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Abstract 

New approaches for incorporating the exact exchange 
energy density into density functional approximations 

by 

Aliaksandr Krukau 

In the last ten years, hybrid density functional approximations have become the 

most widely used method in modern quantum chemistry. Hybrid functionals com­

bine the semi-local exchange-correlation and a fraction of the exact-exchange energy. 

The most common are global hybrid functionals, with a constant fraction of the ex­

act exchange determined emprirically. Recently, two complementary strategies have 

been proposed to improve the performance of hybrid functionals. In range-separated 

hybrid functionals, the fraction of exact exchange depends on the interelectronic 

distance. In local hybrid functionals, the fraction of exact exchange is position-

dependent. In this work, we propose two approaches that combine range-separated 

and local hybrid functionals together, providing a promising route to more accurate 

results. 

Most previous implementations of range-separated hybrid functionals use a uni­

versal, system-independent screening parameter, fitted to experimental data. How­

ever, the screening parameter proves to depend strongly on the choice of the training 



set. Moreover, such functionals violate the exact high-density limit. In this work, 

we argue that the separation between short-range (SR) and long-range (LR) interac­

tions should depend on the local density. We propose an approximation that uses a 

position-dependent screening function u;(r) defining a local range separation (LRS) 

for mixing exact (HF-type) and LSDA exchange. This method adds a substantial 

flexibility to describe diverse chemical compounds. Moreover, the new model satisfies 

a high-density limit better than the approximation with fixed screening parameter. 

We have also developed an alternative strategy to improve the range-separated 

functionals by combining them together with local hybrid functionals. We consider 

two limiting cases: screened local hybrids with short-range exact exchange, and long-

range corrected hybrids with long-range exact exchange. The former approach can 

treat metals and narrow-gap semiconductors much more efficiently than standard 

local hybrids do. The latter method provides the correct asymptotic behavior, which 

is important for the treatment of charge transfer and Rydberg excitations in finite 

systems. 
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Chapter 1 

Introduction to density functional theory 

1.1 Kohn-Sham formalism 

In the last twenty years, density functional theory (DFT) has become one of the most 

popular methods in modern quantum chemistry and solid state physics. DFT often 

provides highly accurate description of electronic structure with computational cost 

that is substantially lower than the cost of many-particle methods. The foundation 

of DFT is based on the first Hohenberg-Kohn theorem [1]. It states that the ground-

state energy of a many-electron system is a unique functional of the ground-state 

electronic density p(ri), where the density is defined as: 

p(ri) = N"%2 I ... I \^(r1,a1,r2,a2,...,rN,aN)\2dr2...drN. (1.1) 
<71...<7|V 

Practical DFT calculations are usually performed within the Kohn-Sham (KS) 

formalism [2]. In KS-DFT, the total energy of the electronic system with the density 

p(r) is written as: 

Etot = ~\ J 3 (<t>i\ V2 |^> + / p(rHxt(r)<2r + J\p) + Exc[p], (1.2) 

where the first sum is the kinetic energy of non-interacting electrons, </>i(r) are the 

Kohn-Sham orbitals, vext(r) is an external potential, J[p] is the Coulomb interaction 



of the electron density with itself, 

and Exc is an exchange-correlation functional, the only term that is not known ex­

actly. Much efforts has been directed towards the construction of more accurate 

approximations to Exc. In Eq. (1.2), the orbitals </>i(r) are the solutions of the Kohn-

Sham equations [3]: 

2V2 + vKS(p) <f>i(r) = etiiir), (1.4) 

p(r) = J2nM\ (1.5) 
i 

where the KS effective potential I>KS is denned as: 

t to(r) = t;ext(r).+ / r f r ' j 7 Z ^ T + ^xc(r), (1.6) 

and 

vxc(r) = ^ k (1.7) 

In DFT, it is customary to divide exchange-correlation functional into the exchange 

and correlation parts: 

Exc — Ex + Ec (1.8) 

The exact expression for the exchange energy is: 

^ - - i £ / / t f , ) t y w ™ 
Eq. (1.9) is similar to the definition of exchange energy in Hartree-Fock theory. 

However, in this equation we should use the KS, not HF, orbitals. These two sets of 
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orbitals axe the solution of different equations, and therefore they differ. In most KS-

DFT calculations, an approximate exchange functional is used instead of the exact 

one. This is necessary because the combination of exact exchange and approximate 

correlation functionals usually yields poor accuracy. 

1.2 Spin-DFT 

In the original KS theory, exchange-correlation functional is written in terms of 

the total density. However, it it extremely difficult to describe the energy of spin-

polarized system in terms of the total electronic density. Spin-DFT [2], an extension 

of KS scheme to the case of a non-zero magnetic field, provided a solution to this 

problem. In spin-DFT, the exchange-correlation functionar depends on both the 

spin-up pa(r) and spin-down electron densities pp{v). It was shown [4] that even 

in the absence of magnetic field the approximate density functionals Exc[pa,pp] are 

much more accurate than Exc[p] (where p = pa + pp). Almost all current DFT 

calculations are performed with spin-DFT formalism rather than original KS-DFT 

approach. For the exchange functional, there is a spin-scaling formula [5] that relates 

Ex[p] and Ex[pa,pp] to each other: 

Ex{pa,pp} = ±Ex[2pa] + ±Ex[2pp]. (1.10) 

For simplicity of notation, we will not include spin indices in most of the subsequent 

text. It will be tacitly assumed that Eq. (1.10) should be applied in order to obtain 

Ex[pa, pp] exchange functional. 
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1.3 Approximate exchange-correlation functionals 

Perdew and co-workers [6, 7] proposed to classify the existing approximate exchange-

correlation functionals into a " Jacob's ladder" of approximations. The approxima­

tions at higher rungs are (hopefully) more accurate, but have a large computational 

cost. The methods at lower rungs are less accurate, but more computationally effi­

cient. 

The the lowest rung is the local spin density approximation (LSDA) [2]: 

£LSDA = Je^ip{r))dx, (1.11) 

where e^D A is obtained from the expression for a uniform electron gas with density 

p(r). Note that the exchange density exc at any point depends only on the local 

density at that point. 

The next level for Jacob's ladder is the generalized gradient approximations 

(GGA) [8] which introduce an additional "semilocal" ingredient, the density gra­

dient Vp(r): 

^xfDA = /exc(p(r),Vp(r))rfr. (1.12) 

The third rung is represented by meta-GGAs that additionally employ the orbital 

kinetic energy density: 
1 occ 

^(r)=2ElV<Mr)l- (L13) 

i 

The functionals on the first three rungs are often called semi-local functionals. At 

the fourth rung of Jacob's ladder, hyper-GGAs [9] add another ingredient, the exact 
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exchange energy density e^F(r). In the conventional gauge [10, 11], it is constructed 

as: 

«P(r») = ~ £ « f r O * M / ^ ? W (1-14) 
ij 

and obeys the following relationship (see Eq. (1.9)): 

£X
HF . = Je™(r)dr. (1.15) 

From Eq. (1.14), we can see that hyper-GGAs additionally depend on the occupied 

KS orbitals. The fifth level of Jacob's ladder, the generalized random phase approx­

imation (RPA) [12, 13, 14, 15] is represented by functional of all KS orbitals^ both 

occupied and unoccupied. Such functionals are not in wide use yet. 
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Chapter 2 

Hybrid exchange—correlation functionals 

2.1 Global hybrid functionals 

Hybrid exchange-correlation functionals include some admixture of the exact-

exchange energy. 

Global hybrid functionals are the simplest hybrid functionals that include a fixed 

fraction CHF of exact exchange, as proposed first by Becke [16, 17]: ' 

£x c = cHF£x
HF + (1 - CHF)£X

DFA + £C
DFA (2.1) 

with fixed mixing coefficient CHF- The coefficient CHF is usually fitted to the exper­

imental data. For example, PBEh [18, 19] is a popular global hybrid that has the 

following form 

Exc = \E™ + ^ X
P B E + £C

PBE (2.2) 

This functional has substantially lower error in heats of formation and barrier heights 

than the corresponding semi-local functional, PBE. Because of their improved ac­

curacy, global hybrids, such as PBEh or B3LYP [20], are widely used in electronic 

structure theory. 

However, global hybrids are not flexible enough to describe different aspects of 

electronic structure simultaneously. For instance, 25% of exact exchange in the PBEh 

is the optimal amount for the prediction of enthalpies of formation. However, 50% 



is necessary to describe barrier heights of chemical reactions well. 

Another drawback of the global hybrid functionals is the incorrect behavior of 

the exchange potential in finite systems [21, 22]. The true exchange potential has 

the following asymptotic behavior: 

Vx(r)|r-oo = - - ' + £ (2.3) 

where |r| = r, while the exchange potential of the hybrid functional decays as —CHFA"-

The incorrect asymptotic behavior leads to errors in describing polarizabilities of long 

chains [23, 24], charge transfer, and Rydberg excitations [25]. 

The conventional hybrid functionals are also difficult to apply for periodic sys­

tems, because the addition of exact exchange drastically increases the computational 

cost. Moreover, it is known that the long-range part of exact exchange is partially 

cancelled by correlation in metallic and small, band-gap systems [26, 27].. But semilo-

cal correlation functionals fail to describe that effect. 

2.2 Range-separated hybrid functionals 

Range-separated hybrids, pioneered by Savin and co-workers, represent the next 

generation of hybrid functionals. These functionals partition the Coulomb operator 

into short-range (SR) and long-range (LR) components: 

1 = erfc(a;ri2) | ed(ur12). ^ ^ 

SR LR 
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where u; is the screening parameter, ri2 = ri — r2, and rJ2 = |ri2 |. When u —> 0, the 

long-range part of the interaction vanishes. Using the partitioned Coulomb operator, 

we can split DFA and HF exchange energy as: 

^ F T = jESRIDFT + jgLR,DFT ( 2 g ) 

E H F = jEBR,HF + £7LR,HF ( 2 g ) 

There are two major classes of range-separated hybrids: screened hybrids and long-

range corrected functional. 

Screened hybrids retain only the short-range part of exact exchange. This dra­

matically lowers the cost of calculation for periodic systems. Heyd, Scuseria, and 

Ernzerhof [28] have proposed an HSE screened hybrid functional that has the follow­

ing form: 

E™E =: C H F ^ X
H F ' S » + (i - c H F ) ^ P B E ' s » 

where £?F-S R is the short-range HFx (SR-HFx), EfBE'SK and EfBE<LK
 a r e respec­

tively the short- and long-range components of the PBE exchange functional [8], 

CHF = 1/4 is the HF mixing parameter [29], and E^BE is the PBE correlation func­

tional [8]. For u = 0, HSE reduces to the conventional hybrid PBEh, also known 

as PBEO [18] or PBE1PBE [19]. For u -> oo, HSE reduces to the semi-local PBE 

functional. For a finite value of a;, HSE can be regarded as an interpolation between 



these two limits. The value of the screening parameter u> = 0.11 Bohr -1 was deter­

mined by fitting to experimental band gaps [30]. HSE substantially improves the 

quality of band gap prediction. For thermochemistry of molecules, HSE and PBEh 

show very similar results. 

The other class of range separated hybrids uses long-range exact exchange and 

short-range DFT exchange. Such functional are called long-range corrected Junc­

tionals. The long-range corrected PBE (LC-wPBE) functional [31] has the following 

form: 

£LC-u,PBE = £ « P B E , S R ( w ) + ^ H F , L R ( a ) ) + ^ P B E ^ g ) 

LC-wPBE and related functional are remarkably accurate for both enthalpies of for­

mation and barrier heights [31, 32]. Further, such methods perform well for processes 

involving long-range charge transfer, Rydberg excitations, and other properties that 

require the accurate description of the asymptotic exchange potential [25, 23, 33, 34]. 

The advantages of screened hybrid functionals and long-range corrected func­

tional were united in the HISS functional of Henderson, Izmaylov, Scuseria, and 

Savin [35, 36]. HISS is based on a three-range partitioning of the Coulomb potential 

into the short-range, middle-range, and long-range parts. HISS uses a combination 

of semi-local DFT exchange with the middle-range exact exchange. HISS performs 

simultaneously well for thermochemistry, barrier heights, and band gaps. 
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2.3 Local hybrids 

Conventional hybrid functionals use a fixed, universal fraction of exact exchange. 

However, we expect that different regions in a molecule need different fractions of 

exact exchange. We can tune the amount of exact exchange for each specific system 

if we use a position-dependent fraction of exact exchange. Such functionals are called 

local hybrids and defined as: 

£x
Lch = ^cDFT + / [/(r)ex

HFW + (1 -/(r))ex
D F T(r)] d3r. (2.9) 

Here e°FT(r) and ex
F(r) are the semi-local DFT exchange energy density and the ex­

act exchange energy density, respectively. The function / ( r ) in Eq. (1.14) is called a 

mixing function. Local hybrid functional was first introduced by Burke and cowork­

ers [10] in 1998, but without a specific form of / ( r ) . Jaramillo and co-workers [6, 37] 

proposed and implemented a local hybrid with the following mixing function: 

Tw(r) = -J^rf (2-U) 

In one-electron regions, where HF exchange is the exact exchange-correlation func­

tional, this mixing function becomes equal to one. In the homogeneous electron gas, 

Vp(r) and / ( r ) are 0, so that only semi-local DFT exchange is used. Unfortunately, 

this local hybrid shows very poor thermochemical results [37]. Later, Kaupp and 

coworkers [38, 39, 40] demonstrated that empirically parameterized mixing functions 
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including 

(where a is an empirical parameter) provide accurate thermochemistry and reaction 

barriers in local hybrids of LSDA exchange. 

2.4 Exchange hole and its relation to hybrid functionals 

Another way to look at the different classes of hybrid functionals is in terms of the 

exchange hole. The exchange hole /tx(ri;r12) is defined as: 

_ UP(M^)ds srn (213) 
2 7 M 

The exact exchange hole is written as: 

h ( r . r , l | E - C C ^ ( r i ) ^ ( r 2 ) [ 2 

h*{TltT„) = ^ (2.14) 

The exchange hole of the conventional hybrid functional can be written as: 

^ y b r i d ( r i ; r12) = (1 - cH F)/£F A(r i ; r12) + c H F ^ F ( r i ; r12) (2.15) 

where CHF is a constant. In a local hybrid functional, CHF becomes a function of ri , 

so that: 

^ y b r i d ( r i ; r 1 2 ) = (1 - cH F(r i))^F A(r1 ; r1 2) + cHP(r1)/£F(r1;r12) (2.16) 

Similarly, the exchange hole of range-separated hybrids is written as: 

/£ybr id(ri; |r12 |) = (1 - cHF(|r12 |))/£FA(r i ;r12) + c H F ( r i 2 )^ F ( r i ; r 1 2 ) . (2.17) 

In particular, in long-range corrected functionals CR-F(|ri2|) = erf(o>|ri2|). 
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2.5 Aim of the present work 

In the current work, we propose two novel approaches that use even more general 

expression CHF(ri, |fi2|)- In the first approach, discussed in Chapter 3, we introduce 

the long-range corrected functional that uses a position-dependent screening func­

tion rather than fixed screening parameter. In the second approach (Chapter 4), 

we combine local hybrid and range separation, so that we admix locally screened 

exchange. Both of these methods provide extra flexibility for the description of 

electronic structure. 
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Chapter 3 

Hybrid functionals with local range separation 

3.1 Theory 

Range-separated hybrid functionals offer a promising route for the construction of 

accurate density functionals. However, most previous implementations of range sep­

aration use a universal, system-independent screening parameter in Eq. (2.4). It 

seems obvious that such an approach, despite its success, will have limitations. It 

has been argued that the screening parameter should rather be system-dependent [41, 

42, 43, 44]. In this work, we describe an even more general approach. In the ho­

mogeneous electron gas, the size of the exchange hole measured, e.g., by the point 

where its first node appears, varies with the density of the gas. Therefore, it seems 

evident that the separation between the short-range and long-range interactions for 

an inhomogeneous system should depend on the local density. Here, we propose 

an approximation that uses a position-dependent screening function ui(r) defining a 

local range separation (LRS) for mixing exact (HF-type) and LSDA exchange. Our 

approach is presented in detail below. 
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3.1.1 Physical idea 

We propose the following form for the exchange-correlation energy of a spin-

unpolarized density: 

£LRS-u,LSDA = /"[eLSDA,SR(r) ^ + gHF.LR^ ^ j ^ + ^LSDA^ (3 -Q 

We will refer to this locally range-separated functional as LRS-u;LSDA. Eq. (3.1) is 

readily extended to spin-polarized systems using the spin-scaling relationship from 

Eq. (1.10) for the exchange energy [5] (with a different u(r) for each spin component). 

When u! is universal and position-independent, this functional reduces to long-range 

corrected LSDA [45, 46], which we will here refer to as LC-wLSDA. Note that in 

Ref. [45], this functional is denoted RSHXLDA. Toulouse et al. [47] have suggested 

using a local screening parameter u for DFT correlation. We here explore an LRS 

approach for exchange only; our aim is to combine it with LRS correlation at a later 

stage. 

3.1.2 Approximations for the local screening function 

The realization and implementation of Eq. (3.1) is non-trivial. One should choose an 

appropriate screening function u;(r). There are several straightforward choices for the 

local screening parameter. In the homogeneous electron gas, a characteristic length 

is given by the Wigner-Seitz radius rs — (47T/9/3)-1/3. The screening parameter has 

dimensions of inverse length, so a trivial selection would be a>(r) ~ l/rs [47, 48]. For 
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inhomogeneous systems, the screening function can be approximated by a gradient 

expansion: 

u;(r) = - ( a + /3s + 7s2 + . . . ) , (3.2) 

where s = \Vp\/{2kpp) is the reduced gradient, kp — (37r2p)1//3, and a, ft, and 7 are 

parameters to be determined. In the high-density limit, these choices for u;(r) have 

a better scaling behavior than constant u (see Appendix A). 

3.1.3 Models for the SR and LR parts of the exchange energy 

The short-range component can be calculated as: 

eLSDA,SR(r)a;(r)) = 1 ( r ) /00
/ ,LSDA (p ( r ) )M)erfc(a;( r)^)47r t f2^ ) ( J U ) -

* Jo u 

where h]fDA(p(r),u) is the LSDA exchange hole and erfc(x) = 1 - erf(x). This 

integral can be done analytically for any value of u [49, 50]. Note that even though 

Eq. (3.3) is not symmetric with respect to interchange of electrons, it does not violate 

symmetry invariance of the total exchange energy, as explained in Appendix B. 

The long-range part (in the conventional gauge [11]) is defined as: 

/ e f ^ ( r , J ( r ) ) = X ; ^ ( r ) M r ) ^ ( r , W ( r ) ) , . ' (3.4) 

where (p^ and <pu are atomic orbitals (AOs) and 

X™(rMr)) = ~Y,P^V™(rMr)), (3-5) 
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where P is the density matrix and V^R are Coulomb-type electrostatic integrals 

(ESIs): 

c(, ,M M)- /tf) i(o e" ( ' ;^">^ (") 
where (f>\ are Gaussian basis functions. These integrals can be done analytically for 

any w(r) (see Appendix C). The long-range Fock exchange matrix may be evaluated 

from Eq. (3.6) as 

K$W*)) = ~ £ P^ I Mr)Mr)V™(rMT))<k (3-7) 
A C T • 

and the LR exchange energy is evaluated as 

^ F , L a = f e^n{rMr))dr = 1 J2K™(u(r)) P^ (3.8) 

Unfortunately, these expressions are computationally intractable as written. Given 

an arbitrary w(r), the integral over r in Eq. (3.7) must be performed numerically. 

There are 0(N\0) matrix elements of "V^,R(r, uj(r)) to be evaluated at each grid point 

r, yielding a total computational cost 0(NgrftN%0). On the other hand, if a>(r) is 

constant, the integral over r in Eq. (3.7) can be performed analytically in a Gaussian 

basis set, leading to 

and 

£X
HF,LR '= \ £ (^ v°)»Pi*P>» (3.10) 

where 

( A i A , i / a ) w = ; y y ^ ( r ) 0 x ( r ) ^ § ^ ^ ( r ' ) M r ' ) * ^ (3-H) 
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Such analytic two-electron integrals are an essential part of Gaussian-orbital based 

electronic structure programs. For screened interactions, the integrals in Eq. (3.11) 

can be evaluated as a trivial modification of regular two-electron integrals [49, 51]. 

While their computational scaling is formally 0(N^0), they quickly reach their clas­

sical 0(iV|0) asymptote for moderate size systems [52], and a variety of linear-scaling 

treatments have been developed for large systems [53]. Of course for u> —> oo, all 

these expressions recover their exact values for the bare unscreened interaction. 

As explained in detail below, an approximation to the screened HF exchange 

energy density is needed for computational convenience. An alternative approach 

for calculating the HF exchange energy density is the method of Delia Salla and 

Gorling [54]. In this method, which we here extend for using with screened interac­

tions, the expression for the HF exchange energy density is simplified by introducing 

a resolution-of-the-identity (RI) in an auxiliary basis identical to the AO basis, and 

leads to the following expansion: 

ex
HF'LR(r,a;) = ^ ^ ( r ) ^ ( r ) g ^ ( a ; ) . (3.12) 

flU 

where 

QLR(w) = V 1 K L » P + ^ P K L » S - 1 . (3.13) 

and S _ 1 is the inverse overlap matrix. Note the similarities between Eqs. (3.4) and 

(3.12). However, also note that while X depends explicitly on r, Q is independent 

of it, except through oj(r). The former is exact whereas the latter is approximate. 

Given Q, Eq. (3.12) can readily be evaluated at every grid point with minimal 
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computational cost. While the orbital product ^»/i(r)</»v(r) decays exponentially with 

increasing distance between AOs, the Coulomb-type ESIs of Eq. (3.6) do not decay as 

fast. Thus, for constant u (including u —> oo, i.e., the bare interaction), RJ is usually 

preferred over ESIs for calculating e^F'LR(r,u) because of its lower computational 

cost [55]. Note that an important savings consideration in RI is that for constant u, 

K (needed for Q) can be obtained analytically via modified two-electron integrals, 

Eq. (3.9). 

For a local screening function a>(r), K can no longer be evaluated analytically 

and has to be done numerically via Eq.(3.7), which involves evaluation of ESIs, so 

the computational advantage of RI disappears. In summary, with LRS, both the 

RI and exact ESI procedures have similarly steep computational costs, requiring an 

OiNgridN^o) computational step that we wish to avoid. Therefore, we shall seek an 

alternative approximation for evaluating e^F'LR(r,u(r)) whose computational cost 

is not much larger than evaluating the unscreened (a; —> oo) HF exchange energy 

density, which can be efficiently done via RI. 

Let's recall that the TPSS exchange hole [56] was constructed to reproduce the 

TPSS exchange energy density: 

e™(r) = U<)rh7SSMVpUe™U)^ (3.14) 
2 Jo u 

where /ijp s s(p, |V/9|,T,e£pss,tt) is the model TPSS exchange hole [56] and r the 

kinetic energy density. To achieve this goal, the TPSS hole expression has e£PSS as 

an ingredient. We propose here to use the TPSS hole expression for reproducing 
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the screened HF exchange energy density. We feed in the unscreened e^F instead of 

e£pss in the above equation, and integrate with the screened interaction, to yield the 

following approximation: 

e*F-LR(r,u,(r)) « Ur) [°°hT/ss(p, | V p | , r , e » * ^ ^ " ^ W d u (3.15) 

For ui —> oo, Eq. (3.15) is exact. The accuracy of this approximation is examined in 

the Section 3.2. Note that the conventional gauge of the HF energy density e^F in 

Eq. (3.4) differs slightly from the gauge of the TPSS energy density e£pss, as studied 

in Ref. [11], leading to a small error in Eq. (3.15) even when the integrated HF and 

TPSS exchange energies are equal for good reason. Because the TPSS exchange hole 

is based on the PBE hole model, the integral in Eq. (3.15) can be done (mostly) 

analytically, as shown in Refs. [28] and [57]. This yields a procedure with rather 

moderate computational cost compared to the numerical integration alternatives via 

RI and ESIs discussed above. A recently redeveloped PBE hole model [58] can be 

extended to include the exchange energy density as an ingredient (resembling the 

TPSS hole) and still afford exact (as opposed to "mostly") analytic integration for 

screened interactions. 

The fourth or hyper-GGA (generalized gradient approximation) rung introduces 

the exact exchange energy density. From the perspective of ladder approximations 

and even though not explicit from the expressions in Eqs. (3.4)-(3.6), range-separated 

hybrids introduce further ingredients, minimally the spherically-averaged exact ex­

change hole density h™([p]]r,u), and thus stand at least slightly higher than the 
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fourth rung. In our actual implementation of Eq. (3.1), by using Eq. (3.15) we are 

making a hyper-GGA approximation to a range-separated hybrid. 

3.2 Results and discussion 

We have implemented LRS-u;LSDA into the development version of the Gaus­

sian suite of programs [59]. All benchmark calculations were performed non-self-

consistently using LSDA orbitals. For LSDA correlation, we use the Perdew-Wang 

parametrization [60]. The unscreened HF exchange energy density, needed as an in­

gredient for Eq. (3.15), is calculated using the RI method (see Eq. (3.12)) [54]. This 

method works best with large and uncontracted basis sets, so we have used the un-

contracted 6-311++G(3d/,3pd) basis set unless otherwise specified. When presenting 

our results, we employ the convention: error = theory - experiment. Unless spec­

ified otherwise, we use B3LYP/6-31G(2d/,p) equilibrium geometries and zero-point 

energies for all species. Thermal corrections are calculated with a frequency scale 

factor 0.9854. 

The performance of our approximate expression for the locally screened LR HF 

exchange energy, Eq. (3.15), can be calibrated in a benchmark case where we know 

the correct answer. In Fig. 1 we plot mean absolute errors (MAE) in enthalpies 

of formation as a function of u for LC-u;LSDA and the same functional evaluating 

the LR HF exchange energy density using the TPSS exchange hole approximation 

of Eq. (3.15) instead of the rigorous expression of Eq. (3.10). Results presented in 
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Figure 3.1 : Mean absolute errors for the standard enthalpies of formation of the 

AE6 set for exact and approximate LC-wLSDA using Eq. (3.15) for e^F'LR(r,u(r)). 

Fig. 1 are post-LSDA (i.e., done with LSDA orbitals) and we use the AE6 test set 

of standard enthalpies of formation [61]. This test set includes only 6 molecules, but 

it has been constructed to reproduce the errors of the much larger G3 set [62]. 

The "exact" LC-wLSDA in Fig. 1 shows the lowest MAE of 10.5 kcal/mol for 

u = 0.60. Best results with the approximate LC-o>LSDA are achieved with u = 

0.40, where the MAE is 8.4 kcal/mol. Therefore, we conclude that Eq. (3.15) yields 

reasonably accurate results for thermochemistry, even though the optimal screening 

parameters are different. Note also that these optimal values would slightly change 

if obtained with self-consistent orbitals as opposed to the post-LSDA procedure used 

here. 

In order to test the proposed LRS-wLSDA approach, we use Eq. (3.2) for the 

local screening parameter. We have explored the parameter space for a, (3, and 7 

in Eq. (3.2). Our current attempts indicate that optimal results are achieved with 

LC-coLSDA 
LC-coLSDA (approx.) 
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Table 3.1 : Deviation from the experiment of standard enthalpies of formation for 

LRS-tuLDA. AE6 test was used. All values are in kcal/mol. 

Method 

LDA 

LC-wLDA 

LRS-wLDA 

LRS-u;LDA 

LRS-wLDA 

w(r) 

0.6 

r)/rs 

rjs 

rjs2/rs 

V 

1 

Q.29 

0.3 

MAE 

77.7 

10.6 

24.2 

6.6 

5.4 

LRS-wLDA r)\Vp\/p 0.135 3.6 

HF exch + LDA corr 50.8 

a, 7 w 0. We can then rewrite Eq. (3.2) in terms of the density and its gradient: 

^ = ! L |Vp| 3 

rs p 

where r\ = (187r)_1//3/3. This choice of screening function was previously proposed by 

Toulouse et al. [47] In Table 3.1, we present results for the AE6 test set of standard 

enthalpies of formation with several versions of LRS-wLSDA and related functionals. 

For each u;(r) approximation, we show the optimal value of the scaling parameter rj 

and corresponding MAE. Note that LC-u;LSDA data in this and all subsequent tables 

are calculated with screening parameter u = 0.60. The lowest MAE in Table 3.1 is 

achieved with u/(r) given by Eq. (3.16) and r\ = 0.135. 

Plots of |Vp|/p for atoms were presented several years ago in Refs. [64] and 

[65]. Here, in Figs. 2 and 3, we present plots of our screening function a>(r) in the 
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Table 3.2 : Total non-relativistic energies of atoms (Hartree) with the uncontracted 

UGBS basis set. 

Atom 

H 

He 

Li 

Be 

B 

C 

N 

0 

F 

Ne 

•; N a • 

Mg 

Al 

Si 

P 

s 
CI 

Ar 

LSDA 

-0.479 

-2.834 

-7.343 

-14.446 

-24.354 

-37.468 

-54.134 

-74.527 

-99.110 

-128.230 

-161.444 

-199.135 

-241.317 

-288.216 

-340.000 

-396.737 

-459.662 

-525.940 

LC-a;LSDA 

-0.516 

-2.925 

-7.443 

-14.560 

-24.493 

-37.636 

-54.332 

-74.757 

-99.368 

-128.511 

-161.729 

-199.420 

-241.609 

-288.519 

-340.319 

-397.077 

-459.024 

-526.324 

LRS-u;LSDA 

-0.501 

-2.909 

-7.467 

-14.621 

-24.582 

-37.742 

-54.448 

-74.895 

-99.520 

-128.672 

-161.931 

-199.664 

-241.893 

-288.834 

-340.657 

-397.439 

-459.402 

-526.714 

Exact" 

-0.500 

-2.904 

-7.478 

-14.667 

-24.654 

-37.845 

-54.589 

-75.067 

-99.775 

-128.938 

-162.255 

-199.994 

-242.277 

-289.281 

-341.169 

-398.013 

-460.042 

-527.420 

ME/e6 

MAE/ec 

0.0062 

0.0062 

0.0038 

0.0041 

0.0024 

0.0024 

° [63] 

b Mean error per electron 

c Mean absolute error per electron 
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Figure 3.2 : Range separation function u;(r) in the argon atom, plotted as a function 

of the distance from nucleus. 
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Figure 3.3 : Range separation function u>(r) for the majority-spin density, plotted 

along the bond axis of the CO molecule. 

Ar atom and the CO molecule, respectively. The screening function o>(r) has local 

maxima at nuclear positions, decreases in the valence region, and increases again in 

the density tail. Small oscillations around the nuclei are due to the use of Gaussian 

basis functions. 
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The asymptotic behavior of \Vp\/p is well-known. As r —> oo, the density decays 

like [66] Ar2<>exp(—29r), where (in atomic units) 9 = (—26HOMO) and CHOMO is the 

highest-occupied (or partly occupied) orbital energy, and C = 1/0 — 1 for a neutral 

system. (For the hydrogen atom, for example, 9 = 1 and C = 0.) Thus \Vp\/p —> 20. 

Based on the results of Table 3.1, we decided to study LRS-wLSDA with u> = 

0.135|Vp|/p in more detail. In Table 3.2, we present calculated atomic energies 

for H to Ar with the large UGBS basis set [67]. We compare LSDA, LC-wLSDA, 

and LRS-u;LSDA with accurate non-relativistic energies [63]. LRS-a»LSDA has lower 

mean error per electron than either LSDA or LC-wLSDA. 

To assess the performance of LRS-a>LSDA for enthalpies of formation in more 

general cases, we have used the G3/99 test set of 223 molecules [62] and its smaller 

subset G2/97 of 148 molecules [68]. The results are presented in Table 3.3. LC-

wLSDA dramatically reduces MAE for the G3 test set in comparison with LSDA. 

However, even better results are achieved with LRS-a>LSDA that yields MAE(G3) of 

5.9 kcal/mol. For thermochemistry, LRS-u;LSDA is competitive with many common 

hybrid functionals [69]. For comparison purposes, the popular B3LYP functional 

yields MAE of 3.1 and 4.9 kcal/mol for the G2 and G3 sets, respectively [69]. 

Table 3.4 shows benchmark results for reaction barrier heights. The HTBH38/04 

set includes forward and reverse barrier heights for 19 hydrogen transfer reactions, 

and NTBH38/04 consists of 19 nonhydrogen-transfer reactions [70, 71]. We take the 

best theoretical estimates of the barrier heights and the geometries of all species from 
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Table 3.3 : Deviations from experiment of standard enthalpies of formation (A[H%g8) 

computed with various methods using the uncontracted 6-311++G(3df,3pd) basis set. 

All values are in kcal/mol. 

Afi72°98 (kcal/mol) 

G2 set G3 set 

Functional ME MAE ME MAE 

LSDA -83.0 83.0 -120.9 120.9 

LC-wLSDA -2.0 10.5 -2.5 12.2 

LRS-wLSDA -2.4 5.0 0.9 5.9 

Ref. [71]. Prom Table 3.4, we see that LSDA substantially underestimates barrier 

heights. LC-o>LSDA and especially LRS-wLSDA improve upon LSDA. 

Table 3.5 presents results for ionization potentials (IP) and electronic affinities 

(EA) in the G2 test set [68]. We dropped the ions H2S+, O j , NO - , and Nj from 

this set because of convergence issues with LSDA. In total, we used here 83 ioniza­

tion potentials and 57 electron affinities. LRS-u;LSDA performs much better than 

either LSDA or LC-a>LSDA. Global hybrids like the popular B3LYP functional yield 

somewhat better MAE for IP (0.184 eV) and EA (0.124 eV) [69]. Surprisingly, the 

results with LC-wLSDA are particularly poor. We have repeated the LC-wLSDA 

calculations self-consistently (instead of using LSDA orbitals), and the results are 

only slightly better than the post-LSDA results. 
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Table 3.4 : Deviations from experiment of barrier heights of chemical reactions 

computed with various methods using the uncontracted 6-311++G(3df,3pd) basis 

set. All values are in kcal/mol. 

Af#£98 (kcal/mol) 

HTBH38 NHTBH38 

Functional ME MAE ME MAE 

LSDA -17.9 17.9 -12.4 12.6 

LC-wLSDA 7.0 7.1 8.6 8.6 

LRS-wLSDA -5.4 5.5 -5 .3 5.5 

3.3 Other approaches for construction of the local screening 

function 

We had already demonstrated that u(r) = f-s shows excellent results for both ther­

mochemistry and barrier heights. In the last expression, we can try to substitute the 

reduced gradient s with the iso-orbital indicator z = m-. Both of these variables are 

dimensionless. We obtain the following expression for the local screening function: 

u(r) = fr- . (3.17) 

where /?i = 0.75 is an empirical parameter, fitted to the small AE6 set [61] of 

atomization energies. 

Another way to determine the screening function is to fit it, so that the semi-local 

part of LRS-o>LSDA reproduces the semi-local D FT part of a local hybrid functional. 
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Let's consider the local hybrid developed by Kaupp et al. [38]: 

K Z w ( £ ) e H F ( r ) + ( 1 _ K ! w ( £ ) ) e L S D A W 
£x FR-Lh-LSDA 

/ 
dr. (3.18) 

r(r) x ^ ' ^ r(r) 

where K = 0.48 is an empirical parameter fitted to thermochemistry, and FR-Lh-

LSDA stands for " full-range local hybrid of local spin-density approximation". We 

can reproduce its LSDA part with LRS-tuLSDA, if we choose u>(r) by solving the 

equation: 

e L S D A , S R ( r M r ) ) = ( 1 _ ^ IW^LSDA^ (3 1 Q ) 

Alternatively, we can reproduce the HF part of FR-Lh-LSDA, if we solve the equa­

tion: 

ex
HF-LR(r,o;(r)) = « 2 ^ e x

H F ( r ) (3.20) 

where ex
F 'LR(r,u(r)) is the approximate long-range HF energy density, calculated 

according to Eq. (3.15). In Eqs. (3.19) and (3.20), 71 and 72 are again empirical 

parameters. Both of these equations can be solved numerically at any r, using the 

Newton-Raphson algorithm. This yields the screening function u>(r). The short-

range energy density ex
SDA'SE(r, cu(r)) can then be calculated according to Eq. (3.3). 

The values «i = 0.61 and «2 = 0.54 were determined by fitting to the AE6 test set 

for atomization energies. In Fig. 3, we compare the different approximations for o>(r) 

in N2 molecule. 

Table 3.6 compares the performance of different approximations for ui(r). We 

see that the best results for all the test sets are achieved with u;(r) = 0.75-r. The 
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Figure 3.4 : Three different range separation functions o>(r) for the alpha-spin density, 

plotted along the bond axis of the N2 molecule. 

expression o>(r) = 0.135|V/o|/p, described in detail in previous section, yields slightly 

worse results. But overall, all four approximations for a>(r) show comparable accuracy 

for both thermochemistry and barrier heights. It is encouraging that LRSw-LSDA 

always outperforms LC-wLSDA. 
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Table 3.5 : Deviations from experiment of ionization potentials and electron affinities 

computed with various methods using the uncontracted 6-3ll++G(3df,3pd) basis set. 

All values are in eV 

Functional 

LSDA 

LC-wLSDA 

LRS-wLSDA 

IP EA 

ME MAE ME MAE 

0.046 0.235 0.237 0.246 

0.633 0.635 0.392 0.407 

0.028 0.195 0.189 0.192 

Table 3.6 : MAE (mean absolute error) for test sets of enthalpies of formation 

(Af//£98) and barrier heights, computed with various screening functions u(r). All 

values are in kcal/mol. 

"(r) 

Afif|98 (kcal/mol) 

G2 G3 HTBH38 NHTBH38 

0.135|V/9|/p 5.0 5.9 

0.75z/r3 4.1 5.4 

Fit to DFT part of FR-Lh-LSDA 5.8 6.9 

Fit to HF part of FR-Lh-LSDA 5.4 7.7 

5.5 

4.3 

5.3 

4.6 

5.5 

5.8 

6.6 

5.5 
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Chapter 4 

Range-separated local hybrid functionals 

4.1 Theory 

In this chapter, we present a new combination of the local and range-separated 

approximations. Our "local admixture of screened exchange" partitions the exchange 

energy as in Eq. (2.4), with a universal range-separation parameter u and a, position-

dependent admixture of SR HF exchange. This approximation complements the 

position-dependent u> approach described in chapter 3. We consider two limiting 

cases: long-range-corrected local hybrids 

£LC-Lh = £xLR-HF + £DFA ( 4 1 } 

+ / [ / ( r ) e f - H F ( r ) + ( l - / ( r ) )e f - D F T ( r ) ]d r . 

and screened local hybrids 

£SC~Lh = . . £ L R - D F T + £DFT ( 4 . 2 ) 

+ E / [ / ( r ) e x R ~ H F ( r ) + ( 1 - / ( r ) ) e x M F T ( r ) ] d r . 

The short-range HF exchange energy density e^R_HF(r) in Eqs. (4.1) and (4.2) is ob­

tained by replacing l/|r—r'| with erfc(u>|r—r'|)/|r—r'| in Eq. (1.14) (see Sec. 4.2). The 

short-range semilocal exchange energy density exR~DFT(r) is obtained from model ex­

change holes as in standard range-separated hybrids [23, 72, 73, 58, 74]. LC local 
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hybrids incorporate 100% asymptotic HF exchange regardless of the choice of mix­

ing function. (Mixing functions incorporating 100% asymptotic HF exchange by 

construction were proposed in Refs. [37, 39, 40, 75, 76]). These functional will be 

valuable for calculations on finite systems, where HF exchange provides the exact 

asymptotic exchange-correlation potential. Screened local hybrids incorporate only 

SR HF exchange, regardless of the choice of mixing function. They will be essential 

for local hybrid treatments of metals and narrow^bandgap semiconductors, due to 

the aforementioned problems of LR-HF exchange in such systems [26, 27]. 

Range-separated local hybrids stand between the fourth and the fifth rungs of 

Jacob's ladder (see chapter 2). On one hand, they depend only on the occupied KS 

orbitals, so they are below the fifth rung. On the other hand, range-separated local 

hybrids use not the exact exchange energy density itself, but its screened counterpart 

(Eq. (3.12)), so they differ from the fourth rung. In this work, we test screened and 

LC local hybrids that use the empirical mixing function of Eq. (2.12) to locally 

admix SR HF exchange. These functional contain two empirical parameters: the 

maximum fraction of SR HF exchange a in Eq. (2.12), and the universal range-

separation parameter u in Eq. (2.4). 

The local, range-separated, and local-range-separated hybrid functionals dis­

cussed above are all special cases of exchange-correlation functionals that depend 

explicitly on the occupied Kohn-Sham spin orbitals. Self-consistent implementations 

of such functionals typically follow one of two routes. The first route is to calculate 
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the Kohn-Sham local XC potential 

tw(r) = -£%, (4.3) 

using the optimized effective potential method (OEP) [77, 78, 79, 80, 81] or ap­

proximations such as KLI [82] or LHF/CEDA [54, 83]. Such calculations yield high 

quality one-particle spectra [79, 80] and are useful for properties such as NMR chem­

ical shifts [84, 85, 86], but have formal and computational problems in finite basis 

sets [87, 88, 89, 90]. The second route is to calculate the nonlocal XC potential 

defined in terms of functional derivatives with respect to the spin orbitals: 

*"MT) " ^ ) ' ( 4 4 ) 

Eq. (4.4) contributes to the Fock-like Hamiltonian matrix in a finite KS orbital basis 

set {//(r)} with matrix elements 

*£,„ = / dr / i ' ( r M r ) . (4.5)" 

This generalized Kohn-Sham (GKS) approach is outside of the Kohn-Sham formal­

ism, but is a rigorous generalized density functional theory in its own right [9.1, 92]. 

GKS appears to be behind the success of the HSE06 screened hybrid for semicon­

ductor band gaps [28, 93, 94, 95]. GKS is also typically simpler to implement and 

more computationally tractable than OEP approximations. Most existing density 

functional codes use GKS implementations of hybrid and meta-GGA functionals. 

Local hybrid functionals were implemented self-consistently within the 

LHF/CEDA approximation to OEP by Arbuznikov, Kaupp, and Bahmann in 
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2006 [96]. This self-consistent "localized local hybrid" (LLH) method was later 

extended and applied in calculations of nuclear shielding constants [97]. The im­

plementation is computationally demanding, requiring two separate resolutions of 

the identity to construct the averaged local potential entering the LLH equations. 

Most subsequent thermochemical tests of local hybrids have been performed non-

self-consistently [38, 39, 40, 75, 76, 98]. 

In this chapter, we present self-consistent GKS calculations using the screened 

and LC local hybrid functionals of Eqs. (4.1-4.2). In section 4.2, we derive the 

nonlocal GKS exchange potential. Section 4.3 gives details of our implementation 

and calculations. Section 4.4 presents thermochemical tests of screened and LC 

local hybrids. Section 4.4 also compares our GKS approach to published non-self-

consistent and LLH treatments of existing local hybrids of full-range HF exchange. 

4.2 GKS local hybrid exchange potentials 

Here we derive matrix elements of the GKS exchange potential for full-range, 

screened, and LC local hybrid functionals. The derivation closely follows the "func­

tional derivatives with respect to the orbitals" which were obtained by Arbuznikov 

and co-workers as an intermediate step in the localized local hybrids of Refs. [96, 97]. 

We generalize their derivation to screened exchange and complex orbitals, using par­

tial integration to remove quantities such as V| Vp| and Vr (see Eq. (28) of Ref. [96] 

and Eq. (17) of Ref. [97]). The resulting equations can also be derived following the 
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procedure of Pople and coworkers [99], by first expanding the KS orbitals in a basis 

set, then taking the partial derivative of Eq. (4.6) with respect to the expansion co­

efficients (not shown). Extensions to more general hyper-GGA forms are presented. 

We note that although the authors of Refs. [96, 97] did not report GKS calculations 

using the nonlocal exchange potentials constructed from their functional derivatives, 

they could have done so had they wished. 

We begin with the exchange energy of a local hybrid of full-range HF exchange 

from Eq. (2.9) that we repeat here: 

E™ = y d r 1 . [ / ( r 1 ) ^ ( r 1 ) , + ( l - / ( r 1 ) ) e ? r t ( r 1 ) ] . (4.6) 

We construct the HF exchange energy density by applying a resolution of the identity 

(RI) to Eq. (1.14) and symmetrizing, following Delia Sala and Gorling [54] 

ij 
1 Y - V - ' ^ / > f w - i [A (A ^(s)0j(s)0*(r2)^(r2) 

• = - i L L ^ ( r i ) Q ( r i ) ^ ] ] J 2 ls-r2| + C'C-
ij aft 

Here {a(r)} is the RI basis set, S~p is its inverse overlap matrix, and "c.c." denotes 

the complex conjugate of the displayed expression. We assume in what follows that 

the KS orbital basis set {//(r)} is used for the RI. Given a spin density matrix P 

defined in terms of the occupied KS spin orbitals as 

£<Mri)#(r2) = ^K^P^u^), (4.8) 
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the HF exchange energy density of Eq. (4.7) becomes 

fll> 

where 

Q = ^ ( S ^ - K - P + P - K - S - 1 ) , 

Kw = ~ ]C p*nWrlu}> 

(4.9) 

(4.10) 

AT? 

(fj,\\rju) = / dii / dr< 
y( rOA(hV( r a ) i / ( r a ) 

(4.11) 

(4.12) 
Fi ~ r 2 | 

We assume that the local hybrid mixing function / ( r ) and the exchange energy 

density e°FT(r) are real semilocal functions of 4>i(r), V</>j(r), and their complex 

conjugates. (Extensions to the nonlocal mixing functions of Refs. [75, 76] will be 

treated in future work.) e^F(r) is a nonlocal function of 4>i{v') and <^*(r'), but not a 

function of V0j(r') or V0*(r'). Given this, the functional derivative of Eq. (4.6): 

5E^h dElh „• 
x - V 

5<j>*(v) d<t>*(r) 

dEkh 

S(V#(r))J 
(4.13) 

becomes 

Jf ZTvLh 

^rw. 
^ ^ ( r ) = | d r i / ( r i ) ^ 

5ex
HF(ri) 

0Lh<2)<Mr) = edw 
3/(r) 
^ * ( r ) 

V ^diff 
df(r) 

0(Vfl(r)). 

^ ( r ) = (1 - /(r)) ^ ^ - V (1 - /W) 
de?FT(r) 

WJW) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Here 

DFT/ ediff = e x - ( r ) - e x ^ ( r ) (4.18) 
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The nonlocal operator vLbW is obtained by substituting Eq. (4.7) into Eq. (4.15) 

(4.19) 
j a/3 

/3*(s)^(s)^(r2)^(r2) 

+ 

+ 
s — r 

/ " ^ f^ u* / r w* . \ Q - I Z' J3^*( s) t /(s)^j(r) / d rx /{riWjpiMTilS^ J d s — - - : 

+ y d ri / ( r i ) ^ ( r i ) a* ( r i ) ( 5 ^ ) y (fr2 

Matrix elements of this operator are obtained from Eq. (4.5) as 

^ h ( 1 ) = --J2(\[dr S(r)nr)a(r) r r - 1 (4.20) 

/?*(s)^(s)^(r2)i/(r2) ' 
y^ ds dr2- , , 

+ ?• /* / ds 
^(r)^(r)^(s)/3(s) 

| s - r | 
s^lYdna-CrOAnMn) 

+ Ep^[/d r i r /* ( r i ) / ( r i ) a ( r i ) s^[fdsIdr /z'(r)A(r)/F(s)i/(s) 

s - r 

+ 
AT?

 L , / ^ 

dr? 
M*(r)/?(r)rf(r2) 

|r2 - r| 
^ 5 , - Q

1 [ | d r 1 a * ( r 1 ) / ( r 1 ) A ( r 1 ) Ar, , 

where (Sal) = SQ^ and Eq. (4.8) is invoked. Simplification yields the matrix 

representation of the operator 

VLh(i) = i ( f - S ^ - K + K - S - ^ f J + ^K, (4.21) 

where the matrix f is given by 

fM„ = y*dr//(r)/(i>(r), (4.22) 
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and the matrix K is obtained by replacing P with (P • f • S _ 1 + S _ 1 • f • P) /2 in 

Eq. (4.11). For a global hybrid of full-range exact exchange, where / ( r ) equals a 

constant a, the matrix f is a times the KS orbital basis overlap matrix S, and 

yLh(i) _ aj£ a s expected. 

Matrix elements of {SLh(2) and vLh^ are obtained in the usual way [100, 99]. vhhW 

is 

> < 2 V ( r ) = < = « ^ ( r ) ^ | + 2 [ V p ( r ) . V K r ) ] | ^ ) (4.23) 

- v..[^(^p(rM,)|^ + I W , „^) ] . 
where G(r) = |Vp(r)|2. Its matrix elements are obtained from Eq. (4.5), using a 

partial integration to remove terms in e.g., Vediff and Vr resulting from the second 

line of Eq. (4.23) 

V^ = J dv ediS^*(v)Hr)^ (4.24) 

+ 2[Vp(r).V(M*(rMr))] ^ 

+ J [ V ^ ( r ) . V , ( r ) ] ^ ) . 

A similar derivation gives 

dv (1 - / ( r )) \^(v)u{T)?2±-±l (4.25) 

+ 2[Vp(r) .V(/ / ( r )Kr))] ^ ^ 

+ i [ V ^ ( r ) . V , ( r ) ] ^ f ^ ) . 

GKS exchange potentials for screened and long-range-corrected local hybrids are 

obtained by replacing the full-range exchange energy densities in Eq. (4.6) with the 
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corresponding short-range quantities. The SR DFT exchange energy density and its 

derivatives are obtained from DFT exchange hole models in the usual way [23, 72, 73, 

58, 74]. The SR HF exchange terms are obtained by evaluating the two-electron in­

tegrals in Eq. (4.12) with the SR interaction in Eq. (2.4), and using these integrals to 

construct the K and K matrices entering Eq. (4.21). The long-range exchange energy 

density, which in the present work does not include local hybridization, contributes 

to the GKS exchange potential in the usual way. 

This derivation is readily extended to more general hyper-GGAs [6, 7]. To illus­

trate, we consider a hyper-GGA for exchange: 

£xHGGA = | rfre^G A(r , [p(r) ,G(r) ,r(r) ,{ex
HJ(r)}]) (4.26) 

where {e^f (r)} are the set of exact exchange energy densities evaluated with modi­

fied electron-electron interactions {/ia(|r — r ' |)}, and the exchange energy density is 

a functional of all the quantities in square brackets. (Here a indexes the different 

modified interactions.) Matrix elements of the GKS exchange potential become 

V £ G G A = E ^ G a G A ( 1 ) + ^ G G A W (4-2n 
a 

The nonlocal operators V^„,a are obtained from Eq. (4.21) by replacing / ( r ) with 

d(e?GGA(r))/d(e£J(r)) in Eq. (4.22), and evaluating K and K with the modified 

electron-electron interaction /ia(|r —r'|). The other operator is obtained by replacing 

egFT with egGGA and setting / ( r ) = 0 in Eq. (4.25). 
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4.3 Computational details 

We have implemented the expressions in previous section into the development ver­

sion of the GAUSSIAN electronic structure program [101]. The implementation is 

restricted to using the Kohn-Sham orbital basis set for the resolution of the identity 

used to construct the exact exchange energy density and its derivatives. Accordingly, 

all calculations use fully uncontracted Gaussian AO basis sets of augmented-triple-

zeta or larger size [96, 11, 102]. 

Table 4.1 : Definition of the five local hybrid functionals investigated in this work. 

Functional Range separation u Mr) 

FR-Lh-BLYP* 

FR-Lh-LSDA* 

SC-Lh-LSDA 

LC-Lh-LSDA 

SC-Lh-PBE 

BPW91 

LSDA 

LSDA 

LSDA 

PBE 

Full-range 

Full-range 

Screened 

Long-range-

Screened 

-corrected 

-

-

0.11 

0.18 

0.11 

TW'IT 

0.48 TW/T 

0.55 TW/T 

0.44 TW/T 

0.25 TW/T 

We test five local hybrid functionals: two previously proposed full-range (FR) lo­

cal hybrids, screened and long-range-corrected local hybrids of LSDA, and a screened 

local hybrid of PBE. Details of the functionals are presented in Table 4.1. The func­

tional hybridize the BPW91 [103, 60, 104], LSDA (Vosko-Wilk-Nusair correlation 

functional V of Ref. [105]), range-separated LSDA [73], and range-separated [72] 

PBE [8] exchange functionals. The SC-Lh-LSDA screened local hybrid is an exten-



41 

sion of the HSE06 [28, 30] screened hybrid. We selected the HSE06 u = 0.11 for 

local hybrids of screened exchange, as this value has been shown to provide a rea­

sonable balance between accuracy and computational efficiency in screened hybrid 

calculations on solids [30]. The remaining empirical parameters of our screened and 

LC local hybrids were fitted to the small AE6 and BH6 sets of atomization energies 

and hydrogen transfer reaction barrier heights [106]. 

We test these functional for heats of formation ((Af//|98)) of the G2-1 (54 

molecules) [107, 108], G2/97 (147 molecules) [109], and G3/99 (222 molecules) [62] 

data sets [110]; hydrogen-transfer reaction barrier heights of the HTBH38/04 set 

and non-hydrogen-transfer reaction barrier heights of the NHTBH38/04 set [70, 71]; 

bond lengths of the T-96R set [69, 111]; and atomization energies and reaction 

barrier heights of the small AE6 and BH6 test sets [106]. Geometries and ex­

perimental values for the HTBH38/04 and NHTBH38/04 sets are from Ref. [71]. 

Those for the AE6 and BH6 sets are from Ref. [106]. Experimental values for 

the T-96R set are from Ref. [69]. Be2 was omitted from the T-96R set due to 

its van der Waals bond. Si2 was omitted from the G2-1, G2/97, G3/99, and T-

96R sets due to convergence issues. (Af//|98) calculations use equilibrium B3LYP/6-

3lG(2df,p) geometries and zero-point energies with a frequency scale factor of 0.9854, 

as recommended in Ref. [112]. Self-consistent GKS calculations with the HSE06 

screened hybrid [28, 30], the LC-cuPBE long-range-corrected local hybrid [113], and 

the Perdew-Burke-Ernzerhof global hybrid (PBEh) [18, 19] are included for com-
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Table 4.2 : Mean and mean absolute errors (kcal/mol) in A/iT^s f° r global and 

local hybrid functionals (see Table 4.1). Uncontracted 6-311++G(3df,3pd) basis set. 

Self-consistent GKS calculations unless noted otherwise. 

Functional 

FR-Lh-LSDA, 

FR-Lh-LSDA, 

SC-Lh-LSDA 

LC-Lh-LSDA 

HSE06 

LC-CJPBE 

post-LSDA 

GKS 

ME 

-1.2 

-1.6 

0.2 

-1.4 

1.8 

2.0 

G2-1 

MAE 

3.6 

3.8 

.4.3 

3.6 

3.0 

3.5 

G2/97 

ME 

-1.9 

-2.6 

1.2 

-1.7 

-1.0 

-0.5 

MAE 

3.7 

4.2 

4.3 

3.9 

4.0 

3.8 

G3/99 

ME 

-1.2 

-2.1 

2.9 

-0.5 

-2.5 

-1.0 

MAE 

3.4 

3.9 

5.0 

3.9 

5.0 

4.3 

parison. Open-shell systems are treated spin-unrestricted. Errors are calculated as 

theory-experiment. 

4.4 Results and discussion 

Table 4.2 presents mean (ME) and mean absolute (MAE) errors in heats of formation 

(A{H%Q8) for the G2 and G3 sets of small and medium-sized molecules. Results are 

presented for full-range, screened, and long-range-corrected local hybrids of LSDA 

exchange. Calculations use the uncontracted 6-311+-|-G(3df,3pd) basis set follow­

ing Refs. [75, 76]. Non-self-consistent "post-LSDA" calculations use orbitals from 

an LSDA global hybrid with 10% HF exchange, as in Ref. [40]. Non-self-consistent 
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Table 4.3 : Mean and mean absolute errors (kcal/mol) in reaction barrier heights 

for global and local hybrid functionals. Uncontracted aug-cc-pVQZ basis set, self-

consistent GKS calculations unless noted otherwise. 

Functional 

FR-Lh-LSDA, post-LSDA 

FR-Lh-LSDA, GKS 

SC-Lh-LSDA 

LC-Lh-LSDA 

HTBH38/04 

ME 

-1.7 

-2.1 

-1.3 

-1.6 

MAE 

2.3 

2.6 

2.1 

2.2 

NHTBH38/04 

ME 

-1.2 

-1.5 

-0.9 

-0.5 

MAE 

2.5 

2.6 

2.2 

2.3 

HSE06 -4.3 4.3 -3.2 3.6 

LC-wPBE -0.2 1.3 1.6 2.6 

calculations with the full-range local hybrid FR-Lh-LSDA agree with the results in 

Refs. [40] and [76], modulo small differences due to basis set, orbitals, and molecular 

geometries. The thermochemical performance of this functional is slightly degraded 

in self-consistent calculations, possibly because it was parameterized post-LSDA [38]. 

The long-range-corrected local hybrid gives very accurate thermochemistry, compara­

ble to the full-range local hybrid and the LC-wPBE long-range-corrected functional. 

The thermochemical performance of the screened local hybrid SC-Lh-LSDA is some­

what inferior, though still comparable to the HSE06 screened hybrid. The results 

overall indicate that both screened and long-range-corrected local hybrids of LSDA 

exchange can provide good thermochemical performance. 
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Table 4.4 : Mean and mean absolute errors (Angstrom) in bond lengths of the T-96R 

data set. Self-consistent GKS calculations, uncontracted aug-cc-pVQZ basis set. 

Functional ME MAE 

FR-Lh-LSDA 0.0079 0.0131 

SC-Lh-LSDA 0.0076 0.0132 

LC-Lh-LSDA 0.0060 0.0112 

PBE 0.0188 0.0190 

PBEh 0.0001 0.0089 

HSE06 0.0006 0.0089 

LC-CJPBE -0.0068 0.0125 

Table 4.3 presents errors in reaction barrier heights of the HTBH38/04 and 

NHTBH38/04 test sets [70, 71], evaluated for the functionals in Table 4.2. Calcula­

tions use the large uncontracted aug-cc-pVQZ basis. Again, the non-self-consistent 

results for the full-range local hybrid agree with Refs. [40] and [76] modulo differences 

in basis set and orbitals. This functional's performance is again slightly degraded 

in self-consistent calculations. Both screened and long-range-corrected local hybrids 

give accurate reaction barriers, with results comparable to the full-range local hy­

brid. It is especially notable that the SC-Lh-LSDA screened local hybrid provides 

comparable thermochemistry and significantly improved reaction barriers relative to 

the HSE06 screened hybrid. Though the results are not quite comparable to recent 

"middle-range" hybrids [35, 36], we feel that they are encouraging. 
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While local hybrids have been tested non-self-consistently for the bond lengths 

of radical cation dimers [37, 40, 75], we are not aware of published tests for conven­

tional covalent bond lengths. Table 4.4 presents errors in bond lengths of the T-96R 

test set [69], evaluated using the uncontracted aug-cc-pVQZ basis set. All of the 

tested hybrid functionals are reasonably accurate for predicting bond lengths. The 

local hybrids tend to overestimate bond lengths relative to PBEh or HSE06, with 

unsigned errors comparable to the long-range-corrected hybrid LC-u>PBE. This bond 

length overestimation may be in part a consequence of the TW/T mixing function. 

Ref. [40] demonstrated that this function has local maxima in the bonding regions of 

stretched bonds and transition states. This incorporation of additional HF exchange 

in stretched bonds was invoked to explain the accurate reaction barrier heights pre­

dicted by the FR-Lh-LSDA local hybrid [40]. We speculate that this additional 

HF exchange may also create an energetic bias towards moderately stretched bonds 

incorporating a few percent of HF exchange in the bonding region. 

Previous investigations have shown that semilocal functions such as TW/T and the 

density gradient can be used to construct accurate full-range local hybrids of LSDA 

exchange, but not of GGA exchange [40, 76]. (While the nonlocal density matrix 

similarity metrics presented in Ref. [76] yield improved GGA local hybrids, they are 

still not comparable to the best LSDA local hybrids.) Unfortunately, it appears 

that the performance of TW/T in local hybrids of GGA exchange is not improved 

by hybridizing screened vs. full-range HF exchange. Table 4.5 compares our SC-
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Table 4.5 : Mean absolute errors (kcal/mol) in AE6 atomization energies and BH6 

barrier heights for the SC-Lh-PBE screened local hybrid of PBE exchange, its "par­

ent" screened hybrid HSE06, and the SC-Lh-LSDA screened local hybrid of LSDA 

exchange. Self-consistent GKS calculations, uncontracted 6-311+-|-G(3df,3pd) basis 

set. 

Functional AE6 BH6 

SC-Lh-PBE 5.9 6.0 

HSE06 4.9 4.9 

SC-Lh-LSDA 4.8 2.4 

Lh-PBE screened local hybrid of PBE exchange to its "parent" screened hybrid 

HSE06 [28, 30]. The table includes mean absolute errors (kcal/mol) in the small 

AE6 atomization energy and BH6 reaction barrier height test sets. Calculations 

are performed self-consistently in the uncontracted 6-311+-|-G(3df,3pd) basis set. 

The SC-Lh-LSDA screened local hybrid gives thermochemistry and barrier heights 

that are significantly worse than HSE06. In contrast, as in Tables 4.2-4.3, the 

SC-Lh-LSDA screened local hybrid of LSDA exchange is comparable to HSE06 for 

atomization energies and better than HSE06 for reaction barrier heights. 

The remainder of this section compares our self-consistent GKS method to 

the non-self-consistent and "localized local hybrid" (LLH) results obtained by Ar-

buznikov and co-wrokers in Ref. [96]. Results are presented for the FR-Lh-BLYP 

local hybrid of full-range HF exchange (Table 4.1). The calculations in Ref. [96] 

used the contracted cc-pVQZ atomic orbital basis set (g functions excluded) for the 
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KS orbitals and the corresponding uncontracted basis for RI. Our calculations use 

the uncontracted cc-pVQZ basis set (including g functions) for both KS orbitals and 

RI. Table 4.6 compares non-self-consistent (post-BPW91) and self-consistent atomic 

total energies. Our post-BPW91 total energies are ~ 1 mH above AKB, a small dif­

ference that is consistent with the difference in KS orbital basis. Our self-consistent 

GKS energies are ~ 2.5 mH below AKB's LLH energies. This is as expected: our 

uncontracted KS orbital basis has additional variational freedom, and OEP and ap­

proximate OEP calculations on many-electron systems generally give total energies 

somewhat above GKS (Refs. [79, 114]; see however Ref. [87]). 
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Table 4.6 : Total atomic energies (Hartree) from local hybrid FR-Lh-BLYP (Ta­

ble 4.1), evaluated post-BPW91 or self-consistently. Current GKS implementation 

vs. LLH of AKB (Ref. [96]). Other details are in the text. 

H 

Li 

Be 

C 

N 

0 

F 

Na 

Si 

P 

S 

CI 

post-BPW91 

This work 

-0.5060 

-7.4842 

-14.6542 

-37.8427 

-54.5962 

-75.0817 

-99.7561 

-162.2932 

-289.3866 

-341.2847 

-398.1364 

-460.1743 

AKB 

-0.5060 

-7.4854 

-14.6553 

-37.8438 

-54.5974 

-75.0829 

-99.7574 

-162.2947 

-289.3876 

-341.2856 

-398.1373 

-460.1752 

GKS 

This work 

-0.5066 

-7.4866 

-14.6572 

-37.8470 

-54.6004 

-75.0868 

-99.7615 

-162.2984 

-289.3927 

-341.2905 

-398.1430 

-460.1809 

LLH 

AKB 

-0.5066 

-7.4862 

-14.6563 

-37.8452 

-54.5988 

-75.0845 

-99.7592 

-162.2956 

-289.3887 

-341.2864 

-398.1382 

-460.1761 
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Chapter 5 

Conclusion 

In this work, we propose two novel approaches to combine range-separation and 

local hybrids. In the first approach, we introduce the local range separation where we 

use a position-dependent screening function instead of a fixed, system-independent 

screening parameter. We have developed the LRS-wLSDA functional that uses a 

rather accurate approximation for the screened HF exchange energy density. We 

tested four different expressions for the position-dependent screening parameter. 

Each of them has just one empirical parameter, and they all demonstrate comparable 

accuracy. For thermochemistry, barrier heights, and atomic energies, LRS-a;LSDA 

shows substantial improvement upon LSDA and LC-a>LSDA. Also, LRS-wLSDA sat­

isfies the high-density scaling behavior better than LC-CJLSDA. More extensive stud­

ies of local range separation are currently under way including its self-consistent im­

plementation which is required for evaluation of analytic energy gradients and other 

properties [115]. 

We have also developed an extension of local hybrid functionals to a local admix­

ture of screened HF exchange. We have considered two limiting cases: screened local 

hybrids with LR DFT exchange and long-range-corrected local hybrids with LR exact 

exchange. Self-consistent GKS calculations using screened and long-range-corrected 

local hybrids of LSDA exchange show good results for molecular thermochemistry 
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and kinetics, comparable to the accuracy of corresponding full-range local hybrids. 

Long-range-corrected local hybrids have the correct asymptotic behavior of the ex­

change potential, and thus could be useful for the description of properties such 

as polarizabilities of long chains, charge transfer, or Rydberg excitations. Our LC-

LSDA-Lh is one of the few local hybrid functionals [39] that both show very accurate 

performance for thermochemistry and have the exact asymptotic exchange potential. 

The success of our SC-LSDA-Lh screened local hybrid is also encouraging. Conven­

tional, full-range local hybrids are difficult to apply to the metals and narrow-gap 

semiconductors because of the prohibitive computational cost of the LR exact ex­

change. SC-LSDA-Lh should be readily applicable to all solids since it includes only 

the SR part of exact exchange. 
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Appendix A 

High-density limit for the range separation 
function 

Consider uniform density scaling [116] to the high-density limit: 

p(r)-»joA(r) = A3p(Ar) and A —> oo. (A.l) 

The scaled density p\(r) has the same number of electrons as p(r), but is higher at 

the origin and more contracted around it. In this limit, in the absence of exact de­

generacy of the Kohn-Sham non-interacting ground state, the exact exchange energy 

Ex
x should emerge [117] to dominate Exc: 

l i m ^ Exc[px}/E?[px] = 1 (A.2) 

Eq. (A2) is an exact constraint on Exc[p] which can be satisfied by a hyper-generalized 

approximation [6, 118, 9] or by a locally range-separated hybrid. With a universal 

position-independent parameter a; in Eq.(3.1), however, it is incorrecly LSDA ex­

change that emerges instead: 

lirn^oo Exc[px]/E™DA[px} = 1 .(A/3) 

Certainly there is no reason to believe that relative corrections to the local density 

approximation should vanish in the high-density limit. 
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To achieve the correct behavior of Eq.(A2), we need u(r) to scale up faster than 

Ao>(Ar). Because s(r) —> s(Ar) and rs(r) —• A_1rs(Ar), Eq. (3.2) scales up like 

Ao>(Ar), which is much more nearly correct than is an u that does not change under 

sealing. 

Note that uniform density scaling relations for long-range and short-range ex­

change are presented in Ref. [119], 
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Appendix B 

Invariance of LRS energy with respect to 
interchange of electrons 

We can write the exact exchange-correlation energy as: 

Exc 

Suppose we have an approximation fapproxi*,*') that does not have the exact sym­

metry property. We can define a symmetrized 

Japprox,sym.m\.Y, Y J = ~\Japprox\?'> r ) + JapproxK? ' ^)) V^-^l 

that has exactly the same energy integral as /approx(r, r')-
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Appendix C 

Analytic integration of LRS HF exchange energy 

Let e - a l r - R i l be an s-type Cartesian Gaussian function centered at R i with 

orbital exponent a. Evaluating Eq. (3.6) with. Gaussian basis sets requires the cal­

culation of the following integral: 

H r , W ( r ) ) = /e-a |r '-R1Pe-^|r'-R2l^rf[a;(r)lr / - r|] ^ 
J |r — r| 

Using the Gaussian product rule [120], we can rewrite Eq. (C.l) as: 

V™(rMv)) = fke-^-^eT^r'-^dr' (C.2) 
J | r — r| • . 

where the exponent of the new Gaussian is p = a + /?, its center is Rp = (aRi + 

0Ra)/(a +f3), and 

j( _ e-(a /9/(a+^))|Ri-R3|2 ( C 3) 

The Fourier transform of the short-range potential is: 

erf(a>|r' — r|) 
(2TT)-3 f ̂ e-^j^'-^dk (C.4) 

|r' — r| 

Using Eq. (C.4) and substituting 1/q2 = 1/p2 + 1/OJ2, we can rewrite Eq. (C.2) as: 

f / ir\ 3^ 2
 ATT k2 

VLR(r,u(r)) = (2Tr)-3k / ( - ) ^ - e " ^ e i k r d k (C.5) 

It is shown, e.g., in Ref. [120] that the integral in Eq. (C.5) can be obtained analyt­

ically, so that: 

..v-fr.BOf),-*(_-r-gt^!i (c„ 
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