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Abstract

Sphingoid bases encompass a group of long chain amino alcohols which form the essential
structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more
and more into the focus of biomedical research due to their role as bioactive molecules. In fact,
free sphingoid bases interact with specific receptors and target molecules and have been
associated with numerous biological and physiological processes. In addition, they can modulate
the biophysical properties of biological membranes. Several human diseases are related to
pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms
underlying their biological and pathophysiological actions remain elusive. Within this review, we
aimed to summarize the current knowledge on the biochemical and biophysical properties of

the most common sphingoid bases and to discuss their importance in health and disease.

1. Introduction

Sphingolipids (SLs) are essential components of all mammalian tissues, and are highly
abundant in the nervous tissue [1]. In blood, SLs constitute a part of the circulating lipoprotein
particles (VLDL, LDL, and HDL), are carried by serum albumin, and are also present in blood cells,
platelets [2], and exosomes [3-5]. Complex SLs are, together with sterols and
glycerophospholipids the major structural components of cellular membranes [6]. SLs, such as
sphingomyelin (SM), assemble laterally with cholesterol (Chol) on the outer leaflet of the plasma
membrane (PM) thereby forming membrane specialized microdomains, commonly known as
lipid rafts [7] that provide conformational support for membrane proteins and for the
recruitment of signaling molecules [8]. In addition, certain SL metabolites, such as sphingosine
(SO), sphingosine 1-phosphate (S1P), ceramide and ceramide 1-phosphate have well-
documented roles as bioactive molecules that act as intra- or inter-cellular messengers. They
are involved in a variety of important cellular processes such as proliferation [9], differentiation
[10,11], inflammation [12-14], apoptosis [15—17] autophagy [18,19], calcium signaling [20,21]
and immune response [13,22].

SLs are derived from a set of aliphatic amino alcohols, referred to as ‘sphingoid’ or long

chain bases (LCB). The simplest and most abundant mammalian sphingoid base is the 18-carbon



dihydroxy amino alkane, SO and its unsaturated precursor sphinganine (SA). Although described
as early as 1884 and named after the Egyptian Sphinx, the chemical structure of SO was
elucidated only in 1947 by Herb Carter, who proposed the designation SLs for lipids derived from
this molecule [23,24]. The majority of sphingoid bases are N-acylated to a variable fatty acid,
forming ceramides and further substituted with a variety of head group structures forming
complex SLs. However, a minor fraction is also present as free LCBs and as such involved in a
variety of biological processes [25]. This is particularly true for the phosphorylated forms (S1P,
sphingosine 1-phosphate) that has been extensively studied due to its role in cell function and
pathogenesis [26,27]. LCBs are found in all eukaryotic organisms including animals, plants, fungi
and certain bacterial species (Sphingomonads and Bacteriodes) encompassing dozens of
sphingoid bases and sphingoid base-like compounds, which vary in chain length, number,
position, and stereochemistry of double bonds, hydroxyl groups, and other functionalities (Fig.

1) [28,29].
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Figure 1 — Schematic representation of some mammalian long chain base structures (1-7) and
synthetic derivatives (8,9) (based on [28]); n varies between 14 to 28 [30,31].

The present review will critically discuss the biochemical and biophysical properties of
free mammalian sphingoid bases and their implications in pathophysiology, focusing on the
most common canonical LCBs - SO and SA. The properties of phytosphingosine (phytoSO) and
sphingadienine will also be addressed, and a short overview on the properties of atypical and

synthetic LCBs will be presented at the end of the review.

2. Sphingolipid metabolism - an overview

The SL metabolic pathway is complex, involving multiple enzymes and isoenzymes, some
of which display tissue and/or subcellular specificity. Such features are thought to be
fundamental to the compartmentalization and tight regulation of SL metabolism. The fine
balance of SL levels is essential to the preservation of normal cell function. This becomes clear
with the increasing number of human diseases linked to genetic mutations causing enzyme
dysfunction in the various steps of the SL metabolic pathway (such as, lysosomal and
nonlysosomal SL degradation, de novo ceramide synthesis, glycosphingolipid synthesis). This
issue is discussed in a recent review [32].

A brief description of the SL metabolism is presented below. Further details on the SLs
metabolic pathways can be found in recently published reviews [25,33—35].

Sphingolipid de novo synthesis starts at the cytosolic surface of the endoplasmic reticulum
(ER), where also the synthetic enzymes are located [33]. The first and rate-limiting reaction is
catalyzed by the enzyme serine palmitoyltransferase (SPT), which is typically the conjugation of
L-serine and palmitoyl-Coenzyme A (CoA) to form 3-keto-sphinganine (3-KTS). Besides this
canonical activity, SPT has a variable affinity for other fatty acyl-CoAs, forming sphingoid bases
with variable carbon chain length, and an alternative activity towards other amino acid
substrates in particular for L-alanine and glycine. This forms a category of atypical 1-
deoxysphingolipids (deoxySLs) (Fig. 2) that lack the C1-OH group of canonical sphingoid bases
[36]. 3-KTS is instable and rapidly converted to SA by the 3-keto-sphinganine reductase. SA can
be phosphorylated at C1 by sphingosine kinase (SphK) to form SA-1-phosphate [33], whereas
C4-hydroxylation of SA leads to the formation of phytoSO [37,38]. However, the major synthetic
pathway involves the N-acylation of SA to form dihydroceramides (dhCer), in a reaction

catalyzed by one of the six ceramide synthases (CerS) [39]. Next, dhCer is converted to ceramides



through the A4-dihydroceramide desaturase (DES) introducing a AC4-Cs trans-double bond into
the SA backbone [40,41]. Ceramides are the central metabolites in SLs synthesis and represent
the pivotal branching point for the degradation and salvage pathways [42,43]. In some cell types,
ceramide can be converted to galactosylceramide on the lumenal side of the ER [44]. Ceramide
is also the precursor of SM and complex glycosphingolipids, which are synthetized in the Golgi
[45]. Therefore, ceramides have to be transported from the ER to the Golgi either through
vesicular or non-vesicular transport [46,47]. On the catabolic side, ceramides are hydrolyzed by
ceramidases (CDases) to SO, which is either reacylated by CerS to form ceramides, or
phosphorylated at the C1-hydroxyl by SphK to form S1P [33]. S1P can be de-phosphorylated by
S1P phosphatase to form SO again or irreversibly degraded to hexadecenal and
phosphoethanolamine by the S1P lyase [33]. These final breakdown products are then further
metabolized to Phosphatidyethanolamine (PE) or other phosphoglycerides. A simplified
representation of the SL metabolism is presented in Fig. 2.

It is worth mentioning that complex SLs can also be deacylated forming LCB derivatives,
with variable headgroups. Well known examples are the sphingosylphosphorylcholine (lyso-
sphingomyelin), galactosylsphingosine (psychosine) and glucosylsphingosine, which consist on a
SO LCB linked to phosphorylcholine, galactose and glucose, respectively. Different studies
suggest that these LCB derivatives have important roles in cell function [48-52] and might
contribute to different pathologies, including cancer [53,54] and lysosomal storage diseases [55—

58].
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Figure 2: Schematic representation of the SL metabolism. Ceramide synthesis can be achieved
through the de novo pathway, sphingomyelinase pathway, salvage pathway and the exogenous
recycling of ceramide. Ceramide is a central molecule in the SL metabolism and used as a base
for more complex SLs (SM and glycosphingolipids) or degraded to SO. The
saccharide headgroup of glycosphingolipids can contain a single sugar unit (cerebrosides) and
form glucosylceramide (GlcCer) or galactosylceramide (GalCer) when a glucose or a galactose
residue is attached to the ceramide backbone, respectively. The addition of galactose to a GlcCer
gives origin to lactosylceramide, the structural unit of gangliosides and globosides. Sulfatides are
derived from GalCer via esterification of a sulfate group to the 3-hydroxyl of the galactose
moiety. Atypical sphingoid bases such as 1-deoxy-sphinganine and 1-deoxymethyl-sphinganine,
are formed by the conjugation of palmitoyl-CoA with L-alanine and glycine, respectively.
Abbreviations: aPBGluase, acid B-glucosidase; aCDase, acid ceramidase; aSMase, acid
sphingomyelinase; C1PP, ceramide-1-phosphate phosphatase; CDase, ceramidase; CersS,
ceramide synthase; CK, ceramide kinase; DAG — Diacylglycerol; DES, ceramide desaturase; ER,
endoplasmic reticulum; GCase, glucosylceramidase; GCS, glucosylceramide synthase; KDS,
ketosphinganine reductase; LE, Late endosomes; Lys, Lysosomes; PC, Phosphatidylcholine; SK,
sphingosine kinase; SMase, sphingomyelinase; SMS, sphingomyelin synthase; SPPase,
sphingosine phosphate phosphatase; SPT, serine palmitoyltransferase

3. Sphingosine

The most abundant LCB in mammals is C18 (d18:1) SO (Fig. 1, Structure 2). This LCB was
first described by J. L. W. Thudichum in 1884 [59], and is chemically characterized as 2S,3R,4E-
2-aminooctadec-4-ene-1,3-diol [23]. It is formed by the deacylation of ceramides through the
action of 5 known pH-dependent CDases with varying subcellular localization [33,60]. SO can be
recycled in the salvage pathway by a set of complex reactions involving activities of both SL
synthesizing and hydrolytic enzymes [33]. This pathway is fundamental for the regulation and
formation of ceramide [61]. On the catabolic side, SO is also the precursor of S1P, an important
signaling molecule that is involved in multiple cellular events with outcomes often opposite to

those provoked by SO and ceramides [62—64].

3.1. Biochemical and Biological Properties

SO is a bioactive lipid that acts as a second messenger in cell membranes, by interacting
with cellular targets, inhibiting platelet aggregation and growth factor action [61,65—67]. One of
the first identified targets of SO is Protein kinase C (PKC), a protein kinase which is widely
implicated in the control of cell growth [68]. However, the mechanisms underlying SO-mediated
PKC inhibition are not completely resolved. It is suggested that SO inhibits PKC by interfering

with the binding of phorbol esters and other PKC activators [66]. Further evidence supporting



this hypothesis was obtained from studies performed on Niemann Pick type C (NPC) fibroblasts,
where accumulation of endogenous SO seems to be directly related to the inhibition of PKC.
Indeed, the specific binding of [20-3H] phorbol 12,13-dibutyrate to the regulatory domain of the
enzyme was significantly reduced in fibroblasts from NPC patients compared to control
fibroblasts [69]. Also, stimulating PKC can rescue disease phenotypes, confirming the PKC
inhibition by SO as a contributor to disease pathogenesis [70]. The mechanisms underlying SO
action seem to be dependent on SO concentration. It is suggested that at higher concentrations
(> 5-fold increase) SO directly inhibits PKC, while at lower levels, SO might inhibit the release of
PKC activators, such as Ca®* [69] or interact with other membrane lipids such as the negatively
charged phosphatidylserine (PS). The later hypotheses was supported by studies on the
inhibition of PKC by SO, that suggest that negatively charged PS is important for the electrostatic
neutralization and required for activation of the enzyme [71]. Other studies showed that SO
interferes with the cellular calcium homeostasis, through the inhibition of Ca?* channels and
pumps, particularly the PM Ca?*-ATPase [72], and by decreasing the amount of Ca?* stored in the
cellular acidic compartments, contributing to disease states, such as NPC1 (Fig. 3) [73,74].
Additionally, it was reported that SO is involved in the regulation of PKC-dependent
phosphorylation in the nucleus, by modulating the association of membrane phospholipids to
PKC or its substrates [75].

In addition to inhibiting PKC, SO has also been implicated in modulating the activity of other
protein kinases [76,77], including calmodulin-dependent kinase, insulin receptor tyrosine kinase
[76], the casein kinase Fam20C [78] and SO-dependent protein kinases [79,80], likely due to SO-
mediated changes in the electrostatic interactions between the enzymes and membrane lipids
[71,76,77]. In addition, an indirect modulation of acid sphingomyelinase phosphorylation within
the lysosome has been reported, which is due to SO-mediated PKC inhibition [81].

SO has also been linked to reduced activity of phosphatidate phosphohydrolases [82], and
implicated in the conversion of phosphatidylcholine (PC) to phosphatidic acid (PA), suggesting a
role of SO in the activation of phospholipase D [83]. Moreover, SO and SphK1 were identified as
players in the regulation of endocytic membrane trafficking (Fig. 3) [84], and in the regulation of
cell growth arrest, apoptosis and response to chemotherapy [85,86], through multiple
mechanisms [87—90]. Additionally, it has been reported that SO might also function as a positive
modulator of cell growth, by stimulating DNA synthesis and potentiating the mitogenic response
of growth factors [91]. These contradictory effects might somehow be related to the rapid
interconversions of ceramide, SO and S1P that often have opposite cellular effects. Among other
factors, the cellular response depends on the activity of those enzymes that determine which

metabolites are predominantly formed under specific conditions [64].



(A) Induction of calcium efflux from acidic compartments (C) SO in NPC disease
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Figure 3 — Examples of Sph biological actions. (A) Sphingosine-induced calcium release from
acidic compartments occurs through the action of two pore channel 1 (TPC1). (B) SO induces the
formation of dilated intracellular vesicles and has an important role in endocytic membrane
trafficking. (C) SO abnormal accumulation in late endosomes/lysosomes is related with calcium
depletioninthese organelles in NPC cells and is followed by the secondary accumulation of other

lipid species. Adapted from [73]; [74]and [84].

3.2. Physico-chemical properties and biophysical implications

It is widely recognized that lipids modulate membrane structure and properties, and that
these changes might underlie their biological activity. This is also true for LCBs, which due to
their amphiphilic structure, significantly alter the physico-chemical properties of biological

membranes.

3.2.1. Physico-chemical characteristics of SO

Differential scanning calorimetry studies revealed that SO displays a single phase
transition centered at 39°C [92], while studies performed using fluorescence spectroscopy
showed that SO gel-to-fluid phase transition occurred at ap. 53°C under neutral conditions (pH
7.4), being reduced to ap. 48°C under acidic conditions (pH 5.0) [93]. These results although
distinct, probably due to the different experimental conditions (e.g. techniques, SO
concentrations, etc), suggest that SO potentially exists in the gel phase at physiological
temperature. Hence, SO is a good candidate to induce changes in membrane fluidity and to

participate in the formation of ordered lipid domains. In addition, due to its amphiphilic nature,



SO forms micelles when dispersed in aqueous solutions. However, a large disparity on the critical
micelle concentration (CMC) values of SO has been reported, ranging from ~0.99 uM up to 112
UM [92,94,95]. These differences might result from the different techniques used (such as
dynamic light scattering [95], fluorescence methodologies [92,94]), and the specific conditions
in which the measurements were performed. Particularly, pH and ionic strength may strongly
influence ionization state and hydrogen bonding network [95]. In blood, SO concentrations of
0.1 to 1 uM have been reported for both free SO and its phosphorylated form [96]. Considering
that free SO is present in the micromolar range in body fluids, it is possible that SO micelles
(aggregated SO) exist under physiological conditions. This is of importance, considering that
micelles can act as membrane solubilizing agents, thus contributing to membrane structure
impairment.

Since the differences in hydration and/or hydrogen bonding affect the pK of the amino
group [97], itis not surprising that very different pKa values (ranging from ~ 6 to ~ 9) have been
reported for SO in solution, micelles and membranes [66,97,98]. Therefore, it is difficult to
predict whether SO is present in uncharged form at the PM [95,97], and becomes charged only
within the acidic cell compartments, or if the interaction of SO with other membrane lipid
components is sufficient to confer positive charge to the molecule, even at neutral pH [93].
Nonetheless, changes in pH from an acidic to a neutral environment alter the hydrogen-bonding
network of SO aggregates, from intramolecular to intermolecular [99], and is therefore expected
to influence membrane biophysical properties. Moreover, SO might affect membrane surface
charge in a manner dependent on both membrane lipid composition and pH, suggesting that a
local enrichment in SO would affect the electrostatic interactions of membrane proteins and
consequently protein activity. In the same way, it might drive changes in membrane lipid

organization which can impact membrane structure, trafficking and sorting processes.

3.2.2. Effect of SO on the biophysical properties of membranes

Several studies have addressed the effect of SO on bilayer membranes and its ability to
change membrane biophysical properties, by promoting changes in fluidity [92—94,97,100-102],
domain formation [101,103] or membrane permeability [94,102,104,105] (Fig. 4). The effects of
SO on membrane properties are complex and depend on lipid composition and the protonation
state of SO. For instance, it is suggested that SO stabilizes dipalmitoylphosphatidylcholine (DPPC)
gel domains [92,100] by inducing reorientation of the PC headgroups, which would decrease the
lipid cross-sectional area and promote tighter intermolecular packing in the bilayer [92]. This
phenomenon might resemble what was already proposed for Chol and for ceramide [106],

where a closer interaction with lipids bearing a larger headgroup might help in protecting the



hydrophobic moieties from unfavorable contacts with the aqueous environment. One can
therefore hypothesize that in biological membranes SO might be able to intercalate within other
membrane lipids with a concomitant increase in membrane packing, thereby enhancing the
formation of ordered lipid domains, such as the widely described lipid rafts [8,107]. However, it
was also described that the effect of SO on membrane fluidity is concentration dependent [100],
suggesting that SO might have multiple effects on membrane properties depending on its local
concentration. Nonetheless, several studies highlighted that SO induces membrane ordering in
a variety of artificial membranes, such as phosphatidylcholine (POPC) [93],
dimyristoylphosphatidylcholine (DMPC), diether lipid dihexadecylphosphatidylcholine (DHPC)
[92], egg PC [103], DPPC/Chol, SM/Chol and SM/Chol/PE [94], PC/Chol [101] and in
POPC/SM/Chol mixtures [93]. Interestingly, the studies performed in membranes containing
Chol or Chol/SM showed that SO can form gel domains or become soluble in the I, phase,
depending on the SO-SM and SO-Chol interactions, respectively [93,94,101], a behavior similar
to that reported for ceramides [108,109] (Fig. 4). In addition, surface pressure studies revealed
a negative deviation from ideal additivity indicating a strong interaction between SO and Chol
[110]. The authors suggested that SO and Chol can form pairwise condensed complexes that
interact over hydrogen bonds that are formed between the protonated SO amino group and the
Chol hydroxyl group. From a structural perspective, this agrees with an opposite cone-shape for
these two molecules as sterols have a single hydroxyl group for the polar, but a bulky four-ring
structure for the hydrophobic part. Here, the formation of the complexes depends greatly on
the cellular location of these lipids, becoming particularly favorable in acidic compartments
where SO is likely to exist in its protonated state. This could be particularly relevant in the
context of NPC disease, where SO and Chol co-accumulate in lysosomes [73]. Interestingly,
evidence shows that decreasing the levels of sphingoid bases in NPC models can reduce Chol
storage [111], while the reduction of glycolipids levels are not sufficient to revert Chol
accumulation [112].

Other studies reported that SO abolishes the pre-transition of DMPC and DHPC,
suggesting that SO increase the fluidity of the membranes by destabilizing the interdigitated gel
phase formed by these lipids [92]. Furthermore, SO might have a detergent-like action, leading
to the formation of very small, highly curved vesicles, or even mixed micelles of SO/
dielaidoylphosphatidylethanolamine (DEPE) [100]. Whether such situation also occurs in
biological membranes is currently unknown. However, those structural changes would be
compatible with cellular events that involve vesicle formation and membrane sorting, such as

the endo-lysosomal pathway and exosome formation, placing SO as a good candidate for the



modulation of these cellular events. Indeed, a recent study identified SO as a key player in
endocytic membrane trafficking [84].

Protonated SO was also shown to have concentration dependent effects on the
thermotropic behavior of acidic phospholipids [92,97]. At low concentrations, SO stabilizes
dipalmitoylphosphatidylserine (DPPS) membranes by promoting a tighter packing because of
increased hydrogen bonding and/or electrostatic interactions between the anionic
phospholipids and the cationic SO. This effect is, however, abolished in mixtures containing high
SO concentration [92,97]. Moreover, SO causes deprotonation of DPPS carboxyl group with
consequent lowering of its apparent pKa due to electrostatic interactions between the two lipids
[113]. These interactions also contribute to an overall electrostatic charge neutralization
preventing the binding between the positively charged Ca?* and the negatively charged
headgroup [113], suggesting that, in a cellular context, positively charged SO might affect the
binding of proteins to membranes. This could also explain why SO interferes with Ca®*
homeostasis, as discussed above [73]. Similar changes in the thermotropic behavior were
reported for the acidic phospholipids dimyristoylphosphatidic acid and egg PA [92]. It was shown
recently, that the interaction between SO and PA leads to transient non-lamellar structures,
namely cubic phases [102].

The impact of SO on membrane structure, thermotropic behavior and lipid phase
separation, can have consequences on membrane permeability, both in model and cell
membranes [94,102,104,105]. Changes in membrane permeability might derive from i)
structural defects created by SO as a consequence of lipid phase separation into rigid and fluid
lamellar phases [94,105]; ii) the formation of small short-lived channels that allow the passage
of small molecules and ions [104]; and iii) non-lamellar structures formed upon interaction of
SO with negatively charged lipids [102]. Additionally, it was shown that SO-induced membrane
permeability depends on pH and membrane lipid composition: SO promotes a rapid increase in
membrane permeability in conditions mimicking the lysosome pH environment, i.e., with
internal acidic and external neutral pH. Moreover, high levels of Chol and SM, as observed in
NPC1, enhance SO-induced membrane permeability in those lysosomal-mimicking vesicles
[105], suggesting that SO might impair membrane structure under pathological conditions (Fig.

a).
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Figure 4 — SO-induced biophysical changes in artificial membranes. (A) SO-induced alterations in
the biophysical properties of Lysosome Mimicking Vesicles (LMVs — pH 5.0in/7.404) and
POPC/SM/Chol vesicles with no pH gradient. Long lifetime component of trans-Parinaric Acid (t-
PnA) fluorescence intensity decay in ternary POPC/SM/Chol vesicles without (0) or with 26% of
liquid ordered phase fraction (X/, = 0.26) before (black) and immediately after addition of 5
(white) and 10 (light grey) mol% of SO. The values are the mean * SD of at least three
independent experiments. *p < 0.001 versus 0% SO; **p < 0.01 versus 0% SO; ***p < 0.05 versus
0% SO. Addition of SO to ternary mixtures causes a decrease in membrane fluidity, which is more
pronounced in mixtures containing low Chol content (X, = 0). SO-induced changes in membrane
fluidity are also dependent on pH. For further details see Figure 8 of [105]. (B) SO induces gel
/fluid phase separation in ternary mixtures composed by PC/SO/Chol (70/20/10 mol%). (C) SO
is also able to induce /,/l4 phase separation in quaternary mixtures composed by PC/SO/SM/Chol
(40/20/20/20 mol%). (D) Schematic representation of the effects of external addition of SO to
POPC/SM/Chol vesicles, at different physiological pH conditions. SO cause multiple changes in

membrane properties that include, decrease in membrane fluidity, increase in membrane



fluidity, change in membrane surface charge, all of which dependent on pH. For further details

see Figure 9 from [105]. Adapted from (B,C) [101] and (A,D) [105].

3.3. SO in disease

SO has been implicated in different pathologies. It has been shown that lysosomal SO
storage is an initiating factor in NPC disease [73,114] (Fig. 3). NPC is an inherited atypical
neurodegenerative lysosomal storage disorder, characterized by mutations in two genes
encoding for the late endosomal/lysosomal transmembrane protein NPC1 and NPC2 [115]. The
exact function of these proteins is still unclear, but both have been related to Chol transport in
the endo-lysosomal system [116,117]. NPC1 was also pointed as a possible intervenient in the
mediation of the lysosomal efflux of SO [73]. Indeed, molecular modelling studies using the
solved crystal structure of NPC1 identified a potential binding site for SO inside NPC1,
strengthening the hypothesis that NPC1 is a lysosomal SO transporter [118]. This hypothesis is
further supported by a study that uses click chemistry-based sphingosine probes to measure the
lysosomal release of sphingosine from NPC cells [119]. NPC cells are characterized by an intra-
lysosomal accumulation of SO as well as Chol, glycosphingolipids and SM [73]. Moreover, NPC
cells have a characteristic defect in the transport of lysosomal LDL-derived Chol to the ER for
esterification. As described above, SO accumulation might affect the biophysical properties of
lysosomal membranes (Fig. 4). Indeed, synthetic membranes enriched in SO have impaired
stability under acidic conditions and enhanced propensity to form larger aggregates, likely due
to SO-induced changes in membrane surface charge [105]. A defective NPC1 function not only
affects the storage of lipids, but also reduces the levels of lysosomal Ca?* and causes unique
endocytic transport and fusion defects [73]. This in turn, was shown to cause defects in the
endocytic transport leading to a secondary accumulation of Chol, SM and glycosphingolipids in
NPC. Furthermore, the exogenous addition of SO to normal cells induced an NPC like phenotype,
such as altered calcium homeostasis in acidic compartments, trafficking defects and a secondary
accumulation of other lipid species [73]. Reducing SO levels by inhibiting de novo synthesis with
the SPT inhibitor myriocin, reversed these cellular phenotypes in NPC cells [73]. Considering that
SO has been shown to alter membrane permeability [94,102,104,105], it can be hypothesized
that, in addition to inhibition of PKC mediated by SO, changes in lysosomal permeability are a
possible mechanism for the observed changes in the lysosomal Ca?* stores upon SO
accumulation [20,73]. It was also suggested, that an inhibition of PKC by SO could be involved in
the Rab9 trafficking defect seen in NPC [120]. A better understanding of the molecular

mechanisms underlying NPC disease might help developing therapeutic strategies to treat this



disease. To date, there is no cure for NPC patients. The current therapeutic approaches delay
the progression of the disease or attenuate its clinical symptoms [121][122]. For instance,
Miglustat is used to limit the accumulation of gangliosides and neutral glycosphingolipids, like
glucosylceramide and globosides, through the inhibition of glucosylceramide synthase, and is
able to delay neurological manifestations of the disease and improve patient survival[122,123].
Recently, Fingolimod (FTY720), was proposed as a new therapeutic agent for NPC disease. It was
shown that this S1P analog is able to increase NPC1 and NPC2 expression, contributing for a
reduction in Chol and SL accumulation in NPC fibroblasts [124].

SO might also be important in the prevention of disease and/or disease related
complications. There is increasing evidence of the protective antibacterial action of sphingoid
bases and other lipids in infection [125]. SO was shown to be crucial for host defense against
Pseudomonas aeruginosa and other lung infections [126,127]. Cystic fibrosis (CF) is an
autosomal recessive disorder caused by mutations in the CF Transmembrane conductance
Regulator gene [128]. Despite the multisystemic implications of this mutation, the major cause
of patient mortality are chronic pulmonary infections. Different microorganisms are involved in
the lung infections of CF patients. In particular Pseudomonas aeruginosa infections are incident
in these patients [129]. Due to the long-term antibiotic treatments the number of resistant
Pseudomonas aeruginosa strains is increasing, which requires alternative therapeutic options. It
was shown that ceramide levels are elevated in the respiratory tract of CF patients [130,131],
while decreased SO levels result in a diminished antibacterial response [126]. Increasing SO
levels either by the inhalation of SO, the S1P analog FTY720, or by treatment with acid CDase
had a positive effect in CF mice [126,127] and might become a preventive/therapeutic measure
to reduce bacterial infections in CF patients. The detailed molecular mechanisms related to the
protective effect of SO against bacterial infection are yet to be resolved. Nonetheless, it is known
that PKC signaling is involved in Pseudomonas aeruginosa elastase-induced epithelial barrier
disruption [132], indicating that SO-induced protection against infection might be related to PKC
inhibition, as previously suggested [133]. Other hypothesis might be related with SO-induced
bacterial cell wall damage, for example by affecting bacterial membrane permeability, and
defects in adherence, as suggested for SA [125,134].

SO, together with SA have also been related to protection mechanisms against cancer.
By inhibiting proliferation and inducing apoptosis in different cancer cell lines, these molecules
have a special importance as tumor suppressors [15,135-137]. Multiple molecular mechanisms
have been attributed to SO-mediated cell death. For example, elevation in SO levels were shown
to induce cell death via either Golgi fragmentation or lysosomal rupturing [138,139]. In U937

human monoblastic leukemia cells, SO was shown to activate JNK and to inhibit ERK leading to



apoptosis [88]. SO has also been implicated in human hepatoma cell apoptosis through
activation of caspase-3 [89] and/or caspase-7 and -8 [140]. Whether SO induced apoptosis
occurs via a specific mechanism or a combination of multiple mechanisms operating in a
concerted manner, as previously suggested [90], remains to be elucidated. The evidence that SO
can act as a tumor suppressor has already led to the development of synthetic SO derivatives,
such as N,N-dimethylsphingosine and N,N,N-trimethylsphingosine, that showed promising

effects in cancer therapy [141-144]

4. Sphinganine

Compared to SO, less is known about the biological, biophysical and pathological effects
of SA (Fig. 1, structure 1). Dihydro-sphingolipids were for long considered biologically inactive
[145]. However, there is emerging evidence that dihydro-sphingolipid species contribute to
various cellular events, such as, autophagy [146], cell proliferation [147], oxidative stress
[146,148] and metabolic regulation [149,150], by yet unidentified mechanisms. Nonetheless,
most studies are focused on dhCer and little is known about the free base SA. SA has been
implicated in T cell death [151], and as a pro-apoptotic molecule in colon cancer cells
[15,152,153]. Other study suggests that elevation in SA enhances 4-HPR-induced tumor cell
cytotoxicity [154]. In addition, SA and dhCer were identified as mediators of cell death in
prostate cancer cells treated with different variants of vitamin E[155,156]. Yet, the mechanistic
aspects of SA-mediated cell death have not been resolved. It is suggested that SA cytotoxic
action involves caspase activation both in T cells [151] and hepatoma cells [89]. Another study
suggests that SA-induced cytotoxicity and growth inhibition of CHO cells occurs via inhibition of
PKC [157]. SA mediated inhibition of PKC has also been related to the mechanism by which SA
reduces cell proliferation and induces apoptosis in human myeloid leukemia cells [158,159], and
prevents monocytic differentiation of HL-60 cells [160]. Indeed, SA and SO have similar abilities
to inhibit PKC [66] and to induce apoptosis by indirect and direct mechanisms involving
degradation of DNA and the induction of apoptotic cytoarchitectural changes [158]. Elevated
levels of SA have also been reported in NPC disease, however SA was shown to have less or no
effect in inducing NPC disease phenotype compared to SO [111,161,162].

The biological importance of SA can also be accessed from studies using fumonisin B1
(FB1). Fumonisin is a mycotoxin that inhibits CerS resulting in increased accumulation of SA and
SO and a decrease in complex SL in mammalian serum and tissues [163—-165]. Fumonisin is
associated with kidney and liver toxicity [166—168] and other pathological conditions such as

increased oncotic necrosis [164] and induction of neural tube defects [169]. Comprehensive



reviews on this subject were already published [164,170,171]. Of note is the increased
accumulation of SA compared to SO and its rapid conversion to SA1P that is considered to be
the mediator of fumonisin induced toxic effects [169,172,173]. In LM/Bc mouse embryonic
fibroblasts treated with FB1, SA1P was already shown to be able to decrease histone deacetylase
activity and increased histone acetylation that could be related with neural tube defects [169].
SA1P was also shown to be related with the kidney and liver toxicity with more severe
consequences for the kidney cells [166]. This toxicity could be related with increased calmodulin
expression after SA accumulation [165].

Nevertheless, there is a contradictory study on the importance of SA1P for fumonisin
toxicity. Fumonisin was shown to decrease the phosphorylation of ERK2. Nevertheless, SPT and
glucosylceramide synthase inhibitors caused similar decreases. This indicates that rather the
inhibition of the de novo SL biosynthesis than the accumulation of SA and SA1P was responsible
for the ERK2 status after FB1 treatment [174].

Finally, to our knowledge biophysical studies that address the implications of SA in
membrane structure and properties have not yet been performed, except one study that shows
that SA, similarly to SO, is able to stabilize Chol-enriched domains [175]. The missing A4-5 double
bond might contribute for a tighter packing of the membrane. Indeed, studies performed with
dihydrosphingomyelin (dhSM) showed more ordered membranes compared to regular SM
[176-178] and more tightly packed sphingolipid-cholesterol-enriched domains [179]. However,
the absence of an acyl chain and the smaller headgroup in SA compared to dhSM will certainly
influence its membrane interactions. It is therefore important to investigate how SA changes the
fluidity, surface charge and structure of model and cell of membranes and evaluate if these

alterations are implicated in SA biological actions.

5. Phytosphingosine

5.1. Biological and biophysical properties

Phytosphingolipids (PhytoSLs) are a group of functionally related long-chain aliphatic 2-
amino-1, 3, 4-triols. Among them, 4-hydroxysphinganine or PhytoSO (t18:0) ((2S,3S,4R)-2-
aminooctadecane-1,3,4-triol) (Fig. 1, Structure 3) is the most prevalent [180]. They are formed
after the hydroxylation of SO through the action of DES2, and are found abundantly in plants,
yeast, fungi, and marine organisms, as well as, in mammalian tissues [35,181,182]. PhytoSO is
the structural backbone of PhytoSLs and normally constituted by 18 carbons. PhytoSO with

other chain lengths, such as C20, can be detected in minor amounts depending on their origin



[180,183]. Variations in the PhytoSO chain length result in different biological responses. For
instance, McCarthy and co-workers showed that the length of the PhytoSO chain, controls the
affinity of T-cell receptor binding to a-galactosylceramide—human CD1d—glycolipid complexes
and the activation of iNKT cells [184].

Free PhytoSO was shown to have antiproliferative and anti-inflammatory effects, and
has major importance for the maintenance of skin homeostasis [185,186]. For example, PhytoSO
showed a protective role for the skin of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated
hairless mice. It can block epidermal thickening and edema, and the infiltration of inflammatory
cells into the dermis [185]. The anti-inflammatory effects of PhytoSO were promoted through
the block of TPA-induced generation of prostaglandin E; in peripheral mononuclear leukocytes
[185]. PhytoSO is also an effective antimicrobial compound, able to inhibit the growth of Gram-
negative and Gram-positive bacteria even at low concentration [125,187]. The underlying
mechanism of the antimicrobial activity of PhytoSO (or other sphingoid bases, as discussed
above) are not clearly elucidated, but is suggested to be related to the disruption of bacterial
cell wall [125], reduction of bacterial adherence [134], and inhibition of bacterial protein kinase
[188]. In yeast, both PhytoSO and SA levels are increased during heat stress, suggestive of an
important role of these lipids in the regulation of stress responses [189]. These molecules are
required to regulate translation of heat shock mRNA [190]. Like SO, PhytoSO has also been
associated with apoptotic events activated through different mechanisms. For instance, studies
with human T-cell lymphoma Jurkat cells showed that PhytoSO induced chromatin DNA
fragmentation, a hallmark of apoptosis, through the activity of caspases-3 and -9 [191]. Other
studies showed that PhytoSO can use two distinct MAPK signaling pathways for amplifying
apoptotic cascade [192]. Moreover, in radiation-resistant human T-cell ymphoma the combined
treatment using PhytoSph and y-irradiation caused nuclear translocation of apoptosis-induced
factor, which in turn is mediated by ROS-dependent Bax relocalization and ROS-independent
PARP-1 activation [193]. This finding suggests an alternative therapeutic approach against
radiation resistant cancers [194]. It is also suggested that PhytoSO has antifungal properties,
inducing apoptosis in filamentous fungi [194].

Contrary to SO and similarly to S1P, the phosphorylated form of PhytoSO (PhytoS1P) is
associated with cellular growth and proliferation. PhytoS1P in combination with epidermal
growth factor revealed a synergistic anti-aging effect and was able to restore the extracellular
matrix in human dermal fibroblasts [195]. Moreover, it was demonstrated that this lipid is
involved in the regulation of genes that are required for mitochondrial respiration in yeast [196].
Structurally, PhytoSO differs from SO due to the presence of a hydroxyl group linked to the 4-

ene. The presence of this polar group might have a strong influence in the biophysical properties



of membranes, particularly considering that it provides an additional source for H-bond
formation. Unfortunately, studies addressing the biophysical properties of PhytoSO as a free
molecule have, to our best knowledge, not been performed, and information can only be
obtained indirectly from studies performed with PhytoCeramide and PhytoSphingomyelin.
However, extrapolation of the biophysical behavior should be made with caution, since the N-
acyl chain of SLs strongly influences their biophysical behavior. Nonetheless, it should be
stressed that the additional OH group present in the sphingoid backbone seems to be
responsible for a higher gel-to-fluid transition temperature of these phytoSLs compared to the
SO-based SLs, and higher ability to increase membrane order [197-200], likely due to stronger
network of hydrogen bonds and/or interactions between the polar head groups [198,201]. It can
therefore be hypothesized that these stronger interactions are related to the protective effect
that PhytoSO-based SLs have in skin, where they are highly abundant [197]. Also noteworthy, is
the altered affinity of sterols for membranes containing phytoSphingomyelin compared to SM
[200], suggesting that these lipids might influence the organization and properties of the lipid
raft domains, and thus raft-dependent signaling events [107]. For example, PhytoSO/PhytoSL-
enriched ordered domains in biological membranes might be involved in the activation of
apoptotic signaling cascades through specific membrane death receptors, which could account
for the observed apoptotic effects described for PhytoSO in different cell types. It is also
tempting to hypothesize that the antimicrobial effects of PhytoSO could be related to its impact
on membrane organization. Like SO, PhytoSO might also compromise the permeability and
integrity of bacterial cell wall or other microbial membranes, thus preventing microbial infection

in humans.

5.2. Role in disease

PhytoSO is recognized as a potential therapeutic agent in the treatment of inflammatory
and proliferative cutaneous diseases [185]. In fact, it has been demonstrated that synthetic
derivatives of PhytoSO (mYG-1I-6 and fYG-1I-6) have anti-inflammatory and therapeutic effects
in TPA- or cytokine-stimulated keratinocytes, mouse T-cells, and cutaneous inflammatory
models, as well as, induced human peripheral blood mononuclear cells [186]. The effect of these
compounds was stronger than those of the parent compound, PhytoSO, and their activities were
related to the inhibition of NF-kB, JAK/STAT and MAPK signaling, resulting in the induction of
apoptosis [186]. Moreover, based on its strong antimicrobial activity and anti-inflammatory
effects, PhytoSO can complement existing acne therapies as an active cosmetic component

[187].



Other PhytoSO derivatives have been developed based on the inhibition of SphK, which
has been implicated in cell growth and inhibition of apoptosis. The cytotoxic effect of N-
monomethylphytosphingosine (MMPH) and N, N-dimethylphytosphingosine (DMPH) and the
pegylated forms MMPH-PEG and DMPH-PEG was evaluated in human leukemia HL60 cells, and
all of them revealed a concentration dependent inhibition of cell growth and viability [202].
Despite this, DMPH was the most effective cytotoxic compound against leukemia. It was able to
induce apoptosis via the activation of caspases-3,-8 and -9 [202] and, because of its apoptotic
effects, PhytoSO has been suggested as an alternative therapeutic approach against radiation
resistant cancers [193]. Additionally, PhytoSO can sensitize cancer cells to TNF-related
apoptosis-inducing ligands (TRAIL). This occurs through the synergistic up-regulation of DR4 and
DR5 in a NF-kappaB-dependent manner, resulting in caspase-8 activation and subsequent
mitochondrial dysfunction [203]. These results suggest that the combination of PhytoSO with
TRAIL might be useful in the treatment of cancers that are more resistant to TRAIL.
PhytoSO was also suggested for the treatment and prevention of diabetes and obesity.
Murakami and coworkers [204], showed that feeding high fat diet supplemented with PhytoSO
to DES2 knockout mice inhibits inflammatory events in adipose tissue, which prevents the
development of glucose intolerance and obesity [204]. PhytoSO is synthesized in yeast and fungi,
thus being present at relatively high levels in fermented foods. This suggests that its ingestion
might help to prevent the development of type |l diabetes and obesity [204]. The mechanism by
which PhytoSO provides this protection could be related to the transcription of peroxisome-
activated receptor vy, involved in lipid and glucose homeostasis [205].

Recently, Jadhav and collaborators have shown that treatment of yeast cells with
valproate (VPA), a widely used drugs to treat bipolar disorder (BD), increases the levels of
PhytoSO via de novo synthesis and at the same time leading to inositol depletion and
upregulation of unfolded protein response [206]. They further demonstrated that VPA mediated
increase in SL de novo synthesis is due to a downregulation of Orm1/2 expression, and
upregulation of expression of fatty acid elongases Sur4 and Fen1, as well as of genes involved in
the export and metabolism of PhytoSO [206,207]. Since, VPA induced inositol depletion is also
observed in mammalian cell models [208,209] these findings suggest that inositol depletion and
the consequent increase in PhytoSO levels might underlie the therapeutic action of VPA [207],

which is promising for the development of new therapeutic approaches for BD treatment.

6. Sphingadienine



The dienic sphingoid base, sphingadienine (Fig. 1, Structure 4) also known as sphingadiene
(SAdiene) differs from the most common mammalian LCBs in the number of double bonds [210].
Whereas, the common sphingoid base, SO presents a unique trans double bond at the A4-5
position, SAdienes have an additional double bond within the hydrocarbon chain [211,212]. In
humans this second C-C double bond is located at A14-15 [210,211] and in the same position as
the double bond in the deoxySO [213]. The enzyme responsible for the introduction of this A14-
15 double bond has not yet been identified (see also section 8). Nevertheless, studies using
Drosophila melanogaster [214] and studies with cultured human and murine cells [215] showed
that SAdiene is a downstream product of SO, which provide evidence for an interconnection
between the metabolism of SAdiene and deoxySO.

Free SAdienes and their synthetic analogues exhibit cytotoxic and anti-proliferative
effects in cancer and non-cancer cultured cells in vitro [216—218]. SAdienes were also associated
with inhibition of colon tumorigenesis in mouse models by reducing the viability of cancer cells
in a dose dependent manner [219-221]. Interestingly, A4,8-C18-SAdiene and A4,6-C14-SAdiene
were shown to have anti-inflammatory [222] and neurotropic effects [223], suggesting their
importance in the treatment of neurodegenerative diseases. Mitochondrial and cellular pools of
SAdienes-ceramide, but not of canonical SO-based ceramide, are elevated in embryonic
fibroblasts derived from double knockout BAX-BAK mice and mouse derived immortalized iBMK
cell line [224]. These findings suggest a novel role for BCL2 proteins in regulating SAdiene-
ceramide species, and the later might provide a missing connection between apoptosis and SL
synthesis.

Even though these species are relatively abundant in plasma (~18%) [225] and have been
associated with different pathophysiological events, there is still a lack of information regarding
their mechanism of action. In blood, a significant proportion of SAdiene is also found in
phosphorylated form as SAdiene-1P.

Likewise, the physico-chemical properties of free SAdiene and its impact in membrane
structure and organization is yet to be investigated. Therefore, additional studies aiming at

elucidating these aspects are fundamental.

7. LCB with atypical carbon chain lengths

A great variety of sphingoid bases with atypical chain lengths (in the range of C16-C20)
are present in blood, although the relative proportions of the LCBs differ between mammalian
species. These atypical LCBs are formed in a reaction catalyzed by the SPTLC3 subunit of SPT,

which metabolizes also other acyl-CoAs in the range of C12 to C18 [30,226,227]. In contrast to



the ubiquitously expressed subunits SPTLC1 and SPTLC2, the expression of the SPTLC3 is
restricted to few tissues and cell types [228]. SPTLC3 expression is especially high in trophoblasts
and keratinocytes, which indicates a special need of skin and placenta tissue for atypical LCBs
structures or ceramides [30,229]. The atypical sphingoid base variants also include odd number
of carbons such as linear d17- and d19- SO [230]. Even though, SO (61.5%) and SAdiene (18.65%)
are the most abundant LCBs in plasma, yet approximately about 15 % of the LCBs in human
plasma are of atypical chain length [225].

Among the atypical LCBs, SO d20:1, which is formed when SPT metabolizes stearoyl-
CoA, appears to be of specific interest. A SO d20:1 backbone was reported in gangliosides of rat
and human brains [231], in human stomach mucosa [232] and in SM of rat liver [233], and which
reflects less than 1% of the total sphingoid bases in human plasma [225]. Studies in yeast
suggested the formation of C20 LCBs is dependent on the small subunit of SPT (ssSPTb), which
promoted the use of stearoyl-CoA when co-expressed with the SPT subunits [226]. Enhanced
formation of C20 LCBs are also found in a mouse model that bears a spontaneous de novo
mutation in the ssSPTb gene associated with axon degeneration and aberrant accumulation of
membrane structures [234]. Interestingly, several SPT mutations, which were reported in the
context of a severe form of the inherited neuropathy HSAN1 (Hereditary sensory and autonomic
neuropathy type 1) showed increased C20 LCB formation. In contrast to the majority of HSAN1
mutations, which appear to cluster around the active site of the enzyme, these mutations are
located on the surface of the SPT protein [235], possibly interfering with the binding to an
interaction partner. A recent study found that SO d20:1 is a predictive biomarker for the risk to
develop cardiovascular events even after adjusting for traditional risk factors including the use
of lipid-lowering drugs and angiographically-determined CAD at baseline [236].

Whether the structural and biophysical properties of LCBs with atypical chain lengths
determine these pathophysiological effects, solely or at least in part, is at present unknown.
Indeed, very few biophysical studies have been conducted to address this issue, and none has
been performed with the LCBs in their free forms. Nonetheless, it is worth mentioning that the
longer the LCB of the ceramide molecules, the higher the T, and the lower the concentration of
ceramide needed to induce gel domain formation [237]. However, due to the unique biophysical
properties displayed by ceramides [238], it is difficult to predict whether the effects of
structurally different unconjugated free LCBs would be comparable to those observed for

ceramide bearing different LCBs.



8. Deoxy-sphingoid bases

Apart from its canonical substrate L-serine, SPT also uses L-alanine and glycine as
alternative substrates (Fig. 2). This forms a category of atypical deoxySLs, which lack the C1-OH
group [230,239]. The conjugation of L-alanine forms 1-deoxysphinganine (deoxySA) (Fig. 1,
Structure 5), while the conjugation of glycine forms 1-deoxymethylsphinganine (Fig. 1, Structure
6) [36,239]. Several mutations in the SPT subunits are associated with increased production of
deoxy-sphingoid bases (DSB) [36,240,241], which is due to an enhanced activity with L-alanine
and glycine without changes in the binding affinities for these amino acids [242]. DeoxySA is
converted further to 1-deoxy(dh)-ceramide (deoxy(dh)Cer) and 1-deoxyceramide (deoxyCer).
However, while the conversion of canonical dhCer into ceramide occurs by the introduction of
a A4,5 trans double bond [41,243] the double bond in deoxyCer is A14,15cis [213]. This suggests
that the metabolism of deoxySLs deviates from that of canonical SLs. Due to the lack of the C1-
OH, deoxyCer cannot be further metabolized into more complex SLs. Catabolically, deoxyCer is
degraded by CDase to form 1-deoxysphingosine (deoxySO) (Fig. 1, Structure 7). However,
deoxySO cannot be phosphorylated to form a catabolic intermediate similar to S1P. This
prevents its breakdown by S1P-lyase, meaning that deoxySLs cannot be terminally degraded by
the canonical catabolic pathway [239]. A detailed overview on the metabolism and biological
aspects of deoxySLs is described in a very recent review [244]. Herein, we briefly describe the

biological, biophysical and pathological implications of DSB.

8.1. Biological and biophysical properties of DSB

DSBs, the backbone of all deoxySLs, exist naturally in mammalian cells and in circulation
although in residual amounts when comparing to other SLs [245]. However, elevated levels of
DSB are directly associated with the development and progression of HSAN1 and metabolic
disorders, such as, diabetes [36,246].

The pathological role of DSB might be related to their cytotoxic action [247] that causes
multiple cellular effects, including loss of actin stress fibers mediated by the activation of an
atypical PKC isoform (PKC ) [248,249]. However, such effects are cell type dependent and cells
with neuronal origin are significantly more sensitive to DSB action. Particularly, deoxySA causes
neurite fragmentation and retraction [36], which might be associated to deoxySA-induced
changes in mitochondrial morphology and mitochondrial dysfunction [250], reduced ATP
generation [251,252], ER stress and altered Ca?* influx [251] and activation of the N-methyl-D-

aspartate receptor [253]. In vivo studies also showed the neurotoxicity of deoxySA [254].



The cytotoxic effect of deoxySA is dose dependent and more significant than canonical SA
[36]. It is likely that the structural differences between these LCB might in part contribute to
their mechanism of action. From a physico-chemical perspective, the absence of the OH group
at the Cl-position makes this DSB more hydrophobic and, in addition, will affect the intra- and
inter-molecular interactions established by DSB within the membrane, but also with the
surrounding aqueous environment. In this regard, the higher hydrophobicity of DSB might
increase their propensity to form micelles at lower concentrations, which might also lead to a
faster and/or more extensive membrane permeabilization compared to canonical LCBs [255].
Such mechanism could partially explain the higher toxicity of DSB and therefore deserves further
investigation. In cells, deoxySA is converted into deoxy(dh)Cer and deoxyCer [252] that are
known to be toxic metabolites and to significantly alter the biophysical properties of model
membranes [252,256].

Besides the lack of the C1-OH group, the relative position of the double bond also differs
between the canonical SO and the deoxySO [213]. While the former displays a trans-
unsaturation at A4-5, deoxySO has a cis double bond located at the A14-15 position (Fig. 5),
which might interfere with the packing of the hydrophobic core of the membrane. Thus, while
SO decreases the fluidity of the membranes and induce gel-fluid phase separation [93,105],
deoxySO might have the opposite effect. To date, no studies have been performed to elucidate
the physico-chemical properties of free DSB, nor their effects on membrane structure and
organization. Indirect evidence was obtained from studies performed with 1-deoxySL, which
showed that the lack of the C1-OH influences their ability to drive gel-fluid phase separation
[257]. The emerging importance of these DSB in pathophysiology demands for additional studies

that provide mechanistic details regarding their mode of action.
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Figure 5—Metabolism of DSB. (A) The reaction between palmitoyl-CoA and L-alanine is catalyzed
by SPT forming deoxySA that is acylated to deoxy(dh)Cer, which is further metabolized to
deoxyCer. The desaturation of deoxy(dh)Cer introduces a A14,15-cis double bond instead of the
canonical A4,5-trans double bond. The enzyme responsible for this reaction is still not known.
Due to the lack of the hydroxyl group in the position C1 they cannot form complex SLs nor be
degraded through the canonical pathway of sphingolipid metabolism. (B) Metabolites formed
downstream of deoxySO constitute three non-canonical metabolic branches. These metabolites
are part of a relatively slow cellular detoxification/elimination pathway mediated by CYP4F

family of enzymes.

8.2. Role of deoxysphingoid bases in disease

Even though these are relatively newly discovered lipid species, their implication in
pathology is extensively known, and accumulating evidence places these lipid species as
biomarkers and as important players in pathology development. This issue is thoroughly
discussed in a very recent review [244] and therefore will not be subject of analysis herein.
Moreover, the pathological effects of these lipids are at least in part caused by deoxySLs and not
only by free DSB. Nonetheless, it is important to highlight that mutations in SPT that cause
increased DSB formation [235,258] [240,241] were correlated with the severity of HSAN1 - an
autosomal dominant inherited axonal neuropathy which affects mainly the peripheral sensory
and to a variable extent also the motor and autonomic nerves - suggesting that plasma sphingoid

base profile could be used as predictor of the clinical symptoms [235].



Several clinical studies also showed that DSB are elevated in metabolic diseases like the
metabolic syndrome and diabetes [246,259]. However, this relation is not caused by SPT
mutations as seen for HSAN1 but most likely by a dysregulated carbohydrate and fatty acid
metabolism, two pathways that generate substrates for the de novo SL synthesis. It was also
recently found that deoxySLs are reliable biomarkers for type 2 diabetes mellitus and are
thought to be involved in its progression [260]. It should however be stressed that studies
showing increased levels of DSB in patients refer to both free and N-acylated DSB forms, since
lipidomic quantifications are performed after extraction and hydrolysis of the lipid extracts
[246,260,261]. Additionally, once within cells, DSBs are immediately converted to deoxySLs and
this metabolic conversion is responsible, at least in part, for DSB toxicity [262]. Therefore, it is
not yet known if the observed pathological features in diabetes and metabolic syndrome are
associated with elevated levels of DSB or of deoxySLs. SL metabolism provides an
interconnection between fatty and amino acid metabolism and thereby indirectly of
carbohydrate metabolism as well. Thus, a complex regulatory mechanism might exist which
dictates SPT activity in response to flux of metabolites within these pathways. Further studies
are needed to map these networks and as well to understand the role of free DSB in health and

disease.

9. Synthetic sphingoid bases
Even though this review is mostly dedicated to natural mammalian sphingoid bases, a
short reference should be made to two important synthetic LCB analogues, Enigmol and

Safingol, due to their recognized therapeutic importance in human disease.

9.1. Enigmol

Enigmol (2S,3S,55-2-amino-3,5-dihydroxyoctadecane) (Fig. 1, Structure 9) is a saturated
sphingoid base analogue presenting a hydroxyl group at the carbon 5. The relative position of
the OH-group prevents its phosphorylation by SphK [263—265]. Phosphorylated sphingoid bases
(such as S1P) are generally associated with cell growth, proliferation and having specific roles in
cancer development, Enigmol thus appears as a promising anti-cancer compound. Indeed,
Enigmol revealed to be toxic for different human cancer cell lines, and to suppress tumor growth
both in Min mouse models of colon and in prostate cancer cell xenografts in BALBc mice [265].
Enigmol cytotoxic effects are restricted to cancer cells: it decreased tumor size in mice models,
without affecting body size or having adverse effects on major organs [265]. The mechanisms

by which Enigmol exerts its activity are not yet clear, but enhanced caspase activity compared



to SO, and a reduced aberrant nuclear B-catenin staining were reported for HT29 cells [266].
Like SO, Enigmol could act through the regulation of protein kinases, that appears to be
deregulated in different types of cancer [267].

Recently, fluorinated analogs of Enigmol were developed (CF2-Enigmol), which showed
enhanced anti-tumor potency in vivo [268]. Using mouse xenograft models of prostate cancer,
it was shown that CF2-Enigmol has an enhanced antitumor activity compared to Enigmol,
without associated systemic toxicity, even when the compounds accumulated at higher levels in

plasma and tissues [268].

9.2. Safingol

Safingol (Fig.1, Structure 8) is the L-threo enantiomer of SA affecting PKCs and
phosphoinositide 3-kinase activity [269,270] but is primarily used as a SphK1 inhibitor [271]. Due
to the anti-apoptotic and pro-growth activity of S1P, and its identification as an oncogene, SphK
is a therapeutic target in many forms of cancer. In fact, Safingol already entered Phase | clinical
trials for solid tumors, in combination with doxorubicin [272] and cisplatin [273], and was shown
to significantly decrease S1P levels post treatment [273]. Safingol was shown to exert its effects
on solid tumors by triggering autophagy, inhibiting PKCe, phosphoinositide 3-kinase, mTOR and
MAPK, but without affecting the levels of other SLs, such as ceramide and dhCer [269].

In spite of its stereochemistry, Safingol was shown to be metabolized into dhCer, dhSM
and gangliosides in primary cerebellar neurons and in Swiss 3T3 fibroblasts, although to a lower
extent compared to the natural variant, D-erythro-SA [274]. Compared to D-erythro-SA, safingol
does not undergo catabolism and most of it is found in the cells in the N-acylated form. However,
in neuroblastoma B104 cells a significant amount of safingol is channeled towards the catabolic
pathway [274]. These differences may point to a tumor specific metabolism of or SLs, likely
associated with a different biological role and resistance mechanism. Further studies are thus
needed to better understand the role of sphingoid bases on tumor cell development,

progression and therapeutic resistance.

10. Concluding remarks

It is established beyond doubt that sphingoid bases and their phosphorylated derivatives
are important bioactive lipids. These molecules have been implicated in numerous cellular
processes, of which some are crucial in the determination of cell fate. Due to their bioactive role
in the cell, they can also be associated with numerous human diseases, and either used as

biomarkers for specific disorders or as potential therapeutic targets in various diseases. The



specific targeting of SL metabolism has been extensively explored to develop more efficient
therapeutic approaches. Even though therapeutics that target SL metabolism are already being
applied as primary lines of treatment (FTY720), there are several obstacles to overcome, that
require a deeper understanding on the mechanisms underlying the biological action of these
lipids. In particular, special attention must be paid while considering the opposing biological
outcomes of some sphingoid bases to avoid adverse effects. Thus, mechanistic studies that
provide further details on the biological and biochemical actions of LCBs will certainly contribute
to the identification of new therapeutic targets, and to the development of innovative
therapeutic strategies against several diseases. Likewise, characterization of the physico-
chemical properties of these SLs’ backbones and of their effects on the biophysical properties of
biological membranes will help to clarify the structural mechanisms underlying the biological
function of these bioactive compounds. Indeed, a growing body of evidence suggests that the
functional roles of bioactive lipids are not only linked to direct interactions with cellular targets
but are in part related to their effects on biological membranes. Therefore, an interdisciplinary
research approach that integrates physical, chemical and biological studies of these lipids is
required to advance our knowledge further, and to promote a faster route for clinical translation
of some of the already identified SL-associated therapeutics. The application of innovative
methodologies will also contribute significantly to move this field forward. For instance, the use
of click chemistry/caged lipids [67,74,275-277] might be very useful in the study of local lipid
metabolism and to unravel the role of signaling lipids that are only transiently produced in order
to induce specific cellular responses. The use of coherent anti-Stokes Raman scattering (CARS)
microscopy, can also be useful in addressing some aspects related to the subcellular localization
of endogenous lipids and how it is changed in pathological conditions. It has the advantage of
being a versatile technique with submicron three-dimensional spatial resolution and represents
a good alternative to the use of more invasive methodologies that use fluorescently tagged lipid
molecules [278,279]. Moreover, advances in mass spectrometry imaging might be a promising
strategy to address membrane lipid composition and lipid trafficking in intact cells [280-282].
Progress in super resolution imaging techniques and development of suitable fluorescent probes
to address membrane organization and properties will also be fundamental to gain further

insight into the mechanisms that link the structural and biological properties of sphingoid bases.
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