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Abstract 

Linear vs. Branching Time: A Semantical Perspective 

by 

SumitNain 

The discussion of the relative merits of linear versus branching-time goes back to early 

1980s. The dominating belief has been that the linear-time framework is not expressive 

enough semantically, marking linear-time logics as weak. Here we examine this issue from 

the perspective of process equivalence, one of the most fundamental notions in concur­

rency theory. We postulate three principles that we view as fundamental to any discussion 

of process equivalence. First, we take contextual equivalence as the primary notion of 

equivalence. Second, we require the description of a process to fully specify all relevant 

behavioral aspects of the process. Finally, we require observable process behavior to be re­

flected in input/output behavior. Under these postulates the distinctions between the linear 

and branching semantics tend to evaporate. Applying them to the framework of transduc­

ers, we show that our postulates result in a unique notion of process equivalence, which is 

trace based, rather than tree based. 
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Chapter 1 

Introduction 

One of the most significant recent developments in the area of formal design verifi­

cation is the discovery of algorithmic methods for verifying temporal-logic properties of 

finite-state systems [19, 44, 55, 65]. In temporal-logic model checking, we verify the cor­

rectness of a finite-state system with respect to a desired property by checking whether 

a labeled state-transition graph that models the system satisfies a temporal logic formula 

that specifies this property (see [21]). Model-checking tools have enjoyed a substantial and 

growing use over the last few years, showing ability to discover subtle flaws that result 

from extremely improbable events. While early on these tools were viewed as of academic 

interest only, they are now routinely used in industrial applications [31]. 

A key issue in the design of a model-checking tool is the choice of the temporal lan­

guage used to specify properties, as this language, which we refer to as the temporal 

property-specification language, is one of the primary interfaces to the tool. (The Other 

primary interface is the modeling language, which is typically the hardware description 
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language used by the designers). One of the major aspects of all temporal languages is 

their underlying model of time. Two possible views regarding the nature of time induce 

two types of temporal logics [43]. In linear temporal logics, time is treated as if each 

moment in time has a unique possible future. Thus, linear temporal logic formulas are in­

terpreted over linear sequences and we regard them as describing the behavior of a single 

computation of a program. In branching temporal logics, each moment in time may split 

into various possible futures. Accordingly, the structures over which branching temporal 

logic formulas are interpreted can be viewed as infinite computation trees, each describing 

the behavior of the possible computations of a nondeterministic program. 

In the linear temporal logic LTL, formulas are composed from the set of atomic proposi­

tions Using the usual Boolean connectives as well as the temporal connectives G ("always"), 

F ("eventually"), X ("next"), and U ("until"). The branching temporal logic CTL* aug­

ments LTL by the path quantifiers E ("there exists a computation") and A ("for all com­

putations"). The branching temporal logic CTL is a fragment of CTL* in which every 

temporal connective is preceded by a path quantifier. Note that LTL has implicit universal 

path quantifiers in front of its formulas. Thus, LTL is essentially the linear fragment of 

CTL*. 

The discussion of the relative merits of linear versus branching temporal logics in the 

context of system specification and verification goes back to the 1980s [43, 26, 7, 54, 28, 

27,57,18,16, 62,63]. As analyzed in [54], linear and branching time logics correspond to 

two distinct views of time. It is not surprising therefore that LTL and CTL are expressively 
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incomparable [18,27,43]. The LTL formula FGp is not expressible in CTL, while the CTL 

formula AFAGp is not expressible in LTL. On the other hand, CTL seems to be superior 

to LTL when it comes to algorithmic verification, as we now explain. 

Given a transition system M and a linear temporal logic formula <p, the model-checking 

problem for M and <p is to decide whether </? holds in all the computations of M. When ip is 

a branching temporal logic formula, the problem is to decide whether <p holds in the compu­

tation tree of M. The Complexity of model checking for both linear and branching temporal 

logics is well understood: suppose we are given a transition system of size n and a temporal 

logic formula of size m. For the branching temporal logic CTL, model-checking algorithms 

run in time 0(nm) [19], while, for the linear temporal logic LTL, model-checking algo­

rithms run in time n2° ( m ) [44]. Since LTL model checking is PSPACE-complete [56], the 

latter bound probably cannot be improved. 

The difference in the complexity of linear and branching model checking has been 

viewed as an argument in favor of the branching paradigm. In particular, the computational 

advantage of CTL model checking over LTL model checking made CTL a popular choice, 

leading to efficient model-checking tools for this logic [20]. Through the 1990s, the domi­

nant temporal specification language in industrial use was CTL. This dominance stemmed 

from the phenomenal success of SMV, the first symbolic model checker, which was CTL-

based, and its follower VIS, also originally CTL-based, which served as the basis for many 

industrial model checkers. 

In [64] we argued that in spite of the phenomenal success of CTL-based model check-
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ing, CTL suffers from several fundamental limitations as a temporal property-specification 

language, all stemming from the fact that CTL is a branching-time formalism: the lan­

guage is unintuitive and hard to use, it does not lend itself to compositional reasoning, and 

it is fundamentally incompatible with semi-formal verification. In contrast, the linear-time 

framework is expressive and intuitive, supports compositional reasoning and semi-formal 

verification, and is amenable to combining enumerative and symbolic search methods. In­

deed, the trend in the industry during this decade has been towards linear-time languages, 

such as ForSpec [6], PSL [25], and SVA [66]. 

In spite of the pragmatic arguments in favor of the linear-time approach, one still hears 

the arguments that this approach is not expressive enough, pointing out that in semantical 

analyses of concurrent processes, e.g., [60], the linear-time approach is considered to be 

the weakest semantically. In this dissertation we address the semantical arguments against 

linear time and argue that even from a semantical perspective the linear-time approach is 

quite adequate for specifying systems. 

The gist of our argument is that branching-time-based notions of process equivalence 

are not reasonable notions of process equivalence, as they distinguish between processes 

that are not contextually distinguishable. In contrast, the linear-time view does yield an 

appropriate notion of contextual equivalence. 
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Chapter 2 

A Principled Approach to Process 

Semantics 

2.1 The Case Against Linear Time 

The most fundamental approach to the semantics of programs focuses on the notion of 

equivalence. Once we have defined a notion of equivalence, the semantics of a program can 

be taken to be its equivalence class. In the context of concurrency, we talk about process 

equivalence. The study of process equivalence provides the basic foundation for any theory 

of concurrency [51], and it occupies a central place in concurrency-theory research, cf. 

[60]. 

The linear-time approach to process equivalence focuses on the traces of a process. Two 

processes are defined to be trace equivalent if they have the same set of traces. It is widely 

accepted in concurrency theory, however, that trace equivalence is too weak a notion of 
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equivalence, as processes that are trace equivalent may behave differently in the same con­

text [50]. An an example, using CSP notation, the two processes 

if (true —> alx; /i!x)D(true —* b?x; h\x)fi 

if (alx - • h\x)n(b?x -> /*b)fi 

have the same set of communication traces, but only the first one may deadlock when 

run in parallel with a process such as 6!0. 

In contrast, the two processes above are distinguished by bisumulation, highly popular 

notion of process equivalence [51,53,58]. It is known that CTL characterizes bisimulation, 

in the sense that two states in a transition system are bisimilar iff they satisfy exactly the 

same CTL formulas [15] (see also [39]). This is sometime mentioned as an important 

feature of CTL. 

This contrast, between the pragmatic arguments in favor of the adequate expressiveness 

of the linear-time approach [64] and its accepted weakness from a process-equivalence 

perspective, calls for a re-examination of process-equivalence theory. 

2.2 Process Equivalence Revisited 

While the study of process equivalence occupies a central place in concurrency-theory 

research, the answers yielded by that study leave one with an uneasy feeling. Rather than 
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providing a definitive answer, this study yields a profusion1 of choices [3]. This situation 

led to statement of the form "It is not the task of process theory to find the 'true' semantics 

of processes, but rather to determine which process semantics is suitable for which appli­

cations" [60]. This situation should be contrasted with the corresponding one in the study 

of sequential-program equivalence. It is widely accepted that two programs are equivalent 

if they behave the same in all contexts, this is referred to as contextual or observational 

equivalence, where behavior refers to input/output behavior [67]. In principle, the same 

idea applies to processes: two processes are equivalent if they pass the same tests, but there 

is no agreement on what a test is and on what it means to pass a test. 

We propose to adopt for process-semantics theory precisely the same principles ac­

cepted in program-semantics theory. 

Principle of Contextual Equivalence: Two processes are equivalent if they behave the 

same in all contexts, which are processes with "holes". 

As in program semantics, a context should be taken to mean a process with a "hole", 

into which the processes under consideration can be "plugged". This agrees with the point 

of view taken in testing equivalence, which asserts that tests applied to processes need to 

themselves be defined as processes [23]. Furthermore, all tests defined as processes should 

be considered. This excludes many of the "button-pushing experiments" of [50]. Some 

of these experiments are too strong-they cannot be defined as processes, and some are too 

weak-they consider only a small family of tests [23]. 

^his is referred to as the "Next '700 ... ' Syndrome." [3] 
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In particular, the tests required to define bisimulation equivalence [2, 50] are widely 

known to be too strong [10,11, 12, 32]. 

In spite of its mathematical elegance [5, 58] and ubiquity in logic [8, 4], bisimulation 

is hot a reasonable notion of process equivalence, as it makes distinctions that cannot be 

observed. Bisimulation is a structural similarity relation between states of the processes 

under comparison, rather than an observational comparison relation. 

The most explicit advocacy of using bisimulation-based equivalence (in fact, branching 

bisimulation) appears in [61], which argues in favor of using equivalence concepts that are 

based on internal structure because of their context independence: "if two processes have 

the same internal structure they surely have the same observable behavior." It is hard to ar­

gue with the last point, but expecting an implementation to have the same internal structure 

as a specification is highly unrealistic and impractical, as it requires the implementation to 

be too close to the specification. In fact, it is clear from the terminology of "observational 

equivalence' used in [51] that the intention there was to formulate a concept of equivalence 

based on observational behavior, rather than on internal structure. Nevertheless, the terms 

"observational equivalence" for bisimulation-based equivalence in [51] is, perhaps, unfor­

tunate, as weak-bisimulation equivalence is in essence a notion of structural similarity. 

Remark 1 One could argue that bisimulation equivalence is not only a mathematically el­

egant concept; it also serves as the basis for useful sound proof techniques for establishing 

process equivalence, cf. [39]. The argument here, however, is not against bisimulation as 

a useful mathematical concept; such usefulness ought to be evaluated on its own merits, cf 
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[30]. Rather, the argument is against viewing bisimulation-based notions of equivalence 

as reasonable notions of process equivalence. 

The Principle of Contextual Equivalence does not fully resolve the question of process 

equivalence. In additional to defining the tests to which we subject processes, we need to 

define the observed behavior of the tested processes. It is widely accepted, however, that 

linear-time semantics results in important behavioral aspects, such as deadlocks and live-

locks, being non-observable [50]. It is this point that contrasts sharply with the experience 

that led to the adoption of linear time in the context of hardware model checking [64]; 

in today's synchronous hardware all relevant behavior, including deadlock and livelock is 

observable (observing livelock requires the consideration of infinite traces). Compare this 

with our earlier example, where the process 

if (true —• a?x; h\x)0(true —> b?x; h\x)fi 

may deadlock when run in parallel with a process such as b\0. The problem here is that 

the description of the process does not tell us what happens when the first guard is selected 

in the context of the parallel process 6!0. The deadlock here is not described explicitly; 

rather it is implicitly inferred from a lack of specified behavior. This leads us to our second 

principle. 

Principle of Comprehensive Modeling: A process description should model all relevant 

aspects of process behavior. 
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The rationale for this principle is that relevant behavior, where relevance depends on 

the application at hand, should be captured by the description of the process, rather than 

inferred from lack of behavior by a semantical theory proposed by a concurrency theorist. 

It is the usage of inference to attribute behavior that opens the door to numerous interpre­

tations, and, consequently, to numerous notions of process equivalence. 

Remark 2 // is useful to draw an analogy here to another theory, that of nonmonotonic 

logic, whose main focus is on inferences from absence of premises. The field started with 

some highly influential papers, advocating, for example "negation as failure" [17] and 

"circumscription"[48]. Today, however, there is a profusion of approaches to nonmono­

tonic logic, including numerous extensions to negation as failure and to circumscription 

[47]. One is forced to conclude that there is no universally accepted way to draw conclu­

sions from absence of premises. (Compare also to the discussion of negative premises in 

transition-system specifications [12, 32].) 

Going back to our problematic process 

if (true '—• alx\h\x)U (true -+b?x; h\x)fi. 

The problem here is that the process is not receptive to communication on channel b, when 

it is in the left branch. The position that processes need to be receptive to all allowed inputs 

from their environment has been argued by many authors [1, 24, 45]. It can be viewed 

as an instance of our Principle of Comprehensive Modeling, which says that the behavior 
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that results from a write action on channel b when the process is in the left branch needs 

to be specified explicitly. From this point of view, process-algebraic formalisms such as 

CCS [50] and CSP [40] are underspecified, since they leave important behavioral aspects 

unspecified. For example, if the distinction between normal termination and deadlocked 

termination is relevant to the application, then this distinction ought to be explicitly mod­

eled. 

Rather, in CCS and CSP there is no observable distinction between normal and dead­

locked termination, as both situations are characterized only by the absence of outgoing 

transitions. (The formalism of Kripke structures, often used in the model-checking litera­

ture [21], also suffers from lack of receptiveness, as it does not distinguish between inputs 

and outputs.) 

It is interesting to note that transducers, which were studied in an earlier work of Milner 

[49], which led to [50], are receptive. Transducers are widely accepted models of hardware. 

We come back to transducers in the next section. 

Remark 3 The Principle of Comprehensive Modeling is implicit in a paper by Halpern on 

modeling game-theoretic situations [36]. The paper shows that a certain game-theoretic 

paradox is, in fact, a consequence of deficient modeling, in which states of agents do not 

capture all relevant aspects of their behavior. Once the model is appropriately enriched, 

the paradox evaporates away. For extensive discussions on modeling multi-agent systems, 

see Chapters 4 and 5 in [29] and Chapter 6 in [35J. 

The Principle of Comprehensive Modeling can be thought of as the "Principle of Ap-
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propriate Abstraction". Every model is an abstraction of the situation being modeled. A 

good model necessarily abstracts away irrelevant aspects, but models explicitly relevant 

aspects. The distinction between relevant and irrelevant aspects is one that can be made 

only by the model builder and users. For example, a digital circuit is a model of an analog 

circuit in which only the digital aspects of the circuit behavior are captured [33]. Such a 

model should not be used to analyze non-digital aspects of circuit behavior, such as timing 

issues or issues of metastable states. Such issues require richer models. The Principle of 

Comprehensive Modeling does not call for infinitely detailed models; such models are use­

less as they offer no abstraction. Rather, the principle calls for models that are rich enough, 

but not too rich, dependning on the current level of abstraction. Whether or not deadlocked 

termination should be considered distinct from normal termination depends on the the cur­

rent level of abstraction; at one level of abstraction this distinction is erased, but at a finer 

level of abstraction this distinction is material. For further discussion of abstraction see 

[42]. 

The Principle of Comprehensive Modeling requires a process description to model all 

relevant aspects of process behavior. It does not spell out how such aspects are to be 

modeled. In particular, it does not address the question of what is observed when a process 

is being tested. Here again we propose to follow the approach of program semantics theory 

and argue that only the input/output behavior of processes is observable. Thus, observable 

relevant aspects of process behavior ought to be reflected in its input/output behavior. 

Principle of Observable I/O: The observable behavior of a tested process is precisely its 
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input/output behavior. 

Of course, in the case of concurrent processes, the input/output behavior has a temporal 

dimension. That is, the input/output behavior of a process is a trace of input/output actions. 

The precise "shape" of this trace depends of course on the underlying semantics, which 

would determine, for example, whether we consider finite or infinite traces, the temporal 

granularity of traces, and the like. It remains to decide how nondeterminism is observed, 

as, after all, a nondeterministic process does not have a unique behavior. This leads to 

notions such as may testing and must testing [23]. We propose here to finesse this issue by 

imagining that a test is being run several times, eventually exhibiting all possible behaviors. 

Thus, the input/output behavior of a nondeterministic test is its full set of input/output 

traces. 

(One could argue that by allowing a test to observe all input/output traces, our notion 

of test is too strong, resulting in an overly fine notion of process equivalence. Since our 

focus here is on showing that trace equivalence is not too coarse, we do not pursue this 

point further here.) 

It should be rioted that the approach advocated here is diametrically opposed to that of 

[61], who argues against contextual equivalence: "In practice, however, there appears to 

be doubt and difference of opinion concerning the observable behaviour of systems. More­

over, what is observable may depend on the nature of the systems on which the concept 

will be applied and the context in which they will be operating." In contrast, our guiding 

principles say that (1) by considering all possible contexts, one need not worry about iden-
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tifying specific contexts or testing scenarios, and (2) process description ought to describe 

the observable behavior of the process precisely to remove doubts about that behavior. In 

our opinion, the "doubt and difference of opinion" about process behavior stem from the 

underspecificity for formalisms such as CCS and CSP. 

Remark 4 In the same way that bisimulation is not a contextual equivalence relation, 

branching-time properties are not necessarly Contextually observable. Adapting our prin­

ciples to property observability we should expect behavioral properties to be observable 

in the following sense. If two processes are distinguished by a property ip, that is, Pi 

satisfies <p, but Pi does not satisfy <p, there has to be a context C such that the set of input-

output traces ofC[Pi] is different than that ofC[Pi}. Consider, however, the CTL property 

AGEFp, which says that from all given states of the process it is possible to reach a state 

where p holds. It is easy to construct processes P\ and P% one satisfying AGEFp and 

one falsifying it, such that C[P\\ and C[Pi] have the same set of input-output traces for all 

contexts C. Thus, AGEFp is a structural property rather than an observable property. 

In the next section we apply our approach to transducers; we show that once our three 

principles are applied we obtain that trace-based equivalence is adequate and fully abstract; 

that is, it is precisely the unique observational equivalence for transducers. 

We believe that this holds in general; that is, under our three principles, trace-based 

equivalence provides the "right" notion of process equivalence. 
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Chapter 3 

Nondeterministic Transducers 

Transducers constitute a fundamental model of discrete-state machines with input and 

output channels [37]. They are still used as a basic model for sequential computer circuits 

[33]. We use nondeterministic transducers as our model for processes. We define a syn­

chronous composition operator for such transducers, which provides us a notion of context. 

We then define linear observation semantics and give adequacy and full-abstraction results 

for trace equivalence in terms of it. 

3.1 Definition of Transducers 

A nondeterministic transducer is a state machine with input and output channels. The 

state-transition function depends on the current state and the input, while the output de­

pends solely on the current state (thus, our machines are Moore machines [37]). 

Definition 1 A transducer is a tuple, M = (Q, q0,1,0, E, a, A, 6), where 
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• Q is a countable set of states. 

• qo is the start state. 

• / is a finite set of input channels. 

• O is a finite set of output channels. 

• E is a finite alphabet of actions (or values). 

• a : IU O —* 2 s — {0} is a function that allocates an alphabet to each channel. 

• \ : Q x O —*His the output function of the transducer. \(q, o) € a(o) is the value 

that is output on channel o when the transducer is in state q. 

• 8 : Q x a{i\) x • • • x a(in) —> 2^, where I = { i i , . . . , in}, is the transition function, 

mapping the current state and input to the set of possible next states. 

Both / and O can be empty. In this case 5 is a function of state alone. This is important 

because the composition operation that we define usually leads to a reduction in the number 

of channels. Occasionally, we refer to the set of allowed values for a channel as the channel 

alphabet. This is distinct from the total alphabet of the transducer (denoted by E). 

We represent a particular input to a transducer as an assignment that maps each input 

channel to a particular value. Formally, an input assignment for (Q, q0,1,0, E, a, A, 5) 

is a function / : / —> E, such that for all i e I, f(i) G a(i). The entire input can 

then, by a slight abuse of notation, be succinctly represented as / ( / ) . The set of all input 

assignments of transducer M is denoted In(M). Similarly, an output assignment is a 
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mapping g : O —> E such that there exists q G Q, for all o G 0 , #(o) = A(#, o). The set of 

all output assignments of M is denoted Out(M). The output mapping of M is the function 

h : Q —• Out(M) that maps a state to the output produced by the machine in that state: for 

all q G Q, o G O, %) (o ) = A(g, o). 

We point to three important features of our definition. First, note that transducers are 

receptive. That is, the transition function 5(q, f) is defined for all states q G Q and input 

assignments / . There is no implicit notion of deadlock here. Deadlocks need to be modeled 

explicitly, e.g., by a special sink state d whose output is, say, "deadlock". Second, note that 

inputs at time k take effect at time k + 1. This enables us to define composition without 

worrying about causalilty loops, unlike, for example, in Esterel [9]. Thirdly, note that the 

internal state of a transducer is observable only through its output function. How much of 

the state is observable depends on the output function. 

3.2 Synchronous Parallel Composition 

In general there is no canonical way to compose machines with multiple channels. In 

concrete devices, connecting components requires as little as knowing which wires to join. 

Taking inspiration from this, we say that a composition is defined by a particular set of 

desired connections between the machines to be composed. This leads to an intuitive and 

flexible definition of composition. 

A connection is a pair consisting of an input channel of one transducer along with an 

output channel of another transducer. We require, however, sets of connections to be well 
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formed. This requires two things: 

• no two output channels are connected to the same input channel, and 

• an output channel is connected to an input channel only if the output channel alphabet 

is a subset of the input channel alphabet. 

These conditions guarantee that connected input channels only receive well defined values 

that they can read. We now formally define this notion. 

Definition 2 (Connections) Let' M be a set of transducers. Then 

Conn(M) = {X C C(M)\(a, b) e X, (a, c) e X^b = c} 

where C(M) = {(IA,OB) \{A,B} C M,iA £ IA,OB € OB,CTB(OB) Q OA^A)} is 

the set of all possible input/output connections for A4. Elements of Conn(M) are valid 

connection sets. 

Given a set of connections between a set of transducers, we can obtain a composite 

transducer in a natural way using the cartesian product. The state space is just the cartesian 

product of the states of the individual transducers. Every channel involved in a connection 

is removed, and the remaining channels become channels of the composite. 

Definition3(Composition) LetM ='{Mit.:.,Mn}, Mk = (Qk,$,Ik,Ok,T,k,ak,\k,Sk), 

be a set of transducers, and C 6 Conn(M). Then the composition of M. with respect to 

C, denoted by | \c{M), is a transducer (Q, %, / , O, S, a, A, 5) defined as follows: 
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• Q = Q\ x . . . x Qn 

• qo = Qo x . . . x ^ 

••/ = U L i A - { » I M ' e C } 

-0 = [)n
k=1Ok-{o\(i,o)eC} 

• cr(u) = crk(u), where u G ^UOfc 

• A(?i,..., <?n, o) = Xk(qk, 6) where o G Ok 

• 5(qi,...,qn,f(I)) = U^=1(5k(qk,g(Ik))) 

where g{%) = \j(qj, o) if(i, 6) G C, 0 6 Oj, and g(i) = f(i) otherwise. 

Definition 4 (Binary Composition) The binary composition of Mi and M2 with respect 

toCt Conn{{Mx, M2}) is Mi\\cM2 = ||c({Afi, M2}). 

The following theorem shows that a general composition can be built up by a sequence 

of binary compositions. Thus binary composition is as powerful as general composition 

and henceforth we switch to binary composition as our default composition operation. 

Theorem 1 (Composition Theorem) Let M = {Mi,..., Mn} be a set of transducers, 

where Mk = (Qk, q$, Ik, Ok, Sfe, ak, Xk, Sk), and C G Conn(M). Let M' = M - {Mn}, 

C = {(ito) G C\i G Ij}oeOk,j <n,k< n} andC" = C - C. Then 

\\c(M) = \\c»({\\a(M'),Mn}). 
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Proof. Let 

M=\\c(M) = (Q,q0,I,O,E,a,X,5) 

M' = \\c,(M') = (Q,,q'0,I',O
>,X',a',\',8') 

M" = \\c»({M', Mn}) = (Q'\ ql I", O", E", a", A", 8") 

To prove that M" = M we need to show that each component of M" is identical 

to the corresponding component of M. Below we give such a proof for each separate 

compbnent.The proofs depend entirely on Definition 3. 

• Q" = Q' x Qn = (Q1 x ... x Qn-i) xQn = Q (using Defn. 3). 

• Qo = Qo x Qo = (Qo x • • • x 9o_1) x ?o = Qo (using Defn- 3)-

. I" = I'u ln - {i\(i,o)e C"} = (\Jn
kzlh-{i\ (i,o) e C}) u /„ - {i\(i,o) e 

C"} = (UlZl h) UIn~ {i | (i, o) G C'} - {t|(t, o) e C"} = ULi h~{i\ («, o) € 

c"uc"} = /. 

• O" = O. Proof is identical to the input case, because of the symmetry between the 

definition of inputs and outputs of a composition (see Defn. 3). 

• £" = V U Sn = (U£j Efc) U En = ULi Sfc = S. 

• a" = a. This is true because composition does not change any channel alphabet. 

• A" = A. Composition simply projects the outputs of the individual automata on the 

remaining output channels. 
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• 5" = 8. 

<*"(9i, • • •, On, / ( / ) ) = S'(qu ..., qn_ug(r)) x 5n(qn, g(In)), where 

gii) = { 

\'(qu ..,, &_!, o) if (i, o) G C", o G O' 

K(qn, o) if (i, 6) eC",oe On 

f(i) otherwise. 

Now X'(qi,..., qn-i, o) = Xk(qk, o) for o E Ok and 1 < k < n. We use this fact to 

rewrite g as follows: 

9(i) = 
Afc(gfc,o) if (z,o) € C " , o e O k , k < n 

f(i) otherwise. 

Next we see that S'(qu .. .,qn-i,g{I')) = ^=l(sk(qk, h(h))), where 

( *j(qj,o)if(i,o] ) G C',oe Oj,j < n 

g(i) otherwise. 
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Now we can simply expand g(i) in the definition of h(i) and we get 

h{i) = I 

Xj(qj, o) if (i, o) e C',o€: Oj, j < n 

\j(qj, o) if (i, 6) e C", o G Oj,j < n 

f(i) otherwise. 

We can write 8" and 8 as follows: 

8"(qi,...,qn,f(I)) = (Un
kzl(8k(qk,h(Ik)))) x 8n(qn,g(In)) 

S(qi, • • -, qn, /(/)) = njUC&Gfc, e(/fc))) 

where 

e(0 = i 
Xj(qj,o) if (z, o) G C, o G Oj, j < n 

f(i) otherwise. 

Finally, to prove that 8" and 8 are the same function, it suffices to show that e(i) 

agrees with h(i) on / ' and agrees with g(i) on In. 

The upshot of Theorem 1 is that in the framework of transducers a general context, 

which is a network of transducers with a hole, is equivalent to a single transducer. Thus, 

for the purpose of contextual equivalence it is sufficient to consider testing transducers. 
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3.3 Executions and Traces 

Definition 5 (Execution) An execution for transducer M = (Q, go,1,0, E, a, A, 5) is a 

countable sequence of pairs (SJ, fi)\=oSuch that SQ = q0, and for alii > 0, 

• SiEQ. 

• fi : I —> E such that for all u £ I, f(u) G a{u). 

• Si e S(si-U fi-i{l)). 

If I € Â , the execution is finite and its length is I. If I = 00, the execution is infinite and its 

length is defined to be 00. The set of all executions of transducer M is denoted exec(M). 

Definition 6 (Trace) Let a = (SJ , / J ) - = 0 £ exec(M). The trace of a, denoted by [a], is 

the sequence of pairs (ui, fi) -=0, where for all i > 0, u>i : O —• S and for all o G O, 

u>i(o) = A(SJ, o). The set of all traces of a transducer M, denoted by Tr(M), is the set 

{[a]|o; € exec(M)}. An element of'Tr(M) is called a trace of M. 

Thus a trace is a sequence of pairs of output and input actions. While an execution captures 

the real underlying behavior of the system, a trace is the Observable part of that behavior. 

The length of a trace a is defined to be the length of the underlying execution and is denoted 

by |a|. 

Definition 7 (Trace Equivalence) Two transducers Mi and M2 are trace equivalent, de­

noted by M\ ~ T M2, ifTr(Mi) = Tr(M2). Note that this requires that they have the same 

set of input and output channels. 
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We now study the properties of trace equivalence with respect to composition. In order 

to do so, we need a way to match traces of a composition to traces of its components. We 

first define the composition of executions and traces. 

Definition8 Given a — (SJ , / J )" = 0 £ exec(M\) and ft = {ri,gi)f=0 G exec{M2), we 

define the composition of a and (5 w.r.t C G Conn({Mi, M2}) as follows 

a\\c0= ((si,ri),hi)i^ 

where hi(u) = /,(«) ifu G I\ — {i\(i,o) G C} andhi(u) = giiu) ifu £ l2 — {i\(i,o) £ C}. 

Definition 9 Given t = (ui,fi)?=6 £ Tr{Mx) andu = (^,&)?=0 £ Tr(M2), we define 

the composition oft and u w.r.t C G Conn{{M\, M2}) as follows 

t\\cu=(lk,hi)?=Q 

where fii(o) = Ui(o) if o G 0\ — {o\(i, o) G C} and p,i(o) = Ui(o) if o G 02 — {o\(i, o) G 

C}, and hi is as defined in Definition 8 above. 

Note that the composition operation defined on traces is purely syntactic. There is no 

guarantee that the composition of two traces is a trace of the composition of the transducers 

generating the individual traces. The following simple property is necessary and sufficient 

to achieve this. 

Definition 10 (Compatible Traces) Given C G Conn({Mu M2}), h = {u\,fl%Q G 
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Tr(Mi) and t2 = (uf, f?)™=Q G Tr(M2), we say that t\ and t2 are compatible with respect 

to C if for all (u, o) G C and for all i > 0, we have 

• Ifu G Ij ando G Ok then f({u) — o;f(o), for all i > 0andforj,k E {1,2}. 

Lemma 1 Let C G Conn({Mi,M2}), t G Tr(Mi) and u G Tr(M2). Then t\\cu G 

Tr(M\ | |cM2) if and only ift and u are compatible with respect to C. 

We now extend the notion of trace composition to sets of traces. 

Definition 11 Let 7\ C Tr(Mi), T2 C Tr(M2) and C G Conn{{Mu M2}). We define 

TxWcTi = {hWcti I h G Tr{Mx)M G Tr(M2), \h\ = \t2\} 

The next theorem is an important intermediate result on the way to proving the congru-

ency w.r.t. composition of not just trace equivalence, but of a general class of linear-time 

semantics derived from trace equivalence. The result can be thought of as an invariance 

theorem. Suppose Mi and M2 are transducers, Ti is a subset of the traces of Mi, T2 is a 

subset of the traces of M2 and C G Conn({Mi, M2}). Then the theorem says that those 

elements of Ti||cT2 which are also valid traces of M1||C7M2, only depend on Ti and T2, 

and are independent of M\ and M2. 

Theorem 2 (Syntactic theorem of traces) LetTx C Tr(Mi)nTV(M3) andT2 C TV(M2)n 

Tr{MA), andC G Conn({MuM2}) D Conn{{Mz,M^}). Then 

(T1\\cT2)nTr(M1\\cM2) = (T1\\cT2)nTr(M3\\cM4) 
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Proof. Let t G (Ti\\cT2) D Tr(M1\\cM2). Then t = ti\\ct2, where h G 2\ and t2 G T2. 

Since £i||c*2 '£ Tr{Mi\\cM2), by Lemma 1, t\ and £2 are compatible with respect to C. 

Since Tx C Tr(M3) and T2 C Tr(MA), again by Lemma 1, ti\\ct2 G Tr(M3 | |cM4). 

Therefore (Ti\\cT2) n r r (Mi | | c M 2 ) C (ri | | cT2) n Tr(M3\\cM4). By symmetry, set 

inclusion, and thus equality, holds in the reverse direction too. Kl 

Using Theorem 2, we show now that any equivalence defined in terms of sets of traces 

is automatically a congruence with respect to composition, if it satisfies a certain natural 

property. 

Definition 12 (Trace-based equivalence) Let M be the set of all transducers. Let R : 

M -> {A C Tr(M)\M e M) such that for all M e M, R{M) C Tr(M). Then 

R defines an equivalence relation on M., denoted by ~R, such that for all Mi,M2 G 

M., M\ ~R M2 if and only if R{M\) = R(M2). Further, the function R is called an 

equivalence-based invariance, and the relation ~R is called a trace-based equivalence. 

Trace-based equivalences enable us to relativize trace equivalence to "interesting" traces. 

For example, one may want to consider finite traces only, infinite traces only, fair traces 

only, and the like. Of course, not all such relativizations are appropriate. 

We require traces to be compositional, in the sense described below. This covers finite, 

infinite, and fair traces. 

Definition 13 (Compositionality) Let ~# be a trace-based equivalence. We say that ~ # 

is compositional if given transducers Mi, M2 and C G Conn({Mi, M2}), the following 
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hold: 

1. R{Ml\\cM2) C R(M1)\\CR(M2). 

2. If t\ G R{M\), t2 G R{M2), and'ti, t2 are compatible w.r.t. C, then ti\\ch G 

R(M1\\CM2). 

The two conditions in Definition 13 are, in a sense, soundness and completeness conditions, 

as the first ensures that no inappropriate traces are present, while the second ensures that all 

appropriate traces are present. That is, the first condition ensures that the trace set captured 

by R is not too large, while the second ensures that it is not too small. 

Note, in particular, that trace equivalence itself is a compositional trace-based equiva­

lence. We are now in a position to obtain full abstraction results for our notion of compo­

sitional trace-based equivalence 

3.4 Full Abstraction 

There are two aspects to full abstraction. The first lies in showing that the semantics 

makes all the needful distinctions, and the second in showing that it makes no unnecessary 

ones. Thus we want to show that if two transducers are equivalent by our semantics, then 

no context can distinguish between them. Here we prove the stronger condition that trace 

semantics is a congruence with respect to composition. Then we next show that if two 

machines are inequivalent under trace semantics, then some context (i.e., composition with 

a transducer) will be able distinguish between the two. The following theorem asserts that 
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~# is a congruence with respect to composition. 

Theorem 3 (Congruence Theorem) Let ~R be a compositional trace-based equivalence. 

Let Mx ~ f i M3) Mi ~R MA,andC e Conn({M1,M2}) = Conn({M3, M4}). Then 

Mi\\cM2 ~R M3 | |cM4. 

Proof. We prove this by showing R(M1\\CM2) = (R(Mi)\\cR{M2)) nTr(M1\\cM2) = 

(R(M3)I\CR(MA)) n Tr(M3\\CMA) = R(M3\\CM4). We prove the first equality by show­

ing set inclusion from both directions. The second equality is an instance of Theorem 2. 

The third equality follows from the first by symmetry. 

• R(Mi|\CM2) C (R(Mi)\\cR(M2)) n Tr{Mx|\CM2), because by Definition 13, '";. 

R{Mi\\cM2) C R{M1)\\CR{M2), and by Definition 12, i?(Mi||cM2) C 7V(Mi||c?Af2):-

• JR(M1||CM2) D {R{Ml)\\cR{M2)) nTr(M 1 | | c M 2 ) , 

because if t i | | c ^ G (i?(Mi)||ci?(M2)) n Tr(Mi| |cM2) then, by Lemma 1, ti and 

t2 are compatible w.r.t C, and, by Definition 13, *i| |o*2 £ -R(Mi||cM2). 

An immediate corollary of Theorem 3 is the fact that no context can distinguish between 

two trace-based equivalent transducers. The corollary is fact a special case of the theorem, 

obtained by setting M2 = M4. 

Corollary 1 Let M\ and M2 be transducers, R be a compositional trace-based equiva­

lence and Mi ~ ^ M2. Then for all transducers M and all C € Conn({M,Mi}) = 

Cdnn({M, M2}), we have that M\\cMi ~R M\\CM2. 
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Finally, it is also the case that some context can always distinguish between two in-

equivalent transducers. If we choose a composition with an empty set of connections, all 

original traces of the composed transducers are present in the traces of the composition. 

If Mi ^R M2, then Mi||oM ^R M2\\<DM. We claim the stronger result that given two 

inequivalent transducers with the same interface, we can always find a third transducer that 

distinguishes between the first two, when it is maximally connected with them. 

But first we need to slightly restrict the form that the semantics R can take by impos­

ing an additional naturalness condition, that essentially says that R should not be able to 

discriminate between identical traces produced by machines with the same interface. 

Definition 14 (Interface-respecting Semantics) Let M\ and M2 be such that In(Mi) = 

In(M2) and Out(Mi) =' Out(M2), and R be a trace-based equivalence. We say that R is 

interface-respecting, ift G R(Mi) and t G Tr(M2) necessarily imply that t G R(M2). 

Definition 15 (Tester) Given transducers M and M', we say that M' is a tester for M, if 

there exists C G Conn({M, M'}) such that M\\cM' has no input channels and exactly 

one output channel o with o G 0'M. We also say M' is a tester for M w.r.t. C. 

Theorem 4 Let Mi and M2 be transducers with In(Mi) = In(M2) and Out(Mi) = 

Out(M2), Rbe a compositional interface-respecting trace-based equivalence and Mi ^R 

M2. Then there exists a transducer M and C G Conn({M, Mi}) = Conn({M, M2}), 

such that M is a tester for Mx and M2 w.r.t. C, and M\ \cMi <^R M\\CM2. 
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Proof. Let Mi = ( Q i . ^ . A . O i . E , ^ , A i A ) and M2 = (Q2,qlh,02,'E,a2,X2,S2). 

Since Mi 7 ^ M2, we assume without loss of generality that there exists r G -ft(Mi) \ 

&(M2). Let r - (wis /i)JL0 G Tr(Mi). We define M = (Q, q0,1,0, S, a, A, (5) as follows: 

' • <2 = {<& : i G N} U {<?/}, is a countable set of states with a special failure state. 

• For each o 6 Oj, we create an input channel in0 in / and assign alphabet a(in0) = 

ai(o)toit. 

• For each in G I\, we create an output channel oin in O and assign alphabet <j[pin) = 

61 (in) to it. 

• An extra output channel ot, with alphabet {a, b} C £, that will be the only visible 

channel remaining after composition. 

• A(<7i, oin) — fi(in), X(qi, ot) = a and X(q/, ot) = b. In all other cases, we don't care 

what output M produces, and A can be assumed to be arbitrary. 

• For state q £ Q, and input assignment g : / —*• E, 

S(q,9(I)) = { 
qi+1, ifq = qi and Vm0 G I,g{in0) = u>i{o), 

qf, otherwise. 

We define the set of connections C eConn({M, Mi}) as follows: for all in G h,o G 0\, 

(in, oin) G C and (in0,o) G C, and nothing else is in C. Now M||cMi has exactly 

one channel, which is the output channel ot belonging to M, and so M is a tester for Mi 
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w.r.t. C. The transducer M is deterministic and designed to follow the execution of the 

distinguishing trace r. As soon as the computation of the machine being tested diverges 

from this trace, M will enter its failure state and switch its visible output from a to b. Thus 

if M2 does not produce the trace r, then we can clearly distinguish it from M\ using M. 

The only remaining case to consider is when M2 does produce this trace but it does not 

fall under the set distinguished by R. That is, r G Tr(M2) and r g R(M2). But this is 

impossible as R is interface-respecting by definition. M 
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Chapter 4 

Probabilistic Transducers 

4.1 Preliminaries 

In order to rigorously construct a probabilistic model of transducer behavior, we will 

require certain concepts from measure theory and its application to the space of infinite 

sequences over some alphabet (i.e., Cantor and Baire spaces). This is because our proba­

bilistic notion of behavior will be defined by probability distributions, which are measures, 

over Q", the set of infinite sequences of states. We briefly cover the required mathemati­

cal background in this section. All lemmas and theorems in this section are stated without 

proof. The interested reader should consult any standard text in measure theory ([34], [22]). 

4.1.1 Measure and Probability 

Intuitively, a probability distribution over some set X should satisfy the following prop­

erties: the probability of any event (a subset of X) should be non-negative, the probability 
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of the entire set X as an event should be 1, and the probability of the union of two dis­

joint events should be the sum of the probabilities of the events. For technical reasons, the 

third condition is actually replaced by a stronger condition requiring countable additivity. 

It turns out that this combination of desired properties cannot always be achieved if the 

events are allowed to be arbitrary subsets of X. For the properties to hold simultaneously, 

the set of events has to be restricted to a subset of 2X that is closed under complements and 

countable unions. Such a subset of the power set is called a <r-algebra. 

Definition 16 (a-algebra) Let X be a set and T be a set of subsets ofX. We say that J-'is 

an algebra over X if it is closed under taking complements and finite unions. A a-algebra 

over X is an algebra that is closed under countable unions. Given a subset A of 2X, the 

a-algebra generated by A is the smallest o -algebra containing A and can be obtained as 

the intersection of all o-algebras containing A 

Definition 17 (Measure) Let X be a set and T be a a-algebra over X. A measure over 

{X,T) is a function p : T —* [0, oo] from T to the extended positive reals, that satisfies 

the following conditions: 

Nullity. /i(0) = 0. 

Countable additivity. p(\JieI Ai) = Yltei //(-^-*)/or every countable set ofpairwise dis­

joint sets Ai € J7. 

The triple (X, J7, p) is called a measure space. Ifp{X) = 1 then p is a probability measure. 

A probability space is a measure space with a probability measure. 
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Frequently, when there is some relation between sets X and Y, we can use a measure 

defined on X to obtain a measure on Y. The rest of this subsection deals with two such 

instances. 

Given a function from X to Y that preserves measurable subsets in the inverse, we 

can use it to generate a measure on Y from any measure on X. Such a function is called 

a measurable function. In particular, the function mapping Qw to Out(My, which is a 

generalization of the output mapping of a transducer, is measurable. Later, we crucially 

exploit this fact while defining probabilistic analogues of executions and traces. 

Definition 18 (Measurable function) Let X, Y be sets and J7, Q be a-algebras over X 

and Y, respectively. A function f : X —> Y is called measurable, if for all A G Q, 

Lemma 2 If p, : T —* [0, oo] w a measure over T, and f : X —* Y is a measurable 

function, then pf : Q —*• [0, oo], defined as pf (A) = p(f~1(A)) for all A e Q, is a measure 

over Q. 

Finally, a measure on the product of spaces can be defined in the natural way as the 

product of the measures on the individual spaces. This product measure will be used in the 

composition of probabilistic transducers. 

Theorem 5 (Product Measure) Let (Xi, FuHi) be a measure space for i E I. Then the 

product space (Yli€i Xi, YlieI F{, Wiei AO. defined as follows, is a measure space. 

• Yliei -^i ™ tne cartes^an product of sets. 
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• ILe/ ?i = illiei -Sj : Vi G / , Bi e Fi} is the product a-algebra,. 

• (ILe/AOCfat : « € / } ) = Ilie/(A*i(^i)) / o r x i G ^ - is the product measure. 

If the fa are probability measures, then the product measure is also a probability measure. 

4.1.2 Measure on Infinite Words 

In the previous subsection we dealt with measures on arbitrary spaces. However, in 

defining the behavior of probabilistic transducers, we will have to work with a highly 

structured set: the space of infinite sequences over some alphabet. This is because, when 

the transition function of the transducer is probabilistic instead of nondeterministic, a se­

quence of inputs induces a probability distribution over the set of state sequences of the 

same length, which in turn defines a distribution over the set of Output sequences. In this 

subsection we briefly review some useful properties of such spaces. 

In order to define a measure on the space of infinite sequences over some alphabet E, 

we must first choose a suitable a-algebra. The natural choice here is to use the a-algebra 

generated by the basic open sets of the natural topology on Ew. The basic open set is called 

a cylinder and is defined as the set of all possible infinite extensions of a given finite word. 

Intuitively, if we view E*" as an infinite tree, then a cylinder is a finite path followed by a 

complete infinite subtree. 

Definition 19 (Cylinders) Given an alphabet E, and a finite word (3 e E*, the cylinder 

Cp is defined as the set {(3 • a : a € E"}, where Ew is the set of all infinite words over E. 

The finite word generating a cylinder is called the handle of the cylinder. 

35 



Definition 20 (Borel cr-algebra) Given an alphabet E, the Borel o-algebra over Sw, de­

noted by 23(E), is the o-algebra generated by the set of cylinders ofE". 

We want to define a probability measure on E". Consider what such a measure \i 

would look like, and the value it would take on cylinders. Given a cylinder Cp, we can 

write it as a disjoint union of cylinders Cp = Lbes Cp.x. Then, by countable additivity, 

fJ*(Cp) = j ^ - x e E y(Cp.x). Now, we can interpret the function p on cylinders as a function 

/ on finite words, since there is a one to one correspondence between cylinders and finite 

words. Turning things around, such a function / : E* —• [0,1] can be used to define the 

measure on cylinders. The value that the measure takes on cylinders can in turn define the 

value it takes on other sets in the cr-algebra. This intuition is captured by the next definition 

and the theorem following it. 

Definition 21 (Prefix function) Let Y be a countable alphabet and T* be the set of all 

finite words over T. A prefix function over T is a function f : T* —*• [0,1] that satisfies the 

following properties: 

- m = i. 

• f(a) = Zxerf(a-x)forallaeT*. 

Theorem 6 Given an alphabet E, and a prefix function f over E, there is a unique proba­

bility measure p,: #(E) —* [0,1] such that for every cylinder Cp ofYF, p(Cp) = /(/?). 
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4.2 Definition of Probabilistic Transducers 

We would like to extend the results of the nondeterministic case to the case where the 

transition function of the machine is probabilistic, that is, the transitions that the machine 

takes have probabilities associated with them. We do this by associating each distinct input 

and state combination with a probability measure on the set of states. 

Definition 22 (Probabilistic Transducer) A probabilistic transducer is a tuple, 

M = (Q, q0,1,0, E, a, A, S) where 

• Q is a countable set of states. 

• qo is the start state. 

• I is a finite set of input channels. 

• O is a finite set of output channels. 

• E is a finite alphabet of actions (or values). 

• o : I U O —> 2 s is a function that allocates a channel alphabet to each channel. 

• A : Q x O —> E is the output function of the machine. X(q: o) G cr(o) is the value 

that is output on channel o when the machine is in state q. 

• S : Q x cr(ii) x . . . x o(in) —> Q,, where I = {zi,.. .,in} and £1 is the set of all 

probability measures on Q, is the transition function mapping the current state and 

input to a probability distribution on the set of states. 
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Input assignments, output assignments, output mapping, In(M) and Out(M) are de­

fined just as for the nondeterministic case (Section 3.1). 

Note that the only difference between a probabilistic transducer and a non-deterministic 

one is in the definition of the transition function 8. Also note that in Definition 3 in Sec­

tion 3.2, the transition function of the composition is defined as the cartesian product of 

the transition functions of the component transducers. So if we can define a cartesian 

product operation for the transition function of probabilistic transducers, then the defini­

tions for general and binary composition, as well as the composition theorem and its proof, 

which equates the two, will carry over in their entirety without any change from the non-

deterministic case. Such a product operation is provided by the product measure (Theorem 

5). Intuitively, a transition of a composite machine can be viewed as multiple independent 

transitions of its components, one for each component. Then the probability of making 

such a composite transition must be the same as the probability of the multiple independent 

transitions occurring at the same time, which is just the product of the individual probabil­

ities. This is formally captured by the product measure construction. 

We will not restate the definitions for general and binary composition, as well as the 

composition theorem. From here on, transducer will mean probabilistic transducer and 

composition will mean binary composition of probabilistic transducers. In the next section, 

we define appropriate notions of probabilistic behavior for transducers. 
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4.3 Probabilistic Executions and Traces 

A single input assignment / ( / ) to a transducer M in state qo, induces a probability 

distribution on the set of states Q, given by S(qo, / ( / ) ) . Similarly, a pair of input assign­

ments f(I),g(I) applied in sequence should give a probability distribution on the set of 

all pairs of states Q2. Intuitively, the probability assigned to the pair (qi, q2) should be the 

probability that M steps through q\ and q2 in sequence as we input / ( / ) followed by g(I), 

which is 5(qo, f(I))(qi) x <5(gi, g(I))(q2). If we assign such a probability to each pair of 

states, we find that the resultant distribution turns out to be a probability measure. A similar 

procedure can be applied to any finite length of input sequence. Thus, given an input se­

quence of finite length n, we can obtain a probability distribution on the set Qn, where the 

probability assigned to an element of Qn can be intuitively interpreted as the probability of 

the transducer going through that sequence of states in response to the input sequence. 

This procedure breaks down when we consider an infinite sequence of inputs, because 

<3"\ the set of infinite sequences over Q, is uncountable and defining the probability for 

singleton elements is not sufficient to define a distribution. In fact, the probability of each 

individual infinite sequence of states could very well be zero (similar to the case of the 

uniform distribution over a finite interval of the real line). In order to obtain a distribution, 

we need to define the probability for all measurable subsets of Q". We know from Section 

4.1.2 that the suitable <r-algebra to use here is the Borel a-algebfa over Qw. 

Theorem 6 is the bridge between the case of finite sequences of states, which we intu­

itively know how to handle, and the infinite case where the procedure of looking at individ-
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ual sequences breaks down. The theorem tells us that if we can obtain a prefix function on 

the set of states Q, then we can use it to obtain a measure on Q". Note that a prefix func­

tion deals only with finite sequences, and essentially captures the idea that the probability 

of visiting a particular state q must be the same as the probability of visiting q and then 

going to some arbitrary state. In a similar vein, the probability of heads in a single toss of a 

coin must be the same as the probability of heads in the first of two tosses, when we do not 

care about the results of the second toss. We use the transition function of the transducer to 

define the prefix function on Q. 

Definition 23 LetM = {Q, q0,J,0, E, a, A, 5) be a transducer, andir = (/i)~0 €ln(M)w 

be an infinite sequence of inputs. Then we can inductively define a prefix function p(M, ir) 

over Q as follows: 

• p(M,7r)(e) = l. 

• p(M,7r)(q) = 5(qQ,fo(I))(q)forq E Q. 

• p(M, ir){a-p-q)= p(M, 7r)(a • p) x 5(p, f\a.pl(I))(q)for q G Q. 

Proposition 1 p(M, TT) is a prefix function over Q. 

Proof. Let M = (Q, qQ, I, O, S, a, A, S) and TT =' (fi)%L0 e ln(M)u. By Definition 

23,p(M,7r)(e) = 1. Also, ZqeQp(M,ir)(e • q) = £ 9 6 Q % O , /„ (I))(q) = 1, because 

5(qo, /o(-O) is a probability measure on Q. So the definition of prefix function is satisfied 

for the case of the empty word. Now let a e Q* such that a ^ e. Then a = (3 • p for 

some ft e Q* and p e Q. Then, by Definition 23, for any q e Q, p(M,n)(a • q) = 
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p(M,Tr)(/3-p-q) = p(M,TT)(/3• p) x SipJw(/))(</). Therefore £9GQp(M,ir)(a • q) = 

p(M, 7r)(a) x Y,qeQ <*(p. /|/3-p| (•?")) (?) • S i n c e
 <*(P> / |/3-P|( /)) is a probability measure over Q, 

its total measure over Q must be 1. Hence we have, J2q£Q p(M, TT){OL • q) — p(M, TT)(Q), 

and so p(M, w) is a prefix function over Q. IEI 

So given any infinite sequence of inputs, we can obtain a prefix function on the set of 

states and thus obtain a unique probability measure on B(Q). We call such a measure an 

execution measure, since it plays the same role in defining the behavior of the transducer 

that executions did in the non-deterministic case. 

Definition 24 (Execution Measure) Let M — (Q, qo, 1,0, E, o, A, 8) be a transducer, and 

re 6 In^MY be an infinite sequence of inputs. The execution measure ofn over M, denoted 

/i(M, 7r), is the unique probability measure on B(Q) such that for every cylinder Cp ofQ", 

MM,7r)(C^) = p(M,7r)(/3). 

Since the output of a transducer depends only on its state, each state q maps to an 

output assignment h(q) : O —• E such that h(q)(o) = \(q, o) for all o £ O. Then we can 

extend h : Q —> Out(M) to a mapping from sequences of states to sequences of output 

assignments in the natural way: for a,p£ Q*, h(a • (3) = h(a) • h(0). We can also extend 

it to the case of infinite sequences. Since an infinite sequence of states is just a mapping 

g : N —>• Q from the natural numbers to the set of states, then h.0 g : N —*• Out(M) is a 

mapping from the naturals to the set of outputs. We now show that h : Qw —• Out{M)w 

is a measurable function, that is hrl maps measurable subsets of Out(My to measurable 

subsets of Qw. 
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Lemma 3 The extended output mapping, h : Q" —• Out{M)w, of a transducer M is a 

measurable function. 

Proof. It suffices to show that hr1 maps cylinders of Out{M)w to measurable subsets of 

Qw. Let a G Out(M)*, and consider hrl(Ca). Now hrx{Ca) = {(3 G Q* : -h(0) G 

Ca} = {ft • ft • Pi e Q*,Mft) = a, ft G Qw,MA0 e Oixt(M)w} = {A • ft : A G 

<2*,MA) = a, ft G Q"} = UreA^r. where ^ = {/? G Q* : /*(/?) = a} . Therefore 

/ i - 1 maps a cylinder to a union of cylinders, which is a measurable set, and thus h is a 

measurable function. M 

The above result allows us to use h to translate a measure on Qu into a measure on 

Out(M)u'. So for each execution measure, we can define a trace measure, which is the 

analog of a trace in the non-deterministic case. 

Definition 25 (Trace Measure) Let M = (Q, qo, I, O, E, a, A, 8) be a transducer, ir be an 

infinite sequence of inputs, and h : Q —> Out(M) be the output mapping. The trace mea­

sure ofn over M, denoted by /J,T(M, -K), is the unique probability measure on B(Out(M)) 

defined as follows: for all A € B{Out(M)), HT{M,TT)(A) = /i(M,7r)(/i-1(A)). 

The trace measures of a transducer are the observable part of its behavior. We define 

the probabilistic version of trace semantics in terms of trace measures. 

Definition 26 (Trace Equivalence) Two transducers Mi and M2 are trace equivalent, de­

noted by Mi ~ T M2, if 

• In(Mi) = In(M2) andOut(Mi) = Out(M2). 
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• For all -K G In(Mi)u, /*r(Afi,7r) = A*r(M2,7r). 

The first condition is purely syntactic, and is essentially the requirement that the two trans­

ducers have the same input/output interface. The second condition says that they must have 

identical trace measures. 

In contrast to the the non-deterministic case, instead of linear traces and executions, the 

basic semantic object here is a probability distribution over the set of all infinite words over 

some alphabet (in other words, an infinite tree). Before attempting to obtain full abstraction 

results, we show that the semantics defined above has an equivalent formulation in terms 

of finite linear traces and executions. The key insight involved in reducing an infinitary 

semantics to a finitary one is that each trace and execution measure is defined completely 

by the value it takes on cylinders, and the cylinders have a one-to-one correspondence with 

the set of finite words. Each cylinder is in some sense equivalent to its handle. 

Definition 27 (Execution) Let M = (Q, qo, I, O, E, a, A, 5) be a probabilistic transducer. 

An execution of M is a sequence of pairs (/;, Sj)™=0 such that n G N, and for all i > 0, 

Si G Q and fa G In{M). The set of all executions of machine M is denoted exec(M). 

Note that in contrast to the non-deterministic case, the definition of execution does not 

depend on the transition function S. Also, all executions are finite in length. 

Definition 28 (Likelihood of an execution) Let a = (/i,Si)"=0 G exec(M). Then the 

likelihood o/a, denoted by XM{CX)> is defined as follows: 

XM(a) = 5(qo,fo(I))(s0)xI^=1(5(Si^,fi(I))(si)) 
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where the product II™=1 is defined to have value 1 for n = 0. 

Definition 29 (Trace) Let a = (/*, Sj)"=0 £ exec(M). The trace of a, denoted by [a], is 

a sequence of pairs {/j, /I(SJ))"=0, where h : Q —> Out(M) is the output mapping of M. 

The set of all traces of machine M, denoted by Tr{M), is the set {[oi\\a G exec(M)}. An 

element ofTr(M) is called a trace ofM. 

Definition 30 (Likelihood of a Trace) Let t e Tr{M) be a finite trace of M. Then the 

likelihood oft, denoted by XM(t), is defined as follows: 

XM{t) = ^ .XM(a) 
aeExec(M),[a]=t 

Note that in our definition of trace, we ignore h(q0), since the initial state of a transducer 

is unique. 

The length of a trace a is defined to be the length of the underlying execution and 

is denoted by \a\. Once again, the transition function is not needed to define traces, and 

so a trace is a purely syntactic object. The semantical nature of a trace is now completely 

captured by the likelihood of the trace. Note that if two transducers have the same interface, 

they have the same set of traces: Tr(Mi) = Tr(M2) if and only if In{Mx) = In{M2) and 

Out(Mx) = Out(M2). 

The next theorem offers a simpler definition of trace equivalence. We need the follow­

ing propositions for its proof. 
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Proposition 2 Let M = (Q, q0,J,0, E, a, A, 6), ir = (/<)£,, G In{Mf, a = (fh Si)?=0 e 

exec(M), and (3 = (si)?=0 G Q*. Then XM(<X) = p{M, TT)(/?). 

Proof. We prove the desired equality by induction on the length of the execution. If n = 0, 

then by Definitions 28 and 23, XM(®) = <K<7o, /o(-0)(so) = p(M, 7r)(s0). Let n > 0, 

a = 7 • (/„_!, s„_i) • (/„, sn), P = v sn-i • sn. Then, by Definition 28, XM(<X) = XM{I • 

(/n_i, s„_ij) x«J(a„_i, fn(I))(sn), and by the induction hypothesis, XM(7"(/n-i, «n-i)) = 

p(M,?r)(?7 • sn_i). So XM(O) = P(M,TT)(?7 • sn_i) x 5(s„-i,/n(i '))(sn) = p(M,ir)(r] • 

sn-i • sn) = p(M, 7r)(/?) (the second equality follows from Definition 23). E3 

Proposition 3 Let M = (Q, q0,1,0, E, a, A, 8), TT = <£)£„ e / n W , t = (/,, Wi)?=0 e 

Tr(M), andf/3 = <w;)?=0 e Out(M)*. ThenXM(t) = ^{M,ir)[Cp). 

Proof. Let h : Q —> Out(M) be the output mapping of M. Then, by Definition 30 and 

Proposition 2, XM(*) = £aeexec(M),[«j=tXAf(a) = E7gh-i wP(M,ir) (7) -Also, by Def­

inition 25, pT(M,n)(Cp) = n{M,ic){h-\C(i)) = n{M,Tr)([jieh-1(l3)Cy). Since cylin­

ders with handles of the same length are necessarily disjoint, and p(M, TC) is a measure, 

using countable additivity we get/i(M,7r)(U7e/l-i(/3)C7) = £76 / l-i ( /3) /x(Af,7r)(C7) = 

5Z7e/i-» (a) P(^>7r) (7) ( t n e second equality follows from Definition 24). Therefore, XM (t) = 

liT(M,n){Cp). B 

Theorem 7 Let Mi and M2 be probabilistic transducers with Tr(Mi) — Tr(M2). Then 

M1~TM2ifandonlyif,forallteTr(Ml),XM1(t) = XM2(t). 

Proof. 
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If: Let Mi ~ T M2 and t = (fi,Wi)?=0 G Tr(Mi). Let TT = (/<)£„ G Jn(Mi)w and 

/? = (tf j)?=o e Out(Mi)*. Since Mx ~y M%, then the trace measure induced by it 

must be the same for both transducers, i.e., / / T ( M I , -K) = /J,T(M2, TT). In particular, 

/ / r(Mi, 7r)(C/3) = Atr(M2,7r)(C/3). By Proposition 3, we have XM^t) = XM2(t). 

Only If: Let Tr{Mx) = Tr(M2), and for all t G Tr(Mi), xMl(<) = XM2(*)- Given 

any TT = ( / ^ Q €E M M ) " J = W?=o e Out(Mi)*, and u = ( / e ^ S U G 

Tr(Mi), we have by assumption, XMi(w) = XM2(«)> and therefore, by Proposition 

3, (J,T(MI, ir){Cp)••= HT(M2, Tr){Cp). Since the measures are completely determined 

by their value on cylinders, we have /ix(Mi,7r) = /ir(M2,7r) for all 7r G In(Mi)w 

and so Mi ~ r M2. 

The theorem above allows us to reason in terms of single finite traces. This is a signif­

icant reduction in complexity from the original definition in terms of probability distribu­

tions on infinite trees. In particular this simplifies the proof of the full abstraction results to 

follow. 

In the next section, we use this alternative characterization of trace equivalence to show 

that it is fully abstract with respect to contextual equivalence. First we need to be able 

to calculate the likelihoods of traces of a composition from the likelihoods of traces of 

its components. In the propositions that follow, composition of traces and executions is 

defined exactly as for the non-deterministic case (see Definitions 8 and 9 in Section 3.3). 
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Proposition 4 Let M\ and M2 be transducers, C G Conn{{M\, M2}), a G exec(Mi) and 

P G exec(M2) such that a\\cP G exec{Mi\\cM2). Then 

XM1\\cM2(®\\cP) = XMM) X XM2(P) 

Proof. Let Mk = (Qk, q%, Ik, Ok, Efc, ak, Xk, Sk), k G {1,2}, and M = (Q, q0,1,0, E, a, A, 5) = 

Mi ||CM2, where C G Conn({M!,M2}). Let a = (/i,s*)r=o G exec(Mi),/? = {guu)^ G 

e£ec(M2), and a||c/3 G exec(M). We define e, : / —>• Ex U E2 as ej(m) = fi(in), if 

in G 7i, and ej(m) = gi(in), otherwise. 

By the definition of composition, 5((SJ, Vj), ej+i(I)) = SI(SJ, fj+i(Ii)) x52(rj, gj+i(I2)). 

Applying this to the expansion of XM («11 cP). given by Definition 28, and then rearranging 

the terms in the product, we obtain the desired equality. 

XM((X\\CP) 

= <J((9o,?o). eo(/))(s0,rQ) x n ^ ^ f o - i , r v i ) , e i ( / ) ) ( s i ) n ) ) 

=MdJo(Ii)) x 52(<*Uo(/2)) x T^M'^-i, fifa)) x ^ ( r ^ . ^ C / a ) ) ) 

= (WoJo(h)) x n ^ ^ C a i - i , / , ( / i ) ) j x (62(«g,flb(/2)) x Ikxfc fc - i , <&(/a))) 

= XMi(a) X X M 2 ( ^ ) 

B 

Proposition 5 LefMi andM2&etransducers, C G Conn{{Mu M2}) andt G Tr(M1 | |cM2). 

TTien XMi||cW(*) = Eu,„XiWiH X XM2(W) where u G Tr(Mi), w G Tr(M2) such that 
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u\\cv = t. 

Proof. 

Y XMi{u) XXMJ(") 
u\\cv=t 

= Y ((Y, Mi*)) * (Y,XMM)) 
u\\cv=t [a]=u [0\=v 

= Y ( 5Z (XM, (a) XXM2(/?))) 
u||c«=* [a]=u,[/3]=i> 

= S ( 51 (XM1\\CM2(OC\\CP))) 
u\\cv=t [a]=u,[0\=v 

- Y XMI\\CM3{OI\\C0) 

[<x\\c0\=t 

= XM1\\cM2(t) 

(using Dfn. 30) 

(rearranging terms) 

(using Prop. 4) 

(rearranging terms) 

4.4 Full Abstraction 

m 

As in the nondeterministic case, here again we want to show that our semantics recog­

nizes exactly the distinctions that can be detected by some context and vice versa. The two 

sides of this property are often called, resp., observational congruence and adequacy. Here 

we first prove the stronger condition that trace semantics is a congruence with respect to 

the composition operation. Then the property of observational congruence with respect to 

contexts automatically follows as a corollary. 
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Theorem 8 (Congruence Theorem) Let Mi ~ T M3, M2 ~ T M4 andC e Conn({Mu M2}). 

Then Mi \ \cM2 ~ r M31 \cM±. We say that ~y is congruent with respect to composition. 

Proof. Let t E Tr(Mi\\cM2). Since Tr(Mi) = Tr(M3) and Tr{M2) = Tr(M4), we 

have {(u,v) : u e Tr(Mi),v E Tr(M2),u\\cv = t] = {(u,v) : u e Tr(M3),v 6 

Tr{M±), u\\cv = t). Then, by Proposition 5 and Theorem 7, 

XM1\\cM2(t) = E{(u ,u):U | |cr=t}XM1(w) X XM2(v) = E{(u,«):«||c«=t} XM3(«) X X M » = 

XM3 | |CM4(*)- Again, by Theorem 7, we have Mi||cM2 ~ r M3 | |cM4. IEI 

Similar to the nondeterministic case, an immediate corollary of Theorem 8 is the fact 

that no context can distinguish between two trace-based equivalent transducers. 

Corollary 2 Let Mi and M2 be transducers, and Mi ~x M2. Then for all transducers M 

and all C e Conn({M, Mi}) = Conn({M, M2}), we have that M\\cMi ~ r M\\CM2. 

We can easily complete the other requirement of showing full abstraction of trace se­

mantics with respect to contextual equivalence, by demonstrating a trivial context that 

makes a distinction between trace inequivalent transducers. Let Mi and M2 be transducers 

such that Mi fa M2. Now we can simply choose an empty set of connections C, aiid 

a completely deterministic transducer M, as the basis of our testing context. In this case 

the trace measures of the composition Mi| |cM will be the same as the trace measures of 

Mi alone, and full abstraction would be trivially achieved. Here we give a stronger result, 

similar to that already described for the nondeterministic case. We show that given two 

inequivalent transducers with the same interface, we can always find a third transducer that 
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is a tester (see Section 3.4) for them and that distinguishes between the first two, when it is 

maximally connected with them. 

Theorem 9 Let Mi and M2 be transducers with Tr(Mi) = Tr(M2) and Mi fa M2. 

Then there exists a transducer M and C € Conn({M, Mi}) = Conn({M, M2}), such 

that M is a tester for Mi and M2 w.r.t. C, and M\ \cMi fa M\ \CM2. 

Proof. Let Mi = (Quqlr,0',E,ai,Xu6i) and M2 = (Q2,qlI',0',E,a2,\2,82). 

Since Mi fa M2, by Theorem 7, there exists t e Tr(Mi) = Tr(M2), such that XMX (t) ^ 

XM2 (t)- Let t = (fi, u)i)™=0 for finite n. We define the testing transducer (Q, q0,1,0, E, a, A, 5) 

as follows: 

• Q = {<7o, <Zi, • • •, qn+i} U {<?/} is a finite set of states, with qf being a special sink 

state. 

• For each o G O', we create an input channel in0 in J and assign alphabet a(in0) = 

oi (o) to it. 

• For each in £ I', we create an output channel oin in O and assign alphabet a(oin) = 

o"i (in) to it. 

• An extra output channel ou with alphabet {a, b} C E, that will be the only visible 

channel remaining after composition. 

• X(qi, oin) = fi(in), X(qi, ot) = a and A(g/, ot) — b. In all other cases, we don't care 

what output M produces, and A can be assumed to be arbitrary. 
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• The transition function 5 is defined as follows 

- S(qi, h(I))(qi+i) = 1, if for all in0 G I, h(in0) = Ui(o). 

- 8(qi, h(I))(q) = 0, if q ^ qi+1 and for all in0 G / , h(in0) = u>i(o). 

- S(q, h(I))(qf) = 1, if for some in0 G / , h(in0) ^ Ui(o). 

- S(q, /i(/))(^) = 0, if q' ^ qf and for some in0 G / , h{in0) ^ o»i(o). 

We define the set of connections C G Conn({M, Mi}) = CWi({M, M2}) as follows: 

for all in G / ' , o G O', (m, oin) G C and (m0,o) G C, and nothing else is in C. Now 

both M| \cMi and M||cM2 have exactly one channel each, which is the output channel ot 

belonging to M, and so M is a tester for M\ and Mi w.r.t. C. 

The transducer M simulates a deterministic transducer in that from each state and input 

combination, a single transition has probability 1 and all other transitions have zero proba­

bility. Further it is designed to follow the execution of the distinguishing trace t. As soon as 

the computation of the machine being tested diverges from this trace, M will enter its sink 

state and switch its visible output from a to b. When the machine being tested undergoes an 

execution corresponding to the trace t, the composition will output the trace an+1. We now 

show that the likelihood of this trace is different for M||cMi and M||crM2, and this will 

complete the proof. By Proposition 5, we have XM\\cMi(an+1) = Y.U,VXM(U) X XMI(V) 

where u G Tr(M), v G Tr(Mi) such that u\\cv = an+1. Now, by design, there is only 

a single such u G Tr(M), and a single such v G Tr(Mi), and we also have XM{V) = 1. 

and v = t. So XM||cMi(an+1) = XMx{t)- But since, by symmetry, this argument ap­

plies to M2 as well, we have XM||cM2(a
n+1) = XM„(*). and therefore XMWCMA^1) ± 
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XM\\CM2 (an+l). Thus the testing transducer M can distinguish between Mi and M2. G3 

The previous two theorems, taken together, show that trace equivalence is fully abstract 

with respect to contextual equivalence. 
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Chapter 5 

Conclusion 

It could be fairly argued that the arguments raised here have been raised before. 

• Testing equivalence, introduced in [23], is clearly a notion of contextual equivalence. 

Their answer to the question, "What is a test?", is that a test is any process that can 

be expressed in the formalism. So a test is really the counterpart of a context in 

program equivalence. (Though our notion of context in Section 3.2, as a network of 

transducers, is, a priori, richer.) At the same time, bisimulation equivalence has been 

recognized as being too fine a relation to be considered as contextual equivalence 

[10,11,12,32]. 

• Furthermore, it has also been shown that many notions of process equivalence studied 

in the literature can be obtained as contextual equivalence with respect to appropri­

ately defined notions of directly observable behavior [13,41,46, 52]. These notions 

fall under the title of decorated trace equivalence, as they all start with trace seman-
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tics and then endow it with additional observables. These notions have the advantage 

that, like bisimulation equivalence, they are not blind to issues such as deadlock be­

havior. 

With respect to the first point, it should be noted that despite the criticisms leveled at 

it, bisimulation equivalence still enjoys a special place of respect in concurrency theory 

as a reasonable notion of process equivalence [3, 60]. In fact, the close correspondence 

between bisimulation equivalence and the branching-time logic CTL has been mentioned 

as an advantage of CTL. Thus, it is not redundant, in our opinion, to reiterate the point that 

bisimulation and its variants are not contextual equivalences. 

With respect to the second point we note that our approach is related, but quite different, 

than that taken in decorated trace equivalence. In the latter approach, the "decorated" of 

traces is attributed by concurrency theorists. As there is no unique way to decorate traces, 

one is left with numerous notions of equivalence and with the attitude quoted above that "It 

is not the task of process theory to find the 'true' semantics of processes, but rather to de­

termine which process semantics is suitable for which applications" [60]. In our approach, 

only the modelers know what the relevant aspects of behavior are in their applications and 

only they can decorate traces appropriately, which led to our Principles of Comprehensive 

Modeling and Observable I/O. In our approach, there is only one "right" of contextual 

equivalence, which is trace-based equivalence. 

Admittedly, the comprehensive-modeling approach is not wholly original, and has been 

foretold by Brookes [14], who said: "We do not augment traces with extraneous book-
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keeping information, or impose complex closure conditions. Instead we incorporate the 

crucial information about blocking directly in the internal structure of traces. " Still, we 

believe that it is valuable to carry Brookes's approach further, substantiate it with our three 

guiding principles, and demonstrate it in the framework of transducers. 

An argument that may be leveled at our comprehensive-modeling approach is that it 

requires a low-level view of systems, one that requires modeling all relevant behavioral 

aspects. This issue was raised by Vaandrager in the context of I/O Automata [59]. Our re­

sponse to this criticism is twofold. First, if these low level details (e.g., deadlock behavior) 

are relevant to the application, then they better be spelled out by the modeler rather than by 

the concurrency theorist. 

As discussed earlier, whether deadlocked termination should be distinguished from nor­

mal termination depends on the level of abstraction at which the model operates. It is a 

pragmatic decision rather than a theoretical decision. Second, if the distinction between 

normal termination and deadlocked termination is important to some users but not oth­

ers, one could imagine language features that would enable explicit modeling of deadlocks 

when such modeling is desired, but would not force users to apply such explicit modeling. 

The underlying semantics of the language, say, in terms of structured operational seman­

tics [38], can expose deadlocked behavior for some language features and not for others. 

In other words, Vaandrager's concerns about users being force to adopt a low-level view 

should be addressed by designing more flexible languages, and not by introducing new 

notions of process equivalence. 
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Note that the alternative to our approach is to accept formalisms for concurrency that 

are not fully specified and admit a profusion of different notions of process equivalence. 

In conclusion, this dissertation puts forward an admittedly provocative thesis, which 

is that process-equivalence theory allowed itself to wander in the "wilderness" for lack 

of accepted guiding principles. The obvious definition of contextual equivalence was not 

scrupulously adhered to, and the underspecificity of the formalisms proposed led to too 

many interpretations of equivalence. While one may not realistically expect a single dis­

sertation to overwrite about 30 years of research, a more modest hope would be to stimulate 

a lively discussion on the basic principles of process-equivalence theory. 
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