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ABSTRACT

Learning the Structure of High-Dimensional Manifolds wihklf-Organizing Maps for

Accurate Information Extraction

by
Lili Zhang

This work aims to improve the capability of accurate infotima extraction from high-
dimensional data, with a specific neural learning paradigmSelf-Organizing Map (SOM).
The SOM is an unsupervised learning algorithm that canffalthsense the manifold
structure and support supervised learning of relevantimé&ion from the data. Yet open
problems regarding SOM learning exist. We focus on the ¥ahg two issues.

1. Evaluation of topology preservation. Topology presgovais essential for SOMs
in faithful representation of manifold structure. Howeuerreality, topology violations
are not unusual, especially when the data have complicttettisre. Measures capable of
accurately quantifying and informatively expressing togy violations are lacking. One
contribution of this work is a new measure, the Weightedddéhtial Topographic Func-
tion (W DT F), which differentiates an existing measure, the Topogapunction ("F),
and incorporates detailed data distribution as an impoetareighting of violations to dis-
tinguish severe violations from insignificant ones. Anotbentribution is an interactive
visual tool, TopoView, which facilitates the visual inspiea of violations on the SOM lat-
tice. We show the effectiveness of the combined use ofitliel" /' and TopoView through
a simple two-dimensional data set and two hyperspectrajésna

2. Learning multiple latent variables from high-dimensibdata. We use an existing
two-layer SOM-hybrid supervised architecture, which cagsé the manifold structure in

its SOM hidden layer, and then, uses its output layer to perfine supervised learning



of latent variables. In the customary way, the output laydy aises the strongest output
of the SOM neurons. This severely limits the learning cajgbi We allow multiple,
k, strongest responses of the SOM neurons for the supenesedihg. Moreover, the
fact that different latent variables can be best learnet different values ot motivates
a new neural architecture, the Conjoined Twins, which eddethe existing architecture
with additional copies of the output layer, for preferehtiae of different values of in
the learning of different latent variables. We also aut@tae customization of for
different variables with the statistics derived from theNb('he Conjoined Twins shows
its effectiveness in the inference of two physical paransetem Near-Infrared spectra of

planetary ices.
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of a 2-dimensional rectangular SOMlearned with al-dimensional data
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arrows relate some prototypes to their associated SOM nsuiagenta
dashed lines delineate the Voronoi cells (or receptived)edl some SOM
prototypes. Each prototype is the centroid of its Vorondi. c&/hen the
SOM converges, it forms a topologically ordered mappingveen)/ and
A. This is illustrated for the prototype; (solid black diamond). 6 proto-
types (solid grey diamonds) whose Voronoi cells share are &dth w;’s
Voronoi cell are neighbors of; in the data space. The respective 6 neu-
rons (solid grey circles) are neighbors of the neurgsolid black circle)
in the latticeA. In addition, this figure also shows the effects of two neigh-
borhood functions, a uniformly distributed spherical ledrfeq. 2.4) and a
uniformly distributed box kernel (eg. 2.5), on SOM learnifigpe spherical
kernel with neighborhood sizg(t) = 1 allows the BMUc (red circle) and
4 other neurons (pink circles with+” inside) in the dashed circle to adapt
their prototypes. The box kernel witht) = 1 allows the BMUc as well

as 8 other neurons (pink circles) in the dashed box to adeptglototypes. 16
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Prototypes of 1010 SOMs (circles), mapped to data space after learning
converged. The data set learned by the SOMs is generatedafronfiorm
distribution in a square area. Two prototypes are connefttdwy are
adjacent in the SOM latticeLeft: Topology is preserved in the SOM.
Right: The SOM is twisted in the data space. Topology is not preskry . 22
Possible visualizations of ax& SOM learned with a 2-dimensional “ex-
clamation mark” data set. In the middle and right, the SOMhisven as

a lattice of grid cells, each of which represents an SOM neuiceft:
Data samples are shown as small green and orange dots. Te -
resent two classes, the upper and lower parts of this “exatiam mark”
data manifold, respectively. Open circles are the SOM pypts pro-
jected back into the data space. The prototypes are comhacterding
to the SOM lattice structureMiddle: The SOM overlain with the mU-
matrix, which shows the distances, in the data space, of gaxthtype to
its immediate lattice neighbors, as “fences” on the bordétise grid cells.
The grey scale intensities of the “fences” are proporticsaahe distances
they represent. White is large distance. The intensitiegaf of the grid
cell of each neuron, indicate the mapping density (humbedatd samples
mapped to each neuron). The conspicuously high fencesedthy the
yellow lines correspond to the discontinuity between the tasters in the
data. This can be seen if compared with the SOM on the righigiwis
overlain with the known class labels. The other relativeghtfences, such
as those in cyan ovals, result from twists in the map, which lzax seen
in Fig. 2.4.Right: The SOM overlain with the mU-matrix and the known

classlabels (colors). . . . . . . .. . . . ... 4 2
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lllustration of Delaunay graph and induced Delaunaylgraith the 2-
dimensional “exclamation mark” data set (gray filled dot€)pen cir-
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The induced Delaunay graph (black lines) highlights theatisinuity in
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density as in Fig. 2.3, middle. An example of a backward anoradrd
topology violation can be seen between the prototypes A agrahB be-

tween the prototypes B and C, respectively. . . ... ... ... ... 29



2.6 Visualization of the 2-dimensional “Clown” data setrfrd31] and the
17x19 hexagonal SOM learned with it. Solid dots are data sam@lpsn
circles and crosses are non-empty and empty prototypggeately. Top
middle, top right, bottom left and bottom middle are repros from
[24], with kind permissions of IEEE and the authors, K. Tasd and

E. Merényi. Top left: The 2-dimensional “Clown” data set from [31].
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Top middle: The induced Delaunay graph (black lines) visualized in the

data space highlights most of the discontinuities in theifalhstructure,

which are not delineated by the Delaunay graph (gray linésp right:

The CON N matrix, visualized in the data space, make detailed strestu

(e.g., the three subclusters in the left eye) emerge. Péreafiown’s body,
in the dashed square, is magnified in the bottom riBbttom left: A vari-

ant of the U-matrix visualization of the SOM. The SOM neuransshown
as hexagons. The grey scale intensity of the additionaldmxéetween
each pair of neurons adjacent in the lattice indicates tlodidaan distance,

in the data space, between the two respective prototypeark®dgray in-

dicates greater dissimilarity. This visualization dedites the coarse cluster

structure.Bottom middle: TheCON N matrix drawn on the SOM lattice

separates the large clusters, and also makes the threestigioslin the left

eye (in the magenta triangle) emerdggottom right: Magnified detail in

the visualization of th€’O N N matrix from boxed area in the clown’s body

(top right). The first to fourth ranking Voronoi neighborsmbtotype P1
are P2, P3, P4 and P5, which have strengths 5, 3, 2 and 1, tigspecio

make this easy to see, we color the data samples that cdettdeach of

the 4 connections, the same as their corresponding coonscti . . . . . .
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The SOM prototypes (black dots) that represent a 2-dsioaal “horse-
shoe” distribution. The prototypes are projected back theodata space
and connected according the SOM lattice structure. . . . . .. .. .. 37
lllustration of a minimum path (green line segmentsiMeen two proto-
types A and B, in the data space (on ki) and in the SOM (on theght),
respectively, through the “exclamation mark” data set. ihldeiced Delau-

nay graph is shown as black lines in the data space and asvyaikes in

the SOM. The minimum path between A and B has a length of 5, eso th
the graph distance between them is 5. The prototypes al@npgath are
numbered so that we can relate these prototypes acrosstthspdee and
thelatticespace. . . . . . . . . . . . 43
The 8-class 6-dimensional (6-band) synthetic speiciradie data set. Fig-
ures reproduced from http://terra.ece.rice.edu/eéatample/data.html, with
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128x 128 image, overlain with known labels (color&ight: Mean signa-

tures (means of the data samples) for each class, vertaf&ist for clarity. 47
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3.4 The mU-matrix visualization of the SOM learned with thel@ss 6-dimensional
synthetic data set (Fig. 3.3). The SOM is shown as a lattiggidfcells.
The Euclidean distance in the data space between any twotypet that
are immediate lattice neighbors is shown as a fence on thedaoy of the
two respective grid cells of the two prototypes, in a grayles@atensity
proportional to the distance. White is large distance. Fgueproduced
from [27], with kind permissions of IEEE and E. MerényiLeft: Each
cell is shaded by an intensity of red proportional to the nemdf data
samples mapped to the corresponding neuron. Black celissept empty
neurons. The cluster boundaries emerge through the mUxnh{athite
fences) Right: The known class labels are overlain on the grid cells. . . . 48
3.5 Measuring topology violations in the SOM learned witle Brclass 6-
dimensional synthetic data set, with different measutes]'t', the DT F’
and thelW DT F'. All measures are calculated with and without empty neu-
rons, respectivelyTop left: TheT'F'. Top right: The DT F'. Bottom left:
The W DTF. Bottom right: The induced Delaunay graph (yellow lines)

is overlain on the SOM to help understand the values ofthe DT F and
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3.6 Anexample of displaying selected groups of violatioits viopoView for
the 15<15 SOM learned with the 8-class 6-dimensional synthetia.d&te
SOM upon which TopoView visualizes the connections, issdpced from
[27], with permissions of IEEE and Merényi. The violaticar® drawn on
the SOM overlain with known class labels (colors) and mU+irat_eft:
All, 567, violations (black lines)Right: TopoView filters out connections
with connection strength less than mean strength of allections (15.8 in
this example) and connections with folding length less than the maxi-
mum length of local violations (2 for this data set). Thereng connection
left with this thresholding method. . . . . . .. .. ... ........ 55

3.7 The evolution of the SOM as it learns a synthetic 2-direerad 4-class
Gaussian data set. Three snapshots are shown at 1K, 3K aRKdsid)s,
from top to bottom.Left: The SOM prototypes (black dots) are plotted in
the data space and connected according to the SOM latticeste. Data
samples (small dots) are color coded according to their kndass mem-
bershipsMiddle: All violating connections are shown as black lines, over
the SOM. The SOM is also overlain with the known class labetdofs)
and the mU-matrixRight: TheT'F's (blue lines) and th& DT F's (green
bars). . . . . e

3.8 A natural color composite of the Lunar Crater Volcanel#(LCVF). Fig-
ure from [3], courtesy of E. Merényi. 23 character labetiicate different
cover types of geologic interest. We refer to [3, 47] for dstaf these
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The 40«40 SOM learned with the LCVF image for 300K steps. Fig-
ures from [3], reused here with kind permissions of both 18t Sci-
ence+Business Media and E. Merényliop: The cluster labels (colors)
were extracted by Merényi from the SOM by using the mU-matrsu-
alization [3]. Bottom: The clusters mapped back into the spatial image.
Each color corresponds to a different surface cover typergds medium
grey indicates background “bg” (unclustered) pixels. . ...... . .. .. 61
TheT'F, the DT'F and thelV DT'F for the 40<40 SOM learned with the
194-dimensional hyperspectral image of the Lunar Cratécavoc Field
(LCVF) area after 300K learning stedseft: The DT F provides a clearer
view of the extents of violations (average number of vialas per neuron)

at different folding lengthsf{, while theT F' does not show this informa-
tion obviously. Right: The W DTF shows the severity of violations at
each folding length as the percentage of contributing datgptes. . . . . . 63
TopoView visualization of selected subsets of conaest(black lines) on

the SOM of the LCVF image. The SOM is also overlain with exiedc
class labels in [3] and the mU-matrix visualizatidmeft: TopoView shows

all, 521, violating connections with strength larger thhe mean strength

of all connections (which is 15 in this casd}ight: TopoView shows all,

165, inter-cluster violating connections with strengtiyé than the mean

strength of all connections (which is 15inthiscase). .. ...... . ... 64
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3.12 Comparison of two learning stages, 300K steps and 84 sté the SOM
of the LCVF image with the'F’, the NDT F and thelW’ DT F'. Top: The
two T'F curves for the two learning stages are similar, with no pumoed
difference. Thel'F provides no conclusive comparisomMiddle: The
NDTF shows an increase at most of the folding lengths, includey t
longest onesfl > 30), and a less than 10% decrease at a few folding
lengths (e.g.,fl = 2, 10, 11, 13, 14 and 19). This indicates a possibly
worsened topological health in the SORottom: The W DTF shows
obvious, 20-30%, decreases in the severity of violatiosewatral folding
lengths (indicated by arrows) after longer learning time:.other folding
lengths, there is no significant change in &7 F'. This indicates an
overallimprovementinthemap. . . .. ... .. ... ... ....... 6 6

3.13 The 210-band synthetic hyperspectral RIT image andSth®l learned
with it. Figures from [52], courtesy of E. Merényiop: A natural color
composite of the RIT imageBottom left: The SOM of the RIT image
(after 3M learning steps), overlain with cluster labeld thave been iden-
tified by Merényiet al. in [52]. The SOM is also overlain with the mU-
matrix. Cells with the color of the background, “bg”, are @gnpeurons
(no data mapped to them), most of which appear along clustardaries.
Black cells indicate prototypes whose cluster labels ateshown in this
representation due to color limitation in the SOM visudi@a software.

Bottom right: Clusters mapped back to the spatialimage. . . ... .. .. 68
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3.14 Comparison of two learning stages, at 500K steps andt8pksof the
SOM of the RIT image with th@' F', the NDTF and theWW DTF. Top:
The TF shows a general decrease of violations at short foldingtiheng
Parts of theV DT F' and thelV DT F' are magnified and shown in insets for
clarity. Middle: The NDT'F indicates an overall decrease in the number
of violations at most folding lengths after longer learntimge. Some ex-
ceptions exist, i.e., afl = 6, 7,10, 12, where the number of violations in-
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severity of violations (the number of contributing sampktsshort folding
lengths (I = 2, 3, 4) and at most larger folding lengthgi(= 7, 12, 15, 16).
Exceptions exist at some folding lengths, such aglat 8, 13,17, where
the severity of the violationsincreased. . . . . .. ... ... ....... 71

3.15 TopoView visualization of selected sets of violatiomsthe SOM learned
with the RIT image. A comparison is done between two learsitages
of the SOM, at 500K Iéft column) and 3M stepsr{ght column). Three
different subsets of violations are selected to be showndppView, from
top to bottom. The same SOM as in Fig. 3.13 is superimposeu tvé
mU-matrix visualization. Medium grey and black cells iratie empty and
non-empty neurons, respectively. To make the violatiosg &asee, we do
not show the cluster labels on the SOMp row: All violating connections
are shownMiddle row : Violating connections with strength greater than
the mean strength of all violating connections are shoBottom row:
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XXi

theleft andright columns. Both SOMs are overlain with extracted cluster

labels and the mU-matrix. In the SOM in the left column, thé&raoted
clusters are the same as in Fig. 3.13, bottom left. In the S@Me right
column, clusters were extracted with the help of CONNviq [844]. The
color label of cluster V (light green) was removed to showuhderlying
scattered empty prototypes in [4]. Medium grey cells are tgmpurons.
Black cells do not indicate empty neurons or cluster “H”. &&rs of those
prototypes are not shown in this representation due to Giotgation in the
SOM visualization software. TopoView visualizes two sébelcsets of vio-
lations.Top row: All violating connectionsBottom row: All inter-cluster

violatingconnections. . . . . . . . ... Lo

The SOM-hybrid neural architecture. It is a two-layélyfaonnected feed-
forward network with an SOM as its hidden layer. Each neutdn the
SOM lattice A of N neurons, is connected to the input buffer witll-a

element prototypev; (the ith row vector of theN x d matrix W). An

L x N weight matrixV connects the output layer to the SOM. . . . . .

Sample synthetic spectra of crystallinglHice. Top: Variation in the

spectral shape as a function of temperature (T), for one firadh size

AT

(GS), 0.003 cmBottom: Variation in the spectral shape as a function of

grainsize,at 50K (Kelvin). . . . . . . . . ... o

. 92



XXil

4.3 Left: The 2020 SOM learned with the synthetic spectra of Pluto ices.

Grid cells represent SOM neurons. In the SOM, we only coleméurons
that represent spectra of crystalling®lice. The colors indicate the known
grain sizes as keyed at right. The “fences” between adjaedisthave grey
scale intensities proportional to the Euclidean distabe¢seen the proto-
types of the respective neurons (in feature space). Whitgdge distance.
The unlabeled (black) cells, such as those between the thangreen
clusters, mostly indicate prototypes of spectra of icegiothan HO ice,
such as N and CH, ice. This information is not shown here. Some black
cells — typically in the narrow corridors between grain sizeups, e.g.,
between the dark blue and the yellow clusters — are protstyjith no data
mapped to them. Whether a prototype has data mapped to it gown
in this representationRight: Part of the yellow grain size group at left,
magnified to show an example of how spectra are organizednvatgrain
size group according to temperatures. Here, the prototgpegplotted in
the SOM cells. A gradual change in the prototype shapes fedind right
can be observed in response to increasing temperature e@ilkes and
circles exemplify differences in temperature-dependbsbgption features
at low and high temperatures, respectively. The light bhetwahite boxes
indicate the empty prototypes of this grain size group,desand at the
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Chapter 1

Self-Organized (unsupervised) learning
for understanding complicated
high-dimensional data

1.1 Challenges in information extraction from real world
data

The data collected to characterize a real world problentcgs®, or object, are often high-
dimensional thanks to the new sensory technologies thatowepour perception of the
world, and the modern computerized systems that are capéldellecting and storing
huge amounts of data. The high dimensionality of the acdudega on one hand enables a
wealth of information, on the other hand poses specific difiies for information extrac-
tion methods. One prime example of such data is high-rasolgpectra of planetary sur-
faces taken by modern imaging spectrometers. These spetgrs can resolve radiation
in narrow band passes and take measurements at hundredgedémgths simultaneously.
Each acquired spectrum is a high-dimensional vector of oreagents at different wave-
lengths. When the measurements cover a contiguous speig®, the acquired spectra

are hyperspectral By generating such spectra for all pixels in a contiguowensc the



spectrometers producehgperspectral imagéFig. 1.1). Each pixel in such an image is
a high-dimensional feature vector (spectrum), which mtesia unique fingerprint of the
material in the spatial area represented by that pixel. @Bpsctral fingerprints can help
unravel the chemical and physical properties of the mdserfeor example, a hyperspec-
tral image can afford discrimination among many differanface materials, such as soil
constituents and plant species in terrestrial regionsespecies on the surfaces of outer
Solar System bodies. A hyperspectral image taken in wagtieianges sensitive to sur-
face physical conditions (e.g., temperature and grair) see also be used to derive these

physical parameters.

EACH PIXEL EXHIBITS A
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Figure 1.1: lllustration of a hyperspectral image. Eactepir this image is a high-dimensional feature

vector (spectrum) of the material in the spatial area regmesl by this pixel. Figure reproduced from [1],
with permission of J. B. Campbell.

However, the inference of pertinent information from thisckof data is difficult. Since
the underlying relations between the information of inséend the data are often too com-
plicated to solve analytically, numerical solution to dgmeal optimization is a commonly
used traditional method. This method can handle low-dinosas data well, but loses

its power for high-dimensional data, due to the so-callaatse of dimensionality” [2].



The exponentially increasing hypervolume in responsed@tbwth of the data dimension
makes the optimization process slow, and often unsucdessfiinding optimal results.
Feature extraction methods, used as data preprocessigghetmarelieve the difficulties
caused by high dimensionality. However, they can causeitosgormation. In the ap-
plications with hyperspectral data, several feature etva algorithms have been found
unable to preserve relevant information [3]. Instead ofipgygreat efforts to find good
feature extraction algorithms to cooperate with the tradél dynamical optimization ap-
proach, we can alternatively use a more intelligent apgro@achine learning algorithms,
which learn the relations (or build models) between the informationrdéiiest and the
data, from examples. No prior dimension reduction is neéddedome machine learning
algorithms. The models learned can then be easily used $birflormation prediction
from new data.

Another important fact that makes real world data demanigitigeir complicated struc-
ture. The redundancy in information, or dependance betieedimensions, influences
the structure of the data. The subspace occupied by the @afales is called data man-
ifold. Due to partial and often nonlinear dependance betweenithendions, the data
manifold can behighly structured4]. This means there can be many clusters in the data,
with various sizes and extremely varied statistical propgi(variance, skewness, etc.). A
potential challenge arising from such sophisticated data differentiate among the clus-
ters, as the ability to do so may improve the level of detathefinformation inferred from
the data. In view of these, unsupervised learning algosttimat can correctly capture the

structure of the data, become attractive.



1.2 Unsupervised learning

Our brains receive a massive flow of sensory informationyeday without explicit su-
pervision, but can still develop capabilities to effeclyvdetermine the frequency of the
occurrence of the incoming messages (density distribytod the similarities between
them (topology).Unsupervised machine learningamely the learning by computer algo-
rithms without extraneous supervision, mimics this ndtpracess. In the scenario of neu-
ral machine learning, weighted connections between sipngleessing units (the artificial
neurons) are iteratively modified in response to input pasgtevith a predefined learning
rule. The final configuration of the connection weights oftetps reveal some aspect of
the structure of the data manifold, such as the distribubfoclusters. This capability is
important for understanding highly structured data.

Unsupervised machine learning is useful also because ihegnwithsupervised ma-
chine learning which means the learning of the mapping from the data ta thbels
from training samples. Supervised learning builds a modelben the input data and the
outputs through minimization of the errors in the outputs aresult, success not only
depends on the capability of the algorithm, but also theityald the training labels. For
example, mislabeling in the training samples or labelirag thtoes not cover the functional
relationships in sufficient detail may hinder good perfonceof supervised learning. Un-
supervised learning algorithms can be helpful in such sd@na. Unsupervised learning
captures the manifold structure, which is an objectivegmdknowledge of the data. With
this knowledge, the inconsistency in the labeling of thantrey samples can be detected
and novelty (clusters that are not distinguished by theitngilabels) may be discovered.
Therefore, it is possible to improve the capability of a suiged learning algorithm by
incorporating knowledge previously learned through arupesvised method.

There are two types of unsupervised learning, parametdcnam-parametric. Para-



metric methods, which use prior assumptions on the dataeptiep, have major limita-
tions when dealing with highly structured data. For examitie most famous clustering
method, k-means, favors (hyper-) spherical cluster shapesequires a predefined number
of clusters. Another well-known parametric method is migtodeling, which custom-
arily assumes the probability density functiopslff as Gaussian kernels. Real world data,
however, often contain non-spherical and non-Gaussiaterks; hence these two methods
can yield incorrect results. In addition, estimation ofgraeters in parametric modeling
becomes problematic for high-dimensional data becauseetiigrement for excessively
large number of data samples due to the high dimensionaliften unmet. Conversely,
non-parametric methods are applicable regardless of tin@lexity of the manifold struc-
ture and regardless of the dimensionality of the data. Falrpsoblems where the right
models and parameters for the data at hand are often urtaeaiten-parametric methods
can often achieve better results than parametric methadthid thesis, we focus on the
Self-Organizing Map (SOM), which is a powerful non-parantetinsupervised learning

paradigm.

1.3 The Self-Organizing Map (SOM), a powerful unsu-
pervised learning paradigm

The Self-Organizing Map (SOM) [5] was invented by Kohonerha 1980s. The SOM
is a specific artificial neural network paradigm. Ariificial neural networkis a modeling
approach inspired by biological neural networks. In arfiaidil neural network, a large
number of artificial neurons are connected by weights in tacetopology. The artificial
neurons usually perform relatively simple functions, sasttomputing a weighted sum of

its incoming signals. The connection weights between thiécaal neurons are adapted



iteratively through learning. Different paradigms of icial neural networks differ in any
of the three essential aspects, i.e., the network topolingyfunction performed by the
processing units and the learning rule that guides the atapf the weights. The detailed
network topology and learning mechanism of the SOM will lsedssed in Section 2.1. We
will call artificial neural networks as neural networks, aad artificial neurons as neurons
in the thesis.

The SOM is also an adaptive vector quantization (VQ) algarit The purpose of vec-
tor quantization is to represent a data set with a relatigatgll set ofprototypeq6, 7].
The quantization process facilitates data compressiarfanmation transmission and stor-
age. When a proper representation of similarity relatigpgsbetween the prototypes is
provided, the quantization prototypes can also be usedldstering [5, 8, 9]. The clus-
tering performance, of course, is dependent on the goodriélss quantization algorithm,
as well as on the effectiveness of the representation ofegities of the prototypes. The
SOM is exceptional among adaptive vector quantizers inghisse because it not only
places its prototypes in the data space to accurately seaseanifold structure but also
organizes the SOM prototypes according to their simiksion a rigid (customarily 1- or
2-dimensional) lattice simultaneously. The combinatibthese two capabilities make the
SOM powerful in faithful representation of the complicatducture of real world data.
The representation of manifold structure on a rigid lattscan indispensable component
of the SOM, i.e., topology preservation, which has a protbsignificance in biological
systems.

Topology preserving (or topographic) maps are not arsfacither, they are widely
observed in biological nervous systems, such as the repimmap in the visual cortex
[10, 11], the somatotopic map in the somatosensory cortg)x §hd the tonotopic map in

the auditory cortex [13]. The cells on the cortex are topphi@ally organized according
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Figure 1.2: Examples of topographic maps in brains. Figoegsoduced from Fig. 2.8 (page 100) and
Fig. 2.9 (page 101) in [5], with kind permission of both Sgrén Science+Business Media and T. Kohonen.
Left: The somatotopic map. The organization of the cells on thegaeflects the spatial order of the body
locations where the sensory signals are colled®ight: The tonotopic map (of cat). The cells that respond
to acoustic signals are organized according to the freqeso€ the tones perceived.
to the similarities of the signal patterns the brain receivor example, sensory stimuli are
organized in the somatotopic map according to the diffel@dtions of the body where
the signals are received (Fig. 1.2, left). Sound signal®eganized in the tonotopic map
with respect to the acoustic frequencies of tones percdéhigd 1.2, right). This topology
preservation property plays an important role in neuradnmiation storage, retrieval and
processing. In 1973, von der Malsburg introduced a sel&oizing process to model the
local ordering of visual cortical cells [14]. His work piosred the computer simulation of
self-organization and a few related studies followed [H], In the early 1980s, a clear and
intuitive algorithm, the Self-Organizing Map (SOM or Kolenis SOM), was proposed by
Kohonen [5], capturing much attention. The essential idigme of the SOM algorithm is a
neighborhood function, which gives rise to a global ordethimmap by local interactions
between neighboring neurons.

Because of its appealing and advantageous propertiesQtiea®jorithm has been ex-
tensively studied and widely used by researchers and poaeis across a broad range of
fields, including engineering, science, medicine, biojagppnomics [17, 18]. Up to now,

there have been more than 7000 publications of its sucdeggilications (http://www.



cis.hut.fi/research/som-bibl/). Some examples are tektwab mining, hyperspectral im-
age analysis, and microarray data analysis. Moreover,@# Bas been shown especially
powerful in the learning of complicated data and the infaroraextraction from these
data in comparison to more traditional methods [4]. In thissis work, we focus on the

applications to hyperspectral imagery, or high-dimensigpectra without spatial context.

1.4 Contributions of this work to learning with SOMs

The SOM is a powerful tool for the analysis of high-dimensibcomplicated data. How-
ever, there are still open problems such as the evaluatidopology preservation in the
map, cluster extraction from a learned SOM, optimized usth@fSOM’s knowledge in
supervised learning of latent variables from high-dimenal data. Due to incomplete an-
swers to these problems, the power of the SOM is not fully @igud in many situations.
The goal of this work is to improve the learning of manifoldusture with SOMs for pre-

cise information extraction. Our contributions include tbllowing:
1. Development of a suite of advanced measures of topolagepration for SOMs;

2. Development of an interactive visualization tool to montopology preservation in

SOMs;

3. Proposition of a novel SOM-hybrid supervised architesttConjoined Twins”, that

optimizes the inference of latent variables from high-disienal data;

4. Application of the “Conjoined Twins” to the inference afrface physical parameters

from high-resolution Near-Infrared spectra of ices of th&&Charon system.

A brief summary of each contribution is given in Sections1-4.4.4. Detailed elaboration

follows in Chapters 3—4.



1.4.1 Advancing the measures of topology preservation

We propose refined measures of topology preservation basdidecTopographic Func-
tion (T'F), introduced by Villmanret al. in 1997 [19]. Thel'F is better than other existing
measures because it adopts an advanced graph distanag thetmnduced Delaunay graph
defined by Martinetz and Schulten in [20], to determine thigm®oring relationships of
the SOM prototypes in the data space. We find that a diffeakfotim of theT F' provides
a clearer view of topology violations (defects in topologggervation) than thé& F for
different scopes of violations in the map, therefore prepibe Differential Topographic
Function (DT F) as an alternative. In addition, we explicitly incorporate often under-
utilized piece of information, the detailed data distribataround the SOM prototypes,
into the DT'F to distinguish the severe violations that result from ingaoor immature
learning from the unimportant ones produced by noise. Theand theDT F' are insuffi-
cient in this sense. We call the new measure Weighted DiffeeTopographic Function
(W DTF), which is a more precise evaluation of the quality of toggigiolations than the

TF and theDTF'.

1.4.2 An interactive visualization tool to monitor topology preserva-

tion in SOMs

While the measures provide a summary of the quality of togpplareservation in SOMs,
it is helpful for the user to visually locate the problemadieas in the map. Motivated
by this idea, we develop an interactive tool we call TopoViéw visual inspection of
the topology preservation in the SOM lattice. TopoView pdes a set of thresholding
abilities such that different subsets of violations meghihfor different applications can
be inspected. Together with the newly proposed measurgaView can help diagnose

the cause and the severity of the topology violations in D&S
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1.4.3 Anovel SOM-hybrid supervised architecture, “Conjoned Twins”,
that optimizes the inference of latent variables from higheimensional

data

An SOM-hybrid supervised architecture is a supervisedalewwtwork architecture, where
an SOM is its hidden layer (hence the term “SOM-hybrid”). e &rchitecture, the layer
above the SOM hidden layer uses the responses of the SOMnsefimat the SOM proto-
types) to help with the extraction of information from thealan the most frequent setup,
only the strongest response from the SOM neurons is usesligticalled Winner-Takes-
All, or WTA). A two-layer SOM-hybrid supervised architecéy which contains an SOM
hidden layer and an output layer, has been shown successfalaissification problems
in remote sensing applications [21, 22]. This architectize also be used for inference
of latent variables. However, we find that the WTA mode caresay limit the inference
capability. We propose to use the fidsst(k > 1) strong responses of the SOM neurons
(k-Winners-Take-All, orkWTA) such that we are able to infer certain latent variablets b
ter. Moreover, to solve the dilemma that different latentalsles can be best learned with
different values oft, we propose a new architecture we call “Conjoined Twins”ereh
multiple copies of the output layer (multiple “heads”) shére SOM (“body”) and prefer-
entially use different values df for the learning of different latent variables. In addition
we automate the determination ofor different latent variables based on the statistics of

the SOM.
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1.4.4 Application of the “Conjoined Twins” to the inference of surface
physical parameters from Near-Infrared spectra of ices of he

Pluto-Charon system

We apply the innovative Conjoined Twins architecture toittierence of surface physical
parameters from Near-Infrared spectra of ices in the Rliitaron system. The physical
parameters can be nonlinearly dependent on each other eadiuzh subtler influence on
the spectral shapes than the chemical composition (diffece species) does. The accu-
rate inference of the physical parameters is thus difficlitte Conjoined Twins has been
shown effective for the inference of two physical parangte&mperature and grain size,
from spectra of crystalline H20O ice with accuracies usefuldtientific studies of diurnal

temperature changes on Pluto and Charon.

The new measures of topology preservation, the interatinie TopoView, and the novel
SOM-hybrid supervised architecture, the Conjoined Twpteposed in the thesis are im-
plemented, tested and documented by the author. See Apggridr brief introductions

of the software implementation of these new tools.

1.5 Outline of the thesis

Chapter 2 provides introductions to the basic concepts astbmary procedures that will
be used in the development and demonstration of new ideasalsdn the following chap-
ters. We first introduce the SOM algorithm, including Kohoseoriginal version [5] and
the Conscience variant [23]. We then review the importaaperty of the SOM, namely
topology preservation, and explain how topology presewdtelps with the discovery of

the manifold structure. Through two 2-dimensional data,sgeé demonstrate the need for
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advanced similarity metrics to assist the correct integi@n of the structure of data from
the SOM, and show the usefulness of two such similarity m®tthe induced Delaunay
graph [20] and the connectivity matrix [24], proposed inyioas research.

In Chapter 3, we first address the need for informative tomlsvialuate or monitor
topology preservation in SOMs. In the review of existing swas, we discuss their pros
and cons to justify our choice of the distance metrics andfdhmula used in the new
measures we propose. Through a two-step improvement teoffafaphic Functioril(F'),
we propose the Weighted Differential Topographic Func(idéhDT F'), a clearer and more
accurate representation of the quality of topology prestéom than thel'F’. Next, we
introduce the interactive monitoring tool, TopoView, aresdribe several meaningful ways
to filter out unimportant topology violations. At the end, demonstrate the combined use
of theW DT F and TopoView through a simple 2-dimensional data set, adi®#nsional
real hyperspectral image of a volcanic field, and a 210-dsiogral synthetic hyperspectral
image of an urban area.

In Chapter 4 we start by addressing the challenges in theesimée of latent variables
from complicated data. To approach this inference problenfogus on an existing SOM-
hybrid supervised neural architecture. We describe itwort structure and the so-called
winner-takes-all (WTA) mode, which is the customary usehef 8OM’s knowledge in the
supervised learning by this architecture. In the WTA mobe,dutput layer only uses the
strongest response of the SOM neurons. After discussingftaets of the WTA mode,
we generalize the method such that multigle ftrongest responses of the SOM neurons
can participate in the supervised learning, which we/calinners-take-all {WTA) mode.
Through application to the inference of surface physicabpeeters from Near-Infrared
spectra of ices in the Pluto-Charon system, we find thatreiffievalues of: can be benefi-

cial to the inference of different latent variables. Thistivaites a novel neural architecture
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we call Conjoined Twins, in which we allow the simultaneogs of different values of
as optimized for different latent variables. We descrileedbncept of the Conjoined Twins
and show the effectiveness of the approach for inferringoemature and grain size from
the high-dimensional spectra of crystalline water ice.

Chapter 5 summarizes the thesis work and discusses futeatidns.



Chapter 2

The Self-Organizing Map and its use for
structure detection

2.1 The Self-Organizing Map (SOM) algorithm

2.1.1 The Kohonen SOM algorithm

The Self-Organizing Map (SOM) is a neural learning algantiinat maps @-dimensional
data manifoldV/ C R?to a low-dimensional latticel of N neurons. Data samples mapped
to an SOM neuron € A constitute theeceptive field RF;, of that neuron. The mapping
is formed in a topologically ordered way so that the struetfrthe high-dimensional data
manifold is correctly manifested in the low dimensionafita.

The following describes the fundamental network topologyg ¢he algorithm of the
SOM. The most popular choice of the lattice structure is én2edsional rectangular lattice,
as illustrated in Fig. 2.1. (Another popular lattice typdnexagonal lattice, for which we
will show an example at the end of this chapter.) Each neurerdA has ad-dimensional
weight vector,w;, assigned to it. The SOM weight vectors are iteratively &eldjpy an
unsupervised learning algorithm proposed by Kohonen [&¢hHearning iteration consists
of two steps:competitionandsynaptic adaptationas described in egs. 2.1 and 2.2. In the

competition step, an SOM neuran),is selected as the SOM winner or best matching unit

14
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(BMU) for an input vectorx randomly chosen from/ such that
|we—x <[ w; —x |* Vi€A (2.1)
In the synaptic adaptation step, all weight vecters, are updated as

Wi = w9 at)he (1) (x — W) (2.2)

wherea(t) is a learning rate that decreases with timeé. ;(¢) is a neighborhood function
that defines how much an SOM neurpshould learn from the inpw, for which the BMU
is neurorc. The neighborhood function shows th@peration between the BMU and the
rest of the neurons in the latticé. h.;(t) is commonly chosen as a Gaussian kernel
in the Kohonen SOM (eq. 2.3). Other frequent choices can beifarmly distributed
spherical kernel (eq. 2.4), or, for rectangular SOM la#tjca uniformly distributed box
kernel (eq. 2.5), centered over the BMU. In the formulae efrthighborhood functions;
denotes the coordinates of neurpim the lattice. The neighborhood size (or radiusg),),
needs to be large at the beginning and diminish with tinte help avoid global distortions
in the map (latticed).

Gaussian kernel: he;(t) = exp(_H;T_tl;”%) (2.3)

L flej —relle < o(f)

Uniformly distributed spherical kernel: h. ;(t) = { (2.4)
0 [lrj —rel[z > o(t)

. - _ L [rj = reflmae < o)
Uniformly distributed box kernel: h. ;(t) = (2.5)

0 Hrj — Te|lmae > 0 (1)

| - || e represents the Euclidean norfi.||,,.... represents the maximum norm (or city block
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Voronoi cells (receptive fields)
of'the SOM prototypes

A sphenical neighborhood defined by a
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Figure 2.1: The SOM places a given set of prototypes optinrathe data space to represent a data manifold,
and simultaneously organizes the prototypes in a rigidckathccording to their similarities. This figure
provides an example of a 2-dimensional rectangular SOMarned with ai-dimensional data manifold/.
Circles in the SOM lattice are neurons. Diamonds are then&shEOM prototypes projected back into the
data space. Blue dashed arrows relate some prototypesit@siseciated SOM neurons. Magenta dashed
lines delineate the Voronoi cells (or receptive fields) ahedSOM prototypes. Each prototype is the centroid
of its Voronoi cell. When the SOM converges, it forms a togidally ordered mapping betweed and

A. This is illustrated for the prototype; (solid black diamond). 6 prototypes (solid grey diamondspse
Voronoi cells share an edge with;’s Voronoi cell are neighbors of; in the data space. The respective 6
neurons (solid grey circles) are neighbors of the neur@nlid black circle) in the latticel. In addition, this
figure also shows the effects of two neighborhood functianmiformly distributed spherical kernel (eq. 2.4)
and a uniformly distributed box kernel (eq. 2.5), on SOM téag. The spherical kernel with neighborhood
sizeo(t) = 1 allows the BMUc (red circle) and 4 other neurons (pink circles with™inside) in the dashed
circle to adapt their prototypes. The box kernel witft) = 1 allows the BMUc as well as 8 other neurons
(pink circles) in the dashed box to adapt their prototypes.

distance). For twal-dimensional vectora = [ay, as, ..., a4] andb = [by, bs, ..., by, these

two norms are defined by eq. 2.6 and eq. 2.7, respectively.

d

Euclidean norm: ||a — b||p = (Z la; — bi|2)% a,bc R (2.6)
1=1

Maximum norm: ||a — b||;ee = miialx\ai —b] abec R (2.7)

Fig. 2.1 illustrates the effects of two neighborhood fuoiesi, the uniformly distributed
spherical kernel and the uniformly distributed box kerneidtions, both with neighbor-

hood sizes(t) = 1, on the synaptic adaptation phase of SOM learning. The umlfo
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distributed spherical kernel with(¢) = 1 defines a round neighborhood (in the dashed
circle), around the BMU (red circle), in the 2-dimension&@M lattice A. This means
in this specific learning step, in addition to the BMU, 4 otheurons (pink circles with
“+” inside) are simultaneously activated to update their Weigectors. The uniformly
distributed box kernel witlr(¢) = 1 defines a square neighborhood (in the dashed box),
inside of which 8 pink neurons are activated together withBMU.

After the SOM converges, i.e., the weight vectors no longrange significantly, the
weight vectorsw,; become the vector quantization prototypes of the data mwlanif. We
will refer to the SOM weight vectors as SOM prototypes fromvran. The data space
can be partitioned with respect to the SOM prototypes as ir2 &y This is the so-called
Voronoi tessellatior. The partitions/; are calledvoronoi cells where the prototypes;

are the centroids.

Vi:{XERdZ||X—WZ'H§||X—WJ'|| VjeA} i€eA (2.8)

Note that the definition is given in the context of the SOM héxg Voronoi tessellation
can be done with any set of prototypes, obtained in any way.

Voronoi cellsV; coincide withRF;, the receptive fields of neurongor receptive fields
of prototypesw;). The prototypew; represents all data samples in its Voronoi ééland
the neuroni is the BMU of those data samples. The number of data samplppedao
a neuror is called themapping densityr thesize of the receptive field?F;| of neuron
7. The neurons with zero mapping density are caetpty neuronsand the prototypes
assigned to them are callethpty prototypes

Ideally the SOM algorithm forms a topology preserving magpbetween the data
manifold M and the SOM latticed. The mapping isopology preservingvhen the map-

ping in both directionsd — M andM — A, is neighborhood preserving. This means that



18

adjacent neurons in the latticé should represent nearby data samples in the data space,
and nearby data samples should map to adjacent neuronshergarne neuron iA. Since
the SOM is a vector quantization algorithm, topology preagon can be interpreted on
the level of prototypes as follows. The prototypes that bglth neuronsadjacent in the
lattice A should also badjacent in the data manifoldi/, and vice versa. In this definition,
the adjacency relationships between neurons or prototiggesnd on the distance (similar-
ity) metric used. The distances between SOM neurons in ttiedare usually computed
by the Euclidean norm (eq. 2.6). Two neuransndj areadjacentor immediate lattice
neighborswhen||r; — r;||z = 1. For a 2-dimensional rectangular SOM lattice shown in
Fig. 2.1, this definition results in 4 immediate neighboisKmircles with “+-” inside) for
the neurore (red circle). A more common distance metric used for a repttar lattice

is the maximum norm (eq. 2.7). With this metric, neurerend j are defined asdja-
centor immediate lattice neighborshen||r; — r,||,,.. = 1. This results in 8 immediate
neighbors (pink circles) for the neurerin a 2-dimensional rectangular lattice, as seen in
Fig. 2.1. In the thesis, maximum norm is the default distanegric to determine imme-
diate lattice neighbors. From now on, when two prototypesandw; are assigned to
two neurons which are immediate neighbors in the SOM lattieewill directly call these
two prototypesmmediate lattice neighborgr adjacent prototypes in the latticelo talk
about topology preserving mapping, we also need to definadiecency of prototypes
in the data space. Such definition was put forward by Maiaed Schulten (1994) as
follows. Prototypes aradjacentor neighboringif their Voronoi cells share an edge, and
hence they are also call&bronoi neighbors For example, in Fig. 2.1, the prototype
(solid black diamond) has 6 adjacent prototypes (solid gliaynonds) in the data space.
With adjacency defined in both the lattice and the data spaeean now illustrate topol-

ogy preservation in a well organized SOM. The 6 prototypéghimring prototypew; are
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associated with 6 grey neurons in the lattice. Blue dasheavarhelp relate some proto-
types to their respective neurons. The 6 grey neurons aseejto the neurohin the

lattice A. This means that the Voronoi neighbors of prototypeare also its immediate
lattice neighbors. This topological ordering of the prgpes in the SOM lattice according
to their similarities in the data space mimics the orgaioredf the brain cells on the cortex

according to the similarities between the signals recelyethese cells (Fig. 1.2).

2.1.2 The Conscience SOM variant

In this work we use the Conscience variant [23] of the origahonen’s algorithm for two
reasons. One is the ability of the Conscience algorithmheese equiprobablistic mapping
(also called maximum entropy mapping). This means each Skbiype represents ap-
proximately equal number of data samples. The resulting $@Mides the best possible
approximation of the datadfwith the given number of prototypes. Equiprobablistic map-
ping is also optimum for information transfer, for which tkehonen SOM is suboptimal.
The other advantage of using the Conscience algorithm i¢beomy of computation
compared to the Kohonen SOM, owing to the use of a fixed smahberhood size for
h.;(t) ineq. 2.2.

The Conscience algorithm achieves an equiprobablistiqgpmgghrough the addition
of a bias,b; for each neuror, to the distance between the prototype and the input

vectorx, in the competition step. The BMUis found such that

| we—x|* b <|| w; —x ||> =b; Vj€A (2.9)

The biash, is computed from the winning frequenpy of the neurory.

bj = ~(t) x (1 = (N x p;)) (2.10)
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p, is updated in each iteration as
P = pdh 4 B(t) x (6c; — pI'?) (2.11)

whered, ; is the Kronecker deltaj(t) andv(t) are user-specified parameters. As a resullt,
a neuron that wins with larger than average frequency willliseouraged from winning
by an increase in its bias. This added heuristic “conscietinces helps achieve equiproba-
blistic mapping.

With the added biases, the Conscience algorithm can usedadne small neighbor-
hood for the synaptic adaptation step (eq. 2.2) in the lagrrAn example of such neigh-
borhood function used for a rectangular SOM lattice is théoamly distributed box func-
tion witho(t) = 1 (eq. 2.5). In a 2-dimensional rectangular SOM lattice, tigigghborhood
function will activate 8 more neurons (pink circles) in aiuh to the BMU (red circle) to
update their prototypes (Fig. 2.1). The small neighborhsiad significantly lightens the
overall computational burden in spite of the increased remalb operations in egs. 2.9—

2.11.

2.2 Structure detection from learned Self-Organizing Maps

When an SOM has converged, we may detect the manifold steuitam the learned SOM.

In this thesis work, structure detection mainly refers tenitfication of clusters because in
our applications most of the scientific goals are relatetiédinding of meaningful clusters
in the data. However, the reader should be aware that the SQ@iM algorithm that learns
the manifold structure regardless of whether the data hasesk in it. For instance, an
SOM can perfectly learn a manifold with uniform distribution which case, naturally, no

cluster will be detected from the SOM.
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In this section we will explain the relation between topglggeservation and faithful
representation of manifold structure, describe the vizaabn methods that help with in-
teractive cluster extraction from the SOM, and introduce advanced distance metrics

that assist correct understanding of the manifold strediam the SOM.

2.2.1 Topology preservation is essential for structure dettion

The essence of unsupervised learning is the grasp of theredhips among data samples.
Topology is one of such relationships, expressing the m@ighg relationships in the data
manifold. The SOM aims to preserve the topology of a higheafisional data manifold
in a low-dimensional lattice, which makes it unigue amongt@equantization algorithms.
Fig. 2.2 provides an example of a topology preserving maip) @d an example of a
“twisted” map (right), which is “twisted” and does not prege the topology of the data.
Both SOMs were trained with a data set drawn from a 2-dimeragioniform distribution
in a square area. In Fig. 2.2, the learned SOM prototypes latieg as circles in the
data space. To make the lattice structure easy to see, weaoamwo prototypes if their
respective neurons are adjacent in the SOM lattice, by tlebd&an norm criteriof| - || z =

1. In Fig. 2.2, left, the topology of the SOM lattice coincidetsh the topology of the data
manifold, which indicates topology preservation. The SOMFig. 2.2, right, however,
has a “twist”, which can lead to an incorrect detection of weparate clusters from the
SOM while this data set in fact has no clusters in its structdifwists” in the map that
prevent topology preservation are callegology violations Since topology preservation
is defined as neighborhood preservation in both mappingtibres, there are two types
of topology violations, forward and backward [19Forward topology violationccur
when two prototypes are Voronoi neighbors in the data spduiie ¥hey are not immediate

lattice neighbors in the SONBackward topology violationsccur when two prototypes are
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immediate lattice neighbors in the SOM, while they are nabvoi neighbors in the data

space.
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Figure 2.2: Prototypes of 2010 SOMs (circles), mapped to data space after learning cgedeThe data set
learned by the SOMs is generated from a uniform distributiamsquare area. Two prototypes are connected
if they are adjacent in the SOM lattickeft: Topology is preserved in the SORight: The SOM is twisted

in the data space. Topology is not preserved.

Topology preservation in the SOM is essential for corrececteon of the manifold
structure. A topology-preserving map can be viewed as aeredddisplay of data. As-
suming perfect topology preservation, the adjacencyiogighips between the neurons in
the SOM lattice faithfully reflect the adjacency betweenrthespective prototypes in the
data space. However, topology preservation alone is néitigumit for detection of struc-
ture because the lattice distances between the prototypeetdeflect the dissimilarities
between them. Thus, similarity metrics and visualizaticimesnes to display the similarity
relationships across the prototypes on the lattice areritapotools for structure detection

from the SOM.
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2.2.2 Structure detection with (modified) U-matrix and advarced sim-
ilarity metrics
U-matrix and mU-matrix

The U-matrix (unified distance matrix), proposed by Ultsod &iemon [25] is a distance
matrix widely used for visualization of the dissimilaritglationships between SOM proto-
types on the SOM lattice. For a given prototype, its Eucliddstances to its immediate
lattice neighbors are computed and averaged. To visudligaverage distance to immedi-
ate lattice neighbors, the SOM is often visualized as achkttf grid cells, which represent
neurons, as seen in Fig. 2.3, middle and right. The averajantie of the prototype to
its lattice neighbors can be expressed as a grey scale itgtesfsthe cell of that proto-
type, proportional to the average distance. (No example-ofdirix visualization is shown
here.) The U-matrix visualization and its variants [25, B&ye been shown effective for
relatively large SOMs learned with small data sets that lsalsv number of clusters, but
when a small SOM is used to learn a large data set containing olasters, the averaging
of the distances can smear the cluster boundaries and ¢eulwss of small clusters.

We use a high-resolution version of the U-matrix, the modifiematrix (mU-matrix),
introduced by Merényi in the 1990s, and described in [27He TU-matrix removes the
averaging of the distances in the original U-matrix. It sediae distances of a given proto-
type to all of its immediate lattice neighbors separatelffersces” on the border of the grid
cells including the diagonals. Fig. 2.3, middle and righteg an example of the mU-matrix
visualization for a rectangular SOM lattice, showing thetaices from each prototype to
its 8 immediate lattice neighbors. This representatioa laves room for displaying ad-
ditional information in the grid cells ([21, 28]). One exalmpf such information can be
the mapping density (the number of data samples mapped toneacon). Fig. 2.3, mid-

dle, is an example of visualizing both the mU-matrix and tregping density. The data
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SOM in the data space mU-matrix mU-matrix
& mapping density & known class labels

Figure 2.3: Possible visualizations of &6 SOM learned with a 2-dimensional “exclamation mark” data
set. In the middle and right, the SOM is shown as a lattice mf ¢glls, each of which represents an SOM
neuron. Left: Data samples are shown as small green and orange dots. Tohne @present two classes,
the upper and lower parts of this “exclamation mark” data ifiodh respectively. Open circles are the SOM
prototypes projected back into the data space. The pratetgpe connected according to the SOM lattice
structure. Middle: The SOM overlain with the mU-matrix, which shows the distas) in the data space,
of each prototype to its immediate lattice neighbors, aac¢és” on the borders of the grid cells. The grey
scale intensities of the “fences” are proportional to thetatices they represent. White is large distance.
The intensities of red, of the grid cell of each neuron, intkthe mapping density (number of data samples
mapped to each neuron). The conspicuously high fencemedtby the yellow lines correspond to the
discontinuity between the two clusters in the data. ThiskEaeeen if compared with the SOM on the right,
which is overlain with the known class labels. The othertieddy high fences, such as those in cyan ovals,
result from twists in the map, which can be seen in Fig. Right: The SOM overlain with the mU-matrix
and the known class labels (colors).

learned by the SOM is a 2-dimensional “exclamation markadsdt (small filled dots in
Fig. 2.3, left). The mapping density of each neuron is shosvpraportional intensity of
monochrome red in its grid cell in Fig. 2.3, middle. When slkbels are available, we can
also overlay this piece of information on the SOM. For examnphch neuron (cell) can be
color-coded to the majority class label of the samples imateptive field. The overlain
known class labels can help compare the SOM’s knowledgetwith. The class labels, of

course, are not used in SOM learning. For example, we hawdgtiadabels for the “excla-

mation mark” data set, as seen in Fig. 2.3, left. Two diffexdass labels, color coded as
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green and orange, represent data samples in the upper agiddarts of the “exclamation
mark”, respectively. The SOM in Fig. 2.3, right, shows thksewn class labels as well as
the mU-matrix. With the overlain class labels, we can seedearly separated clusters in
the SOM, an orange cluster with 7 prototypes and a greereclusth 29 prototypes. This
cluster structure coincides with what we can observe froemtku-matrix visualization in
Fig. 2.3, middle, where a strong “fence”, outlined by yellimes, separates the prototypes
in the upper right corner from the rest. This shows that thi131@s successfully learned

the cluster structure.
SOM lattice SOM in the data space

Figure 2.4: Visualization of the SOM learned with the 2-dimsienal “exclamation mark” data set (grey
filled dots). SOM prototypes are shown as circles, conneatedrding to the lattice structure and colored
according to their positions in the lattice. The coloringlué prototypes makes it easy to relate the locations
of the prototypes across the lattice space and the data.dpefteThe SOM prototypes are visualized in the
lattice spaceRight: The SOM prototypes are projected back into the data spaee.V@ronoi tessellation

of the data space with respect to the prototypes are showragsnta lines. Between the prototypes A and
B, there is a backward topology violation, because A and Brareediate lattice neighbors but they are not
Voronoi neighbors in the data space. Between the prototgmesd C, there is a forward topology violation,
because B and C are Voronoi neighbors in the data space \whileate not immediate lattice neighbors.

The use of (m)U-matrix for cluster identification, howevsmnontrivial for two reasons.
First, the determination of cluster boundaries based amc#g” often relies on interactive
thresholding of the fence values. Second, the procedurasedbon the assumption of

perfect topology preservation, while topology violaticare not unusual in real applica-
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tions. To illustrate these two difficulties, we use the samclamation mark” data set. In
Fig. 2.3, middle, besides the fences which indicate theoditieuity in the manifold, we
also see several other relatively high fences within thedlusters, such as those in cyan
ovals. Expert knowledge is needed here to inspect the ppmstto determine whether
they are different enough (fences are high enough) to formnmegful subclusters. An-
other possible cause of the high fences can be topologytiaokin the map. Plotting the
SOM prototypes in the data space and connecting them aagpittaie lattice structure, as
in Fig. 2.3, left, is helpful for capturing the twists in theapm To make the twists in the
map easier to see, we color the prototypes according to tblaitive lattice locations, in
Fig. 2.4. We find that the squareX6) map stretches and folds itself to some extent to
fit in the elongated manifold shape. An example of stretcluizug be seen between two
immediate lattice neighbors A and B (Fig. 2.4, left), which #orced to be apart, i.e., non-
adjacent, in the data space (Fig. 2.4, right). This indeatbackward topology violation
between A and B. An example of folding can be seen in the bottioime upper part of the
“exclamation mark”, where an orange and a yellow string otgiypes entangle in the data
space (Fig. 2.4, right) while they are well separated in #tigcke (Fig. 2.4, left). This fold-
ing causes forward violations, such as between prototypasdBC. B and C are Voronoi
neighbors as their Voronoi cells share a common border,eas @e the right, but they are
not immediate lattice neighbors, as seen on the left. Theerteoon of the SOM prototypes
in the data space successfully helps diagnose topologgtiook for this case, but this
strategy is restricted to 1-, 2- and 3-dimensional data hil#s to compare the neighboring
relationships between the prototypes in the data spacenatiheé ilattice, regardless of the
data dimensionality, are desirable, so that we can unaetdtee manifold structure and
find topology violations from SOMs learned with high-dimemsal data. Better similarity

metrics have been proposed in [20, 24] for more accuratetsteidetection. These will
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be discussed next.

Induced Delaunay graph

The dual of the Voronoi tessellation (eq. 2.8) is ielaunay graphdenoted byD. The
Delaunay graph expresses the adjacency of the Voronoj tialis it can be represented by
a binary adjacency matrix. For an SOM lattidewith N prototypes, the binary adjacency

matrix is of sizeN x N, and can be written as:

Dii.j) = 1 V; andV; share a common border ieA (2.12)
0 otherwise
D(i, j) denotes an edge of the graph whose vertices are the prosstyp@dw ;. D(i, j) =
1 means thatv; andw; are connected by an edge. An illustration of the Voronoiekss
lation and the Delaunay graph is given for the SOM learnedl Wié “exclamation mark”
data set in Fig. 2.5, left.

Martinetz and Schulten pointed out in their paper [20] that Delaunay graph could
not correctly represent the connectedness in the data on({fThis is confirmed by the
“exclamation mark” data set in Fig 2.5, left. The disconiipbetween the upper and lower
parts of the manifold is not shown by the Delaunay graph.)tiMetz and Schulten there-
fore introduced the notion of tHaduced Voronoi tessellatio, and its dual, thénduced
Delaunay graphﬁ in [20]. The induced Voronoi tessellation (the induced Delaunay
graphf)) is the intersection of the regular Voronoi tessellatior(the regular Delaunay
graphD) and the data manifold/. By incorporating the manifold shape into its definition,
1% (f)) can faithfully represent the connectedness in the mahifefardless of the com-
plexity of the manifold shape. Applying the theory to a sef\ofearned SOM prototypes,

we obtain/N induced Voronoi cells. The induced Voronoi cell of the ptgpe w;, Vi, is
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defined by
Vi={xeM:|x—wi <|x—wj]| VieAd}l icA (2.13)

whereA is the SOM lattice. The induced Delaunay graplis a set of edges connecting

the prototypes whose induced Voronoi cells share a commuatehas in eq. 2.14.

~ 1 ‘72 and‘7j share a common border
D(i,j) = 1,7 €A (2.14)
0 otherwise

D(i,j) = 1 indicates the prototypes; andw; are connected by an edge in the induced
Delaunay graph. Martinetz and Schulten also showed thagrucertain circumstances,
D can be effectively constructed through Hebbian learnirg],[th which the synaptic
weight between two neurons are reinforced if the activatibane neuron fires the other
repeatedly. By the Hebbian learningcannection(an edge) between two prototypes is
constructed if these two prototypes form a pair of BMU ancdeecBMU for at least one

data sample. For an SOM witk prototypesﬁ then can be constructed by

1 w; andw; form a pair of BMU and second BMU

D(i,j) = for at least one data sample. i,j €A (2.15)

0 otherwise

Fig. 2.5, middle, provides an illustrations of the induceeiz{mnayf), with the SOM pro-
totypes that learned the “exclamation mark” data semakes the discontinuity in the data
obvious with a disconnect in the graph. Since the inducecDely graprf) is a more
accurate representation of the manifold structure thamepelar Delaunay grapb [20],

it is used to define the adjacency between the prototypes.pfatotypesw; andw;, are
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Delaunay graph induced Delaunay graph induced Delaunghgra
(yellow lines) on the SOM

Figure 2.5: lllustration of Delaunay graph and induced Deky graph with the 2-dimensional “exclamation
mark” data set (gray filled dots). Open circles represen8thkearned SOM prototypes projected back into
the data space. The prototypes are the centroids of the ®orels, which are delineated by dashed magenta
lines. Left: The Delaunay graph (black lines) does not help separatemiéisconnected parts in the data
set. Middle: The induced Delaunay graph (black lines) highlights treeadintinuity in the manifoldRight:
The induced Delaunay graph (yellow lines) drawn on the SOKicivis also overlain with the mU-matrix
and the mapping density as in Fig. 2.3, middle. An exampleliekward and a forward topology violation
can be seen between the prototypes A and B, and between tiotypes B and C, respectively.
defined asadjacent neighboring connectedrototypes, oMoronoi neighborsn the data
space wherD(i, j) = 1[20].

For data sets with no more than 3 dimensions, we can plot theeced Delaunay graph
D inthe data space to inspect the connectedness betweermtbty/pes as in Fig. 2.5, mid-
dle. For data sets with more than 3 dimensions, it is impd}sﬂibvisualizeﬁ in the data
space, but we can dra;ié over the SOM by connecting grid cells with an edge when they
represent two connected prototypesﬁn Fig. 2.5, right, provides an example by show-
ing D as yellow lines on the SOM. Wit overlain on the SOM, the topology violations,
i.e., the inconsistency in the neighboring relationshipsMeen the prototypes across the
lattice spaced and the manifold spack/, are visible. For example, in Fig. 2.5, right, the

lack of connection between the prototypes A and B, which amaediate lattice neigh-
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bors, indicates a backward topology violation. The connedbetween the prototypes B
and C, which are not immediate lattice neighbors, indicatéesward topology violation.

These observations agree with what we found by inspectm&®M in the data space, in
Fig. 2.4. This idea of overlaying the SOM lattice with the ucdd Delaunay graph was
proposed by Tasdemir and Merényi in [30]. Here it enaliiesdevelopment of a versatile
interactive tool, TopoView, which is one contribution ofglvork and will be described in
Section 3.4. The comparison of the topologies defineoﬁhyndA was developed into a
measure of topology violation, the Topographic Functidi'}, by Villmannet al. [19].

We improve theél' F to more refined measures, as will be discussed in Section 3.3.

Connectivity matrix (CON N matrix)

In the induced Delaunay gra;ﬂi, an edge can be established between two prototypes by
even a single data sample that selects these two prototgpée BMU and the second
BMU. As a result, noise or outliers in the data can easily alesthe discontinuities in
the manifold structure. This situation is illustrated irgF2.6 through the 2-dimensional
“Clown” data set created by Vesanto and Alhoniemi in [31]. ge®n in Fig. 2.6, top
left, this data set has clusters of different sizes, shag®s$ densities, to mimic a clown’s
face. The wide variation in the statistical properties af thusters as well as overlaps
between the clusters make the extraction of structure diffiespecially the extraction (or
separation) of the three small subclusters in the left eyd.7A419 hexagonal SOM was
used to learn this data set by the authors of [31]. In Fig.[#@) a variant of the U-matrix
visualization (bottom left) and the induced Delaunay gréph middle) help separate the
coarse structure of this “Clown” data manifold (the two eybe nose, the mouth and the
body), but neither of them is able to delineate the threelasbcs in the left eye. For more

precise structure identification (including distinctiohnmise from relevant information),
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“Clown” data set induced Delaunay graph CON N matrix

right eye left eye

nose
mouth

body

Ieft eye
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© 2009 IEEE

Figure 2.6: Visualization of the 2-dimensional “Clown” datet from [31] and the 119 hexagonal SOM
learned with it. Solid dots are data samples. Open circldscapsses are non-empty and empty prototypes,
respectively. Top middle, top right, bottom left and bottomddle are reproduced from [24], with kind
permissions of IEEE and the authors, K. Tasdemir and E elgr Top left: The 2-dimensional “Clown”
data set from [31].Top middle: The induced Delaunay graph (black lines) visualized in taagpace
highlights most of the discontinuities in the manifold sture, which are not delineated by the Delaunay
graph (gray lines).Top right: The CON N matrix, visualized in the data space, make detailed strestu
(e.g., the three subclusters in the left eye) emerge. Preafiown’s body, in the dashed square, is magnified
in the bottom rightBottom left: A variant of the U-matrix visualization of the SOM. The SOMunens are
shown as hexagons. The grey scale intensity of the additi@xagon between each pair of neurons adjacent
in the lattice indicates the Euclidean distance, in the dptece, between the two respective prototypes. A
darker gray indicates greater dissimilarity. This viszatiion delineates the coarse cluster structBagtom
middle: The CONN matrix drawn on the SOM lattice separates the large clusterd also makes the
three subclusters in the left eye (in the magenta triangtgrge. Bottom right: Magnified detail in the
visualization of theCON N matrix from boxed area in the clown’s body (top right). Thestfito fourth
ranking Voronoi neighbors of prototype P1 are P2, P3, P4 a@dwhich have strengths 5, 3, 2 and 1,
respectively. To make this easy to see, we color the datalsanfat contribute to each of the 4 connections,
the same as their corresponding connections.

Tasdemir and Merényi proposed a new idea in [30, 24]. Thefindd theconnectivity
matrix (CONN matrix), which assigns weights to the edges of thedediDelaunay graph

as in eq. 2.16, thereby emphasizing the connections thaissablished by a large number
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of samples.

CONN(i,7) = #{x € M : w; andw; form a pair of BMU and second BMU fat}

(2.16)
CONN(i,j) is called theconnection strengthetween the prototypes; andw,. The
CON N matrix reflects the anisotropic data distribution in the drai cells of the pro-
totypes, as seen in Fig. 2.6, bottom right. This informatian be used to interpret the
similarity relationships between the prototypes: thergjery two prototypes are connected,
the more similar these two prototypes should be, or the mamenton information of the
data they share. With tRéO N N matrix, the discontinuities obscured by noise can emerge.
In Fig. 2.6, top right, the separations between the threelssters in the left eye (in the
magenta oval) become obvious. When drawn on the SOM latg& Fig. 2.6, bottom
middle, theCON N matrix is equally helpful in separating the three subclssite the left
eye (in the magenta triangle). Owing to the detailed topplafprmation represented by
theCON N matrix, we will use it in the improvement of measures of tqgyl preservation
in Chapter 3.

The CON N matrix contains additional information that can be usedxoress local
relationships between the prototypes. These are the @gskihthe Voronoi neighbors to
each prototype according to their respective connectimngths, proposed by Tasdemir
and Merényi in [24]. For example, in Fig. 2.6, bottom rigRE, P3, P4 and P5 are the
first to the fourth ranking Voronoi neighbor of the prototypg, and the respective 4 con-
nections are the first to the fourth ranking connection to'Hie connection strengths and
the rankings can be visualized together, as in the CONNwgalization [24], simulta-
neously providing a view of global and local connectednaesthé manifold. Although
rankings were not used in the “Clown” illustration in Fig62we will use them later in the

customization of the use of the SOM’s knowledge for supex/iearning in Chapter 4.



Chapter 3

New tools for monitoring the faithfulness
In representation of manifold structure
by SOMs

Material based on:

e L.Zhang and E. Merényi, “Weighted Differential TopograpRunction: a refinement of Topographic
Function”, Proc. 14th European Symposium on Atrtificial Neural NetwdEKSANN 2006) Bruges,
Belgium, April 26-287-12, 2006.

e E. Merényi, K. Tasdemir, and L. Zhang, “Learning highlgusttured manifolds: harnessing the power
of SOMs”, Chapter irBimilarity based clustering.ecture Notes in Computer Science (Eds. M. Biehl,
B. Hammer, M. Verleysen, T. Villmann), Springer-Verlag, AN6400, 138—-168, 2009.

3.1 Measuring the goodness of SOMs

Generally, there are two criteria for quantifying the goesi of the mapping formed by
the SOM algorithm. One is the accuracy of the mapping, or hiosety the prototypes
follow the pdfor local structure of the input manifold. This criterion @emonly used for

vector quantization algorithms. The other criterion is dqjuality of topology preservation,
which is an important property that enables the correcttifieation of manifold structure

from the SOM. Both criteria are important but neither is gutraightforward to evaluate.
We will briefly review the two criteria next with an emphasis measuring the quality of

topology preservation, which is one focus of this thesiskwor
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One of the commonly chosen measures of mapping accuracg gau#ntization error
E, (eq. 3.1), which is calculated as the sum of the squaredntiessfrom data samples to

their respective closest prototypes, over all data sanpples

Epe=>_ > |x—w’ (3.1)

€A xeV;

where the prototypev; is the centroid of the Voronoi cell;. This measure quantifies the
quality of approximation of thedf of the data, which is one aspect of SOM learning. The
other aspect of the SOM, topology preservation, is also mapband related measures are
desirable.

As we have illustrated in Section 2.2, topology preservaioan essential property
of an ideal SOM, and this property is necessary for corrgetrmetation of the manifold
structure. However, in reality topology violation is notusual. There are two common
reasons for the occurrence of topology violations. Firatametrization of the learning
process influences the development of the map. A simple deasfhat a neighborhood
function with a too rapidly shrinking size or with a too smialitial size can cause twists
in the map (e.g., Fig. 2.2, right). As another example, inGbeascience algorithm, the ad-
ditional “conscience” component brings in two more pararef3(t) and~y(t) (egs. 2.10
and 2.11), to the system. Topology violations can occurdftirameters are not scheduled
in proper ranges or not suitable for each other. Secondew¥el constrain the dimension
of the SOM lattice to 2 and enjoy the convenience of visugd@asion and easy digestion,
the dimensional mismatch between the lattice and the dateesmay result in topology
violations. When the data has larger dimension than the S&fi¢¢, the map has to fold
itself to better fill the manifold space, in compensationtfog insufficiency in dimension.
Imagine that, when a 1-dimensional SOM learns a 2-dimeasuistribution, the sting of

SOM prototypes has to distort itself to span the 2-dimeraidiata manifold. In SOMs
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learned with real data, which can not only be high-dimeraidout may also have com-
plicated structure, topology violations are common and wagur at all steps during the
learning. All the above issues underline the need for m@agand monitoring of topology
preservation in SOMs, for achieving good learning. The mezsshould be sensible quan-
tifications of the topology violations. Preferably the m&as should also be normalized in
a certain way such that they can be used to compare diffe@kisSr to monitor an SOM
at different learning steps. In addition, visual inspettid topology violations regardless
of data dimension is desirable, because the visualizaftiaearned map in the data space
(as seen in Fig. 2.4, right) has limited applicability (ddiaension< 3). With these tools,
we can then find the map that represents the manifold steiotost faithfully, from maps
resulting from runs with different SOM sizes, learning paeders, or learning steps.
Quantification of the quality of topology preservation, lewer, is nontrivial. Accord-
ing to the definition of topology preservation, as introddiae Chapter 2, there are three
basic elements in the design of a measure: distance meseckta quantify neighborhood
relations in the data space and in the lattice space; a proptrematical interpretation
of perfect topology preservation; and the quantificatiortopiology violations. We will

review pervious measures according to these three aspects.

3.2 Review of previous measures of topology preservation

Distance metric to quantify neighborhood relations

We remind the reader to distinguish the distances in the sfagdae)/ ¢ R¢ and in the
lattice A. For example, the Euclidean distance betweendvdimensional prototypew;
andw; in the data space isw; — w;|| g, while the Euclidean distance between them in the

lattice indicateg|r; — r;|| z, wherer; andr; are the locations of the prototypes in the SOM
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lattice A.

In both the data space and the SOM lattice, the most frequeséld metric is the Eu-
clidean distance (eg. 2.6). Although the Euclidean metads well for data with continu-
ous and linear distribution, it is unable to correctly exgsréne neighborhood relationships
for data with discontinuities and nonlinearities. An exdengf such a situation is given in
Fig. 3.1. A 1-dimensional SOM of seven prototypes is use@aon a 2-dimensional uni-
form distribution in a thin “horseshoe” (delineated by ddines). In Fig. 3.1, the learned
prototypes (black dots) are plotted in the data space andeobed to their respective im-
mediate lattice neighbors by dashed lines. We can see thairtiotypes are organized
in the data space such that they represent the curved shalpe forseshoe” manifold.
The discontinuity between the two ends of the “horseshoebisectly represented by the
SOM. The Euclidean distance, however, is unable to exphessliscontinuity. It will in-
dicate that the prototypes 1 and 7 are Voronoi neighborsendtita space because they
are the closest to each other. This will lead to the false logian that the topology is
violated in the SOM: the seeming Voronoi neighbors, prgiet/1 and 7, are not adjacent
in the SOM lattice. Therefore, the measures that rely on ti@di#ean metric can falsely
penalize the seeming topology violations, which are abtwalused by discontinuities and
nonlinearities in the manifold. This drawback is remediedhe Topographic Function
(TF), proposed by Villmanret al. [19]. The T F' adopts a graph distance metric based
on the induced Delaunay graph [20] to faithfully expressbenectedness (adjacency)
between SOM prototypes in the data space. This distancéecets later applied to other
measures, such as the improved Topographic Product (ire@f6¥) [32] and the Topo-
graphic Error T E) [33]. In addition, for rectangular SOM lattices, tl&" also uses two
different metrics in the lattice: maximum norm ||,..... (€q. 2.7) for evaluation of forward

violations (i.e., prototypes that are neighbors in the datace) are not adjacent in the
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Figure 3.1: The SOM prototypes (black dots) that represéitlamensional “horseshoe” distribution. The
prototypes are projected back into the data space and cuheacording the SOM lattice structure.

lattice A) and Euclidean normi - || g for evaluation of backward violations (i.e., prototypes
that are adjacent in the latticeare not neighboring in the data spat§. The purpose of
using two metrics is to tolerate small distortions in the malpich do not prevent topology

preservation. We provide details on thé' in Section 3.2.2.

Mathematical definition of perfect topology preservation

While seemingly sharing a common intuition about topologgservation, people rely on
different mathematical definitions of perfect topology s@evation when proposing mea-
sures. The different definitions can be based on three diffdypes of similarity in the
mapping betweer and M metrics rankingandcontinuity[34].

Perfect topology preservation based moetrics the strictest similarity type, requires
the preservation of pairwise metric distances in the mapp®ne measure based on this
definition is the Pearson correlation [35], which calcusdtes correlation coefficient of the
pairwise distances in the data space and in the lattice spaoess all data samples. A

mapping that preserves all distances produces a value afthdacorrelation coefficient.
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This measure is suitable for algorithms that are designeddserve the metric distances,
such as metric-multidimensional scaling (MDS) algoritH88] (e.g., Sammon’s mapping
[37]). For the SOM, however, it is obviously unsuitable,carSOM learning by design is
not intended to preserve distances.

Perfect topology preservation measuredragkingis a relatively relaxed definition,
which requires the preservation of the rankings of pairvdistances. We will call these
measures ranking-based measures for short. One exanmpeSpéarman’s correlation co-
efficientp [38], which calculates the correlation of the rankings & plairwise distances in
the data space and in the lattice space. Another example iBoghographic Producf (P)
[39], which relies on the ratios of the distances betweel gaototype and its neighbors
of the same rank, in the data space and in the lattice spap=atevely. Details of thé P
will be reviewed in Section 3.2.1. Rather than ranking neagk for the prototypes, another
example, the Konig's measure, ranks neighbors for eaghsdample according to their dis-
tances to the sample in the input and output spaces and sdissgores according to the
differences in the ranking [40]. Some other measures ircttisgory are the improvedr
[32] and the Directional ProductXP) [41]. One difficulty with the ranking-based mea-
sures is the large number of ties among the pairwise distamegveen the neurons in the
SOM lattice. For example, in a 2-dimensional rectangulaM$@ neuron has 8 equally
close immediate lattice neighbors. These measures neeadrectly decide the order of
them to avoid false penalty for nonexistent topology violas. However, in implemen-
tation, a random order or a predefined order is often usednfottee ties (the neighbors
that are equally close), for the sake of computational dsst result, the measures can be
incorrect.

A more suitable definition of perfect topology preservatisrbased orcontinuity,

which focuses on the neighborhood structure rather thalemeighbor ranking. It re-
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guires the preservation of the immediate (nearest) neigsia the mapping, and therefore
prevents the struggle of ordering the large number of tigheéranking-based measures.
In SOM learning, perfect topology preservation means tatOM prototypes neighbor-
ing in the data spac&/ should be also neighboring (adjacent) in the latticeand vice
versa, as was introduced in Section 2.1. Two example meabased this interpretation
are the Zrehen-measure [42] and the V-measure [43]. TheeArateasure sums up the
number of “intruders”, in the data space, between each péattae-neighbor prototypes.
The V-measure assigns a penalty score for each non-lagighlmor whose distance to a
given prototype is smaller than the distance between thetype and any of its immediate
lattice neighbors. Both the Zrehen-measure and the V-mealsawever, capture only the
forward violations, but not the backward violations. A leetineasure in this category is

theT F' [19], which accumulates violations in both mapping direcs (Section 3.2.2).

Quantification of topology violations

After perfect topology preservation is mathematically ledi, as discussed above, the final
step in the design of a measure is to formulate a cost fun¢hianhquantifies topology
violations. One fundamental difference between cost fanstis the level of the details in
the information incorporated in them. The incorporatedinfation can be on the level of
prototypes, on the level of data distribution, or on a miv@egl of the two.

Cost functions that depend only on the prototypes are caatipaglly economical be-
cause the number of prototypes is often much smaller thamuheber of data samples.
Examples of this type of measure are the, the DP, Spearman’y and the Zrehen-
measure, which evaluate the inter-prototype violatiomksignore the relationships between
data samples. Without exploiting the detailed relatiopsl@mong the data samples, these

measures may be insufficient when dealing with noisy or caatad data.
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Alternatively, the cost function can be formulated to dapen the relationships among
the data samples only. For example, a cumulative histogratiad was proposed by
De Boltet al. to capture a statistical view of the neighborhood statusefsystem [44].
The histogram shows the percentage of sample pairs as adiumftpairwise distance.
The authors used the histogram of an unordered map as artesgedivaluate the reliability
of any given SOM. The more dissimilar the histogram of an SO&% wo the histogram
of the unordered map, the more reliable the map was considétewever, it is unclear
how the difference in the histogram can be interpreted gadinely in terms of topology
violations.

Another possibility is the joint consideration of the priytees and the relations of data
samples in the cost function. For example, the' screens the topology violations by
checking the neighboring relationships between the pypts across the data space and
the lattice. This screening involves only the inter-prgpa relationships. However, the
neighboring relationships across the prototypes are mated by the induced Delaunay
graph, which can be constructed from the data distributiwh the prototypes. Thé'F
therefore implicitly utilizes the detailed data distrilaut. Another measurd; E [33], not
only implicitly uses the data distribution the same way a&sTtli’ does, but also explicitly
uses it in the cost function. It computes a percentage of sktaples that contribute to
violations, and thereby provides a detailed view, on thelle¥’data distribution. However,
the TE does not show the quality of topology preservation as a fonaif the scope of
violations, which makes it less informative than thié'. Another interesting example of
this type of measure is the Kaski-Lagus measure [45], whiltis aip the quantization er-
ror and a minimum-path distance between the BMU and the seBM1J, across all data
samples. The minimum path was defined as the shortest pdth ohata space, consisting

of a string of prototypes, each of which is an immediatedattieighbor of its predecessor
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in the path. This measure, however, was only examined famkiisional maps, but not

for high-dimensional data, in [45].

We now discuss the Topographic Produ£i) and the Topographic Functiofi’ {'). The
TP is one of the earliest measures. It uses the Euclidean noit® @distance metric. The
TF is a more advanced measure, which uses a better distande thetr the Euclidean
norm. Through the introduction of these two measures, we washow the reader how
the T'F is better than th@ P and therefore justify our choice of tHeF as the basis for
developing new measures. The author also implemented tivesmeasures in our soft-
ware environment at Rice University. We will compare thernthvaur proposed measures

through applications later in the chapter.

3.2.1 Topographic Product (' P), one of the earliest measures

The basic idea of thé& P, proposed by Bauer and Pawelzik [39], is to establish, fgr an
neuronj € A, two ordered lists of the neuronis= A (i # j), according to the distances
between the neurons in the lattice space and the distantesdrethe corresponding pro-
totypes in the data space, respectively. That is to say,negpect to the neurof we rank
the neurons (i # j), as the first, second, ... lattice neighborg etccording td|r; — r;|| z.
Let n/'(j) denote the neuron index of thph lattice neighboof neuron; in the SOM lat-
tice A. Similarly, we rank the neurons(i # j), as the first, second, ... neighborsjah
the data space according ffev; — w;||z. Letn)'(j) denote the neuron index of theh

neighbor in the data spack/. Define two ratiog); and(), as follows:

Iwi—w,a;lle

Ql(]vp) = |

\Wj—WnM(,. e
p (F)

(3.2)
llrj—r, a0)lle

Q?(]vp)

l[ej—r, a1l
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TheT P is then defined as an average over all prototypes and overbaig of all ranks:

=z

-1

1 N
TP:Nx(N—l).Z

J=1

log H ) X Qa(4, 1)) %] (3.3)

1

3
Il

By design, the sign of thé'P indicates the relation between the dimensions of the input
space and output SOM lattice space. A positive value of tRandicates too low dimen-
sion of the output (lattice) space for the input data, andyatnee value of thd' P indicates

too high dimension of the output space. A near-ZE#® value is supposed to correspond
to an approximate dimensional match. However, sincdtRheises the Euclidean metric to
guantify the similarity between the prototypes, seemimdations caused by nonlinearities
in the manifold are incorrectly penalized. Thé in such cases may not indicate the true

quality of topology preservation. We will show exampletah this Chapter.

3.2.2 Topographic Function ("F'), a measure that treats nonlinearities

correctly

The T'F, by Villmann et al. [19], uses the induced Delaunay graﬁh(introduced in
Section 2.2.2) to characterize the neighboring relatiggssbhetween the prototypes. A

graph distance metric, denoted py |

5, IS Used to compute the inter-prototype distances
in the data space. The graph distance between two prototyp@sdw ; in the data space,
|w; — w;|| 5, is defined as the length of the minimum path between ther.inThe
graph distance between any two prototypes connected by@e\iad5 is defined as 1.
Fig. 3.2 illustrates a minimum path between two prototypeshe “exclamation mark”
data set. Since we can visualize the induced Delaunay grmahhiithe data space and in
the lattice space, as shown in Fig. 2.5, middle and right,lvesvghe minimum path (blue

line segments) between the prototypes A and B in both theespas well, in Fig. 3.2. The
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prototypes along the path are numbered so that we can reEtedcross the two spaces.
The minimum path between A and B has a length of 5, so the gregphinde between A
and B is 5. The graph distance between the prototypes B andblvisusly 1, because

they are immediately connected by an edg@in

Figure 3.2: lllustration of a minimum path (green line segisg between two prototypes A and B, in the
data space (on theft) and in the SOM (on theght), respectively, through the “exclamation mark” data
set. The induced Delaunay graph is shown as black lines iddtespace and as yellow lines in the SOM.
The minimum path between A and B has a length of 5, so the thghgitastance between them is 5. The
prototypes along the path are numbered so that we can rb&de prototypes across the data space and the
lattice space.

Next we will review how theél' F' was defined for a commonly used rectangular lattice
in [19]. First, the authors defined forward and backwardatiohs rigorously. Aforward
topology violationis defined between two prototypes, and w;, which are immediate
neighbors in the data spadew; — w;||5 = 1) but have a maximum distance (city block
distance) larger than 1 in the SOM lattide{— r;||,n. > 1). Forward topology violations
are also callediiolating connections A backward topology violatioms defined between
w; andw; when they are immediate lattice neighbors in the SOM latfiee — r;||z =
1) but have a graph distance in the data space larger thdwl{ w;||5 > 1). The

reader may notice that the mathematical interpretatioritmohediate lattice neighbors”
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are different in the above two definitions. The definition ofwWard violations uses the
Euclidean distance, while the definition of backward vidlas uses the maximum distance.
This helps avoid penalizing unimportant forward violaBaraused by slight distortions in
the map. More details can be found in [19]. The authors thénet®a functionf;(f1) for
each neuromn, wherefl is called theolding lengthof a topology violation, and it represents
the scopeor rangeof violation.

wer | FUNIE = Tjllmae > FIA Wi = willp =1} 1< fl < max|ri = r)fma
filfl) = s

2

#l e —xjlle =LA wi —willp > [f1} - —maxiwi —w;llp < fl< —1
(3.4)

A positive f1 denotes the folding length of a forward topology violatietween two pro-
totypesw; andw ;, which are immediate neighbors in the data spgee  w;|| 5 = 1) but
have a maximum norm ofl in the SOM lattice ((r; — r;||,n... = fI). A forward topology
violation is equivalent to &olding of the SOM lattice in the data space, i.e., two distant
prototypes in the lattice are folded together in the dataepd/ indicates theange of
that folding. This is whyf[ is called folding length. Similarly, a negatiyé denotes the
folding length of a backward topology violation between twrototypesw; andw ;, which
are immediate lattice neighbors in the SOM lattide; (— r;||z = 1) but have a graph
distance of| fI| in the data spacd|; — w;||5 = |fl]). Likewise, a backward topology
violation is equivalent to #lding of the data manifold in the SOM lattice. For example, in
the SOM learned with the “exclamation mark” data set, as seéig. 3.2, we can easily
see a forward violation between B and [GMz — w¢l|5 = 1 and|lrp — r¢||me > 1) and

a backward violation between A and Br@ — rc /.. = 1 and|jwg — wel/5 > 1). The
folding length of the forward violation between B and C is&c&||rg — r¢||mae = 5. The
folding length of the backward violation between A and B &oeb since|w 4 —wpz|| 5 = 5.

In the positive domainf;(fl) counts the number of forward topology violations be-
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tween a given prototype; and other prototypes, with folding length larger thén In

the negative domainf;( 1) counts the number of backward topology violations between
a given prototypev; and other prototypes with folding length larger the#. TheT F' is
then computed as an averagefgff{) across all neuronse A in [19], as in eq. 3.5, where

N is the total number of neurond’F(0) is defined as the sum @fF'(—1) and7T'F(1),
which was interpreted as the total number of violationduding both the forward and the

backward violations, in the lattice [19].

N e li(F)  f1>0
TF(fl)'= § TF(1)+TF(-1) fl=0 (3.5)

= >iea fi(f1) fl<0

A large fl corresponds to long-range folding, which we will also agthbal violation
Similarly, a smallf! indicates short-range folding, which we will also daital violation
These definitions of the global and local violations are tatale. We will provide their
rigorous definitions, proposed by Tasdemir and Merény2#j, later in Section 3.4. The
largestfl in the positive domain that holds a non-vanishing value efftt’ indicates the
longest folding length of forward violations, and the lssgg(l| in the negative domain
with a nonzero value of th& F’ corresponds to the longest folding length of backward
violations. Villmannet al. also proposed to normaliz€ to [—1, 1], to allow comparison

of SOMs with different lattice structures [19].
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3.3 New, refined measures

3.3.1 Differential Topographic Function (DT F)

The T'F is an integral function because of the inequalities"}used in the definition
(eq. 3.4). It is not informative when we are interested inthenber of violations with a
specific folding lengthf{. This motivates us to define a differential form of thié’, which
we name the Differential Topographic Functidd{ F') [46]. Similarly to eq. 3.4, we first
define a functiony;(f1) for each neuromn:

aey | FUNIE = Tjllmae = fUA Wi = w;llp =1} 2.< fI < maxir; — rjlmas

gi(fl) =
#L] i —vjlle = LA [wi —will5 = | fl]} —gfjl.gngWi —wjllp < fl <=2

(3.6)
The DT'F' is then computed as the averageydff!) over all neurons as in eq. 3.7. Obvi-
ously, theDT'F' can also be obtained directly by the first difference ofihile The DT F
enables the comparison of the numbers of violations, whierakso called thextents of

violations across different scopes of violations.

DTR(f1) %Zgi(fl) _ ) TFI-1)-TF(fl) fl=2 (3.7)
ieA TF(fl+1)—TF(fl) fl< -2
To illustrate the detailed information revealed by thé ' and to compare it with the
TF, we use an 8-class 6-dimensional synthetic spectral imegger] by Merényi, and
described in [27] (Fig. 3.3). Each of the 12828 pixels in the image is a 6-dimensional
vector. Two of the classes have 4096 data samples (pixels) g@o others have 2048, and

the remaining four classes have 1024 data samples. Appabedyn 0% Gaussian noise

was added to each of the 8 representative spectra to cretiim-glass variations. For
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Figure 3.3: The 8-class 6-dimensional (6-band) synth@écsal image data set. Figures reproduced from
http://terra.ece.rice.edu/datgaample/data.html, with permission of E. Merény&ft: Spatial distribution of
the 8 classes in the 12828 image, overlain with known labels (colorRight: Mean signatures (means of
the data samples) for each class, vertically offset foiitglar
complete description of this data set, see [27]. A 15 SOM trained with this data set is
shown in Fig. 3.4. In our evaluation of the measures and to@ection 3.3-3.4 (Fig. 3.4—
3.6), we use this SOM and the cluster structure, provided byeMlyi. The resulting SOM
is visualized with the mU-matrix in Fig. 3.4. We remind theder that the mU-matrix
visualization shows the Euclidean distance in the dataespatween each pair of lattice-
neighbor prototypes, as a fence between the two SOM grid tadit represent the two
respective prototypes. In Fig. 3.4, left, the intensity loé imonochrome red color in a
grid cell is proportional to the mapping density in that céNe can see that the SOM is
separated clearly into 8 clusters by double-fenced “corgdd The black cells in those
corridors represent empty neurons (with no data mappedeta)thin Fig. 3.4, right, the
known class labels are overlain on the SOM, so that we can ammjhe clusters that
emerge from the mU-matrix visualization with the groundhrurhe known labels are, of
course, not used in SOM learning. From this comparison, wecoaclude that the SOM

has learned the cluster structure of this synthetic datavesiet

Next we use thd'F and theDT' F' to evaluate the quality of topology preservation of
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Figure 3.4: The mU-matrix visualization of the SOM learneithvthe 8-class 6-dimensional synthetic data
set (Fig. 3.3). The SOM is shown as a lattice of grid cells. Ehelidean distance in the data space between
any two prototypes that are immediate lattice neighboritcsve as a fence on the boundary of the two
respective grid cells of the two prototypes, in a gray scalerisity proportional to the distance. White is
large distance. Figures reproduced from [27], with kindhpssions of IEEE and E. MerényLeft: Each

cell is shaded by an intensity of red proportional to the nendf data samples mapped to the corresponding
neuron. Black cells represent empty neurons. The clustemdaries emerge through the mU-matrix (white
fences)Right: The known class labels are overlain on the grid cells.

the SOM. Both measures are computed in two ways, once witieallons included, and
once with the empty neurons excluded. The fitBs, computed with and without empty
neurons, overlap in the positive domaifi - 0), in Fig. 3.5, top left. The largest positive
fl with a nonzerdl'F’ value is 7, indicating the largest folding length of all f@md viola-
tions is 8. In the negative domairil(< 0), the exclusion of empty neurons makes The
vanish for all negative values g¢f. This means that all the backward violations are related
to empty neurons. To help understand the measures, we izisulaé induced Delaunay
graphﬁ on the SOM in Fig. 3.5, bottom right. Any pair of prototypesnected by a
yellow line segment are Voronoi neighbors in the data spacelearly delineates the dis-
continuities between the 8 clusters. The empty neuronsKldells) have no connection to
their immediate lattice neighbors, which indicates thaftbause the backward violations,
as seen from th&'F' in Fig. 3.5, top left. Looking more closely, we see that thes®ty

neurons have no connection to any other neurons. Matheatigtibis can be expressed

as: the graph distance from any empty neuron to any otheonesiinfinity. This explains
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Figure 3.5: Measuring topology violations in the SOM learméth the 8-class 6-dimensional synthetic data
set, with different measures, tHer, the DT F and theW DT F. All measures are calculated with and
without empty neurons, respectivelyop left: TheT F. Top right: The DT F. Bottom left: The W DT F'.
Bottom right: The induced Delaunay graph (yellow lines) is overlain om 80M to help understand the
values of thel'F', DT F andW DT'F'.
the constant value shown in the negative domain offtthewhen the empty neurons are
included. Thel'F does not express the extent of violations (the number oatiais) for
a specific folding lengthf, while the DT F' (Fig. 3.5, top right) clearly shows the relative
extents of violations across differefit. The backward violations that involve the empty
neurons are not shown by ti&" F' because the folding length of these violations is infinity
(fl = —o0).

In general, there are two types of empty neurons. One typsmgtmes called interpo-

lating neuron because it is often found at the boundarietusfars. These empty neurons

learned from the data, but were left empty at the end of thmileg because the represen-

tations of data samples in the SOM contracted to a lightergod prototypes as the SOM
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converged. The empty neurons (black cells) shown in FigaBedexamples of interpolat-
ing neurons. These empty neurons help with the identifinadfcclusters. The violations
they induce do not hinder correct understanding of the ro&hdtructure and are therefore
negligible. The other type of empty neuron is one that res@active throughout the
learning, i.e., it never had the chance to adapt its prototyNo example for this type of
empty neurons is shown here.) These empty neurons coegtiitinused part of the map,
and should be excluded froi, the total number of neurons, in the computation of the
measures. The above discussions motivate us to excludeptyeeurons in th& F, the

DTF and the other new measures that will be introduced next.

3.3.2 Normalized Differential Topographic Function (NDT'F)

In the course of learning, the placement of the SOM protatypéhe data space is adjusted
iteratively, resulting in the change of the connection®ssthe prototypes. The total num-
ber of connections can then be different at different tinepstof the SOM. We define the
Normalized Differential Topographic Functio& (DT F') [46] by incorporating the total

number of connections as a normalization factor:

N x DTF(f1)
2C

NDTF(fl) = fl:2,3,...,111;;2§||ri—rj||max (3.8)

whereC'is the total number of connections in the SOM. Normalized®@ythe N DT F'( f1)
indicates the percentage of the connections at each foldimggh f/. It enables the com-
parison of the quality of topology preservation at diffareme steps of the SOM.

The NDTF is defined only for forward violationsf{ > 0) because backward viola-
tions can be easily detected from the SOM with the help of thematrix and are hence
not as detrimental as forward violations in cluster extoact We remind the reader that,

although manifold learning is not equivalent to clusterastion, in most of our real world
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applications the scientific goals are related to the findimg@aningful clusters in the data.
Backward violations manifest in strong dissimilaritietaeen immediate lattice neighbors
(shown as high fences in the mU-matrix visualizations) andmpty neurons on the clus-
ter boundaries, as in Fig. 3.4, which actually help locatedlusters. In contrast, forward
violations can lead to incorrect clustering. Imagine a magd itself in the data space,
So two prototypes that are distant in the lattice can agtuafpresent similar data samples
from the same cluster. However, since the two prototypeseparate in the lattice, they
appear to represent data from two different clusters. Toerewe choose to focus on the

forward violations in the development of measures in thiskwo

3.3.3 Weighted Differential Topographic Function (¥ DT'F)

The TF, the DTF, and theNDTF express the extent of violations by a count of the
violations at each folding lengtlil. However, these measures do not distingsishere
violations induced by a large number of data samples fronatians caused by a few
noisy samples. (We remind the reader that a connection camdbeed by even a single
sample, as in eq. 2.15.) In cases where data sets have ndiseitiers, these measures
thus do not reflect theeverity of violationswhich is quantified by the number of data
samples involved in the violations. Motivated by this, wettier resolve theDT F with
animportance weightin@f the connections to construct a new measure we call Weighte
Differential Topographic Functionl{ DT F') [46] as follows. We first define a function

hi( f1) for each neurom:

de .o
nf)s Y CONN(.j) =23 omax e = tjllnae (39)

Hri*"j [lmaz=r1l
[wi—w;ll5=1
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where|| - || 5 is the graph distance in the induced Delaunay grapf.N N is the connec-
tivity matrix, first proposed in [30]. Th€O N N matrix expresses the connection strengths
between the prototypes. ThE DT'F is then computed for a given folding lengfhas the
sum ofh;(f1), across all neurons, and the sum is normalized by the totabeu of data
samples P, as in eq. 3.10. Th& DT F expresses the severity of violations with folding

length f1 in terms of the percentage of contributing data samples.

1
WDTF(fl) = 55> m(fl)  f1=2.3, . max|t; — 1;|lma (3.10)

27
icA J

Note that thelW DTF is defined for forward violations (positivél) but not for back-
ward violations (negativé¢/) because of the lack of the counterpart of i@ N N matrix

to quantify the connection strengths of backward violatioNevertheless, this does not
prevent thelV DT F' from being a useful measure because forward violations sually
more harmful than backward violations for correct clustdraction (as discussed in Sec-
tion 3.3.2).

For the 8-class 6-dimensional synthetic data setJ#heT F' displays the severity of
violations with folding lengths from 2 to 8 (Fig. 3.5, bottdeft). If compared with the
DTF inFig. 3.5, top right, thél” DT I provides a more accurate evaluation of the relative
importances of violations across different folding lergti-or example, while th&®T' F
raises a red flag fof! = 5, indicating the maximum number of connections at this foddi
length, thelV DT I’ shows that the most severe violations occuflat 4, where the most

data samples are contributing.
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3.4 A new interactive visual monitoring tool — TopoView

In addition to the new measures discussed above, we alstodeveaseful interactive tool,
TopoView, which allows to show meaningful subsets of cotines (edges in the induced
Delaunay graph) on the SOM lattice for capturing serioushogical problems [4]. This
is a similar visualization as seen in Fig. 2.5, right, and Bi®, bottom right. The crucial
distinguishing function of TopoView is a set of versatileatholding capabilities to filter
out unimportant (weak) violations that may result from easd outliers. It thereby shows
the relevant or statistically significant sets of connewiaevith improved visual clarity,
compared to the plain visualization of the induced Delawgrayh on the SOM.

The graphical user interface of TopoView and a summary adswlding keywords
and their functionalities are given in Appendix B.2. We diss here several basic and
useful thresholding capabilities. For example, the sihsktonnections to be shown by
TopoView are selected by the user with a threshold for caimestrength, a threshold
for folding length, a choice of the category of connectiaa§ {iolating, or non-violating
connections). The threshold for connection strength caautematically computed by
TopoView as a user-specified statistics of the connectsund) as the mean strength of all
connections or the mean strength of all violating connestid\ useful threshold for fold-
ing length is the one that separatgsbal andlocal violations. We remind the reader that
at the end of Section 3.2.2 we described global and locahtiais qualitatively, as fold-
ings in the map with long and short folding lengths, respetyi Tasdemir and Merényi
proposed in [24] a rigorous definition for the folding length;,., that separates local and
global violations. They computdd,;,, from the maximum number of Voronoi neighbors,
m, to any prototype in the manifold, by eq. 3.11, for a rectdag8OM lattice [24]. Vi-

olations withfI > 1,,;, were defined aglobal violations and those withfl < [,,;, were



54

defined adocal violationsin [24].

l
Lin = min{l : m <) 8l'} (3.11)

'=1

The argument in the computation &f;,, from m by eq. 3.11 is that the: Voronoi neigh-
bors of a prototypev; should arrange themselves into the “tightest” SOM neighbod of
w; in a topology preserving map (SOM lattice). In a rectang8i@M lattice, a prototype
has 8 first-tier neighbors (8 equally closest neighbors}et®nd-tier neighbors (16 equally
second closest neighbors), and so on. Eq. 3.11 therefozenuiaes the smallest neighbor-
hood size/,..,, that can accommodate Voronoi neighbors. Another useful function of
TopoView is to show the connectedness between clustereiS@iM, i.e., the similarity
between clusters. The pre-requisite of using this funasahe availability of cluster la-
bels of the prototypes. The cluster labels can either coama firound truth or result from
clusters extracted from the SOM. We definger-clusterandintra-cluster connectionas
the connections with end points (prototypes) in the samsgt@fiand in different clusters,
respectively [4]. TopoView allows the user to show these tyyies of connections sepa-
rately. This can be helpful in the evaluation of the corresgof learning or the validity
of the cluster labels. For example, when the cluster label$ram ground truth and there
are many strong connections between two different clugtergy indicate either topology
violations in the map or mislabeling. When the cluster lalvebult from cluster extraction
from the SOM, strong connections between two clusters sigbat these two clusters
may actually represent a single cluster.

To give an illustration of the thresholding functionalgief TopoView, we use the SOM
learned with the 8-class 6-dimensional synthetic dataAseseen from theDT' F' and the
W DTF in Fig. 3.5, top right and bottom left, violations exist evanfolding length 8

(i.e., nearly half the width of the SOM lattice), which sugtgethe map could be problem-
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Figure 3.6: An example of displaying selected groups ofatiohs with TopoView for the 1515 SOM
learned with the 8-class 6-dimensional synthetic data. S®#& upon which TopoView visualizes the con-
nections, is reproduced from [27], with permissions of |IEkt Merényi. The violations are drawn on the
SOM overlain with known class labels (colors) and mU-matrieft: All, 567, violations (black lines).
Right: TopoView filters out connections with connection strenigths than mean strength of all connec-
tions (15.8 in this example) and connections with foldinggih less tha,,,;,,, the maximum length of local
violations (2 for this data set). There is one connectionvigth this thresholding method.

atic. TopoView then helps clarify where those violations arthe map. In Fig. 3.6, left,
TopoView shows all violating connections (forward viotats) as black lines on the SOM.
All of these violations are located within the known clusteB is the diameter of the two
largest clusters (red and white) in the SOM. On the level o$tering, these violations are
tolerable. To further emphasize the potentially seriootations, we use TopoView to filter
out connections with low strengths or with short foldingdérs. Here we set the threshold
for connection strength as the mean strength of all conme£({15.8 in this example), and
set the threshold for folding length as the maximum lengtltocél violations,/,,,;, (2 in
this example)l,,;, is computed from the maximum number of Voronoi neighborsazhe
prototype,m, by eq. 3.11. These two thresholds clear all connections/isho the left
SOM except one violation in the lower left corner of the SOM saen in Fig. 3.6, right.
This only violation is an intra-cluster violation, which eé®not prevent correct extraction

of the clusters for this particular data set. In this examptgoView helps with the quan-

titative analysis of the violations, from which we know thlhé SOM has achieved good



56

topological health for the purpose of cluster identificatio

3.5 Applications of W DT F and TopoView

Since SOMs learned with complicated data are often not fre@tations, it is especially
effective to use both th&/ DT F and TopoView for the evaluation of topological condi-
tions. TheW DT'F provides a summary of the severity of violations at eachifgidength
while TopoView provides localization of the violations inet SOM, for selected severity
levels. Next, we will demonstrate the combined use of théston a 2-dimensional syn-
thetic data set, a 194-dimensional real hyperspectral émagd a 210-dimensional syn-

thetic hyperspectral image.

3.5.1 An explanatory example with a synthetic 2-dimensiona-class

Gaussian data set

We generate a 2-dimensional 4-class Gaussian data setwoashexplanatory example
of the use of the new tools. The data samples are drawn ragdoomh four Gaussian
distributions with zero mean and unit variance, at four eentn a 2-dimensional space.
The data samples are plotted in the data space in Fig. 3t&deimn, with their known
class labels (colors) overlain. In Fig. 3.7, middle colurtiie SOM is overlain with mU-
matrix and known class labels. Black cells represent emetyons, which have no data
samples mapped to them. During the evolution of the SOM teregshots have been
taken, at 1K (1000) steps (Fig. 3.7, top row), 3K steps (Fig,. &nter row) and 100K steps
(Fig. 3.7, bottom row). In Fig. 3.7, left column, the blackisiare the learned prototypes
projected back into the data space. The prototypes are ctathaccording to the SOM

lattice structure.
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Figure 3.7: The evolution of the SOM as it learns a synthetiir2ensional 4-class Gaussian data set. Three
shapshots are shown at 1K, 3K and 100K steps, from top torhotteft: The SOM prototypes (black dots)
are plotted in the data space and connected according t@hkl&tice structure. Data samples (small dots)
are color coded according to their known class membersMille: All violating connections are shown as
black lines, over the SOM. The SOM is also overlain with thewn class labels (colors) and the mU-matrix.
Right: TheT F's (blue lines) and th&8 DT F's (green bars).

It is evident, from the visualization of the SOM prototypaghe data space (left col-
umn) and from the SOM overlain with mU-matrix and known cliatels (middle column),
that the SOM improved as the learning step increased. At glsstthe SOM appears
twisted in the data space (Fig. 3.7, top left). We can see sioob twist of the map at the
upper right corner (red cluster), where a chain of protayigearranged in the shape of a

“horseshoe”. In the top middle SOM, the obvious high (whit)ces within the 4 known
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clusters show that the SOM has not yet learned the structalle s the SOM evolves,
the within-cluster high fences are gradually relieved. BOK steps, all within-cluster high
fences disappear, and the cluster structure delineateldebgduble-fenced empty (black)
corridors agrees perfectly with the overlain known clabgla(Fig. 3.7, bottom middle). In
the data space, the prototypes are nicely placed accomlitng tmanifold shape (Fig. 3.7,
bottom left). These all indicate the improvement of the SQMapology preservation
throughout this learning.

We next discuss how the measures and TopoView reflect thioiement in the SOM.
At 1K steps, TopoView expresses the “horseshoe” twistingl{e red cluster on top left)
by a set of connections along the right side of the SOM (Fig, ®p middle). From the
connection statistics shown by both thé" and thelW DT F' (Fig. 3.7, top right), we know
the existence of violations up to folding length 6. This nedmat the end neurons of
the chain on the right side of the SOM, and some other nordatteighbor prototypes
in between must be connected. TheDT F' also shows that the long-range violations, at
fl = 5,6, are relatively weak, compared with the short-range ong$é at 2, 3. From the
TF, however, the detailed extent of violations at each foldergth cannot be seen due
to theT F’s integral property. As the SOM evolves, the set of longgeoonnections (in
the red cluster) along the right side of the SOM disappea8Kadteps (Fig. 3.7, center
middle), which means the “horseshoe” changed to a shapebéttr approximates the
spherical cluster. Finally, TopoView shows the SOM freeiofating connections at 100K
steps in Fig. 3.7, bottom middle. TH& DT F vanishes in Fig. 3.7, bottom right. The
residual in thel’ ' comes from the inconsequential backward violations betwiee empty
neurons and their lattice neighbors. Since TopoView/thhg and thel/’ DT F all show the
improvement in topology preservation, we can concludettiege tools indeed reflect the

true topological health of the SOM.
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For comparison with thé&l’ DT F', we also compute th& P for these three snapshots
of the SOM in Table 3.1. In all three stages, fh2 has a small, near zero value, indicating
an approximate dimensional match between the input andutpeibspaces. However, the
change in the value of thE P along the SOM'’s evolution does not reflect the truth. The
T P deviates the most from 0 at 100K steps, indicating the worstlbgical health at this
learning step, while in fact at 100K steps the SOM is the bestrey the three snapshots as
seen in Fig. 3.7, left and middle column. This indicates thatl' P is not a very helpful
and accurate measure.

Table 3.1: The Topographic Produ@ P) calculated for the three stages of learning, at 1K, 3K arf@K10
steps, of the SOM learned with the 2-dimensional 4-class&an data set.

Learning steps 1K 3K 100K
TP -0.03189 -0.02192 -0.03305

3.5.2 A study with a 194-dimensional hyperspectral image

In this section, we demonstrate the power of thé)T F' and TopoView through a 194-
dimensional real image data set. This data set is a noisyteesemsing VIS-NIR (0.4 —
2.5 um) hyperspectral image of the Lunar Crater Volcanic Fiel@VIE), Nevada, USA.

In this LCVF area, remote sensing images are taken yearkdensive field studies. The
614x420 image (257,880 pixels) we use is a subsection of the iraligrted by AVIRIS

(the Airborne Visible Near-infrared Imaging SpectrometeNASA/JPL) [48, 49] on April

5, 1994 at 18:22 GMT. The spatial resolution is 17m/pixel. IRM5 measures spectral
radiance values in 224 bandpasses, 30 bands of which weveendue to excessive
noise and overlaps in the detector channels. The remairfidgrhage bands comprise
the hyperspectral image used in this work. The challengbarstudy of the LCVF area

is the large number of surface cover types to be detected iatidgiiished [3, 47, 50].
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A natural color composite of the LCVF image is shown in Fig,3vith 23 cover types
marked at representative locations by class labels. (V¢ tef{3, 47] for details of these
cover types.) Merényi trained a 4d0 SOM to learn this image, and, after 300K learning
steps, identified 32 distinct cover types through intevaatiuster extraction from the SOM
with the help of the mU-matrix visualization [3]. The extted clusters are shown in the
SOM, and mapped back into the spatial image, in Fig. 3.9. Enécation of the extracted
clusters was based on accumulated ground truth from corapséle and independent field

studies, and previous analysis, done by others in a numhveorss [51, 50].

Figure 3.8: A natural color composite of the Lunar Cratercdnlic Field (LCVF). Figure from [3], courtesy
of E. Merényi. 23 character labels indicate different adypes of geologic interest. We refer to [3, 47] for
details of these cover types.

Because from the 4040 SOM of the LCVF image 32 verified cover types were ex-
tracted successfully, we can assume a reasonably highedefjtepology preservation in
this SOM. We will apply thédV DT F and TopoView to the SOM to more closely examine

the SOM in this respect. Then, we will use the same tools tqpaosettwo stages of learning
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Figure 3.9: The 4840 SOM learned with the LCVF image for 300K steps. Figuresff8], reused here
with kind permissions of both Springer Science+Businessifland E. Merényi.Top: The cluster labels

(colors) were extracted by Merényi from the SOM by usingnfig-matrix visualization [3].Bottom: The

clusters mapped back into the spatialimage. Each coloesponds to a different surface cover type, whereas
medium grey indicates background “bg” (unclustered) ixel
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in this SOM, one after 300K learning steps, and the other 8f#(8,000,000) steps. The

SOMs and the extracted cluster structure in these evahsaéie provided by Merényi.

Evaluation of topology preservation in the SOM of the LCVF image after 300K learn-

ing steps

We use our new measures and interactive visualization toeVvaluate topology preserva-
tion of the SOM that learned the LCVF image for 300K steps.(Bi§, top). In Fig. 3.10,
left, we compare th&' F' with the DT F'. From thel' F', we can see that violations exist up to
folding length 39, the largest possible folding length fug #0<40 SOM. TheDT' F shows
the average number of violating connections per neuroncit fedding length, providing
a clearer view of the extents of violations at different folyllengthsfi. For example,
we can see from th®T' F that each neuron has approximately 1.5 violations withifgd
length 2 and the average number of violating connectionseaextreme long ranges (27
< fl < 39)islessthan 0.2. In Fig. 3.10, right, we compareftitéwith the W DT F'. The
W DT F expresses the severity of violations at different foldiegdths by the percentage
of contributing data samples. For example, approximatéyaof the data samples (0.026
in the figure) participate in the formation of the violatiomsh fI = 2. Less than 1% of the
data samples (0.01 in the figure) are involved in the viofetiat each folding length that is
larger than 6. In addition to the statistical view of the atddns provided by th&T F and
theW DT F, our interactive tool, TopoView, can show the locations tredorientations of
violations selected by the user. In Fig. 3.11, left, TopeWigsualizes all, 521, violating
connections, whose strengths are larger than the meamttrehall connections (which
is 15 in this case), on the SOM. Interestingly, most of thdations follow the shapes of
the boundaries of the clusters identified in [3]. For examipl¢he bottom annular area in

the SOM, the connections profile the boundaries of five adfadesters, which represent
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geologically similar surface cover types (i.e., composiéil, and thus spectrally similar
cover types). For example, the red cluster maps peaks oéicomhes and the dark orange
cluster maps flanks of cinder cones. In the upper right aréheoSEOM, almost all viola-
tions follow the same direction. These can be results ofaldirfgs within those clusters
or manifestations of close relationships between the @lsstlong that direction (D, E, S,
P, etc.). These clusters form a series of continuously mgrgignatures (not shown here).

To distinguish the inter-cluster violations, which aregitally harmful to correct clus-
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Figure 3.10: Theél'F, the DT F and theW DT'F for the 40<40 SOM learned with the 194-dimensional
hyperspectral image of the Lunar Crater Volcanic Field (IE}¥rea after 300K learning stepkeft: The
DTF provides a clearer view of the extents of violations (avenagmber of violations per neuron) at differ-
ent folding lengthsy1, while theT F' does not show this information obviousRight: TheW DT F shows
the severity of violations at each folding length as the petage of contributing data samples.

ter extraction, we apply an additional “inter-cluster’dilt This results In Fig. 3.11, right,
where 165 violations pass the filtering conditions. Thewiwg only approximately 1% of

the total connections. In close inspection of those 165%timhs, we find that although two
prototypes are connected by a violation, the differencevéen them is still large enough
to separate them into different clusters. These violatdmaeot indicate topological prob-
lems, rather, they can be caused by either noise in dataganitktures of signatures from
different cover types in some image pixels. These qualgagivaluations confirm that the

topology preservation in the SOM is good.
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Figure 3.11: TopoView visualization of selected subsetoohections (black lines) on the SOM of the LCVF
image. The SOM is also overlain with extracted class labe[8]iand the mU-matrix visualizatiorLeft:
TopoView shows all, 521, violating connections with strénigrger than the mean strength of all connections
(which is 15 in this caseRight: TopoView shows all, 165, inter-cluster violating conrens with strength
larger than the mean strength of all connections (which s 1Bis case).

Comparison of the SOMs after 300K and 8M learning steps

For the assessment of the expressiveness of the new medkeré® 7 F and theV DTF,

as compared to th€ F' and theT P, we continued the learning of the SOM from the pre-
vious stage, 300K steps, to 8M steps and compare these tgessbhlearning. Th& Ps
for both the SOMs after 300K and 8M steps are small numberseas in Table 3.2. The
decrease in the magnitude of tig” indicates an improvement of topology in the SOM,
however, as a single-number measure,fliedoes not provide any insight how much bet-
ter the SOM really became. In Fig. 3.12, top, ihEs after 300K and 8M steps are similar,
with a slight decrease fofl < 17 and increase fofl > 17. TheTF thus provides no
conclusive result in the comparison. TNeDT F's (middle) show the changes in the num-
bers of violations at different folding lengths. With lomdearning time (8M steps), there
are small,< 10%, decreases in th& DT F’ at certain short ranges (e.g}, = 2, 10, 11,

13, 14 and 19), while at most of the remaining folding lengthsluding the the longest
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ones (Il > 30), the NDTF increases. This overall growth in the number of violations,
especially at long ranges, is a warning of possibly worseapdlogical health after more
learning steps. In contrast, th& DT F' (bottom) leads to the opposite conclusion. The
longer learning time quenches many high peaks inthRT'F', especially at short ranges,
by > 30% at fl = 2 and by20 — 30% at folding lengths between 3 and 14 (indicated
by arrows). Moreover, the changes at long ranges are nelgjgihowing no loss in good
topological health. We can conclude from théDT' F' that the topology preservation im-
proved as the SOM learned longer. From the above, we seehthabhclusion from the
N DTF contradicts the conclusion from thE DT F'. The N DT F suggests that the quality
of the map dropped slightly because the number of violatiooreased at the long ranges
and decreased by a tiny amount at the short rangesWIbé& F’, however, favors the SOM
after longer training time, because it shows that the viotet at all ranges became much
weaker after longer training time, which alleviated theralleseverity of violations.

Table 3.2: The Topographic Produ@t®) calculated for the two stages of learning, at 300K and 8¥hlieg
steps, of the SOM learned with the 194-dimensional LCVF ienag

Learning steps 300K 8M
TP -0.14870 -0.14237

A detailed statistical analysis of the connections betw&®M prototypes supports our
conclusion obtained with the” DT I’ (Table 3.3). The percentage of the violating connec-
tions in the SOM decreases from 73.6% to 70.9%. The totahgtiheof the non-violating
connections (percentage of data samples contributingetadh-violating connections) in-
creases from 80.3% to 83.7%. In addition, the average stiefighe violating connections
decreases from 4.1 to 3.6. These facts indicate that loegeanihg time (8M steps) is ben-
eficial to the topological health in this case, and therebyfioms the analysis results from

theW DTF. This means that thB” DT F' is capable of expressing the topological quality
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Figure 3.12: Comparison of two learning stages, 300K stads8M steps, of the SOM of the LCVF image
with the T F', the N DT F' and theW DT F'. Top: The twoT' F’ curves for the two learning stages are similar,
with no pronounced difference. THeF' provides no conclusive comparisoMliddle: The N DT F' shows
an increase at most of the folding lengths, including thgé&st onesf! > 30), and a less than 10% decrease
at a few folding lengths (e.gf! = 2, 10, 11, 13, 14 and 19). This indicates a possibly worsemgalagical
health in the SOMBottom: The W DT F' shows obvious, 20—-30%, decreases in the severity of viviatat
several folding lengths (indicated by arrows) after lonigarning time. At other folding lengths, there is no
significant change in thB” DT F'. This indicates an overall improvement in the map.
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Table 3.3: Statistics of the connections for the SOM leamitl the LCVF data, at two different stages of
learning, after 300K learning steps and after 8M steps aasgely. Percentage representations of the values
are in parentheses. The numbers in bold face indicate theirement of topology preservation in the SOM
after longer learning steps, as discussed in the text.

Learning steps 300K 8M
Number of empty neurons 119 3

Number of data samples 257875 257870

Number of all connections 16750 16443

Number of violating connection 12327 (73.6%) 11659 {0.9%)
Number of non-violating connections 4423 (26.4%) 4784 9.1%)
Average strength of all connections 15.4 15.7

Average strength of violating connections 4.1 3.6

Average strength of non-violating connections 46.8 45.1

Number of data points in the non-violating | 207162 (80.3%) 215879 83.7%)

connections

* The data samples that induce the connections to empty new@ excluded from this statistics, because
we consider empty neurons to be sources of inconsequeittiations, as discussed in Section 3.3.2.

of the SOM more accurately than theDT F' for complicated real data sets.

3.5.3 A study with a 210-dimensional synthetic hyperspecéil image

We give a second demonstration of the use of the new toolsighra 210-dimensional

hyperspectral urban image we call “RIT image”, which wastlgtically generated via

rigorous radiative transfer modeling called the DIRSIGqgedure at the Rochester Insti-
tute of Technology [53, 54]. The image comprises 4800 pixels, each of which is a

spectrum in the 0.38-24m wavelength window. In spite of its synthetic nature, thé& R
image is amazingly realistic with noise, illumination gestny, spectral variations, and
other attributes incorporated, in the simulation. The sceandered as a natural color
composite in Fig. 3.13, top, appears indistinguishablmfeoreal scene. Importantly, the
availability of material labels on the pixel level makesstiata set suitable for objective
evaluation of analysis results. There are over 70 diffesenface materials in the image,

including vegetation, various roof shingles, sidings|ding materials, road pavings and
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Figure 3.13: The 210-band synthetic hyperspectral RIT eragd the SOM learned with it. Figures from
[52], courtesy of E. MerényiTop: A natural color composite of the RIT imagBottom left; The SOM of
the RIT image (after 3M learning steps), overlain with ctugabels that have been identified by Meréetyi
al. in [52]. The SOM is also overlain with the mU-matrix. Cellstiwvthe color of the background, “bg”,
are empty neurons (no data mapped to them), most of whichaagbeng cluster boundaries. Black cells
indicate prototypes whose cluster labels are not shownisnrépresentation due to color limitation in the
SOM visualization softwareBottom right : Clusters mapped back to the spatial image.

car paints. From the SOM learned with this image after 3Msst®bferényiet al. identified
groups of prototypes representing these different sunfaaterials, in [52], and Merényi

provided the SOMs and the clusters for this study of the téwl®valuation of topology
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preservation. Fig. 3.13 shows the identified clusters irS@&1 (bottom left) and the clus-
ter labels mapped back to the spatial image (bottom rigbspectively. We refer to [52]
for descriptions of the clusters and the surface matetiaig tepresent.

We will first compare two snapshots of the SOM learned witiRhedata, at 500K and
3M steps, with the WDTF and TopoView. Second, we will use Tpw to help evaluate

the clusterings from two SOMs of the RIT data.

Comparison of the SOMs learned after 500K and 3M learning stps

We compare two learning stages (at 500K and 3M steps) of thd 80the RIT data.
First we will confirm that the topological quality of the SOkhproved by scrutinizing the
statistics of the connections in the SOM. Second we willafe measures and tools to the
evaluation of the two learning stages of the SOM, to showttiatl’ DT F' and TopoView
can correctly reflect the improvement in the SOM.

We conduct a detailed statistical analysis of the connestimetween SOM prototypes
(Table 3.4) to compare the two learning stages. The pergerdhthe violating connec-
tions in the SOM decreases from 31.0% to 28.1%. The totahgtheof the non-violating
connections (percentage of data samples contributingetadh-violating connections) in-
creases from 93.9% to 94.9%. In addition, the average stiefighe violating connections
decreases from 12.6 to 11.7. These facts indicate that ildegeing time (3M steps) is
beneficial to the topological health in this case.

We next use the measures to evaluate the SOMs. In Fig. 3.1danvsee the topology
preservation improved from 500K to 3M steps. THé&' shows obvious decrease in the
short-range violations (near the pefk= 0), but not conclusive for the long ranges. The
NDTF differentiates the view in th&'F': the violations with the shortest rangg, =

2, decrease by one third; the numbers of violations at othidirfg lengths have small
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Table 3.4: Statistics of the connections for the SOM leamitld the RIT data set, at two different stages of
learning, after 500K learning steps and after 3M steps aasgely. Percentage representations of the values
are in parentheses. The numbers in bold face indicate theirement of topology preservation in the SOM
after longer learning steps, as discussed in the text.

Learning steps 500K 3M
Number of empty neurons 539 554

Number of data samples 141477 133154

Number of all connections 2220 2055

Number of violating connection 688 (31.0%) 577 (@28.1%)
Number of non-violating connections 1532 (69.0%) 1478 (1.9%)
Average strength of all connections 63.7 64.8

Average strength of violating connections 12.6 11.7

Average strength of non-violating connections 86.7 85.5

Number of data points in the non-violating | 132812 (93.9%) 126376 ©04.9%)

connections

* The data samples that induce the connections to empty new@ excluded from this statistics, because
we consider empty neurons to be sources of inconsequeittiations, as discussed in Section 3.3.2.
changes. With th&’ DT F', we not only see the same considerable decrease in thetgeveri
of the short-range violations (one third decreasfl at 2, one sixth decrease #t = 3 and
one third decrease @i = 4), but also find a general decrease at large folding lengtitis, w
some exceptions (such asfdt= 8 and f/ = 13). For this case, both of th& DT I’ and the

W DTF, which show an overall decrease in the extent and the sewdrihe violations,
respectively, indicate that the topological health of ti@VBimproved after long learning
time (3M steps). This agrees with what we conclude from thaildel statistical analysis
of the connections above.

From the TopoView representations in Fig. 3.15 one canviollidich violations disap-
pear between the two snapshots. In Fig. 3.15, top row, we sitioviolations for the two
snapshots of the SOM. We can see that the 3M snapshot is ctbandhe 500K snapshot.
The total number of violations decreased from 688 to 577. [dler left corner of the
SOM even became completely violation free. To view the gjreiolations, we set the

threshold for connection strength as the mean strength obahections in TopoView, as
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Figure 3.14: Comparison of two learning stages, at 500Kssteypl 3M steps, of the SOM of the RIT image
withtheT F',the N DT F' and thd/ DT F. Top: TheT F shows a general decrease of violations at short fold-
ing lengths. Parts of th& DT F" and thelV DT F’ are magnified and shown in insets for clarit§iddle: The

N DTF indicates an overall decrease in the number of violatiomsast folding lengths after longer learn-
ing time. Some exceptions exist, i.e.,fdt= 6, 7, 10, 12, where the number of violations increased slightly.
Bottom: The W DT F' indicates a general decrease in the severity of violatitresrfiumber of contributing
samples) at short folding lengthgi(= 2, 3, 4) and at most larger folding lengthgi(= 7,12, 15, 16). Excep-
tions exist at some folding lengths, such agiat 8,13, 17, where the severity of the violations increased.
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Figure 3.15: TopoView visualization of selected sets ofations on the SOM learned with the RIT image.
A comparison is done between two learning stages of the SOB)GK (left column) and 3M stepsright
column). Three different subsets of violations are selected tohosva by TopoView, from top to bottom.
The same SOM as in Fig. 3.13 is superimposed with the mU-rmagualization. Medium grey and black
cells indicate empty and non-empty neurons, respectivedymake the violations easy to see, we do not
show the cluster labels on the SOTp row: All violating connections are showmiddle row : Violating
connections with strength greater than the mean strengdii @folating connections are showrBottom
row: Global violating connectionsf{ > 2 for this data set) with connection strength greater thanrtban
strength of the fourth strongest connections of all prgies/are shown.
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shown in Fig. 3.15, middle row. With this representation miations, it is easier to see
that in most part of the map the number of violations deciasehe SOM learned longer.
In Fig. 3.15, bottom row, we show another representatiorhef‘tmportant” violations.
We turn on the filters for both the connection strength anddldng length. We set the
threshold for folding length as the maximum folding lengttozal violations/,,.;,, (which
is 2 in this example), to show only the global violating coctiens. In addition, we set the
threshold for connection strength as the mean strength &dwath ranking connections.
The rationale to use the statistics of all fourth rankingremtions is that the four high-
est ranking neighbors are usually the most important onesragcttangular SOM lattice,
as pointed out in [24]. This representation shows obvioysavements in the quality of
topology preservation. For example, the two long connastioom the upper left corner
to the lower left corner in the SOM disappear. From all thrassve of the violations by
TopoView in Fig. 3.15, we arrive at the same conclusion thattopological health of the
SOM improved.

Through the above experiment, we have demonstrated thigyaisithe W DT F and
TopoView in correct reflection of the change in topologicaahh of the SOM that learned

complicated high-dimensional data sets.

TopoView assists the evaluation of clustering

We use TopoView to compare the clusterings from two diffe@&0@Ms of the RIT image.
The two SOMs were learned separately, but with the same @ aeasnand both to 3M
steps. Consequently the two SOMs are very similar with somemdlifferences. The two
clusterings were produced from two methods. The clustetkerfirst SOM (Fig. 3.16,
left column) were extracted from the mU-matrix in [52], arek tclusters in the second

SOM (Fig. 3.16, right column) were produced from CONNvisugbzation, an interactive
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Figure 3.16: TopoView visualization of selected sets ofating connections (yellow lines) on the SOMs
leaned with the RIT image. A comparison is done between twh1§Qvhich are similar with some minor
differences, shown in thieft andright columns. Both SOMs are overlain with extracted clusterl@bad
the mU-matrix. In the SOM in the left column, the extractagstérs are the same as in Fig. 3.13, bottom left.
In the SOM in the right column, clusters were extracted withtielp of CONNvis [24] in [4]. The color label
of cluster V (light green) was removed to show the underlydogttered empty prototypes in [4]. Medium
grey cells are empty neurons. Black cells do not indicatetgmeurons or cluster “H”. Clusters of those
prototypes are not shown in this representation due to dimhitation in the SOM visualization software.
TopoView visualizes two selected sets of violatiofiep row: All violating connectionsBottom row: All
inter-cluster violating connections.
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clustering method based on th&) N N matrix [24], in [4]. Because of the high similarity
between the two SOMs, we can make comparative observatangeén the two cluster-
ings. Since the cluster labels were assigned separatdig itmb SOMs, the same spectral
clusters generally have different color labels in the twdVOHowever, the similarity in
the layout helps relate them visually.

We overlay the TopoView visualization of violating conneats (yellow lines) on these
cluster representations. We first show all violating cotines in Fig. 3.16, top row. The
two SOMs have similar total numbers of violations (577 foe tBOM on the left, and
600 for the SOM on the right), as well as similar locationsha# violations. These facts,
combined with the similar layout of the clusters in the SOktmfirm the high similarity
between the two SOMs. We also find that most violations ocatlrinvthe clusters. The
most disorganized clusters (those with many intra-clugtéations), such as the purple one
at center left of the left SOM, are results of the high noisellen those clusters. In contrast,
some other clusters, such as the dark green one in the mitittle eft SOM, seem well-
organized with few violations, due to the relatively smaléstral variation in the cluster.
Next, we compare the two clusterings by showing all inteistgr violations in Fig. 3.16,
bottom row, for the two SOMs, because the inter-clusteratiohs can be a warning of
incorrect extraction of clusters. In the left SOM, only lenrtluster violation is left after
3M steps, which has a folding length of 2 and connects twocadigand similar clusters. In
the right SOM, however, there are a handful of violationg lefth folding lengths ranging
from 2 to 24. The violations with long folding lengths cros®23 clusters. The inter-
cluster violations could indicate any of the following sitions. One is insufficient learning
in the SOM. Another possibility is that noise induces thageri-cluster violations. In this
case, since thresholding can help analyze the significdrtbe aonnection, we can further

visually remove weak connections with a threshold for catine strength (not shown
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here). A third possible reason is incorrect extraction efdluster boundaries. For example,
two connected clusters may be similar enough to be combittecbne. To determine the
cause of the inter-cluster violations, further invesiigiats needed. In response to different
causes, different remediations should be used. If the daussufficient learning of the
SOM, we can lengthen the training time or modify the learrmpagameters. If the cause
is incorrect cluster extraction, we need to closely exantigerelationships between the
SOM prototypes and carefully modify the cluster boundari®@se good phenomenon in
both SOMs is that they have very few inter-cluster violasi@eross the small clusters on
the upper and lower left corners. These clusters represeimus roof materials and car
paintings (as shown and discussed in [52]), which are sortteeahost interesting clusters
in this image. The almost nonexistence of inter-clustelaions across those interesting
clusters confirms that both clusterings achieve satisfagicecision (resolution of many
small clusters) and accuracy (few confusions across tlsterk) in extracting interesting
information from the SOMs.

The above application of TopoView in evaluation of clusigs with the RIT image has
demonstrated the usefulness of TopoView in providing vafid quantitative information

about the correctness of clusterings.

In this chapter, we have refined and enriched an existinguneahel F', to create a new
measure, th&l’ DT F', and have introduced an interactive visualization toohoNdew, for
inspecting selected sets of connections (both violatirdyreon-violating connections) on
the SOM. We have shown the usefulness of the two new toolsigirapplication to three
data sets. Th&/ DT F can quantify the severity of topology violations more aately
than the previous measures, thé and theT'P. TopoView is a helpful complementary

visualization tool to thdV DT F', locating potentially harmful violations (the violations
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that may confuse the correct understanding of manifolccire) via a set of threshold-
ing capabilities. The experiments with the hyperspectralges especially highlight the
advantages of the new tools. For complicated data sets suitteawo hyperspectral im-
ages, topology violations often exist at all learning stepthe SOM, and the change in
topological health of the SOM across different learninggstean be subtle. However, the
W DTF and TopoView have been shown powerful in the applicatiorigeyTcan evaluate

and express the topology violations in a more refined marnaer previous measures.



Chapter 4

A novel SOM-hybrid supervised
learning architecture

Material based on:

e L. Zhang, E. Merényi, W. M. Grundy, and E. F. Young, “An SOMBHnid supervised model for the
prediction of underlying physical parameters from Nedrdred planetary spectraProc. 7th Inter-
national Workshop on Self-Organizing Maps (WSOM 2009)aAdes in Self-Organizing Maps, Jun
8-10, St. Augustine, EISpringer-Verlag, LNCS 5629, 362-371, 2009.

e L. Zhang, E. Merényi, W. M. Grundy, and E. F. Young, “Infecerof surface parameters from Near-
Infrared spectra of crystallined® ice with neural learning’Rublications of the Astronomical Society
of the Pacifi¢ 122:839-852, 2010 July.

e L.Zhangand E. Merényi, “Learning multiple latent variablvith Self-Organizing MapsRroc. 2010
IEEE International Conference on Granular Computing,&ifi Valley, CA, August 14-18010.

In Chapter 3, we have developed the measures and tool thpaewaluate the correct-
ness of the representation of the manifold structure in M SAfter obtaining a faithful
map, we can use the SOM’s knowledge for accurate informatxbraction. In this thesis
work we target the inference of latent variables from higinehsional data, as explained
in Section 4.1. The neural architecture we use is an exiS@yl-hybrid architecture,
which incorporates the SOM into a supervised learning ggchire. This architecture will
be introduced in detail in Section 4.2.1. Motivated by adittexperiments, we also de-
velop an innovation to the SOM-hybrid architecture and psgpa new architecture we call

Conjoined Twins (Sections 4.2.2—-4.2.3 and Section 4.3is hélps achieve the prediction
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accuracy needed for the particular science problem we asldaed, in general, provides a

principled approach to accurate inference of multipleriat@riables.

4.1 Inference of latent variables from high-dimensional
data

Latent variablesre variables that are not directly observed but are ratifemred (through
a mathematical model) from variables that are directly mest i.e.,observable vari-
ables The latent variables can be inferred from the observabiabies because of their

underlying relationship, which can be expressed by a fandti

X = [{El,l'g, ....I'd]T = f(l) = f([ll, lg, ceny lL]T) (41)

wherex is a vector ofd observed variables;;, z», ..., andx,, andl represents a vector
of L latent variables/, I, ..., andi;. Each element ok, or each observable variable,
is affected by all latent variablds, /5, ..., andl;. This means that the latent variables
I; (j = 1,2,..., L) have a global effect on the observable variablegi = 1,2,...,d).
As an example, surface temperature of distant planetariebas a variable of interest
to astronomers. Since it is impractical or impossible tediy measure the temperature
for extended planetary surface regions, astronomersatieely use reflectance spectra
collected by telescopes or spacecraft as thermometertetatlre temperature. Here, tem-
perature is a latent variable and the reflectance valuesureshat different wavelengths
are observable variables. Temperature can influence tleetagice values globally, i.e., at
many wavelengths.

The inference of latent variables from the observable ée@can be considered as an
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inversion problem. To findlis to find the inverse functiori—.

1= ' (x) (4.2)

In real problemsf can be extremely complicated, and the analytical solutfdheinverse
function, 1, is often hard to obtain. Customary numerical approachesgi@ss this func-
tion can be ineffective because the “curse of dimensigrigit] for high-dimensional data,
and also because the form pheeds to be known or assumed. To deal with such regression
problems, neural methods are often used. A well-known usaléunction approximator is
the Multilayer Perceptron (MLP) trained with backpropagatule (abbreviated as BP net-
work) [55, 56, 57], which can deal with high-dimensionalatakell and does not need prior
assumption of the form of the functiof A brief introduction of BP network’s architec-
ture and algorithm is given in Appendix C. By training a BPwertk, we build a black box
model, which predicts an outplfor any given input vectok. However, the knowledge in
the black box is hard to retrieve and interpret, while un@erding the learned knowledge
in the box is often desirable for assessment and improveofehe performance of the
algorithm.

Motivated by the idea that the high-dimensional data (olzd#e variables) can lie
on a low-dimensional submanifold (with a low intrinsic dinsgon), another approach to
find latent variables from observable variables is to emibeddata manifold in a low-
dimensional space (dimension reduction), as in a numberaoifold learning algorithms
(e.g., [36, 58, 59]). If the dimension of the low-dimensibmepping space is chosen ap-
propriately, the latent variables are expected to be ferdinto different dimensionsin the
resulting low-dimensional representation. According@0][ however, no study has been
done to retrieve the values of the latent variables fromahedimensional representations

that resulted from these algorithms. They were used onlglteter identification. These
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algorithms have other insufficiencies as well. A classiggdraach, principle component
analysis (PCA), works well for linear submanifolds, butfet§ when nonlinearities exist.
Several nonlinear approaches have emerged, such as Isé8lapofally linear embed-
ding (LLE) [59] and Hessian LLE (hLLE) [61]. These algoriterhave been demonstrated
successfully for data sets with 3 latent variables (hotizlogeind vertical angles of face and
illumination direction, in data sets of face images) [60]owéver, to separate all latent
variables, a necessary step for these algorithms is to &tithe intrinsic dimensionality
in advance, which is a nontrivial task. In addition, lateatigbles that induce relatively
small variations in the data can also be mistakenly treadetbése and eventually be lost
in such dimension reduction, while those latent variabkas carry interesting scientific
meanings.

Our approach to the inference problem is through Self-Oryag Maps (SOM) [5],
which as elaborated in Chapter 3 preserve the topology ofiéite in a low-dimensional
representation without reducing the data dimension. Thiel $&totypes store the high-
dimensional information present in the data, avoiding tdssformation caused by dimen-
sion reduction. Moreover, there is no need for prior estiomadf intrinsic dimensionality.
When the SOM has converged, further analysis of the lear@d Srototypes can help
recover relevant information from the data, such as latanables. We describe next, how
the SOM'’s knowledge is used in a supervised neural networkhfs purpose. The neural
network we use is an SOM-hybrid architecture, which has amM $Qits hidden layer. Af-
ter the SOM correctly captures the manifold structure thhounsupervised learning, the
output layer of the architecture combines the outputs ftoerSOM neurons into weighted
sums to learn the relations between the latent variableshenthput data, through super-

vised learning.
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4.2 Supervised learning assisted by an SOM

4.2.1 SOM-hybrid supervised neural architecture

Input buffer ~ Hidden SOM layer ~ Output layer

\ i
(SA[qPLIEA JUIR)R] PALIAJU])
[1oaamdin

Input vectorx
(Observable variables)

Figure 4.1: The SOM-hybrid neural architecture. It is a tager fully connected feedforward network with
an SOM as its hidden layer. Each neutigin the SOM latticeA of N neurons, is connected to the input
buffer with ad-element prototypev; (theith row vector of theV x d matrix W). An L x N weight matrix
'V connects the output layer to the SOM.

The SOM-hybrid neural architecture we use is a two-laydy tonnected feedforward
network, as shown in Fig. 4.1. It takes an input vestsandomly from thel/-dimensional
data set in each learning step. This neural architecturedd in a two-phase procedure.
In the first, unsupervised, learning phase, the SOM itezbtiadjusts itsV prototypesw;,
according to the SOM algorithm [5] as described in Sectidn @hile the output layer
is idle. Upon the convergence of the SOM, a second, supekvisarning phase can be
started, in which the output neurons are trained accordingpe Delta rule [63]. Each

neuronp in the output layer combines the SOM outpytinto a weighted sum:

=Y vy p=12,.L (4.3)
€A

vp; IS the element in theth row andith column of weight matriXV, which connects the
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output layer and the hidden layer (Fig. 4.1). The outputidlyen iteratively adjust¥ to

minimize the total squared error in the outpytby the delta rule:
Avy = ay; (18— 1,,) (4.4)

Wherelg is the desired outputy is a learning rate. During the supervised training of the
output layer weightd/, the SOM can continue its unsupervised learning with a verglls
learning rate, for fine-tuning of the SOM prototypes. Thepotsg from the output layer
correspond to the inferred knowledge from the input data.elMiinis network is used to
infer latent variables, the output vectb(= [I1, s, ..., [1]7), yields the inferred values of the
latent variables. A good implementation of this architegtis available in Neural Works
Professional 1l/Plus by NeuralWare [64].

This supervised architecture is suitable for the analyidiggi-dimensional data mainly
for two reasons. One is the ease of the SOM in the handlinggbi-timensional data. No
prior feature extraction (dimension reduction) is needefbte the learning of the data.
The other is the ability of the SOM to distinguish the subtifedences between high-
dimensional feature vectors. These subtle differencesvaliereflected in the responses
(the outputs) of the SOM neurons to the feature vectors. TOM-Bybrid supervised
architecture exploits the SOM’s knowledge by combining$@M\ outputs into weighted
sums (eq. 4.3) for supervised learning of information o€iast (e.g, latent variables).
This architecture has helped achieve good classificatioaracies [21, 22]. For example,
Howell et al. revised Tholen’s taxonomy of asteroids by analyzing thetels identified
from an SOM of asteroid spectra. The revised taxonomy wasodstrated to be more
self-consistent through supervised classification [21jhother example is the accurate
classification of a large number of clay-bearing soils withtte spectral differences due to

different clay species, for landslide hazard study fromRM imagery [22].
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In the SOM-hybrid architecture, the customary way of usimgg $OM outputs by the
output layer is called the winner-takes-all mode (WTA), véhenly the output of the SOM
winner is allowed to contribute to the weighted sums. The Wiiéde works well for
classification problems such as in [21, 22]. In this work welgphis architecture to a
multi-variable regression problem, the inference of caumus latent variables. We gener-
alize the WTA mode té&-winners-take-all {WTA) mode, by which the SOM’s knowledge
can be better exploited and consequently the latent vasaddn be learned with higher

inference accuracies than by relying on the WTA mode. Thisbgidiscussed next.

4.2.2 Greater exploitation of the SOM’s knowledge: from Wimer-

Takes-All (WTA) to k-Winners-Take-All (KWTA)

The customary way of using the SOM outputs: Winner-Takes-Al (WTA)

By the SOM formula (eq. 2.1), the output of an SOM neuron sthdsel indicative of the
similarity between the neuron’s prototype and the inputmedn the most frequent imple-
mentations, the SOM output is either proportional to theerrproduct of the input vector
and the SOM prototype [5], or inversely proportional to tietahce between the input vec-
tor and the SOM prototype. Because of the topology presgmioperty of the SOM, the
responses to an input vector are strongly localized in the. fhihis means that only a few
neighboring SOM neurons have relatively large output \&luleile other neurons generate
negligible responses. A customary way of utilizing the SQMpaits is the winner-takes-all
(WTA) mode, where a binary thresholding is applied to the S@sponses, assigning 1 to

the best matching unit (BMW) (determined in eq. 2.1) and 0 to the rest of the neurons as

1 1=c¢
yz:{ (4.5)
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By this, the right side of eq. 4.3 is reduced to one term.

ly=v p=12,..L (4.6)

With a single term left in the weighted sum, the output laylethe network will be unable
to distinguish between data samples that map to the same S 0Mmand will yield the
same inferred values,, for these samples. In problems where the number of differen
values a latent variable can take is much smaller than thebauwf the SOM neurons,

N, the WTA mode can work successfully in differentiating thearious values. However,
when the latent variable is continuous, i.e., the numberossible values is much larger
thanV, the resolution of the inferred values is severely resddty the WTA mode, which

may prevent high inference accuracies.

A generalized way of using the SOM outputsk-Winners-Take-All (kWTA)

To relieve the above limitation in the inference resoluttaused by the WTA mode, we
allow multiple () SOM outputs to be nonzero in eq. 4/3Winners-take-all okWTA).
This can be justified by the SOM algorithm: the prototype$imithe lattice neighborhood
of the BMU learn concurrently from the same input vector @@). After the SOM has
converged, the memory of a data sample is stored not onlysiBMU but also in the
neighboring neurons of its BMU. The inclusion of these nbwmis into the supervised
learning can help distinguish the samples that share the 8t but represent different
values of a latent variable.

The next question is which SOM prototypes should be allowed to contribute to the
supervised learning. Since the SOM outputs reflect the aids between the prototypes
and a given data vector, the larger the output of an SOM netnermore knowledge the

neuron contains about that data vector. Therefore, a nathicéce is to use the outputs
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from the firstt SOM winners, indexed as, i, ..., andig, in the supervised learning, such
that the most of the SOM'’s knowledge about the given sampideautilized. The output,

y;, of each SOM neuronhis computed by

1 i=i(=0)
Yi = { ﬁ = 7:2,7:3, 77'k (47)

0 i iy, dg, ., i

whered; is the Euclidean distance between the prototypeand the input data vectox.
We normalizey; to make the outputs from the SOM sum up to 1, which is condistéh

the WTA mode.
Yi,

k
Zq:l y’iq

Each output from the output layéy, is now expressed as a linear combinatiok abnzero

Yiy = g=1,2,....k (4.8)

SOM outputs, i.e., eq. 4.3 reducesktterms:

k
l, = vaiqyl-q p=12,..L (4.9)
q=1

The WTA mode is obviously a special case of tH&TA mode ¢ = 1). NeuralWare’s
implementation in Neural Works Professional 1l/Plus [64¢yides the special cases of
k = 1 andk = 3. The latter is called “interpolating mode”. The implemedita of X\ WTA
in our software allows the use of any given

The question follows: how to choogg i.e., the number of SOM winners to use for
best learning of latent variables? The bestbviously depends on the data set as well as
the SOM (the SOM size and the maturity level of the SOM, i.ew kvell the SOM con-
verged), because these factors influence the way how thariafmn of the data samples is

distributed across the prototypes. This dependence oretiacathd the SOM provides the
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opportunity to use a principled way to constraino a small range, in a fast and efficient

way, as will be introduced next.

4.2.3 Theoretical upper bound ofk

We can determine the upper boundigfdenoted bykK, from therelative importanceof
the SOM winners. For any data sample, the BMU is the most itapbone, containing
the most information about that sample. The importance obrsa, third, etc., winners
can be evaluated by their similarities to the BMU. In the dsppace, we consider two
prototypes to be similar (have common information about damples) when they are
Voronoi neighbors. An obvious theoretical upper bounais- 1, i.e., K < m + 1, where
m is the maximum number of Voronoi neighbors to any prototypsually,m+1 is already
much smaller than the total number of SOM prototyp€shbut we can further tighten this
bound toK = m + 1, wherem is the number of “important” neighbors. The important
neighbors are the prototypes that are most strongly coedéacthe BMU. To determing.,
we use the ranking of Voronoi neighbors of each prototypemltog to their connection
strengths, as defined by [24]. The connection strengthsdegtthe SOM prototypes can
be represented by th x N CONN matrix, proposed in [30]. An illustration of the
ranking of Voronoi neighbors according connection streags given in Fig. 2.6, bottom
right. Among the four neighbors of prototype P1, the firstkiag (the most similar) to
the last ranking (the least similar) neighbors are P2, P3aRiP5, in decreasing order
of connection strengths. After ranking the Voronoi neigtsbof each prototype, we can
guantify the importance of the neighbors of rarky the average connection strengttio

theth ranking neighbors across all SOM prototypes.

S 3 CONN(p,q) (4.10)

1 :
p,gEA N Wy is the
ith Voronoi neighbor of wy.
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wheren; (i = 1,2,...,m) is the total number ofth ranking neighbors in the SOM. How-
ever, thresholding or; to determine the important SOM winners could be problematic
First, a consistent threshold that can be used acrossehtf@OMs and data sets is im-
possible because is dependent on the size of the SOM, the size of the data sdi@amd
the data samples are distributed across the Voronoi cedlsorfsl,n; is also an important
factor in the importance of neighbors. When the connectionth ranking neighbors are
weak (smalls;), butn; is large, the neighbors of rarknay still be useful in the supervised
learning, because a large indicates the non-negligible participation of tite neighbors

in the representation of the data samples. In view of this, lietter to consider the com-
bined effect ofs; andn; in the thresholding. Therefore we propose thresholdinghen t

percentage of data samplé&jata;, involved in the connections of each ran}65]:

m = max{i : %data; > p} (4.11)

n;

i X
%datai = i op

x 100% (4.12)

1 is a user-specified threshold? is the total number of data samples; x n; can be
interpreted as the accumulated strength in the connectead ith ranking neighbors.
Normalized by2P, it shows the importance of these neighbors by the percerdtthe
total connection strength involved. With the determinedwve obtaink’, the upper bound
of k, asm + 1.

After constrainingt to a small range) < k£ < K, we need to perform the supervised
training with different values ok within this range to find the best value bfthat yields
the highest inference accuracy. We currently know no b#ttar this exhaustive search of
k, but the theoretical upper bourd significantly narrows down the range of the search

and greatly alleviates the computational cost.
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The threshold: to determinen in eq. 4.11 is of course data dependent. For example,
it depends on the noise level of the data set. In Section 4t&ravan application to a real

problem is presented, we will discuss hpvis determined.

4.3 Conjoined Twins — a new architecture — motivated by
a planetary science problem

In this section we will apply the SOM-hybrid neural archttee with thekWTA mode to
the inference of two latent physical parameters from highessional spectra of ices. We
will show that the two physical parameters are best infewigd different values of. This
motivates the idea of a new architecture we call Conjoineth3ywhich combines the use

of different values of: in one architecture for the best learning of both parameters

4.3.1 Background on the planetary science problem

One intriguing problem in planetary astronomy is the modghnd interpretation of geo-
logical histories and current dynamical changes of Solate3y objects. Current surface
conditions of these objects, such as chemical compositidnphysical parameters (e.g.,
temperature and grain size) of the surface materials, pitevide important clues for the
unraveling of their geologic histories. However, it is iraptical or hard to directly mea-
sure these surface parameters for extended surface anglasefs. Remote sensing spec-
troscopy has become a prime alternative approach, as gpeafric instrumentation and
techniques have been improved dramatically in the pastdégscaCurrent spectroscopic
instruments are capable of acquiring spectral measursnagitundreds or thousands of
contiguous bandpasses, whereby the detailed spectratdsatensitive to surface param-

eters can be resolved. From these spectra, surface pararoatepotentially be inferred
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[66, 67].

The ultimate goal of the specific science problem we presemt infer surface pa-
rameters from Near-Infrared spectra of Pluto and Charore Krfowledge regarding the
Pluto-Charon system is fairly limited due to the scarcityobservational data. NASA's
New Horizons space mission, which is a one-way journey tdihiper belt and beyond, is
expected to investigate the icy surfaces of remote plapétadies such as Pluto, Charon,
Nix, and Hydra [68]. In 2015 the onboard infrared imagingctpmmeter [69] will map
the surfaces of Pluto and Charon at 250 wavelengths fromtd.2% m. The resulting
hyperspectral images will be used to unravel the surfacditions, such as ice species,
distributions of different ice species, temperature araigsize of the ices, on the surfaces
of Pluto and Charon. The work presented in this Chapter isllabmration with W. M.
Grundy (Lowell Observatory) and E. F. Young (Southwest RedgeInstitute). The spec-
tral data for the experiments were prepared by Grundy ancheo simulate conditions
expected in the Pluto-Charon system.

The classification of different chemical compositions frepectra is not too difficult
because specific chemical compositions are often maniféstespecific spectral absorp-
tions. Spectra of ices that possibly exist on Plute@N,, CO,, etc.) have fairly different
spectral patterns. With an SOM learned with a data set auntaspectra of 6 ice species,
we succeeded with 100 classification accuracy in [70]. However, inference of amunt
ous physical parameters, such as temperature and grajnssitallenging because of the
following reasons. First, these physical parameters h&gaginfluence on the spectral
shapes, as opposed to ions or molecular compounds, whiske lcemal absorptions (lim-
ited to some wavelengths) and therefore may be determimed iindividual absorption
bands. Second, significant changes in physical parametargiduce subtle variation in

the spectral shapes. This demands algorithms capableaardisg the subtle differences
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between spectra. Third, different surface parametersttaraict nonlinearly. The disentan-
glement of different causes can be difficult. To illustratede difficulties, we show some
sample spectra of D ice as a function of temperature and grain size, genergt¥d M.
Grundy [71], in Fig. 4.2. Temperature and grain size are @terlt variables that have a
global and intertwined influence on the spectral shapesh Batameters can deepen the
absorptions, e.g., at 1;8n and 1.65um, as seen from Fig. 4.2. Moreover, the change in
the band depths is a nonlinear function of the parametemsn fine band depths of single
bands, it is hard to separate the influences of the two paeasjetot to mention the ac-
curate inference of the values of the parameters. Howdwemtire spectra, with multiple
absorption bands, are used, the effects of temperatureramigize may be disentangled.
In addition, temperature has a much more subtle effect osgletral brightness than grain
size. This results in many crossovers between spectra ¥ifignaht temperatures (Fig. 4.2,
top). The subtle changes in spectral shapes caused by t&om@gemakes the differentia-
tion between temperatures difficult. A sensitive algoritsmeeded to distinguish between

these spectra such that accurate inference of temperaamdse made.

4.3.2 Approaches to the inference of latent surface paramets from

spectra

Modeling the mapping from the surface parameters to thereéiske spectra is called a
forward problem. It can be simulated numerically by radatransfer models. The Hapke
model, which describes the scattering and absorption bf ilgsurfaces composed of par-
ticles of a given absorption coefficient, has now becomeradsta method for interpreting
spectral surface reflectance data [72, 73, 74]. The Hapkeshoatt produce model spec-
tra for given sets of surface parameters. Conversely,entar of the surface parameters

from the spectra is called an inversion problem, as showid&. Since analytical so-
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Figure 4.2: Sample synthetic spectra of crystallin®Hice. Top: Variation in the spectral shape as a function
of temperature (T), for one fixed grain size (GS), 0.003 @ottom: Variation in the spectral shape as a

function of grain size, at 50K (Kelvin).

lutions are unavailable in general for a radiative transf@del, numerical or statistical
methods are necessary to solve the inversion problem. Appes to this inversion prob-
lem fall into three main categories: numerical optimizatitook-up table and machine

learning [75, 76]. Numerical optimization algorithms wehe first to approach the inver-
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sion problem and have been the most extensively used. Thgsé@lans search for a best
matching simulated spectrum for a real spectrum throughdad search in the parame-
ter space. They generate simulated spectra repeatediygdbe search, with parameters
that are modulated to minimize a certain error function,clitdescribes the quality of the
match. Unfortunately, this approach can be inefficient bseat performs the optimiza-
tion for each spectrum, one by one, separately. It is thusdntigal for a large spectral
image (with large number of spectra). The look-up table aagh expedites the numerical
optimization by precomputing a large database of simulapettra for a wide range of
parameter values. The inversion problem is then reduceebi@iing the look-up table for
a best match to a real spectrum. However, there are stikksssuch as how the gridding of
the model parameters in the look-up table should be set. Aiteetype, machine learning
algorithms, aim to learn the mapping from the spectra to drampeters (the inverse func-
tion) through a training set of data (i.e., through supe&wigarning). The advantage is that
once the mapping has been learned, it can be used to infaceysarameters from large
data sets of spectra fast and easily. The training data ¢therdie simulated spectra or
real spectra with known surface parameters. Examples dhimagarning algorithms that
have been used are multilayer backpropagation (BP) neatalonk [76], support vector
machine [77], and Gaussian Regularized version of Sliceerse Regression [78, 79]. The
comparison of the three types of approaches in [76, 78] allveld that machine learning
algorithms were more capable of achieving accurate inferexccuracies than numerical
optimization and look-up table approaches.

Since in this thesis work we infer two physical parameters&rest, namely temper-
ature and grain size, here we review some related previouks. Wd simple and purely
empirical method was proposed by Fink and Larson for ratiget, O ice temperatures

from reflectance spectra [80]. They developed a calibratiwe of a feature at 6056 crh
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(~1.65um) and used it to determine ice temperatures for the Galedellites Europa,
Ganymede, and the rings of Saturn. Their method was limdexbjects that display D
ice absorptions, and was specific for the 1,66 feature. Another competing method to
infer H,O ice temperatures was discussed by Grueidgl. [71], involving construction of
a suite of models with various free parameters, fitting thenhé spectra with numerical
optimization. This method fit the model to different segnsenit the spectra separately,
and compared the resulting collection of best-fit tempeestulf most of the models and
most of the spectral segments agreed on the temperatutdethperature was accepted
as likely correct. When different models gave systemadyiadifferent temperatures, the
results were taken as probably meaningless. This techmiqueed well for applications
where a small number of surface parameters are inferred $onadl number of spectra.
When the number of parameters of interest increases andféremnce needs to be done
for thousands of spectra, the optimization approach usgdymeld suboptimal results and
the computational time can be tremendous.

We use a machine learning approach, specifically the SOMidhyleural architecture
shown in Fig. 4.1, to learn latent surface parameters frogotsp. We assess the capability
of this neural architecture by inferring temperature arairgsize from spectra of a single
material, crystalline KO ice, because it is one of the most commonly found matenmals i
the Solar System, for which a great deal of relevant data apdreence have been accu-
mulated. We focus on crystalline (as opposed to amorphoi@)ite because observations
of Charon are consistent with crystalline ice [81] and beeapectra of amorphous ice are
virtually insensitive to temperature.

For the training of the SOM-hybrid neural architecture, veea a large number of
training spectra for the learning of temperature and greae. sHowever, real spectra of

Pluto and Charon with sufficient resolution in spatial arfieotaspects are scarce. In such
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situations, and if available, realistic synthetic datan{dated data) or laboratory spectra
can be used for training. For example, Gilmateal. developed a carbonate identifier
with a large number of laboratory spectra of carbonate andaaobonate minerals by
training a Backpropagation (BP) neural network [82]. Thguteng autonomous system
was successful in various simulated Martian scenarios.deget al. used both laboratory
spectra and synthetic spectra to train a mineral identifenfNear-Infrared reflectance
spectra, with a Bayesian approach [83]. In the experimeitd@boratory and field spectra
of a variety of solid and powdered rock samples, a recognrtie higher than what human
experts could produce was shown. Similarly, we use simdligpectra for the training of
our neural network (the SOM-hybrid neural architecture #&velop neural models that
fit to the entire Near-Infrared spectral range (as opposqukettewise models). Then, we
assess the performance of the trained neural models witbaisof synthetic spectra. After
the validity and reliability of the models are confirmed |da¥-up work, beyond this thesis,
will be the deployment of the trained models to infer unkngatrysical parameters from
spectra taken from real planetary surfaces.

The synthetic spectra were produced and given to us by olabawhtors W. M. Grundy
and E. F. Young. The spectra were generated on a parametéhgrugh a radiative trans-
fer code [84, 66] based on the Hapke model [72, 73]. The iceaptonstants used in
the Hapke model were also synthetically generated by Gruvittya model that fits to
laboratory spectra with 17 temperature-dependent Gaiwssf8&]. The parameter grid has
126 temperatures with 2 KelvinK) spacing between 20 and 278, and 9 grain sizes
logarithmically spaced from 0.0003 to 3.0 cm. This set obpagters covers a meaningful
range of surface conditions for the Pluto-Charon systene. résolution of the parameters
is also sufficient for scientific studies of the surface ctinds of Pluto and Charon. For

example, the gridding of temperature has a resolution°#f, 2vhich is sufficient to resolve
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the diurnal temperature changes 20 °K) on Pluto. The spectral resolution, 230 band-
passes in the Near-Infrared range (1-2m), is close to the resolution of the sensor used
on the New Horizons spacecraft [69]. Sample spectra arershofig. 4.2.

First, we will assess the neural modeling for noiselesstspét Sections 4.3.3—4.3.5.
The performance we achieve on noiseless data will serve as@mark in a noise sen-
sitivity analysis we will give in Section 4.3.6. In the ungupised training phase of the
SOM-hybrid network, we use all available synthetic speofrarystalline HO ice. (126
temperatures and 9 grain size yield a total of 1134 spectrathe supervised training
phase, we conduct ten-fold jackknifing (cross-validatimnassess the performance of the
trained predictive models. In each jackknife run, 1134 sppeare randomly splitwith a 1:9

ratio into a test and a training set. The prediction resutsaaerages of 10 jackknife runs.

4.3.3 Manifold structure learned by the SOM

Since the unsupervised learning phase is important fostasgithe fine discrimination
of the spectral shapes in subsequent supervised learniisgyseful to examine how the
converged SOM reflects the manifold structure and, speltyfieghat can be seen in terms
of the influence by temperature and grain size.

We visualize the mU-matrix on the SOM in Fig. 4.3, left, andtghe prototypes (in
their respective SOM grid cells) in Fig. 4.4 to find out how gan(or dissimilar) the SOM
prototypes are. In both figures, the known grain size labelserlain on the SOM. We
remind the reader that these labels are not used in SOM ihgaridy layering the labels
over the SOM, we can see whether the SOM clustering of thecd@taides with the prior
knowledge. In this case, we can see in Fig. 4.3, left, thaB# is clearly separated into
grain size clusters, typically by double-fenced (blackjriciors of empty neurons, such

as the diagonal one that separates the dark blue clustertfi®yellow cluster. (We note
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Figure 4.3:Left: The 20<20 SOM learned with the synthetic spectra of Pluto ices. @eids represent
SOM neurons. In the SOM, we only color the neurons that retespectra of crystalline 40 ice. The
colors indicate the known grain sizes as keyed at right. Teaces” between adjacent cells have grey
scale intensities proportional to the Euclidean distarmds/een the prototypes of the respective neurons
(in feature space). White is large distance. The unlabdikatK) cells, such as those between the red and
the green clusters, mostly indicate prototypes of spedtiaes other than KO ice, such as Nand CH,

ice. This information is not shown here. Some black cellspicgily in the narrow corridors between grain
size groups, e.g., between the dark blue and the yelloweskist are prototypes with no data mapped to
them. Whether a prototype has data mapped to it is not showlmsrrepresentationRight: Part of the
yellow grain size group at left, magnified to show an examplbeaw spectra are organized within a grain
size group according to temperatures. Here, the protogeeglotted in the SOM cells. A gradual change in
the prototype shapes from left to right can be observed jporese to increasing temperature. The red boxes
and circles exemplify differences in temperature-depatalesorption features at low and high temperatures,
respectively. The light blue and white boxes indicate thetgrmrototypes of this grain size group, inside and
at the boundaries, respectively.

that although in this case clusters are delineated by ddehlkeed corridors, this is not a
requirement for cluster separation.) This confirms tha(gnain size) cluster structure has
been perfectly learned by the SOM. In Fig. 4.4, we can see dhation in the spectral

shapes across the grain size clusters caused by diffe@ntgzes. The prototypes within
the same grain size cluster are very similar, while the pyp&s across different grain size
clusters have more obvious differences. Looking more tfosethe prototypes within

each grain size cluster, in Fig. 4.4, we find that these pypes are organized with respect
to temperature. The temperature-dependent spectrarédsathange in an orderly fashion
from one end of the cluster to another (from top to bottont,tkefight, or in other direc-

tions). Fig. 4.3, right, illustrates this for the 0.003 crel{gw) grain size group, through an

absorption feature at 1.66m. The prototypes learned from spectra with low temperature



Figure 4.4: The learned prototypes plotted in their respecells in the same SOM as in Fig. 4.3, left. The
“fences” between adjacent SOM cells are not shown here &itgl An orderly change in the temperature-
dependent features in the prototypes can be observed frerarahof each grain size cluster to another. This
can be seen in more detail for the yellow grain size groupdn &i3, right.

have a strong absorption at 1.65 (in red boxes). This feature gradually disappears to-
ward the right for high temperatures (in red circles). Theeshation (from Figs. 4.3—4.4)
that grain size has a more dominating effect on the SOM daiugt¢han temperature can

be explained by the influence of the two physical parameteth® spectral shape, as seen

in Fig. 4.2. The difference in the spectral brightness istantial between two grain size
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categories (Fig. 4.2, bottom). In contrast, the changesnmperature cause much more
subtle changes in spectral brightness. Temperature meaniges shifts of band centers,
as well as significant changes in relative band depths (F&).tdp). Therefore, we can
conclude that the structure of this data manifold as sugddst the clustering in the SOM
agrees with the spectral properties we know.

Since we have developed new tools to evaluate the faithdaloESOM in the represen-
tation of manifold structures, instead of observing the S@Motypes directly, we can use
our new tools, théV DT F and Topoview, to evaluate the quality of topology preseovat
in the SOM. Because our work focuses on the spectra,@ e, in the calculation of
the W DT F and the TopoView visualization of connections the spectratioer ices are
excluded. In Fig. 4.5, left, th&" DT F' shows the existence of a few local topology vio-
lations, with small folding lengths, 2, 3 and 4. The violatowith folding length 3 or 4
are extremely weak, with approximately 0.5% of contribgtitata sample$(5% = 0.005
in the figure). In Fig. 4.5, right, TopoView displays all caations (both violating and
non-violating connections) on the SOM to help locate thdations and understand the
connectedness of the manifold structure. We find that almbsbnnections are between
immediate lattice neighbors, with folding length 1. Thesarmections are non-violating
connections and therefore not manifested inih&®7 F'. The small number of violating
connectionsfl > 1) are not only weak, as seen from théDT F’, but also confined within
grain size clusters, reflecting the smearing of temperagpeesentation across neighbor-
ing prototypes. These evaluations demonstrate the sossdfi¢he map. This means that
the SOM is mature enough, and we can proceed to the supetemeing phase of the
SOM-hybrid neural architecture, for the learning of tengare and grain size.

The inspection of the manifold structure in the SOM also fates clues that the learn-

ing of temperature may need the help from Voronoi neighboithé supervised learning
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Figure 4.5: Evaluation of topological quality of the SOMnead with spectra of Pluto ice, by th& DT F
and TopoView. The counting of connections in the computeditthe W DT F' as well as in TopoView only
includes the spectra of crystalline,@ ice, since our study here focuses ogiCHice. Left: The W DTF.
Right: TopoView visualizes all connections between prototypethe SOM as maroon line segments. The
SOM is overlain by the same color labels of 9 grain sizes asgn4=3.

(i.e., need th&WTA mode), while the learning of grain size does not needltip (i.e.,
the WTA mode is enough). Closer inspection of the SOM revibals without exception,
all input spectra mapped to any prototype within a grain slaster have the same grain
size label (not shown in Fig. 4.3, left). Perfect learninggodin size thus can be easily
achieved in the WTA mode, according to eq. 4.6. In contragh approximately 25-30
prototypes in a grain size cluster to represent 126 diftetemperatures, each prototype
is forced to form an average (a mixture) of spectra acroderdiit temperatures. In the
WTA mode, the output temperature value for any input spetttiiat maps to a proto-
type is trained to approximate the average temperaturesepted by that prototype. This
severely limits the resolution of the inferred values of pemature. However, theWTA

mode, which uses multiplé, SOM winners in the weighted sum (eg. 4.9), may help better

reconstruct a specific temperature.
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4.3.4 Supervised learning of temperature and grain size whtdifferent

k < K from noiseless spectra

Before starting the supervised learning with differenueal ofk, we need to first find the
theoretical upper bound @fwith the statistics of the connections to Voronoi neighbass
described in Section 4.2.3, so that the exhaustive seard¢hddest: can be constrained
to a small range. From the statistics of the connections showable 4.1, we know that
the maximum number of Voronoi neighbors of any prototypeis 3. This tells us that the
theoretical upper bound @f must not be larger than 4( < m + 1 = 3 + 1). From the
statistics of the number and the average strength of colonsadf each rank, namelyn;
ands;, we see that the third ranking neighbors are less imporamt the first two ranking
neighbors in both quantity and connection strength. Theneotions to all third ranking
neighbors involve only 0.3% of contributing data samplegh\ihe criterion that combines
n; ands;, in eq. 4.11, we threshold on the percentage of data sampgshaiting to the
connections of rank, %data;, with . = 1%, and determine the number of important

neighborsm, is 2. K, the upper bound of, then equals 3 =m + 1 =2+ 1).

Table 4.1: Statistics of connections to Voronoi neighbfian the highest to the lowest ranking, analyzed
across SOM prototypes that represent spectra,@f lde. Spectra that represent other ices are excluded from
this statistics.

Neighbor ranking
1 2 3 4
n; 209 184 7 O
S 76 37 11 0O
%data; | 69.7 30.0 0.3 0

We choose the threshojdbased on the data property we know. The noisier the data,
the largery we should choose. The data used here are synthetic speogeatgsl by a
radiative transfer model [66]. The optical constants usetheé model were obtained in

laboratories, and can bring minor amount of noise into thecgp. To account for this
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noise, we set the threshold as 1% based on an estimate ofltrenice of the noise on the
data. We then justify the validity of the 1% threshold by r&jreg supervised learning with
all values ofk < m 4+ 1 = 4 and comparing the resulting prediction accuracies. We find
that withk > K (= 3) (K determined by: = 1%) the prediction accuracies are no better
than the results achieved with the bédound within the rang® < £ < K. This means
that;, = 1% is a valid threshold that does not cause the loss of any irapbrieighbors.
For this specific science problem, we may assume similargtafzerties across data sets.
Therefore it is reasonable to uge= 1% for all other data sets generated for the same
problem.

We then perform the supervised training for temperature gnaih size with each
k < K = 3. The prediction results of the learned models are shownraslabons between
predicted and true values, in Fig. 4.6. Since both physiaedmeters have large ranges,
we quantify the prediction accuracy as the percentage ofsteesctra for which the true
parameter value was predicted with less théhrglative error. The accuracies obtained
with £ < 3 are shown in Table 4.2, top row. The results confirm what wesetqal from
the manifestation of the two parameters in the SOM: The WTAleng = 1) works per-
fectly for the inference of grain size, while tA8VTA mode withk = 3 helps improve the
prediction of temperature significantly, fron6.2% to 83.0%, compared to using = 1.
The relatively poor results for the prediction of temperataccur mostly at the extreme
values,~20°K and ~270°K (Fig. 4.6, left block) due to limited availability of syngtic
training spectra with optical constants in these rangesceSihe temperatures on the sur-
faces of Pluto and Charon were estimated in literature tgedretween 5K and 70K,
we can safely exclude these boundary effects. As seen ie %ab] bottom row, within the
[50 °K, 240°K] range temperatures are predicted with8% accuracy.

From the above we find that different valuesiofl and 3, are best for the inference of
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Figure 4.6: Correlation of predicted and true values of terafure, T left block) and grain size, GSight
block). Data are shown as orange dots. Results are obtained:with (top row), & = 2 (middle row) and
k = 3 (bottom row). The blue, red and green dashed lines indicate 5%, 10%, @G¥tdebror envelopes for
the prediction, respectively. The temperature has thelestgrediction error withk: = 3. The prediction of
grain size is best witlh = 1.
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Table 4.2: Prediction accuracies of grain size (GS) and ¢ézaipre (T) with the spectra of 4@ ice,
with & < 3, calculated for the whole data set witke[R0O °K, 270 °K] and for the subset of data with
Te[50 °K, 240°K], respectively. Results are averages of 10 jack-knifesrun

T (°K) F=1 k=2 k=3
20_070| CS | 100.050.0% | 85.454.6% | 76.4£4.4%
T | 76.2£2.6% | 80.1::2.7% 83.0+2.7%
GS | 100.0£0.0% - 73.7£4.7%
T | 82.3t3.7% - 91.8+1.2%

50-240

grain size and temperature, respectively. Next, we do aarexpnt to investigate whether
best results can be simultaneously achieved with a uniforAnatural thought to improve
the grain size prediction with = 3 is to increase the grid resolution of the training data.
We insert 9 additional grain sizes, evenly spanned on ailbgaic scale, between each two
adjacent grain sizes in Fig. 4.2, bottom, to construct a sktavith 81 grain sizes. We use
an SOM of the same size (2@0) and an SOM of an increased size ¥4W) to learn this
data set. Due to color limitation, we group every 9 consgeugrain sizes, in ascending
order, into 9 grain size supergroups. Fig. 4.7 shows the t@M§ overlain with color
labels of the 9 grain size supergroups. However, increas$iaggrain size resolution in
the training data, or increasing both the grain size reswiand the SOM size to 440,

is not helpful in this case, as seen from Table 4.3. With thees&OM size (2820)
and 9 times more grain sizes, we find that the grain size chisi® not separate clearly
as in the SOM learned with the data set with 9 grain sizes. paatotype is forced to
represent not only a mixture of different temperaturesataa a mixture of different grain
sizes. This can be observed from the connections that dres®undaries of the grain size
supergroups in Fig. 4.7, left. It also explains why multipi@ners ¢ = 3) achieve higher
accuracy (78.8%) for the inference of grain size in this ¢hse a single winnerk( = 1)
(74.1% accuracy), in contrast to the case with 9 grain sikaisl€ 4.2, top left block). The

overall performance suggests that the variations in tha datised by the two physical
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parameters are insufficiently represented in the small S@M,to which they cannot be
inferred as accurately as for the data set with 9 grain si¥éisen increasing the size of
the SOM to 440, we observe that 81 grain size clusters are separatedgasmother
almost cleanly. This can be seen from 9 clear strings of odiores, which represents 9
different grain sizes, in most of the supergroups (Fig. Aght). For example, in the dark
blue supergroup, 9 strings are nicely aligned, orientedglbe vertical direction. The
almost clean separation between grain size groups helpseethe inference accuracy
of grain size to near perfection (97.8%) with= 1. However, it is unable to recover to
100% accuracy because in the supergroups where entangled t@mstcings exist, such
as indicated by the yellow oval, some of the prototypesrgitesent spectra from different
grain size groups. The inference accuracy of temperatwasaspoorer than in the case of
20x 20 SOM and the data set with 9 grain sizes. This can be expléinéhe fact that the
40x40 SOM allocates, on average, approximately 19 prototypeath grain size group,
which is around two thirds of the number (30) allocated by the 2020 SOM for each of
the 9 grain size groups.

Table 4.3: Prediction accuracies of grain size (GS) and &zaipre (T) for two separate data sets, containing

9 and 81 grain sizes, respectively, with>220 and 440 SOMs, each witlt = 1 andk = 3, respectively
[85]. Results are averages of 10 jack-knife runs.

Data set with 9 grain sizes Data set with 81 grain sizes
k=1 k=3 k=1 k=3
20x20 | GS| 100.0+0.0% | 76.4+-4.4% | 74.1+1.5% | 78.8£1.7%
SOM | T | 76.2:2.6% | 83.0:2.7% | 31.94+1.2% | 52.5+1.8%
40x40 | GS - - 97.8+0.4% | 54.5+1.2%
SOM | T - - 60.3-1.2% | 77.9£1.0%

We can conclude from the above that larger SOM size and maiia gize samples
may not get us closer to better overall prediction with aamifk. Although it is possible

that with an SOM even larger than 4@0, or with many more training steps, we may be
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Figure 4.7: TopoView visualizes all connections betweengiypes (thin white lines) on the two SOMs that
learned the data set with 81 grain sizes. The same color gadigrain sizes is used as in Fig. 4.3, but
here each color represents a grain size supergroup, whighine 9 consecutive grain sizes out of the 81.
Dark to bright shading of colors expresses proportional;to-high, temperature valuekeft: The 20<20
SOM. Right: The 40x40 SOM. The yellow oval indicates an example of the entangtémbetween the
connections, resulting from undefined boundaries betwesn gize groups.

able to achieve the same accuracies as in Table 4.3, tophefextra resources and time
required make that approach undesirable for practicalgaeag However, we can encode
the use of two different values &f 1 and 3, for the learning of temperature and grain size,
into one architecture, which we call Conjoined Twins. Theswarchitecture is then able to
achieve the best accuracies simultaneously for the twoigdlysarameters, while adding
minimal overhead to the SOM-hybrid neural architectureHim 4.1). We will introduce

the Conjoined Twins architecture in detail next.
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4.3.5 Conjoined Twins: using different values of: for learning differ-

ent latent variables
The Conjoined Twins architecture

The idea of the Conjoined Twins is to allow preferential useliferent values ofk for
the inference of different latent variables [85, 70]. Thenfdined Twins architecture has
the same structure as the SOM-hybrid architecture (Fig, But with “twin heads”, two
copies of the output layer, as in Fig. 4.8. Both “heads” shia@esame “body” of knowledge
in the SOM, but use it in customized ways. He@atl pulls the SOM output only from the
BMU (k£ = 1) for the training of the output layer (eq. 4.6). This headdrees a grain size
specialist achieving perfect prediction for grain size e nediction of temperature from
its second output neuron is discarded. Similarly, hg&dspecializes on temperature by
drawing the outputs from the first three BMUs and forming &éhterm weighted sum ac-
cording to eq. 4.9 = 3). The grain size prediction from this head is discarded h\ie
Conjoined Twins we obtain high prediction accuracies fahlmarameters by minimal ad-
ditional computational cost, compared to increasing th#1Sze or adding more training

steps, as discussed next.

Computational cost

The increase in computational cost with an additional “Hésdelatively small compared
to increasing the size of the SOM, for two reasons. First,ttaming of the SOM is
typically longer (takes more training steps) than the trajrof the output layer. Second,
the cost of each training step of the SOM is much larger thacdist of a training step in the
output layer. WithV SOM prototypes and dimensidp, it takes(3D + 6) N operations for
the SOM to calculate the distances between an incoming igmiior and all the prototypes,

for winner selection (eqgs. 2.9-2.11), ahld NV operations for updating the SOM prototypes
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Figure 4.8: Conceptual diagram of the Conjoined Twins aechirre for best inference of temperature and
grain size. Head#1 uses the output from the BMU (red neuron in the SOM) to pregliain size. Heag#2
uses, in addition, the second and third BMUs (pink and yehewrons) to predict temperature.

w; (eq. 2.2). Fora 2020 SOM (V = 400) that learns 230-dimensional data & 230), it
takes 646,400 (=278,400+368,000) operations to learn fnoeninput vector. For a 4040
SOM (N = 1600), the number of operations is 2,585,600 (4 times largerpfer learning
step. In contrast, adding a “twin head” carries a small osadh In the WTA mode, one
training step haS N operations:NV for setting SOM outputs (eq. 4.8)N —1 for calculating
y9UT in the output layer (eq. 4.3), ardV -+ 1 for updatingu,; (eq. 4.4). In théWTA mode,
one step costdk + 5N — 2 operations, wherg is the customized number of SOM winners
to be used by this “head”. This includés+ N — 1 operations for setting the SOM outputs
(eq. 4.7)2k — 1 operations for normalizing the SOM outputs (eq. 428Y,— 1 operations
for calculatingy$V" in the output layer andN + 1 for updatingu,;. k is typically a small
number & N). For a 20<20 SOM, 2000 additional operations are needed for a “head”
in the WTA mode, or 2007 operations for a “head” in & TA mode ¢ = 3). Hence,
the extra computational cost of adding a “twin head” is rghle, and independent of

the data dimensionality. This makes the Conjoined Twing@gugh especially suitable for

high-dimensional data.
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We can achieve 100 accuracy for the prediction of grain size in th&V TA mode
(£=3) by running the supervised phase fo2 million steps, more than twice as long as
with the Conjoined Twins (750,000 steps). This means thiugman of 3 SOM winners
can produce good prediction for both temperature and gia@ but more computational
time is required by this machine with a single mode (a uniférfor supervised learning)
to perform as well as the Conjoined Twins for the inferencgraiin size. For a 2020
SOM (N = 400) and 230-dimensional datdD( = 230), it takes a total of~2.1x10!!
(=(276,000+2000+200%)750,000) operations for the Conjoined Twins to learn both pa
rameters well. The machine with ti&VTA mode withk = 3 needs~5.6x10'! opera-
tions (=(276,000+2007+200%2,000,000) to achieve similar results. Thus, the Conjoined

Twins approach is a more economical solution to this parameterence problem.

Inference results with Conjoined Twins

We achieve perfect, 1004®.0% prediction accuracy for grain size and 832 7% for
temperature (Table 4.3, top left block), using the Conjdimeins architecture. If we ex-
clude the problematic end regions of the temperatures wheeguate training data are
unavailable, the prediction accuracy for temperature énrmaining 50-240K range is
91.8+1.2% (Table 4.2). For Charon, and for regions of Pluto free gfite, diurnal and
latitudinal temperature variations of tens°#f are expected, with temperatures in the the
50-70°K range. Our neural model is desired to retrieve temperatuith less than-3 °K
error in order to resolve the temperature differences@cK, which is sufficient for defin-
ing the tens ofK diurnal and latitudinal temperature changes. This wittlier help map
the thermal inertia across these surfaces. Sirt¢er@presents- 5% error in the 50-70K
temperature range and we already use 5% error envelope aothputation of prediction

accuracy, we can assume such performance forHll. 384 of the measured spectra with
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temperature between 50°K] according to Table 4.2. This means that 91182% of
the predictions from our model will be useful to assist stfenanalysis of the geological

histories of Pluto and Charon.

4.3.6 Noise sensitivity analysis

As our ultimate goal is to infer surface parameters from sgedctra acquired in space
missions under various noise conditions, we conduct a rseissitivity analysis to evaluate
the robustness of our neural model. To address the noiseétiomscthat are common for
spectral measurements, our collaborators, Young and @radded noise to the noiseless
data set (1134 spectra), producing noisy versions of treewlighh seven different Signal-to-
Noise Ratio (SNR) levels, SNR=256, 128, 64, 32, 16, 8 anddpétties of the added noise
reflect their knowledge about the noise in real spectra [FBgy generated two batches of
noisy data sets, one batch with one noisy version, the otliter Md noisy versions for
each noiseless spectrum. We refer to these as NoisyDatalll@4=7938 spectra) and
NoisyDatal0 (k% 10x1134=79,380 spectra).

The noise sensitivity analysis consists of two parts.

First, we compare the models trained on the NoisyDatalOs#ataith five SNR levels,
infinity (inf), 256, 128, 64 and 32, as shown in Table 4.4. Tiference capabilities of the
resulting models are tested on data with eight different $&RIs, inf, 256, 128, 64, 32,
16, 8 and 4. For each case, we do 3 three-fold jackknife ruh® tfaining set for each
case comprises randomly selected two thirds of the spedthatiae training SNR. The
remaining one third of the spectra, together with the spesith other SNR levels, make
up the corresponding test set.

Second, we investigate the influence of the size of the nogsyinhg set on the predic-

tion accuracy by comparing the models trained with the No&gp1 and the NoisyDatal0
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data sets.

In both experiments, we reuse thex2ZD SOM that learned with the noiseless data
(1134 spectra) and train the “twin heads” with the noisy datthe supervised learning
phase. A rationale for reusing the SOM is that we expect to thee SOMs in our models
mostly with synthetic data, thus, we have no limitation imgsoiseless data. In addition,
the use of the same SOM (trained with noiseless spectra3satiocases helps separate the
effect of training the “twin heads” with different noisy @asets from the effect of training
the SOM with noisy data. A follow-up task should be to assekatwoise levels make

significant difference in training the SOM.

Results with the NoisyDatal0 data set

The best results in Table 4.4 (numbers in bold face) showttieatlifference between the
SNR levels of the training and the test data is importantergrediction of temperature.
The training set with the highest SNR, namely the noiselesgises not always generate
the best predictions. For instance, from the noisy data &#fR=64, temperature is best
inferred with the model trained on data with SNR=128. Thikesasense because training
with noisy data is similar to training with a larger varietirmiseless training samples that
have the same variance as the noisy data. This helps thetoedrom noisier samples
which have an even larger variance than the training datdleT&4 suggests that the
training sets with SNR 2—8 times as high as the SNR of the st jgroduce the highest
accuracies. In contrast, for grain size, the noiselessitrgiset produces the best prediction
accuracy for all test sets with SNMR6. The markedly lower accuracies produced by the
models resulting from noisy training data can be explaingddise-induced blurring of
the boundaries between grain size groups. Two noisy spettiaifferent grain sizes can

map to the same SOM prototype at the boundary of two clusseich(as the ones in the
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white boxes in Fig. 4.3, right). This causes confusion dythe training of the grain size

specialist “head”. For the test sets with SNR levels 4 antébest results are produced by
the models trained on data with SNR=64. However, for thesetést sets, the advantage
of the best models over others is small20% increase in accuracy), thus may not be

conclusive.

Table 4.4: Prediction accuracies for temperature (T) anthgize (GS) tabulated for different SNR levels of
the training and test data. Each prediction accuracy is arage of 3 jack-knife runs. The numbers in bold
face are the best prediction accuracies for test data. n@&of all prediction accuracies are less than 2.7 for
T, and less than 0.3 for GS, as shown in Table 4.9.

T prediction accuracyX) GS prediction accuracy/)
Training SNR| inf 256 128 64 32| inf 256 128 64 32

4 455 46.0 46.1 46.0 46.1| 87.4 87.7 88.589.2 87.8
8 55.6 56.0 56.3 56.4 55.9| 945 94.7 953959 93.9
% 16 64.7 65.8 66.0 65.9 65.6] 97.4 974 97.1 97.4 93.9
n 32 727 73.7 740 73.0 715|| 98.8 985 979 975 93.6
g 64 78.4 793 79.3 77.0 74.3| 99.3 988 98.2 975 93.3
= 128 82.0 824 81.7 781 749 998 99.0 979 97.2 93.1
256 83.5 83.3 818 782 744 999 99.0 979 972 928
inf 83.0 825 808 76.1 72.3 100.0 99.0 97.8 97.1 93.0
inf: infinity

Comparison of results obtained with NoisyDatal0 and NoisyBtal

Tables 4.5 and 4.6 show the prediction accuracies achieitedive NoisyDatal0 and the
NoisyDatal data sets, respectively, for training SNR 32a6d 128. Their difference, in
Table 4.7, indicates the improvements in prediction aaiasadue to the larger sizes of the
training sets. For the prediction of temperature, the im@noent in accuracy is prominent
when the test data set has an SNR level at least twice as hilga 88IR level of the training
data. When the SNR level of the training set is 8 times as lasgae SNR level of the test
data, the advantage of using 10 noisy versions for trainargshes. For the prediction of
grain size, however, the tendency is consistent. The sewsuth NoisyDatalO are always

better than with NoisyDatal. One general conclusion frotnidd.7, for both parameters,
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is that in most cases the noisier the training set the greafgovement in accuracy can be
achieved with more (in this case 10 times more) noisy trgisimectra.

The above results demonstrate good consistency in therpefwe of the neural mod-
els under a wide range of noisy conditions. The statistidables 4.4—4.7 will help choose
the most suitable model for inference of temperature anit giae from real spectra when
noise estimate for real data is available.

Table 4.5: Prediction accuracies produced with the NoisgDadata set, containing 10 noisy versions for
each noiseless spectrum. This table shows a subset of Tdblerdeasy comparison with Table 4.6.

T accuracy %) GS accuracy%)
Training SNR| 128 64 32 || 128 64 32
4 46.1 46.0 46.1 88.5 89.2 87.8
8 56.3 56.4 55.9 95.3 959 939
16 66.0 659 65.6 97.1 974 939
32 74.0 73.0 7185 979 975 93.6
64 79.3 77.0 743 98.2 97.5 93.3
128 81.7 78.1 749 979 97.2 93.1
256 81.8 78.2 74.6 979 97.2 92.8
inf 80.8 76.1 72.3 97.8 97.1 93.0

Test SNR

Table 4.6: Prediction accuracies produced with the NoisggDaata set, containing one noisy version for
each noiseless spectrum. Entries are missing when themgsha training SNR levels coincide, because in
these cases the single noisy version is included in theitigaset, leaving the test set empty.

T accuracy %) GS accuracy%)
Training SNR| 128 64 32| 128 64 32
4 46.6 46.3 46.0| 88.5 87.8 87.0
8 56.7 57.0 56.9/ 94.4 92.4 090.9

| 16 |66.7 653 64.3 94.8 93.6 894
»| 32 |732 717 - |973 965 -
| 64 |789 - 70.3/975 - 904
=1 128 76.2 70.5 94.9 89.0

256 79.3 75.7 70.5/ 96.8 95.7 89.4
inf 771 719 67.4/ 96.6 953 894
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Table 4.7: The difference of Table 4.5 and Table 4.6, showmmovements in prediction accuracies by using
10 noisy versions instead of one. Values greater than 1.8%dnold face.

Improvement in|| Improvementin
T accuracy %) || GS accuracy%)
Training SNR| 128 64 32| 128 64 32

4 -05 -03 0.1]] 0 14 08
8 -04 -0.6 -1.0] 09 35 3.0
g 16 -0.7 0.6 13|23 38 45
n 32 08 13 -1]06 10 -
@ 64 |04 - 40|07 - 29
= 128 - 19 44| - 23 41
256 25 25 41|11 15 34
inf 37 42 49|12 18 3.6

4.3.7 Comparison between Conjoined Twins and backpropagein (BP)

network

Because backpropagation (BP) network [55, 56] is a welkkmaniversal function ap-
proximator and it is popular in spectral classification peofs [82, 86, 87], we compare
it with the Conjoined Twins through the same planetary smegoroblem, the inference of
temperature and grain size from spectra gOHce. A brief introduction of the BP network
is given in Appendix C.

The BP network we use is a two-layer network with 2 neuronseémtutput layer and 40
neurons in the hidden layer. The 2 output neurons generfgieed values of temperature
and grain size, respectively. The number of neurons to useihidden layer is determined
by trial and error. We also preprocess the grain size valutbsanogarithmic filter before
the network training. The filter maps the logarithmicallyased grain size values, which
span 5 magnitudes, to a linear scale between -5 and 1. Thasitloigpic transformation
improves the prediction accuracy of grain sizes from 47.d%9% for noiseless spectra
with the BP network. The reason could be that the logarititraiesformation changed the

shape (smoothness and steepness) of the error surfacesfepétific problem such that
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the minimum error could be easily achieved by gradient desdeference accuracies of
temperature and grain size are evaluated after 600 mill@ning steps for each case with
different training and test SNR values shown in Table 4.8m@ared with the Conjoined
Twins, which takes 1 million training steps (250,000 stemsunsupervised learning and
750,000 steps for supervised learning) to achieve satisfaprediction accuracies, the BP
network takes much more steps. The supervised learninged®dimjoined Twins is faster
than the BP network because when the SOM converged the ssgtvaining involves
only the output layer and the training is reduced to a linegression, where the outputs
of the output layer are weighted sums of the SOM outputs (8. h contrast, in the BP
network the supervised learning involves the training dhltbe hidden layer and the output
layer, and it is a nonlinear regression because an addithmmdinear transfer function is
applied on the weighted sums in both the hidden layer andutmublayer (egs. C.1-C.3).
These make the BP network require much more computatioftateto converge than the
Conjoined Twins.

Table 4.8: Prediction accuracies achieved with a two-l8fRmetwork for temperature (T) and grain size

(GS) tabulated for different SNR levels of the training aesttdata. Each prediction accuracy is an average
of 3 jack-knife runs. The numbers in bold face are the maxirpoadiction accuracies for test sets.

T prediction accuracyX) GS prediction accuracy/)

Training SNR| inf 256 128 64 32| inf 256 128 64 32
4 36.1 33.6 34.3 33.6 34.3 36.8 25.3 28.3 27.938.9
8 448 41.8 42.7 422 435454 331 365 36.248.8
16 55.1 52.0 53.1 519 54.0 555 429 46.4 46.960.7
32 67.0 63.6 64.8 63.2 64.3 69.1 56.0 59.6 60.174.1
64 788 73.8 745 733 719843 709 748 745844
128 88.8 81.3 820 799 76.3 957 81.1 845 838 88.7
256 93.9 838 844 823 77.8499.6 851 87.8 86.9 89.7
inf 95,5 845 849 830 7853999 86.2 88.8 88.6 89.8

Test SNR

O CO—C0—O—C0 O CO1—C0o

From noiseless spectra oL@ ice, the BP network achieves 95.5% and 99.9% accu-

racies for temperature and grain size, respectively (Ta8& This means that the BP
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network can infer grain size similarly well as the Conjoifi@dns (99.9% vs.100.0%), and
it outperforms the Conjoined Twins by approximately 12%khe prediction for temper-
ature (95% vs. 83%). Nevertheless, we note that the equatid gerformance for the
prediction of grain size is due to the logarithmic transfation, which requires the prior
knowledge of the data.

Moreover, from Table 4.8, we find that the BP network is ledsisb to noise than the
Conjoined Twins. When the noise level of the test spectreemmes, the best inference
accuracies from models trained on spectra with differergenievels all drop more steeply
compared to the Conjoined Twins for both physical paramsetdtor example, for test
spectra with SNR=32, the BP network is worse than the Coagbiwins (67.0% vs. 74.0%
for temperature and 74.1% vs. 98.8% for grain size). The @oe@ Twins’ remarkable
robustness to noise results from the use of the SOM, whialralft mitigates the effect
of noise owing to the vector quantization procedure. In @stt the BP network has no
mechanism to relieve the influence of noise in the input re@mcompare the reliability of
the models from the two neural modeling approaches, we alsalate the statistics of the
standard deviations of the inference accuracies in Tabfeard 4.8. From Table 4.9, the
Conjoined Twins architecture shows higher reliability wdtignificantly smaller standard

deviations of the prediction accuracies.

Table 4.9: Statistics of the standard deviations of theiptieth accuracies shown in Table 4.4 and 4.8. The
standard deviations are not shown in Table 4.4.

Neural modeling approach mean std min max
T| 02 04 00 27
GS| 01 01 00 03

T| 13 08 02 34
)es| 51 32 02 116

Conjoined Twins (Table 4.4

Backpropagation (Table 4.8

From the above, we conclude that the Conjoined Twins is b#ttn the BP network

for this particular inference problem, primarily for twoasons. First, the Conjoined Twins
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does not need a preprocessing of data while the BP networndspon the logarithmic
transformation to achieve high prediction accuracy forirgsaze. Second, the models
produced by the Conjoined Twins architecture have highgregeof robustness to noise
and higher reliability than the models produced by the BRvagkt. These properties are
important and desirable, especially in future deploymetisre physical parameters will
be inferred from noisy spectra collected from real planetarfaces. Additionally, the
Conjoined Twins is more economical than the BP network. Thpesvised learning in the

Conjoined Twins is much faster than in the BP network.

4.3.8 Conjoined Twins architecture for the inference of muliple latent

variables

The Conjoined Twins architecture proposed above has twadhfea the supervised learn-
ing of two physical parameters. This can be conceptuallgreded to an architecture with
multiple, more than two, “heads” for the learning of mulépatent variables, as illustrated
in Fig. 4.9. All “heads” rely on the same “body” of knowleddke learned SOM, but each
draws from a differentk;, number of SOM winners in the weighted sum (eq. 4.9) for best
learning of the latent variable.

The essential part of building the Conjoined Twins architez with multiple “heads”
is the customization of; for each latent variablg. Procedurally, customization for more
than two “heads” [ > 2) is the same as for two “headsl. (= 2), as conducted in Sec-
tion 4.3.4. It should follow the two-step procedure we prep@65]. In the first step, we
determine the collective upper boundl, of k; for all latent variables according to the
statistics of the connections, by eq. 4.11 in Section 4.2t8s is to find how many SOM
winners aresufficientto represent the information in a data sample. The secopdste

search for the begt; for each latent variablg, i.e., thenecessargmallestt; < K for the
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Figure 4.9: Conceptual diagram of the Conjoined Twins aechiire for inference of multiple latent variables
ly, l2,..., . The Conjoined Twins architecture has multiple “headstheaf which preferentially uses a
different number of SOM winnerg;, to achieve the best inference accuracy for the latentivaria

supervised learning df. Since the search range bf has already been narrowed b,
we perform an exhaustive search by repeating the supertrsiathg phasey times with
k=1,2, ..., K and selecting; with which we obtain the highest inference accuracyifor
After completing these two steps, we can “mount” the “head#i different% to the SOM
“body” such that the resulting Conjoined Twins architeet{ffig. 4.9) can infer all these
latent variables with high accuracies simultaneously.

When the number of latent variables to be inferred is larganttwo ¢ > 2), new
problems might arise due to the increased level of interplapss the latent variables
manifested in the SOM clustering. For example, more lataritibles in the data indicates
higher intrinsic dimensionality of the data. With increaghumber of latent variables, the
mismatch of the dimensionality between the data manifoldi thie 2-dimensional SOM
lattice can increase accordingly. This may result in insirgglevel of topology violations
in the SOM, and may consequently lead to poor supervisedifear In that case, more
research will be needed to carefully evaluate the succebe @onjoined Twins, and more

innovations may be required for issues related to more tlvardtent variables.



Chapter 5

Summary and future directions

Data collected for real world problems often pose conshilerahallenges for information
extraction algorithms, due to the high dimension of the detavell as the convoluted
dependencies across the data dimensions. Supervisedrmadehining algorithms can
model the relationships, regardless of their complexgyween the high-dimensional data
(observable variables) and certain information of inte¢iegent variables), when example
data (labeled data) are available. Success, however, dementhe quality of the data
labels. Unsupervised machine learning, which reveals ithdein patterns and regularities
in the data, can provide additional objective informatiostipport the supervised learning,
and hence can help improve the capabilities of supervisaohileg algorithms (e.g., by
detecting mislabeling).

This thesis work focuses on a powerful unsupervised neeeahing paradigm, the
Self-Organizing Map (SOM), which has been studied extegiand has been success-
ful for the analysis of high-dimensional data in recent desa The essential property of
the SOM, topology preservation, enables a faithful repriedmn of the structure of high-
dimensional data manifolds on a low-dimensional latticenfwhich relevant information

of the data can be extracted. However, topology violatioesh@t unusual, especially in
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the learning of real data. One contribution of this work is tlevelopment of new measures
and visual tool for evaluation of topology preservation @®\NBs. Assuming good quality in
SOM learning, we can further employ the learned SOM’s kndgtefor supervised learn-
ing of latent variables from data, by incorporating the SOitbia supervised architecture.
Another contribution of this work is the proposition of amavative supervised learning
architecture, the Conjoined Twins, which enables the ogituises of the SOM’s knowl-
edge for the inference of different latent variables. We mamze these contributions here

briefly, along with further insights and outlooks.

New measures and visual tool for evaluation of topology presvation in SOMs

Topology preservation is an essential property of the SQMitloan be lost for various rea-
sons, e.g., improper parameterizations of learning. Retdron of topology preservation
can lead to incorrect understanding of the manifold stmegtand consequently, inaccurate
information extraction. Measures and tools that effetfimeonitor topology violations are
hence desirable so that the user can make remediations tovienghe learning.

We advanced the state-of-the-art by further developingadriiee best measures avail-
able, the Topographic Functioff' {'). TheT F' is advantageous than other measures be-
cause it uses the induced Delaunay graph as the distande metata space, which cor-
rectly interprets the neighborhood relationships for agagaifolds with nonlinearities and
discontinuities, and because it displays both the forwanl@ackward violations for dif-
ferent scopes of violations (Section 3.2.2). However, fltehas three drawbacks. 1. Itis
an integral function, counting the average number of viofes with folding lengths larger
than a givenfl, while in most situations we may be more interested in itkecghtial in-
formation, i.e., the number of violations at each specific2. TheT F can not be used

directly for comparison across SOMs learned with differgaia sets or SOMs with dif-
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ferent sizes, because of the lack of normalization in itsndedn. 3. TheT F’ makes no
difference between potentially important violations, @rhiare induced by a large num-
ber of data samples, and insignificant violations resultechfnoise. The evaluation of
topological health of an SOM by theF' therefore can be inaccurate and misleading.

To overcome these drawbacks, we improved The into a suite of new measures.
First, we proposed the differential version of thi€', the Differential Topographic Function
(DT F), which clearly shows the extent of violation (average namndf violations) at each
folding length, fI (Section 3.3.1). Next, we normalized tlh&l'F’ by the total number of
connections, showing the percentage of connections atfelmithg length (Section 3.3.2).
This enables comparison across SOMs that have differadtrtomber of connections. In
a further step, we used the connection strength (an eleméiné @onnectivity matrix, or
CONN matrix) as an importance weighting on each violation so #tiaing violations
could be distinguished from weak ones. This resulted in tlegWWed Differential To-
pographic FunctionW{ DT F), which shows the severity of violations (the percentage of
data samples contributing to the violations) at a givenif@dength, /I (Section 3.3.3).
The W DT'F offers a more elaborate and accurate view of the relativergms across all
scopes of violations than the DT F', and it was shown to be applicable to the comparison
across SOMs of different sizes, SOM at different learniegst different data sets.

We also designed and implemented an interactive tool, TeygMWvhich enables the
visual inspection of violations on the SOM, regardless ¢hdimension. TopoView shows
the locations and orientations of the violations, which stiinte an additional piece of
information to the summary view from the measures. Moreaverimplemented a series
of selection and thresholding capabilities in TopoVievayding the freedom to investigate
various (sub)sets of violations such that the user can pibgize problematic areas in the

map, determine the cause of the violations, and make apptepemediations.
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We showed the effectiveness of the combined use dfiti&l" F and TopoView through
an artificial data set and two hyperspectral images. For-tlien2znsional 4-class Gaussian
data set (Fig. 3.7), the evolution of thB DT F and the corresponding TopoView visual-
ization of the connections illustrated how tHeDT F' and TopoView reveal topological
problems (Section 3.5.1). For real data, perfect topolagggrvation is likely impossi-
ble because of noise or intricate structure, as demondtat¢he two hyperspectral data
sets. In such cases, zero violation is a too strict critefiwra healthy map in this situa-
tion. Rather, the user should focus more on the evaluatidimeo$evere violations (mostly
long-ranged and/or strong violations), which could beidegntal to the correct identifica-
tion of manifold structure. Both thB’ DT F' and TopoView are helpful in this sense. The
W DTF puts more emphasis on strong violations. TopoView helpsrfdut the benign
violations and makes the harmful ones obvious accordinigdaser’s specifications. With
the LCVF data set (Fig. 3.8), we validated that thé>7T' F was more accurate and infor-
mative than theV DT F' through investigation of the detailed statistics of theremtions
(Section 3.5.2). With the RIT data set (Fig. 3.13), we shothedusefulness of TopoView
in the comparison of two SOM clusterings (Section 3.5.3ertluster violations are con-
sidered warnings of possible incorrect clustering. It isemmrthy that, while using the
guantity and/or the strengths of inter-cluster violatiasscriteria for the evaluation of a
clustering, the user should be aware of the dependency ahtéecluster violations on
the clustering. An extreme case is that when all SOM pro&gyqre assigned the same
cluster label, no inter-cluster violations will be shownTgpoView because there is only
one cluster. No inter-cluster violations here does not ntearmlustering is perfect. There-
fore, the user should be very careful when making judgeméseter a clustering is good
or not. Since inter-cluster violations reflect the simti@s across the clusters, perhaps the

user should combine the use of cluster validity indices te#éct the similarities of sam-
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ples or prototypes within the clusters, and the use of TopwMior a more comprehensive
evaluation of quality of clusterings.

We can envision a few possible directions for further degalent of tools for topology
measurement.

First, it would be good to also provide a definition of tHeDT F' for the negative
domain (fl < 0). We have defined the positive domain of tHeéDT'F' in the thesis,
focusing on forward violationsf{ > 0), since backward violationsf{ < 0) are not as
detrimental as forward violations for cluster identificati Nevertheless, a quantification
of the severities of the backward violations would make t&#nition of thelV DT F' more
complete. To find a meaningful and useful counterpart of thnection strength, in the
negative domain, however, is not intuitive and requiresemesearch in future work.

Second, it might be useful to combine the thresholding ciéipab of TopoView into
theW DTF, to show the severity of “harmful” violations across ditet scopes of viola-
tions. The “harmful” set of violations can be specified by tiser. This means to combine
the W DTF and TopoView into one evaluation tool. Once the user makedextson of
thresholds, TopoView filters out the violations considevsimportant and théV DT F
would also exclude those unimportant violations from itspaitation.

In addition to the two possible improvements of the toolsjranguing future direc-
tion is to incorporate the measures into the SOM learningrélgm for online feedback so
that the SOM can intelligently correct itself and achievstlmitcome automatically. The
motivation is obvious: since the most appropriate learpiagmeters for fast convergence
to the best map depend on the unique properties of the datachn application, the de-
termination of the learning parameters can require labsrfzarameter exploration by the
user. It would be desirable for these parameters to be tunedwatically during the train-

ing. AdSOM, proposed by Kiviluoto [33], was a variant of th® with locally adapting
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neighborhood widths. The adaptation is controlled by theofwaphic Error (TE), which

is a measure of topology violations. For the neurons neaptbblematic region of the
map, where forward violations exist, the neighborhood Wwidtincreased automatically to
untwist the map. However, ADSOM was tested only with a 3-disi@nal artificial data
set, so whether it would benefit the learning of high-dimenal complicated data is un-
known. Moreover, AdSOM did not realize full automation besathe user still needed to
tune the learning ratey(t) in eq. 2.2. Auto-SOM, a more advanced algorithm proposed by
Haese and Goodhill [88], automated the modulation of bathehrning rate and the neigh-
borhood width by a Kalman filter implementation of the SOMHwat recursive parameter
estimation method. Auto-SOM incorporated thé' in the control of the neighborhood
size. The authors demonstrated the effectiveness of ADtd-®ith both artificial and real
data. Future work can be development of an SOM algorithmigirto Auto-SOM, which
utilizes theW DT F' instead of thel'F’ as a more precise feedback to the control of the

parameters.

Inference of multiple latent variables by customized explaation of the SOM’s knowl-

edge in a new supervised architecture

We approached the inference of latent variables with sugpeiilearning aided by an SOM.
The neural architecture we proposed is the Conjoined Twimgw architecture motivated
by a planetary science application where two physical patara were inferred from Near-
Infrared spectra of water ice.

The Conjoined Twins was developed from an SOM-hybrid nearethitecture, where
the output layer retrieved the SOM outputs and combined themweighted sums to learn
to approximate the latent variables from the input dataorsctThe customary use of the

SOM outputs by the output layer is the Winner-Takes-All (WTAode, where the best
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matching unit (BMU) has an output of 1 while the other SOM &sr have outputs of
0. The WTA mode has a hard limily, of the number of values of latent variables it can
differentiate, wheréV is the number of SOM neurons. For data sets with continudgestia
variables, this limit can prevent high prediction accueaciTo break this limit, we general-
ized the WTA mode to thé-Winners-Take-All §WTA) mode, which makes better use of
the SOM's knowledge by allowing multiplé, SOM winners to have nonzero outputs and
to contribute to the supervised learning.

The best value of is obviously dependent on the data properties and the SOM (th
SOM size and the learning step). To help deterntirier an SOM learned with a specific
data set, we proposed a theoretical upper boudof k£, which can be computed auto-
matically from the statistics of the Voronoi neighbors. éfthis, we proposed to perform
an exhaustive search of bésty performing the supervised learning with all values of
k < K. The best is the value that produced the highest prediction accurattirough
the exhaustive search sounds computationally expenbiweheoretical upper bound 6f
allows to constrain the search bin a small range. This makes our method of finding
feasible solution.

Through the inference of temperature and grain size frorh-dighensional spectra
of ices, we found an interesting dependency of the kesh the latent variables. For
different latent variables, different numbers of SOM wirmeontain the right amount of
information for the recovery of this variable. In this sgecapplication, temperature and
grain size can be inferred best with= 3 andk = 1, respectively. This motivated the new
architecture, the Conjoined Twins, which is similar to th@Ns-hybrid architecture, but
has two copies of the output layer (“twin heads”). By allowithe different “twin heads”
to use different for the supervised learning, the Conjoined Twins can aehike highest

prediction accuracies for both latent variables simultauséy. With this application, we
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showed that the Conjoined Twins achieved high and sciealfificiseful accuracies for
temperature and grain size. Through a noise sensitivitlysisaand a comparison to a
competing neural approach, the Backpropagation (BP) n&twee also confirmed a high
degree of robustness to noise and exceptional reliabifithe@ models produced with the
Conjoined Twins. These properties of the models give us dentie that the Conjoined
Twins is an effective solution to the inference problemslanptary spectral applications.
In this thesis, we inferred two physical parameters frontspeof H,O ice as an initial
assessment of our new approach. Future work should inchedmvestigation of the per-
formance of the Conjoined Twins model under increasingléegérealism in the spectra
such as the inference of more than two physical parameteitbough conceptually the
Conjoined Twins can be extended to have more than two “heads’the same procedure
can be used for the learning of more than two latent varialtkesincreased number of
latent variables may cause new difficulties in the neural @lind. More research work
is required in future projects to investigate the new issargs to improve the Conjoined

Twins.

Our efforts in this thesis advance the capability of cotyeletarning the structure of high-
dimensional, complicated data, and accurately retriekitayvledge from these data, with
the SOM. Although our innovations were motivated by appitwes to hyperspectral data
of planetary surfaces, the new tools should be applicablthéoanalysis of other types of
high-dimensional data, such as data collected throughcakulials. New data of course,
can hold unforseen challenges, which may necessitateapsgisf the current tools and

further innovations.



Notations

A SOM lattice, 14

C Total number of connections in the SOM, 50

D Delaunay graph, 27

K Upper bound of in the A\WTA mode, 87

L Dimension of the vector of latent variabldés79

M Data manifold, 14

N Number of neurons (or prototypes) in an SOM,
14

P Total number of data samples, 51

RF; receptive field of neuron 14

Vv Voronoi tessellation, 17

Vi Voronoi cell of SOM prototypewv;, 17

%data; Percentage of data samples contributing tathll

ranking connections in the SOM, 87
1= [l1,ly, ..., 1]" Vector of latent variables, 79
r; Lattice coordinates of neurarin the SOM, 15
w; Prototype (weight vector) of SOM neurenl4d
X = [z1,79,...,74]7 Input data vector, 14

D Induced Delaunay graph, 27
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he,j(t)

n;

S;

Yi

Induced Voronoi tessellation, 27

Induced Voronoi cell of SOM prototype;, 27
Number of important Voronoi neighbors to any
prototype, 87

Lattice index of the BMU, 14

Dimension of the input data manifold, 14, 79
folding length, 43

Neighborhood function used in the SOM algo-
rithm, 15

Number of SOM winners used for supervised
learning in thekWTA mode, 85

Maximum number of Voronoi neighbors to any
prototype, 53, 87

Number of connections from all prototypes to
theirith ranking Voronoi neighbors, 87

Average strength of all connections from proto-
types to theinth ranking Voronoi neighbors, 87
Output of SOM neuron, 82

weight matrix connecting the output and the hid-
den layers of the SOM-hybrid neural machine,
81

weight matrix connecting the hidden layer and
the input buffer of the SOM-hybrid neural ma-
chine, 81
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k-Winners-Take-All {WTA), 85
pdf, 5

Artificial neural network, 5

Backward topology violation, 22, 43

Best matching unit, BMU, 15

Connection, 28
Connection strength, 32

Connectivity matrix CONN), 31

Data manifold, 3

Delaunay graph, 27

Differential Topographic Function{T'F),
46

Empty neuron, 17
Empty prototype, 17

Extent of violations, 46

Folding length, 44

Forward topology violation, 21, 43

Global violation, 53

Hyperspectral image, 2

Induced Delaunay graph, 27
Induced Voronoi cell, 27
Induced Voronoi tessellation, 27

Inter-cluster and intra-cluster connection, 54

Latent variables, 79

Local violation, 54

Mapping density, 17
Modified U-matrix (mU-matrix), 23

Normalized Differential Topographic Func-

tion (NDTF), 50
Observable variable, 79
Prototype, 6
Quantization error, 34

Receptive field, 17

receptive field, 14

Severity of violations, 51

Size of receptive field, 17
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Supervised machine learning, 4

Topographic Functiorl(F'), 42
Topographic Productl(P), 41
Topology preservation, 17
Topology violation, 21
TopoView, 53

U-matrix, 23

Unsupervised machine learning, 4

Violating connection, 43
\oronoi cell, 17
Voronoi neighbor, 29

\Voronoi tessellation, 17

Weighted Differential Topographic Function
(WDTF),51
Winner-Takes-All (WTA), 85
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Appendix B

Software implementation of the new
tools proposed in the thesis

The author implemented the new tools proposed in this tie€§isC++ on UNIX platform.

The implementation includes the following four pieces diware:

dtf, a module to compute a suite of measures of topology prasen

TopoView, an interactive tool for visualization of selegttets of connections on the

SOM

CTwins, the Conjoined Twins supervised learning archibect

Augmentation to a module CONNuvis, for computation of Vorostatistics used by

CTwins

All four pieces of software were implemented in the enviremtdeveloped and main-
tained by the Merényi group for SOM-based machine learafrigmplicated, high-dimensional
data. Information about this environment and software lodifias is available at http://terra.
ece.rice.edu. The input/output mechanisms, generaltstejgrocessing and housekeep-
ing of these software take advantage of the standardizqubsiugervices in this environ-

ment. A detailed user manual along with examples of use igigeed with each individ-
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ual module. Here we are giving an impression of the uniquetfans of dtf, TopoView,

CTwins and the augmentation to CONNuvis, and the controlsifiee can exercise.

B.1 dtf, a module to compute a suite of measures of topol-
ogy preservation

The dtf module takes a data set and an SOM learned with it assnphe files that repre-
sent the learned SOM are products from any of the SOM-hylaidal network modules
(ann-SOMconsc, ann-SOMbdh, etc.) implemented by the Meigroup. The dtf module
computes thd P, theT F', the DTF', the N DT F' and theWW DT F' for the input SOM and
writes these measures, together with some statistics afdheections, out to a file in a

human readable format.

Example output file fragment:

## TP = -0. 05115

## nunber of enpty PEs = 41

## total nunmber of connections = 1034

## total nunber of data points = 16384

## nunmber of connections connecting non-enpty PEs = 1034

## nunber of data points whose BMJ and second BMJ are non-enpty = 16384
## TF = 0 for k>7, when all PEs are included

## TF = 0 for k>7, when enpty PEs are excl uded

# k nor m k TF TF DTF DTF NDTF NDTF WDTF VWDTF

# (empty PEs (empty PEs (enmpty PEs (empty PEs
# excl uded) excl uded) excl uded) excl uded)
1 0.0714 5.04 5.04 0. 00 0. 00 0. 0000 0. 0000 0. 0000 0. 0000

2 0. 1429 4.11 4.11 0.93 0.93 0.1015 0. 3322 0. 0115 0. 0115

3 0. 2143 3.07 3. 07 1.04 1.04 0.1132 0. 3701 0. 0139 0. 0139

4 0. 2857 1.96 1.96 1.10 1.10 0. 1199 0. 3923 0.0211 0.0211

5 0. 3571 0.83 0.83 1.14 1.14 0.1238 0. 4049 0.0184 0. 0184

6 0. 4286 0.18 0.18 0. 65 0. 65 0. 0706 0. 2309 0. 0103 0. 0103

7 0. 5000 0.02 0.02 0.16 0.16 0.0174 0. 0569 0. 0032 0. 0032

8 0.5714 0. 00 0. 00 0.02 0. 02 0. 0019 0. 0063 0. 0009 0. 0009

9 0 0. 00 0. 00 0. 0. 00 0. 0000 0. 0000 0. 0000 0. 0000

. 6429
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The author has also provided Matlab scripts, which readerotitput file and plot the

measures as shown in Fig. 4.6 in Section 3.5.

B.2 TopoView, an interactive tool for visualization of se-
lected sets of connections on the SOM

TopoView is a visualization tool for interactive selectiand display of connections over
the SOM. The inputs of TopoView include a data set and the S€dvhked with it. Upon

start, TopoView launches its graphical user interface asvehn Fig. B.1. The user can
change the values of the keywords that control the seleatmhthe thresholding of con-
nections, in the keyword window (Fig. B.1, right). TopoVievill refresh the connections

drawn on the SOM in the display window (Fig. B.1, left) acdagito the user’s choices.

File Windows General‘ Image Cube Viz| Neural Network Viz‘ Graph Viz‘ Plugins &
Density 1 ?
Fence 1 threshold method MEAN+STD
2|subset_for_statistics ALL
3 percentage_of_mean 30
4multiplying_factor_of_std |1
S Y e i
ET 3
.. o | TopoView keywords default values

Figure B.1: The graphical user interface of TopoViéwft: The display window of TopoView. The selected
subsets of connections will be shown on the SOM in this wind®ight: The keyword window, in which the
user can make selection and set thresholding of connedijpspecifying values for keywords that controls
TopoView.

TopoView provides two main categories of keywords: keyvgdiat selecting connec-

tions to be drawn and keywords for setting the drawing priogeer

1. Keywords for selecting connections to be drawn:

The user can select the connections by choosing a rangeldmnddength, the type
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of the connections, and a threshold for connection strength

e The range for folding length is specified by an upper and aidiwit of folding
length.

e The type of connections include all connections, violatiognections, non-
violating connections, inter-cluster connections, isdhaster connections, inter-

cluster violating connections and intra-cluster violgtoonnections.

e The threshold for connection strength is computed autaalitiby TopoView
from a statistical property of a specific set of connectionke user needs to
indicate which set of connections, and what statisticaperty of this set of
connections, are to be used as the threshold. The stdtigtmgerty can be
the mean connection strength multiplied by a constafahcan onrn siren X @)
or the mean connection strength plus the standard deviatithre connection

strengths multiplied by a constantmean..onn_siren + Stdeonn_stren X ).

2. Keywords for setting the drawing properties:
The user can modulate the following two properties of thedidrawn on the SOM,

to ensure best visual clarity.

¢ the line color of the connections

¢ the line width of the connections
TopoView also computes the statistical properties (thelmemof connections, the mean
connection strength and the standard deviation of cororestrength) for different sets of

connections and show them in the terminal window to help e decide the thresholding

method to use.

Example statistics of connections shown in the terminathavm
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========= Statistics of Connections Subsets (dead PEs excl uded) ==========
Al #=1034 nean=15.845261 std=25.930155

Vi ol ati ng #=567 mean=2. 292769 std=2. 387171

non-vi ol ati ng #=467 nmean=32. 299786 st d=38.516922

inter-cluster #=0 mean=n/ a std=n/a
intra-cluster #=1034 nmean=15.845261 std=25.917613
inter-cluster violating #=0 mean=n/ a std=n/a

intra-cluster violating #=567 nmean=2. 292769 st d=2. 385065

THRESHOLD = 41. 775416

In addition, TopoView allows the choice of displaying clerst under the drawn con-
nections. This makes it easy to visually separate intestehiand intra-cluster violations in

the SOM, and therefore helps with the evaluation of clustei

B.3 CTwins, the Conjoined Twins supervised learning ar-
chitecture

Before using the CTwins module for the supervised learnfmgudtiple latent variables, the
user needs to first perform the unsupervised learning ofatewlith any of the SOM learn-
ing modules (ann-SOMconsc, ann-SOMbdh, etc.) implemebhyethe Merényi group.
Then the user runs another module, CONNuvis, for computatidhe statistics of Voronoi
neighbors and determination of the theoretical upper bpinaf &, as will be described
in Section B.4. After the above two steps, the user can la@Whins, which takes the
learned SOM andy as its inputs. CTwins performs the supervised learningateuity
with £ < K and finds the best value @f for the learning of each latent variable. The
author implemented the repeated supervised runs witlreifté in CTwins by reusing the
code for supervised learning in ann-SOMconsc and buildmglaborate wrapper around
it. After completing the supervised learning, CTwins saasetworks resulting from the
supervised learning with different values/gfand generates a report file listing the blest

for each latent variable and prediction accuracies it hageged.
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Example report file fragment:

(Temperature and Partickgze are the two latent variables learned in this example.)

# Par anet er Best _k Test_accu(% Network

Tenper at ure 3 80.5 i ces-8cl ass-v5-ss10. 150000. H2G k10-tr 3. k3. 1000000. nnd
Particl e_size 1 100.0 i ces-8cl ass-v5-ss10. 150000. H2G k10-tr 3. k1. 1000000. nnd
# K=4 (Kis the upper Iimt of k, conputed by Voronoi statistics in .vstat or given by user.)
# Al training results produced with k = 1 2 3 4

# (Paraneter nanes correspond to output neurons 1, 2, etc.)

# k Par anet er Test _accu(% Train_accu(% Test_RMSE Train_RMSE

# 1

# Tenper at ure 74. 3 80. 2 5.2204 4.6388

# Particl e_size 100.0 100.0 0. 0000 0. 0000

#2

# Tenper ature 76.1 86. 3 4.8691 4.2319

# Particl e_size 93.8 89.9 0. 0048 0. 0065

# 3

# Tenper ature 80.5 85.6 5. 2546 4.6256

# Particle_size 84.1 78.9 0. 0066 0. 0058

# 4

# Tenper at ure 80.5 86. 6 5.8512 5.1000

#

Particl e_size 74.3 71.9 0.0110 0. 0062

When the learned model is deployed for the inference of ttemtavariables from new
data (data not used for the training and validation of the eljpdCTwins takes the list
of best values of: in the above report file and the new data as inputs, and coshee
prediction accuracy for each latent variable with its bedti® ofk indicated in the report

file, for the new data.

B.4 Augmentation to CONNuvis, for computation of Voronoi
statistics used by CTwins

This piece of software is an augmentation to the module CAsINvhich was imple-
mented by Kadim Tasdemir and explained in [24]. The Voronatistics, required by
CTwins for determination of{, the upper bound ok, are derivatives of the output of

CONNuvis. The author augmented the CONNvis module to compnteoutput the de-



tailed Voronoi statistics, as well as a suggested valug oo a file

will read in the value ofK” from this output file.

Example output file:

HHFHFHFHHHFHHHR

suggest ed_K for_Conjoined_Twins = 3
suggested_cut_rank = 2
suggesti on based on threshol di ng: %at a>1%

total _nunber_data_sanples = 1134

t ot al _nunber _connections = 200
mean_strength_al |l _connections = 5. 67
max_nunber _nei ghbors = 3

norm nean_stren = mean_stren/ mean_strength_al | _connecti ons
%lat a = mean_stren*nr_conn/ (2+t ot al _nunber _dat a_sanpl es) * 100%
rank nr_conn nean_stren normnean_stren %lata

1 209 7.56 1.33 69.71

2 184 3.69 0. 65 29.94

3 7 1.14 0. 20 0.35
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Appendix C

Backpropagation (BP) neural network

Feedforward neural networks trained with backpropagg@#) method, or BP networks,
are widely used for pattern recognition and function regjms[55, 56, 57]. Since a 2-layer
BP network with a nonlinear transfer function is capableggdraximating any continuous
function [56, 57], it can be used for the planetary scienabl@m targeted in this thesis
work (in Section 4.3). In Section 4.3.7, we compare the tedtdm a 2-layer BP network
with those from the Conjoined Twins, proposed in this thesis

As shown in Fig C.1, the 2-layer BP network (BP network with&ght layers) takes a
d-dimensional input vectat, [z1, zs, ..., 4], Dy its input buffer, in each learning step. The
network has\M neurons in its hidden layer. Each neurpm the hidden layer combines

the inputs and a biag)(= 1) into a weighted sum and generates an outgytas

d
x; = f(zwﬂxi) j=1,2,..M (C.1)
=0

The bias termr, is analogous to the intercept term in a regression equatignis the

weight between the neurgnin the hidden layer and the neurom the input buffer.f is a

140
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Input buffer Hiddenlayer Output layer
(d neurons) (M neurons) (L neurons)

L10p020d)n0

Inputvectorx
A

Figure C.1: A 2-layer backpropagation (BP) neural network.

transfer function, a typical choice of which can be

_1—6_“"’

14"

f(z) (C.2)

Similarly, each neurom in the output layer yields an outpyt with the signals from the

hidden layer.
M
n=FO wyz;) 1=1,2,.L (C.3)
§=0

w;j is the weight between the neurdim the output layer and the neurgrin the hidden
layer.

The initial weights are often chosen as small random numbé&he training of the
network can be done either in online or batch mode. In onk@ening the weights of

the network are updated every time an input vectdr, has gone through the network



142

(egs. C.1-C.3) and the error in the output layet, is computed.

L

B = % >t =5}y’ (C.4)

=1

wheret! andy/ are the target (or desired) output and the actual outpyieotisely, from
thel-th neuron in the output layer. In batch learning the netvaméumulates the errors in
the output layer for an epoch @¢J input vectors and then updates the weights. When the
epoch size(), is 1, batch learning is equivalent to online learning. Tdtaltsquared error

for an epoch of) input vectorsx!, x2, ..., x?, is

L

Q Q
Eiotal = Z B = %Z Z tq - yl (C5)
q=1

=1 ¢=1

The gradient descent method is used to minintize,;. The weights are modified after

each epoch as

" (new) " (old) aEﬁtotal
=w «
Ij = Wy /

C.6
(new) (old) aEitotal ( )
W, w o — p———

Jji Ji

wherea andn are learning rates, which decrease with time. By insertqeg €.1-C.3 into

eg. C.5, we can rewrite the gradients in eq. C.6 as

4

Q
agto,tal _ Z 5;1'7;;;1
Wy —
. 5 (C.7)
total /
owj; T Z 5jqx§]
where
of = (] =y = (y)*)/2
L (C.8)

= w1 - («)%)/2
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The errors in the hidden layer are computed by propagatetiors backward from the
output layer and distributing according to the second egunah eq. C.8. This is why
the algorithm is called backpropagation. A simple stopgrnterion for the training can
be the completion of a certain number of epochs or the actmiereof a specified small
total error. However, these cannot guarantee that the mietwas converged (learned long
enough) and that it has not overfitted the training datarfls@too long). A better approach
for quality control is to use a test set. The performance @indtwork on both the training
and the test data should be monitored during the training.stbpping time should be the

time point when the performance on the test data stops inmm@nd begins declining.
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