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Abstract: The neurotransmitter glutamate and its receptors have long been of interest to scientists 

involved in pharmaceutical research since dysfunction of the glutamatergic signalling pathway has 

been associated with the pathophysiology of several psychiatric and neurological disorders. The 

research on AMPAR positive allosteric modulators offers opportunities to modulate fast excitatory 

synaptic transmission and identify new potential therapeutic agents for a range of neurodiseases. The 

field of AMPAR modulators continues to be a dynamic area of drug discovery with a pronounced 

diversification of the chemotypes explored in recent years. This article reviews literature published in 

this area in the last 6 years, focusing on the new core templates, some derived from high-throughput 

screens, with an emphasis on structure-activity relationships, drug metabolism and pharmacokinetics 

proper-ties, and pharmacological profiles of these series. 

 

GLUTAMATE AND ITS IMPLICATION IN NEURO-PSYCHIATRIC AND NEUROLOGICAL DISORDERS  

In the mammalian central nervous system (CNS), the neurotransmitter glutamate, which is released 

from presynaptic terminals, mediates the greater part of excitatory signal-ling through binding to 

glutamatergic receptors widely distributed on neurons and glia [1]. Glutamate acts on two distinct 

classes of receptors: ionotropic (ion channels) and metabotropic (G-protein coupled receptors) [2]. 

There are three types of glutamate ionotropic receptors named according to the chemical entity 

originally discovered to selectively activate each channel: AMPA (α-amino-3-hydroxyl-5-methyl-4-

isoxazolepropionic acid), NMDA (N-methyl-D-aspartate) and kainite [3]. The pathophysiology of 

several psychiatric and neurological disorders has been associated with glutamate neurotransmission 

dysfunction, such as schizophrenia, Alzheimer’s disease, Parkinson’s disease and mood disorders [4-

6]. Consequently modulation of the glutamatergic signalling pathway attracted the interest of the 

pharmaceutical research community since it could potentially lead to the discovery of innovative 

treatments for a range of conditions. However the complex pharmacology of glutamatergic neuro-

transmission and the absence of highly selective chemical tools have restricted major advancement in 

this neurological area for many years. Recent developments in the understanding of this physiological 

pathway [7] and the identification of novel, rationally designed, AMPA receptor modulators with 

targeted pharmacokinetic profiles represent great promise and could lead to new therapies for a 

range of neurological and psychiatric conditions in the near future.  

Hypofunction of fast excitatory synaptic transmission has been linked to cognition deficit, a major 

symptom in Alzheimer’s disease and schizophrenic patients.[4] In the case of schizophrenia, it has 

been proposed that the disease pre-dominantly originates from NMDA receptors’ (NMDARs) 

glutamatergic synaptic underactivity, with non-selective NMDAR antagonists causing schizophrenia-

like symptoms in healthy volunteers [8,9]. In addition, post-mortem analysis of schizophrenic 

hippocampus has revealed a subnormal density of AMPA receptors (AMPARs) and an increased 

concentration of the glutamate receptor antagonist N-acetylaspartyl glutamate, emphasizing the link 



with hypo-glutamatergic neurotransmission [10]. Dynamic regulation of AMPARs in postsynaptic 

membranes and activation of the receptor are intimately associated with synaptic plasticity, a 

mechanism believed to underlie learning and memory [11,12]. Under normal physiological conditions, 

repetitive AMPAR stimulation induces postsynaptic neuronal mem-brane depolarization, provoking 

colocalized NMDARs activation, following release of the Mg2+ block. This enhances NMDAR Ca2+-

gating [13], which concomitantly with AM-PAR-mediated cation influx eventually results in synapses 

strengthening (synaptic plasticity) [12,14]. In turn, the NMDAR-increased synaptic signalling influ-

ences receptor trafficking and additional AMPARs are in-serted into the synapses.[15]  

STRUCTURE AND MODULATION OF AMPA RE-CEPTORS  

AMPARs are tetrameric complexes, organized as dimers of dimers.[16] Four different subunits (GluA1 

to GluA4), composed of about 900 amino acids and sharing 65 to 75% sequence homology, can 

combine to form homo- or heterodimers, which subsequently combine to form a tetramer.[17] 

Distribution of AMPAR subunits in the CNS has been demonstrated to be uneven between the various 

brain regions, with different cellular expression within each region.[18] Over the last decade, single 

electron microscopy and X-ray crystallography have enabled to develop a better understanding of the 

structure and assembly of the AMPAR subunits.[19] Recently, the combined use of X-ray crystal-

lography and cryogenic electron microscopy has enabled to obtain structural information for GluA2-

containing AMPAR heteromers and has revealed new insights into the dynamic arrangement of the 

extracellular region of the receptor.[20] Each subunit is composed of an extracellular domain, a 

transmembrane domain and an intracellular domain.[21] The extracellular domain comprises a large 

N-terminal region with binding sites for regulatory proteins, and a ligand binding domain (LBD) 

consisting of two discontinuous sub-domains, S1 and S2 arranged in a clamshell motif allowing 

glutamate binding. The transmembrane section is composed of three α -helices (TM1, TM3 and TM4) 

and a re-entrant hairpin loop (TM2), which constitutes part of the ion channel pore.[22] The 

intracellular section of each subunit displays the C-terminal domain, which possesses interaction sites 

for a range of accessory proteins, contributing to AMPARs trafficking and regulation of the receptor 

kinetics.[23–26] A diverse range of subunit assembly can lead to functional  

AMPARs. The composition of the channel in vivo is extremely complicated and influences receptor 

kinetics and glutamate binding. An extra layer of structural diversity arises from the presence of sites 

of post-translational modifications and the existence of splice isoforms, known as flip (i) (Ser775; 

UniProt ascension number P42262-2) and flop (o) (Asn775; UniProt ascension number P42262-

1).[27,28] The flip/flop variation, found in the S2 sub-domain of the LBD, controls the kinetics of 

channel closure and desensitization.[29,30] Incorporation of flip or flop isoforms in a tetrameric 

complex is influenced by transmembrane proteins [23].  

In view of the connection of glutamatergic neurotransmission dysfunction with diverse neurological 

and psychiatric disorders, generation of glutamate receptor ligands has been of interest and a range 

of different approaches investigated. In particular, according to the mechanism of synaptic plasticity 

and the causes of cognition deficit in diseases, such as schizophrenia, enhancement of AMPAR-

mediated synaptic transmission has been extensively explored.[31,32] Originally direct or partial 

AMPAR agonists were searched, but it quickly became clear that such compounds were associated 

with high risk of toxicity following over excitation of the receptor signalling.[33,34] This approach 

precluded the precise and refined spatial and temporal control, required for optimal cognitive 

functioning, and was overcome by the discovery of AMPAR positive allosteric modulators (PAMs), 

termed potentiators, which lack intrinsic activity in absence of glutamate. Nonetheless, when AMPARs 

are functionally activated via binding of the endogenous substrate, they enhance the agonistic effect 

by modulating the channel biophysical properties.[35] Potentiators enhance AMPAR response 



through two distinct effects on synaptic currents: inhibiting desensitization and/or slowing 

deactivation.[36] Unlike orthosteric agonists, PAMs maintain the magnitude and/or duration of 

channel opening during synaptic activity. However AMPAR potentiators can still cause excitotoxicity, 

resulting in motor coordination disruption and/or convulsion,[37,38] and therefore carefully 

determining pre-clinical therapeutic indexes of these molecules is critical for onward development. 

The majority of modulators described to date have limited subunit selectivity but excellent selectiv-

ity against the other ionotropic and metabotropic glutamate receptors. It has been hypothesized that 

some AMPAR sub-types might govern the ‘positive’ pharmacology of AMPAR PAMs whereas other 

subtypes might cause the undesired adverse events. Hence selectively targeting the ‘positive’ 

subtypes would prevent side-effects and offer an optimal therapeutic index. Unfortunately it is 

currently impossible to biologically test this assumption.  

After years of intense research, recent studies have established that AMPARs are macromolecular 

complexes with a large molecular diversity.[39] These result from the assembly of the GluA tetramer 

with auxiliary proteins including the transmembrane AMPAR regulatory proteins (TARPs), the 

cornichon homologs (CNIH) and the CKAMP44 protein.[40] Findings into the heteromultimeric nature 

of AMPARs indicate that the receptor functions beyond glutamate binding may be largely influence 

by non-GluA subunit constituents. In particular, members of the TARP family of proteins regulate 

AMPAR trafficking and pharmacology, and also control sensitivity to AMPAR potentiators. [41,42] 

TARPs have different regional expression across the CNS, hence providing the innovative and 

attractive opportunity to modulate AMPARs in specific brain regions to access potentiators with 

potential therapeutic advantage (Fig. 1). This would be achieved by identifying TARP-dependent 

AMPAR PAMs and a similar strategy has recently been successfully implemented by Lilly in their search 

for safer AMPAR antagonists for the treatment of epilepsy.[43] Positive emission tomography studies 

with a range of AMPAR modulators have indicated that different concentrations of potentiators are 

required to selectively activate the CNS regions associated with procognitive and undesired effects, 

suggesting a potential role of localized auxiliary proteins resulting in AMPAR complexes with different 

biophysical properties [44].  

The LBD of the channel has an opened bilobate structure which closes upon binding of glutamate, 

initiating the gating cascade.[45,46] According to X-ray cocrystal structures of positive modulators 

bound to the LBD of AMPAR, all potentiators bind at the S1S2 interface of the LBD, resulting in 

increased stability of the closed glutamate-bound dimer.[47] Several studies have demonstrated that 

the isolated LBD possesses similar pharmacological properties to the native membrane-bound 

AMPAR.[48] This has enabled to significant advance in the understanding of the biophysical and 

structural properties of the channel, allowing structure-based drug design (SBDD) of agonists and 

antagonists, but also the identification of binding sites for PAMs.[49] Irrespective of their mechanistic 

properties and mode of action, AMPAR potentiators have been shown to enhance glutamatergic 

synaptic activity in several in vitro experiments both on recombinant and native tissue 

preparation,[14,50] and improve cognition in preclinical animal models and in small but not all clinical 

trials.[51–55] In addition, AMPAR PAMs have been therapeutically beneficial to treat a range of 

neuropsychiatric and neurological conditions in animal models, such as anxiety, attention-deficit 

hyperactivity disorder (ADHD), Parkinson’s disease and depression.[56–60]  

CLINICAL STUDIES WITH AMPAR POTENTIA-TORS  

Successful medicinal chemistry programmes have delivered a number of clinical candidates that have 

entered clinical development. Encouragingly no major mechanism-related safety issues have been 

reported and some com-pounds have shown promising efficacy in early patient-based studies, 

however no compound has yet demonstrated sufficiently robust efficacy to merit large scale efficacy 



studies. Table 1 summarizes compounds that have entered clinical evaluation but have been 

terminated. 

Cortex pioneered early work in the area and reported positive clinical data on early compounds such 

as CX516, which demonstrated positive effects in studies with healthy volunteers[55] and as an 

adjunct therapy in patients with schizophrenia.[61,62] The early promise with CX516 did not continue 

as the compound failed to demonstrate efficacy in a number of later studies when tested in patients 

with mild cognitive impairment,[63] autism[64] or Alzheimer's Disease.[65] A subsequent compound 

CX717 (structure has not yet been revealed) also showed equivocal efficacy results, failing to 

demonstrate beneficial effects in healthy subjects[66] but demonstrating efficacy in ADHD 

patients.[67] Cortex failed to obtain funding to follow up on the positive results seen in patients with 

ADHD, however they are still developing CX717 for respiratory depression (Table 2). Cortex have also 

taken another compound CX691 into the clinic for psychiatric indications either alone or following 

licensing deals with other companies, but the com-pound failed to demonstrate beneficial effects.[68–

70] Organon, Lilly and GlaxoSmithKline (GSK) have also reported negative data.[63,71–74] 

Understanding the factors which have contributed to the positive results seen with some com-pounds 

and the failures with others has been and will be key in the design of the next generation of AMPA 

modulators.  

A number of AMPAR modulators remain under clinical investigation (Table 2). Cortex is again a leading 

player in the field, and have changed their therapeutic focus from psychiatric indications to respiratory 

conditions and consequently have changed the company name to RespireRx. They are currently 

progressing three compounds for sleep apnoea and drug induced respiratory depression.[75] The only 

company currently known to be active in the psychiatry area is Pfizer with a compound PF-4958242 

11 in Phase I studies. A total of eleven Phase I studies have been con-ducted over an extended period, 

[76] many of these studies focus on pharmacokinetic evaluation of investigation of drug-drug 

interaction potential, and suggest that there are potentially a number of safety concerns with the 

compound. The results of one study with PF-04958242 have been published, where it showed 

beneficial effects in treating age related hearing loss.[77]  

CHEMOTYPES OF AMPAR POSITIVE ALLOSTERIC MODULATORS  

A number of excellent comprehensive reviews, describing the historical chemotypes originally 

explored as selective AMPAR positive modulators, have been published in recent years.[78–80] Briefly, 

three major classes have been explored: the benzamides, the thiadiazines and the phenethyl 

sulfonamides. Chronologically, the benzamide series, derived from the nootropic agent aniracetam 1, 

was first looked into and developed by Cortex into derivatives such as CX516 2, CX691 3 and ORG26576 

4, which were all tested in the clinic. Then the thiadiazine series, originating from the diuretic agent 

cyclothiazide 5, was also extensively investigated, leading to Servier’s clinical candidate S-18986 6. 

Finally, a class of phenethyl sulfonamides, discovered by Lilly, generated significant interest with a 

number of subsequent patent applications from several pharmaceutical companies also covering 

sulfonamide derived structures. This class has yielded candidate compounds including LY451395 7 and 

LY450108 8 from Lilly, GSK729327 9 from GSK and PF-04958242 11 from Pfizer. Over time the 

modulators developed have become increasingly more potent for the AM-PAR, with the original 

benzamides being weaker than the phenethylsulfonamides. [78]   

As highlighted in our 2015 review of the AMPAR patent literature,[81] a number of novel chemotypes 

have recently been discovered, some of which are suggested to have a different mode of action and 

potentially a different clinical profile. This article will concentrate on new developments reported in 

the scientific literature over the last six years and not fully covered by previous reviews. We will mainly 



focus on the new core templates, some derived from high throughput screens (HTS), with an emphasis 

on structure activity relationships (SARs), drug metabolism and pharmacokinetics (DMPK) properties 

and pharmacological profiles of these series. Whilst only GSK and Pfizer have described in detail the 

discovery and profiles of development candidates (9, 10 and 11), [82, 83, 44] other organisations have 

published descriptions of a range of different chemotypes for which no development has been 

reported. It is also interesting to note that many recent scientific articles and patents in this area have 

been published by academic groups with a reduced number coming from industrial laboratories, this 

perhaps has been influenced by the decision of many companies to withdraw from the neuroscience 

area, and also in some cases the move of experts in this area from industry to the academic sector.  

TWO NOVEL TEMPLATES FROM GSK  

Between 2005 and 2010, GSK have filed a large number of patent applications for novel AMPAR 

modulators, indicating a strong interest of the company in this area of neuro-science [84–95]. In the 

period covered by this review, they published three scientific articles, each focusing on a different 

chemotype [82, 83, 96]. 

Table 1. Compounds which entered clinical evaluation but for which progression has been 

terminated 

 

 

 



Table 2. Compounds currently under active clinical investigation 

 

 

Fig. (1). Representative chemotypes of AMPAR positive allosteric modulators. 

In a short communication,[96] they reported the discovery of a series of N-substituted pyrrolidines 

and tetrahydrofurans, related to the phenethyl sulfonamide modulators de-scribed by Lilly. We can 

assume that this exploratory work, based on existing literature, was conducted when the company 

first started to develop an interest in this area and can be considered as GSK’s initial attempt to identify 

AMPAR positive modulators. The original Lilly phenethyl sulfonamide series generally suffered from 

poor physicochemical properties, such as low solubility, high polar surface area and high lipophilicity, 

which might have contributed to the failure of the compounds which progressed to the clinic 

(LY451395 7 and LY450108 8). By introducing heteroatoms on the phenethyl moiety, using 3,4-

disubstituted pyrrolidines (Fig. 2) and 3,4-disubstituted tetrahydrofurans (Fig. 3) link- 



ers, and exploring replacement for the N-phenyl methanesulfonamide motif, the GSK team was 

attempting to modulate these undesired properties. Interestingly the reported pyrrolidine linker 

derivatives have relative trans stereochemistry whereas the tetrahydrofuran (THF) linker derivatives 

have relative cis stereochemistry. This renders direct comparisons between the two sub-series 

challenging and it is assumed that direct matched-pairs have not been prepared, since according to 

the authors these stereochemistry were only selected because of their synthetic tractability. The 

compounds were screened for their ability to potentiate glutamate-induced calcium influx against 

recombinant hGluA2i receptors in a Fluorometric Imaging Plate Reader (FLIPR) based assay, with the 

maximal response of cyclothiazide defined as 100%.  

Rigidification of the linker and introduction of a heteroatom in this part of the template was well 

tolerated since the first derivative prepared 12 (R = Me) induced strong potentiation of the hGluA2i 

recombinant receptor (EC50 = 0.3 µM, Asym Max = 124%). Different substituents on the pyrrolidine 

nitrogen were investigated (12 and 13, R = Me, Et,  

iPr, Ph) and showed that N-methylated pyrrolidines afforded the best activities with bulkier groups 

leading to decreased potentiation. Reduction of the polar surface area was examined by replacing the 

meta methylsulfonamide moiety by a para nitrile in 13 or various meta substituents in 14, such as a 

methylsulfone, an acetamide, a methylketone or a trifluoromethyl group. All of these modifications 

resulted in at least a 10-fold loss in potency. Changing the phenyl ring for a pyridyl 15 (R = R’ = H) or a 

substituted pyridyl 15 (R = H, R’ = F or R = F, R’ = H) produced compounds with higher EC50s than 12 

(R = Me), in the micromolar range (2.5 to 5 µM). Thiophenes were also tried as potential phenyl 

replacement but afforded weaker compounds (16, R = 2-thiophene, EC50 = 20 µM; 16, R = 3-

thiophene, EC50 = 3.2 µM).  

A major downside of the majority of these pyrrolidine-linked isopropylsulfonamides was an undesired 

off-target inhibition of the hERG cardiac channel. Despite a reduction in lipophilicity, these molecules 

contain a basic centre, a common feature in compounds with affinity for hERG, and 

 

Fig. (2). Representative structures of the pyrrolidine-linked isopropylsulfonamide derivatives. 

some derivatives were very potent hERG inhibitors, such as 12 (R = Ph, hERG IC50 = 1.3 µM) or 15 (R 

= F, R’ = H, hERG IC50 = 1.0 µM). An increase in solubility was success-fully achieved, with compound 

12 (R = Me) and 13 (R = Me) achieving levels of > 9 mg/mL and > 2.7 mg/mL, respectively. Intrinsic 

clearance was high in both rat and human liver microsomes (RLM and HLM) for N-methylated 

derivatives, with N-dealkylation being identified as a major route of metabolism. Compounds with 

larger N-substituents generally achieved good microsomal stability but had similar or higher affinity 

for hERG relative to AMPAR. It was hypothesized that substituting the pyrrolidine ring by a THF could 



mitigate the hERG and metabolic liabilities of this series and afford selective compounds with a better 

pharmacokinetic profile. 

 

Fig. (3). Representative structures of the tetrahydrofuran-linked isopropylsulfonamide derivatives. 

All the THF analogues reported (7 in total) showed excellent potentiation of the AMPAR (EC50 < 0.5 

µM; Asym Max > 112%) and were significantly more active than the N-methyl pyrrolidine derivatives. 

This could be explained by the reduced steric bulk of the THF and also possibly by the different relative 

stereochemistry. The calculated lipophilicity and polar surface area of the THF derivatives was lower 

than that of the pyrrolidine analogues. With the exception of 17 (R = CN, R’ = H) and 18 (R = F, R’ = H), 

all the molecules in this subseries had more than 100-fold selectivity for hGluA2i over hERG. 

Unfortunately only a limited set of in vitro DMPK data was reported for these THF modulators and it 

is impossible to know if these molecules successfully achieved the targeted properties discussed 

earlier. Indeed, the intrinsic clearance of only two analogues 18 (R = H, R’ = F) and 19 (Het = 2-(5-F)-

pyridyl) was disclosed and both com-pounds had high turnover in RLM. In addition, no solubility or 

CNS permeability data are given for the THF derivatives.  

The limited success in identifying AMPAR modulators with desirable physicochemical and 

pharmacokinetic proper-ties starting from a literature chemotype probably prompted GSK to identify 

their own chemical hits through screening of in-house compound libraries. Hence in a second 

publication from 2010, scientists at GSK reported the discovery and optimization of indane clinical 

candidate 9. [82] From this publication, it appears that the indane series was the first novel chemical 

core extensively explored by GSK in their search for AMPAR positive modulators. Interestingly in 

addition to a high potency, scientists at GSK were also targeting a specific pharmacokinetic profile, 

which would deliver high unbound compound concentrations. In this respect, the article not only 

presents the SAR around the indane core but also detailed in vitro and in vivo DMPK data, which led 

to the selection of the clinical candidate.  

The exploratory work in this series started with the identification of lead amino indane 20, a rigid 

analogue of the phenethyl series, which comprises the two sulfonamide moieties of Lilly’s clinical 

candidate LY451395 7. Com-pound 20 induced significant potentiation of the AMPAR-mediated 

response against recombinant hGluA2i receptors in a FLIPR-based fluorescent-indicator dye assay 

(pEC50 = 6.1, Asym Max = 123%). Owing to its encouraging calculated physicochemical properties (see 

Table 3), lead 20 was pro-filed in an array of in vitro assays, and found to have accept-able rat protein 

plasma binding (95.9%) and good selectivity for AMPAR over closely related ion channels. Additionally, 

it did not cause CYP450 inhibition at low concentrations but was identified as a moderate P-gp 



substrate with a moderate efflux ratio (ER = 5.8) in the permeability MDCK-MDR1 assay. This was 

assumed to be caused by the high polar sur-face area (PSA) (92 Å²) and resulted in low CNS penetration 

in a rat oral pharmacokinetic study (Table 1, brain:blood ratio = 0.1) despite good systemic exposure. 

Table 3. Physicochemical and DMPK properties of lead compound 20 

 

With the preliminary SAR indicating that modulation of the isopropylsulfonamide moiety was not 

tolerated, attention turned to modification of the phenyl ring. Deletion of the meta substituent and 

introduction of ortho or para groups led to a significant reduction in potency. A broad range of 

alternative meta substituents were investigated but none retained the activity of compound 20, with 

the exception of sulfonamide derivatives (secondary and tertiary), but which also maintained 

undesirable high PSA. In vivo exposure of some of these potent analogues was determined in rat 

pharmacokinetic studies but similarly to 20 all suffered from poor CNS penetration. As a result, a 

number of aromatic rings with significantly lower polar surface area was explored, with the objective 

to reduce affinity for P-gp while maintaining high free drug concentration and good potency. This led 

to the identification of 3-pyridyl and 2-pyridyl indane analogues (21, R = H and 22, R = H). Although, 

unsubstituted 3-pyridyl analogue 21 (R = H) had lower potency in the FLIPR assay (pEC50 = 4.8, Asym 

Max = 101%), inhibited CYP isoform 1A2 (IC50 = 0.6 µM) and was moderately stable in rat microsomes 

(Cli = 2.1 mL/min/g), it possessed significantly improved physicochemical properties, such as lower 

PSA (59 Å²), molecular weight (316 g/mol) and clogP (2.3). These pyridyl derivatives were deemed 

interesting starting points for the identification of compounds with improved CNS penetration and a 

series of close analogues was prepared. To avoid an increase of the polar surface area (PSA < 60 Å²), 

pyridyl substituents were limited to alkyl and halo groups. 

 

Fig. (4). Chemical structure of the racemate pyridyl indane derivatives.  

In the 3-pyridyl indane series 21, introduction of a single substituent at any position of the pyridyl ring 

prevented CYP450 inhibition, but only para-substitution provided stronger potentiators (21, R = 6-F, 

pEC50 = 5.3, Asym Max = 106%; 21, R = 6-Me, pEC50 = 5.5, Asym Max = 107%). Intrinsic clearance 

across this set of substituted 3-pyridyl analogues was variable, all compounds had noticeably higher 

human microsomal turnover than the unsubstituted pyridyl 21 (R = H) and the fluoro analogues were 

generally more stable than the methyl substituted pyridines. The same pattern in terms of potency 

(22, R = 5-F, pEC50 = 5.2, Asym Max = 114%; 22, R = 5-Me, pEC50 = 5.5, Asym Max = 90%), CYP450 



inhibition and microsomal stability was observed in the 2-pyridyl indane series 22. To validate the 

initial hypothesis that a reduction in PSA would increase CNS exposure, a selection of compounds from 

these series (21 and 22) with lower PSA than 20 were assessed in rat in vivo pharmacokinetic studies 

and found to have significantly improved brain to blood ratios (21, R = 2-F, brain:blood ratio = 1.5; 22, 

R = 6-Me, brain:blood ratio = 1.4) (Fig. 4). 

 

Fig. (5). Structure of the three enantiopure indanes extensively profiled.  

The exploratory work described above was conducted using racemic mixtures of indanes, comprising 

R and S enantiomers. Testing of single enantiomers indicated that the S enantiomers were significantly 

more potent, hence further exploration and characterisation then focussed on derivatives with the S 

stereochemistry. Three enantiomerically pure modulators (9, 23 and 24) were profiled in detail. 

Indanes 9, 23 and 24 all produced good potentiation of AMPAR in the FLIPR assay, did not inhibit the 

CYP450 isoforms tested and retained the good microsomal clearance of the racemic mixtures, with 

methyl derivative 23 having higher intrinsic turn over than fluoro derivatives 9 and 24. In a whole-cell 

patch clamp electrophysiology assay, these compounds also showed clear potentiation of AMPAR-

mediated currents over a range of concentrations in HEK293 cells expressing hGluA2i homomeric 

receptors. Furthermore, all three derivatives (9, 23 and 24) had excellent selectivity against a wide 

range of ion channels, enzymes and GPCRs. When tested in two in vivo behavioural cognition models, 

compounds 9 and 24 had a significant effect. Administration of both com-pounds at 0.3 mg/kg (PO) 

improved recognition memory of male rats, in the 24 h delay-induced deficit in a novel object 

recognition (NOR) experiment. [97] In the passive avoidance task assay,[98] modulator 9 attenuated 

the scopolamine-induced amnesic effect when administered at 3 and 10 mg/kg (PO), while compound 

24 was active at 1 and 3 mg/kg (PO). Based on the efficacy and DMPK data, only derivatives 9 and 24 

were progressed to safety and tolerability studies. From these studies (no direct comparison is given), 

9 was selected as the development compound (Fig. 5).  

The binding mode of the indane series was determined from a 1.8 Å resolution crystal structure of the 

functional hGluA2i S1S2 ligand binding domain in complex with modulator 9 (PDB code 2xhd; Fig. 6). 

The compound was found to bind in an analogous manner to the phenethyl sulfonamides described 

by Lilly, with the isopropylsulfonamide moiety pointing into one of the two deep hydrophobic pockets 

present at the dimer interface and the sulfonamide NH making a hydrogen bond with the backbone 

carbonyl of Pro515.  

Clinical candidate 9 had low equilibrium solubility (≤ 0.1 mg/mL) across the range of pH (2 to 10) and 
physiological fluids (water, simulated gastric fluid, and simulated intestinal fluid) tested, but high 

permeability (Papp (+inh) = 688 nm/s; ER = 1.1), which delivered attractive pharmacokinetic profiles. 

Indeed, 9 had good oral bioavailability (51 to 61%) and low blood clearance (3 to 11% liver blood flow) 



in the three preclinical species tested (rat, dog and monkey). In addition to these suitable 

developability properties, compound 9 had excellent solid and solution stability under a range of 

conditions, did not induce time-dependent inhibition of CYP450 and no formation of glutathione 

conjugate was detected, eliminating the potential liability associated with the presence of the α-

fluoropyridine. AMPAR modulator 9 induced weak PXR activation in both rat and human, and as such 

only had a low propensity for drug-drug interactions through induction of CYP3A4. The in vitro plasma 

protein binding of the compound was measured in five species (mouse, rat, dog, monkey and human), 

found to be moderate (from 79.5 to 90.8%) with low interspecies variability, and was fitting with the 

targeted pharmacokinetic profile sought by the GSK group.  

A metabolite identification study was conducted using in vitro rat, dog, monkey and human 

microsomes. Five metabolites were observed at low abundance relative to the parent drug, and all 

metabolites detected in HLM were also present in the other microsomal species. Three metabolites 

resulted from hydroxylation of the aliphatic part of the indane ring and one of these was a major 

metabolite across all species.  

Oxidation of the isopropyl moiety was also detected but rep-resented a minor route. Aryl 

hydroxylation was the final metabolic route identified and was only significant in rat microsomes. 

Furthermore, development compound 9 was not genotoxic in the selected in vitro genetic toxicity 

screens and did not exhibit any cardiovascular risk in an in vitro hERG assay or following single oral 

dosing up to 2.5 mg/kg in cynomolgus monkeys. Finally, clinical candidate 9 had no observed adverse 

effect levels and acceptable safety margins in preclinical safety screening up to 6 weeks. All of these 

results prompted evaluation of 9 in the clinic.  

 

Fig. (6). X-ray crystal structure of clinical candidate 9 in complex with hGluA2i S1S2 LBD (PDB code 

2xhd, 1.8 Å resolution)* 

* All the X- Ray images presented in this review were generated using Maestro, version 10.5, 

Schrödinger, LLC, New York, NY, 2016 



An initial phase I study was conducted in healthy volunteers to explore the safety and tolerability of 

the candidate, as well as its pharmacokinetics in human. Two dosing regimens were investigated: 

single doses (0.25 to 6 mg) and multipledose of 0.1 mg administered daily for 28 days. In both cases, 

indane 9 was rapidly absorbed (Cmax reached between 0.5 and 3 h post-administration) and had a 

very long half-life (107-168 h). This resulted from a very low apparent oral clearance and a large 

apparent volume of distribution, in excess of total body water. This pharmacokinetic profile was not 

predicted from preclinical species and prevented further clinical evaluation of the compound. 

Importantly, both dosing regimens were well tolerated with no safety issues raised or withdrawal 

caused by adverse events (Fig. 8).  

In a third publication from 2011, GSK report the identification of a novel chemical series originating 

from a high-throughput screen and optimized using ligand-bound X-ray crystal structures.[83] The 

optimization work in that series led to the identification of GSK second clinical candidate, compound 

10. The HTS was run using a FLIPR-based fluorescent indicator dye protocol in HEK cells expressing re-

combinant hGluA2i receptors, indicating the ability of the screened molecules to potentiate 

glutamate-induced calcium influx. Despite a moderate AMPAR potentiation (pEC50 = 4.6, Asym Max 

= 94%) in the FLIPR assay relative to other hits, compound 25 was selected as an attractive starting 

point from the screen output because of its superior preliminary developability profile. Indeed, hit 25 

had good physicochemical properties (MWt =  337 g/mol and logD = 3.0) and performed well in a 

battery of in vitro as-says. The molecule had moderate protein binding (plasma and brain), was devoid 

of significant CYP450 inhibitory activity, and had good selectivity against a range of ion channels, 

receptors and enzymes. Low kinetic solubility and high metabolic turnover in microsomes (rat Cli = 

12.7 mL/min/g; human Cli = 3.5 mL/min/g) were identified as the major shortcomings of 25 and 

resulted in low systemic exposure (AUC0-t = 78 ng·h/mL) when the compound was tested in a rat 

pharmacokinetic assay. However in that assay hit 25 had good CNS exposure (brain:blood AUC0-t ratio 

= 1.3), suggesting high permeability. 

In order to rapidly identify a development candidate, the screening cascade used in the optimization 

work not only relied on in vitro functional efficacy screens (FLIPR assay and electrophysiology), but 

also extensively on physicochemical properties calculation. Unusually for a membrane-bound ion 

channel target, X-ray crystallography was also routinely employed enabling SBDD and a focused 

exploration of chemical space to quickly access highly potent modulators and identify a clinical 

candidate. The crystal structure of tetrahydroindazole 25 in complex with the rat GluA2i S1S2 LBD and 

glutamate was determined at 1.55 Å (PDB code 2xx8; Fig. 7), and indicated that the phenyl ring sits at 

the S1-S2 interface on the 2-fold axis, similarly to other AMPAR PAMs. The trifluoromethyl group 

occupies one end of the inverted U shaped binding pocket and has displaced a cluster of four water 

molecules, while the carbonyl of the amide points down into the symmetrical end of the inverted U, 

making a hydrogen bond with one of the four water molecules. The aliphatic part of the 

tetrahydroindazole heterocycle makes contact with solvent, suggesting that modification of this ring 

might not be tolerated. Several serine residues, which can interact with small-molecule modulators 

via hydrogen bonding, are present in the binding pocket but were not exploited by hit 25. The 

dimethylamide group was identified as amenable for modification and as a handle to potentially reach 

Ser750, Ser775 or the water molecules as hydro-gen bonding partners.  

The hit optimization campaign focussed on improvement of potency, solubility and also metabolic 

turnover. The high metabolic clearance of compound 25 was assumed to be caused by the 

dimethylamide moiety and other acyclic am-ides (26, R = CH2CH2Ph or R = Bu) where one of the 

methyl groups was replaced by a larger substituent were prepared. These derivatives retained similar 



potency to 25 but had reduced solubility and similar or higher microsomal instability. 

 

Fig. (7). Chemical structure of hit 25 and its X-Ray crystal structure with the hGLuA2i S1S2 LBD (PDB 

code 2xx8, 1.55 Å resolution). 

 

Fig. (8). Chemical structures of the tetrahydroindazole derivatives investigated during the lead 

optimization program 

Attention then turned to cyclic amides (10 and 27 (X = CH2 or O)), which were predicted to fit optimally 

in the binding pocket according to the crystal structure of 25 (Fig. 7) and were expected to have 

reduced metabolic instability. Inter-estingly in the FLIPR assay pyrrolidine derivative 10 was more 

potent than 25 (pEC50 = 5.0, Asym Max = 123%), while six-membered ring analogues 27 were less 

active (X = CH2, pEC50 < 4, Asym Max = 100%; X = O, pEC50 < 4.7, Asym Max = 81%). Despite its 

moderate po-tency, morpholine derivative 27 (X = O) had an attractive profile since it retained similar 

solubility to 25, did not cause CYP450 inhibition and had significantly improved metabolic stability in 

both RLM and HLM (rat Cli < 0.5 mL/min/g; human Cli = 1.3 mL/min/g). Encouragingly, compound 10 

was also more stable than 25 when tested in microsomes (rat Cli = 2.4 mL/min/g; human Cli < 0.5 

mL/min/g). Derivatives 10 and 27 (X = O) had good physicochemical properties (MWt < 380 g/mol and 



logD < 3.1), high permeability in an artificial membrane permeability assay (10, 415 nm/s; 27 (X = O), 

455 nm/s) and moderate to high rat plasma and brain protein binding. Owing to their favourable in 

vitro pro-file, compound 10 and 27 (X = O) were progressed to a rat in vivo pharmacokinetic study and 

found to have good systemic exposure (10, AUC0-t = 472 ng·h/mL; 27 (X =  O), AUC0-t = 1984 ng·h/mL) 

with reduced blood clearance rela-tive to the HTS hit. Both compounds also retained high CNS 

penetration (brain:blood AUC0-t ratio > 1) comparable to 25. Interestingly a cocrystal structure of 

amide 10 (PDB code 2xx7; Fig. 9) showed a similar binding mode to compound 25, with an unpredicted 

reorientation of the amide carbonyl and differences in the network of water molecules. The carbonyl 

group of 10 is making a hydrogen bond with a water molecule, sitting at the top of the benzene ring, 

and which is itself making a second hydrogen bond with Ser518. In the meantime, the pyrrolidine ring 

has displaced one of the four water molecules found at the end of the inverted U shaped binding 

pocket.  

Replacement of the amide moiety with a sulfonamide, a ketone or a sulfone was also investigated but 

afforded com pounds with lower or at best similar potency to hit 25. Kinetic solubility of these 

derivatives was also significantly low. Owing to the difficulties in balancing high potency and DMPK 

properties, introduction of a linker atom between the phenyl and the amide group was explored and 

this modification was suggested to be tolerated by docking studies. Such molecules were expected to 

have an increased flexibility that would lead to a superior solubility. The homologated analogue of 25, 

compound 28 (R = R’ = Me), induced a substantial increase in calcium influx in the FLIPR assay (pEC50 

= 5.7, Asym Max = 107%) but retained high microsomal turnover. The SAR in this series appeared to 

be quite narrow since a close acyclic homologated amide 28 (R = cPen, R’ = H) had reduced efficacy 

and very high microsomal clearance (rat and human Cli > 45 mL/min/g). The successful improvement 

in metabolic stability with cyclic amides 10 and 27 (X = O), prompted the GSK team to look at similar 

structural transformation in the homologated series (29 and 30). Derivative 29 (R = R’ = H) maintained 

the improved potency of 28 (R = R’ = Me) (pEC50 = 5.5, Asym Max = 82%) but also the undesired high 

microsomal instability (rat Cli = 14.6 mL/min/g; human Cli = 24.9 mL/ min/g). When both compounds 

were tested in a rat in vivo pharmacokinetic experiment, moderate systemic exposure and high blood 

clearance were observed, emphasizing the need to identify compounds with much improved 

metabolic stability. The initial attempt to enhance metabolic stability focussed on blocking the 

benzylic position of 29 (R = R’ = H), a likely site of metabolism, by introduction of small alkyl and 

fluorine groups. Monomethyl, cyclopropyl, mono and bisfluorinated analogues 29 were prepared, but 

all gave reduced potency relative to methylene benzylic modulator 29 (R = R’ = H) and retained high 

metabolic turnover. The methylene spacer not only created a potential site of metabolism but also 

increased the electron density of the phenyl ring, making it more prone to oxidation. Lowering the 

aromatic electron density by introduction of substituents was considered but had to be limited to 

fluorine atoms since the crystal structure of 29 (R = R’ = H) (PDB code 2xxh; Fig. 10) indicated that the 

benzene ring was in a narrow channel and that large substituents would not be tolerated. 

Fluorophenyl analogue 30 was synthesized and had superior potency to 29 (R = R’ = H) (pEC50 = 5.9, 

Asym Max = 79%), slightly better human microsomal stability but significantly reduced solubility 

(Fig.8). 

The lack of success in identifying homologated amides with a favourable in vitro DMPK profile 

prompted scientists at GSK to consider reversed amides with an embedded benzylamine core motif 

(31 and 32). Tertiary 31 (R = R’ = Me) and secondary 32 (R = H, R’ = Et and R = H, R’ = Me) acyclic amides 

were prepared and found to be highly potent (pEC50 > 5.6), but retained high to moderate intrinsic 

clearance in both RLM and HLM (3.3 < Cli < 22.4 mL/min/g). With the previous success of cyclic amides 

10 and 27 (X = O) to yield compounds with reduced turnover, pyrrolidinone 32 (R = H) was synthesised 

and induced excellent potentiation of the AMPA ion channel (pEC50 = 6.0, Asym Max = 132%). Despite 



a similar moderate rat microsomal clearance to 10 (Cli = 2.4 mL/min/g), modulator 32 (R = H) had 

lower systemic exposure (AUC0-t = 231 ng·h/mL) and notably larger estimated blood clearance when 

tested in rats in vivo. Blocking a potential site of metabolism by introduction of a fluorine on the phenyl 

ring in 32 (R = F) success-fully afforded a potent compound (pEC50 = 6.0, Asym Max = 112%) with 

slightly higher intrinsic stability in microsomes (rat Cli = 2.0 mL/min/g; human Cli = 2.9 mL/min/g). 

However this did not translate to a remarkably superior in vivo pharmacokinetic profile and compound 

32 (R = F) did not achieve the blood and brain levels observed with 10. The majority of the reversed 

amides retained some undesired CYP450 inhibition and solubility in this series was variable with the 

cyclic derivatives being the most soluble. Replacement of the amide moiety by sulfonamides, such as 

in 33 (R = H or Me, R’ = Me or cPr or iPr) or in 34, produced active compounds, although moderately 

less potent than the amide analogues, but lacking any CYP450 inhibitory activity. These compounds 

also successfully achieved moderate to high microsomal stability in both rat and human (Cli < 2.5 

mL/min/g) but were unfortunately for the vast majority too poorly soluble to be tested in vivo. 

 

Fig. (9). X-Ray crystal structure of pyrrolidine amide 10 in complex with the hGLuA2i S1S2 LBD (PDB 

code 2xx7, 2.2 Å resolution). 



 

Fig. (10). X-Ray crystal structure of homologated amide 29 with the hGLuA2i S1S2 LBD (PDB code 2xxh, 

1.5 Å resolution). 

 

Fig. (11). Indazole derivatives containing a heteroatom in the saturated ring.  

Having failed to identify compounds with low in vitro and in vivo turnover using a range of strategies, 

a selection of compounds was progressed to an in vitro metabolite identification study to develop a 

better understanding of the metabolic liabilities of the series. Interestingly the saturated part of the 

tetrahydroindazole was detected as a major site of metabolism and stabilization of this heterocycle 

was subsequently investigated. Introduction of heteroatoms (oxygen or nitrogen) in the aliphatic part 

of the tetrahydroindazole moiety was explored (Fig. 11) and successfully delivered active compounds 

with much improved in vitro properties. Overall, modulators 35 to 39 had lower intrinsic clearance in 

rat and human microsomes, higher solubility, lower logD, higher free fraction in both plasma and 



brain, and did not inhibit CYP450 enzymes. This resulted in high oral exposure, with low blood 

clearance and good CNS penetration, when the compounds were tested in rat pharmacokinetic 

experiments. These molecules alongside the ones which previously gave the best exposures when 

profiled in vivo (AUC0-t > 400 ng·h/mL) were tested in electrophysiology, selectivity, developability 

and early toxicology screens. From the results of these assays (data not disclosed), a set of five 

molecules (10, 27 (X = O), 33 (R = H, R’ = Me), 35 and 37), with excellent wider selectivity and clear 

potentiation of AMPAR-mediated currents in patch clamp assays, were identified as potential 

development candidates.  

As mentioned earlier, AMPAR positive modulators have a tendency to induce convulsion, a recognized 

sideeffect of this class of drugs.[37] The maximum electroshock seizure threshold (MEST) assay 

enables to identify compounds which reduce seizure threshold and possess an undesirable 

proconvulsant activity.[99] The five selected compounds were profiled in MEST experiments and 

found to be devoid of any proconvulsant adverse effect. With the exception of compound 33 (R = H, 

R’ = Me), all the modulators were clean in preliminary genotoxic screens and were subsequently tested 

in in vivo cognition models. In the passive avoidance task model,[98] only modulators 10, 35 and 37 

attenuated the scopolamine induced amnesic deficit while modulator 27 (X = O) showed no effect. 

The three active molecules were then assessed in the NOR experiment,[97] a second in vivo 

behavioural model to evaluate cognition. In this model, only compound 10 showed a significant pro-

cognitive effect when administered at doses ranging from 0.1 to 1 mg/kg (PO). Hence 

tetrahydroindazole derivative 10, which was identified early in the program, was selected as the 

preclinical candidate and evaluated further in a battery of in vitro and in vivo assays. 

Similarly to hit 25, development candidate 10 exhibited low solubility in water, simulated gastric fluid 

and fasted simulated intestinal fluid. Nonetheless the compound had excellent solution stability in all 

media tested and also high solid stability over time. In addition, compound 10 did not induce time-

dependent inhibition of CYP450 isoforms 2D6 and 3A4, and did not inhibit hERG currents at 10 µM. 

Intrinsic turnover of the molecule was studied in both microsomes and hepatocytes across five 

different species: rat, dog, minipig, monkey and human. Microsomal and hepatocyte clearances were 

correlating well and highlighted interspecies differences, with low to moderate instability in rat, dog 

and human, and high turnover in minipig and monkey. In vivo pharmacokinetic profiling of modulator 

10 in four species (rat, dog minipig and monkey) indicated a good tissue distribution, with a volume 

of distribution at steady state in excess of total body water, a rapid oral absorption (0.5 h to 1 h) and 

variable blood clearance across species (moderate in rat and high in the others). This resulted in short 

half-lives (0.5 to 1.6 h) and moderate to low oral bioavailability (2 to 54%). The general good 

agreement between in vitro and in vivo clearances suggested a likely high systemic exposure in 

humans. In single and repeat dose oral toxicity studies of up to four weeks in rats and dogs, the clinical 

candidate exhibited a safe profile, giving a large therapeutic window. Surprisingly, AMPAR PAM 10 

never entered clinical evaluation and GSK did not report or patent further exploratory work in the 

trifluoromethylpyrazole series. 

HTS AND HYBRIDIZATION STRATEGIES BY PFIZER  

Pfizer is another pharmaceutical group which has ex-pressed a strong interest in AMPAR modulation 

and has filed 4 patent applications between 2008 and 2010.[100–103] The company has published the 

most recent scientific literature in the area, with three journal articles since 2013,[44,104,105] and is 

probably the last pharmaceutical group to have joined the race to discover and commercialize an 

AMPAR PAM. In these recent publications, Pfizer describes the discovery and optimization of two 

chemical series, one of which has led to the discovery of clinical candidate PF-04958242,[44] believed 

to be the only AMPAR potentiator still actively evaluated in clinical trials for neuro-logical disorders. 



The majority of AMPAR modulators described in the literature were identified and characterized in 

vitro using recombinant systems, which do not reproduce the structural complexity of AMPARs found 

in vivo (see introduction) and possess a risk that data generated using homotetrameric receptors will 

not translate reliably in native tissues. To mitigate this risk early in projects, Pfizer developed an assay 

employing mouse embryonic stem (mES) cell-derived neurons, which are expected to represent more 

accurately the considerable heterogeneity of composition of AMPARs found in biological organisms 

and afford composite pharmacological values.[106] This assay, which was optimized for a HTS 

campaign and ran on a FLIPR platform, provided two quantifiable parameters: an EC50 obtained from 

a 9-point concentration-response curve and a maximal efficacy percentage (Emax), normalized to the 

average response to 100 µM of AMPA in the presence of 32 µM of cyclothiazide, which was defined 

as 100%. Screening of a Pfizer com-pound library using this newly developed assay led to the 

identification of dihydroisoxazole (DHI) hit 40.[104] Despite a moderate potency in the FLIPR mES 

assay (EC50 = 4.4 µM), modulator 40 had favourable calculated physicochemical properties and was 

as a result profiled in an array of in vitro DMPK assays (see Table 4). Interestingly compound 40 had 

good permeability with no P-gp liability and moderate clearance in HLM, confirming that it was an 

attractive starting point for an optimization program that would primarily focus on improving the 

potency while maintaining optimal CNS physicochemical and ADME (absorption, distribution, 

metabolism and excretion) properties.  

A co-crystal structure of DHI 40 with the LBD of hGluA2o was determined (PDB code 4lz7; Fig. 12) and 

revealed that the phenyl ring sits on the 2-fold axis and that the acetamide projects into one of the 

deep hydrophobic pocket, similarly to the sulfonamide group in LY451395 7. The pyrrolidine ring 

approaches Asn775 but does not participate in any distinct interaction. Intriguingly, unlike GSK 

researchers, scientists at Pfizer did not comment on the network of water molecules present at the 

dimer interface of the two LBD subunits and their potential displacement or interaction with 

modulator 40. 

Table 4. Physicochemical and DMPK properties of DHI 40 

 

 



 

Fig. (12). X-Ray crystal structure of DHI hit 40 with the hGLuA2o S1S2 LBD (PDB code 4lz7, 2.1 Å 

resolution). 

 

Fig. (13). Representative structures of DHI derivatives prepared during the lead optimization 

campaign. 



 

Fig. (14). X-Ray crystal structure of compound 42 with the hGLuA2o S1S2 LBD (PDB code 4lz8, 1.85 

Å resolution). 

From this crystal structure, it was initially suggested that replacement of the acetamide by a 

sulfonamide could afford molecules with superior binding affinity since docking of a sulfonamide 

group was providing a better fit for the hydro-phobic pocket. The isopropylsulfonamide of the 

phenethyl series was introduced on the dihydroisoxazole core, giving 41, which was 35-fold more 

active than 40 (EC50 = 123 nM, Emax = 147%), confirming the design hypothesis. Compound 41 

retained desirable CNS drug-like properties (MWt = 369 g/mol, clogP = 3.0, TPSA = 79 Å2), had 

moderate predicted human blood clearance (Cl = 13.5 mL/min/kg), and was permeable with no P-gp 

efflux in the MDR1-MDCK in vitro permeability assay (Papp = 18.6 × 10- cm/s, ER = 1.45). The 

enantiomeric pair of 41 was significantly less active, confirming that molecules with the S 

stereochemistry provided the best fit in the binding pocket. A variety of small amides and 

sulfonamides were prepared to probe the SAR of this part of the scaffold, but all induced a loss of 

potency. Replacing the amide with carbamates or ureas was also unsuccessfully investigated. Removal 

of the pyrrolidine produced an inactive compound (43 (R = H, R’ = F), EC50 > 32 µM), while desfluoro 

racemate 43 (R = pyrrolidine, R’ = H) was only slightly less active (EC50 = 253 nM, Emax = 169%) but 

was attractively slightly less lipophilic (clogP = 2.75).  

Docking of 41 in the crystal structure of 40 was per-formed to identify additional means to increase 

the functional potency of this series, and indicated that the second symmetrical hydrophobic pocket 

could be accessed through substitution of the pyrrolidine. Hence an acetamide was introduced at the 

3-position of the pyrrolidine affording 42, an exceptionally active potentiator (EC50 < 10 nM, Emax = 

143%), whose postulated binding interactions were confirmed by X-ray cocrystal structure (Fig. 14, 

PDB code 4lz8). A tritiated form of this potent modulator was prepared to develop an in-house AMPAR 

competition binding assay. 

The development of a low nanomolar potentiator which occupies both hydrophobic pockets of the 

LBD was done at the expense of the physicochemical properties of 42 (MWt = 427 g/mol, TPSA = 109 

Å2) and resulted in poor permeability and affinity for the P-gp transporter protein (Papp = 3.9 × 10-6 

cm/s, ER = 12.1). Consequently, compound 42 had low CNS exposure in a mice pharmacokinetic study, 

precluding its use in vivo. Therefore the SAR around the pyrrolidine ring was revisited with the 

objective to obtain compounds with lower TPSA and also to remove the aniline moiety which 



represented well-documented concerns.[107,108] From the crystal structure of 40 and 42, it appeared 

that replacing the pyrrolidine with a second aromatic ring would be tolerated, and a series of biaryl 

derivatives was prepared. While phenyl analogue 44 (R = H) had low affinity for AMPARs (EC50 = 3.2 

µM, Emax = 138%), pyridyl derivative 45 retained acceptable potency (EC50 = 294 nM, Emax = 157%). 

Molecular modelling of the biaryl template suggested that a nitrile group at the ortho position of the 

distal aromatic could access the hydrophobic pocket, providing superior binding affinity. This design 

hypothesis was confirmed since racemate 44 (R = 2-CN) had similar potency to 41 (EC50 = 87 nM, 

Emax = 152%) and the S-enantiomer 46 was again the most potent (EC50 < 10 nM). Modulator 46 

retained good calculated physicochemical properties (MWt = 401 g/mol, clogP = 3.8, TPSA = 100 Å2), 

had moderate predicted human hepatic clearance (Cl = 9.67 mL/min/kg) and was highly permeable 

(Papp = 29.1 × 10- cm/s; ER = 1.18). Disappointingly, no additional ADME, s electivity or in vivo 

pharmacokinetic data were given for this very promising compound (Fig. 13). In addition, it should be 

noted that no solubility or CYP450 inhibitory data are communicated on any of the compounds 

described above. [104]  

In this publication, detailed pharmacokinetics and pharmacodynamics were only reported for 

compound 41, despite modulator 46 being in appearance the most attractive compound. In their in 

vivo assessment, the Pfizer group demonstrated a marked interest to the unbound brain compound 

concentration (Cb,u), which determines AMPAR LBD inter-actions, and developed a Cb,u-normalized 

AMPAR-mediated exposure-response continuum to define an acute dose rodent-based therapeutic 

index (TI). Such studies were carried out since AMPAR overstimulation has been associated with ex-

citotoxicity [33, 37, 109] and for this reason defining the toxicity threshold in rodents was viewed as 

crucial by Pfizer scientists before advancing any drug of this pharmacological class to large animal 

safety and efficacy models.  

Potentiator 41 had high rat protein plasma binding (97.3%) and rat brain tissue binding in brain 

homogenates (98.6%). In a rat pharmacokinetic study, following single subcutaneous (SC) dosing (0.2 

mg/kg), compound 41 had a short terminal half-life (t1/2 = 0.4 h), a total brain to total plasma 

concentration ratio of 1.04 and an unbound brain to unbound plasma concentration ratio of 0.54, 

confirming that DHI 41 was CNS-penetrant. The convulsion liability, a recognized side-effect of AMPAR 

PAMs,[109] was first studied in CD-1 mice and detected 5 to 11 min post-dose in one third of the 

animals following SC administration of 0.32 mg/kg of 41 and in all animals at a higher dose (0.56 mg/kg, 

SC). Bioanalysis of brain samples from these mice indicated that a 2.1 nM mean Cb,u of potentiator 

induced convulsion. The same study was repeated in Sprague-Dawley rats where the exposure 

convulsion threshold was similar with a toxic Cb,u of 2.3 nM.  

The efficacy of potentiator 41 was first assessed in a modified version of the cerebellum cyclic 

guanosine monophosphate (cGMP) assay, published by Lilly[110] to evaluate the effect of their 

AMPAR modulators on the accumulation of cGMP, a downstream messenger involved in a signal-ling 

cascade regulating excitatory neurotransmission and neuroplasticity. It was determined that cGMP 

levels in-creased with statistical significance in CD-1 mouse cerebellum 30 min after SC dosing of 0.32 

mg/kg of 41, corresponding to a mean Cb,u of 0.4 nM. Surprisingly, it is not mentioned if the effect of 

41 on cGMP elevation occurred in a dose-dependent manner and as mentioned earlier, this same 

dosing regimen (0.32 mg/kg, SC) also induced convulsion in one third of the mice, supporting the idea 

that lower doses must have been investigated but for which no result is re-ported. Urethane-

anesthetized rats, treated with the NMDAR antagonist MK-801 which induces a schizophrenic state, 

were used as an in vivo model to measure the nootropic electrophysiological effects of 41 

administered intravenously. A minimal effective dose of 0.003 mg/kg (IV) of 41 was required to 

significantly reverse the MK-801-induced schizophrenic effect. From a pilot rat IV pharmacokinetic 



study (0.01 mg/kg), it was extrapolated that the reversal effect which occurred after 5 min 

corresponded to a Cb,u of 0.004 nM, giving a 500-fold TI for convulsion relative to procognitive 

electrophysiological enhancement in rats. In the majority of the pharmacokinetic and 

pharmacodynamic experiments described above, DHI 41 was administered subcutaneously and no 

justification was given in this first publication for choosing this preferred mode of administration, 

which is not desired for clinical evaluation. However in a subsequent article, [105] it was mentioned 

that subcutaneous administration was predominantly used to control the variability in (and rise to) 

Cmax and prevent the generation of any potential first-pass active metabolites. Pfizer did not mention 

if further biological studies were being undertaken with this compound, such as in vivo cognition 

behavioural experiments, or assessment of memory related effects in non-rodent species or if focus 

had shifted to potentiator 46. No additional data has been reported on either compound since 2013. 

From this study, it should be noted that the use of SBDD positively informed GluA2-based SAR and 

allowed to quickly prepare potent modulators.  

In a second publication from 2013,[105] Pfizer presented extensive efficacy and safety profiling on a 

single compound, PF-04778574 47, which was originally disclosed in a patent[100] and for whom no 

medicinal chemistry rational design has yet been revealed. As previously mentioned, AMPAR 

overstimulation can be excitotoxic and AMPAR potentiators have been associated with marked 

adverse events in preclinical studies.[37] Conscious of this risk, Pfizer designed a sequence of in vitro 

and in vivo assays in a selection of preclinical species to assist in the identification of safe compounds 

early in lead optimization campaigns and understand potentiator exposures causing desired versus 

harmful effects. In this paper, the Pfizer scientists reported how they applied their safety and efficacy 

assessment cascade to carefully define a PF-04778574 mechanism-based therapeutic index in mice 

and study its translatability from rodents to higher order species, by developing an interspecies 

exposure response model. 

 

PF-04778574, 47 

Fig. (15). Chemical structure of PF-04778574.  

In the in vitro mES FLIPR assay, which was used for the screening campaign in the work described 

above, PF0477-8574 concentration-dependently enhanced S-AMPA calcium influx through the 

heterogeneous mixture of AMPARs ex-pressed (pEC50 = 6.05 ± 0.19 and Emax = 162 ± 24%). In the in-

house competitive binding assay, modulator PF-04778574 had a Ki of 85 nM and was also found to be 

devoid of any agonistic effect in three different assays, corroborating the assumed mode of action. 

Results from these two experiments confirmed that PF-04778574 was a subtype-independent AMPAR 

PAM. As expected, the compound also potentiated  

the effect of S-AMPA on HEK293 cells expressing either recombinant hGluA2i or hGluA2o in a FLIPR 

assay, with similar efficacy on both isoforms (flip: pEC50 = 7.35 ± 0.11 and Emax = 111 ± 6%; flop: 

pEC50 = 7.05 ± 0.07 and Emax = 112 ± 5%), demonstrating an absence of selectivity between these 

two receptor subtypes. Whole-cell patch clamp electrophysiology on primary cultures of rat cortical 

neurons, expressing native populations of AMPARs, was used to study the functional potency of PF-



04778574 on S-AMPA-evoked currents. In that assay, PF-04778574 clearly increased the electric 

current induced by 30 μM of S-AMPA from a concentration of 30 nM and had an EC50 of 282 nM.  

The protein plasma binding of PF-04778574was measured across a range of species (CD-1 mice, 

Sprague-Dawley rats, beagle dogs, cynomolgus monkeys) and found to be moderate (91.2% to 95.2%). 

Interestingly the brain tissue binding was markedly higher (98.0%) and considered species 

independent.[111] These two parameters were used to calculate the unbound drug concentration in 

the plasma (Cp,u) and the brain (Cb,u) from measured total plasma and total brain concentrations. To 

reduce the number of animals sacrificed in the efficacy and safety pharmacodynamic studies, 

Cb,u:Cp,u ratios in four animal models (mouse, rat, dog and Cb,u:Cp,u ratios in four animal models 

(mouse, rat, dog and monkey) were experimentally determined to subsequently allow calculation of 

a Cb,u from a measured Cp,u, when brain tissues were not collected. This conversion of a Cp,u into a 

Cb,u relies on the assumption that Cb,u:Cp,u ratios are constant over time, which is not always the 

case. The free drug ratios determined in neuropharmacokinetic experiments ranged from 0.42 

(mouse) to 0.73 (monkey), indicating good CNS permeability and low interspecies variability from 

rodents to large animals (< 1.7 fold differences). A number of acute pharmacokinetic experiments in 

different animal models, using alternative mode of administration and various dose of PF-04778574 

were then conducted to obtain a selection of dose-Cb, u-time relationships. 

From these experiments, it should be noted that following intravenous administration of PF-04778574 

(0.2 mg/kg) in rat, the blood clearance was more than twice in excess of total liver blood flow (Cl = 

250 mL/min/kg), the volume of distribution was high (Vd = 4.59 L/kg) and the half-life very short (t1/2 

= 0.24 h), indicating poor systemic stability of PF-04778574 in rats. The compound was noticeably 

more stable in dogs following oral dosage (0.1 mg/kg) with a moderate blood clearance (Cl = 8.01 

mL/min/kg), a high volume of distribution (Vd = 2.1 L/kg) and a moderate half-life (t1/2 = 3.1 h). PF-

04778574 was rapidly absorbed in dogs (Tmax = 0.75 h) and had acceptable systemic exposure (Cmax 

= 56.0 ng/mL and AUC0-∞ = 210 ng·h/mL). In mon-keys, PF-04778574 was administered 

subcutaneously at two doses (0.1 and 0.32 mg/kg) affording a moderate mean half-life (t1/2 = 3.4 h) 

and a Tmax around 2 h. Positively, maximal plasma drug concentration (Cmax) and AUC0-∞ values 
suggested linear pharmacokinetics across this dosing range. Un-fortunately no in vitro clearance 

assessments in microsomes or hepatocytes were given and it is impossible to say if the overall high in 

vivo metabolic turnover of PF-04778574 could have been predicted from the in vitro data. 

Once all the pharmacokinetic studies had been carried out, modulator PF-04778574 was characterized 

in a selection of in vivo pharmacodynamic models to correlate the unbound brain drug concentration 

(Cb,u) with the observed pharmacological effects. To rule out any non-AMPAR-mediated in vivo 

pharmacological effect, PF-04778574 was screened at 10 μM against a panel of 118 enzymes and 
receptors, and found to express a high degree of selectivity for the AMPAR with only minimal 

inhibitory activity on the dopamine trans-porter (IC50 = 0.95 μM).   

The in vivo efficacy of PF-04778574 was first assessed in the cGMP assay similarly to compound 41. 

cGMP elevation in the cerebellum of CD-1 mice occurred dose-dependently and was statistically 

significant from a SC dose of 0.32 mg/kg of drug, the other doses evaluated being 0.1 and 1 mg/kg SC. 

Using the pharmacokinetic models developed in CD-1 mice and assuming linear pharmacokinetics 

across the doses tested, it was determined that Cb,u superior to 1.7 nM would induce significant 

increase in cerebellar cGMP levels. In this paper, Pfizer also suggested that changes in cerebellar cGMP 

levels correlate with the potential of compounds to display adverse events. However it should be 

noted that this assay was originally developed to study the efficacy of the AMPAR modulators but not 

their safety.[110] In urethane-anesthetized rats, a dose of 0.1 mg/kg (IV) of PF-04778574 significantly 

overcame the electrophysiological hypoglutamatergic conditions induced by the NMDAR antagonist 



MK-801. The restorative effect occurred between 5 and 25 minutes post-dose and was projected to 

correspond to Cb,u ranging between 0.98 and 0.35 nM, respectively. Additionally, a 0.03 mg/kg dose 

(IV) of compound, translating to a maximal projected Cb,u of 0.30 nM, was ineffective in this assay, 

indicative of a minimal effective Cb,u close to 0.30 nM. Since modulator 47 improved impaired 

synaptic transmission over a large concentration range, it was then tested in a behavioural cognition 

model, the monkey ketamine-disrupted spatial delayed response (SDR) task.[53] In this behavioural 

model, PF-04778574 was tested over a 100-fold dose range (0.001, 0.01 and 0.1 mg/kg, SC), but only 

significantly reversed the ketamine-induced impaired performance at 0.01 mg/kg (SC), suggesting that 

the compound had a hormetic exposure-response,[112] typical of nootropic drugs. From the 

pharmacokinetic model experiments in primate, this dose projected to a mean Cb,u of 0.38 nM. 

Interestingly the readouts of the two in vivo efficacy models were consistent and suggested that 47 

induced procognitive effects from an unbound brain drug concentration of around 0.35 nM (Fig. 15).  

The amplitude of adverse events caused by AMPAR potentiators is generally progressive, first 

manifesting as disruption of motor coordination and ultimately leading to convulsion. The tremorgenic 

potential of AMPAR modulator 47 was evaluated in mice undergoing an accelerating rotarod assay 30 

min post-dose. In that assay, low doses (0.178 and 0.32 mg/kg, SC) were not associated with a 

decrease animal fall latency and only 0.56 mg/kg (SC) of PF-04778574, projecting to a Cb,u of 4.8 nM, 

induced statistically meaningful motor deficits. In addition to the motor coordination disruption 

observed in the rotarod test, a number of tremorgenic events were unexpectedly recorded during the 

initial pharmacokinetic studies. Hence general tremor was observed in dogs at Cb,u ranging from 6.0 

to 15.6 nM and movement-related tremor/ataxia were detected in monkeys at Cb,u ranging from 8.0 

to 24.1 nM. In these two species, the Cb,u inducing tremorgenic side-effects were similar but were 

two to three-times higher than in mice. Convulsion, a more severe side-effect, which has been 

associated with a significant number of AMPAR PAMs, was assessed in dose-response studies across 

three species (mice, rats and dogs) to evaluate a potential interspecies consistency in Cb,u causing 

convulsions. In CD-1 mice, among the three doses tested (1, 1.78 and 3 mg/kg, SC), only the highest 

two induced general convulsions and this extrapolated to a minimal convulsion causing Cb,u of 9.6 

nM. The delay to observe convulsions following dosing was greater for the 1.78 mg/kg (SC) group (23 

minutes) relative to the 3.2 mg/kg (SC) group (7 minutes), which was consistent with the “threshold” 

nature of this adverse event. In rats, the two highest doses evaluated (3.2 and 5.6 mg/kg, SC) induced 

convulsions and the same dose-dependent adverse event delay as in mice was observed. The 

convulsive exposure threshold in this species translated to a projected Cb,u of 10.7 nM. In dogs, 

tremorgenic events were observed at the low doses investigated (0.2 mg/kg and 0.25 mg/kg, PO), but 

generalized convulsions only occurred following a dose of 0.5 mg/kg (PO) of 47, corresponding to a 

Cb,u of 17.4 nM. The PF-04778574 Cb,u causing convulsion was consistent in rodents (9.6 and 10.7 

nM), slightly higher in dogs (17.4 nM) and could be expected to be even higher in primates, since 

tremorgenic events happened at doses of up to 24.1 nM.  

The data generated showed that motor coordination disruption was the dose-capping adverse effect 

and that PF-04778574 showed adequate separation between Cb,u linked to efficacy and harmful 

effects with TI of 7-13, 16-29 and 22-42 in mice, dogs and monkeys, respectively. Overall, the 

exposure-response physiological effects were mainly consistent across species, suggesting a 

translatable relation-ship from rodent to higher-order species. Escalating unbound brain 

concentrations progressively led from efficacy to cerebellar cGMP elevation to motor coordination 

disruptions to convulsion. From these studies and a number of subsequent assumptions, the scientists 

at Pfizer concluded that PF-04778574, with a projected 8 to 16-fold TI in humans for self-limiting 

tremor, might be safely evaluated clinically as a nootropic drug in schizophrenic patients. Despite this 



conclusion, the compound never entered clinical evaluation and no further results with this AMPAR 

potentiator have been reported since 2013.  

In a final publication from 2015, scientists at Pfizer re-ported the discovery, SAR and optimization of 

clinical candidate PF-04958242 11.[44] In addition to the identification of new templates from HTS 

such as the DHI series described previously, Pfizer also explored modification of Lilly’s biaryl 

isopropylsulfonamide LY451646 48, with the objective to discover a series with improved efficacy, 

selectivity and metabolic stability relative to 48. Synthetic tractability strongly influenced chemistry 

route design to enable library synthesis and quick expansion of the SAR around the biaryl scaffold. 

From their initial studies with AMPAR modulators, the scientists at Pfizer understood the importance 

of identifying compounds with low human pharmacokinetic variability to accurately predict the Cmax 

and prevent occurrence of threshold-mediated adverse events.[113] With this in mind, 

physicochemical properties of virtual targets imparting ADME properties were carefully examined to 

only prepare compounds likely to develop into good oral CNS drugs with the targeted pharmacokinetic 

profile.  

LY451646 48 was tested in the FLIPR mES assay devel-ped by Pfizer to set a benchmark and only 

produced moderate activity (EC50 = 3.4 µM, Emax = 132%). A number of initial design hypotheses, 

including investigation of different vectors around the central aryl ring, replacement of the middle 

benzene with an heteroaliphatic ring and sulfonamide variation/replacement were unsuccessfully 

explored and afforded inactive compounds. Modulation of the linker was more successful, in 

particular introduction of an oxygen be-tween the phenyl and the two-carbon linker resulted in active 

modulators, such as 49. In this ether subset, para-substitution was preferred, mimicking the SAR of 

the all-carbon linker series. Interestingly while the unsubstituted distal aromatic analogue 49 (R = H) 

had similar potency to 48 but was significantly less efficacious (EC50 = 2.44 µM, Emax = 32%), 

introduction of an orthocyano 49 (R = CN) had an opposite effect, giving a less potent compound with 

greater efficacy (EC50 = 7.35 µM, Emax = 218%), suggesting a potential functionally favourable contact 

of the cyano with the AMPAR LBD interface.  

The X-ray crystal structure of LY451646 48 in complex with the LBD of hGluA2o (PDB code 4lz5) 

indicated that the isopropylsulfonamide NH was forming a hydrogen bond with the carbonyl oxygen 

of Pro515 and was occupying one of the deep lipophilic pockets, similarly to modulators of the 

sulfonamide class. The biaryl core was sitting along the two-fold axis, projecting to the symmetrical 

binding pocket. Docking of 49 (R = CN) into this crystal structure indicated that the orthocyano was 

ideally positioned to access the symmetrical hydrophobic space occupied by the isopropylsulfonamide 

at the other end of the inverted U-shaped binding pocket. This binding model prompted the team at 

Pfizer to conformationally restrict the amido-alkoxyethane linker to preorganize the ligand for binding 

and obtain potentiators with superior pharmacological activity. Hence a number of cis and trans 1,2-

dihalo 5- and 6-membered ring were de-signed and prepared. Examination of the physicochemical 

properties of these molecules and consideration of prior finding from GSK on an almost identical 

series, incited Pfizer to focus on cistetrahydrofuran ether analogues (Fig. 16). 



 

Fig. (16). Representative structures of the derivatives investigated during the lead optimization which 

led to the identification of PF-04958242. 

A significant improvement in functional efficacy was observed following introduction of the THF-ether 

linker and chiral separation indicated that the (3S,4S)-isomers were notably more potent than their 

(3R,4R)-counterparts. Despite high functional efficacy (EC50 = 217 nM, Emax = 143%) and good 

permeability with no P-gp efflux in the in vitro MDR1-MDCK assay (Papp = 32.3 × 10-6 cm/s; ER = 1.39), 

com-pound 50 (R1 = H, R2 = H) suffered from undesirable high turnover in HLM (Cli = 158 mL/min/kg). 

To improve the metabolic stability, fluorine atoms were introduced on the distal phenyl, which was a 

likely source of CYP450-mediated hydroxylation, and afforded functionally active compounds with 

improved but still suboptimal human microsomal turnover, such as 50 (R1 = F, R2 = H, EC50 = 14.1 nM, 

Emax = 126%, Cli = 89 mL/min/kg) and 50 (R1 = H, R2 = F, EC50 < 10 nM, Emax = 190%, Cli = 39 

mL/min/kg). Reduction of the phenyl ring lipophilicity by adding polar substituents also successfully 

lowered the clearance but concomitantly induced a reduction of potency (51, EC50 = 1.11 µM, Emax 

= 102%) and negatively impacted properties governing CNS permeability (51, Papp = 17.4 × 10-6 cm/s; 

ER = 7.84). Replacement of the orthocyanophenyl with 

6-membered heteroaromatics in 52 (X = N, Y = C or X = Y = N) and 53 caused a reduction of clogP and 

delivered compounds with low HLM clearance, high permeability, no P-gp liability and acceptable 

functional potency (0.62 < 

EC50 < 1.16 µM, 110 < Emax < 161%). A selection of substituted 5-membered heteroaromatic 

derivatives (11, 54, 55) was also synthesized and afforded compounds with superior functional activity 

compared to the 6-membered heteroaromatics. Of these compounds, potentiator 11 which had good 

activity in the FLIPR mES assay (EC50 = 310 nM, Emax = 110%), low HLM clearance (Cli < 8 mL/min/kg) 

and high predicted CNS exposure from the MDR1-MDCK assay (Papp = 19.3 × 10-6 cm/s; ER = 1.05) 

was selected for further profiling.  

An X-ray cocrystal structure of 11 bound to the LBD interface of hGluA2o (PDB code 4x48, Fig. 17) 

indicated that the isopropylsulfonamide was making similar contacts with the protein as in 48, and 

that the cyano group was in the vicinity of Asn775 possibly impacting on the flip/flop selectivity of 

modulator 11.  

The in vitro potency and efficacy of PF-04958242 11 was assessed in a selection of assays to evaluate 

its species, subunit and splice variant selectivity profile. Although no data is given, the authors 

mentioned that 11 was equipotent in mouse and human ES cell-derived neurons, indicating 

interspecies uniformity. In cells expressing recombinant hGluA2 receptors, compound 11 increased S-



AMPA-mediated Ca2+ influx with some selectivity for the flip (hGluA2i (Ser775), EC50 = 24 nM, Emax 

= 124%) over the flop isoform (hGluA2o (Asn775), EC50 = 880 nM, Emax = 124 %). In a whole-cell patch 

clamp electrophysiology experiment on primary cultures of rat cortical neurons, modulator 11 

significantly enhanced S-AMPA-evoked cur-rent (EC50 = 43 ± 10 nM). To ascertain that the 

pharmacological effects observed when testing PF-04958242 in vivo were solely AMPAR-mediated, 

the selectivity of 11 was determined against a panel of 118 human-based ion channels, receptors and 

enzymes. At the concentration tested (10 µM), compound 11 had good selectivity for AMPAR with 

detectable affinity for only three other receptors and enzymes, the most potent interaction being with 

the serotonin transporter (Ki = 530 nM). The plasma protein binding of 11 was moderate in the three 

species tested (rat: 95.2%; dog: 93.0%; monkey: 89%) while its rat brain protein binding was relatively 

high (98.1%), consistent with the moderate calculated lipophilicity of 11 (clogP = 3.54). Inhibition of 

seven major CYP450 isoforms by modulator 11 was low, with only detectable inhibition of CYP2D6 

(IC50 = 18 µM). Unfortunately only this limited set of in vitro ADME properties was given, and 

important parameters, such as compound solubility, hERG inhibition, CYP induction, reactivity with 

glutathione, or genotoxicity, were not discussed. 

 

Fig. (17). X-ray crystal structure of 11 bound to hGluA2o S1S2 LBD (PDB code 4x48, 1.89 Å resolution). 

A similar approach to the one used to study the effects of PF-04778574 in vivo was employed and Cb,u 

(unbound brain concentrations) were calculated for each animal/dose/time/administration mode to 

establish a Cb,u-normalized AMPAR-mediated exposure response continuum for clinical candidate 11, 

enabling to assess AMPAR-dependent activities related to nootropic effects and safety. Single-dose 

neuropharmacokinetic experiments were con-ducted in CD-1 mice and Sprague-Dawley rats to 

determine Cb,u:Cp,u ratios, treated as constant over time, and subsequently allow calculation of a 

Cb,u from a measured Cp,u at multiple time points. The Cb:Cp and Cb,u:Cp,u ratios experimentally 

measured ranged from 0.59 to 1.5, confirming the good CNS permeability of 11 predicted by the 

MDR1-MDCK assay. The neuropharmacokinetic experiments in rat (1 mg/kg, SC; 0.01 mg/kg, IV) 

indicated that 11 had similar terminal half-life, ranging from 0.53 h to 0.76 h, and Tmax (0.75 h) in 

plasma, cerebrospinal fluid and brain. Following intravenous administration in rat (0.2 mg/kg), PF-

04958242 had very high blood clearance (Cl = 169 mL/min/kg), very short half-life (t1/2 = 0.31 h), high 

volume of distribution (Vd = 3.6 L/kg) and low systemic exposure (AUC0-∞ = 20.1 ng·h/mL), indicating 



poor plasma stability in rats. When administered orally to rats (3 mg/kg), 11 was rapidly absorbed 

(Tmax = 0.25 h), had a longer half-life (t1/2 = 0.84 h) and acceptable systemic exposure (Cmax = 134.0 

ng/mL and AUC0-∞ = 175 ng·h/mL), giving a rat oral bioavailability of 58%. In higher order species, 

the half-life was greater (t1/2 = 6.21 h in dogs (0.1 mg/kg, PO), t1/2 = 12.3 h in monkey (0.032 mg/kg, 

SC)), the Cmax was lower and the systemic exposure consistent (in dogs, Cmax = 23.9 ng/mL and AUC0- 

∞  = 158 ng·h/mL; in monkeys, Cmax = 6.87 ng/mL and AUC0- 

∞  = 149 ng·h/mL). 

Elevation of cerebellar cGMP in CD-1 mice occurred dose-dependently 30 min after administration of 

compound 11 and was statistically significant from a dose of 1 mg/kg (SC). From the 

neuropharmacokinetic models previously established in CD-1 mice following SC dosing of 11, it was 

determined that a projected Cb,u of 6.7 nM induced cGMP elevation in CD-1 mice cerebellum. In 

urethane anesthetized rats, a dose of 0.01 mg/kg (IV) of 11 significantly overcame the 

electrophysiological hypoglutamatergic conditions induced by the NMDAR antagonist MK-801, 

projecting to Cb,u ranging between 0.23 and 0.18 nM. The compound was then tested in a second 

behavioural cognition model, the keta-mine-disrupted spatial working memory in the radial arm maze 

(RAM), in which it attenuated the ketamine-evoked memory loss at doses ranging from 0.0032 to 

0.032 mg/kg (SC), protecting to Cb,u between 0.029 and 0.29 nM according to the subcutaneous rat 

pharmacokinetic study. Higher doses (0.1 and 0.32 mg/kg, SC) were ineffective, indicating a hormetic 

exposure response for this nootropic agent. 

The tremorgenic potential of potentiator 11 was assessed in C57BL/6J mice undergoing an 

accelerating rotarod assay 30 min post-dose. In that test, low doses (0.1 and 0.178 mg/kg) were safe 

and only 0.32 mg/kg (SC) of PF-04958242, projecting to a Cb,u of 10.8 nM, induced statistically 

meaningful motor deficits. The convulsion liability of potentiator 11 was not described, although it can 

be assumed from the previous studies that Cb,u superior to 10.8 nM will be required to cause 

convulsion. From these studies, PF-04958242 had a 37-fold therapeutic index in rodents.  

Intrinsic turnover of 11 was studied in rat and dog hepatocytes (rat Cli ≤ 63.6 mL/min/kg and dog Cli ≤ 
7.4 mL/min/kg) and found to be consistent with the respective in vivo clearance. The good agreement 

between in vitro and in vivo clearances, and the moderate human hepatocyte clearance of the 

molecule (Cli ≤ 7.1 mL/min/kg) suggested a likely moderate to high systemic exposure in humans. 
Metabolite identification studies, indicated that compound 11 underwent similar turnover in dog and 

human systems, with THF hydroxylation and O-dealkylation identified as major route of metabolism. 

Studies using major recombinant human cytochrome P450 isoforms indicated that hepatic turn-over 

via CYP2C19 and CYP3A4 would be the predominant human clearance pathway.  

These positive results prompted Pfizer to evaluate PF-04958242 in 90 day regulatory toxicology 

studies in rats and dogs, in which clinical candidate 11 achieved adequate TIs, suggesting that the 

compound could be safely evaluated in the clinic. Simcyp software was used to project clinical 

pharmacokinetic parameters from experimentally determined preclinical data and predicted an 

efficacious dose of 0.3 mg with a 12 h dosing interval. At the time of publication, AM-PAR potentiator 

11 had been tested in 11 Phase I clinical trials and found to be safe and well tolerated in healthy 

volunteers, in patients with age related sensorineural hearing loss and schizophrenic subjects on 

stable doses of antipsychotics and other psychotropic medications. The authors then claimed that 

further clinical studies would focus on evaluating the nootropic effects of 11 in select neurodisease 

populations.  

EVOLUTION AND OPTIMIZATION OF THE COR-TEX CX614 SERIES  



Cortex has worked in the area of AMPAR positive modulators for many years and have identified many 

compounds which have entered clinical evaluation (Table 1 and 2). The majority of the chemical 

information was until recently contained within patents.[114–118] Only the structures of the early 

development compounds (CX516, CX546, CX614 and CX691, Fig. 18) are in the public domain and little 

information is available regarding SAR and DMPK properties of these compounds. Four recent 

publications describe the discovery of further compounds using CX614 as a starting point.[119–122] 

In the first of the papers,[121] the authors describe how CX614 57 was designed using the knowledge 

of how aniracetam 1 binds to the AMPA protein and applying a conformational restriction strategy to 

stabilise the com pound chemically and enhance activity to achieve micromolar potency. The activity 

of the modulators developed by Cortex was assessed using patch clamp electrophysiology on cultured 

rat embryonic hippocampal neurons. The activities were reported as EC2x, which is the concentration 

of potentiator required to double the current flow through the per-fused neuron.  

Initial investigations focussed on exploration of the importance of the fused dioxane ring, analogues 

demonstrated that the oxygen at position 1 was important for retention of activity; analogues in which 

this oxygen was absent were much less active, with the exception of the compound with a carbonyl 

group at position 1 which retained activity. In c-trast, the oxygen at position 4 was not required for 

activity. Introducing a carbonyl group at position 4, together with a fused pyrrolidine, encouragingly 

produced a more potent derivative (58, EC2x = 0.06 µM) than CX614. The discovery of 58 prompted 

further investigations in this area, initially focussing on simple N-alkyl analogues 59. Results indicated 

that a small alkyl group was optimal for potency, with the methyl analogue being the most potent 

(EC2x = 0.1 µM). Larger groups, which included cycloalkyls and branched alkyls, were generally less 

active, and the unsubstituted analogue (59, R = H, EC2x = 5 µM) had similar potency to CX614. 

Compounds were also tested in a ligand binding assay and a good correlation with the 

electrophysiology as-say was observed. Some of the active compounds in electrophysiology also 

showed weak activity when assayed in a rat hippocampal slice preparation.  

In a second publication,[122] Cortex reported further SAR investigations around the N-substituent. 

Initial studies focused on alkyl chains (59, R = alkyl) bearing substituents. Starting from the N-ethyl 

derivative (59, R = Et) work investigated the effect of introducing functionality on the terminal carbon 

atom. A wide variety of groups were tolerated, producing compounds with similar potency to the N-

ethyl derivative (59, R = Et, EC2x = 0.2 µM). The two modifications which showed marginally increased 

potency were the introduction of chemically reactive groups azide (59, R = N3(CH2)2-, EC2x = 0.08 

µM) and isothiocyanate (59, R = NCS(CH2)2-, EC2x = 0.06 µM). Increasing the chain length by one atom 

and appending a nitrile group gave a butanenitrile derivative (59, R = NC(CH2)3-, EC2x = 0.05 µM). The 

indication from this work is that a wide range of functionality is tolerated at this position.  

Further studies investigated the effect of aromatic groups appended to the alkyl chain (60, R = 

Ar(CH2)n). Activity was shown to be dependent on the chain length in the initial studies (Ar = phenyl) 

with two carbon atoms being optimal (EC2x = 0.25 µM), longer (n = 3) and shorter (n = 1) chains gave 

compounds with activity similar to CX614 (Table 5). Working in the two carbon linker series, the 

introduction of small halogen substituents (fluorine, chlorine) at the 3-position of the phenyl moiety 

gave a 10-fold increase in potency, larger or more polar groups resulted in reduced activity or at best 

retention. Substituents in the 2-or 4-position led to reduced potency. Interestingly the 3,5-

difluorophenyl derivative was highly potent in both the electrophysiology as-say (EC2x = 0.005 µM) 

and binding assay (Ki = 0.3 µM). Following the investigations focussed on phenyl substituents, the final 

area of investigation looked at heterocycles, all linked to the core through a two carbon chain. All 

three isomeric pyridines were equipotent with the corresponding phenyl analogues (Table 5). With a 

few exceptions, the general trend amongst unsubstituted 5-membered heterocycles was an increase 



in potency, typically 10-fold compared to the pyridyl groups. A limited range of substituents are de-

scribed for certain heterocycles, thus it is difficult to draw conclusions regarding the SAR. There is a 

suggestion that in the case of the pyrazoles described, a small lipophilic group, such as chlorine, gave 

a further increase in potency.   

No physicochemical property information or DMPK data was given for this series of compounds in the 

papers describing the SAR. However in a subsequent publication[119] the Cortex group referred to 

phenethyl compound 61, stating that despite its potency in a rat in vitro electrophysiology assay (EC2x 

= 0.011 µM), it is only weakly active when tested in an in vivo electrophysiology experiment, similarly 

to related compounds. High metabolism is suggested to explain the discrepancy between in vitro 

potency and in vivo efficacy. Metabolic route studies in RLM showed the major sites of metabolism to 

be the ethyl chain and the saturated carbon atoms of the oxazinone and pyrrolidine rings. The initial 

strategy adopted to improve the metabolic stability was to substitute the alkyl chain linking the phenyl 

group to tetracyclic core such as in 62 and 63. Substitution adjacent to the phenyl group (62) resulted 

in a large reduction of the in vitro potency in all cases. Substitution of the methylene adjacent to the 

tetracyclic core (63) (X = H, R1 = CO2Me, R2 = H; X = F, R1 = ethynyl, R2 = H) did result in compounds 

with comparable potency to the parent compound (61), but these derivatives failed to demonstrate 

improved metabolic stability. 

 

Fig. (18). Amide based AMPAR modulators describes by Cortex. 

Table 5. Influence of chain length and appended aromatic groups on AMPAR modulation 

 



 

The second strategy selected was to investigate replacement of the oxazinone ring with a 

pyrimidinone (64, X = CH) or triazinone ring (64, X = N). This proved successful with both the 

pyrimidinone and triazinone showing similar effects in an in vivo electrophysiology assay at 5 mg/kg 

(IP), when compared to 61 which showed very little response. The SAR of the pyrimidinones and 

triazinones regarding chain substitution mirrored that described for 62 and 63, with small lipophilic 

groups on the carbon atom adjacent to the hetero-cycle producing increased potency but substituents 

adjacent to the phenyl ring not being tolerated. Replacing the pendant fluorophenyl group with a 2-

tetrazolyl group resulted in in-creased potency in the in vivo electrophysiology assay. This was 

particularly evident in the triazinone series and was also reported to correlate with increased 

exposure. Having identified compounds with improved metabolic stability, Cortex focussed on 

removing the chiral centre present in the pyrrolidinooxazinone motif, this was effectively achieved by 

appending a cyclopropyl group to the nitrogen of the oxazi-none. Combining the achiral ring system 

with the modifications, which gave optimal metabolic stability and potency, resulted in 65, which was 

active in a rat native tissue electro-physiology assay (EC2x = 0.46 µM), produced an increase in the 

amplitude of fEPSP in vivo (39% at 5 mg/kg, IP) and induced LTP in the rat (1 mg/kg, IP) (Fig. 19). 

 

 



Fig. (19). CX614 analogues with enhanced potency. 

The main issue with compound 65 was its short plasma half-life (0.27 h) and as a result in a fourth 

publication[120] Cortex described how the pharmacokinetic profile of this series was optimized. In 

addition to the short half-life, it was also suggested that 65 had low brain penetration, although no 

data is given. Initially further investigation of the core ring system was performed and replacement of 

the oxazinone with either pyrimidinone or triazinone was investigated, leading to the identification of 

compound 66, which had an encouraging profile. AMPAR modulator 66 was 100% bioavailable in the 

rat, had good half-life in all species tested (rat: t1/2 = 1.7 h; dog: t1/2 = 3 h; monkey t1/2 = 9.5 h), and 

retained the electrophysiological profile of 65 (EC2x = 0.28 µM; 37% increase in fEPSP amplitude at 5 

mg/kg, IP). All four possible combinations of pyrimidinone and triazinone were prepared with 66 

having the best profile. Extensive SAR investigation was subsequently performed looking at 

modifications of the tetrazole, pendant methyl and cyclopropyl groups. Few modifications gave a 

profile superior to 66 with the exception of replacing the cyclopropyl group by a methyl, which 

resulted in a 2-fold increase in the in vivo electrophysiology effect. Wider SAR investigation showed 

that dimeric tetrazole 67 was more potent than 66 (EC2x = 0.016 µM; 59% increase in fEPSP amplitude 

at 1 mg/kg, IP). No pharmacokinetic data was given on the later compound. Since the publication of 

this series of letters in 2011, Cortex has not reported further progress in the CX614 series or on other 

templates the company has explored (Fig. 20). 

 

Fig. (20). Compounds with improved DMPK profiles. 

OPTIMIZATION OF AN HTS-DERIVED HIT BY OR-GANON USING SBDD  

Organon (now Merck) registered four patent applications between 2008 and 2010,[123–126] and 

relatively soon after published a series of three papers[127–129] which describe the discovery of 

advanced lead compounds and their evolution from a HTS-derived hit, compound 68.  

In the first publication, [129] they describe the profile of 68 and strategies used to improve the in vitro 

developability profile with retention of potency. AMPAR modulator 68 had very encouraging in vitro 

functional potency (pEC50 = 6.7; calcium assay in HEK cells overexpressing hGluA1) for a screening hit 

but was poorly soluble (< 1 mg/L) and highly unstable in both rat and human liver microsomes (Cli > 

270 µL/min/mg). To direct the medicinal chemistry, the group made good use of X-ray structures of 

compounds in complex with the LBD of the hGluA2i subunit. Analysis of the binding mode of 68 (PDB 

code 3O28, Fig. 21) suggested that the key interactions responsible for the activity were hydrophobic 

interactions made by (a) the trifluoromethyl on the tetrahydroindazole and (b) the cyclohexyl ring of 

the tetrahydrobenzothiophene. 

Initial efforts concentrated on opening of the saturated ring of the tetrahydrobenzothiophene and 

preparing dimethyl or methyl and ethyl thiophene analogues (69) or introduction of heteroatoms into 

the saturated ring (70). Truncated analogues all exhibited reduced potency (≈ 30-fold in the best case) 

and a modest increase in kinetic solubility (10 mg/L) for some of them. Introduction of an oxygen atom 

into the saturated ring produced compound 70 which retained potency, but this modification did not 

improve solubility or microsomal stability. Attempts to modify the saturated ring of the 

tetrahydroindazole gave similar results and truncation was generally poorly tolerated. Active 



compounds were obtained when the system was fully aromatised and contained nitrogen atoms into 

the 6-membered ring, but this failed to significantly improve the developability characteristics. 

 

Fig. (21). X-ray structure of hit compound 68 in complex with the S1S2 LBD of hGluA2i (PDB code 3O28, 

2.0 Å resolution). 

Further examination of the structural information revealed a hydrophilic pocket close to the space 

occupied by the primary amide function. A series of analogues were pre-pared in which various 

hydrophilic groups were appended to the amide of 71. One of the early analogues (71, R = NMe2, n = 

2) showed modest potency (pEC50 = 5.2) but was successfully crystallised with the hGluA2 ligand 

binding do-main (PDB code 3O29, Fig. 23). Analysis of the structure revealed a weak interaction with 

an aspartic acid residue (Asp781), which had the potential for further optimization. Interestingly both 

the tetrahydroindazole and tetrahydroben-zothiophene were binding similarly to what was observed 

with hit 68.  

Further modification led to a more potent analogue (71, R = NH2, n = 3; pEC50 = 6.4) and an improved 

developability profile (solubility: 38 mg/L; Cli = 17 µL/min/mg (HLM), Cli = 77 µL/min/mg (RLM)). The 

ADME properties of this compound were still suboptimal since the permeability determined in a Caco-

2 assay was low, but the compound was not a P-gp substrate (A-B = 34 nm/s, B-A = 55 nm/s). 

Unfortunately when 71 (R = NH2, n = 3) was tested in an in vivo rat pharmacokinetic study, the poor 

permeability caused low oral bioavailability (7.7%) and poor CNS penetration (brain to plasma ratio = 

0.05), despite the compound demonstrating moderate blood clearance (21 mL/min/kg). Further 

analysis of X-ray data suggested that conformationally constrained analogues, which might enhance 

permeability, would bind well to the protein. Compound 72 was prepared and showed good potency 

(pEC50 = 6.6), which was slightly superior to the corresponding enantiomer (pEC50 = 5.8). Derivative 

72 possessed promising solubility (20 mg/L) and microsomal stability (Cli = 41 µL/min/mg (HLM), Cli = 

50 µL/min/mg (RLM)). However the Caco-2 permeability was still low resulting again in poor 

bioavailability (3.8%) despite low in vivo clearance (2.3 mL/min/kg, rat). Interestingly the brain to 

plasma ratio increased to 1.03:1.  

Following extensive exploration of the tetrahydroben-zothiophene motif, which failed to deliver 

molecules with the desired in vivo profile, attention focussed on the tetrahy-droindazole group.[128] 

Structural data suggested that introduction of polar groups in this region was possible and could 



potentially interact with two key residues, namely Pro515 and Ser750. Compounds with an opened 

saturated ring and basic functionality appended to the pyrazole ring were modelled as having the 

greatest potential. A series of analogues 73 was prepared; a wide variety of small alkyl groups were 

tolerated and good activity (pEC50 ≥ 6) was observed with both secondary and tertiary amines. Two 
secondary amines were chosen for further study: 73, R1 = Me, R2 = H; pEC50 = 6.5, Cli < 12 µL/min/mg 

(RLM), Cli = 33 µL/min/mg (HLM) and kinetic solubility = 65 mg/L and 73, R1 = Et, R2 = H; pEC50 = 6.1, 

Cli < 19 µL/min/mg (RLM), Cli <  12 µL/min/mg (HLM) and kinetic solubility = 107 mg/L. Both compound 

pharmacokinetics were studied in vivo and showed improved oral bioavailability in the rat compared 

to previous analogues (R1 = Me, F = 15%; R1 = Et, F = 43%). The ethyl compound was progressed 

further and found to have low CNS penetration (brain to plasma ratio = 0.05). However despite the 

poor CNS permeability, it did show effects in a rat in vivo electrophysiology assay, increasing the 

amplitude of evoked activity at a dose of 0.3 mg/kg (IV). The crystal structure of 73 (R1 = Et, R2 = H) 

bound to the S1S2 LBD of hGluA2i was obtained and con-firmed the initial designed hypothesis (PDB 

code 3O6H, Fig. 24). The authors conclude by saying that at the time of publication the advanced 

compound was under detailed investigation and further results will be published at a later date (Fig. 

22). 

 

Fig. (22). Key compounds in the optimization of screening hit 68 published by Organon. 

 



Fig. (23). Biostructure of lead 71 (R = NMe2, n = 2) bound to the S1S2 LBD of hGluA2i (PDB code 3O29, 

2.02 Å resolution). 

 

Fig. (24). X-ray structure of 73 (R1 = Et, R2 = H) in complex with the S1S2 LBD of hGluA2i (PDB code 

3O6H, 2.1 Å resolution). 

 

Fig. (25). Advanced compounds from Organon and comparison with similar templates from other 

groups. 

In the final publication,[127] further evolution of the template to structurally diverse scaffolds was 

explored using a hybridisation strategy (Fig. 25). Structural components of other reported AMPA 

modulators were combined with key elements of the newly discovered scaffold, in order to identify a 

back-up series. The work resulted in the identification of compound 77. Examination of available X-

ray structures suggested that 74 (hGluA1 pEC50 = 6.4, solubility = 20 mg/L) had the potential to be 

hybridised with the previously reported Lilly compound (LY451646, 48) by replacing the cyanophenyl 

group with the pyrazole moiety of 74 to give 75. The results were initially encouraging with 75 having 

the desired in vitro profile (pEC50 = 6.3, solubility = 73 mg/L and Cli < 12 µL/min/mg (rat and human)), 

combined with reasonable permeability (Caco-2) and no evidence of transporter interaction. However 

the in vivo rat profile was less than desired with high plasma clearance (49.7 mL/min/kg). It was 



hypothesized that the introducing conformation constraint might have reduced CYP-mediated 

metabolism leading to a decreased clearance.  

A second hybridisation strategy was employed to achieve the conformation restraint, incorporating 

features of a template described by GlaxoSmithKline 9[82] producing 76 (PDB code 3PMW, Fig. 26). A 

linker was introduced be-tween the indane and the pyrazole as molecular modelling suggested the 

directly linked pyrazole would not fit the binding site optimally. Derivative 76 had a very encouraging 

profile (pEC50 = 6.3, Cli = 31 µL/min/mg (RLM), 23 µL/min/mg (HLM)), improved in vivo clearance 

(21.6 mL/min/kg, rat) and excellent oral bioavailability (F% = 95). Having identified 76 as a promising 

new scaffold, the Organon group explored further the SAR around that template. Changing the 

stereochemistry of these compounds had little effect on the overall profile of the compounds. The 

pyrazole ring could be replaced by other 5-membered heterocycles including furan and pyrrole. A 

range of substituents in place of the alcohol are tolerated including hydrophobic groups such as an 

additional trifluoromethyl and polar groups such as secondary amines. Exploration of the sulfonamide 

demonstrated that a wide range of hydrophobic groups are tolerated in this position including 

aromatic groups such as methoxyphenyl and trifluoromethyl pyrazole. Compound 77 resulted from 

this exploration and it was noted that replacement of the isopropyl sulfonamide by the corresponding 

trifluoro methyl analogue gave a compound which retained much of the potency of 76 but with further 

improved metabolic stability. The profile of 77 is as follows: pEC50 = 5.6, solubility = 83 mg/L, Cli < 12 

µL/min/mg (RLM and HLM), in vivo (rat) Cl = 1.9 mL/min/kg, t1/2 = 7.4 h, F% = 100, and evidence of 

good CNS penetration. No report describing the in vivo pharmacological effects of the AMPAR 

potentiators described in these three papers has been published by Organon and it is unclear if these 

series are still being developed (Fig. 27).  

A recent publication from one of the Organon authors currently working at the University of 

Strathclyde described another hybridisation strategy,[130] in which the hydroxymethyl pyrazole used 

in the design of 77 is combined with a template related to those previously described by Cortex to 

produce hybrid 79. Only in vitro activity data is de-scribed in an electrophysiology assay with 

compounds being tested on both flip and flop isoforms of GluA2. Modulator 79 is significantly more 

potent than 74 and shows activity at both receptor subtypes. Also described in the paper are the 

sulfonamide analogue 80 and the compound in which the pyrazole is directly attached to the tricyclic 

core 81, both compounds are less potent than 79 (Fig. 28).  

WORK FROM OTHER PHARMACEUTICAL AND ACADEMIC GROUPS  

A number of groups at the universities of Liege, Copenhagen and Modena have published work 

centred around the thiadiazine template 5.[131–138] Servier also worked for many years on this 

template but have not described any new chemotypes related to this scaffold in the period covered 

by this article. This work has been comprehensively reviewed elsewhere. [139]  

Takeda have demonstrated an interest in this area of neuroscience through a significant number of 

patent applications between 2009 and 2012. [140–145] However until now no scientific publication 

reporting on their strategy and discovery of advanced AMPAR PAMS has been published. Lilly which 

had a strong interest in the area before 2010 seems to have stopped working on AMPAR PAMS, since 

no patent or scientific articles originating from them has been reported in the last 6 years. 



 

Fig. (26). X-ray structure of 76 bound to the S1S2 LBD of hGluA2i (PDB code 3PMW, 2.2 Å resolution). 

 

Fig. (27). Conformationally restrained molecules published by Organon. 

 

Fig. (28). Representative structures of the AMPAR modulators claimed by Takeda. 

CONCLUSION AND FUTURE PERSPECTIVE  

The large number of publications on AMPAR potentiators within the period covers by this article 

proves that it remains a fertile area of drug discovery and that interest will remain for the foreseeable 

future. It appears that the field has learnt from the failure of the early AMPAR PAMs which entered 

clinical evaluation and that more precise and defined properties are now sought. The use of SBDD has 

clearly assisted a number of projects and allowed the identification of very potent potentiators, active 

at very low doses in cognition behavioural models in vivo. Some pharmaceutical groups such as Pfizer 

and GSK have also aimed for a specific pharmacokinetic profile with the objective to achieve large TI, 

low intersubject pharmacokinetics variability and prevent the occurrence of the recognized adverse 

events associated with AMPAR modulators. We can expect a number of compounds derived from 



series described in this review to enter clinical evaluation in the next few years, thus expectation of 

positive readouts of clinical trial data continues.  
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