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1

Complex systems
The whole is more than the sum of its parts – Aristotle 

Biogeochemical cycles, ecosystems, the climate, the financial market, the human 
being (physical and mental), and social networks (physical and online) are all 
examples of complex systems. Understanding the properties and dynamics of 
complex systems motivates many scientific questions. While complexity and complex 
systems are currently scientific buzzwords, a single concise definition of a complex 
system does not exist, and is dependent on the scientific discipline in which the 
concept is used. Following the Oxford English Dictionary, the word complex has 
different meanings. The first is “consisting of many different and connected parts”. 
This is not very distinctive as every system on earth essentially consists of many 
different and connected parts (e.g. atoms, molecules, individuals, etc.). The second 
meaning of complex is more relevant: “not easy to analyze or understand; complicated 
or intricate”. The parts of a system will generally interact with each other, and 
with the environment. These interactions can make systemic behavior difficult to 
understand or predict. In this thesis, a complex system is considered to be a system 
composed of a number of interconnected parts, where the systemic behavior leads to 
the emergence of properties that would not be expected from behavior or properties 
of the parts of the system (Gell-Mann 1988).

Full characterization of the parts, interactions and resulting dynamics of complex 
systems is a scientific challenge of all times. Many systems are subject to slow 
changes in the environment, for example due to increasing demand for resources, 
climate change, and stronger interdependence of economies and markets. 
Mechanistic insight of systemic dynamics may help to predict a systems’ response 
to environmental change. In this thesis, I discuss the use of dynamical systems 
theory as a tool to understand particular observed dynamics. I address three 
different complex systems: the microbial nitrogen cycle, the coral reef ecosystem, 
and the psychological condition of human beings. Each of these systems is of great 
importance to humanity, and extensively studied. Yet, our understanding of what 
drives their overall dynamics has somehow remained surprisingly fragmentary.

The analysis of complex system dynamics

There is no silver-bullet approach to analyze a complex system. In general, a 
combined approach of field observations, experiments, and mathematical modeling 
is required to gain insight into the processes and interactions that are underlying 
observed dynamics of any complex natural system. The complementarity of empirical 
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and theoretical approaches is highlighted in most standard books on methods in 
ecology (see for example Henderson 2003). Each approach has its advantages and 
limitations. Field measurements allow a researcher to observe completely natural 
behavior, but conditions cannot be controlled, so cause and effect of processes are 
difficult to distinguish. Lab experiments are more controlled, and can provide insight 
into specific processes, or sub-systems, however only a part of the system is studied. 
Mathematical models can simulate system dynamics in order to provide insights in 
particular observed dynamics, and may be used to predict future dynamics. However, 
mathematical models cannot prove causality, as they are always a simplification. 
Several types of mathematical models can be distinguished, ranging from fully 
parameterized complex models, to simple strategic models (see for example for 
coral reefs Weijerman et al. 2015). Fully mechanistic models map out the most 
relevant parts of the system, and use estimates of parameters and interactions 
based on experiments or field measurements. Such models are generally specifically 
parameterized to predict future trajectories of one particular case or location. 
However, due to the high complexity of systems, accurate mechanistic modeling can 
be difficult (Oreskes et al. 1994). Moreover, fully mechanistic models are difficult 
to analyze, especially if non-linear interactions are involved. In this thesis, I use 
dynamical strategic models (i.e. abstract, simple models; Scheffer and Beets 1994), 
to illustrate how certain, often unexpected, behavior and pattern formation can arise 
from relatively simple interactions. A strategic model is generally used to generate 
hypotheses on the underlying processes. It may also provide an alternative, fresh 
view on the systemic dynamics. 

Strategic models to explore complexity

In dynamical systems theory, systems are viewed from a very abstract perspective 
describing qualitative behavior. Strategic models generally consist of just one or a few 
mathematical equations, and are usually deterministic (i.e. without stochasticity). 
Still the emergent behavior of dynamical systems is often complex due to non-
linear interactions (i.e. cause and effect are not proportional). Researchers tend to 
look especially for particular emergent phenomena, such as cycles, chaos, critical 
transitions (Strogatz 1994), and in the spatial realm Turing patterns, and moving 
fronts (Murray 2003). Because of the simplicity of such models, one can fully analyze 
changes in stability and dynamics as a result of altering conditions. Obviously the 
link between such simple mathematical structures and real complex systems is 
difficult to make, and may easily lead to an overestimation of the applicability of 
clear and beautiful mathematical insights. The drawback of this is illustrated by the 
fierce discussion on Catastrophe Theory in the 70s.
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The use of dynamical systems to model non-linear change in nature gained 
popularity with the development of Chaos theory, formalized in 1963 by Edward 
Lorenz (Lorenz 1963), and Catastrophe theory, formalized in 1972 by René Thom 
(Thom 1972). Both mathematical theories became well known for their proclaimed 
universality and potential to apply to natural and social systems. While the broad 
applicability of Chaos Theory was controversial, the scientific enthusiasm regarding 
Catastrophe Theory experienced a particularly severe storm of critique leading to a 
demise of its popularity. Catastrophe Theory considers the phenomenon that small 
changes in parameters of a nonlinear system can cause stable equilibria to appear 
or disappear, leading to sudden changes in the behavior of the system. One of the 
models introduced by Thom was the cusp-catastrophe model (see also Glossary), 
which is appealing to non-mathematicians, because it can explain abrupt behavior 
of a system quite intuitively, without understanding the underlying mathematics. 
After the introduction of Thom’s ideas, the scientific community went through 
a period of great interest and enthusiasm, in which many examples of systems 
corresponding with the theory were published (for a selection of papers see Zeeman 
and Sussmann 1979). Obviously, the media picked this up as well, and phrases such 
as “the most important development since calculus” (Newsweek) were not uncommon. 
In response, the usefulness of the theory, and the evidence for the example systems 
were strongly criticized (Zahler and Sussmann 1977; Sussmann and Zahler 1978). 
Consequently, the theory was devaluated into a purely mathematical exercise, and 
set aside as an intellectual bubble of little consequence (Horgan 1997). Decades 
later, the fierce extremes were reviewed and explained by the overenthusiasm of the 
so-called catastrophists, often missing a mechanistic explanation, and misstatements 
based on misunder-standing of the mathematical concepts from both catastrophists 
and criticizers (Rosser 2007). The main weakness of the pioneering work was 
that the theory was imposed on observed dynamics, without much mechanistic 
understanding. So the applicability of Catastrophe Theory was initially overstated. 
As a result, the entire theory was disputed. In the hindsight this may have been an 
overreaction, and “the baby was thrown out with the bathwater” (Oliva and Capdevielle 
1980; Rosser 2007). 

Over the past decades we understand better what we can learn from abstract 
mathematical phenomena, such as the cusp-catastrophe model, in relation to real 
complex systems. Interestingly, the term Catastrophe Theory did not return in most 
scientific disciplines. New popular terms regarding the theory of abrupt transitions 
include critical transitions, tipping points, regime shifts, and sometimes catastrophic 
shifts. More in general, strategic models are starting to generate testable hypotheses 
and suggest practical ways of managing and predicting the behavior of complex 
systems. Yet, building bridges between the abstract mathematical world of non-
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linear dynamical systems, and real-world complex systems remains one of the main 
challenges. In this thesis I take up this challenge in an effort to carve corridors of 
clarity into the complexity of a set of quite different systems.

The microbial nitrogen cycle

In chapter 2 I propose to view the microbial nitrogen cycle as a dynamical 
system. Because of the immense experimental effort required, no study so far has 
addressed all nitrogen pathways simultaneously. However, in order to reconstruct 
the evolution of the current microbial pathways, and to predict consequences of 
environmental change, a full understanding of key processes and interactions of 
biogeochemical cycles such as the nitrogen cycle is required. I address the question 
which of the multitude of potential biogeochemical pathways are feasible in an 
ecological context, and should therefore be expected to exist in nature. Chapter 
2 introduces a model based on hypothetical nitrogen pathways that compete for 
nitrogen compounds. The uptake rates and competitive strength of the pathways 
are simply based on the stoichiometry and energy yield of the performed redox 
reactions. Because of competition, the model attains a dynamic equilibrium in 
which a subset of pathways outcompetes the others. While the model is obviously a 
strong simplification of reality, it can explain most of the observed architecture of 
the microbial nitrogen cycle. Indeed with a recent discovery (Daims et al. 2015; van 
Kessel et al. 2015), 10 out of the 11 pathways this model predicts are now found in 
nature.

The coral reef ecosystem

A classical example of a highly diverse and complex ecosystem is a coral reef. Coral 
reefs provide habitat to many different benthic and mobile species, and provide 
a variety of ecosystem services, such as fisheries, tourism, and coastal protection 
(Moberg and Folke 1999). Currently, climate change and increasing human 
activity put high pressure on coral reefs around the world (Hughes et al. 2003). 
Not surprisingly, there is an urgent need to understand the dynamics and get an 
estimate of the resilience of these complex ecosystems. In chapter 3, I show that 
the shape of coral patches has become extremely structured and organized in some 
places. Although this is not easily recognized when snorkelling or diving, aerial 
and satellite pictures reveal regular spatial patterns of coral at certain locations. I 
propose that these spots of seemingly organized patches can reveal new information 
on what facilitates or limits coral growth. I present the coral reef ecosystem as 
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a spatially explicit dynamical system. We relate these regularly spaced coral reef 
patches observed on the Great Barrier Reef and New Caledonia to self-organized 
patterns as described by the mathematician Alan Turing in 1952 (Turing 1952). 
Without knowing the actual mechanism underlying the patterns, based on the 
observation of regular patterns we outline a specific set of hypotheses on lagoonal 
coral reef growth, and on reef resilience. 

These two studies illustrate that using non-linear dynamical system theory to analyze 
the dynamics of real-world complex systems can help to generate hypotheses on 
key processes and interactions in the system. However, scientific progress can also 
often simply benefit from bridging existing insights. Certainly, when it comes to 
dynamical systems theory, many of the slightly counter-intuitive predictions are 
poorly known among more empirically oriented scientists. Chapter 4 illustrates 
how showing theoretically well understood phenomena in a specific context may 
help to resolve debates. I compile a list of interactions in the coral reef ecosystem 
that result in positive feedbacks. Many feedbacks have not been recognized as such, 
and may individually be too weak to contribute to the generation of alternative 
stable states. I then use a simple mathematical model to illustrate how multiple 
positive feedbacks can, even if they are weak, collectively lead to alternative stable 
states, and therefore to abrupt transitions. This illustrates that the existence of 
alternative stable states and critical transitions depends largely on the interplay of 
feedbacks and conditions. Thus, a system that often responds smoothly to changing 
conditions, may, under other circumstances show an abrupt shift to an alternative 
stable state. This should come as no surprise to theoreticians that are familiar with 
models in dynamical systems theory. However, it sheds a new light on the polarized 
discussion in the literature about alternative stable states of reefs.

Anticipating critical transitions

The second half of my thesis is devoted to a relatively young scientific field that 
builds a bridge between the abstract world of bifurcation theory, and the potential 
application of indicating changes in the resilience of a system. It has been proposed 
that loss of resilience in ecological systems can be detected without prior knowledge 
on the processes and interactions of a specific system (i.e. early warning signals) 
(Scheffer et al. 2015b). Most of these proposed early warning signals are based on 
the phenomenon of critical slowing down (see also Glossary), which is based on 
generic properties of zero-eigenvalue bifurcations (van Nes and Scheffer 2007).

In chapter 5, I review the recent insights on such generic indicators of proximity to 
critical transitions, and highlight aspects of the architecture of complex systems that 
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play a role in the occurrence of critical transitions. A range of statistical measures 
as indicators of critical slowing down or changes in the stability landscape, 
limitations of the suggested approaches, and new applications are continuously 
being discovered. It is exciting that theoreticians from different scientific directions 
are now adopting these new developments. However, we should take care not to 
overstate the applications, and fall into the same trap that led to the dismissal of the 
Catastrophe Theory.

In chapter 6 I analyze the differences between well-mixed systems and spatially 
extended systems with local alternative stable states. While alternative stable states 
and critical transitions have been well studied in isolated, well-mixed systems, 
systems are often much more complex in reality. For example, most landscapes 
are spatially extended, in the sense that local interactions play an important role. 
I show that local perturbations can spread through space as a moving front, and 
link the mathematical theory of moving fronts to phenomena in spatially extended 
ecosystems with local alternative stable states. I show that essential properties of 
such spatial dynamics can be understood from the existence of the so-called Maxwell 
point, a point in parameter space at which the global stability of the system shifts.  

In chapter 7 I propose that one could monitor recovery of strong local disturbances 
in spatially extended ecosystems in order to get an indication of the proximity to 
a systemic transition.  The most direct indicator of critical slowing down is the 
recovery rate after a small disturbance (van Nes and Scheffer 2007). However, the 
models on which these predictions are based, assume a well-mixed system, so they 
don’t take into account the complexity of spatially extended systems or networks. 
In this chapter we illustrate and discuss the differences of the recovery trajectory 
between strong local disturbances and weak global disturbances. 

The human state of mind

The third complex system addressed in this thesis is the mental state of human 
beings. Depression is one of the main mental health hazards of our time (Bijl et 
al. 1998). Psychologists however have little insight in how depressions develop. 
While until recently depression was seen as a traditional disease in the sense that 
it has one common cause, a complex systems view has recently been proposed 
(Cramer et al. 2010; Borsboom et al. 2013; Schmittmann et al. 2013). The idea is 
that the interactions between personal entities, such as emotions and behaviors, 
can result in complex behavior, such as depression. While the first attempts to map 
out the architecture and connections of such personal networks have been made 
using observed correlations between depression symptoms (Bringmann et al. 2013)
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a systemic analysis remains challenging. In chapter 8, I propose to view the mood 
of a person as a dynamical system, with interacting emotions as network entities. 
We analyze the self-reported mood of a group of depressed and of healthy patients, 
showing that the proposed measures are indicative of the proximity to a transition. 

In chapter 9, I reflect and prospect on the applicability and limitations of models 
inspired by dynamical systems theory as a tool to study complex systems. 
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Abstract

Nitrogen compounds are transformed by a complicated network of competing 
geochemical processes or microbial pathways, each performed by a different 
ecological guild of microorganisms. Complete experimental unraveling of this 
network requires a prohibitive experimental effort. Here we present a simple 
model that predicts relative rates of hypothetical nitrogen pathways, based only 
on the stoichiometry and energy yield of the performed redox reaction, assuming 
competition for resources between alternative pathways. Simulating competing 
pathways in hypothetical freshwater and marine sediment situations, we surprisingly 
found that much of the variation observed in nature can simply be predicted 
from these basic principles. Investigating discrepancies between observations and 
predictions led to two important biochemical factors that may create barriers for 
the viability of pathways: enzymatic costs for long pathways and high ammonium 
activation energy. We hypothesize that some discrepancies can be explained by non-
equilibrium dynamics. The model predicted a pathway that has not been discovered 
in nature yet: the dismutation of nitrite to the level of nitrate and dinitrogen gas. 
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Introduction

In nature, several competing microbial pathways are responsible for the 
transformation of nitrogen compounds. Each pathway is performed by a different 
guild of microorganisms under different environmental conditions. This network of 
microbial nitrogen pathways is known as the microbial nitrogen cycle, and includes 
pathways such as nitrification, denitrification, dissimilatory nitrate reduction to 
ammonium (DNRA, also called nitrate ammonification), anaerobic ammonium 
oxidation (anammox), nitrate reduction to nitrite, and nitrogen fixation (Fig. 
2.1). The biogeochemical nitrogen cycle is affected intensely by human activity 
(Rockström et al. 2009), and a good understanding of the outcome of competition 
between nitrogen pathways as a function of the environmental conditions is essential 
if we wish to project the consequences of the human induced changes. 
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Figure 2.1. The microbial nitrogen 
cycle, involving known pathways 
between nitrogen compounds, 
oxygen and organic material: a) 
mineralization, b) nitrification in two 
steps: ammonium-oxidation and nitrite-
oxidation, c) denitrification from 
nitrite and nitrate, d) dissimilatory 
nitrite and nitrate reduction to 
ammonium (DNRA), e) anaerobic 
ammonium oxidation (anammox) and 
f) nitrogen fixation.

Previous studies have modeled the competitive strength of nitrogen pathways using 
a semi-empirical approach: activity rates of competing pathways were measured 
in experiments or in the field and used as input for models, to estimate nitrogen 
conversion rates under different environmental conditions (e.g. Spérandio and 
Queinnec 2004; Liu et al. 2005; Canavan et al. 2007). However, because of the 
immense experimental effort required, no study so far has addressed all nitrogen 
pathways simultaneously. Besides, it could well be that our current inventory of 
nitrogen transforming pathways is still incomplete; for example, only very recently 
a pathway was discovered that dismutates nitric oxide into oxygen and nitrogen 
(Ettwig et al. 2010).

Here, we circumvent these problems by taking a completely different approach 
that may complement the semi-empirical results obtained so-far. We assume no 
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prior knowledge on the microbial nitrogen cycle as we know it. Instead, following 
Broda’s proposition that microbes may realize all energetically profitable pathways 
(Broda 1977), we use the chemical properties of the nitrogen compounds in a simple 
energy-based model to predict the relative success of catabolic, thermodynamically 
feasible, pathways as a function of the environmental conditions. This may sound 
strange from an ecological perspective, as in nature organisms compete, not 
reactions. However, a functional approach that puts reactions rather than species or 
populations central is increasingly used in microbial ecology. For instance, locally 
collected samples of enzymes (metaproteomics) or genetic material (metagenomics) 
can give a clue to the reactions occurring on a site.

We define differential equations for the dynamics of the substrates nitrate, nitrite, 
nitric oxide, nitrous oxide, ammonium, dinitrogen gas, organic material and 
oxygen. For simplicity the only non-nitrogen substrates considered are oxygen (as 
an alternative electron acceptor) and organic compounds (as an alternative electron 
donor). Furthermore, we define a differential equation for each thermodynamically 
feasible redox reaction, in other words a ‘theoretical pathway’. The equations 
describe the growth of the ‘volume’ of that pathway as a function of its substrate 
affinity, determined by the stoichiometry of the reaction, and its energy yield. To 
make it less abstract one may think of the volume of a pathway as the biomass of 
a guild of microbes performing that particular pathway even though we do not 
model mass balances explicitly. Pathway volume is in this sense directly related 
to pathway activity. The mathematical formulation of our model is given in the 
Experimental Procedures section.

Note that it is not our ambition to produce a model for accurate quantitative 
prediction of nitrogen dynamics in nature. Rather we seek to explore what is 
a minimum set of assumptions needed to explain which pathways are found in 
practice. More specifically we ask how much of the observed reactions can be simply 
explained from resource competition, stoichiometry and energy yield. The model is 
based on three main assumptions. 

Firstly, we assume that the rates of all transformations are controlled by the 
delivery of fresh substrates (by mass transport), rather than by microbial processing 
capacity (enzyme turnover). This is a reasonable assumption because most nitrogen 
conversion takes place in the chemocline where the delivery of fresh substrates is 
limiting (Jensen et al. 2009; Halm et al. 2009). 

Secondly, we assume that the volume yield for each microbial guild depends linearly 
on the energy yield (the Gibbs free energy change) of the associated pathway. This 
linear relationship was previously shown to approximate reality (Liu et al. 2007). 
Some pathways are obviously less efficient than others in this sense (Tijhuis et al. 
1993).
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Thirdly, we assume for all microbial guilds that the substrate affinity is proportional 
to the stoichiometric factor, that is, the relative consumption of that substrate in that 
pathway. In reality, substrate affinity is mainly determined by the flux of substrate 
towards the single cells and is therefore proportional to the stoichiometric factor as 
well as the cell size (Schulz and Jørgensen 2001). However, assuming cell size to be 
roughly equal for each microbial guild, we neglect this source of variation.

In addition to these three assumptions, we impose a thermodynamic restriction 
on pathways consuming ammonium, because of its high activation energy (Strous 
et al. 1999; Dosta et al. 2008). Both anammox and nitrification need additional 
electrons for the ammonium reaction, which are transferred from reactions later in 
the pathway (Fig. 2.2). Anammox bacteria use a NO radical to activate ammonium 
to the level of hydrazine (N2H4) (Fig. 2.2a) (Strous et al., 2006), while nitrifying 
bacteria oxidize ammonium directly with activated oxygen yielding hydroxylamine 
(NH2OH) (Fig. 2.2b). It is therefore assumed that ammonium can only be activated 
directly by a reactive species (Hooper et al. 2004). In our model, a theoretical 
pathway is considered thermodynamically feasible when each ammonium molecule 
can react at a one-to-one ratio with a reactive chemical species (e.g. NO or O2) as 
the primary substrate or intermediate. 

a.

NO

NO2
-

N2

N H2 4

-e

-e

-e

3

4

NH4
+

b. O2 -e

-e

-e

4

2
O2

NH4
+

NH OH2

NO2
-

2

H2O

Figure 2.2. Microbial ammonium oxidation pathways of a) anammox (Strous et al. 2006) and b) 
nitrification (Ferguson et al. 2007). Anammox bacteria make use of the nitric oxide radical to activate 
ammonium directly to the level of hydrazine while nitrifying bacteria use activated oxygen to react with 
ammonium directly to hydroxylamine. It is hypothesized that ammonium has to react with a reactive 
species at a one-to-one ratio, to overcome its high activation energy. This could explain why electrons are 
transported from other oxidation reactions in the pathways to the ammonium oxidation step.

These assumptions led to a model that allows us to simulate the competition of 
thermodynamically feasible pathways simultaneously. The only inputs to this model 
are the continuous inflow of nitrogen compounds, oxygen and organic material into 
the system. For simplicity, organic material is assumed to be completely labile. We 
did not consider the inflow of nitrous oxide or nitric oxide, as the concentrations of 
these compounds are typically too low to contribute significantly to mass balances 
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of nitrogen. Thus, nitric oxide and nitrous oxide in the model are only available if 
produced. 

A dynamic equilibrium arises when pathway growth equalizes decay and continuous 
inflow and outflow equalize both consumption and production. The model outputs 
are the volume of each theoretical pathway and the final concentration of each 
nutrient, after stabilization of the system.

Results

Even if a pathway could take place in isolation (i.e. the pathway is ‘feasible’), this 
does not mean that it is ‘viable’ in the sense that it would yield a positive volume in 
a situation where it is competing with other pathways. In order to screen the overall 
viability of the theoretical pathways, the model was run for 10,000 random sets of 
substrate inflow rates. From all 45 thermodynamically feasible pathways, 11 were 
found to be viable in this analysis (Table 2.1). Most pathways known to occur in 
nature are covered by this theoretically predicted list (Table 2.1: Eqns. 1-9). This 
suggests that the thermodynamic principles implemented may indeed explain much 
of the patterns observed in reality. The model predicted two pathways that have 
not been discovered in nature: complete nitrification from ammonium to nitrate 
by a single organism, which we call ‘total nitrification’ (Table 2.1: Eqn. 10), and 
simultaneous oxidation and reduction of nitrite, producing nitrate and dinitrogen 
gas, which we call ‘nitrite dismutation’ (Table 2.1: Eqn. 11). 

Table 2.1. The 11 predicted viable nitrogen pathways out of the 45 thermodynamically feasible 
pathways. We considered a pathway viable with an equilibrium activity higher than 0.001 in at least 
one of the 10.000 simulations of the model with random inflow levels of nitrate, nitrite, ammonium, 
dinitrogen gas, oxygen and organic material.  

Pathway Reaction
1 Anammox NO2

- + NH4
+ → N2 + 2 H2O

2 Denitrification NO2
- 4 NO2

-+ 3 CH2O + 4 H+ → 2 N2 + 3 CO2 + 5 H2O 

3 Denitrification NO3
- 4 NO3

-+ 5 CH2O + 4 H+ → 2 N2 + 5 CO2 + 7 H2O

4 DNRA NO2
- 2 NO2

-+ 3 CH2O +4 H+ → 2 NH4
+

 + 3 CO2 + H2O

5 DNRA NO3
- NO3

-+ 2 CH2O + 2 H+ → NH4
+ +2 CO2 + H2O

6 Heterotrophic N2 fix. 2 N2 + 3 CH2O + 4 H+ + 3 H2O  → 4 NH4
+ + 3 CO2

7 Nitrification (NH4
+-ox.) 2 NH4

++ 3 O2 → 2 NO2
-  + 4 H+ + 2 H2O

8 Nitrification (NO2
- -ox.) 2 NO2

-+ O2 → 2 NO3
-

9 Respiration CH2O + O2 → CO2 + H2O

10 ‘Total nitrification’ NH4
++ 2 O2 → NO3

-  + 2 H+ + H2O

11 ‘Nitrite dismutation’ 5 NO2
- + 2 H+ → 3 NO3

-+ N2 + H2O
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In order to compare the model predictions with patterns in natural systems, we 
defined a number of hypothetical environments in terms of their relative inflow of 
ammonium, organic material, nitrate and nitrite. To have a concrete situation in 
mind we think of these environments as freshwater and marine sediments. We chose 
the conditions in such a way that each viable theoretical pathway in the model 
can be discussed. Then, we simply assume a sediment to have a linear gradient 
of oxygen inflow. For pristine freshwater and marine sediments (i.e. without any 
anthropogenic inflow), we assumed a constant inflow of organic material. The 
only nitrogen source was ammonium, assumed to be produced by mineralization 
(Fig. 2.3a and 2.4a). For freshwater sediments the inflow of organic material was 
assumed to be five times higher than ammonium, while in marine sediments it 
was assumed to be five times lower, due to the activity of for example sulphate 
reducers (Fig. 2.4a). We considered both nitrate and nitrite inflow for eutrophic 
freshwater sediments (Fig. 2.3b, c and d), and only nitrate inflow for the eutrophic 
(e.g. coastal) marine sediment (Fig. 2.4b).

Along the oxygen inflow gradient in each hypothetical sediment, the model produced 
stable estimates of: the relative volume of each pathway (Fig. 2.3 and 2.4: Pathway 
volume), the relative concentration of each substrate and product (Fig. 2.3 and 
2.4: Nutrient concentration), and the percentage of substrate uptake relative to the 
inflow per pathway (Fig. 2.3 and 2.4: Consumption of nutrient inflow (CH2O, O2, 
NH4

+, NO2
- and NO3

-). 

In a pristine freshwater sediment, the model predicted dominance of aerobic 
respiration, total nitrification and denitrification (Fig. 2.3a: Pathway volume). At high 
oxygen inflow, the equilibrium oxygen concentration was high, while at low oxygen 
inflow, anoxic conditions were established (Fig. 2.3a: Nutrient concentration). This 
was mainly due to the activity of the aerobic respiration pathway (Fig. 2.3a: O2). At 
high oxygen inflow, organic material (Fig. 2.3a: CH2O) and ammonium (Fig. 2.3a: 
NH4

+) were consumed by aerobic respiration and nitrification pathways, while both 
substrates accumulated under low oxygen levels (Fig. 2.3a: Nutrient concentration). 
At intermediate oxygen inflow levels, where the equilibrium oxygen concentration 
was low (Fig. 2.3a: Nutrient concentration), nitrification was predicted to be coupled 
to denitrification (Fig. 2.3a: Pathway volume). At the oxic-anoxic boundary, some 
partial nitrification to the level of nitrite coupled to anammox activity was predicted 
(Fig. 2.3a: O2 and NH4

+). 

Freshwater sediments with an inflow of nitrate (Fig. 2.3b and c) were predicted 
to be dominated by nitrification and aerobic respiration at high oxygen levels, 
and by denitrification and DNRA at low oxygen levels. At relatively low nitrate 
inflow levels, DNRA outcompeted denitrification at low oxygen inflow levels (Fig. 



24  |  Chapter 2 Predicting nitrogen pathways  | 25

2

2.3b), while at high nitrate inflow levels, DNRA was outcompeted by denitrification 
along the whole oxygen inflow gradient (Fig. 2.3c). The amount of nitrate inflow 
influenced the location of the oxic-anoxic boundary. This can be understood from 
the competition for substrates. At high nitrate and low oxygen inflow, denitrification 
wins the competition from respiration and completely consumes the available 
organic material. The available oxygen is then consumed by nitrification. However, 
ammonium is more limited than organic material, so the available oxygen is not 
completely consumed by the nitrification pathway. Therefore, the depth at which 
positive oxygen levels may be found (the thickness of the oxic layer) increased with 
nitrate inflow levels.

A freshwater sediment with a high inflow level of nitrite (Fig. 2.3d) and high inflow 
levels of oxygen, was predicted to be dominated both by nitrification from nitrite 
to nitrate and by total nitrification. In the layers with lower oxygen inflow levels, 
the unknown ‘nitrite dismutation’ pathway consumed the available nitrite. At the 
lowest levels, anammox was predicted to coexist with this pathway.

A pristine marine sediment (Fig. 2.4a) was predicted to be dominated by total 
nitrification coupled to denitrification at high oxygen inflow levels, shifting to 
ammonium-to-nitrite nitrification coupled to anammox with decreasing oxygen 
inflow. Due to high ammonium levels, oxygen was the limiting substrate over the 
whole inflow gradient, so anoxic conditions were created even at high oxygen 
inflow levels. 

A marine sediment with an inflow of nitrate (Fig. 2.4b) showed similar pathway 
activity rates as a pristine marine sediment, only denitrification rates were higher 
at low oxygen levels. Even higher nitrate inflow levels in the simulated marine 
sediments showed the same pathway activity rates, because nitrate was not a 
limiting substrate (results not shown). 
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Figure 2.3. Competition simulations of the model representing four hypothetical freshwater sediments. Steady 
state conditions, for each simulation, of pathway volume (activity), nutrient concentration, and percentage of 
nutrient inflow consumed per pathway for different combinations of nutrient inflow levels along a gradient 
of oxygen inflow. a) Pristine sediment (iNO3

-=0, iNO2
-=0, iNH4

+=1, iCH2O=5), b) Eutrophic (iNO3
- low) 

sediment (iNO3
-=1, iNO2

-=0, iNH4
+=1, iCH2O=5), c) Eutrophic (iNO3

- high) sediment (iNO3
-=10, iNO2

-

=0, iNH4
+=1, iCH2O=5), d) Eutrophic (iNO2

- high) sediment (iNO3
-=0, iNO2

-=10, iNH4
+=1, iCH2O=5).
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Figure 2.4. Competition simulations of the model representing two hypothetical marine sediments (as 
in Figure 2.3). a) Pristine sediment (iNO3

-=0, iNO2
-=0, iNH4

+=5, iCH2O=1), b) Eutrophic (iNO3
- low) 

sediment (iNO3
-=1, iNO2

-=0, iNH4
+=5, iCH2O=1). 
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Because truncated denitrification to the level of nitrite, nitric oxide or nitrous 
oxide, were not predicted to be viable pathways (Table 2.1), we followed the non-
equilibrium dynamics of the truncated denitrification pathways. We simulated a 
pulse of nitrate influx in an anoxic, organic environment and followed the pathway 
activity in time (Fig. 2.5). As long as both substrates were not limited, denitrification 
to the level of nitrite, nitric oxide and nitrous oxide were predicted. However, when 
pathways started to compete (at t≈2.4), the activity rate of denitrification to the 
level of dinitrogen gas continued increasing, while the activity of other pathway 
decreased. 

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Time (t)

NO

N2O
N2

NH4
+

Pa
th

w
ay

 v
ol

um
e 

(m
ol

P)

NO2
-

Figure 2.5. Activity of nitrate reduction 
pathways to the level of N2, N2O, NO, NH4

+ 
and NO2

- in time after a pulse of nitrate 
(iNO3

-=10) at t=1 (iNO2
-=0, iNH4

+=0, 
iO2=0, iCH2O=10).

To test if our results are sensitive to the implemented limitation on ammonium 
activation, we explored the outcome of the model without this restriction. Two 
additional strong ammonium-consuming pathways were predicted: direct 
ammonium oxidation with oxygen to the level of dinitrogen gas (as a single redox 
reaction) and anammox using nitrate (Fig. A2.1 and A2.2). None of these pathways 
have been found in nature, suggesting that, indeed, ammonium oxidation requires 
a one-to-one reactive species.

Discussion

The model predicted the viability of almost all nitrogen pathways known to exist 
in nature (Table 2.1). Interestingly, this suggests that the combination of basic 
thermodynamic principles (stoichiometry, energy yield), and competition for 
substrates can already explain why most pathways are found in practice. In other 
words, these principles may largely determine the competitive strength of a pathway. 

Strikingly, our basic principles model also predicted the viability of two unknown 
pathways, namely ‘nitrite dismutation’ and ‘total nitrification’ (Table 2.1). One 
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possibility is that these pathways do exist in nature but are not discovered. A likely 
alternative explanation for their absence in observations is that other biochemical 
restrictions may impact the viability of these pathways. Some observed pathways 
were not predicted by the model, but observed in nature, such as the truncated 
denitrification pathways. Here, we first compare the activity of known pathways for 
model simulations and for measurements in natural systems, then we discuss the 
possible existence of the two unknown pathways predicted by the model. 

In the hypothetical sediments oxygen inflow was modeled as a gradient. This gradient 
can be thought of as sediment depth, with high oxygen inflow close to the sediment 
water interface. However, it is important to realize that oxygen inflow layers were 
modeled separately, so we did not consider diffusion of substrates through the modeled 
layers or porosity of the sediment. The model predictions show many similarities, but 
also show some deviations from what is found in nature (Fig. 2.3). These deviations 
may give us a hint about additional biochemical limitations or factors influencing the 
activity of a certain pathway. Here, we discuss for each predicted viable pathway how 
the model results relate to observations in nature. 

DNRA is only predicted by the model in eutrophic organic sediments, when nitrate 
inflow is not too high (Fig. 2.3b). In nature, DNRA is indeed encountered at high 
C:NO3

- ratios, which is explained by the fact that DNRA, despite having a lower 
energy yield, consumes less nitrate per C than denitrification (Table 2.1) (Tiedje 1988; 
Kelso et al. 1997). Also, DNRA is only predicted at strictly anoxic conditions, whereas 
denitrification is predicted at both low and high equilibrium oxygen concentrations 
(Fig. 2.3b,c and 2.4b). In natural environments, DNRA is indeed measured under 
anoxic conditions and in deeper sediment layers than denitrification (Buresh and 
Patrick 1981; Jørgensen 1989; Kelso et al. 1997). Most denitrification activity is 
reported in anoxic or suboxic conditions (Seitzinger et al. 2006). The model suggests 
that denitrification could thrive in oxic conditions, when nitrate co-occurs with 
oxygen (Fig. 2.3c), as recently found by Gao et al. (2010). The lack of predicted DNRA 
activity in marine sediments, could be due to the fact that we did not consider sulfur 
compounds, while in natural systems, DNRA activity can be coupled to sulfur cycling 
(Brunet and Garcia-Gil 1996; An and Gardner 2002).  

Anammox is mainly predicted to occur coupled to partial nitrification, due to the 
necessity of nitrite. In the modeled freshwater sediments, both pathways are only 
found at the oxic-anoxic boundary at very low rates (Fig. 2.3a, b, and c), while in 
the marine sediments, they are predicted over a larger range of depth under anoxic 
conditions. This follows from the competition for oxygen between nitrification and 
respiration: when ammonium levels are high compared to organic material levels 
(i.e. marine sediment), partial nitrification can flourish along a large range of depth 
by consuming the incoming oxygen and ammonium, creating anoxia, and supplying 
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anammox with nitrite (Fig. 2.4a and b). Anammox coupled to partial nitrification 
is indeed a process used in ammonium-rich wastewater treatment under oxygen 
limitation (Sliekers et al. 2002; Jetten et al. 2003). Not much evidence has been found 
for anammox in natural freshwater systems. Schubert et al. (2006), however, showed 
anammox activity at the oxic-anoxic boundary of the water column of a large lake. In 
marine environments, anammox is indeed found at high rates (Dalsgaard et al. 2005; 
Brandes et al. 2007) under strictly anoxic conditions (Kuypers et al. 2003; Dalsgaard 
et al. 2005; Schmid et al. 2007). While anammox is expected to have a high global 
contribution to dinitrogen production (Strous and Jetten 2004), under laboratory 
conditions, anammox has a very low growth rate (Strous et al. 1999). This cannot be 
explained by the model. This suggests that the low growth rate may be due to other 
factors than thermodynamic feasibility or resource competition. 

The model predicts that partial nitrification may win the competition over total 
nitrification in marine sediments when oxygen is more limited than ammonium 
(Fig. 2.4a and b), because partial nitrification consumes less oxygen per unit of N. 
Experiments indeed show that partial nitrification is supported by high ammonium 
inflow and relatively low oxygen conditions (Ciudad et al. 2005). At high ammonium 
and oxygen inflow levels, total nitrification is predicted to feed denitrification with 
nitrate (Fig. 2.4a and b). Nitrification-denitrification coupling is indeed a common 
process found in oxic sediments and close to macrophytes (Risgaard-Petersen et al. 
1994; Eriksson and Weisner 1999). However, as discussed before, total nitrification is 
in nature performed in two steps by two different pathways.  

One of the unknown pathways predicted by our model, the ‘nitrite dismutation’ 
pathway, has already been suggested as a potential microbial pathway by Strohm et 
al. (2007), based on its energy yield. Generally, nitrite input in nature is much lower 
than nitrate input, therefore the chance to encounter this pathway is expected to be 
low. However, our model suggests that ‘nitrite dismutation’ could be directly coupled 
to denitrification, through nitrate (in the presence of organic material). Therefore, we 
suggest that it might have been overlooked in natural environments. If this pathway 
has evolved, we speculate that, based on our model results, ‘nitrite dismutation’ could 
be found in deeper, anoxic, layers of freshwater systems with high inflow of nitrite. 

From the viability tests and the above comparison of predicted conditions with 
observed conditions, we can deduce that resource competition proves to be a crucial 
model ingredient to understand why pathways are active in certain conditions. In 
our model pathways and substrates are interacting dynamically, so each pathway 
can both limit substrate availability (i.e. anoxia), and create conditions in which 
other pathways can flourish (i.e. coupled nitrification-denitrification). As a result, 
the ecological fitness of each pathway is determined by its efficiency of consuming 
substrates.
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There is, however, a conspicuous deviation between the model predictions and the 
patterns observed in nature. Our model predicted the highest fitness for the longest 
pathways, whereas this is not always the case in nature. For instance, complete 
denitrification in the model always outcompeted the truncated denitrification found 
in nature. In addition, the second unknown pathway predicted by our model, total 
nitrification, existed side by side in the simulations with ammonium oxidation to 
nitrite, while nitrification from nitrite was not predicted at all. What might explain 
such differences between our theoretical prediction and reality? 

Interestingly, after a pulse of nitrate, activity of denitrification pathways to the level 
of nitrous oxide, nitric oxide and nitrite is temporarily high (Fig. 2.5). This result 
nicely shows that during an ecological feast, when resources are abundant, the 
selective forces are weak, as there is hardly any competition. Experiments indeed 
show higher denitrification activity to the level of nitrous oxide with high nitrate 
concentrations (Firestone et al. 1980). In our former analyses, we considered only 
equilibrium conditions (arising when at least one of the substrates becomes limited). 
Thus, the pulse simulation illustrates that the lack of dynamic conditions (feast and 
famine) may explain why these analyses do not predict truncated denitrification 
pathways.

Still, such non-equilibrium dynamics do not appear to explain the fact that total 
nitrification is not observed in nature. Costa et al. (2006) suggested that the more 
steps are included in a pathway, the more enzymes and (possibly toxic) intermediates 
are involved, which makes long pathways less beneficial than short pathways. We 
explored whether this could explain the lack of total nitrification in nature, by 
adapting individual maintenance costs relative to an estimated number of steps in a 
pathway (Appendix A2). Indeed, we found a parameter range of pathway length costs 
where total nitrification was always outcompeted by the two partial nitrification 
pathways and where nitrate to nitrite reduction was additionally predicted at 
high nitrate inflow levels. However, for that parameter range, anammox showed 
relatively high activity, also in oxic conditions, while denitrification and DNRA 
were relatively weak competitors (Fig. A2.3 and A2.4). This suggests that costs may 
indeed be an important factor influencing the fitness of long pathways, and thus the 
existence of pathways like total nitrification. However, assuming a linear relation 
between the number of enzymes and costs is probably too simplistic. Obviously, 
differences in regulatory mechanisms, protein sizes, and the level of toxicity of 
intermediates may also play a role. 
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Apart from the two exceptions described, our analysis suggests that the current 
inventory of nitrogen cycle pathways may be complete. However, many of the other 
pathways of Table A2.1 that were predicted to have low fitness today may still 
have been important in the past, before the evolution of the currently observed 
pathways. For example, it has been suggested that the oxidation and reduction of 
toxic nitrogen cycle intermediates such as nitric oxide was a prerequisite for the 
evolution of the current nitrogen cycle processes (Klotz and Stein 2008; Klotz et 
al. 2008). In our model systems such toxic compounds never accumulated, only 
occurred as intermediates or were consumed by other processes. Therefore, there 
was no need to consider toxicity or inhibition in our model.

Obviously, many relevant aspects were excluded or highly simplified in our model. 
For instance, we do not account for the inflow of alternative electron donors or 
acceptors, such as S-, and Fe- compounds (Brunet and Garcia-Gil 1996; Weber et al. 
2001, 2006), or the effect of temperature on pathway activity (Tijhuis et al. 1993). 
Also, we did not consider environmental variation in inflow of substrates, such 
as the availability and quality of organic material which could affect the activity 
of the nitrogen pathways (Burford and Bremner 1975). Inclusions of such aspects 
in future models may allow a more complete prediction of theoretical pathways. 
However, our minimal model analysis suggests that much of the seemingly complex 
repertoire of nitrogen pathways in nature may be understood from a few simple 
basic principles. 

Conclusions

The realism of the results we obtained suggests that our minimal model may capture 
much of the essence of what drives microbial nitrogen processes in the real world. Our 
findings imply that the fitness of a catabolic nitrogen pathway may be determined 
largely by stoichiometry and energy yield of the performed redox reaction, and 
that the activity of each pathway at certain environmental conditions can simply be 
explained from competition for limited resources. 

The few discrepancies between predictions and observations hint at the importance 
of non-equilibrium dynamics and of biochemical barriers that may exclude certain 
nitrogen pathways, such as a high ammonium activation energy and costs relative 
to pathway length. An interesting remaining discrepancy is the prediction of the 
dismutation of nitrite, to the level of nitrate and dinitrogen gas. We suggest that 
this could well be a viable, yet undiscovered, pathway that might well play a role in 
systems with high nitrite and low oxygen levels. 
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Experimental procedures

Theoretical pathways

We created a list of theoretical pathways (Table A2.1) in several steps. First, we 
determined all possible half reactions involving organic material (CH2O), oxygen 
(O2) and the nitrogen compounds nitrate (NO3

-), nitrite (NO2
-), nitric oxide (NO), 

nitrous oxide (N2O), dinitrogen gas (N2) and ammonium (NH4
+). Then, we combined  

the electron accepting and electron donating half reactions resulting in a complete 
list of possible redox reactions. We then removed redox reactions with overlapping 
intermediates in both half reactions, because if a reductant of a half reaction is the 
oxidant in the complementary half reaction and vice versa, the reaction cannot 
proceed. Finally, we calculated the Gibbs free energy change per electron transfer 
for each reaction, by subtracting the total standard formation energy of substrates 
from the total standard formation energy of products, for standard conditions: 1 
atm pressure, 1 M concentration, pH =7 (as in Madigan et al. (2003)). For organic 
material, we used the standard formation energy of glucose. Reactions with a 
negative Gibbs free energy change, and thus energy yield, were included in the 
final pathway list. This resulted in 62 thermodynamically possible pathways (Table 
A2.1). 

The list of theoretical pathways was modified to include the ammonium activation 
restriction. Pathways in which NH4

+ is not oxidized by O2 as the primary substrate, 
or NO as an intermediate or primary substrate, were removed from the list. NO was 
considered an intermediate or primary substrate when the oxidation state of the 
substrate was lower or the oxidation state of the product was higher or equal than 
that of NO (+2). Pathways that could be activated by O2 or NO, were removed 
from the list when the [oxidizer: NH4

+] ratio was smaller than 1. The final model 
consisted of 45 pathways (Table A2.1). 

Model description

Our model is an ordinary differential equation (ODE) model with 53 differential 
equations, namely 45 competing theoretical pathways and 8 nutrients (NO3

-, NO2
-, 

NO, N2O, N2, NH4
+, O2 and CH2O). The model equations and parameters are given 

in Table 2.2.

In this study, we are interested in relative rather than absolute differences between 
pathway volume and between nutrient concentrations, therefore the units of these 
variables are undefined, and called ‘molP’ and ‘molS’. For the same reason, most 
general parameters applying to all pathways were simply set to one. The individual 
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pathway parameters are the nutrient concentrations involved in the transfer of 
one electron (s), and the energy yield for the transfer of one electron (ΔG). Both 
parameters were derived from the theoretical pathways list (Table A2.1). 

Table 2.2. Model equations and parameters of the model.

Nutrient concentration (in molS): 

= =

= − + −∑ ∑, ,
1 1

k
k k j j j k j j j k

j j

dN i s M P p M P eN
dt  

k=1,.. .8  j=1,.. .45 (1)

Electron transfer rate (in molP-1t-1) for pathway j using nutrients N1 and N2:

  
=     + +  

1 2

1 1, 2 2,
j

j j

N NM r
N s N s

 

j=1,.. .45 (2)

Pathway volume (in molP):

= ∆ −j
j j j j

dP
b G M P dP

dt  
 j=1,.. .45  (3)

Parameters Description Value Units

ΔGj Gibbs free energy yield for the transfer of one electron, for 
pathway j

Table A2.1 kJ

sk,j and pk,j Stoichiometric factor for nutrient k, for pathway j Table A2.1 molS
ik Inflow of nutrient k 0-10 molS t-1

e Outflow rate 1 t-1

r Maximum electron transfer rate 1 molP-1t-1

b Energy-to-volume-conversion rate -0.1 molP kJ-1

d Maintenance costs 1 t-1

Nutrients (N) are assumed to flow through the system with a constant inflow 
(i) and a concentration dependent outflow rate (e), while being consumed and 
produced by the theoretical pathways, like a chemostat (Table 2.2: Eqn. 1). Nutrient 
consumption and production of each pathway are calculated by multiplying the 
nutrient concentration involved in the transfer of one electron (s and p), the electron 
transfer rate per molP (M) and the pathway volume (P).  

The electron transfer rate per molP (M) for each pathway is assumed to be limited 
by mass transfer. We captured this in the model by implementing double Monod 
kinetics, with the nutrient concentration of the substrates involved in the transfer 
of one electron (s) as the half saturation factor (Table 2.2: Eqn. 2). In this way, 
the maximum electron transfer rate (r) is reached at lower nutrient concentrations 
when nutrient consumption per electron is low. 
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The growth of each pathway per molP is calculated by multiplying the energy yield 
for the transfer of one electron (ΔG), the electron transfer rate per molP (M), and 
the pathway volume (P). Maintenance costs (d) are considered constant per molP 
(Table 2.2: Eqn. 3). Because energy yield is negative, ΔG is converted to volume by 
an energy-to-volume-conversion factor (b), in this way the maximal growth rate 
ranges from approximately 1 to 17 molP/t.   

An equilibrium is established when nutrient concentrations and pathway activity 
do not change in time. The final nutrient concentration is the residual of inflow, 
consumption and production. Total consumption stabilizes when each pathway 
has depleted one of its nutrients. Thus the final pathway volume in the model is 
determined by the relative differences in nutrient inflow rates. Therefore, pathway 
volume, or activity, is a relative measure as well, so it can only be judged qualitatively, 
not quantitatively. We studied different combinations of substrate inflow levels, for 
both random and competition simulations. All simulations were carried out in Grind 
for Matlab (http://www.sparcs-center.org/grind).
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Appendix A2

Model without ammonium activation restriction

To investigate the effect of the ammonium activation restriction, we repeated the 
simulations as in Figure 2.3 and 2.4 in the main text, including pathways in which 
ammonium can not be activated one-to-one with a reactive species (Table A2.1: 
starred pathway numbers). Two unknown pathways showed strong activity (Fig 
A2.1 and A2.2): ammonium oxidation to the level of dinitrogen gas (Table A2.1: 
Eqn. 61) and anammox using nitrate (Table A2.1: Eqn. 14). 

Maintenance costs relative to pathway length

A theoretical explanation considering enzymatic and intermediate costs has been 
proposed by Costa et al. (2006). The more steps are included in a pathway, the 
more enzymes and intermediates are involved. This implies that a long pathway 
is associated with relatively high costs, since enzyme synthesis requires ATP, 
carbon and other substrates while intermediates can have toxic effects (Pfeiffer and 
Bonhoeffer 2004; Costa et al. 2006). 

To implement this constraint in our model, we made a general estimation for the 
number of enzymes involved in a theoretical pathway. We assumed that every step 
involving the making and breaking of N-O, N-N, C-O and O-O bonds needs to be 
catalyzed by one enzyme. For example for denitrification from NO3

- to N2 three 
oxygen atoms have to be removed and one nitrogen atom has to be added, therefore 
the estimated number of enzymes for this half reaction is four. This estimation is 
correct for the majority of the known pathways, for example the denitrification 
pathway includes four enzymes catalyzing the following steps: NO3

- → NO2
- → NO 

→ N2O → N2 (van Spanning et al. 2007).  We included the costs-for-pathway-length 
as a constant decay rate in the pathway biomass equation:

= ∆ − −j
j j j j j

dP
b G M P dP cLP

dt  

where L is the estimated pathway length, and c the costs-for-pathway-length. 

We performed several simulations with different costs factors. At c=0.4, ‘total 
nitrification’ could not win the competition in any of the simulations with random 
inflow levels (Fig. A2.3 and A2.4). For this parameter setting, two other known 
‘short pathways’ appeared: nitrate reduction to nitrite (active at high nitrate levels), 
and denitrification from the level of nitrite to dinitrogen (active at high nitrite levels 
under anoxic conditions). Anammox showed relatively high activity, also at oxic 
conditions, while denitrification and DNRA were weak competitors. 
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Table A2.1. Theoretical pathways involving the nitrogen compounds nitrate (NO3
-), nitrite (NO2

-), 
nitric oxide (NO), nitrous oxide (N2O), nitrogen gas (N2), ammonium (NH4

+), organic material (CH2O) 
and oxygen (O2). The reaction coefficients and the energy yield are calculated per electron transfer. 
The pathways indicated with a star were not included in the model, due to the ammonium activation 
restriction.

Nr Reactants Products ∆G

1 1/2 NO3
- + NO + 1/2 H2O → 1 1/2 NO2

+ + H+ -7.8645

2 * 1/2 NO3
- + 1/6 NH4

+ → 2/3 NO2
- + 1/3 H+ + 1/6 H2O -8.7375

3 * 1/2 NO3
- + 1/5 NH4

+ → 1/2 NO2
- + 1/5 NO + 1/5 H+ + 3/10 H2O -8.9121

4 * 1/2 NO3
- + 1/4 NH4

+ → 1/2 NO2
- + 1/8 N2O + 1/4 H+ + 3/8 H2O -29.027

5 * 1/2 NO3
- + 1/3 NH4

+ → 1/2 NO2
- + 1/6 N2  + 1/3 H+ + 1/2 H2O -8.421

6 1/2 NO3
- + 1/4 CH2O → 1/2 NO2

- + 1/4 CO2  + 1/4 H2O -82.65

7 * 1/3 NO3
- + 1/5 NH4

+ + 2/15 H+ → 8/15 NO + 7/15 H2O -6.2906

8 * 1/3 NO3
- + 1/4 NH4

+ + 1/12 H+ → 1/3 NO + 1/8 N2O + 13/24 H2O -26.405

9 * 1/3 NO3
- + 1/3 NH4

+ → 1/3 NO + 1/6 N2 + 2/3 H2O -65.8

10 1/3 NO3
- + 1/4 C H2O + 1/3 H+ → 1/3 NO + 1/4 CO2 + 5/12 H2O -80.028

11* 1/4 NO3
- + 1/4 NH4

+ → 1/4 N2O + 1/2 H2O -44.947

12* 1/4 NO3
- + 1/3 NH4

+ → 1/8 N2O + 1/6 N2 + 1/12 H+ + 5/8 H2O -84.342

13 1/4 NO3
- + 1/4 CH2O + 1/4 H+ → 1/8 N2O + 1/4 CO2 + 3/8 H2O -98.57

14* 1/5 NO3
- + 1/3 NH4

+ → 4/15 N2 + 2/15 H+  + 3/5 H2O -98.989

15 1/5 NO3
- + 1/4 CH2O + 1/5 H+ → 1/10 N2 + 1/4 CO2 + 7/20 H2O -113.22

16 1/8 NO3
- + 1/4 CH2O + 1/4 H+ → 1/8 NH4

+ + 1/4 CO2 + 1/8 H2O -76.097

17 NO2- + 1/2 H+ → 1/2 NO3
- + 1/4 N2O + 1/4 H2O -31.841

18 5/6 NO2
- + 1/3 H+ → 1/2 NO3

- + 1/6 N2 + 1/6 H2O -50.946

19 1/2 NO2
- + NO → 1/2 NO3

- + 1/2 N2O -71.547

20 1/2 NO2
- + 1/2 NO → 1/2 NO3

- + 1/4 N2 -80.352

21 1/2 NO2
- + 1/2 N2O → 1/2 NO3

- + 1/2 N2 -89.157

22 1/2 NO2
- + 1/4 O2 → 1/2 NO3

- -37.067

23* NO2
- + 1/5 NH4

+ + 4/5 H+ → 6/5 NO + 4/5 H2O -1.0476

24* NO2
- + 1/4 NH4

+ + 3/4 H+ → NO + 1/8 N2O + 7/8 H2O -21.162

25* NO2
- + 1/3 NH4

+ + 2/3 H+ → NO + 1/6 N2 + H2O -60.557

26 NO2
- + 1/4 CH2O + H+ → NO + 1/4 CO2 + 3/4 H2O -74.785

27 1/2 NO2
- + 1/4 NH4+ + 1/4 H+ → 3/8 N2O + 5/8 H2O -60.868

28 1/2 NO2
- + 1/3 NH4

+ +1/6 H+ → 1/4 N2O + 1/6 N2 + 3/4 H2O -100.26

29 1/2 NO2
- + 1/4 CH2O + 1/2 H+ → 1/4 N2O + 1/4 CO2 + 1/2 H2O -114.49

30 1/3 NO2
- + 1/3 NH4

+ → 1/3 N2 + 2/3 H2O -119.37

31 1/3 NO2
- + 1/4 CH2O + 1/3 H+ → 1/6 N2 + 1/4  CO2 + 5/12 H2O -133.6

32 1/6 NO2
- + 1/4 CH2O + 1/3 H+ → 1/6 NH4

+ + 1/4 CO2  + 1/12 H2O -73.912

33 4/3 NO + 1/6 H2O → 1/3 NO3
- + 1/2 N2O + 1/3 H+ -74.168

34 5/6 NO + 1/6 H2O → 1/3 NO3
- + 1/4 N2 + 1/3 H+ -82.974
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35 1/3 NO + 1/2 N2O + 1/6 H2O → 1/3 NO3
- + 1/2 N2 + 1/3 H+ -91.779

36 1/3 NO + 1/4 O2 + 1/6 H2O → 1/3 NO3
-  + 1/3 H+ -39.689

37 2 NO + 1/2 H2O → NO2
- + 1/2 N2O + H+ -79.411

38 3/2 NO + 1/2 H2O → NO2
- + 1/4 N2 + H+ -88.216

39 NO + 1/2 N2O + 1/2 H2O → NO2
- + 1/2 N2 + H+ -97.022

40 NO + 1/4 O2 + 1/2 H2O → NO2
-  + H+ -44.931

41 NO + 1/4 NH4
+ →  5/8 N2O + 1/4 H+ + 3/8 H2O -100.57

42 NO + 1/3 NH4
+ → 1/2 N2O + 1/6 N2 + 1/3 H+ + 1/2 H2O -139.97

43 NO + 1/4 CH2O → 1/2 N2O + 1/4 CO2 + 1/4 H2O -154.2

44 1/2 NO + 1/3 NH4
+ → 5/12 N2 + 1/3 H+ + 1/2 H2O -148.77

45 1/2 NO + 1/4 CH2O → 1/4 N2 + 1/4 CO2 + 1/4 H2O -163

46 1/5 NO + 1/4 CH2O + 1/5 H+ +1/20 H2O→ 1/5 NH4
+ + 1/4 CO2 -73.738

47 5/8 N2O + 1/8 H2O → 1/4 NO3
- + 1/2 N2 + 1/4 H+ -73.236

48 1/8 N2O + 1/4 O2 + 1/8 H2O → 1/4 NO3
- + 1/4 H+ -21.146

49 3/4 N2O + 1/4 H2O → 1/2 NO2
- + 1/2 N2 + 1/2 H+ -57.316

50 1/4 N2O + 1/4 O2 + 1/4 H2O → 1/2 NO2
- + 1/2 H+ -5.2258

51 N2O → NO + 1/2 N2 -17.61

52* 1/2 N2O + 1/3 NH4
+ → 2/3 N2  + 1/3 H+ + 1/2 H2O -157.58

53 1/2 N2O + ¼ CH2O → 1/2 N2 + 1/4 CO2  + 1/4 H2O -171.81

54 1/8 N2O + 1/4 CH2O + 1/4 H+  + 1/8 H2O → 1/4 NH4
+ + 1/4 CO2 -53.623

55 1/10 N2 + 1/4 O2 + 1/10 H2O → 1/5 NO3
- + 1/5 H+ -6.4991

56 1/6 N2 +1/4 CH2O + 1/3 H+ + 1/4 H2O→ 1/3 NH4
+ + 1/4 CO2 -14.228

57 1/8 NH4
+ + 1/4 O2 → 1/8 NO3

- + 1/4 H+ + 1/8 H2O -43.62

58 1/6 NH4
+ + 1/4 O2 → 1/6 NO2

- + 1/3 H+ + 1/6 H2O -45.804

59* 1/5 NH4
+ + 1/4 O2 → 1/5 NO + 1/5 H+ + 3/10 H2O -45.979

60* 1/4 NH4
+ + 1/4 O2  → 1/8 N2O + 1/4 H+ + 3/8 H2O -66.094

61* 1/3 NH4
+ + 1/4 O2 → 1/6 N2 + 1/3 H+ + 1/2 H2O -105.49

62 1/4 CH2O + 1/4 O2 → 1/4 CO2 + 1/4 H2O -119.72
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Figure A2.1. Competition simulations of the model without ammonium activation restriction representing 
four hypothetical freshwater sediments. Steady state conditions, for each simulation, of pathway volume 
(activity), nutrient concentration, and percentage of nutrient inflow consumed per pathway for different 
combinations of nutrient inflow levels along a gradient of oxygen inflow. a) Pristine sediment (iNO3

-

=0, iNO2
-=0, iNH4

+=1, iCH2O=5), b) Eutrophic (iNO3
- low) sediment (iNO3

-=1, iNO2
-=0, iNH4

+=1, 
iCH2O=5), c) Eutrophic (iNO3

- high) sediment (iNO3
-=10, iNO2

-=0, iNH4
+=1, iCH2O=5), d) Eutrophic 

(iNO2
- high) sediment (iNO3

-=0, iNO2
-=10, iNH4

+=1, iCH2O=5).
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Figure A2.2. Competition simulations of the model without ammonium activation restriction 
representing two hypothetical marine sediments (as in Figure A2.1). a) Pristine sediment (iNO3
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Figure A2.3. Competition simulations of the model including the costs-for-pathway-length assumption, 
representing four hypothetical freshwater sediments. Steady state conditions, for each simulation, of 
pathway volume (activity), nutrient concentration, and percentage of nutrient inflow consumed per 
pathway for different combinations of nutrient inflow levels along a gradient of oxygen inflow. a) 
Pristine sediment (iNO3

-=0, iNO2
-=0, iNH4

+=1, iCH2O=5), b) Eutrophic (iNO3
- low) sediment (iNO3
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Abstract

Regular patterns in nature ranging from leopard skins to vegetation bands are 
driven by a fundamental class of self-organizing mechanisms discovered by the 
mathematician Alan Turing. Here we show the widespread occurrence of previously 
unrecognized Turing patterns on coral reefs in Australia and New Caledonia. Since 
the fundamental conditions for the formation of Turing patterns are well understood, 
our finding points to a specific set of testable mechanisms that govern reef growth 
at these scales. Moreover, the characteristic spectrum of dots, labyrinths, gaps and 
bands that we reveal reflects a gradient in stress, and thus indicates differences in 
resilience. Our finding points at novel ways to use remotely sensed information for 
assessment of coral reef resilience.
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In a classical paper in 1952, Alan Turing demonstrated how spontaneous spatial 
pattern formation can be explained by the principle of diffusion-driven instability 
(Turing 1952). Addressing the fundamental question of how an initially perfectly 
symmetric group of identical cells could start to differentiate into an embryo, Turing 
showed that under particular conditions a homogeneous distribution of matter can 
become unstable. A slight perturbation is then enough to trigger a spontaneous 
redistribution that produces a regular spatial pattern. Such ‘Turing instability’ 
has recently been shown to drive the embryonic development of feathers (Harris 
et al. 2005) and limbs (Raspopovic et al. 2014). The same fundamental principle 
can explain a particular set of patterns that are found across remarkably different 
systems in nature, for example on animal skins (Murray 2003) (Fig. 3.1a-b) (e.g. 
tiger, leopard, zebra, many fish species), and in different ecosystems, such as arid 
vegetation (Rietkerk et al. 2002) (Fig. 3.1c), peatlands (Rietkerk and van de Koppel 
2008; Eppinga et al. 2009) (Fig. 3.1d), and intertidal flats (Weerman et al. 2010).

Figure 3.1. Examples of observed 
Turing patterns in nature: a) leopard 
skin, b) fish skin (butterfly fish), c) 
desert vegetation (Niger, Google 
Earth [12°38’19”N 3°13’04”E]), and 
d) peatland (Finland, Google Earth 
[62°48’51”N 30°48’13”E]).

Turing patterns can be distinguished from other regular patterns by the 
characteristic repertoire of sub-types, including spots, labyrinth, gaps, and 
parallel bands (Rietkerk et al. 2002). The entire repertoire is often encountered 
together, because all sub-types can arise from a single mechanism driven by Turing 
instability, with local conditions determining the actual pattern (Klausmeier 
1999; von Hardenberg et al. 2001; Rietkerk et al. 2004). In ecosystems, Turing 
patterns are often linked to spatial fluxes of resources and growth inhibitors, 
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resulting in productive patches and non-productive regions between patches 
(Meinhardt 1982). Moreover, a consistent change of spatial patterning can be 
indicative of a loss of ecological resilience (Meron et al. 2004; Rietkerk et al. 2004). 

Here we report the widespread occurrence of previously unnoticed Turing patterns 
in coral reefs (Figs. 3.2 and 3.3). Analyzing Google Earth satellite images, we found 
small-scale (10s of meters) regular patterns across the Great Barrier Reef and in 
New Caledonia (Fig. 3.2, see also Appendix A3). The patterns are located in the 
lagoonal habitat in the lee of the individual platform and ribbon reefs (Fig. 3.2) 
at depths ranging from 8 to 20 meters, and comprise corals patches surrounded 
by soft sediments (see underwater images in Appendix A3). The patterns can be 
distinguished on aerial photographs (Fig. 3.2), and on the latest high-resolution 
satellite images (see Appendix A3). Currently, images of only a small number of 
reefs are available in high definition, so it is likely that the patterns are much more 
common and widespread than indicated in Figure 3.2. 

Figure 3.2. Observed Turing patterns on the Great Barrier Reef and New Caledonia. White pins indicate 
locations at which patterns were observed. a) Agincourt Reef (Google Earth [15°57’25”S 145°49’20”E]), 
b) patterns on Agincourt Reef (photo by Sjoerd Doggen), c) Hardy Reef (Google Earth [19°45’59”S 
149°14’58”E]), d) patterns on Hardy Reef (photo by GBRMPA), e) One Tree Island Reef (Google Earth 
[23°29’40”S 152°5’2”E]), f) patterns on One Tree Island Reef (photo by GBRMPA). Scales were estimated 
using satellite images. The scales in panels d and f are specific to the location of the bar.
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Several lines of evidence indicate that the detected patterns are indeed generated 
by a mechanism involving Turing instability. First of all, a spectral wave analysis 
of aerial images (as in Renshaw and Ford (1983)) reveals that the patterns are 
significantly regular (see Fig. A3.1). Such regularity excludes the possibility that 
the observed patterns simply arise from aggregation through growth and settlement 
of corals on randomly distributed hard substrate, such as coral rubble or shells. 
Simple physical forces can create regular patterns as in ripples and dunes. On coral 
reefs, one may think for example of rows of storm-generated fragments on reef flats 
(Scoffin 1993), or the linear spur and groove systems that are aligned with the flow 
of onshore waves, commonly observed on shallow exposed fore-reefs around the 
world (Roberts et al. 1992). However, such phenomena cannot explain the presence 
of the characteristic full repertoire of Turing patterns we have documented in 
sheltered lagoons. Indeed, the entire set of sub-types (i.e. spots, labyrinths, gaps and 
bands) that is predicted from models of Turing instability (Fig. 3.3e-h) (see Methods) 
occurs in the field (Fig. 3.3a-d) often even within the sheltered lagoon of a single 
reef (e.g. see Appendix A3). Further support for the role of Turing instability comes 
from the observation that banded patterns (e.g. Fig. 3.3d) are found perpendicular 
to the water flows in and out of lagoons through shallow passes (e.g. see satellite 
images in Appendix A3). This is consistent with the prediction that banded Turing 
patterns tend to arise perpendicular to the direction of advective transport, in this 
case, water movement (Fig. 3.3h). 

Figure 3.3. The entire repertoire of Turing sub-types as observed on satellite images (a-d), and as predicted 
by a model of Turing instability (e-h). a) spots in New Caledonia [21°48’27.49”S 165°42’8.62”E], b) 
labyrinth on One Tree Island Reef, Australia [23°29’40.15”S 152° 5’2.66”E], c) gaps in New Caledonia 
[22° 5’46.65”S 166° 1’22.79”E], d) bands on Hardy Reef, Australia [19°44’39.87”S 149°12’41.79”E]. The 
model results (panels e-h) are produced by a resource accumulation model (with i reflecting the inflow 
level of the resource). e) spots (i=0.04), f) labyrinth (i=0.1), g) gaps (i=0.2), h) bands (i=0.13, 
Ux=1, Uy=1, with Ux and Uy reflecting the x- and y-direction of a directional flow of the modeled 
resource, indicated by the white arrow). Note that similar patterns can be generated by other models 
(e.g. see Fig. A3.2).
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While the detection of these previously unrecognized patterns is interesting per se, 
the phenomenon also points to a set of mechanisms that determine reef formation 
and functioning because the generic conditions for Turing patterns to emerge are 
quite specific. In general terms, such patterns are produced from the combination 
of a small scale positive feedback with a long-range negative feedback (Meinhardt 
1982; Rietkerk and van de Koppel 2008). More specifically, when it comes to 
ecosystems, Turing patterns arise if an organism has a reinforcing effect on its 
own local growth (the local positive feedback), but a negative effect on growth 
at a greater distance (the long-range negative feedback) (Fig. 3.4a) (Meinhardt 
1982; Rietkerk and van de Koppel 2008). This combination can arise through 
the influence of the organism on the spatial distribution of resources or growth 
inhibitors (Fig. 3.4b-c) (Meinhardt 1982). An example of resource redistribution 
occurs in arid ecosystems where surface-water infiltration to the soil is higher in 
patches of vegetation, facilitating local vegetation growth. A direct consequence 
is that growth is inhibited outside the patches where water runs off before it 
can infiltrate the soil and so moisture is depleted (Rietkerk et al. 2002; van de 
Koppel and Rietkerk 2004). This example illustrates how organisms may promote 
accumulation of resources in patches, thus depleting the resource level between 
the patches (‘resource accumulation’ mechanism, Fig. 3.4b). The complementary 
class of mechanisms occurs when organisms repel growth inhibitors. This reduces 
stress arising from the growth inhibitor within the patches, while raising stress 
levels between patches (i.e. ‘stress divergence’ mechanism, Fig. 3.4c) (e.g. see van 
de Koppel and Crain (2006)). Obviously, combinations of mechanisms on different 
spatial scales are possible too (Gierer and Meinhardt 1972). 
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Figure 3.4. General conditions for Turing patterns in ecosystems. a) Turing patterns can arise if an 
organism has a positive effect on its own growth at a short distance, and a negative effect at a longer 
distance. Two generic classes of mechanisms can generate this situation: b) resource accumulation, i.e. 
a patch of organisms attracts a net flux of resources causing resource depletion at a distance, or c) stress 
divergence, i.e. a patch of organisms deflects a growth inhibitor leading to stress accumulation at a 
distance.
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Quite independently of the precise formulation, different kinds of mathematical 
models based on either of the two generic classes of mechanisms tend to produce 
Turing patterns (See Methods for a specific example of a ‘resource accumulation’ 
model, and Appendix A3 for a ‘stress divergence’ model). These fundamental classes 
thus allow us to narrow down the search image for mechanisms regulating the 
formation of the coral reef patterns we recorded. The first class of mechanisms 
would imply that corals attract and accumulate a resource, such that this resource 
becomes too scarce between patches to allow coral growth or settlement. Corals 
are known to actively enhance mass transfer rates, increasing the efficiency of their 
uptake of dissolved nutrients (Shapiro et al. 2014). Also, microbes (Wild et al. 2004) 
and sponges (de Goeij et al. 2013) recycle dissolved organic matter released by 
corals and algae, making it available again to corals as particulate organic matter. 
Such tight, local recycling could potentially generate Turing patterns, provided 
that the recycling leads to a decrease in dissolved organic matter between patches, 
preventing successful patch development. 

The second general class of mechanisms (stress divergence) could arise from corals 
repelling a growth inhibitor, resulting in stress alleviation on coral patches, with the 
side effect of stress accumulation between patches (Fig. 3.4c). Potential candidates 
for such inhibitors include coral waste products (e.g. dissolved oxygen (Mass et 
al. 2010; Osinga et al. 2011)), allelochemicals (e.g. from soft corals and sponges) 
(Puglisi et al. 2014), and sediment particles. Sediment particles can stress corals, for 
example, light levels are reduced due to smothering and elevated turbidity. Also, 
coral larvae are unable to settle on sediment-covered areas (Rogers 1990). Corals can 
redistribute sediment away from live tissue both passively and actively (Stafford-
Smith 1993). Passive mechanisms involve colony morphology and its effect on 
water turbulence, whereas active rejection of sediment particles happens through 
ciliary activity, mucus secretion, and tissue expansion (Stafford-Smith 1993). In 
addition, parrotfish graze and scrape coral patches, consuming algae and generating 
sediment which they defecate off the edge of reefs, exporting an increased sediment 
load to the surroundings (Bellwood 1995). The resulting reduction in algal-coral 
competition by grazing, and the export of sediment from coral patches, may thus 
generate the specific combination of local positive feedback and longer-range 
negative feedback that can generate Turing patterns.  While the Turing patterns 
provide a search image for mechanisms that govern lagoonal coral growth (resource 
accumulation or stress divergence), further research will be needed to determine the 
actual key processes. 
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Importantly, the Turing patterns we revealed may also put us on the track of 
gradients of environmental stress and of resilience of these reefs. The sequence of 
gaps, labyrinths and spots reflects an increasing scarcity of resources or increasing 
levels of growth inhibitors (Fig. 3.3e-h). The local variety of Turing patterns may 
therefore reflect a gradient in local resilience against environmental change, with 
a sparse spotted pattern corresponding to areas with the lowest resilience where 
corals may be most easily lost (Rietkerk et al. 2004). Moreover, slowly degrading 
conditions will be reflected in changing pattern types. Therefore, systematic changes 
in Turing patterns on the kinds of reefs we studied might serve as early indicators of 
changes in reef resilience at a larger scale. 

The Turing patterns we discovered offer an entirely new approach to exploring and 
understanding the resilience of corals. Not only do they pave a novel way to map 
and monitor resilience, Turing patterns also provide a fresh search image for the 
mechanisms governing coral growth. In view of the global coral reef crisis there is 
an urgent need for such tools that help understand and assess resilience.

Methods

We used the resource-accumulation model below to generate Figure 3.3e-h. 

∂
= − − + ∇

∂ +
2 2

1 C
C gaR C cC mC D C
t ahR

( ) ( )∂ − ∂ −∂
= − − + ∇ − − −

∂ + ∂ ∂
2( )

1 R x y

R bC R bCR aRi eR C D R bC U U
t ahR x y

The term 
  

gaR
1+ahR

C  represents growth of an organism (e.g. coral) with maximal growth 
rate g. Resource uptake follows a Holling Type II functional response, with attack 
rate a and handling time h. The terms cC2 and mC account for mortality, due for 
example to competition, decay, and predation. Dynamics of the limiting resource 
are represented by a source (i) and a loss (eR) term. The spatial spread of the 
organism is modeled by the diffusion term ∇2

CD C . Resource mixing or diffusion 
is assumed to be lowered by the presence of the organism, and is modeled by the 
diffusion term ∇ −2( )RD R bC .  A directional flow of the resource (e.g. through water) 
is represented by the advection terms ∂ −

∂
( )R bC

x xU  and ∂ −
∂

( )R bC
y yU . This model can 

lead to the entire repertoire of Turing patterns including bands (Fig. 3.3e-h). Default 
parameters: landscape size=50x50, g=1.1, a=1.6, h=1, c=1.0, m=0.2, 
DC=0.01, e=0.05, DR=1, b=3, Ux=0, Uy=0. Simulations were performed 
using Grind for Matlab.
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Appendix A3

Spectral wave analysis to test for regularity

We performed a two-dimensional spectral wave analysis on several aerial pictures 
from the most northern Agincourt Reef, Australia, that were taken with a drone 
(see for method description Renshaw and Ford 1983; Couteron and Lejeune 2001; 
van de Koppel et al. 2005a). First, we cropped selected images to a square image, 
downsized them to 128x128 pixels, and selected the green values from the RGB-
data of the image (giving the highest contrast). Then, we performed the spectral 
analyses as depicted in Figure A3.1. The periodogram represents the portion of image 
variance σ2 that can be accounted for by a cosine wave repeating itself r times (i.e. 
wavenumber) along the direction θ (i.e. wave angle). The centre of the periodogram 
corresponds to r=0. To investigate periodicity, we obtained a radial spectrum 
by binning the periodogram values for each successive wavenumber. The radial 
spectra were re-scaled by dividing by σ2. The high peaks with very low wavenumber 
(r=1‒3) reflect a gradient created by the reflection of the sun. The other peaks are 
generated by the actual coral patches. These peaks show clear periodicity both for 
spots and labyrinth, however the signal is stronger for the labyrinth. 

A stress-divergence model

Here, we show that a relatively simple stress-divergence model can also generate 
Turing patterns:

∂  = − − + ∇ ∂ + 

2
2

2 21 C
C C SrC mC D C
t K S h

 
( ) ( )∂ ∂∂

= − + ∇ − −
∂ ∂ ∂

2( )S x y

SC SCS i eS D SC U U
t x y

The term  − 
 

1 CrC
K  represents logistic growth of an organism (e.g. coral) with r 

representing the maximal growth rate, and K the carrying capacity of C. An extra 
mortality by a stressor (e.g. sediment) is modeled following a sigmoidal response, 
with m the maximal mortality rate, and h the stress level at which the mortality rate 
is 

  
1

2 m
  
1

2 m. The stressor equation contains an inflow term i, and an outflow term eS. 
Movement of the stressor is modeled by the diffusion term ∇2( )SD SC , and depends 
on the local density of C and S, in the sense that the stressor moves faster when the 
density of the organism is high. A directional flow (e.g. water flow) affecting the 
direction in which the stressor is affected by the organism is represented by the 
advection terms ∂

∂
( )SC

x xU  and ∂
∂

( )SC
y yU . Default parameters: landscape size=50x50, 
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r=0.8, K=1, m=1, h=0.5, DC=0.02, e=0.1, DS=2, Ux=0, Uy=0. This model 
can lead to the entire repertoire of Turing patterns, including bands (Fig. A3.2).

Aerial, underwater, and satellite images 

https://www.dropbox.com/sh/u6lzlraxpjeac8n/AAAMF7RKmLFutiRURD7BR981a
?dl=0  

This database contains (1) underwater pictures and movies taken at the most 
northern Agincourt Reef in Australia, (2) aerial pictures taken at the most northern 
Agincourt Reef (with a drone), and (3) a Google Earth file pointing to Turing patterns 
on the Great Barrier Reef and New Caledonia.

Figure A3.1. Spectral wave analysis of two aerial photographs of Agincourt Reef. The upper panels 
represent black-and-white photographs of two types of coral patterns (i.e. spots and labyrinth) observed 
on Agincourt Reef. The middle panels represent the periodograms of the pictures, with the center 
indicated by a star. The lower panels represent the radial spectra of the periodograms and indicate the 
dominant wave number (number of waves in the photographs) of the pattern. 
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Figure A3.2. Stable Turing patterns simulated by an example model based on the stress-divergence 
mechanism described in Appendix A3. a) spots (i=0.12), b) labyrinth (i=0.09), c) gaps (i=0.05), d) 
bands (i=0.1, Ux=1, Uy=1). The white arrow indicates the flow direction of the stressor. 
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Abstract

The prevalence of alternative stable states on coral reefs has been disputed, although 
there is universal agreement that many reefs have experienced substantial losses of 
coral cover. Alternative stable states require a strong positive feedback that causes 
self-reinforcing runaway change when a threshold is passed. Here we use a simple 
model of the dynamics of corals, macroalgae and herbivores to illustrate that even 
weak positive feedbacks, that individually cannot lead to alternative stable states, 
can nonetheless do so if they act in concert and reinforce each other. Since the 
strength of feedbacks varies over time and space, our results imply that we should 
not reject or accept the general hypothesis that alternative stable states occur in 
coral reefs. Instead, it is plausible that shifts between alternative stable states can 
occur sporadically, or on some reefs but not others depending on local conditions. 
Therefore, we should aim at a better mechanistic understanding of when and why 
alternative stable states may occur. Our modeling results point to an urgent need 
to recognize, quantify, and understand feedbacks, and to reorient management 
interventions to focus more on the mechanisms that cause abrupt transitions 
between alternative states.
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Introduction

Many ecosystems exhibit marked regime shifts from one set of species to another, 
such as the transitions between clear and turbid lakes (Scheffer 1998), forest 
and grassland (Hirota et al. 2011; Staver et al. 2011b), kelp beds and sea urchin 
barrens (Steneck et al. 2003; Watson and Estes 2011), or between tropical corals 
and assemblages of macroalgae and other weedy species (e.g. Done 1992; Hughes 
1994; Mumby et al. 2007; Hughes et al. 2010). Positive and negative feedbacks play 
a critical role in shaping the stability of these ecosystems and in determining the 
responses they display to increases or decreases in anthropogenic drivers, such as 
pollution, over-harvesting or climate change. 

Positive feedback as a cause of alternative stable states

A feedback is defined as a closed loop process where the results affect the inputs, 
influencing future results (DeAngelis et al. 1986). In complex ecosystems, feedbacks 
result from circular chains of interactions (e.g. A affects B, and B affects A) between 
ecosystem components (e.g. species, abiotic conditions, humans). A feedback is 
negative when the results dampen an initial rate of change, causing the initial 
change to slow down (DeAngelis et al. 1986) (e.g. increase in A → increase in B 
→ decrease in A). Positive feedbacks, on the other hand, amplify an initial small 
change, potentially propelling the system away from its previous state (DeAngelis et 
al. 1986) (e.g. increase in A → increase in B → further increase in A). 

Deterministic models (i.e. excluding natural variability) can be used to study 
crucial system dynamics, and states at which the system is in equilibrium. A stable 
equilibrium is established by a negative feedback that causes the system to return 
to the original equilibrium after a disturbance. Negative feedbacks are therefore 
often called stabilizing feedbacks (Schröder et al. 2005). Negative feedbacks are 
ubiquitous in ecosystems, because in the absence of negative feedbacks populations 
would grow infinitely. In contrast, an unstable equilibrium is established by 
a positive feedback that causes acceleration away from that equilibrium after a 
small disturbance (i.e. a snowball effect). In a system with alternative stable states, 
an unstable equilibrium separates two stable equilibria. For this reason, a strong 
positive feedback is a necessary (but not sufficient) condition for alternative stable 
states (Thomas 1981). Positive feedbacks are therefore often called destabilizing 
feedbacks (Schröder et al. 2005). 

Due to positive feedbacks, systems can respond in unexpected ways to changing 
conditions or small disturbances (Fig. 4.1a). The equilibrium response of an 
ecosystem to a gradually increasing driver is often smooth, meaning that there is 
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only one stable state for each level of driver (Fig. 4.1b). If a positive feedback 
is strong enough to generate alternative states, the response to a driver becomes 
hysteretic (Fig. 4.1c). In Figure 4.1c there are two particular threshold values for 
the driver, also called ‘tipping points’, where a stable equilibrium collides with 
an unstable equilibrium and disappears. If the driver brings the system close to 
such a tipping point the unstable equilibrium approaches the stable equilibrium, 
implying that even a small perturbation may push the system across this unstable 
boundary invoking a critical transition to the alternative stable state. Reversing the 
change in the driver is not enough to induce a shift back to the original state, as the 
system tends to remain trapped in the new alternative state, a phenomenon known 
as hysteresis. Hysteresis thus increases with the strength of the positive feedback. 
The stronger the positive feedback, the larger the range of driver levels for which 
alternative stable states exist (Fig. 4.1a). 
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Figure 4.1. The cusp-catastrophe plot. a) A positive feedback can lead to a qualitatively different 
equilibrium response of an ecosystem to an external driver (e.g. fishing pressure and/or climate change), 
depending on the strength of the feedback. b) A weak positive feedback may lead to a smooth response, 
and a single equilibrium, along the entire range of driver, from low to high. c) A strong positive feedback 
may cause the response curve to fold inwards, such that two alternative stable states exist over the same 
intermediate range of drivers. The response of the system as a result of an increasing driver (in black) 
shows a tipping point at which the system will abruptly shift to another regime. If the driver is lowered 
again, the response will follow a different trajectory (in grey), because the system remains trapped in the 
alternative regime until the driver reaches a level at which the system is tipped back to its original state. 

In reality, multiple positive and negative feedbacks act together and may counteract 
each other. This complex interplay of feedbacks, in combination with many random 
effects, will shape the actual response of an ecosystem to slowly changing conditions.
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variation in fishing pressure on herbivores, in their species composition, and in 
palatability of macroalgae, are all likely to influence the strength of this feedback.

Figure 4.2. An overview of the modelled feedbacks and drivers of change in coral reefs. The qualitative 
effect of each feedback route in the diagram can be determined by multiplying the signs on the arrows of 
the route taken. Two negative effects thus combine to cause a positive feedback. For instance, herbivores 
reduce the biomass of macroalgae, but abundant macroalgae can reduce the impact of herbivores if they 
swamp grazing pressure and become less palatable. Such a double negative effect can result in a positive 
feedback. A three-phase positive feedback occurs between corals, herbivores, and macroalgae (+, -, -). 
Negative feedbacks act to balance runaway change. For instance, maximum densities of all populations are 
ultimately limited by competition represented by small negative feedback loops that depict self-limitation. 
For a more extensive overview of documented positive feedbacks on coral reefs, see Table 4.1. 

Positive feedbacks on coral reefs can also arise from human behavior (Table 4.1). 
For example, the intensity of fishing often increases in response to declining catch 
rates, which can drive stocks further downward. This positive feedback can occur, for 
instance, if government subsidies are linked to dwindling catches, if fishers switch to 
a more efficient type of gear when catches decline, or if they target seasonal spawning 
aggregations in depleted fisheries (Mackinson et al. 1997). As with feedbacks that are 
strictly biological, the strength of social feedbacks varies greatly from place to place 
and over time. 

Importantly, empirical evidence for the existence of any specific positive feedback 
mechanism does not prove that alternative stable states occur, because the feedback 
may be too weak or intermittent. Also, empirical information on spatial and temporal 
variation in almost all of these feedbacks (Table 4.1) is either non-existent or very 
sparse. This makes it challenging to understand the response of any particular coral 
reef to accumulating stress. Our aim here is to improve the general understanding of 
the interplay of feedbacks in coral reefs in relation to the occurrence of alternative 
stable states, with an ultimate goal of preventing unexpected transitions to undesired 
states. 
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In this paper, we develop a simple model of a coral reef ecosystem to illustrate how 
multiple positive feedbacks can interplay, and to explore how differences in local 
environmental conditions, and thus in feedback strength, can affect the stability of 
coral reefs, leading in some circumstances to the emergence of alternative stable 
states. Previous work on alternative stable states on coral reefs includes more elaborate 
models examining hysteresis (e.g. Mumby et al. 2007; Blackwood et al. 2010), and the 
effect of multiple stressors (e.g. Blackwood et al. 2011; Fung et al. 2011). Here, we 
focus explicitly on a scenario in which multiple weak positive feedbacks interact. 
Because the strength of negative and positive feedbacks is contingent on synergies 
between them, and on the vagaries of local conditions, we conclude that a complex 
ecosystem such as a coral reef will likely exhibit a wide variety of responses to external 
drivers, that may or may not include alternative stable states.

Model

To explore how multiple interacting feedbacks could affect the dynamics of coral 
reefs, we developed a model that explicitly incorporates three positive feedback 
mechanisms. We set the strength of each of these feedbacks in such a way that 
individually they are too weak to generate alternative stable states. Subsequently, 
we combined the three weak feedbacks to study their collective effects.  Parameter 
analyses to determine the stable and unstable states for each parameter value were 
performed in Matlab, using MatCont and Grind for Matlab.

Cover by corals (C) and macroalgae (M) are represented in our models as the proportion 
of space occupied, while herbivore abundance (H) is defined as a proportion of the 
carrying capacity of herbivores. Corals and macroalgae are assumed to compete 
for unoccupied space (S), with cover by corals, macroalgae and unoccupied space 
summing to 1 (Eqn. 1).  More complex models could add further benthic categories, 
or subdivide corals and macroalgae into functional groupings, but for our purposes 
we focus on the simplest case of shifts in dominance of corals and macroalgae.  

= − −1S C M

( )= − −1dH rH H fH
dt

(1)

(2)

(3)

(4)

( )= + −C C C
dC i b C S d C
dt

( )= + −M M
dM i b M S gHM
dt
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In this model, two mechanisms cause the expansion of coral and macroalgae, 
which are both proportional to the unoccupied space in the system. External 
import of propagules of coral and macroalgae has a constant rate (resp. iC and 
iM) independently of the local cover of adults. This reflects demographically open 
populations with dispersal of juvenile stages. Additionally, local expansion of 
existing adults of both functional groups is proportional to the existing cover (with 
rates bC and bM). Mortality of corals is represented by a constant decay rate (dC) 
(Eqn. 2), and mortality of macroalgae by a constant grazing rate per herbivore (g) 
(Eqn. 3). Herbivores (e.g. fish and sea urchins) are assumed to grow logistically (the 
density is scaled to the carrying capacity) with a relative growth rate of herbivores 
(r) that is independent of local macroalgal cover (Eqn. 4). Herbivore mortality is 
represented by a constant fishing pressure ( f )  (Eqn. 4). 

Parameters of the default model without feedbacks are based on the following basic 
assumptions: 1) the macroalgal growth rate exceeds the coral growth rate, and 
2) the mortality rate of macroalgae due to herbivory exceeds the mortality rate 
of corals, if the herbivore population is at carrying capacity (i.e. no fishing). We 
used the following default parameters for the illustrated cases: bC=0.3, bM=0.8, 
iC=0.05, iM=0.05, dC=0.1, r=1, g=1.

As in almost all ecological models, negative feedbacks prevent unlimited population 
growth. A familiar term for this effect is negative density-dependence. In our model, 
for example, macroalgae and coral cover are limited by space, and the herbivore 
population size has a carrying capacity (Fig. 4.2). In addition to these negative 
feedbacks, we incorporated three positive feedbacks in the model, described in detail 
in Appendix A4 (see also Figure A4.1). 

First, we implemented a positive feedback between macroalgal cover and herbivory 
rate. This feedback arises from a decrease in the herbivory rate (i.e. per unit of 
algae) as macroalgal cover increases, representing a scenario where consumption by 
herbivores saturates when algae are abundant (Table 4.1, feedbacks 1-3). To model 
this ‘herbivory-escape feedback’, we introduced a Holling type II functional response, 
with parameter η representing the macroalgae handling time of herbivores (Eqn. 5). 

( )
η

= + −
+1M M

dM gHMi b M S
dt g M (5)

Second, we incorporated a positive feedback arising from the direct negative effects 
of macroalgae on coral recruitment and growth (Table 4.1, feedbacks 6-7). This 
'competition feedback' is based on the classic insight that competition can cause 
alternative stable states if interspecific competition exceeds intraspecific competition 
(Volterra 1926; Lotka 1932). The competition effect of macroalgae on coral recruitment 
and growth is represented by αM (Eqn. 6). If α is zero, coral recruitment and growth 
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are only indirectly affected by macroalgae through space pre-emption. The value of 
α between 0 and 1 represents the proportion of macroalgae involved in the direct 
inhibition of corals.  

( ) ( )α= + − −1C C C
dC i b C S M d C
dt (6)

Third, we considered an indirect positive feedback between corals and herbivores. 
Herbivores graze on macroalgae, thereby reducing the negative effect of macroalgae 
on coral. A positive feedback exists if corals promote herbivores, for example by 
providing habitat and shelter (Table 4.1, feedback 15). We modeled this ‘coral-
herbivore feedback’ by assuming a positive relation between coral cover and 
herbivore carrying capacity. The strength of this relationship is represented by σ 
(Eqn. 7). If σ is zero, herbivores are not affected by corals. If σ is 1, coral cover 
completely determines the carrying capacity of herbivores. 

( )σ σ
 

= − −  − + 
1

1
dH HrH fH
dt C (7)

To illustrate how stability properties may change we varied parameters that reflect 
variation in (a) palatability of macroalgae (McCook and Price 1997) by varying 
the handling time of macroalgae by herbivores (η), and (b) recruitment levels of 
corals (Connell et al. 1997; Diaz-Pulido and McCook 2003; Ayre and Hughes 2004) 
by varying the density-independent inflow of coral recruits (iC). Both factors (a and 
b) are known to vary widely in nature. For instance, the proportion of unpalatable 
species varies enormously at multiple scales (e.g. McCook and Price 1997), affecting 
the food handling time of herbivores (Hoey and Bellwood 2011). Similarly, coral 
recruitment varies greatly in both space and time (e.g. Connell et al. 1997; Hughes 
and Tanner 2000; Halford and Caley 2009).

Results

In the absence of the specific positive feedbacks we address, the model exhibits a 
smooth response to fishing pressure (Fig. 4.3a). As fishing increases, the abundance 
of herbivores declines linearly, causing the grazing rate on macro-algae to decrease 
incrementally, resulting in a smooth and reversible replacement of corals by 
macro-algae. There is a single stable state for any given level of fishing pressure.  
Consequently, the system exhibits the same forward and backward trajectory in 
abundances of herbivores, macroalgae and corals as fishing pressure is increased or 
decreased.
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Adding each of the weak positive feedbacks to the model individually has scarcely 
any effect, resulting merely in a slight steepening in the response of corals and 
macroalgae to fishing pressure (Fig. 4.3b-d). In the default parameter setting, none 
of the individual feedbacks is strong enough to result in alternative stable states.  
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Figure 4.3. The impact of multiple positive feedbacks on the equilibrium response of corals, macroalgae, 
and herbivores to changing fishing pressure. In a), the model has no positive feedbacks, and only a single 
equilibrium exists for a given level of fishing pressure. In (b)-(d), a single positive feedback is introduced 
in the model, but each one is too weak to generate hysteresis and alternative stable states: b) Herbivory-
escape feedback (η=1). c) Competition feedback (α=0.5). d) Coral-herbivore feedback (σ=0.6). In e), 
the same three weak feedbacks in panels b, c, and d are combined, generating hysteresis and alternative 
stable states at an intermediate level of fishing pressure. 

By contrast, when the same individually weak feedbacks are allowed to act together 
a fundamentally different behavior emerges. The model now has alternative stable 
states over a range of fishing pressures (Fig. 4.3e). Consequently, the threshold in 
fishing that triggers a collapse of corals is lower than the threshold for the reverse 
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transition from macroalgae to corals. The system now shows hysteresis, and a gradual 
change in driver can lead to abrupt shifts between alternative stable states. Similar 
synergetic effects among feedbacks can occur also in all pairwise combinations of 
the three feedbacks (Appendix A4, Fig. A4.2).

Whether the response of an ecosystem to a changing driver such as fishing or climate 
change is hysteretic, or not, obviously depends on the strength of all contributing 
feedbacks. The strength of these feedbacks depend on local conditions. For instance, 
commonly observed variation in the species composition of macroalgae, and levels 
of coral recruitment affect feedbacks in the model. We used the model to illustrate 
that variations in the parameters affecting the strength of positive feedbacks can 
cause the equilibrium response to drivers such as fishing pressure to change from 
smooth to hysteretic (Fig. 4.4).  Specifically, these analyses suggest that reefs with 
a higher proportion of unpalatable macroalgae, or with lower levels of recruitment 
(e.g.. isolated reefs) are more likely to exhibit alternative stable states. 
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Figure 4.4. The tendency of the system to show hysteresis in response to fishing pressure can be affected 
by locally varying factors such as: a) Low palatability of fully grown algae (high η) (feedback parameters: 
(α=0.2), (σ=0). b) Low external recruitment of corals, iC (feedback parameters: η=1, α=0.2, σ=0).

Discussion

Multiple causality 

Our analyses illustrate that feedback mechanisms that individually have no 
qualitative effect on stability properties when they are experimentally tested or 
observed can nonetheless collectively cause an ecosystem to have tipping points. 
It is well known that reefs are more likely to shift to a degraded state such as a 
macroalgae-dominated state if stress on corals increases, for example due to climate 
change, high nutrient run-off, or intensive fishing. However, whether this shift will 
be gradual or abrupt (Fig. 4.1) will largely depend on the strengths of feedbacks in 
the ecosystem. Reefs with weakened negative feedbacks or strengthened positive 
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feedbacks, or, as we have shown here, with multiple weak positive feedbacks are 
more prone to have critical thresholds where they undergo collapses that are difficult 
to reverse. 

Because the strength of the many commonly-observed feedbacks (Table 4.1) varies 
from place to place and from time to time (Fig. 4.4), a corollary is that it is impossible 
to conclude that coral reefs in general will or will not have alternative stable states 
(Bruno et al. 2009; Dudgeon et al. 2010; Mumby et al. 2013).  Consequently, while some 
coral reefs around the globe may respond smoothly to slowly changing anthropogenic 
drivers, others can unexpectedly collapse and fail to recover even when drivers are 
reduced (e.g. Connell 1997; Hughes et al. 2010; Graham et al. 2011). 

Obviously, our model captures only a small part of the complexity of coral reefs. 
It is tempting to further elaborate and parameterize the model in order to capture 
more of the complexity and spatial variation found in the field. Indeed, the wish 
to describe ecosystems as realistically as possible has driven the development of 
detailed, spatially explicit models, with specified environmental conditions for each 
location (e.g. Melbourne-Thomas et al. 2011). However, although more complex 
models can be of great help in evaluating the potential role of different processes, 
they remain challenging to parameterize and fully understand (Oreskes et al. 1994). 
Our model is meant to complement this approach. Rather than aiming to be complete, 
‘minimal models’ such as the one we present may help to understand how non-linear 
mechanisms may interact to drive complex systems.

Managing ecosystem resilience

Many natural resource management agencies struggle to cope with multiple human 
impacts that are cumulative and potentially synergistic. Often the response of cash-
strapped agencies is to manage “stressors” or drivers without a clear understanding 
of which interventions are likely to give the best environmental or social outcome. 
Our analysis illustrates that an understanding of how multiple feedbacks interact 
is essential to guide management decisions. Even mechanisms that are likely to be 
dismissed as unimportant, can collectively destabilize an ecosystem. Therefore, efforts 
to reduce human impacts on reefs need to focus on understanding and managing 
interactive feedbacks (Bellwood et al. 2004; Nyström et al. 2012; Graham et al. 2013), 
such as the ones we have highlighted (see also Table 4.1).  Our results show that 
management decisions for protecting coral reefs could be substantially improved by 
a better understanding of how multiple feedbacks interact to strengthen or weaken 
hysteresis. Currently, economic and social constraints rather than scientific knowledge 
often dominate the choice of management action, or inaction (Scheffer et al. 2015a). 
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We conclude that to comprehend ecological resilience and alternative states more 
fully, and to avoid unwanted critical transitions, will require a new focus on the 
combined effects of positive and negative feedbacks, measuring the existence 
and proximity to thresholds, and assessing the strength of hysteresis (e.g. Dakos 
et al. 2012a; Scheffer et al. 2012). Importantly, our theoretical exploration of the 
importance of feedbacks highlights a critical knowledge gap in when and where 
they occur, how strong or weak they may be, and how they interact to influence the 
nature of critical transitions.
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Modeling positive feedbacks

We modeled three positive feedback mechanisms, where the strength of each is 
determined by one parameter (η ,  α ,  and σ) (Fig. A4.1). The feedbacks interact 
synergetically, as illustrated by the bifurcation plots in Figure A4.2.

Herbivory-escape feedback (Table 4.1, feedbacks 1-3): we assumed that herbivores 
have a certain handling time when consuming macroalgae (η). If macroalgae 
availability increases, herbivores can handle less macroalgae, and thus herbivory 
pressure per macroalga decreases (Fig. A4.1a).
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Figure A4.1. The effect of the three 
modeled positive feedback mechanisms 
on the relevant rates of change, with the 
feedback strength at three different levels, 
ranging from low to high: a) herbivory-
escape feedback, b) competition feedback, 
and c) coral-herbivore feedback. 

Competition feedback (Table 4.1, feedbacks 6-7): We assumed that macroalgae can 
reduce coral recruitment, for example, by pre-empting, shading and overgrowing 
juvenile corals. The strength of this inhibition is represented by the parameter α. 
The level of α depends on the macroalgae and coral species present. A lower coral 
recruitment per unit area of empty space per adult coral occurs if macroalgae cover 
increases, which leads to a competitive advantage for macroalgae (Fig. A4.1b). 

Coral-herbivore feedback (Table 4.1, feedback 15): Herbivores have a positive 
effect on corals, because they release them from competition with macroalgae. 
We assumed that corals can also have a positive effect on herbivores by providing 
shelter (e.g. for Diadema or parrotfish) (Fig. A4.1c). The strength of this dependence 
(σ) will depend on traits of the herbivore and coral species. 
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Abstract

Tipping points in complex systems may imply risks of unwanted collapse, but 
also opportunities for positive change. Our capacity to navigate such risks and 
opportunities can be boosted by combining emerging insights from two unconnected 
fields of research. One line of work is revealing fundamental architectural features 
that may cause ecological networks, financial markets, and other complex systems 
to have tipping points. Another field of research is uncovering generic empirical 
indicators of the proximity to such critical thresholds. While sudden shifts in 
complex systems will inevitably keep taking us by surprise, work at the crossroads 
of these emerging fields offers new approaches for anticipating critical transitions. 
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The current global financial crisis, the HIV pandemic and the Arab revolts are recent 
reminders of the unpredictable nature of the transitions that occasionally affect 
humanity. Such defining events are not necessarily negative. About 12,000 years 
ago, the Earth suddenly shifted from a long harsh glacial episode into the benign 
and stable Holocene climate that allowed human civilization to develop. On smaller 
and faster scales, ecosystems occasionally flip to contrasting states. Unlike gradual 
trends, such sharp shifts are largely unpredictable (Folke et al. 2004; Scheffer 
2009; Barnosky et al. 2012). Nonetheless, science is now carving into this realm 
of unpredictability in fundamental ways. While the complexity of systems such as 
societies and ecological networks prohibits accurate mechanistic modeling, certain 
features turn out to be generic markers of the fragility that may typically precede a 
large class of abrupt changes. Two distinct approaches have led to these insights. On 
the one hand, analyses across networks and other systems with many components 
have revealed that particular aspects of their structure determine whether they are 
likely to have critical thresholds where they may change abruptly; on the other 
hand, recent findings suggest that certain generic indicators may be used to detect 
if a system is close to such a ‘tipping point’. We highlight key findings but also 
challenges in these emerging research areas and discuss how exciting opportunities 
arise from the combination of these so far disconnected fields of work.

The architecture of fragility

Sharp regime shifts that punctuate the usual fluctuations around trends in 
ecosystems or societies may often be simply the result of an unpredictable external 
shock. However, another possibility is that such a shift represents a so-called 
critical transition (Scheffer 2009; Kuehn 2011). The likelihood of such transitions 
may gradually increase as a system approaches a ‘tipping point’ (i.e. a catastrophic 
bifurcation (Kuznetsov 1995)), where a minor trigger is enough to invoke a self-
propagating shift to a contrasting state. One of the big questions in complex systems 
science is what causes some systems to have such tipping points. The basic ingredient 
for a tipping point is a positive feedback that, once a critical point is passed, propels 
change towards an alternative state (Angeli et al. 2004). While this principle is 
well understood for simple isolated systems, it is more challenging to fathom how 
heterogeneous structurally complex systems such as networks of species, habitats, 
or societal structures might respond to changing conditions and perturbations. A 
broad range of studies suggests that two major features are crucial for the overall 
response of such systems (Levin 2000): (i) the heterogeneity of the components and 
(ii) their connectivity (Fig. 5.1). How these properties affect the stability depends 
on the nature of the interactions in the network. 
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Figure 5.1. The connectivity and homogeneity of the units affect the way in which distributed systems 
with local alternative states respond to changing conditions. Networks where the components differ (are 
heterogeneous) and where incomplete connectivity causes modularity tend to have adaptive capacity in 
the sense that they adjust gradually to change. By contrast, in highly connected networks local losses tend 
to be ‘repaired’ by subsidiary inputs from linked units until at a critical stress level the system collapses. 
As explained in the main text, the particular structure of connections also has important consequences 
for the robustness of networks, depending on the kind of interactions between the nodes of the network. 

Domino effects. One broad class of networks includes those where units (or ‘nodes’) 
can flip between alternative stable states and where the probability of being in one 
state is promoted by having neighbors in that state. One may think, for instance, 
of networks of populations (extinct or not), or ecosystems (with alternative stable 
states) or banks (solvent or not). In such networks, heterogeneity in the response 
of individual nodes and a low level of connectivity, may cause the network as a 
whole to change gradually---rather than abruptly---in response to environmental 
change. This is because the relatively isolated and different nodes will each shift at 
another level of an environmental driver (van Nes and Scheffer 2005). By contrast, 
homogeneity (nodes being more similar) and a highly connected network may 
provide resistance to change until a threshold for a systemic critical transition is 
reached where all nodes shift in synchrony (Dunne et al. 2002; van Nes and Scheffer 
2005). 

This situation implies a trade-off between local and systemic resilience. Strong 
connectivity promotes local resilience, in the sense that effects of local perturbations 
can be eliminated quickly through subsidiary inputs from the broader system. For 
instance, local damage to a coral reef may be repaired by ‘mobile link organisms’ 
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from nearby reefs, and individual banks may be saved by subsidiary inputs from the 
larger financial system (Lundberg and Moberg 2003). However, as conditions change, 
highly connected systems may reach a tipping point where a local perturbation can 
cause a domino effect cascading into a systemic transition (van Nes and Scheffer 
2005). Importantly, in such connected systems the repeated recovery from small 
scale perturbations can give a false impression of resilience, masking the fact that 
the system may actually be approaching a tipping point for a systemic shift. For 
example, before the sudden large scale collapse of Caribbean coral systems in the 
1980s evoked by a sea urchin disease outbreak, the reefs were considered highly 
resilient systems, as they recovered time and time again from devastating tropical 
storms and other local perturbations (Bellwood et al. 2004). In summary, the same 
prerequisites that allow recovery from local damage may set a system up for large-
scale collapse.

Robustness in different kinds of networks. In addition to the work on systems where 
units can switch between alternative states in a contagious way, there has been 
an increasing interest in understanding robustness of webs of other kinds of 
interactions. For instance, species in ecosystems can be linked through mutualistic 
(+/+) interactions such as in pollinators and plants, or by competition (-/-) or 
predation (+/-). Rather than asking what causes the overall systems response 
to be catastrophic or gradual, most of these studies have so far been focused on 
what topology of interaction structures makes the overall system less likely to fall 
apart when components are randomly removed. The answer turns out to depend 
on the kind of interactions between the units. Overall, networks with antagonistic 
interactions (e.g. competition) are predicted to be more robust if interactions are 
compartmentalized into loosely connected modules whereas networks with strong 
mutualistic interactions (e.g. pollination) are more robust if they have nested 
structures where specialists are preferentially linked in their mutualism to generalists 
that act as hubs of connectivity (Pascual and Dunne; Thébault and Fontaine 2010). 
Empirical studies in ecology suggest that the structures predicted to be more robust 
are also found most in nature (Bascompte et al. 2003; Otto et al. 2007; Thébault and 
Fontaine 2010), but this is an active field of research where new insights are still 
emerging (Allesina and Pascual 2009) and much remains to be explored.

The challenge of designing robust systems. The work on ecological networks has led 
to the idea that we might apply our insights in the functioning of natural systems 
when it comes to designing structures that are less vulnerable to collapse. For 
instance, about half a year before the collapse of global financial markets in 2008, 
it was pointed out (May et al. 2008) that it could be helpful to analyse the financial 
system for the generic structural features that were found by ecologists to affect 
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the risk of systemic failure. Building on such parallels between the architecture 
of ecological and financial systems, Haldane and May (2011) have made specific 
recommendations to encourage modularity and diversity in the financial sectors as 
a way to decrease systemic risk. There are still obvious challenges in bridging from 
ecosystems and conceptual models to societal structures, and much will be beyond 
our reach when it comes to ‘design’. For instance, the extremely fast global spread 
of information is an important feature of current social systems, and the worldwide 
connection of social-ecological systems through markets implies a daunting level of 
complexity (Adger et al. 2009). Nonetheless, this line of thinking about features that 
affect robustness across systems clearly offers fresh perspectives on the question 
how we can make the complex networks on which we depend more robust. 

Early warning signals for critical transitions

Although such insight into structural determinants of robustness and fragility can 
guide the design of systems that are less likely to go through sharp transitions, there 
are so far no ways in which these features can be used to measure how close any 
particular system really is to a critical transition. A new field of research is now 
emerging that focuses on precisely that (Scheffer et al. 2009). 

Critical slowing down near tipping points. One line of work is based on the generic 
phenomenon that in the vicinity of many kinds of tipping points, the rate at which a 
system recovers from small perturbations becomes very slow, a phenomenon known 
as ‘critical slowing down’ (Fig. 5.2). This happens, for instance, at the classical fold 
bifurcation, often associated with the term ‘tipping point’, as well as more broadly 
in situations where a system becomes sensitive so that a tiny nudge can cause a 
large change (Scheffer et al. 2009). The increasing sluggishness of a system can be 
detected as a reduced rate of recovery from (experimental) perturbations (van Nes 
and Scheffer 2007; Veraart et al. 2012). However, the slowness can also be inferred 
indirectly from rising ‘memory’ in small fluctuations in the state of a system (Fig. 
5.2), as reflected for instance in a higher lag-1 autocorrelation (Ives 1995; Dakos 
et al. 2008), increased variance (Carpenter and Brock 2006), or other indicators 
(Kleinen et al. 2003; Livina and Lenton 2007). 

Obviously, not all abrupt transitions will be preceded by slowing down. For instance, 
sharp change may simply result from a sudden big external impact. Also, slowing 
down of rates can have other causes than approaching a tipping point (e.g. a drop 
in temperature). Therefore, slowing down is neither a universal warning signal for 
shifts, nor specific to an approaching tipping point. Instead, slowing down should 
be seen as a ‘broad spectrum’ indicator of potential fundamental change in the 
current regime. Further diagnosis of what might be coming up requires additional 
information.
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Figure 5.2. Critical slowing down as an indicator that the system has lost resilience in the sense that it 
may be tipped more easily into an alternative state. Recovery rates upon small perturbations (panels c 
and e) are slower if the basin of attraction is small (right hand panels) than when the attraction basin 
is larger (left hand panels). The effect of this slowing down may be measured in stochastically induced 
fluctuations in the state of the system (panels d and f) as increased variance and ‘memory’ as reflected 
by lag-1 autocorrelation (panels g and h). 

Changing stability landscapes in stochastic systems. In highly stochastic systems, 
transitions will typically happen far from local bifurcation points. This makes it 
unlikely that in such stochastic situations slowing down is a useful characteristic 
to measure. On the other hand, the behaviour of systems exposed to strong 
perturbation regimes can hint at features of the underlying stability landscape. 
When an alternative basin of attraction begins to emerge, one may expect that in 
stochastic environments, systems will occasionally flip to that state, a phenomenon 
referred to as ‘flickering’ (Scheffer et al. 2009). Rising variance can reflect such a 
change. Moreover, under certain assumptions, the probability density distribution 
of the state of a system can even be used to estimate how the potential landscape 
reflecting the stability properties of the system changes over time (Livina et al. 
2010) or is affected by important drivers (Hirota et al. 2011) (Fig. 5.3). The idea 
behind this approach is that even if stochasticity is large, systems will more often 
be found close to attractors than far away from them. The scope of this approach 
is different from that implied in work on critical slowing down. Slowing down 
suggests an increased probability of a sudden transition to a new unknown state. By 
contrast, the information extracted from more wildly fluctuating systems suggests a 
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contrasting regime to which a system may shift if conditions change. Just as in the 
detection of critical slowing down, patterns in the data should be interpreted with 
caution. For instance, multimodality of the frequency distribution of states over a 
parameter range may be caused by non-linear responses to other, unobserved drivers 
or from a multimodality of the distribution of such drivers. Also, the character of the 
perturbation regime may have a large effect. 
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Figure 5.3. Flickering to an alternative state as a warning signal in highly stochastic systems. In such 
situations, the frequency distribution of states (panels b and c) can be used to approximate the shape of 
the basins of attraction of the alternative states (panels d and e).  The data in this example are generated 
with a model of overexploitation (May 1977):  = − −  + 

1
1

dx x cxx
dt K x

 with different additive and multiplicative 
stochastic terms (Dakos et al. 2012a) (we used K=11).

Prospects, challenges and limitations. Although the work on empirical indicators of 
robustness and resilience is just emerging, there is already a fast-growing body 
of modeling as well as empirical work (Table 5.1). Nonetheless, major challenges 
remain when it comes to developing robust procedures for assessment. One problem 
is that methods for detection of incipient transitions from time-series tend to require 
long, high-resolution data (Dakos et al. 2008, 2012a). As a picture of a spatial 
pattern can carry much more information than a single point in a time series, the 
interpretation of spatial patterns is a potentially powerful option. Just as increased 
memory in time series, correlation between neighbouring units can reflect slowing 
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down (Dakos et al. 2010).  Similarly, spatial data can be used to infer how resilience 
of alternative states depends on key drivers (Hirota et al. 2011). Various aspects of 
spatial patterns may also change in unique ways as a critical point is near (Solé et 
al. 1996; Holling 2001; Rietkerk et al. 2004; Pascual and Guichard 2005; Kéfi et al. 
2007; Dakos et al. 2010), but these patterns and their interpretation differ across 
systems in ways that are not yet entirely understood. 

A fundamental limitation is that the indicators cannot be used for prediction of 
transitions, as stochastic shocks will always play an important role in triggering 
transitions before a bifurcation point is reached. Also, interpreting absolute values 
of indicators as signalling particular levels of fragility so far remains beyond reach. 
Thus, indicators should be used to rank situations on a relative scale from fragile 
to resilient. Detecting early-warning signals in monitoring time-series may seem an 
obvious application. However, this requires the rare situation that we have data of 
high resolution for a system that moves towards a tipping point gradually (Biggs 
et al. 2009). In addition to such challenges in detection, there are still gaps in our 
understanding of how indicators will behave in more complex situations. In view 
of these limitations there is no silver bullet approach. Instead, a diverse collection 
of complementary indicators and methods of applying them is emerging. A state of 
the art overview linked to a website with open-source software for data analysis is 
published elsewhere (Dakos et al. 2012a) (www.early-warning-signals.org).
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Towards an integrative approach for anticipating critical transitions

So far, research on network robustness and work on empirical indicators of resilience 
has been largely segregated. However, connecting across these fields opens up 
obvious new perspectives. First of all, there is complementarity in the existing 
approaches. The structural features that create tipping points and the different 
empirical indicators for their proximity offer alternative angles for diagnosis and 
potential action (Fig. 5.4). A smart combination of approaches in a unified framework 
may therefore greatly enhance our capacity to anticipate critical transitions.

Observation

2) Empirical indicators for upcoming transitions
2a) close to equilibrium situations

2b) highly stochastic situations

1) Architecture behind critical transitions

Indicative of Prediction Options for Action

Structure for
resistence 
to change

Critical 
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 High connectivity

 Slow recovery
 
High correlation
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Critical 
Transition
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critical 
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states
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Re-design system for more 
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Further strengthen the 
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Prepare for anticipated
change

Reduce risk of
unwanted transition

Use opportunity to
promote desired transition

}}}
Figure 5.4. Different classes of generic observations that can be used to indicate the potential for critical 
transitions in a complex system. 

At the same time, linking these two vital fields may boost exciting novel directions. 
For instance, it is an intriguing question how early warning signals for loss of 
resilience may best be detected in a complex network (e.g. of species, persons or 
markets). Will particular nodes in the network reveal critical slowing down or other 
early warning indicators more than others? Can we know a priori which nodes 
would carry such a clear signal? Or would some integrative indicator over the entire 
network be best? Clearly, this is a wide open area of research, and much may be 
gained if we develop the different lines of work towards an integrative science for 
understanding and predicting fragility and transitions in complex systems. There is 
no doubt that occasional radical transitions will keep taking us by surprise. However, 
the emerging field of research we sketched may reduce the realm of surprise in 
fundamental ways when it comes to transitions related to tipping points. 
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Perhaps the most exciting aspect of this work is that it is uncovering generic features 
that should in principle hold for any complex system. This implies that we may use 
these approaches even if we do not understand all details of underlying mechanisms 
that drive any particular system. This is the rule rather than the exception, as we are 
far from being able to construct accurate predictive mechanistic models for most, 
if not all, complex systems. So far, most work on generic indicators of resilience 
has been carried out in ecology and climate science (Table 5.1). However, social 
sciences and medicine might well be particularly rich fields for exploration.  

Certainly, there are major challenges ahead to develop sound predictive systems 
based on these generic properties. On the other hand, the potential gains are 
formidable. Empirically detecting opportunities where positive transitions in social 
or ecological systems can be invoked with minimal effort may be of great value. 
When it comes to the risk side, guidelines for designing financial systems that are 
less prone to systemic failure, or ways to foresee critical transitions ranging from 
seizures to the collapse of fish-stocks or tipping elements of the Earth climate system 
certainly rank high when it comes to their relevance for humanity. 
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Abstract 

Alternative stable states in ecology have been well studied in isolated, well-
mixed systems. However, in reality, most ecosystems exist on spatially extended 
landscapes. Applying existing theory from dynamic systems, we explore how such 
a spatial setting should be expected to affect ecological resilience. We focus on the 
effect of local disturbances, defining resilience as the size of the area of a strong 
local disturbance needed to trigger a shift. We show that in contrast to well-mixed 
systems, resilience in a homogeneous spatial setting does not decrease gradually as 
a bifurcation point is approached. Instead, as an environmental driver changes, the 
present dominant state remains virtually ‘indestructible’, until at a critical point 
(the Maxwell point) its resilience drops sharply in the sense that even a very local 
disturbance can cause a domino effect leading eventually to a landscape-wide shift 
to the alternative state. Close to this Maxwell point the travelling front moves very 
slow. Under these conditions both states have a comparable resilience, allowing long 
transient co-occurrence of alternative states side-by-side, and also permanent co-
existence if there are mild spatial barriers. Overall however, hysteresis may mostly 
disappear in a spatial context as one of both alternative states will always tend to 
be dominant. Our results imply that local restoration efforts on a homogeneous 
landscape will typically either fail or trigger a landscape-wide transition. For 
extensive biomes with alternative stable states, such as tundra, steppe and forest, 
our results imply that, as climatic change reduces the stability, the effect might be 
difficult to detect until a point where local disturbances inevitably induce a spatial 
cascade to the alternative state. 
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Introduction

The magnitude of a perturbation that a system can withstand without being tipped 
into an alternative stable state has been termed ‘ecological resilience’ by Holling 
(1973). Although the idea of alternative attractors and Hollings concept of resilience 
have become highly influential, most empirical work in ecology comes from 
relatively small, isolated systems, such as small lakes and ponds (Scheffer 1998), 
from controlled isolated experiments (Drake and Griffen 2010; Veraart et al. 2012), 
or from small enclosures in large-scale systems (Handa et al. 2002; Silliman et al. 
2005). Here we address the fundamental problem of scaling up insights from such 
studies to spatially extended ecosystems. We consider a system spatially extended 
if the landscape is large relative to the scale of the relevant biological interactions, 
such that the system should not be considered well-mixed.

Fundamental aspects of stability of spatially extended systems with local alternative 
states have been addressed so-far mainly in theoretical literature from a rather 
abstract mathematical point of view (Bel et al. 2012). Yet, the issue is highly 
relevant from a practical perspective in ecology. One may, for instance ask under 
which conditions local restoration efforts could flip a system to an alternative state 
that would remain stable despite an open connection to the rest of the landscape. 
Similarly, one may ask under which conditions climatic change would result in 
a patchwork of local shifts between alternative states such as forest and savanna 
(Higgins and Scheiter 2012), or invoke large scale synchronous shifts in tropical 
(Hirota et al. 2011) or boreal biomes (Scheffer et al. 2012b). In essence, such 
problems boil down to the question under which conditions two alternative states 
may persist side by side in open connection. 

This question has been specifically addressed in the context of invasion dynamics 
of species with a strong local Allee effect (Keitt et al. 2001; Holt et al. 2005; Taylor 
and Hastings 2005). These modeling studies show that alternative stable states 
may co-exist side-by-side provided that the landscape consists of discrete units. 
Discrete units can clearly be distinguished in certain ecosystems, such as coral reefs 
connected through larval exchange (Kool 2009; Steneck et al. 2009) or shallow ponds 
connected through overflows (van Geest et al. 2003; Cottenie and De Meester 2003). 
However, some systems have contrasting states co-existing in apparently continuous 
and homogeneous landscapes (e.g. Fig. 6.1). For example, within shallow lakes we 
can find sharp boundaries between clear water with submerged plants, and turbid 
water with no vegetation (Scheffer et al. 1994) (Fig. 6.1a). In marshlands, patches of 
vegetation can be found adjacent to non-vegetated mudflat (van Wesenbeeck et al. 
2008) (Fig. 6.1b). Distinct boundaries are also found between mussel beds and bare 
soil in intertidal zones (Robles et al. 2010; Donahue et al. 2011) (Fig. 6.1c). Other 
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examples include boundaries between forest, savanna and grasslands (Sternberg 
2001; Warman and Moles 2009), or between kelp beds and bare ocean floor covered 
by sea urchins (Konar and Estes 2003; Gagnon et al. 2004).

a. b. c.

Figure 6.1. Example systems with alternative stable states in space. a) Shallow lake: clear water 
with Chara vegetation vs. turbid water (photo by Ruurd Noordhuis). b) Salt marsh: vegetation vs. 
bare marshland (photo by Johan van de Koppel). c) Musselbed: mussels vs. bare soil (photo by Andre 
Meijboom).

Could such apparent co-existence of alternative states be truly stable, or would 
it rather be a transient situation towards dominance by either of the states (van 
Wesenbeeck et al. 2008)? Clearly experimentation on relevant landscape scales is 
difficult, but there are even few spatially explicit theoretical studies on alternative 
stable states (van de Koppel et al. 2002; van Nes and Scheffer 2005; Guttal and 
Jayaprakash 2008b; Dakos et al. 2010; Hilt et al. 2011; Bel et al. 2012). 

Here we use simple models in an effort to help narrowing the gap between our 
understanding of local alternative states and patterns in spatially extended systems. 
We systematically analyze the behavior of a spatially explicit model with local 
alternative stables states. We consider spatial exchange of the key species, and 
investigate the behavior of the system on a large landscape. First, we show how 
theoretical insights from physics literature as recently reviewed by Bel et al. (2012) 
can help to understand resilience of spatially extended systems, defined as the 
capacity to recover upon a disturbance (Holling 1973), and hysteresis, defined as 
the tendency of a system with alternative stable states to stay in the same state 
despite changes in external conditions (Scheffer 1998). Second, we investigate 
under which conditions alternative stable states may co-exist in space. We show 
how dispersal barriers and heterogeneity of other environmental conditions can 
lead to stable co-existence. 
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Methods

The model

Our model consists of a reaction-diffusion equation including a growth term ( 
fN N( )), 

and a spatial explicit diffusion term (
  
fD N ,x( ) ) (Eqn. 1):

( ) ( )∂
= +

∂
( ) ,N D

N x f N f N x
t (1)

For the growth term, we here use one of the simplest models with alternative stable 
states, the classical resource harvesting model. In this model, a resource species, 
N, is growing logistically, and is being harvested following a sigmoidal functional 
response (Eqn. 2). 

( )  = − −  + 

2

2 21N
N cNf N rN
K N H

(2)

The logistic growth is described by r as the maximal growth rate, and K as the 
maximum local biomass species N can reach. Mortality as a result of harvesting is 
described by c as the maximal mortality rate if N is high, and H as the half saturation 
level of the functional response. The modeled species can have two alternative 
stable states for a range of parameter settings: a low biomass state, for which high 
mortality rates prevent further growth, and a high biomass state, for which growth 
is limited by available food or space. In the non-spatial model, the size of the basin 
of attraction (i.e. ecological resilience) of each state varies with parameters such 
as the maximal mortality rate c, which we here assume to be the landscape-wide 
driver. Default parameters used for the growth-term are: r=1 d-1, K=10 g m-1, 
c=2.4 g m-1 d-1, H=1 g m-1. This model has been introduced as an overexploitation 
model (Noy-Meir 1975; May 1977). More in general, it describes the dynamics of 
a population that has high per capita mortality rates at low biomass, and low per 
capita mortality rates at high biomass. Potential mechanisms for this are saturation 
of the predator, or decreased palatability or capture rate at high biomass. From a 
dynamical systems perspective the essence is the existence of a positive feedback 
mechanism that can cause a self-amplification of the effect of a disturbance around 
a critical threshold. For instance, if the biomass of the population in our model is 
depressed beyond a critical point, an increase in per capita mortality can lead to a 
further decrease and prevent the population to re-establish. We explored three other 
models in the Appendix A2 (Table A6.1) to show that our results are not specific to 
the model we use, as long as there is a local positive feedback that is strong enough 
to cause alternative stable states locally. 
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Space is represented by a one-dimensional continuum without discrete spatial units. 
Diffusion is the simplest form of modeling spatial exchange of the modeled species. 
As examples for spatial exchange one may think of clonal growth if the population 
represents vegetation, random movement if it represents a relatively sessile animal, 
or mixing if it represents water or dissolved nutrients (Eqn. 3):

( ) ∂
=

∂

2

2,D
Nf N x D

x (3)

with D as the diffusion rate, and x representing distance. This is the most 
straightforward way to model the scale at which feedbacks act. If D is high relative 
to the size of the landscape, local biomass differences are quickly smoothened out, 
such that feedbacks resulting from biomass differences practically affect the entire 
landscape. However, if D is low relative to the size of the landscape, local biomass 
differences remain for a relatively long period, such that the feedbacks act locally 
(see Appendix A6.1 for the non-dimensional form of the model, in which the spatial 
scale is scaled to the diffusion rate). 

Additionally, we simulated dynamics on a heterogeneous landscape. We modeled 
heterogeneity in conditions, simply by assuming a landscape gradient of the growth 
rate r. We also simulated a landscape in which the diffusion rate (D) is varied 
randomly but smoothly in space. In order to simulate such smooth heterogeneous 
landscape, we first generated spatially auto-correlated stochastic diffusion rates on 
a one-dimensional grid of 30 cells (Eqn. 4):

  Di+1 =0.3Di +0.7D0 +Rndi (4)

with Di as the diffusion rate at grid cell i, D0 as the diffusion rate at x=0, Rndi 
as a random number from a normal distribution, with mean 0 and standard 
deviation s. Then, from these discrete values we made a landscape with smoothly 
varying diffusion rates over space using a Gaussian kernel smoothing function, by 
interpolating between these 30 cells (Bowman and Azzalini 1997) (Eqn. 5):

( ) ( )=

 ∂ ∂ = −  ∂ ∂  
∑30

1

1,D h ii

Nf N x G x x
x n x (5)

with Gh as a Gaussian kernel, and h as the bandwidth of the kernel-smoothing 
window. Default parameters used for the diffusion equations are: D=1 m2 d-1, 
D0=1 m2 d-1, s=1.6 m2 d-1, h=0.05m. 
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Computational approach

In order to test for the possibility of stable co-occurrence of alternative stable states 
in space, we initialized the studied landscape such that the left half of the landscape 
was in the high biomass state, and the right half in the low biomass state. To explore 
the effect of strong but local disturbances, we initialized the system such that the 
entire landscape was in one state. Then, we simulated a local disturbance by shifting 
a small section on one side of the landscape to the alternative stable state. 

We used the pdepe solver in Matlab to solve the partial differential equations (Skeel 
and Berzins 1990). Boundaries were defined to be reflective. To check that our 
results were not influenced by the spatial discretization method used in pdepe, we 
repeated all simulations for 100, 1000 and 5000 grid cells. 

Results

We first show how the resilience of alternative stable states in homogeneous 
spatially extended systems differs from the classical well-mixed systems. At first, we 
initialized the landscape such that the population was in the high biomass state on 
one half of the landscape, and in the low biomass state on the other half. On either 
side of the created boundary the local dynamics driven by diffusion (fD) have an 
equalizing effect, while the growth and mortality dynamics (fN) drive the system 
back to each equilibrium state. The net effect around the front ∂ 

 ∂ 

N
t

drives the 
system locally towards one of the states (Fig. 6.2). This shift propagates further 
through the landscape resembling a domino effect. Such moving front is called a 
‘travelling front’ (Bel et al. 2012). 

Assuming other conditions to be constant, the maximal mortality rate c determines 
the direction of the travelling front. If the maximal mortality rate is low, a front of 
high biomass propagates through the landscape, leaving the entire system in the 
high biomass state (Fig. 6.2a). If the maximal mortality rate is high, the low biomass 
state is the one that propagates through the landscape (Fig. 6.2c). 

There is a single critical value of the mortality rate at which the resilience of both 
states is equal. At this specific parameter setting, the front speed is zero (Fig. 6.2b). 
This point is called the Maxwell point (Pomeau 1986; Bel et al. 2012), where both 
states have the same potential energy, and therefore the base level in a stability 
landscape should be the same for both basins of attraction (Strogatz 1994). At 
the Maxwell point, the dynamics driven by local growth and mortality exactly 
compensate for the local dynamics driven by diffusion (Fig. 6.2b, Appendix A6.2, 
Fig. A6.1). For single-variable models with local alternative stable states, the set of 
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conditions for the Maxwell point can be mathematically derived from the growth 
function (Appendix A6.2) (Aronson and Weinberger 1975; Fife 1979; Pomeau 
1986), and is generic for any single-variable model with local alternative stable 
states and diffusion (Fig. A6.2a-d).

The key result is that if either side of the landscape is in one alternative state, a 
travelling front always leaves the system in the state with the highest resilience 
(or more precisely in the state with the lowest potential energy). As a result, in 
such a simple system we have described, alternative stable states cannot co-exist 
in a homogeneous landscape. In our single-variable model, the conditions for the 
Maxwell point are independent of the diffusion rate. However, in a multi-variable 
model, such as the well-known macrophyte-turbidity model representing shallow 
lakes dynamics (Fig. A6.2e-f), the rates of exchange of each variable can be different, 
which has an effect on the stability of either state. For instance in the shallow 
lakes example, the macrophyte-dominated state will become more resilient against 
local perturbations if the dispersal rate of macrophytes increases (Fig. A6.3). Most 
importantly however, for multi-variable models with local alternative stable states 
and random dispersal of key species or diffusion of nutrients, the same key result 
holds.
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Figure 6.2. Simulations in a homogeneous landscape with local alternative states and diffusion of the 
modeled species. Initially, the left side of the landscape is set to the high biomass state, and the right 
side to the low biomass state. With these initial conditions a moving front establishes, shifting the entire 
landscape to the state with the highest resilience a) c=2.2, b) c=2.3487, c) c=2.5 (g m-1 d-1). The 
four figures in each panel represent: 1) snapshots of the moving front with the grey arrows indicating the 
shifting direction (scale = 30 m), 2) the local change in biomass per day due to growth and mortality 
(fN), 3) the local change in biomass per day due to diffusion (fD), and 4) the net local change in biomass 
per day ∂ = + ∂ 

N D
N f f
t . Note that local dynamcs and diffusion precisely cancel out if conditions are such that 

the modeled system is at the Maxwell point  (panel b). The scale of all change-in-biomass plots ranges 
from -0.5 to 0.5 (g m-1 d-1).

On an ‘infinitely’ sized landscape, the most resilient state is thus ‘indestructible’, in 
the sense that no local disturbance, independent of the size of the disturbance, is 
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able to propagate through space, because conditions are such that a travelling front 
in the direction of dominance of the least resilient state cannot occur (Fig. 6.2). 
However, if conditions change, such that the system crosses the Maxwell point, 
the system becomes vulnerable to local disturbances, ending this indestructibility. 
Environmental conditions will thus determine whether a strong local disturbance in 
a spatial system can potentially propagate or not. 

Moreover, for a travelling front to develop, a critical area needs to be disturbed to 
the alternative state. The actual critical size of this disturbed area (Δx) increases 
towards the Maxwell point (Fig. 6.3a). The asymptotic speed of a travelling front 
between alternative states is constant on a homogeneous landscape (Murray 2002), 
and approaches zero towards the Maxwell point (Fig. 6.3b). A non-dimensional 
version of our model (see Appendix A6.1) shows that an n-fold increase in diffusion 
rate D leads to a  n -fold increase in both Δx and in front speed (see Fig. A6.4). 
Importantly, once the system has shifted to the alternative state, a front travelling 
backwards cannot establish, so the new state is on its turn indestructible against local 
disturbances to the other state. Note that if a system is indestructible against local 
disturbances, such as fires or storms, it is not indestructible against disturbances 
that affect the entire landscape, such as periods of drought.

1.6 1.8 2 2.2 2.4 2.6
Maximal mortality rate (c)

A
sy

m
pt

ot
ic

 fr
on

t s
pe

ed
M

in
im

al
 si

ze
 o

f d
is

tu
rb

an
ce

 
to

 in
iti

at
e 

tra
ve

lli
ng

 fr
on

t (
∆x

)

M
ax

w
el

l p
oi

nt
M

ax
w

el
l p

oi
nt

∆x∆x

0

0. 2

0.4

0.6

0.8

0

2.5

5

7.5

10
a.

b.

Figure 6.3. Critical size of a local 
disturbance and the speed of a travelling 
front as a function of the maximal mortality 
rate c . a) On an infinitely sized landscape, 
disturbances smaller than the critical 
size Δx (in m) are repaired, while larger 
disturbances will initiate a propagating front 
that travels through the landscape with b) 
a constant front speed (in m d-1). The thick 
dashed line represents the Maxwell point. 
The thin dashed lines represent the two fold 
bifurcations in a non-spatial system. Left of 
the Maxwell point the entire landscape was 
initially set to the low biomass state, and the 
disturbance was set to the high biomass state. 
Right of the Maxwell point the landscape was 
initially set to the high biomass state, and the 
disturbance was set to the low biomass state 
(indicated by the small upper panels). In this 
model, an n-fold increase in diffusion rate 
leads to a  n -fold increase in both critical 
disturbance size and front speed.
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So far, we considered a landscape without borders, to rule out any edge effects. 
We now turn to the more realistic case of finite landscapes. In case the landscape 
is small (or diffusion is high, which is mathematically the same) the system does 
in practice behave like a well-mixed system (Fig. 6.4b). Consequently, shifts will 
occur almost simultaneously across the landscape. In contrast, if the landscape is 
large, a local disturbance can cause a travelling front that propagates through space, 
always in the direction of the least stable state. A relatively small disturbance can 
therefore already lead to systemic collapse (Fig. 6.4c). As a result, spatial resilience, 
here defined as the capacity to recover upon a local disturbance, of the alternative 
states changes abruptly around the Maxwell point (Fig. 6.4e, see Fig. A6.2 and Table 
A6.1 for other models). As stress on the dominant state increases (e.g. through the 
mortality rate in our model), resilience to local disturbances remains unaltered in 
the sense that the system will recover, even from large disturbances, until a critical 
point is reached (the Maxwell point) where resilience sharply drops to a point where 
even a local disturbance can induce a traveling front that will eventually bring the 
entire landscape in the alternative state. This is quite unlike the gradual decrease 
of resilience on a small landscape (Fig. 6.4d), corresponding to the classical well-
mixed situation.

In contrast to the resilience as defined by Holling (1973), the recovery rate of a 
local disturbance (i.e. ‘engineering resilience’) does decrease gradually in a spatially 
extended system (Fig. 6.4g). In that case, recovery from a local disturbance slows 
down if conditions are close to the Maxwell point. The recovery rate is slowest just 
before the point at which the disturbance will trigger a travelling front of expansion 
towards the alternative state (Fig. 6.4g). While this point lies beyond the Maxwell 
point for small disturbances, for large disturbances a front will be triggered as soon 
as the Maxwell point is crossed. Importantly, the same key result holds: once a 
spatially extended system has shifted to a degraded state, it is extremely difficult 
to re-establish the original desired state without changing global conditions. For 
example, in the scenario with a large landscape in Figure 6.4, one needs to bring 
more than 90% of the landscape back into the desired state; otherwise the remaining 
degraded patch will, although slowly, expand again (Fig. 6.4e). 

In all scenarios we examined so far, the spatially extended system eventually ends 
up in one state. Situations in which the alternative states occur side-by-side in 
a homogeneous landscape can be induced by strong local perturbations, but are 
transient. For stable co-existence of alternative stable states we need to relax the 
assumption that the environmental conditions determining growth and mortality 
parameters as well as diffusion rates are entirely homogeneous in space. 
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Figure 6.4. Resilience to local disturbances on a small and a large landscape. a) Local disturbances to 
the alternative stable state (i.e. the low biomass state) were performed on one side of the landscape, in 
order to have a symmetrical landscape. b) Mean biomass on the landscape in equilibrium (Ntotal/L) as 
a function of the maximal mortality rate for a system on a relatively small landscape (L=5 m). The 
solid parts of the curve represent the two stable landscape-wide equilibria. The dashed part of the curve 
represents the disturbance threshold, i.e. the size of the disturbed patch needed to induce a systemic 
shift to the alternative stable landscape-wide state. c) The same as panel b but for a system on a large 
landscape (L=50 m). Note that the disturbance threshold remains very close to the less resilient of the 
two stable equilibria implying that only a small disturbance is needed to induce a shift to the more 
resilient landscape-wide state. d) Resilience of the high biomass state, in terms of the fraction of the 
landscape that needs to be perturbed to the alternative state to trigger a shift (Δx/L), for a system on a 
small landscape. e) The same as panel d but for a system on a large landscape. Note that resilience shows 
a steep drop. f) Engineering resilience of the high biomass state, in terms of the recovery rate of a local 
disturbance to the low biomass state, for a system on a small landscape. g) The same as panel f, but for 
a system on a large landscape.
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We first simulated landscapes with spatially variable diffusion rates (Fig. 6.5). This 
can be seen as an intermediate between two simplified spatial models: a spatially 
discrete model with exchange between patches and a continuous model with 
homogeneous diffusion (see Appendix A6.3 and Fig. A6.5). The results show that 
a travelling front can slow down and can come to a halt, if it meets an area of 
increasing diffusion rates (Fig. 6.5a). Whether a travelling front comes to a halt, so-
called ‘pinning’, depends on three factors. Pinning is more likely if i) the actual level 
of increase in diffusion (Dplus) is high (Fig. 6.5b), ii) the scale on which the increase 
in diffusion occurs is low, i.e. the steepness of the diffusion function (set by p in the 
sigmoidal function described in the caption of Figure 6.5) is high (Appendix A6.3, 
Fig. A6.6), and iii) there is little difference between the resilience of the alternative 
states, causing the system to be close to the Maxwell point (Fig. 6.5b). Thus even 
if growth and mortality rates are homogeneous, spatial variation in exchange or 
dispersal rates can allow spatial co-existence of alternative stable states.
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Figure 6.5. The effect of spatially heterogeneous diffusion. A travelling front of collapsing biomass 
triggered by a disturbance can come to a halt if it meets an area of increased diffusion rates. a) The 
effect is illustrated in a simulated landscape with heterogeneous diffusion rates (c=2.4 g m-1 d-1) 
(upper panel). The dashed line in the lower panel represents the initial disturbance and the solid lines 
depict the transient situation every 40 days. The shaded area depicts the final stable configuration. 
This configuration is stable, as long as the system does not suffer from other local disturbances. b) In 
order to understand the conditions for pinning, we introduced a local disturbance in a landscape with 
a single spatial gradient in diffusion rate, representing a change from an area with low diffusion (D0) to 
an area with high diffusion (D0+ Dplus) (visualized in the small upper panels). The landscape was created 
by a sigmoidal function: ( )

( )
  ∂ ∂  = +
  ∂ ∂+  

0,
/ 2

p

D plus pp

x Nf N x D D
x xx L

 (D0= 1 m2d-1, p=50, L= 100 m). The main panel 
represents the occurrence of pinning for different combinations of maximal mortality rate c and the level 
of increase in diffusion rate Dplus. Importantly, pinning only occurs if a traveling front meets an area in 
which diffusion is higher. The thick black dashed line indicates the Maxwell point. 
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Next, we simulated heterogeneity in environmental conditions in the most 
straightforward manner, using a spatial gradient of growth rate r (Fig. 6.6). One 
can for example imagine a gradient in water availability related to distance to 
water source, or precipitation and temperature gradients related to latitude. With 
a smooth spatial gradient in the growth rate, a sharp boundary between two states 
is formed simply wherever conditions cross the Maxwell point. If both sides of the 
landscape are connected to an area in which the system has only one stable state, 
this configuration is completely independent of initial conditions (Fig. 6.6). As a 
consequence, as long as diffusion rates are homogeneous, and there is a smooth 
gradient in environmental conditions, there will be no local nor large-scale hysteresis 
effects in the response to a changing environmental variable. If global conditions 
change gradually, the location of the spatial shift will also shift in a gradual manner.
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Figure 6.6. The effect of spatially heterogeneous conditions. A gradual increase in growth conditions in 
space (e.g. north-south gradient in temperature) results in a distinct shift in space from the low biomass 
state to the high biomass state (i.e. a stable standing front) on the location where conditions cross the 
Maxwell point. Upper panel: The solid black line represents the local growth rate ron the landscape. The 
solid grey line indicates where the conditions cross the Maxwell point (MP), and the two dashed grey 
lines indicate where the two fold bifurcations (F) are crossed. Lower panel: The shaded area represents 
the stable end configuration of biomass for any initial configuration (c=2.35 g m-1 d-1).

In natural systems, however, one would expect environmental conditions to be 
more heterogeneous than along a simple gradient. In that situation, a slow, gradual 
change in global conditions would likely lead to incidental ‘local fronts’ of change 
(see Appendix A6.4, and Fig. A6.7). These local fronts would cause a reverse change 
if global conditions are reversed. In contrast, if exchange or dispersal rates are 
heterogeneous is space, a slow, gradual reversal in conditions would not simply 
cause a reverse change in the landscape as a local increase in exchange or dispersal 
of a key variable in one direction would not lead to ‘pinning’ in the other direction 
(Fig. 6.5).



104  |  Chapter 6 Alternative states in spatial systems  | 105

6

Discussion

Our results illustrate that even for entirely homogeneous landscapes, stability 
properties of a spatially extended ecosystem can differ profoundly from those of a 
simple, well-mixed ecosystem. Differences are especially intriguing when it comes 
to ecological resilience, generally defined as the maximum disturbance that a system 
can tolerate without switching to the alternative stable state (Holling 1973). Here, 
we specify this definition to local disturbances, and define ecological resilience as 
the size of the area of a strong local disturbance needed to trigger a shift. If the 
ecosystem is spatially extended, the least resilient state tends to be always fragile 
(Fig. 6.4c) in the sense that a strong local disturbance can already trigger a domino 
effect in the form of a travelling front (Fig. 6.2) that leaves the landscape in the 
alternative more resilient state. Importantly, as environmental conditions change, 
there is a sudden drop in resilience at the point where one state becomes more 
resilient than the other (i.e. at the Maxwell point) (Fig. 6.4e), rather than the 
classical gradual decrease towards the fold bifurcation (Fig. 6.4d). In fact, this class 
of systems may hardly have hysteresis in practice as only a small patch needs to be 
in the most stable state to trigger a system wide shift, and the new state is stable 
against local disturbances (Fig. 6.4c). Mathematically, these results on travelling 
fronts and the Maxwell point are not new (Bel et al. 2012), and have been discussed 
in the context of populations with an Allee effect (Keitt et al. 2001; Holt et al. 2005; 
Taylor and Hastings 2005). However, surprisingly, the connection to the concepts 
of resilience and hysteresis has not been made so far. 

Effectively, a spatially extended system in our model means that a positive feedback 
acts on a small scale relative to the size of the landscape, which is often the case 
in ecosystems. For example, foundation species such as Spartina (cordgrass) on 
intertidal flats facilitate vegetation development, by locally lowering erosion levels 
(Altieri et al. 2007). Seagrass facilitates neighboring seagrass development by 
trapping sediment leading to increased light conditions (van der Heide et al. 2011)  
and decreased erosion levels, but it will depend on the water mixing rate how far 
this effect can reach. Similarly, but on a much larger scale, local development of 
forest suppresses wildfire propagation (Staver et al. 2011a), but has no effect on 
fires at a longer distance. Our results suggest that ecosystems that have alternative 
stable states in small-scale experiments or on a small landscape, could, on a larger 
landscape, be surprisingly resilient (Fig. 6.4e). This may explain why, after a large-
scale die-off of Spartina due to drought, snail grazing, and fungal infections (Angelini 
and Silliman 2012), remnant Spartina patches (if large enough) could slowly expand 
into die-off areas. Survival is possible, because Spartina facilitates expansion locally. 
On the other hand, once the Maxwell point has passed, the degraded (or undesired) 
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state will also be surprisingly resilient. This could explain the persistent failure of 
local restorations in certain systems, such as the lack of survival of planted seagrass 
patches in the Wadden sea where this plant used to dominate (van Katwijk et al. 
2009).

It is important to note that the systems we studied are different from those with 
self-organized Turing patterns (Rietkerk and van de Koppel 2008). Such patterns 
can arise in situations where local positive feedbacks are associated to a depletion 
of resources or increased stress levels (i.e. erosion) at a distance. For instance, 
vegetated patches in an arid landscape can locally increase soil permeability, which 
has a positive effect on local plant growth. However, at a distance from the patch 
this may lead to water depletion, and thus to unfavorable plant growth conditions 
(Rietkerk et al. 2002). Similarly, mussels or diatoms may locally protect themselves 
and their neighbors from wave action and erosion, but by doing this they increase 
these stress levels at a distance (van de Koppel et al. 2008; Weerman et al. 2010). 
The combination of a local positive feedback, and a sufficiently strong long-range 
negative feedback can, without intrinsic heterogeneity in abiotic conditions, lead 
to regular spatial patterns (i.e. spots, labyrinth, gaps) (Rietkerk and van de Koppel 
2008). 

The conspicuously regular patterns of contrasting states in such self-organized 
systems tend to be very robust. By contrast, our analysis suggests that stable 
coexistence of alternative states (without a long-range negative feedback) in a 
homogenous landscape might be unlikely, even though the movement of the front 
between states can be slow in practice. Indeed, field observations do suggest that 
some sharp borders between alternative states may represent transient situations 
rather than stable states. For instance, following improved water quality, patches of 
clear water with submerged water plants arose during the summer of 1993 in the 
Dutch lake Veluwe. At that time, this was thought to be an indication of stable co-
existence of alternative stable states (Scheffer et al. 1994). However, over the years, 
these patches of clear water with submerged water plants have gradually spread to 
a patch as large as almost the entire lake (Fig. 6.7). Similarly, van Wesenbeeck et 
al. (2008) describe the slow spatial spread of vegetation cover in saltmarsh pioneer 
zones as being non-stable at longer timescales. 

In the context of our model analyses it becomes clear from such observations that the 
existence of a sharp border between ecosystem states in an otherwise homogeneous 
landscape should be interpreted with care when it comes to the framework of 
alternative stable states. Close to the Maxwell point, borders may simply move very 
slowly (Fig. 6.4g) (Bel et al. 2012), resulting in apparent co-existence at shorter 
timescales, even if one state may eventually dominate. It is also important to note 
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that if an ecosystem is subject to occasional stochastic disturbances or recurrent 
temporal change (e.g. seasons), the slowness of the movement of fronts would allow 
the existence of a permanent (albeit spatially unstable) patchwork of alternative 
states (Bertness et al. 2002). 
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Figure 6.7. Travelling front-type of spread of aquatic vegetation (Chara spec). Lake Veluwe, the 
Netherlands, from 1993 to 1999 (from: Monitoring of aquatic vegetation of the IJsselmeer Area by 
Rijkswaterstaat, an Agency of the Ministry of Infrastructure and the Environment, The Netherlands).

Clearly, situations with sharp borders between alternative states may often occur in 
a stable way along smooth environmental gradients (Fig. 6.6). Such situations do in 
a sense represent critical transitions in space. This is analogous to classical critical 
transitions in time, except that environmental conditions now change over space 
rather than over time (e.g. Wilson and Nisbet 1997; van de Koppel et al. 2005b). 
At the established border the positive feedback is too weak to trigger a local shift 
towards the other state, leading to a dynamic equilibrium. This type of dynamics 
has, for example, been suggested to be the underlying mechanism for sharp borders 
of clear vegetated water in a river stretch with increasing background turbidity (Hilt 
et al. 2011), sharp mussel bed borders on an intertidal flat with increasing wave 
exposure (Donahue et al. 2011), and northern boreal forest boundaries as a result of 
latitudinal gradients in temperature (Scheffer et al. 2012b). 

Interestingly, our model analysis also suggests that even if environmental conditions 
for growth and survival are homogeneous, spatial coexistence of alternative states 
can still be stable if diffusion rates are not entirely homogeneous through space 
(Fig. 6.5 and Fig. A6.6). One may think for example of internally mixed lakes that 
are connected through channels (Cottenie and De Meester 2003), or natural areas 
fragmented by roads or other landscape elements that limit dispersal of species. The 
mechanism behind this particular case of co-existence of alternative states is that a 
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local increase in exchange rates causes the area from which each of the states draw 
for additional inputs (the ‘hinterland’) to vary from place to place, thus effectively 
causing the strength of the positive feedback to vary over space. As a consequence, 
expansion can be halted allowing stable co-existence of the low and high biomass 
state (Fig. 6.5). From a modeling point of view, this result demonstrates that 
stable co-occurrence of alternative stable states in space is not an artifact of using 
discrete space models (Keitt et al. 2001) (see Fig. A6.5). Rather, the fact that such 
co-existence is impossible in idealized continuous space models may be seen as an 
artifact of neglecting the possibility of heterogeneity in dispersal rates. Obviously, 
animals and plants can have more complex dispersal strategies than simple random 
dispersal. The potential for co-existing alternative stable states is expected to be 
lower with long-distance seed dispersal, or active dispersal towards unoccupied 
areas, since dispersal barriers can be crossed more easily. 

Implications

Clearly it is challenging to bridge the gap between our fundamental understanding 
of alternative stable states on small scales, and the dynamics of spatially extended 
ecosystems. Our results are limited to basic principles derived from simple models. 
Nonetheless, they help to see why scale can prohibit restoration of spatially extended 
homogeneous ecosystems such as estuaries or very large lakes. Petraitis and Latham 
(Petraitis and Latham 1999) already hypothesized that ‘the spatial and temporal 
window of opportunity of a perturbation must be large enough to gain a foothold 
and initiate pivotal positive feedback processes’. Indeed, our model predictions are 
in line with findings that local restoration efforts must be large enough to gain 
momentum for a travelling front to establish. On the other hand, our results also 
imply that even if the desired state is stable in an isolated system (e.g. mesocosms 
or enclosures) it may not be able to spread through space. 

In addition to providing a framework for understanding resilience and restoration 
of spatially extended systems, our results suggest mechanisms leading to entirely 
different ways in which major biomes might reorganize in response to climate 
change. Tropical and boreal forests are the two largest biomes on Earth. As climate 
changes, the regions dominated by these two types of forest will likely change, but 
the character of the transitions is unclear. Recent studies suggest that, under certain 
conditions, tropical forest and savanna are alternative stable states (Hirota et al. 
2011; Staver et al. 2011b) and the same may be true for boreal forest and tundra, 
and tundra and steppe (Scheffer et al. 2012b). It has been suggested that more or 
less stochastic local switches may give the range shift of tropical forest an overall 
gradual character (Higgins and Scheiter 2012). Our results suggest that this scenario 
is indeed likely if environmental heterogeneity follows a smooth gradient (e.g. 
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temperature gradient related to latitude), as in Figure 6.6. On the other hand, one 
could speculate that over large homogeneous areas, a massive shift to an alternative 
biome might occur once a tipping point is reached (see Appendix A6.4 and Fig. 
A6.7). If we assume that currently homogeneous systems signal a tendency to a 
winner-takes-all situation, our results suggest that such biomes might be likely to 
shift to an alternative state through massive traveling fronts, called ‘gradual regime 
shifts’ by Bel et al. (2012), to differentiate them from abrupt landscape-wide shifts. 
However, the speed of such fronts would depend among other things upon the rate 
at which states disperse. For example, the spread of boreal trees into the tundra may 
be limited by seed dispersal (MacDonald et al. 2008). On the other hand, the rate 
of disappearance of boreal forest at the Southern end of its range as temperatures 
rise could be dictated by massive wildfires and insect outbreaks as already observed 
(Wolken et al. 2011).

Conclusion

Our analysis illustrates that the resilience of spatially extended ecosystems will 
differ markedly from those of small isolated parts of such systems. Even if a positive 
feedback causes a system to have alternative stable states on small scales over a 
range of conditions, this hysteresis will tend to disappear in a larger spatial context. 
This is because in a spatially extended system one of both alternative states will 
tend to be dominant in the sense that it is highly resilient against local disturbances. 
By contrast, in the alternative (subdominant) state, even a small local disturbance 
will tend to invoke a shift to the dominant state that spreads through the entire 
landscape as a travelling front. Environmental conditions determine the resilience 
of both the dominant and subdominant state and at the so-called Maxwell point the 
dominance shifts between the states. Close to this point the travelling front moves 
very slow. This allows long transient co-occurrence of alternative states side-by-
side, and also implies that even minor spatial barriers can lead to stagnation of a 
travelling front and thus to permanent co-existence of alternative states in space.

Obviously model studies as the ones presented in this paper can only hint at potential 
classes of mechanisms and dynamics. Combinations of field experiments, elaborate 
models and analyses of field patterns will be required to reduce the uncertainty we 
have about the mechanisms that rule the large scale dynamics of spatially extended 
systems. In any case our results illustrate that stability properties on large scales 
cannot be deduced from small-scale experiments alone. 
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Appendix A6 

Appendix A6.1. The Maxwell point in a range of bistable models 

Mathematically, one can describe the set of conditions at which the Maxwell point 
is found as follows (Aronson and Weinberger 1975; Fife 1979; Pomeau 1986): 

 ( ) =∫
2

1

0
N

NN
f N dN

with  fN N( ) as the reaction part of the reaction-diffusion equation (e.g. Eqn. 2, main 
text), and   N1  and   N2  as the two alternative equilibria. To illustrate this, the reaction 
part (i.e. the growth function) of the exploitation model described in the main text 
is depicted in Figure A6.1. At the Maxwell point, the shaded areas are of equal size, 
so both states in the spatially extended system are equally resilient. If the mortality 
rate is lower, the high biomass state is more resilient, and a travelling front may be 
triggered to this state. Similarly, if the mortality rate is higher, the low biomass state 
is more resilient, and a travelling front may be triggered to this state. 
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Figure A6.1. Conditions for the Maxwell point in relation to the growth function. The shape of the growth 
function determines the direction and speed of the travelling front. Front speed is zero when the shaded 
areas on both sides of the unstable equilibrium have equal size (here at c=2.3487, MP=Maxwell 
point).

The condition for the Maxwell point is generic for models with local alternative 
stable states and diffusion (Fig. A6.2). Related to the existence of a Maxwell point 
is the effect that resilience drops at conditions equal to the Maxwell point if the size 
of the landscape is large (Fig. A6.2). We used three different ecosystem models to 
illustrate this generality (Table A6.1): 1) a model with one state variable describing 
the eutrophication level in lakes. Nutrient dynamics are assumed to depend on 
nutrient input, loss (e.g. sedimentation, outflow), and recycling (e.g. from sediment 
or consumers) following a sigmoid function of the nutrient level (Carpenter et 
al. 1999) (Figs. A6.2a and b), 2) a model with one state variable describing a 
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population with an Allee effect (Keitt et al. 2001), that is being harvested with 
a type I functional response (Figs. A6.2c and d), and 3) a well-developed model 
with two state variables describing the dynamics of aquatic vegetation and vertical 
light attenuation in shallow lakes. Aquatic vegetation is assumed to have a positive 
feedback on its own growth, by reducing turbidity, which enhances vegetation 
growth (Scheffer 1998) (Figs. A6.2e and f).  
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Figure A6.2. The Maxwell point and resilience of three models with local alternative stable states (see 
Table A6.1). a-b) eutrophication model with nutrient input a as the control parameter; c-d) Allee effect 
model with exploitation rate f as the control parameter; and e-f) vegetation and light attenuation model 
with background light attenuation level E0 as the control parameter. The thick dashed line in the left 
panels indicates the level of the control parameter at the Maxwell point (MP). The right panels show the 
resilience, in terms of the fraction of the landscape that needs to be perturbed (i.e. with a strong local 
perturbation) to trigger a shift to the alternative stable state of the low nutrient state in the eutrophication 
model (panel b); the high biomass state in the Allee effect model (panel d); and the vegetated, clear state 
in the vegetation – light attenuation model (panel f). For all three models, the size of the landscape (L) 
is 100 m.
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Table A6.1. Model equations and parameters of three models with alternative stable states.

Models State variables and parameters Value

Eutrophication model (Carpenter et al. 1999)

∂
= − + +

+ ∂

2

21

p

p

dN rN Na bN D
dt N x

N Local nutrient concentration (state variable)

a Nutrient loading rate 0.1-0.6
b Nutrient loss rate 0.8
p Hill coefficient 8
r Maximal recycling rate 1
D Nutrient mixing rate 10

Allee effect model (Keitt et al. 2001) 
with harvesting

∂  = − − − +   ∂  

2

21dN N N C NrN fN D
dt K K K x

N Local population size (state variable)

C Allee threshold 0.2
f Exploitation rate 0-0.2
K Local carrying capacity 1
r Maximal growth rate 1
D Dispersal rate 10

Vegetation-turbidity model (Scheffer 1998)

 + ∂
= − +  ∂ 

2

2
0

1 v
E

v

h VdE E EE D
dt E h x

 + ∂
= − +  ∂ 

2

21
p p

V E
Vp

E E

r h EdV VV V D
dt r h x

V Local vegetation cover (state variable)

E Local vertical light attenuation (state variable)

E0
Local vertical light attenuation without 
vegetation

4-8

rV
Growth rate of vegetation 0.05

rE
Growth rate of vertical light attenuation 0.1

hE
Vertical light attenuation at which local 
vegetation cover is reduced by half

2

hV
Vegetation cover at which local vertical 
light attenuation is reduced by half

0.2

p Hill coefficient 4
DV

Dispersal rate vegetation 0.1
DE

Mixing rate turbidity 1

Interestingly, in contrast to models with one state variable, for models with two 
state variables the conditions for the Maxwell point change with diffusion rate. 
More specifically, in the vegetation-light attenuation model, the conditions for the 
Maxwell point depend on the dispersal rate of vegetation relative to the mixing 
rate of turbid water (Fig. A6.3). Under the assumption that clonal expansion rate 
of aquatic plants is much lower than mixing of turbidity (i.e. DV /  DE < 1), one 
may conclude that the resilience of the macrophyte-dominated state against local 
removal of vegetation in a large lake is not only lower than predicted by well-mixed 
models (see main text), but it is also lower than predicted by models that assume 
equal diffusion rates. Therefore, an increase in clonal expansion rate would lead to 
an increase in resilience of the macrophyte-dominated state.
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Figure A6.3. The Maxwell point in the vegetation-light attenuation model. a) The range of conditions 
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the dispersal rate of vegetation and the mixing rate of turbidity (DV /  DE). Note that the location of the 
Maxwell point influences the resilience of the two global states against local perturbations.  

Appendix A6.2. Non-dimensional model 

We reduced the number of parameters by rescaling the model described in the main 
text:

( ) ( )
( ) ( )
σ

µ

∂ ∂
= − − +

∂ + ∂

2** 2 *
* *

2 2* * 2 *
1

NN NN N
t N x

      
With new, dimensionless variables:   t * = rt , 

  
N * =

N
K , 

  
x * = x r

D , 
  
L* = L r

D   
and parameters:  σ =

c
rK

, µ =
H
K

.

In this rescaled, non-dimensional model, the population size is scaled to the carrying 
capacity, the timescale is scaled to the growth rate of the species, and the spatial 
scale is scaled to the diffusion rate. Using such formulation, one can predict generic 
patterns independent of population size, temporal scale, and spatial scale. However, 
it is often more difficult to understand the abstract variables and parameters. 

The non-dimensional model allows us, for example, to generalize the minimum size 
of a disturbance needed to trigger a travelling front (as in Figure 6.3a, main text), 
in terms of the rescaled, non-dimensional perturbation size Δx* (Fig. A6.4a). It also 
allows us to draw the hysteresis plot in terms of the rescaled landscape size L* (Fig. 
A6.4b, as in Figure 6.4b and 6.4c, main text).
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Figure A6.4. Critical size of disturbance and front speed as a function of the re-scaled mortality rate σ. a) 
Critical size of a local disturbance as a function of the re-scaled maximal mortality rate σ. Disturbances 
smaller than the critical size are repaired, while larger disturbances propagated through the landscape, 
shifting the entire landscape to the alternative state. The thick dashed line represents the Maxwell 
point. Left of the Maxwell point the entire landscape was initially set to the low biomass state, and the 
disturbance was set to the high biomass state. Right of the Maxwell point the landscape was initially 
set to the high biomass state, and the disturbance was set to the low biomass state (indicated by the 
small upper panels). b) Mean biomass on the landscape in equilibrium (N*

total /  L* ) as a function of 
the re-scaled maximal mortality rate for two systems with landscape size L*. The solid parts of the 
curve represent the two stable landscape-wide equilibria. The dashed parts of the curve represent the 
disturbance thresholds, i.e. the size of the disturbed patch needed to induce a systemic shift to the 
alternative stable landscape-wide state.

Appendix A6.3. Co-existence of alternative stable states 

Alternative stable states can co-exist in space, if the landscape consists of patches 
(Fig. A6.5), or if there is some level of heterogeneity in the dispersal rate or mixing 
rate of the state variable (Fig. A6.6). 

Landscapes are often modeled by means of a lattice differential equation (LDE) 
(Chow et al. 1996). For an LDE, one models the landscape as a grid with discrete grid 
cells. Dispersal is represented by an exchange of biomass between neighboring grid 
cells. This method is often used to mimic a continuous landscape, using sufficiently 
small grid cells relative to the diffusion rate, to avoid potential side effects of the 
‘artificial’ grid cells. LDEs may also be used to simulate a patchy system, in which 
the grid cells represent individual patches, or islands. We made a simple LDE version 
of our model with ten grid cells, using: 

( )
( )− +

 
= − − + + −  + ∆ 

2

1 122 21 2j j j
j j j j

j

dN N cN DrN N N N
dt K N H x

   =1...10j
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Using an LDE, it is possible to have areas with low biomass coexisting with areas 
with high biomass. Between both states there is a stagnant gradient in the biomass 
(Fig. A6.5a). Such coexistence is only possible for intermediate mortality rates 
and low dispersal rates between the grid cells (Fig. A6.5a)(van Nes and Scheffer, 
unpublished manuscript). The range of co-existence decreases with high dispersal. 
In contrast, if we model continuous space by means of a PDE (as in the main text), 
co-existence of alternative stable states is not possible for any parameter setting (Fig. 
A6.5b). A travelling front with a constant rate of spread always emerges, leaving the 
entire system in the state with the highest resilience (main text). 
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Figure A6.5. Comparison of a spatially discrete and a spatially continuous model with local alternative 
stable states. Stable end configurations of the entire landscape in the high biomass state, the entire 
landscape in the low biomass state, or stable co-existence of both alternative states in space, as a function 
of the maximal mortality rate and the dispersal rate of species Ν. The initial landscape was set at one 
half in either of the alternative states in: a) a one-dimensional lattice with discrete grid cells; and b) a 
homogeneous, spatially continuous landscape. Note that alternative states can co-occur in space on a 
landscape with patches (panel a), while in a spatially continuous system, a travelling front will always 
move the entire system to one of the states (panel b) (main text). The example simulations below are 
space-time-plots for c=2.2 and c=2.4 (D=10).  

The prediction that alternative stable states cannot co-exist in space holds only for the 
limit case where exchange rates are completely homogeneous in space. Co-existence 
of alternative stable states in continuous space may happen when a travelling front 
meets an area of increased diffusion, such that the processes that stabilize the 
alternative state locally have a higher impact. This effect is most pronounced close to 
the Maxwell point, if processes that trigger the travelling front are weak. Obviously, 
the more spatially heterogeneous the exchange rates or other spatial processes are, 
the larger the scope for such ‘wave-pinning’ situations (Fig. A6.6). 
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Figure A6.6. The effect of spatially heterogeneous diffusion. A travelling front of collapsing biomass 
triggered by a disturbance can come to a halt if it meets an area of increased diffusion (Dplus). The 
probability of this so-called pinning increases if the shift in diffusion becomes less gradual, thus if the 
steepness of the shift (p)increases. Maximal mortality rate: a) c=2.2; b) c=2.3; c) c=2.4 d) c=2.45. 
As shown by Figure 6.5 (main text), the likelihood of pinning is high if the maximal mortality rate is close 
to the Maxwell point (e.g. panels b and c).

A corollary of this result is that spatial coexistence of alternative stable states in 
finite element models (Fig. A6.5a) is not simply an artifact of the discretization of 
space (Fáth 1998; Keitt et al. 2001; Holt et al. 2005; Taylor and Hastings 2005), but 
a consequence of heterogeneous local exchange rates.  This is important, as discrete 
models are much easier to implement computationally.

Appendix A6.4. Gradual shifts in heterogeneous spatially extended 
systems

Abrupt shifts of alternative stable states in space may be expected if environmental 
conditions (here represented by the maximal growth rate r) change gradually in space 
(Fig. A6.7). In such situation, a travelling front triggered by a local disturbance will 
come to a hold if it hits environmental conditions that correspond to the Maxwell 
point (Fig. A6.7). One may wonder what happens to the location of the spatial 
shift if global conditions change. We simulated the effect of an increasing globally 
changing driver (here represented by the maximal mortality rate c) in various 
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spatially extended landscapes (Fig. A6.7). A smooth environmental gradient of the 
maximal growth rate will simply result in a smooth range shift (Fig. A6.7b), while a 
system with healthy edges may recolonize from these refuges (Fig. A6.7a) as soon as 
the Maxwell point is crossed. In general, heterogeneity in spatially extended systems 
with local alternative states will lead to an overall smooth response to gradually 
changing conditions, with some larger waves of collapse or repair, when crossing 
more vulnerable, or healthy parts of the landscape (Figs. A6.7c and A6.7d). The 
Maxwell point plays an important role, as it is the point at which the direction of the 
travelling front shifts: it determines the borders of spatial co-existence of alternative 
stables states.
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Figure A6.7. The effect of spatially heterogeneous environmental conditions. Example simulations of 
recovery, following a gradual decrease in maximal mortality rate, on a landscape with local alternative 
stable states in: a) a generally homogeneous landscape with one edge at which the growth rate is locally 
high (a refuge); b) a landscape with a linear gradient in growth rate; and c) and d) two landscapes 
with random heterogeneity in growth rate. The thick black line in the lower panels represents the local 
growth rate r . The maximal mortality rate is changed from 2.36 to 1.96, and the simulation results are 
depicted for steps of 0.02. The stable end configurations of biomass are depicted in the upper panels as 
shaded areas, ranging from light gray to black. For each parameter setting, the grey solid lines in the 
lower panels represent the upper fold bifurcation, and the grey dashed lines the Maxwell point. When 
the growth rate at a point in space exceeds the fold bifurcation, there is locally only one stable state. 



Alternative states in spatial systems  | 117

6

When the growth rate locally exceeds the Maxwell point, a travelling front towards the higher biomass 
could be triggered, provided that the area that initiates the front is sufficiently large. Note that in an 
environment with an environmental gradient (panel b), the location of a standing front directly follows 
changes in global conditions (no hysteresis), while in an environment with random heterogeneity, the 
location of the standing front changes stepwise, which can result in hysteresis if the maximal mortality 
rate decreases again.  
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Abstract 

A range of early-warning signals have been proposed for identifying elevated risk 
of critical transitions in ecosystems. Most indicators are based on the idea that 
critical slowing down can be inferred from changes in statistical properties of 
natural fluctuations and spatial patterns. However, identifying these signals in 
nature has remained challenging. An alternative approach is to infer changes in 
resilience from differences in standardized experimental perturbations. However, 
system-wide experimental perturbations are rarely feasible. Here we evaluate the 
potential to infer the risk of large-scale systemic transitions from local experimental 
or natural perturbations. We use models of spatially explicit landscapes to illustrate 
how recovery rates upon small-scale perturbations decrease as an ecosystem 
approaches a tipping point for a large-scale collapse. We show that the recovery 
trajectory depends on: (1) the resilience of the ecosystem at large scale, (2) the 
dispersal rate of organisms, and (3) the scale of the perturbation. In addition, we 
show that recovery of natural disturbances in a heterogeneous environment can 
potentially function as an indicator of resilience of a large-scale ecosystem. Our 
analyses reveal fundamental differences between large-scale weak and local-scale 
strong perturbations, leading to an overview of opportunities and limitations of the 
use of local disturbance-recovery experiments. 
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Introduction

The idea that we might detect loss of resilience as an early-warning signal for critical 
transitions in ecological systems has attracted much attention (Scheffer et al. 2012a; 
Dakos et al. 2015). It can be mathematically shown that close to a broad class 
of tipping points (namely zero-eigenvalue bifurcations) systems become slower in 
recovering from small perturbations (Wissel 1984; Strogatz 1994). A straightforward 
consequence of this ‘critical slowing down’ is that, if we can measure the time it 
takes for a system to return to its original state after a small disturbance, we may 
indicate the proximity of the system to a catastrophic shift (van Nes and Scheffer 
2007). A range of indicators has been proposed that may reflect such slowing down 
in natural fluctuations or in spatial patterns (Scheffer et al. 2012a; Dakos et al. 
2015). In particular, rising temporal autocorrelation and variance have received 
much attention as indicators of loss of resilience before a transition. For instance, 
variance of phosphorus concentration in a lake is predicted to increase as conditions 
reach a threshold at which the lake shifts from an oligotrophic to a eutrophic state 
(Carpenter and Brock 2006). Similarly, temporal autocorrelation in vegetation 
biomass may rise before the ecosystem collapses to a desert state due to overgrazing 
(Dakos et al. 2011). Other proposed early-warning signals include increasing spatial 
correlation (Dakos et al. 2010), increasing skewness (Guttal and Jayaprakash 2008a), 
changing frequency spectra (Kleinen et al. 2003), deviations in pattern formation 
(Rietkerk et al. 2004), and truncated power law distributions (Kéfi et al. 2007).

In theory, these early warnings may well indicate a nearby tipping point. However, 
detecting them in practice remains difficult. Timely and robust identification of 
early warnings requires long, high-resolution records with low measurement error 
that are simply unavailable in most ecological systems. Thus, it is not surprising 
that the best reported cases for detecting early warnings before shifts come from 
controlled experiments in the lab where short-lived and easy-to-monitor single 
species populations are used (Drake and Griffen 2010; Veraart et al. 2012; Dai et 
al. 2012, 2013). The only ecological study that identified indicators of reduced 
resilience before a catastrophic shift in the field is a lake trophic cascade experiment 
that relied on the exceptional case of comparing dynamics between a manipulated 
and a control lake (Carpenter et al. 2011).

Part of the difficulty stems from the fact that the discussed indicators are mostly 
indirect measures of critical slowing down. Such proxies have a number of issues 
that ultimately limit their potential to unequivocally detect if critical slowing down 
is at play (Brock and Carpenter 2010; Dakos et al. 2012b, 2015). For instance, strong 
environmental stochasticity could muffle any rising pattern in variance caused by 
critical slowing down. False positive trends in both variance and autocorrelation 
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might be driven by changes in the pattern of environmental fluctuations rather 
than by the proximity to a nearby transition (Dakos et al. 2015). Overall, the 
most reliable way to identify critical slowing down is to directly measure the time 
(or alternatively rate) it takes for a system to recover after a small experimental 
disturbance (van Nes and Scheffer 2007). 

In its simplest form, one applies a homogeneous (system-wide), weak perturbation 
(e.g. by removing 5% of the biomass) and measures the time it takes to recover 
to the pre-disturbance state. However, most ecosystems are ‘spatially extended’, 
in the sense that the size of the landscape is large compared to the scale at which 
important processes and interactions are acting. Examples of spatially extended 
ecosystems with critical transitions between alternative stable states include kelp 
forests (Konar and Estes 2003), coral reefs (McManus and Polsenberg 2004; Elmhirst 
et al. 2009),  semi-arid vegetation (Rietkerk and van de Koppel 1997), mud-flats 
(van de Koppel et al. 2001), and lake vegetation in large lakes (Scheffer 1998). 
Homogeneous (system-wide) disturbance experimentation could be problematic in 
practice, either due to cost and management restrictions (e.g. protected habitats), 
or because experiments are simply impossible to perform on the scale of the entire 
ecosystem. For instance, one simply cannot remove a certain percentage of coral 
cover on an entire reef to measure its recovery. In addition, the effects of a weak 
disturbance might be difficult to measure in a naturally stochastic environment, 
while a too strong system-wide pulse experiment might “accidentally” push the 
ecosystem to an undesirable state. Thus, such large-scale approaches do not always 
belong to the fail-safe experimentation that would be appropriate for measuring 
resilience (Holling and Meffe 1996). 

In practice, it will be more feasible to perform a strong local perturbation, for 
instance by removing all vegetation in a small area in the middle of a vegetated 
area. However, this perturbation type is different from a system-wide perturbation, 
since spatial interactions and dispersal play a role in the recovery. Here, we study 
whether recovery rate from strong but local disturbances in spatially extended 
ecosystems can be used to infer system-level proximity to a tipping point. We show 
that both in continuous landscapes (e.g. a single large lake or forest), and in patchy 
landscapes (e.g. a set of connected ponds or forest patches) recovery rates upon local 
disturbances should be expected to reflect the proximity of a threshold for system-
wide collapse, but also depend on factors such as the dispersal rate of organisms, 
and the scale of perturbations. 
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Methods

Model

To test whether recovery time upon strong local perturbations can, theoretically, 
be used as an indicator for loss of resilience in large-scale ecosystems, we adapted 
a harvesting model with alternative stable states (Noy-Meir 1975) to make it 
spatially explicit. The basic model describes the logistic growth of a resource N 
that is harvested following a sigmoidal functional response. This model has been 
extensively used to study overexploitation (May 1977). For a range of parameters, 
resource biomass can be in two alternative states: a high biomass (underexploited) 
state, and a low biomass (overexploited) state.  Growth rate of resource N is given 
by equation 1:

(1)( )  = − −  + 

2

2 21 N Nf N rN c
K N H

in which r (1 day-1) is the local maximum growth rate of resource N (in g m-2), K 
(10 g m-2) is the local carrying capacity of resource N, c (ranging from 1.8 – 2.8 g 
m-2 day-1) is the maximum harvest rate, and H (1 g m-2) is the half saturation of the 
functional response of harvesting. An increase in harvest rate c (stress driver) leads 
to a decrease in stability of the underexploited, high biomass state and eventually 
pushes the system to the overexploited, low biomass equilibrium state. 

We considered two representative spatially extended ecosystems: a ‘continuous 
landscape’ and a ‘patchy landscape’ (Table 7.1, Fig. 7.1). In a continuous landscape, 
we assumed that the resource disperses randomly through the landscape with 
constant dispersal rate D  (i.e. modeled as diffusion) (Table 7.1, Fig. 7.1a). A patchy 
landscape was defined as a random network of 100 patches with 0.04 connectivity 
(i.e. there is 4% probability that there is an edge between two patches in the 
network) (Fig. 7.1b). We assumed that resource biomass is well mixed within each 
patch, whereas dispersal occurs between connected patches with a constant rate fd 

(Table 7.1). For consistency with the continuous model, we assume that all patches 
are of the same size (1 m2). The parameters D in the continuous landscape, and fd  

in the patchy landscape thus represent the level of mixing of the resource N  across 
the landscape. 
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a. b.

disturbed patch 
(’focus patch’) 

continuous landscape patchy landscape

100 m

disturbed
area

Figure 7.1. Representation of disturbance-recovery experiments in our spatially extended ecosystems. 
a) A continuous landscape is defined as a fully connected landscape. We performed a local strong 
disturbance by removing all resource biomass from an area in the center of the landscape, indicated in 
white. b) A patchy landscape is defined as a sparsely connected landscape: that is a network of patches 
that are randomly connected to other patches in the landscape. We performed a local strong disturbance 
by removing resource biomass from one patch, the so-called focus patch, indicated by the white dot. The 
focus patch used for the simulations is connected to four other patches, indicated by the shaded dots.

Table 7.1. Different dispersal and disturbance levels applied in the recovery time experiments for 
continuous and patchy landscapes. A two-dimensional partial differential equation describes the 
dynamics of the continuous landscape, and a sparse lattice differential equation describes the dynamics 
of the patchy landscape. The parameter mi represents the number of patches that are connected with 
patch i.

Continuous landscape Patchy landscape

( )  ∂ ∂
= + + ∂ ∂ 

2 2

2 2' N NN f N D
x y

( ) ( )= + −∑' im
i i d j i ij

N f N f N m N

Landscape size 100 x 100 m 100 patches

Low dispersal D = 2.5 m2 day-1 fd = 0.02 day-1

High dispersal D = 12.5 m2 day-1 fd = 0.1 day-1

Small disturbance (1%) 10 x 10 m 1 patch

Large disturbance (5%) ~22.4 x 22.4 m 5 patches

Simulations

We started all experiments with the entire landscape in the underexploited (high 
resource biomass) equilibrium state. We performed a strong, local disturbance by 
removing all biomass (Ni,t0= 0) either in a square in the center of the continuous 
landscape or in a patch of the patchy landscape (where i denotes the local area, or 
patch disturbed). We compared effects for a ‘small’ versus a ‘large’ disturbed area. A 
small-disturbed area was defined as an area equal to 1% of the landscape (expressed 
in m2) whereas a large disturbed area was equal to 5% (Table 7.1). In the patchy 
landscape, perturbations were initially performed on one specific focus patch in the 
network. In the modeled network, this particular focus patch is connected to four 
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other patches in the network (i.e. the degree of the focus patch is four). Complete 
biomass removal in the focus patch was called a small disturbance (1% of the 
total landscape), whereas for a large disturbance both the focus patch and its four 
connected patches were set to zero biomass (5% of the landscape) (Table 7.1). 

We defined recovery time upon local disturbance as the time it takes (t ‒  t0) for 
the resource biomass Nj,t to recover to the pre-disturbed state Nj,t0 (where j denotes 
the center of the disturbed area i, or patch i). The disturbance was assumed to 
be recovered, if the difference between Nj,t0 and Nj,twas smaller than 0.1 g m-2. 
We investigate how recovery rate (defined as 1/recovery time) changes with the 
distance to the tipping point by changing the harvest rate c, using the standardized 
disturbances described above.

Strong local disturbances do not always recover (Keitt et al. 2001; van de Leemput 
et al. 2015). There are two other possibilities. A local strong disturbance can either 
trigger a systemic collapse to the overexploited state (we call this ‘induced collapse’), 
or the effect of the disturbance can persist, that means that it neither recovers nor 
triggers a systemic collapse (we call this ‘no recovery’). As recovery time cannot 
be defined for such cases, we reported recovery rates only when there was actual 
recovery. Overall, we estimated recovery rate upon local disturbances for different 
scenarios that are summarized in Table 7.1; at low and high dispersal rates, and for 
small and large disturbed areas.

In the baseline scenarios we assumed a homogenous landscape (i.e. the same 
parameters across space) and standardized disturbances (i.e. same size and location 
of the disturbed area). In addition, we performed experiments in the presence of 
spatial heterogeneity and with randomly located, not standardized disturbances. We 
introduced spatial heterogeneity in both landscapes by varying the maximal growth 
rate of the resource (r). To create heterogeneity in the continuous landscape, we 
first split the landscape in 25 equally-sized squares, and assigned growth rates from 
a uniform distribution (r~U[0.8, 1.2 day-1]). Next, we smoothened the generated 
variability over the entire space with a Gaussian smoothing function (Bowman and 
Azzalini 1997). In the patchy landscape, growth rates were randomly assigned to 
patches following the same uniform distribution (r~U[0.8, 1.2 day-1]). 

Randomly located, not standardized disturbances were introduced as follows. In 
the continuous landscape, the size of each disturbance (as percentage of the total 
area) was drawn from a uniform distribution (size ~ U[0.01, 0.05], whereas the 
location of the disturbance was determined randomly in the landscape. In the patchy 
landscape, we selected one patch at random for each simulation (patch ~ U[1,100]). 
Due to the network topology, the disturbed patches differ in their number of 
neighbors (i.e. degree). We define a single ‘recovery rate experiment’ as a collection 
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of simulations with one random disturbance per simulated level of harvest rate c. 
To get an estimate of the variability in recovery rate, we simulated 100 recovery 
rate experiments. We report the mean recovery time (1/recovery time), and the 10th 
and 90th percentiles for each level of the harvest rate c. Moreover, we report the 
percentage of simulations that yield ‘no recovery’. The indicator can be improved if 
other variables related to the disturbances are known. As an example, we corrected 
for the size of disturbance A (in m2) in a continuous landscape, and the degree of 
the disturbed node k in a patchy landscape. For each recovery rate experiment, we 
performed a regression analysis of recovery rate 

∆
1
t
 against perturbation size A in 

case of a continuous landscape, and degree of perturbed node k in case of a patchy 
landscape, yielding an estimated recovery rate for each perturbation  

 
∆ 

1
t . Finally, 

we reported the residuals  
− 

∆ ∆ 

1 1
t t

, and the 10th and 90th percentiles of the residuals.

For all analyses we used Grind for Matlab (accessed at http://www.sparcs-center.
org/grind). We approximated a continuous landscape using the finite difference 
method where we discretized space in a lattice, while making sure that cells were 
sufficiently small to approximate continuous space for the parameters we used. This 
resulted in a 50x50 cells lattice. Importantly, a finer-meshed lattice did not alter 
the resulting dynamics for the parameters we used. Note that one should always be 
aware of situations of no recovery due to the discretization method used (Keitt et al. 
2001; van de Leemput et al. 2015). All differential equations were solved using an 
explicit Runge-Kutta (4,5) solver with adaptive step-size.

Results

In both our spatial systems (Fig. 7.1), increasing the harvest rate caused a gradual 
decrease in resource biomass up till the tipping point at which the ecosystem 
collapsed to the alternative overexploited state (the fold bifurcation point in Figure 
7.2a). In line with previous results (van Nes and Scheffer 2007), the time of the 
system to recover upon a weak global perturbation becomes longer as the system is 
closer to the bifurcation point (Fig. 7.2b). 

Slowing down is also observed in the time to recover from resource biomass 
removal in a small area (Fig. 7.2c). Note, though, that close to the systemic tipping 
point the local recovery trajectory is not exponential due to the nonlinear dynamics 
involved (Fig. 7.2c). The total biomass on the landscape even decreases prior to 
recovery (see Fig. A7.1). This is because the low biomass state is actually stronger 
than the high biomass state under these conditions. However, the perturbation is 
too small to create an actual travelling front of an expanding perturbation (see van 
de Leemput et al. (2015)). While the system does recover eventually, such non-
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exponential recovery trajectory obviously hints at the proximity of the system to a 
runaway cascading collapse of the landscape. The decrease in resilience of the high 
biomass state is indeed reflected in the local recovery time (Fig. 7.2c). In addition, 
the size of the area that is affected by the perturbation could be considered an 
indicator of resilience (see also Dai et al. (2013) for a similar measure of recovery 
length). Systematic analysis of the size of the affected area suggests that it may 
be an appropriate metric that does rise steadily as the system approaches critical 
conditions for systemic collapse (see Fig. A7.2). In what follows, we limited our 
further analysis to recovery rate of the perturbed site itself. 
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Figure 7.2. The collapse of resource biomass under increasing harvesting and two distinct disturbance-
recovery experiments in a spatially continuous ecosystem. a) Bifurcation diagram of resource 
biomass. Increasing harvest rate c pushes the resource (mean biomass) towards the tipping point to 
overexploitation. Continuous lines indicate the two alternative equilibria. The dashed line indicates the 
unstable equilibrium that divides the two alternative basins of attraction. b) We performed a weak global 
disturbance (by removing 10% of standing biomass) far (c =2) and close (c =2.55) to the transition, 
and monitored an increase in recovery time due to critical slowing down. c) We performed a strong local 
disturbance (by removing all standing biomass in an area comprising 1% of the landscape) far (c =2)and 
close (c =2.55) to the transition, and monitored an increase in recovery time. Note this increase is not 
strictly due to critical slowing down. Dashed horizontal lines indicate the threshold between the basins 
of attraction of the two alternative states. For all simulations, dispersal rate is low (D=2.5 m2 day-1). 
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In general, we found that recovery rate (i.e. 1/recovery time) decreased smoothly 
as increased harvest rates brought the system closer to the tipping point for a 
systemic collapse. This was true in both continuous and patchy landscapes 
(Fig. 7.3a, b). As the perturbed area was larger it invoked a systemic collapse 
at lower harvest rates (‘induced collapse’) (Fig. 7.3a vs. 3c and 3b vs. 3d). 
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Figure 7.3. Strong local disturbance-recovery experiments for measuring recovery rate (as 1/recovery 
time) as an indicator for ecosystem-level resilience. a) Recovery rate upon a local disturbance -a zero-
biomass area in the middle of a homogeneous high-biomass landscape (indicated by the red area)- as 
a function of harvest rate c up to the crossing of the critical transition. b) Recovery rate upon a local 
disturbance -a zero-biomass patch in a patchy high-biomass landscape (indicated by the red focus patch)- 
as a function of harvest rate c up to the crossing of the critical transition. c and e) In a continuous 
landscape, a large disturbance in a system with high dispersal or a small disturbance in a system with 
low dispersal rate may induce a “premature” systemic collapse (grey area). This means that a transition 
of the global ecosystem takes place before the actual fold bifurcation point (black area). d and f) In a 
patchy landscape, a local disturbance may also induce a systemic collapse (grey area), but can also lead 
to no recovery (green area) especially when dispersal is low.
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However, results depend on the dispersal rates too. If dispersal was low, even 
small-scale perturbations could provoke such premature systemic collapses in the 
continuous landscape (Fig. 7.3e). In a patchy landscape there was also a range of 
conditions at which a local disturbance persisted without expanding or recovering 
(‘no recovery’, Fig. 7.3d, f). This range was larger when dispersal was lower (Fig. 
7.3f). Not surprisingly, when on top of low dispersal we imposed a large disturbed 
area, the probability of a premature collapse or no recovery increases even more 
(Fig A7.3). In spite of those differences, recovery rates always decreased as the 
harvest rates approached the critical point where a premature collapse or ‘no 
recovery’ situation occurred (Fig. 7.3c-f). Thus rather than the distance to the 
generic bifurcation point, a drop in recovery rates signaled the decreased capacity 
of the ecosystem to recover from the prescribed local perturbations. 

So far, we assumed that environmental conditions across the landscape were 
homogeneous. As a next step we consider a situation where conditions (represented 
by the maximum growth rate r , see methods) vary spatially (Fig. 7.4). To analyze 
the properties of such heterogeneous landscapes we performed multiple experiments 
in which we simulated disturbances of random size at random locations. There 
is a clear decreasing trend in such average recovery rates as increasing harvest 
brings the landscapes closer to the systemic collapse (Fig. 7.4, see Fig. A7.4 for 
high dispersal). Still, variability is relatively large, which is due to 1) the location 
of the disturbance in the heterogeneous landscape, and 2a) the variation in size of 
disturbance in a continuous landscape, or 2b) number of neighbors (degree) of the 
disturbed node in the patchy landscape. Importantly, if data is available on any 
of these variables, one might be able to reduce the variability in recovery rates 
(Fig. 7.4c, d, Fig. A7.4), and therefore strengthen the resilience indicator. In the 
patchy landscape, the probability of local no-recovery upon perturbations strongly 
increased towards the systemic collapse (Fig. 7.4b), which is much less if dispersal 
is high (Fig. A7.4). 

Discussion

Our analyses suggest that in spatially extended ecosystems, reduced recovery rates 
upon local perturbations may signal that the ecosystem is approaching a system-
wide transition. At the same time our results show that local recovery rates depend 
strongly on landscape connectivity (i.e. continuous vs. patchy), dispersal rates and 
the scale of local perturbations. Although these findings may seem straightforward 
at first sight, the link to practical implications as well as the more fundamental 
underlying theory is not so clear. 
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Signals from strong local disturbance vs. weak global disturbance experiments

Although our results resemble the patterns found by measuring recovering rate 
upon a small perturbation in a well-mixed system (van Nes and Scheffer 2007; 
Dakos et al. 2011) they are not directly related to the same phenomenon of critical 
slowing down. Critical slowing down is defined for weak disturbances close to 
equilibrium (Fig. 7.2b) where recovery is approximately exponential. In our strong 
local disturbance experiments, we pushed a local area to the alternative equilibrium 
(Fig. 7.2c). Therefore the nonlinearity of the system will play a role in the recovery. 
As the disturbed area lies in the basin of attraction of the alternative state, it will not 
recover by itself. Inflow of biomass from the neighboring undisturbed parts of the 
system is needed. The capacity for this recovery process depends on the resilience of 
the ecosystem. Phrased loosely, a low resilient (highly stressed) system will recover 
from local damage slower because the neighboring area has a low capacity to “pull” 
the disturbed area back to the pre-disturbed state. On a more fundamental level, this 
change in the relative resilience and reduction of the recovery capacity of spatially 
extended systems is related to the crossing of a Maxwell point (Keitt et al. 2001; Bel 
et al. 2012). At this point both equilibria are equally “strong” (i.e. they have the 
same potential (Strogatz 1994)) and large spatial perturbations will neither recover 
nor expand (van de Leemput et al. 2015). 

Regardless of the fundamental aspects, our results have marked practical 
implications. They suggest that a local scale experiment can provide information 
for the resilience of a large-scale ecosystem. This is important as performing a small-
scale disturbance experiment is much more realistic than applying a large-scale 
disturbance. For example, instead of facing the daunting task of removing 10% of 
submerged vegetation in a whole shallow lake, one may probe the resilience of the 
lake by removing all vegetation from just a small area. Moreover, the detectability 
of local recovery rates should be stronger when compared to recovery rates from 
weak global perturbations under noisy conditions (Appendix A7.3). 

Our results also suggest that detecting altered local recovery rate may be feasible 
for random disturbances in a heterogeneous environment (Fig. 7.4). Obviously, this 
approach still requires having sufficient replicates of the disturbance experiments to 
get accurate results. Importantly, one can reduce some of the observed variability 
in recovery rates if one has relevant information on the disturbances (Fig. 7.4c, 
d), such as the size of the disturbance, the degree of the disturbed node, or the 
conditions at the location of the disturbance. 
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Figure 7.4. Effects of random disturbance experiments in landscapes with spatially heterogeneous 
conditions, and low dispersal. We randomly disturbed areas of different size on a continuous landscape 
and different patches in a patchy network for each level of resilience (in terms of maximal harvest 
rate) and measured recovery rates.  a-b) Average recovery rates decrease in all situations as the system 
approaches the critical harvest rate for collapse. Black lines represent the average recovery rate, while 
the grey shaded lines show the 10th and 90th percentile, based on experiments per simulated harvest rate. 
In a patchy landscape (panel b), the percentage of experiments followed locally by no-recovery (green 
lines) increases as the harvest rate increases. This occurs especially when dispersal is low (see Appendix 
A7.2 for high dispersal). c-d) Average residual recovery rates after being corrected for the size of the 
disturbance (panel c), or the degree of the disturbed node (panel d). Note that the variance in recovery 
rates is lower after the correction.

Designing experiments

Clearly, our models are quite abstract, and bridging from our results to any particular 
field situation is a challenge. Nonetheless, our results suggest some aspects to 
ponder when it comes to designing experiments. First of all, the domino effects we 
show indicate that disturbance experiments are never completely free of risk. The 



132  |  Chapter 7 Recovery from local disturbances  | 133

7

likelihood of an induced system-wide collapse depends on the spatial extent of the 
perturbation, the overall ecosystem resilience (i.e. the level of the stress driver), and 
on the strength of dispersal (see Appendix A7.4). It also depends on the connectivity 
in the landscape, so whether the landscape can be considered continuous or patchy 
(Fig. 7.1). Even a very local perturbation can theoretically trigger a collapse in a 
continuous landscape that is close to a tipping point, provided that the dispersal 
rate is low (Fig. 7.3e). This is because at low dispersal rates, the capacity of the 
landscape at larger scales to recover from a local disturbance is reduced. As a result, 
the local effect may persist long enough to kick-off a domino effect leading to an 
expanding collapse (van de Leemput et al. 2015). 

Obviously, spatial interactions that are relevant to recovery are typically more 
complex than the simple diffusion mechanism in the model. Plants may enter through 
seed dispersal or root expansion depending on species and conditions, and animals 
may move directionally in or out of damaged patches. For example, clearing part of 
seagrass meadows creates open spaces attracting swans that delay or prohibit the 
regrowth of seagrass (van der Heide et al. 2012). Also, other processes may play a role 
in the recovery of local disturbances. For example, regrowth of vegetation patches 
may not occur from the side of a cleared patch, but simply from overwintering 
structures belowground. Typically researchers in any particular ecosystem will have 
a good intuition about the type and size of experimental perturbation that will yield 
a clear recovery signal, while not posing a risk of inducing a spreading collapse. We 
summarize the opportunities and limitations of recovery of local disturbances as an 
indicator of resilience in Table 7.2.

Table 7.2. Opportunities and limitations for performing local disturbance-recovery experiments in 
spatially extended ecosystems in order to indicate system-wide resilience. 

Local recovery time experiments
opportunities limitations

• are feasible to perform • can accidentally induce a collapse

• are easy to monitor • might not reflect system-level resilience (under 
extreme landscape heterogeneity)

• provide a strong signal even under stochastic 
conditions

• require multiple experiments for averaging out 
local differences

• natural disturbances can be used as proxy 
experiments

• require information on dispersal rates and 
landscape heterogeneity

• variability in dispersal and perturbation size 
can muffle the effect of resilience

• can be performed at different spatial scales • may initiate other processes that lead to 
alternative outcomes
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Although replicated prescribed experiments are the cleanest way to monitor change 
in recovery rates, natural local disturbances may offer an alternative in some 
situations. Recovery from events such as disease outbreaks, wildfires and bleaching 
have been studied in ecosystems ranging from grasslands (Tilman and Downing 
1994) and marine kelp ecosystems (Dayton et al. 1992) to forests (Cole et al. 2014) 
and coral reefs (Houk et al. 2014). Especially if data on many repeated events are 
available, differences in recovery rates may hint at differences in resilience. 

Restoration; a flipped perspective

In our model of a patchy landscape there is the possibility that a disturbed 
patch does not recover without causing the entire landscape to shift to the other 
state (i.e. it has an infinite recovery time, so-called ‘pinning’ (Keitt et al. 2001; 
van de Leemput et al. 2015). Also, in heterogeneous landscapes we can have a 
partial transition of the landscape (van de Leemput et al. 2015). In practice, lack 
of recovery or partial transitions of a landscape may be more common than all-
or-non transitions, as even modest heterogeneity of conditions or dispersal rates 
can allow spatial coexistence of alternative stable states (van de Leemput et al. 
2015). How one looks at such transitions depends on the context. Clearly, the words 
‘collapse’ and ‘recovery’ we used are value laden, suggesting that the current state 
of the landscape is preferred over the potential alternative state. However, one 
may flip the perspective and frame our results thinking of the transition to the 
alternative state as a ‘restoration’, that brings the system in a preferred state. For 
instance, one may try to eradicate an invasive species, or promote the return of 
a species or vegetation that originally dominated the landscape. Importantly, the 
same principles hold for the backward shift, so if the ecosystem is initially in the 
state with low biomass, and one ‘perturbs’ the system by adding a patch with high 
biomass. In such situations, the ‘no-recovery’ results may correspond to successful 
restorations of parts of the landscape. A cascading ‘collapse’ would be a large-scale 
success, and ‘recovery’ would be a failure, as the effects of the local restoration effort 
do not last long. The same results then illustrate that depending on the tendency of 
species to spread (our dispersal rate) a sufficiently large scale of restoration efforts 
can be critically important, especially in homogeneous landscapes (van de Leemput 
et al. 2015). Importantly, the interpretation of ‘recovery rate’ (i.e. rate at which the 
system returns to the original state after a restoration attempt) as an indicator of 
resilience remains equally relevant, as it may be used to probe if a system may easily 
be restored or not. Areas with the lowest recovery rates may in that perspective be 
the most promising places for restoration efforts, and the effect of the perturbed 
initial patch on recovery rates may give an indication of the critical scale needed for 
successful restoration.  
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Prospects

The analysis of recovery rates in spatially extended ecosystems is an almost 
unexplored territory. Our results suggest a number of ways forward. It is easy to 
see the scope for prescribed replicated experiments along environmental gradients 
where the system is known to approach a critical transition. On small scales such 
as laboratory systems or herbaceous vegetation this may be quite feasible. For 
instance, strikingly clean results can been found in elegant experiments with yeast 
populations growing in a set of flasks where spatial interactions are simulated by 
manually dispersing yeast between flask cultures on a daily basis (Dai et al. 2013). 
On larger scales it may be possible to interpret the response to frequent human-
induced or natural perturbations. For instance, remotely sensed recovery of tropical 
forests from wildfires or clearing could indicate spatial variation or long-term trends 
in resilience. 

Also, on the theoretical side there is much scope for further exploration. We have 
only briefly touched upon the transient spatial expansion of a disturbance as an 
indicator of resilience. A related suggestion has been done for the slightly different 
situation of a press perturbation (e.g. a continuous local harvest of biomass instead 
of a one-time removal). Here recovery time is no relevant measure, as the system 
is not allowed to recover. Instead the size of the area impacted by the disturbed 
region, termed ‘recovery length’ indicates the resilience of the system (Dai et al. 
2013). 

Clearly, the combination of the spatial and temporal dimensions of the response to 
local perturbations contains most information. The two are not redundant, as the 
extent of spatial expansion carries information on spatial processes that cannot be 
inferred from the local response alone. Thus the combination may allow separating 
the relative importance of intrinsic dynamics and spatial interactions. Developing 
and testing indicators based on the spatio-temporal response may be an exciting and 
promising way forward.
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Appendix A7

Appendix A7.1: Spatial extent of local strong disturbances in continuous 
landscapes as indicator of resilience

Our model simulations show that the recovery trajectory of a local perturbation in 
a continuous landscape can under certain conditions (i.e. low resilience and low 
dispersal) comprise several phases of recovery (see for example Figure 7.2c in the 
main text). Such recovery trajectories can be explained by an initial spatial expansion 
of the disturbance (see Movies A1). Figure A7.1a and b show the landscape-wide 
recovery trajectories for the same simulation in Figure 7.3c (main text). Figure A7.1b 
shows that the total biomass on the landscape decreases after the perturbation, but 
recovers eventually.  
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Figure A7.1. Landscape-wide recovery trajectories of a strong local disturbance by removing all standing 
biomass in an area comprising 1% of the landscape a) far (c =2.0), and b) close (c =2.55)to the transition 
in a continuous landscape with low dispersal (D=2.5 m2 day-1).

We also calculated the size of the affected area of a local strong perturbation. This 
alternative measure is related to the concept of ‘recovery length’ which has been 
introduced as an indicator of system resilience by Dai et al. (2013). While the 
authors use a local press perturbation, we calculate the extent of spatial expansion of 
a local pulse perturbation. Our aim is to map the spatial expansion of a disturbance 
as the system is approaching a critical transition. For the calculations, we used a 
one-dimensional version of the model described in the main text (with L=100 m, 
low dispersal D=2.5 m2day-1, and high dispersal D=12.5 m2 day-1, and a disturbance 
size of 5% of the landscape (=5 m)). As a first measure, we monitored the size of 
the affected area at a specific time after the disturbance (Δt). The affected area is 
defined as the size of the area in which local biomass is below 90% of the biomass 
before the disturbance. 
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Our results show that the longer the time interval, the less detectable the recovery 
length far from the transition (Fig. A7.2a,c). For instance at Δt=20 days, changes in 
recovery length are detectable after harvest rate has crossed 2.4 g m-2 day-1, which 
is close to the area of induced collapse (red area Fig. A7.2a,c). On the other hand, 
for short time intervals of Δt=5 days, recovery length is detectable far from the 
transition, however the differences between the extent of spatial expansion are small 
for different harvest rates. It is only at intermediate time intervals where changes in 
recovery length can be used as a detectable indicator. If that optimal time interval 
is known, the practical advantage of measuring spatial expansion at a specific time 
after the disturbance is that one has to visit the disturbed area only once. As a 
second measure, we determined the maximum size of the affected area during the 
recovery phase (Fig. A7.2b,d). This shows to be a good alternative for recovery rate 
as an indicator of system-wide resilience, especially if dispersal is low (Fig. A7.2b). 
However, in practice, similar to recovery rate, one needs to continuously monitor 
the entire recovery phase to get a good measure. The maximal spatial extent can 
however be a good indicator in ecosystems for which biomass decrease leaves a 
well-detectable trace (e.g. waste product). 
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Figure A7.2. The size of the affected area after a local perturbation of 5 m, in a one-dimensional 
continuous landscape. If local biomass is below 90% of the biomass before the disturbance, the location 
is defined ‘affected’. The left panels show the size of the affected area at a single point in time after the 
disturbance. The right panels show the maximal size of the affected area during the period after the 
disturbance. a-b) Low dispersal (D=2.5 m2 day-1), c-d) High dispersal (D=12.5 m2 day-1).
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Appendix A7.2: Recovery rate of local disturbances

We experimented with large disturbances in continuous and patchy landscapes 
where the resource has a low dispersal rate. We induced a disturbance comprising 
5% of the landscape with a dispersal rate of 2.5 m2 day-1 in the continuous 
landscape (Fig. A7.3a), and a dispersal rate between nodes of 0.02 day-1 in the 
patchy landscape (Fig. A7.3b). Under these conditions the chances for inducing a 
collapse or having no recovery after a disturbance are high. Indeed, we found that 
the range of induced collapse in the continuous landscape considerably increased 
when compared to conditions of high dispersal but small-scale disturbance (Fig. 
7.3c main text), or small-scale disturbance but low dispersal (Fig. 7.3e main text, 
Fig. A7.3a). Similarly, the range of induced collapse and no recovery in the patchy 
landscape considerably increased when compared to conditions of high dispersal 
but small-scale disturbance (Fig. 7.3d main text), or small-scale disturbance but low 
dispersal (Fig. 7.3f main text). 
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Figure A7.3. Recovery rate (as 1/recovery time) upon a large (5% of the landscape) local disturbance 
-a zero-biomass area in the middle of a homogeneous high-biomass landscape (indicated in red) as a 
function of harvest rate c up to the crossing of the critical transition in a) a continuous landscape with 
low dispersal rate (D=2.5 m2 day-1), and b) a patchy landscape with low dispersal rate between patches 
(fd=0.02 day-1). The disturbed area in panel a, and the disturbed patches in panel b are indicated in red. 
Note that in a continuous landscape (panel a), the large disturbance can induce a systemic collapse (grey 
area) far before the actual fold bifurcation point (black area). In a patchy landscape (panel b), the large 
disturbance may also induce a systemic collapse (grey area), but far before that point the disturbance 
leads to no recovery, i.e. partial collapse (green area). 

We also experimented with local disturbance-recovery experiments in a heterogeneous 
landscape with variable size of the disturbed area and a high dispersal rate (Fig. 
A7.4). All parameters and simulations are the same as for Figure 7.4 in the main text, 
only the dispersal rate is high. 
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Figure A7.4. Effects of random disturbance experiments in landscapes with spatially heterogeneous 
conditions, and high dispersal. We randomly disturbed areas of different size on a continuous landscape 
and different patches in a patchy network for each level of resilience (in terms of maximal harvest 
rate) and measured recovery rates. a-b) Average recovery rates decrease in all situations as the system 
approaches the critical harvest rate for collapse. Black lines represent the average recovery rate, while 
the grey shaded lines show the 10th and 90th percentile, based on experiments per simulated harvest rate. 
In a patchy landscape (panel b), a small percentage of simulations show no recovery (green lines), which 
increases as the harvest rate increases. c-d) Average residual recovery rates after being corrected for the 
size of the disturbance (panel c), or the degree of the disturbed node (panel d). Note that the variance in 
recovery rates is lower after the correction.
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Appendix A7.3: Recovery time after strong local disturbances in the 
presence of environmental stochasticity

We compared recovery time after a global weak disturbance to recovery time after a 
local strong disturbance in the presence of environmental stochasticity. We did this 
by adding environmental noise to the continuous landscape as a random normally 
distributed variable Et~N(0,σ2) with standard deviation σ (0.8) applied every 
Δt (0.1 days) timesteps (Ni,t+Δt=Ni,t+Ε t). Figure A7.5 (panels a, c) show that it is 
difficult to distinguish measurable changes in recovery time after a global but weak 
disturbance. Instead, a local strong disturbance is more easily distinguished from 
background stochasticity (Fig. A7.5b,d). 
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Figure A7.5. The effect of random fluctuations on system-wide and local disturbance-recovery 
experiments in a continuous landscape a-b) far from the fold bifurcation, and c-d) close to the fold 
bifurcation. Stochasticity in a homogeneous landscape may muffle the accuracy of the signal of a 
large-scale weak perturbation (panels a and c), while a local, strong perturbation can more easily be 
distinguished from background noise (panels b and d). For all simulations, we removed 2.5 % percent of 
the total biomass on the landscape, and dispersal rate was assumed to be high (D=12.5 m2).
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Appendix A7.4: The role of dispersal, resilience and disturbance size on 
‘induced collapse’ and ‘no recovery’ in spatially extended ecosystems

We explored how the three responses after a strong local disturbance we presented 
in the main text are affected by dispersal, resilience and disturbance size. For this, 
we simulated the overharvesting model on a square lattice of discrete patches where 
each patch was connected to its 4 neighbors. We did this as this version is a hybrid 
between the continuous and the patchy (network) landscapes and summarizes the 
dynamics of both landscape types. We assumed that all parameters were equal in 
all patches. Dispersal was defined as a local exchange between patches. We used a 
lattice with 50x50 patches.

( ) ( ) ( )+ − − += + + − + + −, 1, 1, , , 1 , 1 ,' 2 2i j i j i j i j i j i j i jN f N d N N N d N N N

We defined the three different model behaviors that we observed as presented in the 
main text: (1) recovery: the disturbed area returns to the pre-disturbed state, (2) no 
recovery: the disturbed area remains stable, and (3) induced collapse: the disturbed 
area expands gradually, pushing the whole system eventually to the alternative 
stable state. We mapped all different behaviors for a set of 25x100 parameter 
combinations of dispersal rate d, resilience (harvest rate c), and size of disturbance. 
The presented 2D bifurcation plots were sketched manually on the basis of the 
simulation results using an overlay graph.

We first checked which of these behaviors occur at different harvest rates and 
dispersal rates (Fig. A7.6a). The harvest rate affects the resilience (sensu Holling 
1973) of the undisturbed state compared to the state in the disturbed patch. At high 
harvest rates it becomes more likely that a global shift to the perturbed state occurs 
(“induced collapse”), but there is no single critical harvest rate above which this 
always happens. More interesting is the effect of the dispersal. If dispersal is low, it 
becomes likely that the system neither recovers nor collapses as a consequence of the 
disturbance. This is because the landscape becomes similar to a patchy landscape (i.e. 
connectivity between cells is low): the exchange between the disturbed area and the 
neighboring undisturbed area is insufficient to cause a shift of either of them to the 
other state. As illustrated by our analysis, it is the interplay of resilience (in our case 
determined by the harvest rate) and dispersal that determines what will happen. At 
intermediate harvest rates, the probability of no recovery increases for the obvious 
reason that the resilience of both states is comparable. In addition to resilience and 
dispersal, the size of the disturbed area is also important in determining whether 
a disturbance will recover (Fig. A7.6b). In general, a larger size perturbation 
increases the probability of expansion to a systemic shift. Again, if dispersal is low, 
no recovery is more likely. An important overall result is that the probability of an 
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induced global collapse is highest at intermediate levels of dispersal (Fig. A7.6a,b).  
At low dispersal there are increased chances of no recovery. At higher dispersal the 
chances of recovery increase. This is because the disturbed area effectively interacts 
stronger with the neighboring area and the disturbed area is rapidly ‘diluted’ over 
the rest of the landscape.
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Figure A7.6. Recovery of local disturbance experiments in a lattice with local exchange between grid 
cells and their four neighboring cells. a) Combined effects of resilience (in terms of the maximal harvest 
rate (c)) and local exchange rate d (with a fixed perturbation size: 7x7 cells) b) Combined effects of 
perturbation size and local exchange rate d (with a fixed harvest rate c =2.45 d-1). Note that the dispersal 
rate is on a log scale. 

Movies A7.1: 

https://www.dropbox.com/sh/bubrdemy22o8blw/AACy1HIgvlW9CYHyfdMut3cRa?dl=0
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Abstract

About 17% of humanity goes through an episode of major depression at some point 
in their lifetime. Despite the enormous societal costs of this incapacitating disorder, 
it is largely unknown how the likelihood of falling into a depressive episode can 
be assessed. Here, we show for a large group of healthy individuals and patients 
that the probability of an upcoming shift between a depressed and a normal state 
is related to elevated temporal autocorrelation, variance, and correlation between 
emotions in fluctuations of autorecorded emotions. These are indicators of the 
general phenomenon of critical slowing down, which is expected to occur when a 
system approaches a tipping point. Our results support the hypothesis that mood 
may have alternative stable states separated by tipping points, and suggest an 
approach for assessing the likelihood of transitions into and out of depression.
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Introduction

Depression is one of the main mental health hazards of our time. It can be viewed as 
a continuum with an absence of depressive symptoms at the low endpoint and severe 
and debilitating complaints at the high end (Hankin et al. 2005). (Throughout this 
manuscript, the term “depression” refers to this continuum of depressive symptoms.) 
The diagnosis Major Depressive Disorder (MDD) defines individuals at the high 
end of this continuum. Approximately 10 to 20% (Bijl et al. 1998) of the general 
population will experience at least one episode of MDD during their lives, but even 
subclinical levels of depression may considerably reduce quality of life and work 
productivity (Rodríguez et al. 2012). Depressive symptoms are therefore associated 
with substantial personal and societal costs (Kessler et al. 1994; Lopez et al. 2006). 
The onset of MDD in an individual can be quite abrupt, and similarly rapid shifts 
from depression into a remitted state, so-called sudden gains, are common (Aderka 
et al. 2012). However, despite of the high prevalence and associated societal costs 
of depression, we have little insight into how such critical transitions from health 
to depression (and vice versa) in individuals might be foreseen. Traditionally, the 
broad array of correlated symptoms found in depressed people (e.g. depressed 
mood, insomnia, fatigue, concentration problems, loss of interest, suicidal ideation 
etc.) was thought to stem from some common cause, much as a lung tumor is the 
common cause of symptoms such as shortness of breath, chest pain and coughing 
up blood. Recently, however, this common-cause view has been challenged (Cramer 
et al. 2010; Kendler et al. 2011; Borsboom et al. 2013). The alternative view is 
that the correlated symptoms should be regarded as the result of interactions of 
components of a complex dynamical system (Hayes and Strauss 1998; Huber et 
al. 1999; Heiby et al. 2003; Kendler et al. 2011). Consequently, new models of the 
etiology of depression involve a network of interactions between components, such 
as emotions, cognitions and behaviors (Cramer et al. 2010; Borsboom et al. 2013). 
This implies, for instance, that a person may become depressed through a causal 
chain of feelings and experiences, such as stress → negative emotions → sleep problems 
→ anhedonia (Wichers et al. 2007; Borsboom et al. 2013; de Wild-Hartmann et al. 
2013; Wichers 2014). However, the network view also implies that there can be 
positive feedback mechanisms between symptoms, such as worrying → feeling down 
→ more worrying or feeling down → engaging less in social life → feeling more down 
(Bringmann et al. 2013). It is easy to imagine that such vicious circles could cause a 
person to become trapped in a depressed state. 

The plausibility of this theoretical framework with regard to MDD is supported 
in at least four ways. First, intra-individual analyses of multivariate time series of 
variables related to MDD symptomatology show clear interactions between these 
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variables (Tzur-Bitan et al. 2012; Bringmann et al. 2013; Wichers 2014). Second, 
MDD symptoms display distinct responses to different life events (Keller et al. 
2007; Cramer et al. 2012a) and are differently related to other external variables 
and disorders (Lux and Kendler 2010), which is consistent with a network view 
of interacting variables related to MDD symptomatology, but not with a classical 
disease model that postulates the existence of a common cause (Cramer et al. 
2012b). Third, when asked how MDD symptoms are related, clinical experts report 
a dense set of causal relations between them (Kim and Ahn 2002; Borsboom et al. 
2013). Fourth, using recently developed self-report methods, it has been shown 
that individuals with elevated symptom levels typically report causal interactions 
between their symptoms, including those of MDD (Frewen et al. 2012, 2013).

Thus, there is ample evidence to support the thesis that MDD is characterized by 
causal interactions between its ‘symptoms’. From dynamical systems theory it is 
known that positive feedback loops among such causal interactions can cause a system 
to have alternative stable states (Scheffer 2009). This has profound implications for 
the way a system responds to change. For example, gradually changing external 
conditions may cause a system to approach a tipping point. Close to such a point 
the system typically loses resilience, that is, increasingly small perturbations may 
suffice to cause a shift to an alternative stable state (Scheffer 2009). In the mood 
system, characterized by the ‘mood state’ of an individual that may range from 
normal to severe depression, stressful conditions may bring the system to such a 
fragile state (Patten 2013). For example, a chronically unpleasant working situation 
may reduce resilience of the ‘normal state’ by precipitating insomnia and other 
related symptoms. Then, only a slight additional perturbation (e.g. an unpleasant 
phone call with mother-in-law) may be enough to trigger a chain of symptoms that 
causes the system to shift from a stable ‘normal state’ into an alternative ‘depressed 
state’. 

In this paper, we analyze time series of four emotions as the observed variables 
of the mood system in healthy persons and depressed patients providing support 
for the view that the mood system can have tipping points. Specifically, we show 
indicators of critical slowing down (Scheffer et al. 2009), which have recently been 
shown to be linked to tipping points in a range of complex systems (Dakos et al. 
2008; Carpenter et al. 2011; Scheffer et al. 2012a). These indicators can be used as 
early warning signals that can help assess the likelihood that an individual will go 
through a major transition in mood. Before moving to the empirical evidence, we 
briefly introduce the generic phenomenon of critical slowing down, using a simple 
model of the mood system as an illustration. 
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Results and Discussion

Theory of critical slowing down

Marked transitions from one dynamical regime to a contrasting one are observed in 
complex systems ranging from oceans, the climate and lake ecosystems to financial 
markets. Such ‘regime shifts’ (Carpenter 2003) can simply be the result of a massive 
external shock, or stepwise change in the conditions. However, it is also possible 
that a slight perturbation can invoke a massive shift to a contrasting and lasting 
state. It is intuitively clear that this can happen to an object such as a chair or a 
ship when it is close to a tipping point, but complex systems such as the climate 
or ecosystems can also have tipping points (Scheffer 2009). The term tipping point 
in such systems is informally used to refer to a family of catastrophic bifurcations 
in mathematical models (Strogatz 1994), which in turn are simplifications of what 
characterizes the stability properties of real complex systems (Scheffer 2009). 

As tipping points can have large consequences, there is much interest in finding 
ways to know whether a catastrophic bifurcation is near. In principle this could be 
computed if one has a reliable mechanistic model. However, we have little hope 
of having sufficiently accurate models for complex systems such as lakes or the 
climate, let alone psychiatric disorders. A recent alternative approach is to look 
for indicators of the proximity of tipping points that are generic in the sense that 
they do not depend on the particular mechanism that causes the tipping point. A 
possibility that has attracted much attention is that across complex systems, the 
vicinity of a tipping point may be detected on the basis of a phenomenon known 
as ‘critical slowing down’ (Strogatz 1994; van Nes and Scheffer 2007). Specifically, 
critical slowing down happens as the dominant eigenvalue, characterizing the return 
rate to equilibrium upon small perturbations, goes to zero in tipping points related 
to zero-eigenvalue bifurcations. On an intuitive level this can be understood from 
a ball-in-a-cup diagram (Fig. 8.1a-b). As the slope represents the rate of change, 
close to the tipping point where the basin of attraction becomes shallower, return to 
equilibrium upon small perturbations will become slower. Although critical slowing 
down has been known for a long time in mathematics, the idea of using it as a way 
to detect tipping points in real complex systems is unique, and slowing down at 
tipping points has only recently been demonstrated experimentally in living systems 
(Veraart et al. 2012; Dai et al. 2012). 

For most systems it is either impractical or unethical to experimentally perturb 
them in order to find out if they are close to a tipping point. However, any system, 
including mood, is continuously subject to small natural perturbations. One can 
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imagine the effect as a combination of direct impacts on the ball (in models 
this corresponds to so-called additive noise) and fluctuations in the shape of the 
stability landscape (multiplicative noise). A range of modeling studies, laboratory 
experiments and field studies now suggests that under such stochastic conditions, 
critical slowing down typically causes an increase in the variance and temporal 
autocorrelation of fluctuations in the system elements (Carpenter and Brock 2006; 
Dakos et al. 2008; Drake and Griffen 2010; Carpenter et al. 2011; Veraart et al. 
2012; Dai et al. 2012). Besides, in a network of fluctuating elements, one expects 
an increase in cross-correlation between elements that will shift together (Chen et 
al. 2012). This implies the possibility that elevated variance and correlation may be 
used as indicators of critical slowing down and therefore as early warning signals 
that may reveal the loss of resilience in the proximity of a tipping point (Scheffer 
et al. 2009). 

Minimal models of mood

Critical slowing down will occur independently of the specific mechanisms involved 
in bringing about a tipping point. However, to illustrate how indicators of critical 
slowing down might signal the proximity of a tipping point in mood, we use a simple 
dynamical model, based on the classical and well-studied Lotka-Volterra equations 
(see methods). This is about the simplest way of modeling positive and negative 
interactions between dynamically varying entities such as populations of organisms. 
Specifically, we model four emotions as variables of the mood system (reflecting 
the four quadrants of the affective circumplex: cheerful, content, sad and anxious; 
see Russell (2003)), and assume that emotions with the same ‘valence’ (positive or 
negative) promote each other, while emotions of opposite valence tend to compete 
(Appendix A8, Fig. A8.1). This is of course an overly simple representation of the 
mood system, but consistent with the empirical observations that same-valenced 
emotions tend to augment and opposite-valenced emotions tend to blunt each other 
(Pe and Kuppens 2012; Bringmann et al. 2013), and that this dynamic interplay 
has relevance for the course of depression (Wichers et al. 2012). Also on theoretical 
grounds, it stands to reason that emotions that show large overlap in terms of their 
underlying components (such as appraisals; see Pe and Kuppens (2012)) would 
augment each other, while emotions that diverge in these components, would 
counteract each other (Pe and Kuppens 2012). Given suitable parameter settings, 
the model has two alternative stable states over a range of conditions: one state 
dominated by strong positive emotions, the ‘normal state’, and the second dominated 
by strong negative emotions, the ‘depressed state’ (Appendix A8, Fig. A8.1). 
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Figure 8.1. Model simulations illustrating generic indicators of proximity to a tipping point from a normal 
to a depressed state. The stability of a healthy person may become more fragile close to a transition 
towards depression, which can intuitively be understood from a ball-in-a-cup diagram (b versus a). 
This fragility would lead to critical slowing down in a system with tipping points between alternative 
stable states, illustrated by model simulations. Under a permanent regime of stochastic perturbations on 
the strength of each emotion (c and d), slowing down near the tipping point results in higher variance 
(SD= standard deviation) in emotion strength (g versus e), higher temporal autocorrelation (AR(1)= 
lag-1 autoregression coefficient) in emotion strength (h versus f), and stronger correlation (ρ= Pearson 
correlation coefficient) between emotion strength of emotions with the same valence (k versus i), and 
between emotions with different valence (l versus j). Positive emotions are represented by x1 and x2, and 
negative emotions by x3 and x4. Parameters: left panels r3 =  r4=0.5, right panels r3 =  r4=1.18.

To mimic the stochastic environment, we expose the model to a regime of random 
perturbations (Fig. 8.1c and d). The resulting fluctuations in the strength of the 
four modeled emotions show signs of critical slowing down as expected from the 
generic theory (Scheffer et al. 2009). Specifically, close to the tipping point towards 
depression, the fluctuations have a higher variance (Fig. 8.1g versus e), and temporal 
autocorrelation (Fig. 8.1h versus f). Also, the cross-correlations between the strength 
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of the modeled emotions become stronger in the vicinity of the tipping point (Fig. 
8.1k and l versus i and j). Note that positive correlations between emotions within 
the same valence will tend towards 1 (Fig. 8.1k), whereas negative correlations 
between opposed valence emotions will tend towards -1 (Fig. 8.1l). Similarly, once 
the model system is in the depressed state, we see elevated variance and correlations 
close to the critical point of recovery (Appendix A8, Fig. A8.2). 

Although the view of mood as consisting of interactions between its various 
components (e.g. cheerful and sad) fits well with recent theories regarding the 
pathology of MDD (Cramer et al. 2010; Kendler et al. 2011), one could argue that 
such mood variables (unlike for instance populations of animals) are not on equal 
par with true physical quantities. Rather, emotions such as feeling cheerful or 
anxious seem to be the result of complex interactions between biology (including 
genetics), previous life experiences and current contextual influences. We will 
probably never be able to assess and understand the full complexity of this system. 
However, psychologists work with emotions because they are thought to reflect 
meaningful aspects of the mood system (Watson et al. 1988; Russell 2003). In fact, the 
subjective experience component of emotions is thought to function as a monitoring 
tool for organisms to detect important changes in the complex mood system (Russell 
2003). Given that emotions are unitless subjective measures that are not governed 
by any laws of conservation, one could wonder if they should still be expected to 
reflect critical slowing down if that underlying system approaches a tipping point. 
To explore this, we made a model of a complex network of interactions between 
20 variables, representing (in principle) objectively measurable components of 
mood (e.g. elements ranging from neurotransmitter and hormone concentrations to 
physical activity modes and social interactions). We created the model such that it 
has tipping points. Then, we mimicked the strength of emotions as indirect indicators 
of the state of the highly complex network by using Principal Components (principal 
component analysis (PCA) axes) (Appendix A8.1). Analyses of this model illustrate 
that critical slowing down remains clearly reflected in the PCA based indicators 
(Appendix A8.1, Figs. A8.3-5).

Clearly, many other dynamical models of the mood system could be conceived. 
However, the examples we analyzed may serve to illustrate the general phenomenon 
that indicators of critical slowing down can be found at tipping points independently 
of the precise underlying complex mechanisms involved, and on the way the 
variables are measured (Scheffer et al. 2009, 2012a; Dakos et al. 2012a). Thus, even 
if we cannot attain a complete understanding of the complex array of mechanisms 
that are involved in regulating mood, we may expect that if transitions in mood are 
related to the proximity of tipping points, the likelihood of such shifts to happen 
should be evident in indicators of critical slowing down.
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Patterns in recorded mood dynamics

To explore whether mood dynamics do indeed display such indications of critical 
slowing down prior to tipping points in depression, we analyzed time series of 
four emotions (cheerful, content, sad and anxious) as observed variables of the 
overall ‘mood state’ obtained through the Experience Sampling Method (ESM, see 
methods), in which subjects have monitored, for each emotion, their position on an 
emotional scale during five to six consecutive days. We refer to this as their ‘emotion 
score’ at a certain time. We studied a general population sample that varies in the 
development of depressive symptoms over time. Some subjects shifted upward along 
the continuum of depression and some downward. A fraction of this group (13.5%), 
showed a transition from a normal state to a DSM-IV clinical diagnosis of MDD. 
We investigated in this general population sample whether indicators of critical 
slowing down are associated with elevated risk of future shifts towards depression. 
In addition, we analyzed ESM data from a population sample of depressed patients 
to see whether critical slowing down is related to the probability of upcoming 
recovery (for sample descriptions see Appendix A8, Table A8.1). 

Both temporal autocorrelation (i.e. the autoregression coefficient) and variance of 
fluctuations in emotion scores were higher in individuals with upcoming transitions 
(Fig. 8.2 and Appendix A8, Tables A8.2 and A8.3). For an impending worsening of 
depressive symptoms, these signals are strongest for negative emotions (Fig. 8.2a and 
c), whereas for an upcoming improvement in depressive symptoms in individuals 
with current MDD, these signals are strongest for positive emotions (Fig. 8.2b and 
d) compared to the other emotions (Appendix A8, Fig. A8.6). Also, correlations 
between emotion scores were consistently stronger for individuals who experienced 
a future transition upward on the continuum of depression (Fig. 8.3a and c) as well 
as in depressed patients who were moving downward on the continuum within 
the study period (Fig. 8.3b and d) (Appendix A8, Table A8.4). Note that the main 
structure of our model of positive and negative interactions is consistent with the 
data: emotions of opposite valence affect each other negatively whereas emotions 
with the same valence are positively correlated (Fig. 8.3).

The rise in temporal correlations and cross-correlations is likely a more direct 
indicator than the rise in variance. This is because change in variance can be 
confounded by several mechanisms (Dakos et al. 2012b). For instance, a trend 
in variance may be related to a trend in the mean. Indeed, such a coupling of 
variance to mean may partly explain the trends we observe in upcoming emotions 
(Appendix A8, Fig. A8.6). However, an analysis of trends in the coefficients of 
variation illustrates that especially in the general population, rising variability in all 
emotions may be an observable indicator of critical slowing down associated with an 
elevated risk of an impending depression (Appendix A8, Fig. A8.7). Also, one could 
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argue that the observed effect in variance might be an effect of increased external 
perturbations (‘noise’ in the model), and not a result of critical slowing down. As 
temporal autocorrelation and cross-correlations are independent of the means as 
well as the amplitude of noise (Dakos et al. 2012b), the trends in correlations may 
be our most robust indicator of critical slowing down.
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Figure 8.2. Temporal autocorrelation and variance of emotion scores as a function of future symptoms. 
Increasing autocorrelation (AR(1) = mean lag-1 autoregression coefficient) (a-b) and variance (SD = 
mean standard deviation) (c-d) of negative emotions according to tertiles of development of future 
depressive symptoms in a general population (n=535) (left panels), and of positive emotions according 
to tertiles of future recovery in depressed patients (n=93) (right panels). For temporal autocorrelation 
(panels a-b), we present data according to tertiles of change in follow-up course for illustrative purposes 
only, however, note that in the statistical analyses continuous variables were used. Asterisks indicate 
a significant upward trend in temporal autocorrelation (positive interaction effect of future symptoms: 
p<0.05). For variance (panels c-d), error bars represent standard errors (SEs). Note that the SEs in 
panel c are very small. Asterisks indicate an overall significant upward trend in variance (overall tests: 
p<0.05). Mean values represented by different letters within emotions are significantly different (post-

hoc tests: p<0.05).
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Figure 8.3. Correlations between emotion scores as a function of future symptoms. Strengthening 
correlations between emotions of the same valence (a-b), and between emotions of different valence 
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Error bars represent standard errors (SEs). Asterisks indicate an overall significant strengthening trend 
in correlation (overall tests: p<0.05). Mean values represented by different letters within emotions are 
significantly different (post-hoc tests: p<0.05).

Taken together, our results suggest that there is an elevated chance of upcoming 
shifts between a depressed and a normal mood state in persons that show indications 
of critical slowing down in their emotion scores. This is consistent with the idea 
that such transitions tend to happen when a subject is close to a tipping point. 
The relationship between elevated temporal correlations and upcoming transitions 
we detected is also consistent with independent earlier studies, showing that 
‘emotional inertia’ (slower rates of change in emotion scores) is associated with 
future transition into a more depressed state (Kuppens et al. 2010, 2012). Moreover, 
the corresponding view of depression as an alternative stable state is in line with the 
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finding of reinforcing feedbacks between emotions, and with the sudden character 
of shifts to depression and recovery (Aderka et al. 2012).

Importantly, this body of evidence does not imply that all persons would have such 
tipping points. It seems more likely that while some persons abruptly shift between 
a normal and a depressed state, for others, certain positive feedback mechanisms 
(e.g. feeling down → engaging less in social life → feeling more down) remain too 
weak to cause alternative stable states. Such persons would be expected to move 
more gradually between a normal and a depressed state, experiencing intermediate 
states to be stable as well. Indeed, dynamical systems with tipping points will often 
respond more smoothly if the positive feedback responsible for this feature becomes 
weaker (Appendix A8, Fig. A8.8). Hints of slowing down may still be detected for 
persons without alternative stable states in case their mood responds relatively 
strongly to a gradual change in conditions. This is because some slowing down 
(albeit not full-blown critical slowing down, where recovery rate upon perturbation 
reaches zero) is expected across a wide range of situations where systems respond 
relatively sensitively around a threshold (Kéfi et al. 2012).

Implications

Clearly, the effects of stressors may differ widely between persons and contexts 
depending on a complex set of interacting factors shaped by genes and history (e.g. 
genetic variants, epigenetic regulation, early life events, and connection strength 
between neurons which are changed by experience). This makes it unlikely that we 
would ever be able to obtain accurate individual predictions of risk for relapse or 
recovery based on a mechanistic insight into the mood regulation system. However, 
if the mood system, as our results suggest, shows signals of critical slowing down, we 
may use this generic feature to improve our ability to anticipate clinically relevant 
mood shifts, even in the absence of a full understanding of the complex underlying 
system that is responsible for such shifts. Clearly such mechanistic insight may 
be important to develop better treatment strategies. However, when it comes to 
risk stratification, the indicators of critical slowing down may be a powerful and 
independent addition to our clinical toolkit. 

This has important implications for treatment. Mood data suitable for analysis of 
critical slowing down are now easy to assess and monitor, for instance through 
an app on a smartphone. Furthermore, web-applications are able to provide user-
friendly feedback to patients and clinicians on the patient’s critical slowing down 
patterns. The ability to anticipate transitions (e.g. a shift upward on the continuum 
of depression for a person at risk, or a shift downward on the continuum for a patient 
with current MDD) could prove beneficial in terms of the timing and magnitude 
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of treatment interventions. This information may prove especially valuable in 
optimizing health care and in reducing mental health care costs. Hence, in terms of 
understanding and treating psychiatric disorders like depression, the potential gains 
associated with our approach are considerable. Therefore, our central hypothesis – 
that symptomatology like depression should be conceptualized as alternative states 
of complex dynamical systems – is not an endpoint; rather, it should mark the 
beginning of novel research programs.

Materials and Methods

Samples. We analyzed data from i) the general population (females; n=621) and 
ii) depressed patients eligible for treatment (n=118, for sample description see 
Appendix A8, Table A8.1). The first sample was recruited from a population-
based sample of the East-Flanders Prospective Twin Survey (Belgium). The data 
of depressed patients came from two studies. Both included baseline Experience 
Sampling Method (ESM) measurements followed by an intervention (either a 
combination of pharmacotherapy and supportive counseling or allocation to either 
imipramine or placebo) and follow-up assessments of depressive symptoms. For 
details on inclusion criteria and final set of participants see supplementary methods 
(Appendix A8.2). A total of 535 individuals from the general population and 93 
depressed patients were included in the final analyses. 

Experience Sampling Method. In order to calculate early warning signals for transition, 
the four emotions were measured repetitively and prospectively using the ESM. 
This structured diary technique prospectively assesses individual experience in 
the context of daily life (Csikszentmihalyi and Larson 1987; Myin-Germeys et al. 
2009). Subjects received a digital wristwatch and a set of ESM self-assessment forms 
collated in a booklet for each day. The wristwatch was programmed to emit a signal 
(‘beep’) at an unpredictable moment in each of ten 90-min time blocks between 
07:30 and 22:30, on five or six consecutive days, depending on the study. After 
each beep, subjects were asked to fill out the ESM self-assessment forms, including 
emotion scores on seven-point Likert scales. This resulted in a maximum of 50 or 60 
measurements, depending on the study.

Design. All participants underwent a baseline period of ESM. In the depressed 
patients follow-up course of depression was measured with the Hamilton Depression 
Rating Scale (HDRS-17) at 6-8 weeks following start of treatment. In the general 
population the Symptom Checklist 90 (SCL-90-R) was completed at baseline and at 
4 follow-up measurements, approximately 3 months apart from each other. Follow-
up depression score was based on the average of the four follow-up measurements. 
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Analyses. The aim was to analyze whether the hypothesized early warning signals 
(autoregression coefficients, variance and correlation between emotions as derived 
from the repeated ESM measures) are associated with follow-up course of depression 
in both samples. Analyses were performed for four emotions which were a priori 
chosen to represent each quadrant of the affective space defined by valence and 
arousal (Russell 2003): feeling cheerful (positive valence, high arousal), content 
(positive valence, low arousal), anxious (negative valence, high arousal), and sad 
(negative valence, low arousal). Data on these four emotions were available in 
both samples. Because the ESM data have a hierarchical structure (in which the 
four emotions are clustered within measurement moments (about 50 to 60 'beeps') 
and measurement moments are clustered within persons), a statistical model needs 
to be used that deals appropriately with the hierarchical structure. These models 
are known as multilevel models. Two different models were used (see below). All 
multilevel models included modeling of random intercept and slope. Data were 
analyzed using STATA 12.1 (StataCorp 2009) and most analyses were replicated 
independently in R (R Development Core Team 2005). See supplementary methods 
for details on heteroscedasticity and normality (Appendix A8.2). The R code is 
published online (http://www.pnas.org/content/suppl/2013/12/04/1312114110.
DCSupplemental/sd01.pdf).

Multilevel model 1: Autocorrelation. To extract the information on autocorrelation, 
we analyzed each emotion separately. A multilevel model was set up in which the 
emotion score at time t (e.g. anxious at time t) is predicted by the emotion score 
at time t-1 (e.g. anxious at time t-1). The regression coefficient of the emotion 
scores at time t-1 on emotion scores at time t is the autoregression coefficient. In 
the model we additionally included an interaction between the emotion scores at 
time t-1 and follow-up course of depression. This means that in this model the size 
of the autoregression coefficient for a person depends on the continuous follow-up 
course of depression score. Thus, the autoregression coefficient (and henceforth the 
autocorrelation) may differ between people with a different follow-up course of 
depression score. In this way, we are able to test whether persons whose depression 
score shows a large change over time, will have a higher autoregression coefficient 
while persons whose depression score shows little change, will have a lower 
autoregression coefficient (this being the phenomenon of critical slowing down). 
However, the follow-up in course of depression score is probably not the only 
variable that is related to differences in autoregression coefficients between persons. 
A multitude of other variables may contribute to the individual differences in the 
autoregression coefficient. For this reason, a person-specific deviation is added to 
the regression coefficient of the person which is drawn from a normal distribution 
with zero mean and a to-be-estimated variance, which makes the model formally a 
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multilevel regression model. (Note that also the intercept of the regression model 
is assumed to be random.) In this way, we are able to examine the association 
between autoregression coefficients of the four emotions and follow-up course of 
depression. This multilevel approach enables us to assess this so-called interaction 
effect between emotion scores at time t-1 and the follow-up course of depression, 
while respecting the hierarchical structure of the data. Note that for the purpose of 
visualization tertiles of depression scores were used in Figures 8.2 and A8.6 (see 
multilevel model 2 for the definition of the tertile groups).

Multilevel model 2: Variance and correlations. In this second multilevel model, we 
examined the extent to which variance and correlations differ with follow-up course 
of depression. In contrast to the autocorrelation analysis, we first clustered the 
individuals into discrete tertile groups according to follow-up course of depression 
score and used these tertile groups in our analysis (instead of the continuous score). 
Those individuals in the general population with the lowest level of depressive 
symptoms (33%) at follow-up were classified as group 1, those in the middle (33%) 
as group 2, and the highest 33% as group 3. Similarly, patients with the lowest 
decrease in symptoms over course of treatment were classified as group 1, those 
in the middle as group 2, and those with the highest decrease as group 3. Ideally, 
we would have liked to model the variances and correlations in some (non-)linear 
way as a function of the covariate (future depressive symptoms) in the context of a 
multilevel model directly, but appropriate models for such an analysis have not been 
fully developed and tested yet. In the analyses, all four emotions were simultaneously 
considered. This creates a three-level structure: emotions nested in measurement 
moments nested in persons. For each tertile group, a multilevel regression model 
was fitted with emotion score as the dependent variable and dummy codes for 
the four emotions as independent variables. Random effects corresponding to these 
dummy-coded variables were added at the person and at the measurement level. 
These random effects were allowed to have different variances for the four items 
and their correlations were estimated freely. Therefore, no structure was imposed 
on the model, making this a saturated model (i.e. the model with the most complex 
covariance structure possible for the data at hand; (Hox 2010)). The estimated 
variation in these random effects was used to estimate variance in emotion scores 
at the measurement level. Correlations between these random effects were used to 
estimate correlations between emotions at the measurement level. Wald-type tests 
were used to test for overall differences in the variances and correlations between 
the three groups. 

The dynamical systems model. We analyzed a minimal model, simulating interactions 
between four modeled emotions in a person as a stochastic differential equation 
(inspired by the Lotka-Volterra models, as in van Nes et al. (2004)):
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( )ε µ= + + +∑4
,

i
i r i i j j ij

dx r x C x x
dt

where x1 and x2 signify the strength of positive emotions (such as cheerful and 
content), and x3 and x4 the strength of negative emotions (such as sad and anxious). 
The maximum rate of change of the positive emotions, r1 and r2, was set to 1, while 
the maximum rate of change of the negative emotions, r3 and r4, was assumed to be 
stress-related, ranging between 0.5 (low stress) and 1.5 (high stress). The matrix C 
represents the interaction network between the emotions.

− 
 
 =
 −
 
− 

0.2   0.04    -0.2    -0.2
0.04    -0.2    -0.2    -0.2

0.2    -0.2    -0.2   0.04
0.2    -0.2   0.04    -0.2

C

Each term of this interaction network describes the strength and direction of the 
interaction. Negative terms mean that these emotions suppress each other and 
positive terms imply enhancement. The maximum rate of change (ri) of each emotion 
was subjected to a noise term (εr) representing short-term fluctuations in the rate of 
change of each emotion. εr is represented by a Gaussian white noise process of mean 
zero and intensity σ2/dt (σ=0.15). Effectively, this means that the system is subject 
to multiplicative noise. Independent of the strength of the emotions their value 
increases by a fixed amount (μ=1) to prevent emotion levels to be close to zero. The 
model was solved using a Euler-Maruyama scheme in Matlab.
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Figure A8.1. The model. a) A graphical representation of our simple dynamical model of four emotions. 
Emotions with the same valence have a positive effect on each other, while emotions of different valence 
have a strong negative effect on each other. b) The stability properties of the deterministic part of the 
model (i.e. without noise) change if stress levels, represented by the growth rate of the two negative 
emotions (r3 and r4), change. Green lines represent positive emotions (x1 and x2), red lines represent 
negative emotions (x3 and x4). Solid lines represent stable states, and dashed lines unstable states. Far from 
the tipping point, at low stress levels, the network has only one stable state with high levels of positive 
emotions, and low levels of negative emotions. If stress levels increase, the network has two stable states: 
a ‘normal state’, and a ‘depressed state’, while at even higher stress levels, the system reaches a tipping 
point, at which the normal state disappears, and only one stable depressed state remains. Note that once 
the system is in the alternative depressed state, stress levels need to be decreased tremendously to trigger 
a backward shift.
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Figure A8.2. Model simulations illustrating generic indicators of proximity to a tipping point from 
a depressed to normal state. Our model shows that the generic early warning signals that signal the 
proximity of a shift from a normal state towards a depressed state are also valid for the backward 
shift from a depressed state towards recovery. In that case, the stability of a depressed person may 
become more fragile close to the transition towards recovery (b versus a). Under a permanent regime 
of stochastic perturbations (c and d), slowing down near the tipping point results in higher variance 
(SD= standard deviation) (g versus e), higher temporal autocorrelation (AR(1)= lag-1 autoregression 
coefficient) (h versus f), and stronger correlation (ρ= Pearson correlation coefficient) between emotions 
with the same valence (k versus i), and between emotions with different valence (l versus j). Positive 
emotions are represented by x1 and x2 , and negative emotions by x3 and x4. Parameters: left panels r3= 
r4=1.5, right panels r3= r4=0.9.



Early warning signals of depression   | 161

8

Appendix A8.1. Network model of latent variables

We developed a network model that serves as a hypothetical representation 
of the complex neurobiological system underlying the mood of an individual 
person. The network consists of twenty interacting latent variables. Each network 
variable represents one (unknown, but in principle measurable) component of the 
neurobiological system of that individual. Emotions are not represented directly as 
variables but are computed as principal components of simulation results of clusters 
of the network. In contrast with the simple model in the main text, they do not 
interact directly with each other. We demonstrate that such indirect indicators show 
the same behaviour in terms of early warning signals. 

The network model was also based on the Lotka-Volterra model, describing the 
dynamics of interacting variables, representing the components of the neurobiological 
system:

ε µ= + + +∑20
,

i
i i i j j i Nj

dN r N C N N
dt

where Ni represents the strength of network variable i, ri  represents the maximum 
rate of change of network variable i, C represents a matrix of  interactions between 
network variables, μ represents a small continuous increase of the strength of  a 
network variable (independent of their state) (μ=1), and εN is the stochastic part of 
the model represented by a Gaussian white noise process of mean zero and intensity 
σ2/dt (σ=0.1) (i.e. additive noise).

We parameterized the network such that the system has two main clusters: network 
variables that are in the same cluster have a positive effect on each other, while 
variables of different clusters have a negative effect. The interaction strengths Ci ,j , 
as well as the maximum rate of change (ri), were randomly drawn from two uniform 
distributions. Positive interactions between network variables within a predefined 
cluster ranged from 0.003 to 0.005. Similarly, the negative interactions between 
variables of different clusters were drawn in a range between -0.002 and -0.004. 
The maximum relative rates of change (ri) of the individual variables were assumed 
to be stress-dependent, following:

ρ ρ= +0,i i ir r r

Maximum rates of change of network variables in a state without stress (r0) are set 
to differ between the two clusters. In cluster 1 r0 ranges from 0 to 1, while in cluster 
2 r0 ranges from 0 to 0.5. Stress is assumed to influence the maximum rates by a 
factor rρ. Each network variable has a different sensitivity (ρ) to this stress factor. 
The sensitivity of variables in cluster 1 is assumed to be 0, while the sensitivity of 
variables in cluster 2 ranges from 0 to 1. For these parameter settings, this complex 
network has alternative stable states (Fig. A8.3).
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Figure A8.3. Response of the network model to stress. The stability properties of the deterministic part 
of the model (i.e. without noise) change if stress levels, represented by rρ, change. Solid lines represent 
stable states, unstable states are not depicted. Far from the tipping point, at low stress levels, the network 
has only one stable state with one dominant cluster of network elements: the ‘normal state’. If stress levels 
increase, the network has two stable states. Next to the ‘normal state’, another cluster can be dominant 
under the same conditions: the ‘depressed state’. At even higher stress levels, the system reaches a tipping 
point, at which the normal state disappears, and only one stable depressed state remains.

In order to define four relevant indicators of dynamics in the network, we assume 
that each emotion is influenced by the dynamics of a subcluster of the network: 
each positive emotion is determined by seven of the ten variables of cluster 1, while 
each negative emotion is determined by seven of the ten variables of cluster 2 (Fig. 
A8.4). The subclusters that define the new variables contain overlapping network 
variables. Therefore, we simulated two time series with a different dominant cluster. 
We used each time series to perform two PCA analyses on seven variables of the 
dominant cluster. We used the first principal component (PC1) of each analysis to 
define the dynamics of the four new variables (x). For instance, the first variable (x1) 
is defined as follows:

=∑7
1 1 j jj

x PC N

We simulated the dynamics of the complete model, and used the data of the four 
variables as input for the early warning signal analysis, as in the main text. 

Importantly, in our network model, the four variables representing emotion strength 
(x) do not directly affect each other, they are simply indicators of the dynamics of 
a complex underlying network (Fig. A8.4). Our analyses show that the same early 
warning signals are expected if the variables are indirect indicators of a complex 
underlying system with tipping points between alternative stable state (Fig. A8.5). 
The predictions of critical slowing down are thus robust against this oversimplified 
way of representing emotions in the model of the main text. 
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Figure A8.5. Early warning signal analysis of model simulations of the four indirect indicators of the 
complex network. As for the four-component model with direct interactions, under a permanent regime 
of stochastic perturbations, slowing down near the tipping point results in higher variance (SD= standard 
deviation) (a versus c), higher temporal autocorrelation (AR(1)= lag-1 autoregression coefficient) (b 
versus d), and stronger correlation (ρ= Pearson correlation coefficient) between emotions with the 
same valence (e versus g), and between emotions with different valence (f versus h). Positive emotions 
are represented by x1 and x2, and negative emotions by x3 and x4. Parameters: left panels rρ=0.1, right 
panels rρ=0.68.
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Figure A8.6. Temporal autocorrelation and variance as a function of future symptoms. Increasing 
autocorrelation (AR(1) = mean lag-1 autoregression coefficient) (a and b) and variance (SD = mean 
standard deviation) (c and d) of positive emotions according to tertiles of development of future 
depressive symptoms in a general population (left panels), and of negative emotions according to 
tertiles of future recovery in depressed patients (right panels). For autocorrelation (panels a and b), we 
present data according to tertiles of change in follow-up course for illustrative purposes only, however, 
note that in the statistical analyses continuous variables were used. There are no significant trends in 
autocorrelation (positive interaction effect of future symptoms: p<0.05). For variance (panels c and 
d), error bars represent standard errors (SEs). Note that variance of negative emotions in the depressed 
population goes down with future recovery. This may be explained by differences in the mean (see 
Fig. A8.7). Asterisks indicate an overall significant upward trend in variance (overall tests: p<0.05). 
Mean values represented by different letters within emotions are significantly different (post-hoc tests: 
p<0.05).
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Figure A8.7. The effect of critical slowing down on variance can be confounded by a change in the means. 
Variance (SD= mean standard deviation) (a and d), coefficient of variation ( )= /CV SD x  (b and e), and 
mean affect level  x  (c and f) according to tertiles of development of future depressive symptoms in a 
general population (n=535) (upper panels), and according to tertiles of future recovery in depressed 
patients (n=93) (lower panels). Note that for the general population, higher variance in individuals with 
higher future recovery is robust if corrected for the means, while for the depressed population, both higher 
variance of positive emotions, and lower variance of negative emotions, are not robust.

Appendix A8.2. Supplementary methods

Inclusion criteria and final set of participants. Inclusion criteria in both studies were 
a DSM-IV diagnosis of major depressive disorder (MDD), age between 18 and 65 
years, and a baseline score of ≥18 on the 17-item HDRS. Patients using psychotropic 
medications, other than low dose benzodiazepines, were excluded (Barge-Schaapveld 
et al. 1995; Peeters et al. 2003). Of the 621 individuals of the general population 
sample, only 610 participated in ESM. Of this group 31 were excluded because of too 
few valid ESM measurements (Delespaul 1995). Forty-four participants had missing 
data either at baseline or follow-up resulting in 535 individuals. In the depressed 
sample 118 were eligible to participate. Of those, six were excluded because of too 
few valid ESM measurements and 1 because of unavailability of emotion ratings in 
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ESM. Additionally, 1 had missing baseline data and 17 had missing follow-up HDRS 
measurements. This resulted in a final sample of 93 participants.

Heteroscedasticity and normality. The current samples have 535 and 93 groups 
(individuals) with on average 37 and 45 observations, respectively, per individual. 
When checking our data, two main assumptions of the model did not hold for some 
of the analyses: homoscedasticity at level 1 (i.e. the variability of residuals within 
persons may differ from one person to the other) and normality (i.e. the distribution 
of scores within a person may not be normal). Violations of these assumptions were 
found through the inspection of residual plots. Estimates in the models may be 
slightly downwardly biased if the number of groups (level 2 units) is less than 50 
and the normality assumption is violated. According to Hox (2010) at least 50 level 
2 groups (in this case individuals) are needed with 20 or more observations within 
each group in order to accurately estimate standard errors in case of violation of the 
normality assumption. Thus, according to Hox (2010), the current sample sizes are 
adequate to yield accurate estimations of standard errors. 

In order to test the potential influence of heteroscedasticity, all analyses were repeated 
with robust standard errors (using the so-called Huber–White or sandwich standard 
errors). These analyses yielded similar results and conclusions.  

Estimating the potential function. We have considered the possibility to directly estimate 
the potential function. However, although the methodology is developed for a long 
time series (see e.g. Wagenmakers et al. (2005) and Brillinger (2007)), the extension to 
our case is far from trivial. The reason is that the data consist of a sample of quite short 
time series, which do not yield enough information for estimating a person-specific 
potential function that is flexible enough (i.e. not restricted to a specific parametric 
form). In principle, this would be possible by setting up the estimation problem in 
the aforementioned multilevel modeling framework. However, this is a completely 
new methodology that has not been developed, let alone been sufficiently tested. 
Therefore, we have refrained in this paper from estimating the potential function.

Appendix A8.3. Individual and group responses

All people differ in their response to changing conditions and in their underlying 
emotional vulnerability. For each individual the dynamic interplay between emotions 
may differ. For example, some individuals quickly become anxious if something 
happens that makes them sad, while others don’t have a strong connection between 
these two emotions (Wigman et al. 2013). This may explain why some people slowly 
glide into a depression, while others shift much more suddenly and unexpectedly (Fig. 
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A8.8). The result of the complex interplay between the multiple different emotional 
states people experience may thus differ from individual to individual and may 
impact on moment and timing of transition. We can hypothesize that the critical 
moment and speed with which a system may shift to another level of depressive 
symptoms is different per individual. When data of many different individuals are 
grouped together we expect –at group level- early warning signals to be associated 
with a dimensional change in depressive symptoms (since every system has its own 
point to shift), which is a reason for not categorizing by diagnosis status. This also 
illustrates a second reason: we do not necessarily expect that transition moments 
coincide with man-made arbitrary DSM-IV criteria. For some individuals critical 
shifts may occur at subclinical levels while for other individuals shifts occur to 
clinical levels of depression. As explained above each individual likely has his/her 
own mood set points and thresholds for tipping points, and some may even have no 
thresholds at all, but simply a smooth response to changing conditions. The results 
of the study support this view on transitions since indicators of critical slowing 
down predicted dimensional transitions towards higher or lower levels of depressive 
symptoms.
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Fig. A8.8. The response of a dynamical system 
to a stressor (e.g. parameter 2) may be smooth or 
catastrophic depending on the strength of a positive 
feedback (e.g. parameter 1). The cusp point defines 
the parameter settings at which the system changes 
from smooth to catastrophic. The fold bifurcations 
define the parameter settings at which the system 
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Table A8.1a. The socio-demographic and depression-related characteristics for the general population 
sample.

General population sample (n=535)

Mean (SD) or 
percentage

n (individuals)
N (observations)

Age 27.6 (7.8) n=534

Female gender 100% n=535

No/only primary school education 1% n=4

Secondary school education only 1% n=6

Intermediate vocational education 34% n=184

College/University 64% n=341

Baseline SCL-90-R (item average) 1.44 (0.51) n=535

Average follow-up SCL-90-R (item average) 1.47 (0.48) n=535

Baseline average rating (1-7) of cheerful 4.63 (0.86) n=535   N=19,752

Baseline average rating (1-7) of content 4.77 (0.86) n=535   N=19,660

Baseline average rating (1-7) of anxious 1.22 (0.38) n=535   N=19,673

Baseline average rating (1-7) of sad 1.35 (0.52) n=535   N=19,732

Average follow-up SCL-90-R per tertile (low, 
medium or high follow-up score)

low: 
1.08 (0.06) 
n= 182

medium: 
1.33 (0.09) 
n= 177

high: 
2.02 (0.48)
n=176

Baseline average rating (1-7) of cheerful per 
tertile of follow-up SCL-90-R score

4.90 (0.90) 4.54 (0.80) 4.43 (0.81)

Baseline average rating (1-7) of content per 
tertile of follow-up SCL-90-R score

5.07 (0.85) 4.73 (0.81) 4.51 (0.83)

Baseline average rating (1-7) of anxious per 
tertile of follow-up SCL-90-R score

1.13 (0.31) 1.16 (0.24) 1.38 (0.49)

Baseline average rating (1-7) of sad 
per tertile of follow-up SCL-90-R score

1.18 (0.43) 1.30 (0.41) 1.59 (0.62)
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Table A8.1b. The socio-demographic and depression-related characteristics for the depressed patient 
sample.

Depressed patients (n=93)

Mean (SD) or 
percentage

n (individuals)
N (observations)

Age 41.7 (9.9) n=93

Female gender 40% n=93

No/only primary school education 19% n=18

Secondary school  education only 27% n=25

Intermediate vocational education 39.8% n=37

College/University 10.8% n=10

Baseline HDRS-17 total score 24.0 (3.7) n=93

Follow-up HDRS-17 total score 12.5 (6.8) n=93

Baseline average rating (1-7) of cheerful 1.96 (0.92) n=93   N=4.250

Baseline average rating (1-7) of content 2.19 (1.03) n=93   N=4.270

Baseline average rating (1-7) of anxious 2.03 (1.40) n=93   N=4.275

Baseline average rating (1-7) of sad 3.00 (1.32) n=93   N=4.282

Intervention following baseline:
-combination of pharmacotherapy and supportive psychotherapy
-imipramine (as part of a trial)
-placebo (as part of a trial)

n= 43
n=23
n=27

Average follow-up HDRS-17 per tertile of 
change in follow-up HDRS-17 score (low, 
medium or high reduction in symptoms)

low:  
19.1 (3.5) 
n= 33

medium: 
12.2 (4.4)
n= 32

high: 
5.7 (3.4)
n=28

Baseline average rating of cheerful per tertile 
of change in follow-up HDRS-17 score

1.87 (0.77) 1.90 (0.82) 2.15 (1.15)

Baseline average rating of content per tertile 
of change in follow-up HDRS-17 score

2.09 (0.92) 2.17 (0.94) 2.32 (1.24)

Baseline average rating of anxious per tertile 
of change in follow-up HDRS-17 score

2.17 (1.50) 1.97 (1.31) 1.93 (1.43)

Baseline average rating of sad per tertile of 
change in follow-up HDRS-17 score

3.51 (1.34) 2.79 (1.14) 2.62 (1.35)
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Table A8.2. Regression analysis in which the interaction effect represents the extent to which 
autoregression coefficients increase with increased follow-up change in depressive symptoms. 

Autocorrelation

General population Depressed patients

Beta-coefficient of 
interaction effect sizeα

p-value Beta-coefficient of 
interaction effect sizeβ

p-value

Cheerful 0.014 0.537 0.008 0.017

Content -0.007 0.738 0.006 0.100

Anxious 0.060 0.029 -0.002 0.662

Sad 0.065 0.024 0.005 0.135

α: follow-up average SCL-90-R depression score X ‘emotion’ moment (t-1) on ‘emotion’ moment (t)
β: decrease in HDRS-17 score from baseline to follow-up X ‘emotion’ moment (t-1) on ‘emotion’ moment (t)

Table A8.3a. The overall significance tests for differences between variances across the three tertile 
groups for the general population and the depressed patients.

Variance

General population 

Low FU symptoms Medium FU symptoms High FU symptoms Overall Wald test

Coeff SE Coeff SE Coeff SE χ2 df p-value

Cheerful 1.02 0.009 1.13 0,01 1.20 0.010 165.52 2 <0.001

Content 1.17 0.010 1.23 0,01 1.30 0.010 68.13 2 <0.001

Anxious 0.50 0.004 0.58 0,005 0.87 0.008 1761.48 2 <0.001

Sad 0.54 0.005 0.76 0,007 1.06 0.009 2623.37 2 <0.001

Depressed patients

Low decrease in 
FU symptoms

Medium decrease in 
FU symptoms

High decrease in 
FU symptoms

Overall Wald test

Coeff SE Coeff SE Coeff SE χ2 df p-value

Cheerful 0.90 0.016 0.88 0.016 1.04 0.021 41.41 2 <0.001

Content 0.90 0.016 0.95 0.018 1.05 0.021 31.92 2 <0.001

Anxious 1.01 0.018 0.90 0.017 0.90 0.018 23.56 2 <0.001

Sad 1.20 0.022 1.08 0.020 1.11 0.022 17.16 2 <0.001
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Table A8.3b. P-values of the post-hoc Wald tests for differences between variances across the three 
tertile groups for the general population and the depressed patients.

Variance

General population

Low vs Medium FU 
symptoms

Low vs High 
FU symptoms

Medium vs High FU 
symptoms

Cheerful <0.001 <0.001 <0.001

Content <0.001 <0.001 <0.001

Anxious <0.001 <0.001 <0.001

Sad <0.001 <0.001 <0.001

Depressed patients

Low vs Medium decrease 
in FU symptoms

Low vs High decrease in 
FU symptoms

Medium vs High 
decrease in FU symptoms

Cheerful 0.337 <0.001 <0.001

Content 0.049 <0.001 <0.001

Anxious <0.001 <0.001 0.883

Sad <0.001 0.005 0.278

Table A8.4a. The overall significance tests for differences between correlations across the three tertile 
groups for the general population and the depressed patients.

Correlation

General population

Low FU symptoms Medium FU 
symptoms

High FU 
symptoms

Overall Wald test

Coeff SE Coeff SE Coeff SE χ2 df p-value

Anxious-sad 0.25 0.012 0.26 0.011 0.34 0.012 34.13 2 <0.002

Cheerful-content 0.50 0.009 0.54 0.009 0.56 0.009 22.19 2 <0.001

Anxious-cheerful -0.16 0.012 -0.19 0.012 -0.21 0.012 10.20 2 0.006

Anxious-content -0.19 0.012 -0.24 0.012 -0.28 0.012 26.54 2 <0.001

Sad-cheerful -0.30 0.011 -0.35 0.011 -0.41 0.011 44.89 2 <0.001

Sad-content -0.28 0.011 -0.34 0.011 -0.39 0.011  51.52 2 <0.001
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Depressed patients

Low decrease 
in FU symptoms

Medium decrease 
in FU symptoms

High decrease 
in FU symptoms

Overall Wald test

Coeff SE Coeff SE Coeff SE χ2 df p-value

Anxious-sad 0.30 0.024 0.32 0.024 0.37 0.024 5.09 2 0.078

Cheerful-content 0.47 0.020 0.52 0.019 0.61 0.018 25.79 2 <0.001

Anxious-cheerful -0.10 0.026 -0.12 0.026 -0.27 0.026 25.34 2 <0.001

Anxious-content -0.14 0.026 -0.12 0.026 -0.22 0.027 8.19 2 0.017

Sad-cheerful -0.30 0.024 -0.35 0.023 -0.43 0.023 16.82 2 <0.001

Sad-content -0.31 0.023 -0.35 0.023 -0.36 0.025 2.20 2 0.332

Table A8.4b. P-values of the post-hoc Wald tests for differences between correlations across the three 
tertile groups for the general population and the depressed patients.

Correlation

General population

Low vs Medium FU 
symptoms

Low vs High 
FU symptoms

Medium vs High FU 
symptoms

Anxious-sad 0.294 <0.001 <0.001

Cheerful-content 0.001 <0.001 0.225

Anxious-cheerful 0.107 0.001 0.112

Anxious-content 0.002 <0.001 0.032

Sad-cheerful 0.002 <0.001 <0.001

Sad-content <0.001 <0.001 <0.001

Depressed patients

Low vs Medium decrease 
in FU symptoms

Low vs High decrease in 
FU symptoms

Medium vs High decrease 
in FU symptoms

Anxious-sad 0.478 0.027 0.129

Cheerful-content 0.075 <0.001 0.001

Anxious-cheerful 0.694 <0.001 <0.001

Anxious-content 0.659 0.024 0.007

Sad-cheerful 0.164 <0.001 0.008

Sad-content 0.249 0.168 0.787
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Challenges of studying complexity

“Art is a lie that makes us realize the truth.” – Pablo Picasso

Throughout this thesis I used simple non-linear dynamical models (strategic 
models) to obtain insights into the stability of complex systems. I have presented 
some examples in which the abstract world of math can provide a fresh angle to the 
study of complex systems, mainly by providing search images for patterns in real 
systems. I have contributed to the theoretical toolbox for the anticipation of critical 
transitions (chapters 5-7), and elucidated multiple factors controlling dynamics 
of three real-world complex systems: the nitrogen cycle (chapter 2), the coral reef 
ecosystem (chapter 3 and 4), and the mental state of human beings (chapter 8). 
Each chapter reflects an attempt to isolate a key property of the complex behavior, 
in order to get a better understanding of the system as a whole. I used strong 
simplifications of reality including strategic models, metaphors, and analogies to 
point to patterns that mark certain aspects of the behavior of complex systems. I 
now take a step back and consider strengths and limitations of this approach. I also 
take a step forward reflecting on the prospects of gaining a better understanding of 
complex systems ranging from the earth to our body. The central theme I address 
is the tension between the complexity of the systems I studied and simplicity of the 
models and metaphors I have used as tools. The take home message I hope to confer 
can be summarized paraphrasing the above Picasso quote as  “Models are a lie that 
can help to make us realize the truth.”

Simple models as theories

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible 
basic elements as simple and as few as possible without having to surrender the adequate 
representation of a single datum of experience” – Albert Einstein 1934

Commonly paraphrased as: “A scientific theory should be as simple as possible, but no 
simpler”. 

While the above quote of Einstein might be fit for theories aimed for accurate 
prediction or simulation, here I address another important role of theories based on 
oversimplified models for the development of scientific understanding. Sometimes, 
the purpose of a theory is to investigate the simplest possible hypothesis one can 
think of, with the aim to identify discrepancies between the (over-)simplification 
and the real world. A classic example is the neutral theory of biodiversity of Stephen 
Hubbell (Hubbell 2001). Neutral theory assumes equivalence between members of 
an ecological community, implying that biodiversity arises at random (Hubbell 
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2001). Hubbell’s theory has been highly criticized, and many articles showed its 
failure to capture the complexity of ecological communities in nature (Mcgill 2003). 
One can argue that the theory is just wrong. However, as a theory it functions as 
a working null-hypothesis, with testable predictions. As mentioned by Rosindell 
et al. (2012), the theory is about improving understanding by making simplifying 
assumptions and seeing what can be explained with the resulting models. In that 
context, neutral theory is useful as a foundation for other theories and models.

The theoretical models of spatially extended systems with local alternative stable 
states presented in this thesis (chapters 6 and 7) are over-simplifications of reality 
as well. Similar to Hubbell’s neutral theory, the predicted dynamics function as a 
null-hypothesis for large-scale ecosystems with alternative stable states. However, 
the assumptions of spatial homogeneity and random dispersal are obviously rarely 
met in nature, still the notion of a Maxwell point is very important in practice, for 
instance for predicting the effect of restoration measures. Including more details 
in such simple models can sometimes produce fundamentally different dynamics. 
For instance, applied to seagrass dynamics, the theory for homogeneous conditions 
would predict abrupt shifts from complete seagrass cover to bare sea floor, but 
studies have shown that grazing of waterfowl tends to lead to spatial structuring of 
sea grass, and that this causes the shift from high to low seagrass cover to become 
gradual rather than abrupt (van der Heide et al. 2012). 

Sometimes discrepancies between an oversimplification and reality reveal essential 
assumptions. An example is the nitrogen cycle pathway model in chapter 2. The 
fundamental model simply aimed at simulating thermo-dynamically and ecologically 
feasible nitrogen pathways. Interestingly, the fundamental model predicted high 
competitive strength for two ammonium oxidation pathways: anaerobic ammonium 
oxidation (anammox) using nitrate instead of nitrite, and ammonium oxidation to 
the level of dinitrogen gas (see Appendix A2). A closer look at these pathways 
revealed why they could be absent in nature. The activation energy of ammonium is 
high, so a pathway is only feasible if an ammonium molecule can react at a one-to-
one ratio with a reactive chemical species (Strous et al. 1999; Dosta et al. 2008) (see 
chapter 2). After adding this new assumption to the fundamental model, it strikingly 
predicts all of the dominant pathways in the nitrogen cycle. In addition, two other 
unexpected pathways were predicted to be thermodynamically and ecologically 
feasible: 1) complete ammonium oxidation to nitrate (comammox), and 2) nitrite 
dismutation to nitrate and dinitrogen gas. No obvious reason could be found why 
these pathways have not been observed in nature. Strikingly, in December 2015, 
one of the two predicted pathways, complete ammonium oxidation to nitrate, was 
discovered as an abundant, but overlooked microbial pathway in nature (Daims et 
al. 2015; van Kessel et al. 2015). 
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This recent discovery illustrates the potential strength of extremely simple models 
for ecology. However, mostly the role of simple strategic models as presented in 
this thesis is more modest. Such models can serve to find potential explanations for 
observed patterns that would not easily arise from pure intuition. Their very nature 
implies that they capture only some aspects of reality. Starting from the incomplete 
representation of reality, we can detect deviations between their predictions and 
observations that put us on the track of additional aspects that may be important.

The use of metaphors 

“Every time I paint, I throw myself into the water in order to learn how to swim.” -Édouard 
Manet 

Another representation of reality that helps to understand a complex system is the 
metaphor. A metaphor is a figure of speech in which a word or phrase is applied 
to an object or action to which it is not  literally applicable. The Manet quote is 
a metaphor for the challenging process of creating a work of art, which in my 
experience is not entirely unlike the scientific adventure of studying a new complex 
system such as the mood system or a coral reef. In this thesis, I have used multiple 
metaphors to communicate theoretical concepts. For instance, the illustrative ball-
in-a-stability-landscape metaphor is used to explain alternative stable states and 
critical slowing down (see for instance chapters 5 and 8).  On an even simpler level 
terms such as ‘tipping point’ and ‘domino effect’ are used as metaphors to aid an 
intuitive understanding of the essence of phenomena.  

Metaphors are inherent to the human cognitive process and may greatly help 
to improve the scientific imagination (Lakoff and Johnson 1997), as well as the 
communication of complex ideas (Brown 2003). By using a metaphor, aspects of 
the system that do not fit the metaphorical approximation can be ignored, while the 
ones that do are highlighted (Lewontin 2002). However, this powerful subconscious 
process can also trick one’s reasoning into unfounded conclusions (Ball 2011). For 
instance, one might be tempted to think that the rolling ball in stability landscapes 
could gain momentum on its way down and overshoot the valley to roll over the 
next hilltop. However, these potential landscapes only reflect the local derivatives 
without inertia, so when the ball is rolling down it slows down halfway and 
stops in the valley without any overshoot. Still the rolling ball is a useful aid to 
interpret stability, with the side effect of tricking us into the unfounded momentum 
interpretation. Indeed, the stability landscapes that have been so powerful in 
transmitting the central concepts of systems with alternative attractors to a broad 
audience are far-from-perfect analogs to reality. 
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Similarly, the choice to use a metaphor such as ‘tipping point’ instead of a technical 
mathematical term such as ‘saddle-node bifurcation’ has its strengths and weaknesses. 
Metaphors are easier to understand for a broad audience, but are less precise than 
mathematical terms. Hence, there is a trade-of between precise communication to 
a limited audience, or less accurate communication to a broader (interdisciplinary) 
group. The chapters in this thesis reflect different ends of this gradient. For instance, 
chapter 4 on feedbacks in coral ecosystems aims to communicate essential aspects 
of non-linear systems to a non-mathematical audience of coral reef biologists in 
an intuitive way. By contrast, chapter 6 on the stability of spatial systems is more 
technical. Still, the focus of my work is consistently on bridging between mathematics 
and applied fields rather than on the pure mathematics. Indeed, none of the models 
addresses truly novel mathematical issues. The very nature of this focus on bridging 
to a broader audience implies that the tension between mathematical precision and 
more metaphorical phrasing is omnipresent.    

Resisting the confirmation bias

“When men wish to construct or support a theory, how they torture facts into their 
service!” – Mackay, 1852 (quoted in Nickerson (1998))

While metaphors are more evidently imperfect than simple models in their 
description of reality, both carry the risk of tempting one into embracing them 
too strongly. The tendency to see evidence for an idea everywhere is known as the 
confirmation bias. Considering that scientists are far from immune to this fallacy 
they should be alert to resist it (Nickerson 1998). As Chamberlin (1897) phrased it 
already in 1897, there is “an unconscious selection and magnifying of the phenomena 
that fall into harmony with the theory and support it, and an unconscious neglect of those 
that fail of coincidence”.  In the field of modeling a common pitfall is to interpret 
resemblance between model dynamics and observed dynamics as a proof of the 
validity of the model assumptions. Alternative mechanisms can often lead to the 
same or to similar dynamics. Let me briefly illustrate this with three examples from 
this thesis: regular spatial patterns, abrupt shifts and slowing down. 

Regular spatial patterns in biota, such as the ones we observed on the Great Barrier 
Reef can arise by underlying heterogeneity in the landscape, or physical processes 
(chapter 3). In that case, Turing instability plays no role in the formation of the 
patterns. Even if the observed patterns are indeed self-organized, they can be 
explained by entirely different mechanisms, such as spatial resource accumulation 
comparable to what is found for patterned desert vegetation and spatial deflection 
of growth inhibitors (chapter 3). 
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Abrupt shifts in nature are often wrongly interpreted as evidence for the existence 
of alternative stable states (Scheffer and Carpenter 2003). Such shifts can however 
simply be a consequence of a strong environmental change or another abrupt event, 
rather than a critical transition to an alternative attracting regime. For instance, 
the shift from coral to macroalgae dominance on Caribbean reefs in 1983-1984 
was preceded by a mass mortality event of sea urchins (Diadema antillarum) due 
to a disease (Hughes 1994). The resilience of these reefs was certainly low, because 
alternative grazers of macroalgae (herbivorous fish) were extremely overfished. 
However, after the return of the sea urchins, most reefs have shown signs of recovery 
(Edmunds and Carpenter 2001; Carpenter and Edmunds 2006). It could thus well be 
that the macroalgae-dominated state was not a true attractor and that the dramatic 
shift was simply a transient response to the rapid mortality of sea urchins (Dudgeon 
et al. 2010). 

Slowing down may indicate the vicinity of a tipping point (e.g. chapters 5 and 8). 
However, there is a risk of over-interpreting indicators of slowing down. Although 
slowing down does appear in the vicinity of zero-eigenvalue bifurcations, it can 
also happen for other reasons. For instance, as temperature falls, most biological 
processes become slower. Similarly, changes in the environmental fluctuations can 
affect the indicators (Dakos et al. 2012b). Thus, observing slowing down of a system 
does not necessarily mean that the system approaches a catastrophic shift (Kéfi et 
al. 2012; Scheffer et al. 2015b). 

These examples of alternative underlying mechanisms illustrate that, as mentioned 
in chapter 1 and in the first paragraphs of this chapter, a strategic model should 
merely be seen as a qualitative hypothesis of a potential mechanism, that should be 
checked carefully against empirical observations. 

Importantly, the hypothesis inspired by a strategic model becomes more plausible 
if it is confirmed by multiple lines of evidence (Scheffer and Carpenter 2003) or by 
predicting a pattern instead of single values (Grimm et al. 2005). For instance, the 
observation of the entire repertoire of Turing patterns, including bands, increases 
the likelihood that the observed regular patterns are indeed the result of spatial 
self-organization (chapter 3). Similarly, the idea that critical slowing down can 
indicate increased likelihood of a shift to an alternative state in the mood system is 
supported relatively strongly because it is consistent with evidence from multiple 
indicators of decreased resilience (variance, temporal autocorrelations, and cross-
correlations), which are moreover observed for depressed patients in relation to 
upcoming recovery as well as for healthy subjects in relation to upcoming depression 
(chapter 8). 
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Controlled experiments are of course the classical approach to test hypotheses. 
However, such experiments are not always feasible in complex systems. For instance, 
experimentally testing the existence of alternative stable states in the climate system 
is simply impossible. Even testing stability of alternative states in an ecosystem 
such as a coral reef is hard as coral reefs are very slow systems, and isolating 
parts for replicated experiments without affecting essential ecosystem processes is 
hardly feasible. Clearly, even imperfect experiments can help probing a theory a 
bit further. For instance, a recent two-year double-blind experiment on a single 
subject obtained results in line with the proposed idea that critical slowing down 
of the mood can announce an upcoming tipping point into depression (Wichers et 
al. 2016). One may dismiss such non-replicated work as poor science. However, we 
may have to accept that complex systems such as humans, societies, coral reefs or 
the climate simply cannot be understood merely through the classical gold-standard 
approach of replicated controlled experiments also because of the complexity in 
causation (Scheffer and Beets 1994). 

Prospect 

The bottom line of this reflection on the challenges of using models to study 
complex systems is perhaps best summarized in the paraphrased quote from Picasso 
“Models are a lie that can help to make us realize the truth”. However, the bridge 
between strategic models and the reality of complex systems should be built with 
care. As the fierce discussion on Catastrophe Theory has illustrated (see chapter 
1), the overenthusiasm of so-called catastrophists of that time, like Christopher 
Zeeman, gave rise to too many weak bridges between theory and reality, and finally 
resulted in a dismissal of the Catastrophe Theory. Currently, many of the theoretical 
concepts discussed in this thesis, such as alternative stable states, tipping points, 
and early warning signals, receive a lot of attention. The attractiveness is most likely 
due to the universality of these principles, and because they are relatively easy to 
understand. However, it is tempting to become overenthusiastic, and much work 
remains to be done to build convincing empirical foundations. 

Although it may seem almost impossible to truly understand complex systems 
such as the ones discussed in this thesis, the time may be ripe for an effort to 
build a new science of complex systems. Definitely, to address a range of pressing 
societal issues we will need a better understanding of systems ranging from the 
brain to ecosystems and the climate.  Simple mathematical models can merely help 
generating hypotheses and testing those through controlled experiments is rarely 
possible. However, additional power to resolve questions now comes from the 
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availability of big data from satellites, social media, wearable electronic sensors 
and numerous other sources. Clearly, a strong multidisciplinary effort is required 
to bring this all together. In addition to the technical insight in models and data 
analysis, one needs high system-specific expertise. Developing a new theory of 
the mood system (chapter 8) cannot be done without good psychologists and 
psychiatrists. An overarching theory of the global nitrogen cycle pathways (chapter 
2) requires working with knowledgeable microbiologists. Similarly, a new theory 
on the functioning of coral reefs (chapters 3 and 4) can only be developed in close 
cooperation with ecologists with an expertise in the complex coral system.  

In hindsight, results of such work may seem to make perfect sense. However, the 
interplay between me as a theoretician, and the different system-specialists was 
definitely not effortless. Rather there were frequent episodes of confusion that could 
only be resolved by perseverance from both sides, maintaining the dialogue in spite 
of the sometimes profound differences in scientific language. The combination 
of strategic mathematical models with big data and smart experiments seems a 
powerful approach to study a wide range of complex systems. However, the main 
challenge may lie in the social aspects of bridging disciplines rather than in technical 
aspects. Unravelling complex systems requires cooperation between diverse minds 
and personalities. It is slow science requiring not just technical skills, but also 
patience and perseverance. Participating in this science as a theoretician requires 
a delicate balance between modesty and boldness: “Models are a lie that can help to 
make us realize the truth”.
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Glossary

Alternative stable states Multiple stable states of a system under the same external conditions (Fig. G1d). 

Attractor The dynamic regime to which a system converges after some time. Examples 
of attractors: point, cyclic (periodic), quasiperiodic, chaotic

Basin of attraction Set of initial conditions that lead to a particular attractor (Fig. G1d).

Bifurcation point A threshold in conditions at which the qualitative dynamics of a model 
change (e.g. from two stable states to one stable state).

Critical slowing down The phenomenon that the return time of a disturbance back to equilibrium 
increases close to a local bifurcation where a stable equilibrium becomes 
unstable (Fig. G1e and f)

Critical transition Abrupt shift in the behaviour of a system when certain parameters reach a 
threshold. A critical transition is often triggered by a disturbance or a small 
change in conditions (Fig. G1d).

Cusp-catastrophe fold A diagram of a particular system in which two parameters are changed, 
illustrating both the fold bifurcation and the cusp bifurcation (Fig. G1c). 

Eigenvalue (dominant) One can approximate a nonlinear system close to an equilibrium point by 
a linear system.  The eigenvalues of the linear system reflect the (possibly 
complex) exponents of the solution of the linear system. The maximum 
eigenvalue is called dominant as it determines largely the recovery rate after 
a small perturbation. (see also Jacobian matrix)

Equilibrium The state of a system at which processes are balanced. A system returns to 
a stable equilibrium following a small perturbation. A system moves away 
from an unstable equilibrium upon a small perturbation. 

Feedback A closed loop process that feeds back to the inputs, influencing future changes. 

Fold bifurcation A bifurcation point at which a stable state collides with an unstable state. It 
marks the disappearance of both equilibria. 

Hysteresis The dependency of a systems’ current state to the past. Following a critical 
transition to an alternative state due to an increase in driver level: if the 
driver level is lowered to pre-transition conditions the system stays in the 
new state (‘is trapped’) until a lower threshold is reached and the system 
flips back (Fig. G1b). 

Jacobian matrix One can approximate a nonlinear system close to an equilibrium point by 
a linear system. The Jacobian matrix contains the coefficients of this linear 
system, and comprises information about the stability of the equilibrium 
point. (See also Eigenvalue)

Negative feedback A feedback that dampens an initial small change (e.g. increase A → increase 
B → decrease A).  

Positive feedback A feedback that amplifies an initial small change (e.g. increase A → increase 
B → increase A).

Resilience (ecological) The magnitude of a disturbance a system can tolerate before it shifts to a 
different state (Fig. G1d). 
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System state The size of the variables at a certain moment in time.  

Tipping point A threshold in time where once the threshold is passed, intrinsic processes in 
the system cause the accelerating change. 

Threshold A point at which the system is very sensitive to changing conditions or 
perturbations.

Zero-eigenvalue 
bifurcation

A bifurcation (in a continuous system) at which the real part of the dominant 
eigenvalue of the equilibrium crosses zero
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Fig. G1. a) Most systems respond smoothly to changing conditions, such that the same equilibrial 
trajectory is followed when conditions are changed slowly back and forth (grey vs. black). b) Some 
systems respond smoothly to changing conditions until a certain level is reached, F1, at which the system 
abruptly shifts to an alternative state if conditions get close or beyond point F1. Once the system is 
trapped in this new state, reversal of the conditions leads to a different backward trajectory with a 
backward shift around point F2 (i.e. hysteresis). c) The cusp-catastrophe fold. The shape of the equilibrial 
response of a system to changing conditions depends on the interaction between variables in the 
system (see also chapter 4). In general, strong positive feedbacks (e.g. in shallow lakes: aquatic plants 
improve water clarity, water clarity increases growth of aquatic plants) increase the likelihood of critical 
transitions. d) A critical transition illustrated by a ball in a stability landscape: the one-dimensional 
landscape represents the stability of the system, and the position of a ball in that landscape represents 
the present state of the system. Far from the tipping point F1, the size of the basin of attraction is large, 
and the resilience of the present state is high. However, when the system approaches the tipping point 
the landscape changes, and the resilience decreases. e and f) Critical slowing down illustrated by a ball 
in a stability landscape. If resilience is high (panel e), the ball will quickly return to equilibrium after a 
small disturbance. If resilience is low (panel f), the return rate is much lower.  
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Summary

In this thesis I use mathematical models to explore the properties of complex 
systems ranging from microbial nitrogen pathways and coral reefs to the human 
state of mind. All are examples of complex systems, defined as systems composed 
of a number of interconnected parts, where the systemic behavior leads to the 
emergence of properties that would not be expected from behavior or properties 
of the individual parts of the system. Although the full behavior of the systems 
I address will probably never be fully understood, the strategic model analyses I 
present hint at mechanisms that may dominate the overall dynamics. 

For instance, in chapter 2, I address the question whether all microbial nitrogen 
pathways that are realized in nature may be explained from basic physical-chemical 
principles. The approach is to compute conversion rates and energy yield of all 
potential pathways from stoichiometry and energy yield of the performed redox 
reaction. Surprisingly, much of the variation observed in nature could indeed be 
predicted from these basic principles. Interestingly, there were also deviations 
between the first round of predictions and observations. Those led us to the 
hypothesis that high ammonium activation energy may be an important biochemical 
factor creating barriers for the viability of ammonium oxidizing pathways. After 
inclusion of this additional assumption, the model predicted two pathways that had 
not been observed in nature so-far. A recent discovery of one of these pathways 
(complete nitrification of ammonium to nitrate) strengthens the idea that much of 
the emergent behavior of the complex global microbial nitrogen pathways may be 
explained from basic physical-chemical principles (chapter 9). Now, only one of the 
eleven predicted pathways remains to be confirmed: the dismutation of nitrite to the 
level of nitrate and dinitrogen gas.  

Dynamical system theory can also provide new angles for thinking about the resilience 
of coral reefs, pointing to the role of local feedbacks and interactions that may 
determine systemic behavior (chapters 3 and 4). Chapter 3 reveals the widespread 
occurrence of previously unrecognized Turing patterns on coral reefs in Australia and 
New Caledonia. The famous mathematician Alan Turing was the first to show how 
patterns can spontaneously emerge in otherwise completely homogeneous systems. 
Turing used a reaction-diffusion system to describe how simple local interactions 
between an activator and an inhibitor, combined with diffusion of these substances, 
can lead to symmetry breaking. Since then, Turing patterns have been thoroughly 
analyzed in the literature, and the fundamental conditions for the formation of 
Turing patterns are well understood. Those mathematical insights imply that the 
observed Turing patterns on reefs point to a particular set of testable mechanisms 
that should govern reef growth at these scales. Moreover, the variation in Turing 
patterns across the reefs may hint at differences in resilience.
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Chapter 4 is another example of how existing mathematical theory can help to guide 
our understanding of the complexity of coral reef ecosystems. A simple dynamical 
model is used to illustrate how multiple weak positive feedbacks can collectively lead 
to alternative stable states. Although these results do not reveal whether alternative 
stable states indeed occur on coral reefs, they imply that an ecosystem that responds 
gradually to changing conditions at one location may show an abrupt shift between 
alternative attractors on another location. This adds an important nuance to the 
polarized discussion about the question whether alternative stable states exist in 
coral reef systems. The results also reveal the need for a better understanding and 
quantification of feedbacks in coral reef ecosystems. 

Chapter 5 provides a general perspective on the possibilities to anticipate shifts 
to alternative states in complex systems. We review two previously unconnected 
fields of research in relation to such critical transitions. First, we discuss how the 
architecture of complex networks can affect robustness, showing that for most kinds 
of networks, modularity and heterogeneity tend to decrease the likelihood of abrupt 
shifts. Second, we review the work showing how generic mathematical principles 
suggest ways to detect a decrease in resilience of the system as it approaches a 
tipping point. These generic indicators are related to the phenomenon of critical 
slowing down, or to the changing shape of the stability landscape. Together these 
two emerging fields open up novel generic ways of probing and managing the 
likelihood of critical transitions in complex systems. However, this overview also 
highlights important gaps in our understanding when it comes to various realistic 
situations. 

One complicating aspect is the fact that many systems are large and heterogeneous. 
I address this issue in chapters 6 and 7. Here, the theory of alternative stable 
states and resilience of ecosystems is explored for spatially extended ecosystems. 
In chapter 6 we show that, in contrast to well-mixed systems, resilience against 
local disturbances does not decrease gradually as the system approaches a critical 
transition (a fold bifurcation in particular). Instead, the dominant state remains 
virtually indestructible, until at a critical point, known as a Maxwell point, resilience 
drops sharply in the sense that even a very local disturbance can cause a domino 
effect leading eventually to a systemic shift to the alternative state. Close to this 
Maxwell point both states have a comparable resilience, allowing long transient 
co-occurrence of alternative states side-by-side, and permanent co-existence if there 
are mild spatial barriers. For spatially extended biomes with alternative stable 
states, such as tundra, steppe and forest, these results imply that, as climatic change 
reduces the stability, the effect might be difficult to detect until a point where local 
disturbances inevitably induce a spatial cascade to the alternative state. 
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The most direct indicator of critical slowing down is the recovery rate after a small 
perturbation. However, if a system is not ‘well-mixed’, recovery depends critically 
on the way a perturbation is performed spatially. One may attempt to perform a 
weak, system-wide perturbation. However, in spatially extended ecosystems it may 
be typically more feasible to perform a local perturbation. In chapter 7, a simple, 
but spatially explicit, model with local alternative stable states is used to investigate 
the limitations of interpreting the recovery from local disturbances as an indicator 
of the resilience of the system as a whole. Although the recovery trajectory depends 
on the systemic resilience of the ecosystem, it is also strongly influenced by the rates 
of spatial exchange and by the spatial extent of the perturbation. 

Both chapters 6 and 7 illustrate how local perturbations of sufficient size and 
amplitude may trigger a systemic collapse. Interestingly, while ‘collapse’ has a 
negative connotation, the same mathematical principles obviously apply to changes 
that are perceived as positive. For instance, local restoration efforts may create a 
domino effect invoking a large scale recovery of an ecosystem. In any case, the 
models for spatially extended systems predict that in a homogeneous landscape the 
entire system will tend to converge to the same state. From a restoration perspective 
this implies that local efforts may tend to either fail in the long run or alternatively 
trigger a landscape-wide transition. The dynamic response to natural or experimental 
local perturbations can hint at the likelihood for such systemic transitions between 
alternative states. 

Chapter 8 applies the theory discussed in chapter 5 to the case of human depression, 
one of the main mental health hazards in the western world. Depression is 
hypothesized to be an alternative stable state of the ‘normal’ mental state under 
certain conditions. The view of depression as an alternative stable state implies 
that the shifts between depression and the normal healthy state should correspond 
to critical transitions that become more likely as the system is closer to a tipping 
point (a zero-eigenvalue bifurcation). We therefore hypothesized that the likelihood 
of transitions should be related to indicators of critical slowing down. Indeed, the 
data we have for a large group of healthy individuals and patients reveal that the 
probability of an upcoming shift is related to elevated cross-correlation as well as 
temporal autocorrelation and variance of fluctuations in four autorecorded aspects 
of mood. One problem in interpreting these results is that the recorded aspects 
of mood can hardly be considered real physical variables of a dynamical system. 
Instead, the mood system is often considered to have evolved as an indicator for the 
organism to reflect the overall conditions of an underlying complex somatic-mental-
social system. We addressed this issue by analyzing the dynamics of principle 
components of a complex network with alternative attractors, demonstrating that 
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such indicators of the state of a complex system may faithfully reflect critical slowing 
down in the underlying system. Overall, these results support the hypothesis that 
mood may have alternative stable states separated by tipping points, and suggest 
an approach for assessing the likelihood of transitions into and out of depression.

In chapter 9 I take a step back to reflect on the strengths and weaknesses of 
the approach taken in this thesis, and on the challenges ahead. I argue that the 
attractiveness of simple models or theories almost inevitably implies the risk of 
becoming trapped into a tunnel vision. Simple models by themselves can never 
provide a proof of the role of a particular mechanism or process. Instead, profound 
cooperation with empirical scientists is necessary for theoreticians to contribute in 
useful ways to the understanding of any complex system. Such cooperation requires 
a subtle balance of modesty and perseverance. On the other hand, challenges of 
understanding truly complex systems can only be met through such transdisciplinary 
work. There is a large gap between the insights from controlled experiments and 
interpretation of the increasingly available ‘big data’. Strategic mathematical models 
may help navigate this gap, carving corridors of clarity through the overwhelming 
complexity of nature and society. Any simple model necessarily neglects much of 
this complex reality. However, paraphrasing Pablo Picasso: ‘models are a lie that can 
help to make us realize the truth’. 
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