
RICE UNIVERSITY 

Optimizing a Scaffoldless Approach for Cartilage Tissue Engineering 

by 

Benjamin Daniel Eider 

A THESIS SUBMITTED 
IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE 

Doctor of Philosophy 

APPROVED, THESIS COMMITTEE: 

Kyriacols A. Athanasiou, Committee Chair 
Karl F. Hasselmann Professor 
Bioengineering 

Thomas O. Clanton 
Professor 
Orthopaedic Surgery 
UTHSC-Houston 

< = A ^ ^ . 
Antonios G. Mikos 
John W. Cox Professor 
Bioengineering 

JL 
Kyriacos ZygoiitMis 
Chair, A.J. Harsook Professor 
Chemical and Biomolecuiar Engineering 

HOUSTON, TEXAS 
JANUARY, 2009 



UMI Number: 3362219 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 3362219 

Copyright 2009 by ProQuest LLC 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



Abstract 

Optimizing a Scaffoldless Approach for Cartilage Tissue Engineering 

By Benjamin D. Elder 

Articular cartilage has a poor intrinsic healing response, so tissue engineering 

provides a promising approach for cartilage regeneration. The major objective of 

this proposal was to enhance the self-assembling process, used in articular 

cartilage tissue engineering, by investigating the effects of construct confinement, 

hydrostatic pressure application, and growth factor addition. First, the effects of 

construct confinement in different directions and at different times were 

investigated. It was demonstrated that construct confinement resulted in 

enhanced biomechanical properties in the direction orthogonal to the 

confinement surface, either by enhancing collagen organization or by increasing 

collagen production. Next, the effects of hydrostatic pressure at different 

timepoints, magnitudes, and frequencies on the biomechanical and biochemical 

properties of self-assembled constructs were determined. It was demonstrated 

that the application of static hydrostatic pressure, at 10 MPa, for 1 h/day, from 

days 10-14 days led to significant increases in compressive and tensile 

properties, accompanied by significant increases in GAG and collagen content, 

respectively. To our knowledge, this was the first study to demonstrate increases 

in the biomechanical properties of tissue from pure HP application. Furthermore, 

the effects of exogenous application of growth factors, at varying concentrations, 

dosages, and combinations, with and without hydrostatic pressure, were 



assessed on the biochemical and biomechanical properties of engineered 

constructs. A systematic approach was used to determine the effects of BMP-2, 

IGF-I, and TGF-pi, alone and in combination, on the functional properties of 

engineered constructs. This was the first study to demonstrate significant 

increases in both compressive and tensile biomechanical properties as a result of 

growth factor treatment. Also, for the first time, synergistic and additive effects 

on construct biomechanical and biochemical properties were found when 

combining growth factor treatment with hydrostatic pressure application. Finally, 

the effects of various decellularization treatments were examined, and it was 

determined that it was possible to remove cells while maintaining construct 

functional properties. The results presented in this thesis are exciting, as they 

have allowed for a better understanding of the self-assembling process, and 

have allowed the self-assembled constructs to mature into functional articular 

cartilage, as evidenced by biomechanical and biochemical properties spanning 

native tissue values. 
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Introduction 

The overall objective of this thesis is to enhance the self-assembling process for 

in vitro tissue engineering of articular cartilage. The self-assembling process has 

been developed by our group and applied to engineer articular cartilage 

constructs. Motivated by this objective, it is hypothesized that 1) the self-

assembling process can be enhanced by identifying suitable growth factors and 

mechanical forces; and 2) the effects of these exogenous factors individually or 

in combination will allow the formation of constructs in vitro resembling native 

tissue. To test these global hypotheses, three specific aims were employed: 

1) To determine the effects of radial and vertical confinement on the 

self-assembling process of articular cartilage. This approach involves 

determining the effects of construct confinement in different directions and 

at different times on the self-assembling process. First, self-assembled 

constructs are radially confined in agarose wells for four different 

timepoints. Next, the constructs are confined for two weeks, and then 

transferred to incrementally larger wells for the third and fourth weeks of 

culture. Finally, the effects of vertical confinement, in the form of passive 

axial compression are examined. The engineered constructs are 

assessed histologically for collagen and glycosaminoglycan (GAG), and 

immunohistochemically for collagen types I and II. Additionally, the 

constructs are assessed biochemically to quantify DNA, total collagen, 

and GAG content. Finally, biomechanical evaluation of the constructs is 

performed using creep indentation and uniaxial tensile testing. It is 
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hypothesized that the application of confinement will enhance the 

mechanical properties of the constructs, and that confinement at different 

timepoints in construct development will have a significant effect on 

construct properties. 

2) To determine the effects of hydrostatic pressure on the self-

assembling process of articular cartilage. This approach involves the 

determination of hydrostatic pressure (HP) effects on the self-assembling 

process. Initially, an appropriate control for HP is selected at one 

application time. Next, the self-assembled constructs are placed under 

static physiologic-magnitude HP to determine the temporal effects of HP 

application. Additionally, the immediate and long-term effects of HP 

application are assessed. Finally, a full-factorial experimental design is 

used with two factors (magnitude, frequency) at three levels each. These 

factors are optimized, with "optimal" defined as the set of conditions 

producing properties closest to native tissue in terms of extracellular 

matrix (ECM) composition and biomechanical properties. The best two 

HP conditions are subsequently used in specific aim 3. The hypotheses of 

this aim are that 1) there exist optimal conditions (magnitude, frequency, 

application time) for HP that improve the quality of self-assembled 

constructs and 2) these optimal conditions fall within the physiologic range 

of pressure magnitudes. 

3) To determine: 

a. The effects of growth factors alone and in combination 
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b. The combined effects of growth factors and HP on the self-

assembling process of articular cartilage. 

The first step of this approach involves the determination of growth factor 

effects on the self-assembling process. The self-assembled constructs are 

treated temporally with three individual growth factors at two concentrations, 

each delivered in the media continuously or intermittently. The best treatment 

for each growth factor, that produces construct properties closest to native 

tissue in terms of ECM composition and biomechanical properties, is carried 

forward and studied in combinations of two and three at a time to quantify 

growth factor interactions. The optimized growth factor combinations are then 

combined with the optimized HP conditions from specific aim 2 to examine 

their combined effects. The specific hypotheses of this aim are that 1) there 

exist growth factor conditions that are most beneficial in the self-assembling 

process and 2) combining growth factor treatment with HP will result in 

additive and synergistic effects. 

Chapter 1 delivers an overview of the field of articular cartilage tissue 

engineering, while chapter 2 describes the prior use of HP in articular cartilage 

tissue engineering strategies. Chapters 3 through 6 focus on studies to enhance 

the functional properties of tissue engineered constructs such that they approach 

native tissue. Finally, Chapter 7 describes a method for the decellularization of 

scaffoldless tissue engineered constructs. Chapter 1 reviews the field of articular 

cartilage tissue engineering, with a specific focus on the design criteria for a 
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tissue engineered constructs, as well as highlighting the various parameters that 

must be addressed in cartilage tissue engineering studies, including scaffolds, 

growth factor and cytokine application, and the use of exogenous mechanical 

stimulation. This chapter motivates the use of the selected growth factors and 

mechanical stimulation strategies used in this thesis. 

Chapter 2 reviews the prior work involving the application of HP to articular 

cartilage chondrocytes. This chapter focuses on prior HP studies in several 

areas, including HP bioreactor design and the use of HP in tissue engineering 

strategies, with a particular emphasis on examining the differences between HP 

application to chondrocytes in monolayer, in 3-D tissue engineered constructs, as 

well as explants. Furthermore, a comparison between the different effects of 

intermittent and static HP is made. Additionally, the chondroprotective effects of 

HP, the use of HP as a differentiation agent, the use of high magnitude HP, as 

well as the mechanotransduction pathways of HP application are examined. This 

chapter identifies four criteria, namely magnitude, frequency, duration of 

application, and application time in construct development, as parameters that 

may be altered in studies involving the effects of HP. These parameters are all 

examined in chapters 4 and 6. 

Chapters 3-6 address work performed toward the completion of the Specific Aims 

of this thesis. Chapter 3 addresses Specific Aim 1, and describes the beneficial 

effects of radial and vertical confinement on construct properties. Chapter 4 
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addresses Specific Aim 2 and demonstrates the effects of temporal HP 

application by identifying a suitable control for HP application, determining the 

effects of HP application at different timepoints in construct development, and 

examining both the immediate and long-term effects of HP application. Specific 

Aim 3 is addressed in chapter 5, which determines the effects of multiple 

individual growth factors, including TGF-pi, IGF-I, and BMP-2, at different 

concentrations and different application times, on construct functional properties; 

additionally, this chapter demonstrates the effects of treatment with growth factor 

combinations. Chapter 6 addresses Specific Aims 2 and 3, and identifies the 

optimal magnitude and frequency for HP application. Additionally, this chapter 

examines the effects of combined treatment with HP and growth factors, and 

demonstrates synergistic and additive effects when combining TGF-p1 treatment 

with HP application. 

Finally, chapter 7 describes a preliminary study to identify a method for construct 

decellularization, with the objective of eliminating the cells and DNA content of 

the tissue while preserving the biochemical and biomechanical properties of the 

tissue, particularly the GAG content and compressive stiffness. 
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Chapter 1: Paradigms of Tissue Engineering with 
Applications to Cartilage Regeneration 

Benjamin D. Elder and Kyriacos A. Athanasiou 

Chapter published as: Elder, BD and Athanasiou, KA. Paradigms of Tissue 
Engineering with Applications to Cartilage Regeneration. In: Musculoskeletal 
Tissue Regeneration: Biological Materials and Methods, Pietrzak, WS, Ed. 
Totowa, NJ: Humana Press 2008:593-615. 
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Tissue engineering has been widely explored as an option for regeneration of 

various musculoskeletal tissues. This chapter examines the tissue engineering 

paradigm, or approach, with a focus on its application to cartilage tissue 

engineering. Since understanding the tissue engineering approach will require 

an understanding of cartilage physiology, a brief review of cartilage structure and 

function is provided. A discussion of current studies of the four parameters of the 

paradigm, namely scaffolds, cell sources, bioactive agents, and bioreactors is 

presented, along with the latest technologies that incorporate manipulation of 

several parameters in a single approach. 
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INTRODUCTION 

Tissue engineering approaches currently are studied in order to repair many 

musculoskeletal tissues, including bone, vertebrae, knee meniscus, tendon, 

ligament, temporomandibular joint (TMJ) cartilage, and articular cartilage. This 

approach aims for functional tissue restoration and involves the use of cells, 

scaffolds, bioactive agents, and mechanical forces. The goal of tissue 

engineering is to create tissue with biomechanical and biochemical properties 

that match those of the native tissue. 

Cartilage degeneration from injury or from osteoarthritis is one of the greatest 

problems currently faced in orthopedics, and is the second most common chronic 

condition reported in the United States.1 According to the website 

www.arthritis.org.2 approximately 21 million people in the US are affected with 

osteoarthritis, resulting in total annual costs of approximately $5700 per person 

living with osteoarthritis. Due to the prevalence of articular cartilage pathologies 

and the need for more effective methods for cartilage repair, tissue engineering 

has emerged as a promising approach for cartilage regeneration. This chapter 

will provide an overview of the paradigms of tissue engineering, predominantly 

exemplified by exploring the strategies currently used to engineer articular 

cartilage. To gain a better understanding of how tissue engineering approaches 

are applied to articular cartilage regeneration, a brief discussion of articular 

cartilage structure and function is provided. 

http://www.arthritis.org.2
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BACKGROUND 

Structure and Function of Articular Cartilage 

Articular cartilage is a specialized form of hyaline cartilage that is essential for the 

proper function of diarthrodial joints. The main function of articular cartilage is to 

distribute forces between the subchondral bones. Also, along with synovial fluid, 

articular cartilage provides lubrication, friction reduction, and wear resistance for 

the joint. 

Articular cartilage is avascular, aneural, and alymphatic, and is sparsely 

populated by cells called chondrocytes. Articular cartilage is considered to 

consist primarily of a solid phase and a fluid phase.3 Water is the primary 

component of the fluid phase and accounts for 75-80% of the wet weight of the 

tissue. Additionally, electrolytes such as Na+, Ca2+, and CI" are found in the fluid 

phase. The solid phase is characterized by the extracellular matrix (ECM), 

consisting predominantly of collagen and proteoglycans, which surrounds the 

chondrocytes and provides structural support to the tissue. The ECM is 

composed of approximately 50%-75% collagen, and 30-35% proteoglycans.4,5 

Collagen is the primary constituent of the ECM of articular cartilage. As reviewed 

elsewhere,5 collagen II accounts for 90-95% of the collagen in the matrix and is 

often used as a marker for chondrogenic differentiation in tissue engineering 

studies. The collagen II fibrils are largely responsible for the tensile strength of 

the tissue. Other types of collagen are present in the matrix in much smaller 
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amounts and serve varying roles. Collagen XI contributes to fiber formation with 

collagen II, while collagen VI, IX, and X contribute to the ECM structure. 

Proteoglycans are glycoproteins that are characterized by long, unbranched, and 

highly charged glycosaminoglycan (GAG) chains.6 Aggrecan, the most common 

proteoglycan in articular cartilage, is responsible for the compressive strength of 

the tissue. In addition to collagen II, the expressions of GAG and aggrecan are 

also used as specific markers for chondrogenic differentiation. 

Mature articular cartilage has a distinct zonal arrangement in vertical sections 

(Fig. 1). Beginning with the articulating surface, it consists of the superficial, 

middle, deep, and calcified zones. These zones exhibit great differences in their 

properties.7 The superficial zone comprises the first 10-20% of the thickness of 

the tissue, and is characterized by densely packed collagen II fibrils oriented in 

the direction of shear stress, along with flattened chondrocytes. The middle zone 

comprises the next 40-60% of the tissue thickness, and consists of randomly 

arranged collagen fibers and chondrocytes with a more rounded morphology. It 

also serves as a transition between the superficial and deep zones. The deep 

zone contains collagen fibers that extend into the calcified zone in order to 

reinforce the bond between cartilage and bone. The cells of the deep zone 

appear more ellipsoid in shape, and are aligned with the collagen fibers. A 

distinct tidemark separates the deep zone from the calcified zone. This tidemark 

is usually considered to be the boundary between cartilage and bone. The 
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calcified zone is composed of chondrocytes that are trapped in a calcified matrix. 

Chondrocytes sparsely populate cartilage, comprising less than 10% of the 

volume of the tissue.8 Chondrocytes differentiate from mesenchymal stem cells 

(MSCs) and are responsible for the maintenance and regulation of the ECM 

through the enzymatic degradation of existing ECM, the synthesis of new ECM, 

and the production of various bioactive agents such as growth factors. In healthy 

articular cartilage, chondrocytes do not proliferate. Since the tissue is relatively 

avascular, the chondrocytes exist in a low oxygen tension environment and must 

obtain oxygen and nutrients from the synovial fluid through diffusion. 

Biomechanics of Articular Cartilage 

As mentioned above, the aggrecan content of cartilage is largely responsible for 

its compressive properties. Aggrecan is negatively charged, leading to osmotic 

swelling and hydration of the tissue from the Donnan osmotic pressure.9 When 

cartilage is compressed, the interstitial fluid pressure initially supports most of the 

applied load. The water is then pushed out of the matrix and into the synovial 

cavity; therefore, it moves from a loaded region to an unloaded region. The 

frictional force between the leaving water and the matrix leads to dissipation of 

the applied force, and the load eventually equilibrates. Upon removal of the load, 

fluid comes back into the aggrecan network. This process allows for the 

cushioning of an applied load without damage to the chondrocytes or ECM. The 

interaction between the matrix and the interstitial fluid of cartilage is modeled by 
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Mow et al.'s3 biphasic theory. Applying the biphasic theory to articular cartilage 

in studies of creep indentation yields three material properties: the aggregate 

modulus, the Poisson's ratio, and the permeability of the porous solid phase, 

which measure the stiffness, the apparent compressibility, and the resistance to 

fluid flow respectively.3 The mechanical properties of articular cartilage vary with 

the anatomic location of the joint. A review by Hu et al.5 indicated that the 

aggregate modulus ranges from 0.53 M.Palo 1.34 MPa, the Poisson's ratio from 

0.00-0.14, and the permeability from 0.90 x 10~15 m4/Ns to 4.56 x 10"15 m4/Ns. 

Articular cartilage is exposed to a wide variety of forces including hydrostatic 

pressure, compression, and shear forces. As reviewed elsewhere,10 the force 

exerted on the knee has been found to be approximately 3.5 times body weight, 

while the ankle and shoulder experience loads of 2.5 times body weight and 1.5 

times body weight respectively. In addition, contact pressures between 3-18 

MPa have been observed in the human hip joint.11 During loading of articular 

joints, synovial fluid inside the joint capsule generates hydrostatic pressure by 

transmitting force throughout the tissue. Compressive forces are generated in 

articular cartilage as a result of direct contact between the articulating surfaces. 

Likewise with compressive forces, shear forces are generated in the knee joint 

during loading as a result of direct contact between the articulating cartilage 

surfaces, as the two surfaces attempt to move past each other. 
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Repair of Articular Cartilage 

As reviewed elsewhere,12 injuries of articular cartilage can be classified as 1) 

chondral damage without visible tissue disruption, 2) cartilage damage alone 

such as chondral flaps and tears, and 3) cartilage damage accompanied by 

underlying bone damage (osteochondral fracture). As a result of the relatively 

nonexistent vascular supply, scarcity of chondrocytes in the tissue, and the lack 

of chondrocyte proliferation, the ability of articular cartilage to repair itself is 

intrinsically limited. As reviewed elsewhere,13 in a chondral injury, the 

chondrocytes surrounding the defect show a limited ability to proliferate in order 

to repair the damaged site. In an osteochondral injury, MSCs from the bone 

marrow can migrate to the site for tissue repair. However, in both cases, the 

defect is repaired with fibrocartilage formation, which is predominantly collagen I 

and lacks the mechanical integrity of articular cartilage, thus leading to its 

relatively rapid degradation with normal loading of the joint.14 

The current clinical options for treatment of patients with damaged articular 

cartilage are relatively limited. According to a recent review,15 the most 

successful treatment options for restoring native hyaline cartilage have involved 

tissue grafting, where cartilage is removed from a less load-bearing region and is 

grafted to the defect site. However, this approach involves significant donor site 

morbidity and the result is often short-lived, as fibrocartilage fills the donor site 

and the area surrounding the graft. Autologous chondrocyte implantation is 

another treatment strategy that entails harvesting a limited supply of cartilage 
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cells from the individual, expanding the cells in culture, and injecting them in the 

defect site. The area is then covered with a periosteal flap. As reviewed 

elsewhere,15 this procedure was intended to treat focal defects of the knee in the 

United States; however, it has also been used to treat focal defects in the ankle, 

shoulder, elbow, hip, and wrist. Although this procedure has yielded promising 

results,16 25% of the patients experienced graft failure, 22% experienced 

delamination, and 18% experienced tissue hypertrophy.17 In addition to the 

reported clinical complications, a major drawback to this procedure and any other 

currently available is that it has only been used to treat focal defects and has not 

been used to treat entire osteoarthritic joints. 

Tissue Engineering 

Due to the poor ability of articular cartilage to heal itself, and the limited clinical 

treatment options, tissue engineering may provide the most promising approach 

to articular cartilage regeneration, potentially providing engineered tissue that is 

indistinguishable from native cartilage. As reviewed elsewhere,18' 19 the 

biomechanical characteristics of engineered constructs are the most important 

quantitative indicators of the approximation of the regenerated tissue to native 

tissue, but biochemical analyses of the collagen and GAG content also yield 

important information. Tissue engineering aims to accomplish the regeneration 

of articular cartilage by manipulating four parameters: scaffold material, cell 

sources, bioactive agents (growth factors/cytokines), and mechanical forces (Fig. 

2). Although significant steps have been made in the study of each parameter, 
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complete tissue regeneration likely will require the complex task of optimizing 

these parameters in combination. 

TISSUE ENGINEERING PARADIGMS 

Scaffolds 

The main function of a scaffold in tissue engineering is to provide support and a 

temporary structure to cells as they begin to secrete and form an ECM. The 

engineered construct will eventually replace the scaffold as it slowly degrades 

over time. There are two approaches to employing a scaffold: immediate 

implantation of the cell-seeded scaffold or in vitro culture of the scaffold before 

implantation, and each of these approaches has different design concerns. A 

scaffold used in vivo for cartilage tissue engineering should contain internal 

channels that allow for the diffusion of nutrients and room for tissue growth.20 

Also, it should have adequate biocompatibility to prevent the release of toxic 

byproducts and a large immune response, and should exhibit biodegradation 

kinetics that match the rate of new tissue formation. In addition, a scaffold 

should have sufficient mechanical properties to allow for its immediate use in 

vivo, as the cells will not have had enough time to synthesize an ECM that will 

eventually replace the scaffold. Finally, the scaffold should allow for the 

attachment, proliferation, and differentiation of cells seeded on its surface.20 

However, if a scaffold will be cultured in vitro rather than implanted immediately, 

the inherent mechanical properties of the scaffold are not nearly as important, as 
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the degrading scaffold will be replaced by an engineered construct with its own 

mechanical properties before implantation. 

In general, scaffold materials can be divided into two groups: natural and 

synthetic materials. Also, composite scaffolds, which are composed of multiple 

materials, have been used in tissue engineering. The use of these scaffold 

materials will be discussed further with a particular emphasis on successful 

approaches in cartilage tissue engineering. 

Natural Polymers 

Natural polymers have several properties making them advantageous for use as 

scaffolds. They often have excellent adhesion properties, adequate 

biocompatibility, and decreased toxicity during scaffold degradation.21 Collagen, 

fibrin, chitosan, hyaluronan, alginate, and agarose have all been investigated 

with varying degrees of success in cartilage tissue engineering. 

Collagen gels have been used extensively as a scaffold material, as collagen is a 

fundamental component of the ECM of cartilaginous tissues as well as various 

other connective tissues; therefore, collagen gels are expected to have low 

immunogenicity, although like all natural polymers, they must be purified before 

their use. In addition, as a widely abundant ECM component, collagen allows for 

excellent incorporation of both endogenous and exogenous cells from joint 

tissue, thus making it an excellent candidate for success in both in vitro cell-
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seeding and in vivo integration. Nehrer et al.22 compared type I and type II 

collagen gels, and found that chondrocyte-seeded type II collagen gels 

maintained the chondrocyte phenotype and had increased expression of GAGs. 

Although some success has been observed with collagen gels, as with all natural 

scaffolds, concerns regarding pathogen transfer have been expressed. 

Specifically, the increased incidence of prion diseases such as bovine 

spongiform encephalopathy has hindered the use of collagen from bovine 

sources. 

Fibrin has been used as both a delivery device and a stand-alone scaffold.23 

This material has the advantage of being injectable, which would allow for its 

non-invasive delivery. Passaretti et al.24 demonstrated that chondrocytes 

expanded through passage one and seeded in a fibrin polymer that was injected 

subcutaneously in nude mice made an ECM resembling that of native cartilage. 

However, fibrin has poor mechanical properties and may lead to a host immune 

response. 

Chitosan is a polymer derived from the N-deacetylation of chitin, which is 

abundant in the exoskeleton of arthropods. The properties of chitosan make it 

extremely useful as a scaffold material. It has excellent biocompatibility,25 is 

easily synthesized,26 and its mechanical properties and degradation rates can 

easily be manipulated. 
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Hyaluronan, alginate, agarose, as well as various synthetic polymers are all used 

to create hydrogels, which are highly water-soluble polymers that can be cross-

linked covalently or physically. They are highly swollen with water, usually 

containing >90% water. Often, hydrogels have excellent biocompatibility but 

weak mechanical properties. The main advantage of hydrogels is that as low 

viscosity, fluid-like solutions, they are injectable and can fill irregularly shaped 

defect sites. Once the defect site has been filled with a cell/polymer suspension, 

the hydrogel can be cross-linked, for example, by transdermal 

photopolymerization,27 thus causing a fluid-solid transition to occur. This 

procedure permits the researcher to avoid many of the problems involving cell-

seeding, and provides the clinician with a minimally invasive treatment for 

chondral defects that avoids surgical intervention. Another advantage of 

hydrogels is that they are excellent at maintaining the chondrogenic phenotype; 

this is probably because embedding the chondrocytes in the hydrogel preserves 

their round morphology. Furthermore, embedding the cells in a hydrogel is 

extremely useful when using mechanical stimulation, as it allows for uniform 

force transfer to the cells without the stress shielding that may be caused by 

other scaffold materials. 

Hyaluronan is a naturally occurring polysaccharide that is an important 

component of articular cartilage. Burdick et al.28 recently demonstrated that the 

mechanical properties and degradation rates of hyaluronan scaffolds could easily 
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be manipulated to encompass a wide range of desirable values, which could 

potentially allow for clinical use. 

Alginate is a polysaccharide derived from algae that has excellent 

biocompatibility. As a hydrogel, alginate can be delivered with an injection, which 

allows for minimally invasive treatment of chondral defects. Alginate has also 

proven effective for maintaining or even inducing the chondrogenic phenotype. 

This is probably because the chondrocytes are embedded in the alginate 

hydrogel, which enables them to maintain their round morphology. Another 

exciting attribute of alginate hydrogels is their ability to be formed into different 

shapes,29 which would allow for the production of a geometrically customized 

construct prior to implantation. However, the major downside of alginate 

hydrogels is the inability to modulate their long degradation time in vivo, which 

can hinder the growth of new tissue.20 

Agarose is a polysaccharide derived from seaweed that is very similar to alginate 

in its properties. Like alginate, agarose has excellent biocompatibility, and helps 

to maintain the chondrogenic phenotype by preserving chondrocytes' round 

morphology. Agarose has been used extensively in in vitro studies,23 although it 

shares the slow degradation kinetics of alginate. Another problem with agarose 

is that it may elicit a foreign body giant cell immune response in vivo.30 
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Synthetic Polymers 

Synthetic polymers are fabricated in a laboratory, and offer several advantages 

over natural polymers. Their physical and mechanical properties can easily be 

modulated, thus allowing for degradation kinetics and mechanical properties that 

are optimized for a specific application. In addition, since they are not derived 

from organisms, there is no concern regarding pathogen transmission, and they 

can easily be synthesized in large quantities. Also, synthetic polymer scaffolds 

can undergo surface modifications, with peptides or bioactive molecules, that can 

enhance their biocompatibility and integration in defects. However, unless they 

are sufficiently small or synthesized to form a hydrogel, they must be surgically 

implanted into the recipient. 

The most widely used materials are the poly(a-hydroxy esters), including 

polyglycolic acid (PGA), polylactic acid (PLA) and their copolymer poly(lactic-co-

glycolic acid) (PLGA).31"33 The biocompatibility of each polymer has been 

extensively studied, and allows for their use in various implantation applications. 

PLA and PGA are often extruded into long polymer strands, which are then used 

to form a highly porous nonwoven fibrous mesh. The porous nature of the 

scaffold allows for cell to cell communication and nutrient diffusion, but leads to 

poor mechanical properties until tissue formation occurs. Many studies have 

demonstrated the efficacy of these polymers in cartilage ECM synthesis and the 
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maintenance of the chondrocyte phenotype, as well as efficacy in in vivo 

studies.23 

Copolymers of PLA/PGA are advantageous, as they allow for more control over 

the degradation kinetics, by varying the ratios of monomers used. PLGA 

scaffolds have shown promising results in in vivo studies,23 but an exciting new 

approach has been to construct hydrogels out of the copolymer. Mercier et al.34 

created hydrogels out of PLGA microspheres that, when seeded with 

chondrocytes and injected in athymic mice, allowed for the production of 

cartilaginous ECM. 

A recent approach has been the creation of composite scaffolds, in which 

multiple scaffold materials are used together in an effort to harness the 

advantages of each component. For example, Caterson et al.35 demonstrated 

the efficacy of a PLA/alginate amalgam for the chondrogenic differentiation of 

MSCs. 

"Scaffold-less" Approaches 

Despite the promising results obtained using the various aforementioned scaffold 

materials, there are problems associated with using a scaffold. For example, 

scaffolds can hinder cell to cell communication, contribute to stress shielding, 

and alter the chondrogenic phenotype. Furthermore, they may be toxic or 

produce toxic byproducts during degradation, and their degradation rate must be 
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modulated to coordinate with new tissue formation.36 As a result of these 

inherent problems, novel approaches to tissue engineering have been developed 

that do not employ the use of a scaffold. These approaches include pellet 

culture,37 aggregate culture,38 and a more recent approach, the self-assembling 

process.36 

In the self-assembling process, calf articular chondrocytes were seeded at high 

density in 5mm diameter and 10mm deep agarose wells. After 24 hours of 

culture, the cells formed constructs that were not attached to the walls of the 

agarose wells. After 4 weeks of culture, the constructs were transferred to large 

wells, and following 12 weeks of culture, this process resulted in tissue 

engineered constructs of clinically relevant dimensions, at ~15mm in diameter 

and 1mm in thickness. The constructs resembled native articular cartilage 

morphologically, and had levels of collagen II and GAG approaching that of 

native tissue, with no collagen I production. Perhaps the most exciting result was 

that the self-assembled constructs reached over 1/3 the stiffness of native tissue. 

The self-assembling process has also been coupled with mechanical 

stimulation.39 Hydrostatic pressure application under a treatment of 1 Hz and 10 

MPa for 4 hours/day was shown to stimulate collagen production and aid in the 

retention of GAGs within constructs compared to static culture. Although more 

work still needs to be done in the characterization and optimization of the 

method, the self-assembling process is a promising approach towards functional 

tissue engineering of articular cartilage. 
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Cell Sources 

An ideal cell source must satisfy several criteria: be easily accessible or 

available, demonstrate self-renewal or the ability to be expanded extensively, 

have the capacity to differentiate into the cell lineage of interest upon induction or 

remain differentiated in the cell lineage of interest, and exhibit minimal 

immunogenicity or tumorigenicity.40 Progenitor cells such as MSCs and 

embryonic stem (ES) cells as well as fully differentiated chondrocytes have all 

been used as cell sources for engineered cartilage constructs. Certain 

advantages and disadvantages are inherent to approaches involving each cell 

type. 

Primary chondrocytes from native cartilage are the most obvious cell source for 

tissue engineering of cartilaginous tissues. Immature chondrocytes are often 

used for studies due to their higher metabolic activity.41 Chondrocytes can easily 

be isolated from freshly excised articular cartilage following an enzymatic 

digestion with collagenase. However, a large number of cells must be obtained 

to be seeded onto a three-dimensional scaffold. Since overharvesting 

chondrocytes can lead to further problems at the harvest site, serial passage of 

chondrocytes on monolayers is required to acquire the large cell density needed 

for seeding on a three-dimensional scaffold. Chondrocytes passaged in 

monolayer "dedifferentiate" and become more fibroblast-like in appearance and 

ECM production: they lose their round morphology and become more spindle-

shaped, switch their collagen production from primarily type II collagen to type I 
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collagen, and they regain their ability to divide.42"44 This loss of chondrogenic 

potential is associated with the suppressed activation of key signaling proteins in 

the Ras-mitogen-activated protein kinase pathway, which leads to apoptosis.45 

In a recent study, it was found that passaged articular chondrocytes in monolayer 

showed phenotype changes as early as one passage, and their chondrogenic 

phenotype could not be rescued even with 3-D culture in alginate beads.46 

Despite these limitations, primary chondrocytes continue to be used in clinical 

applications as several culture conditions, such as culture in agarose gels,47 

allow for the reexpression of the chondrocyte phenotype. 

The study of stem cells has gained prominence in cartilage tissue engineering, 

as new chondrocytes, originating from host MSCs,48 repair osteochondral 

defects. Adult MSCs are multipotent cells that can be induced to differentiate 

down multiple cell lineages such as chondrogenic, osteogenic, and adipogenic 

lineages. MSCs are advantageous as they are able to self-renew, and they can 

be obtained relatively non-invasively from tissues such as bone marrow 

aspirates,49"54 adipose tissue,55"60 synovial tissue,61 as well as several other 

tissues. The chondrogenic phenotype is often characterized by the expression 

and synthesis of collagen II and proteoglycans, as well as by the upregulation of 

genes such as sox-9 which are markers of cartilage ECM production. MSCs 

used in cartilage engineering have been differentiated through the application of 

members of the transforming growth factor-p (TGF-P) family as well as 

dexamethasone. MSCs used in research studies so far have primarily come 
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from bone marrow. Several studies have indicated that a 3-D culture 

environment is important for chondrogenic differentiation, as it may help to 

maintain a rounded cell shape. An exciting finding from a study by Yoo et al.51 

was that the addition of TGF-pi and dexamethasone maintained the 

chondrogenic potential of bone-marrow derived MSCs through 20 passages. 

This is an important finding as in vitro expansion through several passages often 

is required to generate sufficient cells for implantation. Human adipose-derived 

adult stem (hADAS) cells show great promise for cartilage tissue engineering as 

they can be isolated from various easily accessible sources such as from the 

inguinal fat pad62, infrapatellar fat pad63, and subcutaneous adipose tissue.52 

hADAS cells express markers characteristic of articular cartilage when cultured 

with TGF-01, dexamethasone, and ascorbate.57,58,60,62 Although adult stem 

cells represent a promising cell source for articular cartilage engineering, more 

work needs to be performed to understand the developmental processes 

involved in differentiation so that these processes may be further manipulated to 

optimize in vitro cell expansion while maintaining chondrogenic differentiation; 

then, it may be possible to develop in vivo approaches for construct delivery and 

host integration. 

As with the study of several other tissues, the use of embryonic stem cells is 

increasing in cartilage tissue engineering.64"67 ES cells are derived from the inner 

cell mass of the embryonic blastocyst and are pluripotent. Following aggregation 

into embryoid bodies in vitro, they can differentiate into tissue of all three germ 
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layers. ES cells are capable of virtually infinite proliferation while remaining in an 

undifferentiated state. Because of their pluripotency and their provision of an 

unlimited cell source, their use is promising for many tissue engineering 

applications. Although ES cells appear to be an extremely promising cell source, 

their differentiation pathways must be better elucidated to manipulate them 

further for cartilage tissue engineering. In addition, the ethical and legal 

concerns regarding the source and means of collection of ES cells significantly 

complicate their use. 

Finally, an exciting new cell source may derive from dermal fibroblasts which can 

be triggered to differentiate by culture on cartilage matrix proteoglycans.68"70 This 

cell source could be extremely useful as the cells are both easily accessible and 

widely available. 

Growth Factors 

Growth factors are used in tissue engineering to modulate cellular differentiation 

and proliferation, as well as to modulate ECM synthesis. Articular cartilage 

displays dramatic changes when exposed to growth factors that are naturally 

present in the native environment. The effects of many of these growth factors 

alone and in combination have been studied for cartilage tissue engineering, 

including the transforming growth factor beta (TGF-(3) family, insulin-like growth 

factor (IGF), fibroblast growth factors (FGFs), hepatocyte growth factor (HGF), 

and platelet-derived growth factor (PDGF). As reviewed elsewhere,71 growth 



27 

factor studies generally are conducted in vitro in which the growth factor is 

delivered as a soluble factor in the media; therefore, the concentration and 

frequency of delivery can easily be manipulated. Growth factor effects have also 

been studied in vivo, albeit with variable results as it is far more difficult to control 

the interactions within the body as well as the concentrations.71 However, as 

scaffold delivery vehicles and gene therapy approaches continue to improve, 

delivery of growth factors at more controlled doses and temporal increments may 

become a more achievable task. 

Members of the TGF-p family are probably the most widely used growth factors 

to date. For cartilage tissue engineering, the notable members of the TGF-p 

family include TGF-p1, TGF-P3, and bone morphogenetic proteins (BMPs). 

TGF-p151"53' 56 and TGF-P350, 72 are both widely used as chondrogenic 

differentiation factors for MSCs and embryonic stem cells. In addition to uses in 

chondrogenic differentiation, TGF-pi has been shown to upregulate ECM 

synthesis although there are conflicting reports on its effects. Several studies 

have shown that TGF-p1 increases collagen II expression in monolayer73 and in 

3-D scaffolds74, while other studies have shown no effects on the gene 

expression of ECM proteins.75 Possible explanations for the different observed 

effects of TGF-p1 include variable effects of TGF-pi on the zonal populations of 

chondrocytes, as well as variations in the temporal application of the growth 

factor. The main effect of BMPs in cartilage tissue engineering is chondrogenic 

differentiation or the maintenance of differentiation. They have also seen 
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extensive use in bone tissue engineering for osteogenic differentiation and 

increased matrix synthesis. As reviewed elsewhere,71 although other BMPs have 

been studied, BMP-2 has been the most commonly used BMP for studies 

involving cartilage. BMP-7 is another BMP that is beginning to be used in 

cartilage tissue engineering, and has also been used recently as a chondrogenic 

differentiation factor.76 

Several other growth factors show potential for use in cartilage tissue 

engineering. IGF-I has a profound anabolic effect on chondrocytes in vitro,77'79 

and has been shown to increase GAG production, as well as aggrecan and 

collagen II gene expression in articular chondrocytes grown on monolayer.80 

Perhaps the most exciting in vivo effect of IGF-I use is the autoinductive 

autocrine/paracrine transcriptional response, which could potentially be 

harnessed to extend and amplify the effects of IGF-I on cartilage repair.81 Basic 

fibroblast growth factor (bFGF) has been shown to stimulate chondrocyte 

proliferation and synthesis,82"84 although it has also been used for 

fibrochondrocyte studies involving the knee meniscus and the 

temporomandibular joint.33 FGF-18 has recently been shown to promote 

chondrogenic differentiation of limb bud mesenchymal cells.85 HGF has been 

minimally studied in cartilage tissue engineering, but preliminary studies indicate 

that it may enhance or modulate chondrocyte proliferation.86, 87 The effects of 

PDGF on proliferation and ECM synthesis have been minimally reported, but it 

has been shown to have an effect on chondrocyte proliferation.88 
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Although many growth factors show promising results when used alone, their use 

in combination has yielded exciting results, as synergism between many growth 

factors has been observed in several studies. BMP-2 and TGF-pi work in 

concert for the chondrogenesis of periosteal cells; it was suggested that BMP-2 

induces neochondrogenesis, while TGF-p1 modulates the terminal differentiation 

in BMP-2 induced chondrogenesis.89 Combined treatments with TGF-P3 and 

BMP-6 or TGF-P3 and IGF-I were shown to be the most effective combinations 

for chondrogenic induction of bone marrow MSCs.90 However, growth factor 

combinations do not always interact synergistically. For example, the addition of 

IGF-I and TGF-p in combination did not improve the histologic features or 

mechanical performance of tissue engineered cartilage constructs.91 

Perhaps the most exciting new results have come from studying the synergism 

between growth factor application and mechanical stimulation. Bonassar et al.92 

found that the combination of IGF-I and dynamic compression led to a 290% 

increase in proteoglycan synthesis, a degree greater than that achieved by either 

stimulus alone. Also, Mauck et al.93 showed that the combination of dynamic 

deformational loading with either TGF-pi or IGF-I increased the stiffness of 

engineered constructs by 277% or 245%, respectively, with respect to untreated 

free-swelling controls. 
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Growth factor treatment has been extremely useful for cartilage tissue 

engineering, as it has allowed and maintained chondrogenic differentiation,75,94, 

95 and has also increased production of ECM proteins in studies of articular 

cartilage,80,92 knee meniscus,96,97 and the TMJ.33'98 However, there are still 

properties of the growth factors that need to be investigated. In addition to the 

need to better characterize the roles of each growth factor, their effects on 

different cell types, the correct dosage frequency, and concentrations must be 

elucidated to optimize their use in tissue engineering. 

Mechanical Loading 

To serve its function as a biomechanical structure, articular cartilage is exposed 

to a wide variety of forces including hydrostatic pressure, compression, and 

shear forces. Chondrocytes are directly connected to their microenvironment by 

focal adhesions which are discrete regions of the cell's plasma membrane that 

bind to extracellular material.21 In addition to their involvement in the structural 

integrity of the chondrocyte, focal adhesions are involved in the process of 

mechanotransduction, in which cells regulate transcriptional activities based on 

mechanical signals received at their surface. Although the exact mechanisms of 

mechanotransduction in the chondrocyte have not been completely elucidated, 

evidence suggests that elements of the cytoskeleton and integrins allow the 

coordination of mechanical forces and transcriptional changes. 
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Several studies have suggested that mechanical stimulation is necessary for 

maintaining and possibly improving the biomechanical function of articular 

cartilage. For example, during immobilization, articular cartilage undergoes 

changes characterized by a loss of function.99, 10° Also, in a canine study, 

articular cartilage in the knee became significantly stiffer following loading in 

physiologic ranges as a result of running on a treadmill.101 To investigate these 

issues further, many studies subjected cartilage explants to mechanical 

stimulation, and determined that mechanical stimulation served to maintain and 

even upregulate the production of ECM, and it was determined that in vitro 

loading conditions within the physiologic range of native hyaline cartilage were 

most beneficial.102 Several methods have been used to deliver mechanical 

stimulation to articular cartilage; these include hydrostatic pressure, direct 

compression, and shear, and are the predominant forces present in the knee. 

Hydrostatic Pressure 

During loading of diarthrodial joints, synovial fluid inside the joint capsule 

generates hydrostatic pressure that is transmitted to cartilage. Direct 

compression of cartilage also generates hydrostatic pressure, as the majority of 

the force is absorbed by the water in the cartilage matrix. As the fluid tries to 

leave the cartilage matrix, it experiences resistance to its flow and therefore 

cannot easily leave as a result of the relative impermeability of cartilage. Since 

the water is somewhat "trapped" in the tissue, a uniform normal load or 

hydrostatic pressure is applied to the individual chondrocytes in the tissue as a 
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result of the interstitial fluid pressure. However, since the cartilage matrix is not 

completely impermeable, the water is eventually forced out of the tissue and into 

the synovial cavity. The energy of the applied load is then dissipated as water 

leaves the tissue and encounters resistance as it moves through the cartilage 

matrix. In diarthrodial joints during normal activity, the magnitude of this 

interstitial pressure is usually between 7 and 10 MPa.103 Also, a normal adult 

cadence corresponds to frequencies of 0.6 to 1.1 Hz loading per leg during 

walking,104 and >1.5 Hz during running.105 

Two approaches have been used to combine the application of hydrostatic 

pressure with culturing techniques for tissue engineering.106 In the first 

approach, the application of hydrostatic pressure is separated from culturing. 

The cells are grown in static culture, and are moved to a specialized chamber 

(Fig. 3A) at certain times to apply hydrostatic pressure. Following application of 

hydrostatic pressure, the cells are returned to their static culture conditions, and 

this process is repeated per the desire of the researcher. This approach is 

beneficial because it allows for the application of hydrostatic pressure only at 

certain times and for certain durations, rather than applying a continuous load. 

However, the major drawback of this approach is that there is an increased risk 

of contamination while transferring the cells between the static culture and 

hydrostatic pressure chamber. The second approach uses a semicontinuous 

perfusion system; a single device allows for medium to be delivered to the cells 

while hydrostatic pressure is applied. This approach is advantageous because it 
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minimizes the possibility of contamination, and it can be automated; however, the 

downside of this approach is that fluid shear is also introduced into the system. 

When using hydrostatic pressure stimulation, the parameters that may be varied 

include the frequency of loading, the duration and magnitude of loading, as well 

as the time points at which the cells are subjected to loading. As reviewed 

elsewhere,106 loads near the physiological range, between 0.1 and 15 MPa, and 

frequencies between 0.05 and 1 Hz, have yielded the most favorable results, 

although the majority of the hydrostatic pressure studies conducted so far have 

tested explants or monolayers. Research involving the use of hydrostatic 

pressure in 3-D culture of chondrocytes, especially at longer time points, is 

lacking. However, a recent study using hydrostatic pressure at previously tested 

ranges was shown to have beneficial effects on 3-D constructs.39 In the study, 3-

D self-assembled articular chondrocyte constructs (as described previously) were 

subjected to 10 MPa hydrostatic pressure at 1 Hz for 4 hours per day and 5 days 

a week for up to 8 weeks, which led to a significant increase in collagen content 

while preventing a decrease in GAG content relative to the unstimulated control 

group. However, no significant difference in mechanical properties was observed 

between the treatment groups. 

Hydrostatic pressure does not always produce beneficial results. For example, 

several studies that investigated constant hydrostatic pressure found little or no 

improvement in ECM composition.107"109 Also, when hydrostatic pressure is 
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above the physiological range, it may actually harm the cells, as decreased ECM 

production and expression of inflammatory mediators have been observed with 

these higher pressures.108 

Although the results on using hydrostatic pressure stimulation seem promising at 

this point, far more work must be undertaken to elucidate the precise application 

conditions for optimizing biomechanics) and biochemical properties, particularly 

in 3-D engineered articular cartilage constructs. 

Direct Compression 

During normal joint loading in a healthy person, compressive forces are 

generated in articular cartilage as a result of direct contact between the 

articulating surfaces and once hydrostatic pressure in the interstitial fluid 

subsides, as water is forced out of the loaded cartilage matrix. If no pathologic 

processes are present, articular cartilage is able to withstand compression many 

times per day without injury. In general, cartilage experiences deformation or 

strain in the range of 2-10%, which was determined under a load of five times 

body weight in the human hip.110 

As with hydrostatic pressure, the application of direct compression is usually a 

two-step approach, in which the application of force is separated from culturing. 

The cells are grown in a static culture, and are moved to a specialized device 

(Fig. 3B) at certain times in order to apply direct compression. These devices 
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are generally designed so that a flat surface compresses the top of the construct 

at a specific load or displacement. Following application of the force, the cells 

are returned to their static culture conditions, and this process is repeated as 

desired. 

When using direct compression, the parameters that may be varied include strain 

or magnitude, frequency, and the time points at which the constructs are 

subjected to loading. As reviewed elsewhere,106 most studies have examined 

frequencies in the range of 0.0001 to 3 Hz, strains from 0.1 to 25%, loads from 

0.1 to 24 MPa, and durations lasting hours to weeks, although these parameters 

are often limited by the equipment used. 

As with constant hydrostatic pressure loading, cartilage responds negatively to 

static loading, most likely as a result of limited mass transport.106 Therefore, 

studies using dynamic compression have produced the most positive results. 

Mauck et al.111 found a 33% increase in GAG production and an aggregate 

modulus on the same order of magnitude as in native cartilage when subjecting 

cartilage constructs to 3% strain at 1 Hz and three times of 1 hour on, 1 hour off 

per day, 5 days per week, for 4 weeks. Also, in dynamic compression, the 

loading frequency is an extremely important parameter to be studied. Lee et 

al.112 subjected constructs to compression at frequencies from 0.3 to 3 Hz and 

15% strain, and found that GAG synthesis was significantly higher in the 

constructs subjected to 1 Hz compression. Interestingly, in addition to improved 
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biochemical properties, dynamic compression has recently been shown to 

enhance the chondrogenic differentiation of MSCs, again indicating that 

mechanical loading plays an important role in cartilage repair.113 

Bioreactors and Shear Forces 

The purpose of a bioreactor is to create an environment that will aid in the 

development of the desired tissue properties. In tissue engineering, the major 

uses of bioreactors have been in the application of shear forces or in examining 

the effects of media perfusion and gas exchange on constructs. 

As with compressive forces, shear forces are generated in the knee joint during 

loading as a result of direct contact between the articulating cartilage surfaces, 

as the two surfaces attempt to move past each other. Although a thin layer of 

synovial fluid provides lubrication between the cartilage surfaces, shear forces 

continue to occur as the surface-to-surface contact is not completely frictionless. 

Several studies, discussed in 106, have shown a benefit to applying shear to 

cartilage constructs. The most widely used bioreactors in cartilage tissue 

engineering have been spinner flasks, perfusion bioreactors, and rotating-wall 

bioreactors. 

Spinner flasks are perhaps the simplest bioreactors used, as a magnetic stir bar 

mixes oxygen and nutrients throughout the medium. Their primary use has been 

for cell-seeding of scaffolds, as mixing in spinner flasks has proven extremely 
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useful for uniformly seeding cells on scaffolds at high yields.114 This approach 

involves attaching scaffolds to needles suspended from a stopper at the top of 

the flask. Cells in the medium are mixed in the flask due to the stir bar, and 

eventually are seeded onto the scaffold. Bueno et al.115 recently used a modified 

spinner flask, called a wavy-walled bioreactor, which is designed to enhance the 

mixing of the medium while minimizing the shear. They found that the kinetics of 

chondrocyte aggregation were significantly improved over a spinner flask when 

using a wavy-walled bioreactor. 

In a direct perfusion bioreactor, a scaffold is surrounded tightly by a medium 

chamber consisting of a hollow tube, and medium is forced through the fixed 

scaffold, from one end of the tube to the other. This design allows for a more 

uniform shear force and a more uniform concentration of nutrients to be delivered 

to the construct, as the cells located in the entire scaffold thickness are exposed 

both to convective solute transport and to a flow-induced mechanical stimulus.116 

Also, as used in some of the hydrostatic pressure systems, these bioreactors 

prevent the need to change the medium and therefore reduce the risk of 

contamination. Janssen et al.117 recently used a direct perfusion bioreactor in the 

production of engineered bone constructs of clinically relevant dimensions. A 

further modification to these systems can allow for the recycling of used medium 

along with the addition of fresh medium, which allows beneficial proteins such as 

ECM constituents to be maintained in the medium. 
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The use of rotating-wall bioreactors has been a promising approach. The main 

improvement over a direct-perfusion bioreactor is that a low shear environment is 

created without sacrificing the high diffusion in the perfusion systems. 

Essentially, this device consists of two concentric cylinders separated by a space 

containing medium and scaffolds. The rotation rates of the cylinders can be 

modulated so as to create different flow and shear environments within the fluid. 

For example, to produce a low shear force, both cylinders are rotated slowly at 

the same rate or nearly the same rate. This technique has been coupled with 

other parameters, such as in the investigation of the effects of oxygen tension on 

cartilage constructs.118 Since cartilage tissue is avascular and chondrocytes are 

exposed to a low oxygen tension environment in vivo, Saini and Wick118 

investigated the effects of oxygen tension on developing chondrocytes in a 

concentric cylinder bioreactor. They found that 5% oxygen tension led to 

constructs with double the GAG content of constructs cultured in 20% oxygen, 

with no effect on chondrocyte proliferation or collagen production. Interestingly, 

Wang et al.58 found that 5% oxygen tension was also an extremely effective 

inducer of chondrogenesis in hADAS cells, as it led to increased protein, 

collagen, and GAG synthesis, with an inhibition of cell proliferation. This is a 

significant finding, as it may provide additional means of controlling the growth 

and metabolism of undifferentiated progenitor cells. However, culture in a 

rotating-wall bioreactor has not always proven beneficial; a recent TMJ disc 

tissue engineering study found little or no benefit when using a rotating-wall 

bioreactor as compared to static culture.119 



39 

The use of bioreactors in tissue engineering has yielded exciting results and 

possibilities. Future directions of bioreactor use will likely involve the 

combination of the hydrodynamic flow chambers with other sources of 

mechanical stimulation,120 as well as with growth factor addition in the medium. 

As these technologies improve and the processes of growth factor addition and 

mechanical stimulation are optimized, it may become possible to create a large-

scale cartilage bioreactor for mass production of engineered constructs. 

FUTURE TRENDS AND NEEDS 

Successful tissue engineering approaches that will be used in the clinic likely will 

require optimization of the four parameters of the tissue engineering paradigm. 

Scaffolds will need to exhibit adequate biocompatibility and mechanical 

properties and allow for diffusion of nutrients to the seeded cells, or a "scaffold-

less" approach such as the self-assembling process will need to be employed. 

Stem cells, both adult and embryonic, represent a promising cell source for 

articular cartilage engineering; however, more work needs to be performed to 

understand the developmental processes involved in differentiation so that these 

processes may be further manipulated to optimize in vitro cell expansion while 

maintaining chondrogenic differentiation. Growth factor application also must be 

optimized for tissue engineering, through further characterization of the roles of 

each growth factor and their effects on different cell types, as well as elucidation 
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of the correct dosage frequency and concentrations. Finally, as scaffolds, cell 

sources, growth factor application, and mechanical stimulation are optimized, 

mass production of tissue-engineered constructs may become possible through 

the creation of large-scale bioreactors. 

Current tissue engineering approaches strive to obtain a construct with 

mechanical, biochemical, and histological properties as close as possible to 

native tissue. However, since relatively few constructs have seen clinical use to 

date, it is unclear how closely the properties of the construct must mimic those of 

native tissue in order to prove clinically functional. It is likely that as the 

parameters of the tissue engineering paradigm are optimized to produce 

constructs that approach native tissue properties, constructs with a wide 

spectrum of properties will be produced along the way. Then, implantation 

studies may be performed to determine the optimal properties a construct must 

possess for in vivo use. 

CONCLUSIONS 

When cartilage is damaged, it has a limited ability to heal itself and clinical 

treatment is unable to fully restore tissue function. Therefore, tissue engineering 

is an ideal approach for successful cartilage regeneration, through the interaction 

of the selected scaffold, cell source, growth factors, and mechanical stimulation. 

Although many promising results have been attained thus far, tissue engineering 



41 

still has to overcome hurdles, as successful regeneration of cartilage cannot be 

realized until the four parameters of the tissue engineering paradigm have been 

optimized. Nonetheless, this is an exciting time as we are rapidly approaching 

widespread clinical use of tissue engineered cartilage constructs for treatment of 

articular cartilage, knee meniscus, and TMJ pathologies. 
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ABSTRACT 

Cartilage has a poor intrinsic healing response, and the innate healing response 

as well as current clinical treatments cannot restore its function. Therefore, 

articular cartilage tissue engineering is a promising approach for the regeneration 

of damaged tissue. As cartilage is exposed to mechanical forces during joint 

loading, many tissue engineering strategies utilize exogenous stimuli in order to 

enhance the biochemical or biomechanical properties of the engineered tissue. 

Hydrostatic pressure is emerging as arguably one of the most important 

mechanical stimuli for cartilage. However, no optimal treatment has been 

established across all culture systems. Therefore, this review evaluates prior 

studies on articular cartilage involving the use of hydrostatic pressure to reach a 

consensus on the magnitudes, frequencies, and application times that should be 

pursued further. Additionally, this review addresses hydrostatic pressure 

bioreactor design, chondroprotective effects of hydrostatic pressure, the use of 

hydrostatic pressure for chondrogenic differentiation, the effects of high 

pressures, as well as hydrostatic pressure mechanotransduction. 
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INTRODUCTION 

Injuries to articular cartilage generally result in the formation of mechanically 

inferior fibrocartilage, which will eventually degrade with use.14 Additionally, 

current clinical treatments for articular cartilage injuries generally aim to enhance 

this intrinsic repair response, but may often result in the formation of 

fibrocartilage. Therefore, tissue engineering approaches provide tremendous 

promise for cartilage regeneration. A principal tenet of the cartilage tissue 

engineering approach is the use of exogenous mechanical stimulation to 

simulate joint loading and lead to enhanced chondrocyte metabolic activity and 

extracellular matrix (ECM) production. Hydrostatic pressure (HP) provides a 

robust method for chondrocyte stimulation, as it can be applied to chondrocytes 

in monolayer, 3-D engineered constructs, as well as explants. 

Cartilage is a highly hydrated tissue, comprised of 75-80% water per wet weight. 

The high water content results as water is attracted to the negatively charged 

proteoglycan molecules within the tissue. During joint loading, a uniform 

perpendicular stress (Fig. 4) is imparted to the chondrocytes as the synovial fluid 

imparts a hydrostatic pressure on the fluid phase of the tissue. Additionally, as 

the tissue undergoes a compressive load, the pressurization of the fluid phase 

initially supports the applied load, as water is trapped within the solid matrix of 

the tissue due to its low permeability. Eventually, fluid is expelled from the tissue 

and the frictional force between the fluid and solid phases of the tissue dissipates 

energy from the applied load. In the joint, cartilage is typically exposed to 
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stresses between 3-10 MPa,121 while stress as high as 18 MPa has been 

reported in the hip joint.11 These stresses should be translated to hydrostatic 

pressure due to fluid phase pressurization, as described above. Additionally, the 

human walking cadence generally is up to 1 Hz.104 As such, tissue engineering 

efforts have generally focused on magnitudes and frequencies within these 

physiologic ranges. 

Although prior reviews have addressed the effects of intermittent HP on 

chondrocytes in monolayer,122 and the effects of HP on chondrocyte 

mechanotransduction,123 a comprehensive review discussing the effects of HP in 

articular cartilage tissue engineering studies does not exist. As such, this review 

addresses bioreactor design for the application of HP, different tissue 

engineering strategies involving the application of HP, the chondroprotective 

effects of HP, the use of HP towards chondrogenic differentiation, the effects of 

high pressures on cartilage, as well as the mechanotransduction mechanisms 

that explain the beneficial results from HP application in cartilage tissue 

engineering studies. 

HYDROSTATIC PRESSURE BIOREACTORS 

In general, there are two predominant methods of applying HP to cells, explants, 

or constructs, and they both offer advantages and disadvantages. In the first 

method, HP is applied by compressing a gas phase that transmits load through 

the medium to the cells. However, this method is limited as pressurizing the gas 



46 

phase may alter the gas concentration within the culture medium. For instance, 

Hansen et al.124 observed a 0.36 decrease in the pH of the medium following 10 

h of HP application. However, the advantage of this approach is that it allows for 

the controlled alteration of partial pressures within the medium, such as when 

examining the effects of HP at different oxygen levels.125 Alternatively, a less 

complicated approach involves applying HP by compressing only the fluid phase, 

which limits any changes in gas solubility within the chamber. This method 

generally involves connecting a fluid-filled chamber by hose to a piston attached 

directly to a hydraulic press, controlled by a computer (Fig. 5). This is the 

selected setup in a large number of prior studies, as well as in our own work. 

Both types of bioreactors also include temperature control, generally by placing 

the chamber in a water bath, in order to maintain the culture temperature at 

37 °C. Finally, either type of bioreactor may be altered to allow for 

semicontinuous medium perfusion, as reviewed in detail previously.106 

TISSUE ENGINEERING STRATEGIES WITH HYDROSTATIC 

PRESSURE 

HP has seen extensive use as an agent for increasing the metabolic activity of 

chondrocytes in tissue engineering studies. In general, these studies have 

assessed the effects of HP on chondrocytes cultured in monolayer, cartilage 

explants, as well as chondrocytes in 3-D culture, both with and without a scaffold. 

In tissue engineering studies involving HP application, it is possible to vary the 

magnitude, frequency, and duration of application of HP. Additionally, in studies 
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involving 3-D engineered constructs, it is also possible to vary when HP can be 

applied in construct development. However, little consensus has been reached 

regarding the ideal levels of each of these parameters, particularly when different 

culture conditions are used. 

In general, studies assessing the effects of HP on chondrocytes in monolayer 

have demonstrated beneficial effects of dynamic HP, while static HP has been 

found to have either no effect or a detrimental effect. For instance, Suh et al.126 

cultured young bovine chondrocytes in monolayer, and exposed them to 0.8 

MPa, for 5 min on, 30 min off, 10 times. This treatment resulted in a 40% 

increase in proteoglycan synthesis as well as enhanced aggrecan mRNA. 

However, there was no change in collagen synthesis during pressurization. Also, 

when using juvenile bovine chondrocytes in monolayer, Jortikka et al.127 

demonstrated that HP at 5 MPa, 0.5 Hz, for 20 h, significantly increased sGAG 

incorporation, while 5 MPa static HP for the same application time had no effect 

on sGAG incorporation. 

In addition to these studies using chondrocytes from 1-2 year old animals, 

several studies using adult chondrocytes have been performed, predominantly by 

Smith's group, and have demonstrated similar results. For example, Smith et 

al.128 exposed adult articular chondrocytes in monolayer to 10 MPa HP, static or 

1 Hz, for 4 h. They demonstrated that HP application at 1 Hz increased 

aggrecan and collagen II mRNA immediately after application, while static HP 
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decreased collagen mRNA levels. In a later study, Smith et al.129 cultured normal 

adult bovine chondrocytes in monolayer, and applied HP at 10 MPa, 1 Hz, for up 

to 24 h for just 1 day, or for 4 h/day for 4 days. They found that aggrecan mRNA 

continued to increase up to 24 h of loading, while collagen II mRNA expression 

was increased maximally with 4 and 8 h of HP application. However, they 

demonstrated the importance of examining multiple loading profiles, as changing 

to an application of 4 h/day for 4 days led to even greater increases in both 

aggrecan and collagen II mRNA. Additionally, Ikenoue et al.130 again 

demonstrated the importance of examining multiple application times, as they 

cultured normal adult human chondrocytes in monolayer, and exposed them to 1, 

5, or 10 MPa HP, at 1 Hz, for 4 h/day, for 1 or 4 days. They demonstrated 

enhanced collagen II gene expression only for treatment with 5 and 10 MPa, for 

4 days; also, while enhanced aggrecan expression was observed with all 

treatments, these groups resulted in the greatest enhancement of aggrecan gene 

expression. This study also indicates that magnitude and frequency have 

significant effects on chondrocyte metabolism, and it appears that collagen 

production may be more sensitive to the selected HP regimen. On the other 

hand, a study by Takahashi et al.131 demonstrated beneficial effects when 

applying static HP to chondrocytes in monolayer, although it must be highlighted 

that a chondrosarcoma cell line was used rather than primary chondrocytes. 

They found that 1 and 5 MPa static HP for 2 h resulted in a significant increase in 

sGAG incorporation immediately after HP stimulation, and that 5 MPa static HP 

led to increased expression of TGF-pi mRNA. 
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Studies assessing the effects of HP on chondrocytes in 3-D culture or in explants 

have demonstrated different results, as it has been suggested that chondrocytes 

in monolayer respond differently to HP than tissue, since the cell interaction with 

its ECM is likely involved in the HP response. For instance, Parkkinen et al.132 

observed enhanced sGAG incorporation in explants exposed to HP at 5 MPa, 0.5 

Hz, for 1.5 h, while a significant inhibition of sGAG incorporation was found in 

monolayer cultures exposed to the same regimen. Furthermore, Carver and 

Heath133 observed that adult and juvenile P3 equine chondrocytes in PGA 

meshes respond differently to HP at 0.25 Hz, for 20 min every 4 h for 5 wks. For 

adult cells, 6.87 MPa HP was required to increase GAG and collagen production, 

while for juvenile cells, either magnitude increased GAG production, but only 

6.87 MPa increased collagen production, thus suggesting that collagen 

production may be more sensitive to the applied regimen. In a later study, 

applying HP at 3.44 MPa, 0.25 Hz, 20 min every 4 h for 5 wks to P3 juvenile 

bovine chondrocytes in PGA meshes resulted in significantly increased GAG 

production with no effect on collagen production; however, the results of both 

studies may stem from the use of passaged chondrocytes.134 Finally, in our own 

work,135 exposing immature bovine chondrocytes in scaffoldless constructs to HP 

at 10 MPa, 1 Hz, for 4 h/day, 5 days/wk for up to 8 wks with 10% FBS led to 

increased collagen content relative to control at 4 and 8 wks, and also prevented 

the decreased in GAG/construct observed in the control groups over time. 
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Additionally, contrary to the majority of studies involving chondrocytes in 

monolayer, static HP regimens in the physiologic range have generally 

demonstrated beneficial effects on chondrocytes in 3-D culture or cartilage 

explants. For example, in explants from 2 year old bovines, a 2 h application of 

5-10 MPa static HP enhanced sulfated GAG incorporation while 5-15 MPa static 

HP increased proline incorporation.102 Also, Mizuno et al.136 exposed immature 

bovine chondrocytes in 3-D collagen sponges to static HP, at 2.8 MPa for up to 

15 days, and observed increased GAG production at 5 and 15 days of culture. 

Similarly, Toyoda et al,137 found that exposing immature bovine chondrocytes in 

2% agarose gels to 5 MPa static HP for 4 h resulted in a 4-fold increase in 

aggrecan mRNA as well as a 50% increase in collagen II mRNA. In another 

study using the same constructs and HP regimen, Toyoda et al.138 observed an 

11% increase in GAG production as well as a 4-fold increase in aggrecan mRNA. 

Finally, in our own recent work,139 using scaffoldless articular cartilage constructs 

as described previously,36,14° a full-factorial comparison was made between 3 

magnitudes (1, 5, and 10 MPa) and 3 frequencies (static, 0.1, and 1 Hz) of HP for 

1 h/day, from days 10-14 of construct development. It was determined that static 

HP at 5 or 10 MPa as well as cyclic HP at 10 MPa, 1 Hz, resulted in a significant 

increase in compressive stiffness and GAG production; however, only static HP 

at 5 or 10 MPa resulted in a significant increase in tensile stiffness and collagen 

production. An additional exciting finding of the study was additive and 

synergistic effects when applying HP and growth factors, as the combination of 

10 MPa static HP and TGF-pi resulted in 164% and 231% increases in 
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compressive and tensile stiffness, respectively, as well as 85% and 173% 

increases in GAG and collagen production, respectively. 

Although physiological magnitudes clearly have beneficial effects on chondrocyte 

gene expression, protein production, and biomechanical properties, based on the 

varying results observed in these studies regarding effects of HP regimens, it is 

clear that magnitude, frequency, and application time must all be optimized for 

each system. It is possible that a regimen may yield beneficial effects in a 3-D 

culture system, while simultaneously resulting in little effect or a detrimental 

effect in a monolayer system. Additionally, the cell type used appears to play a 

significant role in the response to HP application, as immature bovine 

chondrocytes appear to have a greater metabolic response to HP stimulation 

than adult human chondrocytes. Finally, performing HP studies on 3-D 

constructs leads to additional issues, as the optimal time to begin applying HP 

during construct development must be determined. Perhaps application of HP 

very early in culture might yield similar results to monolayer studies due to the 

absence of abundant ECM, while studies later in construct development when a 

significant ECM is present may yield substantially different results. 

CHONDROPROTECTIVE EFFECTS OF HYDROSTATIC 

PRESSURE 

HP also appears to be useful in providing chondroprotective effects to 

chondrocytes subjected to an inflammatory stimulus. For instance, the 
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application of HP at 10 MPa, 1 Hz, for 12 or 24 h to human osteoarthritic 

chondrocytes in monolayer resulted in decreased expression of matrix 

metalloproteinase (MMP)-2, interleukin (IL)-6, and monocyte chemoattractant 

protein (MCP)-1.141 Additionally, Lee et al.142 demonstrated chondroprotective 

effects of HP on human osteoarthritic chondrocytes in monolayer. They found 

that applying HP at 10 MPa, 1 Hz, for 4 h, following an 18 h treatment with the 

known inflammatory mediator lipopolysaccharide (LPS), mitigated the damaging 

effects of LPS, as there were decreased nitric oxide and nitric oxide synthase 

levels, which are known to have deleterious effects on ECM production. There 

was also enhanced collagen II and aggrecan mRNA levels relative to 

unpressurized cells treated with LPS. A later study by Lee et al.143 identified 

chondroprotective effects of HP following shear stimulation, as the application of 

HP at 10 MPa, 1 Hz to human osteoarthritic chondrocytes after shear stress 

inhibited nitric oxide release. Additional chondroprotective effects of HP on 

osteoarthritic chondrocytes were observed in work by Fioravanti et al.,144 as 

coupling HP with exogenous application of hyaluronic acid resulted in significant 

chondroprotective effects from IL-ip treatment induced inflammation, as well as a 

significant increase in GAG production. Furthermore, Gavenis et al.145 found that 

applying 40 kPa of HP at 0.0125 Hz to human osteoarthritic chondrocytes 

resulted in a 53.3% increase in GAG content by 14 days; however, the GAG/dry 

weight remained only 0.06%. 
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Finally, chondroprotective effects have also been demonstrated in primary 

chondrocytes, as HP at 5 MPa, 0.5 Hz, 3 h/day, for 3 days led to upregulation of 

TIMP-1 and downregulation of MMP-13 and collagen I gene expression in bovine 

chondrocytes cultured in alginate beads.146 These results appear promising as 

they indicate that HP could possibly be used to delay the onset of osteoarthritis. 

Furthermore, primary osteoarthritic chondrocytes could potentially be used in 

tissue engineering strategies, which is exciting, as they would be somewhat of a 

readily available autologous cell source. However, it must be mentioned that 

Islam et al.147 observed an increase in the number of apoptotic cells when 

applying HP at 5 MPa, 1 Hz, for 4 h to osteoarthritic human chondrocytes in 

monolayer, thus indicating that osteoarthritic chondrocytes may be quite sensitive 

to the selected HP regimen. 

HYDROSTATIC PRESSURE AND DIFFERENTIATION 

In addition to its wide use as an agent for mechanical stimulation in tissue 

engineering, HP has seen tremendous use as a method for differentiating cells 

towards a chondrogenic phenotype. For instance, Angele et al.148 cultured adult 

human bone marrow mesenchymal stem cells (bmMSCs) in aggregate culture, 

and found that HP at 5 MPa, 1 Hz, 4 h/day, for 1 day had no effect, while 7 days 

of treatment resulted in a significant increase in both collagen and GAG content 

as early as 7 days after removal of the HP stimulus, but a maximal increase was 

observed 21 days after removal of the HP stimulus. This study suggests that 

multiple days of HP application are required for an effect, and as seen in our own 
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work with hydrostatic pressure,139 the maximum effects of HP may be delayed 

until several weeks after removal of the stimulus. In a later study, Luo and 

Seedhom149 seeded ovine bmMSCs on polyester scaffolds and demonstrated 

that following 4 wks of culture, HP at 0.1 MPa, 0.25 Hz, for 30 min/day, for 10 

days resulted in both increased GAG and collagen content, while shorter 

timepoints had no effect on collagen content. However, as the constructs were 

assessed immediately after HP application, it is possible that the longer 

application time required to see effects on collagen content may actually just be 

due to the delayed effects of the earlier days of HP application, as discussed 

above. Additionally, Wagner et al.150 seeded human bmMSCs in type I collagen 

sponges, and observed that HP at 1 MPa, 1 Hz, for 4 h/day, for 10 days resulted 

in increased aggrecan, collagen II, and sox9 mRNA and increased histological 

staining for GAGs. However, they also observed an increase in collagen I 

mRNA, which was possibly due to the use of an osteochondrogenic medium, 

which differs from prior work. This hypothesis is further supported as Scherer et 

al.125 found that a chondrogenic medium was required for HP to promote 

chondrogenesis of bovine bmMSCs in high density monolayer. 

As described above in tissue engineering studies, combined treatment with both 

growth factors and HP as agents for chondrogenesis appears promising. For 

example, Miyanishi et al.151 cultured adult human bmMSCs in pellet culture, and 

exposed them to HP at 10 MPa, 1 Hz, 4 h/day, for up to 14 days, with and 

without 10 ng/ml TGF-p3. The combined treatment with HP and TGF-p3 resulted 
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in a significant increase in collagen II, aggrecan, and sox9 mRNA levels, that was 

greater than the increased levels from either treatment alone. In a follow-up 

study, Miyanishi et al.152 created pellet cultures of adult human bmMSCs, and 

applied HP at 0.1, 1, and 10 MPa, 1 Hz, for 4 h/day, for 3, 7, or 14 days, along 

with 10 ng/ml TGF-p3. In this study, all magnitudes significantly increased 

aggrecan and sox9 mRNA, but only 10 MPa significantly increased collagen II 

mRNA. Furthermore, 10 MPa was the only treatment to significantly increase 

both GAG and collagen production, with the maximum effect observed after 14 

days of HP application. Again, this observation may be due to the delayed 

effects of HP as discussed above, and it would be interesting to determine if 

similar results would be obtained if assessment was delayed until 5-10 days after 

removal of the HP stimulus. 

HP has also been used as a method for chondroinduction of other cell types, 

such as fibroblasts and dedifferentiated chondrocytes. For instance, Elder et 

al.153 found that 7200 cycles/day of HP at 5 MPa, 1 Hz, for 3 days, applied to 

murine embryonic fibroblasts in monolayer, resulted in an almost 200% increase 

in GAG production, along with an almost 225% increase in collagen synthesis. 

Additionally, Heyland et al.154 cultured dedifferentiated porcine chondrocytes in 

alginate beads, and observed a 25% increase in GAG production as well as a 

65% increase in collagen II production following HP application at 0.3 MPa, 1 Hz, 

for 6 h/day. Finally, Kawanishi et al.155 grew pellet cultures of dedifferentiated 

bovine chondrocytes (P3), and demonstrated that HP application at 5 MPa, 0.5 
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Hz, for 4 h/day for 4 days led to a 5-fold increase in aggrecan mRNA and a 4-fold 

increase in collagen II mRNA. However, HP had a negligible effect on collagen I 

mRNA levels, as both control and HP treated pellets had similar decreases in 

collagen I mRNA. Based on these results, HP appears to be a promising method 

for differentiating cells to a chondrocytic phenotype, although in the case of 

dedifferentiated chondrocytes, HP may have a greater effect on enhancing 

collagen II production than diminishing collagen I production. 

EFFECTS OF HIGH HYDROSTATIC PRESSURES 

As described above, there has been extensive work demonstrating the beneficial 

effects of physiological magnitudes of hydrostatic pressures on the gene 

expression, biochemical, and biomechanical properties of chondrocytes in 

monolayer, engineered constructs, as well as explants. However, raising 

pressures above these physiological levels has been shown to have either 

limited or even detrimental effects. Also, although static HP has generally been 

shown to have beneficial effects when using physiological magnitudes for 3-D 

tissue engineering studies, it becomes far more detrimental than dynamic loading 

at higher pressures. For example, Hall et al.102 examined the effects of 20-50 

MPa static HP, for 20 s, 5 min, or 2 h on bovine explants, and found that short 

term application times had no effect on GAG and collagen synthesis rates, while 

2 h application resulted in a significant decrease in both GAG and collagen 

synthesis. In another 3-D study, Nakamura et al.156 seeded normal adult rabbit 

chondrocytes in alginate beads and found that 50 MPa static HP for 12 or 24 h 
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resulted in a significant increase in the number of apoptotic cells. Additionally, 

they found that 50 MPa static HP led to a dramatic increase in heat-shock protein 

70 (hsp70) mRNA. In another study, Fioravanti et al.157 studied the effects of 

high HP on normal human chondrocytes in alginate beads, and found that 24 

MPa static HP applied for 3 h decreased mitochondria and golgi body number, 

and altered the actin and tubulin of normal chondrocytes such that they more 

closely resembled osteoarthritic cells in these characteristics. 

Several studies on chondrocytes in monolayer have demonstrated similar 

detrimental results. For instance, Parkkinen et al.109 assessed the effects of high 

pressures on bovine chondrocytes in monolayer, and found that a 2 h application 

of 30 MPa static HP, and to a lesser extent 15 MPa static HP, resulted in a 

microtubule dependent compaction of the golgi apparatus with a concomitant 

decrease in GAG synthesis. However, 15 and 30 MPa HP at either 0.05 or 0.125 

Hz had no effect on the golgi apparatus or GAG synthesis. Similarly, in a later 

study, Parkinnen et al.158 assessed the effects of 2 h of HP stimulation on bovine 

chondrocytes in monolayer, and found that 30 MPa static HP led to a reversible 

complete loss of stress fibers, while 30 MPa HP, at 0.05 or 0.125 Hz, just 

changed the appearance of the stress fibers. It was suggested that the altered 

stress fibers may be the result of very small strains on the cells or microfilaments, 

or possibly due to alterations in the intracellular ion concentrations, as described 

further below. In a similar study using bovine chondrocytes in monolayer, Lammi 

et al.107 found that 30 MPa static HP resulted in a 37% decrease in GAG 
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synthesis accompanied by decreased aggrecan mRNA levels; this treatment also 

resulted in the production of atypically large aggrecan molecules. These results 

are interesting as the altered aggrecan size demonstrates that HP can affect 

production of ECM at the levels of both transcription and translation. 

Detrimental effects of high HP have also been observed in other chondrocyte-like 

cell lines, cultured in monolayer. For example, Sironen et.al.159 assessed the 

effects of 30 MPa HP, static or 1 Hz, for up to 24 h on immortalized human 

chondrocyte cell lines and chondrosarcoma cells, cultured in monolayer. They 

found that static HP resulted in significantly increased hsp70, hsp40, Gadd45 

and Gadd153 gene expression, all of which are genes associated with stress 

responses. Additionally, they demonstrated that static HP had a greater effect on 

the increased gene expression than HP at 1 Hz. In a separate study, Sironen et 

al.160 used a cDNA array to assess the effects of a 6 h treatment with 30 MPa 

static HP on human chondrosarcoma cells. This treatment had negative effects 

on the ECM content, as it led to decreased osteonectin, fibronectin, and 

procollagen levels. Furthermore, Takahashi et al.108 found that in a human 

chondrosarcoma cell line, a 2 h application of 50 MPa static HP significantly 

increased IL-6 and TNF-a mRNA, and also led to decreased expression of 

proteoglycan core protein; these results are indicative of osteoarthritic changes. 

Finally, Kaamiranta et al.161 observed a doubling of hsp70 mRNA after 12 h of 

treatment with 30 MPa static HP, while treatment with 30 MPa, 0.5 Hz did not 
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change the level of hsp70. However, treatment with 4 MPa HP, either static or 

dynamic, did not alter the expression of hsp70. 

Taken together, these results suggest that HP magnitudes outside of the 

physiologic range may result in a stress response, especially when using static 

HP, so tissue engineering strategies should focus on more physiological 

magnitudes. Although these higher pressures likely are not useful for cartilage 

tissue engineering strategies, they indicate that high pressures may play a role in 

the progression of osteoarthritis, as many osteoarthritic changes can be 

observed in chondrocytes exposed to these high pressures. 

HYDROSTATIC PRESSURE MECHANOTRANSDUCTION 

Unlike direct compression and shear mechanical stimulation, hydrostatic 

pressure does not result in macroscopic deformation of cartilage. According to 

the biphasic theory, the solid matrix of cartilage is intrinsically incompressible, 

and no tissue deformation will be observed under an external hydrostatic load, 

even though the tissue may be anisotropic. Bachrach et al.162 tested this 

theoretical prediction on normal bovine cartilage explants, and found that static 

pressures in the physiological range, up to 12 MPa, did not result in measurable 

cartilage deformation. Similarly, Tanck et al.163 found that physiological 

hydrostatic pressure magnitudes on fetal cartilage result only in extremely small 

deformations of approximately 2 (x-strain, as a result of the relative 

incompressibility of the solid matrix of articular cartilage. However, it must be 
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noted that even though there is only a minute tissue strain, this, along with the 

strain imparted by the compressibility of water itself, may be great enough to 

impart strain on the chondrocytes themselves, although it has previously been 

demonstrated that the cells are relatively incompressible at these physiological 

pressures.164 Therefore, as HP generally produces a state of stress with no or 

very little strain, alternative mechanisms have been proposed to explain the 

mechanotransduction pathways of HP application. 

Several studies have indicated that HP likely has direct effects on cell membrane 

ion channels (Fig. 6). Hall165 examined the effects of static HP on isolated bovine 

chondrocytes for 20 s or 10 min, and found that the Na/K pump was substantially 

inhibited when going from 2.5-5 MPa, and this inhibition increased slightly when 

pressure was increased up to 50 MPa. For example, 10 MPa static HP for 10 

min resulted in a 53% decrease in the activity of the Na/K pump, relative to 

control. Additionally, the Na/K/2CI transporter was inhibited by increasing 

pressure up to 50 MPa, and it was found that increasing the magnitude of 10 s of 

static HP application from 7.5-15 MPa resulted in an almost 40% reduction in 

Na/K/2CI transporter activity. An additional study by Browning et al.166 examined 

the effects of static HP, ranging from 2-30 MPa for up to 180s on juvenile bovine 

chondrocytes, in monolayer. They found that both 20 and 30 MPa static HP 

application resulted in a significant increase in the activity of the Na/H pump. 

Furthermore, adding the kinase inhibitor staurosporine prevented the HP-induced 

stimulation of Na/H exchange, thus suggesting that direct activation of the 
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transporter is a phosphorylation-dependent process. In a similar study, 

Mizuno167 assessed the effects of 5 min of static HP at 0.5 MPa on immature 

bovine articular chondrocytes in monolayer, and found that the application of HP 

to middle zone cells resulted in a 2-fold increase in intracellular calcium. It was 

determined that this increase was dependent upon direct effects of HP on 

stretch-activated calcium channels, as well as the release of intracellular calcium. 

Likewise, Browning et al.168 assessed the effects of short term application of 

static HP on isolated juvenile bovine articular chondrocytes. They found that 30 

s of static HP application at 30 MPa resulted in an approximately 3-fold increase 

in intracellular calcium, largely caused by calcium release from intracellular 

stores. Additionally, they found that this intracellular calcium release was 

dependent on IP3 mediation, and that similar induction of IP3-mediated calcium 

release occurred at more physiologic pressure magnitudes, such as 10 MPa. 

As reviewed previously,169 the direct effects of HP on transmembrane ion 

transporter function are likely due to the pressure's effects on the conformations 

of the transmembrane proteins. Although HP does not measurably deform 

cartilage due to the intrinsically incompressible nature of its phases, the 

transporter proteins themselves have void spaces created by their folding 

orientation that can be compressed. As these spaces undergo increased strain 

as pressure rises, the protein will eventually alter its orientation to achieve a 

lower energy folding state. Thus, as described above, a pressure-dependent 

change in intracellular ion concentrations will be observed. It is widely known 
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that alterations in intracellular ion concentrations result in changes in cellular 

gene expression and protein synthesis.170 Thus, it is likely that specific 

pressures result in certain ion concentration changes that lead to the specific 

effects on gene expression, protein production, and eventually biomechanical 

properties, in the tissue engineering studies described previously. 

CONCLUSIONS 

Cartilage regeneration has been an extremely difficult problem due to the poor 

intrinsic healing capacity of the tissue. However, mechanical stimulation with HP 

has provided significant beneficial effects on gene expression and protein 

production of chondrocytes in monolayer, and has led to enhanced biochemical 

and biomechanical properties in engineered constructs. It is apparent that 

physiologic magnitudes, particularly between 5 and 10 MPa have beneficial 

effects on cartilage properties; however, there are substantial differences in the 

effects observed between monolayer and 3-D culture, as static HP regimens 

have little effect or are detrimental to chondrocytes in monolayer, while static HP 

in the physiologic range enhances the functional properties of 3-D engineered 

constructs. Additionally, work involving HP application to osteoarthritic 

chondrocytes demonstrates that osteoarthritic chondrocytes may be used in 

tissue engineering strategies, and that HP could potentially be used as a 

treatment modality to delay osteoarthritic changes. Furthermore, physiologic 

magnitudes of HP, particularly with intermittent loading frequencies can be used 

as a differentiation factor for MSCs, embryonic stem cells, as well as 
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dedifferentiated chondrocytes. Finally, it is clear that high hydrostatic pressures, 

particularly between 30-50 MPa but as low as 15 MPa, have detrimental effects 

on chondrocytes and generally result in a stress response and decreased 

metabolic activity. These detrimental effects are especially apparent with loading 

times exceeding 2 h. 

Although the work performed up to this point appears promising, additional work 

must be performed in each system to optimize the magnitude, frequency, 

duration of application, and application time in construct development. 

Additionally, based on the additive and synergistic effects of HP and growth 

factor application, it is likely that following optimization, HP will need to be used in 

combination with other exogenous stimuli such as growth factors as well as with 

other mechanical stimuli such as direct compression in order to yield a construct 

with biochemical and biomechanical properties approaching those of native 

tissue. 
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ABSTRACT 

During in vivo development, articular cartilage is exposed to several different 

forms of stress. This study examined the effects of radial confinement and 

passive axial compression-induced vertical confinement, on the biomechanical, 

biochemical, and histological properties of self-assembled chondrocyte 

constructs. The self-assembled constructs, engineered without the use of an 

exogenous scaffold, exhibited significant increases in stiffness in the direction 

orthogonal to that of the confinement surface. With radial confinement, the 

significantly increased aggregate modulus was accompanied by increased 

collagen organization in the direction perpendicular to the articular surface, with 

no change in collagen or glycosaminoglycan (GAG) content. Additionally, radial 

confinement was most beneficial when applied before t=2 wks. With passive 

axial compression, the significantly increased Young's modulus and ultimate 

tensile strength were accompanied by a significant increase in collagen 

production. This study is the first to demonstrate the beneficial effects of 

confinement on tissue engineered constructs in the direction orthogonal to that of 

the confinement surface. 
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INTRODUCTION 

Cartilage degeneration, from injury or osteoarthritis, is a tremendous problem in 

current orthopaedic practice. Following injury or osteoarthritis, articular cartilage 

is unable to repair itself, resulting in a permanent defect or the formation of 

mechanically inferior fibrocartilage.14 Therefore, tissue engineering is a 

promising approach for the treatment of articular cartilage injuries, as this 

approach may eventually allow for the production of engineered tissue 

indistinguishable from native cartilage. 

A chondrocyte self-assembling process for tissue engineering articular cartilage 

was recently developed36 that allowed constructs to reach 1/3 the stiffness of 

native cartilage. Additionally, the benefits of hydrostatic pressure stimulation on 

self-assembled constructs have been demonstrated,135 as intermittent hydrostatic 

pressure applied at 10 MPa and 1 Hz, for 4 hrs per day and 5 days per wk was 

shown to increase collagen production. The self-assembling process avoids 

many of the problems associated with scaffold use, namely concerns over stress 

shielding, biocompatibility and biodegradation. 

Articular cartilage is exposed to a variety of forces in vivo including compression, 

shear, and hydrostatic pressure. Additionally, mechanical stimulation is vital for 

maintaining the integrity of the tissue, as articular cartilage demonstrates 

changes representative of a loss of function when immobilized.99,10° Therefore, it 

is likely that some form of mechanical intervention will be required for further 
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refinement of tissue engineering techniques. Although the precise signaling 

pathways involved in mechanotransduction have not been fully elucidated, 

several studies have shown promising results involving the use of mechanical 

stimulation including dynamic compression,111,171_176 shear,174,177 and hydrostatic 

pressure.39,102,178,179 

Although coupling mechanical stimulation with the self-assembling process for 

tissue engineering articular cartilage represents a promising solution for 

treatment of injuries, several questions remain concerning this approach. Aside 

from the studies showing beneficial effects of dynamic compression and 

hydrostatic pressure, studies comparing the effects of passive confinement on 

the anisotropy of articular cartilage are lacking. Additionally, studies involving the 

effects of mechanical intervention at different times are limited.180 

The purpose of this study was to examine the effects of construct confinement in 

different directions and at different times on construct mechanical properties. 

Radial confinement and passive axial compression-induced vertical confinement 

of self-assembled constructs were used. It was hypothesized that the application 

of confinement would enhance the mechanical properties of the constructs in the 

orthogonal direction. It was further hypothesized that confinement at different 

timepoints in construct development would have a significant effect on construct 

properties. To test these hypotheses, three experiments were performed (Fig. 

7). First, self-assembled constructs were radially confined in agarose wells for 1, 
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2, 3, or 4 wks, after which the constructs were cultured unconfined for the 

remainder of the 4-wk study; the effects of confinement on compressive stiffness 

were investigated. Second, the constructs were cultured in the same wells used 

in the first experiment for 2 wks, after which they were transferred to 

incrementally larger wells for the 3rd and 4th wk of culture. Finally, the effects of 

vertical confinement, in the form of passive axial compression, on the tensile 

stiffness were examined. 

METHODS 

Chondrocyte Isolation and Seeding 

Chondrocytes were isolated from the distal femur of wk-old male calves93,118,181 

(Research 87 Inc.) less than 36 hrs after slaughter, with collagenase type 2 

(Worthington) in the culture medium. The medium was DMEM with 4.5 g/L-

glucose and L-glutamine, 100 nM dexamethasone, 1% fungizone, 1% 

Penicillin/Streptomycin, 1% ITS+, 50 |ig/mL ascorbate-2-phosphate, 40 |xg/mL L-

proline, and 100 |xg/mL sodium pyruvate (termed chemically-defined medium). 

Each leg came from a different animal and yielded roughly 150 million 

chondrocytes. To reduce variability among animals, cells from all legs were 

pooled together to yield a mixture of chondrocytes; a mixture of cells from 8 legs 

was used in the 1st study, while a mixture of cells from 6 legs was used in the 2nd 

and 3rd studies (see descriptions below). The pooled cells were counted on a 

hemocytometer, and viability was assessed using a trypan blue exclusion test. 
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Viability was >99% for the pooled cells. Chondrocytes were frozen in culture 

medium supplemented with 20% FBS and 10% DMSO at -80°C for 2 wks to a 

month before use. After thawing, viability remained greater than 75%. A 

polysulfone die consisting of 5 mm dia. x 10 mm long cylindrical prongs was 

constructed to fit into 6 wells of a 48-well plate. Additional polysulfone die 

consisting of 6 mm dia. x 10 mm long cylindrical prongs and 7 mm dia. x 10 mm 

long cylindrical prongs were fabricated. To construct each agarose mold, sterile, 

molten 2% agarose was introduced into a well fitted with the polysulfone die. 

The agarose was allowed to gel at room temperature for 60 min. The agarose 

mold was then separated from the polysulfone die and submerged into two 

exchanges of culture medium to completely saturate the agarose well with 

culture medium by the time of cell seeding. To each agarose well, 5.5 x 106 cells 

were added in 150 fil of culture medium. The cells self-assembled within 24 hrs 

in the agarose wells and were maintained in the same well for a specified amount 

of time; t=0 was defined as 24 hrs after seeding. 

1st Study: Radial Confinement of Self-Assembled Constructs 

At t=1, 2, or 3 wks, self-assembled constructs (n=6) were removed from 

confinement in the 5 mm dia. agarose well, and placed in one well of a 6-well 

culture plate coated with 2% agarose (Fig. 7a). Each agarose-coated well 

contained 3-4 constructs, and 500 nl of medium per construct was changed daily 

(1.5-2 ml per well). At t=4 wks, all samples were tested for morphological, 

histological, biochemical, and biomechanical properties. 
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2nd Study: Maintenance of Radial Confinement of Self-Assembled 

Constructs 

At t=2 wks, self-assembled constructs (n=5) were removed from confinement in 

the 5 mm dia. agarose wells, and transferred to 6 mm dia. agarose wells (Fig. 

7b). At t=3 wks, these constructs were removed from confinement in the 6 mm 

dia. agarose wells, and transferred to 7 mm dia. agarose wells. A control 

consisted of constructs confined in 5 mm dia. agarose wells for 2 wks, and then 

maintained in agarose-coated wells, as described above. Each day, 500 jxl of 

medium was changed. At t=4 wks, all samples were tested for morphological, 

histological, biochemical, and biomechanical properties. 

3rd Study: Passive Axial Compression of Self-Assembled Constructs 

At t=10 days, self-assembled constructs (n=5) were removed from confinement 

in 5 mm dia. agarose wells, and transferred to 6 mm dia. agarose wells. Vertical 

confinement, in the form of passive axial compression with a dead weight, was 

applied by placing a 5 mm dia. x 1 cm long, 1 g, porous, sintered steel cylinder 

on top of each construct in the 6 mm dia. wells (Fig. 7c). The dead weight 

corresponded to a stress of 0.5 kPa. At t=14 days, the porous cylinders were 

removed, and the constructs were transferred to agarose-coated wells for the 

remainder of the study. A control consisted of constructs cultured in 5 mm dia. 

agarose wells, then transferred to 6 mm dia. agarose wells at t=10 days, and 

finally maintained in agarose-coated wells for the remainder of the study. 
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Histology and Immunohistochemistry 

Samples were frozen and sectioned at 14 \m\. Safranin-0 and fast green 

staining were used to examine GAG distribution.182,183 Picrosirius red was used 

for qualitative examination of collagen content. Polarized light microscopy of 

picrosirius red-stained sections was used to examine the collagen organization of 

the constructs. Slides were also processed with immunohistochemistry (IHC) to 

test for the presence of collagen types I (COL1) and II (COL2) on a Biogenex 

(San Ramon, CA) i6000 autostainer. After fixing in chilled acetone, the slides 

were rinsed with IHC buffer (Biogenex), quenched of peroxidase activity with 

hydrogen peroxide/methanol, and blocked with horse serum (Vectastain ABC kit, 

Vector Laboratories, Burlingame, CA). The slides were then incubated with 

either mouse anti-COL1 (Accurate Chemicals (Westbury, NY)) or mouse anti-

COL2 (Chondrex (Redmond, WA) antibodies). The secondary antibody (mouse 

IgG, Vectastain ABC kit) was then applied, and color was developed using the 

Vectastain ABC reagent and DAB (Vector Laboratories). 

Quantitative Biochemistry 

Samples were digested with 10 mg/ml pepsin solution (Sigma) in 0.05 M acetic 

acid with 0.5 M NaCI at 4°C for 72 hrs, followed by 1 mg/ml pancreatic elastic in 

1x TBS at 4°C overnight. Total DNA content was measured by Picogreen® Cell 

Proliferation Assay Kit (Molecular Probes). Total sulfated GAG was then 

quantified using the Blyscan Glycosaminoglycan Assay kit (Biocolor), based on 



72 

1,9-dimethylmethylene blue binding.184,185 After being hydrolyzed by 2 N NaOH 

for 20 min at 110°C, samples were assayed for total collagen content by a 

chloramine-T hydroxyproline assay.186 

Indentation Testing 

Samples were evaluated with an automated indentation apparatus.187 A step 

mass of 0.7 g (0.007 N) was applied with a 1 mm flat-ended* porous indentertip, 

and the specimens were allowed to creep until equilibrium, as described 

elsewhere.36 Preliminary estimations of the Young's modulus of the samples 

were obtained using the analytical solution for the axisymmetric Boussinesq 

problem with Papkovich potential functions.188, 189 The intrinsic mechanical 

properties of the samples were then determined using the linear biphasic theory.3 

Tensile Testing 

Samples were cut into 500 |xm thickness and tested using a uniaxial materials 

testing machine (Instron 5565), as described elsewhere.190 Samples were cut 

into dog-bone shapes that had approximately 1-mm-long gauge lengths. 

Cyanoacrylate glue was used to attach the samples to paper tabs for gripping, 

outside of the gauge length. A constant strain rate of 0.01 s"1 was used. The 

Young's modulus was equal to the slope of the linear region of the curve, the 

tensile strength equal to the maximum stress, the maximum strain was the strain 

corresponding to the maximum stress, and the energy was equal to the area 

under the curve (trapezoid rule) from zero strain to maximum strain. 
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Statistical Analysis 

All samples were assessed biochemically and biomechanically (n=5 or 6). A 

single factor ANOVA was used to analyze the samples, and Tukey's post hoc 

test was used when warranted. Significance was defined as p < 0.05. 

RESULTS 

Gross Appearance and Histology 

There were no differences in gross morphology between any of the groups. After 

2 wks of culture, all constructs reached a diameter slightly below 6 mm. By 3 

wks of culture, constructs reached a diameter slightly below 7 mm, and by 4 wks 

of culture, constructs reached a diameter approaching 7.5 mm. In the 

confinement study, there were no significant differences in thickness between the 

2-wk confinement group and the 1, 3, or 4-wk confinement groups, with 

thicknesses of 1.05±0.05 mm, 1.02±0.06 mm, 1.07±0.17 mm, and 1.10±0.14 mm 

respectively. Likewise, in the passive axial compression study, there were no 

significant differences in thickness between treatment groups. The compressed 

group had a thickness of 0.73±0.09 mm and the control group had a thickness of 

0.81 ±0.07 mm. Additionally, in the follow-up confinement study, there was no 

significant difference in thickness between the 2-wk confinement group and the 

group confined for 2 wks in 5 mm dia. wells, 1 wk in 6 mm dia. wells, and 1 wk in 

7 mm dia. wells, with values of 0.58±0.09 and 0.51 ±0.04 respectively. At t=4 
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wks, all constructs stained positive for collagen throughout the thickness of the 

construct (Fig. 8b). Additionally, safranin-0 staining for GAG was observed 

throughout the constructs (Fig. 8c). COL2 immunostaining was observed 

throughout the constructs, with no differences in production among the treatment 

groups (Fig. 8d). Based on IHC, there was no COL1 production for any 

constructs (Fig. 8e). 

Polarized Light Microscopy 

Polarized light microscopy was used to assess the collagen organization of the 

constructs in the confinement study. The constructs that were confined in 5 mm 

dia. wells for 2 wks and then unconfined and cultured in agarose-coated wells for 

the remaining 2 wks exhibited small-fiber collagen organization in the direction 

perpendicular to the construct surface as well as larger-fiber collagen 

organization in the direction parallel to the construct surface (Fig. 8a). The 

alignment of the small collagen fibers resembled struts. Small-fiber collagen 

organization was minimally observed in the other treatment groups (Fig. 8a), 

namely confinement in 5 mm dia. wells for 1, 3, or 4 wks. 

The increased collagen organization was not observed in the passive axial 

compression study, as the constructs to which a dead weight was applied did not 

show any small-fiber collagen organization. 
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Quantitative Biochemistry 

There was no significant difference in WW/construct, DNA/construct, GAG/WW, 

and collagen/WW between the 2-wk confinement group and the 1, 3, or 4-wk 

confinement groups. The 2-wk confinement group had a WW of 39±4 mg, while 

the 1-wk, 3-wk, and 4-wk confinement groups had a WW of 44±3 mg, 37±4 mg, 

and 41 ±2 mg respectively. The 2-wk confinement group had a DNA/construct of 

49±2 |j.g, while the 1-wk, 3-wk, and 4-wk confinement groups had a 

DNA/construct of 44±11 ^g, 46±13 ng, and 47±5 |xg respectively. The 2-wk 

confinement group had a GAG/WW of 0.061 ±0.009 mg/mg, while the 1-wk, 3-wk, 

and 4-wk confinement groups had a GAG/WW of 0.067±0.014 mg/mg, 

0.055±0.003 mg/mg, and 0.050±0.004 mg/mg respectively. The 2-wk 

confinement group had a collagen/WW of 0.039±0.006 mg/mg, while the 1-wk, 3-

wk, and 4-wk confinement groups had a collagen/WW of 0.032±0.005 mg/mg, 

0.041 ±0.009 mg/mg, and 0.036±0.008 mg/mg respectively. Additionally, in the 

follow-up confinement study, there was no significant difference in WW/construct, 

DNA/construct, GAG/WW or collagen/WW between the 2-wk confinement group 

and the group confined for 2 wks in 5 mm dia. wells, 1 wk in 6 mm dia. wells, and 

1 wk in 7 mm dia. wells. These groups had WW values of 16±1 mg and 14±2 

mg, DNA/construct values of 31 ±2 ng and 31 ±4 ng, GAG/WW values of 

0.074±0.008 mg/mg and 0.065±0.006 mg/mg, and collagen/WW values of 

0.071 ±0.019 mg/mg and 0.088±0.011 mg/mg respectively. The collagen/WW for 

the passive axial compression group at 0.067±0.009 mg/mg was significantly 

higher than the unloaded control group, which had a collagen/WW of 
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0.044±0.008 mg/rhg. There was no significant difference in GAG/WW between 

the passive axial compression group and the control, with values of 0.070±0.006 

mg/mg and 0.064±0.007 mg/mg respectively. Finally, the passive axial 

compression group had WW values of 20±1 mg and 29±3 mg respectively; there 

was no difference in DNA/construct between the passive axial compression 

group and the control group, with values of 41 ±7 ng and 40±2 jxg respectively. 

Mechanical Evaluation 

The aggregate modulus of the 2-wk confinement group reached 225±32 kPa, 

and was significantly higher than the aggregate moduli of the 1, 3, or 4-wk 

confinement groups, with values of 120±43 kPa, 126±56 kPa, and 94±52 kPa 

respectively (Fig. 9). In the follow-up confinement study, the aggregate modulus 

of the 2-wk confinement group at 214±110 kPa was insignificantly higher than 

that of the group confined for 2 wks in 5 mm dia. wells, 1 wk in 6 mm dia. wells, 

and 1 wk in 7 mm dia. wells, at 177±96 kPa. 

The tensile modulus of the passive axial compression group at 1.4±0.3 MPa was 

significantly higher than the tensile modulus of the control group at 1.0±0.1 MPa 

(Fig. 10a). Additionally, the ultimate tensile strength of the passive axial 

compression group at 339±86 kPa was significantly higher than the ultimate 

tensile strength of the control group at 200±71 kPa (Fig. 10b). However, there 

was no significant difference between the aggregate modulus of the passive axial 
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compression group and control group, with values of 101 ±48 kPa and 111 ±52 

kPa respectively. 

DISCUSSION 

This study was designed to assess the effects of radial confinement and, 

separately, to determine the effects of passive axial compression-induced vertical 

confinement, on the mechanical properties of 3-D self-assembled articular 

cartilage constructs over a 4-wk culture period. Confining constructs for 2 wks in 

5 mm dia. agarose wells led to a significantly increased aggregate modulus. This 

increased compressive stiffness was accompanied by increased collagen 

organization without a change in GAG or collagen content. However, 

confinement in 5 mm dia. wells for 2 wks, followed by confinement in 6 mm dia. 

wells for 1 wk and confinement in 7 mm dia. wells for 1 wk did not enhance the 

compressive properties of the constructs, and trended towards a decrease in 

aggregate modulus. The application of a 0.01 N dead weight to the constructs, 

corresponding to 0.5 kPa of stress, resulted in significant increases in both 

tensile modulus and ultimate tensile strength, as well as total collagen per wet 

weight. These results, discussed further below, support our hypothesis, as 

changes in mechanical properties were identified in a direction orthogonal to the 

confinement surface in tissue-engineered articular chondrocyte constructs. 

Additionally, this study demonstrates further refinement and characterization of 

the self-assembling process. 
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Radial confinement in 5 mm dia. agarose wells for 2 wks led to approximately a 

2-fold increase in aggregate modulus at t=4 wks, relative to confinement for 1, 3, 

or 4 wks. There was no difference in ECM content among the different 

confinement groups; however, increased collagen organization in the direction 

parallel to that of the compression testing and orthogonal to the confinement 

surface was observed only in the group confined for 2 wks. The organized 

collagen fibers appeared to form struts that may help to increase the 

compressive stiffness of the constructs. These results were unexpected as the 

collagen of articular cartilage is typically responsible for the tensile stiffness, 

while the GAG content is responsible for the compressive stiffness. However, 

these results agree with those found in previous studies,191, 192 that have 

demonstrated that total GAG and collagen content may not be an ideal indicator 

of mechanical properties; rather, ECM organization may play a significant role in 

predicting mechanical properties. A possible explanation is that the organization 

of the collagen fibers aids the proteoglycans in resisting compressive forces. 

Confinement during the self-assembly process may lead to radial construct 

compression. We observed that at t=10 days of confinement, the constructs 

reached the wall of the 5 mm dia. wells. At t=2 wks of confinement, constructs 

slightly less than 6 mm dia. were unconfined from the 5 mm dia. wells. 

Therefore, we hypothesized that the constructs confined for 2 wks exhibited a 

higher aggregate modulus and increased collagen organization due to the effects 
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of a low-magnitude radial compression, as well as contact with the agarose well. 

This radial compression would neither be constant strain nor constant stress, 

since the constructs continued to grow radially while confined, thus resulting in 

potentially increasing strain and increasing stress with construct growth. This 

could account for the results observed in the other three confinement groups, as 

the constructs confined for 1 wk did not contact the walls of the well and 

therefore may not have been radially compressed. Additionally, at t=3 wks of 

confinement, constructs slightly less than 7 mm dia. were unconfined from the 5 

mm dia. wells, and at t=4 wks of confinement, constructs approaching 7.5 mm 

dia. were unconfined from the 5 mm dia. wells; therefore, they may have 

experienced higher magnitudes of radial compression, which negated the 

positive effects of the lower-magnitude radial compression. 

Since the aforementioned radial confinement-induced stress could not be 

quantified, it is possible that the constructs merely were radially confined rather 

than radially compressed. Perhaps, confinement may have diminished the 

nutrient supply through the lateral surface, potentially becoming more detrimental 

over periods longer than 2 wks. However, the wells were constructed of 

agarose, with a 98% fluid phase to allow for adequate nutrient diffusion to the 

edges of the constructs. Additionally, confinement did not affect the cellularity of 

the constructs, as there was no difference in histological images and 

DNA/construct between the 2-wk confinement group and the other confinement 

groups. 
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In a follow-up to this study, we examined the temporal effects of the radial 

confinement of the 2-wk confinement group, and found that t=10-14 days was the 

most beneficial time for constructs to be confined by the agarose well. To 

maintain radial confinement similar to that experienced by the 2-wk confinement 

group during t=10-14 days for a longer period, constructs were confined in 

incrementally larger agarose wells, to mimic the radial growth of the constructs 

with time and approximately allow the constructs to contact the edge of the wells 

from t=1.5 wks to 4 wks. Constructs only confined for 2 wks in 5 mm dia. wells 

and unconfined for the duration of the study were used as controls. Interestingly, 

maintaining confinement for 4 wks caused the aggregate modulus to trend lower 

than the 2-wk confined control, from 214±110 kPa to 177±96 kPa, although there 

was no significant difference between these values. These results demonstrate 

that the application of radial confinement between 1 and 2 wks was more 

beneficial than the maintenance of a similar level of radial confinement through 

later time-points, which may actually be detrimental to the constructs. However, 

due to the constraints of the experimental setup used for the confinement 

studies, we were unable to apply radial confinement before approximately t=1.5 

wks, so it is possible that applying radial confinement at even earlier timepoints 

may be more beneficial. 

As described above, radial confinement resulted in changes in the compressive 

stiffness of constructs. Therefore, the effects of vertical confinement, in the form 
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of a passive axial stress, on the tensile characteristics of the constructs were 

examined. The application of a dead weight from t=10-14 days increased the 

tensile properties of the constructs. To eliminate the effects of radial 

confinement, the control constructs were placed in incrementally larger agarose 

wells. At t=4 wks, the passive axial compression group demonstrated a 1.4-fold 

increase in Young's modulus, as well as a 1.7-fold increase in ultimate tensile 

strength, relative to the control group, again confirming our hypothesis that the 

application of confinement to self-assembled articular cartilage constructs affects 

the mechanical properties in the direction orthogonal to the confinement surface. 

In this case, the increased tensile strength of the passive axial compression 

group was accounted for by a significantly higher value of collagen/WW for the 

passive axial compression group vs. the control group, with minimal small-fiber 

collagen organization for either group. Interestingly, vertical confinement led to 

different changes in the construct ECM than found in radial confinement. This 

suggests that there may be different mechanotransduction pathways for radial 

confinement and passive axial compression, and future studies should be 

performed to elucidate these potential differences. Finally, the application of a 

dead weight had no effect on the cellularity of the constructs, as there was no 

difference in histological images or DNA/construct between the passive axial 

compression group and the control group. 

To our knowledge, this study is the first to provide evidence of the benefits of 

confinement on mechanical properties in the direction orthogonal to the 
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confinement surface. It shows that an increased construct aggregate modulus 

can be accounted for by increased collagen organization in the direction 

orthogonal to the construct surface. Previous studies have also demonstrated a 

relationship between cartilage mechanical properties and collagen organization, 

as determined by polarized light microscopy. For example, Kiviranta et al.193 

found that in bovine knee osteochondral plugs, there was a significant correlation 

between Poisson's ratio and collagen organization, as assessed by quantitative 

polarized light microscopy. Additionally, Kelly et al.192 found that dynamic 

deformational loading of chondrocyte-seeded agarose hydrogels led to an 

increased bulk Young's modulus with increased collagen organization in the 

radial direction relative to the free-swelling control. Although several other 

studies have examined collagen organization in cartilage explants, to our 

knowledge, this study is the only one to demonstrate a relationship between 

collagen organization and aggregate modulus in tissue engineered constructs. 

Several prior studies have investigated the use of dynamic compression 111'176, 

177 and/or shear 174,177 on the ECM of tissue-engineered cartilage constructs. 

These studies demonstrated 1.5-2.8-fold increases in GAG, and 1.4-fold 

increases in collagen with mechanical stimulation, which differ from the results of 

the radial confinement study, which demonstrated no change in ECM content, 

and the passive axial compression study, which demonstrated a 1.5-fold increase 

in collagen without an increase in GAG. Since the other studies all involved 

dynamic, rather than passive stimulation, it is possible that simultaneous GAG 



83 

and collagen increases may only be observed under dynamic mechanical 

stimulation as a result of the increased nutrient diffusion to the construct in 

dynamic stimulation, as noted elsewhere.192 However, Waldman et al.176 found 

that dynamic compression of 5% amplitude at 1 Hz, for 400 cycles every other 

day for 1 wk, resulted in increased collagen with no change in GAG content, 

which matches the results of the passive axial compression study. 

Although many studies have examined the relationship between mechanical 

stimulation and construct mechanical properties, to our knowledge, this is the first 

tissue engineering study to indicate the beneficial effects of passive confinement 

for a short term. This result indicates the possibility of an adaptive response to 

confinement that either results in increased collagen organization as seen in the 

radial confinement experiment, or increased matrix synthesis as seen in the 

passive axial compression experiment. Consistent with this finding, although 

using immature bovine cartilage explants, Boustany et al.194 found that static 

compression of <25% strain for 60 hours increased the biosynthetic rate of GAG 

and collagen production, although the mechanical properties of the explants were 

not examined. 

Additional studies should be performed in the future to track construct 

development using electron microscopy in order to elucidate the mechanism 

leading to strut-like collagen organization, observed only in the 2-wk confined 

constructs. In addition, future studies should investigate the combination of 
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confinement with other modalities of mechanical stimulation such as hydrostatic 

pressure and direct compression, as the combination may result in synergistic 

effects on construct mechanical properties. Finally, future work should examine 

the effects of the addition of growth factors to the culture medium both before 

and after the application of confinement, in order to look for a synergistic effect 

between the growth factors and confinement. 

In summary, this study permitted the examination of the hypothesis that the 

mechanical properties of self-assembled articular cartilage constructs are 

influenced by the application of stress in a direction orthogonal to the 

confinement surface. This study furthers our prior work involving the self-

assembling process, by indicating that the ECM of self-assembled constructs 

may be modulated by both radial and vertical confinement. Also, this study 

provides evidence to support early (<2 wks) application of confinement and 

passive axial compression, and demonstrates the benefit of low-magnitude 

passive stress application. 
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ABSTRACT 

The objective of this study was to determine the effects of temporal hydrostatic 

pressure on the properties of scaffoldless bovine articular cartilage constructs. 

The study was organized in three phases: First, a suitable control for HP 

application was identified. Second, 10 MPa static HP was applied at three 

different timepoints (6-10 days, 10-14 days, and 14-18 days) to identify a window 

in construct development when HP application would be most beneficial. Third, 

the temporal effects of 10-14 days static HP application, as determined in phase 

II, were assessed at 2, 4, and 8 wks. Compressive and tensile mechanical 

properties, GAG and collagen content, histology for GAG and collagen, and 

immunohistochemistry for collagen types I and II were assessed. Using a culture 

control identified in phase I, in phase II HP application from 10-14 days resulted 

in a significant 1.4-fold increase in aggregate modulus, accompanied by an 

increase in GAG content, while HP application at all timepoints enhanced tensile 

properties and collagen content. In phase III, HP had an immediate effect on 

GAG content, collagen content, and compressive stiffness, while there was a 

delayed increase in tensile stiffness. The enhanced tensile stiffness was still 

present at 8 wks. For the first time, this study examined the immediate and long 

term effects of hydrostatic pressure on biomechanical properties, and 

demonstrated that HP has an optimal application time in construct development. 

These findings are exciting as HP stimulation allowed for the formation of robust 

tissue engineered cartilage; for example, 10 MPa static HP resulted in an 
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aggregate modulus of 273±123 kPa, a Young's modulus of 1.6±0.4 MPa, a 

GAG/wet weight of 6.1 ±1.4% and a collagen/wet weight of 10.6±2.4% at 4 wks. 
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INTRODUCTION 

Cartilage is an avascular tissue and therefore has a limited intrinsic ability for 

repair following injury or osteoarthritis. Current treatments result in the formation 

of fibrocartilage, which is mechanically inferior to articular cartilage.14 Due to the 

limitations of current therapies, tissue engineering has emerged as a promising 

approach for treating cartilage degeneration, as a result of injury or osteoarthritis. 

Scaffoldless approaches for tissue engineering articular cartilage36"38'195 bypass 

several of the problems associated with scaffold use including stress shielding, 

biocompatibility, and biodegradation. In particular, the self-assembling process 

has allowed for significant increases in construct biochemical and biomechanical 

properties; however, these properties are still lacking in comparison to adult 

native tissue.140 Therefore, the use of mechanical stimulation modalities such as 

hydrostatic pressure (HP) appears to be a promising approach for enhancing the 

biomechanical and biochemical properties of engineered constructs. 

Articular cartilage is exposed to hydrostatic pressure in vivo, and efforts to 

stimulate chondrocytes with HP have focused on the physiological range of 3-18 

M p a 11, 121, 122, 129, 130, 132, 133, 135, 139, 196 | t j s b e | i e v e d t h a t t h e r e arQ significant 

differences in the effects of static and intermittent HP. For example, several 

studies on human articular chondrocytes in monolayer have demonstrated that 

intermittent HP at 10 MPa, 1 Hz, results in increased aggrecan and collagen II 

mRNA,128"130 while static HP was shown to have no effects on mRNA levels.128 
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In contrast, in other work using explants or immature chondrocytes in 3-D culture, 

the beneficial effects of static HP have been demonstrated. Hall et al.102 

demonstrated enhanced GAG production with static pressures in the 

physiological range, while both Hall et al.102 and Lammi et al.107 observed either 

no benefit or detrimental effects with pressures above the physiological range. In 

tissue engineered constructs with immature bovine chondrocytes, Toyoda et 

a l 137,138 anc| M j z u n o e t a|.
136 have also observed beneficial effects of static HP 

on GAG synthesis, aggrecan mRNA, and collagen type II mRNA. Finally, a 

recent study by our group compared the effects of 1, 5, and 10 MPa under static, 

0.1 Hz, and 1 Hz conditions, and found that 10 MPa static HP significantly 

increased construct compressive and tensile properties, while 10 MPa, 1 Hz 

treatment only resulted in a significant increase in compressive properties.139 

Based on these results, 10 MPa static HP was selected for this study. 

Additionally, our own prior work has suggested 10-14 days to be a potentially 

suitable timeframe to apply mechanical stimulation,140 while previous work by 

Ikenoue et al.130 demonstrated that 4 days of HP application had a greater effect 

on aggrecan and collagen II mRNA than 1 day of HP application. Based on the 

results of these studies, a comparison among HP application times of 6-10, 10-

14, and 14-18 days was made in this study. 

Although several studies have been performed to assess the effects of HP on 

tissue engineered constructs, no studies have determined the optimal timepoint 

in construct development for the application of HP. Additionally, studies 
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assessing the immediate and delayed effects of HP on construct biomechanical 

properties are lacking. Therefore, the objective of this study was to determine 

when in construct development the biomechanical and biochemical properties 

were maximally sensitive to HP application. Furthermore, this study sought to 

examine the effects of HP on construct biochemical and biomechanical 

properties immediately after HP application, as wellas up to 6 wks following HP 

application, in order to determine how long the beneficial effects of HP would last 

after removal of the stimulus. First, it was hypothesized that the bagging process 

used in applying HP would have no effect on construct properties. As prior 

studies involving mechanical stimulation demonstrated the benefit of application 

from 10-14 days, it was likewise hypothesized that HP would have an optimal 

application timepoint in construct development for the enhancement of construct 

biomechanical and biochemical properties. Finally, due to the slower turnover of 

collagen remodeling relative to GAG in the ECM, it was hypothesized that 

construct compressive properties would be increased immediately following HP 

application, while there would be a delayed increase in tensile properties. To test 

these hypotheses, three experiments were performed. First, 10 MPa static HP 

was applied to self-assembled constructs and compared to two different control 

groups. Second, 10 MPa static HP was applied to the constructs at three 

different times in construct development. Finally, the effects of HP application 

were assessed immediately at 2 wks, as well as at later timepoints of 4 wks and 

8 wks. 
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MATERIALS AND METHODS 

Chondrocyte Isolation and Seeding 

Cartilage was obtained from the distal femur of wk-old male calves93, 118, 181 

(Research 87, Boston, MA) less than 36 hrs after slaughter, and was digested 

with collagenase type 2 (Worthington, Lakewood, NJ) to yield chondrocytes. To 

reduce variability among animals, each leg was obtained from a different animal, 

and cells from all legs were combined together to create a mixture of 

chondrocytes; a mixture of cells from at least 4 legs was used in each study. Cell 

number was assessed on a hemocytometer, and viability remained >90%, as 

determined by a trypan blue exclusion test. Chondrocytes were frozen in culture 

medium supplemented with 20% FBS (Bidwhittaker, Walkersville, MD) and 10% 

DMSO at -80°C for 1-2 wks before use. Following thawing, viability remained 

greater than 85% in each study. A polysulfone mold consisting of 5 mm dia. x 10 

mm long cylindrical prongs fit into 6 wells of a 48-well plate, and to construct 

each agarose well, sterile, molten 2% agarose was added to wells fitted with the 

polysulfone die. The agarose was allowed to gel at room temperature for 60 min, 

after which the mold was separated from the agarose. Culture medium was 

exchanged twice to completely saturate the agarose well with culture medium by 

the time of cell seeding. The medium was DMEM with 4.5 g/L-glucose and L-

glutamine (Biowhittaker), 100 nM dexamethasone (Sigma, St. Louis, MO), 1% 

Fungizone/Penicillin/Streptomycin (Biowhittaker), 1% ITS+ (BD Scientific, 

Franklin Lakes, NJ), 50 )ig/mL ascorbate-2-phosphate, 40 u,g/mL L-prbline, and 
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100 [ig/mL sodium pyruvate (Fisher Scientific, Pittsburgh, PA). To each well, 5.5 

x 106 cells were added in 125 JLLI of culture medium. The cells self-assembled 

within 24 hrs in the agarose wells and were maintained in the same well for a 

specified amount of time; t=0 was defined as 24 hrs after seeding. 

Preparation for Specimen Pressurization 

Both bagged control (BC) and HP constructs were loaded into heat sealable 

bags (Kapak/Ampak Flexibles, Cincinnati, OH) previously sterilized by ethylene 

oxide. To each bag, 40 ml medium was added, and any air bubbles adhering to 

the bottom of the bag were released. The bags were then heat-sealed without 

any bubbles inside. 

Specimen Pressurization 

BC specimens were placed into an opened pressure chamber maintained at 

37°C, while pressure specimens were placed into a pressure chamber (Parr 

Instrument, Moline, IL), filled with water, and sealed underwater without any 

bubbles inside. The pressure chamber used has been described previously.135 

Briefly, for 5 consecutive days, the specimens were pressurized to 10 MPa static 

HP for 1 h. After the execution of the desired regimen, the pressure chamber 

was disassembled, and the pouches were sterilized with 70% ethanol. In a 

sterile culture hood, the pouches were opened with autoclaved scissors and the 

samples were returned to agarose coated wells of 6-well culture plates. 
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Phase I: Selection of HP Control 

At 10 days, self-assembled constructs (n=6/group) were removed from 

confinement in 5 mm dia. agarose wells and exposed to 10 MPa static HP for 1 

h/day, for 5 days. The constructs were then placed in one well of a 6-well culture 

plate coated with 2% agarose for the remainder of the study. A bagged control 

consisted of constructs removed from confinement in 5 mm dia. agarose wells at 

10 days, and placed in the HP chamber for 1 h/day, for 5 days, but 

unpressurized. The constructs were then placed in one well of a 6-well culture 

plate coated with 2% agarose for the remainder of the study. A culture control 

(CC) consisted of constructs removed from confinement in 5 mm dia. agarose 

wells at 10 days, and cultured in one well of a 6-well culture plate coated with 2% 

agarose for the remainder of the study. 500 nl of medium per construct was 

changed daily, and all constructs were assessed at 4 wks. 

Phase II: Temporal Effects of HP Application 

At 6 days, 10 days, or 14 days, self-assembled constructs (n=6/group) were 

removed from confinement in 5 mm dia. agarose wells, and placed in one well of 

a 6-well culture plate coated with 2% agarose. The constructs unconfined at 6 

days were exposed to 10 MPa static HP, 1 h/day, from 6-10 days, and were 

cultured unconfined in the 6-well plate for the remainder of the study. The 6-day 

culture control group (CC 6) remained unconfined in culture from 6 days until the 

conclusion of the study. The constructs unconfined at 10 days were exposed to 
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10 MPa static HP, 1 h/day, from 10-14 days, and were cultured unconfined in the 

6-well plate for the remainder of the study. The 10-day culture control group (CC 

10) remained unconfined in culture from 10 days until the conclusion of the study. 

The constructs unconfined at 14 days were exposed to 10 MPa static HP, 1 

h/day, from 14-18 days, and were cultured unconfined for the remainder of the 

study. The 14-day culture control group (CC 14) remained unconfined in culture 

from 14 days until the conclusion of the study. 500 nl of medium per construct 

was changed daily, and all constructs were assessed at 4 wks. 

Phase III: Short-term and Long-term Effects of HP Application. 

At 10 days, constructs were removed from confinement, and 10 MPa static HP 

was applied for 1 h/day, from 10-14 days. A CC was treated as in phase I. Both 

HP and CC constructs (n=6/group) were assessed at 2 wks, 4 wks, and 8 wks. 

Histology and Immunohistochemistry 

Samples were frozen and sectioned at 14 |im. GAG distribution was examined 

with a safranin-O/fast green stain.182,183 To examine collagen content, picrosirius 

red was used. Slides were also processed with IHC to test for the presence of 

collagen types I and II on a Biogenex (San Ramon, CA) i6000 autostainer. 

Following fixation in chilled acetone, the slides were washed with IHC buffer 

(Biogenex), quenched of peroxidase activity with hydrogen peroxide/methanol, 

and blocked with horse serum (Vectastain ABC kit, Vector Laboratories, 

Burlingame, CA). The slides were then incubated with either mouse anti-
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collagen type I (Accurate Chemicals, Westbury, NY) or rabbit anti-collagen type II 

(Cedarlane Labs, Burlington, NC) antibodies, Secondary antibody (anti-mouse 

or anti-rabbit IgG, Vectastain ABC kit) was applied, and color was developed 

using the Vectastain ABC reagent and DAB (Vectastain kit). 

Quantitative Biochemistry 

Samples were frozen overnight and lyophilized for 72 hrs, followed by re-

suspension in 0.8 mL of 0.05 M acetic acid with 0.5 M NaCI and 0.1 mL of a 10 

mg/mL pepsin solution (Sigma) at 4°C for 72 hrs. Next, 0.1 mL of 10x TBS was 

added along with 0.1 mL pancreatic elastase and mixed at 4°C overnight. From 

this digest, total DNA content was measured by Picogreen® Cell Proliferation 

Assay Kit (Molecular Probes, Eugene, OR). Total sulfated GAG was then 

quantified using the Blyscan Glycosaminoglycan Assay kit (Biocolor), based on 

1,9-dimethylmethylene blue binding.184,185 After being hydrolyzed by 2 N NaOH 

for 20 min at 110°C, samples were assayed for total collagen content by a 

chloramine-T hydroxyproline assay.186 

Indentation Testing 

Samples were evaluated with an automated indentation apparatus.187 A step 

mass of 0.7 g (0.007 N) was applied with a 1 mm flat-ended, porous indenter tip, 

and specimens were allowed to creep until equilibrium, as described 

elsewhere.36 Preliminary estimations of the aggregate modulus of the samples 

were obtained using the analytical solution for the axisymmetric Boussinesq 
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problem with Papkovich potential functions.188, 189 The intrinsic mechanical 

properties of the samples, including aggregate modulus, Poisson's ratio, and 

permeability were then determined using the linear biphasic theory.3 

Tensile Testing 

Tensile tests were performed using a uniaxial materials testing system (Instron 

Model 5565, Canton, MA) with a 50 N load cell as described previously.197 

Briefly, samples were cut into a dog-bone shape with a 1-mm-long gauge length. 

Samples were attached to paper tabs for gripping with cyanoacrylate glue 

outside of the gauge length. The 1-mm-long sections were pulled at a constant 

strain rate of 0.01 s'1. All samples broke within the gauge length. Stress-strain 

curves were created from the load-displacement curve and the cross-sectional 

area of each sample, and Young's modulus was calculated from each stress-

strain curve. 

Statistical Analysis 

All samples were assessed biochemically and biomechanically (n=6). For phase 

I, a single factor ANOVA was used to analyze the samples, and a Fisher LSD 

post hoc test was used when warranted. For phase II, a two-factor ANOVA was 

used to analyze the samples, and a Fisher LSD post hoc test was used when 

warranted. For phase III, a student's t test was used to compare the two groups 

at each timepoint. Significance was defined as p < 0.05. 
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RESULTS 

Gross Appearance and Histology 

In all studies, the construct diameter slightly exceeded 6 mm at 4 wks (Fig. 11a). 

In phase I, there were no differences in thickness among the HP, BC, and CC 

groups, with values of 0.46±0.06, 0.41 ±0.03, and 0.43±0.06 mm respectively 

(Fig. 11b). In phase II, there were no differences in thickness among the 

different groups, with values of 0.5110.03 and 0.50±0.07 mm for the HP 6-10 and 

CC 6 groups, 0.52±0.06 and 0.4810.07 mm for the HP 10-14 and CC 10 groups, 

and 0.5410.06 and 0.5110.09 mm for the HP 14-18 and CC 14 groups, 

respectively. In phase III, there were no differences in thickness among the 

groups, with values of 0.4210.03 and 0.4110.02 at 2 wks, 0.7010.07 and 

0.6710.05 at .4 wks, and 0.9310.14 and 0.8510.16 mm at 8 wks for the CC and 

HP groups, respectively. 

In each phase, all constructs stained positive for collagen throughout their 

thickness (Fig. 11c). Based on Safranin-0 staining, GAG production was 

observed throughout the constructs (Fig. 11d). Based on IHC, collagen II was 

expressed throughout each construct (Fig. 11e), while there was no collagen I 

production (Fig. 11f). 
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Quantitative Biochemistry 

In phase I, there were no differences in WW/construct or DNA/construct among 

the different treatment groups. The HP, BC, and CC groups had WW/construct 

values of 11.6±1.9, 12.2±0.6, and 12.011.9 mg, and DNA/construct values of 

39.9+8.9, 41.0111.0, and 36.9111.4 ng, respectively. The HP group had a 

significantly higher GAG/WW than either the BC or CC groups, with values of 

6.111.4, 4.410.5, and 4.1+0.1%, respectively (Fig. 12c). The HP treated group 

had a significantly higher collagen/WW than either the BC or CC groups, with 

values of 10.612.4, 6.211.9 and 6.710.6%, respectively (Fig. 12d). 

In phase II, there were no differences in WW/construct or DNA/construct among 

the different treatment groups. The WW/construct values were 10.711.3 and 

12.211.5 mg for the HP 6-10 and CC 6 groups, 11.111.2 and 11.011.5 mg for the 

HP 10-14 and CC 10 groups, and 11.911.7 and 11.011.6 mg for the HP 14-18 

and CC 14 groups, respectively. The DNA/construct values were 34.317.5 and 

32.311.4 ng for the HP 6-10 and CC 6 groups, 43.618.6 and 32.717.6 ng for the 

HP 10-14 and CC 10 groups, and 44.6110.5 and 43.6114.2 ng for the HP 14-18 

and CC 14 groups, respectively. HP was a significant factor for GAG/WW and 

collagen/WW. HP application from 6-10, 10-14, and 14-18 days increased 

GAG/WW from 3.911.4 to 4.510.4%, 3.510.9 to 4.810.6%, and 4.310.7 to 

5.110.8%, respectively (Fig. 13c). HP application from 6-10, 10-14, and 14-18 

days increased collagen/WW from 7.4H.7 to 10.411.7%, 8.010.9 to 10.811.2%, 

and 8.511.1 to 9.411.5%, respectively (Fig. 13d). 
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In phase III, the WW/construct values were 10.011.2 and 7.7±0.3 mg at 2 wks, 

17.111.7 and 14.412.2 mg at 4 wks, and 28.515.6 and 27.713.9 mg at 8 wks for 

the CC and HP groups, respectively. There were no differences in cellularity at 

each time point with DNA/construct values of 35.714.7 and 34.013.8 |ig at 2 wks, 

37.117.3 and 34.312.0 ng at 4 wks, and 33.513.3 and 30.213.0 HQ at 8 wks for 

the CC and HP groups, respectively. HP significantly increased GAG/WW from 

4.410.9 to 5.711.3% at 2 wks, and from 6.210.3 to 8.110.4% at 4 wks. The 

GAG/WW was 7.810.6 and 8.510.7% for the CC and HP groups at 8 wks (Fig. 

14c). HP significantly increased collagen/WW from 7.412.5 to 12.210.3% at 2 

wks, and from 7.111.8 to 10.811.9% at 4 wks. The collagen/WW was 8.611.6 

and 7.411.5% for the CC and HP groups at 8 wks (Fig. 14d). 

Mechanical Evaluation 

In phase I, the HP treated group had a significantly higher aggregate modulus 

than the BC or CC groups, with values of 2731123, 134145, and 116119 kPa, 

respectively (Fig. 12a). There were no differences among the groups in 

Poisson's ratio or permeability, with ranges of 0.14-0.19 and 3.94x10"14-9.78x10" 

14, respectively. Additionally, the HP treated group had a significantly higher 

Young's modulus than the BC Or CC groups, with values of 1.610.4,1.010.3, and 

0.910.1 MPa, respectively (Fig. 12b). 
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In phase II, HP was a significant factor for aggregate modulus and Young's 

modulus. HP application from 10-14 days led to a significant increase in 

aggregate modulus from 101 ±32 to 238±131 kPa. HP application from 6-10 

days increased aggregate modulus from 97±24 to 159±52 kPa, and HP 

application from 14-18 days decreased aggregate modulus slightly from 195±64 

to 177±68 kPa (Fig. 13a). HP application did not significantly change Poisson's 

ratio from control for any group, with a range of 0.04-0.22. Additionally, there 

were no differences in permeability among the groups, with a range of 2.83x10" 

15-2.04x10"13. HP application from 6-10, 10-14, and 14-18 days increased 

Young's modulus from 0.9±0.1 to 1.3±0.1 MPa, 0.9±0.2 to 1.4±0.3 MPa, and 

0.8±0.2 to 1.3±0.2 MPa, respectively (Fig. 13b). 

In phase III, HP significantly increased aggregate modulus from 113±16 to 

158±28 kPa at 2 wks, and from 138±30 to 270±46 kPa at 4 wks. There was no 

difference at 8 wks, with values of 257±51 and 296±68 kPa for the CC and HP 

groups, respectively (Fig. 14a). There were no differences among the groups in 

Poisson's ratio or permeability, with ranges of 0.18-0.26 and 2.26x10"14-6.78x10" 

14. There was no difference in Young's modulus at 2 wks, with values of 

373±182 and 4761228 kPa for the CC and HP groups, respectively. HP 

significantly increased Young's modulus from 596±185 to 1144±281 kPa at 4 

wks, and from 912±131 to 1404±442 kPa at 8 wks (Fig. 14d). 
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DISCUSSION 

This study utilized a 3-phase approach to choose an appropriate control group 

for HP application, to determine the effects of temporal HP application, and to 

assess the temporal effects following HP application. To the best of our 

knowledge, this study is the first to assess the effects of HP application at 

different timepoints in construct development, and the first to examine short-term 

and long-term changes in construct properties following HP application. 

In phase I, HP application significantly increased construct biomechanical and 

biochemical properties relative to both control groups, and the bagging process 

had no effect on construct properties. The application of 10 MPa static HP for 1 

hr/day, from days 10-14 led to a 120% increase in aggregate modulus and a 60% 

increase in Young's modulus, accompanied by significant increases in GAG and 

collagen content, respectively. Additionally, there were no differences in 

biomechanical, biochemical, histological, or gross morphological properties 

between the BC and CC groups. These results support our hypotheses, as HP 

application led to a significant increase in both compressive and tensile 

properties, and the bagging process inherent to HP application was shown to 

have no effect on construct biomechanical and biochemical properties. A 

comparison between the BC and CC groups was necessary to determine the 

effects of the bagging and handling process requisite for HP stimulation. In our 

setup, it is impossible to apply HP under sterile conditions without handling and 

bagging the constructs. As the handling and bagging is inherent to HP 
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application, we consider HP application to include these inherent steps. 

Therefore, the CC group was selected for use in subsequent phases as it allows 

us to compare HP application in its entirety (including the handling and bagging 

process) to a control. 

In phase II, it was determined that 10-14 days was the optimal time in construct 

development for HP application. HP application at all timepoints led to similar 

increases in tensile properties; however, HP application from 10-14 days had the 

greatest effect on aggregate modulus, a 140% increase. These results support 

our hypothesis, as HP application at a certain timepoint in construct development 

had the most beneficial effect on construct biomechanical properties. A 40% 

increase in GAG/WW accompanied the increased aggregate modulus of the 10-

14 day HP group. On the other hand, HP application at all timepoints led to an 

approximately 0.5-fold increase in Young's modulus, accompanied by increases 

in collagen/WW. These results are interesting as they suggest that there may be 

different mechanisms for the effects of HP on compressive and tensile 

properties. Additionally, these results correlate with a prior study on self-

assembled constructs that suggested that 10-14 days of construct development 

may be an important window for mechanical intervention.140 

In phase III, HP application had immediate and delayed effects on construct 

properties. Application of static HP at 10 MPa for 1 hr/day significantly increased 

compressive properties, GAG/WW, and collagen/WW immediately after the 5 
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days of HP application at 2 wks, but the significant increase in tensile properties 

observed in the prior phases was delayed until 4 wks. These results support our 

hypotheses, as the aggregate modulus was enhanced immediately after 10-14 

days of HP application, while there was a delayed increase in tensile properties. 

This result was expected due to the slower turnover of collagen remodeling 

relative to GAG in the ECM. Since collagen content was quantified with a 

hydroxyproline assay, it is also possible that the measured collagen at 2 wks was 

pro-collagen or immature collagen, which was not fully cross-linked or organized 

in the ECM until the next measurement at 4 wks. Additionally, by 8 wks, 

construct biomechanical and biochemical properties appear to level off, although 

a significant difference in tensile stiffness remains, likely as a result of the initial 

matrix formation present at the 4 wk timepoint. 

The results of these studies correlate with those of previous studies involving the 

use of static HP in physiologic magnitude ranges. For instance, Mizuno et al.136 

found that the application of 2.8 MPa static HP to 3-D collagen sponges seeded 

with bovine articular chondrocytes led to a 3.1-fold increase in [(35)S]-sulfate 

incorporation in GAG. Additionally, Smith et al.128 observed a 32% increase in 

GAG synthesis with 10 MPa static HP application to high density cultures of adult 

bovine articular chondrocytes. Likewise, Toyoda et al.138 found that 5 MPa static 

HP, applied to bovine articular chondrocytes cultured in agarose gels, 

significantly increased GAG synthesis and increased levels of aggrecan mRNA 

4-fold, while in a separate study, a 50% increase in the level of type II collagen 
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mRNA was recorded with this same regimen.137 These results mirror the 

biochemical findings of the currently presented studies, as significant increases 

in both collagen content and GAG content were observed, that presumably led to 

significant increases in both compressive and tensile biomechanical properties. 

Since HP application does not lead to cartilage deformation,162 it is difficult to 

envisage a mechanism to explain the beneficial effects of HP on construct 

biomechanical properties. However, as reviewed elsewhere,169 HP can deform 

the void spaces of cell transmembrane proteins, and at a certain pressure, the 

void space deformation leads to a change in protein conformation. This 

conformation change likely occurs in cell surface ion channels that act as 

"pressure sensors," theoretically occurring over the pressures at which we see 

effects. For example, in chondrocytes, the Na/K pump and Na/K/2CI transporter 

were shown to be sensitive to 10 MPa static HP application.165 Additionally, the 

Na/H pump166 and stretch-activated calcium channels167 in articular chondrocytes 

are affected by HP application. As ion concentration changes have been shown 

to alter protein synthesis,170 different ion channel responses to HP likely stimulate 

signal transduction cascades that eventually lead to upregulation of ECM-specific 

genes. The increased gene expression likely leads to increased ECM protein 

production, eventually resulting in enhanced biomechanical properties as 

observed in this study. Alternatively, although water has a high bulk modulus, it 

is not incompressible. Therefore, it is possible that 10 MPa HP results in 

stimulation of additional mechanotransduction pathways as a result of the 
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compressibility of water, as this may result in small strains on the cells without a 

measurable construct deformation. 

Although several studies have examined the effects of various HP regimens on 

construct gene expression and protein production, to our knowledge, this is the 

first study to assess the effects of temporal HP application, as well as the first to 

examine the immediate and long-term effects of HP on construct biomechanical 

and biochemical properties. Future studies should determine if combining HP 

with other mechanical stimulation, such as direct compression or shear, leads to 

additive or synergistic effects. 
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ABSTRACT 

The objective of this study was to determine the effects of bone morphogenetic 

protein-2 (BMP-2), insulin-like growth factor (IGF-I), and transforming growth 

factor-pi (TGF-pi) on the biochemical and biomechanical properties of 

engineered articular cartilage constructs under serum free conditions. A 

scaffoldless approach for tissue engineering, the self-assembly process, was 

employed. The study consisted of two phases. In the first phase, the effects of 

BMP-2, IGF-I, and TGF-pi, at two concentrations and two dosage frequencies 

each were assessed on construct biochemical and biomechanical properties. In 

phase II, the effects of growth factor combination treatments were determined. 

Compressive and tensile mechanical properties, glycosaminoglycan (GAG) and 

collagen content, histology for GAG and collagen, and immunohistochemistry 

(IHC) for collagen types I and II were assessed. In phase I, BMP-2 and IGF-I 

treatment resulted in significant, >1 -fold increases in aggregate modulus, 

accompanied by increases in GAG production. Additionally, TGF-pi treatment 

resulted in significant, ~1-fold increases in both aggregate modulus and tensile 

modulus, with corresponding increases in GAG and collagen content. In phase 

II, combined treatment with BMP-2 and IGF-I increased aggregate modulus and 

GAG content further than either growth factor alone, while TGF-pi treatment 

alone remained the only treatment to also enhance tensile properties and 

collagen content. This study determined systematically the effects of multiple 

growth factor treatments under serum-free conditions, and is the first to 

demonstrate significant increases in both compressive and tensile biomechanical 
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properties as a result of growth factor treatment. These findings are exciting as 

coupling growth factor application with the self-assembly process resulted in 

tissue engineered constructs with functional properties approaching native 

cartilage values. 
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INTRODUCTION 

Articular cartilage has a limited ability for self-repair, and injuries to articular 

cartilage result in the formation of mechanically inferior fibrocartilage.14 Since 

current clinical treatments are limited, tissue engineering is a promising strategy 

for articular cartilage regeneration. 

To alleviate some of the potential issues associated with scaffold use, our lab 

has developed and employed a scaffoldless process for tissue engineering, 

called the self-assembly process.36, 135,140 Using this process, the goal is to 

create engineered constructs with biochemical and biomechanical properties 

approaching those of native tissue. Growth factor application appears to be a 

promising approach for enhancing these properties. 

Previous studies74' 198 systematically assessed the effects of several growth 

factors at different concentrations on chondrocyte-seeded PGA scaffolds, and 

indicated that treatment with BMP-2 and IGF-I enhanced GAG production, while 

TGF-p1 enhanced collagen production. However, these studies employed fetal 

bovine serum (FBS) in the medium, potentially confounding the effects of 

exogenous growth factor application. Also, a prior study by Ng et al.199 indicated 

beneficial effects from temporal application of IGF-I and TGF-(31. 

Although many studies have demonstrated beneficial effects of growth factor 

application, no studies have systematically assessed the effects of growth factors 
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alone and in combination under serum-free conditions. Furthermore, no studies 

have examined growth factor effects on both compressive and tensile properties. 

The objective of this study was to determine the effects of growth factor 

application on the biomechanical and biochemical properties of self-assembled 

articular cartilage constructs. This study utilized a 2-phase approach to 

determine the effects of single growth factor treatments followed by the 

determination of the effects of combined growth factor treatments. Based on the 

results of prior studies,74,80,150,198'200 in phase I, it was hypothesized that BMP-2 

and IGF-I treatment would enhance compressive properties by increasing GAG 

production, and TGF-01 treatment would enhance both compressive and tensile 

properties by increasing GAG production and collagen production respectively. It 

was further hypothesized that growth factor concentration and dosage frequency 

would have significant effects on construct biochemical and biomechanical 

properties, based on prior work.201' 202 In phase II, it was hypothesized that 

combined growth factor treatment would have beneficial effects on construct 

properties, by increasing biochemical and biomechanical properties further than 

any growth factor alone. To test these hypotheses, three experiments were 

performed in phase I and one experiment was performed in phase II. In phase I, 

BMP-2, IGF-I, and TGF-p1 were all assessed at two concentrations and two 

dosage frequencies each, with the best treatment for each growth factor selected 

for use in phase II. In phase II, the growth factor treatments selected from phase 

I were assessed in combinations of two and three. 
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METHODS 

Chondrocyte Isolation and Seeding 

Chondrocytes were obtained from the distal femur of wk-old male calves93'118,181 

(Research 87, Boston, MA), and digested with collagenase type 2 (Worthington, 

Lakewood, NJ). Each leg yielded roughly 150 million chondrocytes, and animal 

variability was reduced by pooling cells from five legs of different animals to yield 

a mixture of chondrocytes for each study (see descriptions below). The pooled 

cells were counted on a hemocytometer, and viability >90% was found using a 

trypan blue exclusion test. Chondrocytes were frozen in culture medium 

supplemented with 20% FBS (Biowhittaker) and 10% DMSO at -80°C for 3 days 

before use in phase I, and for 3 wks before use in phase II. After thawing, viability 

remained greater than 85%. A polysulfone die consisting of 5 mm dia. x 10 mm 

long cylindrical prongs was used to construct each agarose mold. Sterile, molten 

2% agarose was introduced into a well fitted with the polysulfone die. The 

agarose was allowed to gel at room temperature for 60 min, and two exchanges 

of culture medium were used to completely saturate the agarose well with culture 

medium by the time of cell seeding. To each well, 5.5 x 106 cells in 100 |il of 

culture medium were added. The cells self-assembled within 24 hrs in the 

agarose wells and were maintained in the same well for t=10 days; t=0 was 

defined as 24 hrs after seeding. The culture medium was DMEM with 4.5 g/L-

glucose and L-glutamine (Biowhittaker/Cambrex, Walkersville, MD), 100 nM 

dexamethasone (Sigma, St. Louis, MO), 1% Fungizone/Penicillin/Streptomycin 

(Biowhittaker), 1% ITS+ (BD Scientific, Franklin Lakes, NJ), 50 ng/mL ascorbate-



112 

2-phosphate, 40 u.g/mL L-proline, and 100 jig/mL sodium pyruvate (Fisher 

Scientific, Pittsburgh, PA). 

Phase I: Individual Growth Factor Effects 

This phase included three separate studies to assess the individual effects of 

BMP-2, IGF-I and TGF-01 at different concentrations and dosage frequencies. 

All growth factors were obtained from Peprotech Inc. (Rocky Hill, NJ), and were 

applied in the culture medium. For each growth factor, the effects of two 

concentrations (low and high) and two dosage frequencies were assessed, with 

separate no growth factor controls for each study, yielding a total of five 

treatment groups for each growth factor study (Fig. 15). The concentrations used 

were 10 and 100 ng/ml for BMP-2 and IGF-I, and 10 and 30 ng/ml for TGF-01, 

selected from prior studies.74'198 The dosage regimens were 2 wks continuous 

application followed by 2 wks of no growth factor (continuous), or growth factor 

application only during the 1st and 3rd wk of culture (wk rotation), which were 

chosen based on pilot studies and current ongoing work in our group as well as 

adapted from prior studies using intermittent growth factor application by Lieb et 

a l 201,202 

For all studies, at t=lO days, self-assembled constructs (n=6/group) were 

removed from confinement in 5 mm dia. agarose wells and transferred to 

individual 2% agarose coated wells of a 48-well culture plate for the remainder of 

the study. Per construct, 500 îl of medium was changed daily, and all constructs 
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were assessed at t=4 wks. The "best" treatment for each growth factor was 

selected, using a functionality index as described below, for use in phase II. 

Phase II: Growth Factor Combination Effects 

One treatment for each growth factor was selected from phase I to be compared 

individually, as well as in combinations of two and three in phase II (Fig. 15). The 

specific application treatments selected were 10 ng/ml continuous BMP-2, 10 

ng/ml wk rotation IGF-I, and 30 ng/ml continuous TGF-01. As in phase I, 

constructs were unconfined from agarose wells at t=10 days, and transferred to 

individual 2% agarose coated wells of a 48-well culture plate for the remainder of 

the study. Again, 500 nl of medium per construct was changed daily, and all 

constructs were assessed at t=4 wks. 

Histology and Immunohistochemistry 

Samples were frozen and sectioned at 14 jxm. Safranin-0 and fast green 

staining were used to examine GAG distribution.182,183 Picrosirius red was used 

for qualitative examination of collagen content. A von Kossa stain was used to 

assess for mineralization. Slides were also processed with IHC to test for the 

presence of collagen types I, II, and X. After fixing in chilled acetone, the slides 

were rinsed with IHC buffer (Biogenex), quenched of peroxidase activity with 

hydrogen peroxide/methanol, and blocked with horse serum (Vectastain ABC kit, 

Vector Laboratories, Burlingame, CA). The slides were then incubated with 

either mouse anti-collagen type I (Accurate Chemicals, Westbury, NY), rabbit 
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anti-collagen type II (Cedarlane Labs, Burlington, NC), or rabbit anti-collagen X 

(Abeam Inc., Cambridge, MA) antibodies. The secondary antibody (anti-mouse 

or anti-rabbit IgG, Vectastain ABC kit) was applied, and color was developed 

using the Vectastain ABC reagent and DAB (Vectastain kit). 

Quantitative Biochemistry 

Samples were frozen overnight and lyophilized for 72 hrs, followed by re-

suspension in 0.8 ml_ of 0.05 M acetic acid with 0.5 M NaCI and 0.1 mL of a 10 

mg/mL pepsin solution (Sigma) at 4°C for 72 hrs. Next, 0.1 mL of 10x TBS was 

added along with 0.1 mL pancreatic elastase and mixed at 4°C overnight. From 

this digest, total DNA content was measured by Picogreen® Cell Proliferation 

Assay Kit (Molecular Probes, Eugene, OR). Total sulfated GAG was then 

quantified using the Blyscan Glycosaminoglycan Assay kit (Biocolor), based on 

1,9-dimethylmethylene blue binding.184,185 After being hydrolyzed by 2 N NaOH 

for 20 min at 110°C, samples were assayed for total collagen content by a 

chloramine-T hydroxyproline assay.186 

Indentation Testing 

Samples were evaluated with an indentation apparatus.187 A step mass of 0T7 g 

(0.007 N) was applied with a 1 mm flat-ended, porous indenter tip, and 

specimens were allowed to creep until equilibrium, as described elsewhere.36 

Preliminary estimations of the aggregate modulus of the samples were obtained 

using the analytical solution for the axisymmetric Boussinesq problem with 
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Papkovich potential functions.188,189 The aggregate modulus (HA), permeability, 

and Poisson's ratio of the samples were then determined using the linear 

biphasic theory.3 

Tensile Testing 

Tensile tests were performed using a uniaxial materials testing system (Instron 

Model 5565, Canton, MA) with a 50 N load cell as described previously.197 

Briefly, samples were cut into a dog-bone shape with a 1-mm-long gauge length. 

Samples were attached to paper tabs for gripping with cyanoacrylate glue 

outside of the gauge length. The 1-mm-long sections were pulled at a constant 

strain rate of 0.01 s"1. Stress-strain curves were created from the load-

displacement curve and the cross-sectional area of each sample, and Young's 

modulus (EY) was calculated from the linear region of each stress-strain curve. 

Functionality Index (Fl) 

A functionality index (Eq. 1) was used to determine the "best" treatment condition 

for each growth factor in phase I, for use in phase II. The index was only used as 

a selection tool within each experiment, without making comparisons among 

experiments. It was weighted using normalized collagen and GAG content, 

tensile stiffness, and creep indentation compressive stiffness. The index served 

as a quantified comparison between the properties of the engineered constructs 

and native tissue. In the functionality index, G represents GAG/WW, C 

represents collagen/WW, ET represents tensile modulus, and Ec represents 
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compressive stiffness (aggregate modulus). The subscripts nat and sac are 

used to denote native and self-assembled construct values, respectively. Using 

immature bovine cartilage explants, native tissue values were 5% and 15% for 

GAG/WW and collagen/WW respectively, and 213 kPa and 12.1 MPa for Ec and 

ET respectively. Although different weights may be afforded to each component 

of the Fl, they are equally weighted in this study. Since the eventual goal of our 

tissue engineering approach is in vivo construct implantation, as cartilage 

experiences both compressive and tensile loading in the joint, these properties 

are equally weighted. Furthermore, the biochemical characteristics are equally 

important as constructs with biochemical characteristics divergent from native 

tissue may present problems in construct integration with native tissue. 

However, due to the flexibility of the Fl, the exact weights can easily be modified 

based on the results of future studies. 

F 7 — I 1 ^ "<" wc' _L 1 ' S i a f t'sac) , i K^nat ^sac) , 1 V^nat ^sac) 

4 Gna, J r ET 
V Ena< ) ) 

(1) 

Statistical Analysis 

All samples were assessed biochemically and biomechanically (n=6 or 7). In 

each phase, a single factor ANOVA was used to analyze the samples, and a 

Fisher LSD post hoc test was used when warranted. Significance was defined 

as p < 0.05. 
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RESULTS 

Gross Appearance and Histology 

Construct diameter was approximately 6 mm in all studies. In phase I, BMP-2 at 

all concentrations and dosages increased construct wet weight (WW) and 

thickness slightly, as demonstrated in Table I. IGF-I treatment led to a slightly 

decreased construct WW, with no differences in construct thickness, as shown in 

Table II. Finally, treatment with TGF-pi resulted in a concentration dependent 

decrease in construct WW and thickness, as indicated in Table III. In phase II, 

there were no differences in construct WW or thickness among any of the 

treatment groups (Table IV). In all studies, constructs stained positive for 

collagen and GAG throughout their thickness (Fig. 16), and based on IHC, 

collagen II was expressed throughout each construct, with no collagen I 

production. Similar images can be observed in our previous work.140 

Additionally, no constructs demonstrated mineralization and no chondrocyte 

hypertrophy was noted with BMP-2 treatment. 

Quantitative Biochemistry 

In phase I, there were no differences in cells/construct among the different 

treatment groups in the BMP-2 study (Table I). Treatment with 10 ng/ml 

continuous BMP-2 led to the greatest increase in GAG/WW, although all BMP-2 

treatments significantly increased GAG/WW (Fig. 17c). There were no 

differences in collagen/WW among any of the treatment groups (Fig. 17d). In the 

IGF-I study, there were no differences in cells/construct among any of the 
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treatment groups (Table II). All IGF-I treatments significantly increased 

GAG/WW, with the exception of 10 ng/ml continuous treatment (Fig. 18c). There 

were no differences in collagen/WW among any of the treatment groups (Fig. 

18d). In the TGF-pi study, 30 ng/ml treatment led to an approximately 14% 

increase in cells/construct (Table III). Additionally, 30 ng/ml TGF-pi, at either 

continuous or 2 wk rotation dosages, significantly increased both collagen/WW 

and GAG/WW (Figs. 19c and 19d). 

In phase II, there were no differences in cells/construct among any of the 

treatment groups (Table IV). All growth factor treatments significantly increased 

GAG/WW, although combined BMP-2 and IGF-I treatment led to the greatest 

increase in GAG/WW (Fig. 20c). However, both treatment with TGF-pi alone 

and combined application of all three growth factors significantly increased 

collagen/WW (Fig. 20d). 

Mechanical Evaluation 

In phase I, all BMP-2 treatments significantly increased aggregate modulus, 

although BMP-2 at 10 ng/ml continuous application led to the greatest increase 

(Fig. 16a). There were no differences in Poisson's ratio or permeability noted 

among the different groups, with ranges of 0.15-0.28 and 4.1x10"14-1.2x10"13, 

respectively. Furthermore, there were no differences in Young's modulus among 

any of the treatment groups in the BMP-2 study (Fig. 16b). In the IGF-I study, all 

IGF-I treatments except for 10 ng/ml continuous significantly increased 
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aggregate modulus, while application at 10 ng/ml wk rotation led to the greatest 

increase in aggregate modulus (Fig. 17a). There were no differences in 

Poisson's ratio or permeability noted among the different groups, with ranges of 

0.19-0.26 and 8.0x10"14-1.2x10"13, respectively. Additionally, there were no 

differences in Young's modulus among any of the treatment groups in the IGF-I 

study (Fig. 18b). In the TGF-p1 study, only 30 ng/ml continuous treatment 

significantly increased aggregate modulus (Fig. 19a). However, both TGF-pi 

treatments at 30 ng/ml exhibited a significant increase in Young's modulus (Fig. 

19b). There were no differences among the treatment groups for Poisson's ratio 

and permeability, with ranges of 0.09-0.22 and 2.3x10"14-7.2x10"14, respectively. 

In phase II, all three individual growth factor treatments significantly increased 

aggregate modulus (Fig. 20a), replicating the results of phase I. However, 

combined BMP-2 and IGF-I treatment led to the greatest enhancement of 

aggregate modulus. Only individual application of TGF-pi significantly increased 

Young's modulus (Fig. 20b). There were no differences in Poisson's ratio or 

permeability among the treatment groups, with ranges of 0.09-0.26 and 5.1x10" 

14-1.3x10"13, respectively. 
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DISCUSSION 

The objective of this study was to assess systematically the effects of growth 

factors on the biochemical and biomechanical properties of self-assembled 

articular cartilage constructs. The study utilized a 2-phase approach to 

determine the effects of different growth factors, concentrations, and dosage 

frequencies, as well as to examine the effects of growth factor combination 

treatment. This approach allowed for a methodical growth factor examination 

under serum-free conditions. To the best of our knowledge, this study is the first 

to demonstrate significant increases in both compressive and tensile 

biomechanical properties as a result of growth factor treatment. 

In phase I, all BMP-2 treatments led to significant increases in construct 

compressive stiffness and GAG/WW. The greatest enhancement was observed 

with 2 wk continuous treatment at 10 ng/ml, resulting in a 104% increase in 

compressive stiffness. Despite the increased compressive properties, no 

increases in tensile properties or collagen/WW were noted for any of the 

treatment groups. These results supported our hypothesis that BMP-2 would 

only increase the compressive properties of the constructs by increasing the 

GAG/WW, as increased GAG production without changes in collagen synthesis 

has previously been observed with BMP-2 treatment.198,203 BMP-2 treatment of 

2 wk continuous dosage at 10 ng/ml was selected for use in phase II as it 

demonstrated the greatest increase in the functionality index. 
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Similarly, in phase I, all IGF-I treatments except for 10 ng/ml continuous 

application significantly increased construct compressive stiffness and GAG/WW. 

However, the greatest increase was observed with the wk rotation dosage at 10 

ng/ml, with a 122% increase in compressive stiffness. As with BMP-2 treatment, 

no increases in tensile properties or collagen/WW were observed for any of the 

treatment groups. These results supported our hypothesis that IGF-I would 

increase only the compressive properties of the constructs by increasing the 

GAG/WW, as previous studies demonstrated enhanced GAG production without 

changes in collagen synthesis from IGF-I treatment in both tissue engineered 

constructs and explants.74'204,205 IGF-I treatment of wk rotation dosage at 10 

ng/ml was selected for use in phase II as it demonstrated the greatest increase in 

the functionality index. 

Finally, in phase I, 30 ng/ml TGF-pi treatment, at either dosage frequency, 

significantly increased tensile stiffness and collagen/WW, as well as GAG/WW. 

However, only 30 ng/ml TGF-pi treatment at the 2 wk continuous dosage 

significantly increased compressive stiffness. These results demonstrate that 

the enhancement of compressive properties likely requires a lag period, as 

suggested previously,199 following TGF-pi treatment; both 30 ng/ml treatments 

increased GAG/WW, but only the 2 wk continuous application, with 2 wks 

between cessation of growth factor treatment and construct evaluation, 

demonstrated an increase in compressive stiffness. It is likely that the increased 

lag time is required to incorporate and organize the GAG and collagen into the 
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ECM.199 Based on these results, 2 wk continuous TGF-pi treatment at 30 ng/ml 

was selected for use in phase II as it demonstrated the greatest increase in the 

functionality index, and was the only treatment in phase I that increased both 

compressive and tensile properties. This result supported our hypothesis that 

TGF-pi treatment would increase both compressive and tensile properties by 

increasing both GAG and collagen content, respectively. Additionally this finding 

corresponds with previous work that has demonstrated that TGF-pi treatment 

increases collagen synthesis or gene expression,73' 74' 206, 207 while TGF-pi 

treatment only under serum free conditions increases proteoglycan synthesis.206 

In phase I, the different dosage frequencies had profound effects on the 

biochemical and biomechanical properties of the constructs. For example, 10 

ng/ml IGF-I applied at the 2 wk continuous dosage significantly increased 

compressive stiffness and GAG/WW, while 10 ng/ml IGF-I applied at the wk 

rotation dosage had no effect on compressive stiffness and GAG/WW. 

Additionally, as described above, only 30 ng/ml TGF-pi treatment at the 2 wk 

continuous dosage increased the compressive stiffness. A possible explanation 

is that different dosages may mimic temporal patterns of growth factor 

expression during wound healing208 as well as during chondrogenesis, as 

reviewed by Goldring et al.209 

TGF-p1 and the combination of BMP-2 and IGF-I were identified as the winners 

in terms of construct functionality in this study. These results were primarily 
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obtained in phase II, where BMP-2, IGF-I, and TGF-pi were applied at the 

selected conditions from phase I in combinations of one, two, or three. 

Combined BMP-2 and IGF-I treatment had beneficial effects, demonstrating the 

greatest increase in aggregate modulus (119%), accompanied by the greatest 

increase in GAG/WW (54%). However, as with the use of these growth factors 

individually, there was no difference in tensile properties or collagen/WW. As in 

phase I, only treatment with TGF-pi alone led to a significant increase in tensile 

properties and collagen/WW. There was a disparity in values obtained for the 

individual growth factor treatments between phases I and II, likely as a result of 

different donor tissue from which the cells were isolated. However, although the 

values for the properties of the control constructs vary between the phases, 

similar percent increases in properties are observed for the individual growth 

factors in each phase. 

It is also interesting to note that combining TGF-pi with either of the other growth 

factors did not have additive or synergistic effects, negating the increased 

compressive and tensile stiffness observed with TGF-pi treatment alone. This 

result agrees with prior work by Blunk et al.74 which noted that combined TGF-pi 

and IGF-I treatment decreased GAG and collagen fractions. Additionally, TGF-

pi has been shown to regulate the autocrine/paracrine axis of IGF-I,210 and it is 

likely that combined growth factor treatment may alter these intracellular 

pathways, potentially leading to the reduced effects observed in this study. Prior 

work by Suzuki et al.211 also supports our results, as it was demonstrated that 
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BMP-2 signal transduction was inhibited by application of TGF-pi. However, it is 

possible that there is a concentration-dependence of our results; for example, if 

TGF-pi was applied at much higher or lower concentrations than used in the 

manuscript, IGF-I and BMP-2 may have different responses than what was 

reported in this study. 

It is important to note that our results differ from several prior growth factors 

studies74,198 which have utilized culture medium containing FBS. This medium 

already contains growth factors, potentially confounding the effects of additional 

growth factor application. In this study, we utilized serum-free medium to control 

for any confounding from the presence of FBS in the medium and to enable us to 

look solely at the effects of the growth factor supplementation. The use of 

serum-free medium may explain some of the differences between our results and 

those of prior studies. Additionally, the self-assembly process may modulate 

some of the effects of growth factors differently. For example, Gooch et al.198 

found that treatment with BMP-2 at 100 ng/ml led to the presence of hypertrophic 

chondrocytes; however, we found no differences in chondrocyte morphology nor 

any other histological properties. Furthermore, it has previously been shown that 

growth factor application at higher concentrations significantly increases 

construct WW.74,198 We did not observe this WW increase, and in fact found that 

TGF-pi treatment actually decreased the construct WW. It is possible that these 

responses are due to the combined effects of FBS and supplemental growth 
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factors, and that the use of growth factors in serum-free conditions mitigates the 

hypertrophic response at the concentrations used in the present study. 

Although multiple studies have examined the effects of various growth factors on 

monolayer, explant, and engineered construct gene expression and biochemical 

properties, this study systematically assessed the effects of different growth 

factors, concentrations, dosages, and combinations, leading to construct 

biochemical and biomechanical properties in the range of native tissue values. 

Since most other investigations of engineered cartilage have not achieved the 

biochemical and biomechanical properties found in this study in only 4 wks, the 

results presented here likely are due to the combination of the self-assembling 

process, serum-free media, and the selected growth factor regimens. Only 

treatment with TGF-pi was found to enhance both the compressive and tensile 

properties of engineered constructs, while combined treatment with BMP-2 and 

IGF-I led to adjunctive enhancement of construct compressive stiffness and GAG 

content. As previous studies have demonstrated beneficial effects of combined 

growth factor treatment and direct compression,92,93 future studies should assess 

the effects of these growth factor treatments when combined with mechanical 

stimulation, such as hydrostatic pressure and direct compression. 
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ABSTRACT 

Hydrostatic pressure (HP) is a significant factor in the function of many tissues, 

including cartilage, knee meniscus, temporomandibular joint disc, intervertebral 

disc, bone, bladder, and vasculature. Though studies have been performed in 

assessing the role of HP in tissue biochemistry, to the best of our knowledge, no 

studies have demonstrated enhanced mechanical properties from HP application 

in any tissue. The objective of this study was to determine the effects of 

hydrostatic pressure (HP), with and without growth factors, on the biomechanical 

and biochemical properties of engineered articular cartilage constructs, using a 

two-phased approach. In phase I, a 3 x 3 full-factorial design of HP magnitude 

(1, 5, 10 MPa) and frequency (0, 0.1, 1 Hz) was used, and the best two 

treatments were selected for use in phase II. Static HP at 5 MPa and 10 MPa 

resulted in significant 95% and 96% increases, respectively, in aggregate 

modulus (HA), with corresponding increases in GAG content. These regimens 

also resulted in significant 101% and 92% increases in Young's modulus (EY), 

with corresponding increases in collagen content. Phase II employed a 3 x 3 full-

factorial design of HP (no HP, 5 MPa static, 10 MPa static) and growth factor 

application (no GF, BMP-2 + IGF-I, TGF-p1). The combination of 10 MPa static 

HP and TGF-pi treatment had an additive effect on both HA and Ey, as well as a 

synergistic effect on collagen content. This group demonstrated a 164% 

increase in HA, a 231% increase in EY, an 85% increase in GAG/wet weight 

(WW), and a 173% increase in collagen/WW, relative to control. To our 

knowledge, this is the first study to demonstrate increases in the biomechanical 
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properties of tissue from pure HP application, using a cartilage model. 

Furthermore, it is the only study to demonstrate additive or synergistic effects 

between HP and growth factors on tissue functional properties. These findings 

are exciting as coupling HP stimulation with growth factor application has allowed 

for the formation of tissue engineered constructs with biomechanical and 

biochemical properties spanning native tissue values. 
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INTRODUCTION 

Hydrostatic pressure plays an important role in the mechanoregulation of several 

tissues; including cartilage,102' 122' m 132' 135' 136' 138' 165 knee meniscus,212 

temporomandibular joint disc,178,213 intervertebral disc,213"215 bone,216 bladder,217 

and vasculature.218 In these studies, HP generally led to increased extracellular 

matrix (ECM) production. HP application appears particularly promising as a 

strategy in cartilage tissue engineering, as cartilage degeneration remains a 

tremendous problem.1 Following injury, cartilage has a poor ability to self-repair 

due to its avascularity, and current clinical treatments for articular cartilage 

injuries result in the formation of mechanically inferior fibrocartilage.14 Therefore, 

cartilage regeneration with tissue engineering strategies appears to be a 

promising approach. A scaffoldless approach to tissue engineering, the self-

assembly process, has been developed and utilized by our group to produce 

engineered constructs with biochemical and biomechanical properties 

approaching native tissue values.36,135,140 

Cartilage is typically exposed to pressures in the physiologic range of 3-18 

MPa,11, 121,196 and tissue engineering efforts have generally focused on these 

physiologic pressures. Prior studies have shown complex effects from HP 

application, demonstrating both inhibition and enhancement of ECM protein 

production and gene expression depending on the selected HP regimen and 

culture system. For example, several pioneering studies by Smith et al.128"130,142, 

143 on monolayers have demonstrated enhanced protein production and gene 
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expression when applying intermittent hydrostatic pressure at 10 MPa, 1 Hz to 

both normal human adult articular chondrocytes as well as to osteoarthritic 

chondrocytes. However, they found detrimental effects on collagen II mRNA 

production when applying 10 MPa static (0 Hz) HP to adult articular chondrocytes 

in monolayer.128 On the other hand, Mizuno et al.136 applied 2.8 MPa static HP to 

3-D bovine chondrocyte seeded collagen sponges and found an increase in GAG 

production. Similarly, Toyoda et al.137,138 observed significantly increased GAG 

production, aggrecan mRNA, and type II collagen mRNA expression when 

applying 5 MPa static HP to bovine articular chondrocyte seeded agarose gels. 

Several prior studies have also demonstrated the benefits of growth factors, 

including BMP-2, IGF-I, and TGF-pi, on construct functional properties.74,80'198 

In recent work (under review, Osteoarthritis and Cartilage), we have 

demonstrated the benefits of combined BMP-2 and IGF-I treatment on construct 

compressive properties and GAG production, as well as the benefit of TGF-pi 

treatment on construct compressive and tensile properties, with corresponding 

enhancement of GAG and collagen production. Furthermore, previous work has 

demonstrated the benefits of combining growth factor application with direct 

compression mechanical stimulation on construct93 and explant92 functional 

properties. 

Though several studies have been performed in assessing the role of HP in 

tissue biochemistry, to the best of our knowledge, no studies have demonstrated 
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enhanced biomechanical properties from HP application in any tissue. 

Furthermore, studies that systematically assess the effects of multiple HP 

magnitudes and frequencies on construct functional properties are lacking. 

Additionally, there is a dearth of studies demonstrating synergistic effects on 

tissue functionality from combining hydrostatic pressure and growth factors. 

Using a scaffoldless cartilage tissue engineering model,36'140 this study sought to 

test the hypotheses that 1) a short-term application of static HP during construct 

development will have the greatest enhancement of construct biochemical and 

biomechanical properties, and that 2) there will be additive or synergistic effects 

when combining growth factors and HP stimulation. These hypotheses were 

assessed and supported using a two-phased approach. In phase I, a 3 x 3 full-

factorial design of HP magnitude (1, 5, and 10 MPa) and frequency (0, 0.1, and 1 

Hz) was used, and the best two treatments were selected for use in phase II. 

Phase II employed a 3 x 3 full-factorial design of HP (no HP, 5 MPa static, 10 

MPa static) and growth factor application (no GF, BMP-2 + IGF-I, TGF-pi) for a 

total of nine treatment groups. 

MATERIALS AND METHODS 

Chondrocyte Isolation and Seeding 

Cartilage from the distal femur of wk-old male calves was obtained93, 118, 181 

(Research 87, Boston, MA) and digested with collagenase type 2 (Worthington, 
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Lakewood, NJ) for 24 hrs, as described in detail previously.140 A polysulfone die 

consisting of 5 mm dia. x 10 mm long cylindrical prongs that fit into 6 wells of a 

48-well plate was used to construct each agarose mold, as described in detail 

previously.140 The culture medium is a chemically defined medium that has been 

described previously.140 To each agarose well, 5.5 x 106 cells were added in 100 

\i\ of culture medium; t=0 was defined as 24 hrs after seeding. 

Phase I: HP Magnitude and Frequency Selection 

At t=10 days, self-assembled constructs (n=6/group) were removed from 

confinement in 5 mm dia. agarose wells and exposed to HP for 1 h/day, for 5 

days. The study employed a 3 x 3 full-factorial design of magnitude (1, 5, 10 

MPa) and frequency (0, 0.1, 1 Hz), for a total of 9 treatment groups. The 

constructs were then placed in individual agarose-coated wells of 48-well culture 

plates for the remainder of the study. A control (CC) consisted of constructs 

removed from confinement in 5 mm dia. agarose wells at 10 days, and cultured 

in individual wells of 48-well culture plates coated with 2% agarose for the 

remainder of the study. Per construct, 500 nl of medium was changed daily, and 

all constructs were assessed at t=4 wks. 

Phase II: Combination of HP and Growth Factors 

This study employed a 3 x 3 full-factorial design of HP (no HP, 5 MPa static, 10 

MPa static) and growth factor application (no GF, BMP-2 + IGF-I, TGF-p1) for a 

total of nine treatment groups. The hydrostatic pressure regimens were selected 
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in phase I (please see results), while the growth factor treatments were selected 

from a prior study by our group (under review, Osteoarthritis and Cartilage). The 

HP regimens were applied as in phase I, for 1 hr/day, from t=10-14 days. The 

specific growth factor treatments were TGF-pi (30 ng/ml) continuously from t=0-

14 days, or a combined treatment of BMP-2 (10 ng/ml) continuously from t=10-14 

days and IGF-I (10 ng/ml) from t=0-7 days and t=14-21 days. All growth factors 

were obtained from Peprotech Inc. (Rocky Hill, NJ), and applied in the culture 

medium. As in phase I, constructs were removed from confinement at t=10 days, 

and cultured in individual wells for the remainder of the study. Per construct, 500 

nl of medium was changed daily, and all constructs were assessed at t=4 wks. 

Specimen Pressurization 

The procedure used has been described previously.135 Briefly, constructs were 

placed into heat sealable bags (Kapak/Ampak Flexibles, Cincinnati, OH) with 35 

ml medium, and the bags were heat-sealed without any bubbles inside. The 

chamber was maintained at 37° C during pressurization. From t=10-14 days, the 

constructs were pressurized at a specific regimen for 1 hr. Following HP 

application, the pouches were opened with autoclaved instruments and the 

samples were returned to individual agarose coated wells. 

Histology and Immunohistochemistry 

Samples were frozen and sectioned at 14 jim. Safranin-0 and fast green 

staining were used to examine GAG distribution.182,183 Picrosirius red was used 
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for qualitative examination of collagen content. A von Kossa stain was used to 

examine mineralization. IHC was used to determine the presence of collagen 

types I and II, as described previously.140 

Quantitative Biochemistry 

Samples were frozen overnight and lyophilized for 72 hrs, followed by re-

suspension in 0.8 mL of 0.05 M acetic acid with 0.5 M NaCI and 0.1 mL of a 10 

mg/mL pepsin solution (Sigma) at 4°C for 72 hrs. Next, 0.1 mL of 10x TBS was 

added along with 0.1 mL pancreatic elastase and mixed at 4°C overnight. From 

this digest, total DNA content was measured by Picogreen® Cell Proliferation 

Assay Kit (Molecular Probes, Eugene, OR). Total sulfated GAG was quantified 

using the Blyscan Glycosaminoglycan Assay kit (Biocolor).184,185 Total collagen 

content was assessed by a chloramine-T hydroxyproline assay.186 

Mechanical Testing 

To obtain salient compressive properties, samples were evaluated under 

conditions of creep indentation,187 which has been described in detail 

previously.140 The aggregate modulus (HA), permeability, and Poisson's ratio of 

the samples were then determined using the linear biphasic theory.3 To obtain 

construct tensile properties, uniaxial tests were run on a materials testing system 

(Instron Model 5565, Canton, MA) with a 50 N load cell, as described 

previously.197 Stress-strain curves were created from the load-displacement 

curve and the cross-sectional area of each sample, and Young's modulus (EY) 
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was calculated from the linear region of each stress-strain curve. Construct 

thickness was measured using digital calipers. 

Statistical Analysis 

Biochemical and biomechanical assessments were performed on all constructs 

(n=6 or 7). In each phase, a single factor ANOVA was used to analyze the 

samples, and a Fisher LSD post hoc test was used when warranted. 

Significance was defined as p<0.05. Additionally, in phase II, the interaction term 

of a two factor ANOVA was used to test for synergism, as described previously 

219, with significance defined as p<0.05. 

RESULTS 

Gross Appearance and Histology 

All constructs reached a diameter of approximately 6 mm at t=4 wks (Fig. 21a). 

In phase I, there were no differences in wet weight (WW) or thickness among the 

treatment groups, as demonstrated in Table V. However, as shown in Table VI, 

in phase II, there was a decrease in construct WW and thickness in all groups 

treated with TGF-pi. 

In both studies, positive staining for collagen (Fig. 21b) and GAG (Fig. 21 e) was 

observed throughout the construct thickness. Additionally, based on IHC, 

collagen II was expressed throughout each construct (Fig. 21c), with no collagen 
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I production (Fig, 21 f). Finally, in phase II, there was no mineralization or 

chondrocyte hypertrophy observed with BMP-2 + IGF-I treatment. 

Quantitative Biochemistry 

In phase I, all values of cells/construct, GAG/WW, and collagen/WW are found in 

Table V. There were no differences in cells/construct among the different 

treatment groups. Several treatments resulted in significant increases in 

GAG/WW, but the greatest increases in GAG/WW were observed with the 5 MPa 

static, 10 MPa static, and 10 MPa, 1 Hz regimens (Fig. 22c), with GAG/WW 

values of 8.1 ±0.6, 8.1 ±0.4, and 9.1 ±0.8%, respectively. However, only 5 MPa 

static and 10 MPa static HP application significantly increased collagen/WW (Fig. 

22d), with values of 9.4±2.5 and 10.8±1.9%, respectively. 

In phase II, all values of cells/construct, GAG/WW, and collagen/WW are found 

in Table VI. There were no differences in cells/construct among the different 

treatment groups. All treatments exhibited a significant increase in GAG/WW 

(Fig. 23c); additionally, there was an adjunctive effect between 10 MPa static HP 

and TGF-pi, as their combination resulted in a greater GAG/WW, of 9.6±0.4%, 

than either treatment alone. Treatment with either HP regimen or with TGF-pi 

significantly increased the collagen/WW (Fig. 22d). Furthermore, combined 

treatment with 10 MPa static HP and TGF-pi led to a synergistic increase in 

collagen/WW to 15.3±2.9%; the increase in collagen/WW was statistically greater 

than the sum of either treatment alone. 
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Mechanical Evaluation 

In phase I, all values of HA and EY are found in Table V. The 1, 5, and 10 MPa 

static HP groups, as well as the 10 MPa, 1 Hz group all demonstrated a 

significant increase in HA relative to the control group (Fig. 22a), with values of 

268145, 269±44, 270±46, and 287±82 kPa, respectively. However, only the 5 

MPa static HP group exhibited significant increases in EY to 1196±271 kPa (Fig. 

22b); a similar increase in Ey to 1144±281 kPa was observed for the 10 MPa 

static HP group. 

In phase II, all values of HA and Ey are found in Table VI. All treatments 

exhibited a significant increase in HA (Fig. 23a), with the 10 MPa + TGF-pi 

treatment group displaying the greatest increase, to 248±37 kPa. This increase 

indicated an additive effect between 10 MPa static HP and TGF-p1, as the effect 

of their combined use on HA was equal to the sum of the effects of either 

treatment alone. Treatment with either HP regimen alone or with TGF-pi 

significantly increased the Ey; furthermore, combined treatment of 10 MPa static 

HP and TGF-p1 led to an additive increase in EY to 20481266 kPa (Fig. 23b). 

DISCUSSION 

This study employed a 2-phased approach to choose an optimal HP loading 

regimen, as well as to determine the effects of combined growth factor and HP 
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application. To the best of our knowledge, this study is the first to 1) demonstrate 

increases in the biomechanical properties of tissue from pure HP application, 

using a cartilage model, 2) demonstrate additive or synergistic effects between 

HP and growth factors on tissue functional properties, and 3) systematically 

assess the effects of varying physiologic magnitudes and frequencies of HP on 

tissue functional properties. 

In phase I, 5 MPa and 10 MPa static HP were the only regimens that increased 

both HA and Ey with parallel increases in GAG and collagen content. These 

results support our hypothesis, as static hydrostatic pressure was found to have 

the greatest effect on construct biochemical and biomechanical properties. Since 

5 MPa and 10 MPa static HP were the only regimens to significantly increase the 

Compressive and tensile stiffness as well as GAG/WW and collagen/WW, these 

two regimens were selected for use in phase II. 

In phase II, the combination of 10 MPa static HP and TGF-pi treatment had 

significant effects on construct biomechanical and biochemical properties, thus 

supporting the hypothesis that combined HP and growth factor treatment would 

have additive and synergistic effects on construct functional properties. The 

combined treatment of 10 MPa static HP and TGF-pi had an additive effect on 

both HA and Ey, as the increases in compressive and tensile stiffness for the 

combined treatment were equal to the sum of the effects of the two individual 

treatments. Additionally, the combined treatment exhibited a synergistic increase 
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in collagen/WW, as the effect of the combined treatment was statistically greater 

than the sum of the effects of each individual treatment. Excitingly, the 

collagen/WW of this group, at 15.3%, spanned reported values for native articular 

cartilage.4 

However, although 5 MPa and 10 MPa static HP have similar effects on 

construct properties when applied alone, 5 MPa static HP did not exhibit the 

same additive and synergistic effects when combined with TGF-pi treatment. 

This result suggests that there are different cellular responses to varying HP 

magnitudes; for example, it can be speculated that increasing HP from 5 MPa to 

10 MPa in the presence of TGF-pi may activate additional intracellular pathways 

that lead to enhanced production of ECM proteins and increased biomechanical 

properties. Interestingly, a similar effect has been observed previously in work 

on chondrogenic differentiation of human mesenchymal stem cells (MSCs).151 It 

was found that collagen II mRNA expression of MSCs cultured with TGF-P3 

responded maximally to 10 MPa HP application. 

It is also interesting to note that combining BMP-2 + IGF-I treatment with either of 

the HP treatments did not lead to further enhancement of construct properties, 

and actually negated the beneficial effects of HP alone on construct properties. It 

has previously been shown that HP modulates the level of TGF-p mRNA.131 

Additionally, combined treatment with TGF-pi and IGF-I has detrimental effects 

on GAG and collagen content shown by Blunk et al.74 and our own work (under 
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review, Osteoarthritis and Cartilage). Based on these prior studies, one can 

speculate that HP application may lead to the production of TGF-pi, which, when 

combined with the effects of exogenously applied IGF-I may have detrimental 

effects, as seen previously, although it is possible that enhanced TGF-pi mRNA 

expression may not correspond to increased TGF-pi production due to the 

extensive post-transcriptional and post-translational regulation of TGF-pi, as 

reviewed previously.220 In future studies, it would be exciting to elucidate the 

pathways involved in HP signal transduction, and how they coincide with the 

growth factor signal transduction cascades. Since the exact pathways for HP 

signal transduction have not been elucidated, we can only speculate that the 

pathways leading to increased matrix synthesis are either further enhanced, 

when combining HP and TGF-pi, or perhaps inhibited, when combining HP and 

the BMP-2 + IGF-I combination. 

By demonstrating the beneficial effects of static HP over cyclic HP application on 

construct biomechanical and biochemical properties, this study contradicts 

several prior studies that have shown positive effects from cyclic HP.122,128130' 142> 

143 Though when comparing these studies, it is important to note that HP was 

applied to chondrocytes in monolayer rather than 3-D constructs. Furthermore, 

these studies utilized adult or osteoarthritic chondrocytes which behave 

substantially differently than the immature bovine chondrocytes used in this 

study.41 On the other hand, the results of this study agree with the conclusions of 
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several other studies that applied static HP to 3-D constructs and found 

beneficial effects on construct biochemical properties.136"138 

When assessing the effects of combined HP and growth factor treatment on 

cartilage properties, the results presented here agree with prior studies that have 

combined these treatments as differentiation agents for mesenchymal stem 

cells.151,152 For example, Miyanishi et al.151 found that combined HP application 

with TGF-p3 increased SOX9, collagen II, and aggrecan mRNA levels 1.9, 3.3, 

and 1.6-fold, respectively, more than treatment with TGF-03 alone. It is also 

known that another form of mechanical stimulation, namely direct compression, 

exhibits synergistic effects when combined with growth factor treatment on 

articular cartilage constructs93 and explants92. Specifically, Mauck et al.93 found 

that combined treatment with dynamic compression and TGF-p1 resulted in a 

277% increase in equilibrium aggregate modulus, while Bonassar et al.92 

observed a 290% increase in proteoglycan synthesis with combined dynamic 

compression and IGF-I treatment. 

Physiologic HP does not deform cartilage;162 therefore, the enhanced construct 

biomechanical properties observed in this study must be accounted for by other 

mechanisms. As reviewed elsewhere,169 on the microscopic level, HP can 

compress void spaces within and around proteins on the cell surface. At a 

certain pressure, the compression of void spaces becomes great enough that the 

protein can achieve a lower energy state by changing its conformation. Cell 
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surface ion channels may serve as "pressure sensors," altering their 

conformations and thus changing the intracellular ion concentrations depending 

on the applied pressure. For example, Hall165 found that in chondrocytes, the 

activity of the Na/K pump was suppressed substantially with 10 MPa static HP 

application for 10 min, while the Na/K/2CI transporter was more sensitive to HP 

application. Also, Browning et al.166 observed activation of the Na/H pump in 

bovine articular chondrocytes with HP application at approximately 10 MPa. 

Additionally, Mizuno167 found that HP increases intracellular calcium through the 

activation of stretch-activated channels. Since protein synthesis is affected by 

intracellular ion concentrations,170 it is envisioned that different ion channel 

responses to varying HP magnitudes alters the intracellular ion flux and 

stimulates signal transduction cascades for upregulation of ECM-specific genes, 

enhanced ECM protein production, and increased biomechanical properties as 

observed in this study. Growth factors may serve as an adjunctive method for 

stimulating similar downstream pathways, thus leading to additive and synergistic 

effects, as observed in this study. 

The beneficial effects of HP on tissue biochemical properties are not confined 

merely to cartilage, and it is possible that the approach of this study, namely 

combining optimized HP and growth factor treatments, may be applicable to 

several other tissues. For example, Stover et al.217 found that applying cyclic HP 

to bladder smooth muscle cells resulted in a proliferative response suggestive of 

tissue remodeling. Also, Reza and Nicoll214 observed increased production of 
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collagen II in intervertebral disc cells from the outer annulus exposed to 5 MPa 

HP. Additionally, Almarza and Athanasiou178 demonstrated increased collagen I 

gene expression and protein production when applying 10 MPa static HP to 

temporomandibular joint disc cells. Finally, Suzuki et al.212 applied 4 MPa static 

HP to knee meniscal cells, and found a significant increase in collagen I mRNA 

and a significant decrease in matrix metalloproteinase - 1 , and -13. Although 

none of these studies assessed the effects of HP on biomechanical properties, it 

can be speculated that coupling these HP regimens with the application of 

exogenous bioactive agents specific to these tissues, may also result in additive 

and synergistic effects on the functional properties. 

Multiple studies have assessed the effects of both static and intermittent HP 

regimens on gene expression and protein production. This study, which 

investigated the effects of multiple HP magnitudes and frequencies on construct 

functional properties, demonstrated enhanced biomechanical and biochemical 

tissue properties. Additionally, it systematically assessed the effects of 

combining HP and growth factors on construct functional properties, and 

indicated synergistic and additive effects. Future studies should determine the 

effects of temporal HP application during construct development, as well as 

examine the immediate and long-term effects of HP application on construct 

properties. 
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ABSTRACT 

Several prior studies have been performed to determine the feasibility of tissue 

decellularization to create a non-immunogenic xenogenic tissue replacement for 

bladder, vasculature, heart valves, knee meniscus, temporomandibular joint disc, 

ligament, and tendon. However, to the best of our knowledge, no studies have 

examined the decellularization of either scaffoldless engineered constructs or 

articular cartilage tissue. The objective of this study was to assess the effects of 

5 different decellularization treatments, for 1 h or 8 h, on scaffoldless tissue 

engineered articular cartilage constructs after 4 wks of culture. The specific 

treatments used were 1 ) 1 % SDS, 2) 2% SDS, 3) 2% Tributyl phosphate, 4) 2% 

Triton X-100, and 5) Hypotonic followed by hypertonic solution, followed by a 3 h 

wash in PBS. Following this wash, the constructs were assessed histologically, 

biochemically for cellularity, GAG, and collagen content, and biomechanically for 

compressive and tensile properties. Treatment with 2% SDS for 1 h eliminated 

33% of DNA, while maintaining or increasing biochemical and biomechanical 

properties. On the other hand, treatment for 8 h resulted in the elimination of 

46% of DNA, although GAG content and compressive properties were 

significantly decreased. As all other treatments either did not result in significant 

decellularization, or else significantly compromised construct functional 

properties, 2% SDS appeared to be the most effective agent for cartilage 

decellularization. The results of this study are exciting as they indicate the 

feasibility of creating engineered cartilage that will be non-immunogenic as a 

replacement tissue. 
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INTRODUCTION 

Injuries to articular cartilage, whether traumatic or from degeneration, generally 

result in the formation of mechanically inferior fibrocartilage, due to the tissue's 

poor intrinsic healing response.14 As such, tissue engineering strategies have 

focused on developing replacement tissue in vitro for eventual in vivo 

implantation. 

Although engineered articular cartilage tissue has recently been created with 

biochemical and biomechanical properties in the range of native tissue values,139 

there are currently two significant limitations to cartilage tissue engineering. 

First, human cells are scarce in number and difficult to procure, and passage of 

these cells leads to dedifferentiation. These issues make the use of autologous 

cells for cartilage repair extremely difficult. Additionally, the majority of cartilage 

tissue engineering approaches have employed bovine or other animal cells, and 

tissues grown from these cells are xenogenic and may result in a severe immune 

response following implantation that would preclude their use, though this has 

not been fully elucidated. 

It is believed that a decellularized xenogenic tissue may be a viable option as a 

replacement tissue, as the antigenic cellular material will be removed while 

preserving the relatively non-immunogenic extracellular matrix (ECM), as 

described in an earlier review.221 Ideally, this will also preserve the 

biomechanical properties of the tissue. For instance, an acellular dermal 
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matrix222 has seen successful use clinically as the FDA approved Alloderm 

product. Additionally, acellular xenogenic tissues have been created for many 

musculoskeletal applications, including replacements for the knee meniscus,223 

temporomandibular joint disc,224 tendon,225 and ACL,226 as well as in other 

tissues including heart valves,227"233 bladder,234 artery,235 and small intestinal 

submucosal36, 237 However, studies demonstrating the effects of tissue 

decellularization on cartilage as well as on musculoskeletal tissue engineered 

constructs are lacking. 

Therefore, the objective of this study was to determine the effects of multiple 

decellularization treatments on construct cellularity, biochemical, and 

biomechanical properties. It was hypothesized that cells could be removed from 

self-assembled constructs while preserving the biochemical and biomechanical 

properties. To test this hypothesis, self-assembled articular cartilage constructs 

were cultured for 4 wks, and then treated with 1% SDS, 2% SDS, 2% Tributyl 

Phosphate (TnBP), 2% Triton X-100, or a hypotonic/hypertonic solution, for either 

1 or 8 h. The effects of the decellularization treatments were assessed on 

construct cellularity and functional properties. 

MATERIALS AND METHODS 

Chondrocyte Isolation and Seeding 

Cartilage was harvested from the distal femur of wk-old male calves93, 118, 181 

(Research 87, Boston, MA) shortly after slaughter, and chondrocytes were 
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isolated following digestion with collagenase type 2 (Worthington, Lakewood, 

NJ). To normalize variability among animals, each leg came from a different 

animal, and cells from all legs were combined together to create a mixture of 

chondrocytes; a mixture of cells from five legs was used in the study. Cell 

number was determined on a hemocytometer, and a trypan blue exclusion test 

indicated that viability remained >90%. Chondrocytes were frozen in culture 

medium supplemented with 20% FBS (Biowhittaker, Walkersville, MD) and 10% 

DMSO at -80°C for 1 day prior to use. After thawing, viability was greater than 

90%. A stainless steel mold consisting of 5 mm dia. x 10 mm long cylindrical 

prongs was placed into a row of a 48-well plate. To construct each agarose well, 

sterile, molten 2% agarose was added to wells fitted with the die. The agarose 

solidified at room temperature for 60 min, after which the mold was removed from 

the agarose. Two changes of culture medium were used to completely saturate 

the agarose well by the time of cell seeding. The medium was DMEM with 4.5 

g/L-glucose and L-glutamine (Biowhittaker), 100 nM dexamethasone (Sigma, St. 

Louis, MO), 1% Fungizone/Penicillin/Streptomycin (Biowhittaker), 1% ITS+ (BD 

Scientific, Franklin Lakes, NJ), 50 |ig/mL ascorbate-2-phosphate, 40 |ig/mL L-

proline, and 100 |i,g/mL sodium pyruvate (Fisher Scientific, Pittsburgh, PA). To 

seed each construct, 5.5 x 106 cells were added in 100 JLL! of culture medium. 

Constructs formed within 24 h in the agarose wells and were cultured in the 

same well until t=10 days, after which they were unconfined for the remainder of 

the study, as described previously;2581=0 was defined as 24 h after seeding. 
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Decellularization Treatments 

At t=4 wks, self-assembled constructs (n=6/group) were removed from culture 

and exposed to one of five decellularization treatments, for either 1 h or 8 h. The 

decellularization treatments included: 

1) 1%SDS 

2) 2%SDS 

3) 2% Tributyl Phosphate (TnBP) 

4) Triton X-100 

5) Hypotonic/Hypertonic Solution (half-time of each) 

a. Hypotonic: 10 mM Tris HCI, 5 mM EDTA, 1 ̂ M PMSF 

b. Hypertonic: 50 mM Tris HCI, 1 M NaCI, 10 mM EDTA, 1 yM PMSF 

All treatments included 0.5 mg/ml DNase Type I, 50 ng/ml RNase, 0.02% EDTA, 

and 1 % P/S/F, in PBS. Both 1 h control and 8 h control groups were exposed to 

this same solution without detergent treatments. These treatments were applied 

at 37°C with agitation. Following the 1 h or 8 h treatment, the constructs were 

washed for 3 h in PBS at 37°C with agitation. Additionally, an untreated control 

was assessed immediately following removal from culture, without the treatment 

or wash steps. 

Histology and Immunohistochemistry 

After freezing, samples were sectioned at 14 (xm. To determine construct 

cellularity, a hematoxylin & eosin (H&E) stain was used. A Safranin-O/fast green 
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stain was used to examine GAG distribution.182'183 To assess collagen content, 

picrosirius-red was employed. Immunohistochemistry was utilized to test for the 

presence of collagen types I and II on a Biogenex (San Ramon, CA) i6000 

autostainer. Following fixation in chilled acetone, the slides were washed with 

IHC buffer (Biogenex), quenched of peroxidase activity with hydrogen 

peroxide/methanol, and blocked with horse serum (Vectastain ABC kit, Vector 

Laboratories, Burlingame, CA). The slides were then incubated with either 

mouse anti-collagen type I (Accurate Chemicals, Westbury, NY) or rabbit anti-

collagen type II (Cedarlane Labs, Burlington, NC) antibodies. Secondary 

antibody (anti-mouse or anti-rabbit IgG, Vectastain ABC kit) was applied, and 

color was developed using the Vectastain ABC reagent and DAB (Vectastain kit). 

Quantitative Biochemistry 

Samples were frozen overnight and lyophilized for 48 h, followed by re-

suspension in 0.8 mL of 0.05 M acetic acid with 0.5 M NaCI and 0.1 mL of a 10 

mg/mL pepsin solution (Sigma) at 4°C for 72 h. Next, 0.1 mL of 10x TBS was 

added along with 0.1 mL pancreatic elastase and mixed at 4°C overnight. A 

Picogreen® Cell Proliferation Assay Kit (Molecular Probes, Eugene, OR) was 

used to assess total DNA content. GAG content was quantified using the 

Blyscan Glycosaminoglycan Assay kit (Biocolor), based on 1,9-

dimethylmethylene blue binding.184,185 After hydrolysis with 2 N NaOH for 20 min 

at 110°C, total collagen content was determined using a chloramine-T 

hydroxyproline assay.186 
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Indentation Testing 

Samples were assessed with an automated indentation apparatus, as described 

previously.187 A 0.7 g (0.007 N) mass was applied with a 1 mm flat-ended, 

porous indenter tip, and specimens crept until equilibrium, as described 

elsewhere.36 Preliminary estimations of the aggregate modulus of the samples 

were obtained using the analytical solution for the axisymmetric Boussinesq 

problem with Papkovich potential functions.188, 189 The sample biomechanical 

properties, including aggregate modulus, Poisson's ratio, and permeability were 

then calculated using the linear biphasic theory.3 

Tensile Testing 

A uniaxial materials testing system (Instron Model 5565, Canton, MA) was 

employed to determine tensile properties with a 50 N load cell, as described 

previously.197 Briefly, samples were cut into a dog-bone shape with a 1-mm-long 

gauge length. Samples were glued to paper tabs with cyanoacrylate glue outside 

of the gauge length. The 1 -mm-long sections were pulled at a 1% constant strain 

rate. All samples broke within the gauge length. Stress-strain curves were 

created from the load-displacement curve and the cross-sectional area of each 

sample, and Young's modulus was calculated from each stress-strain curve. 

Statistical Analysis 

All samples were assessed biochemically and biomechanically (n=6). First, the 

three control groups were compared using a single factor ANOVA. As no 
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difference was noted, only the culture control was used in the final analysis. To 

compare treatment groups, a single factor ANOVA was used, and a Tukey HSD 

post hoc test was used when warranted. Significance was defined as p< 0.05. 

RESULTS 

Gross Appearance and Histology 

In all groups, the construct diameter was approximately 6 mm at 4 wks. 

Treatment for 8 h with either 1% SDS or the hypotonic/hypertonic solution 

resulted in a significant decrease in construct thickness (Table VII). Additionally, 

treatment for 8 h with 1% SDS, 2% SDS, 2% Triton X-100, or the 

hypotonic/hypertonic solution resulted in a significant decrease in construct wet 

weight (Table VII). 

Figure 24 displays the histological results of the study. Extensive staining for cell 

nuclei was observed in the H&E staining of the control group. 1% SDS treatment 

for 1 h reduced the number of cell nuclei, while treatment for 8 h eliminated all 

nuclei from the construct. The 2% SDS treatment had similar results. However, 

treatment with 2% TnBP or 2% Triton X-100, for either timepoint, had no effect 

on the number of nuclei. Both hypotonic/hypertonic treatments resulted in a 

slight reduction in number of cell nuclei. All decellularization treatments for 8 h 

resulted in a significant reduction or complete elimination of staining for GAGs. 

Additionally, 1 h treatment with the hypotonic/hypertonic solution reduced the 

GAG content. However, there were no apparent differences in GAG staining 
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among the 1 h treatments with 1% SDS, 2% SDS, 2% TnBP, 2% Triton X-100, 

and the control. Finally, all constructs demonstrated extensive staining for 

collagen, although the 8h decellularization treatments resulted in slight 

alterations in construct morphology. 

Quantitative Biochemistry 

Several decellularization treatments resulted in a significant reduction in 

construct DNA (Fig. 25). Treatment for 1 h with 2% SDS or the 

hypotonic/hypertonic solution, as well as 8 h treatment with 1 or 2% SDS or the 

hypotonic/hypertonic solution all resulted in a significant reduction of the DNA in 

the constructs. However, treatment with 2% TnBP or 2% Triton X-100 for either 

amount of time had no effect on construct DNA. 

The effects of the decellularization agents on construct GAG content are found in 

Fig. 26. Treatment with 1% or 2% SDS for 1 h had no effect on GAG content, 

while all other treatments significantly reduced the GAG content of the 

constructs. Additionally, all 8 h treatments resulted in complete or nearly 

complete removal of GAG from the constructs. Finally, there were no significant 

changes in total collagen content following treatment with the decellularization 

agents (Fig. 27). 
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Biomechanical Evaluation 

The effects of the various decellularization treatments on construct aggregate 

modulus are displayed in Fig. 28. Treatment for 1 h with 1% or 2% SDS as well 

as with 2% TnBP maintained the compressive stiffness. However, treatment for 

8 h with 1% SDS, 2% TnBP, and 2% Triton X-100 significantly reduced the 

aggregate modulus. The groups treated for 8 h with either 2% SDS or the 

hypotonic/hypertonic solutions were too weak to be mechanically tested with 

creep indentation. Additionally, the effects of the various decellularization 

treatments on Poisson's ratio and permeability are displayed in Table VIII. A 

significant decrease in Poisson's ratio was noted for the groups treated for 8 h 

with 1% SDS, 2% TnBP, and 2% Triton X-100. Finally, only treatment for 8 h 

with 1% SDS resulted in a significantly decreased permeability. 

Figure 29 indicates the tensile properties of the constructs treated with the 

various agents. Treatment for 1 h with 1% SDS, 2% TnBP, or 2% Triton X-100 

maintained the tensile stiffness. A 1 h treatment with 2% SDS actually increased 

the Young's modulus. However, 8 h treatments with 2% SDS, 2% TnBP, and 2% 

Triton X-100 significantly decreased the Young's modulus. Similar trends are 

noted for the Ultimate Tensile Strength data, although a significant decrease was 

only noted for the hypotonic/hypertonic treatment. 
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DISCUSSION 

To the best of our knowledge, this is the first study to decellularize articular 

cartilage tissue, in this case engineered cartilage. The objective of this study 

was to assess the effectiveness of multiple different decellularization protocols on 

self-assembled articular cartilage constructs. The study utilized a two-factor 

approach, in which five different treatments were examined at two application 

times each. 

The results of this study indicated that SDS, at concentrations of either 1% or 

2%, is an effective treatment for tissue decellularization, thus confirming our 

hypothesis that cells could be eliminated from engineered constructs while 

maintaining the biomechanical properties. An ionic detergent, SDS typically is 

able to solubilize the nuclear and cytoplasmic cell membranes. Although all SDS 

treatments led to cell removal, treatment with 2% SDS appeared the most 

promising, although application time also had significant effects. For instance, 

treatment with 2% SDS for 1 h resulted in a 33% decrease in cellularity, while 

maintaining both GAG and collagen content, as well as maintaining compressive 

stiffness. This treatment even resulted in an increase in tensile stiffness; a 

similar increase in tensile properties was observed in a study of ACL 

decellularization.226 On the other hand, treatment with 2% SDS for 8 h led to 

complete histological decellularization, as well as a 46% decrease in DNA 

content. However, this treatment also resulted in loss of all GAG and 

compressive stiffness, as well as a decrease in tensile stiffness. Treatment with 
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2% SDS for 8 h also resulted in a significant decrease in construct WW, 

presumably as a result of the GAG loss, which would also decrease the tissue 

hydration. 

As described above, it must be noted that although treatment with 2% SDS 

resulted in complete histological decellularization, it did not result in complete 

elimination of DNA. It appeared that SDS treatment was effective at achieving 

complete lysis of cell membranes and nuclear membranes, as an H&E stain did 

not reveal any indication of the presence of cell nuclei, while the DNAse 

treatment was not completely effective in degrading the DNA following 

membrane lysis. It is possible that a higher DNAse concentration is required to 

achieve more complete elimination of DNA. Additionally, as nucleases were only 

added during detergent treatment, it is possible that adding a nuclease during the 

3 h wash step would enable the nucleases to more effectively destroy the 

remaining DNA. 

However, the exact level of tissue decellularization requisite to eliminate an 

immune response, as well as the proper assessment of decellularization, is 

currently unclear. As it is believed that the joint space is relatively immune 

privileged, as reviewed previously,239 it is possible that complete decellularization 

of the tissue is not required. Additionally, it is unclear if decellularization should 

be assessed histologically merely as elimination of cell nuclei, or if a more 

complete assessment involves quantifying the tissue's DNA content, as prior 
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studies have utilized differing approaches. For example, Lumpkins et al.224 found 

that 1% SDS treatment for 24 h resulted in complete removal of cell nuclei, 

although they did not assess the DNA content of the tissue. On the other hand, 

Dahl et al.235 examined the effects of a hypotonic/hypertonic treatment and found 

that there was complete removal of cell nuclei, but no decrease in DNA content. 

To study this issue further, in vivo studies are warranted to determine if there is 

threshold of decellularization at which an immune response is eliminated. 

Although it was less effective than the 2% concentration, 1% SDS displayed 

similar effects. For example, treatment for 1 h resulted in a 15% decrease in 

DNA content, while maintaining GAG and collagen content as well as maintaining 

biomechanical properties. Additionally, treatment for 8 h resulted in a 37% 

decrease in DNA content, loss of all GAG and compressive stiffness, as well as a 

decrease in tensile stiffness. 

On the other hand, treatment with Triton X-100 and TnBP did not appear 

promising, as they had a minimal effect on tissue decellularization, and resulted 

in a slight decrease in GAG content. Several prior studies have indicated the 

ineffectiveness of Triton X-100, although it was used in this study as it is believed 

to have minimal effects on protein-protein interactions.221 For example, Dahl et 

al.235 examined the effects of 1% Triton X-100 on porcine carotid arteries, and 

found that this treatment resulted in similar cellularity to control and no decrease 

in DNA content. In another study on tendon decellularization, Cartmell and 
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Dunn225 examined the effect of 1% Triton X-100 for 24 h, and found that cell 

density remained similar to control. Contrary to our results, this study 

demonstrated complete decellularization with 1% TnBP, although a 48 h 

treatment was required. Therefore, it is possible that TnBP treatment may result 

in decellularization of self-assembled constructs at longer application times, 

although the GAG loss after as little as 8 h prevents the use of longer application 

times. 

Finally, although a hypotonic/hypertonic treatment has been an effective 

decellularization agent in this study as well as prior studies,226' 235 it did not 

appear to be a viable treatment for self-assembled cartilage constructs, as it had 

severely detrimental effects on construct functional properties. For instance, 

treatment for as little as 1 h resulted in nearly complete loss of compressive and 

tensile stiffness, while constructs treated for 8 h were untestable mechanically. 

Additionally, treatment at both application times resulted in nearly complete 

elimination of GAG content. 

Based on these results, treatment with 2% SDS appears to be the most 

promising, and should be examined further in future studies. For example, it is 

possible that treatment with 2% SDS for an application time between 1 h and 8 h 

may result in the best compromise between decellularization and maintaining the 

GAG content and compressive properties. It would therefore be interesting to 

examine the effects of 2% SDS at varying timepoints between 1 and 8 h. 
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Additionally, it is possible that a more effective protocol would involve multiple 

rounds of 1 h SDS treatment followed by a 1 h wash step, as this would re­

establish concentration gradients for the detergent and wash solution at the 

beginning of each step. Finally, although the majority of prior decellularization 

studies have been performed in PBS, it is possible that the constructs could 

maintain their GAG content during a longer detergent treatment if in media, as 

this would maintain an isomolar environment, and potentially eliminate the GAG 

loss down a concentration gradient. Although the results of this study did not 

result in a completely decellularized construct with maintenance of biochemical 

and biomechanical properties, the results are promising and indicate the potential 

of a decellularized articular cartilage construct that could be used to treat 

damaged cartilage tissue without eliciting an immune response. 
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Conclusions 

This thesis demonstrates work towards enhancing the functional properties of 

tissue engineered articular cartilage constructs. Exogenous stimuli, including 

radial and vertical confinement, hydrostatic pressure, and growth factor 

application, as well as their combined use, resulted in constructs with 

biochemical and biomechanical properties in the range of native tissue values, 

thus enhancing the in vivo translatability of the self-assembling process. 

Additional translatability of our laboratory's scaffoldless approach to tissue 

engineering articular cartilage was illustrated, as it was possible to remove cells 

from the constructs without compromising the integrity of the constructs, thus 

paving the way for implantation of a xenogenic tissue engineered replacement 

tissue. 

The global hypotheses of this thesis were that 1) the self-assembling process 

could be enhanced by identifying suitable growth factors and mechanical forces, 

and 2) the effects of these exogenous factors individually or in combination would 

allow for the formation of constructs in vitro resembling native tissue. Prior work 

in our laboratory has generally focused on characterizing the biochemical and 

biomechanical properties of native articular cartilage tissue in order to develop 

design criteria for tissue engineered constructs. Additionally, several prior 

studies have focused on developing and modulating the scaffoldless approach 

utilized in this thesis. However, in these prior tissue engineering studies, the 

functional tissue properties were significantly lacking when compared to native 
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tissue. Therefore, this thesis concentrates on enhancing the functional 

properties of self-assembled articular cartilage constructs such that they 

approach native tissue values. 

Chapter 1 presented an overview of the paradigms of tissue engineering, 

focusing on its application to articular cartilage regeneration. Many prior studies 

have focused on modulating the four parameters of the cartilage tissue 

engineering paradigm, specifically scaffolds, cell sources, bioactive agents, and 

bioreactors. Both natural and synthetic materials have been utilized as scaffolds 

with promising results; however, several issues must be overcome when dealing 

with scaffolds. For instance, the scaffold degradation kinetics must be 

coordinated with the deposition of new tissue, and there is concern over scaffold 

toxicity or the toxicity of byproducts during degradation. Therefore, scaffoldless 

approaches such as the self-assembling process developed by our laboratory 

have demonstrated increased promise in recent studies. Additionally, this 

chapter addressed the inherent advantages and disadvantages to the use of 

different cell sources, and indicated that primary chondrocytes generally result in 

constructs with the most robust functional properties. Furthermore, the effects of 

growth factors on chondrocyte metabolism were reviewed, and it was determined 

that TGF-pi, BMP-2, and IGF-I all have beneficial effects on the biochemical and 

biomechanical properties of tissue engineered constructs. Finally, the effects of 

different mechanical stimulation modalities were assessed, including direct 

compression, hydrostatic pressure, and shear, and it was concluded that these 
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modalities showed promise as agents for enhancing construct functionality. 

However, despite the promise of prior results in the literature as well as in work 

performed in our own laboratory, successful tissue engineering strategies would 

need to optimize all parameters to generate constructs with properties 

approaching those of native tissue. 

Chapter 2 delivered a more comprehensive overview of the use of hydrostatic 

pressure in tissue engineering strategies. This chapter indicated that hydrostatic 

pressure provides a promising method for enhancing the ECM production of 

chondrocytes in monolayer, in 3-D engineered constructs, as well as in tissue 

explants. It was apparent that pressure magnitudes within the physiologic range, 

generally between 3 and 10 MPa, had the most beneficial effects. Additionally, 

chondrocytes in monolayer seemed to respond maximally to regimens using 

dynamic frequencies, generally <1 Hz, while chondrocytes in explants and 3-D 

constructs typically responded favorably to an application of static pressure. 

Furthermore, this chapter demonstrated the potential use of hydrostatic pressure 

as a chondroprotective agent, thus suggesting its potential use as a treatment to 

delay the onset of osteoarthritis, as well as implying that hydrostatic pressure 

could enable the use of osteoarthritic chondrocytes in future tissue engineering 

studies. Also, hydrostatic pressure was found to be effective as a differentiation 

agent, for stem cells as well as dedifferentiated articular chondrocytes. 

Additionally, many studies have examined the use of hydrostatic pressures 

above the physiologic range, and have generally demonstrated detrimental 
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effects at these high magnitudes, particularly between 30 and 50 MPa, but also 

as low as 15 MPa. This indicated that tissue engineering studies should remain 

focused on utilizing pressures in the physiologic range for the enhancement of 

functional properties. Finally, as hydrostatic pressure does not result in 

macroscopic deformation of cartilage, it was postulated that hydrostatic pressure 

has a direct effect on cell transmembrane ion transporters, thus altering their 

activity and changing intracellular ion gradients. An altered intracellular ion 

concentration could activate signal transduction cascades and lead to 

upregulation of ECM-specific genes, and the eventually increased biochemical 

properties, as observed previously. 

The temporal and directional effects of confinement on construct biomechanical 

properties were examined in Chapter 3. This was necessary as it would aid in 

identifying more optimal construct culture conditions. It was found that constructs 

confined radially for 2 wks demonstrated a significantly higher aggregate 

modulus than the other treatment groups, accompanied by extensive 

organization of collagen fibrils, forming struts in the direction perpendicular to the 

articular surface. Additionally, when maintaining radial confinement for a longer 

period, it was determined that the increased confinement time resulted in a slight 

decrease in aggregate modulus, thus indicating the importance of early (<2 wks) 

application of confinement, and possibly other forms of mechanical stimulation. 

Finally, passive axial compression during early construct growth resulted in 

increased tensile properties, accompanied by a significant increase in collagen 
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content. These studies indicated that mechanical stimulation, as evidenced by 

radial and vertical confinement, had significant effects on construct properties, as 

the biomechanical properties were influenced by an application of stress in the 

orthogonal direction. 

Although construct confinement for 2 wks demonstrated beneficial results on 

compressive properties in Chapter 3, as this effect was highly dependent on 

construct growth rates, which were variable among different studies, all 

remaining studies involved construct confinement for only 10 days, thus 

controlling for the effects of confinement. However, the effects of mechanical 

stimulation, in the form of hydrostatic pressure, were assessed at similar 

timepoints to the windows observed in the confinement studies. As no prior 

studies had demonstrated the effects of hydrostatic pressure on construct 

biomechanical properties, the temporal effects of hydrostatic pressure on 

construct biomechanical and biochemical properties were examined in Chapter 

4. This study consisted of two phases. In the first phase, a bagged control, 

consisting of constructs placed in an unpressurized HP chamber, was compared 

to a culture control, which remained in culture for the remainder of the study. It 

was determined that there was no difference between the controls, so the culture 

control was used in all subsequent HP studies in this thesis. In the next phase, 

the effects of 10 MPa static HP application were compared at three different 

times in construct development, from 6-10, 10-14, and 14-18 days. It was found 

that 10 MPa static HP enhanced both aggregate modulus and Young's modulus, 
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with parallel increases in GAG and collagen content, respectively. Additionally, it 

was determined that HP application from 10-14 days had the greatest effect on 

construct biomechanical and biochemical properties, so this application time was 

chosen for future HP studies in Chapter 6. Finally, in the third phase, the 

immediate and delayed effects of HP were assessed on construct properties, and 

an immediate increase in GAG production and aggregate modulus were 

demonstrated. However, there was an immediate increase in collagen content, 

but a delayed increase in tensile properties, likely as a result of the slower 

turnover of collagen relative to GAG production. 

Although HP was shown to have significant effects on construct functional 

properties, they still lagged behind those of native tissue. Therefore, additional 

exogenous stimulation modalities, namely growth factor application, were 

examined in Chapter 5, as the effects of multiple growth factor treatments under 

serum-free conditions were assessed. Three growth factors, BMP-2, IGF-I, and 

TGF-pi were examined alone and in combination, on the properties of 

engineered cartilage constructs. All growth factors were assessed at two 

concentrations each, low and high, and two dosage frequencies, in the media for 

the first 2 wks of culture or in the media during the first and third wks of culture. 

From these groups, the best treatment, in terms of construct functional properties 

was determined for each individual growth factor. It was determined that BMP-2, 

at a concentration of 10 ng/ml and the 2-wk continuous dosage, had the greatest 

effects on construct properties, leading to a significant increase in compressive 
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stiffness and GAG production. Treatment with IGF-I, at 10 ng/ml and the 2-wk 

rotation dosage, had a similar effect on construct properties, also leading to 

significant enhancement of construct compressive stiffness and GAG production. 

On the other hand, 30 ng/ml TGF-pi, at the 2-wk continuous dosage, led to a 

significant increase in compressive stiffness and GAG production, as well as a 

significant increase in tensile properties, accompanied by a significant increase in 

collagen production. These three individual treatments were then studied 

individually and in combinations of two and three. It was determined that the 

combination of BMP-2 and IGF-I resulted in the greatest increases in 

compressive stiffness and GAG content, while TGF-pi alone was the only 

treatment that resulted in a significant increase in both compressive and tensile 

properties. Therefore, these two treatments were used for subsequent study, in 

combination with HP, in Chapter 6. These findings were exciting, as this was the 

only study to show increases in both compressive and tensile biomechanical 

properties as a result of growth factor treatment. In addition to combination with 

HP, future studies should assess the effects of combining these growth factor 

regimens with other mechanical stimulation modalities such as direct 

compression. 

As no prior studies systematically assessed the effects of multiple physiologic 

regimens of HP on engineered cartilage constructs, a full-factorial study of three 

magnitudes, 1, 5, and 10 MPa, and three frequencies, static, 0.1, and 1 Hz, was 

conducted and described in Chapter 6. HP duration and application time were 
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selected in Chapter 4. HP application at 10 MPa, 1 Hz resulted in a significant 

increase in compressive stiffness and GAG content, while only static HP at 5 and 

10 MPa resulted in significant increases in compressive and tensile stiffness, as 

well as GAG and collagen content. Therefore, these treatments were combined 

with the optimized growth factor treatments described in Chapter 5. It was 

determined that the combination of 10 MPa HP and TGF-01 had additive and 

synergistic effects on tissue functional properties, with a 164% increase in 

compressive stiffness, a 231% in tensile stiffness, an 85% increase in GAG 

content, and a 173% increase in collagen content. Additionally, the collagen/WW 

of this group, at 15.3% was on par with native tissue. The findings of this study 

were extremely exciting, as engineered cartilage was produced for the first time 

with biochemical and biomechanical properties spanning native tissue values. 

Finally, although the aforementioned results of this thesis appear very promising, 

all of the studies involved the use of bovine chondrocytes, which would lead to a 

xenogenic implant for treating articular cartilage injuries. Therefore, Chapter 7 

assessed the feasibility of decellularizing self-assembled articular cartilage 

constructs, to create a non-immunogenic xenogenic tissue for in vivo 

implantation. The control constructs utilized in Chapters 4-6 were selected for 

use in this study. It was found that treatment with 2% SDS for 1 h resulted in a 

33% decrease in DNA content, while maintaining GAG content, collagen content, 

and compressive stiffness, and even increasing tensile stiffness. On the other 

hand, 2% SDS treatment for 8 h led to complete histological decellularization, 
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with a 46% decrease in DNA content. However, there was loss of all GAG and 

compressive stiffness. Although complete tissue decellularization with 

maintenance of functional properties was not achieved in this study, the results 

indicate that this may be feasible with additional study. 

Current tissue engineering approaches strive to obtain a construct with 

biomechanical, biochemical, and histological properties as close as possible to 

native tissue. The results described in this thesis have tremendous clinical 

implications. For example, the results of the growth factor and hydrostatic 

pressure studies outline an exogenous treatment protocol that could potentially 

be applied to any chondrogenically differentiated cell sources such as embryonic 

or mesenchymal stem cells for the creation of implantable cartilage constructs, 

potentially from a patient's own cells. This approach would alleviate the current 

issues involving the scarcity of primary chondrocytes for tissue engineering 

cartilage. Additionally, it is believed that this approach could be applied to 

enhance passaged autologous chondrocytes such as in the FDA approved 

autologous chondrocyte implantation procedures. Moreover, it is likely that self-

assembled constructs created with bovine cells can be decellularized while 

maintaining their biomechanical properties, enabling the use of a xenogenic 

implant. To fully assess this possibility, in vivo studies will be performed shortly 

to determine the effectiveness of self-assembled constructs following 

implantation in a joint defect. 
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Figure 1: Zonal arrangement of cartilage. 
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Figure 3: (A) Hydrostatic pressure chamber. (B) Direct compression 
device. 
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Figure 4: Illustration of a chondrocyte exposed to HP. 
The cell experiences a uniform stress, without any measurable tissue strain. 
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Figure 5: Representative HP bioreactor design. 
(a) Computer controls Instron, which compresses piston and generates pressure 
within chamber. Chamber is placed in water bath to maintain temperature at 
37°C. (b) HP chamber, with pressure sensor to verify pressures applied within 
the chamber. 



197 

Na+ 

Figure 6: HP mechanotransduction. 
Pressurization inhibits Na/K and Na/K/2CI channels, while it activates Na/H and 
stretch-activated Ca channels, and triggers release of intracellular Ca stores. 
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Figure 7: The experimental design. 
(a) 1st study: Radial confinement of self-assembled constructs; (b) 2nd study: 
Maintenance of radial confinement of self-assembled constructs; (c) 3rd study: 
Passive axial compression of self-assembled constructs. 
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2 wk confinement 4 wk confinement 

Figure 8: Histology of 2-wk and 4-wk confined constructs at 4 wks. 
Original magnification, 10x. (a) Polarized light microscopy images with the 
construct surface at the top. Two-wk confined group demonstrated organization 
of collagen fibrils perpendicular to the surface, (b) Picrosirius-red. (c) Safranin-
O. (d) Collagen IIIHC. (e) Collagen IIHC. 
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Figure 9: Mechanical properties of constructs in radial confinement study. 
Constructs confined for 2 wks demonstrated significantly higher aggregate 
modulus than the other groups. Means and standard deviations. 
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Figure 10: Mechanical properties of constructs in passive axial 
compression study. 
(a) Passive axial compression group exhibited significantly higher Young's 
modulus than control group, (b) Passive axial compression group exhibited 
significantly higher ultimate tensile strength than control group. Means and 
standard deviations. 
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Figure 11: Histological and immunohistochemical images representative of 
all self-assembled constrcuts at 2,4, and 8 wks. 
10x original magnification, scale bar marks are 10 urn. (a) Gross morphology, 
(b) Gross morphology profile, (c) Picrosirius-red stained sections, (d) Safranin-
O/Fast green stained sections, (e) Collagen II IHC sections, (f) Collagen I IHC 
sections. 
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Figure 12: Biomechanical and biochemical properties of self-assembled 
constructs in phase I. 
The HP treated group exhibited a significantly higher (a) aggregate modulus, (b) 
Young's modulus, (c) GAG/WW and (d) collagen/WW than BC or CC groups. 
Columns and error bars represent means and standard deviations. Groups 
denoted by different letters are significantly different (p<0.05). 
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Figure 13: Biomechanical and biochemical properties of self-assembled 
constructs in phase II. 
HP treatment was a significant factor for (a) aggregate modulus, (b) Young's 
modulus, (c) GAG/WW and (d) collagen/WW. Columns and error bars represent 
means and standard deviations. Groups denoted by different letters are 
significantly different (p<0.05) in the two-factor ANOVA (HP and application 
times). (*) indicates significant difference from control (p<0.05), based on the 
post-hoc analysis comparing each individual group. 
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Figure 14: Biomechanical and biochemical properties of self-assembled 
constructs in phase III. 
(a) Aggregate modulus was significantly increased by HP at 2 wks and 4 wks. 
(b) Young's modulus was significantly increased by HP at 4 wks and 8 wks. (c) 
GAG/WW and (d) collagen/WW were significantly increased at 2 wks and 4 wks 
by HP application. Columns and error bars represent means and standard 
deviations. (*) indicates significant difference from control (p<0.05). 
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Figure 15: Schematic diagram indicating experimental designs of phases I 
and II. 
The experimental design depicted in phase I was carried out for each individual 
growth factor separately (blocked by growth factor). The best treatment for each 
growth factor was selected for phase II. Phase II assessed the effects of each 
growth factor individually and in all combinations of two and three. 
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Figure 16: Photomicrographs of collagen and GAG staining. 
No growth factor control constructs, BMP-2 + IGF-I constructs, and TGF-pi 
treated constructs. 10x original magnification. 
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Figure 17: Biomechanical and biochemical properties of BMP-2 treated 
constructs in phase I. 
All BMP-2 treatments significantly increased (a) aggregate modulus with no 
effects on (b) Young's modulus. Likewise, all BMP-2 treatments significantly 
increased (c) GAG/WW with no effect on (d) collagen/WW. Columns and error 
bars represent means and standard deviations. Groups denoted by different 
letters are significantly different (p<0.05). 
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Figure 18: Biomechanical and biochemical properties of IGF-I treated 
constructs in phase I. 
All IGF-I treatments, except 10 ng/ml continuous, significantly increased (a) 
aggregate modulus with no effect on (b) Young's modulus. Likewise, all IGF-I 
treatments, except 10 ng/ml continuous, significantly increased (c) GAG/WW with 
no effect on (d) collagen/WW. Columns and error bars represent means and 
standard deviations. Groups denoted by different letters are significantly different 
(p<0.05). 
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Figure 19: Biomechanical and biochemical properties of TGF-pi treated 
constructs in phase I. 
TGF-p1 treatment at 30 ng/ml and 2-wk continuous dosage significantly 
increased (a) aggregate modulus and (b) Young's modulus, with corresponding 
increases in (c) GAG/WW and (d) collagen/WW. Columns and error bars 
represent means and standard deviations. Groups denoted by different letters 
are significantly different (p<0.05). 
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Figure 20: Biomechanical and biochemical properties of constructs in 
phase II. 
Combined treatment with BMP-2 and IGF-I led to the greatest enhancement of 
aggregate modulus and GAG/WW, while TGF-p1 alone was the only treatment to 
enhance both compressive and tensile stiffness, (a) aggregate modulus, (b) 
Young's modulus, (c) GAG/WW and (d) collagen/WW. Columns and error bars 
represent means and standard deviations. Groups denoted by different letters 
are significantly different (p<0.05). 
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Figure 21: Histological and immunohistochemical images representative of 
all self-assembled constructs. 
10x original magnification, (a) Gross morphology, (b) Picrosirius-red stained 
sections, (c) Collagen II IHC sections, (d) Gross morphology profile, (e) 
Safranin-O/fast green stained sections, (f) Collagen I IHC sections. 
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Figure 22: Biomechanical and biochemical properties of self-assembled 
constructs in phase I, normalized to control values. 
HP application at 5 or 10 MPa, 0 Hz, resulted in a significantly higher (a) 
aggregate modulus, (b) Young's modulus, (c) GAG/WW and (d) collagen/WW 
than control. Columns and error bars represent means and standard deviations. 
Groups denoted by different letters are significantly different (p<0.05). 
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Figure 23: Biomechanical and biochemical properties of self-assembled 
constructs in phase II, normalized to control values. 
(a) aggregate modulus, (b) Young's modulus, (c) GAG/WW and (d) 
collagen/WW. Combined treatment with 10 MPa static HP and TGF-p1 led to 
additive increases in aggregate modulus and Young's modulus, and a synergistic 
increase in collagen/WW. Columns and error bars represent means and 
standard deviations. Groups denoted by different letters are significantly different 
(p<0.05). 
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Figure 24. Photomicrographs demonstrating construct cellularity, GAG 
content, and collagen content for various treatment groups. 
10x original magnification. Treatment with 2% SDS for 1 h decreased cellularity 
while preserving GAG content, while treatment for 8 h eliminated all nuclei, but 
also eliminated all GAG. 
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Figure 25. Cellularity (DNA content) of constructs following 
decellularization treatment. 
Treatment with 2% SDS or the hypotonic/hypertonic solutions at either 
application time significantly decreased construct cellularity. Columns and error 
bars represent means and standard deviations. Groups denoted by different 
letters are significantly different (p<0.05). 
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Figure 26. Construct GAG content following decellularization. 
All 8 h treatments resulted in nearly complete GAG removal, while both 1% and 
2% SDS for 1 h maintained GAG content. Columns and error bars represent 
means and standard deviations. Groups denoted by different letters are 
significantly different (p<0.05). 



218 

a 
r a 

ab 
ab ab a 

Control 1%'SD.S 2%SDS 2% nBP 2%Triton-X Hypo/Hyper 

Figure 27. Construct collagen content following decellularization. 
Treatment with SDS or TnBP maintained collagen content, while treatment with 
Triton X-100 or the hypotonic/hypertonic combination significantly reduced total 
collagen content. Columns and error bars represent means and standard 
deviations. Groups denoted by different letters are significantly different 
(p<0.05). 
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Figure 28. Construct compressive properties following decellularization. 
All 8 h treatments either significantly reduced compressive stiffness, or were 
untestable. However, treatment for 1 h with 1% or 2% SDS, or 2% TnBP 
maintained compressive stiffness. Columns and error bars represent means and 
standard deviations. Groups denoted by different letters are significantly different 
(p<0.05). 
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Figure 29. Construct tensile properties following decellularization. 
(a) Treatment with 1% SDS for 1 h maintained tensile stiffness, while treatment 
with 2% SDS for 1 h increased tensile stiffness. The 8 h detergent treatments 
resulted in a slight decrease in tensile stiffness, (b) Similar trends were observed 
for ultimate tensile strength. Columns and error bars represent means and 
standard deviations. Groups denoted by different letters are significantly different 
(p<0.05). 
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Table I: Properties of constructs treated with BMP-2 in phase I. 

Group 

Control 

100ng/ml 
Continuous 

100 ng/ml 
Wk Rotat. 

10 ng/ml 
Continuous 

10 ng/ml 
Wk Rotat. 

WW 
(mg) 

21.8±2.4 

23.7±1.8 

22.6±1.9 

23.3±2.0 

23.8±1.3 

Thickness 
(mm) 

0.67±0.04 

0.71 ±0.07 

0.71 ±0.04 

0.73±0.07 

0.72±0.04 

Total 
Cells 
(x106) 

4.6±0.5 

5.3±0.3 

4.8±0.9 

4.4±1.0 

4.8±0.3 

Fl 

0.75±0.18 

0.94±0.06a 

0.96±0.08a 

0.97±0.10a 

0.92±0.06a 

Significantly different from control 
Wk Rotat., 2-wk rotation dosage 



Table II: Properties of constructs treated with IGF-I in phase I. 

Group 

Control 

100ng/ml 
Continuous 

100ng/ml 
Wk Rotat. 

10 ng/ml 
Continuous 

10 ng/ml 
Wk Rotat. 

WW 
(mg) 

25.7±1.0 

24.5±1.4 

22.7±1.6a 

23.2±1.7a 

24.111.9 

Thickness 
(mm) 

0.74±0.06 

0.65±0.08 

0.71 ±0.09 

0.75±0.10 

0.75±0.12 

Total Cells 
(x106) 

5.2±0.6 

5.3±0.7 

5.0±0.4 

4.6±0.6 

5.0±0.3 

Fl 

0.59±0.19 

0.93±0.12a 

0.92±0.14a 

0.78±0.19a 

0.96±0.08a 

aSignificantly different from control 
Wk Rotat., 2-wk rotation dosage 



Table III: Properties of constructs treated with TGF-pi in phase I. 

Group 

Control 

30 ng/ml 
Continuous 

30 ng/ml 
Wk Rotat. 

10 ng/ml 
Continuous 

10 ng/ml 
Wk Rotat. 

WW 
(mg) 

24.9±2.8 

12.6±0.7a 

13.9±0.6a 

17.8±1.3a 

17.9±4.6a 

Thickness 
(mm) 

0.88±0.14 

0.57±0.06a 

0.57±0.02a 

0.64±0.09a 

0.76±0.17 

Total Cells 
(X106) 

5.7±0.3 

6.6±0.4a 

6.5±0.8a 

5.7±0.4 

5.8±0.8 

Fl 

0.60±0.08 

0.82±0.07a 

0.81 ±0.14a 

0.6210.07 

0.55±0.06 

Significantly different from control 
Wk Rotat., 2-wk rotation dosage 
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Table IV: Phase II construct properties. 

Group 

Control 

BMP-2 

IGF-I 

TGF-P1 

BMP-2 + IGF-I 

BMP-2 + TGF-
P1 

IGF-I + TGF-
P1 

BMP-2 + IGF-I 
+ TGF-p! 

WW 
(mg) 

13.3±1.3 

15.0±1.6 

13.313.1 

14.5±1.6 

16.7±1.3a 

14.9±1.4 

14.2±1.4 

13.0±1.3 

Thickness 
(mm) 

0.45±0.09 

0.55±0.06 

0.5510.05 

0.5810.05 

0.5910.05 

0.5710.04 

0.5710.06 

0.5310.08 

Total Cells 
(x106) 

5.610.5 

5.210.4 

5.710.9 

5.510.3 

5.910.4 

5.810.6 

5.510.3 

6.110.4 

Fl 

0.5310.06 

0.76l0.07a 

0.7310.12a 

0.72i0.04a 

0.80i0.08a 

0.66i0.02a 

0.5910.04 

0.7010.05 

aSignificantly different from control 
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Table V: Phase I construct properties. 

Group 

No HP, No GF 

No HP, BMP-2+IGF-I 

No HP, TGF-P1 

5 MPa, No GF 

5 MPa, BMP-2+IGF-I 

5 MPa, TGF-B1 

10 MPa, No GF 

10 MPa, BMP-2+IGF-I 

10 MPa, TGF-B1 

WW(m9 ) 

32.1 40.7 

33.0±1.8 

16.2+1.1 

29.0-1.7 

32.0+2.5 

15.4+1.0 

27.8+0.8 

31.4+1.3 

14.8±0.4 

Thickness (mm) 

0.98±0.09 

1.09±0.11 

0.6940.06 

1.01+0.15 

1.03+0.14 

0.65+0.06 

0.94+0.13 

1.06±0.09 

0.69+0.08 

HA (kPa) 

94±24 

160±29 

176*38 

173+87 

165+37 

189±46 

161±19 

187±45 

248+.37 

EY (kPa) 

619473 

596±70 

1460+182 

1424+465 

862±293 

1545+235 

1268*404 

776+260 

2048±266 

GAG/WW (%) 

5.240.5 

6.9+1.3 

7.340.3 

7.8+0.6 

7.440.8 

8.1 +0.2 

8.540.6 

7.540.4 

9.640.4 

COI./WW (%) 

S.641.5 

5.441.4 

9.242.0 

7.5+0.5 

5.8+0.4 

12.6+2.4 

7.841 .5 

5.641.2 

15.342.9 

Total Cells 
(x10s) 

5.040.5 

5.1+1.5 

5.044.5 

5.7+0.3 

5.240.5 

5.1 ±0.4 

5.640.4 

5.640.1 

5.540.4 

Col., total collagen 
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Table VI: Phase II construct properties. 

Group 

No HP, No GF 

No HP, BMP-2+IGF-I 

No HP, TGF-pi 

S MPa, No GF 

5 MPa, BMP-2+IGF-I 

5 MPa, TGF-pi 

10 MPa, No GF 

10 MPa, BMP-2+IGF-I 

10 MPa, TGF-pi 

WW(mg) 

32.1 ±0 7 

33.0±1.8 

16.211.1 

29.0 ±1.7 

32.0 :r 2.5 

15.4±1.0 

27.840.8 

31.4±1.3 

14.8+.0.4 

Thickness (mm) 

0.98+0.09 

1.09+0.11 

0.69±0.06 

1.01+0.15 

1.03+0.14 

0.65 ±0.06 

0.94+0.13 

1.06 ±0.09 

0.69±0.08 

HA (kPa) 

94+24 

160+29 

176=: 38 

173+87 

165+37 

189146 

161+19 

187±45 

248+37 

Ev (kPa) 

619+73 

596±70 

1460+182 

1424+465 

862±293 

1545+235 

1268+404 

776±260 

2048+266 

GAG/WW (%) 

5.2±0.5 

6.9 ±1.3 

7.3+0.3 

7.8 ±0.6 

7.4+0.8 

8.1±0.2 

85+0.6 

7.5+0.4 

9.6+0.4 

COI./WW (%) 

5.6+1.5 

5.4+1.4 

9.2+2.0 

7.5+0.5 

5.8+0.4 

12.6+2.4 

7.8±1.5 

5.6 ±1.2 

153±2.9 

Total Cells 
(x10«) 

5.0±0.5 

5.1+1.5 

5.0+4.5 

5.7+0.3 

5.2+0.5 

5.1+0.4 

5.6+0.4 

5.6 ±0.1 

5.5 ±0.4 

Col., total collagen 



Table VII: Phase II construct properties. 

Treatment Group 
Control 

1%SDS, 1h 
1%SDS,8h 
2% SDS, 1 h 
2%SDS,8h 
2% TnBP, 1 h 
2% TnBP, 8 h 

2% Triton X-100,1 h 
2%TritonX-100,8h 

Hypo/Hyper 1 h 
Hypo/Hyper 8 h 

Construct Wet Weight 
14.8±1.1 
14.3±1.0 
8.8±1.2a 

12.3±1.1 
9.3±2.6a 

15.2±1.1 
12.2±1.2 
13.7±1.2 
11.2±1.7a 

15.0±3.0 
7.0±1.3a 

Thickness 
0.49±0.03 
0.50±0.02 
0.38±0.04a 

0.43±0.05 
0.47±0.08 
0.53±0.06 
0.49±0.04 
0.47±0.05 
0.47±0.08 
0.4010.09 
0.35±0.04a 

aSignificantly lower than control (p<0.05) 
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Table VIII: Phase II construct properties. 

Treatment Group 
Control 

1%SDS, 1h 
1%SDS,8h 
2% SDS, 1 h 
2% SDS, 8 h 
2% TnBP, 1 h 
2%TnBP,8h 

2% Triton X-100,1 h 
2%TritonX-100,8h 

Hypo/Hyper 1 h 
Hypo/Hyper 8 h 

Poisson Ratio 
0.30±0.07 
0.26±0.04 
0.07±0.09a 

0.26±0.10 
Not testable 
0.24±0.13 
0.04±0.03a 

0.16±0.11 
0.04±0.04a 

0.14±0.14 
Not testable 

Permeability 
14.3±3.9 
15.618.0 
2.0±1.6a 

12.616.3 
Not testable 

5.513.1 
7.317.5 
4.312.6 
5.1+4.7 
14.916.6 

Not testable 
Significantly lower than control (p<0.05) 


