


ABSTRACT

Learning the Structure of High-Dimensional Manifolds withSelf-Organizing Maps for

Accurate Information Extraction

by

Lili Zhang

This work aims to improve the capability of accurate information extraction from high-

dimensional data, with a specific neural learning paradigm,the Self-Organizing Map (SOM).

The SOM is an unsupervised learning algorithm that can faithfully sense the manifold

structure and support supervised learning of relevant information from the data. Yet open

problems regarding SOM learning exist. We focus on the following two issues.

1. Evaluation of topology preservation. Topology preservation is essential for SOMs

in faithful representation of manifold structure. However, in reality, topology violations

are not unusual, especially when the data have complicated structure. Measures capable of

accurately quantifying and informatively expressing topology violations are lacking. One

contribution of this work is a new measure, the Weighted Differential Topographic Func-

tion (WDTF ), which differentiates an existing measure, the Topographic Function (TF ),

and incorporates detailed data distribution as an importance weighting of violations to dis-

tinguish severe violations from insignificant ones. Another contribution is an interactive

visual tool, TopoView, which facilitates the visual inspection of violations on the SOM lat-

tice. We show the effectiveness of the combined use of theWDTF and TopoView through

a simple two-dimensional data set and two hyperspectral images.

2. Learning multiple latent variables from high-dimensional data. We use an existing

two-layer SOM-hybrid supervised architecture, which captures the manifold structure in

its SOM hidden layer, and then, uses its output layer to perform the supervised learning
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of latent variables. In the customary way, the output layer only uses the strongest output

of the SOM neurons. This severely limits the learning capability. We allow multiple,

k, strongest responses of the SOM neurons for the supervised learning. Moreover, the

fact that different latent variables can be best learned with different values ofk motivates

a new neural architecture, the Conjoined Twins, which extends the existing architecture

with additional copies of the output layer, for preferential use of different values ofk in

the learning of different latent variables. We also automate the customization ofk for

different variables with the statistics derived from the SOM. The Conjoined Twins shows

its effectiveness in the inference of two physical parameters from Near-Infrared spectra of

planetary ices.
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E. Merényi. Top left: The 2-dimensional “Clown” data set from [31].

Top middle: The induced Delaunay graph (black lines) visualized in the

data space highlights most of the discontinuities in the manifold structure,

which are not delineated by the Delaunay graph (gray lines).Top right:

TheCONN matrix, visualized in the data space, make detailed structures

(e.g., the three subclusters in the left eye) emerge. Part ofthe clown’s body,

in the dashed square, is magnified in the bottom right.Bottom left: A vari-

ant of the U-matrix visualization of the SOM. The SOM neuronsare shown

as hexagons. The grey scale intensity of the additional hexagon between

each pair of neurons adjacent in the lattice indicates the Euclidean distance,

in the data space, between the two respective prototypes. A darker gray in-

dicates greater dissimilarity. This visualization delineates the coarse cluster

structure.Bottom middle: TheCONN matrix drawn on the SOM lattice

separates the large clusters, and also makes the three subclusters in the left

eye (in the magenta triangle) emerge.Bottom right: Magnified detail in

the visualization of theCONN matrix from boxed area in the clown’s body

(top right). The first to fourth ranking Voronoi neighbors ofprototype P1

are P2, P3, P4 and P5, which have strengths 5, 3, 2 and 1, respectively. To

make this easy to see, we color the data samples that contribute to each of

the 4 connections, the same as their corresponding connections. . . . . . . . 31



xv

3.1 The SOM prototypes (black dots) that represent a 2-dimensional “horse-

shoe” distribution. The prototypes are projected back intothe data space

and connected according the SOM lattice structure. . . . . . . .. . . . . . 37

3.2 Illustration of a minimum path (green line segments) between two proto-

types A and B, in the data space (on theleft) and in the SOM (on theright ),

respectively, through the “exclamation mark” data set. Theinduced Delau-

nay graph is shown as black lines in the data space and as yellow lines in

the SOM. The minimum path between A and B has a length of 5, so the

the graph distance between them is 5. The prototypes along the path are

numbered so that we can relate these prototypes across the data space and

the lattice space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 The 8-class 6-dimensional (6-band) synthetic spectralimage data set. Fig-

ures reproduced from http://terra.ece.rice.edu/dataexample/data.html, with
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Chapter 1

Self-Organized (unsupervised) learning
for understanding complicated
high-dimensional data

1.1 Challenges in information extraction from real world

data

The data collected to characterize a real world problem, process, or object, are often high-

dimensional thanks to the new sensory technologies that improve our perception of the

world, and the modern computerized systems that are capableof collecting and storing

huge amounts of data. The high dimensionality of the acquired data on one hand enables a

wealth of information, on the other hand poses specific difficulties for information extrac-

tion methods. One prime example of such data is high-resolution spectra of planetary sur-

faces taken by modern imaging spectrometers. These spectrometers can resolve radiation

in narrow band passes and take measurements at hundreds of wavelengths simultaneously.

Each acquired spectrum is a high-dimensional vector of measurements at different wave-

lengths. When the measurements cover a contiguous spectralrange, the acquired spectra

are hyperspectral. By generating such spectra for all pixels in a contiguous scene, the

1
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spectrometers produce ahyperspectral image(Fig. 1.1). Each pixel in such an image is

a high-dimensional feature vector (spectrum), which provides a unique fingerprint of the

material in the spatial area represented by that pixel. These spectral fingerprints can help

unravel the chemical and physical properties of the materials. For example, a hyperspec-

tral image can afford discrimination among many different surface materials, such as soil

constituents and plant species in terrestrial regions or ice species on the surfaces of outer

Solar System bodies. A hyperspectral image taken in wavelength ranges sensitive to sur-

face physical conditions (e.g., temperature and grain size) can also be used to derive these

physical parameters.

Figure 1.1: Illustration of a hyperspectral image. Each pixel in this image is a high-dimensional feature
vector (spectrum) of the material in the spatial area represented by this pixel. Figure reproduced from [1],
with permission of J. B. Campbell.

However, the inference of pertinent information from this kind of data is difficult. Since

the underlying relations between the information of interest and the data are often too com-

plicated to solve analytically, numerical solution to dynamical optimization is a commonly

used traditional method. This method can handle low-dimensional data well, but loses

its power for high-dimensional data, due to the so-called “curse of dimensionality” [2].
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The exponentially increasing hypervolume in response to the growth of the data dimension

makes the optimization process slow, and often unsuccessful, in finding optimal results.

Feature extraction methods, used as data preprocessing, may help relieve the difficulties

caused by high dimensionality. However, they can cause lossin information. In the ap-

plications with hyperspectral data, several feature extraction algorithms have been found

unable to preserve relevant information [3]. Instead of paying great efforts to find good

feature extraction algorithms to cooperate with the traditional dynamical optimization ap-

proach, we can alternatively use a more intelligent approach, machine learning algorithms,

which learn the relations (or build models) between the information of interest and the

data, from examples. No prior dimension reduction is neededfor some machine learning

algorithms. The models learned can then be easily used for fast information prediction

from new data.

Another important fact that makes real world data demandingis their complicated struc-

ture. The redundancy in information, or dependance betweenthe dimensions, influences

the structure of the data. The subspace occupied by the data samples is called adata man-

ifold. Due to partial and often nonlinear dependance between the dimensions, the data

manifold can behighly structured[4]. This means there can be many clusters in the data,

with various sizes and extremely varied statistical properties (variance, skewness, etc.). A

potential challenge arising from such sophisticated data is to differentiate among the clus-

ters, as the ability to do so may improve the level of detail ofthe information inferred from

the data. In view of these, unsupervised learning algorithms that can correctly capture the

structure of the data, become attractive.
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1.2 Unsupervised learning

Our brains receive a massive flow of sensory information every day without explicit su-

pervision, but can still develop capabilities to effectively determine the frequency of the

occurrence of the incoming messages (density distribution) and the similarities between

them (topology).Unsupervised machine learning, namely the learning by computer algo-

rithms without extraneous supervision, mimics this natural process. In the scenario of neu-

ral machine learning, weighted connections between simpleprocessing units (the artificial

neurons) are iteratively modified in response to input patterns with a predefined learning

rule. The final configuration of the connection weights oftenhelps reveal some aspect of

the structure of the data manifold, such as the distributionof clusters. This capability is

important for understanding highly structured data.

Unsupervised machine learning is useful also because it canhelp withsupervised ma-

chine learning, which means the learning of the mapping from the data to their labels

from training samples. Supervised learning builds a model between the input data and the

outputs through minimization of the errors in the outputs. As a result, success not only

depends on the capability of the algorithm, but also the quality of the training labels. For

example, mislabeling in the training samples or labeling that does not cover the functional

relationships in sufficient detail may hinder good performance of supervised learning. Un-

supervised learning algorithms can be helpful in such situations. Unsupervised learning

captures the manifold structure, which is an objective piece of knowledge of the data. With

this knowledge, the inconsistency in the labeling of the training samples can be detected

and novelty (clusters that are not distinguished by the training labels) may be discovered.

Therefore, it is possible to improve the capability of a supervised learning algorithm by

incorporating knowledge previously learned through an unsupervised method.

There are two types of unsupervised learning, parametric and non-parametric. Para-
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metric methods, which use prior assumptions on the data properties, have major limita-

tions when dealing with highly structured data. For example, the most famous clustering

method, k-means, favors (hyper-) spherical cluster shapesand requires a predefined number

of clusters. Another well-known parametric method is mixture modeling, which custom-

arily assumes the probability density functions (pdf) as Gaussian kernels. Real world data,

however, often contain non-spherical and non-Gaussian clusters, hence these two methods

can yield incorrect results. In addition, estimation of parameters in parametric modeling

becomes problematic for high-dimensional data because therequirement for excessively

large number of data samples due to the high dimensionality is often unmet. Conversely,

non-parametric methods are applicable regardless of the complexity of the manifold struc-

ture and regardless of the dimensionality of the data. For real problems where the right

models and parameters for the data at hand are often unavailable, non-parametric methods

can often achieve better results than parametric methods. In this thesis, we focus on the

Self-Organizing Map (SOM), which is a powerful non-parametric unsupervised learning

paradigm.

1.3 The Self-Organizing Map (SOM), a powerful unsu-

pervised learning paradigm

The Self-Organizing Map (SOM) [5] was invented by Kohonen inthe 1980s. The SOM

is a specific artificial neural network paradigm. Anartificial neural networkis a modeling

approach inspired by biological neural networks. In an artificial neural network, a large

number of artificial neurons are connected by weights in a certain topology. The artificial

neurons usually perform relatively simple functions, suchas computing a weighted sum of

its incoming signals. The connection weights between the artificial neurons are adapted
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iteratively through learning. Different paradigms of artificial neural networks differ in any

of the three essential aspects, i.e., the network topology,the function performed by the

processing units and the learning rule that guides the adaptation of the weights. The detailed

network topology and learning mechanism of the SOM will be discussed in Section 2.1. We

will call artificial neural networks as neural networks, andcall artificial neurons as neurons

in the thesis.

The SOM is also an adaptive vector quantization (VQ) algorithm. The purpose of vec-

tor quantization is to represent a data set with a relativelysmall set ofprototypes[6, 7].

The quantization process facilitates data compression in information transmission and stor-

age. When a proper representation of similarity relationships between the prototypes is

provided, the quantization prototypes can also be used for clustering [5, 8, 9]. The clus-

tering performance, of course, is dependent on the goodnessof the quantization algorithm,

as well as on the effectiveness of the representation of similarities of the prototypes. The

SOM is exceptional among adaptive vector quantizers in thissense because it not only

places its prototypes in the data space to accurately sense the manifold structure but also

organizes the SOM prototypes according to their similarities on a rigid (customarily 1- or

2-dimensional) lattice simultaneously. The combination of these two capabilities make the

SOM powerful in faithful representation of the complicatedstructure of real world data.

The representation of manifold structure on a rigid latticeis an indispensable component

of the SOM, i.e., topology preservation, which has a profound significance in biological

systems.

Topology preserving (or topographic) maps are not artifacts; rather, they are widely

observed in biological nervous systems, such as the retinotopic map in the visual cortex

[10, 11], the somatotopic map in the somatosensory cortex [12], and the tonotopic map in

the auditory cortex [13]. The cells on the cortex are topographically organized according
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Figure 1.2: Examples of topographic maps in brains. Figuresreproduced from Fig. 2.8 (page 100) and
Fig. 2.9 (page 101) in [5], with kind permission of both Springer Science+Business Media and T. Kohonen.
Left : The somatotopic map. The organization of the cells on the cortex reflects the spatial order of the body
locations where the sensory signals are collected.Right: The tonotopic map (of cat). The cells that respond
to acoustic signals are organized according to the frequencies of the tones perceived.

to the similarities of the signal patterns the brain receives. For example, sensory stimuli are

organized in the somatotopic map according to the differentlocations of the body where

the signals are received (Fig. 1.2, left). Sound signals areorganized in the tonotopic map

with respect to the acoustic frequencies of tones perceived(Fig. 1.2, right). This topology

preservation property plays an important role in neural information storage, retrieval and

processing. In 1973, von der Malsburg introduced a self-organizing process to model the

local ordering of visual cortical cells [14]. His work pioneered the computer simulation of

self-organization and a few related studies followed [15, 16]. In the early 1980s, a clear and

intuitive algorithm, the Self-Organizing Map (SOM or Kohonen’s SOM), was proposed by

Kohonen [5], capturing much attention. The essential ingredient of the SOM algorithm is a

neighborhood function, which gives rise to a global order inthe map by local interactions

between neighboring neurons.

Because of its appealing and advantageous properties, the SOM algorithm has been ex-

tensively studied and widely used by researchers and practitioners across a broad range of

fields, including engineering, science, medicine, biology, economics [17, 18]. Up to now,

there have been more than 7000 publications of its successful applications (http://www.
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cis.hut.fi/research/som-bibl/). Some examples are text and web mining, hyperspectral im-

age analysis, and microarray data analysis. Moreover, the SOM has been shown especially

powerful in the learning of complicated data and the information extraction from these

data in comparison to more traditional methods [4]. In this thesis work, we focus on the

applications to hyperspectral imagery, or high-dimensional spectra without spatial context.

1.4 Contributions of this work to learning with SOMs

The SOM is a powerful tool for the analysis of high-dimensional complicated data. How-

ever, there are still open problems such as the evaluation oftopology preservation in the

map, cluster extraction from a learned SOM, optimized use ofthe SOM’s knowledge in

supervised learning of latent variables from high-dimensional data. Due to incomplete an-

swers to these problems, the power of the SOM is not fully exploited in many situations.

The goal of this work is to improve the learning of manifold structure with SOMs for pre-

cise information extraction. Our contributions include the following:

1. Development of a suite of advanced measures of topology preservation for SOMs;

2. Development of an interactive visualization tool to monitor topology preservation in

SOMs;

3. Proposition of a novel SOM-hybrid supervised architecture, “Conjoined Twins”, that

optimizes the inference of latent variables from high-dimensional data;

4. Application of the “Conjoined Twins” to the inference of surface physical parameters

from high-resolution Near-Infrared spectra of ices of the Pluto-Charon system.

A brief summary of each contribution is given in Sections 1.4.1–1.4.4. Detailed elaboration

follows in Chapters 3–4.
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1.4.1 Advancing the measures of topology preservation

We propose refined measures of topology preservation based on the Topographic Func-

tion (TF ), introduced by Villmannet al. in 1997 [19]. TheTF is better than other existing

measures because it adopts an advanced graph distance metric, the induced Delaunay graph

defined by Martinetz and Schulten in [20], to determine the neighboring relationships of

the SOM prototypes in the data space. We find that a differential form of theTF provides

a clearer view of topology violations (defects in topology preservation) than theTF for

different scopes of violations in the map, therefore propose the Differential Topographic

Function (DTF ) as an alternative. In addition, we explicitly incorporatean often under-

utilized piece of information, the detailed data distribution around the SOM prototypes,

into theDTF to distinguish the severe violations that result from improper or immature

learning from the unimportant ones produced by noise. TheTF and theDTF are insuffi-

cient in this sense. We call the new measure Weighted Differential Topographic Function

(WDTF ), which is a more precise evaluation of the quality of topology violations than the

TF and theDTF .

1.4.2 An interactive visualization tool to monitor topology preserva-

tion in SOMs

While the measures provide a summary of the quality of topology preservation in SOMs,

it is helpful for the user to visually locate the problematicareas in the map. Motivated

by this idea, we develop an interactive tool we call TopoView, for visual inspection of

the topology preservation in the SOM lattice. TopoView provides a set of thresholding

abilities such that different subsets of violations meaningful for different applications can

be inspected. Together with the newly proposed measures, TopoView can help diagnose

the cause and the severity of the topology violations in the SOM.
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1.4.3 A novel SOM-hybrid supervised architecture, “Conjoined Twins”,

that optimizes the inference of latent variables from high-dimensional

data

An SOM-hybrid supervised architecture is a supervised neural network architecture, where

an SOM is its hidden layer (hence the term “SOM-hybrid”). In the architecture, the layer

above the SOM hidden layer uses the responses of the SOM neurons (not the SOM proto-

types) to help with the extraction of information from the data. In the most frequent setup,

only the strongest response from the SOM neurons is used (this is called Winner-Takes-

All, or WTA). A two-layer SOM-hybrid supervised architecture, which contains an SOM

hidden layer and an output layer, has been shown successful for classification problems

in remote sensing applications [21, 22]. This architecturecan also be used for inference

of latent variables. However, we find that the WTA mode can severely limit the inference

capability. We propose to use the firstk (k > 1) strong responses of the SOM neurons

(k-Winners-Take-All, orkWTA) such that we are able to infer certain latent variables bet-

ter. Moreover, to solve the dilemma that different latent variables can be best learned with

different values ofk, we propose a new architecture we call “Conjoined Twins”, where

multiple copies of the output layer (multiple “heads”) share the SOM (“body”) and prefer-

entially use different values ofk for the learning of different latent variables. In addition,

we automate the determination ofk for different latent variables based on the statistics of

the SOM.
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1.4.4 Application of the “Conjoined Twins” to the inferenceof surface

physical parameters from Near-Infrared spectra of ices of the

Pluto-Charon system

We apply the innovative Conjoined Twins architecture to theinference of surface physical

parameters from Near-Infrared spectra of ices in the Pluto-Charon system. The physical

parameters can be nonlinearly dependent on each other and have much subtler influence on

the spectral shapes than the chemical composition (different ice species) does. The accu-

rate inference of the physical parameters is thus difficult.The Conjoined Twins has been

shown effective for the inference of two physical parameters, temperature and grain size,

from spectra of crystalline H2O ice with accuracies useful for scientific studies of diurnal

temperature changes on Pluto and Charon.

The new measures of topology preservation, the interactivetool, TopoView, and the novel

SOM-hybrid supervised architecture, the Conjoined Twins,proposed in the thesis are im-

plemented, tested and documented by the author. See Appendix B for brief introductions

of the software implementation of these new tools.

1.5 Outline of the thesis

Chapter 2 provides introductions to the basic concepts and customary procedures that will

be used in the development and demonstration of new ideas andtools in the following chap-

ters. We first introduce the SOM algorithm, including Kohonen’s original version [5] and

the Conscience variant [23]. We then review the important property of the SOM, namely

topology preservation, and explain how topology preservation helps with the discovery of

the manifold structure. Through two 2-dimensional data sets, we demonstrate the need for
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advanced similarity metrics to assist the correct interpretation of the structure of data from

the SOM, and show the usefulness of two such similarity metrics, the induced Delaunay

graph [20] and the connectivity matrix [24], proposed in previous research.

In Chapter 3, we first address the need for informative tools to evaluate or monitor

topology preservation in SOMs. In the review of existing measures, we discuss their pros

and cons to justify our choice of the distance metrics and theformula used in the new

measures we propose. Through a two-step improvement to the Topographic Function (TF ),

we propose the Weighted Differential Topographic Function(WDTF ), a clearer and more

accurate representation of the quality of topology preservation than theTF . Next, we

introduce the interactive monitoring tool, TopoView, and describe several meaningful ways

to filter out unimportant topology violations. At the end, wedemonstrate the combined use

of theWDTF and TopoView through a simple 2-dimensional data set, a 194-dimensional

real hyperspectral image of a volcanic field, and a 210-dimensional synthetic hyperspectral

image of an urban area.

In Chapter 4 we start by addressing the challenges in the inference of latent variables

from complicated data. To approach this inference problem we focus on an existing SOM-

hybrid supervised neural architecture. We describe its network structure and the so-called

winner-takes-all (WTA) mode, which is the customary use of the SOM’s knowledge in the

supervised learning by this architecture. In the WTA mode, the output layer only uses the

strongest response of the SOM neurons. After discussing theeffects of the WTA mode,

we generalize the method such that multiple (k) strongest responses of the SOM neurons

can participate in the supervised learning, which we callk-winners-take-all (kWTA) mode.

Through application to the inference of surface physical parameters from Near-Infrared

spectra of ices in the Pluto-Charon system, we find that different values ofk can be benefi-

cial to the inference of different latent variables. This motivates a novel neural architecture
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we call Conjoined Twins, in which we allow the simultaneous use of different values ofk

as optimized for different latent variables. We describe the concept of the Conjoined Twins

and show the effectiveness of the approach for inferring temperature and grain size from

the high-dimensional spectra of crystalline water ice.

Chapter 5 summarizes the thesis work and discusses future directions.



Chapter 2

The Self-Organizing Map and its use for
structure detection

2.1 The Self-Organizing Map (SOM) algorithm

2.1.1 The Kohonen SOM algorithm

The Self-Organizing Map (SOM) is a neural learning algorithm that maps ad-dimensional

data manifoldM ⊂ Rd to a low-dimensional latticeA of N neurons. Data samples mapped

to an SOM neuroni ∈ A constitute thereceptive field, RFi, of that neuron. The mapping

is formed in a topologically ordered way so that the structure of the high-dimensional data

manifold is correctly manifested in the low dimensional lattice.

The following describes the fundamental network topology and the algorithm of the

SOM. The most popular choice of the lattice structure is a 2-dimensional rectangular lattice,

as illustrated in Fig. 2.1. (Another popular lattice type ishexagonal lattice, for which we

will show an example at the end of this chapter.) Each neuroni ∈ A has ad-dimensional

weight vector,wi, assigned to it. The SOM weight vectors are iteratively adapted by an

unsupervised learning algorithm proposed by Kohonen [5]. Each learning iteration consists

of two steps:competitionandsynaptic adaptation, as described in eqs. 2.1 and 2.2. In the

competition step, an SOM neuron,c, is selected as the SOM winner or best matching unit

14
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(BMU) for an input vectorx randomly chosen fromM such that

‖ wc − x ‖2≤‖ wj − x ‖2 ∀j ∈ A (2.1)

In the synaptic adaptation step, all weight vectors,wj , are updated as

w
new
j = w

old
j + α(t)hc,j(t)(x −w

old
j ) (2.2)

whereα(t) is a learning rate that decreases with timet. hc,j(t) is a neighborhood function

that defines how much an SOM neuronj should learn from the inputx, for which the BMU

is neuronc. The neighborhood function shows thecooperation between the BMU and the

rest of the neurons in the latticeA. hc,j(t) is commonly chosen as a Gaussian kernel

in the Kohonen SOM (eq. 2.3). Other frequent choices can be a uniformly distributed

spherical kernel (eq. 2.4), or, for rectangular SOM lattices, a uniformly distributed box

kernel (eq. 2.5), centered over the BMU. In the formulae of the neighborhood functions,rj

denotes the coordinates of neuronj in the lattice. The neighborhood size (or radius),σ(t),

needs to be large at the beginning and diminish with timet, to help avoid global distortions

in the map (latticeA).

Gaussian kernel: hc,j(t) = exp(
−‖rj−rc‖2

E

2σ(t)2
) (2.3)

Uniformly distributed spherical kernel: hc,j(t) =

{
1 ‖rj − rc‖E ≤ σ(t)

0 ‖rj − rc‖E > σ(t)
(2.4)

Uniformly distributed box kernel: hc,j(t) =

{
1 ‖rj − rc‖max ≤ σ(t)

0 ‖rj − rc‖max > σ(t)
(2.5)

‖ · ‖E represents the Euclidean norm.‖ · ‖max represents the maximum norm (or city block
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Figure 2.1: The SOM places a given set of prototypes optimally in the data space to represent a data manifold,
and simultaneously organizes the prototypes in a rigid lattice according to their similarities. This figure
provides an example of a 2-dimensional rectangular SOMA learned with ad-dimensional data manifoldM .
Circles in the SOM lattice are neurons. Diamonds are the learned SOM prototypes projected back into the
data space. Blue dashed arrows relate some prototypes to their associated SOM neurons. Magenta dashed
lines delineate the Voronoi cells (or receptive fields) of some SOM prototypes. Each prototype is the centroid
of its Voronoi cell. When the SOM converges, it forms a topologically ordered mapping betweenM and
A. This is illustrated for the prototypewi (solid black diamond). 6 prototypes (solid grey diamonds) whose
Voronoi cells share an edge withwi’s Voronoi cell are neighbors ofwi in the data space. The respective 6
neurons (solid grey circles) are neighbors of the neuroni (solid black circle) in the latticeA. In addition, this
figure also shows the effects of two neighborhood functions,a uniformly distributed spherical kernel (eq. 2.4)
and a uniformly distributed box kernel (eq. 2.5), on SOM learning. The spherical kernel with neighborhood
sizeσ(t) = 1 allows the BMUc (red circle) and 4 other neurons (pink circles with “+” inside) in the dashed
circle to adapt their prototypes. The box kernel withσ(t) = 1 allows the BMUc as well as 8 other neurons
(pink circles) in the dashed box to adapt their prototypes.

distance). For twod-dimensional vectorsa = [a1, a2, ..., ad] andb = [b1, b2, ..., bd], these

two norms are defined by eq. 2.6 and eq. 2.7, respectively.

Euclidean norm: ‖a− b‖E = (
d∑

i=1

|ai − bi|
2)

1
2 a,b ∈ Rd (2.6)

Maximum norm: ‖a − b‖max =
d

max
i=1

|ai − bi| a,b ∈ Rd (2.7)

Fig. 2.1 illustrates the effects of two neighborhood functions, the uniformly distributed

spherical kernel and the uniformly distributed box kernel functions, both with neighbor-

hood sizeσ(t) = 1, on the synaptic adaptation phase of SOM learning. The uniformly
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distributed spherical kernel withσ(t) = 1 defines a round neighborhood (in the dashed

circle), around the BMU (red circle), in the 2-dimensional SOM lattice A. This means

in this specific learning step, in addition to the BMU, 4 otherneurons (pink circles with

“+” inside) are simultaneously activated to update their weight vectors. The uniformly

distributed box kernel withσ(t) = 1 defines a square neighborhood (in the dashed box),

inside of which 8 pink neurons are activated together with the BMU.

After the SOM converges, i.e., the weight vectors no longer change significantly, the

weight vectorswi become the vector quantization prototypes of the data manifold M . We

will refer to the SOM weight vectors as SOM prototypes from now on. The data space

can be partitioned with respect to the SOM prototypes as in eq. 2.8. This is the so-called

Voronoi tessellationV . The partitionsVi are calledVoronoi cells, where the prototypeswi

are the centroids.

Vi = {x ∈ Rd : ‖x −wi‖ ≤ ‖x − wj‖ ∀ j ∈ A} i ∈ A (2.8)

Note that the definition is given in the context of the SOM here, but Voronoi tessellation

can be done with any set of prototypes, obtained in any way.

Voronoi cellsVi coincide withRFi, the receptive fields of neuronsi (or receptive fields

of prototypeswi). The prototypewi represents all data samples in its Voronoi cellVi and

the neuroni is the BMU of those data samples. The number of data samples mapped to

a neuroni is called themapping densityor thesize of the receptive field|RFi| of neuron

i. The neurons with zero mapping density are calledempty neurons, and the prototypes

assigned to them are calledempty prototypes.

Ideally the SOM algorithm forms a topology preserving mapping between the data

manifoldM and the SOM latticeA. The mapping istopology preservingwhen the map-

ping in both directions,A → M andM → A, is neighborhood preserving. This means that
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adjacent neurons in the latticeA should represent nearby data samples in the data space,

and nearby data samples should map to adjacent neurons or to the same neuron inA. Since

the SOM is a vector quantization algorithm, topology preservation can be interpreted on

the level of prototypes as follows. The prototypes that belong to neuronsadjacent in the

latticeA should also beadjacent in the data manifoldM , and vice versa. In this definition,

the adjacency relationships between neurons or prototypesdepend on the distance (similar-

ity) metric used. The distances between SOM neurons in the lattice are usually computed

by the Euclidean norm (eq. 2.6). Two neuronsi andj areadjacentor immediate lattice

neighborswhen‖ri − rj‖E = 1. For a 2-dimensional rectangular SOM lattice shown in

Fig. 2.1, this definition results in 4 immediate neighbors (pink circles with “+” inside) for

the neuronc (red circle). A more common distance metric used for a rectangular lattice

is the maximum norm (eq. 2.7). With this metric, neuronsi and j are defined asadja-

centor immediate lattice neighborswhen‖ri − rj‖max = 1. This results in 8 immediate

neighbors (pink circles) for the neuronc in a 2-dimensional rectangular lattice, as seen in

Fig. 2.1. In the thesis, maximum norm is the default distancemetric to determine imme-

diate lattice neighbors. From now on, when two prototypeswi andwj are assigned to

two neurons which are immediate neighbors in the SOM lattice, we will directly call these

two prototypesimmediate lattice neighborsor adjacent prototypes in the lattice. To talk

about topology preserving mapping, we also need to define theadjacency of prototypes

in the data space. Such definition was put forward by Martinetz and Schulten (1994) as

follows. Prototypes areadjacentor neighboringif their Voronoi cells share an edge, and

hence they are also calledVoronoi neighbors. For example, in Fig. 2.1, the prototypewi

(solid black diamond) has 6 adjacent prototypes (solid greydiamonds) in the data space.

With adjacency defined in both the lattice and the data space,we can now illustrate topol-

ogy preservation in a well organized SOM. The 6 prototypes neighboring prototypewi are
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associated with 6 grey neurons in the lattice. Blue dashed arrows help relate some proto-

types to their respective neurons. The 6 grey neurons are adjacent to the neuroni in the

latticeA. This means that the Voronoi neighbors of prototypewi are also its immediate

lattice neighbors. This topological ordering of the prototypes in the SOM lattice according

to their similarities in the data space mimics the organization of the brain cells on the cortex

according to the similarities between the signals receivedby these cells (Fig. 1.2).

2.1.2 The Conscience SOM variant

In this work we use the Conscience variant [23] of the original Kohonen’s algorithm for two

reasons. One is the ability of the Conscience algorithm to achieve equiprobablistic mapping

(also called maximum entropy mapping). This means each SOM prototype represents ap-

proximately equal number of data samples. The resulting SOMprovides the best possible

approximation of the datapdf with the given number of prototypes. Equiprobablistic map-

ping is also optimum for information transfer, for which theKohonen SOM is suboptimal.

The other advantage of using the Conscience algorithm is theeconomy of computation

compared to the Kohonen SOM, owing to the use of a fixed small neighborhood size for

hc,j(t) in eq. 2.2.

The Conscience algorithm achieves an equiprobablistic mapping through the addition

of a bias,bj for each neuronj, to the distance between the prototypewj and the input

vectorx, in the competition step. The BMUc is found such that

‖ wc − x ‖2 −bc ≤‖ wj − x ‖2 −bj ∀j ∈ A (2.9)

The biasbj is computed from the winning frequencypj of the neuronj.

bj = γ(t) × (1 − (N × pj)) (2.10)
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pj is updated in each iteration as

pnew
j = pold

j + β(t) × (δc,j − pold
j ) (2.11)

whereδc,j is the Kronecker delta,β(t) andγ(t) are user-specified parameters. As a result,

a neuron that wins with larger than average frequency will bediscouraged from winning

by an increase in its bias. This added heuristic “conscience” thus helps achieve equiproba-

blistic mapping.

With the added biases, the Conscience algorithm can use a fixed and small neighbor-

hood for the synaptic adaptation step (eq. 2.2) in the learning. An example of such neigh-

borhood function used for a rectangular SOM lattice is the uniformly distributed box func-

tion withσ(t) ≡ 1 (eq. 2.5). In a 2-dimensional rectangular SOM lattice, thisneighborhood

function will activate 8 more neurons (pink circles) in addition to the BMU (red circle) to

update their prototypes (Fig. 2.1). The small neighborhoodsize significantly lightens the

overall computational burden in spite of the increased number of operations in eqs. 2.9–

2.11.

2.2 Structure detection from learned Self-Organizing Maps

When an SOM has converged, we may detect the manifold structure from the learned SOM.

In this thesis work, structure detection mainly refers to identification of clusters because in

our applications most of the scientific goals are related to the finding of meaningful clusters

in the data. However, the reader should be aware that the SOM is an algorithm that learns

the manifold structure regardless of whether the data has clusters in it. For instance, an

SOM can perfectly learn a manifold with uniform distribution, in which case, naturally, no

cluster will be detected from the SOM.
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In this section we will explain the relation between topology preservation and faithful

representation of manifold structure, describe the visualization methods that help with in-

teractive cluster extraction from the SOM, and introduce two advanced distance metrics

that assist correct understanding of the manifold structure from the SOM.

2.2.1 Topology preservation is essential for structure detection

The essence of unsupervised learning is the grasp of the relationships among data samples.

Topology is one of such relationships, expressing the neighboring relationships in the data

manifold. The SOM aims to preserve the topology of a high-dimensional data manifold

in a low-dimensional lattice, which makes it unique among vector quantization algorithms.

Fig. 2.2 provides an example of a topology preserving map (left) and an example of a

“twisted” map (right), which is “twisted” and does not preserve the topology of the data.

Both SOMs were trained with a data set drawn from a 2-dimensional uniform distribution

in a square area. In Fig. 2.2, the learned SOM prototypes are plotted as circles in the

data space. To make the lattice structure easy to see, we connect two prototypes if their

respective neurons are adjacent in the SOM lattice, by the Euclidean norm criterion‖·‖E =

1. In Fig. 2.2, left, the topology of the SOM lattice coincideswith the topology of the data

manifold, which indicates topology preservation. The SOM in Fig. 2.2, right, however,

has a “twist”, which can lead to an incorrect detection of twoseparate clusters from the

SOM while this data set in fact has no clusters in its structure. “Twists” in the map that

prevent topology preservation are calledtopology violations. Since topology preservation

is defined as neighborhood preservation in both mapping directions, there are two types

of topology violations, forward and backward [19].Forward topology violationsoccur

when two prototypes are Voronoi neighbors in the data space while they are not immediate

lattice neighbors in the SOM.Backward topology violationsoccur when two prototypes are
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immediate lattice neighbors in the SOM, while they are not Voronoi neighbors in the data

space.

Figure 2.2: Prototypes of 10×10 SOMs (circles), mapped to data space after learning converged. The data set
learned by the SOMs is generated from a uniform distributionin a square area. Two prototypes are connected
if they are adjacent in the SOM lattice.Left : Topology is preserved in the SOM.Right: The SOM is twisted
in the data space. Topology is not preserved.

Topology preservation in the SOM is essential for correct detection of the manifold

structure. A topology-preserving map can be viewed as an ordered display of data. As-

suming perfect topology preservation, the adjacency relationships between the neurons in

the SOM lattice faithfully reflect the adjacency between their respective prototypes in the

data space. However, topology preservation alone is not sufficient for detection of struc-

ture because the lattice distances between the prototypes do not reflect the dissimilarities

between them. Thus, similarity metrics and visualization schemes to display the similarity

relationships across the prototypes on the lattice are important tools for structure detection

from the SOM.
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2.2.2 Structure detection with (modified) U-matrix and advanced sim-

ilarity metrics

U-matrix and mU-matrix

The U-matrix (unified distance matrix), proposed by Ultsch and Siemon [25] is a distance

matrix widely used for visualization of the dissimilarity relationships between SOM proto-

types on the SOM lattice. For a given prototype, its Euclidean distances to its immediate

lattice neighbors are computed and averaged. To visualize this average distance to immedi-

ate lattice neighbors, the SOM is often visualized as a lattice of grid cells, which represent

neurons, as seen in Fig. 2.3, middle and right. The average distance of the prototype to

its lattice neighbors can be expressed as a grey scale intensity, of the cell of that proto-

type, proportional to the average distance. (No example of U-matrix visualization is shown

here.) The U-matrix visualization and its variants [25, 26]have been shown effective for

relatively large SOMs learned with small data sets that havea low number of clusters, but

when a small SOM is used to learn a large data set containing many clusters, the averaging

of the distances can smear the cluster boundaries and cause the loss of small clusters.

We use a high-resolution version of the U-matrix, the modified U-matrix (mU-matrix),

introduced by Merényi in the 1990s, and described in [27]. The mU-matrix removes the

averaging of the distances in the original U-matrix. It shows the distances of a given proto-

type to all of its immediate lattice neighbors separately as“fences” on the border of the grid

cells including the diagonals. Fig. 2.3, middle and right, gives an example of the mU-matrix

visualization for a rectangular SOM lattice, showing the distances from each prototype to

its 8 immediate lattice neighbors. This representation also leaves room for displaying ad-

ditional information in the grid cells ([21, 28]). One example of such information can be

the mapping density (the number of data samples mapped to each neuron). Fig. 2.3, mid-

dle, is an example of visualizing both the mU-matrix and the mapping density. The data
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SOM in the data space mU-matrix mU-matrix
& mapping density & known class labels

Figure 2.3: Possible visualizations of a 6×6 SOM learned with a 2-dimensional “exclamation mark” data
set. In the middle and right, the SOM is shown as a lattice of grid cells, each of which represents an SOM
neuron. Left : Data samples are shown as small green and orange dots. The colors represent two classes,
the upper and lower parts of this “exclamation mark” data manifold, respectively. Open circles are the SOM
prototypes projected back into the data space. The prototypes are connected according to the SOM lattice
structure.Middle : The SOM overlain with the mU-matrix, which shows the distances, in the data space,
of each prototype to its immediate lattice neighbors, as “fences” on the borders of the grid cells. The grey
scale intensities of the “fences” are proportional to the distances they represent. White is large distance.
The intensities of red, of the grid cell of each neuron, indicate the mapping density (number of data samples
mapped to each neuron). The conspicuously high fences outlined by the yellow lines correspond to the
discontinuity between the two clusters in the data. This canbe seen if compared with the SOM on the right,
which is overlain with the known class labels. The other relatively high fences, such as those in cyan ovals,
result from twists in the map, which can be seen in Fig. 2.4.Right: The SOM overlain with the mU-matrix
and the known class labels (colors).

learned by the SOM is a 2-dimensional “exclamation mark” data set (small filled dots in

Fig. 2.3, left). The mapping density of each neuron is shown as proportional intensity of

monochrome red in its grid cell in Fig. 2.3, middle. When class labels are available, we can

also overlay this piece of information on the SOM. For example, each neuron (cell) can be

color-coded to the majority class label of the samples in itsreceptive field. The overlain

known class labels can help compare the SOM’s knowledge withtruth. The class labels, of

course, are not used in SOM learning. For example, we have thedata labels for the “excla-

mation mark” data set, as seen in Fig. 2.3, left. Two different class labels, color coded as
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green and orange, represent data samples in the upper and lower parts of the “exclamation

mark”, respectively. The SOM in Fig. 2.3, right, shows theseknown class labels as well as

the mU-matrix. With the overlain class labels, we can see twoclearly separated clusters in

the SOM, an orange cluster with 7 prototypes and a green cluster with 29 prototypes. This

cluster structure coincides with what we can observe from the mU-matrix visualization in

Fig. 2.3, middle, where a strong “fence”, outlined by yellowlines, separates the prototypes

in the upper right corner from the rest. This shows that the SOM has successfully learned

the cluster structure.

SOM lattice SOM in the data space

A B

C

A

BC

Figure 2.4: Visualization of the SOM learned with the 2-dimensional “exclamation mark” data set (grey
filled dots). SOM prototypes are shown as circles, connectedaccording to the lattice structure and colored
according to their positions in the lattice. The coloring ofthe prototypes makes it easy to relate the locations
of the prototypes across the lattice space and the data space. Left : The SOM prototypes are visualized in the
lattice space.Right: The SOM prototypes are projected back into the data space. The Voronoi tessellation
of the data space with respect to the prototypes are shown as magenta lines. Between the prototypes A and
B, there is a backward topology violation, because A and B areimmediate lattice neighbors but they are not
Voronoi neighbors in the data space. Between the prototypesB and C, there is a forward topology violation,
because B and C are Voronoi neighbors in the data space while they are not immediate lattice neighbors.

The use of (m)U-matrix for cluster identification, however,is nontrivial for two reasons.

First, the determination of cluster boundaries based on “fences” often relies on interactive

thresholding of the fence values. Second, the procedure is based on the assumption of

perfect topology preservation, while topology violationsare not unusual in real applica-
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tions. To illustrate these two difficulties, we use the same “exclamation mark” data set. In

Fig. 2.3, middle, besides the fences which indicate the discontinuity in the manifold, we

also see several other relatively high fences within the twoclusters, such as those in cyan

ovals. Expert knowledge is needed here to inspect the prototypes to determine whether

they are different enough (fences are high enough) to form meaningful subclusters. An-

other possible cause of the high fences can be topology violations in the map. Plotting the

SOM prototypes in the data space and connecting them according the lattice structure, as

in Fig. 2.3, left, is helpful for capturing the twists in the map. To make the twists in the

map easier to see, we color the prototypes according to theirrelative lattice locations, in

Fig. 2.4. We find that the square (6×6) map stretches and folds itself to some extent to

fit in the elongated manifold shape. An example of stretchingcan be seen between two

immediate lattice neighbors A and B (Fig. 2.4, left), which are forced to be apart, i.e., non-

adjacent, in the data space (Fig. 2.4, right). This indicates a backward topology violation

between A and B. An example of folding can be seen in the bottomof the upper part of the

“exclamation mark”, where an orange and a yellow string of prototypes entangle in the data

space (Fig. 2.4, right) while they are well separated in the lattice (Fig. 2.4, left). This fold-

ing causes forward violations, such as between prototypes Band C. B and C are Voronoi

neighbors as their Voronoi cells share a common border, as seen on the right, but they are

not immediate lattice neighbors, as seen on the left. The inspection of the SOM prototypes

in the data space successfully helps diagnose topology violations for this case, but this

strategy is restricted to 1-, 2- and 3-dimensional data. Methods to compare the neighboring

relationships between the prototypes in the data space and in the lattice, regardless of the

data dimensionality, are desirable, so that we can understand the manifold structure and

find topology violations from SOMs learned with high-dimensional data. Better similarity

metrics have been proposed in [20, 24] for more accurate structure detection. These will
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be discussed next.

Induced Delaunay graph

The dual of the Voronoi tessellation (eq. 2.8) is theDelaunay graph, denoted byD. The

Delaunay graph expresses the adjacency of the Voronoi cells, thus it can be represented by

a binary adjacency matrix. For an SOM latticeA with N prototypes, the binary adjacency

matrix is of sizeN × N , and can be written as:

D(i, j) =






1 Vi andVj share a common border

0 otherwise
i, j ∈ A (2.12)

D(i, j) denotes an edge of the graph whose vertices are the prototypeswi andwj . D(i, j) =

1 means thatwi andwj are connected by an edge. An illustration of the Voronoi tessel-

lation and the Delaunay graph is given for the SOM learned with the “exclamation mark”

data set in Fig. 2.5, left.

Martinetz and Schulten pointed out in their paper [20] that the Delaunay graph could

not correctly represent the connectedness in the data manifold. (This is confirmed by the

“exclamation mark” data set in Fig 2.5, left. The discontinuity between the upper and lower

parts of the manifold is not shown by the Delaunay graph.) Martinetz and Schulten there-

fore introduced the notion of theinduced Voronoi tessellatioñV , and its dual, theinduced

Delaunay graphD̃ in [20]. The induced Voronoi tessellatioñV (the induced Delaunay

graphD̃) is the intersection of the regular Voronoi tessellationV (the regular Delaunay

graphD) and the data manifoldM . By incorporating the manifold shape into its definition,

Ṽ (D̃) can faithfully represent the connectedness in the manifold regardless of the com-

plexity of the manifold shape. Applying the theory to a set ofN learned SOM prototypes,

we obtainN induced Voronoi cells. The induced Voronoi cell of the prototypewi, Ṽi, is
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defined by

Ṽi = {x ∈ M : ‖x − wi‖ ≤ ‖x −wj‖ ∀ j ∈ A} i ∈ A (2.13)

whereA is the SOM lattice. The induced Delaunay graphD̃ is a set of edges connecting

the prototypes whose induced Voronoi cells share a common border, as in eq. 2.14.

D̃(i, j) =






1 Ṽi andṼj share a common border

0 otherwise
i, j ∈ A (2.14)

D̃(i, j) = 1 indicates the prototypeswi andwj are connected by an edge in the induced

Delaunay graph. Martinetz and Schulten also showed that, under certain circumstances,

D̃ can be effectively constructed through Hebbian learning [29], in which the synaptic

weight between two neurons are reinforced if the activationof one neuron fires the other

repeatedly. By the Hebbian learning, aconnection(an edge) between two prototypes is

constructed if these two prototypes form a pair of BMU and second BMU for at least one

data sample. For an SOM withN prototypes,̃D then can be constructed by

D̃(i, j) =





1 wi andwj form a pair of BMU and second BMU

for at least one data sample.

0 otherwise

i, j ∈ A (2.15)

Fig. 2.5, middle, provides an illustrations of the induced DelaunayD̃, with the SOM pro-

totypes that learned the “exclamation mark” data set.D̃ makes the discontinuity in the data

obvious with a disconnect in the graph. Since the induced Delaunay graphD̃ is a more

accurate representation of the manifold structure than theregular Delaunay graphD [20],

it is used to define the adjacency between the prototypes. Twoprototypes,wi andwj , are
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Delaunay graph induced Delaunay graph induced Delaunay graph
(yellow lines) on the SOM

Figure 2.5: Illustration of Delaunay graph and induced Delaunay graph with the 2-dimensional “exclamation
mark” data set (gray filled dots). Open circles represent the36 learned SOM prototypes projected back into
the data space. The prototypes are the centroids of the Voronoi cells, which are delineated by dashed magenta
lines. Left : The Delaunay graph (black lines) does not help separate thetwo disconnected parts in the data
set.Middle : The induced Delaunay graph (black lines) highlights the discontinuity in the manifold.Right:
The induced Delaunay graph (yellow lines) drawn on the SOM, which is also overlain with the mU-matrix
and the mapping density as in Fig. 2.3, middle. An example of abackward and a forward topology violation
can be seen between the prototypes A and B, and between the prototypes B and C, respectively.

defined asadjacent, neighboring, connectedprototypes, orVoronoi neighborsin the data

space wheñD(i, j) = 1 [20].

For data sets with no more than 3 dimensions, we can plot the induced Delaunay graph

D̃ in the data space to inspect the connectedness between the prototypes as in Fig. 2.5, mid-

dle. For data sets with more than 3 dimensions, it is impossible to visualizeD̃ in the data

space, but we can drapẽD over the SOM by connecting grid cells with an edge when they

represent two connected prototypes inD̃. Fig. 2.5, right, provides an example by show-

ing D̃ as yellow lines on the SOM. With̃D overlain on the SOM, the topology violations,

i.e., the inconsistency in the neighboring relationships between the prototypes across the

lattice spaceA and the manifold spaceM , are visible. For example, in Fig. 2.5, right, the

lack of connection between the prototypes A and B, which are immediate lattice neigh-
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bors, indicates a backward topology violation. The connection between the prototypes B

and C, which are not immediate lattice neighbors, indicatesa forward topology violation.

These observations agree with what we found by inspecting the SOM in the data space, in

Fig. 2.4. This idea of overlaying the SOM lattice with the induced Delaunay graph was

proposed by Taşdemir and Merényi in [30]. Here it enables the development of a versatile

interactive tool, TopoView, which is one contribution of this work and will be described in

Section 3.4. The comparison of the topologies defined byD̃ andA was developed into a

measure of topology violation, the Topographic Function (TF ), by Villmann et al. [19].

We improve theTF to more refined measures, as will be discussed in Section 3.3.

Connectivity matrix ( CONN matrix)

In the induced Delaunay graph̃D, an edge can be established between two prototypes by

even a single data sample that selects these two prototypes as the BMU and the second

BMU. As a result, noise or outliers in the data can easily obscure the discontinuities in

the manifold structure. This situation is illustrated in Fig. 2.6 through the 2-dimensional

“Clown” data set created by Vesanto and Alhoniemi in [31]. Asseen in Fig. 2.6, top

left, this data set has clusters of different sizes, shapes,and densities, to mimic a clown’s

face. The wide variation in the statistical properties of the clusters as well as overlaps

between the clusters make the extraction of structure difficult, especially the extraction (or

separation) of the three small subclusters in the left eye. A17×19 hexagonal SOM was

used to learn this data set by the authors of [31]. In Fig. 2.6,both a variant of the U-matrix

visualization (bottom left) and the induced Delaunay graph(top middle) help separate the

coarse structure of this “Clown” data manifold (the two eyes, the nose, the mouth and the

body), but neither of them is able to delineate the three subclusers in the left eye. For more

precise structure identification (including distinction of noise from relevant information),
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Figure 2.6: Visualization of the 2-dimensional “Clown” data set from [31] and the 17×19 hexagonal SOM
learned with it. Solid dots are data samples. Open circles and crosses are non-empty and empty prototypes,
respectively. Top middle, top right, bottom left and bottommiddle are reproduced from [24], with kind
permissions of IEEE and the authors, K. Taşdemir and E. Mer´enyi. Top left: The 2-dimensional “Clown”
data set from [31].Top middle: The induced Delaunay graph (black lines) visualized in the data space
highlights most of the discontinuities in the manifold structure, which are not delineated by the Delaunay
graph (gray lines).Top right: TheCONN matrix, visualized in the data space, make detailed structures
(e.g., the three subclusters in the left eye) emerge. Part ofthe clown’s body, in the dashed square, is magnified
in the bottom right.Bottom left: A variant of the U-matrix visualization of the SOM. The SOM neurons are
shown as hexagons. The grey scale intensity of the additional hexagon between each pair of neurons adjacent
in the lattice indicates the Euclidean distance, in the dataspace, between the two respective prototypes. A
darker gray indicates greater dissimilarity. This visualization delineates the coarse cluster structure.Bottom
middle: The CONN matrix drawn on the SOM lattice separates the large clusters, and also makes the
three subclusters in the left eye (in the magenta triangle) emerge. Bottom right: Magnified detail in the
visualization of theCONN matrix from boxed area in the clown’s body (top right). The first to fourth
ranking Voronoi neighbors of prototype P1 are P2, P3, P4 and P5, which have strengths 5, 3, 2 and 1,
respectively. To make this easy to see, we color the data samples that contribute to each of the 4 connections,
the same as their corresponding connections.

Taşdemir and Merényi proposed a new idea in [30, 24]. They defined theconnectivity

matrix (CONN matrix), which assigns weights to the edges of the induced Delaunay graph

as in eq. 2.16, thereby emphasizing the connections that areestablished by a large number
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of samples.

CONN(i, j) = #{x ∈ M : wi andwj form a pair of BMU and second BMU forx}

(2.16)

CONN(i, j) is called theconnection strengthbetween the prototypeswi andwj. The

CONN matrix reflects the anisotropic data distribution in the Voronoi cells of the pro-

totypes, as seen in Fig. 2.6, bottom right. This informationcan be used to interpret the

similarity relationships between the prototypes: the stronger two prototypes are connected,

the more similar these two prototypes should be, or the more common information of the

data they share. With theCONN matrix, the discontinuities obscured by noise can emerge.

In Fig. 2.6, top right, the separations between the three subclusters in the left eye (in the

magenta oval) become obvious. When drawn on the SOM lattice,as in Fig. 2.6, bottom

middle, theCONN matrix is equally helpful in separating the three subclusters in the left

eye (in the magenta triangle). Owing to the detailed topology information represented by

theCONN matrix, we will use it in the improvement of measures of topology preservation

in Chapter 3.

TheCONN matrix contains additional information that can be used to express local

relationships between the prototypes. These are the rankings of the Voronoi neighbors to

each prototype according to their respective connection strengths, proposed by Taşdemir

and Merényi in [24]. For example, in Fig. 2.6, bottom right,P2, P3, P4 and P5 are the

first to the fourth ranking Voronoi neighbor of the prototypeP1, and the respective 4 con-

nections are the first to the fourth ranking connection to P1.The connection strengths and

the rankings can be visualized together, as in the CONNvis visualization [24], simulta-

neously providing a view of global and local connectedness in the manifold. Although

rankings were not used in the “Clown” illustration in Fig. 2.6, we will use them later in the

customization of the use of the SOM’s knowledge for supervised learning in Chapter 4.



Chapter 3

New tools for monitoring the faithfulness
in representation of manifold structure
by SOMs

Material based on:

• L. Zhang and E. Merényi, “Weighted Differential Topographic Function: a refinement of Topographic
Function”,Proc. 14th European Symposium on Artificial Neural Networks(ESANN 2006) Bruges,
Belgium, April 26–28, 7–12, 2006.

• E. Merényi, K. Taşdemir, and L. Zhang, “Learning highly structured manifolds: harnessing the power
of SOMs”, Chapter inSimilarity based clustering, Lecture Notes in Computer Science (Eds. M. Biehl,
B. Hammer, M. Verleysen, T. Villmann), Springer-Verlag, LNAI 5400, 138–168, 2009.

3.1 Measuring the goodness of SOMs

Generally, there are two criteria for quantifying the goodness of the mapping formed by

the SOM algorithm. One is the accuracy of the mapping, or how closely the prototypes

follow thepdfor local structure of the input manifold. This criterion is commonly used for

vector quantization algorithms. The other criterion is thequality of topology preservation,

which is an important property that enables the correct identification of manifold structure

from the SOM. Both criteria are important but neither is quite straightforward to evaluate.

We will briefly review the two criteria next with an emphasis on measuring the quality of

topology preservation, which is one focus of this thesis work.

33
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One of the commonly chosen measures of mapping accuracy is the quantization error

Eqe (eq. 3.1), which is calculated as the sum of the squared distances from data samples to

their respective closest prototypes, over all data samples[5].

Eqe =
∑

i∈A

∑

x∈Vi

‖x − wi‖
2 (3.1)

where the prototypewi is the centroid of the Voronoi cellVi. This measure quantifies the

quality of approximation of thepdf of the data, which is one aspect of SOM learning. The

other aspect of the SOM, topology preservation, is also important and related measures are

desirable.

As we have illustrated in Section 2.2, topology preservation is an essential property

of an ideal SOM, and this property is necessary for correct interpretation of the manifold

structure. However, in reality topology violation is not unusual. There are two common

reasons for the occurrence of topology violations. First, parametrization of the learning

process influences the development of the map. A simple example is that a neighborhood

function with a too rapidly shrinking size or with a too smallinitial size can cause twists

in the map (e.g., Fig. 2.2, right). As another example, in theConscience algorithm, the ad-

ditional “conscience” component brings in two more parameters,β(t) andγ(t) (eqs. 2.10

and 2.11), to the system. Topology violations can occur if the parameters are not scheduled

in proper ranges or not suitable for each other. Second, while we constrain the dimension

of the SOM lattice to 2 and enjoy the convenience of visual inspection and easy digestion,

the dimensional mismatch between the lattice and the data space may result in topology

violations. When the data has larger dimension than the SOM lattice, the map has to fold

itself to better fill the manifold space, in compensation forthe insufficiency in dimension.

Imagine that, when a 1-dimensional SOM learns a 2-dimensional distribution, the sting of

SOM prototypes has to distort itself to span the 2-dimensional data manifold. In SOMs
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learned with real data, which can not only be high-dimensional, but may also have com-

plicated structure, topology violations are common and mayoccur at all steps during the

learning. All the above issues underline the need for measuring and monitoring of topology

preservation in SOMs, for achieving good learning. The measures should be sensible quan-

tifications of the topology violations. Preferably the measures should also be normalized in

a certain way such that they can be used to compare different SOMs or to monitor an SOM

at different learning steps. In addition, visual inspection of topology violations regardless

of data dimension is desirable, because the visualization of a learned map in the data space

(as seen in Fig. 2.4, right) has limited applicability (datadimension≤ 3). With these tools,

we can then find the map that represents the manifold structure most faithfully, from maps

resulting from runs with different SOM sizes, learning parameters, or learning steps.

Quantification of the quality of topology preservation, however, is nontrivial. Accord-

ing to the definition of topology preservation, as introduced in Chapter 2, there are three

basic elements in the design of a measure: distance metrics used to quantify neighborhood

relations in the data space and in the lattice space; a propermathematical interpretation

of perfect topology preservation; and the quantification oftopology violations. We will

review pervious measures according to these three aspects.

3.2 Review of previous measures of topology preservation

Distance metric to quantify neighborhood relations

We remind the reader to distinguish the distances in the dataspaceM ∈ Rd and in the

latticeA. For example, the Euclidean distance between twod-dimensional prototypeswi

andwj in the data space is‖wi −wj‖E, while the Euclidean distance between them in the

lattice indicates‖ri − rj‖E, whereri andri are the locations of the prototypes in the SOM



36

latticeA.

In both the data space and the SOM lattice, the most frequently used metric is the Eu-

clidean distance (eq. 2.6). Although the Euclidean metric works well for data with continu-

ous and linear distribution, it is unable to correctly express the neighborhood relationships

for data with discontinuities and nonlinearities. An example of such a situation is given in

Fig. 3.1. A 1-dimensional SOM of seven prototypes is used to learn a 2-dimensional uni-

form distribution in a thin “horseshoe” (delineated by solid lines). In Fig. 3.1, the learned

prototypes (black dots) are plotted in the data space and connected to their respective im-

mediate lattice neighbors by dashed lines. We can see that the prototypes are organized

in the data space such that they represent the curved shape ofthe “horseshoe” manifold.

The discontinuity between the two ends of the “horseshoe” iscorrectly represented by the

SOM. The Euclidean distance, however, is unable to express this discontinuity. It will in-

dicate that the prototypes 1 and 7 are Voronoi neighbors in the data space because they

are the closest to each other. This will lead to the false conclusion that the topology is

violated in the SOM: the seeming Voronoi neighbors, prototypes 1 and 7, are not adjacent

in the SOM lattice. Therefore, the measures that rely on the Euclidean metric can falsely

penalize the seeming topology violations, which are actually caused by discontinuities and

nonlinearities in the manifold. This drawback is remedied in the Topographic Function

(TF ), proposed by Villmannet al. [19]. TheTF adopts a graph distance metric based

on the induced Delaunay graph [20] to faithfully express theconnectedness (adjacency)

between SOM prototypes in the data space. This distance metric was later applied to other

measures, such as the improved Topographic Product (improvedTP ) [32] and the Topo-

graphic Error (TE) [33]. In addition, for rectangular SOM lattices, theTF also uses two

different metrics in the lattice: maximum norm‖ · ‖max (eq. 2.7) for evaluation of forward

violations (i.e., prototypes that are neighbors in the dataspaceM are not adjacent in the
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Figure 3.1: The SOM prototypes (black dots) that represent a2-dimensional “horseshoe” distribution. The
prototypes are projected back into the data space and connected according the SOM lattice structure.

latticeA) and Euclidean norm‖ · ‖E for evaluation of backward violations (i.e., prototypes

that are adjacent in the latticeA are not neighboring in the data spaceM). The purpose of

using two metrics is to tolerate small distortions in the map, which do not prevent topology

preservation. We provide details on theTF in Section 3.2.2.

Mathematical definition of perfect topology preservation

While seemingly sharing a common intuition about topology preservation, people rely on

different mathematical definitions of perfect topology preservation when proposing mea-

sures. The different definitions can be based on three different types of similarity in the

mapping betweenA andM : metrics, rankingandcontinuity[34].

Perfect topology preservation based onmetrics, the strictest similarity type, requires

the preservation of pairwise metric distances in the mapping. One measure based on this

definition is the Pearson correlation [35], which calculates the correlation coefficient of the

pairwise distances in the data space and in the lattice space, across all data samples. A

mapping that preserves all distances produces a value of 1 for the correlation coefficient.
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This measure is suitable for algorithms that are designed topreserve the metric distances,

such as metric-multidimensional scaling (MDS) algorithms[36] (e.g., Sammon’s mapping

[37]). For the SOM, however, it is obviously unsuitable, since SOM learning by design is

not intended to preserve distances.

Perfect topology preservation measured byranking is a relatively relaxed definition,

which requires the preservation of the rankings of pairwisedistances. We will call these

measures ranking-based measures for short. One example is the Spearman’s correlation co-

efficientρ [38], which calculates the correlation of the rankings of the pairwise distances in

the data space and in the lattice space. Another example is the Topographic Product (TP )

[39], which relies on the ratios of the distances between each prototype and its neighbors

of the same rank, in the data space and in the lattice space, respectively. Details of theTP

will be reviewed in Section 3.2.1. Rather than ranking neighbors for the prototypes, another

example, the König’s measure, ranks neighbors for each data sample according to their dis-

tances to the sample in the input and output spaces and sets credit scores according to the

differences in the ranking [40]. Some other measures in thiscategory are the improvedTP

[32] and the Directional Product (DP ) [41]. One difficulty with the ranking-based mea-

sures is the large number of ties among the pairwise distances between the neurons in the

SOM lattice. For example, in a 2-dimensional rectangular SOM, a neuron has 8 equally

close immediate lattice neighbors. These measures need to correctly decide the order of

them to avoid false penalty for nonexistent topology violations. However, in implemen-

tation, a random order or a predefined order is often used to rank the ties (the neighbors

that are equally close), for the sake of computational cost.As a result, the measures can be

incorrect.

A more suitable definition of perfect topology preservationis based oncontinuity,

which focuses on the neighborhood structure rather than on the neighbor ranking. It re-
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quires the preservation of the immediate (nearest) neighbor(s) in the mapping, and therefore

prevents the struggle of ordering the large number of ties inthe ranking-based measures.

In SOM learning, perfect topology preservation means that the SOM prototypes neighbor-

ing in the data spaceM should be also neighboring (adjacent) in the latticeA, and vice

versa, as was introduced in Section 2.1. Two example measures based this interpretation

are the Zrehen-measure [42] and the V-measure [43]. The Zrehen-measure sums up the

number of “intruders”, in the data space, between each pair of lattice-neighbor prototypes.

The V-measure assigns a penalty score for each non-lattice neighbor whose distance to a

given prototype is smaller than the distance between the prototype and any of its immediate

lattice neighbors. Both the Zrehen-measure and the V-measure, however, capture only the

forward violations, but not the backward violations. A better measure in this category is

theTF [19], which accumulates violations in both mapping directions (Section 3.2.2).

Quantification of topology violations

After perfect topology preservation is mathematically defined, as discussed above, the final

step in the design of a measure is to formulate a cost functionthat quantifies topology

violations. One fundamental difference between cost functions is the level of the details in

the information incorporated in them. The incorporated information can be on the level of

prototypes, on the level of data distribution, or on a mixed level of the two.

Cost functions that depend only on the prototypes are computationally economical be-

cause the number of prototypes is often much smaller than thenumber of data samples.

Examples of this type of measure are theTP , the DP , Spearman’sρ and the Zrehen-

measure, which evaluate the inter-prototype violations and ignore the relationships between

data samples. Without exploiting the detailed relationships among the data samples, these

measures may be insufficient when dealing with noisy or complicated data.
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Alternatively, the cost function can be formulated to depend on the relationships among

the data samples only. For example, a cumulative histogram method was proposed by

De Bolt et al. to capture a statistical view of the neighborhood status of the system [44].

The histogram shows the percentage of sample pairs as a function of pairwise distance.

The authors used the histogram of an unordered map as a baseline to evaluate the reliability

of any given SOM. The more dissimilar the histogram of an SOM was to the histogram

of the unordered map, the more reliable the map was considered. However, it is unclear

how the difference in the histogram can be interpreted quantitatively in terms of topology

violations.

Another possibility is the joint consideration of the prototypes and the relations of data

samples in the cost function. For example, theTF screens the topology violations by

checking the neighboring relationships between the prototypes across the data space and

the lattice. This screening involves only the inter-prototype relationships. However, the

neighboring relationships across the prototypes are determined by the induced Delaunay

graph, which can be constructed from the data distribution and the prototypes. TheTF

therefore implicitly utilizes the detailed data distribution. Another measure,TE [33], not

only implicitly uses the data distribution the same way as theTF does, but also explicitly

uses it in the cost function. It computes a percentage of datasamples that contribute to

violations, and thereby provides a detailed view, on the level of data distribution. However,

theTE does not show the quality of topology preservation as a function of the scope of

violations, which makes it less informative than theTF . Another interesting example of

this type of measure is the Kaski-Lagus measure [45], which adds up the quantization er-

ror and a minimum-path distance between the BMU and the second BMU, across all data

samples. The minimum path was defined as the shortest path in the data space, consisting

of a string of prototypes, each of which is an immediate lattice neighbor of its predecessor
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in the path. This measure, however, was only examined for 1-dimensional maps, but not

for high-dimensional data, in [45].

We now discuss the Topographic Product (TP ) and the Topographic Function (TF ). The

TP is one of the earliest measures. It uses the Euclidean norm asits distance metric. The

TF is a more advanced measure, which uses a better distance metric than the Euclidean

norm. Through the introduction of these two measures, we want to show the reader how

theTF is better than theTP and therefore justify our choice of theTF as the basis for

developing new measures. The author also implemented thesetwo measures in our soft-

ware environment at Rice University. We will compare them with our proposed measures

through applications later in the chapter.

3.2.1 Topographic Product (TP ), one of the earliest measures

The basic idea of theTP , proposed by Bauer and Pawelzik [39], is to establish, for any

neuronj ∈ A, two ordered lists of the neuronsi ∈ A (i 6= j), according to the distances

between the neurons in the lattice space and the distances between the corresponding pro-

totypes in the data space, respectively. That is to say, withrespect to the neuronj, we rank

the neuronsi (i 6= j), as the first, second, ... lattice neighbors ofj according to‖ri − rj‖E.

Let nA
p (j) denote the neuron index of thepth lattice neighborof neuronj in the SOM lat-

tice A. Similarly, we rank the neuronsi (i 6= j), as the first, second, ... neighbors ofj in

the data space according to‖wi − wj‖E. Let nM
p (j) denote the neuron index of thepth

neighbor in the data spaceM . Define two ratiosQ1 andQ2 as follows:

Q1(j, p) =
‖wj−w

nA
p (j)

‖E

‖wj−w
nM

p (j)
‖E

Q2(j, p) =
‖rj−r

nA
p (j)

‖E

‖rj−r
nM

p (j)
‖E

(3.2)
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TheTP is then defined as an average over all prototypes and over neighbors of all ranks:

TP =
1

N × (N − 1)

N∑

j=1

N−1∑

p=1

log[(

p∏

l=1

Q1(j, l) × Q2(j, l))
1
2p ] (3.3)

By design, the sign of theTP indicates the relation between the dimensions of the input

space and output SOM lattice space. A positive value of theTP indicates too low dimen-

sion of the output (lattice) space for the input data, and a negative value of theTP indicates

too high dimension of the output space. A near-zeroTP value is supposed to correspond

to an approximate dimensional match. However, since theTP uses the Euclidean metric to

quantify the similarity between the prototypes, seeming violations caused by nonlinearities

in the manifold are incorrectly penalized. TheTP in such cases may not indicate the true

quality of topology preservation. We will show examples later in this Chapter.

3.2.2 Topographic Function (TF ), a measure that treats nonlinearities

correctly

The TF , by Villmann et al. [19], uses the induced Delaunay graph̃D (introduced in

Section 2.2.2) to characterize the neighboring relationships between the prototypes. A

graph distance metric, denoted by‖ · ‖D̃, is used to compute the inter-prototype distances

in the data space. The graph distance between two prototypeswi andwj in the data space,

‖wi − wj‖D̃, is defined as the length of the minimum path between them inD̃. The

graph distance between any two prototypes connected by an edge in D̃ is defined as 1.

Fig. 3.2 illustrates a minimum path between two prototypes in the “exclamation mark”

data set. Since we can visualize the induced Delaunay graph both in the data space and in

the lattice space, as shown in Fig. 2.5, middle and right, we show the minimum path (blue

line segments) between the prototypes A and B in both the spaces, as well, in Fig. 3.2. The
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prototypes along the path are numbered so that we can relate them across the two spaces.

The minimum path between A and B has a length of 5, so the graph distance between A

and B is 5. The graph distance between the prototypes B and C isobviously 1, because

they are immediately connected by an edge inD̃.

1

B
C

A
2

3

4

5

6

Figure 3.2: Illustration of a minimum path (green line segments) between two prototypes A and B, in the
data space (on theleft) and in the SOM (on theright ), respectively, through the “exclamation mark” data
set. The induced Delaunay graph is shown as black lines in thedata space and as yellow lines in the SOM.
The minimum path between A and B has a length of 5, so the the graph distance between them is 5. The
prototypes along the path are numbered so that we can relate these prototypes across the data space and the
lattice space.

Next we will review how theTF was defined for a commonly used rectangular lattice

in [19]. First, the authors defined forward and backward violations rigorously. Aforward

topology violationis defined between two prototypeswi andwj , which are immediate

neighbors in the data space (‖wi − wj‖D̃
= 1) but have a maximum distance (city block

distance) larger than 1 in the SOM lattice (‖ri − rj‖max > 1). Forward topology violations

are also calledviolating connections. A backward topology violationis defined between

wi andwj when they are immediate lattice neighbors in the SOM lattice(‖ri − rj‖E =

1) but have a graph distance in the data space larger than 1 (‖wi − wj‖D̃
> 1). The

reader may notice that the mathematical interpretations of“immediate lattice neighbors”
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are different in the above two definitions. The definition of forward violations uses the

Euclidean distance, while the definition of backward violations uses the maximum distance.

This helps avoid penalizing unimportant forward violations caused by slight distortions in

the map. More details can be found in [19]. The authors then defined a functionfi(fl) for

each neuroni, wherefl is called thefolding lengthof a topology violation, and it represents

thescopeor rangeof violation.

fi(fl)
def
=





#{j| ‖ri − rj‖max > fl ∧ ‖wi −wj‖D̃ = 1} 1 ≤ fl ≤ max
i,j∈A

‖ri − rj‖max

#{j| ‖ri − rj‖E = 1 ∧ ‖wi − wj‖D̃
> |fl|} −max

i,j∈A
‖wi − wj‖D̃

≤ fl ≤ −1

(3.4)

A positivefl denotes the folding length of a forward topology violation between two pro-

totypeswi andwj , which are immediate neighbors in the data space (‖wi−wj‖D̃ = 1) but

have a maximum norm offl in the SOM lattice (‖ri − rj‖max = fl). A forward topology

violation is equivalent to afolding of the SOM lattice in the data space, i.e., two distant

prototypes in the lattice are folded together in the data space. fl indicates therangeof

that folding. This is whyfl is called folding length. Similarly, a negativefl denotes the

folding length of a backward topology violation between twoprototypeswi andwj, which

are immediate lattice neighbors in the SOM lattice (‖ri − rj‖E = 1) but have a graph

distance of|fl| in the data space (‖wi − wj‖D̃
= |fl|). Likewise, a backward topology

violation is equivalent to afoldingof the data manifold in the SOM lattice. For example, in

the SOM learned with the “exclamation mark” data set, as seenin Fig. 3.2, we can easily

see a forward violation between B and C (‖wB − wC‖D̃
= 1 and‖rB − rC‖max > 1) and

a backward violation between A and B (‖rB − rC‖max = 1 and‖wB − wC‖D̃
> 1). The

folding length of the forward violation between B and C is 5 since‖rB − rC‖max = 5. The

folding length of the backward violation between A and B is also 5 since‖wA−wB‖D̃ = 5.

In the positive domain,fi(fl) counts the number of forward topology violations be-
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tween a given prototypewi and other prototypes, with folding length larger thanfl. In

the negative domain,fi(fl) counts the number of backward topology violations between

a given prototypewi and other prototypes with folding length larger than|fl|. TheTF is

then computed as an average offi(fl) across all neuronsi ∈ A in [19], as in eq. 3.5, where

N is the total number of neurons.TF (0) is defined as the sum ofTF (−1) andTF (1),

which was interpreted as the total number of violations, including both the forward and the

backward violations, in the lattice [19].

TF (fl)
def
=





1
N

∑
i∈A fi(fl) fl > 0

TF (1) + TF (−1) fl = 0

1
N

∑
i∈A fi(fl) fl < 0

(3.5)

A large fl corresponds to long-range folding, which we will also callglobal violation.

Similarly, a smallfl indicates short-range folding, which we will also calllocal violation.

These definitions of the global and local violations are qualitative. We will provide their

rigorous definitions, proposed by Taşdemir and Merényi in[24], later in Section 3.4. The

largestfl in the positive domain that holds a non-vanishing value of the TF indicates the

longest folding length of forward violations, and the largest |fl| in the negative domain

with a nonzero value of theTF corresponds to the longest folding length of backward

violations. Villmannet al. also proposed to normalizefl to [−1, 1], to allow comparison

of SOMs with different lattice structures [19].
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3.3 New, refined measures

3.3.1 Differential Topographic Function (DTF )

The TF is an integral function because of the inequalities (“>”) used in the definition

(eq. 3.4). It is not informative when we are interested in thenumber of violations with a

specific folding length,fl. This motivates us to define a differential form of theTF , which

we name the Differential Topographic Function (DTF ) [46]. Similarly to eq. 3.4, we first

define a functiongi(fl) for each neuroni:

gi(fl)
def
=





#{j| ‖ri − rj‖max = fl ∧ ‖wi − wj‖D̃ = 1} 2 ≤ fl ≤ max
i,j∈A

‖ri − rj‖max

#{j| ‖ri − rj‖E = 1 ∧ ‖wi − wj‖D̃
= |fl|} −max

i,j∈A
‖wi −wj‖D̃

≤ fl ≤ −2

(3.6)

TheDTF is then computed as the average ofgi(fl) over all neurons as in eq. 3.7. Obvi-

ously, theDTF can also be obtained directly by the first difference of theTF . TheDTF

enables the comparison of the numbers of violations, which are also called theextents of

violations, across different scopes of violations.

DTF (fl)
def
=

1

N

∑

i∈A

gi(fl) =





TF (fl − 1) − TF (fl) fl ≥ 2

TF (fl + 1) − TF (fl) fl ≤ −2
(3.7)

To illustrate the detailed information revealed by theDTF and to compare it with the

TF , we use an 8-class 6-dimensional synthetic spectral image created by Merényi, and

described in [27] (Fig. 3.3). Each of the 128×128 pixels in the image is a 6-dimensional

vector. Two of the classes have 4096 data samples (pixels) each, two others have 2048, and

the remaining four classes have 1024 data samples. Approximately10% Gaussian noise

was added to each of the 8 representative spectra to create within-class variations. For
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Figure 3.3: The 8-class 6-dimensional (6-band) synthetic spectral image data set. Figures reproduced from
http://terra.ece.rice.edu/dataexample/data.html, with permission of E. Merényi.Left : Spatial distribution of
the 8 classes in the 128×128 image, overlain with known labels (colors).Right: Mean signatures (means of
the data samples) for each class, vertically offset for clarity.

complete description of this data set, see [27]. A 15×15 SOM trained with this data set is

shown in Fig. 3.4. In our evaluation of the measures and toolsin Section 3.3–3.4 (Fig. 3.4–

3.6), we use this SOM and the cluster structure, provided by Merényi. The resulting SOM

is visualized with the mU-matrix in Fig. 3.4. We remind the reader that the mU-matrix

visualization shows the Euclidean distance in the data space between each pair of lattice-

neighbor prototypes, as a fence between the two SOM grid cells that represent the two

respective prototypes. In Fig. 3.4, left, the intensity of the monochrome red color in a

grid cell is proportional to the mapping density in that cell. We can see that the SOM is

separated clearly into 8 clusters by double-fenced “corridors”. The black cells in those

corridors represent empty neurons (with no data mapped to them). In Fig. 3.4, right, the

known class labels are overlain on the SOM, so that we can compare the clusters that

emerge from the mU-matrix visualization with the ground truth. The known labels are, of

course, not used in SOM learning. From this comparison, we can conclude that the SOM

has learned the cluster structure of this synthetic data setwell.

Next we use theTF and theDTF to evaluate the quality of topology preservation of
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Figure 3.4: The mU-matrix visualization of the SOM learned with the 8-class 6-dimensional synthetic data
set (Fig. 3.3). The SOM is shown as a lattice of grid cells. TheEuclidean distance in the data space between
any two prototypes that are immediate lattice neighbors is shown as a fence on the boundary of the two
respective grid cells of the two prototypes, in a gray scale intensity proportional to the distance. White is
large distance. Figures reproduced from [27], with kind permissions of IEEE and E. Merényi.Left : Each
cell is shaded by an intensity of red proportional to the number of data samples mapped to the corresponding
neuron. Black cells represent empty neurons. The cluster boundaries emerge through the mU-matrix (white
fences).Right: The known class labels are overlain on the grid cells.

the SOM. Both measures are computed in two ways, once with allneurons included, and

once with the empty neurons excluded. The twoTFs, computed with and without empty

neurons, overlap in the positive domain (fl > 0), in Fig. 3.5, top left. The largest positive

fl with a nonzeroTF value is 7, indicating the largest folding length of all forward viola-

tions is 8. In the negative domain (fl < 0), the exclusion of empty neurons makes theTF

vanish for all negative values offl. This means that all the backward violations are related

to empty neurons. To help understand the measures, we visualize the induced Delaunay

graphD̃ on the SOM in Fig. 3.5, bottom right. Any pair of prototypes connected by a

yellow line segment are Voronoi neighbors in the data space.D̃ clearly delineates the dis-

continuities between the 8 clusters. The empty neurons (black cells) have no connection to

their immediate lattice neighbors, which indicates that they cause the backward violations,

as seen from theTF in Fig. 3.5, top left. Looking more closely, we see that theseempty

neurons have no connection to any other neurons. Mathematically this can be expressed

as: the graph distance from any empty neuron to any other neuron is infinity. This explains
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Figure 3.5: Measuring topology violations in the SOM learned with the 8-class 6-dimensional synthetic data
set, with different measures, theTF , the DTF and theWDTF . All measures are calculated with and
without empty neurons, respectively.Top left: TheTF . Top right : TheDTF . Bottom left: TheWDTF .
Bottom right : The induced Delaunay graph (yellow lines) is overlain on the SOM to help understand the
values of theTF , DTF andWDTF .

the constant value shown in the negative domain of theTF when the empty neurons are

included. TheTF does not express the extent of violations (the number of violations) for

a specific folding length,fl, while theDTF (Fig. 3.5, top right) clearly shows the relative

extents of violations across differentfl. The backward violations that involve the empty

neurons are not shown by theDTF because the folding length of these violations is infinity

(fl = −∞).

In general, there are two types of empty neurons. One type is sometimes called interpo-

lating neuron because it is often found at the boundaries of clusters. These empty neurons

learned from the data, but were left empty at the end of the learning because the represen-

tations of data samples in the SOM contracted to a lighter group of prototypes as the SOM
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converged. The empty neurons (black cells) shown in Fig. 3.4are examples of interpolat-

ing neurons. These empty neurons help with the identification of clusters. The violations

they induce do not hinder correct understanding of the manifold structure and are therefore

negligible. The other type of empty neuron is one that remains inactive throughout the

learning, i.e., it never had the chance to adapt its prototype. (No example for this type of

empty neurons is shown here.) These empty neurons constitute the unused part of the map,

and should be excluded fromN , the total number of neurons, in the computation of the

measures. The above discussions motivate us to exclude all empty neurons in theTF , the

DTF and the other new measures that will be introduced next.

3.3.2 Normalized Differential Topographic Function (NDTF )

In the course of learning, the placement of the SOM prototypes in the data space is adjusted

iteratively, resulting in the change of the connections across the prototypes. The total num-

ber of connections can then be different at different time steps of the SOM. We define the

Normalized Differential Topographic Function (NDTF ) [46] by incorporating the total

number of connections as a normalization factor:

NDTF (fl) =
N × DTF (fl)

2C
fl = 2, 3, ..., max

i,j∈A
‖ri − rj‖max (3.8)

whereC is the total number of connections in the SOM. Normalized by2C, theNDTF (fl)

indicates the percentage of the connections at each foldinglengthfl. It enables the com-

parison of the quality of topology preservation at different time steps of the SOM.

TheNDTF is defined only for forward violations (fl > 0) because backward viola-

tions can be easily detected from the SOM with the help of the mU-matrix and are hence

not as detrimental as forward violations in cluster extraction. We remind the reader that,

although manifold learning is not equivalent to cluster extraction, in most of our real world
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applications the scientific goals are related to the finding of meaningful clusters in the data.

Backward violations manifest in strong dissimilarities between immediate lattice neighbors

(shown as high fences in the mU-matrix visualizations) and/or empty neurons on the clus-

ter boundaries, as in Fig. 3.4, which actually help locate the clusters. In contrast, forward

violations can lead to incorrect clustering. Imagine a map folds itself in the data space,

so two prototypes that are distant in the lattice can actually represent similar data samples

from the same cluster. However, since the two prototypes areseparate in the lattice, they

appear to represent data from two different clusters. Therefore, we choose to focus on the

forward violations in the development of measures in this work.

3.3.3 Weighted Differential Topographic Function (WDTF )

The TF , the DTF , and theNDTF express the extent of violations by a count of the

violations at each folding lengthfl. However, these measures do not distinguishsevere

violations induced by a large number of data samples from violations caused by a few

noisy samples. (We remind the reader that a connection can beinduced by even a single

sample, as in eq. 2.15.) In cases where data sets have noise and outliers, these measures

thus do not reflect theseverity of violations, which is quantified by the number of data

samples involved in the violations. Motivated by this, we further resolve theDTF with

an importance weightingof the connections to construct a new measure we call Weighted

Differential Topographic Function (WDTF ) [46] as follows. We first define a function

hi(fl) for each neuroni:

hi(fl)
def
=

∑

‖ri−rj‖max=fl

‖wi−wj‖D̃
=1

CONN(i, j) fl = 2, 3, ..., max
i,j∈A

‖ri − rj‖max (3.9)
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where‖ · ‖D̃ is the graph distance in the induced Delaunay graph.CONN is the connec-

tivity matrix, first proposed in [30]. TheCONN matrix expresses the connection strengths

between the prototypes. TheWDTF is then computed for a given folding lengthfl as the

sum ofhi(fl), across all neurons, and the sum is normalized by the total number of data

samples,P , as in eq. 3.10. TheWDTF expresses the severity of violations with folding

lengthfl in terms of the percentage of contributing data samples.

WDTF (fl) =
1

2P

∑

i∈A

hi(fl) fl = 2, 3, ..., max
i,j∈A

‖ri − rj‖max (3.10)

Note that theWDTF is defined for forward violations (positivefl) but not for back-

ward violations (negativefl) because of the lack of the counterpart of theCONN matrix

to quantify the connection strengths of backward violations. Nevertheless, this does not

prevent theWDTF from being a useful measure because forward violations are usually

more harmful than backward violations for correct cluster extraction (as discussed in Sec-

tion 3.3.2).

For the 8-class 6-dimensional synthetic data set, theWDTF displays the severity of

violations with folding lengths from 2 to 8 (Fig. 3.5, bottomleft). If compared with the

DTF in Fig. 3.5, top right, theWDTF provides a more accurate evaluation of the relative

importances of violations across different folding lengths. For example, while theDTF

raises a red flag forfl = 5, indicating the maximum number of connections at this folding

length, theWDTF shows that the most severe violations occur atfl = 4, where the most

data samples are contributing.
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3.4 A new interactive visual monitoring tool – TopoView

In addition to the new measures discussed above, we also develop a useful interactive tool,

TopoView, which allows to show meaningful subsets of connections (edges in the induced

Delaunay graph) on the SOM lattice for capturing serious topological problems [4]. This

is a similar visualization as seen in Fig. 2.5, right, and Fig. 3.5, bottom right. The crucial

distinguishing function of TopoView is a set of versatile thresholding capabilities to filter

out unimportant (weak) violations that may result from noise and outliers. It thereby shows

the relevant or statistically significant sets of connections with improved visual clarity,

compared to the plain visualization of the induced Delaunaygraph on the SOM.

The graphical user interface of TopoView and a summary of thresholding keywords

and their functionalities are given in Appendix B.2. We discuss here several basic and

useful thresholding capabilities. For example, the subsets of connections to be shown by

TopoView are selected by the user with a threshold for connection strength, a threshold

for folding length, a choice of the category of connections (all, violating, or non-violating

connections). The threshold for connection strength can beautomatically computed by

TopoView as a user-specified statistics of the connections,such as the mean strength of all

connections or the mean strength of all violating connections. A useful threshold for fold-

ing length is the one that separatesglobal andlocal violations. We remind the reader that

at the end of Section 3.2.2 we described global and local violations qualitatively, as fold-

ings in the map with long and short folding lengths, respectively. Taşdemir and Merényi

proposed in [24] a rigorous definition for the folding length, lmin, that separates local and

global violations. They computedlmin from the maximum number of Voronoi neighbors,

m, to any prototype in the manifold, by eq. 3.11, for a rectangular SOM lattice [24]. Vi-

olations withfl > lmin were defined asglobal violations, and those withfl ≤ lmin were
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defined aslocal violationsin [24].

lmin = min{l : m ≤

l∑

l′=1

8l′} (3.11)

The argument in the computation oflmin from m by eq. 3.11 is that them Voronoi neigh-

bors of a prototypewi should arrange themselves into the “tightest” SOM neighborhood of

wi in a topology preserving map (SOM lattice). In a rectangularSOM lattice, a prototype

has 8 first-tier neighbors (8 equally closest neighbors), 16second-tier neighbors (16 equally

second closest neighbors), and so on. Eq. 3.11 therefore determines the smallest neighbor-

hood size,lmin, that can accommodatem Voronoi neighbors. Another useful function of

TopoView is to show the connectedness between clusters in the SOM, i.e., the similarity

between clusters. The pre-requisite of using this functionis the availability of cluster la-

bels of the prototypes. The cluster labels can either come from ground truth or result from

clusters extracted from the SOM. We defineinter-clusterandintra-cluster connectionsas

the connections with end points (prototypes) in the same cluster and in different clusters,

respectively [4]. TopoView allows the user to show these twotypes of connections sepa-

rately. This can be helpful in the evaluation of the correctness of learning or the validity

of the cluster labels. For example, when the cluster labels are from ground truth and there

are many strong connections between two different clusters, it may indicate either topology

violations in the map or mislabeling. When the cluster labels result from cluster extraction

from the SOM, strong connections between two clusters suggest that these two clusters

may actually represent a single cluster.

To give an illustration of the thresholding functionalities of TopoView, we use the SOM

learned with the 8-class 6-dimensional synthetic data set.As seen from theDTF and the

WDTF in Fig. 3.5, top right and bottom left, violations exist evenat folding length 8

(i.e., nearly half the width of the SOM lattice), which suggests the map could be problem-
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Figure 3.6: An example of displaying selected groups of violations with TopoView for the 15×15 SOM
learned with the 8-class 6-dimensional synthetic data. TheSOM upon which TopoView visualizes the con-
nections, is reproduced from [27], with permissions of IEEEand Merényi. The violations are drawn on the
SOM overlain with known class labels (colors) and mU-matrix. Left : All, 567, violations (black lines).
Right: TopoView filters out connections with connection strengthless than mean strength of all connec-
tions (15.8 in this example) and connections with folding length less thanlmin, the maximum length of local
violations (2 for this data set). There is one connection left with this thresholding method.

atic. TopoView then helps clarify where those violations are in the map. In Fig. 3.6, left,

TopoView shows all violating connections (forward violations) as black lines on the SOM.

All of these violations are located within the known clusters. 8 is the diameter of the two

largest clusters (red and white) in the SOM. On the level of clustering, these violations are

tolerable. To further emphasize the potentially serious violations, we use TopoView to filter

out connections with low strengths or with short folding lengths. Here we set the threshold

for connection strength as the mean strength of all connections (15.8 in this example), and

set the threshold for folding length as the maximum length oflocal violations,lmin (2 in

this example).lmin is computed from the maximum number of Voronoi neighbors of each

prototype,m, by eq. 3.11. These two thresholds clear all connections shown in the left

SOM except one violation in the lower left corner of the SOM, as seen in Fig. 3.6, right.

This only violation is an intra-cluster violation, which does not prevent correct extraction

of the clusters for this particular data set. In this example, TopoView helps with the quan-

titative analysis of the violations, from which we know thatthe SOM has achieved good
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topological health for the purpose of cluster identification.

3.5 Applications ofWDTF and TopoView

Since SOMs learned with complicated data are often not free of violations, it is especially

effective to use both theWDTF and TopoView for the evaluation of topological condi-

tions. TheWDTF provides a summary of the severity of violations at each folding length

while TopoView provides localization of the violations in the SOM, for selected severity

levels. Next, we will demonstrate the combined use of the tools on a 2-dimensional syn-

thetic data set, a 194-dimensional real hyperspectral image, and a 210-dimensional syn-

thetic hyperspectral image.

3.5.1 An explanatory example with a synthetic 2-dimensional 4-class

Gaussian data set

We generate a 2-dimensional 4-class Gaussian data set to show an explanatory example

of the use of the new tools. The data samples are drawn randomly from four Gaussian

distributions with zero mean and unit variance, at four centers in a 2-dimensional space.

The data samples are plotted in the data space in Fig. 3.7, left column, with their known

class labels (colors) overlain. In Fig. 3.7, middle column,the SOM is overlain with mU-

matrix and known class labels. Black cells represent empty neurons, which have no data

samples mapped to them. During the evolution of the SOM threesnapshots have been

taken, at 1K (1000) steps (Fig. 3.7, top row), 3K steps (Fig. 3.7, center row) and 100K steps

(Fig. 3.7, bottom row). In Fig. 3.7, left column, the black dots are the learned prototypes

projected back into the data space. The prototypes are connected according to the SOM

lattice structure.



57

1

2

3

4

5

6

7

0 2 4 6
0

0.5

1

1.5

2

 T
F

1 2 3 4 5 6
0

0.02

0.04

0.06

folding length  fl

 W
D

T
F

1

2

3

4

5

6

7

0 2 4 6
0

0.5

1

1.5

2

 T
F

1 2 3 4 5 6
0

0.02

0.04

0.06

folding length  fl

 W
D

T
F

1

2

3

4

5

6

7

0 2 4 6
0

0.5

1

1.5

2

folding length  fl

 T
F

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

 W
D

T
F

Figure 3.7: The evolution of the SOM as it learns a synthetic 2-dimensional 4-class Gaussian data set. Three
snapshots are shown at 1K, 3K and 100K steps, from top to bottom. Left : The SOM prototypes (black dots)
are plotted in the data space and connected according to the SOM lattice structure. Data samples (small dots)
are color coded according to their known class memberships.Middle : All violating connections are shown as
black lines, over the SOM. The SOM is also overlain with the known class labels (colors) and the mU-matrix.
Right: TheTFs (blue lines) and theWDTFs (green bars).

It is evident, from the visualization of the SOM prototypes in the data space (left col-

umn) and from the SOM overlain with mU-matrix and known classlabels (middle column),

that the SOM improved as the learning step increased. At 1K steps, the SOM appears

twisted in the data space (Fig. 3.7, top left). We can see an obvious twist of the map at the

upper right corner (red cluster), where a chain of prototypes is arranged in the shape of a

“horseshoe”. In the top middle SOM, the obvious high (white)fences within the 4 known
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clusters show that the SOM has not yet learned the structure well. As the SOM evolves,

the within-cluster high fences are gradually relieved. At 100K steps, all within-cluster high

fences disappear, and the cluster structure delineated by the double-fenced empty (black)

corridors agrees perfectly with the overlain known class labels (Fig. 3.7, bottom middle). In

the data space, the prototypes are nicely placed according to the manifold shape (Fig. 3.7,

bottom left). These all indicate the improvement of the SOM in topology preservation

throughout this learning.

We next discuss how the measures and TopoView reflect this improvement in the SOM.

At 1K steps, TopoView expresses the “horseshoe” twisting (in the red cluster on top left)

by a set of connections along the right side of the SOM (Fig. 3.7, top middle). From the

connection statistics shown by both theTF and theWDTF (Fig. 3.7, top right), we know

the existence of violations up to folding length 6. This means that the end neurons of

the chain on the right side of the SOM, and some other non-lattice-neighbor prototypes

in between must be connected. TheWDTF also shows that the long-range violations, at

fl = 5, 6, are relatively weak, compared with the short-range ones atfl = 2, 3. From the

TF , however, the detailed extent of violations at each foldinglength cannot be seen due

to theTF ’s integral property. As the SOM evolves, the set of long-range connections (in

the red cluster) along the right side of the SOM disappears at3K steps (Fig. 3.7, center

middle), which means the “horseshoe” changed to a shape thatbetter approximates the

spherical cluster. Finally, TopoView shows the SOM free of violating connections at 100K

steps in Fig. 3.7, bottom middle. TheWDTF vanishes in Fig. 3.7, bottom right. The

residual in theTF comes from the inconsequential backward violations between the empty

neurons and their lattice neighbors. Since TopoView, theTF , and theWDTF all show the

improvement in topology preservation, we can conclude thatthese tools indeed reflect the

true topological health of the SOM.
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For comparison with theWDTF , we also compute theTP for these three snapshots

of the SOM in Table 3.1. In all three stages, theTP has a small, near zero value, indicating

an approximate dimensional match between the input and the output spaces. However, the

change in the value of theTP along the SOM’s evolution does not reflect the truth. The

TP deviates the most from 0 at 100K steps, indicating the worst topological health at this

learning step, while in fact at 100K steps the SOM is the best among the three snapshots as

seen in Fig. 3.7, left and middle column. This indicates thattheTP is not a very helpful

and accurate measure.

Table 3.1: The Topographic Product (TP ) calculated for the three stages of learning, at 1K, 3K and 100K
steps, of the SOM learned with the 2-dimensional 4-class Gaussian data set.

Learning steps 1K 3K 100K
TP -0.03189 -0.02192 -0.03305

3.5.2 A study with a 194-dimensional hyperspectral image

In this section, we demonstrate the power of theWDTF and TopoView through a 194-

dimensional real image data set. This data set is a noisy remote sensing VIS-NIR (0.4 –

2.5 µm) hyperspectral image of the Lunar Crater Volcanic Field (LCVF), Nevada, USA.

In this LCVF area, remote sensing images are taken yearly forextensive field studies. The

614×420 image (257,880 pixels) we use is a subsection of the imagecollected by AVIRIS

(the Airborne Visible Near-infrared Imaging Spectrometerof NASA/JPL) [48, 49] on April

5, 1994 at 18:22 GMT. The spatial resolution is 17m/pixel. AVIRIS measures spectral

radiance values in 224 bandpasses, 30 bands of which were removed due to excessive

noise and overlaps in the detector channels. The remaining 194 image bands comprise

the hyperspectral image used in this work. The challenge in the study of the LCVF area

is the large number of surface cover types to be detected and distinguished [3, 47, 50].
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A natural color composite of the LCVF image is shown in Fig. 3.8, with 23 cover types

marked at representative locations by class labels. (We refer to [3, 47] for details of these

cover types.) Merényi trained a 40×40 SOM to learn this image, and, after 300K learning

steps, identified 32 distinct cover types through interactive cluster extraction from the SOM

with the help of the mU-matrix visualization [3]. The extracted clusters are shown in the

SOM, and mapped back into the spatial image, in Fig. 3.9. The verification of the extracted

clusters was based on accumulated ground truth from comprehensive and independent field

studies, and previous analysis, done by others in a number ofworks [51, 50].

Figure 3.8: A natural color composite of the Lunar Crater Volcanic Field (LCVF). Figure from [3], courtesy
of E. Merényi. 23 character labels indicate different cover types of geologic interest. We refer to [3, 47] for
details of these cover types.

Because from the 40×40 SOM of the LCVF image 32 verified cover types were ex-

tracted successfully, we can assume a reasonably high degree of topology preservation in

this SOM. We will apply theWDTF and TopoView to the SOM to more closely examine

the SOM in this respect. Then, we will use the same tools to compare two stages of learning
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Figure 3.9: The 40×40 SOM learned with the LCVF image for 300K steps. Figures from [3], reused here
with kind permissions of both Springer Science+Business Media and E. Merényi.Top: The cluster labels
(colors) were extracted by Merényi from the SOM by using themU-matrix visualization [3].Bottom: The
clusters mapped back into the spatial image. Each color corresponds to a different surface cover type, whereas
medium grey indicates background “bg” (unclustered) pixels.
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in this SOM, one after 300K learning steps, and the other after 8M (8,000,000) steps. The

SOMs and the extracted cluster structure in these evaluations are provided by Merényi.

Evaluation of topology preservation in the SOM of the LCVF image after 300K learn-

ing steps

We use our new measures and interactive visualization tool to evaluate topology preserva-

tion of the SOM that learned the LCVF image for 300K steps (Fig. 3.9, top). In Fig. 3.10,

left, we compare theTF with theDTF . From theTF , we can see that violations exist up to

folding length 39, the largest possible folding length for the 40×40 SOM. TheDTF shows

the average number of violating connections per neuron at each folding length, providing

a clearer view of the extents of violations at different folding lengthsfl. For example,

we can see from theDTF that each neuron has approximately 1.5 violations with folding

length 2 and the average number of violating connections at the extreme long ranges (27

≤ fl ≤ 39) is less than 0.2. In Fig. 3.10, right, we compare theTF with theWDTF . The

WDTF expresses the severity of violations at different folding lengths by the percentage

of contributing data samples. For example, approximately 2.6% of the data samples (0.026

in the figure) participate in the formation of the violationswith fl = 2. Less than 1% of the

data samples (0.01 in the figure) are involved in the violations at each folding length that is

larger than 6. In addition to the statistical view of the violations provided by theDTF and

theWDTF , our interactive tool, TopoView, can show the locations andthe orientations of

violations selected by the user. In Fig. 3.11, left, TopoView visualizes all, 521, violating

connections, whose strengths are larger than the mean strength of all connections (which

is 15 in this case), on the SOM. Interestingly, most of the violations follow the shapes of

the boundaries of the clusters identified in [3]. For example, in the bottom annular area in

the SOM, the connections profile the boundaries of five adjacent clusters, which represent
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geologically similar surface cover types (i.e., compositional, and thus spectrally similar

cover types). For example, the red cluster maps peaks of cinder cones and the dark orange

cluster maps flanks of cinder cones. In the upper right area ofthe SOM, almost all viola-

tions follow the same direction. These can be results of the foldings within those clusters

or manifestations of close relationships between the clusters along that direction (D, E, S,

P, etc.). These clusters form a series of continuously varying signatures (not shown here).

To distinguish the inter-cluster violations, which are potentially harmful to correct clus-
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Figure 3.10: TheTF , theDTF and theWDTF for the 40×40 SOM learned with the 194-dimensional
hyperspectral image of the Lunar Crater Volcanic Field (LCVF) area after 300K learning steps.Left : The
DTF provides a clearer view of the extents of violations (average number of violations per neuron) at differ-
ent folding lengths,fl, while theTF does not show this information obviously.Right: TheWDTF shows
the severity of violations at each folding length as the percentage of contributing data samples.

ter extraction, we apply an additional “inter-cluster” filter. This results In Fig. 3.11, right,

where 165 violations pass the filtering conditions. They involve only approximately 1% of

the total connections. In close inspection of those 165 violations, we find that although two

prototypes are connected by a violation, the difference between them is still large enough

to separate them into different clusters. These violationsdo not indicate topological prob-

lems, rather, they can be caused by either noise in data, or the mixtures of signatures from

different cover types in some image pixels. These qualitative evaluations confirm that the

topology preservation in the SOM is good.
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Figure 3.11: TopoView visualization of selected subsets ofconnections (black lines) on the SOM of the LCVF
image. The SOM is also overlain with extracted class labels in [3] and the mU-matrix visualization.Left :
TopoView shows all, 521, violating connections with strength larger than the mean strength of all connections
(which is 15 in this case).Right: TopoView shows all, 165, inter-cluster violating connections with strength
larger than the mean strength of all connections (which is 15in this case).

Comparison of the SOMs after 300K and 8M learning steps

For the assessment of the expressiveness of the new measures, theNDTF and theWDTF ,

as compared to theTF and theTP , we continued the learning of the SOM from the pre-

vious stage, 300K steps, to 8M steps and compare these two stages of learning. TheTPs

for both the SOMs after 300K and 8M steps are small numbers, asseen in Table 3.2. The

decrease in the magnitude of theTP indicates an improvement of topology in the SOM,

however, as a single-number measure, theTP does not provide any insight how much bet-

ter the SOM really became. In Fig. 3.12, top, theTFs after 300K and 8M steps are similar,

with a slight decrease forfl < 17 and increase forfl ≥ 17. TheTF thus provides no

conclusive result in the comparison. TheNDTFs (middle) show the changes in the num-

bers of violations at different folding lengths. With longer learning time (8M steps), there

are small,< 10%, decreases in theNDTF at certain short ranges (e.g.,fl = 2, 10, 11,

13, 14 and 19), while at most of the remaining folding lengths, including the the longest
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ones (fl > 30), theNDTF increases. This overall growth in the number of violations,

especially at long ranges, is a warning of possibly worsenedtopological health after more

learning steps. In contrast, theWDTF (bottom) leads to the opposite conclusion. The

longer learning time quenches many high peaks in theWDTF , especially at short ranges,

by > 30% at fl = 2 and by20 − 30% at folding lengths between 3 and 14 (indicated

by arrows). Moreover, the changes at long ranges are negligible, showing no loss in good

topological health. We can conclude from theWDTF that the topology preservation im-

proved as the SOM learned longer. From the above, we see that the conclusion from the

NDTF contradicts the conclusion from theWDTF . TheNDTF suggests that the quality

of the map dropped slightly because the number of violationsincreased at the long ranges

and decreased by a tiny amount at the short ranges. TheWDTF , however, favors the SOM

after longer training time, because it shows that the violations at all ranges became much

weaker after longer training time, which alleviated the overall severity of violations.

Table 3.2: The Topographic Product (TP ) calculated for the two stages of learning, at 300K and 8M learning
steps, of the SOM learned with the 194-dimensional LCVF image.

Learning steps 300K 8M
TP -0.14870 -0.14237

A detailed statistical analysis of the connections betweenSOM prototypes supports our

conclusion obtained with theWDTF (Table 3.3). The percentage of the violating connec-

tions in the SOM decreases from 73.6% to 70.9%. The total strength of the non-violating

connections (percentage of data samples contributing to the non-violating connections) in-

creases from 80.3% to 83.7%. In addition, the average strength of the violating connections

decreases from 4.1 to 3.6. These facts indicate that longer learning time (8M steps) is ben-

eficial to the topological health in this case, and thereby confirms the analysis results from

theWDTF . This means that theWDTF is capable of expressing the topological quality
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Figure 3.12: Comparison of two learning stages, 300K steps and 8M steps, of the SOM of the LCVF image
with theTF , theNDTF and theWDTF . Top: The twoTF curves for the two learning stages are similar,
with no pronounced difference. TheTF provides no conclusive comparison.Middle : TheNDTF shows
an increase at most of the folding lengths, including the longest ones (fl > 30), and a less than 10% decrease
at a few folding lengths (e.g.,fl = 2, 10, 11, 13, 14 and 19). This indicates a possibly worsened topological
health in the SOM.Bottom: TheWDTF shows obvious, 20–30%, decreases in the severity of violations at
several folding lengths (indicated by arrows) after longerlearning time. At other folding lengths, there is no
significant change in theWDTF . This indicates an overall improvement in the map.
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Table 3.3: Statistics of the connections for the SOM learnedwith the LCVF data, at two different stages of
learning, after 300K learning steps and after 8M steps, respectively. Percentage representations of the values
are in parentheses. The numbers in bold face indicate the improvement of topology preservation in the SOM
after longer learning steps, as discussed in the text.

Learning steps 300K 8M
Number of empty neurons 119 3
Number of data samples* 257875 257870
Number of all connections 16750 16443
Number of violating connection 12327 (73.6%) 11659 (70.9%)
Number of non-violating connections 4423 (26.4%) 4784 (29.1%)
Average strength of all connections 15.4 15.7
Average strength of violating connections 4.1 3.6
Average strength of non-violating connections 46.8 45.1
Number of data points in the non-violating 207162 (80.3%) 215879 (83.7%)

connections

* The data samples that induce the connections to empty neurons are excluded from this statistics, because

we consider empty neurons to be sources of inconsequential violations, as discussed in Section 3.3.2.

of the SOM more accurately than theNDTF for complicated real data sets.

3.5.3 A study with a 210-dimensional synthetic hyperspectral image

We give a second demonstration of the use of the new tools through a 210-dimensional

hyperspectral urban image we call “RIT image”, which was synthetically generated via

rigorous radiative transfer modeling called the DIRSIG procedure at the Rochester Insti-

tute of Technology [53, 54]. The image comprises 400×400 pixels, each of which is a

spectrum in the 0.38–2.4µm wavelength window. In spite of its synthetic nature, the RIT

image is amazingly realistic with noise, illumination geometry, spectral variations, and

other attributes incorporated, in the simulation. The scene, rendered as a natural color

composite in Fig. 3.13, top, appears indistinguishable from a real scene. Importantly, the

availability of material labels on the pixel level makes this data set suitable for objective

evaluation of analysis results. There are over 70 differentsurface materials in the image,

including vegetation, various roof shingles, sidings, building materials, road pavings and
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Figure 3.13: The 210-band synthetic hyperspectral RIT image and the SOM learned with it. Figures from
[52], courtesy of E. Merényi.Top: A natural color composite of the RIT image.Bottom left: The SOM of
the RIT image (after 3M learning steps), overlain with cluster labels that have been identified by Merényiet
al. in [52]. The SOM is also overlain with the mU-matrix. Cells with the color of the background, “bg”,
are empty neurons (no data mapped to them), most of which appear along cluster boundaries. Black cells
indicate prototypes whose cluster labels are not shown in this representation due to color limitation in the
SOM visualization software.Bottom right : Clusters mapped back to the spatial image.

car paints. From the SOM learned with this image after 3M steps, Merényiet al. identified

groups of prototypes representing these different surfacematerials, in [52], and Merényi

provided the SOMs and the clusters for this study of the toolsfor evaluation of topology
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preservation. Fig. 3.13 shows the identified clusters in theSOM (bottom left) and the clus-

ter labels mapped back to the spatial image (bottom right), respectively. We refer to [52]

for descriptions of the clusters and the surface materials they represent.

We will first compare two snapshots of the SOM learned with theRIT data, at 500K and

3M steps, with the WDTF and TopoView. Second, we will use TopoView to help evaluate

the clusterings from two SOMs of the RIT data.

Comparison of the SOMs learned after 500K and 3M learning steps

We compare two learning stages (at 500K and 3M steps) of the SOM of the RIT data.

First we will confirm that the topological quality of the SOM improved by scrutinizing the

statistics of the connections in the SOM. Second we will apply the measures and tools to the

evaluation of the two learning stages of the SOM, to show thattheWDTF and TopoView

can correctly reflect the improvement in the SOM.

We conduct a detailed statistical analysis of the connections between SOM prototypes

(Table 3.4) to compare the two learning stages. The percentage of the violating connec-

tions in the SOM decreases from 31.0% to 28.1%. The total strength of the non-violating

connections (percentage of data samples contributing to the non-violating connections) in-

creases from 93.9% to 94.9%. In addition, the average strength of the violating connections

decreases from 12.6 to 11.7. These facts indicate that longer learning time (3M steps) is

beneficial to the topological health in this case.

We next use the measures to evaluate the SOMs. In Fig. 3.14, wecan see the topology

preservation improved from 500K to 3M steps. TheTF shows obvious decrease in the

short-range violations (near the peakfl = 0), but not conclusive for the long ranges. The

NDTF differentiates the view in theTF : the violations with the shortest range,fl =

2, decrease by one third; the numbers of violations at other folding lengths have small
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Table 3.4: Statistics of the connections for the SOM learnedwith the RIT data set, at two different stages of
learning, after 500K learning steps and after 3M steps, respectively. Percentage representations of the values
are in parentheses. The numbers in bold face indicate the improvement of topology preservation in the SOM
after longer learning steps, as discussed in the text.

Learning steps 500K 3M
Number of empty neurons 539 554
Number of data samples* 141477 133154
Number of all connections 2220 2055
Number of violating connection 688 (31.0%) 577 (28.1%)
Number of non-violating connections 1532 (69.0%) 1478 (71.9%)
Average strength of all connections 63.7 64.8
Average strength of violating connections 12.6 11.7
Average strength of non-violating connections 86.7 85.5
Number of data points in the non-violating 132812 (93.9%) 126376 (94.9%)

connections

* The data samples that induce the connections to empty neurons are excluded from this statistics, because

we consider empty neurons to be sources of inconsequential violations, as discussed in Section 3.3.2.

changes. With theWDTF , we not only see the same considerable decrease in the severity

of the short-range violations (one third decrease atfl = 2, one sixth decrease atfl = 3 and

one third decrease atfl = 4), but also find a general decrease at large folding lengths, with

some exceptions (such as atfl = 8 andfl = 13). For this case, both of theNDTF and the

WDTF , which show an overall decrease in the extent and the severity of the violations,

respectively, indicate that the topological health of the SOM improved after long learning

time (3M steps). This agrees with what we conclude from the detailed statistical analysis

of the connections above.

From the TopoView representations in Fig. 3.15 one can follow which violations disap-

pear between the two snapshots. In Fig. 3.15, top row, we showall violations for the two

snapshots of the SOM. We can see that the 3M snapshot is cleaner than the 500K snapshot.

The total number of violations decreased from 688 to 577. Thelower left corner of the

SOM even became completely violation free. To view the strong violations, we set the

threshold for connection strength as the mean strength of all connections in TopoView, as
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Figure 3.14: Comparison of two learning stages, at 500K steps and 3M steps, of the SOM of the RIT image
with theTF , theNDTF and theWDTF . Top: TheTF shows a general decrease of violations at short fold-
ing lengths. Parts of theNDTF and theWDTF are magnified and shown in insets for clarity.Middle : The
NDTF indicates an overall decrease in the number of violations atmost folding lengths after longer learn-
ing time. Some exceptions exist, i.e., atfl = 6, 7, 10, 12, where the number of violations increased slightly.
Bottom: TheWDTF indicates a general decrease in the severity of violations (the number of contributing
samples) at short folding lengths (fl = 2, 3, 4) and at most larger folding lengths (fl = 7, 12, 15, 16). Excep-
tions exist at some folding lengths, such as atfl = 8, 13, 17, where the severity of the violations increased.
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Figure 3.15: TopoView visualization of selected sets of violations on the SOM learned with the RIT image.
A comparison is done between two learning stages of the SOM, at 500K (left column) and 3M steps (right
column). Three different subsets of violations are selected to be shown by TopoView, from top to bottom.
The same SOM as in Fig. 3.13 is superimposed with the mU-matrix visualization. Medium grey and black
cells indicate empty and non-empty neurons, respectively.To make the violations easy to see, we do not
show the cluster labels on the SOM.Top row: All violating connections are shown.Middle row : Violating
connections with strength greater than the mean strength ofall violating connections are shown.Bottom
row: Global violating connections (fl > 2 for this data set) with connection strength greater than themean
strength of the fourth strongest connections of all prototypes are shown.
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shown in Fig. 3.15, middle row. With this representation of violations, it is easier to see

that in most part of the map the number of violations decreased as the SOM learned longer.

In Fig. 3.15, bottom row, we show another representation of the “important” violations.

We turn on the filters for both the connection strength and thefolding length. We set the

threshold for folding length as the maximum folding length of local violations,lmin (which

is 2 in this example), to show only the global violating connections. In addition, we set the

threshold for connection strength as the mean strength of all fourth ranking connections.

The rationale to use the statistics of all fourth ranking connections is that the four high-

est ranking neighbors are usually the most important ones ina rectangular SOM lattice,

as pointed out in [24]. This representation shows obvious improvements in the quality of

topology preservation. For example, the two long connections from the upper left corner

to the lower left corner in the SOM disappear. From all three views of the violations by

TopoView in Fig. 3.15, we arrive at the same conclusion that the topological health of the

SOM improved.

Through the above experiment, we have demonstrated the ability of the WDTF and

TopoView in correct reflection of the change in topological health of the SOM that learned

complicated high-dimensional data sets.

TopoView assists the evaluation of clustering

We use TopoView to compare the clusterings from two different SOMs of the RIT image.

The two SOMs were learned separately, but with the same parameters and both to 3M

steps. Consequently the two SOMs are very similar with some minor differences. The two

clusterings were produced from two methods. The clusters inthe first SOM (Fig. 3.16,

left column) were extracted from the mU-matrix in [52], and the clusters in the second

SOM (Fig. 3.16, right column) were produced from CONNvis visualization, an interactive
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Figure 3.16: TopoView visualization of selected sets of violating connections (yellow lines) on the SOMs
leaned with the RIT image. A comparison is done between two SOMs, which are similar with some minor
differences, shown in theleft andright columns. Both SOMs are overlain with extracted cluster labels and
the mU-matrix. In the SOM in the left column, the extracted clusters are the same as in Fig. 3.13, bottom left.
In the SOM in the right column, clusters were extracted with the help of CONNvis [24] in [4]. The color label
of cluster V (light green) was removed to show the underlyingscattered empty prototypes in [4]. Medium
grey cells are empty neurons. Black cells do not indicate empty neurons or cluster “H”. Clusters of those
prototypes are not shown in this representation due to colorlimitation in the SOM visualization software.
TopoView visualizes two selected sets of violations.Top row: All violating connections.Bottom row: All
inter-cluster violating connections.
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clustering method based on theCONN matrix [24], in [4]. Because of the high similarity

between the two SOMs, we can make comparative observations between the two cluster-

ings. Since the cluster labels were assigned separately in the two SOMs, the same spectral

clusters generally have different color labels in the two SOMs. However, the similarity in

the layout helps relate them visually.

We overlay the TopoView visualization of violating connections (yellow lines) on these

cluster representations. We first show all violating connections in Fig. 3.16, top row. The

two SOMs have similar total numbers of violations (577 for the SOM on the left, and

600 for the SOM on the right), as well as similar locations of the violations. These facts,

combined with the similar layout of the clusters in the SOMs,confirm the high similarity

between the two SOMs. We also find that most violations occur within the clusters. The

most disorganized clusters (those with many intra-clusterviolations), such as the purple one

at center left of the left SOM, are results of the high noise level in those clusters. In contrast,

some other clusters, such as the dark green one in the middle of the left SOM, seem well-

organized with few violations, due to the relatively small spectral variation in the cluster.

Next, we compare the two clusterings by showing all inter-cluster violations in Fig. 3.16,

bottom row, for the two SOMs, because the inter-cluster violations can be a warning of

incorrect extraction of clusters. In the left SOM, only 1 inter-cluster violation is left after

3M steps, which has a folding length of 2 and connects two adjacent and similar clusters. In

the right SOM, however, there are a handful of violations left, with folding lengths ranging

from 2 to 24. The violations with long folding lengths cross 2or 3 clusters. The inter-

cluster violations could indicate any of the following situations. One is insufficient learning

in the SOM. Another possibility is that noise induces those inter-cluster violations. In this

case, since thresholding can help analyze the significance of the connection, we can further

visually remove weak connections with a threshold for connection strength (not shown
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here). A third possible reason is incorrect extraction of the cluster boundaries. For example,

two connected clusters may be similar enough to be combined into one. To determine the

cause of the inter-cluster violations, further investigation is needed. In response to different

causes, different remediations should be used. If the causeis insufficient learning of the

SOM, we can lengthen the training time or modify the learningparameters. If the cause

is incorrect cluster extraction, we need to closely examinethe relationships between the

SOM prototypes and carefully modify the cluster boundaries. One good phenomenon in

both SOMs is that they have very few inter-cluster violations across the small clusters on

the upper and lower left corners. These clusters represent various roof materials and car

paintings (as shown and discussed in [52]), which are some ofthe most interesting clusters

in this image. The almost nonexistence of inter-cluster violations across those interesting

clusters confirms that both clusterings achieve satisfactory precision (resolution of many

small clusters) and accuracy (few confusions across the clusters) in extracting interesting

information from the SOMs.

The above application of TopoView in evaluation of clusterings with the RIT image has

demonstrated the usefulness of TopoView in providing validand quantitative information

about the correctness of clusterings.

In this chapter, we have refined and enriched an existing measure, theTF , to create a new

measure, theWDTF , and have introduced an interactive visualization tool, TopoView, for

inspecting selected sets of connections (both violating and non-violating connections) on

the SOM. We have shown the usefulness of the two new tools through application to three

data sets. TheWDTF can quantify the severity of topology violations more accurately

than the previous measures, theTF and theTP . TopoView is a helpful complementary

visualization tool to theWDTF , locating potentially harmful violations (the violations
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that may confuse the correct understanding of manifold structure) via a set of threshold-

ing capabilities. The experiments with the hyperspectral images especially highlight the

advantages of the new tools. For complicated data sets such as the two hyperspectral im-

ages, topology violations often exist at all learning stepsof the SOM, and the change in

topological health of the SOM across different learning steps can be subtle. However, the

WDTF and TopoView have been shown powerful in the applications. They can evaluate

and express the topology violations in a more refined manner than previous measures.



Chapter 4

A novel SOM-hybrid supervised
learning architecture

Material based on:

• L. Zhang, E. Merényi, W. M. Grundy, and E. F. Young, “An SOM-hybrid supervised model for the
prediction of underlying physical parameters from Near-Infrared planetary spectra”,Proc. 7th Inter-
national Workshop on Self-Organizing Maps (WSOM 2009), Advances in Self-Organizing Maps, Jun
8–10, St. Augustine, FL, Springer-Verlag, LNCS 5629, 362–371, 2009.

• L. Zhang, E. Merényi, W. M. Grundy, and E. F. Young, “Inference of surface parameters from Near-
Infrared spectra of crystalline H2O ice with neural learning”,Publications of the Astronomical Society
of the Pacific, 122:839–852, 2010 July.

• L. Zhang and E. Merényi, “Learning multiple latent variables with Self-Organizing Maps”,Proc. 2010
IEEE International Conference on Granular Computing, Silicon Valley, CA, August 14-16, 2010.

In Chapter 3, we have developed the measures and tool that help evaluate the correct-

ness of the representation of the manifold structure in the SOM. After obtaining a faithful

map, we can use the SOM’s knowledge for accurate informationextraction. In this thesis

work we target the inference of latent variables from high-dimensional data, as explained

in Section 4.1. The neural architecture we use is an existingSOM-hybrid architecture,

which incorporates the SOM into a supervised learning architecture. This architecture will

be introduced in detail in Section 4.2.1. Motivated by initial experiments, we also de-

velop an innovation to the SOM-hybrid architecture and propose a new architecture we call

Conjoined Twins (Sections 4.2.2–4.2.3 and Section 4.3). This helps achieve the prediction

78



79

accuracy needed for the particular science problem we address, and, in general, provides a

principled approach to accurate inference of multiple latent variables.

4.1 Inference of latent variables from high-dimensional

data

Latent variablesare variables that are not directly observed but are rather inferred (through

a mathematical model) from variables that are directly measured, i.e.,observable vari-

ables. The latent variables can be inferred from the observable variables because of their

underlying relationship, which can be expressed by a functionf :

x = [x1, x2, ...xd]
T = f(l) = f([l1, l2, ..., lL]T ) (4.1)

wherex is a vector ofd observed variables,x1, x2, ..., andxd, andl represents a vector

of L latent variables,l1, l2, ..., andlL. Each element ofx, or each observable variable,

is affected by all latent variablesl1, l2, ..., andlL. This means that the latent variables

lj (j = 1, 2, ..., L) have a global effect on the observable variablesxi (i = 1, 2, ..., d).

As an example, surface temperature of distant planetary bodies is a variable of interest

to astronomers. Since it is impractical or impossible to directly measure the temperature

for extended planetary surface regions, astronomers alternatively use reflectance spectra

collected by telescopes or spacecraft as thermometers to infer the temperature. Here, tem-

perature is a latent variable and the reflectance values measured at different wavelengths

are observable variables. Temperature can influence the reflectance values globally, i.e., at

many wavelengths.

The inference of latent variables from the observable variables can be considered as an
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inversion problem. To findl is to find the inverse functionf−1.

l = f−1(x) (4.2)

In real problemsf can be extremely complicated, and the analytical solution of the inverse

function,f−1, is often hard to obtain. Customary numerical approaches toregress this func-

tion can be ineffective because the “curse of dimensionality” [2] for high-dimensional data,

and also because the form off needs to be known or assumed. To deal with such regression

problems, neural methods are often used. A well-known universal function approximator is

the Multilayer Perceptron (MLP) trained with backpropagation rule (abbreviated as BP net-

work) [55, 56, 57], which can deal with high-dimensional data well and does not need prior

assumption of the form of the functionf . A brief introduction of BP network’s architec-

ture and algorithm is given in Appendix C. By training a BP network, we build a black box

model, which predicts an outputl for any given input vectorx. However, the knowledge in

the black box is hard to retrieve and interpret, while understanding the learned knowledge

in the box is often desirable for assessment and improvementof the performance of the

algorithm.

Motivated by the idea that the high-dimensional data (observable variables) can lie

on a low-dimensional submanifold (with a low intrinsic dimension), another approach to

find latent variables from observable variables is to embed the data manifold in a low-

dimensional space (dimension reduction), as in a number of manifold learning algorithms

(e.g., [36, 58, 59]). If the dimension of the low-dimensional mapping space is chosen ap-

propriately, the latent variables are expected to be factorized into different dimensions in the

resulting low-dimensional representation. According to [60], however, no study has been

done to retrieve the values of the latent variables from the low-dimensional representations

that resulted from these algorithms. They were used only forcluster identification. These
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algorithms have other insufficiencies as well. A classical approach, principle component

analysis (PCA), works well for linear submanifolds, but suffers when nonlinearities exist.

Several nonlinear approaches have emerged, such as Isomap [58], locally linear embed-

ding (LLE) [59] and Hessian LLE (hLLE) [61]. These algorithms have been demonstrated

successfully for data sets with 3 latent variables (horizontal and vertical angles of face and

illumination direction, in data sets of face images) [60]. However, to separate all latent

variables, a necessary step for these algorithms is to estimate the intrinsic dimensionality

in advance, which is a nontrivial task. In addition, latent variables that induce relatively

small variations in the data can also be mistakenly treated as noise and eventually be lost

in such dimension reduction, while those latent variables can carry interesting scientific

meanings.

Our approach to the inference problem is through Self-Organizing Maps (SOM) [5],

which as elaborated in Chapter 3 preserve the topology of thedata in a low-dimensional

representation without reducing the data dimension. The SOM prototypes store the high-

dimensional information present in the data, avoiding lossof information caused by dimen-

sion reduction. Moreover, there is no need for prior estimation of intrinsic dimensionality.

When the SOM has converged, further analysis of the learned SOM prototypes can help

recover relevant information from the data, such as latent variables. We describe next, how

the SOM’s knowledge is used in a supervised neural network, for this purpose. The neural

network we use is an SOM-hybrid architecture, which has an SOM as its hidden layer. Af-

ter the SOM correctly captures the manifold structure through unsupervised learning, the

output layer of the architecture combines the outputs from the SOM neurons into weighted

sums to learn the relations between the latent variables andthe input data, through super-

vised learning.
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4.2 Supervised learning assisted by an SOM

4.2.1 SOM-hybrid supervised neural architecture

Figure 4.1: The SOM-hybrid neural architecture. It is a two-layer fully connected feedforward network with
an SOM as its hidden layer. Each neuroni, in the SOM latticeA of N neurons, is connected to the input
buffer with ad-element prototypewi (theith row vector of theN × d matrixW). An L × N weight matrix
V connects the output layer to the SOM.

The SOM-hybrid neural architecture we use is a two-layer fully connected feedforward

network, as shown in Fig. 4.1. It takes an input vectorx randomly from thed-dimensional

data set in each learning step. This neural architecture is used in a two-phase procedure.

In the first, unsupervised, learning phase, the SOM iteratively adjusts itsN prototypes,wi,

according to the SOM algorithm [5] as described in Section 2.1, while the output layer

is idle. Upon the convergence of the SOM, a second, supervised, learning phase can be

started, in which the output neurons are trained according to the Delta rule [63]. Each

neuronp in the output layer combines the SOM outputsyi into a weighted sum:

lp =
∑

i∈A

vpiyi p = 1, 2, ..., L (4.3)

vpi is the element in thepth row andith column of weight matrixV, which connects the
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output layer and the hidden layer (Fig. 4.1). The output layer then iteratively adjustsV to

minimize the total squared error in the outputslp by the delta rule:

∆vpi = αyi(l
d
p − lp) (4.4)

whereldp is the desired output,α is a learning rate. During the supervised training of the

output layer weightsV, the SOM can continue its unsupervised learning with a very small

learning rate, for fine-tuning of the SOM prototypes. The outputs from the output layer

correspond to the inferred knowledge from the input data. When this network is used to

infer latent variables, the output vector,l (= [l1, l2, ..., lL]T ), yields the inferred values of the

latent variables. A good implementation of this architecture is available in Neural Works

Professional II/Plus by NeuralWare [64].

This supervised architecture is suitable for the analysis of high-dimensional data mainly

for two reasons. One is the ease of the SOM in the handling of high-dimensional data. No

prior feature extraction (dimension reduction) is needed before the learning of the data.

The other is the ability of the SOM to distinguish the subtle differences between high-

dimensional feature vectors. These subtle differences arewell reflected in the responses

(the outputs) of the SOM neurons to the feature vectors. The SOM-hybrid supervised

architecture exploits the SOM’s knowledge by combining theSOM outputs into weighted

sums (eq. 4.3) for supervised learning of information of interest (e.g, latent variables).

This architecture has helped achieve good classification accuracies [21, 22]. For example,

Howell et al. revised Tholen’s taxonomy of asteroids by analyzing the clusters identified

from an SOM of asteroid spectra. The revised taxonomy was demonstrated to be more

self-consistent through supervised classification [21]. Another example is the accurate

classification of a large number of clay-bearing soils with subtle spectral differences due to

different clay species, for landslide hazard study from AVIRIS imagery [22].
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In the SOM-hybrid architecture, the customary way of using the SOM outputs by the

output layer is called the winner-takes-all mode (WTA), where only the output of the SOM

winner is allowed to contribute to the weighted sums. The WTAmode works well for

classification problems such as in [21, 22]. In this work we apply this architecture to a

multi-variable regression problem, the inference of continuous latent variables. We gener-

alize the WTA mode tok-winners-take-all (kWTA) mode, by which the SOM’s knowledge

can be better exploited and consequently the latent variables can be learned with higher

inference accuracies than by relying on the WTA mode. This will be discussed next.

4.2.2 Greater exploitation of the SOM’s knowledge: from Winner-

Takes-All (WTA) to k-Winners-Take-All (kWTA)

The customary way of using the SOM outputs: Winner-Takes-All (WTA)

By the SOM formula (eq. 2.1), the output of an SOM neuron should be indicative of the

similarity between the neuron’s prototype and the input vector. In the most frequent imple-

mentations, the SOM output is either proportional to the inner product of the input vector

and the SOM prototype [5], or inversely proportional to the distance between the input vec-

tor and the SOM prototype. Because of the topology preserving property of the SOM, the

responses to an input vector are strongly localized in the map. This means that only a few

neighboring SOM neurons have relatively large output values while other neurons generate

negligible responses. A customary way of utilizing the SOM outputs is the winner-takes-all

(WTA) mode, where a binary thresholding is applied to the SOMresponses, assigning 1 to

the best matching unit (BMU)c (determined in eq. 2.1) and 0 to the rest of the neurons as

yi =

{
1 i = c

0 i 6= c
(4.5)
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By this, the right side of eq. 4.3 is reduced to one term.

lp = vpc p = 1, 2, ..., L (4.6)

With a single term left in the weighted sum, the output layer of the network will be unable

to distinguish between data samples that map to the same SOM neuron and will yield the

same inferred values,lp, for these samples. In problems where the number of different

values a latent variable can take is much smaller than the number of the SOM neurons,

N , the WTA mode can work successfully in differentiating these various values. However,

when the latent variable is continuous, i.e., the number of possible values is much larger

thanN , the resolution of the inferred values is severely restricted by the WTA mode, which

may prevent high inference accuracies.

A generalized way of using the SOM outputs:k-Winners-Take-All (kWTA)

To relieve the above limitation in the inference resolutioncaused by the WTA mode, we

allow multiple (k) SOM outputs to be nonzero in eq. 4.3 (k-winners-take-all orkWTA).

This can be justified by the SOM algorithm: the prototypes within the lattice neighborhood

of the BMU learn concurrently from the same input vector (eq.2.2). After the SOM has

converged, the memory of a data sample is stored not only in its BMU but also in the

neighboring neurons of its BMU. The inclusion of these neighbors into the supervised

learning can help distinguish the samples that share the same BMU but represent different

values of a latent variable.

The next question is whichk SOM prototypes should be allowed to contribute to the

supervised learning. Since the SOM outputs reflect the similarities between the prototypes

and a given data vector, the larger the output of an SOM neuron, the more knowledge the

neuron contains about that data vector. Therefore, a natural choice is to use the outputs
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from the firstk SOM winners, indexed asi1, i2, ..., andik, in the supervised learning, such

that the most of the SOM’s knowledge about the given sample can be utilized. The output,

yi, of each SOM neuroni is computed by

yi =

{ 1 i = i1(= c)

d1

d1+di
i = i2, i3, ..., ik

0 i 6= i1, i2, ..., ik

(4.7)

wheredi is the Euclidean distance between the prototypewi and the input data vectorx.

We normalizeyi to make the outputs from the SOM sum up to 1, which is consistent with

the WTA mode.

yiq =
yiq∑k

q=1 yiq

q = 1, 2, ..., k (4.8)

Each output from the output layer,lp, is now expressed as a linear combination ofk nonzero

SOM outputs, i.e., eq. 4.3 reduces tok terms:

lp =

k∑

q=1

vpiqyiq p = 1, 2, ..., L (4.9)

The WTA mode is obviously a special case of thekWTA mode (k = 1). NeuralWare’s

implementation in Neural Works Professional II/Plus [64] provides the special cases of

k = 1 andk = 3. The latter is called “interpolating mode”. The implementation of kWTA

in our software allows the use of any givenk.

The question follows: how to choosek, i.e., the number of SOM winners to use for

best learning of latent variables? The bestk obviously depends on the data set as well as

the SOM (the SOM size and the maturity level of the SOM, i.e., how well the SOM con-

verged), because these factors influence the way how the information of the data samples is

distributed across the prototypes. This dependence on the data and the SOM provides the
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opportunity to use a principled way to constraink to a small range, in a fast and efficient

way, as will be introduced next.

4.2.3 Theoretical upper bound ofk

We can determine the upper bound ofk, denoted byK, from therelative importanceof

the SOM winners. For any data sample, the BMU is the most important one, containing

the most information about that sample. The importance of second, third, etc., winners

can be evaluated by their similarities to the BMU. In the dataspace, we consider two

prototypes to be similar (have common information about data samples) when they are

Voronoi neighbors. An obvious theoretical upper bound ism + 1, i.e.,K ≤ m + 1, where

m is the maximum number of Voronoi neighbors to any prototype.Usually,m+1 is already

much smaller than the total number of SOM prototypes,N , but we can further tighten this

bound toK = m̃ + 1, wherem̃ is the number of “important” neighbors. The important

neighbors are the prototypes that are most strongly connected to the BMU. To determinẽm,

we use the ranking of Voronoi neighbors of each prototype according to their connection

strengths, as defined by [24]. The connection strengths between the SOM prototypes can

be represented by theN × N CONN matrix, proposed in [30]. An illustration of the

ranking of Voronoi neighbors according connection strengths is given in Fig. 2.6, bottom

right. Among the four neighbors of prototype P1, the first ranking (the most similar) to

the last ranking (the least similar) neighbors are P2, P3, P4and P5, in decreasing order

of connection strengths. After ranking the Voronoi neighbors of each prototype, we can

quantify the importance of the neighbors of ranki by the average connection strengthsi to

theith ranking neighbors across all SOM prototypes.

si =
1

ni

∑

p,q∈A ∧ wq is the
ith Voronoi neighbor of wp.

CONN(p, q) (4.10)
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whereni (i = 1, 2, ..., m) is the total number ofith ranking neighbors in the SOM. How-

ever, thresholding onsi to determine the important SOM winners could be problematic.

First, a consistent threshold that can be used across different SOMs and data sets is im-

possible becausesi is dependent on the size of the SOM, the size of the data set andhow

the data samples are distributed across the Voronoi cells. Second,ni is also an important

factor in the importance of neighbors. When the connectionsto ith ranking neighbors are

weak (smallsi), butni is large, the neighbors of ranki may still be useful in the supervised

learning, because a largeni indicates the non-negligible participation of theith neighbors

in the representation of the data samples. In view of this, itis better to consider the com-

bined effect ofsi andni in the thresholding. Therefore we propose thresholding on the

percentage of data samples,%datai, involved in the connections of each ranki [65]:

m̃ = max{i : %datai > µ} (4.11)

%datai =
si × ni

2P
× 100% (4.12)

µ is a user-specified threshold.P is the total number of data samples.si × ni can be

interpreted as the accumulated strength in the connectionsto all ith ranking neighbors.

Normalized by2P , it shows the importance of these neighbors by the percentage of the

total connection strength involved. With the determinedm̃, we obtainK, the upper bound

of k, asm̃ + 1.

After constrainingk to a small range,0 < k ≤ K, we need to perform the supervised

training with different values ofk within this range to find the best value ofk that yields

the highest inference accuracy. We currently know no betterthan this exhaustive search of

k, but the theoretical upper boundK significantly narrows down the range of the search

and greatly alleviates the computational cost.
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The thresholdµ to determinẽm in eq. 4.11 is of course data dependent. For example,

it depends on the noise level of the data set. In Section 4.3 , where an application to a real

problem is presented, we will discuss howµ is determined.

4.3 Conjoined Twins – a new architecture – motivated by

a planetary science problem

In this section we will apply the SOM-hybrid neural architecture with thekWTA mode to

the inference of two latent physical parameters from high-dimensional spectra of ices. We

will show that the two physical parameters are best inferredwith different values ofk. This

motivates the idea of a new architecture we call Conjoined Twins, which combines the use

of different values ofk in one architecture for the best learning of both parameters.

4.3.1 Background on the planetary science problem

One intriguing problem in planetary astronomy is the modeling and interpretation of geo-

logical histories and current dynamical changes of Solar System objects. Current surface

conditions of these objects, such as chemical composition and physical parameters (e.g.,

temperature and grain size) of the surface materials, oftenprovide important clues for the

unraveling of their geologic histories. However, it is impractical or hard to directly mea-

sure these surface parameters for extended surface areas ofplanets. Remote sensing spec-

troscopy has become a prime alternative approach, as spectroscopic instrumentation and

techniques have been improved dramatically in the past decades. Current spectroscopic

instruments are capable of acquiring spectral measurements at hundreds or thousands of

contiguous bandpasses, whereby the detailed spectral features sensitive to surface param-

eters can be resolved. From these spectra, surface parameters can potentially be inferred
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[66, 67].

The ultimate goal of the specific science problem we present is to infer surface pa-

rameters from Near-Infrared spectra of Pluto and Charon. The knowledge regarding the

Pluto-Charon system is fairly limited due to the scarcity ofobservational data. NASA’s

New Horizons space mission, which is a one-way journey to theKuiper belt and beyond, is

expected to investigate the icy surfaces of remote planetary bodies such as Pluto, Charon,

Nix, and Hydra [68]. In 2015 the onboard infrared imaging spectrometer [69] will map

the surfaces of Pluto and Charon at 250 wavelengths from 1.25to 2.5µm. The resulting

hyperspectral images will be used to unravel the surface conditions, such as ice species,

distributions of different ice species, temperature and grain size of the ices, on the surfaces

of Pluto and Charon. The work presented in this Chapter is a collaboration with W. M.

Grundy (Lowell Observatory) and E. F. Young (Southwest Research Institute). The spec-

tral data for the experiments were prepared by Grundy and Young to simulate conditions

expected in the Pluto-Charon system.

The classification of different chemical compositions fromspectra is not too difficult

because specific chemical compositions are often manifested by specific spectral absorp-

tions. Spectra of ices that possibly exist on Pluto (H2O, N2, CO2, etc.) have fairly different

spectral patterns. With an SOM learned with a data set containing spectra of 6 ice species,

we succeeded with 100% classification accuracy in [70]. However, inference of continu-

ous physical parameters, such as temperature and grain size, is challenging because of the

following reasons. First, these physical parameters have global influence on the spectral

shapes, as opposed to ions or molecular compounds, which cause local absorptions (lim-

ited to some wavelengths) and therefore may be determined from individual absorption

bands. Second, significant changes in physical parameters can induce subtle variation in

the spectral shapes. This demands algorithms capable of discerning the subtle differences
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between spectra. Third, different surface parameters can interact nonlinearly. The disentan-

glement of different causes can be difficult. To illustrate these difficulties, we show some

sample spectra of H2O ice as a function of temperature and grain size, generated by W. M.

Grundy [71], in Fig. 4.2. Temperature and grain size are two latent variables that have a

global and intertwined influence on the spectral shapes. Both parameters can deepen the

absorptions, e.g., at 1.3µm and 1.65µm, as seen from Fig. 4.2. Moreover, the change in

the band depths is a nonlinear function of the parameters. From the band depths of single

bands, it is hard to separate the influences of the two parameters, not to mention the ac-

curate inference of the values of the parameters. However, if entire spectra, with multiple

absorption bands, are used, the effects of temperature and grain size may be disentangled.

In addition, temperature has a much more subtle effect on thespectral brightness than grain

size. This results in many crossovers between spectra with different temperatures (Fig. 4.2,

top). The subtle changes in spectral shapes caused by temperature makes the differentia-

tion between temperatures difficult. A sensitive algorithmis needed to distinguish between

these spectra such that accurate inference of temperaturescan be made.

4.3.2 Approaches to the inference of latent surface parameters from

spectra

Modeling the mapping from the surface parameters to the observable spectra is called a

forward problem. It can be simulated numerically by radiative transfer models. The Hapke

model, which describes the scattering and absorption of light in surfaces composed of par-

ticles of a given absorption coefficient, has now become a standard method for interpreting

spectral surface reflectance data [72, 73, 74]. The Hapke model can produce model spec-

tra for given sets of surface parameters. Conversely, inference of the surface parameters

from the spectra is called an inversion problem, as shown in eq. 4.2. Since analytical so-
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Figure 4.2: Sample synthetic spectra of crystalline H2O ice.Top: Variation in the spectral shape as a function
of temperature (T), for one fixed grain size (GS), 0.003 cm.Bottom: Variation in the spectral shape as a
function of grain size, at 50◦K (Kelvin).

lutions are unavailable in general for a radiative transfermodel, numerical or statistical

methods are necessary to solve the inversion problem. Approaches to this inversion prob-

lem fall into three main categories: numerical optimization, look-up table and machine

learning [75, 76]. Numerical optimization algorithms werethe first to approach the inver-
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sion problem and have been the most extensively used. These algorithms search for a best

matching simulated spectrum for a real spectrum through forward search in the parame-

ter space. They generate simulated spectra repeatedly, during the search, with parameters

that are modulated to minimize a certain error function, which describes the quality of the

match. Unfortunately, this approach can be inefficient because it performs the optimiza-

tion for each spectrum, one by one, separately. It is thus impractical for a large spectral

image (with large number of spectra). The look-up table approach expedites the numerical

optimization by precomputing a large database of simulatedspectra for a wide range of

parameter values. The inversion problem is then reduced to searching the look-up table for

a best match to a real spectrum. However, there are still issues such as how the gridding of

the model parameters in the look-up table should be set. The third type, machine learning

algorithms, aim to learn the mapping from the spectra to the parameters (the inverse func-

tion) through a training set of data (i.e., through supervised learning). The advantage is that

once the mapping has been learned, it can be used to infer surface parameters from large

data sets of spectra fast and easily. The training data can either be simulated spectra or

real spectra with known surface parameters. Examples of machine learning algorithms that

have been used are multilayer backpropagation (BP) neural network [76], support vector

machine [77], and Gaussian Regularized version of Sliced Inverse Regression [78, 79]. The

comparison of the three types of approaches in [76, 78] all showed that machine learning

algorithms were more capable of achieving accurate inference accuracies than numerical

optimization and look-up table approaches.

Since in this thesis work we infer two physical parameters ofinterest, namely temper-

ature and grain size, here we review some related previous work. A simple and purely

empirical method was proposed by Fink and Larson for retrieving H2O ice temperatures

from reflectance spectra [80]. They developed a calibrationcurve of a feature at 6056 cm−1
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(∼1.65µm) and used it to determine ice temperatures for the Galileansatellites Europa,

Ganymede, and the rings of Saturn. Their method was limited to objects that display H2O

ice absorptions, and was specific for the 1.65µm feature. Another competing method to

infer H2O ice temperatures was discussed by Grundyet al. [71], involving construction of

a suite of models with various free parameters, fitting them to the spectra with numerical

optimization. This method fit the model to different segments of the spectra separately,

and compared the resulting collection of best-fit temperatures. If most of the models and

most of the spectral segments agreed on the temperature, that temperature was accepted

as likely correct. When different models gave systematically different temperatures, the

results were taken as probably meaningless. This techniqueworked well for applications

where a small number of surface parameters are inferred for asmall number of spectra.

When the number of parameters of interest increases and the inference needs to be done

for thousands of spectra, the optimization approach used may yield suboptimal results and

the computational time can be tremendous.

We use a machine learning approach, specifically the SOM-hybrid neural architecture

shown in Fig. 4.1, to learn latent surface parameters from spectra. We assess the capability

of this neural architecture by inferring temperature and grain size from spectra of a single

material, crystalline H2O ice, because it is one of the most commonly found materials in

the Solar System, for which a great deal of relevant data and experience have been accu-

mulated. We focus on crystalline (as opposed to amorphous) H2O ice because observations

of Charon are consistent with crystalline ice [81] and because spectra of amorphous ice are

virtually insensitive to temperature.

For the training of the SOM-hybrid neural architecture, we need a large number of

training spectra for the learning of temperature and grain size. However, real spectra of

Pluto and Charon with sufficient resolution in spatial and other aspects are scarce. In such
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situations, and if available, realistic synthetic data (simulated data) or laboratory spectra

can be used for training. For example, Gilmoreet al. developed a carbonate identifier

with a large number of laboratory spectra of carbonate and non-carbonate minerals by

training a Backpropagation (BP) neural network [82]. The resulting autonomous system

was successful in various simulated Martian scenarios. Ramseyet al. used both laboratory

spectra and synthetic spectra to train a mineral identifier from Near-Infrared reflectance

spectra, with a Bayesian approach [83]. In the experiments with laboratory and field spectra

of a variety of solid and powdered rock samples, a recognition rate higher than what human

experts could produce was shown. Similarly, we use simulated spectra for the training of

our neural network (the SOM-hybrid neural architecture). We develop neural models that

fit to the entire Near-Infrared spectral range (as opposed topiecewise models). Then, we

assess the performance of the trained neural models with test sets of synthetic spectra. After

the validity and reliability of the models are confirmed, follow-up work, beyond this thesis,

will be the deployment of the trained models to infer unknownphysical parameters from

spectra taken from real planetary surfaces.

The synthetic spectra were produced and given to us by our collaborators W. M. Grundy

and E. F. Young. The spectra were generated on a parameter grid through a radiative trans-

fer code [84, 66] based on the Hapke model [72, 73]. The ice optical constants used in

the Hapke model were also synthetically generated by Grundywith a model that fits to

laboratory spectra with 17 temperature-dependent Gaussians [66]. The parameter grid has

126 temperatures with 2 Kelvin (◦K) spacing between 20 and 270◦K, and 9 grain sizes

logarithmically spaced from 0.0003 to 3.0 cm. This set of parameters covers a meaningful

range of surface conditions for the Pluto-Charon system. The resolution of the parameters

is also sufficient for scientific studies of the surface conditions of Pluto and Charon. For

example, the gridding of temperature has a resolution of 2◦K, which is sufficient to resolve
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the diurnal temperature changes (∼ 20 ◦K) on Pluto. The spectral resolution, 230 band-

passes in the Near-Infrared range (1–2.5µm), is close to the resolution of the sensor used

on the New Horizons spacecraft [69]. Sample spectra are shown in Fig. 4.2.

First, we will assess the neural modeling for noiseless spectra in Sections 4.3.3–4.3.5.

The performance we achieve on noiseless data will serve as a benchmark in a noise sen-

sitivity analysis we will give in Section 4.3.6. In the unsupervised training phase of the

SOM-hybrid network, we use all available synthetic spectraof crystalline H2O ice. (126

temperatures and 9 grain size yield a total of 1134 spectra.)In the supervised training

phase, we conduct ten-fold jackknifing (cross-validation)to assess the performance of the

trained predictive models. In each jackknife run, 1134 spectra are randomly split with a 1:9

ratio into a test and a training set. The prediction results are averages of 10 jackknife runs.

4.3.3 Manifold structure learned by the SOM

Since the unsupervised learning phase is important for assisting the fine discrimination

of the spectral shapes in subsequent supervised learning, it is useful to examine how the

converged SOM reflects the manifold structure and, specifically, what can be seen in terms

of the influence by temperature and grain size.

We visualize the mU-matrix on the SOM in Fig. 4.3, left, and plot the prototypes (in

their respective SOM grid cells) in Fig. 4.4 to find out how similar (or dissimilar) the SOM

prototypes are. In both figures, the known grain size labels are overlain on the SOM. We

remind the reader that these labels are not used in SOM learning. By layering the labels

over the SOM, we can see whether the SOM clustering of the datacoincides with the prior

knowledge. In this case, we can see in Fig. 4.3, left, that theSOM is clearly separated into

grain size clusters, typically by double-fenced (black) corridors of empty neurons, such

as the diagonal one that separates the dark blue cluster fromthe yellow cluster. (We note
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Figure 4.3:Left : The 20×20 SOM learned with the synthetic spectra of Pluto ices. Gridcells represent
SOM neurons. In the SOM, we only color the neurons that represent spectra of crystalline H2O ice. The
colors indicate the known grain sizes as keyed at right. The “fences” between adjacent cells have grey
scale intensities proportional to the Euclidean distancesbetween the prototypes of the respective neurons
(in feature space). White is large distance. The unlabeled (black) cells, such as those between the red and
the green clusters, mostly indicate prototypes of spectra of ices other than H2O ice, such as N2 and CH4

ice. This information is not shown here. Some black cells – typically in the narrow corridors between grain
size groups, e.g., between the dark blue and the yellow clusters – are prototypes with no data mapped to
them. Whether a prototype has data mapped to it is not shown inthis representation.Right: Part of the
yellow grain size group at left, magnified to show an example of how spectra are organized within a grain
size group according to temperatures. Here, the prototypesare plotted in the SOM cells. A gradual change in
the prototype shapes from left to right can be observed in response to increasing temperature. The red boxes
and circles exemplify differences in temperature-dependent absorption features at low and high temperatures,
respectively. The light blue and white boxes indicate the empty prototypes of this grain size group, inside and
at the boundaries, respectively.

that although in this case clusters are delineated by double-fenced corridors, this is not a

requirement for cluster separation.) This confirms that the(grain size) cluster structure has

been perfectly learned by the SOM. In Fig. 4.4, we can see the variation in the spectral

shapes across the grain size clusters caused by different grain sizes. The prototypes within

the same grain size cluster are very similar, while the prototypes across different grain size

clusters have more obvious differences. Looking more closely at the prototypes within

each grain size cluster, in Fig. 4.4, we find that these prototypes are organized with respect

to temperature. The temperature-dependent spectral features change in an orderly fashion

from one end of the cluster to another (from top to bottom, left to right, or in other direc-

tions). Fig. 4.3, right, illustrates this for the 0.003 cm (yellow) grain size group, through an

absorption feature at 1.65µm. The prototypes learned from spectra with low temperatures
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Figure 4.4: The learned prototypes plotted in their respective cells in the same SOM as in Fig. 4.3, left. The
“fences” between adjacent SOM cells are not shown here for clarity. An orderly change in the temperature-
dependent features in the prototypes can be observed from one end of each grain size cluster to another. This
can be seen in more detail for the yellow grain size group in Fig. 4.3, right.

have a strong absorption at 1.65µm (in red boxes). This feature gradually disappears to-

ward the right for high temperatures (in red circles). The observation (from Figs. 4.3–4.4)

that grain size has a more dominating effect on the SOM clustering than temperature can

be explained by the influence of the two physical parameters on the spectral shape, as seen

in Fig. 4.2. The difference in the spectral brightness is substantial between two grain size



99

categories (Fig. 4.2, bottom). In contrast, the changes in temperature cause much more

subtle changes in spectral brightness. Temperature mainlycauses shifts of band centers,

as well as significant changes in relative band depths (Fig. 4.2, top). Therefore, we can

conclude that the structure of this data manifold as suggested by the clustering in the SOM

agrees with the spectral properties we know.

Since we have developed new tools to evaluate the faithfulness of SOM in the represen-

tation of manifold structures, instead of observing the SOMprototypes directly, we can use

our new tools, theWDTF and Topoview, to evaluate the quality of topology preservation

in the SOM. Because our work focuses on the spectra of H2O ice, in the calculation of

the WDTF and the TopoView visualization of connections the spectra of other ices are

excluded. In Fig. 4.5, left, theWDTF shows the existence of a few local topology vio-

lations, with small folding lengths, 2, 3 and 4. The violations with folding length 3 or 4

are extremely weak, with approximately 0.5% of contributing data samples (0.5% = 0.005

in the figure). In Fig. 4.5, right, TopoView displays all connections (both violating and

non-violating connections) on the SOM to help locate the violations and understand the

connectedness of the manifold structure. We find that almostall connections are between

immediate lattice neighbors, with folding length 1. These connections are non-violating

connections and therefore not manifested in theWDTF . The small number of violating

connections (fl > 1) are not only weak, as seen from theWDTF , but also confined within

grain size clusters, reflecting the smearing of temperaturerepresentation across neighbor-

ing prototypes. These evaluations demonstrate the soundness of the map. This means that

the SOM is mature enough, and we can proceed to the supervisedlearning phase of the

SOM-hybrid neural architecture, for the learning of temperature and grain size.

The inspection of the manifold structure in the SOM also provides clues that the learn-

ing of temperature may need the help from Voronoi neighbors in the supervised learning
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Figure 4.5: Evaluation of topological quality of the SOM learned with spectra of Pluto ice, by theWDTF

and TopoView. The counting of connections in the computation of theWDTF as well as in TopoView only
includes the spectra of crystalline H2O ice, since our study here focuses on H2O ice. Left : TheWDTF .
Right: TopoView visualizes all connections between prototypes on the SOM as maroon line segments. The
SOM is overlain by the same color labels of 9 grain sizes as in Fig. 4.3.

(i.e., need thekWTA mode), while the learning of grain size does not need thishelp (i.e.,

the WTA mode is enough). Closer inspection of the SOM revealsthat, without exception,

all input spectra mapped to any prototype within a grain sizecluster have the same grain

size label (not shown in Fig. 4.3, left). Perfect learning ofgrain size thus can be easily

achieved in the WTA mode, according to eq. 4.6. In contrast, with approximately 25–30

prototypes in a grain size cluster to represent 126 different temperatures, each prototype

is forced to form an average (a mixture) of spectra across different temperatures. In the

WTA mode, the output temperature value for any input spectrum that maps to a proto-

type is trained to approximate the average temperature represented by that prototype. This

severely limits the resolution of the inferred values of temperature. However, thekWTA

mode, which uses multiple,k, SOM winners in the weighted sum (eq. 4.9), may help better

reconstruct a specific temperature.
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4.3.4 Supervised learning of temperature and grain size with different

k ≤ K from noiseless spectra

Before starting the supervised learning with different values ofk, we need to first find the

theoretical upper bound ofk with the statistics of the connections to Voronoi neighbors, as

described in Section 4.2.3, so that the exhaustive search for the bestk can be constrained

to a small range. From the statistics of the connections shown in Table 4.1, we know that

the maximum number of Voronoi neighbors of any prototype,m, is 3. This tells us that the

theoretical upper bound ofk must not be larger than 4 (K ≤ m + 1 = 3 + 1). From the

statistics of the number and the average strength of connections of each ranki, namelyni

andsi, we see that the third ranking neighbors are less important than the first two ranking

neighbors in both quantity and connection strength. The connections to all third ranking

neighbors involve only 0.3% of contributing data samples. With the criterion that combines

ni andsi, in eq. 4.11, we threshold on the percentage of data samples contributing to the

connections of ranki, %datai, with µ = 1%, and determine the number of important

neighbors,̃m, is 2.K, the upper bound ofk, then equals 3 (K = m̃ + 1 = 2 + 1).

Table 4.1: Statistics of connections to Voronoi neighbors,from the highest to the lowest ranking, analyzed
across SOM prototypes that represent spectra of H2O ice. Spectra that represent other ices are excluded from
this statistics.

Neighbor rankingi
1 2 3 4

ni 209 184 7 0
si 7.6 3.7 1.1 0

%datai 69.7 30.0 0.3 0

We choose the thresholdµ based on the data property we know. The noisier the data,

the largerµ we should choose. The data used here are synthetic spectra generated by a

radiative transfer model [66]. The optical constants used in the model were obtained in

laboratories, and can bring minor amount of noise into the spectra. To account for this
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noise, we set the threshold as 1% based on an estimate of the influence of the noise on the

data. We then justify the validity of the 1% threshold by repeating supervised learning with

all values ofk ≤ m + 1 = 4 and comparing the resulting prediction accuracies. We find

that withk > K(= 3) (K determined byµ = 1%) the prediction accuracies are no better

than the results achieved with the bestk found within the range0 < k ≤ K. This means

thatµ = 1% is a valid threshold that does not cause the loss of any important neighbors.

For this specific science problem, we may assume similar dataproperties across data sets.

Therefore it is reasonable to useµ = 1% for all other data sets generated for the same

problem.

We then perform the supervised training for temperature andgrain size with each

k ≤ K = 3. The prediction results of the learned models are shown as correlations between

predicted and true values, in Fig. 4.6. Since both physical parameters have large ranges,

we quantify the prediction accuracy as the percentage of test spectra for which the true

parameter value was predicted with less than 5% relative error. The accuracies obtained

with k ≤ 3 are shown in Table 4.2, top row. The results confirm what we expected from

the manifestation of the two parameters in the SOM: The WTA mode (k = 1) works per-

fectly for the inference of grain size, while thekWTA mode withk = 3 helps improve the

prediction of temperature significantly, from76.2% to 83.0%, compared to usingk = 1.

The relatively poor results for the prediction of temperature occur mostly at the extreme

values,∼20 ◦K and∼270 ◦K (Fig. 4.6, left block) due to limited availability of synthetic

training spectra with optical constants in these ranges. Since the temperatures on the sur-

faces of Pluto and Charon were estimated in literature to range between 50◦K and 70◦K,

we can safely exclude these boundary effects. As seen in Table 4.2, bottom row, within the

[50 ◦K, 240◦K] range temperatures are predicted with91.8% accuracy.

From the above we find that different values ofk, 1 and 3, are best for the inference of
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Figure 4.6: Correlation of predicted and true values of temperature, T (left block) and grain size, GS (right
block). Data are shown as orange dots. Results are obtained withk = 1 (top row), k = 2 (middle row) and
k = 3 (bottom row). The blue, red and green dashed lines indicate 5%, 10%, and 50% error envelopes for
the prediction, respectively. The temperature has the smallest prediction error withk = 3. The prediction of
grain size is best withk = 1.
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Table 4.2: Prediction accuracies of grain size (GS) and temperature (T) with the spectra of H2O ice,
with k ≤ 3, calculated for the whole data set with T∈[20 ◦K, 270 ◦K] and for the subset of data with
T∈[50 ◦K, 240◦K], respectively. Results are averages of 10 jack-knife runs.

T (◦K) k = 1 k = 2 k = 3

20–270
GS 100.0±0.0% 85.4±4.6% 76.4±4.4%
T 76.2±2.6% 80.1±2.7% 83.0±2.7%

50–240
GS 100.0±0.0% – 73.7±4.7%
T 82.3±3.7% – 91.8±1.2%

grain size and temperature, respectively. Next, we do an experiment to investigate whether

best results can be simultaneously achieved with a uniformk. A natural thought to improve

the grain size prediction withk = 3 is to increase the grid resolution of the training data.

We insert 9 additional grain sizes, evenly spanned on a logarithmic scale, between each two

adjacent grain sizes in Fig. 4.2, bottom, to construct a dataset with 81 grain sizes. We use

an SOM of the same size (20×20) and an SOM of an increased size (40×40) to learn this

data set. Due to color limitation, we group every 9 consecutive grain sizes, in ascending

order, into 9 grain size supergroups. Fig. 4.7 shows the two SOMs, overlain with color

labels of the 9 grain size supergroups. However, increasingthe grain size resolution in

the training data, or increasing both the grain size resolution and the SOM size to 40×40,

is not helpful in this case, as seen from Table 4.3. With the same SOM size (20×20)

and 9 times more grain sizes, we find that the grain size clusters do not separate clearly

as in the SOM learned with the data set with 9 grain sizes. Eachprototype is forced to

represent not only a mixture of different temperatures, butalso a mixture of different grain

sizes. This can be observed from the connections that cross the boundaries of the grain size

supergroups in Fig. 4.7, left. It also explains why multiplewinners (k = 3) achieve higher

accuracy (78.8%) for the inference of grain size in this casethan a single winner (k = 1)

(74.1% accuracy), in contrast to the case with 9 grain sizes (Table 4.2, top left block). The

overall performance suggests that the variations in the data caused by the two physical
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parameters are insufficiently represented in the small SOM,due to which they cannot be

inferred as accurately as for the data set with 9 grain sizes.When increasing the size of

the SOM to 40×40, we observe that 81 grain size clusters are separated fromeach other

almost cleanly. This can be seen from 9 clear strings of connections, which represents 9

different grain sizes, in most of the supergroups (Fig. 4.7,right). For example, in the dark

blue supergroup, 9 strings are nicely aligned, oriented along the vertical direction. The

almost clean separation between grain size groups helps recover the inference accuracy

of grain size to near perfection (97.8%) withk = 1. However, it is unable to recover to

100% accuracy because in the supergroups where entangled connection strings exist, such

as indicated by the yellow oval, some of the prototypes stillrepresent spectra from different

grain size groups. The inference accuracy of temperature isalso poorer than in the case of

20×20 SOM and the data set with 9 grain sizes. This can be explained by the fact that the

40×40 SOM allocates, on average, approximately 19 prototypes to each grain size group,

which is around two thirds of the number (∼ 30) allocated by the 20×20 SOM for each of

the 9 grain size groups.

Table 4.3: Prediction accuracies of grain size (GS) and temperature (T) for two separate data sets, containing
9 and 81 grain sizes, respectively, with 20×20 and 40×40 SOMs, each withk = 1 andk = 3, respectively
[85]. Results are averages of 10 jack-knife runs.

Data set with 9 grain sizes Data set with 81 grain sizes
k = 1 k = 3 k = 1 k = 3

20×20 GS 100.0±0.0% 76.4±4.4% 74.1±1.5% 78.8±1.7%
SOM T 76.2±2.6% 83.0±2.7% 31.9±1.2% 52.5±1.8%

40×40 GS – – 97.8±0.4% 54.5±1.2%
SOM T – – 60.3±1.2% 77.9±1.0%

We can conclude from the above that larger SOM size and more grain size samples

may not get us closer to better overall prediction with a uniformk. Although it is possible

that with an SOM even larger than 40×40, or with many more training steps, we may be
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Figure 4.7: TopoView visualizes all connections between prototypes (thin white lines) on the two SOMs that
learned the data set with 81 grain sizes. The same color coding of grain sizes is used as in Fig. 4.3, but
here each color represents a grain size supergroup, which contains 9 consecutive grain sizes out of the 81.
Dark to bright shading of colors expresses proportional, low-to-high, temperature values.Left: The 20×20
SOM. Right: The 40×40 SOM. The yellow oval indicates an example of the entanglements between the
connections, resulting from undefined boundaries between grain size groups.

able to achieve the same accuracies as in Table 4.3, top left,the extra resources and time

required make that approach undesirable for practical purposes. However, we can encode

the use of two different values ofk, 1 and 3, for the learning of temperature and grain size,

into one architecture, which we call Conjoined Twins. This new architecture is then able to

achieve the best accuracies simultaneously for the two physical parameters, while adding

minimal overhead to the SOM-hybrid neural architecture (inFig. 4.1). We will introduce

the Conjoined Twins architecture in detail next.
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4.3.5 Conjoined Twins: using different values ofk for learning differ-

ent latent variables

The Conjoined Twins architecture

The idea of the Conjoined Twins is to allow preferential use of different values ofk for

the inference of different latent variables [85, 70]. The Conjoined Twins architecture has

the same structure as the SOM-hybrid architecture (Fig. 4.1), but with “twin heads”, two

copies of the output layer, as in Fig. 4.8. Both “heads” sharethe same “body” of knowledge

in the SOM, but use it in customized ways. Head#1 pulls the SOM output only from the

BMU (k = 1) for the training of the output layer (eq. 4.6). This head becomes a grain size

specialist achieving perfect prediction for grain size. The prediction of temperature from

its second output neuron is discarded. Similarly, head#2 specializes on temperature by

drawing the outputs from the first three BMUs and forming a three-term weighted sum ac-

cording to eq. 4.9 (k = 3). The grain size prediction from this head is discarded. With the

Conjoined Twins we obtain high prediction accuracies for both parameters by minimal ad-

ditional computational cost, compared to increasing the SOM size or adding more training

steps, as discussed next.

Computational cost

The increase in computational cost with an additional “head” is relatively small compared

to increasing the size of the SOM, for two reasons. First, thetraining of the SOM is

typically longer (takes more training steps) than the training of the output layer. Second,

the cost of each training step of the SOM is much larger than the cost of a training step in the

output layer. WithN SOM prototypes and dimensionD, it takes(3D+6)N operations for

the SOM to calculate the distances between an incoming inputvector and all the prototypes,

for winner selection (eqs. 2.9–2.11), and4DN operations for updating the SOM prototypes
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Figure 4.8: Conceptual diagram of the Conjoined Twins architecture for best inference of temperature and
grain size. Head#1 uses the output from the BMU (red neuron in the SOM) to predictgrain size. Head#2
uses, in addition, the second and third BMUs (pink and yellowneurons) to predict temperature.

wj (eq. 2.2). For a 20×20 SOM (N = 400) that learns 230-dimensional data (D = 230), it

takes 646,400 (=278,400+368,000) operations to learn fromone input vector. For a 40×40

SOM (N = 1600), the number of operations is 2,585,600 (4 times larger) forone learning

step. In contrast, adding a “twin head” carries a small overhead. In the WTA mode, one

training step has5N operations:N for setting SOM outputs (eq. 4.5),2N−1 for calculating

yOUT
p in the output layer (eq. 4.3), and2N+1 for updatingvpi (eq. 4.4). In thekWTA mode,

one step costs3k +5N −2 operations, wherek is the customized number of SOM winners

to be used by this “head”. This includesk + N − 1 operations for setting the SOM outputs

(eq. 4.7),2k − 1 operations for normalizing the SOM outputs (eq. 4.8),2N − 1 operations

for calculatingyOUT
p in the output layer and2N + 1 for updatingvpi. k is typically a small

number (� N). For a 20×20 SOM, 2000 additional operations are needed for a “head”

in the WTA mode, or 2007 operations for a “head” in thekWTA mode (k = 3). Hence,

the extra computational cost of adding a “twin head” is negligible, and independent of

the data dimensionality. This makes the Conjoined Twins approach especially suitable for

high-dimensional data.
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We can achieve 100% accuracy for the prediction of grain size in thekWTA mode

(k=3) by running the supervised phase for∼2 million steps, more than twice as long as

with the Conjoined Twins (750,000 steps). This means the inclusion of 3 SOM winners

can produce good prediction for both temperature and grain size, but more computational

time is required by this machine with a single mode (a uniformk for supervised learning)

to perform as well as the Conjoined Twins for the inference ofgrain size. For a 20×20

SOM (N = 400) and 230-dimensional data (D = 230), it takes a total of∼2.1×1011

(=(276,000+2000+2007)×750,000) operations for the Conjoined Twins to learn both pa-

rameters well. The machine with thekWTA mode withk = 3 needs∼5.6×1011 opera-

tions (=(276,000+2007+2007)×2,000,000) to achieve similar results. Thus, the Conjoined

Twins approach is a more economical solution to this parameter inference problem.

Inference results with Conjoined Twins

We achieve perfect, 100.0±0.0% prediction accuracy for grain size and 83.0±2.7% for

temperature (Table 4.3, top left block), using the Conjoined Twins architecture. If we ex-

clude the problematic end regions of the temperatures whereadequate training data are

unavailable, the prediction accuracy for temperature in the remaining 50–240◦K range is

91.8±1.2% (Table 4.2). For Charon, and for regions of Pluto free of N2-ice, diurnal and

latitudinal temperature variations of tens of◦K are expected, with temperatures in the the

50–70◦K range. Our neural model is desired to retrieve temperatures with less than∼3 ◦K

error in order to resolve the temperature differences to∼6 ◦K, which is sufficient for defin-

ing the tens of◦K diurnal and latitudinal temperature changes. This will further help map

the thermal inertia across these surfaces. Since 3◦K represents∼ 5% error in the 50–70◦K

temperature range and we already use 5% error envelope in thecomputation of prediction

accuracy, we can assume such performance for 91.8±1.2% of the measured spectra with
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temperature between 50–70◦K, according to Table 4.2. This means that 91.8±1.2% of

the predictions from our model will be useful to assist scientific analysis of the geological

histories of Pluto and Charon.

4.3.6 Noise sensitivity analysis

As our ultimate goal is to infer surface parameters from realspectra acquired in space

missions under various noise conditions, we conduct a noisesensitivity analysis to evaluate

the robustness of our neural model. To address the noise conditions that are common for

spectral measurements, our collaborators, Young and Grundy, added noise to the noiseless

data set (1134 spectra), producing noisy versions of the data with seven different Signal-to-

Noise Ratio (SNR) levels, SNR=256, 128, 64, 32, 16, 8 and 4. Properties of the added noise

reflect their knowledge about the noise in real spectra [70].They generated two batches of

noisy data sets, one batch with one noisy version, the other with 10 noisy versions for

each noiseless spectrum. We refer to these as NoisyData1 (7×1134=7938 spectra) and

NoisyData10 (7×10×1134=79,380 spectra).

The noise sensitivity analysis consists of two parts.

First, we compare the models trained on the NoisyData10 dataset with five SNR levels,

infinity (inf), 256, 128, 64 and 32, as shown in Table 4.4. The inference capabilities of the

resulting models are tested on data with eight different SNRlevels, inf, 256, 128, 64, 32,

16, 8 and 4. For each case, we do 3 three-fold jackknife runs. The training set for each

case comprises randomly selected two thirds of the spectra with the training SNR. The

remaining one third of the spectra, together with the spectra with other SNR levels, make

up the corresponding test set.

Second, we investigate the influence of the size of the noisy training set on the predic-

tion accuracy by comparing the models trained with the NoisyData1 and the NoisyData10
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data sets.

In both experiments, we reuse the 20×20 SOM that learned with the noiseless data

(1134 spectra) and train the “twin heads” with the noisy datain the supervised learning

phase. A rationale for reusing the SOM is that we expect to train the SOMs in our models

mostly with synthetic data, thus, we have no limitation in using noiseless data. In addition,

the use of the same SOM (trained with noiseless spectra) across all cases helps separate the

effect of training the “twin heads” with different noisy data sets from the effect of training

the SOM with noisy data. A follow-up task should be to assess what noise levels make

significant difference in training the SOM.

Results with the NoisyData10 data set

The best results in Table 4.4 (numbers in bold face) show thatthe difference between the

SNR levels of the training and the test data is important for the prediction of temperature.

The training set with the highest SNR, namely the noiseless set, does not always generate

the best predictions. For instance, from the noisy data withSNR=64, temperature is best

inferred with the model trained on data with SNR=128. This makes sense because training

with noisy data is similar to training with a larger variety of noiseless training samples that

have the same variance as the noisy data. This helps the prediction from noisier samples

which have an even larger variance than the training data. Table 4.4 suggests that the

training sets with SNR 2–8 times as high as the SNR of the test data produce the highest

accuracies. In contrast, for grain size, the noiseless training set produces the best prediction

accuracy for all test sets with SNR≥16. The markedly lower accuracies produced by the

models resulting from noisy training data can be explained by noise-induced blurring of

the boundaries between grain size groups. Two noisy spectrawith different grain sizes can

map to the same SOM prototype at the boundary of two clusters (such as the ones in the
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white boxes in Fig. 4.3, right). This causes confusion during the training of the grain size

specialist “head”. For the test sets with SNR levels 4 and 8, the best results are produced by

the models trained on data with SNR=64. However, for these two test sets, the advantage

of the best models over others is small (≤2.0% increase in accuracy), thus may not be

conclusive.

Table 4.4: Prediction accuracies for temperature (T) and grain size (GS) tabulated for different SNR levels of
the training and test data. Each prediction accuracy is an average of 3 jack-knife runs. The numbers in bold
face are the best prediction accuracies for test data. Variances of all prediction accuracies are less than 2.7 for
T, and less than 0.3 for GS, as shown in Table 4.9.

T prediction accuracy (%) GS prediction accuracy (%)
Training SNR inf 256 128 64 32 inf 256 128 64 32

Te
st

S
N

R

4 45.5 46.0 46.1 46.0 46.1 87.4 87.7 88.5 89.2 87.8
8 55.6 56.0 56.3 56.4 55.9 94.5 94.7 95.3 95.9 93.9
16 64.7 65.8 66.0 65.9 65.6 97.4 97.4 97.1 97.4 93.9
32 72.7 73.7 74.0 73.0 71.5 98.8 98.5 97.9 97.5 93.6
64 78.4 79.3 79.3 77.0 74.3 99.3 98.8 98.2 97.5 93.3
128 82.0 82.4 81.7 78.1 74.9 99.8 99.0 97.9 97.2 93.1
256 83.5 83.3 81.8 78.2 74.6 99.9 99.0 97.9 97.2 92.8
inf 83.0 82.5 80.8 76.1 72.3 100.0 99.0 97.8 97.1 93.0

inf: infinity

Comparison of results obtained with NoisyData10 and NoisyData1

Tables 4.5 and 4.6 show the prediction accuracies achieved with the NoisyData10 and the

NoisyData1 data sets, respectively, for training SNR 32, 64and 128. Their difference, in

Table 4.7, indicates the improvements in prediction accuracies due to the larger sizes of the

training sets. For the prediction of temperature, the improvement in accuracy is prominent

when the test data set has an SNR level at least twice as high asthe SNR level of the training

data. When the SNR level of the training set is 8 times as largeas the SNR level of the test

data, the advantage of using 10 noisy versions for training vanishes. For the prediction of

grain size, however, the tendency is consistent. The results with NoisyData10 are always

better than with NoisyData1. One general conclusion from Table 4.7, for both parameters,
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is that in most cases the noisier the training set the greaterimprovement in accuracy can be

achieved with more (in this case 10 times more) noisy training spectra.

The above results demonstrate good consistency in the performance of the neural mod-

els under a wide range of noisy conditions. The statistics inTables 4.4–4.7 will help choose

the most suitable model for inference of temperature and grain size from real spectra when

noise estimate for real data is available.

Table 4.5: Prediction accuracies produced with the NoisyData10 data set, containing 10 noisy versions for
each noiseless spectrum. This table shows a subset of Table 4.4, for easy comparison with Table 4.6.

T accuracy (%) GS accuracy (%)
Training SNR 128 64 32 128 64 32

Te
st

S
N

R

4 46.1 46.0 46.1 88.5 89.2 87.8
8 56.3 56.4 55.9 95.3 95.9 93.9
16 66.0 65.9 65.6 97.1 97.4 93.9
32 74.0 73.0 71.5 97.9 97.5 93.6
64 79.3 77.0 74.3 98.2 97.5 93.3
128 81.7 78.1 74.9 97.9 97.2 93.1
256 81.8 78.2 74.6 97.9 97.2 92.8
inf 80.8 76.1 72.3 97.8 97.1 93.0

Table 4.6: Prediction accuracies produced with the NoisyData1 data set, containing one noisy version for
each noiseless spectrum. Entries are missing when the test and the training SNR levels coincide, because in
these cases the single noisy version is included in the training set, leaving the test set empty.

T accuracy (%) GS accuracy (%)
Training SNR 128 64 32 128 64 32

Te
st

S
N

R

4 46.6 46.3 46.0 88.5 87.8 87.0
8 56.7 57.0 56.9 94.4 92.4 90.9
16 66.7 65.3 64.3 94.8 93.6 89.4
32 73.2 71.7 – 97.3 96.5 –
64 78.9 – 70.3 97.5 – 90.4
128 – 76.2 70.5 – 94.9 89.0
256 79.3 75.7 70.5 96.8 95.7 89.4
inf 77.1 71.9 67.4 96.6 95.3 89.4
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Table 4.7: The difference of Table 4.5 and Table 4.6, showingimprovements in prediction accuracies by using
10 noisy versions instead of one. Values greater than 1.5% are in bold face.

Improvement in Improvement in
T accuracy (%) GS accuracy (%)

Training SNR 128 64 32 128 64 32

Te
st

S
N

R
4 -0.5 -0.3 0.1 0 1.4 0.8
8 -0.4 -0.6 -1.0 0.9 3.5 3.0
16 -0.7 0.6 1.3 2.3 3.8 4.5
32 0.8 1.3 – 0.6 1.0 –
64 0.4 – 4.0 0.7 – 2.9
128 – 1.9 4.4 – 2.3 4.1
256 2.5 2.5 4.1 1.1 1.5 3.4
inf 3.7 4.2 4.9 1.2 1.8 3.6

4.3.7 Comparison between Conjoined Twins and backpropagation (BP)

network

Because backpropagation (BP) network [55, 56] is a well-known universal function ap-

proximator and it is popular in spectral classification problems [82, 86, 87], we compare

it with the Conjoined Twins through the same planetary science problem, the inference of

temperature and grain size from spectra of H2O ice. A brief introduction of the BP network

is given in Appendix C.

The BP network we use is a two-layer network with 2 neurons in the output layer and 40

neurons in the hidden layer. The 2 output neurons generate inferred values of temperature

and grain size, respectively. The number of neurons to use inthe hidden layer is determined

by trial and error. We also preprocess the grain size values with a logarithmic filter before

the network training. The filter maps the logarithmically spaced grain size values, which

span 5 magnitudes, to a linear scale between -5 and 1. This logarithmic transformation

improves the prediction accuracy of grain sizes from 47.4% to 99.9% for noiseless spectra

with the BP network. The reason could be that the logarithmictransformation changed the

shape (smoothness and steepness) of the error surface for this specific problem such that
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the minimum error could be easily achieved by gradient descent. Inference accuracies of

temperature and grain size are evaluated after 600 million training steps for each case with

different training and test SNR values shown in Table 4.8. Compared with the Conjoined

Twins, which takes 1 million training steps (250,000 steps for unsupervised learning and

750,000 steps for supervised learning) to achieve satisfactory prediction accuracies, the BP

network takes much more steps. The supervised learning of the Conjoined Twins is faster

than the BP network because when the SOM converged the supervised training involves

only the output layer and the training is reduced to a linear regression, where the outputs

of the output layer are weighted sums of the SOM outputs (eq. 4.3). In contrast, in the BP

network the supervised learning involves the training of both the hidden layer and the output

layer, and it is a nonlinear regression because an additional nonlinear transfer function is

applied on the weighted sums in both the hidden layer and the output layer (eqs. C.1–C.3).

These make the BP network require much more computational efforts to converge than the

Conjoined Twins.

Table 4.8: Prediction accuracies achieved with a two-layerBP network for temperature (T) and grain size
(GS) tabulated for different SNR levels of the training and test data. Each prediction accuracy is an average
of 3 jack-knife runs. The numbers in bold face are the maximumprediction accuracies for test sets.

T prediction accuracy (%) GS prediction accuracy (%)
Training SNR inf 256 128 64 32 inf 256 128 64 32

Te
st

S
N

R

4 36.1 33.6 34.3 33.6 34.3 36.8 25.3 28.3 27.9 38.9
8 44.8 41.8 42.7 42.2 43.5 45.4 33.1 36.5 36.2 48.8
16 55.1 52.0 53.1 51.9 54.0 55.5 42.9 46.4 46.9 60.7
32 67.0 63.6 64.8 63.2 64.8 69.1 56.0 59.6 60.1 74.1
64 78.8 73.8 74.5 73.3 71.5 84.3 70.9 74.8 74.5 84.4
128 88.8 81.3 82.0 79.9 76.3 95.7 81.1 84.5 83.8 88.7
256 93.9 83.8 84.4 82.3 77.8 99.6 85.1 87.8 86.9 89.7
inf 95.5 84.5 84.9 83.0 78.5 99.9 86.2 88.8 88.6 89.8

From noiseless spectra of H2O ice, the BP network achieves 95.5% and 99.9% accu-

racies for temperature and grain size, respectively (Table4.8). This means that the BP
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network can infer grain size similarly well as the ConjoinedTwins (99.9% vs.100.0%), and

it outperforms the Conjoined Twins by approximately 12% in the prediction for temper-

ature (95% vs. 83%). Nevertheless, we note that the equally good performance for the

prediction of grain size is due to the logarithmic transformation, which requires the prior

knowledge of the data.

Moreover, from Table 4.8, we find that the BP network is less robust to noise than the

Conjoined Twins. When the noise level of the test spectra increases, the best inference

accuracies from models trained on spectra with different noise levels all drop more steeply

compared to the Conjoined Twins for both physical parameters. For example, for test

spectra with SNR=32, the BP network is worse than the Conjoined Twins (67.0% vs. 74.0%

for temperature and 74.1% vs. 98.8% for grain size). The Conjoined Twins’ remarkable

robustness to noise results from the use of the SOM, which naturally mitigates the effect

of noise owing to the vector quantization procedure. In contrast, the BP network has no

mechanism to relieve the influence of noise in the input vector. To compare the reliability of

the models from the two neural modeling approaches, we also calculate the statistics of the

standard deviations of the inference accuracies in Tables 4.4 and 4.8. From Table 4.9, the

Conjoined Twins architecture shows higher reliability with significantly smaller standard

deviations of the prediction accuracies.

Table 4.9: Statistics of the standard deviations of the prediction accuracies shown in Table 4.4 and 4.8. The
standard deviations are not shown in Table 4.4.

Neural modeling approach mean std min max

Conjoined Twins (Table 4.4)
T 0.2 0.4 0.0 2.7

GS 0.1 0.1 0.0 0.3

Backpropagation (Table 4.8)
T 1.3 0.8 0.2 3.4

GS 5.1 3.2 0.2 11.6

From the above, we conclude that the Conjoined Twins is better than the BP network

for this particular inference problem, primarily for two reasons. First, the Conjoined Twins
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does not need a preprocessing of data while the BP network depends on the logarithmic

transformation to achieve high prediction accuracy for grain size. Second, the models

produced by the Conjoined Twins architecture have higher degree of robustness to noise

and higher reliability than the models produced by the BP network. These properties are

important and desirable, especially in future deploymentswhere physical parameters will

be inferred from noisy spectra collected from real planetary surfaces. Additionally, the

Conjoined Twins is more economical than the BP network. The supervised learning in the

Conjoined Twins is much faster than in the BP network.

4.3.8 Conjoined Twins architecture for the inference of multiple latent

variables

The Conjoined Twins architecture proposed above has two heads for the supervised learn-

ing of two physical parameters. This can be conceptually extended to an architecture with

multiple, more than two, “heads” for the learning of multiple latent variables, as illustrated

in Fig. 4.9. All “heads” rely on the same “body” of knowledge,the learned SOM, but each

draws from a different,ki, number of SOM winners in the weighted sum (eq. 4.9) for best

learning of the latent variableli.

The essential part of building the Conjoined Twins architecture with multiple “heads”

is the customization ofki for each latent variableli. Procedurally, customization for more

than two “heads” (L > 2) is the same as for two “heads” (L = 2), as conducted in Sec-

tion 4.3.4. It should follow the two-step procedure we propose [65]. In the first step, we

determine the collective upper bound,K, of ki for all latent variables according to the

statistics of the connections, by eq. 4.11 in Section 4.2.3.This is to find how many SOM

winners aresufficientto represent the information in a data sample. The second step is to

search for the bestki for each latent variableli, i.e., thenecessarysmallestki ≤ K for the
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Figure 4.9: Conceptual diagram of the Conjoined Twins architecture for inference of multiple latent variables
l1, l2,..., lL. The Conjoined Twins architecture has multiple “heads”, each of which preferentially uses a
different number of SOM winners,ki, to achieve the best inference accuracy for the latent variable li.

supervised learning ofli. Since the search range ofki has already been narrowed byK,

we perform an exhaustive search by repeating the supervisedtraining phaseK times with

k = 1, 2, ..., K and selectingki with which we obtain the highest inference accuracy forli.

After completing these two steps, we can “mount” the “heads”with differentk to the SOM

“body” such that the resulting Conjoined Twins architecture (Fig. 4.9) can infer all these

latent variables with high accuracies simultaneously.

When the number of latent variables to be inferred is larger than two (L > 2), new

problems might arise due to the increased level of interplayacross the latent variables

manifested in the SOM clustering. For example, more latent variables in the data indicates

higher intrinsic dimensionality of the data. With increasing number of latent variables, the

mismatch of the dimensionality between the data manifold and the 2-dimensional SOM

lattice can increase accordingly. This may result in increasing level of topology violations

in the SOM, and may consequently lead to poor supervised learning. In that case, more

research will be needed to carefully evaluate the success ofthe Conjoined Twins, and more

innovations may be required for issues related to more than two latent variables.



Chapter 5

Summary and future directions

Data collected for real world problems often pose considerable challenges for information

extraction algorithms, due to the high dimension of the dataas well as the convoluted

dependencies across the data dimensions. Supervised machine learning algorithms can

model the relationships, regardless of their complexity, between the high-dimensional data

(observable variables) and certain information of interest (latent variables), when example

data (labeled data) are available. Success, however, depends on the quality of the data

labels. Unsupervised machine learning, which reveals the hidden patterns and regularities

in the data, can provide additional objective information to support the supervised learning,

and hence can help improve the capabilities of supervised learning algorithms (e.g., by

detecting mislabeling).

This thesis work focuses on a powerful unsupervised neural learning paradigm, the

Self-Organizing Map (SOM), which has been studied extensively and has been success-

ful for the analysis of high-dimensional data in recent decades. The essential property of

the SOM, topology preservation, enables a faithful representation of the structure of high-

dimensional data manifolds on a low-dimensional lattice, from which relevant information

of the data can be extracted. However, topology violations are not unusual, especially in
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the learning of real data. One contribution of this work is the development of new measures

and visual tool for evaluation of topology preservation in SOMs. Assuming good quality in

SOM learning, we can further employ the learned SOM’s knowledge for supervised learn-

ing of latent variables from data, by incorporating the SOM into a supervised architecture.

Another contribution of this work is the proposition of an innovative supervised learning

architecture, the Conjoined Twins, which enables the optimal uses of the SOM’s knowl-

edge for the inference of different latent variables. We summarize these contributions here

briefly, along with further insights and outlooks.

New measures and visual tool for evaluation of topology preservation in SOMs

Topology preservation is an essential property of the SOM, but it can be lost for various rea-

sons, e.g., improper parameterizations of learning. Deterioration of topology preservation

can lead to incorrect understanding of the manifold structure, and consequently, inaccurate

information extraction. Measures and tools that effectively monitor topology violations are

hence desirable so that the user can make remediations to improve the learning.

We advanced the state-of-the-art by further developing oneof the best measures avail-

able, the Topographic Function (TF ). TheTF is advantageous than other measures be-

cause it uses the induced Delaunay graph as the distance metric in data space, which cor-

rectly interprets the neighborhood relationships for datamanifolds with nonlinearities and

discontinuities, and because it displays both the forward and backward violations for dif-

ferent scopes of violations (Section 3.2.2). However, theTF has three drawbacks. 1. It is

an integral function, counting the average number of violations with folding lengths larger

than a givenfl, while in most situations we may be more interested in its differential in-

formation, i.e., the number of violations at each specificfl. 2. TheTF can not be used

directly for comparison across SOMs learned with differentdata sets or SOMs with dif-
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ferent sizes, because of the lack of normalization in its definition. 3. TheTF makes no

difference between potentially important violations, which are induced by a large num-

ber of data samples, and insignificant violations resulted from noise. The evaluation of

topological health of an SOM by theTF therefore can be inaccurate and misleading.

To overcome these drawbacks, we improved theTF into a suite of new measures.

First, we proposed the differential version of theTF , the Differential Topographic Function

(DTF ), which clearly shows the extent of violation (average number of violations) at each

folding length,fl (Section 3.3.1). Next, we normalized theDTF by the total number of

connections, showing the percentage of connections at eachfolding length (Section 3.3.2).

This enables comparison across SOMs that have different total number of connections. In

a further step, we used the connection strength (an element of the connectivity matrix, or

CONN matrix) as an importance weighting on each violation so thatstrong violations

could be distinguished from weak ones. This resulted in the Weighted Differential To-

pographic Function (WDTF ), which shows the severity of violations (the percentage of

data samples contributing to the violations) at a given folding length,fl (Section 3.3.3).

TheWDTF offers a more elaborate and accurate view of the relative severities across all

scopes of violations than theNDTF , and it was shown to be applicable to the comparison

across SOMs of different sizes, SOM at different learning steps, different data sets.

We also designed and implemented an interactive tool, TopoView, which enables the

visual inspection of violations on the SOM, regardless of data dimension. TopoView shows

the locations and orientations of the violations, which constitute an additional piece of

information to the summary view from the measures. Moreover, we implemented a series

of selection and thresholding capabilities in TopoView, providing the freedom to investigate

various (sub)sets of violations such that the user can pinpoint the problematic areas in the

map, determine the cause of the violations, and make appropriate remediations.
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We showed the effectiveness of the combined use of theWDTF and TopoView through

an artificial data set and two hyperspectral images. For the 2-dimensional 4-class Gaussian

data set (Fig. 3.7), the evolution of theWDTF and the corresponding TopoView visual-

ization of the connections illustrated how theWDTF and TopoView reveal topological

problems (Section 3.5.1). For real data, perfect topology preservation is likely impossi-

ble because of noise or intricate structure, as demonstrated by the two hyperspectral data

sets. In such cases, zero violation is a too strict criterionfor a healthy map in this situa-

tion. Rather, the user should focus more on the evaluation ofthe severe violations (mostly

long-ranged and/or strong violations), which could be detrimental to the correct identifica-

tion of manifold structure. Both theWDTF and TopoView are helpful in this sense. The

WDTF puts more emphasis on strong violations. TopoView helps filter out the benign

violations and makes the harmful ones obvious according to the user’s specifications. With

the LCVF data set (Fig. 3.8), we validated that theWDTF was more accurate and infor-

mative than theNDTF through investigation of the detailed statistics of the connections

(Section 3.5.2). With the RIT data set (Fig. 3.13), we showedthe usefulness of TopoView

in the comparison of two SOM clusterings (Section 3.5.3). Inter-cluster violations are con-

sidered warnings of possible incorrect clustering. It is noteworthy that, while using the

quantity and/or the strengths of inter-cluster violationsas criteria for the evaluation of a

clustering, the user should be aware of the dependency of theinter-cluster violations on

the clustering. An extreme case is that when all SOM prototypes are assigned the same

cluster label, no inter-cluster violations will be shown byTopoView because there is only

one cluster. No inter-cluster violations here does not meanthe clustering is perfect. There-

fore, the user should be very careful when making judgement whether a clustering is good

or not. Since inter-cluster violations reflect the similarities across the clusters, perhaps the

user should combine the use of cluster validity indices thatreflect the similarities of sam-
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ples or prototypes within the clusters, and the use of TopoView, for a more comprehensive

evaluation of quality of clusterings.

We can envision a few possible directions for further development of tools for topology

measurement.

First, it would be good to also provide a definition of theWDTF for the negative

domain (fl < 0). We have defined the positive domain of theWDTF in the thesis,

focusing on forward violations (fl > 0), since backward violations (fl < 0) are not as

detrimental as forward violations for cluster identification. Nevertheless, a quantification

of the severities of the backward violations would make the definition of theWDTF more

complete. To find a meaningful and useful counterpart of the connection strength, in the

negative domain, however, is not intuitive and requires more research in future work.

Second, it might be useful to combine the thresholding capabilities of TopoView into

theWDTF , to show the severity of “harmful” violations across different scopes of viola-

tions. The “harmful” set of violations can be specified by theuser. This means to combine

theWDTF and TopoView into one evaluation tool. Once the user makes a selection of

thresholds, TopoView filters out the violations consideredunimportant and theWDTF

would also exclude those unimportant violations from its computation.

In addition to the two possible improvements of the tools, anintriguing future direc-

tion is to incorporate the measures into the SOM learning algorithm for online feedback so

that the SOM can intelligently correct itself and achieve best outcome automatically. The

motivation is obvious: since the most appropriate learningparameters for fast convergence

to the best map depend on the unique properties of the data in each application, the de-

termination of the learning parameters can require laborious parameter exploration by the

user. It would be desirable for these parameters to be tuned automatically during the train-

ing. AdSOM, proposed by Kiviluoto [33], was a variant of the SOM with locally adapting
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neighborhood widths. The adaptation is controlled by the Topographic Error (TE), which

is a measure of topology violations. For the neurons near theproblematic region of the

map, where forward violations exist, the neighborhood width is increased automatically to

untwist the map. However, AdSOM was tested only with a 3-dimensional artificial data

set, so whether it would benefit the learning of high-dimensional complicated data is un-

known. Moreover, AdSOM did not realize full automation because the user still needed to

tune the learning rate,α(t) in eq. 2.2. Auto-SOM, a more advanced algorithm proposed by

Haese and Goodhill [88], automated the modulation of both the learning rate and the neigh-

borhood width by a Kalman filter implementation of the SOM with a recursive parameter

estimation method. Auto-SOM incorporated theTF in the control of the neighborhood

size. The authors demonstrated the effectiveness of Auto-SOM with both artificial and real

data. Future work can be development of an SOM algorithm similar to Auto-SOM, which

utilizes theWDTF instead of theTF as a more precise feedback to the control of the

parameters.

Inference of multiple latent variables by customized exploitation of the SOM’s knowl-

edge in a new supervised architecture

We approached the inference of latent variables with supervised learning aided by an SOM.

The neural architecture we proposed is the Conjoined Twins,a new architecture motivated

by a planetary science application where two physical parameters were inferred from Near-

Infrared spectra of water ice.

The Conjoined Twins was developed from an SOM-hybrid neuralarchitecture, where

the output layer retrieved the SOM outputs and combined theminto weighted sums to learn

to approximate the latent variables from the input data vectors. The customary use of the

SOM outputs by the output layer is the Winner-Takes-All (WTA) mode, where the best
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matching unit (BMU) has an output of 1 while the other SOM neurons have outputs of

0. The WTA mode has a hard limit,N , of the number of values of latent variables it can

differentiate, whereN is the number of SOM neurons. For data sets with continuous latent

variables, this limit can prevent high prediction accuracies. To break this limit, we general-

ized the WTA mode to thek-Winners-Take-All (kWTA) mode, which makes better use of

the SOM’s knowledge by allowing multiple,k, SOM winners to have nonzero outputs and

to contribute to the supervised learning.

The best value ofk is obviously dependent on the data properties and the SOM (the

SOM size and the learning step). To help determinek for an SOM learned with a specific

data set, we proposed a theoretical upper bound,K, of k, which can be computed auto-

matically from the statistics of the Voronoi neighbors. After this, we proposed to perform

an exhaustive search of bestk by performing the supervised learning with all values of

k ≤ K. The bestk is the value that produced the highest prediction accuracy.Although

the exhaustive search sounds computationally expensive, the theoretical upper bound ofk

allows to constrain the search ofk in a small range. This makes our method of findingk a

feasible solution.

Through the inference of temperature and grain size from high-dimensional spectra

of ices, we found an interesting dependency of the bestk on the latent variables. For

different latent variables, different numbers of SOM winners contain the right amount of

information for the recovery of this variable. In this specific application, temperature and

grain size can be inferred best withk = 3 andk = 1, respectively. This motivated the new

architecture, the Conjoined Twins, which is similar to the SOM-hybrid architecture, but

has two copies of the output layer (“twin heads”). By allowing the different “twin heads”

to use differentk for the supervised learning, the Conjoined Twins can achieve the highest

prediction accuracies for both latent variables simultaneously. With this application, we
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showed that the Conjoined Twins achieved high and scientifically useful accuracies for

temperature and grain size. Through a noise sensitivity analysis and a comparison to a

competing neural approach, the Backpropagation (BP) network, we also confirmed a high

degree of robustness to noise and exceptional reliability of the models produced with the

Conjoined Twins. These properties of the models give us confidence that the Conjoined

Twins is an effective solution to the inference problems in planetary spectral applications.

In this thesis, we inferred two physical parameters from spectra of H2O ice as an initial

assessment of our new approach. Future work should include the investigation of the per-

formance of the Conjoined Twins model under increasing levels of realism in the spectra

such as the inference of more than two physical parameters. Although conceptually the

Conjoined Twins can be extended to have more than two “heads”, and the same procedure

can be used for the learning of more than two latent variables, the increased number of

latent variables may cause new difficulties in the neural modeling. More research work

is required in future projects to investigate the new issuesand to improve the Conjoined

Twins.

Our efforts in this thesis advance the capability of correctly learning the structure of high-

dimensional, complicated data, and accurately retrievingknowledge from these data, with

the SOM. Although our innovations were motivated by applications to hyperspectral data

of planetary surfaces, the new tools should be applicable for the analysis of other types of

high-dimensional data, such as data collected through medical trials. New data of course,

can hold unforseen challenges, which may necessitate revisions of the current tools and

further innovations.



Notations

A SOM lattice, 14

C Total number of connections in the SOM, 50

D Delaunay graph, 27

K Upper bound ofk in thekWTA mode, 87

L Dimension of the vector of latent variables,l, 79

M Data manifold, 14

N Number of neurons (or prototypes) in an SOM,

14

P Total number of data samples, 51

RFi receptive field of neuroni, 14

V Voronoi tessellation, 17

Vi Voronoi cell of SOM prototypewi, 17

%datai Percentage of data samples contributing to allith

ranking connections in the SOM, 87

l = [l1, l2, ..., lL]T Vector of latent variables, 79

ri Lattice coordinates of neuroni in the SOM, 15

wi Prototype (weight vector) of SOM neuroni, 14

x = [x1, x2, ..., xd]
T Input data vector, 14

D̃ Induced Delaunay graph, 27
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Ṽ Induced Voronoi tessellation, 27

Ṽi Induced Voronoi cell of SOM prototypewi, 27

m̃ Number of important Voronoi neighbors to any

prototype, 87

c Lattice index of the BMU, 14

d Dimension of the input data manifold, 14, 79

fl folding length, 43

hc,j(t) Neighborhood function used in the SOM algo-

rithm, 15

k Number of SOM winners used for supervised

learning in thekWTA mode, 85

m Maximum number of Voronoi neighbors to any

prototype, 53, 87

ni Number of connections from all prototypes to

their ith ranking Voronoi neighbors, 87

si Average strength of all connections from proto-

types to theirith ranking Voronoi neighbors, 87

yi Output of SOM neuroni, 82

V weight matrix connecting the output and the hid-

den layers of the SOM-hybrid neural machine,

81

W weight matrix connecting the hidden layer and

the input buffer of the SOM-hybrid neural ma-

chine, 81
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k-Winners-Take-All (kWTA), 85

pdf, 5

Artificial neural network, 5

Backward topology violation, 22, 43

Best matching unit, BMU, 15

Connection, 28

Connection strength, 32

Connectivity matrix (CONN), 31

Data manifold, 3

Delaunay graph, 27

Differential Topographic Function (DTF ),

46

Empty neuron, 17

Empty prototype, 17

Extent of violations, 46

Folding length, 44

Forward topology violation, 21, 43

Global violation, 53

Hyperspectral image, 2

Induced Delaunay graph, 27

Induced Voronoi cell, 27

Induced Voronoi tessellation, 27

Inter-cluster and intra-cluster connection, 54

Latent variables, 79

Local violation, 54

Mapping density, 17

Modified U-matrix (mU-matrix), 23

Normalized Differential Topographic Func-

tion (NDTF ), 50

Observable variable, 79

Prototype, 6

Quantization error, 34

Receptive field, 17

receptive field, 14

Severity of violations, 51

Size of receptive field, 17
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Supervised machine learning, 4

Topographic Function (TF ), 42

Topographic Product (TP ), 41

Topology preservation, 17

Topology violation, 21

TopoView, 53

U-matrix, 23

Unsupervised machine learning, 4

Violating connection, 43

Voronoi cell, 17

Voronoi neighbor, 29

Voronoi tessellation, 17

Weighted Differential Topographic Function

(WDTF ), 51

Winner-Takes-All (WTA), 85
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Appendix B

Software implementation of the new
tools proposed in the thesis

The author implemented the new tools proposed in this thesisin C/C++ on UNIX platform.

The implementation includes the following four pieces of software:

• dtf, a module to compute a suite of measures of topology preservation

• TopoView, an interactive tool for visualization of selected sets of connections on the

SOM

• CTwins, the Conjoined Twins supervised learning architecture

• Augmentation to a module CONNvis, for computation of Voronoi statistics used by

CTwins

All four pieces of software were implemented in the environment developed and main-

tained by the Merényi group for SOM-based machine learningof complicated, high-dimensional

data. Information about this environment and software capabilities is available at http://terra.

ece.rice.edu. The input/output mechanisms, general structure, processing and housekeep-

ing of these software take advantage of the standardized support services in this environ-

ment. A detailed user manual along with examples of use is provided with each individ-
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ual module. Here we are giving an impression of the unique functions of dtf, TopoView,

CTwins and the augmentation to CONNvis, and the controls theuser can exercise.

B.1 dtf, a module to compute a suite of measures of topol-

ogy preservation

The dtf module takes a data set and an SOM learned with it as inputs. The files that repre-

sent the learned SOM are products from any of the SOM-hybrid neural network modules

(ann-SOMconsc, ann-SOMbdh, etc.) implemented by the Merényi group. The dtf module

computes theTP , theTF , theDTF , theNDTF and theWDTF for the input SOM and

writes these measures, together with some statistics of theconnections, out to a file in a

human readable format.

Example output file fragment:

## TP = -0.05115

## number of empty PEs = 41
## total number of connections = 1034
## total number of data points = 16384
## number of connections connecting non-empty PEs = 1034
## number of data points whose BMU and second BMU are non-empty = 16384
## TF = 0 for k>7, when all PEs are included.
## TF = 0 for k>7, when empty PEs are excluded.

# k norm_k TF TF DTF DTF NDTF NDTF WDTF WDTF
# (empty PEs (empty PEs (empty PEs (empty PEs
# excluded) excluded) excluded) excluded)
1 0.0714 5.04 5.04 0.00 0.00 0.0000 0.0000 0.0000 0.0000
2 0.1429 4.11 4.11 0.93 0.93 0.1015 0.3322 0.0115 0.0115
3 0.2143 3.07 3.07 1.04 1.04 0.1132 0.3701 0.0139 0.0139
4 0.2857 1.96 1.96 1.10 1.10 0.1199 0.3923 0.0211 0.0211
5 0.3571 0.83 0.83 1.14 1.14 0.1238 0.4049 0.0184 0.0184
6 0.4286 0.18 0.18 0.65 0.65 0.0706 0.2309 0.0103 0.0103
7 0.5000 0.02 0.02 0.16 0.16 0.0174 0.0569 0.0032 0.0032
8 0.5714 0.00 0.00 0.02 0.02 0.0019 0.0063 0.0009 0.0009
9 0.6429 0.00 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.0000
... ... ... ... ...
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The author has also provided Matlab scripts, which read in the output file and plot the

measures as shown in Fig. 4.6 in Section 3.5.

B.2 TopoView, an interactive tool for visualization of se-

lected sets of connections on the SOM

TopoView is a visualization tool for interactive selectionand display of connections over

the SOM. The inputs of TopoView include a data set and the SOM learned with it. Upon

start, TopoView launches its graphical user interface as shown in Fig. B.1. The user can

change the values of the keywords that control the selectionand the thresholding of con-

nections, in the keyword window (Fig. B.1, right). TopoViewwill refresh the connections

drawn on the SOM in the display window (Fig. B.1, left) according to the user’s choices.

Figure B.1: The graphical user interface of TopoView.Left : The display window of TopoView. The selected
subsets of connections will be shown on the SOM in this window. Right: The keyword window, in which the
user can make selection and set thresholding of connectionsby specifying values for keywords that controls
TopoView.

TopoView provides two main categories of keywords: keywords for selecting connec-

tions to be drawn and keywords for setting the drawing properties.

1. Keywords for selecting connections to be drawn:

The user can select the connections by choosing a range for folding length, the type
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of the connections, and a threshold for connection strength.

• The range for folding length is specified by an upper and a lower limit of folding

length.

• The type of connections include all connections, violatingconnections, non-

violating connections, inter-cluster connections, intra-cluster connections, inter-

cluster violating connections and intra-cluster violating connections.

• The threshold for connection strength is computed automatically by TopoView

from a statistical property of a specific set of connections.The user needs to

indicate which set of connections, and what statistical property of this set of

connections, are to be used as the threshold. The statistical property can be

the mean connection strength multiplied by a constanta (meanconn stren × a)

or the mean connection strength plus the standard deviationof the connection

strengths multiplied by a constantb (meanconn stren + stdconn stren × b).

2. Keywords for setting the drawing properties:

The user can modulate the following two properties of the lines drawn on the SOM,

to ensure best visual clarity.

• the line color of the connections

• the line width of the connections

TopoView also computes the statistical properties (the number of connections, the mean

connection strength and the standard deviation of connection strength) for different sets of

connections and show them in the terminal window to help the user decide the thresholding

method to use.

Example statistics of connections shown in the terminal window:
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========= Statistics of Connections Subsets (dead PEs excluded) ==========
All #=1034 mean=15.845261 std=25.930155
Violating #=567 mean=2.292769 std=2.387171
non-violating #=467 mean=32.299786 std=38.516922
inter-cluster #=0 mean=n/a std=n/a
intra-cluster #=1034 mean=15.845261 std=25.917613
inter-cluster violating #=0 mean=n/a std=n/a
intra-cluster violating #=567 mean=2.292769 std=2.385065
===========================================================
THRESHOLD = 41.775416

In addition, TopoView allows the choice of displaying clusters under the drawn con-

nections. This makes it easy to visually separate inter-cluster and intra-cluster violations in

the SOM, and therefore helps with the evaluation of clusterings.

B.3 CTwins, the Conjoined Twins supervised learning ar-

chitecture

Before using the CTwins module for the supervised learning of multiple latent variables, the

user needs to first perform the unsupervised learning of the data with any of the SOM learn-

ing modules (ann-SOMconsc, ann-SOMbdh, etc.) implementedby the Merényi group.

Then the user runs another module, CONNvis, for computationof the statistics of Voronoi

neighbors and determination of the theoretical upper bound, K, of k, as will be described

in Section B.4. After the above two steps, the user can launchCTwins, which takes the

learned SOM andK as its inputs. CTwins performs the supervised learning repeatedly

with k ≤ K and finds the best value ofk for the learning of each latent variable. The

author implemented the repeated supervised runs with differentk in CTwins by reusing the

code for supervised learning in ann-SOMconsc and building an elaborate wrapper around

it. After completing the supervised learning, CTwins savesall networks resulting from the

supervised learning with different values ofk, and generates a report file listing the bestk

for each latent variable and prediction accuracies it has achieved.
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Example report file fragment:

(Temperature and Particlesize are the two latent variables learned in this example.)

... ... ... ... ...
# Parameter Best_k Test_accu(%) Network
Temperature 3 80.5 ices-8class-v5-ss10.150000.H2Ojk10-tr3.k3.1000000.nnd
Particle_size 1 100.0 ices-8class-v5-ss10.150000.H2Ojk10-tr3.k1.1000000.nnd

# K = 4 (K is the upper limit of k, computed by Voronoi statistics in .vstat or given by user.)
# All training results produced with k = 1 2 3 4
# (Parameter names correspond to output neurons 1, 2, etc.)
# k Parameter Test_accu(%) Train_accu(%) Test_RMSE Train_RMSE
# 1
# Temperature 74.3 80.2 5.2204 4.6388
# Particle_size 100.0 100.0 0.0000 0.0000
# 2
# Temperature 76.1 86.3 4.8691 4.2319
# Particle_size 93.8 89.9 0.0048 0.0065
# 3
# Temperature 80.5 85.6 5.2546 4.6256
# Particle_size 84.1 78.9 0.0066 0.0058
# 4
# Temperature 80.5 86.6 5.8512 5.1000
# Particle_size 74.3 71.9 0.0110 0.0062
... ... ... ... ...

When the learned model is deployed for the inference of the latent variables from new

data (data not used for the training and validation of the model), CTwins takes the list

of best values ofk in the above report file and the new data as inputs, and computes the

prediction accuracy for each latent variable with its best value ofk indicated in the report

file, for the new data.

B.4 Augmentation to CONNvis, for computation of Voronoi

statistics used by CTwins

This piece of software is an augmentation to the module CONNvis, which was imple-

mented by Kadim Tasdemir and explained in [24]. The Voronoi statistics, required by

CTwins for determination ofK, the upper bound ofk, are derivatives of the output of

CONNvis. The author augmented the CONNvis module to computeand output the de-
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tailed Voronoi statistics, as well as a suggested value ofK, to a file. The CTwins module

will read in the value ofK from this output file.

Example output file:

# suggested_K_for_Conjoined_Twins = 3
# suggested_cut_rank = 2
# suggestion based on thresholding: %data>1%
#
# total_number_data_samples = 1134
# total_number_connections = 200
# mean_strength_all_connections = 5.67
# max_number_neighbors = 3
#
# norm_mean_stren = mean_stren/mean_strength_all_connections
# %data = mean_stren*nr_conn/(2*total_number_data_samples)*100%
# rank nr_conn mean_stren norm_mean_stren %data

1 209 7.56 1.33 69.71
2 184 3.69 0.65 29.94
3 7 1.14 0.20 0.35



Appendix C

Backpropagation (BP) neural network

Feedforward neural networks trained with backpropagation(BP) method, or BP networks,

are widely used for pattern recognition and function regression [55, 56, 57]. Since a 2-layer

BP network with a nonlinear transfer function is capable of approximating any continuous

function [56, 57], it can be used for the planetary science problem targeted in this thesis

work (in Section 4.3). In Section 4.3.7, we compare the results from a 2-layer BP network

with those from the Conjoined Twins, proposed in this thesis.

As shown in Fig C.1, the 2-layer BP network (BP network with 2 weight layers) takes a

d-dimensional input vectorx, [x1, x2, ..., xd], by its input buffer, in each learning step. The

network hasM neurons in its hidden layer. Each neuronj in the hidden layer combines

the inputs and a biasx0(= 1) into a weighted sum and generates an output,x′
j , as

x
′

j = f(

d∑

i=0

wjixi) j = 1, 2, ..., M (C.1)

The bias termx0 is analogous to the intercept term in a regression equation.wji is the

weight between the neuronj in the hidden layer and the neuroni in the input buffer.f is a

140
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Figure C.1: A 2-layer backpropagation (BP) neural network.

transfer function, a typical choice of which can be

f(x) =
1 − e−x

1 + e−x
(C.2)

Similarly, each neuronl in the output layer yields an outputyl with the signals from the

hidden layer.

yl = f(

M∑

j=0

w
′

ljx
′

j) l = 1, 2, ..., L (C.3)

w
′

lj is the weight between the neuronl in the output layer and the neuronj in the hidden

layer.

The initial weights are often chosen as small random numbers. The training of the

network can be done either in online or batch mode. In online learning the weights of

the network are updated every time an input vector,x
q, has gone through the network
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(eqs. C.1–C.3) and the error in the output layer,Eq, is computed.

Eq =
1

2

L∑

l=1

(tql − yq
l )

2 (C.4)

wheretql andyq
l are the target (or desired) output and the actual output, respectively, from

thel-th neuron in the output layer. In batch learning the networkaccumulates the errors in

the output layer for an epoch ofQ input vectors and then updates the weights. When the

epoch size,Q, is 1, batch learning is equivalent to online learning. The total squared error

for an epoch ofQ input vectors,x1,x2, ...,xQ, is

Etotal =

Q∑

q=1

Eq =
1

2

L∑

l=1

Q∑

q=1

(tql − yq
l )

2 (C.5)

The gradient descent method is used to minimizeEtotal. The weights are modified after

each epoch as 




w
′ (new)
lj = w

′ (old)
lj − α

∂Etotal

∂w
′

lj

w
(new)

ji = w
(old)

ji − η
∂Etotal

∂wji

(C.6)

whereα andη are learning rates, which decrease with time. By inserting eqs. C.1–C.3 into

eq. C.5, we can rewrite the gradients in eq. C.6 as






∂Etotal

∂w
′

lj

= −

Q∑

q=1

δq
l x

′q
k

∂Etotal

∂wji

= −

Q∑

q=1

δ
′q
j xq

i

(C.7)

where 




δq
l = (tql − yq

l )(1 − (yq
l )

2)/2

δ
′q
j =

L∑

l=1

δq
l w

′

lj(1 − (x
′q
j )2)/2

(C.8)
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The errors in the hidden layer are computed by propagating the errors backward from the

output layer and distributing according to the second equation in eq. C.8. This is why

the algorithm is called backpropagation. A simple stoppingcriterion for the training can

be the completion of a certain number of epochs or the achievement of a specified small

total error. However, these cannot guarantee that the network has converged (learned long

enough) and that it has not overfitted the training data (learned too long). A better approach

for quality control is to use a test set. The performance of the network on both the training

and the test data should be monitored during the training. The stopping time should be the

time point when the performance on the test data stops improving and begins declining.
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