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Abstract

New approaches for incorporating the exact exchange
energy density into density functional approximations

by

Aliaksandr Krukau

In the last ten years, hybrid density functional approximations have become the
most widely used method in modern quantum chemistry. Hybrid functionals com-
bine the semi-local exchange-correlation and a fraction of the exact-exchange energy.
The most common are global hybrid functionals, with a constant fraction of the ex-
act exchange determined emprirically. Recently, two complementary strategies have
been proposed to improve the performanqe of hybrid functionals. In range-separated
hybrid functionals, the fraction of exact exchange depends on the interelectronic
distance. In local hybrid functionals, the fraction of exact exchange is position-
dependent. In this work, we propose two approaches that combine range-separated
and local hybrid functionals together, providing a promising route to more accurate
results.

Most previous implementations of range-separated hybrid functionals use a uni-
versal, system-independent screening parameter, fitted to experimental data. How-

ever, the screening parameter proves to depend strongly on the choice of the training



set. Moreover, such functionals violate the exact high-density limit.’ In this work,
‘we argue that the éeparation between short-range (SR) and long-range (LR) interac-
tions should depend on the local density. We propose an appréximation that uses a
position-dependent screening function w(r) defining a local range separation (LRS)
for mixing exact (HF—type)‘ and LSDA exchange. This method adds a substantial -
fHlexibility to deécribe diverse chemical compounds. Moréover, the new model satisﬁes
a high—density limit better than the ap.proximation with fixed screening ’parameter.

We have also developed an alternative étrategy to improve the range—separated ‘
functionals by ‘combining them‘ together with local hybrid functionals. We consider
two limiting cases: screened local hybrids with short-range exact exchange, and long-
' range‘corrected hybrids Withblong-range exact exchange. The former approach can
treat metals and narrow-gap éemiconductors much‘vmore efficiently than standard
local hybrids do. ‘The latter‘ methbd provides the correct asymptotic behavior, which
is important for the treatmeﬁt of charge transfer and Rydberg excitations in finite

systems.
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Chapter 1

Introduction to density functional theory

1.1 Kohn-Sham formalism

In the last twenty years, densit;r functional theory (DFT) has become one of the most
‘popular methods in modern qﬁantum cherhisfry and solid state physics. DFT often
provides highly accurate description of electronic structure with computational cost
that is substantially lower than the cost of many-particle methods. The foundation
of DFT is based on the first Hohenberg-Kohn theorem [1]. It states that the ground-
state energy of a many-electron system is a Uniqlie fﬁnctional of the ground-state

electronic density p(r;), where the density is defined as:

p(r1)=N Z /.../I‘I’(I‘l,dl,rz,dg,...,I'N,O'N)lzdl‘gL..dI'N. . (11)

01..O0N

Practical DFT calculations are usually performed within the Kohn-Sham (KS)
formalism [2]. In KS-DFT, the total energy of the electronic system with the density

p(r) is written as:
Bu=—5 (61970 + [ pha()ie 4T+ Buldl, (1)

where the first sum is the kinetic energy of non-interacting eleétrons, @i(r) are the

Kohn-Sham orbitals, vex(r) is an external potential, J [0] is the Coulomb interaction



of the electron density with itself,

/ = d dr’, | | (1.3)

and E,c is an exchange-correlation functional, the only term that is not known ex-
actly. Much efforts has been directed towards the construction of more accurate
approximations to Ey.. In Eq. (1.2), the orbitals ¢;(r) are the solutions of the Kohn-

Sham equations [3]:
1_, |
39 + ()] ) = o). (1.49)
I') = Zni|¢i|2’ ’ - (15) .

where the KS effective potential vks is defined as:

vks(r )— Vext (L) + /d ’Ip(_ 3,| + Uxe(T), (1.6)

and

[ .
dp

ch(r) = (17)

In DFT, it is customary to divide exchange-correlation functional into the exchange

and correlation parts:

Ey = Eyx + E, (1.8)

The exact expression for the exchange energy is:

EHF — 22//% (pj|r—r’| )OO g (1.9)

Eq. (1.9) is similar to the definition of exchange energy in Hartree-Fock theory.

However, in this equation we should use the KS, not HF, orbitals. These two sets of



orbitals are the solution of different equations, and therefore ‘they'differ. In most KS-
DFT calculations, an approximate exchange functional is used instead of the exact
one. This is necessary because the combination of exact exchange and approximate

~ correlation functionals usually yields poor accuracy.

1.2 Spin-DFT

In the original KS theory, vexchange—correlation functional is : Writfén in terms of -
the tdtai density. However, it it extremely difﬁcuit to describe the energy of sv,piné‘ :
polarized system in terms of the tofal electronic density. Spin—DFT [2], an extension
of KS scheme tb the case of a non—zero‘.‘ magnetic ﬁeld’, provided a solution to this
problem. in spin-DFT, the exchange-correlation furibtional‘depends on botil the
spin-up pu(r) and' spinedOWn electron dehsitieé ps(r). It was shown [4] fhat even
in the abséhCe of magnetic field the approximate density‘functjonals Ey. [pa,v pgs| are

much more accurate than Ey[p] (where p = ps + pg). Almost all current DFT -
calculations are performed with spin-DFT formalism rather than original KS-DFT

app'roach. For the exchange fmic_tional', there is a spin-séaling formula [5] that relates

Ex[p] and Ey[pa, pg] to each other:
L . o
E\|pa; ps] = 'Z‘EX[2Pa] + E'Ex[zpﬂ]"r - (1.10)

- For simplicity of ‘n(’)tation, we will not include spin indices in most of the subsequent
text. It will be tacitly assumed that Eq. (1.10) should be applied in order to obtain

Ex[pa; ps) exchange functional.



1.3 Approximate exchange-correlation functionals

Perdew and co-\&orl;érs [6, 7] proposed to classify the existingvapproximate exchaﬁge—
correlation functionals into a ”Jacob’s ladder” of approximations. The approxima-
tions at higher ‘rungs,are (hopeftilly) more acvcu'r.ate,‘but have a large computational
éost. The methods at lower rungs are less accura,te; but more computationally effi- -
» cient. |

The the lowest rung is the local spin density 'approjtimatiOn (LSDA) [2]:
R 0 A (R1)

where elSPA is obtained from the expression for a uniform electron gas with density = -

p(r). Nofe fhat the exchange dénsity €xc at’ aﬁy point depérids only on the local
density at fhat point. N
‘The next level for Jacob’s ladder is the generalized gradient apprdximations
(G.GA) [8] which introduce an additionél ”semilocai” ingredient, the density gra-
dient Vp(r): | |
| B = /e;cc(p(r),Vp(r))dr- R
The third rung is represenfed by meta-GGAs that additionally employ the vorbital
' kinétic energy density: | ,
1 oce '_
7(r) =-§; Vool a (113)
The functionals on the first three rungs’ are often cailed semi—l‘oca,ll functionals. At

the foufth rung of Jdcob’s ladder, hyper-GGAs [9] add another ingredient, the exact



exchange energy density ef¥(r). In the conventional gauge [10, 11], it is constructed

as:

6 - —~Z¢ r; ¢_7 1'1 /¢|I‘I;2?—¢;‘(21|‘2 Tq. (114)

and obeys the following relationship (see Eq. (1.9)):

EHF - /efF(r)dr. | | - (1.15)

From Eq. (1.14)‘, we can see that hyper-GGAs aﬂditionally depend on the occupied
KS orbitals. The fifth level of Jacob’s ladder, the generalized random phase approx- '
imation (RPA) [12, 13, 14, 15] is represented by functionals of all KS orbitals, both

occupied and unoccupied. Such functionals are not in wide use yet.



Chapter 2

'Hybrid exchange—correlation functionals

2.1 Global hybrid functionals

Hybrid exchange-correlation functionals include some admixture of the exact-
exchange energy.
Global hybrid functionals are the simplest hybrid functionals that include a fixed

fraction cyp of exact exchange, as proposed first by Becke [16, 17]:
Eye = curEy" + (1 — cyp) EY™ + EDFA (2.1)

with fixed mixing coefficient cgr. The coefficient cyr is usually fitted to the exper- -
imental data. For example, PBEh [18, 19] is a popular global hybrid that has the
following form

1 3

E.=-EN + =
€47 +4

EPPE 4 ETPE, (2.2)
This functional has substantially lower error in Heats of formation and barrief heights
than the>corbresponding semi-local functional, PBE. Because of their improved ac-
curacy, global hybrids, such as PBEh or BSLYP [20], are widely used in electronic
structure theofy. |

However, global hybrids are not flexible enough to describe different aspects of

electronic structure simultaneously. For instance, 25% of exact exchange in the PBEh

is the optimal amount for the prediction of enthalpies of formation. However, 50%



is necessary to describe bari‘ier heights of chemical reactions well.
Another drawback of the global hybrid functionals is the incorrect behavior of
the exchange potential in finite systems [21, 22]. The true exchange potential has

the follbwing asymptotic behavior:
| 1 o
(1) oo = 7 +C o (2.3)

where |r| =7, while the exchange potential Qf the hybrid functibﬁal deéays as —cyr /7.
| The incorrect asymptotlc behavior leads to errors in descrlbmg polarlzablhtles oflong
chains [23 24}, charge transfer, and Rydberg excitations [25]

The conve}nvtlonal hybnd functlonals are also dlfﬁcult to apply for periodic sys-}
feins, bécause the additioh‘ of exact exchaﬁge drastically in‘cféases the computational
cost.'» Moreover, it is knowﬁ that the lo‘ng‘-range part ‘of exact exchang‘e,‘is pértially' .
cancelled by correlation in metallic and small, band-gap sysi?ems [26, 27]. But semilo-

cal correlation functionals fail to describe that effect.

2.2 Range-separated hybrid functionéls
Range;separated hybrids, pioneei"ed by Sévin and co-workers, represeﬁt the next
generaﬁion of hybrid functionals. .These funétionals partition the Coulomb operator
. into .short-riange .(SR) and long-range (LR)‘ components:

1 erfe(wrip) + erf(wrys)

- (24)

T2 T2 o o T2
' SR LR. -



where w is the screening parameter, r12 = r; — Iz, and 11 = |r12|. When w — 0, the
long-range part of the interaction vanishes. Using the partitioned Coulomb operator',

we can split DFA and HF exchange energy as:

EDFT — ESRDFT+ELRDFT v' ' (2.5)'

EEF — ESR,HF;_I_E;JR,HF‘ . - (26) _v

_There are t§vo major classes of range—separated hybrids: screened hybrids and long-
range corrected functionals. | | |

Screened hybrids r‘etain’ o.nly‘the shert-range part of-“exact.exchange. This dra—

‘ matically lowers thevcost .of calculatien' for pefiedie eystems. Heyd, Scuseria, and

. Ernzer‘hof [28] have propesed an HSE s‘creeneci hybrid functional tﬁat has the foliow_

ing form:

ER® = carEy M (w) + (1 — car) ESPPPR (W)

‘+E;PBE,LR(W)+E§BE, . 2.7)

where E,Iff'spﬁ is the:short—ly‘ar‘lge HFx (SR-HFx), E,‘;’PBESR and E‘,‘;’PBE’LR are respec- - - |
‘tively the short; and IOng—range compbnenﬁs of the PBE exchange functional 8],

cur = 1/4 is the HF m1x1ng parameter [29], and EP BE is the PBE correlatlon func-
tional [8]. For w = 0, HSE reduces to the conventlonal hybnd PBE, also known.
as PBEO [18] or PBElPBE [19]. For w — oo, HSE reduces to the semi-local PBE

functional. For a finite value of w, HSE can be regarded as an interpolation between



1 was deter-

these two limits. The value of the screening parameter w = 0.11Bohr"
mined by fitting to experimental band gaps [30]. HSE substéntially improves the
quality of band gap prediction. For thermochemistry of molecules, HSE and PBEh
show very similar results. |

The other class of range separated hybrids uses long-range exact exchange and
‘short-range DFT exchange. Such functionals are cailed long-range corrected func-
tioﬁals. The long-range corrected PBE (LC-wPBE) functional [31] has the following
form: | B

E}I:CC—wPBE — E;:PBE,SR(W) + E;)HF,LR(w) + E(I:DBE' (2.8)

| LC-wPBE and related vfuncti;)nalvs are remarkably accurate for both enthalpies of for-
- mation and barrier heights [31, '}32]. Further, éuch methods perform well for processes
involving long-range charge traﬁsfer, Rydberg excitations, and other properties that
| require the accurate description of the asymptotic exchange potential [25, 23, 33, 34].
The advantages of screened hybrid funcfionals and long;range corrected func-

| tionals were united in the HISS functional of Hendersbn, Izmaylov, Scuseria, and
- . Savin [35, 36]. HISS is based on a three-range partitioning of the Coulomb p}otential
into the short-range, middle-range, and léng—range parts. HISS uses a combination
of semi-local DFT exchange with the middle-range exact exchange. HISS performs

simultaneously well for thérmoch'emistry, barrier heights, and band gaps.
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2.3 Local hybrids

Conventional hybrid functionals use a fixed, universal fraction of exact exchange.
However, we expect that different regions in a molecule need different fractions of
exact exchange. We can tune the amount of exact exchaﬁge for each specific system
if we use a position-dependent fraction of exact exchange. Such functionals are called

local hybrids and defined as:

B2 = BT+ [T w - (- ST W] (29)

DFT

Here e

(r) and ef'F(r) are the semi-local DFT exchange energy density and the ex-
act exchange energy density, respectively. The function f(r) in Eq. (1.14) is called a
mixing functibn. Local hybrid functional was first introduced by Burke and cowork-

ers [10] in 1998, but without a specific form of f(r). Jaramillo and co-workers [6, 37]

proposed and implemented a local hybrid with the following mixing function:

oy = 4, (2.10)
2O |
Tw(r) = 3o(t) (2.11)

In one-electron regiohs, where HF exchahge is the exact exchange-correlation func-
tional, this mixing function become»sl equal to one. In the homogeneoﬁs electron gas;
Vp(r) and f(r) are 0, so that only semi-local DFT exchange is used. Unfortunately,
this local hybrid shows very pdor thermochemical results  [37]. Later, Kaupp and

coworkers [38, 39, 40] demonstrated that empirically parameterized mixing functions



11

including

flr) = o WD) (2.12)

(r) ’
(where « is an empirical parameter) provide accurate thermochemistry and reaction

barriers in local hybrids of LSDA exchange.

2.4 Exchange hole and its relation to hybrid functionals

Another way to look at the different classes of hybrid functionals is in terms of the

exchange hole. The exchange hole h,(r1;r;2) is defined as:

E, = 1/p(rl)h}((rl;1.12)d31'1d31‘12 (213)
2 |12

The exact exchange hole is written as:

hy(ry;ria) = “llz;ec{pi(rl)@(m)'z (2.14)

2 p(r1)

The exchange hole of the conventional hybrid functional can be written as:
AP (e iryp) = (1 —cap)hy M (r1;T12) + carhy (r1;T12) (2.15)

where cyr is a constant. In a local hybrid functional, cgr becomes a function of ry,

so that:
REVPRd(p o pn) = (1 — cur(r1))RRFA(r1;110) + cap(ry)REF (r; ) (2.16)
Similarly, the exchange hole of range-separated hybrids is written as:
RO ) = (1 — exp(|rie]))APFA(rs; 1) + e (r12) AEF (11 11a). (2.17)

In particular, in long-range corrected functionals cgp(|ri2|) = erf(w|ria|).
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2.5 Aim of the present work

In the cufrent wbrk, we propose two novel approaches that use ievenv more general
expression cyr(ry, |r12]). In the ﬁrst approach, discussed in Chapter 3, we introduce
the long-range corrected functional that uses alposition-de_pendént screening func-
tion rather than fixed screening parameter. In the second approach (Chaptef 4),
we combine local hybrid and range separation, s<’)'k fhat we admik locally screened
exchange. Both of these mefhods pfoﬁde extra ‘ﬂéx‘ibility for the description of

~ electronic structure.
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Chapter 3

Hybrid functionals with local range separation

3.1 Theory

Range-separated hybrid functionals offer a promising route for the construction of
accurate density functionals. However, most previous implementationsv,of range sep-
aration use a universal, system—independent ‘screening parmeter in Eq (24). It
seems obvious that such an approach, despite its success, will have limitafions. It
has been argued that the sc-reenihg parameter should rather be System-dependent :[41',
42, 43, 44]. In this work, we describev an even more general approach. In t’he'k ho-
- mogeneous electron gas, t>he size of the exchange hole measured, e.g., by the point
FWhere its first node appears, varies with the density of the gas. Therefore, it seems .
“evident that the separation between the short-range and long-range interactions for
an inhomogeneous system should depend on the local density. Heré, Wwe propose
an approximation that uses a position-dependent screening function w(r) defining a
local range séparation (LRS) for mixing exact (HF-type) and LSDA exchange. Our

approach is presented in detail below.
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3.1.1 Physical idea

We propose the following form for the exchange-correlation energy of a spin-

unpolarized density:

ELRSwLSDA _ / [eLSPASR(r, (r)) + eHFMR(r, w(r))] dr + ESPA,  (3.1)

We will refer to this lo}calliy range—éeparated functional as LRS-wLSDA. Eq. (3.1) is
readily extended to sbin—polariz;edbbsystems‘ hsing the spin-scaling relationship from
Eq. (1.10) for the exchange energy [5] (with a different w(r) for each spin component).
When w is universal and position-independent, this functional reduces to longerange ‘
corrected LSDA [45, 46], which we will here ‘refer‘to as LC-wLSDA: Note that in
Ref. [45], this functional is denoted RSHXLDA. Toulouse et al. [47) have suggested
usiflg a local screening parameter w for DF'T correlation. We here expiore an LRS
| approach for exchange only; our aim is to combine it with LRS correlation at a later

stage.

3.1.2 Approximations for the local screening function

The realization and implementation of Eq. (3.1) is non-trivial. One should choqse an
appropriate screening function w(r). There are several straightforward choices for the
local spreening parafneter.‘ In the homogeneous electron gas, a charactveristic length
i given by the Wigner-Seitz radius r, = (4mwp/3)~1/3. | The screening parameter has

dimensions of inverse length, so a trivial selection would be w(r) ~ 1/r, [47, 48]. For
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inhomogeneous systems, the screening function can Be approximated by a gradient
exp‘ansion:

| w(r) = ris(‘a +>ﬂs+'ysz+...),‘.' | : (32)
where s = |Vp|/(2krp) is the reduced gra&ient, kp = (3W2p)1/ %, and , B, and v are

~ parameters to be determined. In the high-density limit, these choices for w(r) have

“a better scaling behavior than constant w (see Appendix A).

.'3.1.3 ' Models for the SR and LR parts of the exchange energy

- The short-rahge compohent can be calculated as:

, 1 o e 3

LA w(r)) = 50) [ N p(e), ) T gz, (33)
Jo /

where hLJSDA(p(f),u) is the LSDA exchange hole and érfé(x) =1 - erf(x). This
integral can be done analytically for any value of w [49, 50] ‘Note.thait even thou'gh '
‘Eq. (3.3) is :hot symmetric with respect to interchange of electrons, it does not violate
symmetry invarié,nce of the t‘otal:ex_change energy, as expiained _in‘Appendi)é B.rv

The long-range part (in the convéntional gauge [11]) is defined as:

) = S o) Xt (4)

where ¢, and ¢, are atomic orbitals (AOs) and

XBE ) = -5 Y PuB Vi e®), (39
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where P is the density matrix and VLR are Coulomb-type electrostatic integrals

(ESIs):

VLR /¢A( % )erf(W(r)| rll)dr',v‘ : ,. (3.6)

Jr—r|
" where ¢ are Gaussian basis functions. These integrals can be done analytiéally fof '
any w(r) (see Appendix C). The long—range Fock exchange matrix may be evaluated

from Eq. (3.6) as

KLR(w(r ZP,\,, / ¢,L )pa(r VLR(r w(r)) : (3.7)
~and the LR eiﬁchange energy is evaluated as
! HF,LR , m{m a 1+ ‘LR ' ‘ ’
BN~ [ () = 3 S K@) P (39

oy

.Unfortunate,ly, these e);:pressions are computationally intractablé as written. Given
an ‘arbitra'ry w(r), the integral over r in Eq. (37 ) must‘l‘)e pkerformed numericalily. o
There are O(N2,) matrix elements of V2R(r,w(r)) to be evaluated at each grid point
r, yleldlng a total computational cost O(NgiaV 25). On the other hand if w(r) is -
constant the 1ntagra1 over r in Eq. (3 7) can be performed analytlcally in a Gaussian

, basis set, leading to

K,]Zf(w) == Z(W\, v0)wPho (3.9)
| % . ..
“and | ‘
EFFIR = Z(u/\ vo) oPuPro . | (3.10)
: p.u,\a o

~ where

(1, v0), = / / b rm —f(‘ﬂ—" ()6 ()drd (311)

r —r|
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Such analytic tWo—electron integrals are an essential part of Gaussia,n-orbifal based
electronic structure programs. For sqreenéd interactions, the integrals in Eq. (3.11)
can be evaluated as a trivial modification of regular two-electron integ»r"als [49, 51].
While their computational scalihg is formﬁlly O(Nf\o), they quickly reaéh their clas-
sical O(N3,) asymptote for moderate size systems [52], and a variety of linear-scaling
treatments have been developed for large systems [53]. Of course for w —> 0o, all
these expressions recover their exact values for the bare unscreened interaction.

' As explained in detéil below, an approximatioh to the screened HF exchange
energy density is needed for computational convénience. An alterna,tive. approach
for calculating the HF exchange energy density is the method of Della Salla and
Gorling [54]. In this method, Which we here extend for using with screened interac-
tions,’the expression for the HF exchange energy density is simpliﬁed by introducing
a resolution-of-the-identity (RI) in an auxiliary basis identical to the AO basis, and

~ leads to the following expansion:

e R (r,w) = Y du(r)e(r) @ra(w) - (3.12)
uv
where
Q"(w) = 387 KM(w) P + oP KR () $7 (3.13)

and S~ is the inverse overlap matrix. Note the similarities between Egs. (3.4) and
: (3.12). However, also note that while X depends explicitly on r, Q is independent
of it, except through w(r). The former is exact whereas the latter is approximate.

~ Given Q, Eq. (3.12) can readily be evaluated at every grid point with minimal
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computational cost. While the orbital product ¢,(r)¢,(r) decays exponentially with
increasing distance between AOs, the Coulomb-type ESIs of Eq. (3.6) do not decay as
fast. Thus, for constant w (including w — oo, i.e., the bare interaction), RI is usually

preferred over ESIs for calculating elF'LR(r, w) because of its lower computational

~ cost [55]. Note that an important saVihgs consideration in RI is that fof constant w,
K (needed for Q) can be obt‘ained anélytically via modiﬁed two-electron integrals,
Eq. (39)

Fof a local screening‘ function w(r), K can no longef be evaluated analytically
and has to be done mimerically via Eq.(3.7), which invblves’ evaluation on ESIs, so
the computational advantage of RI diSappears. In summary, with LRSb, both the

RI and exact ESI procedures have similarly steep computational costs, requiring an

O(NgriaN3o) computational step that we wish to avoid. Therefore, we shall seek an

HF,LR

“alternative approximation for evaluating e

(r,w(r)) whose computational cost
is not much lafgér than evaluating the unscreened (w — oo) HF exchange eﬁergy
density, which can be efficiently done via RI.

| Let’s recall that the TPSS exchange hole [56] was constructed to reproduce the

TPSS exchange energy density:

1 ) hTPSS TPSS
PSS (x) = S p(r) / (¢ "V’ﬂ”’ W imlde (314)
0 ) . .

‘where hIFSS(p, |Vp|,7,elSS u) is the model TPSS exchange hole [56] and 7 the
kinetic energy density. To achieve this goal, the TPSS hole expression has elPSS a5

an ingredient. We propose here to use the TPSS hole expression for reproducing
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‘the screened HF exchange energy density. We feed in the unscreened elF instead of
eIPSS in the above equation, and integrate with the screened interaction, to yield the

~ following approximation:

Mmm (3.15)

MR w()  50(e) [ R, 9,7 e )

For w — oo, Eq. (3.15) is exact. The accuracy of this approximation is examined in
the Section 3.2. Note that the conventional gauge of the HF energy deneity ext in

TPSS
X

Eq. (3.4) differs slightly from the gauge of the TPSS energy density e, >°, es studied
in Ref. [11], leadvingv to a small error in Eq. (3.15) even when the integrated HF and
TPSS exchange ehergies are equal 'for goed reaisor-L Because the TPSS exchange holg =
is based on the PBE hole model, the integral in Eq. (3.15) can be done (mestly),
analyticelly, as shown in Refs. [28] and [57]. This yields a procedure with rather
‘moderate computational cost compared to the numerieal integration alternatix)es via
Ri and,ES‘Is discuesed above. A reeently‘ redeveloped PBE hole‘ modeli[58] can be -
" extended te idclude the exchange energy‘ density' as an ingrediéent (resembling the
TPSS hole) and still afford exact (as oppoeed to .“mdsﬂy” )v' analytic integratien'for ‘
screened interactions.

The fourth or ‘hyper.-GGA (generalized. gradient approximation) rung introduces
~ the ekact exehenge energy density. From the perspeCtive of ladder apﬁroximations
and even theugh not explicit from the expressions 1n Eqs (3.4)¥(3.6), rahge-Seperated

hybrids introduce further in’grédients, minimally the spherically-averaged exact ex-

change hole density hg¥([o];r,u), and thus staxid at least SIightly higher than the
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fourth rung. In our actual implementation of Eq. (3.1), by using Eq. (3.15) we are

making a hyper-GGA approximation to a range-separated hybrid.

3.2 Results and discussi“on -

We have implemented LRS—wLSDA info the deVelopment‘ version’ of the ‘Gaus’- -
sian éuite of programs [59]. All benchmark calculat‘ivons‘were performed non-self-
| ‘consistently using LSDA 0rbita>ls.r For LSDA Corr_elatioﬁ, we use the PerdeW-Wang
pa,rametrization [60] The unscreened HF exchange energy density, needéd as an‘in- ‘
- gredient for Eq. (3.15); is calculated using the RI method (see Eq (3.12)) [54]. This>
| mevtl‘lod Works best Withv large and uncéhtraé’ted basis éetg, SO we have ﬁsed the un-
_contracted 6_—311+-¥—G(3df,3pd) basis set ﬁnleés otherwise speciﬁed. >W‘hen presenting
our result_s, we emplby the convention: error = ’theory - e){p(;,riment. Unless spec-
ified otherwise, we use B3LYP/6-31G(2df,p) equilibrium geometries and zero-point '
energies for all species. Thermal corrections are calculated» With a frequency scale
factor 0.9854. |

The perfofmance of our approximate expression for the lpcally scfeened LR HF
exchange energy, Eq. (3.15), can be calibrated in a benéhm_ark case where we kﬁqw |
the correct answer. In,Figi.‘ 1 we plot mean absolute errors (MAE) in enthalpies -
of formation és a function of w for LC—wLSDA and' fhe same functionalv ‘evaluating
the LR HF ekChange energy dvens‘ity’using'the TPSS exchange hoie approximaﬁion

of Eq. (3.15) instead of the rigorous eicpréssion of Eq. (3.10). Results presented in
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Figure 3.1 : Mean absolute errors for the standard enthalpies of formation of the
AES set for exact and approximate LC-wLSDA using Eq. (3.15) for e’ (r, w(r)).

Fig. 1 are post-LSDA (i.e., done with LSDA orbitals) and we use the AE6 test set
of standard enthalbies of formation [61]. This test set includes only 6 molecules, but
it has been constructed to reproduce the errors of the much larger G3 set [62].

The “exact” LC-wLSDA in Fig. 1 shows the lowest MAE of 10.5 kcal/mol for
w = 0.60. Best results with the approximate LC-wLSDA are achieved with w =
0.40, where the MAE is 8.4 kcal/mol. Therefore, we conclude that Eq. (3.15) yields
reasonably accurate results for thermochemistry, even though the optimal screening
parameters are different. Note also that these optimal values would slightly change
if obtained with self-consistent orbitals as opposed to the post-LSDA proéedure used
here.

In order to fest the proposed LRS—wLSDA approach, we use Eq. (3.2) for the
local screening parameter. We have explored the parameter space for a, B, and vy

in Eq. (3.2). Our current attempts indicate that optimal results are achieved with
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Table 3.1 : Deviation from the experiment of standard enthalpies of formation for
LRS-wLDA. AE6 test was used. All values are in kcal/mol.

Method  w(r) n MAE
LDA | v 7.7
LC-wLDA 06 10.6
LRS-wLDA n/Ts 1 24.2
LRS-wLDA ns 029 6.6
LRS-wLDA ns?frs 03 54
LRSwLDA  n|Vpl/p 0135 3.6
HF exch + LDA corr | 508

a,7 =~ 0. We can then rewrite Eq. (3.2) in terms of the density and its gradient:

B Vp
_w(r):,7~ =%|

(3.16)

where 1 = (187)~!/33. This choice of screening function was previously proposed by
Téulouse et al. [47] In Table 3.1, we present results for the AEG test set of standard
enthalpies of formation with several versions of LRS-wLSDA and related fﬁnction‘als.
For each w(r) approximationb, wé show the opﬁimal value of the scaling parameter 7
and corresponding MAE. Note that LC-wLSDA data in this énd all subsequeht tables
are calculated with scfeeﬁing parameter w = 0.60. Thevlo‘west MAE in Table 3.1 is
achvieved}with w(r) given by Eq. (3.16) and n = 0.135. |

- Plots of |Vp|/p for atoms were presented several years ago in Refs. [64] and

[65].. Here, in Figs. 2 and 3, we present plots of our screening function w(r) in the
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Table 3.2 : Total non-relativistic energies of atoms (Hartree)lwith the uncontracted
UGBS basis set.

Atom LSDA LC-wLSDA LRS-wLSDA  Exact®

H  —0479  —0516 ~0.501  —0.500
He —2834  -2925  —2909  —2.904
Li 7343 —7.443 7467 = —7.478
Be . —14446  —14560 = —14.621  —14.667
B 24354  —24.493  —24582  —24.654

c 37468 —37.636  —37.742  —37.845
N 54134  —54332  —54.448  —54.589
0 74527 74757 —T4.895  —75.067
F ~99.110  —99.368 ~99520  —99.775
Ne  -128230 —128511  —128672 —128.938
‘Na - -161444 161729  —161.931 —162.255
Mg~ ~109.135 —199.420  —199.664 —199.994
Al 241317 —241600  —241.803 —242.277
Si  -288216 -288.519  —288.834 —289.281
p ~340.000 —340.319  —340.657 —341.169

| 306737 —307.077  —307.430  —398.013
Gl —450.662 —450.024  —459.402  —460.042
Ar ~525.040 —526.324  —526.714  —527.420
ME/&" 0.0062  0.0038 0.0024

MAE/e¢ 00062  0.0041 00024

- [63]

b Mean error per electron

¢ Mean absolute error per electron
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- Figure 3.2 : Range separation function w(r) in the argon atom, plbtted as a function
- of the distance from nucleus. '
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Figure 3.3 : Range separation function w(r) for the majority-spin density, plotted
along the bond axis of the CO molecule. . o :

Ar atom and the CO molecule, respectively. The screening function w(r) has local
maxima at nuclear positions, decreases in the valence region, and increases again in
“the density tail. Small oscillations around the nuclei are due to the use of Gaussian,

basis functions.
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The asymptotic behavior of |Vp|/p is well-known. Asr — oo, thé density decays
like [66] Ar*exp(—26r), where (in atomic units) § = (—ZeHOMo)l/ % and egomo is the
highest-oécupied (or partly occupied) orbital energy, and { = 1/6 — 1 for a neutral
system. V(For the hydrogen atom, for exarﬁple, 0 =1and ( =0.) Thus |[Vp|/p — 20.

Based on the results of Table 3.1, we decided to study LRS-wLSDA with w =
0.135|Vp|/p in more detail. In Table 3.2, we present calculated atomic energies
for H to Ar with the large UGBS basis set [67]. We compare LSDA, LC-wLSDA,
and LRS-wLSDA with accurate non-relativistic energies [63] LRS-wLSDA has lower
meah errof per electron than either LSDA or LC-wLSDA.

’_To assess the berformance of ‘LRS-wLSDA for enthalpies of formation in more
general cases, we have used the G3/99 test set of 223 molecules [62] and its smaller
subset G2/97 of 148 molecules [68]. The‘results are presented in Table 3.3. LC-
wLSDA dramatically reduces MAE for the G3 test set in comparison with LSDA.
However, even better results are achieved with LRS-wLSDA that yields MAE(G3) of
5.9 kcal/mol. For thermochemistry, LRS-wLSDA is competitive with many commén
~ hybrid functionais [69].‘ For comparison purposes, the pbpular B3LYP functional
yields MAE of 3.1 and 4.9 keal/mol for the G2 and G3 sets, respectively [69].

Table 3.4 shows benchmark results for reaction barrier heights. The HTBH38/04
set includes forward and reversev barrier heights for 19 hydrogen transfer reactions,

and NTBH38/04 consists of 19 nonhydrogen-transfer reactions [70, 71]. We take the

best theoretical estimates of the barrier heights and the geometries of all species from
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Table 3.3 : Deviations from experiment of standard enthalpies of formation (AgHggg)
computed with various methods using the uncontracted 6-311++G(3df,3pd) basis set.

All values are in kcal/mol.

AgHsgg (keal/mol)

G2 set - G3 set
Functional ME MAE ME MAE
LSDA —83.0 83.0 —120.9 120.9
LC-wLSDA -2.0 10.5 —2.5 12.2
LRS-wLSDA —-24 5.0 0.9

5.9

Ref. [71]. From Table 3.4, we see that LSDA substantially underestimates barrier

heights. LC-wLSDA and especially LRS-wLSDA improve upon LSDA.

Table 3.5 presents results for ionization potentials (IP) and electronic affinities

(EA) in the G2 test set [68]. We drdpped the ions H,S*, OF, NO-, and N from

this set because of convergence issues with LSDA. In total, we used here 83 ioniza-

‘tion potentials and 57 electron affinities.. LRS-wLSDA performs much better than

either LSDA or LC-wLSDA. Global hybrids like the popular B3LYP functional yield

somewhat better MAE for IP (0.184 eV) and EA (0.124 eV) [69]. Surprisingly, the

results with LC-wLSDA are particularly poor. We have repeated the LC-wLSDA

calculations self-consistently (instead of using LSDA orbitals), and the results are

only slightly better than the post-LSDA results.
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Table 3.4 : Deviations from experiment of barrier heights of chemical reactions
computed with various methods using the uncontracted 6-311++G(3df,3pd) basis
set. All values are in kcal/mol. ’ ~

 A¢Hgg (keal/mol)

HTBH38 NHTBH38

Functional = ME - MAE ME MAE

LSDA  -17.9 179 -124 126
LCwLSDA ~ 7.0 71 86 86

LRSwLSDA =54 55 -53 - 55

3.3 Other approaches for construction of the local screening
function

We had already démonstrated that w(r) = ;ﬁs-s shows excellent results for both ther-

mochemistry and barrier heights. In the last expressiori, we can try to substitute the

reduced gradient s with the iso—orbité.l indicator z = 7. Both of these variables are

dimensi_oniess. We obtain the following éxpression for the local 3creériing function:
w(r) = B — , (3.17)
Ts

where f; = 0.75 is an empirical parameter, fitted to the small AE6 set [61] of
atomization energies.
Another way to determine the screening function is to fit it, so that the semi-local -

“vpart of LRS-wLSDA reproduces the semi-local DFT part of a local hybrid functional.
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Let’s consider the local hybrid developed by Kaupp et al. [38]:

EFR-Lh-LSDA _ / ‘ZET‘:\ES)efF(r)+(1—EZ:‘E(TI)'))G,I;SDA(I‘) dr. (3.18)

where k¥ = 0.48 is an empirical parameter fitted to thermochemistry, and FR-Lh-

LSDA stands for ”full-range local hybrid of local spin-density approximation”. We

can reproduce its LSDA part with LRS-wLSDA, if we choose w(r) by solving the

equation:
eLSPASR(r, (1)) = (1 — Ky TZ"(S) )eLSPA(r) (3.19)
Alternatively, we can reproduce the HF part of FR-Lh-LSDA, if we solve the equa-
tion:
e 1 () = T 1) (3.20)

where elFMR(r, w(r)) is the approximate long-range HF energy density, calculated
according to Eq. (3.15). In Egs. (3.19) and (3.20), 7; and v, are again empirical
parameters. Both of these equations can be solved numerically at any r, using the
Newton-Raphson algorithm. This yields the screening function w(r). The short-
range energy density eZSPASR(r w(r)) can then be calculated according to Eq. (3.3).
The values k; = 0.61 and ko = 0.54 were determined by fitting to the AEG test set
for atomization energies. In Fig. 3, we compare the different approximations for w(r)
in Ny molecule.

Table 3.6 compares the performance of different approximations for w(r). We

see that the best results for all the test sets are achieved with w(r) = 0.75%. The
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Figure 3.4 : Three different range separation functions w(r) for the alpha-spin density,
plotted along the bond axis of the N2 molecule. '

expression w(r) = 0.135|Vp|/p, described in detail in previous sectioh, yiélds slightly
worse results. But overall, all four approximations for w(r) show comparable accuracy
for both thermochemistry and barrier heights. It is encouraging that LRSw-LSDA -

always outperforms LC-wLSDA.
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- Table 3.5 : Deviations from experiment of ionization potentials and electron affinities
computed with various methods using the uncontracted 6-311++G(3df,3pd) basis set.

All values are in eV

P EA
Functional  ME  MAE ME  MAE
LSDA 0046 0235 0237  0.246

 LC-wLSDA 0633 0635 0392 0407
LRSwLSDA 0028 0195 0189 0192
Table 3.6 :

MAE (mean absolute error) for test sets of enthalpies of formation

(AtHsgg) -and barrier heights, computed with various screening functions w(r). All

values are in kcal/mol.

A¢H3gs (kcal/mol)

w(r) G2 G3 HTBH38 NHTBH38
-+ 0.135|Vp| /p' 5.0 5.9 5.5 5.5
0.75z/rs 4.1 5.4 4.3 5.8
Fit to DFT part of FR—_Lh—LSDA 5.8 6.9 53 6.6
5.4 7.7 46 5.5

Fit to HF part of FR-Lh-LSDA
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Chapter 4

Range-separated local hybrid functionals

4.1  Theory

In: this chéptér we present a new combination of the idcal and range-separated
approx1vmat10ns Our “local admixture of screened exchange partltlons the exchange -

' energy vas in Eq. (2.4), with a universal range-separation parameter ’c‘qand a posztzon-
- dépendent abdmi»xture of SR HF exchange. This approximation complements. the
~ position-dependent w appfq‘ach described in chapter 3. We bqonsider two limiting

‘cases: long-range-corrected local hybrids
ELC-Lh _  pLR-HF EDFA . (4.1) |
" / [£(R)eSRHF (x) + (1 — f(x))eSRPFT(r)] d.

and screened local hybrids
ESC—-Lh — ELR- Dl:“T EDFT ' o . (42)
+ b J o ) 4 (- )L
The short-range HF exchange energy density e5f- #(r) in .Eqs.v (41) and (4.2) is ob-
tained by replacing 1/|r—r'| with erfc(gu|r—‘r’|)/|r—vr’| in Eq. (1.14) (see Sec. 4.2)‘. The

 short-range semilocal exchange energy density eSF-PFT(r) is obtained from model ex-

change holés as in standard fange—separated hybrids [23, 72, 73, 58, 74]. LC local
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hybrids incorporate 100% asymptotic HF exchange regardless of the choice of mix-
ing function. | (Mixing functioﬁs incorporating 100‘% a,symptotic‘ HF exchémge ‘by
construction were proposed in Revfs. [37, 39, 40, 75, 76]). These functionals will be
Valuable for calculations oﬁ finite systems; where HF exchénge*provides the» exact
»a,symptotic éxchange—correiation potential. Screéned local hybrids incorpora’te‘only:
- SR HF exchange, regardless of the choice of mixing functipn. They Will be essential
- for local hybrid treatments of metals and narrow-bandgap semiéonduétors, (iue to.
tile afofémentioned préblems of LR-HF exchange in such systems [26, 27). |

Range—séparated lbcal hybrids stand between t‘he,‘,fOUrth,andv the fifth rungé of
“Jacob’s ladder ;(’seé ‘ch'apt'e‘rv 2) On one hand, they ‘(viep‘ervid only on f,he oécupied KS
_‘ orbitals, so 'phey are below tﬁe fifth run‘g. On the ofhér 'héﬁd; ra'ngé—separated 1déal ]
‘hybrids use not the exact exchange energy densiﬁy, itself, buf its séreened vcount“,érpéirt
(Eq. »(3.’12)), so they différ from the fourth fung. In this Work, we test screeﬁed and B
LC local hybrids- that usé the empirical mixing function .of Eq.‘ (2.12) to locally
admix SR HF,‘ exchange. Theée functi;)hals contain two empir'ical parameters: the
maximum fraction of SR HF exchange o in Eq. (2.12), and the universal range-
_separation' pararheter w in Eq. (2.4). |

The local, i‘ange—separated, and 1§calfrange-separated hybrid functionals d1s_
cussed above afe all speéial cases of exchange-corrél@tion,funcﬁonals that depend
explic'itly‘ on the occupied Kohn-Sham spin orbitals. Self—consiStent implen‘lent\ations

~ of such functionals vtypically follow one of two routes. The first route is to calculate
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the Kohn-Sham local XC potential

5By,
vxca(r) = m, ' (43)

using the optimized effective potential method (OEP) [77, 78, 79, 80, 81] or ap-
broximations such as KLI [82] or LHF/CEDA [54, 83]. Such calculations yield high |
quality one-particle spectra [79, 80] and are useful for properties such as NMR chem-
ical shifts (84, 85, 86],‘ but have formal and computational problems in finite basis
sets [87, 88, 89, 90]. The second roufe is to calculate the nonlocal XC potential
deﬁnéd in terms of functional derivatives with respect to the spin orbitals:

0E,.
66;,(r)

’ﬁxco’(ﬁia(r) (44)

Eq. (4.4) contributes to the Fock-like Hamiltonian matrix in a finite KS orbital basis

set {p(r)} with matrix elements

Ve = / dr 1 (£)igeov(r).  @s)

This generalized Kohn-Sham (GKS) approach is outside of the Kohn-Sham formal-
ivsm,’but is a rigorous generalized density functional theory in its own right [91, 92].
GKS appéars to be behind the success of the HSE06 screened hybrid fér semicon-
ductor band gaps [28, 93, 94, 95]. GKS is also typically simpler to implement and
more computationally tractable than OEP approximations. Most existihg density
functional codes use GKS implementations of hybrid and meta;GGA functionals.
Local hybrid functionals were implemented self-consistently Wiﬁhin the

LHF/CEDA approximation to OEP by Arbuznikbv, Kaupp, and Bahmann in
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2006 [96]. This self-consistent “localized local hybrid” (LLH) method was later
extended and applied in calculat’ioné of nuclear shielding constants [97].. The im-
plementation is computationally demanding, requiring two sepa,rate fesolu’cions of
the identity to construct the averaged local potential entering the LLH equations.
Most subsequent thermochemical tests of local hybrids'have been performed non-
self-consistently [38, 39, 40, 75, 76, 98].

In this chapter, we present self-consistent GKS calculations using the screened
and LC local hybrid functionals of Egs. (4.1-4.2). In section 4.2, we derive the
nonlocal GKS exbhange_potential. Section 4.3 gives detailé.of our.in‘lplemehtation
and calculations. Section 4.4 presents thermochemical tests of screened and LC
local hybrids. Section 4.4 also compares our GKS approach to published non-self-

consistent and LLH treatments of existing local hybrids of full-range HF exchange.

4.2 GKS local hybrid exchahge potentials

Here we derive matrix elements of the GKS exchange potential for full—range,
screened, and‘ LC local hybrid functionals. The derivation closely follows the “func-
}ti‘onal derivatives with respect to the orbitals” which were obtained by Arbuznikov
and co-workers as an intermediate step in fhe localized local hybrids of Refs. [96, 97].
We generalize their derivation to screened exchange and complex orbitals, using par-
tial integration to remove quantities such as V|Vpl and V7 (see Eq. (28) of Ref. [96]

and Eq. (17) of Ref. [97]). The resulting eQuations can also be derived following the
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procedure of Popie and coworkers [99], by first expanding the KS orbitals in a basis
seﬁ, then taking the partial derivative of Eq. (4.6) with respect to the expansion co-
efﬁciente (not shonvn). Extensions to more general hype_r-GGA forms are ‘presented, |
We note that although the authors of Refs. [96, 97] did not repert GKS calcula’tibns
“using the nonlecal exchange potentials constructed from their functional deri\)at’ives‘,".
they could have done so had tney wished.
We begin with the exchange energy of a localv’ hybrid of full-range HF exchenge

~from Eq. .(2.9) that we repeat here:
EM = /dr1 r1 ) (1 —~ f(ry)) ‘e,’?FT(rl)]. o (4.6) -
~ We construct vth.e HF exchange energy density byrapplying a resolution ‘of the identity

~(RI) to Eq. (1.14) andwsymmetrizing, fellewing Della Sala and Gorling [54]

eF(r)) = —%Zq&}‘(rl)/ds 8(r s)¢,(s / d2 ¢’2(| r2) + c.c.‘ %)) |

—iZqu:(rl)a(rl) ;; /d dr ﬂ< )%( 5)63 (r2)i(r:) + e

i oB |s — 1o

Here {c(r)} is the RI basis set, 53 is its 1nverse overlap matrlx, and “c.c.” denotes
the complex conjugate of the displayed expressmn. We assume in what follows that
the KS orbital basis set {,u(r)} is used for the RI. Given a spin density matrix P

defined in terms of the occupied KS spin orbitals as’

Seeetn) = YR e, 48
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the HF exchange energy density of Eq. (4.7) becomes

CEF(I'II) = %Z“’(rl)qu I/*(I'l), o | ‘ (49) »
Q = %(S4I-K-P+PfKés—l), | . | (4 .10)
where
Ko = —ZPM(MMW? o (41 |
' _ . p* () A(r)n* (ra)v(rs) o
(:/Mln_u) = /d 1/d Er— .  (412)

Wé assﬁme that‘ t‘h'e iloCavl hybrid mixing func‘pion f (r) and the exchange energy
“density ePFT(r) are real vsevmilocal functions of di(r), V(bi(r»), and their complex
: conjugates.”' ' (Extenéions to the no;lldcal mixing functioﬁs of Refs. [75, 76] 'will be
| treated in future work.) e (r) is a nonlocal ﬁnction 6f ¢,(r’) and qﬁ}‘(f’ ), but nof a

function of V¢;(r') or V¢ (r'). Given this, the functional derivative of Eq. (4.6):

SEL oFM BEL 1 :
= e lavam) (#13)
‘becomes . | |
| 5E£hv _ Lh(l) Lh(2) ALvh(3) . r‘ - |
’(‘)Lh(l‘)d)i(r) = / dry f(r, 8 o :)1), N B (4.15)
~Lh(2 N _ of(r) - Of(r) o o
v ( )¢i(r) = €diff a¢*(r)v—' V. [ (V¢*( )):l ‘ | (4'16)
. eDFT r eDFT r .
P0G = (1-fx) aa}ﬂf)) mV [(1 — 1) aa(vx/w((r)))] -
Here o |

e = @) - T O @1s)
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The nonlocal operator %) is obtained by substituting Eq. (4.7) into-Eq. (4.15)

PPWy(r) = —= Z Z( (r)S2 | (4.19)

j aB
3 [ 3 ﬂ*(5)¢1 (s)(r2)v(r2)
/d /d |s — 1y
oy o

+ /d3r1 f(r1)e;(r)a rl)Saf,/d3 Br(s)v(s);(r)

|s — |
,+—/dnﬂm@mM@ﬂ@ v/

&, ¢; (1‘2)’/(1‘2)ﬂ(1‘)>_

vy — 1]

Matrix elements of this operator are obtained from Eq. (4.5) as

Via = o Z([ / dr p*( ] Sa3 - | (4.20)
(r2)v(rs)

Z/ / drz : |S - rzl ‘ ~

+ Z/ /d ls—r| Ll ] St [/drla*(rl)f(rl)’/(rl)}

+ ZPM [/drl n*(r1) f(r1)e (rl)] S [/dS/dr r))\|(s )_ﬂ:_fs)’/(S)] |

+ Z{ [ / dry |I‘2—1‘|) s )]55a [ [ av*(rl)f(rl))\(r;)] P,\n),

where (Saﬁ) = Sﬁa and Eq (4.8) is invoked. Slmphﬁcatlon yields the matrix

representation of the operator

Vi) < %(f~S"1-K+K-S‘1-f)+

[ SR

K, (4.21)
where the matrix f is given by

b = [dr@iee, (1.22)



38

and the matrix K is obtained by replacing P with (P-f-S™1+8-1.f.P)/2 in
Eq. (4.11). For a global hybrid of full-range exact exchange, where f(r) equals a
constant «, the matrix f is a times the KS orbital basis overlap matrix S, and

VLKD) = oK, as expected.

Matrix elements of 94 and $“®) are obtained in the usual way [100, 99]. otr®
is
L af(r) of(r)
Lh(2) . Vo(r) -V — 7
¥y (r) eqiff (z/(r) Bp(1) +2[Vp(r) - Vu(r)] 3G(x (4.23)

- V- [ean (219p1vte) GEES + G1ovl ).

where G(r) = |Vp(r)|*>. Its matrix elements are obtained from Eq. (4.5), using a
_ partial integration to remove terms in e.g., Vegig and V7 resulting from the second

line of Eq. (4.23)

V;LI;/h(2) | = / dr Ediff ([,L* (I')I/(I') gﬁg;i | | - (424)

+ 2090 ¥ ()] 5o
210)
ar(r) )

+ 5 [VA () Ou)]

A similar derivation gives

vIo / dr (1—f(r))(ﬂ*(r)y(r)% (4.25)
+ 29 V) o
+ 3w v ).

GKS exchange potentials for screened and long-range-corrected local hybrids are

obtained by replacing the full-range exchange energy densities in Eq. (4.6) with the
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corresponding short -range quantities. The SR DFT exchange energy dens1ty and its -
derivatives are obtained from DFT exchange hole models in the usual way [23 72,73,
58, 74]. The SR' HF exchange terms are obtained by evaluating the two-electron in-
tegrals in_Eq. (4.12) with the SR interaction in Eq. (2:4), and using these integrals to
construct the K and K matrices entefing >Eq. (4.2‘1). The lcng—_range exchange energy
density, which in fhe present work does not include local hybridizafion, contribntes
to the GKS exchange potential in the usual way.

This derlvatlon is readily extended to more general hyper-GGAs [6 7] To 1llus-> ‘

o trate we consider a hyper-GGA for exchange

BSOS — [ dr OO, o(r), G(r). 7 (o), el <>}1> ()

~where {ef/f (r)} are the set of exact exchange energy densities evaluated with modi-
* fied electron-electron interactions {ha(Jr — r'])}, and the exchange energy density is
a functional of all the quantities in square brackets. (Here a indexes the different

modified interactions.) Matrix elements of the GKS exchange potential become

p,a

VPI:IIGGA ZVHGGA(l) + VHGGA(2) : - (4.27)

The nonlocal operators V,w, GAQ)

are obtaine}d.from Eq. (4.21) by replacing f(r) with
O(efICCA(r))/d(e¥E (r)) in Eq. (4.22), and evaluating K and K with the modified |

electron-electron interaction A,(|r —r’|). The other opei‘ator is obtained by replacing

eRFT with ellGA and setting f(r) = 0 in Eq. (4.25).
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4.3 ‘Computational 'details}

| We‘ have implementedlthé expvressibon‘s in previous sectibh into the develbpment ver-
}sio-n of the GAUSSIAN electronic structure program [101] The implementation is
restricted to using the KOhn—Sham oi‘bital basis ‘set for the resolution of the identity
used to construct the exact exchange energy density and its derivatives. Accordingly,

all calculations use fully uncontracted Gaussian AO basis sets of augmented-triple-

zeta or larger size [96, 11, 102].

| Table 4.1 : Definition of the five local hybrid functiohals investigated in this work.

Functional ~ Range séparation o w fa(r)’
FR-Lh-BLYP* BPW9i Fﬁu_-range o R ™w/T
FRLLLSDA!  LSDA Fullrange O Z 0487y /}
SC-Lh-LSDA | LSDA - Screened | O.ll 0.55va/7‘
LC-Lh—LSDA LSDA Long—ra!ngé—cofrected 018 0ddmy/r
SC-Lh-PBE PBE Screened = : Ob.ll | 0.25 w7

~ We test five local hybrid fuﬁctibnals: two préviously proposed full—range (FR) lo-
cal hybrids, screened and long-rahgé-éorfééted locé,l hybrids of LSDA, énd a screened
local hybrid of PBE. Details of the functionals are presehted in Table 4.1. The func;
tionals hybridize the BPW91 [103, 60, 104]," LSDA (Vosko—Wilk-Nuéair ’c.orrelation |
functional V of Ref. v[10v5]), range—sepérated LSDA [73], and range—sepafated [72]

PBE (8] exchange functionals. The SC-Lh-LSDA screéned local hybrid is an exten-
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sion of the HSE06 [28, 30| screened hybrid. We selected the HSE06 w = 0.11 for
local hybrids of screened excha,ngev, as this value has been shown to provide a rea-
sonable balance between accuracy and computational efficiency in screened hybrid
calculations on solids [30]. The rémaining empirical parameters of our screened and
‘ LC local hybrids were fitted to the small AE6 and BH6 sets of atomization energies
and hydrogen transfer reaction barrier heights [106].

We test these functionals for heats of formation ((AgHggg)) of fhe G2-1 (54
molecules) [107, 108], G2/97 (147 molecules) [109], and G3/9>9 (222 molecules) [62]
data sets [110]; ‘hydrogen-transfér reaction barrier heights of the HTBH38/04 set
and.non-hydrogen-transfer reaction barrier heights of the NHTBH38/04 set [70, 71];
bond lengths of the T-96R set [69, 111]; and atdmization energies and‘ reaction -
barrier heights of the small AE6 and BH6 test sets [106]. Geometries and ex-
perimental values for the HTBH38/04 and NHTBH38/04 sets are from Ref. [71].
Those for the AE6 and BH6 sets are from Ref. [106]. Experimental values for
the T-96R set are from Ref. [69]. Be; was omitted from the T-96R set due to
its van der Waals bond. Si, was omitted from the G2-1, G2/97, G3/99, and T-
‘96R sets due to convergence issues. (AsHsyg) calculations use equﬂibrium B3LYP/6-
31G(2df,p) geometries and zero-point energies with a frequency scale»factor of 0.9854,
- as recommended in Ref. [112]. Self-consistent GKS calculations with the HSE06
screened hybrid |28, 30], the LC-wPBE 1ong—raﬁg&c§rrected local hybrid [113], and

' the Perdew-Burke-Ernzerhof global hybrid (PBEh) [18, 19] are included for com-
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Table 4.2 : Mean and mean absolute errors (kcal/mol) in AyHgys for global and
local hybrid functionals (see Table 4.1). Uncontracted 6-311++G(3df,3pd) basis set.
Self-consistent GKS calculations unless noted otherwise.

G2-1 G2/97 - G3/99
Functional | ME MAE ME MAE ME MAE
FR-Lh-LSDA, post-LSDA  -12 36  -19 37 -1.2 34
FR-Lh-LSDA, GKS -16 38  -26 42 -21 3.9
SC-Lh-LSDA 02 43 12 43 29 50
LC-Lh-LSDA 14 36 L7 39 -05 3.9
HSE06 | 1.8 30 <10 40 25 5.0
LC-wPBE 2.0 35 05 38 -10 43

parison. Open-shell systems are treated spin-unrestricted. Errors are calculated as

theory-experiment.

4.4 Results and discussion

Table 4.2 presents mean (ME) and mean absolute (MAE) errors in heats of formation -
(AgHsyg) for the G2 and G3 sets‘ of small and medium—sized molecules. Results are
presented for full-range, screened, e.md‘long‘-range—corrected local‘ hybrids of .LSDA
exchange. Calculations use the uncontracted 6-311++G(3df,3pd) basis set folloW—
ing Refs. [75, 76]. Non-self-consistent “post-LSDA” calqlllations use orbitals from

~ an LSDA global hybrid with 10% HF exchange, as in Ref. [40]. Non-self-consistent



43

Table 4.3 : Mean and mean absolute errors (kcal/mol) in reaction barrier heights
for global and local hybrid functionals. Uncontracted aug-cc-pVQZ basis. set, self-

consistent GKS calculations unless noted otherwise.

HTBH38/04 NHTBH38/04
Functional , | ME MAE ME . MAE
FR-Lh-LSDA, post-LSDA a7 23 12 25
_FR-Lh—LSDA, GKS | 2.1 | 2.6 L5 26
SC-Lh-LSDA | 13 21 w9 22
LC-Lh-LSDA 6 . 22 05 23
HSEOS | 43 a3 32 36
 LOWwPBE 02 13 16 Y |

calculations with the full-range local hybrid FR—Lh—LSD‘A agree With:the re-sults in.
Refs. [40] and [76], modulo small differences due to basis‘set, orbitals, and molecular
geometries. The the;‘mochemical performance of this functional is slightly degraded
in self—éonsistent calculations, possibly because it was parameterized post-LSDA [38]
The long-range-corrected local hybrid gives very accurate thermochemistry, compara-
ble to the full—rémge local hybrid énd the LC-wPBE 10ng—range—co¥rect»ed functional.
The thermochemic‘al performance of the sCreened local hybrid SC-Lh-LSDA is some-
what inferior, though still comparable to the HSE06 ‘screened hybrid. The results
overall indicate that both screened and long-range-cofrected‘ local hybrids of LSDA

exchange can provide good thermochemical pérformance.
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Table 4.4 : Mean and mean absolute errors (Angstf'om)' in bond lengths of the T-96R
data set. Self-consistent GKS calculations, uncontracted aug-cc-pVQZ basis set. -

Functional ME  MAE
FR-Lh-LSDA 0.0079 00131
'SC-Lh-LSDA 0.0076 0.0132
'LC-Lh-LSDA 0.0060 00112
PBE 0.0188 0.0190
PBEh -~ 0.0001 ~ 0.0089
HSEOG'I = 00006  0.0089
LCwPBE 00068 0.0125

| - Table 4.3 presents errors in réaction barrier hevig_htsv(;f th:e HTB'H38/ 04 and
NHT BH38/04 test sets [70, 71], evaluated for the functioﬁals in Table‘4.2. Calcula-
tions use the. large unconvtract‘ed‘ aug—Cc-pVQZ_ b_asis‘. 'Again, the non-self-consistent -
' results for the full-range local hybrid agree with Refs.‘ [40] énd [76] mbdiﬂo differencesv'
| jn basis set and orbitéls. This functional’s’ perforniance is again'élightly degraded
in self-cbnsisterit calculations. Both sCreened and lohg-i'angé-corrected local hybrids
give ‘a.ccura-fe reaction barriers, with br_esults éomparable to the full-range local hy- -
brid." It is éspecially nbtable that the SC-Lh-LSDA screened local hybrid provides
comparable thermochémistry and siéniﬁ'cantly improyed reactioh barriers relafivé té
the H_SEOG screened hybi‘id. Though‘the results are not quite coxﬁparable to recent

“middle-range” hybrids [35, 36], we feel that they are encouraging.
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While local hybrids have been tested nen-self-consistently for the bond lengths
of radical cation dimers [37, 40, 75], we are not aware of published tests for conven-
tional covalent bond lengths. Table 4.4 presents errors in bond iengths of the T-96R
test set [69], evaluated using the uncontracted aug-cc-pVQZ basis set. All of the
tested hybrid functionals are reasonably accurate for predicting bond lengths. The
local hybrids tend to overestimate bond lengths reletive to PBEh or HSE06, with
unsigned errors cemparable to the long-range-corrected hybrid LC-wPBE. This bond
length-overestimation may be in part a consequence of the 7y /7 mixing function.
Ref. [40] demonstrated that this function hes local maxima in the bonding regions of
stretched bonds and transition states. This incorporation of edditional HF exchange
in stretched bonds was invoked to explain the accurate reaction barrier heights pre-
dicted by the FR—Lh—LSDA local hybrid [40]. We speculate that this additienal ,
HF exchange may also create an energetic bias towards moderately stretched bonds
incorporating a few percent of HF exchange in the bonding region.

Previous investigations have shown that semilocal fuhctions such as 7w /7 and the
density gradient can be used to construct accurate full-range local hybrids of LSDA
exchange, but not of GGA exchange [40, 76] (While the nonlocal density matrix
similarity metrics presented in Ref. [76] yield improved GGA local hybrids, they are
still not cemparable to the bestvLSDA local hybrids.) Unfortunately, it appeers
that the performance of 7y /7 in local hybrids of GGA exchange is not improved

by hybridizing screened vs. full-range HF exchange. Table 4.5 compares our SC-
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Table 4.5 : Mean absolute errors (kcal/mol) in AE6 atomization energies and BH6
barrier heights for the SC-Lh-PBE screened local hybrid of PBE exchange, its “par-
ent” screened hybrid HSE06, and the SC-Lh-LSDA screened local hybrid of LSDA
exchangé. Self-consistent GKS calculations, uncontracted 6-3114++G(3df,3pd) basis
set.

Functional AE6 | BH6
SC-Lh-PBE » 5.9 6.0
HSE06 49 4.9

SC-Lh-LSDA 4.8 2.4

Lh-PBE screened local hybrid of PBE exchange }to its “parent” screened hybrid
HSEO06 [28, 30]. The table includes mean absolute errors (kcal/mol) in the small
AE6 étomization energy an‘d BH6 reaction barrier height test sets. Calculations
are performed. self-consistently in the uncontraéted 6-311++G(3df,3pd) basis set‘.‘
The SC-Lh-LSDA screened local hybrid gives thermochemistry and barrier heights
that are significantly worse than HSEQ6. In contrast, as ’inv Tables 4.2—4.3, the
SC-Lh-LSDA screened local hybrid of LSDA excﬁange is comparable to HSE06 for
atomjzation energies aﬁd better than HSE06 for reaction barrier heights.‘

The> remainder of this section compares our self-consistent GKS method to
the non-self-consistent and “localized local hybrid” (LLH) results obtained by Ar-‘,
buznikov and co-wrokers in Ref. [96] Results are presented for the FR-Lh—BLY_P
local hybrid of full-range HF exchange (Table 4.1). The calculations in Ref. [96]

used the contracted cc-pVQZ atomic orbital basis set (g functions excluded) for the
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v'KS orbitals a,nd-the corresponding uncohtracte_d basis for RI. Our calculations use
~ the uncontracted cc-pVQZ basis set (inciuding g functions) fqr both KS orbitals and
RI. Table 4.6 compares non—self—cons‘isten‘t (boét—BPWQl) and self—consiétent atomic
total energies. Qur post-BPW91 total energies dre ~ 1 mH above AKB, ia small dif-
ference that is consistent with the difference in KS orbital basis. Our self-consistent
GKS energies are ~ 2.5 mH below AKB’s LLH energies. ThiS is as expected: éur
uncontractedeS ‘orbital basis has additional Vé,riational freédom, and.OEP and ap-
proximate O‘EP calculationé on many-electron systems generally give total enefgies

somewhat above GKS (Refs. [79, 114]; see however Ref. [87])
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Table 4.6 : Total atomic energies (Hartree) from local hybrid FR-Lh-BLYP (Ta-
ble 4.1), evaluated post-BPWOL or self-consistently. Current GKS implementation
vs. LLH of AKB (Ref. [96]). Other details are in the text.

post-BPW91 GKS LLH
This work AKB This work AKB
-0.5060 -0.5060 0.5066 -0.5066
L -7.4842 7.4854 74866 -7.4862
‘Be ©-14.6542 © -14.6553 146572 -14.6563
C -37.8427 -37.8438 " -37.8470 v-37.8452
N -54.5962 -54.5974 -54.6094 - | -54.5988
0 -75.0817 ‘»-75’.0829' -75.0868 -75.0845
F 99,7561 99.7574 -99.7615 -99.7592
Na ’-162.2932} 162.2047 -162.2984 -162.2956
Si -289.3866 - -289.3876 -289.392% ‘-289.3887
P 3419847 341.2856 3412005 5341.2864
S ©-398.1364 | 308.1373 3081430 }398.1382
Cl -460.1743 4601752 460.1809

-460.1761
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Chapter 5

Conclusion

In this work, we propose two novel approaches to combine range—separation and
loéal hybrids. In the first approach, we introduce the local range separation where we
usé a position—dependent‘screening funcﬁion instead of a fixed, system—indepehdent
screening parameter. We have deveioped the LRS-wLSDA functional that uses a
rather accurate approximatibon for ther screened HF exchange energy density. We
tested four different expressions for the position-dependent screening parameter.
Each of them has just one empirical parameter, and they all demonstrate comparable
accuracy. For thermochemistry, barrier heights, and atomic energies, LRS-wLSDA
shows substantial improvement upon LSDA and LC-wLSDA. Also, LRS-wLSDA sat-
isfies the high—density scaling behavior betfer than LC-wLSDA. More extensive stud-
ies of local range separation are currently under way including its self-consistent im-
plementation which is required for evaluation of analytic energy grad;lents and other'
properties [115].

We have also developed an extension of local hybrid functionals to a local admix-
fure of screened HF exchange. We have considered two limiting cases: screened local
hybrids with LR DFT exchange and long—range—corrected local hybrids with LR exéct
exchange. Sglf-consistent GKS calculations using screened and long-range-corrected

local hybrids of LSDA exchange show good results for molecular thermochemistry
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and kinetics, comparable to the accuracy of corrésponding full-range local hybrids.
Lon‘g~rbange-corrected local hybrids have the correct asymptotic behavior of the ex-
change potential, and thus could be useful for the description of properties such
as polarizabilities of long chains, charge traﬁsfer, or Rydberg excitations. Our LC-
LSDA-Lh is one of the few local hybrid functionais [39] that both show very accurate
pefforma.nce for thermochemistry and have the exact asymptotic exchange potential.
The success of our SC-LSDA-Lh screened local hybrid is also encouraging. Conven-
tional, ‘full—range local hybrids are difficult to apply to the metals and Narrow-gap
_sémiconductors because of the prohibitive computational cost of the LR exact ex-‘
change. SC—LSDA—Lh should vbe readily appli;:able to éll solids éince it includes only

the SR part of exact exchange.
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Appendix A
High-density limit for the range separation
- function
* Consider uniform density séaling [116] to the high—densityb limit:

p(x) = pa(r) _=')\3bp()\r) and A — oo, ) (A.1)

The scaled density px(r) has the same number of electrons as p(r), but is higher at
the origin and more contraqtéd around it. In this limit, in the absence of exact de-
generacy of the Kohn-Sham non-interacting ground state, the exact exchange energy

E&* should emerge [117] to dominate Ei:
lim)—co Excloal/EZloa] = 1 ) (A.2)

Eq. (A2) is an exact constraint on Ey.[p] which can be satisfied by a hyper-generalized
approximation [6, 118, 9] or by a locally réngefseparéted hybrid. With é universal
‘ position—indépendent parameter w in Eq.(3.1), however, it is incorrecly LSDA ex- . |

change that emerges instead:

v limy oo Exe[al/EXP 0] = 1 , o (A3
Certainly there is no reason to believe that relative corrections to the local density :

approximation should vanish in the high-density limit. .
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. To achieve the correct behavior of Eq.(A2), we need w(r) to scale up faster than
“Aw(Ar). Because sr(r)‘ — s()\r)‘vand rs(r) — A7lrg(Ar), Eq. (3.2) scales up iike
)@(Ar), which is much more neéyrly correct than ié an w that does -inot change ‘under
~ scaling. . |

~ Note that un_iform density scaling relations'for longfrange ahd short-range ex—> _

change are présénted in Ref. [119].
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| Appendix B

Invariance of LRS enérgy with respect to
interchange of electrons

We can write the exact exchange-correlation energy as:

Eo= / GLIPSVE (B.1)

2 r —r/|

-Suppose we have an approximation fapprez(r,r’) that does not have the exact sym-

metry property. We can define a symmetrized

oo aymm(®,F) = 3 Foppron(0, ) 4 Forpra (7)) (B2)

that has exactly the same energy integral as fapproz (T, r )-
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Appendix C
Analytic integration of LRS HF exchange energy
Let e~@~Ril® be an stype Cartesian Gaussian function centered at R, with

orbital exponent «. Evaluating Eq. (3.6) with Gaussian basis sets requires the cal-

culation of the following integral:

LR(p (1)) = —alr'—Ry |2 —ﬂlr—-Rzlzerf[w(r)lr —l'|] / N
VIR wim) = [ e O —tlae e

Using the Gaussian product rule {120], we can rewrite Eq. (C.1) as

! __ ‘ .
VLR(I' w K —plr'~Rp|? erf[w(r)|r r”dr/ (C2)
[t/ —r|

where the exponent of the new Gaussian is p = a + 3, its center is Rp = (aRy + -

BR2)/(c + B3), and

R = e-Co/@tt)RaRalt (C.3)

The Fourier transform of the sho'rt-range potential is:

erfﬁ‘:,“ (2m)” / 2 i Il g (C.4)

Using Eq. (C.4) and substituting 1/¢% = 1/p® + 1 /wz, we can rewrite Eq. (C.2) as:
} ~v ' 3/2 4 2 ‘
VIR(r, w(r)) = (2m)°K / (%) —k—ge_ﬁ"’e’k"dk (C.5)
It is shoWn, e.g., in Ref. [120] that the integral in Eq. (C.5) can be obtained analyt-

‘ically, so that:

™ )3/2 erf(qr — Rp|)

atp r— Ryl (C6)

VIR(r, w(r)) = K (
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