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General introduction 

Flavonoids are a class of polyphenolic chemicals ubiquitously present in the plant 
kingdom where they occur as secondary metabolites fulfilling a range of functions such 
as pigmentation and UV protection [1]. In food, flavonoids contribute to the coloring and 
taste [2]. The most important dietary sources of flavonoids are fruits, vegetables, tea, 
wine and cocoa. Flavonoids attract attention as supposedly bioactive food constituents 
- consumption of a diet high in flavonoids is correlated to a wide range of health effects, 
such as the prevention of cardiovascular diseases [3, 4], neurodegenerative diseases [5] 
and diabetes [6, 7]. A vast amount of scientific publications on the supposed mechanisms 
of action of flavonoids report flavonoids to act as ligands for receptors, inhibitors of 
kinases, of other enzymes, and/or of transport proteins [8-12]. 

Flavonoids commonly consist of two aromatic rings (i.e. A- and B-ring) which are linked 
by the C-ring consisting of an additional three carbons and one oxygen (Figure 1.1).
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Figure 1.1 Basic flavonoid skeleton structure with conventional numbering of carbons and naming of rings.

More than 5,000 different flavonoids have been identified [13] and they are divided 
into the following six main subclasses of flavonoids: flavonols, isoflavones, flavanols, 
flavanones, flavones, and anthocyanidins [14, 15]. These subclasses show distinct 
saturation and oxygenation of the C-ring, as well as positioning of the B-ring. Most 
flavonoid subclasses are diversely distributed throughout the plant kingdom and 
flavonoids often occur in several different food sources (see Table 1.1). 

Bioavailability

Recent studies estimate the mean dietary intake of flavonoids to be 370– 428 mg/day 
in Europe [16, 17] and 190 to 345 mg/day in the USA [18, 19]. The intestinal uptake 
of flavonoids is low and the systemic bioavailability for most types of flavonoids is 
reported to be only a few percent of the ingested dose ranging from not detectable to 
30% [20, 21]. Flavonoids occur nearly exclusively as conjugated metabolites in plasma 
[22-25], and maximum concentrations of these flavonoid metabolites in plasma from 
normal dietary intake usually do not exceed the low micromolar range [20]. The plasma 
half-life of flavonoid conjugates is reported to be mostly around a few hours, ranging 
from 1h to 28 h depending on the flavonoid type (see Table 1.1 for details). 
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Absorption, distribution, metabolism and excretion of flavonoids

The low systemic bioavailability and high rate of metabolism are generally considered 
to oppose the biological activity of flavonoids. In the following sections, the absorption, 
distribution, metabolism and excretion of flavonoids are described; Figure 1.2 depicts 
a compartmentalized overview of the pharmacokinetics of flavonoids. The study of 
the pharmacokinetics and pharmacodynamics of microbial metabolites and their 
conjugates is outside the scope of this thesis and will not be described in further detail.

Ingested flavonoids
(mostly glycosides)

Small intestine 

Colon

UrineFeces

Bile

Hepatic portal 
circulation

- deconjugation of flavonoid 
  glucosides
- uptake and first pass 
  conjugation of flavonoids
- biological activity

- deconjugation of flavonoid 
  glycosides (disaccharides, 
  rutinosides, etc.)
- microbial metabolism of 
  flavonoids
- uptake and first pass 
  conjugation of flavonoids 
  and microbial metabolites
- biological activity

Liver
- (de)conjugation of 
  flavonoid conjugates,
  microbial metabolites,
  and their conjugates
- biological activity

- transport of flavonoid 
  conjugates, microbial 
  metabolites, and their
  conjugates

- transport of larger 
  flavonoid conjugates

Other tissues
- (de)conjugation of 
  flavonoid conjugates,  
  microbial metabolites,
  and their conjugates
- biological activity

Kidney
- (de)conjugation of 
  flavonoid conjugates,
  microbial metabolites,
  and their conjugates
- excretion of flavonoid 
  conjugates, microbial 
  metabolites and their 
  conjugates
- biological activity

Compartments involved in 
metabolism and biological activity

Compartments involved in
transport and excretion

Direction of transport

- flavonoid conjugates 
- microbial metabolites
  and their conjugates

- flavonoid aglycones 
- microbial metabolites

Systemic circulation
- transport of flavonoid 
  conjugates, microbial 
  metabolites, and their
  conjugates

Endothelium
- (de)conjugation of 
  flavonoid conjugates,
  microbial metabolites,
  and their conjugates
- biological activity

Figure 1.2 Schematic representation of major routes of absorption, distribution, metabolism and excretion 
of flavonoids. 

Absorption

In plants, flavonoids occur as monomers, oligomers or polymers and are mostly  present 
as glycosides (i.e. conjugated to sugar molecules); flavanols constitute an exception 
as they mostly occur in nonglycosylated form [26], as well as leaf surface flavonoids 
of certain herbs [27]. The glycosidic bonds of the majority of flavonoid glycosides 
resist food processing; however, during microbial fermentation of soy-based foods 
isoflavone aglycones (i.e. the unconjugated form) are released [28-32]. Therefore,  
apart from the exceptions named above, flavonoids are usually ingested as glycosides. 
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Due to their size and hydrophilicity, flavonoid glycosides are not readily absorbed in 
the gastrointestinal tract; the glycosides need to be deconjugated to their respective 
aglycones before they can be further metabolized and become systemically available.

Table 1.1 Chemical structures of flavonoid subclasses, common flavonoid members, main dietary sources 
and plasma kinetics [14, 15, 33-35]

Flavonoid subclass
and chemical 
structure

Common 
flavonoids in 
subclass

Main dietary sources Plasma kinetics

Flavonol Quercetin
Kaempferol
Myricetin

Vegetables (e.g. onion, kale, broccoli), 
fruits (e.g. apple), tea

Tmax 0.5-5.5 h
T1/2 2-11h 
[36-39] (one study 
reporting T1/2 up to 28h 
[40])

Isoflavone Daidzein
Genistein
Glycitein

Legumes (especially soy bean) Tmax 4.5-6 h
T1/2 3-8.5 h
[41-44]

Flavanol Catechin
Epicatechin

Cocoa, tea, fruits (e.g. apricot, apple) Tmax 0.5-4 h
T1/2 1-6 h
[45-49]

Flavanone Hesperetin
Naringenin
Eriodictyol

Citrus fruits (e.g. orange, grapefruit, 
lemon)

Tmax 4.5 h
T1/2 3.6-3.8 h
[50]

Anthocyanidin Cyanidin
Pelargonidin
Peonidin
Delphinidin
Malvidin

Berries (e.g. blackberry, black 
currant), fruits (e.g. cherry, black 
grape), 
vegetables (e.g. aubergine)

Tmax 1 h
T1/2 2 h
[51, 52]

Flavone Apigenin
Luteolin

Leaf vegetables (e.g. celery), 
herbs (e.g. parsley)

No data available

The type of glycosylation determines at which site in the gastrointestinal tract the 
flavonoid glycosides can be deconjugated to the respective aglycone. Especially 
flavonoid glucosides (i.e. flavonoids conjugated to glucose) are subject to enzymatic 
deglycosilation in the small intestine by two major pathways. The glucosides can be 
deglycosylated by the brush-border enzyme lactase-phlorizin hydrolase (LPH) before 
the aglycone produced can diffuse passively into the enterocytes. Another route of 
uptake is through transport of the glycoside into the enterocytes by glucose transporters 
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and subsequent deglycosylation to the aglycone by cytosolic β-glucosidase (CBG). In 
the enterocytes, first pass conjugation leads to the formation of flavonoid metabolites 
which will be further transported into the portal vein to reach the liver, or back into 
the lumen of the gastrointestinal tract [53-55]. Other glycosides that are no substrates 
for LPH or CBG, for example rutinosides or disaccharides, reach the colon where they 
interact with colonic microbiota. For certain flavonoids it is suggested that they can 
be deglycosylated by colonic microorganisms and subsequently taken up via the colon 
[56], while many flavonoids are reported to be metabolized to smaller phenolic acids by 
colonic microorganisms [33, 57, 58]. The time to reach maximal plasma concentrations 
(Tmax) is indicative of the place of absorption in the intestinal tract: short times (around 
1h) indicate that the flavonoids are absorbed in the small intestine, while longer times 
(several hours) indicate uptake in the colon (see Table 1.1). 

Distribution and Metabolism 

During uptake and before entering the systemic circulation the flavonoid aglycones are 
extensively metabolized to glucuronidated, methylated and/or sulfated conjugates in 
intestinal tissue and the liver [20, 22, 59]. These conjugation reactions are catalyzed 
by distinct enzymes which have different tissue-distribution and substrate-specificities. 
UDP glucuronosyl transferases (UGTs) are present in the endoplasmic reticulum and 
especially active in the intestine, liver and kidney. UGTs catalyze the conjugation of 
polyphenols to glucuronic acid donated by uridine diphosphate glucuronic acid to 
form conjugates that are more hydrophilic than the parent compound. Catechol-O-
methyltransferases (COMTs) are present in a wide range of tissues and catalyze the 
O-methylation of catechol-containing polyphenols to form metabolites that are slightly 
less polar than the parent compound [20, 54]. The cofactor donating the methyl group 
is S-adenosyl methionine. Sulfotransferases (SULTs) are present in a wide range of 
tissues and catalyze the conjugation of flavonoids to sulfate leading to the formation 
of conjugates that are more hydrophilic than the parent compound. The most common 
cofactor for this reaction donating the sulfo group is 3’-phosphoadenosine-5’-
phosphosulfate. Interestingly, SULT activity can be inhibited by certain flavonoids [60-
62].

Flavonoid metabolites that are formed in intestinal tissues and the liver are distributed 
throughout the body via the systemic circulation. In the systemic circulation, flavonoids 
bind to serum albumin which is likely to increase their plasma half-life [63] but at the 
same time leads to a decrease in their biological activity and availability to tissues [64, 
65]; the extent of albumin binding is affected by conjugation [63, 66, 67]. 

There is only limited information available on the tissue distribution of flavonoids in 
humans as this cannot be studied noninvasively. It is reported that isoflavones could 
be detected in breast tissue [68], and flavanols and isoflavones in prostate tissue [69, 
70]. In animal studies flavonoids could be detected in a wide range of tissues, namely 
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endothelial cells, brain, lung, heart, kidney, spleen, pancreas, prostate, uterus, ovary, 
mammary gland, testes, bladder, bone, stomach, small intestine and skin [71-85]. 

It is presumed that flavonoid aglycones can enter cells through passive diffusion, while 
many flavonoid conjugates, especially glucuronides, have to rely on active transport into 
the cells [86, 87]. Active cellular uptake of flavonoid conjugates appears to be affected 
by the conjugation position [88] and it has been shown in vitro for certain cell types, 
e.g. hepatocytes and macrophages, that flavonoid glucuronides can be deglucuronidated 
and/or further conjugated intracellularly, usually followed by cellular export [87-89]. 
Flavonoid glucuronides can also be deglucuronidated extracellularly by β-glucuronidase 
released from neutrophils and macrophages, and the activity of extracellular 
β-glucuronidases is reported to be higher during inflammation, which leads to higher 
concentrations of flavonoid aglycones at sites of inflammation [86, 90, 91]. 

Excretion

The main routes of excretion of flavonoid conjugates, their microbial metabolites, and 
their conjugates are via urine and feces. Especially flavonoid conjugates with a higher 
molecular weight can be excreted via the bile into the duodenum and, after deconjugation, 
undergo enterohepatic circulation, or reach the colon for microbial breakdown, colonic 
reuptake or excretion via feces [22, 33]. Urinary excretion of flavonoid metabolites is 
reported to vary from 1% to 30% of the ingested dose [40, 92-94].

Flavonoids used in this thesis

In the studies described in this thesis the flavonols quercetin and kaempferol, as well as 
the isoflavones genistein and daidzein are used as model flavonoids. These compounds 
are important dietary flavonoids and an extensive body of research already exists on the 
biological effects of their aglycone forms.

Quercetin and kaempferol

Flavonols are the most ubiquitous class of flavonoids; quercetin and kaempferol (Figure 
1.3) are the two most common flavonoids of this class. Glycosides of quercetin and 
kaempferol occur in a wide range of plants and are present in foods such as onions, 
apples, certain berries, wine and tea [22, 33].

The most frequently reported association of flavonol intake with human health is an 
inverse correlation with the occurrence of cardiovascular diseases and related risk 
factors [95-99]. A positive correlation of flavonol intake and cognitive performance in 
middle-aged adults is reported for language and verbal memory. However, the same 
study reported a negative association with executive functioning (using the Forward 
and Backward Digit Span test) [100]. Further, a negative correlation of flavonol intake 
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with the occurrence of colorectal cancer is reported [101]. A range of in vivo, ex vivo 
and in vitro studies report results supporting but also contradicting these findings for 
flavonols and their metabolites [102].

O

O
OH

quercetin
OH

HO

OH
OH

O

O
OH

kaempferol
OH

HO

OH

Figure 1.3 Chemical structures of quercetin and kaempferol.

After the consumption of foods rich in quercetin glycosides, the main metabolites in 
plasma are reported to be quercetin-3-O-glucuronide and quercetin-3’-O-sulphate; 
further glucuronidated, sulfated and/or methylated conjugates can be found at lower 
concentrations. Most conjugates detected in plasma are also reported to be present in 
urine [36, 37, 103-105]. After the consumption of endive, kaempferol-3-O-glucuronide 
is the only kaempferol conjugate reported to be present in plasma, in addition to small 
amounts of the aglycone. In urine, kaempferol-3-O-glucuronide is the major conjugate; 
additionally, a mono-sulfated and a di-sulfated conjugate are reported to be found [106].

Genistein and daidzein

Isoflavones are found nearly exclusively in leguminous plants, and the most important 
dietary sources are soy beans and soy-based foods. Genistein and daidzein (Figure 1.4) 
are the most common isoflavones [33, 107]. 

O

O

genistein

O

O

daidzein

OH

HO

OH

HO

OH

Figure 1.4 Chemical structures of genistein and daidzein.

Isoflavone intake was observed to be negatively correlated with systolic and diastolic 
blood pressure in hypertensive patients [108], and to improve arterial stiffness 
[109-114], which is a risk factor for cardiovascular disease. Further, improvement of 
menopausal symptoms [115] and bone health [116] is suggested to be correlated with 
isoflavone intake. Because of their phyto-estrogenic activity, isoflavones also carry the 
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potential to cause possible adverse health effects, for example those related to induction 
of proliferation of especially estrogen receptor-α (ERα) positive cells [117]. Some studies 
suggest an association between isoflavone intake and the reduction of cancer incidence at 
certain sites, while other studies do not find such an association [113]. A wide range of in 
vivo, ex vivo and in vitro studies report on biological effects of isoflavones [113]. 

After consumption of genistein and daidzein glycosides only marginal amounts of the 
respective aglycones are present in plasma and the most common conjugates of genistein 
and daidzein are glucuronides and/or sulfates conjugated at the 7-OH and the 4’-OH 
position [118-120]. 

The biological effects of the microbial metabolite equol are well-studied but are outside 
the scope of this thesis.

Aim and outline of the thesis     

Despite the extensive knowledge available on the bioavailability and metabolism of 
flavonoids, only in a small fraction of the in vitro studies the metabolism of flavonoids 
is considered in the experimental design. The majority of these in vitro experiments are 
conducted with flavonoid aglycones or glycosides and generally no attention is paid to the 
conjugated metabolites that are present in biological fluids after uptake. 

The aim of this thesis was to study the effect of conjugation on the biological activity of 
selected flavonoids towards selected endpoints. To this end, conjugation with glucuronic 
acid was taken as the model type of conjugation because it is considered to be the 
main metabolic conjugation reaction for flavonoids in both animal and man [33]. As 
glucuronidation of flavonoids alters their size, polarity and solubility, it was hypothesized 
that glucuronidation also affects their biological activity. It was shown that conjugation 
can affect the biological activity of flavonoids, and that the effect that conjugation has on 
the biological activity depends on the flavonoid used, the type and position of conjugation, 
as well as the assay system used [121]. 

Chapter 1, the present chapter, presents an introduction to the thesis as well as its aims 
and a general overview of its contents. Chapter 2 presents an overview of scientific 
literature on the influence of metabolic conjugation on the biological activity of flavonoids 
that was available at the beginning of the studies described in this thesis [121]. 

The often low commercial availability of flavonoid conjugates for in vitro use and as 
reference standards for their identification can hamper research on biologically relevant 
flavonoid metabolites. For certain flavonoid conjugates procedures for their chemical 
synthesis are described; however, these are usually very complex and specific to one 
conjugate of one flavonoid only. In Chapter 3, a versatile approach to biosynthesize 
flavonoid conjugates is described and a convenient semi-automated strategy for the 



15

General introduction

1

identification of flavonoid conjugates based on their elemental composition and 1H-NMR 
spectra is presented. 

In Chapters 4-6, the effect of glucuronidation on the biological activity of the chosen 
model flavonoids for different endpoints is characterized. Chapter 4 describes the effect 
of quercetin, kaempferol, and their 3-O-glucuronidated conjugates on endpoints related 
to peroxisome-proliferator activated receptor-gamma (PPAR-γ) activation. PPAR-γ is a 
ligand-activated nuclear receptor that plays a role in the regulation of fatty acid storage and 
energy metabolism; PPAR-γ is of pharmacological relevance as a target for the treatment 
of type-II diabetes [122]. To elucidate the consequences of flavonoid conjugation on 
PPAR-y activity several in vitro models for detection of PPAR-y mediated activation of gene 
expression were applied. A stably transfected reporter gene assay for PPAR-γ activation 
was employed, and next to reporter gene expression also the effect on PPAR-γ receptor 
mRNA expression was determined by qPCR. Furthermore, the intrinsic activity to activate 
the PPAR-γ ligand binding domain (LBD) was tested using the cell free Microarray Assay 
for Real-time Coregulator-Nuclear Receptor Interaction (MARCoNI) assay to study ligand 
induced LBD – nuclear receptor coregulator interactions. The MARCoNI assay allows to 
study the intrinsic potential of the flavonoids and their glucuronide conjugates for PPAR-γ 
activation in a cell free system, thus eliminating possible interference of differential 
cellular uptake between the aglycones and their glucuronide metabolites.

In Chapter 5, the intrinsic activity of genistein, daidzein, and their 7-O-glucuronidated 
conjugates to induce ERα and ERβ LBD – coregulator interactions was studied and 
compared using the MARCoNI assay. ERs are the main targets of estrogenic compounds, 
and upon their activation different transcriptional responses with opposite effects on cell 
proliferation and apoptosis are elicited; ERα activation stimulates cell proliferation, while 
ERβ activation causes apoptosis and reduces ERα mediated induction of cell proliferation 
[123]. 

Chapter 6 compares the inhibitory activity of kaempferol and its 3-O-glucuronidated 
conjugate on serine/threonine protein kinases. Protein kinases are involved in a wide 
range of physiological (both cellular and extracellular) processes by controlling signaling 
cascades and regulating protein functions. The inhibitory effect of the tested compounds 
on the activity of recombinant protein kinase A and cell lysate prepared from HepG2 cells 
using a microarray platform containing 141 peptides carrying putative phosphorylation 
sites was studied.

Chapter 7 provides a general discussion of the results presented in this thesis. Further, 
the advances in the knowledge on the effect of conjugation on the biological activity of 
flavonoids since the beginning of the studies described in this thesis are presented. 

The thesis concludes with a summary of the results in Chapter 8.
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Abstract

Diets rich in flavonoids are associated with various positive health effects. Most in 
vitro research conducted to elucidate the modes of action of flavonoids uses flavonoid 
aglycones, but not their circulating conjugated metabolites. Conjugation alters the 
physico-chemical properties of flavonoids and it is widely assumed that this can affect 
their biological activity. This article gives a state-of-the-art overview of scientific 
literature reporting on the effect of metabolic conjugation on the biological activity 
of flavonoids. The biological activity of flavonoid aglycones is compared to that of 
their conjugates for a broad range of endpoints. Even though there is only limited 
literature available, it is shown that contrary to common belief, conjugation does not 
always decrease the biological activity of flavonoids. There are also endpoints which 
are unaffected by conjugation, and endpoints on which the conjugates have a higher or 
inverse activity when compared to the aglycone. The effects of conjugation can differ 
depending on the type and position of conjugation, the flavonoid concentration, the 
endpoint studied and the assay system used so that no general rules can be deducted. 
It is concluded that further studies on the effects of conjugation have to be done on 
a case-by-case basis, and a characterization of the stability and metabolic fate of the 
flavonoids in the assay system under consideration is needed to avoid false positive or 
false negative outcomes. 	
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Introduction

Flavonoids are ubiquitously present in plants as secondary metabolites. Important 
dietary sources of flavonoids are fruits, vegetables and their juices, as well as tea, 
wine, and cocoa-derived products [1, 2]. In a varied diet, flavonoids are consumed on 
a daily basis. Diets rich in flavonoids are associated with the prevention of a variety of 
degenerative diseases, most importantly of cardiovascular diseases [2-5]. Flavonoids 
are known for their antioxidant activities in vitro. Apart from this antioxidant activity, 
flavonoids may induce their biological effects amongst others by acting as ligands for 
receptors, kinases, enzymes, and/or transport proteins [6-10]. 

Most flavonoids are present in foods as glycosides. Upon ingestion these glycosides 
undergo deconjugation to the corresponding aglycones. During uptake the aglycones are 
extensively metabolized to sulfated, methylated and/or glucuronidated conjugates in 
intestinal tissue or the liver before they enter the systemic circulation. Therefore, under 
physiological conditions flavonoids usually do not occur in the same form in biological 
fluids as they occur in plants and foods and it is widely assumed that conjugation and 
deconjugation can significantly influence the biological activity of flavonoids [11]. In 
spite of this, the majority of in vitro research identifying the modes of action and health 
effects of dietary flavonoids has been conducted with flavonoids in their aglycone forms 
or as they appear in plants and not with the conjugates actually present in the body. 

A previously published overview [11] of scientific literature on the biological activities 
of some flavonoid conjugates presented the biological activities of quercetin metabolites 
but a direct comparison between the activity of the aglycone and that of the respective 
metabolites was not made. 

Therefore, the objective of the present paper was to compare the biological activities 
of flavonoid aglycones to the activities of their respective metabolites for a broad range 
of flavonoids and endpoints, where possible at physiological or near physiological 
concentrations. 

Activities of flavonoid aglycones and their conjugates have been reported for a large 
number of biological endpoints and assays. Most studies have focused on biological 
activities that can be related to the antioxidant and/or radical scavenging activity of 
flavonoid (conjugates) or to their potential to prevent formation of reactive oxygen 
species (ROS) or the adverse effects of ROS. Other endpoints have been studied as well, 
including for example effects on cyclooxygenase-2 activity, on adhesion molecules and the 
process of cell adhesion, on transport proteins, or on vasorelaxation-related endpoints. 
In the following sections the effects of flavonoid aglycones and their conjugates on these 
different endpoints are discussed in more detail providing an overview of the effects of 
(de)conjugation on the biological activity of flavonoids.
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In most articles reporting on differences between the biological activity of flavonoid 
aglycones and their respective conjugates, no statistical significance testing was 
included. Therefore, the data presented in this overview are based on a critical 
assessment of the data presented and the authors’ conclusions on the activity of the 
conjugates as compared to that of the aglycone.

Effects on oxidative stress and free radicals

Effects on formation of reactive oxygen species and other free radicals

An overview of the effects of flavonoids and their different conjugates (G= glucuronidated; 
M=methylated; S=sulfated) in assays detecting formation of reactive oxygen species 
(ROS) and other free radicals is provided in Table 2.1.  From this overview it appears 
that most research on the effects of flavonoids and their conjugates on production and 
scavenging of free radicals and/or ROS was conducted with quercetin and its conjugates, 
and most predominantly with its glucuronidated and methylated conjugates (Table 
2.1). The overview also reveals that results can differ between different assays, each 
using a different methodology to detect production and/or elimination of ROS and 
other radicals.

In spite of these apparent inconsistencies between different assays, the overview 
presented in Table 2.1 clearly reveals that most flavonoid conjugates inhibit ROS 
generating enzymes as effectively as or less effectively than the aglycone, with the 
actual effect depending on the conjugation position (Table 2.1); conjugation of hydroxyl 
moieties in the A- or C-ring with a glucuronide, methyl or sulfate moiety generally 
reduces the activity in the different assays to a higher extent than conjugation of 
hydroxyl moieties in the B-ring. An exception is nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, a superoxide-generating enzyme, which is not inhibited by 
the aglycones but which can be inhibited by glucuronidated and methylated conjugates 
pointing at an increased instead of a decreased or unmodified activity of the flavonoid 
upon conjugation [13]. The extent to which the activity of the flavonoids is affected can 
further depend on the type of conjugation. For example sulfation of quercetin at the 
3 position decreases its activity to a lesser extent than glucuronidation at the same 
position [16].

Also for free radical scavenging, the position of conjugation can influence the biological 
activity. In most cases the activity of the conjugates is lower than that of the aglycone, 
with only some exceptions where the conjugates are equally or more active [12, 15, 19, 
23-26]. In some cases there is a difference depending on which chemical was used to 
induce radical formation, e.g. interleukin-1β or H2O2 [12]. 
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Table 2.1 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = 
sulfated) in assays detecting formation of ROS and other free radicals.

Flavonoid Ga Ma Sa Commenta References

(+)-Catechin

Inhibition of ROS formation / 
scavenging 

=/↑ A mixture of unidentified conjugates extracted 
from plasma of (+)-catechin dosed rats was used.
The aglycone only inhibited IL-1β induced ROS, 
whereas the plasma extract inhibited both IL-1β 
and H2O2 induced ROS.

[12]

(-)-Epicatechin

Inhibition of NADPH oxidase 
(ROS generation). 

↑ ↑ - The aglycone does not inhibit NADPH oxidase. [13]

O2
.- scavenging. ↓/=/↑ ↓ - (G + M)b: ↓

Different assay systems were used and the 
results depend on the assay and conjugation 
position (3’M-EC > 4’M-EC [13]; 
EC-7G > EC-3’G [14]) 

[13, 14]

Kaempferol

Influence on superoxide 
generation by phenazine 
methosulphate / NADH

↓ - - Kaempferol aglycone increases superoxide 
generation, whereas kaempferol-3-O-
glucuronide inhibits the formation.

[15]

Luteolin

Inhibition of NADPH oxidase. - ↑ - The aglycone does not inhibit NADPH oxidase. [13]

O2
.- scavenging (xanthine 

oxidase dependent 
generation)

- ↓ - The methylated conjugates do not scavenge O2
.-. [13] 

Quercetin

Xanthine oxidase, 
lipoxygenase and 
myeloperoxidase inhibition.

↓/= ↓/= ↓ (G + M)b: ↓
The results depend on the assay and 
conjugation position. 
Xanthine oxidase inhibition Q-4’G > Q-3’G > 
Q-7G > Q-3G  [16].
Lipoxygenase inhibition: Q-7G > Q-3’G > Q-4’G 
> Q-3G [16].

[16-18]

NADPH oxidase inhibition. ↑ ↑ - The aglycone does not inhibit NADPH oxidase. [13]

O2
.- scavenging (xanthine 

oxidase dependent 
generation)

↑ ↓/↑ - (G + M)b: ↑
The results depend on the conjugation position 
(3’M-Q >  4’M-Q).

[13]

O2
.- scavenging (NADPH 

oxidase dependent 
generation) 

↓ - = (G + M)b: ↓ [19]

Antioxidant activity ↓c ↓c ↓c (M + S)b: ↓c

Determined by ABTS/persulphate and FRAP 
assay

[20]
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Table 2.1 continued

DPPH radical scavenging ↓ ↓ - [17, 21, 22] 

Inhibition of 
13-hydroperoxyoctadeca-
dienoic acid induced ROS 
production

↓ - - [22]

Inhibition of H2O2 induced 
ROS production 

↓c/↑c ↓/= - Differences in activity of methylated  quercetin 
depends on concentration and conjugation 
position (4’M-Q > 3’M-Q)[23]. During co-
incubation the glucuronide is less active than 
the aglycone; after pre-incubation, the aglycone 
is not active [24].

[23, 24]

Inhibition of  H2O2  induced 
dityrosine formation

↓/= - - Only at very low concentrations (0.1 µM) the 
glucuronide was less active than the aglycone.

[25]

Superoxide generation by 
phenazine methosulphate / 
NADH

↓ - ↓/= Quercetin aglycone and quercetin-3’-O-sulfate 
increase superoxide generation, whereas 
quercetin-3-O-glucuronide inhibits the 
formation.

[15]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available; A > B conjugate A is more active than conjugate B. b the conjugate is conjugated at two positions to 
different moieties. c Statistical analysis was carried out to assess differences between conjugates and aglycone 
(p < 0.05).

It is noteworthy that the flavonoids can exert effects on the oxidative stress related-
endpoints already at low concentrations (e.g. 0.1 µM [25]). Another factor that can 
influence the activity of the flavonoids and their conjugates in the in vitro assays is 
whether the cell cultures are pre- or co-incubated with the flavonoids. Shirai et al. [24] 
report for example that after pre-incubation, quercetin aglycone does not reduce H2O2 
induced ROS production, whereas glucuronidated quercetin does. In contrast, during 
co-incubation the aglycone reduces H2O2 induced ROS production more effectively than 
the glucuronidated conjugate. These observations may in part be related to differences 
in the stability of the flavonoid and its glucuronidated conjugate during the (pre)
incubation conditions, as is discussed in further detail in section 8.  

Effects on adverse effects of oxidative stress

Most research on the effect of flavonoid (de)conjugation on adverse effects of oxidative 
stress (Table 2.2) is reported for methylated conjugates. Methylated conjugates of 
(-)-epicatechin are as active as the aglycone [27-29], whereas methylated conjugates 
of quercetin are in most cases less active than the aglycone [17, 18, 23, 30]. In some 
instances, methylated quercetin is reported to be equally active [18] or more active [17] 
than the aglycone, depending on the assay and the position of methylation. 
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There is only little information reported for the effect of glucuronidation on these 
endpoints and no consistent pattern emerges for the effect on the biological activity. 
Quercetin glucuronides have been reported to be less active than the aglycone at 20 µM 
[31], while others report that at lower concentrations (1 µM) the glucuronides are less 
active than the aglycone but that at higher concentrations (10 µM) the glucuronides are 
as active as the aglycone [18]. In contrast, glucuronidated quercetin has been reported 
to protect human serum albumin (HSA) from peroxynitrite induced oxidation more 
actively than the aglycone [32]. For (-)-epicatechin it has been shown that the position 
of glucuronidation can influence the biological activity in assays detecting the adverse 
effects of oxidative stress [14]. 

Table 2.2 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = 
sulfated) in assays detecting adverse effects of oxidative stress

Flavonoid Ga Ma Sa Commenta References

(+)-Catechin

Protection of cells from 
oxidative damage

↓ - -  [33]

(-)-Epicatechin

Protection (of cells) from 
oxidative damage

↓ = -  (G + M)b: ↓
There are differences in activity depending on 
the glucuronidation position (EC-7G > EC-3’G 
[14]).

[14, 27, 28, 
33] 

Quercetin

Inhibition of lipoprotein 
chlorination

↓/= ↓ ↓ (G + M)b: ↓
The glucuronidated and the methylated 
conjugate were only slightly less active than 
the aglycone

[18]

Protection of cells from 
oxidative damage

↓ ↓/↑ - The results differ with different assays. 
Different endpoints were assayed.

[17, 23, 33]

Protection of HSA from 
peroxynitrite induced 
oxidation

↑ - ↑ [32]

Protection from DNA / 
chromosomal damage

- ↓ ↓ The flavonoids protected cells from hydrogen 
peroxide induced chromosomal damage, but 
at higher concentrations the aglycone also 
induced chromosomal damage

[23, 30]

Induction of EpRE mediated 
gene transcription

↓ ↓ - [10]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available; A > B conjugate A is more active than conjugate B. b the conjugate is conjugated at two positions to 
different moieties.
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Sulfated metabolites of quercetin are reported to be less active than the aglycone, with 
the exception of the protection of HSA from peroxynitrite induced oxidation where the 
sulfated metabolite was more active than the aglycone [32].

Effects on low-density lipoprotein oxidation

Low-density lipoprotein (LDL) oxidation increases the risk for cardiovascular diseases 
like atherosclerosis and thrombosis [34]. Flavonoids can protect LDL from oxidation 
(Table 2.3). With respect to a possible effect of flavonoid conjugation on their potential 
to inhibit LDL oxidation, most information is available for glucuronidated conjugates 
for which it has been shown that the position of conjugation can determine whether 
the conjugate is less, equally or more active than the aglycone. In all reported cases 
conjugation of a hydroxyl group at the 3’ and 4’ position of the B-ring reduces the 
activity [14, 21, 35-37]. Conjugation of a hydroxyl moiety at the C-ring is reported to 
affect the biological activity only to a low extent [21, 37] and conjugation the biological 
activity only to a low extent [21, 37] and conjugation of hydroxyl groups in the A-ring 
on the 7 position can increase, reduce, or not affect the activity, depending on the assay 
used [14, 36, 37]. 

Table 2.3 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = 
sulfated) on LDL oxidation

Flavonoid Ga Ma Sa Commenta References

Daidzein

Protection of LDL from 
oxidation

↓ - ↓ The glucuronidated conjugate was more
 active than the sulfated compound. 

[36]

(-)-Epicatechin

Protection of LDL from 
oxidation

↓/= - - (G + M)b: ↓
Glucuronidation of the A-ring retained 
protective effects, whereas glucuronidation 
of the B-ring nearly completely abolished 
its activity. 

[14]

Quercetin

Protection of LDL from 
oxidation

↓c/=/↑ ↓ ↓ c (G + M)b: ↓
The activity of the glucuronides depends on 
the position of conjugation (Q-7G > Q-3G > 
Q-4’G [37]) and the assay system used.

[17, 18, 21, 
31, 35, 37, 

38]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available; A > B conjugate A is more active than conjugate B. b the conjugate is conjugated at two positions to 
different moieties. c Statistical analysis was carried out to assess differences between conjugates and aglycone 
(p < 0.05).
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Effects on cyclooxygenase-2 gene transcription and enzyme activity

Cyclooxygenase-2 (COX-2), also known as prostaglandin endoperoxide synthase 2, 
converts arachidonic acid to prostaglandin. COX-2, unlike COX-1, is inducible and 
upregulated inter alia in rheumatoid arthritis and cancer. The effects of flavonoids and 
their conjugates on COX-2 gene transcription and enzyme activity (Table 2.4) appear to 
greatly depend on the concentration of the flavonoid. Especially at low concentrations 
(0.1 µM) nearly all conjugates showed an inverse activity compared to that of the 
aglycone [39]; quercetin aglycone inhibits COX-2 gene transcription and enzyme activity 
while the conjugates increase transcription and activity. At increasing concentrations 
the differences become less pronounced; at 10 µM gene transcription is inhibited by the 
conjugates more actively than by the aglycone [39].

Table 2.4 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = 
sulfated) on assays detecting COX-2 activity and gene transcription

Flavonoid Ga Ma Sa Commenta References

Quercetin

COX-2 mRNA transcription ↓/↑ - ↓/↑ (G + M)b: ↓/↑
Depending on the concentrations, the 
conjugates had an inverse, lower, or 
higher activity than the aglycone. At low 
concentrations (i.e. 0.1 µM) the conjugates 
increased gene transcription; at higher 
concentrations (i.e. 10 µM) the conjugates 
decreased gene transcription.
During co-exposure with IL-1β the 
glucuronidated and the sulfated metabolites 
were more actively decreasing COX-2 
expression than the aglycone or than the 
conjugates that are both glucuronidated and 
methylated.

[39]

Inhibition of COX-2 activity ↓ ↑ ↓ (G + M)b: ↓
Depending on the concentrations and 
experimental conditions, the sulfated and 
glucuronidated conjugates had an inverse or 
lower activity than the aglycone.

[39, 40]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available. b the conjugate is conjugated at two positions to different moieties.

These effects on COX-2 gene transcription and enzyme activity are a striking example 
of the profound differences that can be caused by flavonoid conjugation. The observed 
dose-dependent differences for the conjugates underline the complexity of the effects 
flavonoid conjugation can have.
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Effects on cell adhesion

The adhesion of monocytes to vascular endothelial cells is a key event in inflammation 
and atherosclerosis [41] and works through cross-linking of adhesion molecules on the 
cells [42]. It has been suggested that inhibition of platelet aggregation contributes to the 
prevention of cardiovascular diseases by flavonoids [43].

Quercetin, (+)-catechin and their metabolites are reported to reduce cell adhesion, 
adhesion molecule expression and gene transcription (Table 2.5). The effect of the 
flavonoids and their conjugates is concentration-dependent and interestingly, some 
metabolites are more active at lower concentrations than at higher concentrations. In 
a few cases, at low concentrations the methylated or glucuronidated conjugates are as 
active or even more active than the aglycone [44] but in most cases, glucuronidation and 
sulfation reduce the activity. Methylation is reported to affect the activity of quercetin in 
assays testing the influence on cell adhesion only marginally [45].

Table 2.5 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = 
sulfated) on cell adhesion
Flavonoid Ga Ma Sa Commenta References

(+)-Catechin

Reduction of cell adhesion ↑c A mixture of unidentified conjugates extracted 
from plasma of (+)-catechin dosed rats was 
used.

[12]

Quercetin

Reduction of cell adhesion ↓c A mixture of unidentified conjugates extracted 
from plasma of quercetin dosed rats was used.

[12]

Reduction of ICAM-1, 
VCAM-1, E-selectin and 
MCP-1 expression

↓/=/↑ ↓/= ↓/=/↑ (G + M)b: ↓/↑
Depending on the experimental conditions 
the glucuronidated and methylated conjugates 
had a lower or equal activity.

[44-47]

Reduction of ICAM-1, VCAM-1 
and MCP-1 gene transcription

↓ - ↓ (G + M)b: ↓ [44, 47]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available. b the conjugate is conjugated at two positions to different moieties. c Statistical analysis was carried 
out to assess differences between conjugates and aglycone (p < 0.05).

(+)-Catechin aglycone is reported to not inhibit cell adhesion while plasma extract from 
rats containing (+)-catechin metabolites are reported to reduce cell adhesion [12]. The 
opposite was observed for quercetin; the aglycone inhibited cell adhesion, while the 
rat plasma extract containing metabolites did not. Plasma extracts were prepared from 
rats dosed intragastrically with (+)-catechin or quercetin 1h after administration of the 
flavonoids; the extracts contained predominantly unidentified metabolites.
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The data reveal that conjugation can significantly affect the activity of flavonoids 
and their conjugates on cell adhesion, both reducing and increasing the effects. The 
observation of negative dose-response relationships shows that some conjugates can 
be active at low concentrations that are in the range of physiological plasma levels.

Effects on transport proteins

The human organic anion transporters 1 and 3 (OAT1 and OAT3, respectively) are 
involved in the transport of many metabolites of drugs in the kidney into the proximal 
tubules as well as in the intestine [48, 49]. Flavonoids are reported to be able to inhibit 
these transporters which can lead not only to serious food-drug interactions but can 
also influence physiological processes in the human body [49-51]. OAT1 and OAT3 
selectively transport flavonoid conjugates, but are also inhibited by the flavonoids. OAT1 
transports sulfated but not glucuronidated genistein and quercetin; OAT3 transports 
glucuronidated but not sulfated genistein and quercetin (Table 2.6). The aglycones are 
not actively transported but could pass cellular membranes by passive diffusion [49]. 

Genistein and quercetin are reported to inhibit OAT1 and OAT3; the sulfated conjugates 
are more actively inhibiting the transporters than the glucuronidated conjugates. The 
effect of quercetin glucuronidation on the inhibitory activity depends on the conjugation 
position [49]. The selectivity of the transporters for certain conjugates shows that some 
metabolites have to rely on active transport to pass cell membranes which can limit the 
availability of the metabolites to certain tissues.

Multidrug resistance protein (MRP) 1 and 2 are ATP-binding cassette transporter 
efflux proteins. Quercetin and 3’-methyl-quercetin equally inhibit MRP1 and 2 while 
4’-methyl-quercetin has a lower inhibitory activity on MRP1 and no inhibitory effect 
on MRP2 [52]. A mixture of glucuronidated quercetin (around 85% quercetin-7-O-
glucuronide) formed during incubation with H4IIE cells inhibited MRP1 and 2 activities 
more effectively than the aglycone.

Effects on angiogenesis and vasorelaxation

The most prominent health outcomes linked to the intake of polyphenols is the 
prevention of cardiovascular diseases [5]. Quercetin and its metabolites influenced 
several in vitro and ex vivo endpoints related to vascular function, such as proliferation, 
chemotaxis and signaling kinases in coronary venular endothelial cells (CVEC) [53] 
and vasodilation of aortic rings [19, 54]  (Table 2.7). In vivo, (-)-epicatechin and its 
metabolites influence flow mediated vasodilation (FMD) [55]. 
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Table 2.6 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = 
sulfated) on transport proteins

Flavonoid Ga Ma Sa Commenta References
Genistein

Inhibition of OAT1 ↓ - =/↑ The differences are concentration-dependent [49]

Inhibition of OAT3 ↓ - ↓/= The differences are concentration-dependent [49]

OAT1 mediated uptake = - ↑ The aglycone and glucuronide are no substrate 
for the transporter; the aglycone could pass 
through passive diffusion

[49]

OAT3 mediated uptake ↑ - = The aglycone and sulfated conjugate are no 
substrate for the transporter; the aglycone 
could pass through passive diffusion

[49]

Quercetin

Inhibition of OAT1 ↓ - ↑ [49]

Inhibition of OAT3 ↓/=/↑ - = The differences in the glucuronides’ activities 
depend on the conjugation position (Q-3’G > 
Q-7G > Q-3G)

[49]

OAT1 mediated uptake = - ↑ The aglycone and glucuronide are no substrate 
for the transporter; the aglycone could pass 
through passive diffusion

[49]

OAT3 mediated uptake ↑ - = The aglycone and sulfated conjugate are no 
substrate for the transporter; the aglycone 
could pass through passive diffusion

[49]

Inhibition of MRP 1 and 2 - ↓b/= - Methylation at the 3’ position does not affect 
MRP activity, while methylation at the 4’ 
position reduces MRP activity.b

[52]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available; A > B conjugate A is more active than conjugate B. b Statistical analysis was carried out to assess 
differences between conjugates and aglycone (p < 0.05).

Differences in the biological activity of quercetin and its metabolites on endpoints 
affecting angiogenesis and vasorelaxation are reported. Depending on the endpoint 
studied and the assay used, increased, equal and reduced activities are reported [19, 53, 
54]. Interestingly, quercetin-3’-O-sulfate has an opposite pattern of activity compared to 
the aglycone and glucuronide regarding most assays related to angiogenesis [53]. Unlike 
quercetin aglycone and glucuronide, the sulfated quercetin conjugate does not inhibit the 
activity of vascular endothelial growth factor (VEGF); in contrast, the sulfated conjugate 
promotes endothelial cell proliferation and angiogenesis on its own, while the aglycone 
and glucuronide do not [53]. 

Ingestion of flavanol-rich cocoa or pure (-)-epicatechin improved vascular function 
in healthy volunteers [55]. The predictive value of the circulating flavonoids in plasma 
of volunteers for the observed cardiovascular effects was statistically analyzed. In a 
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multivariate regression analysis, only (-)-epicatechin-7-O-glucuronide and (-)-epicatechin 
aglycone were predictive for the magnitude of FMD. 

Table 2.7 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = sulfated) 
on angiogenesis and vasorelaxation
Flavonoid Ga Ma Sa Commenta References

(-)-Epicatechin

Correlation with flow-
mediated vasodilation in vivo
(univariate)

↑ ↑ - (G + M)b: ↑
The aglycone is not predictive for FMD

[55]

Correlation with flow-
mediated vasodilation in vivo
(multivariate)

= ↓ - (G + M)b: ↓ [55]

Quercetin

Effects on angiogenesis ↓/=/↑ - ↓/=/↑ The results depend on the experimental 
conditions; the aglycone did not affect several 
endpoints.

[53]

Vasorelaxation and 
vasodilation

↓/= - ↓/= (G + M)b: ↓
The results depend on the experimental 
conditions

[19, 54]

Nitric oxide scavenging ↓ - - [26]
a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an equal 
activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data available. 
b the conjugate is conjugated at two positions to different moieties. 

Altogether, the consequences of flavonoid conjugation for the effect on the prevention 
of cardiovascular disease is difficult to predict from the in vitro studies performed so 
far, as different models show variable effects of the different conjugates as compared to 
the aglycone. What emerges, however, is that for some in vitro surrogate endpoints for 
vascular disease the conjugates may be equally or more effective as the aglycone.

Effects on various other endpoints

Glucuronidation can decrease the biological activity of the tested flavonoids on various 
other endpoints, i.e. cell viability [56], estrogenic activity [57], silent information regulator 
two ortholog 1 (SIRT1) deacetylase activity [58], monoamine oxidase A (MAO-A) activity 
[59], osteoclast formation [60] and erythrocyte deformability [61]  (Table 2.8). SIRT1 
deacetylase activity is increased by quercetin aglycone but reduced by the glucuronide 
[58]. 

The effects of (+)-catechin and quercetin methylation on platelet function [62] and cellular 
protection from UV damage [63], respectively, depend on the experimental setups and 
can be higher, equal or lower than the aglycone. Methylation of quercetin decreases the 
covalent binding to DNA of HepG2 cells [64].
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General factors affecting the studies on the effects of flavonoid 
conjugation on biological activities 

There are several general factors that need to be considered when studying the effects 
of flavonoid conjugation on the biological activity of flavonoids. Flavonoid conjugation 
can affect polarity and size of the molecules which in turn can affect protein and lipid 
binding [31, 37, 46, 65, 66], cellular uptake [23, 27, 67], as well as stability against 
oxidative degradation [26, 30]  (Tables 2.9 and 2.10). These factors can affect the 
availability of the flavonoids to cells and tissues. 

Table 2.8 Effects of flavonoids and their different conjugates (G = glucuronidated; M = methylated; S = 
sulfated) on various further endpoints

Flavonoid Ga Ma Sa Commenta References
(+)-Catechin

Effects on platelet function - ↓/=/↑ - The effects of (-)-epicatechin and its 
metabolite are not reported on here as these 
were tested at different concentrations.
Depending on the specific endpoints there 
were differences in conjugate activity 
depending on position of methylation 
(4’M-CAT >/= 3’M-CAT)

[62]

Daidzein

Estrogenic activity ↓/= - - The results differ depending on the 
experimental setup

[57]

(-)-Epicatechin

Protection from UV induced 
cell damage

- ↓b/= - The results depend on the experimental setup. [63]

Genistein

Estrogenic activity ↓ - - [57]

Quercetin

Decrease in cell viability of 
cortical neurons (MTT assay)

↓ ↓ - Akt phosphorylation was reduced. [56]

MAO-A activity ↓ - - [59]

RANKL induced osteoclast 
formation in RAW264.7 cells

↓ - - [60]

Improvement of erythrocyte 
deformability

↓ b - - [61]

SIRT1 deacetylase activity ↓ - - The aglycone increases SIRT01 deacetylase 
activity while the glucuronide reduces it.

[58]

Covalent binding to DNA of 
HepG2 cells

- ↓ - [64]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available; A >/= B conjugate A is more active than or equally active as conjugate B. b Statistical analysis was 
carried out to assess differences between conjugates and aglycone (p < 0.05).
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Instability, most importantly through auto-oxidation, has been reported and discussed 
to occur with flavonoids in vitro [23, 56, 68-70] and may be influenced by conjugation. 
Lodi et al. [26] show that especially glucuronidation protects quercetin from auto-
oxidative degradation. Protection from auto-oxidation can increase the half- life of the 
compounds thereby increasing their apparent biological activity, whereas instability 
in in vitro experiments can lead to false negative results, or false positive results in 
the case that reactive metabolites are formed. Additionally, radicals can be generated 
through auto-oxidation and therefore flavonoids can also act as pro-oxidants.

Furthermore, flavonoids have been reported to be taken up and further metabolized by 
various cell types during incubation [10, 24, 71, 72]. Given that conjugation may affect 
the biological effects of flavonoids those changes may influence the results and need to 
be taken into consideration. Unfortunately, most reports do not touch upon this subject 
and do not characterize the fate of the flavonoids tested by analyzing samples at the end 
of the incubation period.

Table 2.9 Effects of flavonoids and their different conjugates (G= glucuronidated; M=methylated; S=sulfated) 
in assays detecting pro-oxidant activity
Flavonoid Ga Ma Sa Commenta References

Quercetin

H2O2 generation in WIL2-NS 
cell cultures

- ↓ ↓ [30]

Superoxide anion radical 
generation through auto-
oxidation at pH 9

↓ =/↑ ↓ (G + M)b: ↓
The results depend on the assay system.

[26]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available. b the conjugate is conjugated at two positions to different moieties.

Another issue that influences the outcome of studies on the effects of conjugation 
on biological effects of flavonoids is that due to their size and polarity, especially 
glucuronidated metabolites of flavonoids have to rely on active transport or 
deconjugation to be able to pass cell membranes and exert certain biological activities 
within cells [10, 71]. Some evidence is presented that the biological activity of some 
conjugates on specific endpoints depends on deglucuronidation of glucuronidated 
metabolites [10]. It has been reported that glucuronidated quercetin needs to be 
deglucuronidated before uptake into human umbilical vein endothelial cells (HUVEC) 
[71]; for HepG2 cells it has been shown that quercetin glucuronides can be taken up 
without deconjugation [72]. Such differences may explain why the effect of conjugation 
on a biological activity is different in different model systems. Additionally, in sites 
of inflammation there is a higher expression of β-glucuronidases [73] and therefore 
potentially a higher availability of the deglucuronidated flavonoids. 
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Table 2.10 Effects of flavonoids and their different conjugates (G= glucuronidated; M=methylated; S=sulfated) 
in assays detecting protein binding and cellular uptake

Flavonoid Ga Ma Sa Commenta References
(+)-Catechin

Uptake by brain endothelial 
cells

= ↑ - The aglycone and glucuronide were not taken 
up

[67]

(-)-Epicatechin

Association with dermal 
fibroblasts

↓ ↑ - [27]

Uptake / association with 
cortical neurons

↓ ↑ - 	 [27]

Hesperetin

Uptake by brain endothelial 
cells

↓ - - After incubation with the glucuronidated 
conjugate also hesperetin aglycone was 
detected in the cells

[67]

Transfer across in vitro blood-
brain barrier

↓ - - [67]

Naringenin

Uptake by brain endothelial 
cells

↓ - - After incubation with the glucuronidated 
conjugate also naringenin aglycone was 
detected in the cells

[67]

Transfer across in vitro blood-
brain barrier

↓ - - [67]

Quercetin

Human serum albumin 
binding 

↓b/= ↑ ↓/=/↑ The activity of the sulfated metabolites 
depends on conjugation position (Q-7-G > 
Q-3-G > Q-4’G b [37]
Q-7S > Q-3S = Q-4’,7S [65, 66])

[37, 65, 66] 

Bovine serum albumin 
binding

- ↓ ↓/= The activity of the sulfated metabolites  
depends on conjugation position
(Q-7S > Q-3S > Q-4’,7S [65, 66])

[65, 66]

Incorporation into liposomes ↓ - ↓   [46]

Binding to phospholipid 
membranes of LUV

↓b - - [31]

Cellular uptake / association ↓ ↑ - Glucuronidated quercetin was tested with 
PC12 cells [22]. Methylated quercetin was 
tested with H9c2 cardiomyoblasts [23].

[22, 23]

a ↓ the respective conjugate(s) have a lower activity than the aglycone; = the respective conjugates have an 
equal activity to the aglycone; ↑ the respective conjugates have a higher activity than the aglycone; - no data 
available; A >/= B conjugate A is more active than or equally active as conjugate B. b Statistical analysis was 
carried out to assess differences between conjugates and aglycone (p < 0.05).
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Conjugation can also cause changes in the polarity of the flavonoids which in turn can 
change the partitioning and thus distribution in the body or test system, thereby affecting 
the ultimate biological effect. Binding to serum albumin can reduce the activity and 
availability of circulating flavonoids [13, 71, 74] but it might also increase their half-life 
[66]. Albumin binding differs between the aglycone and different metabolites [37, 65, 
66]. Glucuronidation, especially of the hydroxyl moiety at the 4’ position of the B-ring, 
strongly reduces quercetin binding to HSA; glucuronidation of the hydroxyl moieties in 
the A-ring has the least effects on HSA binding [37]. Sulfation at different positions only 
marginally reduces binding, while disulfation at the hydroxyl groups at both the 4’ and 
7 positions strongly reduces binding [37, 65, 66]. Methylation can increase binding to 
HSA [66], Quercetin binding to bovine serum albumin (BSA) in contrast is reduced by 
sulfation and methylation [65, 66].

Discussion and conclusions

This review clearly shows that conjugation and deconjugation can affect the biological 
activity of flavonoids. It is apparent that the predominant view that conjugation always 
reduces flavonoid activity does not hold true. The effects of conjugation can differ 
greatly depending on the type and position of conjugation, the flavonoid concentration, 
the endpoint studied and the assay system used so that no general rule can be deducted. 
In a majority of the cases the conjugates are less active or equally active to the aglycone, 
but in some cases the conjugates were observed to be more active than the aglycone or 
even showed an inverse activity. This shows that the effects of conjugation of flavonoid 
aglycones on their biological effect has to be taken into account when studying the 
biological activity of flavonoids in in vitro models and that preferably in such studies 
relevant flavonoid conjugates should be included. Furthermore, given that in tissues 
in vivo deconjugation may occur [10, 75] studying the aglycone is still relevant also 
because comparison of its activity to that of its conjugates provides insight in the 
effect of conjugation on the biological activity. The effect of flavonoid glucuronidation 
is more extensively studied than the consequences of methylation and sulfation, the 
latter being the least extensively investigated. This is at least in part due to the often 
limited availability of sufficient quantities of the conjugated compounds. (Bio)synthesis 
is usually laborious and time consuming and only yields small quantities [76-80]. 
Fortunately, an increasing amount of flavonoid conjugates becomes commercially 
available or their synthesis is described in scientific literature. 

Some general factors like protein binding or stability to auto-oxidation can affect the 
availability of the compounds during the experimental procedures and thus affect the 
results. Some of these general factors might be part of an underlying mechanism of 
the observed different activities of the conjugates. Especially through auto-oxidation 
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the availability of the compounds in the assay system can be limited, and through the 
resulting introduction of oxidative stress also further unwanted alterations in the assay 
system can be caused. This stresses the need to define the stability and (metabolic) fate 
of the compounds in the assay system to be able to draw solid conclusions.

Altogether this review reveals that the effects of flavonoid conjugation on the biological 
activity can differ greatly between different assay systems and the endpoints studied. 
It appears that conjugation can do more than just reduce the biological activity of the 
flavonoids. Research on the consequences of flavonoid conjugation on the biological 
activity has to be done on a case-by-case basis to fully understand the effects of flavonoid 
conjugation and the mechanisms behind it. It is crucial that relevant conjugates, 
concentrations and incubation times are chosen and that the stability and the 
metabolic fate of the flavonoids in the assay system under consideration is adequately 
characterized to avoid false positive or false negative outcomes. 
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Abstract

The consumption of flavonoids is linked to various beneficial health effects. While 
flavonoids are extensively metabolized during uptake and occur nearly exclusively as 
conjugated metabolites in the systemic circulation, most in vitro studies to date study 
the biological effects of the aglycone forms instead of the effects of the conjugated 
metabolites. This is in part due the low commercial availability of the conjugated 
metabolites. To facilitate the use of relevant metabolites in in vitro research, a simple 
but versatile method for the biosynthesis of metabolically relevant flavonoid conjugates 
using Hepa-1c1c7 cells as a model cell line, and recombinant UGTs as model enzymes 
is presented. A range of different types of flavonoids was used as model substrates 
(i.e. hesperetin, naringenin, kaempferol, quercetin, glycitein, genistein, daidzein, and 
dalbergin). Subsequently, the conjugates were characterized and identified based on 
their LC-MS and 1H-NMR characteristics using the Metabolite Identification Database 
(MetIDB), a publicly accessible database of predicted and experimental 1H-NMR 
spectra of flavonoids. Using the described method of biosynthesis, sufficient amounts 
of relevant flavonoid conjugates for in vitro bioassays can be generated and the use 
of MetIDB proved to be a useful tool for the quick reliable identification of even small 
amounts of flavonoid conjugates.
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Introduction

Flavonoids are ubiquitously present in plants as secondary metabolites. Important dietary 
sources of flavonoids are fruits, vegetables and their juices, as well as tea, coffee, wine, 
and cocoa derived products [1, 2]. Flavonoids are generally consumed on a daily basis. 
Diets rich in flavonoids are associated with the prevention of a variety of degenerative 
diseases, such as cardiovascular diseases [1, 3], neurodegenerative diseases [4] and 
diabetes [5, 6]. Most flavonoids are present in foods as glycosides. Upon ingestion these 
glycosides undergo deconjugation to the corresponding aglycones. During uptake these 
aglycones are extensively metabolized to methylated, glucuronidated and/or sulfated 
conjugates in intestinal tissue or the liver before they enter the systemic circulation. 
Therefore, under physiological conditions flavonoids usually do not occur in the same 
form in biological fluids and tissues as they occur in plants and foods, and it is widely 
accepted that conjugation or deconjugation can significantly influence the biological 
activity of flavonoids [7, 8]. In spite of this, the majority of in vitro research studying 
the modes of action and health effects of dietary flavonoids has been conducted with 
flavonoids in their aglycone forms and not with the conjugates actually present in the 
body. One of the reasons hampering the research with relevant flavonoid conjugates is 
that most conjugates are not commercially available and have to be custom synthesized. 
For a limited number of flavonoid conjugates chemical synthesis pathways are described 
in literature [9-17], and some studies report the biosynthesis of flavonoid conjugates 
using (genetically engineered) bacteria [18, 19]. An alternative method of generating 
flavonoid conjugates is through biosynthesis using microsomes, recombinant metabolic 
enzymes, S9 fractions or cell cultures [20-36]. The biosynthesis of flavonoid conjugates, 
as opposed to chemical synthesis, offers great flexibility regarding the use of different 
flavonoid substrates. In addition, the use of metabolically active cells or (sub-)cellular 
fractions to conjugate flavonoid aglycones can yield methylated, glucuronidated and/or 
sulfated flavonoid conjugates, depending on the cell type and flavonoid used. 

A challenge when synthesizing flavonoid conjugates is the subsequent identification 
of the molecules formed, as authentic reference standards are often lacking. In this 
article we describe a convenient and efficient way of flavonoid conjugate biosynthesis 
using Hepa-1c1c7 cells or recombinant uridine 5’-diphospho-glucuronosyltransferases 
(UGTs) to generate relevant flavonoid conjugates in quantities sufficient for bioassays 
(in the lower milligram range), as well as their quick and reliable identification based 
on LC-MS and 1H-NMR spectra using  MetIDB [37], a publicly accessible database of 
predicted and experimental 1H-NMR spectra of flavonoids. To illustrate this principle, 
in this article the biosynthesis as well as MetIDB based identification of conjugates of 
the relevant dietary flavonoids hesperetin, naringenin, kaempferol, quercetin, glycitein, 
genistein, daidzein, and dalbergin are described.  
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Materials & Methods

Materials

Hesperetin (CAS no: 520-33-2), naringenin (CAS no: 480-41-1), kaempferol (CAS no: 
520-18-3), quercetin (CAS no: 117-39-5), daidzein (CAS no: 486-66-8), L-ascorbic acid 
(CAS no: 50-81-7), and uridine 5′-diphosphoglucuronic acid trisodium salt (UDPGA; CAS 
no: 63700-19-6) were purchased from Sigma Aldrich (Missouri, USA). Glycitein (CAS 
no: 40957-83-3), genistein (CAS no: 446-72-0), and dalbergin (CAS no: 482-83-7) were 
purchased from Extrasynthese (Genay Cedex, France). The aforementioned chemicals 
were dissolved in dimethylsulphoxide (DMSO, 99.9%) from Acros (Geel, Belgium) and 
stored at –20 °C. Human UGT1A1, UGT1A9 and UGT2B7 supersomes were purchased 
from BD Biosciences (Franklin Lakes, NJ, USA). Acetic acid was purchased from VWR 
International (Darmstadt, Germany). Methanol (HPLC supra-gradient) and acetonitrile 
were purchased from Biosolve BV (Valkenswaard, the Netherlands). Minimum Essential 
Medium α (αMEM) and trypsin were purchased from Gibco Invitrogen Corporation 
(Breda, The Netherlands). Fetal bovine serum (FBS) was purchased from PAA (Pasching, 
Austria). Dextran-coated charcoal-stripped fetal calf serum (DCC-FCS) was purchased 
from Thermo Scientific (Waltham, Missouri, USA). Nanopure water was prepared with 
a Barnstead Nanopure Type I ultrapure water system.

Cell culture 

The murine liver hepatoma cell line Hepa-1c1c7 was a kind gift from Dr. M.S. Denison, 
(University of California, Davis, CA, USA). The cells were cultured in αMEM supplemented 
with 10% FBS. The cells were maintained at 37 °C in a humidified atmosphere with 5% 
CO2.

Biosynthesis of flavonoid conjugates using Hepa-1c1c7 cells

To produce conjugates of hesperetin, naringenin, kaempferol, quercetin, and glycitein, 
Hepa-1c1c7 cells forming a confluent monolayer in 150 cm2 cell-culture flasks (Corning 
Inc., Corning, NY) were exposed to the flavonoid aglycones (40 µM, 0.5% DMSO) in 
αMEM (w/o phenol red, 20ml/flask) supplemented with 5% DCC-FCS at 37°C and 
5% CO2 in a humidified atmosphere. To prevent auto-oxidation, quercetin was co-
incubated with 750 µM ascorbic acid. Cell culture medium was collected after 24h of 
exposure. To precipitate proteins, 30% methanol was added to cell culture medium 
containing flavonoid conjugates (final concentration of methanol in samples: 23% v/v), 
the mixtures were left on ice for 20 minutes and subsequently centrifuged at 2,700 rcf 
for 40 minutes at 4°C. The resulting supernatant was subjected to solid phase extraction 
(SPE) as described below.
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Biosynthesis of flavonoid conjugates using recombinant UGTs 

To produce glucuronidated conjugates of genistein, daidzein, and dalbergin, incubation 
mixtures of 1ml containing 40 μM of flavonoids from a 200x concentrated stock in 
DMSO, 0.2 mg of individual UGTs in Tris-HCl buffer (pH 7.5) with 2 mM MgCl2, and 2 
mM UDPGA were incubated in a shaking water bath at 37°C. Dalbergin was incubated 
for 4h with UGT1A9, daidzein was incubated for 6h with UGT1A1 and genistein was 
incubated for 3h with UGT1A9. These isoenzymes were selected as they showed the 
highest rate of conjugate formation for the respective flavonoids when comparing the 
activities of UGT isoenzymes 1A1, 1A9, and 2B7. The incubation times were selected 
to achieve full substrate conversion. The reactions were terminated by the addition 
of 30% ice-cold methanol (final concentration of methanol in samples: 23% v/v) and 
the mixtures were left on ice for 15 minutes prior to centrifugation at 16,000 rcf for 
10 minutes to precipitate proteins. The resulting supernatant was subjected to SPE as 
described below.

SPE clean-up of flavonoid conjugates

To decrease the concentration of methanol in the samples, 1 volume of water containing 
0.5% acetic acid was added to the supernatants containing flavonoid conjugates and the 
mixture was subjected to SPE using Waters Oasis HLB 2cc (60mg) extraction cartridges. 
The cartridges were conditioned with 1 ml methanol and equilibrated with 1 ml 0.5% 
acetic acid before loading the samples. After loading of the samples, the columns were 
washed with 2.5 ml 0.5% acetic acid and dried subsequently. The flavonoid conjugates 
were eluted with 3 ml methanol. Methanol was evaporated under a stream of nitrogen 
and samples stored at -20 °C until further use. 

UPLC analysis	

After SPE, the dried conjugates produced in the incubations were resuspended in 
nanopure water and analyzed chromatographically using a Waters ACQUITY UPLC 
H-Class System with an ACQUITY UPLC BEH C18 1.7 µm (2.1 x 50 mm) column, 
connected to a Waters ACQUITY UPLC photodiode array detector. Detection was 
performed between 190 and 350 nm. UPLC chromatograms presented are based on 
detection at 280 nm. The mobile phases used were nanopure water (+0.1% acetic 
acid) and acetonitrile (+0.1% acetic acid). Subsequently, the samples were freeze-dried 
and those samples containing several conjugates (i.e. samples made using quercetin, 
kaempferol and hesperetin) were subjected to separation by HPLC as described below, 
while samples containing a single conjugate (i.e. samples made using naringenin, 
glycitein, genistein, daidzein, and dalbergin) were directly subjected to LC-MS and 
1H-NMR for identification as detailed below.
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HPLC analysis and separation of flavonoid conjugates

The freeze-dried samples containing several flavonoid conjugates (i.e. those of 
hesperetin, quercetin, and kaempferol) were resuspended in nanopure water 
containing 0.5% DMSO and separated using a Waters HPLC system consisting of a 
Waters 600 pump and controller, Waters 717plus autosampler and a Waters 2996 
diode array detector with an Alltima C18 5U column (4.6 mm × 150 mm; Alltech, Breda, 
The Netherlands). Detection was performed between 180 and 400 nm. Chromatograms 
presented are based on detection at 350 nm for quercetin and kaempferol and at 280 
nm for hesperetin. Mobile phases were (A) nanopure water containing 0.1% acetic acid 
and (B) methanol (for hesperetin and kaempferol) or (B) acetonitrile (for quercetin).

Fractions containing the individual conjugates were collected at the outlet of the 
photodiode array detector. Methanol or acetonitrile was evaporated from the samples 
under a stream of liquid nitrogen and the remaining water removed by freeze-drying. 
The resulting conjugates were subjected to identification by LC-MS and 1H-NMR as 
detailed below.

LC-MS experiments

The freeze-dried samples were resuspended in nanopure water and measured on an 
LC-MS system consisting of an Agilent 1200 quaternary solvent delivery pump, Agilent 
1200 degasser, Agilent 1200 autosampler coupled to a Bruker Daltonics MicrOTOF ESI 
mass spectrometer. LC-MS analysis was performed using an Alltima HP column (Alltima, 
4.6 × 150 mm i.d., particle size 3 µm) with a pre-column at a flow rate of 0.4 ml/min. The 
MicrOTOF ESI mass spectrometer was calibrated with a formic acid reference solution. 
The mass values observed were within 5 ppm precision. Based on the measured masses 
as well the isotopic pattern intensities, molecular formula calculations were performed 
with C, H, and O atoms included. Using the molecular formula’s obtained, all possible 
flavonoid conjugates that fit the molecular formula deduced, were created as described 
below (see identification of flavonoid conjugates).

NMR experiments

NMR spectra were obtained as described before [38]. In brief, the purified and freeze-
dried compounds were dissolved in 200 µl methanol-D4 and transferred to a 3 mm NMR 
tube (Bruker Match system). Measurements were performed at 300 K on an Avance III 
600 MHz NMR spectrometer with 5 mm cryoprobe. A total of 3200 transients were 
acquired for each sample using a NOESY 1D pulse sequence. Spectra were aligned to the 
methanol resonance at 3.306 ppm.
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Identification of flavonoid conjugates

The identification of the conjugates was based on the LC-MS results combined with a 
comparison of the predicted and experimental 1H NMR chemical shifts of the molecules. 
First, the elemental composition of the prepared conjugates was derived based on their 
experimentally determined masses. By comparing the elemental composition of the 
substrates with that of the metabolites the type of conjugation could be determined. 
For each of the flavonoid aglycones used as substrate, all isobaric compounds (i.e. 
molecules with identical molecular formula) were selected from MetIDB. In a next 
step all possible glucuronidated conjugates of these compounds were created by in-
silico biotransformations as described by Mihaleva et al. [37]. This resulted in a list 
of candidate molecules for which 1H-NMR spectra were predicted as also described 
by Mihaleva et al. [37]. Subsequently, the splitting patterns resulting from the 1H-1H 
couplings of the predicted and the measured spectra were compared, and candidate 
compounds that were not matching the experimental data were excluded from the 
list of candidate molecules. This step can be done in automation using PERCH (PERCH 
Solutions Ltd., Kuopio, Finland) when samples extracted from natural sources are being 
identified. However, some chemically synthesized aglycones were used as substrates 
for the biosynthesis of the conjugates, which are racemic mixtures due to the presence 
of a chiral center (i.e. hesperetin and naringenin); in their natural counterparts one 
enantiomer is predominantly present. The resulting conjugates of these flavonoids 
were diastereoisomers and their spectra had to be assessed manually. Where the 
1H-resonances were split due to diastereoisomerism in the experimentally determined 
1H-NMR spectra, the average of the 1H-resonances of the corresponding diastereoisomers 
were used for the comparison with the predicted spectra. Differences in 1H-NMR 
resonances for the respective comparable protons in the diastereoisomers were within 
0.1 ppm. Subsequently, the chemical shifts of the in-silico created molecules and the 
measured chemical shifts were compared using the same algorithm as described by 
Mihaleva et al. [37] and a scoring was prepared that ranked the remaining candidate 
compounds by similarity between measured and predicted spectra. For this ranking, 
the differences in predicted and measured chemical shifts were calculated in such a 
manner that all chemical shifts that showed a larger difference than 0.1 ppm between 
predicted and measured chemical shift were given a penalty score of 1 for each 0.1 
ppm difference. Therefore, the lowest score indicates the best match of the predicted 
spectrum with the experimentally determined spectrum.
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Results

Biosynthesis of flavonoid conjugates

Figure 3.1 shows the chromatograms of the products of all conjugation reactions. While 
the incubations with daidzein, dalbergin, genistein, glycitein and naringenin yielded 
each one conjugate, the incubations with hesperetin, kaempferol, and quercetin yielded 
each more than one conjugate. For the latter three flavonoids the different conjugates 
were separated by HPLC prior to identification. During the incubations with quercetin, 
genistein, and daidzein, very small amounts of additional conjugates were formed which 
were not purified and identified. It can further be seen that the described conditions for 
biosynthesis result in complete or near complete substrate conversion. The LC-MS data 
revealed that all conjugates were glucuronides.

Identification of flavonoid conjugates

For identification of the biosynthesized conjugates, their molecular masses and 1H-NMR 
spectra were experimentally determined. A list of candidate molecules with matching 
elemental composition was derived from MetIDB. The candidate compounds were 
subjected to in-silico biotransformations and their 1H-NMR spectra predicted. The 
predicted 1H-1H couplings and chemical shifts were compared to the experimentally 
determined 1H-1H couplings and chemical shifts of the biosynthesized conjugates, and 
the candidate compounds that were unlikely matches for the biosynthesized conjugates 
were excluded. The remaining candidate compounds were ranked based on the 
similarity between the predicted and the observed 1H NMR chemical shift values. In the 
following section, this procedure for identification is described in detail using the two 
conjugates that were prepared of hesperetin as exemplary compounds. 

Identification of hesperetin conjugates

As shown in Figure 3.1, 24h incubation of Hepa1c1c7 cells with hesperetin resulted 
in an almost complete conversion of the parent compound and the formation of two 
conjugates (retention times 12.5 and 14.3 minutes). After separation of these two 
conjugates, LC-MS analysis revealed that both conjugates are glucuronides. In MetIDB, 
31 compounds with a matching chemical composition as the substrate hesperetin could 
be identified; these 31 compounds are distributed over 5 chemical classes: chalcones, 
dihydroaurones, flavanones, isoflavanones and pterocarpans. Based on the hydroxyl 
groups of these compounds available for conjugation, a total of 93 different mono-
glucuronides could be formed. These 93 possible conjugates were created by in-silico 
biotransformations and their 1H-NMR spectra were predicted. The 1H-1H coupling 
patterns and the chemical shifts of these candidate compounds were compared to the 
experimentally determined coupling patterns and chemical shifts of the biosynthesized 
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Figure 3.1 Chromatograms of incubations of selected flavonoids with Hepa-1c1c7 cells (i.e. hesperetin, 
naringenin, kaempferol, quercetin and glycitein) or UGTs (i.e. genistein, daidzein, and dalbergin) showing 
conjugate formation. Conjugates are labelled according to their identification as described in the text, and the 
elution positions of the aglycones used as substrate are indicated in the chromatograms. Peaks marked with 
an asterisk ‘*’ in the chromatograms were not identified.

hesperetin conjugates. Based on this comparison, 75 of the candidate compounds could 
be excluded leaving 18 possible candidate compounds for both conjugates. For these 18 
candidate compounds the differences between the predicted and experimental shifts 
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were scored and the candidate compounds were ranked according to their score. Table 
3.1 shows the 1H chemical shift values and scoring results of the candidate compounds 
for the hesperetin conjugate with a retention time of 12.5 minutes (Figure 3.1).

Table 3.1 1H resonances chemical shift values (in ppm) of the experimentally obtained 1H-NMR spectrum of 
the conjugate of hesperetin with a retention time of 12.5 minutes (Figure 3.1) and of predicted 1H-NMR spectra 
of candidate compounds. Predicted spectra of candidate compounds are ranked according to similarity of the 
1H-NMR data with the experimental 1H NMR data of the conjugate of hesperetin with a retention time of 12.5 
minutes
Experimental

H2’ H5’ H6’ H8 H6 H2
6.96 6.94 6.93 6.24 6.19 5.34

Predicted Scorea Compound
6.98 6.91 6.85 6.22 6.23 5.39 0 Hesperetin-7-O-glucuronide
7.06 6.83 6.98 6.22 6.26 5.36 2 Homoeriodictyol-7-O-glucuronide
6.84 6.93 6.76 6.40 6.15 5.37 3 Sternbin-5-O-glucuronide
6.99 6.91 6.82 5.93 6.24 5.39 4 Hesperetin-5-O-glucuronide
7.04 7.06 6.81 6.11 5.99 5.33 4 Sternbin-3’-O-glucuronide
7.08 6.90 6.82 5.93 6.29 5.36 5 Homoeriodictyol-5-O-glucuronide
6.99 7.18 6.82 6.09 6.03 5.42 5 Sternbin-4’-O-glucuronide
7.36 6.84 6.95 5.90 5.87 5.40 8 Hesperetin-3’-O-glucuronide
7.03 7.20 7.04 5.89 5.86 5.40 9 Homoeriodictyol-4’-O-glucuronide
6.43 7.10 6.51 6.29 6.26 5.12 11 Ferreirin-7-O-glucuronide
6.72 7.28 6.42 6.14 6.04 5.64 12 Artocarpanone-2’-O-glucuronide
6.61 6.67 6.36 6.22 6.27 5.06 12 Isoferreirin-7-O-glucuronide
6.80 6.73 6.68 5.92 5.90 5.05 12 Isoferreirin-4’-O-glucuronide
6.48 7.08 6.40 6.13 6.45 5.55 13 Artocarpanone-5-O-glucuronide
6.77 6.72 6.53 5.91 5.90 5.10 13 Ferreirin-2’-O-glucuronide
6.73 7.39 6.60 6.10 6.07 5.70 14 Artocarpanone-4’-O-glucuronide
6.52 6.74 6.47 5.93 6.30 5.09 15 Ferreirin-5-O-glucuronide
6.61 6.65 6.36 5.93 6.29 5.04 15 Isoferreirin-5-O-glucuronide

a The scoring is a quantitative measure for the differences between the experimental and predicted 
spectra; a low score is indicative of a good match between the spectra. For further details on the scoring see 
Materials and Methods.

The candidate compound with the lowest score is hesperetin-7-O-glucuronide, which 
has a score of 0. The next compounds in the ranking are glucuronides of homoeriodictyol 
and sternbin. Homoeriodictyol and sternbin are structurally very close to hesperetin 
and only differ in the position of the methoxy group, which gives rise to small but 
significant differences between measured and predicted 1H NMR chemical shifts. 

The conjugate of hesperetin with a retention time of 14.3 minutes (Figure 3.1) was 
compared to its possible candidate molecules in the same manner as the conjugate with 
a retention time of 12.5 minutes. The 1H resonances of the predicted and experimentally 
determined spectra, as well as the scores for the 18 different candidate compounds with 
similar 1H-1H coupling and chemical shift are presented in Table 3.2. The highest ranking 
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candidate compound for the conjugate of hesperetin eluting at 14.3 minutes (Figure 
3.1) is hesperetin-3’-O-glucuronide, which has a score of 2. Also for this conjugate of 
hesperetin, the candidate compounds following the best matching candidate in the 
ranking are glucuronides of homoeriodictyol and sternbin. 

Table 3.2 1H resonances chemical shift values (in ppm) of the experimentally obtained 1H-NMR spectrum of 
the conjugate of hesperetin with a retention time of 14.3 minutes (Figure 3.1) and of predicted 1H-NMR spectra 
of candidate compounds. Predicted spectra of candidate compounds are ranked according to similarity of the 
1H-NMR data with the experimental 1H NMR data of the conjugate of hesperetin with a retention time of 14.3 
minutes
Experimental

H2’ H6’ H5’ H8 H6 H2
7.36 7.13 7.03 5.92 5.89 5.39

Predicted Scorea Compound
7.36 6.84 6.95 5.90 5.87 5.40 2 Hesperetin-3’-O-glucuronide
7.03 7.20 7.04 5.89 5.86 5.40 3 Homoeriodictyol-4’-O-glucuronide
7.04 7.06 6.81 6.11 5.99 5.33 6 Sterbin-3’-O-glucuronide
7.08 6.90 6.82 5.93 6.29 5.36 9 Homoeriodictyol-5-O-glucuronide
6.99 7.18 6.82 6.09 6.03 5.42 9 Sternbin-4’-O-glucuronide
6.99 6.91 6.82 5.93 6.24 5.39 10 Hesperetin-5-O-glucuronide
7.06 6.83 6.98 6.22 6.26 5.36 10 Homoeriodictyol-7-O-glucuronide
6.98 6.91 6.85 6.22 6.23 5.39 11 Hesperetin-7-O-glucuronide
6.80 6.73 6.68 5.92 5.90 5.05 14 Isoferreirin-4’-O-glucuronide
6.84 6.93 6.76 6.40 6.15 5.37 14 Sterbin-5-O-glucuronide
6.77 6.72 6.53 5.91 5.90 5.10 15 Ferreirin-2’-O-glucuronide
6.72 7.28 6.42 6.14 6.04 5.64 16 Artocarpanone-2’-O-glucuronide
6.73 7.39 6.60 6.10 6.07 5.70 16 Artocarpanone-4’-O-glucuronide
6.43 7.10 6.51 6.29 6.26 5.12 20 Ferreirin-7-O-glucuronide
6.48 7.08 6.40 6.13 6.45 5.55 21 Artocarpanone-5-O-glucuronide
6.52 6.74 6.47 5.93 6.30 5.09 21 Ferreirin-5-O-glucuronide
6.61 6.65 6.36 5.93 6.29 5.04 21 Isoferreirin-5-O-glucuronide
6.61 6.67 6.36 6.22 6.27 5.06 23 Isoferreirin-7-O-glucuronide

a The scoring is a quantitative measure for the differences between the experimental and predicted spectra; 
a low score is indicative of a good match between the spectra. For further details on the scoring see Materials 
and Methods.

Identification of the conjugates of other flavonoids

Using the same approach as outlined above for the glucuronides of hesperetin, the 
conjugates formed in incubations with naringenin, kaempferol, quercetin,  daidzein, and 
dalbergin (Figure 3.1) could also be identified. Table 3.3 gives an overview of the number 
of candidate compounds and the finally selected identities of the conjugates based 
on the elemental composition and 1H-NMR spectra for all conjugates biosynthesized. 
Details on the scoring for these compounds can be found in the Supplemental Tables 
3.1 to 3.11. 
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It can be seen from Table 3.3, that for all conjugates but the glucuronide of dalbergin, 
the best-scoring compounds were the correct molecules. In the case of the glucuronide 
of dalbergin, isodalbergin-7-O-glucuronide had a slightly lower score than dalbergin-
6-O-glucuronide. Dalbergin and isodalbergin differ only in the position of the methoxy 
group. 

Table 3.3 Overview of the identification of the flavonoid conjugates biosynthesized in this study. The numbers 
of candidate compounds based on LC-MS and 1H-NMR data, the identity, and the scoring are given in the table. 
Substrate
Retention time
of conjugate 
(Figure 3.1)

Number of candidate 
compounds with 
same elemental 

composition
as derived from 

LC-MS data

Number of candidate 
compounds after 
refinement with 

similar 1H-1H 
coupling and 

chemical shift.

Identity of conjugate

Rank of 
candidate 
in scoring  
(score of 

conjugate)

Hesperetin 
12.5 min 93 18 Hesperetin-7-O-glucuronide #1 (0)
14.3 min 93 18 Hesperetin-3’-O-glucuronide #1 (2)

Naringenin  
1.67 min 60 3 Naringenin-7-O-glucuronide #1 (0)

Kaempferol  
16.3 min 89 4 Kaempferol-7-O-glucuronide #1 (0)
17.3 min 89 4 Kaempferol-4’-O-glucuronide #1 (0)
19.3 min 89 4 Kaempferol-3-O-glucuronide #1 (0)

Quercetin 
13.7 min 71 15 Quercetin-7-O-glucuronide #1 (3)
16.2 min 71 15 Quercetin-3-O-glucuronide #1 (0)
17.7 min 71 15 Quercetin-3’-O-glucuronide #1 (7)

Glycitein 
1.32 min 72 7 Glycitein-7-O-glucuronide #1 (1)

Genistein  
1.47 min 54 9 Genistein-7-O-glucuronide #1 (2)

Daidzein 
1.28 min 44 8 Daidzein-7-O-glucuronide #1 (0)

Dalbergin 
1.63 min 20 3 Dalbergin-6-O-glucuronide #2 (2)

The results thus obtained also reveal that especially the hydroxyl-group at C7 on the 
A-ring was the predominant target for conjugation. The chromatograms presented in 
Figure 3.1 show the nature of the various conjugate peaks thus identified. Even though 
all of the used compounds except for dalbergin have a hydroxyl group available for 
conjugation on the B-ring, glucuronidation of this hydroxyl moiety was only observed 
for three of the substrates. In those cases, conjugation of the B-ring was only observed in 
addition to and to a lesser extent than conjugation at C7. It can be seen from Figure 3.1, 
that if different glucuronides of one flavonoid are formed, the conjugates glucuronidated 
at the 7-position elute before the others.
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Discussion

In the present study, glucuronidated conjugates of a series of flavonoids were synthetized 
and identified. Most of the conjugates that were prepared and identified are reported 
to be found in the systemic circulation after ingestion of the respective flavonoids. 
Hesperetin-7-O-glucuronide, which was the main conjugate biosynthesized in this 
study from hesperetin in incubations with Hepa-1c1c7 cells, is reported to be present in 
human urine after the ingestion of hesperetin and hesperidin, a glycoside of hesperetin. 
Hesperetin-3’-O-glucuronide, however, which was produced to a lesser extent by the 
Hepa-1c1c7 cells in this study, is reported to be the major conjugate in human urine 
[39-41]. In human urine, in addition to the two mono-glucuronides, small amounts of di-
glucuronides and sulfo-glucuronides are also detected after the ingestion of hesperetin 
or hesperidin [39-42]. In plasma of rats, hesperetin-7-O-glucuronide is reported to be 
present at slightly higher concentrations than hesperetin-3’-O-glucuronide after the 
consumption of hesperidin [43]. 

For naringenin, the two glucuronides naringenin-7-O-glucuronide and naringenin-4’-O-
glucuronide are reported to be the main conjugates of naringenin present in plasma and 
urine after consumption of oranges or orange juice [39, 40, 44, 45]. Under the conditions 
described, only naringenin-7-O-glucuronide was produced by the Hepa-1c1c7 cells used 
in this study. As different cell types are known to produce different types of flavonoid 
conjugates [20, 46], it is well possible that also naringenin-4´-O-glucuronide can be 
produced by other cell types derived from different tissues or species. 

For kaempferol, only one study reports on conjugates present in human plasma and 
urine. After the consumption of endive, kaempferol-3-O-glucuronide, which was one of 
the conjugates biosynthesized in our study to the highest extent, is the only kaempferol 
conjugate reported to be present in human plasma, as well as certain amounts of 
the aglycone. In human urine, kaempferol-3-O-glucuronide is the major conjugate; 
additionally, a mono-sulfated and a di-sulfated conjugate were reported to be found [47]. 
For kaempferol, a range of possible conjugates have been identified in vitro. Incubations 
with Caco-2/TC7 cells (i.e. a clone of the human epithelial colorectal adenocarcinoma 
cell line Caco-2), co-cultures of Caco-2 and HT-29 (i.e. a human epithelial colorectal 
adenocarcinoma cell line), and rat liver S9 all yielded glucuronides conjugated at the 
3-, 4’-, and 7-positions, which are the same conjugates biosynthesized in our study 
using Hepa-1c1c7 cells [48, 49]. These studies also report the formation of two sulfates 
(conjugated at the 3- and 7-position), and a sulfo-glucuronide. Other studies report the 
formation of various, though not identified, glucuronides and sulfates after incubations 
of kaempferol with rat liver microsomes and cytosol, primary rat hepatocytes, or 
recombinant UGT1A9 [50, 51].
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Quercetin is one of the most studied flavonoids, and various plasma metabolites in 
humans have been identified. After the consumption of onions or tomato juice enriched 
with rutin (i.e. quercetin-3-O-rutinoside), the main metabolites in plasma are reported 
to be quercetin-3-O-glucuronide and quercetin-3’-O-sulphate; further conjugates 
found are quercetin-4’-O-glucuronide, quercetin-3’-O-glucuronide, isorhamnetin-3-O-
glucuronide, isorhamnetin-4’-O-glucuronide, a quercetin di-glucuronide and a quercetin 
sulfo-glucuronide [52-56]. In our study, glucuronides of quercetin conjugated at the 
3-, 7-, and 3’-positions could be biosynthesized using Hepa-1c1c7 cells and identified; 
additional conjugates of quercetin were formed in small quantities but were not purified 
and identified. It can be expected that even more conjugates than the three conjugates 
synthesized and identified in the present study can be biosynthesized in vitro, as van der 
Woude et al. [20] report the formation of a total of 14 distinct conjugates of quercetin 
using various in vitro models.

The conjugates of the isoflavones daidzein and genistein that were biosynthesized using 
UGTs, as well as the conjugate of glycitein that was biosynthesized using Hepa-1c1c7 
cells in this study, were all glucuronidated at the 7-position, which is the main position 
of conjugation for these isoflavones in humans in vivo [57, 58]. Some studies report 
glucuronidation to be the main type of conjugation for isoflavones [59, 60], while some 
also mention sulfation as a frequent type of conjugation [57-59, 61, 62]. The Km and Vmax 
for flavonoid sulfation are generally reported to be lower than for glucuronidation [21, 
63-65]. Therefore, it can be expected that the preference for the type of conjugation 
varies depending on the substrate concentration, with glucuronidation being favored 
at relatively higher dose levels. In addition, many flavonoids are known to inhibit 
sulfotransferases [21, 66-68], which can additionally impede sulfation at higher 
concentrations. During the incubations with daidzein and genistein, small amounts 
of an additional glucuronide were formed. Although not isolated and identified in 
this study, these glucuronides are likely to be conjugated at the 4’-position, which is 
generally reported to be glucuronidated to a lesser extent than the 7-position in vivo 
[57, 58]. Unlike daidzein, which has hydroxyl groups only at the 7- and 4’-positions, 
genistein has an additional hydroxyl group available for conjugation at the 5-position; 
this is a less likely position for conjugation as genistein-5-O-glucuronide is reported to 
be found in vivo only in trace amounts in porcine rat urine [61, 69], and glucuronidation 
of this hydroxyl group is likely to be hindered by intramolecular hydrogen bonding. 

There are no studies reporting on the pharmacokinetics of dalbergin. As dalbergin has 
only one hydroxyl group available for conjugation, dalbergin-6-O-glucuronide was the 
only conjugate that could have been formed during the incubation with UGT in our 
study. 

The amounts of conjugates that can be prepared using the described methods are 0.4 
µmol per 75 cm2 cell culture flask or 10 ml incubation using UGTs. For the conjugates 
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biosynthesized in this study, this correlates to around 172 µg to 191 µg of flavonoid 
conjugates, depending on the molecular mass of the substrate used and assuming no 
losses during sample clean-up. These amounts, equivalent to 10 ml of a 40 µM solution, 
are sufficient for many types of in vitro studies, given that flavonoids are generally 
active at micromolar concentrations. The incubation volumes can easily be scaled up 
and require only little extra sample handling due to concentration of the samples during 
SPE.

While studies unequivocally report that flavonoids are present in the systemic 
circulation nearly exclusively as conjugated metabolites, only some studies report the 
type of conjugation and even less report the positions of conjugation. This is in part 
due to the low concentrations of circulating conjugates and the technical difficulties of 
identifying the positions of conjugation. With the strategy for identification described 
in this study, flavonoid conjugates can be identified based on LC-MS and 1H NMR 
spectra obtained for samples containing only a few micrograms of the conjugate. While 
in this study the knowledge of the substrates used for biosynthesis was used for the 
preparation of the list of candidate compounds, this information can be generated for 
unknown compounds using tandem mass spectrometry. The employed strategy for the 
identification of the glucuronides was able to reduce the number of possible candidate 
molecules from a large set to a small and manageable number, and in all but one case 
even indicated the correct compound, being the conjugate with the lowest score. While 
this procedure can be applied in automation, provided that the 1H NMR spectra are 
sufficiently clean, in practice, however, solvent impurities and bleeding of the columns 
can impact sample purity. Therefore, especially at low sample concentrations, the 
automated fitting of the spectra can be hampered and the procedure requires visual 
comparison and manual fitting of the predicted and measured spectra. 

Altogether, the described strategy offers great flexibility for the biosynthesis of relevant 
flavonoid conjugates, as different cell lines [20, 46, 48, 49], as well as different UGTs 
and also sulfotransferases [21, 32] can be used for different flavonoid substrates. 
The production of flavonoid conjugates using this strategy can easily be scaled up to 
produce sufficient amounts of conjugates for bio-assays. The described strategy for 
the identification based on the LC-MS and 1H-NMR data using the MetIDB proved to 
be a powerful tool for the quick and reliable identification of even small amounts of 
conjugates. 

Supplemental data

Supplemental Tables 3.1 - 3.11 can be downloaded from: https://goo.gl/jd7kBJ (case 
sensitive)
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Abstract

The consumption of dietary flavonoids has been associated with a variety of health 
benefits, including effects mediated by the activation of peroxisome proliferator-
activated receptor-gamma (PPAR-γ). Flavonoids are extensively metabolized during 
and after uptake and there is little known on the biological effects of these conjugated 
metabolites of flavonoids that are found in plasma. To investigate the effect of 
glucuronidation on the ability of flavonoids to activate PPAR-γ we studied and compared 
the activity of quercetin, kaempferol and their relevant plasma conjugates quercetin-
3-O-glucuronide (Q-3G) and kaempferol-3-O-glucuronide (K-3G) on different PPAR-γ 
related endpoints. The flavonoid aglycones increased PPAR-γ mediated gene expression 
in a stably transfected reporter gene cell line and glucuronidation diminished their 
effect. To study the intrinsic activity of the test compounds to activate PPAR-γ we used 
a novel microarray technique to study ligand induced ligand binding domain (LBD) 
– nuclear receptor coregulator interactions. In this cell-free system we demonstrate 
that, unlike the known PPAR-γ agonist rosiglitazone, neither the flavonoid aglycones 
nor the conjugates are agonistic ligands of the receptor. The increases in reporter gene 
expression in the reporter cells were accompanied by increased PPAR-γ receptor-
mRNA expression and quercetin synergistically increased the effect of rosiglitazone in 
the reporter gene assay. It is concluded that flavonoids affect PPAR-γ mediated gene 
transcription by a mode of action different from agonist binding. Increases in PPAR-γ 
receptor mRNA expression and synergistic effects with endogenous PPAR-γ agonists 
may play a role in this alternative mode of action. Glucuronidation reduced the activity 
of the flavonoid aglycones. 
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Introduction

Flavonoids are plant secondary metabolites and ubiquitously present in many plant-
derived foodstuffs. As a result, flavonoids are generally consumed on a regular basis via 
fruits, vegetables and their juices, as well as via wine, tea and cocoa-derived products 
[1, 2]. Dietary intake of flavonoids has been correlated with the prevention of various 
degenerative diseases and improvement of disease states [3, 4]. One possible mode 
of action behind beneficial health effects of flavonoids has been suggested to be the 
activation of PPAR-γ [5]. PPARs are ligand-activated transcription factors which form 
obligate heterodimer partners with the retinoid X receptor. The heterodimers bind to 
peroxisome proliferator-responsive elements (PPREs) in the regulatory region of target 
genes and upon activation recruit nuclear co-activators required for gene transcription, 
while dismissing co-repressors that are bound in the unliganded state [6]. Three PPAR 
isoforms are currently known, i.e. PPARα (NR1C1), PPARβ/δ (NR1C2) and PPAR-γ 
(NR1C3). Apart from certain overlaps, these isoforms are activated by different ligands 
and regulate specific target genes [7]. Various health promoting effects are ascribed 
to PPAR activation and especially PPAR-γ is highlighted for its effects on for example 
adipogenesis, insulin resistance and inflammation [8]. There are two PPAR-γ splice 
variants, i.e. PPAR-γ1 and PPAR-γ2 which have different expression levels in tissues 
[7]. The functional differences between these two are not fully elucidated but there are 
indications that PPAR-γ2 is of higher importance in adipogenesis and insulin sensitivity 
[9-11]. Various preferably unsaturated fatty acids serve as endogenous receptor 
agonists [12], and the receptor is target of a variety of drugs to treat reduced insulin 
sensitivity and hyperlipidemia such as the well-known class of thiazoledinediones [13]. 
Several flavonoids are reported to activate PPAR-γ mediated gene transcription and 
other related endpoints (see Table 4.1).

With only few exceptions, flavonoids occur in nature in their glycosidic form. Upon 
ingestion, these flavonoid glycosides have to be deconjugated to their respective 
aglycones before or during uptake in the gastrointestinal tract. During uptake the 
aglycones are extensively metabolized to sulfated, methylated and/or glucuronidated 
conjugates in intestinal tissue or the liver before they enter the systemic circulation 
[14]. As a result, under physiological conditions flavonoids usually do not occur as 
aglycones in biological fluids. It is widely accepted that conjugation and deconjugation 
can significantly influence the biological activity of flavonoids [15, 16]. 
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Table 4.1 Effects of flavonoids on common PPAR-γ related endpoints. Regular print: positive association; 
italic print: negative association; bold print: inactive.
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Alpinetin [53] [53]
Apigenin [34],[35] [34],[35] [34] [34],[54] [55]
Baicalin [56] [57] [57]
Biochanin A [34],[35],[58],[59] [35],[35] [55]
Calcycosin [58]
Chrysin [34],[60] [34] [60] [34],[60] [34] [55]
Cyanidin [61] [61] [61]
Daidzein [58],[59],[62],[63]
Diosmetin [35] [35]
Equol [59],[63] [64],[64] [64]
Eriodictyol [34],[35] [35]
(-)-Epigallocatechin 
-3-gallate

[34]

Fisetin [34] [65] [65],[66] [67]
Flavone [34]
Formononetin [58]
Formononetin [68]
Galangin [34]
Genistein [34],[58],[59],[62] [62] [55]
Glycitein [62]
Gossypetin [69]
Hesperetin [34],[70],[71] [71] [72]
Hesperidin [55],[67],[73]
Isoquercetrin [35] [35]
Isosakuranetin [34]
Kaempferol [34],[35],[33],[32] [34],[35] [34] [34],[74]
Luteolin [34],[35] [35] [75]
Morin [34] [76] [67],[76]
Myricetin [34] [67]
Naringenin [34],[35],[71],[33],[32],[77] [35] [71],[77] [72] [72] [77]
Naringenin chalcone [33]
Naringin [34]
Odoratin [78]
Oroxylin A [79] [79]
Pinocembrin [34]
Quercetin [34],[35],[33],[32] [35],[76] [45] [80] [76]
Resveratrol [81] [81]
Rutin [34]
Sakuranetin [82]
Tangeretin [34]
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Table 4.1 continued 
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Taxifolin [35]
Theaflavin-3,3’-
digallate

[34]

Vitexin [35] [35] [83]
Wogonin [84] [84]
3,6-dihydroxyflavone [85]
3-hydroxyflavone [34]
5,7-dimethoxyflavone [34]
5-methoxyflavone [34]
7,8-dihydroxyflavone [34]

The aim of the present study was to investigate the effect of flavonoid conjugation on 
the reported activity of flavonoids to induce PPAR-γ mediated gene expression. To this 
end we selected the dietary flavonoids quercetin and kaempferol as model flavonoids 
to compare their activity with their respective 3-O-glucuronidated conjugates. Q-3G 
and K-3G belong to the most abundant conjugates of quercetin and kaempferol found 
in plasma and urine [17-22]. In this study we describe the effect of these flavonoid 
aglycones and conjugates on PPAR-γ mediated gene expression, receptor mRNA 
expression and PPAR-γ LBD-coregulator interaction.

Materials and Methods

Chemicals

Rosiglitazone (CAS no: 122320-73-4) was obtained from Cayman Chemical (Ann Arbor, 
USA). Kaempferol (CAS no: 520-18-3), K-3G (CAS no: 22688-78-4), quercetin (CAS 
no: 117-39-5), Q-3G (CAS no: 22688-79-5), DL-dithiothreitol (DTT, CAS no: 3483-12-
3) and L-ascorbic acid (VitC, CAS no:50-81-7) were purchased from Sigma Aldrich 
(Missouri, USA). Stock solutions of the flavonoids were prepared in dimethylsulphoxide 
(DMSO, 99.9% purity) obtained from Acros (Geel, Belgium) and stored at –20 °C. G418 
solution and fetal bovine serum (FBS) were purchased from PAA (Pasching, Austria). 
Acetic acid was purchased from VWR International (Darmstadt, Germany). Acetonitrile 
(ULC/MS grade) and methanol (HPLC supra-gradient) were purchased from Biosolve 
BV (Valkenswaard, the Netherlands). Phosphate buffered saline (PBS), Dulbecco’s 
Modified Eagle Medium with Ham´s Nutrient Mixture F-12 (1:1) (DMEM/F12), DMEM/
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F12 without phenol red, nonessential amino acids (NEAA) and trypsin were purchased 
from Invitrogen (Breda, The Netherlands).

Dextran-coated charcoal-stripped fetal calf serum (DCC-FCS) was purchased from 
Thermo Scientific (Waltham, Missouri, USA). Nanopure water was prepared with a 
Barnstead Nanopure Type I ultrapure water system.

Cell cultures

The PPAR-γ2 CALUX cells (provided by BioDetection Systems BV, Amsterdam, the 
Netherlands) are human osteosarcoma U2OS cells stably transfected with an expression 
vector for PPAR-γ2 and a firefly luciferase reporter construct under control of the 
peroxisome proliferator responsive element [23]. The cells were cultured in DMEM/
F12 GlutaMAX supplemented with 7.5% FBS and NEAA. To maintain selection pressure 
200 µg/mL G418 was added once per week. The cells were maintained at 37°C in a 
humidified atmosphere with 5% CO2. 

All compounds were tested for cytotoxicity and potential effects on luciferase stability 
using the Cytotox CALUX cell line (provided by BioDetection Systems BV) as described 
before [24]. The Cytotox CALUX cells show an invariant luciferase expression and 
a decrease in luciferase activity therefore indicates a cytotoxic effect. Moreover, an 
increase in luciferase activity in the Cytotox CALUX cells may indicate stabilization of 
the luciferase enzyme and possible false positives for reporter gene expression in the 
PPAR-γ2 CALUX assay [25]. Only non-cytotoxic concentrations of the test compounds 
were used in the PPAR-γ2 CALUX assay.

The Cytotox CALUX cells were cultured in DMEM/F12 supplemented with 7.5% FBS 
and NEAA. Once per week 200 μg/ml G418 was added to the culture medium in order 
to maintain the selection pressure.

PPAR-γ2 CALUX and cytotox CALUX assay

The ability of the tested flavonoids to induce PPAR-γ2 mediated luciferase expression 
at protein level in an intact cell system was tested by measuring luciferase activity in 
the PPAR-γ2 CALUX reporter cells. To this end PPAR-γ2 CALUX cells were seeded in 
a white 96-wells microtiter plate with clear bottom (View Plate-96 TC, PerkinElmer) 
at a density of 10,000 cells per well in 100 μl exposure medium (DMEM/F12 without 
phenol red +5 % (v/v) DCC- FCS +1% (v/v) NEAA). The seeded cells were incubated 
for 24 h to allow them to attach and form a confluent monolayer. Subsequently, the 
60 inside wells of the plate were exposed for 24 h to the test compounds in exposure 
medium at the concentrations indicated. The final DMSO concentration in the exposure 
medium was 0.5%. On each plate, 100 nM rosiglitazone, a known PPAR-γ agonist [26] 
was included as positive control. Quercetin was co-incubated with 500 μM VitC to 



73

Effect of quercetin and kaempferol glucuronidation on PPAR-γ activation

4

prevent auto oxidation; this concentration of VitC was determined not to interfere with 
cell viability, luciferase expression or luciferase stabilization.

After 24 h of exposure, medium was removed and the cells were washed twice with 100 
µl 0.5x PBS. Subsequently, cells were lysed by addition of 30 µl low salt lysis buffer [27] 
and stored overnight at −80 °C. Luciferase activity in the lysate was measured using 
a luminometer (Luminoscan Ascent, Thermo Scientific, Waltham, MA) and flash mix 
as described previously [27]. Background light emission and luciferase activity was 
measured per well and expressed in relative light units (RLU). Background values were 
subtracted prior to data analysis. Data and statistical analyses were conducted using 
Microsoft Excel (Version 14.0.7106.5003; Microsoft Corporation) and GraphPad Prism 
software (version 5.00 for windows, GraphPad software, San Diego, USA). The depicted 
graphs are representative curves giving mean and standard deviations of sextuplicate 
measurements. The Cytotox CALUX cells were cultured, exposed, lysed and measured in 
the same manner as the PPAR-γ2 CALUX cells.

Quantitative polymerase chain reaction (qPCR) 

For qPCR the PPAR-γ2 CALUX cells were propagated as described above with some 
minor modifications. Cells were seeded in 12 well plates, at 100,000 cells in 1 ml of 
exposure medium per well. After 24h of incubation, cell culture medium was removed 
and 750 μl of exposure medium were added containing the test compounds (added 
from a 200 times concentrated stock solution in DMSO). Each test compound was tested 
in two independent experiments in triplicates giving a total of six replicates.

RNA isolation
For the isolation and purification of mRNA QIAshredder spin columns and the RNeasy 
mini kit from QIAGEN (Venlo, the Netherlands) were used. After 24h of exposure of 
the PPAR-γ2 CALUX cells medium was aspirated and the cells were washed with 600 
μl PBS. Subsequently, 300 μl of RLT lysis buffer (RNeasy Mini Kit, Qiagen, Venlo, the 
Netherlands) were added and the plates were placed on an orbital shaker. The lysate 
was added to QIAshredder spin columns and centrifuged at 8,000x g for 15 seconds. 
Then 350 μl of 70% ethanol were added to the flow through of the spin columns and 
the samples were mixed thoroughly. These mixtures were transferred to RNeasy spin 
columns and centrifuged at 8,000 rcf for 20 seconds. The flow through was discarded. 
Then 700 µl RW1 buffer (RNeasy Mini Kit) were added to the columns and the columns 
were centrifuged at 8,000 rcf for 20 seconds. The flow through was discarded. Next, 500 
μl of RPE buffer (RNeasy Mini Kit) were added to the columns and the columns were 
centrifuged at 8,000 rcf for 20 s. The flow through was discarded. The previous step 
was repeated and followed by 2 min of centrifugation. Subsequently, the columns were 
placed in new tubes and centrifuged at 14,000 rcf for 1 minute to dry the columns. Next, 
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the columns were transferred to new tubes and 30 µl RNase-free water were added. The 
columns were kept at room temperature for 5 minutes and subsequently centrifuged 
at 8,000 rcf for 1 minute to elute total RNA. The concentration of total RNA in the flow 
through was determined spectrophotometically at 260 nm using a Nanodrop (ND-1000, 
Thermo scientific, Wilmington, Delaware). 

Reverse transcriptase reaction and real-time PCR with SYBR green
To obtain cDNA, a QuantiTect Reverse Transcription Kit (Qiagen) was used according 
to the manufacturer’s protocol. Total RNA samples were diluted to 50 ng/μl in RNase-
free water. To eliminate genomic DNA, 2 µl of gDNA Wipeout Buffer (7x) were added 
to 8 µl of sample and 4 µl of RNase-free water per reaction. Mixtures were incubated 
for 2 minutes at 42 °C and subsequently put on ice. Per reaction, 1 µl of Quantiscript 
Reverse Transcriptase, 4 µl of Quantiscript ER Buffer (5x) and 1 µl RT Primer mix were 
added. These mixtures were incubated for 15 minutes at 42 °C and subsequently for 3 
minutes at 95 °C to inactivate the reverse transcriptase. After incubation the samples 
were immediately cooled to 4°C and used for gene expression analysis.

The expression of the reporter gene pGL4 mRNA (FW: ATCAGCCAGCCCACCGTCGTATTC, 
RV: ACAAGCGGTGCGGTGCGGTAGG) and PPAR-γ2 mRNA (FV: 
GCGATTCCTTCACTGATAC, RV: CTTCCATTACGGAGAGATCC; from [28]) was 
measured by real-time quantitative chain polymerase reaction (RT-qPCR) using 
Rotor-Gene Q (Qiagen) and normalized against the expression of beta-actin 
(FW: GCAAAGACCTGTACGCCAACAC, RV: TCATACTCCTGCTTGCTGATCCCAC) and 
GAPDH (FW: TGATGACATCAAGAAGGTGGTGAAG, RV: TCCTTGGAGGCCATGTGGGCCAT). 
For every reaction 5 μl of 20 times diluted sample cDNA, 1 μl forward primer (10 µM), 1 
μl reverse primer (10 µM), 12.5 μl of Rotor-Gene SYBR Green PCR Master Mix (Qiagen) 
and 5.5 μl of RNase free water were used. The plate was incubated at 95 °C for 10 min, 
and then for 40 cycles each consisting of incubation at 95 °C for 10 s, at 60 °C for 15 s, at 
72 °C for 20 s. This was followed by pre-melt conditioning at 72 °C for 90 s, increasing 
by 1°C every 5 seconds to 95°C for the melting curve. Every reaction was carried out in 
technical duplicates.

qPCR data analysis
Threshold cycle (Ct)-values were derived using Rotor-Gene 6000 Series Software 
(Qiagen). For the data and statistical analyses Microsoft Excel and GraphPad Prism 
software were used. The formulas used are adapted from literature [29]. 

The efficiencies (E) of the primer pairs were calculated using the formula 

110 ^  
= − 

 
E

slope
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where slope is the slope of the standard curve (crossing threshold (Ct) versus cDNA 
input). An E value of 2 is reached when there is exact doubling of the cDNA every cycle.

The relative quantity of a given sample (RQsample) and gene of interest or reference gene 
was calculated using the formula

RQsample   ^ (=E (Ct(control)-Ct(sample))

where Ct(control) is the average of the Ct values of the solvent control reactions of a certain 
gene of interest and Ct(sample) the Ct value of the sample to be quantified.

The relative normalized expression (RNE) or fold change for a specific sample and gene 
of interest (GOI) against the two reference genes (REF) used is calculated using the 
following formula

 RNE = RQsample(GOI) / (RQsample(REF1) x RQsample(REF2))^1/n

where n is the number of reference genes.

PamGene Nuclear Receptor-Coregulator Interaction Profiling

Ligand-modulated interaction of the PPAR-γ ligand binding domain (LBD) with 
coregulators (154 different binding motifs of 66 different coregulators) was assessed 
using PamChip 4 microarray chips for nuclear hormone receptors (PamGene 
International B.V., ’s-Hertogenbosch, The Netherlands) as described previously [30]. 
Briefly, the PPAR-γ LBD (His-tagged #P1065; Protein One, Rockville, MD, USA) was mixed 
with an anti-His antibody conjugated to Alexa Fluor 647 (Penta·His Alexa Fluor 647 
Conjugate #35370; Qiagen, Venlo, the Netherlands) in the absence and presence of the 
potential ligands added from a stock solution in DMSO (2% final concentration) to the 
reaction buffer (Nuclear Receptor Buffer F #PV4547; Invitrogen, Breda, the Netherlands) 
containing 5 mM DTT. Ligand concentrations used were EC90 concentrations obtained 
in the PPAR-γ reporter gene assays. All assays were performed in a fully automated 
microarray processing platform (PamStation12, PamGene International B.V.) at 20 °C. 
After incubation, excess incubation mix was removed and the arrays washed prior to 
acquisition of images.

Image analysis was performed using BioNavigator software (PamGene International 
B.V.) which performs automated array grid finding and subsequent quantification of 
signal and local background for each individual peptide. The median signal-minus-
background values were used as the quantitative parameter of binding. For data and 
statistical analyses Microsoft Excel was used. Experiments were performed in triplicate 
and the graphs are corrected for binding levels obtained in the solvent control; 
coregulators for which none of the tested compounds induced an effect that was 
statistically significantly different from the solvent control (p≤0.05) are excluded from 
the figure.
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Results

PPAR-γ2 CALUX reporter gene expression

The effect of quercetin and kaempferol on PPAR-γ2 mediated gene expression was measured 
in U2OS cells stably transfected with the PPAR-γ2 receptor and the firefly luciferase gene 
regulated by the PPRE. Quercetin and kaempferol, as well as the known PPAR-γ agonist 
rosiglitazone increase luciferase activity in a concentration-dependent way (Figure 4.1). 
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Figure 4.1 PPAR-γ2 CALUX luciferase activity: 
Concentration-response curves of rosiglitazone, 
quercetin and kaempferol in the PPAR-γ2 
CALUX assay determined by luciferase activity 
measurement. VitC (0.5 mM) is added to quercetin 
incubations to prevent auto-oxidation. Values are 
means ± standard deviations; concentrations of 0.7 
log µM (flavonoids) and -2 log µM (rosiglitazone) are 
significantly different from solvent control (p<0.05). 
EC90 concentrations are indicated in the figure.

In addition, the compounds were tested in a control cell line that invariably expresses 
firefly luciferase to measure effects on cell viability and post-transcriptional stabilization 
of luciferase. Quercetin and rosiglitazone did not affect the luciferase signal in the 
control cell line at the concentrations tested. Kaempferol increased the luminescence 
signal indicating stabilization of the luciferase enzyme – an effect that is likely to cause 
artificially increased luciferase activity in the PPAR-γ2 reporter gene assay. To avoid 
false positive results through post-translational stabilization of the luciferase reporter-
protein [31] the effect of glucuronidation on the induction of PPAR-γ mediated gene 
expression was studied on mRNA-expression level by qPCR. The results of these 
experiments are expressed in Figure 4.2. Rosiglitazone, quercetin and kaempferol 
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significantly increased pGL4 reporter gene expression also at the mRNA level in the 
PPAR-γ reporter gene assay. The glucuronidated conjugates of quercetin and kaempferol, 
i.e. Q-3G and K-3G did not significantly affect pGL4 reporter gene expression (Figure 
4.2). The stability of all tested compounds during the 24h of incubation was determined 
by UPLC and the UPLC chromatograms obtained revealed that all tested compounds 
remained stable in the exposure medium during incubation (data not shown).
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Figure 4.2 PPAR-γ2 reporter gene 
expression: Induction of the reporter gene 
expression (i.e. pGL4) by rosiglitazone (0.5 
µM) and flavonoids (30 µM). VitC (0.5 mM) 
is added to quercetin and Q-3G incubations 
to prevent auto-oxidation. Rosiglitazine, 
quercetin and kaempferol increase pGL4 
expression. Values are means ± standard 
deviations. Statistically significant differences 
from solvent control: ** p<0.01, *** p<0.001.

 
PPAR-γ coregulator binding

Given that the lower activity of the flavonoid glucuronides to activate PPAR-γ in the cell 
based reporter gene assay and the cell based qPCR assay might be due to their lower 
cellular bioavailability, additional studies were performed to investigate the intrinsic 
ability of the tested flavonoid aglycones and their glucuronidated conjugates to activate 
PPAR-γ. To that end subsequent experiments were performed in a cell-free assay 
system characterizing PPAR-γ LBD activation using a microarray technique to analyze 
nuclear receptor - coregulator interactions. The assay employs microarrays containing 
a total of 154 distinct binding motifs of 66 different nuclear receptor-coregulators that 
are immobilized on a porous membrane. Figure 4.3 shows the binding patterns of the 
ligand binding domain of PPAR-γ to these coregulator binding motifs in the presence of 
quercetin, kaempferol, Q-3G, K-3G and the positive control rosiglitazone for comparison. 
Quercetin, kaempferol and rosiglitazone were tested at their EC90 concentrations 
derived from the reporter gene assay and the glucuronides were tested at equimolar 
concentration as the respective aglycones. The results presented reveal that incubation 
with rosiglitazone increases LBD binding to specific coactivator binding motifs (e.g. 
CREP-binding protein (CBP), E1A binding protein p300 (EP300), nuclear receptor 
coactivators 1 and 2 (NCOA1, NCOA2) etc.) and decreases binding to corepressor motifs 
(nuclear receptor corepressors 1 and 2 (NCOR1, NCOR2)). Incubation with quercetin, 
kaempferol, Q-3G and K-3G does not affect LBD binding to coregulators in a comparable 
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manner and resulted in binding patterns similar to the solvent control. These results 
indicate that the observed effects of the flavonoids on PPAR-γ mediated gene expression 
cannot be ascribed to an agonistic effect of the flavonoids on the PPAR-γ LBD. 
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Figure 4.3 PPAR-γ LBD – coregulator interactions: Binding patterns of PPAR-γ LBD to coregulator-derived 
binding peptides exposed to rosiglitazone (red), quercetin (dark green), kaempferol (dark purple), Q-3G (light 
green) and K-3G (light purple) at EC90 concentrations derived from the reporter gene assay. Coregulator-
derived binding peptides are plotted on the x-axis, the fluorescence signal indicating coregulator peptide 
binding is given on the y-axis. Rosiglitazone induces changes in binding to coregulator-derived peptides; 
quercetin, kaempferol, Q-3G and K-3G do not induce comparable changes. Values are means ± standard 
deviations.

PPAR-γ receptor-mRNA expression

As the tested flavonoids were active in the PPAR-γ reporter gene assay but did not 
activate the LBD of PPAR-γ we investigated other endpoints that could affect the observed 
activity. To this end the effect of the compounds on PPAR-γ2 receptor-mRNA expression 
in the reporter gene cell line by qPCR was quantified. Figure 4.4 shows that quercetin 
and kaempferol significantly increase the expression of PPAR-γ2 receptor mRNA, Q-3G 
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increases gene expression to a lesser extent than the aglycone, and rosiglitazone and K-3G 
do not significantly affect receptor mRNA expression. These results show that the effects 
of quercetin and kaempferol on reporter gene expression in the PPAR-γ2 CALUX cell line 
are accompanied by an increase in PPAR-γ2 receptor mRNA transcription. 
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Figure 4.4 PPAR-γ2 receptor-mRNA 
expression: Induction of PPAR-γ2-mRNA 
expression by rosiglitazone (0.5 µM) 
and flavonoids (30 µM). VitC (0.5 mM) is 
added to quercetin and Q-3G incubations 
to prevent auto-oxidation. Quercetin, 
kaempferol and Q-3G increase PPAR-γ2 
receptor-mRNA expression. Values are 
means ± standard deviations. Statistically 
significant differences from solvent control: 
** p<0.01, *** p<0.001. 

In additional experiments the PPAR-γ2 reporter gene cells were exposed to rosiglitazone 
in the presence of quercetin (Figure 4.5). Figure 4.5 presents a full concentration response 
curve of rosiglitazone in the presence of a low concentration of quercetin that by itself 
causes only a low increase in reporter gene expression (i.e. 10 µM). The results obtained 
reveal that quercetin synergistically increased the effect of rosiglitazone by about 3-fold 
over the complete range of concentrations tested. This further supports that quercetin 
has a different mode of action from that of rosiglitazone, and reveals that quercetin can 
synergistically increase the response of a regular PPAR-γ2 agonist.

Discussion

The objective of this study was to investigate and compare the effect of the dietary 
flavonoids quercetin and kaempferol and their relevant glucuronidated conjugates Q-3G 
and K-3G on PPAR-γ mediated gene expression. We observed increased luciferase activity 
and pGL4 reporter gene expression in the PPAR-γ2 reporter gene assay upon exposure to 
quercetin and kaempferol. Other studies reported that quercetin does not activate PPAR-γ 
mediated gene expression in reporter gene assays at concentrations reaching up to 300 
µM [32-35]. This difference compared to our results can be explained by the instability of 
quercetin in vitro where it is known to oxidize rapidly [36]. As already described earlier 
[27, 37], the addition of ascorbic acid can prevent the auto-oxidation of quercetin.

Of the tested glucuronides, Q-3G increased gene expression to a lesser extent than the 
aglycone, while K-3G did not significantly affect reporter gene expression. Based on these 
results it can be concluded that glucuronidation reduces the ability of the flavonoids 
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to activate PPAR-γ mediated gene expression. Given that this effect was observed in a 
reporter gene assay with intact cells this can be due either to a lower intrinsic activity to 
induce PPAR-γ mediated gene expression or a reduced uptake of the conjugates into the 
cells. It has been well recognised that flavonoid conjugates may have to be deconjugated 
to enter cells and exert their biological activities [37, 38], although there are cell types 
that appear to be able to take up flavonoid glucuronides [39].
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Figure 4.5 PPAR-γ2 CALUX co-incubation of quercetin and rosiglitazone: Concentration-response 
curves of rosiglitazone in the absence and presence of 10 µM quercetin in the PPAR-γ2 CALUX determined 
by luciferase activity measurement; luciferase activity is expressed as percentage of maximum response by 
rosiglitazone alone. Data points on the y-axis are solvent control values in the absence of rosiglitazone; all 
concentrations of -1.3 log µM and higher are significantly different from solvent control (p<0.01). Quercetin 
synergistically increases reporter activity about 3-fold (p<0.05 at all concentrations). VitC (0.5 mM) is added 
to incubations to prevent auto-oxidation of quercetin. Values are means ± standard deviations.

To investigate the potential inherent activity of the tested flavonoids to activate PPAR-γ 
the possible effect of the flavonoids on the interaction of the LBD of PPAR-γ with nuclear 
receptor coregulators was studied in a cell free model system. Our results show that, 
surprisingly, none of tested flavonoids interacts with the LBD inducing conformational 
changes of the LBD comparable to the well-known PPAR-γ agonist rosiglitazone. The 
observed effects of the flavonoids on PPAR-γ mediated reporter gene expression are 
therefore likely due to another mode of action. While LBD agonism is the key step to 
receptor activation, there are other ways to interfere with PPAR-γ activity, for example 
PPAR-γ modification through receptor phosphorylation, deacetylation, and sumoylation 
can modulate its activity [40-42]. In addition, the expression of PPAR-γ itself can be 
regulated by kinase activities [41, 43] and flavonoids are reported to directly and 
indirectly affect protein kinase activities [44].  Thus the results of the present study lead 
to the conclusion that flavonoids activate PPAR-γ mediated gene expression by a mode 
of action different from that of regular PPAR-γ agonists.
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We observed increased PPAR-γ2 mRNA expression upon flavonoid exposure, an effect 
that is not exerted by the known agonist rosiglitazone. Various flavonoids are reported 
to affect PPAR-γ expression in a variety of in vitro and vivo systems. Quercetin has been 
reported to increase PPAR-γ mRNA and protein level in spontaneously hypertensive rats 
[45], as well as in primary human adipocytes [46], H9C2 cells [45] and THP-1 macrophages 
[47]. Interestingly, quercetin downregulates PPAR-γ in 3T3-L1 cells [48, 49]; this is also in 
line with the general observation that flavonoids can inhibit PPAR-γ dependent adipocyte 
differentiation in vitro in 3T3-L1 cells (see Table 4.1). Treatment with quercetin can also 
prevent up-regulated PPAR-γ levels in liver [50] and adipose tissue [51] in laboratory 
animals fed a high fat diet. One study reports the effect of quercetin conjugates on PPAR-γ 
expression [52]. In A549 cells, quercetin-3-glucuronide and quercetin-3’-sulfate slightly 
but significantly increased PPAR-γ expression; the aglycone however did not affect 
PPAR-γ expression [52]. The inactivity of the aglycone in this study is likely to be due to 
the instability of quercetin, as discussed above.

Flavonoid-induced increases in PPAR-γ receptor levels combined with receptor activation 
by endogenous agonists is a likely mechanism behind the observed activity of the flavonoids 
in the reporter gene assay. It is of interest to note that while kaempferol significantly affects 
both PPAR-γ mediated PGL4 mRNA expression (Figure 4.2) and PPAR-γ receptor mRNA 
expression (Figure 4), for Q-3G only the latter endpoint is significantly modulated. Such 
differences may be due to as yet undefined additional modulatory effects of the flavonoids 
on for example endogenous PPAR-γ ligands (i.e. fatty acids) and/or the aforementioned 
modulation of receptor activities by phosphorylation, deacetylation, and/or sumoylation 
which could altogether further contribute to the flavonoids’ effects on PPAR-γ. Further, we 
also show that quercetin synergistically enhances the effect of rosiglitazone in the PPAR-γ 
reporter gene assay which may also be due to increased cellular receptor levels. The 
observed synergistic effects underline that the tested flavonoids have a different mode of 
action compared to the agonist rosiglitazone and that flavonoids can potentially increase 
the effect of PPAR-γ ligands.

Conclusion 

Our results show that glucuronidation reduces the activity of quercetin and kaempferol 
on cellular PPAR-γ mediated gene expression. These differences in activity between 
the aglycone and the conjugated forms that are present in biological fluids highlight 
the importance of using relevant flavonoid conjugates in in vitro studies. We further 
observed that none of the tested flavonoid compounds act as agonists on PPAR-γ LBD. 
It is concluded that flavonoids affect PPAR-γ mediated gene transcription by a mode of 
action different from agonist binding. Increased PPAR-γ receptor mRNA expression and 
synergistic effects with endogenous PPAR-γ agonists are likely to play a role in this 
alternative mode of action.



Chapter 4

82 83

Effect of quercetin and kaempferol glucuronidation on PPAR-γ activation

4

References

1.	 Kris-Etherton, P.M., et al., Bioactive compounds in foods: Their role in the prevention of cardiovascular 
disease and cancer. American Journal of Medicine, 2002. 113(9 SUPPL. 2): p. 71S-88S.

2.	 Manach, C., et al., Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition, 
2004. 79(5): p. 727-747.

3.	 Arts, I.C. and P.C. Hollman, Polyphenols and disease risk in epidemiologic studies. American journal of 
clinical nutrition, 2005. 81(1 Suppl): p. 317S-325S.

4.	 Scalbert, A., et al., Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and 
Nutrition, 2005. 45(4): p. 287-306.

5.	 Pan, M.H., C.S. Lai, and C.T. Ho, Anti-inflammatory activity of natural dietary flavonoids. Food and Function, 
2010. 1(1): p. 15-31.

6.	 Viswakarma, N., et al., Coactivators in PPAR-Regulated Gene Expression. PPAR Research, 2010. 2010: p. 
21.

7.	 Mandrup, S. and A. Bugge, Molecular mechanisms and genome-wide aspects of PPAR subtype specific 
transactivation. PPAR Research, 2010.

8.	 Tontonoz, P. and B.M. Spiegelman, Fat and beyond: The diverse biology of PPARγ, in Annual Review of 
Biochemistry. 2008. p. 289-312.

9.	 Medina-Gomez, G., et al., The link between nutritional status and insulin sensitivity is dependent on the 
adipocyte-specific peroxisome proliferator-activated receptor-γ2 isoform. Diabetes, 2005. 54(6): p. 1706-
1716.

10.	 Mueller, E., et al., Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor γ 
isoforms. Journal of Biological Chemistry, 2002. 277(44): p. 41925-41930.

11.	 Ren, D., et al., PPARγ knockdown by engineered transcription factors: Exogenous PPARγ2 but not PPARγ1 
reactivates adipogenesis. Genes and Development, 2002. 16(1): p. 27-32.

12.	 Desvergne, B. and W. Wahli, Peroxisome proliferator-activated receptors: nuclear control of metabolism. 
Endocrine reviews, 1999. 20(5): p. 649-88.

13.	 Larsen, T.M., S. Toubro, and A. Astrup, PPARgamma agonists in the treatment of type II diabetes: is 
increased fatness commensurate with long-term efficacy? International Journal of Obesity and Related 
Metabolic Disorders, 2003. 27(2): p. 147-161.

14.	 Hollman, P.C.H., Absorption, bioavailability, and metabolism of flavonoids. Pharmaceutical Biology, 2004. 
42(SUPPL.): p. 74-83.

15.	 Beekmann, K., et al., A state-of-the-art overview of the effect of metabolic conjugation on the biological 
activity of flavonoids. Food & Function, 2012. 3(10): p. 1008-1018.

16.	 Williamson, G., et al., In vitro biological properties of flavonoid conjugates found in vivo. Free Radical 
Research, 2005. 39(5): p. 457-469.

17.	 Day, A.J., et al., Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. 
Free Radical Research, 2001. 35(6): p. 941-952.

18.	 DuPont, M.S., et al., Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in 
humans. European Journal of Clinical Nutrition, 2004. 58(6): p. 947-954.

19.	 Jaganath, I.B., et al., The relative contribution of the small and large intestine to the absorption and 
metabolism of rutin in man. Free Radical Research, 2006. 40(10): p. 1035-1046.

20.	 Kawai, Y., et al., Different profiles of quercetin metabolites in rat plasma: Comparison of two administration 
methods. Bioscience, Biotechnology and Biochemistry, 2009. 73(3): p. 517-523.

21.	 Mullen, W., et al., Flavonoid metabolites in human plasma and urine after the consumption of red onions: 
analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric 
detection. Journal of Chromatography A, 2004. 1058(1–2): p. 163-168.

22.	 Mullen, W., C.A. Edwards, and A. Crozier, Absorption, excretion and metabolite profiling of methyl-, 
glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of 
onions. British Journal of Nutrition, 2006. 96(1): p. 107-116.



83

Effect of quercetin and kaempferol glucuronidation on PPAR-γ activation

4

23.	 Gijsbers, L., et al., Stable reporter cell lines for peroxisome proliferator-activated receptor γ (PPARγ)-
mediated modulation of gene expression. Analytical Biochemistry, 2011. 414(1): p. 77-83.

24.	 Van der Linden, S.C.v.B., A. R. M.; Van Vugt-Lussenburg, B.; Jonker, L.; Brouwer, A.; Teunis, M.; Krul, C. A. 
M.; Van der Burg, B., Development of a panel of high throughput reporter gene assays to detect genotoxicity 
and oxidative stress. . Submitted for publication.

25.	 Gijsbers, L., et al., Induction of electrophile-responsive element (EpRE)-mediated gene expression by 
tomato extracts in vitro. Food Chemistry, 2012. 135(3): p. 1166-1172.

26.	 Lehmann, J.M., et al., An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-
activated receptor γ (PPARγ). Journal of Biological Chemistry, 1995. 270(22): p. 12953-12956.

27.	 Boerboom, A.M.J.F., et al., Newly constructed stable reporter cell lines for mechanistic studies on 
electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity. Biochemical 
Pharmacology, 2006. 72(2): p. 217-226.

28.	 Giusti, V., et al., Expression of peroxisome proliferator-activated receptor-γ1 and peroxisome proliferator-
activated receptor-γ2 in visceral and subcutaneous adipose tissue of obese women. Diabetes, 2003. 52(7): 
p. 1673-1676.

29.	 Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids 
research, 2001. 29(9): p. e45.

30.	 Koppen, A., et al., Nuclear receptor-coregulator interaction profiling identifies TRIP3 as a novel peroxisome 
proliferator-activated receptor γ cofactor. Molecular and Cellular Proteomics, 2009. 8(10): p. 2212-2226.

31.	 Sotoca, A.M., et al., Superinduction of estrogen receptor mediated gene expression in luciferase based 
reporter gene assays is mediated by a post-transcriptional mechanism. The Journal of Steroid Biochemistry 
and Molecular Biology, 2010. 122(4): p. 204-211.

32.	 Christensen, K.B., et al., Identification of bioactive compounds from flowers of black elder (Sambucus nigra 
L.) that activate the human peroxisome proliferator-activated receptor (PPAR) γ. Phytotherapy Research, 
2010. 24(SUPPL. 2): p. S129-S132.

33.	 Gijsbers, L., et al., Induction of peroxisome proliferator-activated receptor γ (PPARγ)-mediated gene 
expression by tomato (Solanum lycopersicum L.) extracts. Journal of Agricultural and Food Chemistry, 
2013. 61(14): p. 3419-3427.

34.	 Liang, Y.C., et al., Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of 
peroxisome proliferator-activated receptor-γ by flavonoids in mouse macrophages. FEBS Letters, 2001. 
496(1): p. 12-18.

35.	 Mueller, M., et al., Oregano: A source for peroxisome proliferator-activated receptor γ antagonists. Journal 
of Agricultural and Food Chemistry, 2008. 56(24): p. 11621-11630.

36.	 Boulton, D.W., U.K. Walle, and T. Walle, Fate of the flavonoid quercetin in human cell lines: Chemical 
instability and metabolism. Journal of Pharmacy and Pharmacology, 1999. 51(3): p. 353-359.

37.	 Lee-Hilz, Y.Y., et al., Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on 
their deconjugation. Food and Chemical Toxicology, 2008. 46(6): p. 2128-2134.

38.	 Galindo, P., et al., Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via 
deconjugation. PLoS ONE, 2012. 7(3).

39.	 O’Leary, K.A., et al., Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: 
The role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant 
protein 2 (MRP2) in flavonoid metabolism. Biochemical Pharmacology, 2003. 65(3): p. 479-491.

40.	 Ahmadian, M., et al., PPAR[gamma] signaling and metabolism: the good, the bad and the future. Nature 
Medicine, 2013. 99(5): p. 557-566.

41.	 Moreno, M., et al., PPARs: Nuclear Receptors Controlled by, and Controlling, Nutrient Handling through 
Nuclear and Cytosolic Signaling. PPAR Research, 2010.

42.	 Burns, K.A. and J.P. Vanden Heuvel, Modulation of PPAR activity via phosphorylation. Biochimica et 
Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2007. 1771(8): p. 952-960.

43.	 Farmer, S.R., Regulation of PPAR[gamma] activity during adipogenesis. International Journal of Obesity 
and Related Metabolic Disorders, 2005. 29(S1): p. S13-S16.



Chapter 4

84 85

Effect of quercetin and kaempferol glucuronidation on PPAR-γ activation

4

44.	 Williams, R.J., J.P.E. Spencer, and C. Rice-Evans, Flavonoids: Antioxidants or signalling molecules? Free 
Radical Biology and Medicine, 2004. 36(7): p. 838-849.

45.	 Yan, L., et al., Quercetin Inhibits Left Ventricular Hypertrophy in Spontaneously Hypertensive Rats and 
Inhibits Angiotensin II-Induced H9C2 Cells Hypertrophy by Enhancing PPAR-γ Expression and Suppressing 
AP-1 Activity. PLoS ONE, 2013. 8(9).

46.	 Chuang, C.C., et al., Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis 
factor-α-mediated inflammation and insulin resistance in primary human adipocytes. American Journal of 
Clinical Nutrition, 2010. 92(6): p. 1511-1521.

47.	 Lee, S.M., et al., Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver 
X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human 
macrophage cell line. Nutrition Research, 2013. 33(2): p. 136-143.

48.	 Chien, P.J., et al., Dietary flavonoids suppress adipogenesis in 3T3-L1 preadipocytes. Journal of Food and 
Drug Analysis, 2005. 13(2): p. 168-175+195.

49.	 Kim, S.G., et al., Inhibitory effect of heartwood of Rhus verniciflua stokes on lipid accumulation in 3T3-L1 
cells. Korean Journal of Pharmacognosy, 2010. 41(1): p. 21-25.

50.	 Kobori, M., et al., Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with 
consumption of a Western-style diet in C57/BL6J mice. Molecular Nutrition and Food Research, 2011. 
55(4): p. 530-540.

51.	 Kim, O.Y., et al., Influence of quercetin-rich onion peel extracts on adipokine expression in the visceral 
adipose tissue of rats. Phytotherapy Research, 2012. 26(3): p. 432-437.

52.	 Yeh, S.L., et al., Plasma rich in quercetin metabolites induces G 2/M arrest by upregulating PPAR- expression 
in human A549 lung cancer cells. Planta Medica, 2011. 77(10): p. 992-998.

53.	 Hu, K., et al., Alpinetin inhibits LPS-induced inflammatory mediator response by activating PPAR-γ in THP-
1-derived macrophages. European Journal of Pharmacology, 2013. 721(1-3): p. 96-102.

54.	 Kim, M.A., et al., Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte 
differentiation through a modulation of mitotic clonal expansion. Life Sciences, 2014. 101(1-2): p. 64-72.

55.	 Salam, N.K., et al., Novel PPAR-gamma agonists identified from a natural product library: A virtual 
screening, induced-fit docking and biological assay study. Chemical Biology and Drug Design, 2008. 71(1): 
p. 57-70.

56.	 Lim, H.A., et al., PPARγ activation by baicalin suppresses NF-ΚB-mediated inflammation in aged rat kidney. 
Biogerontology, 2012. 13(2): p. 133-145.

57.	 Kwak, D.H., et al., Inhibitory effects of baicalin in the early stage of 3T3-L1 preadipocytes differentiation 
by down-regulation of PDK1/Akt phosphorylation. Molecular and Cellular Biochemistry, 2014. 385(1-2): 
p. 257-264.

58.	 Shen, P., et al., Differential effects of isoflavones, from Astragalus Membranaceus and Pueraria Thomsonii, 
on the activation of PPARα, PPARγ, and adipocyte differentiation in vitro. Journal of Nutrition, 2006. 
136(4): p. 899-905.

59.	 Chacko, B.K., et al., Anti-inflammatory effects of isoflavones are dependent on flow and human endothelial 
cell PPARγ. Journal of Nutrition, 2007. 137(2): p. 351-356.

60.	 Feng, X., et al., Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. 
Biochemical Pharmacology, 2014. 89(4): p. 503-514.

61.	 Jia, Y., et al., Cyanidin is an agonistic ligand for peroxisome proliferator-activated receptor-alpha reducing 
hepatic lipid. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013. 1831(4): p. 
698-708.

62.	 Dang, Z.-C., et al., Peroxisome Proliferator-activated Receptor γ (PPARγ) as a Molecular Target for the Soy 
Phytoestrogen Genistein. Journal of Biological Chemistry, 2003. 278(2): p. 962-967.

63.	 Cho, K.W., et al., Daidzein and the daidzein metabolite, equol, enhance adipocyte differentiation and PPARγ 
transcriptional activity. Journal of Nutritional Biochemistry, 2010. 21(9): p. 841-847.

64.	 Nishide, Y., et al., Bi-phasic effect of equol on adipocyte differentiation of MC3T3-L1 cells. Bioscience, 
Biotechnology and Biochemistry, 2013. 77(1): p. 201-204.



85

Effect of quercetin and kaempferol glucuronidation on PPAR-γ activation

4

65.	 Lee, Y. and E.J. Bae, Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte 
differentiation in 3T3-L1 cells. Archives of Pharmacal Research, 2013. 36(11): p. 1377-1384.

66.	 Jung, C.H., et al., Fisetin regulates obesity by targeting mTORC1 signaling. Journal of Nutritional 
Biochemistry, 2013. 24(8): p. 1547-1554.

67.	 Ghorbani, A., et al., The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order 
to trigger apoptosis in NALM-6 cells: Involvement of PPARγ-dependent mechanism. European Journal of 
Nutrition, 2012. 51(1): p. 39-46.

68.	 Quang, T.H., et al., Anti-inflammatory and PPAR transactivational properties of flavonoids from the roots of 
Sophora flavescens. Phytotherapy Research, 2013. 27(9): p. 1300-1307.

69.	 Chen, J.H., et al., Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell 
formation. Toxicology and Applied Pharmacology, 2013. 272(2): p. 313-324.

70.	 Iio, A., et al., Hesperetin upregulates ABCA1 expression and promotes cholesterol efflux from THP-1 
macrophages. Journal of Natural Products, 2012. 75(4): p. 563-566.

71.	 Liu, L., et al., Naringenin and hesperetin, two flavonoids derived from Citrus aurantium up-regulate 
transcription of adiponectin. Phytotherapy Research, 2008. 22(10): p. 1400-1403.

72.	 Halder, D., et al., Cyclodextrin-clathrated limonin suppresses diet-induced obesity in mice. Journal of Food 
Biochemistry, 2014. 38(2): p. 216-226.

73.	 Nazari, M., et al., Inactivation of Nuclear Factor-κB by citrus flavanone hesperidin contributes to apoptosis 
and chemo-sensitizing effect in Ramos cells. European Journal of Pharmacology, 2011. 650(2-3): p. 526-
533.

74.	 Byun, M.R., et al., TAZ is required for the osteogenic and anti-adipogenic activities of kaempferol. Bone, 
2012. 50(1): p. 364-372.

75.	 Ding, L., D. Jin, and X. Chen, Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional 
activity in adipocytes. Journal of Nutritional Biochemistry, 2010. 21(10): p. 941-947.

76.	 Thuillier, P., et al., Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte 
differentiation by lipoxygenase inhibitors. Biochemical Journal, 2002. 366(3): p. 901-910.

77.	 Goldwasser, J., et al., Transcriptional regulation of human and rat hepatic lipid metabolism by the 
grapefruit flavonoid naringenin: Role of PPARα, PPARγ and LXRα. PLoS ONE, 2010. 5(8).

78.	 Zhang, M.L., et al., PPARγ agonist from chromolaena odorata. Journal of Natural Products, 2012. 75(12): 
p. 2076-2081.

79.	 Hui, H., et al., Oroxylin A has therapeutic potential in acute myelogenous leukemia by dual effects targeting 
PPARγ and RXRα. International Journal of Cancer, 2014. 134(5): p. 1195-1206.

80.	 Park, U.H., et al., Negative regulation of adipogenesis by kaempferol, a component of Rhizoma Polygonati 
falcatum in 3T3-L1 cells. Biological and Pharmaceutical Bulletin, 2012. 35(9): p. 1525-1533.

81.	 Ulrich, S., et al., Peroxisome proliferator-activated receptor γ as a molecular target of resveratrol-induced 
modulation of polyamine metabolism. Cancer Research, 2006. 66(14): p. 7348-7354.

82.	 Saito, T., D. Abe, and K. Sekiya, Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced 
expression of PPARγ2. Biochemical and Biophysical Research Communications, 2008. 372(4): p. 835-
839.

83.	 Yang, S.H., et al., The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human 
oral cancer OC2 cells. Phytotherapy Research, 2013. 27(8): p. 1154-1161.

84.	 Bak, E.J., et al., Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. 
Clinical Nutrition, 2014. 33(1): p. 156-163.

85.	 Lee, J.Y., et al., Cytotoxic flavonoids as agonists of peroxisome proliferator-activated receptor γ on human 
cervical and prostate cancer cells. Journal of Natural Products, 2010. 73(7): p. 1261-1265.





Chapter 5
The effect of glucuronidation on isoflavone induced estrogen 
receptor (ER)α and ERβ mediated coregulator interactions

K. Beekmann,  
L. H. J. de Haan, 
L. Actis-Goretta, 
R. Houtman, 
P. J. van Bladeren, 
I. M. C. M. Rietjens

Published in: 
The Journal of Steroid Biochemistry and Molecular Biology, 2015, 154: 245-253.



Chapter 5

88 89

Effect of isoflavone glucuronidation on ERα and ERβ activation

5

Abstract

Non-prenylated isoflavone aglycones are known to have phyto-estrogenic properties 
and act as agonistic ligands on ERα and ERβ due to their structural resemblance to 
17β-estradiol (E2). Genistein and daidzein are the two main dietary isoflavones; upon 
uptake they are extensively metabolized and exist nearly exclusively as their conjugated 
forms in biological fluids. Little is known about the effect of conjugation on the intrinsic 
estrogenic activities of these isoflavones. To characterize and compare the intrinsic 
estrogenic activities of genistein and daidzein, and their respective 7-O-glucuronide 
metabolites a cell-free assay system was employed that determines the ligand-induced 
changes in ERα- and ERβ-ligand binding domain (LBD) interactions with 154 different 
binding motifs derived from 66 different nuclear receptor coregulators. The glucuronides 
were 8 to 4,400 times less potent than their respective aglycones to modulate ERα-
LBD and ERβ-LBD - coregulator interactions. Glucuronidation changed the preferential 
activation of genistein from ERβ-LBD to ERα-LBD and further increased the slightly 
preferential activation of daidzein for ERα-LBD. The tested isoflavone compounds were 
less potent than E2 (around 5 to 1,580 times for the aglycones) but modulated the LBD-
coregulator interactions in a manner similar to E2. Our results show that genistein and 
daidzein remain agonistic ligands of ERα-LBD and ERβ-LBD in their conjugated form 
with a higher relative preference for ERα-LBD than the corresponding aglycones. This 
shift in receptor preference is of special interest as the preferential activation of ERβ 
is considered one of the possible modes of action underlying the supposed beneficial 
instead of adverse health effects of isoflavones.
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Introduction

Isoflavones are a class of polyphenols that are found nearly exclusively in leguminous 
plants. The main dietary intake of isoflavones is through soy products or soy based food 
supplements with the most common dietary isoflavones being genistein and daidzein 
[1, 2]. Due to their structural resemblance to mammalian estrogens, isoflavones 
and their various conjugates are long known to possess (ant)agonistic or selective 
estrogen receptor modulating properties [3-7]. Isoflavone consumption is suggested 
to be correlated with a variety of beneficial health outcomes affecting amongst others 
atherosclerosis, menopausal symptoms, bone health and cancer at different sites [8-
11]. Because of their phyto-estrogenic activity, isoflavones also carry the potential 
to cause possible adverse health effects for example those related to induction of 
proliferation of especially estrogen receptor-α (ERα) positive cells [12]. One of the 
possible reasons underlying this dualistic mode of action of isoflavones might be 
related to their effects on the two functionally different estrogen receptors i.e. ERα 
and ERβ. ERs are the main targets of estrogenic compounds, and upon their activation 
different transcriptional responses with opposite effects on cell proliferation are 
elicited; ERα activation stimulates cell proliferation, while ERβ activation causes 
apoptosis and reduces ERα mediated induction of cell proliferation [13-16]. Dietary 
isoflavones are reported to bind to and activate both ERα and ERβ, while having a 
relatively higher affinity for ERβ than for ERα [17-19]. Given the different activation 
of ERα and ERβ and their different biological responses the ratio of the two receptors 
in a cell may influence the ultimate outcome of exposure to an estrogen active 
compound [20]. In addition, the response following binding of an estrogen to the ERs 
is dependent on the type of coregulators recruited and/or dismissed by the ER ligand 
complex once bound to the estrogen responsive element (ERE) in the promoter 
region of responsive genes [21, 22]. Coregulator interactions play a crucial role in 
the transcriptional activity of nuclear receptors [23, 24]. Ligand-induced activation 
of nuclear receptors is characterized by a conformational change of the LBD to its 
active state upon ligand binding leading to the recruitment of coregulator complexes 
and the dismissal of corepressor complexes. This activation of the LBD is the initial 
event in ligand-induced transcriptional activation of nuclear receptors [25, 26] as 
opposed to ligand-independent mechanisms of receptor activation [27, 28]. Ligand-
induced coregulator interactions of ER are correlated well with other established 
estrogenicity tests and the isoflavone genistein has been shown to induce ER-LBD 
- coregulator interactions [29, 30]. 

Upon ingestion the isoflavones, which occur mostly as conjugated glycosides in 
plants, are deconjugated to their respective aglycone in the gastrointestinal tract. 
During uptake, these aglycones are then extensively metabolized before entering 
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the systemic circulation where they can be found as glucuronidated and/or sulfated 
conjugates while only marginal amounts of the aglycones are present [31-33]. The 
biological activity of circulating flavonoid metabolites can significantly differ from 
their respective aglycones [34]. The studies reporting on the effect of isoflavone 
conjugates on ER-related endpoints in assays such as competitive receptor binding 
and different cellular based assays give somewhat contradicting results [2, 35, 36]. In 
competitive binding studies it was shown that the 7-O-glucuronides of daidzein and 
genistein have nearly the same affinity for human ERα as their respective aglycones, 
while the affinity of these glucuronides for human ERβ were lower than that of their 
respective aglycones [35]. In yeast-based ER subtype-specific reporter gene assays 
genistein and daidzein activated ERβ more potently than ERα and glucuronidation at 
the 7-position reduced the effect of the two isoflavones on ERα (effect not quantifiable 
due to incomplete concentration response curves of the glucuronides in this assay) 
[35]. The effect of genistein, the more potent of the two isoflavones, on ERβ was 
reduced around 10-fold by glucuronidation at the 7-position, while glucuronidation 
at the 7-position did not affect the potency of daidzein to activate ERβ [35]. In ERα 
and ERβ-specific reporter gene assays in transfected human osteosarcoma cells the 
activities of genistein and daidzein were strongly reduced by glucuronidation (around 
240 to 1,660 times), as was their effect on proliferation of T47D cells (around 112 to 
575 times) [2]. Islam and coworkers concluded that in the cellular models applied 
the glucuronides of genistein and daidzein are not estrogenic, and that the observed 
effects in their studies using human cell lines were caused by small amounts of the 
aglycones that were released during incubation [2]. Taken together, the isoflavone 
conjugates appear to be able to bind to and displace 17β-estradiol (E2) from the LBDs 
of ERα and ERβ, while the ultimate effects vary with the model system applied. There 
are several factors that can influence the ultimate effects of the test compounds in the 
model systems of the reported studies and these may explain the differential results 
to some extent. These factors include possible (de)conjugation of the test compounds, 
an effect of glucuronidation on the cellular uptake of the compounds, as well as 
receptor subtype-specific characteristics of the test system. Especially in intact cell 
models effects of (de)conjugation on cellular uptake may influence the responses 
detected which hampers concluding on the intrinsic estrogenic activities of the 
glucuronides. None of the model systems applied so far could actually characterize 
the intrinsic effects of the isoflavone conjugates on ER-coregulator interactions and 
possible subsequent effects. The objective of the present study was to characterize 
and compare the intrinsic estrogenic activities of the two main dietary isoflavones 
genistein and daidzein, and their respective 7-O-glucuronide metabolites. Given that 
ER binding alone does not necessarily result in an agonistic or antagonistic effect, 
the endpoints characterized should go beyond the binding of the isoflavones and 
their conjugates to the ERs. To this end the cell-free MARCoNI (Microarray Assay for 
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Real-time Co-regulator – Nuclear receptor Interaction) assay system determining the 
ligand-induced changes of ERα- and ERβ-LBD interactions with 154 different binding 
motifs derived from 66 different nuclear receptor coregulators was used. Because the 
MARCoNI assay is a cell free model system the results obtained will not be confounded 
by cellular (de)conjugation and uptake processes; the assay allows the detection of 
estrogen mediated activity as a response to ER-LBD agonism.

Materials and Methods

Chemicals

Genistein, daidzein-7-O-glucuronide (D-7G) and genistein-7-O-glucuronide (G-
7G) were obtained from Extrasynthese (Genay Cedex, France). 17β-Estradiol (E2), 
daidzein and DL-dithiothreitol (DTT) were purchased from Sigma Aldrich (Missouri, 
USA). Stock solutions of the test compounds were prepared in dimethylsulfoxide 
(DMSO, 99.9% purity) from Acros (Geel, Belgium) and stored at –20 °C. 

MARCoNI Nuclear Receptor-Coregulator Interaction Profiling 

Ligand-modulated interaction of the ERα and ERβ LBDs with coregulators (154 
different binding motifs of 66 different coregulators) was assessed using PamChip 
4 microarray chips for nuclear hormone receptors (PamGene International B.V., 
’s-Hertogenbosch, The Netherlands) as described previously [37]. Briefly, for ERα 
the polyhistidine (His) tagged ERα LBD (amino acids 302–552, partly purified from  
Escherichia coli, final concentration between 1 and 10  nM) was mixed with anti-
His antibody penta-His Alexa Fluor 488 conjugate (Qiagen, Germantown, MD, USA, 
#35310, final concentration 25  nM) and for ERβ glutathione S-transferase (GST) 
tagged ERβ subtype specific LBD (amino acids 243–530 final concentration 10 nM, 
AB Vector, San Diego, CA, USA #N3A2) was mixed with anti GST Alexa Fluor 488 
conjugate (Molecular probes, Life Technologies Ltd, UK, #A11131, final concentration 
50  nM) in the absence and presence of the potential ligands added from a stock 
solution in DMSO (2% final concentration) in reaction buffer (TR-FRET Coregulator 
Buffer E #PV4540; Invitrogen, Breda, the Netherlands) containing 5 mM DTT. To 
calculate the modulation indices (MIs), which express the modulation of LBD binding 
to coregulator motifs relative to LBD binding in the solvent control (2% DMSO), 
LBD-binding values (fluorescence) were log10 transformed and the fold difference 
between exposed reactions and solvent control reactions calculated. All assays were 
performed in a fully automated microarray processing platform (PamStation12, 
PamGene International B.V.) at 20 °C. After incubation, excess incubation mix was 
removed and the arrays were washed prior to acquisition of images. Concentration-
response curves were tested in singular; experiments for the calculation of MIs were 
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performed at least in triplicate.

Image analysis was performed using BioNavigator software (PamGene International 
B.V.) which performs automated array grid finding and subsequent quantification of 
signal and local background for each individual peptide. The median signal-minus-
background values were used as the quantitative parameter of binding. For data and 
statistical analyses BioNavigator, Microsoft Excel (Version 14.0.7106.5003; Microsoft 
Corporation) and IBM SPSS Statistics (Version 22, International Business Machines 
Corporation) were used.

Results

Isoflavone mediated modulation of ERα and ERβ binding to coregulator motifs 

The isoflavone aglycones genistein, daidzein, and their relevant glucuronide 
conjugates G-7G and D-7G, as well as the reference compound E2 were tested in the 
MARCoNI coregulator binding assay to evaluate their intrinsic capacity to modulate 
ERα-LBD and ERβ-LBD binding to nuclear receptor-coregulator derived motifs. 
Figure 5.1 shows a schematic representation of the MARCoNI assay. Coregulator-
derived binding peptides containing the LXXLL coactivator motif or the LXXXIXXXL 
corepressor motif are immobilized on a porous membrane. The reaction mix 
containing the LBD, potential ligand, and fluorescently labeled antibody is pumped 
through the porous carrier allowing the LBD to interact with the coregulator-derived 
peptides. LBD binding to the peptides is measured by fluorescence. Figure 5.2 shows 
the MIs of the tested compounds for ERα-LBD and ERβ-LBD; these are the changes 
in LBD binding to the coregulator motifs expressed relative to the solvent control. 
Positive values on the y-axis denote higher binding than the solvent control, negative 
values denote lower binding. The figure shows that the isoflavone aglycones and 
glucuronides modulate LBD binding in a way similar to the modulation induced by 
the  reference compound E2 as apparent from the comparable patterns of modulation. 
Differences can be observed in the height of the patterns on the y-axis which can be due 
to differences in activation potency (i.e. the respective effective concentration needed 
to induce the effect) and the maximum ligand-induced response of the compounds. 
To study the differences in activation potency and maximum response between 
the isoflavone aglycones and their respective glucuronides, all compounds were 
tested at increasing concentrations and sigmoidal concentration-response curves 
thus obtained were fitted using least squares fit for the binding to each coregulator 
peptide. For concentration response-curves with a coefficient of determination (R2) of 
>0.90 half-maximal effect levels (EC50) as measure for the activation potency and the 
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maximum responses were determined. Figure 5.3 shows exemplary concentration-
response curves of ERα-LBD and ERβ-LBD binding to coactivator derived peptides 
from NCOA3 and NRIP1 induced by E2, genistein, daidzein, G-7G and D-7G. The 
figure shows that the tested compounds induce the binding of ERα- and ERβ-LBD 
to the binding motifs derived from NCOA3 and NRIP1 in a concentration-dependent 
manner; the increasing relative fluorescence units (RFU) are a measure for increased 
binding. Supplemental Figures 5.1 to 5.5 show concentration-response curves of all 
compounds and coregulator motifs; Supplemental Tables 5.1 to 5.5 give EC50 values 
and maximum response of all concentration-response curves with an R2 value of 
> 0.90. 

 

LBDLBD
xxxxxxxxxLLxxLxxxxx

LBD

xxxxxxxxxLLxxLxxxxx

no agonist bound agonist bound

no fluorescence fluorescence

LBD

xxxxxxxxLxxxIxxxLxxxx

no agonist bound agonist bound

no fluorescencefluorescence

xxxxxxxxLxxxIxxxLxxxx

A Coactivator motif B Corepressor motif

 
Figure 5.1 The MARCoNi assay detects binding of a nuclear receptor-LBD to coregulator motifs. Schematic 
description of MARCoNI coregulator binding assay. (A) Coactivator motif Binding of an agonistic ligand 
to the LBD increases LBD - coactivator motif interactions which increases the fluorescence signal of the 
corresponding spot. (B) Corepressor motif Binding of an agonistic ligand to the LBD decreases LBD - 
corepressor motif interactions which decreases the fluorescence signal of the corresponding spot. 

To facilitate comparison of the different compounds Figure 5.4 presents histograms 
of the EC50 values of all concentration-response curves that fit the criterion of R2 > 
0.90 per compound and receptor-subtype. From this figure it can be seen that the 
compounds differ in potency to activate the ER-LBDs. E2 induced coregulator motif 
binding at lower concentrations than the isoflavone compounds indicating a higher 
potency (lower EC50 values) of E2 to activate the LBDs. The figure further shows that 
glucuronidation reduced the potencies of the isoflavones to activate ERα-LBD and 
ERβ-LBD, reflected by the fact that the conjugates had the highest EC50 values of the 
tested compounds. Table1 gives the median EC50 values and the corresponding 5th  
and 95th percentiles of the tested compounds per receptor subtype; the number of 
concentration-response curves meeting the standard for the R2 value differed per 
compound and receptor subtype.
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Figure 5.3 The test compounds increase ER-LBD binding to coregulator motifs in a concentration-dependent 
manner. The figure shows concentration-response curves of ERα-LBD and ERβ-LBD binding to the coactivator 
derived motif NCOA3 (amino acids 725 to 747) and NRIP1 (amino acids 701 to 723) induced by E2 and 
isoflavones.  E2 increases ER-LBD - coregulator motif binding at lower concentrations than genistein, daidzein 
and their glucuronides. Glucuronidation of the isoflavones increases the concentrations needed for activity. 

Comparison of the effects of genistein and daidzein to E2

To further compare the effects of the flavonoid aglycones to E2 relative potency  factors 
(RPFE2) and relative maximum responses (RMRE2) were calculated. To derive the 
RPFE2, the EC50 values of genistein and daidzein were divided by the EC50 values of E2 
per coregulator binding motif, respectively. The RMRE2 were derived by dividing the 
maximum responses induced by genistein and daidzein by the maximum responses 
induced by E2 per coregulator motif. For the calculations of the RPFE2 and RMRE2 only 
coregulator motifs were used where the concentration response curves for both the 
respective isoflavone aglycone and E2 met the criterion of R2>0.90. Figure 5.5 presents 
a summarized overview of the RPFE2 and RMRE2 of genistein and daidzein compared to 
E2 for both receptor subtypes; the figure depicts histograms of the derived values and 
the median of the values. Genistein is around 200 times less potent than E2 to activate 
ERα-LBD coregulator interactions (median RPFE2 = 203); for ERβ, however, genistein 
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is only around 5 times less potent than E2 (median RPFE2 = 5.4). This relatively higher 
affinity of genistein for ERβ-LBD over ERα-LBD is also reflected in the lower EC50 

values for ERβ-LBD activation than for ERα-LBD activation (see Table 5.1). Daidzein 
appears to be a less potent agonist of ERα-LBD and ERβ-LBD than the structurally 
related isoflavone genistein; Figure 5.5 shows that daidzein is around 1,300 times less 
potent than E2 for ERα-LBD (median RPFE2 = 1,336) and around 1,600 times less potent 
than E2 for ERβ-LBD (median RPFE2 = 1,580). The maximum responses induced by the 
isoflavones were lower than those induced by E2  (Figure 5.5). The maximum responses 
of genistein were around 70% of those for E2 for both ERα-LBD and ERβ-LBD (median 
RMRE2 = 0.66 and 0.71, respectively). The maximum responses of daidzein for ERβ-LBD 
were also around 70% of those of E2 (median RMRE2 = 0.75); for ERα-LBD, however, the 
maximum responses of daidzein were only around 30% of those of E2 (median RMRE2 
= 0.29). While genistein is a more potent agonist for ERβ-LBD than ERα-LBD, the EC50 
values of daidzein indicate that daidzein is a slightly more potent agonist for ERα-LBD 
than for ERβ-LBD (see also Table 5.1).

Table 5.1 The test compounds activate ERα-LBD and ERβ-LBD with different potencies. The median EC50 
values and 5th – 95th percentiles for ERα-LBD and ERβ-LBD activation of the test compounds. The number of 
concentration-response curves that fitted the criterion of R2 > 0.90 is given in brackets. E2 is the most potent 
agonist of ERα-LBD and ERβ-LBD, followed by genistein, daidzein, and their glucuronides. Genistein shows a 
clear preference for ERβ-LBD activation. Glucuronidation increases the EC50 values of genistein and daidzein 
and affects the receptor subtype preferences of the isoflavones

Receptor Compound Median EC50 5th - 95th percentile

ERα

E2 3.8 nM 	 (n=95) 0.9 – 18.7 nM

Genistein 586.5 nM 	 (n=76) 237.3 – 1,055.3 nM 

G-7G 9.2 µM 	 (n=65) 3.0 – 20.9 µM 

Daidzein 3.2 µM 	 (n=68) 1.7 – 4.8 µM

D-7G 10.6 µM 	 (n=76) 1.9 – 167.4 µM 

ERβ

E2 3.8 nM 	 (n=87) 1.9 – 18.8 nM

Genistein 20.1 nM 	 (n=72) 8.1 – 38.8 nM

G-7G 78.91 µM 	 (n=49) 31.0 – 285.7 µM

Daidzein 5.8 µM 	 (n=79) 3.2 – 15.7 µM

D-7G 92.7 µM 	 (n=63) 43.8 – 368.0 µM
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Figure 5.4 Glucuronidation increases the EC50 values of genistein and daidzein for ER-LBD binding to 
coregulator motifs. The figure depicts histograms of EC50 values of coregulator concentration-response curves 
with R2 > 0.90. Estradiol has the lowest EC50 values of the tested compounds, followed by genistein, daidzein, 
and their respective glucuronides. 
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Figure 5.5 The isoflavone aglycones show different relative potencies and maximum responses for ERα-LBD 
and ERβ-LBD activation compared to E2.  The figure shows histograms of relative potency factors of genistein 
and daidzein aglycone compared to E2 (RPFE2) and relative maximum responses of genistein and daidzein 
aglycone compared to E2 (RMRE2) for ERα-LBD and ERβ-LBD; median values are given in the figure. Genistein 
is a more potent agonist of both ERα-LBD and ERβ-LBD than daidzein and shows a clear preference for ERβ-
LBD activation over ERα-LBD activation. Daidzein has a slightly higher relative potency to activate ERα-LBD 
than ERβ-LBD. Both isoflavone aglycones induce lower relative maximum responses than E2; daidzein shows 
the lowest relative maximum responses for ERα-LBD. 
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The effect of glucuronidation on the activity of genistein and daidzein

The effect of the glucuronidated isoflavones on ERα-LBD and ERβ-LBD activation 
were compared to the effect of their respective aglycones. The glucuronide samples 
were analyzed chromatographically for the presence of aglycone impurities; in the 
chromatograms of the glucuronide samples no aglycones were present (detection limit 
< 0.05%) and no detectable amounts of the respective aglycones were formed during the 
incubation in the MARCoNI assay buffer (for chromatograms see Supplemental Figure 
5.6). Figure 5.6 shows histograms of the relative potency factors of the glucuronides 
compared to their respective aglycones (RPFagl) and relative maximum responses 
compared to their respective aglycones RMRagl. The RPFagl were derived by dividing the 
EC50 values of G-7G and D-7G by the EC50 values of their respective aglycone forms per 
coregulator binding motif. The RMRagl for the glucuronides were calculated by dividing 
the maximum responses induced by G-7G  and D-7G by the maximum responses 
induced by their respective aglycones per coregulator motif. For the calculations of the 
RPFagl and RMRagl only coregulator motifs were used where the concentration response 
curves for both the respective isoflavone aglycones and glucuronides met the criterion 
of R2>0.90. Glucuronidation lowered the potency of genistein to activate ERα-LBD 
and ERβ-LBD. The glucuronidation of genistein reduced its potency to activate ERβ-
LBD around 4,400-fold (median RPFagl = 4,391) while it reduced genistein’s potency to 
activate ERα-LBD only around 15 times (median RPFagl = 14.7). Not only the potencies 
were affected by glucuronidation, but also the relative preference for the ER subtype. 

Based on the median EC50 values, genistein activated ERβ-LBD around 29-times more 
potently than ERα-LBD, whereas upon glucuronidation the ER subtype preference 
changed since G-7G activated ERα-LBD about 8.5 times more potently than ERβ-LBD. 
The EC50 values for ER activation of daidzein, though in general being less potent than 
genistein, were less affected by glucuronidation than those of genistein. D-7G activated 
ERα-LBD around 8 times less potently than daidzein (median RPFagl = 8.1) and ERβ-
LBD around 16 times less potently than daidzein (median RPFagl = 16.1). Daidzein and 
D-7G both activated ERα-LBD more potently than ERβ-LBD, and for this isoflavone 
glucuronidation further increased the relative preference for ERα-LBD over ERβ-LBD; 
the median EC50  concentrations of daidzein and D-7G for ERα-LBD activation were 
around 2 and 9 times lower than for ERβ-LBD activation, respectively. Glucuronidation 
also reduced the maximum responses of the isoflavones. As can be seen from Figure 5.6, 
glucuronidation lowered the maximum responses of genistein by 30-40% for ERα-LBD 
and ERβ-LBD (median RMRagl = 0.71 and 0.62, respectively). Glucuronidation reduced 
the maximum responses of daidzein by around 25% for ERβ-LBD (median RMRagl = 
0.76) and by around 55% for ERα-LBD (median RMRagl = 0.43) which already showed 
relatively low maximum responses in comparison to E2 and genistein. 
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Figure 5.6 Glucuronidation of genistein and daidzein reduces their potencies and maximum responses for 
ERα-LBD and ERβ-LBD to a different extent.  The figure shows histograms of relative potency factors of G-7G 
and D-7G compared to the respective aglycones (RPFagl) and relative maximum responses of G-7G and D-7G 
compared to the respective aglycones (RMRagl) for ERα-LBD and ERβ-LBD; median values are given in the 
figure. Glucuronidation strongly reduced the potency of genistein to activate ERβ-LBD while its potency to 
activate ERα-LBD, as well as the potency of daidzein to activate both ERα-LBD and ERβ-LBD were affected 
to a much lesser extent. The maximum responses induced by the isoflavone aglycones were reduced by 
glucuronidation, most notably those of daidzein on ERα-LBD.
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Altogether, even though glucuronidation decreases the relative potencies of genistein 
and daidzein, the glucuronides remain active. It appears that glucuronidation of genistein 
changes its relative preference for ERβ-LBD activation towards ERα-LBD activation and 
glucuronidation of daidzein increases its slight relative preference for ERα-LBD activation 
over ERβ-LBD activation. 

Discussion 

The objective of this study was to characterize and compare the intrinsic activities of the 
two main dietary isoflavones genistein and daidzein, and their respective 7-O-glucuronide 
metabolites to activate ERα-LBD and ERβ-LBD mediated responses. To this end the ligand-
induced changes of ERα-LBD and ERβ-LBD interactions with nuclear-receptor coregulator 
binding motifs were studied in the MARCoNI assay. All of the tested isoflavone compounds, 
including the two glucuronide metabolites, induced concentration-dependent changes in 
ERα-LBD and ERβ-LBD binding to coregulator motifs. The observed MI-patterns induced 
by the isoflavones and their glucuronide conjugates were comparable to the MI-patterns 
of the reference compound E2 (Figure 5.2), while the potencies (reflected by the EC50) 
and the maximum responses of the isoflavones were generally lower than those of E2 
(Figures 2-5). Glucuronidation reduced the potential of both genistein and daidzein to 
activate ERα-LBD and ERβ-LBD, but the conjugates retained significant activity. Kinjo and 
co-workers [35] report that glucuronides of daidzein and genistein can bind to ERα and 
ERβ. Based on the modulation indices (Figure 5.2) our results show that the isoflavone 
compounds induce coregulator binding patterns of ERα-LBD and ERβ-LBDs that are 
comparable to those induced by E2. There are differences between the conjugates and 
their respective aglycones in the potencies and the maximum responses induced. Islam 
and co-workers [2] concluded that in their experiments using human cell lines to study 
the estrogenic effects of isoflavone glucuronides the glucuronides of genistein and 
daidzein needed to be deconjugated to their respective aglycones to become bioactive. 
It is likely that in experiments with intact cell models the isoflavone glucuronides are not 
as efficiently taken up by the cells as the respective aglycones and therefore no or only 
a very low activity of the glucuronides can be observed. While the reported potencies 
of the glucuronides in the U2OS based reporter gene assays for ERα and ERβ mediated 
gene expression was at least 240x lower than that of the aglycones [2], the potencies to 
induce T47D cell-proliferation were, in the case of G-7G, only around 40-100x lower than 
genistein; this is surprising as the T47D-cells were reported to deconjugate the isoflavone 
glucuronides less efficiently than the U2OS cells [2]. Taken together, these data suggest 
that, depending on the cell type, the deconjugation of the glucuronides might play a 
role in the activity of the conjugates especially when cellular uptake of the conjugates 
is otherwise low; we show that the glucuronides retain a significant part of the intrinsic 
activities of the respective aglycones on ERα-LBD and ERβ-LBD.



103

Effect of isoflavone glucuronidation on ERα and ERβ activation

5

Our studies further revealed that in the coregulator binding assay E2 has comparable 
EC50s for ERα-LBD and ERβ-LBD activation. In line with these results, binding studies 
show that E2 has the same binding affinities for ERα and ERβ [38, 39]. In contrast to this, 
in reporter gene assays E2 has lower EC50 values for ERα activation than ERβ activation 
[2, 29]. The relative differences in receptor subtype activation and the reported 
transcriptional activities might be due to different activities of the ligand-independent 
activation function (AF)-1 of ERα and ERβ. Especially for ERα it is reported that there is 
a strong synergy between AF-1 and AF-2 (i.e. the ligand-activated part of the receptor), 
which can increase the transcriptional activity of ERα upon ligand activation while ERβ 
is reported to have a non-functional AF-1 [40-44]. 

Our results show that the isoflavone aglycones were less potent than E2 in activating 
the LBDs of ERα and ERβ, and that genistein more potently activated the ER-LBDs than 
daidzein. This is in line with previous reports stating that genistein and daidzein bind 
to ERα and ERβ with a lower affinity than E2 [19, 45] and that genistein and daidzein 
induce ERα and ERβ mediated gene transcription, as well as cell proliferation at higher 
concentrations than E2 with genistein often, though not consistently, being more potent 
than daidzein [2, 17, 18, 45]. 

In our experiments lower concentrations of genistein were needed to activate ERβ-LBD 
than ERα-LBD. This is in line with reports in literature that genistein preferentially binds 
to and transcriptionally activates ERβ over ERα [2, 19, 45, 46]. For daidzein we observed 
a slightly lower median EC50 value for ERα-LBD than for ERβ-LBD activation. According 
to literature, daidzein has a slightly higher binding affinity for ERβ over ERα [19, 45] 
and it induces ERβ-mediated gene transcription more potently than ERα-mediated 
gene transcription [2, 45, 46]. While there were only slight differences in EC50 values for 
ERα-LBD and ERβ-LBD activation by daidzein, the maximum responses induced were 
considerably lower for ERα-LBD than for ERβ-LBD. Differences in maximum responses 
for ER-coregulator binding between different agonists have been reported [30]. We 
speculate that the reduced maximum responses might be a consequence of different 
positioning of the LBDs’ helix-12 (H12) upon agonist binding. The positioning of H12 is 
a key determinant for the recruitment of coregulators. When bound to an agonist ligand 
like E2, H12 folds over the ligand binding pocket and in that position is an integral part 
of the interaction surface for co-activator binding [25]. It is reported for ERβ that when 
bound to genistein, H12 is not fully positioned over the ligand binding pocket and that 
coregulators must displace H12 into the correct agonist position before binding [47]. 
Compared to E2 genistein induces lower maximum responses and it is possible that the 
positioning of H12 might be the reason for this lower binding induced by the isoflavone 
compounds. If lower maximum responses observed in the MARCoNI assay correspond 
to lower transcriptional activation, then this could serve as an explanation why daidzein 
is reported to have a relatively higher transcriptional activation of ERβ over ERα while 
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it is activating both receptor subtypes at similar concentrations.  

It is of importance to note that in addition to intracellular receptors also membrane 
bound receptors may be involved in the effects induced by estrogens. Membrane 
bound estrogen receptors are reported to be structurally identical to the nuclear ERs 
[48-50]; they derive from the same genes as the nuclear receptor ERs [51] while a 
posttranslational modulation on Cys447 allows the receptors to associate with the 
membrane [52]. Membrane bound ERs are G protein coupled and induce kinase signaling 
cascades upon activation [53, 54]. Interestingly, only the E-domain (i.e. the LBD) of the 
receptor is required for activity of membrane bound ERs [55]. These membrane-bound 
ERs are not to be confused with G-protein coupled estrogen receptors (also known 
as GPR30) that are mainly located intracellularly [56, 57]. Based on their structural 
similarity to nuclear ERs it is likely that the membrane bound ERs can also be activated 
by isoflavones and their circulating metabolites. 

In conclusion, our results show that the isoflavone compounds cause changes in ER-
LBD coregulator binding patterns comparable to E2 while having lower potencies 
and maximum responses. The extent and nature of the effects of glucuronidation on 
the activities of daidzein and genistein differs, but in both cases the conjugates retain 
the ability to activate ERα-LBD and ERβ-LBD, while conjugation appeared to shift the 
preference for activation more in favor of ERα-LBD over ERβ-LBD. This shift in receptor 
preference is of special interest as the preferential activation of ERβ is considered one 
of the possible modes of action underlying the supposed beneficial instead of adverse 
health effects of isoflavones [12]. 

Supplemental data

Supplemental Figures 5.1 - 5.6 and Supplemental Tables 5.1 - 5.5 can be downloaded 
from: https://goo.gl/jd7kBJ (case sensitive)
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Abstract

To study the effect of metabolic conjugation of flavonoids on the potential to inhibit 
protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its 
major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. 
To this end, the inhibition of the phosphorylation activity of recombinant protein 
kinase A (PKA) and of cell lysate from the hepatocellular carcinoma cell line HepG2 
on 141 putative serine/threonine phosphorylation sites derived from human proteins 
was assessed. Glucuronidation reduced the inhibitory potency of kaempferol on the 
phosphorylation activity of PKA and HepG2 lysate on average about 16 and 3.5 times, 
respectively, but did not appear to affect the target selectivity for kinases present in the 
lysate. The data demonstrate that upon glucuronidation, kaempferol retains part of its 
intrinsic kinase inhibition potential which implies that K-3G does not necessarily need 
to be deconjugated to the aglycone for a potential inhibitory effect on protein kinases. 



111

Effect of kaempferol glucuronidation on protein kinase inhibition

6

Introduction

Flavonoids are ubiquitously present in plants as secondary metabolites. Important 
dietary sources of flavonoids are fruits, vegetables and their juices, as well as tea, 
wine, and cocoa-derived products [1, 2]. Diets rich in flavonoids are associated with 
the prevention of various degenerative diseases and improvement of disease states [1, 
3-5]. Most flavonoids of relevance for the human diet occur in nature in their glycosidic 
form with some exceptions such as catechins in tea, and leaf surface flavonoids of 
certain herbs. Upon ingestion, these flavonoid glycosides have to be hydrolyzed to 
their respective aglycones before or during uptake in the gastrointestinal tract. During 
uptake the aglycones are extensively metabolized to sulfated, methylated and/or 
glucuronidated conjugates in intestinal tissue or the liver before they enter the systemic 
circulation [6]. As a result, under physiological conditions, most flavonoids usually do 
not occur as aglycones in biological fluids. It is widely accepted that conjugation and 
deconjugation can significantly influence the biological activity of flavonoids [7, 8]. 

Flavonoids are suggested to induce their biological effects amongst others through the 
inhibition of protein kinases [9-13]. The effect on protein kinases is of special interest 
as protein kinases are involved in a wide range of physiological processes by controlling 
signaling cascades and regulating protein functions [14-19]. Protein kinases transfer the 
terminal phosphate of ATP (i.e. the gamma phosphate) to a hydroxyl-group of a substrate. 
In eukaryotes protein kinases phosphorylate either tyrosine residues (tyrosine-specific 
protein kinases; PTKs), serine/threonine residues (serine/threonine-specific protein 
kinases; STKs) or both tyrosine and serine/threonine residues (dual-specificity 
protein kinases) [20, 21]. STKs are the most common eukaryotic protein kinases and 
phosphoserine and phosphothreonine are more abundant than phosphotyrosine in 
eukaryotic proteins [22]. Protein kinase inhibition is studied especially because of 
its pharmacological relevance; notably, most protein kinase inhibitors with clinical 
approval are used for cancer treatment [23, 24]. Protein kinase inhibitors can bind 
either covalently or non-covalently to protein kinases; inhibitors that interfere with the 
ability of the kinase to bind ATP are in general less selective than allosteric inhibitors 
which usually show very high selectivity for specific protein kinases [22].

Flavonoids are reported to act as inhibitors of protein kinases [9, 25, 26]; however, 
these in vitro experiments on protein kinase inhibition by flavonoids are generally 
conducted using their aglycone forms and not the conjugated metabolites that can 
be found in plasma after uptake. Very little information can be found on the effect of 
flavonoid conjugates on protein kinases. While certain methylated conjugates of several 
flavonoids are equally, less or more potent than the respective aglycone to inhibit p38α 
and JNK3, depending on the amount and position of the methyl groups, glucuronidation 
of quercetin at the 3-position was reported to reduce its potency to inhibit p38α and 
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JNK3 [27]. Given that glucuronidation is generally the major metabolic conjugation 
reaction for flavonoid aglycones [2] the aim of the present study was to characterize 
the effect of flavonoid glucuronidation on protein kinase inhibition. To this end we 
selected the dietary flavonol kaempferol and its main plasma conjugate K-3G [28] as 
model compounds; kaempferol is reported to inhibit a range of protein kinases with 
different potencies (see Table 6.1). The potential of these compounds to inhibit protein 
kinase activity to that of the standard kinase inhibitor staurosporine  was compared. 
The effects on human PKA as a model kinase, and cell lysate of HepG2 cells containing 
many different cellular kinases were studied in a microarray system that simultaneously 
determines the phosphorylation of 141 putative serine/threonine phosphorylation 
sites derived from human proteins. 

Materials and Methods

Materials

Kaempferol was obtained from Sigma-Aldrich (St. Louis, MO, USA). K-3G was purchased 
from Extrasynthese (Genay Cedex, France). Staurosporine was acquired from Enzo Life 
Sciences (Farmingdale, NY, USA). Stock solutions of these chemicals were prepared 
in dimethylsulfoxide (DMSO, 99.9% purity) which was obtained from Acros (Geel, 
Belgium). Acetic acid was purchased from VWR International (Darmstadt, Germany). 
Acetonitrile was acquired from Biosolve BV (Valkenswaard, the Netherlands). Sodium 
hydroxide (NaOH) was purchased from Merck Millipore (Darmstadt, Germany). M-PER 
Mammalian Protein Extraction Reagent, Halt Phosphatase Inhibitor Cocktail, and 
Halt Protease Inhibitor Cocktail (EDTA-Free) were purchased from Fisher Scientific 
(Pittsburgh, PA, USA). The human hepatoma cell line HepG2 was purchased from the 
American Type Culture Collection (Manassas, VA, USA). Fetal calf serum (FCS), DMEM/
F12 with glutamax and phosphate buffered saline (PBS) were obtained from Gibco 
(Paisley, United Kingdom). 

Cell cultures

HepG2 cell cultures were maintained in DMEM/F12 +10% FCS at 37° C 5% CO2. Cells 
were plated at 2x105 cells / 2 mL per well in 6-wells plates. After 24h the medium was 
aspirated and the cells washed twice with 2 mL PBS. After aspiration of PBS, 300 µL 
M-PER (Mammalian Protein Extraction Reagent) containing 2x Halt Phosphatase 
Inhibitor Cocktail and 2x Halt Protease Inhibitor Cocktail (EDTA-Free) were added per 
well. The plates were left for 10 minutes on ice and the cells were subsequently scraped 
and harvested into microcentrifuge tubes. The lysate was centrifuged at 16,000 RCF, at 
4 °C for 15 minutes. The supernatant was pooled, aliquoted and stored at -80 °C until 
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Table 6.1 Literature based overview of protein kinase inhibition by kaempferol. Where available, IC50 values 
are given, otherwise the lowest effective concentration tested is given 

Protein kinase IC50 Lowest effective concentration tested Reference
CDK1 40 µM [56]
CDK1/cyclinB 41 µM [57]
CDK5 66 µM [58]
CDK5/p25 59 µM [59]
CDK5/p25 52 µM [57]
CDK6/Vcyclin 22 µM [57]
CK (G-type) 2.5 µM [60]
CK1α > 40 µM [61]
CK1γ1 > 40 µM [61]
CK1δ 27 µM [61]
CK2 1.9 µM [62]
CK2 1.9 µM [63]
CK2 0.40 µM [61]
CK (Golgi apparatus) > 40 µM [61]
GSK-3 3.5 µM [57]
GSK-3β 3.5 µM [64]
GSK-3β 4.5 µM [59]
IRAK1 100 µM [65]
IRAK4 100 µM [65]
JAK3 20 µM [66]
JNK 1 µM [67]
JNK3 19 µM [27]
MSK1 12.5 µM [68]
p38α 18 µM [27]
PI3K 60 µM [69]
PI3K 10 µM [70]
PIM1 1.3 µM [71]
PKA 150 µM [72]
PKC 60 µM [69]
PKC 15 µM [72]
PKC 0.025-0.1 µM [73]
PKC 34 µM [74]
PKG 17 µM [75]
RSK 15 µM [76]
RSK2 1.5 µM [77]
RSK2 12.5 µM [68]
RSK2 7 µM [78]
RSK2 1.7 µM [79]
Src 10 µM [80]
Src 100 µM [65]
Syk 100 µM [65]
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further analysis. The protein content of the cell lysate was quantified using a BCA Protein 
Assay Kit (Pierce Biotechnology, Rockford, IL, USA) according to the manufacturer’s 
instructions.

UPLC analysis

The purity and stability of the flavonoid compounds were analyzed chromatographically 
using a Waters ACQUITY UPLC H-Class System with an ACQUITY UPLC BEH C18 1.7 µm 
(2.1 x 50 mm) column, connected to a Waters ACQUITY UPLC photodiode array detector. 
The mobile phases used were nanopure water (+0.1% acetic acid) and acetonitrile 
(+0.1% acetic acid).

As kaempferol was not entirely soluble at the highest concentrations used the actual 
concentrations of kaempferol in solution were determined as follows. Samples were 
prepared according to the procedure described below for the serine/threonine kinase 
microarray assay, omitting the addition of PKA or HepG2 lysate. After centrifugation 
the supernatants were removed and the pellets formed were dissolved in 0.01% NaOH 
(which allows complete dissolution of kaempferol at concentrations above 1 mM). 
The amounts of precipitated kaempferol were compared against a standard curve of 
kaempferol in 0.01% NaOH and the concentrations prepared corrected for this loss. 
K-3G was entirely soluble at all concentrations tested. 

Serine/threonine kinase microarrays

Microarray experiments were performed using serine/threonine kinase (STK) 
PamChip peptide arrays on a PamStation12 instrument (PamGene, ‘s Hertogenbosch, 
the Netherlands). Per STK PamChip array 144 peptides are immobilized; the peptides 
represent 15-amino-acid sequences of which 13 residues are derived from known 
putative phosphorylation sites in human proteins (including 3 control peptides, i.e. 
one artificial sequence and two pre-phosphorylated sequences). The peptides are 
immobilized on a porous three-dimensional carrier through which the reagents are 
repeatedly pumped up and down. The experiments were conducted according to the 
manufacturer’s instructions as follows. To prevent aspecific antibody binding the arrays 
were incubated with 2% bovine serum albumin (BSA) solution that was pumped through 
the carrier material for 30 pumping cycles (30 seconds per cycle) prior to loading the 
samples. Sample mixes were prepared containing 2 µg recombinant human full length 
PKA (Cat# 14-440, Merck Millipore) or 6 µg of the HepG2 lysate (total protein) per 
array in protein kinase buffer (PamGene), containing the test substances added from 
a 200 times concentrated stock solution in DMSO (0.5% final concentration of DMSO), 
and the primary antibody against phosphoserine/-threonine. The sample mixes were 
incubated on ice for 15 minutes prior to the addition of 100 µM ATP. Subsequently, the 
sample mixes were centrifuged at 20,000 rcf for 5 minutes at 4 °C to remove possible 
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antibody-aggregates. After aspiration of the BSA-solution and washing of the arrays 
with PK-Buffer (PamGene) three times for two cycles, the sample mixes were loaded 
onto the arrays and pumped for 60 pumping cycles at 30 °C. After aspiration of the 
incubation mixture and washing of the arrays three times with PBST-buffer (PamGene), 
0.25 µg Alexa Fluor® 647 Donkey anti-rabbit IgG (Cat# 406414, BioLegend, San Diego, 
CA, USA) in antibody buffer (PamGene) were applied and incubated for 30 cycles. After 
aspiration of the solution containing the detection antibody the arrays were washed 
with PBST-buffer three times for two cycles. Subsequently, images were taken using 
the Cy5 channel of the CCD camera in the PamStation12. Images were analyzed by 
BioNavigator software (PamGene). The fluorescence intensities of the spots were 
corrected for background fluorescence adjacent to the spots and expressed as arbitrary 
relative fluorescence units (RFUs). The respective solvent control values were used as 
lowest concentrations in concentration response curves. To facilitate the comparison of 
the uninhibited phosphorylation patterns of PKA and HepG2 cell lysate the corrected 
relative fluorescence units (cRFUs) were derived as follows. The mean fluorescence 
of all peptides was calculated for every array (hereafter called the array mean). 
Subsequently, the mean of all array means was calculated (hereafter called the overall 
mean). A correction factor for every array was derived by dividing the overall mean by 
the respective array mean. To derive the cRFUs, the fluorescence of each peptide was 
scaled by multiplying the peptide’s RFU with the correction factor for the respective 
array. For data analysis BioNavigator, Microsoft Excel (Version 14.0.7106.5003; 
Microsoft Corporation) and IBM SPSS Statistics (Version 22, International Business 
Machines Corporation) were used. 

Results

Figure 6.1 shows that under solvent control conditions the recombinant PKA and the 
lysate of HepG2 cells both phosphorylate a range of substrates on the microarrays; both 
samples give very similar patterns of phosphorylation. PKA phosphorylated a total of 
61 substrates and HepG2 lysate 66 substrates on the arrays with a cRFU value above 50. 
Figure 6.2 shows exemplary concentration-response curves of the effect of kaempferol, 
K-3G and staurosporine on the phosphorylation of three substrates of PKA and HepG2 
lysate. The substrates for which concentration-response curves are presented are 
derived from the human proteins cAMP response element-binding protein (CREB1), 
gamma-aminobutyric acid receptor subunit beta-2 (GBRB2) and nuclear factor NF-
kappa-B p105 subunit (NFKB1) respectively. The CREB1-derived substrate contains 
two serine residues, and the GBRB2- and NFKB1-derived substrates contain two serine 
residues and one threonine residue each. From Figure 6.2 it can be seen that addition 
of increasing concentrations of the flavonoid kaempferol and its conjugate K-3G, as well 
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as of the broad-spectrum protein kinase inhibitor staurosporine, result in a reduction 
of the phosphorylation activity of the samples in a concentration dependent manner. 
UPLC analysis revealed that the concentration of kaempferol decreased by around 10% 
during incubation and that the concentration of K-3G did not change, indicating that the 
flavonoid compounds were reasonably and fully stable during incubation, respectively. 
The chromatograms also revealed that K-3G stocks contained 0.8% kaempferol 
aglycone, and that during incubation with HepG2 lysate, which potentially contains 
β-glucuronidases that can deconjugate K-3G, no additional aglycone was released. 
Concentration-response curves and data of all substrates on the microarray can be found 
in the Supplemental Data (see Supplemental Figures 6.1 and 6.2, and Supplemental 
Tables 6.1 and 6.2). To compare the inhibitory potencies of the tested compounds the 
IC50 values (i.e. the concentration causing a half-maximal inhibition) were derived for all 
kinase substrates on the array for which the concentration response curves of all three 
test compounds had a coefficient of determination (R2-value) of > 0.7. Figure 6.3 shows 
histograms of the IC50 values for the inhibition of PKA and HepG2 lysate by the three test 
compounds; the mean IC50 values are given in the figure. Glucuronidation caused a small 
reduction of the inhibitory potency of kaempferol as is apparent from the higher mean 
IC50 values of K-3G than of kaempferol. While for PKA the mean IC50 value of K-3G was 
around 16 times higher than that of kaempferol, glucuronidation reduced the potency of 
kaempferol to inhibit the phosphorylation activity of HepG2 lysate only around 3.5 times. 
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Figure 6.1 The phosphorylation patterns of HepG2 lysate and PKA show very high similarities. To facilitate 
comparison of the patterns the corrected relative fluorescence units (cRFU) were calculated as described in 
the Materials and Methods section and the fluorescence intensities of both samples were matched. The high 
similarities between the patterns indicate that PKA is a major constituent of HepG2 lysate.

This implies that, despite the apparent similarities in the substrate selectivity of PKA 
and HepG2 lysate, the relative inhibitory potency of kaempferol and K-3G differed 
between PKA and the HepG2 lysate. Kaempferol had lower IC50 values for recombinant 
PKA than for the HepG2 lysate (on average 36.5 µM and 80.5 µM, respectively), while 
K-3G had higher IC50 values for recombinant PKA than for HepG2 lysate (on average 594 
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µM and 290 µM, respectively). Staurosporine was the most potent inhibitor of the three 
compounds tested with an average IC50 of 149 nM for PKA and 1.25 µM for HepG2 lysate. 
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Figure 6.2 Kaempferol, K-3G and staurosporine inhibit the phosphorylation activity of PKA and HepG2 
lysate in a concentration-dependent manner with different potencies (IC50 values). The inhibition of 
phosphorylation activity is shown for three exemplary substrates, which are derived from cAMP response 
element-binding protein (CREB1), gamma-aminobutyric acid receptor subunit beta-2 (GBRB2), and nuclear 
factor NF-kappa-B p105 subunit (NFKB1), respectively. The numbers in the substrate abbreviations given 
in the figure denote the position of the first and last amino acids of the substrate sequence in the protein 
of origin. Kaempferol and K-3G completely inhibit PKA at the highest concentrations tested. While there is 
remaining phosphorylation activity in the HepG2 lysate at the highest concentrations of kaempferol and K-3G, 
the shape of their concentration-response curves reveal that they have reached a maximum inhibitory effect.
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Figure 6.3 Kaempferol, K-3G and staurosporine inhibit the phosphorylation activity of PKA and HepG2 
lysate with different potencies (IC50 values). The figure shows histograms of the IC50 values for concentration-
response curves where all tested compounds in either PKA or HepG2 lysate had an R2 value of >0.7. The 
frequency distribution of the IC50 values is expressed in percent of the total number of IC50 values per 
compound. Mean values are given in the figure. Glucuronidation reduces the potency of kaempferol to inhibit 
the phosphorylation activity of HepG2 lysate to a lower extent than the potency to inhibit the phosphorylation 
activity of recombinant PKA.
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Figure 6.4 Staurosporine, kaempferol and K-3G have different inhibitory effects on the phosphorylation 
activity of PKA and HepG2 cell lysate. At their highest concentrations tested (i.e. 10 µM staurosporine, 566 µM 
kaempferol and 10 mM K-3G) all test compounds strongly inhibit the phosphorylation activity of PKA. While 
staurosporine causes complete inhibition of phosphorylation activity of HepG2 lysate, kaempferol and K-3G 
only partially inhibit the phosphorylation activity of HepG2 lysate, suggesting that kaempferol and K-3G do 
not inhibit all protein kinases present in the lysate.
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Figure 6.4 shows that at the highest concentration of staurosporine tested (i.e. 10 µM) 
the phosphorylation activity of PKA and HepG2 lysate were completely inhibited. This 
is in line with reports that staurosporine has a very broad kinase specificity [29, 30]. 
Results from a literature search on the kinase inhibitory potential of kaempferol reveals 
that kaempferol is also able to inhibit a wide range of protein kinases (see Table 6.1). 
The flavonoid kaempferol and its conjugate K-3G caused a near complete inhibition of 
PKA activity at the highest concentration tested (i.e. 566 µM and 10 mM, respectively) 
while at the same maximal concentrations the phosphorylation activity of the HepG2 
lysate was only partially inhibited. This partial inhibition indicates that there are also 
other active kinases present in the cell lysate which are inhibited by staurosporine but 
not by kaempferol and K-3G. This is in line with the results presented in Figure 6.2 
which show that at the highest concentrations of kaempferol and K-3G tested in the 
HepG2 cell lysate the inhibitory effect levels off before reaching complete inhibition of 
phosphorylation activity. 

Discussion 

The objective of this study was to characterize the effect of flavonoid glucuronidation 
on the inhibition of protein kinases by the dietary flavonoid kaempferol. To this end 
the effects of kaempferol and its major plasma metabolite K-3G, as well as of the 
positive control staurosporine on the phosphorylation activity of PKA and of a lysate 
from HepG2 cells on 141 putative phosphorylation sites derived from human proteins 
were characterized. Both samples caused very similar patterns of phosphorylation 
on the microarrays (Figure 6.1). Due to the very high similarity between patterns of 
phosphorylation it appears that PKA is the most active kinase in the HepG2 lysate; PKA 
is reported to be present [31-33] and active [34, 35] in HepG2 cells. Further, the HepG2 
cell line is derived from a human hepatocellular carcinoma and it is reported that PKA 
is overexpressed in many types of cancer [36-38]. Overexpression of PKA is associated 
with deregulation of the cell cycle and increased cellular proliferation [39] and PKA is 
therefore increasingly targeted in cancer therapy [40]. PKA phosphorylated nearly half 
of the substrates present on the microarrays, this high number of substrates can be 
brought into perspective when considering that some kinases are reported to be able to 
phosphorylate up to hundreds of different substrates [21, 41]. 

At the highest concentrations of kaempferol and K-3G tested, which both completely 
inhibited PKA, comparable patterns of remaining phosphorylation activity in HepG2 
lysate are observed (Figure 6.4). This suggests that both compounds target the same 
kinases in the lysate and that glucuronidation therefore does not affect the specificity 
of kaempferol for kinase inhibition. The data show that kaempferol and K-3G are 
inhibitors of PKA, but only partially inhibited the phosphorylation activity of the HepG2 
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lysate. This remaining phosphorylation activity in the cell lysate indicates that there are 
other active kinases than PKA present in the lysate which are apparently less sensitive 
to inhibition by the flavonoid compounds. 

An important observation is that staurosporine and kaempferol had lower average IC50 
values for the inhibition of phosphorylation reactions of PKA than of the HepG2 lysate, 
while K-3G had a higher average IC50 value for PKA than for the HepG2 lysate. This is 
a surprising observation considering that PKA appears to be a major constituent of 
the HepG2 lysate and that kaempferol and K-3G are structurally similar compounds. 
The rather complex composition of the HepG2 lysate as compared to the PKA sample 
might, at least in part, explain the observed differences in inhibition between PKA and 
HepG2 lysate. A variety of positive and negative feedback mechanisms exist in cells that 
can amplify or reduce the activity and effect of a given kinase [42-46], some of which 
might also be functioning in the cell lysate used. The HepG2 lysate contains a range of 
different protein kinases, phosphatases and other functional enzymes which can alter 
the phosphorylation state and activity of each other; differential influence on their 
activity by the test compounds could affect the final phosphorylation of the substrates 
on the microarrays. The lower average IC50 of K-3G for HepG2 lysate than for PKA is 
very noteworthy as K-3G is the main form of kaempferol in plasma, and the experiments 
with cell lysates are closer to physiological conditions than the experiments with a 
recombinant kinase. As K-3G was not deconjugated to the aglycone during incubation 
with the HepG2 lysate this can be excluded as a reason for the lower IC50 values of K-3G 
in the cell lysate than with PKA. 

The average IC50s of the flavonoids observed (i.e. for PKA 36.5 μM (kaempferol) and 
594 μM (K-3G) and for HepG2 cell lysate 80.5 μM (kaempferol) and 299 μM (K-3G)) 
are higher than expected plasma concentrations of flavonoids, which usually do 
not exceed the lower µM range [47]. It shall be noted that also the positive control 
staurosporine had unexpectedly high IC50 values in this assay. The reported IC50 values 
of staurosporine for protein kinases are generally in the low nM range [48-51], while 
in the assay employed they were around 100 to 1,000 fold higher than these reported 
values (i.e. 149 nM for PKA and 1.25 μM for HepG2 lysate). Also kaempferol is reported 
to be able to inhibit various protein kinases at lower concentrations in other assays 
(see Table 6.1), and K-3G is therefore also likely to inhibit protein kinase activity at 
lower concentrations in other assays. The unexpectedly high IC50s seem to reflect an 
intrinsic and systematic methodological deviation of the used array methodology from 
other assays to study protein kinase activity. Therefore, in the present study the results 
obtained were interpreted in a relative way by comparing the effect of the aglycone to 
that of its glucuronidated metabolite. 
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Considering that K-3G retains substantial inhibitory potency relative to the aglycone (i.e. 
only around 3.5 times lower in HepG2 lysate), not only the capability of a given tissue to 
deconjugate and accumulate the aglycone, but also to take up and accumulate K-3G itself, 
can be expected to greatly affect the likelihood of an inhibitory effect on intracellular 
protein kinases to be observed in vivo. In addition, intracellular formation of K-3G 
from kaempferol will only have a small effect on its inhibitory potential. While many 
signaling cascades are initiated at the cell membrane by G-protein coupled receptors 
and receptor tyrosine kinases, the protein kinases in the signaling cascades that are 
potential targets of the flavonoid (conjugates) are present within the intracellular space 
[52]. An exception are ecto-protein kinases, for example ecto-PKA that is reported to 
promote the formation of oligomeric amyloid β-peptide assemblies in the pathogenesis 
of Alzheimer disease that are active in the extracellular space [53-55]. 

In conclusion, our results show that kaempferol partially inhibited the phosphorylation 
activity of HepG2 lysate. The partial inhibition appears to be primarily due to inhibition 
of PKA in the lysate while other protein kinases remained active at the concentrations 
of kaempferol tested. This partial inhibitory activity did not appear to be affected by 
glucuronidation. Glucuronidation caused only a small reduction in the intrinsic potency 
of kaempferol to inhibit the phosphorylation activity of PKA or of the kinases present 
in the HepG2 cell lysate. Especially in the context of the HepG2 cell lysate, which has 
a closer resemblance to the intracellular composition of signaling molecules, the 
reduction in intrinsic inhibitory potency was small. The data imply that K-3G does not 
necessarily need to be deconjugated to the aglycone for a potential inhibitory effect on 
protein kinases.

Supplemental data

Supplemental Figures 6.1 - 6.2 and Supplemental Tables 6.1 - 6.2 can be downloaded 
from: https://goo.gl/jd7kBJ (case sensitive)
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General discussion

Flavonoid consumption is reported to cause a wide range of health effects, such as 
the prevention of cardiovascular diseases [1, 2], neurodegenerative diseases [3], and 
diabetes [4, 5]. These effects are often ascribed to the activity of the parent flavonoid 
aglycones even though these forms of the flavonoids generally have a low systemic 
bioavailability [6, 7]. Upon intake, flavonoids are extensively metabolized and are 
present in the systemic circulation nearly exclusively as conjugates (see Chapter 1). In 
spite of this, the vast majority of in vitro studies conducted to elucidate the mechanisms 
of action behind the biological effects of flavonoids have been conducted with the 
aglycone forms of flavonoids and not with the conjugated forms that are present in 
the systemic circulation after consumption. Conjugation alters the physico-chemical 
properties of flavonoids and it is widely accepted that this can affect their biological 
activity. The question has been raised if studies using flavonoid aglycones and glycosides 
instead of the flavonoid conjugates found in the systemic circulation after ingestion can 
adequately predict the mechanisms of action of flavonoids in vivo [8-10].

To further the understanding of the relevance of flavonoid conjugates for human health, 
the aim of this thesis was to study the effect of conjugation on the biological activity of 
selected flavonoids towards different endpoints relevant for human health. Conjugation 
with glucuronic acid was taken as the model type of conjugation because this modification 
is generally observed to be the main metabolic conjugation reaction for flavonoids in 
man [11]. Chapter 2 provides an overview of research published until early 2012 that 
compares the activity of conjugated forms of flavonoids with their respective aglycones 
in various in vitro assays. The overview clearly reveals that metabolic conjugation can 
affect the biological activity of flavonoids in different ways; conjugation can increase, 
decrease, inverse or not affect the biological effects, depending on the type and position 
of conjugation, the endpoint studied and the assay system used. It is concluded that the 
effect of conjugation has to be studied on a case-by-case basis. An updated overview of 
literature on this topic published since 2012 is presented as part of this chapter.

Some of the main factors hampering research on the biological activity of flavonoid 
conjugates are their generally low commercial availability, and the high prices of 
available conjugates. Descriptions of the chemical synthesis of flavonoid conjugates can 
be found in literature [12-19], showing that the chemical synthesis of these conjugates 
can be rather complex and requires specific knowledge and equipment. Another 
strategy to obtain these metabolites is the biosynthesis of conjugates using microsomes, 
S9 fractions, recombinant enzymes, or cell cultures [20-36]. In Chapter 3, a convenient 
and versatile method for the preparation of metabolically relevant flavonoid conjugates 
in sufficient quantities for in vitro assays is described. The chapter further presents a 
strategy to characterize the conjugates by LC-MS and 1H-NMR using MetIDB, a publicly 
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accessible database of predicted and experimental 1H-NMR spectra of flavonoids. Using 
the described method, only a few micrograms of sample are needed for the identification. 
For some samples, the described automated strategy for identification resulted in 
more than one possible flavonoid metabolite that matched the spectral characteristics, 
which could be easily solved by manual examination of the spectra. Using the described 
method of biosynthesis and identification, sufficient amounts of well-defined flavonoid 
conjugates for in vitro bioassays can be generated relatively inexpensively. A major 
advantage of the method described is its versatility, as different flavonoids can be used 
as substrates. In addition, as different cell lines and different enzymes produce different 
conjugates, cells derived from different tissues and species, as well as selected enzymes 
produced by recombinant techniques can be used [20-36], potentially yielding different 
metabolites. 

The next step of the thesis was to characterize the influence of conjugation on the biological 
activity of flavonoids. It is suggested that flavonoids exert their biological activity at 
least in part by targeting nuclear receptors [37]. Nuclear receptors are reported to be 
the second largest group of drug targets among FDA approved pharmaceuticals [38], 
which underlines the relevance of nuclear receptors for human health. The two main 
types of nuclear receptors are type I and type II nuclear receptors. The main differences 
between these types of nuclear receptors are the localization of the inactive receptor in 
the cell, and the nature of the dimerizing partner. Inactive type I nuclear receptors are 
located in the cytosol and upon activation they homodimerize, while inactive type II 
nuclear receptors are present in the nucleus, heterodimerized with retinoid X receptor 
[37]. Upon activation by an agonistic ligand, the ligand binding domains (LBDs) of the 
receptors undergo a conformational change leading to dismissal of co-repressors and 
recruitment of co-activators. Flavonoids have been reported to interact with a variety 
of different nuclear receptors, and the interaction of flavonoids and their conjugates 
with nuclear receptors may provide a means to study the consequences of conjugation 
on the biological effects of flavonoids. The influence of conjugation on the interaction 
of flavonoids with different nuclear receptors was investigated in Chapters 4 and 5 of 
the present thesis.

Chapter 4 describes the effects of quercetin, kaempferol, and their major plasma 
conjugates quercetin-3-O-glucuronide (Q-3G) and kaempferol-3-O-glucuronide (K-3G) 
on different endpoints related to peroxisome proliferator-activated receptor (PPAR)-γ, 
a type II nuclear receptor. PPAR-γ activation is reported to have positive health effects 
related to adipogenesis, insulin resistance and inflammation [39]. As consumption of 
diets rich in flavonoids are associated with a reduced risk for diabetes [40], stimulating 
effects of flavonoids on PPAR-γ might at least in part contribute to the mode of action 
behind these effects. The results obtained show that the flavonoid aglycones increased 
PPAR-γ mediated gene expression in a stably transfected reporter gene cell line and 



Chapter 7

132 133

General discussion

7

that glucuronidation diminished their effect. Since this reduction may either be due to 
a decrease in the intrinsic ability of the conjugates to activate PPAR-γ-mediated gene 
expression as compared to the aglycones, or due to a relatively lower cellular uptake of 
the conjugates than the aglycones, the intrinsic activity of the test compounds to activate 
PPAR-γ was studied using a novel microarray technique. In this microarray technique, 
the ligand-induced interactions of nuclear receptor-LBDs with154 different binding 
motifs derived from 66 different nuclear receptor coregulators can be characterized in a 
cell-free environment. In this system it was demonstrated that unlike the known PPAR-γ 
agonist rosiglitazone, neither the flavonoid aglycones nor the conjugates are agonistic 
ligands of the PPAR-γ receptor. This absence of an effect suggests that the increased 
reporter gene expression caused by the flavonoids are not mediated by agonism of the 
PPAR-γ LBD. It was found that the increases in reporter gene expression in the reporter 
cells were accompanied by increased PPAR-γ receptor-mRNA expression, and quercetin 
was found to synergistically increase the effect of rosiglitazone in the reporter gene 
assay. Glucuronidation reduced the activity of the flavonoid aglycones to increase 
PPAR-γ receptor-mRNA expression. As the lower activities of flavonoid conjugates were 
observed in a cellular assay system, lower cellular uptake of flavonoid glucuronides 
than the aglycones might contribute to these differences. The uptake of flavonoid 
glucuronides is generally considered to be lower than that of flavonoid aglycones, as the 
hydrophilic glucuronides have to entirely rely on active transport, while many flavonoid 
aglycones are thought to be able to passively diffuse into cells [41]. As PPAR-γ is a type 
II nuclear receptor, possible ligands would not only have to be taken up into the cytosol, 
but also reach the nucleus. It has been reported for HepG2 and T47D cells that quercetin 
accumulates in cellular structures, most importantly the nucleus and mitochondria [42]. 
Interestingly, it has been reported that known PPAR-γ ligands rely on a cellular transport 
mechanism mediated by fatty acid-binding protein 1 (also known as liver-type fatty 
acid-binding protein) to direct the ligands to PPAR-γ [43]. Nevertheless, even though 
this indicates that at least quercetin aglycone should be able to reach PPAR-γ, it appears 
that the mode of action behind the increased reporter gene expression is different from 
normal agonist activity. The observed increased reporter gene expression is suggested 
to be caused by increased PPAR-γ receptor expression, as indicated by increased 
PPAR-γ receptor-mRNA expression, and agonistic effects of endogenous PPAR-γ ligands 
or ligand-independent mechanisms. As discussed in Chapter 4, it is important to note 
that flavonoids also affected the expression of PPAR-γ in other cell types and also in 
experimental animals [44-46]. Apart from the relevance for energy metabolism, PPAR-γ 
is also reported to play a role in the cell cycle of malignant cells. In malignant cells in 
vitro, increased PPAR-γ expression and its activation is reported to cause cell cycle 
arrest [47, 48]; in A549 lung cancer cells plasma metabolites of quercetin are shown to 
increase PPAR-γ expression which is suggested to be associated with the co-observed 
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cell cycle arrest [49]. This is in line with reports that PPAR-γ expression is lower in 
tumor tissue in lung cancer than in healthy tissue, and that lower PPAR-γ receptor-
mRNA expression is associated with a worse prognosis [50, 51]. Altogether, quercetin 
might have beneficial effects for human health by increasing PPAR-γ levels.

Different protein kinase signaling pathways are implied in the expression of PPAR-γ [52], 
and the transcriptional activity of PPAR-γ can be affected by its phosphorylation state 
[53]. Also other post-transcriptional modifications, i.e. sumoylation and acetylation, 
are reported to affect the transcriptional activity of PPAR-γ [54-56]. As flavonoids are 
reported to affect many protein kinases [57], the mechanism underlying the observed 
effects might also be mediated by an effect on protein kinases. The influence of flavonoid 
conjugation on their effects on protein kinase activities was described in Chapter 6 and 
will be discussed further below.

To further study the influence of glucuronidation on the effects of flavonoids on nuclear 
receptors, the effects of isoflavones and their main plasma glucuronides on the type 
I nuclear receptors estrogen receptor (ER)α and ERβ were studied and described in 
Chapter 5 of this thesis. Isoflavones are known to have phyto-estrogenic properties and 
are reported to act as agonistic ligands on ERα and ERβ due to their structural resemblance 
to 17β-estradiol (E2). The intake of soy isoflavones is associated with beneficial but 
also adverse health effects, which might in part be caused by the activation of ERα and 
ERβ. ERα and ERβ have different biological functions; activation of ERα promotes cell 
proliferation and activation of ERβ promotes apoptosis [35]. To study the influence of 
glucuronidation on the intrinsic estrogenic effects of isoflavones, the agonistic activity 
of the two main dietary isoflavones daidzein and genistein, and their major plasma 
conjugates daidzein-7-O-glucuronide (D-7G) and genistein-7-O-glucuronide (G-7G) on 
the activation of ERα- and ERβ-LBD were studied. To this end the effects of the selected 
isoflavones and their conjugates on ERα- and ERβ-LBD interactions with 154 different 
binding motifs derived from 66 different nuclear receptor coregulators were studied 
in a cell-free assay system. The tested isoflavone compounds were less potent than 
E2 (around 5 to 1,580 times for the aglycones) but modulated the LBD-coregulator 
interactions in a manner similar to E2. Genistein had lower average half-maximal effect 
concentrations (EC50) than daidzein for both receptor subtypes, and it had a strong 
preference for ERβ-LBD activation over ERα-LBD, while daidzein had a slight preference 
for ERα-LBD activation over ERβ-LBD. The glucuronides of daidzein and genistein were 
8 to 4,400 times less potent than the respective aglycones to induce ERα-LBD and ERβ-
LBD – coregulator interactions. Glucuronidation changed the preferential activation of 
genistein from ERβ to ERα and increased the preferential activation of daidzein for ERα. 
These changes in receptor subtype preferences are of special importance because of the 
different biological functions the receptor subtypes have. An increased preference for 
ERα over ERβ activation upon glucuronidation may also shift the biological effect of the 
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isoflavones from apoptosis to cell proliferation. Especially for ERα-positive tumors this 
effect of glucuronidation may be unfavorable.

Apart from D-7G and G-7G, the major plasma conjugates of daidzein and genistein, there 
is another metabolite that is known for its estrogenic activity. S-equol is a microbial 
metabolite of daidzein which is reported to have a higher bioavailability and slower 
clearance than daidzein and genistein [58], and to be a more potent inducer of ERs 
than daidzein and genistein [58, 59]. S-equol is reported to preferentially bind to 
ERβ over ERα [59-62]. This metabolite, however, is only produced by 20-35% of the 
Western adult population and 50-55% of the Asian adult population [63-66]. Equol-
producing individuals are reported to benefit more from isoflavone ingestion than 
non-producers [67], which implies that certain biological effects of isoflavone ingestion 
are enhanced by the production of equol. It is of interest to note that most animal 
species are reported to produce equol [67], which indicates that studies in laboratory 
animals might overestimate the effect of isoflavone ingestion when compared to the 
general human population. Like genistein and daidzein, also equol undergoes extensive 
metabolic conjugation during uptake and is predominantly found in plasma as equol-
7-O-glucuronide [68-70]. No reports on the effects of glucuronidation on the biological 
activity of equol have been published as yet, and this remains an interesting topic for 
future research.

As mentioned above, another suggested mode of action behind flavonoid activity is the 
modulation of protein kinase activities [57]. Protein kinases are of high pharmacological 
relevance and, notably, most protein kinase inhibitors with clinical approval are used for 
cancer treatment [71, 72]. As protein kinases are involved in a wide range of physiological 
processes by controlling signaling cascades and regulating protein functions, modulation 
of their activities can have a wide range of biological effects. Flavonoid aglycones are 
reported to be capable of inhibiting a wide range of protein kinases in vitro [57, 73, 74]; 
the effect of their circulating conjugated metabolites, however, is generally not known. 
In Chapter 6 of this thesis the flavonol kaempferol and its major plasma conjugate K-3G 
were selected as model compounds to study the effect of flavonoid conjugation on the 
potential to inhibit protein kinase activity. To that end the effects of kaempferol and 
its metabolite K-3G on the phosphorylation activity of recombinant protein kinase A 
(PKA) and of a cell lysate prepared from the hepatocellular carcinoma cell line HepG2 
were compared using a microarray platform that determines the phosphorylation of 
141 putative serine/threonine phosphorylation sites derived from human proteins. 
PKA is an interesting and relevant target as overexpression of PKA is associated with 
deregulation of the cell cycle and increased cellular proliferation [75], and PKA is 
increasingly targeted in cancer therapy [76]. Flavonoids are reported to cause cell cycle 
arrest in cell lines with a deregulated cell cycle [77-79]; this induction of cell cycle arrest 
might at least in part be mediated by inhibitory effects on the underlying deregulated 
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signaling pathways. The results described in Chapter 6 reveal that glucuronidation 
reduces the inhibitory potency of kaempferol on the phosphorylation activity of PKA 
and HepG2 lysate on average about 16- and 3.5-fold, respectively. It was shown that the 
remaining inhibitory activity of K-3G is not caused by deconjugation to the aglycone. 
The fact that the glucuronide appears to be only a few times less potent than kaempferol 
implies that K-3G does not necessarily need to be deconjugated to the aglycone to exert 
an inhibitory effect on protein kinases. Furthermore, the results show that kaempferol 
and K-3G, unlike the broad-specificity protein kinase inhibitor staurosporine, do not 
appear to inhibit all protein kinases present in the HepG2 lysate to a similar extent, 
indicating that kaempferol selectively targets protein kinases. The results also revealed 
that glucuronidation does not affect this kinase target selectivity.

Most protein kinase activity is restricted to the intracellular space, meaning that 
flavonoids have to be taken up into the cells to exhibit inhibitory effects on protein 
kinases. An up-and-coming field of protein kinase research focuses on ecto-protein 
kinases; these are protein kinases that, given high enough ATP concentrations, are 
active in the extracellular space [80-82]. Interestingly, the activity of these ecto-protein 
kinases is reported to be involved in a variety of diseases [83]; ecto-PKA activity, 
for example, is reported to promote the formation of oligomeric amyloid β-peptide 
assemblies in the pathogenesis of Alzheimer disease [81]. Flavonoid conjugates with 
a low cellular uptake can therefore potentially exert inhibitory effects on ecto-protein 
kinases of relevance in human diseases.

Altogether, the results obtained in the present thesis support the conclusion that 
glucuronidation of flavonoids does not necessarily abolish their activity and that flavonoid 
glucuronides may be biologically active themselves, albeit at higher concentrations than 
the parent aglycones. As plasma concentrations of flavonoid conjugates are far higher 
than the concentrations of their parent aglycones, which are often only detectable in 
trace amounts or absent from human plasma, flavonoid glucuronides may be relevant 
for the biological effects of flavonoids. The observation that flavonoid conjugates may 
retain biological activity is in line with the conclusion that emerged from the literature 
overview presented in Chapter 2 which is based on literature published until early 
2012. In the following section, an updated literature overview is presented that covers 
literature published between early 2012 and late 2015.

Updated literature overview

Since the completion of the literature overview presented in Chapter 2, a number 
of new publications reporting on the biological activities of flavonoid aglycones and 
conjugates became available. In the following section an overview of this literature is 
presented.



Chapter 7

136 137

General discussion

7

Amelioration of oxidative stress

Flavonoids are known for their strong anti-oxidant activities in vitro. However, it 
is now commonly agreed that this antioxidant activity does not contribute to the 
modes of action of the flavonoids in vivo, most importantly due to the relatively low 
concentrations of circulating flavonoid metabolites that can be found in plasma [84, 
85]. Despite of this, some recently published articles report on the protective effects 
of (-)-epicatechin, quercetin, and their conjugates against oxidative stress in vitro (see 
Table 7.1). The radical scavenging activity of (-)-epicatechin, as well as its protection of 
HUVEC from H2O2 induced oxidative stress can be affected by conjugation. The activity 
on both of these endpoints are not affected by glucuronidation, while methylation 
or sulfation, as well as glucuronidation and methylation together are reported to 
reduce the activity. Methylation or glucuronidation are reported to not affect the 
reduction of H2O2 induced heme oxygenase-gene expression by (-)-epicatechin 
in HUVEC, while glucuronidation and methylation together reduced the activity.

Table 7.1 Recent studies (i.e. 2012 until present) on protective effects of quercetin and its conjugates (G = 
glucuronidated; M = methylated; S = sulfated) against oxidative stress in vitro (studies published before the 
year 2012 are included in the review in Chapter 2 of this thesis [89])

Flavonoid	 Ga Ma Sa Commenta References

(-)-Epicatechin

Superoxide radical scavenging = ↓ ↓ (G + M)b: ↓
4’M-(-)-EC > 3’M-(-)-EC

[86]

Reduction of H2O2 induced oxidative 
stress in HUVEC

= ↓ ↓ (G + M)b: ↓
3’M-(-)-EC > 4’M-(-)-EC

[86]

Reduction of H2O2 induced heme 
oxygenase-gene expression 

= = ↓ (G + M)b: ↓
3’M-(-)-EC = 4’M-(-)-EC
EC-4’-S increased heme 
oxygenase-gene expression

[86]

Quercetin

Protection of H9c2 cardiomyocytes 
against H2O2

↓ = - [90]

Reduction of 6OH-dopamine induced H2O2 
production in Neuro-2a neuroblastoma

↓ - - Cellular uptake of Q-3G lower 
than of quercetin

[88]

Reduction of TBHP induced oxidative 
stress in HT-22 cells (murine 
hippocampus) 

↓ - - [91]

a↓, the respective conjugate(s) have a lower activity than the aglycone; =, the respective conjugates have an 
equal activity to the aglycone; -, no data available; A > B, conjugate A is more active than conjugate B. b The 
conjugate is conjugated at two positions to different moieties. Abbreviations HUVEC: human umbilical vein 
endothelial cells, TBHP: tert-Butyl hydroperoxide, NADPH: Nicotinamide adenine dinucleotide phosphate.
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In contrast, sulfation is reported to further increase of H2O2 induced heme oxygenase-
gene expression in HUVEC[86]. Glucuronidation is reported to reduce the ability of 
quercetin to protect cells from oxidative stress in vitro, while methylation is reported 
to not affect the activity of quercetin on the protection of H9c2 cardiomyocytes against 
hydrogen peroxide. The protective effects reported in these studies do not necessarily 
depend on antioxidant activity of the flavonoids tested but can be secondary to, for 
example, activation of Nrf2, a transcription factor regulating the expression of proteins 
with antioxidant activities, or protein kinase signaling [87]. The lower cellular uptake of 
Q-3G compared to quercetin [88] is likely to explain at least part of the reported lower 
activity of the conjugate on the 6OH-dopamine induced H2O2 production in Neuro-2a 
neuroblastoma cells. 

Anti-inflammatory effects

Inflammation is a response to tissue damage, pathogens and chemical irritation; it is 
initiated by the migration of immune cells from blood vessels to the tissue, ultimately 
causing the recruitment of inflammatory cells and the release of reactive oxygen species 
(ROS), and pro-inflammatory cytokines [92, 93]. In the case of acute inflammation, the 
body returns to normal homeostasis after the insult to the system has been dealt with. 
Chronic inflammation results if these inflammatory responses do not subside, which can 
inflict damage. Chronic inflammation is regarded as a risk factor for many diseases, such 
as metabolic disorders and cardiovascular diseases [94]. Flavonoids are reported to have 
anti-inflammatory effects [95-97] and it is of interest to note that protein kinases play a 
fundamental role in inflammation [98-100]. In recent in vitro studies, glucuronidation 
is reported to reduce the anti-inflammatory effect of quercetin in macrophages (see 
Table 7.2). Interestingly, Q-3G is reported to accumulate in macrophage-derived foam 
cells in human atherosclerotic lesions, but not in normal aorta [101]. In human brain, 
Q-3G was detected by an anti-Q-3G antibody in the epithelial cells of the choroid plexus; 
in fresh infarcts, Q-3G was localized in the cytoplasm of the cortical neurons, and in 
recent infarcts Q-3G appeared to be localized in foamy macrophages in the necrotic 
core [102]. Upon Q-3G exposure, murine RAW264 macrophages and MG6 microglia are 
reported to accumulate Q-3G and quercetin, as well as further conjugate quercetin to 
methylated quercetin [101-103]. When RAW264 macrophages were stimulated with 
LPS, intracellular levels of Q-3G and quercetin were higher than in cells not stimulated, 
and no methylated conjugate was detected [101-103]. Ishisaka et al. proposed that Q-3G 
is deconjugated extracellularly before diffusing into the cells [103]. Human neutrophils, 
which are another type of phagocytes, are reported to be able to deconjugate quercetin 
and luteolin glucuronides and thereby release the aglycone, especially in sites of 
inflammation [104, 105]. These results underline that in sites of inflammation, the 
availability of flavonoid aglycones, which, at least in the case of quercetin have a higher 
anti-inflammatory activity than Q-3G, is higher than in non-inflamed tissues. 
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Table 7.2 Recent studies (i.e. 2012 until present) on anti-inflammatory effects of quercetin and its conjugates 
(G = glucuronidated; M = methylated; S = sulfated; studies published before the year 2012 are included in the 
review in Chapter 2 of this thesis [89])

Flavonoid	 Ga Ma Sa Commenta References
Quercetin

Ex vivo mouse peritoneal macrophages 
(treated with and w/o LPS), decreased 
pro-/anti-inflammatory cytokine 
secretion 

↓ - - [106]

Reduction of LPS-stimulated 
inflammatory response in RAW264

↓ - - [102]

a↓, the respective conjugate(s) have a lower activity than the aglycone; -, no data available. Abbreviation: LPS: 
Lipopolysaccharide

Cardioprotective effects

The cardioprotective health effects of flavonoids have been studied extensively [107]. 
Recent in vitro and ex vivo studies report that in most instances glucuronidation 
reduces the activity of flavonoids to affect endpoints related to vasorelaxation and 
cardioprotection, while for few endpoints there was no difference to the respective 
aglycone observed (see Table 7.3). Isorhamnetin is reported to be equally active 
as quercetin in vitro and ex vivo [108]. Sulfation is generally reported to reduce the 
activity of flavonoids on different endpoints, though one study reports that Q-3’S had 
an inverse activity compared to quercetin and increased levels of the vasoconstrictor 
endothelin-1 in HUVEC [109]. The inhibitory effect of Q-3G on NADPH oxidase activity 
in vascular smooth muscle cells is reported to be partially inhibited by the addition 
of the beta-glucuronidase inhibitor saccharolactone [110], indicating that Q-3G is at 
least partially deconjugated to the aglycone in this assay system which can explain part 
of the observed activity of Q-3G. It has further been shown in experimental animals 
in vivo and ex vivo, that the vasorelaxant effects induced by quercetin ingestion and 
intravenous Q-3G administration depend on the deconjugation of the glucuronide to its 
aglycone form [111-113]. In humans, vasorelaxation after quercetin consumption was 
correlated with Q-3G plasma concentration when corrected for the beta-glucuronidase 
activity in plasma of the test subjects [114]. Altogether, while for certain endpoints 
it is reported that also the circulating conjugates can exert cardioprotective effects, 
the deconjugation and release of the respective aglycones appears to contribute 
significantly to the cardioprotective effects, most importantly the vasorelaxant activity 
of flavonoids. In addition to these direct effects, polyphenol rich foods are reported to 
promote reduction of dietary nitrite to nitric oxide in the stomach which is suggested 
to positively affect plasma nitric oxide levels [115] and might partially contribute to the 
vasorelaxant effects of dietary flavonoids. 
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Table 7.3 Recent studies (i.e. 2012 until present) on the effects of flavonoids and their conjugates (G = glucuronidated; 
M = methylated; S = sulfated) on vasorelaxation and cardioprotection-related endpoints (studies published before the 
year 2012 are included in the review in Chapter 2 of this thesis [89])

Flavonoid	 Ga Ma Sa Commenta References
Genistein

Induction of paraoxonase 1 transactivation in Huh7 
based reporter gene assay 

↓ - ↓ G-4’,7’diS: ↓
Luciferase activity as 
readout

[116]

Hesperetin

Increased NO release, reduced O2•-release, reduced 
NADPH oxidase activity in HUVEC

↓/= - - H-7G only slightly less 
active than hesperetin

[117]

in vivo rats, intravenous injection of compounds, 
reduction of systolic blood pressure

↓ - - H-7G > H-3’G [118]

ICAM-1 gene expression in primary rat endothelial 
cells

↓ - - H-7G > H-3’G [118]

MCP-1 gene expression in primary rat endothelial 
cells

↓/= - - H-7G > H-3’G [118]

Quercetin

Reduction of eNOS protein and mRNA expression in 
HUVEC

↓ - ↓ (G + M): ↓ [109]

Reduction of ET-1 protein expression in HUVEC ↓ - ↑ Q-3’S increased ET-1 
expression
(G + M)b: ↓

[109]

Inhibition of NADPH oxidase activity in vascular 
smooth muscle cells

↓ ↓ - The effect of the glucuronide 
was partially inhibited by 
saccharolactone

[110]

Reduction of HOCl induced constriction of mouse 
aortic rings

↓ = - [108]

Reduction of NOS activity of mouse abdominal aortas - = - [108]

Increased phosphorylation of eNOS, AMPK and ACC 
in HAEC following serum starvation

= = - Effect of Q-3G not tested 
on eNOS phosphorylation

[108]

Reduction of IL-1β-stimulated iNOS protein and gene 
expression, nitrite production, IκBα phosphorylation, 
NF-κB activation, iNOS promoter activity and increase of 
insulin secretion of RINm5F β-cells

↓ - ↓ (G + M)b: ↓ [119]

Reduction of palmitate induced ROS production and 
associated inflammation, restoring membrane potential 
(ΔΨm), PI3K signaling, and NO excretion in HUVEC

= - - [120]

Resveratrol

Increased eNOS activity and NO release in 
endothelial EA.hy926 cells

↓ - ↓ R-diS: ↓ [121]

a↓, the respective conjugate(s) have a lower activity than the aglycone; =, the respective conjugates have an 
equal activity to the aglycone; -, no data available; A > B, conjugate A is more active than conjugate B. b The 
conjugate is conjugated at two positions to different moieties. Abbreviations ICAM-1: intercellular adhesion 
molecule-1, MCP-1: monocyte chemoattractant protein-1, eNOS: endothelial nitric oxide synthase, AMPK: 
adenosine monophosphate-activated protein kinase, ACC: acetyl-CoA carboxylase, HAEC: human aortic 
endothelial cells endothelin-1, IL-1β: interleukin-1β, iNOS: inducible nitric oxide synthase, NF-κB: nuclear 
factor-κB, IκBα: inhibitor of nuclear factor-κB alpha, 
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Chemoprevention

Dietary flavonoids, as well as other polyphenols and phenolic acids are reported to exert 
chemopreventive effects via a wide range of mechanisms in vitro and in experimental 
animals in vivo at high doses [122, 123] but, as already outlined in Chapter 2 of this 
thesis, there is much debate about the relevance of these findings for humans. 

In a recent study by Yamazaki et al., Q-3G was equally active as quercetin to downregulate 
β2-adrenergic receptor signaling, thereby reducing 4-OH-estradiol and noradrenaline-
induced DNA damage in MCF-10A cells as indicated by reduced γ-H2AX, which is a 
marker for DNA double-strand breaks, and apurinic sites, as well as cell invasiveness and 
matrix metalloproteinase (MMP) activity [124]. Interestingly, these effects were already 
observed at concentrations of 0.1 µM and below. 

Transfer over the blood-brain barrier and neurobiological effects

For flavonoids and their conjugates to exert organ specific effects, flavonoids need to 
be able to reach the respective target organs. One particularly well protected target 
tissue is the brain, which is protected by the blood-brain barrier that serves as a 
selectively permeable barrier separating the blood from the cerebrospinal fluid. In an 
in vitro model, the transfer of different flavonoids and their conjugates over the blood-
brain barrier was assessed [125] (see Table 7.4). Interestingly, methylation increased 
the transfer of the flavan-3-ols (+)-catechin and (-)-epicatechin, and glucuronidation

Table 7.4 Recent studies (i.e. 2012 until present) on the effects of flavonoids and their conjugates (G = 
glucuronidated; M = methylated; S = sulfated) on neurobiological endpoints and their transport over the blood-
brain barrier (BBB) (studies published before the year 2012 are included in the review in Chapter 2 of this thesis 
[89]).
Flavonoid	 Ga Ma Sa Commenta References

(+)-Catechin

In vitro transport over BBB (hCMEC/D3 cells) - ↑ - [125]

(-)-Epicatechin

In vitro transport over BBB (hCMEC/D3 cells) - ↑ - 3’M-(-)-EC = 4’M-(-)-EC [125]

Quercetin 

In vitro transport over BBB (hCMEC/D3 cells) ↑ - - [125]

Inhibition of MAO-A activity in murine brain 
mitochondria

- ↓ - 3’M-Q > 4’M-Q [126]

a↓, the respective conjugate(s) have a lower activity than the aglycone; =, the respective conjugates have an 
equal activity to the aglycone; ↑, the respective conjugates have a higher activity than the aglycone; -,  no data 
available; A > B, conjugate A is more active than conjugate B. 

increased the transfer of quercetin. The transfer over the blood-brain barrier is essential 
for flavonoids to exert neurobiological effects. As has been described above, Q-3G could be 
detected in human brains, and it can also be deconjugated and subsequently conjugated to 
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isorhamnetin [102], which, in vitro, had a lower inhibitory activity on monoamine oxidase 
A (MAO-A) in brain mitochondria than quercetin [126]. Also in the brains of experimental 
rats, Q-3G could be detected after ingestion of quercetin [127], and neurological effects, 
as assessed by the forced swimming test, indicate that flavonoids can have behavioral 
effects that suggest biological activities past the blood-brain barrier [128-130]. In vitro, 
Q-3G inhibits amyloid β-peptide generation in primary Tg2576 corticohippocampal 
neurons, which is a neuropathological hallmark of Alzheimer’s disease. The effect of 
quercetin, however, was not assessed in this study so no comparison between the activity 
of quercetin and Q-3G can be made [127]. 

Cytotoxicity

There are many types of lethal and non-lethal biological effects of flavonoids on cells 
that can be considered cytotoxic effects. Very commonly, the term cytotoxicity is used to 
describe effects that cause parts of a population of cells to enter apoptosis or necrosis, and 
there are a variety of stimuli that can cause this condition [131]. Many assays used to study 
general cytotoxic effects actually measure a surrogate endpoint to estimate the amount of 
living cells in a population of exposed cells relative to a control population on non-exposed 
cells.  A recently published study describes the effect of conjugation on the cytotoxicity 
of flavonoids to different cell lines [132] (see Table 7.5). It shall be noted that while the 
author refers to the observed effects as antiproliferative effects, the experimental setup as 
described in the article does not actually allow the distinction between antiproliferative 
effects and other forms of cytotoxicity; therefore the results are here referred to as 
cytotoxic effects. Cell death caused by exposure of cells to exceedingly high concentrations 
of flavonoids should not necessarily be considered a relevant biological effect in vivo, but 
it can compromise the results obtained from in vitro experiments where the exposure 
conditions are not well characterized. 

Inhibition of sulfotransferases

Flavonoids are known inhibitors of sulfotransferases [21, 133-135], and conjugation 
is reported to reduce the activity of quercetin to inhibit sulfotransferases (see Table 
7.6). Methylation, sulfation and glucuronidation are reported to reduce the activity of 
quercetin to inhibit sulfotransferases in human liver S9, while methylation does not affect 
the activity of quercetin to inhibit sulfotransferases in human intestinal S9. The activity of 
quercetin to inhibit sulfotransferases in HepG2 cells is reported to be reduced by sulfation 
and abolished by glucuronidation, which is likely to be due to the very low cellular uptake 
of the glucuronides [134].

The data presented in this updated literature overview are in line with the conclusions 
drawn from the literature overview presented in Chapter 2. The reviewed literature 
shows that the effect of conjugation on the biological activity of flavonoids depends on 
the type and position of conjugation, the endpoint studied and the assay system used. 
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The results presented in this thesis are in line with this conclusion, as it is shown that 
glucuronidation often reduces but not necessarily abolishes the biological activity 
flavonoids. As further research is needed to elucidate the role of conjugation in the 
biological activity of flavonoids, in the following section recommendations for further 
research are described. 

Table 7.5 Recent studies (i.e. 2012 until present) on cytotoxic effects of flavonoids and their different 
conjugates (G = glucuronidated; M = methylated; S = sulfated; studies published before the year 2012 are 
included in the review in Chapter 2 of this thesis [89]).
Flavonoid	 Ga Ma Sa Commenta References

(-)-Epicatechin

cytotoxicity - =/↑ =/↑ Results differ by cell type:
HFF-1 
(-)-EC not cytotoxic
Caco2
(-)-EC not cytotoxic 
MCF7
(-)-EC not cytotoxic, 4’M-(-)-EC > 3’M-(-)-EC
Bxpc-3
(-)-EC not cytotoxic, 3’M-(-)-EC > 4’M-(-)-EC

[132]

Quercetin 

cytotoxicity ↓ =/↓ ↓ Results differ by cell type:
HFF-1 
4’M-Q > 3’M-Q
Caco2
4’M-Q > 3’M-Q
MCF7
4’M-Q > 3’M-Q
Bxpc-3
4’M-Q > 3’M-Q

[132]

a↓, the respective conjugate(s) have a lower activity than the aglycone; =, the respective conjugates have an 
equal activity to the aglycone;↑, the respective conjugates have a higher activity than the aglycone; -,  no data 
available; A > B, conjugate A is more active than conjugate B.

Table 7.6 Recent studies (i.e. 2012 until present) on the inhibition of sulfotransferases by quercetin and its 
different conjugates (G = glucuronidated; M = methylated; S = sulfated; studies published before the year 2012 
are included in the review in Chapter 2 of this thesis [89])

Flavonoid	 Ga Ma Sa Commenta References
Quercetin

Inhibition of sulfotransferase 
activity in human liver S9

↓ ↓ ↓ Q-7G > Q-3G [134]

Inhibition of sulfotransferase 
activity in HepG2 cells

↓ - ↓ Both Q-7G and Q-3G were inactive and 
taken up poorly.

[134]

Inhibition of sulfotransferase 
activity in human intestinal S9

- = - [134]

a↓, the respective conjugate(s) have a lower activity than the aglycone;  =, the respective conjugates have an 
equal activity to the aglycone; A > B, conjugate A is more active than conjugate B. 
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Future perspectives

Based on the results of this thesis and other scientific literature reporting on the effects 
of conjugation on the biological activity of flavonoids several recommendations and 
perspectives for future research can be formulated. These recommendations include 
methodological considerations for studying the biological activity of flavonoids and 
their conjugates, the relevance of the gut microbiome for flavonoid bioactivity, as well as 
considerations regarding the pharmacokinetics and pharmacodynamics of flavonoids 
in vivo.

Methodological considerations

When studying the biological activity of flavonoids and their conjugates, there are 
many factors that need to be taken into consideration but are often overlooked. These 
aspects include the stability of the flavonoids in in vitro assays, the cellular uptake 
and metabolism of flavonoids in cellular assays, as well as a range of inherent physico-
chemical properties of flavonoids that can interfere with various assay systems. In the 
following section these methodological considerations are discussed in more detail. 

Flavonoid stability
An important aspect that can affect the outcomes of in vitro experiments with 
flavonoids and that requires more attention in future work as it is not always adequately 
addressed by researchers, is that flavonoids and their conjugates can be susceptible to 
auto-oxidation. Some flavonoid aglycones are reported to have half-lives of only a few 
minutes under common cell culture conditions [136]. It is reported that conjugation can 
affect the stability of flavonoids [137, 138]. Especially glucuronidation is considered to 
reduce the auto-oxidation of flavonoids, thereby increasing their stability and half-life. 
In addition, flavonoid stability may vary with the culture conditions applied, depending 
on e.g. the pH and the presence of proteins or antioxidants (e.g. ascorbic acid) [136, 
139-141]. When studying the biological effects of flavonoids in vitro, it is crucial to 
assess and ensure the stability of the compounds under the experimental conditions to 
avoid false negative results.  

Cellular uptake
An important factor that needs to be taken into consideration in cellular assays is the 
cellular uptake of flavonoids and their conjugates. The uptake of flavonoid glucuronides is 
generally considered to be lower than that of flavonoid aglycones. Flavonoid conjugates, 
though to a certain extent also their respective aglycones, are reported to be taken up by 
organic anion transporters [142, 143] and the uptake is affected by type and position of 
conjugation (see Chapter 2); many flavonoid aglycones are suggested to also be able to 
passively diffuse into cells causing a higher cellular uptake. It is of importance to note 
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that many commonly used cell lines differ from their tissues of origin in the expression 
of transport proteins [144], which hinders the extrapolation of in vitro results to the in 
vivo situation. Lower observed activity especially of flavonoid glucuronides than the 
respective aglycones in cellular assays can at least in part be caused by lower uptake of 
the conjugates. 

Metabolism
Another aspect that needs to be considered in cell based assays is the potential 
metabolic activity of the cells used. Cell cultures used for in vitro experiments can be 
derived from different tissues of different species which each have their own expression 
of transport proteins and metabolic enzymes. Certain cell lines can deconjugate 
flavonoid glucuronides to yield their respective aglycones [145], and some cell lines can 
also conjugate flavonoid aglycones and conjugates [146-148]. This is illustrated by the 
results from Chapter 3 in which the biosynthesis of flavonoid conjugates using cell lines 
is described. Different cell models appear to produce different flavonoid metabolite 
patterns [20]. This indicates that for a selected cell model the metabolic fate of the 
flavonoid compounds needs to be determined to ensure that the compound studied is 
in its intended form.

Experimental artefacts
Many common experimental assay systems can be susceptible to a wide range of 
experimental artefacts caused by different physico-chemical properties of flavonoids 
and their conjugates. These effects need to be taken into account when conducting 
experiments with flavonoids but are often overlooked. A first example of interferences of 
flavonoids and their conjugates with biological assays is based on their interaction with 
peroxidases. Flavonoids can inhibit peroxidase activity [149-151] and this can cause 
false results in different experimental assays, such as commonly used assays for the 
quantification of free fatty acids and triglycerides [152]. Figure 7.1 shows an example 
of the interference of flavonoids with a colorimetric assay for the quantification of free 
fatty acids (FFAs).

Further, flavonoids can interfere with assays that rely on fluorescence readouts through 
fluorescence quenching. Examples of assays that are affected by the fluorescence 
quenching of flavonoids are assays based on time-resolved fluorescence energy transfer 
(TR-FRET) for the determination of nuclear receptor - coregulator interactions (data 
not shown) or assays that use fluorogenic reaction products as readout for MMP activity. 
Figure 7.2 gives an example of the interference of flavonoids with a fluorimetric assay 
for the quantification of MMP activity.
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Figure 7.1. Flavonoids interfere with the Wako NEFA-HR kit (Wako Diagnostics, Richmond, VA, USA) for the 
quantification of FFAs. (A) The effects of flavonoids on free fatty acids in cell culture medium were tested 
according to the manufacturer’s instructions. The flavonoids appear to reduce FFA concentrations. However, 
in a control experiment (B), it was shown that the test compounds interfere with the assay system. The effect 
of the tested flavonoids on the formation of the colorimetric indicator used for the quantification of FFAs was 
tested using an equal amount of FFA standard (Linoleic Acid-Oleic Acid-Albumin, Sigma-Aldrich, St. Louis, 
MO, USA; catalogue # L9655) in each incubation. The tested compounds were shown to interfere with the 
assay system and inhibited the formation of the colorimetric indicator resulting in apparently lower FFA 
concentrations. This interference is likely to be due to the inhibition of peroxidase activity [152]. The results 
suggest that the measured apparent reduction of FFAs in cell culture medium is to a significant extent due to 
this experimental artefact. Statistically significant difference from solvent control: ** p > 0.01; *** p > 0.001.

Another way by which flavonoids can interfere with experimental assays is through 
autofluorescence. An example of this interference is the autofluorescence of flavonols 
like quercetin and kaempferol in the same spectral range as the commonly used 
fluorophore fluorescein isothiocyanate (FITC; excitation 495 nm, emission 519 nm). 
Figure 7.3 shows that autofluorescence of kaempferol can cause false-positive results 
in STK PamChips. Further examples of interference of flavonoids with experimental 
assays can be found in literature. Flavonoids are reported to interfere with assays 
determining MAO-A activity [153] through their antioxidant activity. In addition, 
flavonoids are reported to interfere with fluorescent intracellular probes used in flow 
cytometry through different mechanisms [154]. Flavonoids and their conjugates can 
also have post-translational effects on luciferase, which is a common reporter protein 
used in reporter gene assays, increasing its stability, and thereby causing false positive 
results [155, 156]. Moreover, flavonoids can reduce tetrazolium salts thereby affecting 
assays that determine mitochondrial reduction of tetrazolium salt as an indication 
of cell viability, like the commonly used MTT assay [157]. Certain flavonoids are also 
reported to lead to the generation of H2O2 in cell culture media [158]. It appears that 
some effects ascribed to flavonoids in current literature are actually the result of these 
confounding activities of flavonoids.



Chapter 7

146 147

General discussion

7

flu
or

es
ce

nc
e 

in
 %

 o
f s

.c
.

so
lve

nt 
co

ntr
ol

25
 µM

 qu
erc

eti
n

25
 µM

 ka
em

pfe
rol

25
 µM

 (-
)-e

pic
ate

ch
in

25
 µM

 (+
)-c

ate
ch

in
0

50

100

150

M
M

P
-1

 e
nz

ym
e 

ve
lo

ci
ty

(fl
uo

re
sc

en
ce

 in
 %

 o
f s

.c
.)

so
lve

nt 
co

ntr
ol

25
 µM

 qu
erc

eti
n

25
 µM

 ka
em

pfe
rol

25
 µM

 (-
)-e

pic
ate

ch
in

25
 µM

 (+
)-c

ate
ch

in
0

50

100

150

A B

** **
***

**

*

Figure 7.2 Flavonoids interfere with the MMP-1 fluorimetric drug discovery kit (Enzo Life Sciences, 
Raamsdonksveer, the Netherlands; catalogue # BML-AK405-001) for the quantification of MMP-1 activity. (A) 
The inhibitory activity of different flavonoids on MMP-1 activity was tested according to the manufacturer’s 
instructions. Quercetin and kaempferol appear to inhibit MMP-1 activity. However, in a control experiment 
(B), it was shown that quercetin and kaempferol interfere with the assay system. The effect of the test 
compounds on the fluorescence of an equal amount of reference standard (OmniMMP® fluorogenic 
control, Enzo Life Sciences; catalogue # BML-P127) for the fluorogenic reaction product of the OmniMMP® 
fluorogenic substrate was tested. Quercetin and kaempferol were shown to interfere with the assay system 
and reduced the fluorescence of the fluorogenic reaction product that is used for the quantification of MMP-1 
activity through fluorescence quenching, resulting in lower fluorescence in spite of equal concentrations of 
fluorogenic reaction product. The results suggest that the measured apparent inhibition of MMP-1 activity 
is to a significant extent to due to fluorescence quenching. Statistically significant difference from solvent 
control: * p > 0.05; ** p > 0.01; *** p > 0.001.
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Figure 7.3 The autofluorescence of kaempferol on STK PamChip causes false positive signals. Experiments 
were conducted as described in Chapter 6 in the absence of protein kinase and fluorescent antibody; 
signals were determined using the FITC channel of the PamStation 12. 
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Relevance of the microbiome

There are indications that the gut microbiome might play an important role in the 
health effects associated with flavonoid consumption. The microbial metabolism of 
flavonoids and the biological activity of these microbial metabolites, as well as the 
effects of flavonoids on the microbiome are described in this section.

Microbial metabolites of flavonoids
Apart from the conjugated flavonoid metabolites that are subject of this thesis, there 
are small microbial breakdown products of flavonoids formed in the intestine by the 
gut microbiome that can be taken up and enter the systemic circulation, and might 
contribute to the biological effects associated with the ingestion of flavonoids. It should 
be noted that polyphenols are not the sole source of phenolic acids that can be detected 
in plasma and urine after ingestion of polyphenol rich foods, as certain foods contain 
phenolic compounds alongside polyphenols [159-161]. While only a limited amount 
of research has been performed on the health effects of phenolic acids, there are 
indications that certain phenolic acids, e.g. caffeic acid, 3,4-dihydroxybenzoic acid, and 
p-coumaric acid, exert anti-inflammatory effects [162-172]. These phenolic compounds 
are also subject to phase II conjugation during uptake, and it has been reported that 
their reduction of TNF-α secretion in THP-1 monocytes is affected by conjugation [173]. 
Some phenolic acids can have a higher bioavailability and higher plasma concentrations 
than the polyphenols [174, 175] and should be considered in future studies on the 
biological effects of flavonoids and their metabolites.

Effects on the microbiota
Flavonoids are hypothesized to further affect human health by exerting direct effects on 
the gut microbiota. Flavonoid ingestion is reported to affect the composition of the gut 
microbiota and these changes are suggested to have positive health effects [176-180]. 
High polyphenol intake is often reported to cause increased counts of Bifidobacteria and 
Lactobacilli, and decreased counts of Clostridia and Bacteroides [181-186]. Lactobacilli 
and Bifidobacteria are reported to prevent the growth of pathogenic organisms [187] 
and stimulate the production of beneficial organic acids such as lactate and acetate 
[188]. Some flavonoids are reported to further cause Bifidobacteria to excrete anti-
inflammatory substances, [189] as well as increase secretion of lactic and acetic acids 
[190], which can further be converted to butyrate by Firmicutes [191]. Flavonoids 
themselves can be cleaved into short-chain fatty acids, such as acetate, butyrate and 
proprionate [192] which are suggested to have positive health effects [193-195] and 
inhibit the production of pro-inflammatory cytokines in vitro [196, 197]. Bifidobacteria 
are further associated with positive effects, amongst others on the immune system [198, 
199] and the potential to lower plasma cholesterol levels [200]. The class Clostridia, 
however, contains various pathogens which are amongst others associated with colitis 
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and in experimental animals increased numbers of colonic tumors [201]. It is expected 
that the effects of flavonoids on the gut microbiome and subsequently health will 
become increasingly important in future research.

Pharmacokinetics in humans

Another topic of interest for future research is based on the consideration that cells 
from different tissues are differently capable of accumulating and metabolizing 
flavonoids [20, 202]. Thus, instead of focusing on the concentrations and conjugation 
state of flavonoids in plasma in vivo and cell culture medium in vitro, the intracellular 
concentrations and conjugation state of flavonoids ought to be of higher relevance for 
effects on any intracellular targets. A better understanding of the pharmacokinetics of 
flavonoids in humans, determining their kinetics not only in plasma but also in cells 
and tissues, is needed to be able to translate results from in vitro research to an in vivo 
situation. 

The role of the endothelium
An important aspect for future research related to the pharmacokinetics of flavonoids 
is the elucidation of the role of the endothelium as interface between blood and other 
tissues. It is hypothesized that endothelial cells can deconjugate flavonoid glucuronides, 
thereby supplying the adjacent tissues with flavonoid aglycones, also those tissues 
that would otherwise have a low capacity to take up flavonoid conjugates [113]. This 
hypothesis is supported by in vivo research showing that the amount of quercetin 
aglycones in porcine organs is not correlated to the tissue-specific activities of beta-
glucuronidase, suggesting that the aglycones are supplied by the adjacent endothelial 
cells [203].

Physiologically-based pharmacokinetic and pharmacodynamic (PBPK) models
As information on the distribution and effects of flavonoids in human tissues are 
difficult to obtain, refined PBPK models might prove to be a useful tool in the study of 
flavonoid modes of actions. Models are needed that not only describe concentrations 
and types of flavonoids in plasma but also in tissues, and also describe the microbial 
metabolites formed. Ultimately, an ideal PBPK model should also incorporate 
information on flavonoid-induced differential metabolism through e.g. the inhibition 
of sulfotransferases, the activation of Nrf2 [204], or the effect of co-administration of 
different flavonoids [205].
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Conclusions

The research presented in this thesis describes the effect of conjugation on the biological 
activity of selected flavonoids towards different endpoints relevant for human health. 
Based on the results obtained, it can be concluded that glucuronidation does not 
eliminate the biological activity; the extent to which the activity of the flavonoid aglycone 
is reduced by glucuronidation varies greatly, depending on the flavonoid and endpoint 
studied. Many issues, including the role of and interaction with the microbiome and 
specific target tissues remain to be elucidated.
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Flavonoid consumption is often correlated with a wide range of health effects, such as 
the prevention of cardiovascular diseases, neurodegenerative diseases, and diabetes. 
These effects are usually ascribed to the activity of the parent flavonoid aglycones, 
even though these forms of the flavonoids generally have a low systemic bioavailability. 
During uptake, flavonoids undergo phase II metabolism and are present in the 
systemic circulation nearly exclusively as conjugated metabolites (Chapter 1). The 
aim of this thesis was to study the effect of conjugation on the biological activity of 
selected flavonoids towards different endpoints relevant for human health. To this end, 
conjugation with glucuronic acid was taken as the model type of conjugation because 
this modification is generally observed to be the most important metabolic conjugation 
reaction for flavonoids in man. 

A review of scientific literature published until early 2012 reveals that metabolic 
conjugation can affect the biological activity of flavonoids in different ways (Chapter 
2). Conjugation can increase, decrease, inverse or not affect the biological activity, 
depending on the flavonoid, the type and position of conjugation, the endpoint studied, 
and the assay system used. Based on the literature reviewed it is concluded that the 
effect of conjugation has to be studied on a case-by-case basis. 

As the research on the biological activity of biologically relevant flavonoid conjugates 
is often hampered by the generally low commercial availability and high prices of these 
conjugates, a simple and versatile method for the biosynthesis of metabolically relevant 
flavonoid conjugates is described (Chapter 3). Using this method, relevant conjugates 
can be prepared from different flavonoid substrates in sufficient quantities for in 
vitro bioassays. Further, an efficient strategy for the identification of these flavonoid 
conjugates by LC-MS and 1H-NMR using MetIDB (Metabolite Identification Database), 
a publicly accessible database of predicted and experimental 1H-NMR spectra of 
flavonoids, is presented. 

To study the effect of conjugation on the biological activities of flavonoids, in the 
subsequent chapters of the thesis several different assay systems and endpoints were 
used to study the activity of different flavonoids and their conjugates (Chapters 4 to 
6). In Chapter 4 the effects of quercetin, kaempferol, and their main plasma conjugates 
quercetin-3-O-glucuronide and kaempferol-3-O-glucuronide (K-3G) on different 
endpoints related to peroxisome proliferator-activated receptor (PPAR)-γ were studied. 
PPAR-γ activation is reported to have positive health effects related to adipogenesis, 
insulin resistance and inflammation. The presented results show that the flavonoid 
aglycones increased PPAR-γ mediated gene expression in a stably transfected reporter 
gene cell line, and that glucuronidation diminished this effect. These observed increases 



Summary

164 165

Summary

in reporter gene expression were accompanied by increased PPAR-γ receptor-
mRNA expression upon exposure to kaempferol, an effect that was also reduced by 
glucuronidation. Using the cell-free Microarray Assay for Real-time Coregulator-Nuclear 
receptor Interaction (MARCoNI) it was demonstrated that, unlike the known PPAR-γ 
agonist rosiglitazone, neither the flavonoid aglycones nor the conjugates are agonistic 
ligands of the PPAR-γ receptor. Supporting the hypothesis that the tested compounds 
have a different mode of action from normal LBD agonism, quercetin appeared to 
synergistically increase the effect of rosiglitazone in the reporter gene assay. The 
modes of action behind the observed effects remain to be elucidated and might include 
effects on protein kinase activities affecting expression of the PPAR-γ receptor, or post-
transcriptional modifications of PPAR-γ. 

Another type of nuclear receptor known to be targeted by certain flavonoids are the 
estrogen receptor (ER)α- and ERβ. ERs are the main targets of estrogenic compounds, 
and upon their activation different transcriptional responses with opposite effects on 
cell proliferation and apoptosis are elicited; ERα activation stimulates cell proliferation, 
while ERβ activation causes apoptosis and reduces ERα mediated induction of cell 
proliferation. Using the MARCoNI assay, the intrinsic estrogenic effects of the two main 
dietary isoflavones daidzein and genistein, and their plasma conjugates daidzein-
7-O-glucuronide and genistein-7-O-glucuronide on the ligand induced coregulator 
binding of ERα- and ERβ-LBD were studied and compared to the effect of the positive 
control 17β-estradiol (E2). The results show that the tested isoflavone compounds are 
less potent agonists of ERα- and ERβ-LBD than E2, although they modulate the LBD-
coregulator interactions in a manner similar to E2. Genistein is shown to be a more 
potent agonist than daidzein for both receptor subtypes. While in the MARCoNI assay 
genistein had a strong preference for ERβ-LBD activation over ERα-LBD activation, 
daidzein had a slight preference for ERα-LBD activation over ERβ-LBD activation. 
Glucuronidation reduced the intrinsic agonistic activities of both daidzein and genistein 
to induce ERα-LBD and ERβ-LBD - coregulator interactions and increased their average 
half maximal effective concentrations (EC50s) by 8 to 4,400 times. The results presented 
further show that glucuronidation changed the preferential activation of genistein from 
ERβ-LBD to ERα-LBD and increased the preferential activation of daidzein for ERα-LBD; 
this is of special interest given that ERβ activation, which is counteracting the possible 
adverse effects of ERα activation, is considered one of the supposedly beneficial modes 
of action of isoflavones. 

Many flavonoids are reported to be inhibitors of protein kinases. To study the effect 
of conjugation on the inhibition of serine/threonine protein kinases by flavonoids, 
kaempferol and its main plasma conjugate K-3G were selected as model compounds 
(Chapter 6). Protein kinases are involved in a wide range of physiological processes 
by controlling signaling cascades and regulating protein functions; modulation of 
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their activities can have a wide range of biological effects. The inhibitory effects of 
kaempferol, K-3G, and the broad-specificity protein kinase inhibitor staurosporine 
on the phosphorylation activity of recombinant protein kinase A (PKA) and of a 
lysate prepared from the hepatocellular carcinoma cell line HepG2 were studied 
using a microarray platform that determines the phosphorylation of 141 putative 
serine/threonine phosphorylation sites derived from human proteins. The results 
reveal that glucuronidation reduces the intrinsic potency of kaempferol to inhibit 
the phosphorylation activity of PKA and HepG2 lysate on average about 16 and 3.5 
times, respectively. It is shown that the inhibitory activity of K-3G in the experiments 
conducted was not caused by deconjugation to the aglycone. Furthermore, the results 
show that kaempferol and K-3G, unlike the broad-specificity protein kinase inhibitor 
staurosporine, did not appear to inhibit all protein kinases present in the HepG2 lysate 
to a similar extent, indicating that kaempferol selectively targets protein kinases, a 
characteristic that appeared not to be affected by glucuronidation. The fact that K-3G 
appeared to be only a few times less potent than kaempferol implies that K-3G does not 
necessarily need to be deconjugated to the aglycone to exert potential inhibitory effects 
on protein kinases.

The results obtained in the present thesis support the conclusion that glucuronidation 
of flavonoids does not necessarily abolish their activity and that flavonoid glucuronides 
may be biologically active themselves, albeit at higher concentrations than the parent 
aglycones (Chapter 7). In line with the conclusions from the earlier review presented 
in Chapter 2, an updated literature review on the effect of conjugation on the biological 
activity of flavonoids concludes that that the effect of conjugation on the biological 
activity of flavonoids depends on the type and position of conjugation, the endpoint 
studied and the assay system used. Based on the results described and the literature 
reviewed in this thesis, several recommendations and perspectives for future research 
are formulated. Several methodological considerations are formulated that need to be 
taken into account when studying the biological activity of flavonoids and their conjugates 
to avoid confounding results. Further, the relevance of the gut microbiome for flavonoid 
bioactivity is highlighted, and considerations regarding the pharmacokinetics and 
pharmacodynamics of flavonoids in vivo are formulated. Altogether, it can be concluded 
that circulating flavonoid conjugates may exert biological activities themselves, and 
that understanding these is a prerequisite to successfully elucidate the mechanisms of 
action behind the biological activities linked to flavonoid consumption.
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