLAN-SIGACT symposﬂuh on Principles of programming languages, pages

155-165, 1989.
[42] J. Kramer. Is abstréction the key to computing? Comm. ACM, 50(4):36-42, 2007.

[43] L. Lamport. “Sometimes” is sometimes “not never” - on the temporal logic of programs. In

Proc. 7th ACM Symp. on Principles of Programming Languages, pages 174-185, 1980.

[44] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
- linear specification. In Proc. 12th ACM Symp. on Principles of Programming Languages,

pages 97-107, 1985.

[45] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly,

2(3):219-246, 1989.

61

[46] M.G. Main. Trace, failure and testing equivalences for communicating processes. Int’l J. of

Parallel Programming, 16(5):383-400, 1987.

[47] W.W. Marek and M. Trusczynski. Nonmonotonic Logic: Context-Dependent Reasoning.

Springer, 1997.

[48] J. McCarthy. Circumscription - a form of non-monotonic reasoning. Artif. Intell., 13(1-2):27—

39, 1980.

[49] R.Milner. Processes: a mathematical model of computing agents. In Logic Colloguium, pages

- 157-173. North Holland, 1975.

[50] R. Milner. A Calculﬁs of Communicating Systems, volume 92 of Lecture Notes in Cbmputer

~ Science. Springer, 1980.
[51] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[52] E.R. Olderog and C.A.R. Hoare. Speciﬁcation—oriénted semantics for communicating pro-

cesses. Acta Inf., 23(1):9-66, 1986.

[53] D. Park.‘ Concurrency and automata on infinite sequences. In P. Deussen, editor, Proc. Sth
GI Conf. on Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 104.

* Springer, Berlin/New York, 1981.

[54] A.Pnueli. Linear and branching structures in the semantics and logics of reactive systems. In
- Proc. 12th Int. Colloq. on Automata, Languages, and Programming, volume 194 of Lecture

Notes in Computer Science, pages 15-32. Springer, 1985.

62

[55])

[56]

[57]

J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In
Proc. 8th ACM Symp. on Principles of Programming Languages, volume 137 of Lecture Notes

in Computer Science, pages 337-351. Springer, 1982.

A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic. Journal

of the ACM, 32:733-749, 1985.

C. Stirling. Comparing linear and branching time temporal logics. In B. Baniegbal, H. Bar-

ringer, and A. Pnueli, editors, Temporal Logic in Speciﬁcation, volume 398, pages 1—20_.

- Springer, 19’87.“

[58]

C. Stirling. The joys of bisimulation. In 23th Int. Symp. on Mathematical Fouhdations"bf Com-

puter Science, volume 1450 of Lecture Notes in Computer Science, pages 142-151. Springer,

--1998.

[59]

[60]

[61]

[62]

F.W. Vaandrager. On the relationship between process algebra and input/output automata. In

Proc. 6th IEEE Symp. on Logic in Computer Science, pages 387-398, 1991.

R.J. van Glabbeek. The linear time — branching time spectrum I; the semantics of concrete,
sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of

Process Algebra, chapter 1, pages 3-99. Elsevier, 2001.

R.J. van Glabbeek. What is branching time and why to use it? In G. Paun, G. Rozenberg,
and A. Salomaa, editors, Current Trends in Theoretical Computer Science; Entering the 21st

Century, pages 469—479. World Scientific, 2001.

M.Y. Vardi. Linear vs. branching time: A complexity-theoretic perspective. In Proc. 13th

IEEE Sym.. on Logic in Computer Science, pages 394-405, 1998.

63 -

[63] M.Y. Vardi. Sometimes and not never re-revisited: on branching vs. linear time. In D. San-
giorgi and R. de Simone, editors, Proc. 9th Int’l Conf. on Concurrency Theory, Lecture Notes

~ in Computer Science 1466, pages 1-17, 1998.

[64] M.Y. Vardi. Branching vs. linear time: Final showdown. In Proc. 7th Int. Conf. on Tools and
'Algo>rithms for the Construction and Analysis of Systems, volume 2031 of Lecture Notes in

Computer Science, pages 1-22. Springer, 2001.

. [65] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.

In Proc. Ist IEEE Symp. on Logic in Computer Science, pages 332-344, 1986._

‘[66] S. Vijayaraghavan and M. Ramanathan. A Practical Guide for SystemVerilog Assertions.

Springer, 2005.

[67] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

64

