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Abstract

The objective of this thesis was to investigate the feasibility of EV charging manage-

ment for reducing the electricity cost of commercial buildings.

A predictive model was developed to assist the commercial building manager reduce
its energy bills by predicting the “triad” peak dates and the building’s energy de-
mand. Real weather data were analysed and considered to increase the accuracy of
the forecast. The model was evaluated using real “triad” peak, weather and energy

consumption data from a commercial building facility in Manchester.

To enable the building manager reduce the EV charging costs, a charging control al-
gorithm was developed and its impact on the demand profile and daily electricity
cost of a commercial building facility were studied. The predictive model and the
charging control algorithm were integrated into a cloud-based Local Energy Manage-
ment System (LEMS) for the aggregation and flexible demand management of build-
ings, energy storage units and EVs. The operation of the LEMS was demonstrated
through simulation scenarios using real data from a commercial building facility in

Manchester.

To fully understand the EV integration consequences, the behaviour of the EV drivers
and its impact on the road transport and electric power system has been studied. A
multi-agent simulation model was developed to simulate the charging and routing
behaviour of the EV drivers. The EV drivers were simulated as autonomous agents
in a complex environment consisted of an electric power and road transport network.
Different behavioural profiles were considered to describe the way an EV driver deals

with the everyday challenges.
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1

Chapter 1

Introduction

1.1 Integration of Electric Vehicles

1.1.1 Electric Vehicles

Electric Vehicles (EVs) use electric machines to drive their wheels. They derive some or
all of their power from rechargeable batteries. The distance an EV can drive between
recharges is known as its range. There are three different categories of EVs: battery

electric, plug-in hybrid and hybrid electric vehicles.
Battery Electric Vehicles

The Battery Electric Vehicles (BEVs), also known as the all-electric or the pure-electric
vehicles, are powered solely by an electric machine and have no internal combustion
engine (ICE). Their battery is charged entirely by electricity from the grid. As the
battery is their sole power source, BEVs tend to be equipped with powerful lithium-
ion batteries with a capacity of typically 20 kWh or more than 50kWh for high per-
formance (luxury) models. Some common examples of the BEV are: the BMW i3, the

Renault Zoe, the Tesla Model S and the Nissan Leaf.
Plug-in Hybrid Electric Vehicles

Plug-in Hybrid Electric Vehicles (PHEVs) have an ICE and a small battery, typically
lithium-based, that can either be charged by the ICE or directly from the grid. They are
able to run on electric power alone, at urban speeds, for short distances and have an

all-electric range of 5 to 40 miles. When the all-electric range reaches its range limit, the
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ICE provides the necessary power. The PHEV addresses the range issues of the BEV
by combining the electric machine and battery with the combustion engine. Examples

include: the Toyota Prius Plug-in Hybrid and the Chevrolet Volt.
Hybrid Electric Vehicles

The Hybrid Electric Vehicles (HEVs) used to be known simply as the “hybrid” or the
“tull hybrid” but nowadays are often referred to as the “conventional hybrid”. They
have a battery which is charged by the ICE but not from an external source of electri-
city. Typically, they are capable of pure electric drive at low speeds and for a very lim-
ited range. Terms like “parallel hybrid”, “series hybrid” (or “range-extended electric
vehicle”), and “mixed hybrids” describe sub-categories of HEVs, involving different
configurations of batteries and ICEs. Some common examples of the HEV are the early

versions of the Toyota Prius, Honda Insight and Honda Civic Hybrid.

1.1.2 Future Uptake of Electric Vehicles

In 2015 the global threshold of 1 million electric cars on the road was exceeded, count-
ing 1.26 million EVs. This is an important achievement which highlights the significant
efforts deployed by governments and industry over the past ten years. This becomes
even more remarkable, considering that in 2014 only half of that number existed while

in 2005 EVs were still measured in hundreds.

Ambitious targets and policy support have decreased the vehicle costs, extended vehi-
cle range and reduced consumer barriers in a number of countries. The market shares
of electric cars rose above 1% in seven countries in 2015: Norway, the Netherlands,
Sweden, Denmark, France, China and the United Kingdom. Market shares reached
23% in Norway and nearly 10% in the Netherlands. China’s growing electric car sales
in 2015 made it the main market worldwide, before the United States, for the first time.

China is also home to the strongest global deployment of e-scooters and electric buses.

EVs of all types lie at the heart of future sustainable transport systems, alongside the
optimisation of urban structures to reduce trip distances and shift mobility towards

public transportation. The wide global deployment of EVs across all modes is neces-



1.1 Integration of Electric Vehicles 3

1400 Others
— Canada
Z 1200 / ........... cerman
S [— \
L 0 e At S m United Kingdom
o
£ 800 / I France
3 / —— mmNorway
o
E 600 — \eoc.. HIEE Netherlands
8 / B Japan
g 400 China
= 200 . .. United States

—= u —
0 ~——BEV + PHEV

2010 2011 2012 2013 2014 2015
Figure 1.1: Evolution of the global electric car stock from 2010 to 2015 [1]

sary to meet sustainability targets. The EVI 20 by 20 target calls for an electric car fleet
of 20 million by 2020 globally [1]. The Paris Declaration on Electro-Mobility and Cli-
mate Change and Call to Action sets a global deployment target of 100 million electric
cars and 400 million electric 2- and 3-wheelers in 2030. The IEA 2DS, describing an
energy system consistent with an emissions trajectory giving a 50% chance of limiting
average global temperature increase to 2°C, outlines an even more ambitious deploy-
ment pathway for electric cars by 2030 (150 million). Meeting these targets implies
substantial market growth to develop further the current 1.26 million electric car stock,

as well as the swift deployment of electric 2-wheelers and buses beyond the Chinese

market.
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Figure 1.2: Deployment scenarios for the stock of electric cars to 2030 [1]
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1.1.3 Impact of EV battery charging

The emergence of electric mobility is an important development for the power sector.
While the adoption of EVs can provide new opportunities - such as creating additional
electricity sales for utilities and a demand for charging infrastructure and related ser-
vices - the charging of EVs at a large scale can also create challenges for local distribu-

tion grids and their operators, if not properly managed.

The challenge posed by the increasing use of electricity by EVs lies not so much in
the volume of the associated power demand, but rather in the potential increase in
peak demand, which is determined by the rate, time, and location of EV charging.
Fast-charging (i.e., charging at a higher power) will have a more significant impact on
the grid then slow-charging. The time of charging (i.e., when charging happens) also
impacts the grid: throughout the day, electricity demand follows a load curve; when
EV drivers charge their cars can either intensify peaks or level them out. Finally, the
location of the charging (where charging takes place) has implications for the power
infrastructure (considering the available grid capacity and infrastructure). If all the
registered vehicles in United States had to charge 5-10kWh on a daily basis, this would
lead to an increase of 12-23% at the electricity generation requirement [3]. In UK, an
uncontrolled EV charging regime increases the British winter day peak demand by 3.2
GW (3.1%) for a low EV uptake case (7%) and the British winter day peak demand by
37GW (59.6%) for a high EV uptake case (48.5%), for the year 2030 [4, 5].

Depending on the system’s peak demand, a different generation mix is used to meet
the demand. As the demand increases, more expensive generator units are included
in the generation mix, increasing the generation cost per kWh. If the system’s peak de-
mand exceeds the network capacity, the system will face voltage-drops, power losses
increase and overloading of distribution transformers [6]. Overloaded transformers
and feeder cables have to be upgraded to maintain the normal operation of the net-
work. This network reinforcement will require large capital investments from the dis-
tribution network operators. A tool to calculate these additional costs was developed
in project Green eMotion (http://www.greenemotion-project.eu/) by Imperial Col-

lege London. It was found that the incremental annualised cost of electricity supply
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per EV in UK and Ireland could be around €200/EV /year for EV penetration levels
between 5% and 30%, consisting mainly from operational and capital costs at the dis-

tribution level [7].

1.2 Problem Statement

The market penetration rates of electric vehicles are still rather low [8] despite the
number of public programs launched to promote their use (e.g. [9, 10]). Among the
most important reasons are low battery performance and lack of charging infrastruc-
ture implying limited and uncertain driving ranges - the so-called range-anxiety [8, 11—
15]. While residential charging is the foreseen primary option even though limitations
can exist in large apartment buildings, commercial charging opportunities are gaining

increasing attention as the major secondary option [16, 17].

The installation of EV charging points at commercial buildings requires a significant
up-front cost, discouraging the building managers to make this investment. To tackle
with this issue, the U.S. Department of Energy (DOE) launched the program “Work-
place Charging (WPC) Challenge” in 2013 [18], “with a goal of achieving a tenfold
increase in the number of U.S. employers offering workplace charging in the next
five years”. In 2016, the Office for Low Emission Vehicles (OLEV) in UK initiated a
voucher-based grant scheme for the installation of electric vehicle charging infrastruc-
ture. The scheme provides support towards the up-front costs of the purchase and
installation of electric vehicle charge-points, for eligible businesses, charities and pub-

lic sector organisations [19].

However, the charging service provision at commercial buildings creates a number of
costs for the building manager. Apart from the initial installation cost that is necessary,
the use of EV charging facilities impacts the demand profile of the buildings, and cre-
ates additional operational costs which need to be covered. These costs are associated
with the impact of EV charging on the daily peak demand and energy requirements
of the building facility.

The contribution of the building’s peak demand to the system’s peak demand is used
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by National Grid to apply charges for the Use of the Transmission Network in the
period between November to February (“triad season”) each year [20]. The charges,
known as “triad” charges, are currently (approximately) £45/kW, meaning that a com-
mercial facility with an average consumption of 2MW would create an additional cost
of £90,000 every year to the building manager for its contribution to the system’s peak
demand. However, the “triad” charges of each year are announced by National Grid
after the end of the “triad season”, usually sometime in March. Recent studies indicate
that the “triad” charges are going to increase in the following years, and could reach
£72/kW by 2020 [21]. Consequently, there is a great deal of interest from the building
managers to know beforehand the “triad” periods so they can reduce their electricity

consumption and their bills [22].

The energy requirements of EV charging are reflected on the building manager’s elec-
tricity bills. In cases where a variable electricity rate is applied to the building facility,
the cost of EV charging demand varies [23]. In commercial buildings, EVs are expec-
ted to charge as soon as they arrive at the building facility [24]. This uncontrolled EV
charging is not a cost-effective solution for the building manager as the EV charging
events could occur during the expensive hours. Additionally, the uncontrolled EV
charging demand will increase the peak demand of the building and force the build-
ing managers to upgrade their private network (such as transformers and cables) [6].
On a larger scope, the commercial building sector accounts for approx. 31% of the
total energy demand in UK [25], and high EV uptake levels will stress the existing in-
frastructure of the distribution networks, resulting in additional costs for the DNOs.
Considering that in most cases the actual charging duration (time needed to charge
the EV) is less than the connection duration (time that the EV is parked, connected to
the charging point), EVs offer a flexibility that can benefit both the building manager
and the DNOs. This flexibility could be enhanced by utilising bi-directional energy
exchanges from EVs and energy storage units [26]. In this case however, the system’s
complexity is increased and the building managers will have to cope with the inter-
mittent characteristics of the different elements of the building facility (arrival times
of EVs, charging duration needed, capacity of the storage units etc.) [27]. To this end,

an energy management system is required in order to coordinate the EV charging and
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minimise the electricity bill of the building manager.

The EV charging demand is related to the routing and charging behaviour of the EV
drivers. The travelled distance affects the energy consumption of the EV and con-
sequently the necessary charging requirements. The availability of EV charging facil-
ities affects the route choice behaviour of the EV drivers, as they modify their trip in
order to include a recharging stop [28]. As a result, the traffic of the road network
will be affected. The charging behaviour of EV drivers affects the frequency and dura-
tion of their recharging demand. According to [29], the average EV charging demand
in different areas has a different daily profile depended on the charging station loc-
ation and rate. EV drivers with a strong rage anxiety feeling are expected to charge
more often compared to EV drivers that feel more confident regarding the range of
their EV [13, 14]. However, an increased battery capacity and availability of charging
points was found to reduce the frequency of charging at non-residential public sta-
tions [17]. Technological developments improving the driving range of EVs, as well
as an increasing availability and speed of charging infrastructure, could change the
routing and charging behaviour of the EV drivers, as well as the need for charging
infrastructure in the future. To fully understand the EV integration consequences, the
behaviour of the EV drivers and its impact on both the electricity and road transport

network should be modelled.
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1.3 Thesis Objectives

This thesis investigates the feasibility of EV charging management for reducing the

electricity cost of commercial buildings. To this end, the following objectives were set:

. Design a model that predicts the “triad” peaks of the grid and the energy de-
mand of a building. The developed model generates warnings for expected
“triad” peaks, allowing the building manager to reduce their electricity demand

during expensive hours.

. Develop an algorithm to schedule the EV charging in commercial buildings. The
developed algorithm utilises bi-directional power exchanges and the flexibility
offered by EVs in order to reduce the cost of EV charging at a commercial build-

ing facility.

. Design a local energy management system (LEMS) that coordinates the charging
of EVs and energy storage in commercial building facilities. The LEMS is deve-
loped as a generic software package to operate on the cloud, and was tested in

different scenarios.

. Develop a tool that simulates the charging and routing behaviour of EV drivers
on a given electricity and road transport network. The tool is built on a multi-
agent simulation platform and the EV drivers are modelled as autonomous agents
having to cope with constraints from the EV battery, the electricity grid and road

transport network.
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1.4 Thesis Structure

This thesis is structured in the following way:

Chapter 2: A predictive model is described that aims to assist the commercial building
manager to reduce its energy bills by predicting the “triad” peak dates and the
building’s energy demand on those dates. The model is validated using real
weather and building energy consumption data from commercial buildings at a

science park.

Chapter 3: A charging control algorithm is described to enable the building man-
ager reduce the EV charging costs of a building facility. The charging control
algorithm is simulated on a realistic charging scenario and the impact on the

demand profile and daily electricity cost of a commercial building are studied.

Chapter 4: A Local Energy Management System (LEMS) is described for the aggreg-
ation and flexible management of the demand from buildings, energy storage
and EVs. The LEMS is developed as a software package deployed on cloud, and

tested in three scenarios.

Chapter 5: A multi-agent simulation model is developed to simulate the charging and
routing behaviour of the EV drivers. The EV drivers are simulated as autonom-
ous agents in a complex environment consisted of an electric power and road
transport network. Different behavioural profiles are considered to describe the

way an EV driver deals with the everyday challenges.

Chapter 6: The main conclusions of this thesis are summarised. Limitations and sug-

gestions for further work are given.
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Chapter 2

Predicting the energy demand of
buildings during triad peaks in GB

2.1 Introduction

The “triad season” is the four-month period from 1st of November to the end of Febru-
ary, during which National Grid looks back to find the three half-hour periods when
the electricity demand was highest in GB [30]. These three periods, also known as
“triad” periods, must be separated by at least ten days and are used by National Grid
to estimate the average peak demand of each distribution network operator (DNO)
for that winter. According to its corresponding peak demand, each DNO pays then a
“capacity charge” to National Grid to ensure the availability of this peak amount of
electricity [20]. These capacity costs are shifted from the DNOs to the electricity sup-
pliers, and the electricity suppliers transfer this cost to their customers (end-users) by

charging extra for the electricity used during a “triad” period.

The domestic low-consumption customers have this extra charge built into an all-
inclusive electricity rate so they don’t notice any difference at their electricity charges
on a “triad” period. On the other hand, the high-consumption customers (usually
commercial/industrial) may be charged a higher rate of £/MWh for the electricity
they use during the “triad” periods. Depending on their agreement with the utility
company, they might even be separately invoiced for these charges. These charges
are currently (approximately) £45/kW, meaning that a high-consumption consumer

with an average consumption of 2ZMW would have to pay £90,000 every year for their
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contribution to the system’s peak demand. The “triad” periods of each year are an-
nounced by National Grid after the end of the “triad season”, usually sometime in
March. Recent studies indicate that the “triad” charges are going to increase in the
following years, and could reach £72/kW by 2020 [21]. Consequently, there is a great
deal of interest from the high-consumption customers to know beforehand the “triad”
periods so they can reduce their electricity consumption and their bills [22]. A typ-
ical case is that of Saint-Gobain which, in order to tackle the “triad” cost, switched off
some machinery and rescheduled the factory operation for a short period of time from
around 4pm-6pm, the period which is most likely to witness a “triad” peak. By doing
this the company was able to save around 11% of energy costs (equating to a financial

value of £165,000) [31].

Many suppliers offer warning services to their customers in order to help them reduce
their “triad” charges (e.g. NPower [32]). Predicting the “triad” peaks meets a number
of challenges, one of them being the so-called “negative feedback” problem according
to which knowing about a “triad” could in fact prevent it [33]. The “triad” peaks are
mainly caused by the small commercial buildings and domestic houses, rather than
the large commercial/industrial consumers. Consequently “triad” peaks are largely
dependent on weather, and they usually coincide with cold snaps [6]. Unfortunately
that means that “triad” peaks are more unpredictable in mild winters. Considering
the complexity associated with predicting “triads”, probabilistic approaches can be
utilised for estimating the “triad” peaks. There is a need for a tool that decodes these
“fuzzy” correlations in a simple yet effective manner, and could be operated from the

(non-expert) building manager.

However, having information about the future “triad” peaks is not enough for the
building managers to reduce their bills. Information about the electricity demand of
their buildings on a “triad” period is also necessary, in order to identify the buildings
that contribute the most to these extra charges. Knowing the future demand of their
buildings, the building managers can identify the ones which operate with unneces-
sary loads and reduce their electricity consumption. The weather has a significant im-

pact on the electricity demand of a building, as heating during this period could lead
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to increase in their energy consumption. In order to predict the energy consumption

of a building, it is necessary to take into account the local weather.

In this chapter a predictive model is proposed that aims to assist the commercial build-
ing manager to reduce its energy bills by predicting the “triad” peak dates and the
building’s energy demand on those dates. The model consists of three stages/parts.
In the first part, a stochastic model was developed to predict the triad days and hours
for the next year. In the second part a sensitivity analysis was performed in order to
calculate the impact of weather on the electricity demand of a commercial building.
In the last part, a forecasting model was developed using Artificial Neural Networks
(ANN) to forecast the building’s energy demand at the most probable half hour a
“triad” could occur. The model was evaluated using real weather and building en-

ergy consumption data from commercial buildings at a science park.

2.2 Literature Review

Forecasting the peak electricity demand has been studied extensively in the past by
many researchers. The applied forecasting models are usually characterized by their
time horizon: i) short-term forecasts (five minutes to one week ahead) for ensuring
system stability, ii) medium-term forecasts (one week to six months ahead) for main-
tenance scheduling, and iii) long-term forecasts (six months to ten years ahead) for
network planning. Other factors used to evaluate these models are their computa-

tional cost, calibration complexity and size of dataset required.

Semi-parametric regression models have been found to perform well with time-series
datasets with missing data, as they use parameters (estimators based on distribution
assumptions) to estimate the missing values [34, 35]. However the configuration of
those parameters is difficult and their accurate calibration requires a large dataset.
Non parametric regression models such as time varying splines on the other hand,
are not based on distribution assumptions [36, 37]. The degree of confidence of the
forecast however is depended on the quality and the size of the dataset. Time series

modelling is much easier to implement, and decodes accurately the trend of the time
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series [38]. Decomposition techniques are often used in such models to recognise un-
derlying patterns and increase the forecasting accuracy. Depended on the resolution
of the data however, these models can be susceptible to noise and abnormal events
that differ from the trend [39—41]. Exponential smoothing techniques have been found
to give very accurate results in short-term forecast applications, require very limited
information and are easy to apply [42]. However, they do not perform well when
there is an underlying pattern in the dataset, such as seasonal variation, making them
inappropriate for medium and long term forecasts. Artificial neural networks have a
proven record of accurate forecasts in various time horizons [43, 44]. Although their
training is slow, the time needed for the forecast is very fast. Their configuration how-
ever is very complicated and usually parametric studies are needed to calibrate the
model. This drawback is intensified in applications with a large degree of uncertainty
or when a confidence interval is needed. Grey dynamic models can perform better
when there is large uncertainty among the dataset as they combine quantitative and
qualitative information [45]. However, if the historical information is not fully avail-
able (e.g. missing values) their performance is reduced significantly. Judgemental
forecasting techniques show a fast adaptability to changes in the underlying trend at
a small computational cost [46]. However, their strong dependence on qualitative in-
formation can lead to biased forecasts, and usually expert input is needed for their

calibration.

While a point forecast provides an estimate of the expected value of the future de-
mand, probabilistic forecasts contain additional valuable information. Having access
to prediction intervals, such as a lower and upper boundary of the forecast distribution
[45] or a prediction density [47], would inform the decision maker of the uncertainty
inherent in the forecast. Quantification of this forecast uncertainty is essential for man-
aging the risk associated with decision making. Bayesian statistics have been found to
perform well without requiring a large dataset [48, 49]. However they are computa-
tionally intensive and are not suitable for dynamic or continuous forecast applications.
Other probabilistic methods which are able to capture the various factors that govern

the electricity demand and forecast its peak are found in [50-52].
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Despite the extensive research work available in the literature on forecasting the (single)
peak demand of a power system, predicting the “triad” peaks has attracted very little
attention globally. One obvious reason is that the “triad” charging system is found
only in UK, as other countries use other ways to calculate their transmission network
charges. Another reason is that many UK electricity suppliers are already providing
warning services to their customers when a “triad” peak is expected to occur. These
warnings however is often one day before the actual “triad” peak, not leaving enough
time to the customers to adjust their electricity requirements. To overcome this prob-
lem the customers need to use their own probabilistic models in order to forecast the
“triad” peaks in the beginning of the “triad” season. However, these models are often
very complex and require a great amount of data for their calculations. A non-expert
customer like the building manager it is very unlikely to be able to operate these mod-
els or even have access to the required data for their calculations. There is a clear need
for a “triad” prediction tool that is simple enough to be operated by the non-expert
building manager but also provides satisfactory forecasts on the times of the future

“triad” peaks.

However, knowledge about the future “triad” peaks is useless for the building man-
agers unless the electricity demand of their buildings is also known in advance. Fore-
casting the electricity demand of a building is well studied subject in the literature.
The prediction models need to consider many factors in order to accurately predict the
daily, hourly or half-hourly power consumption of a building. These factors may be
internal like the geometrical characteristics of the building or the occupants’ type and
number, or they could be external factors like the weather. The existing approaches can

be broadly classified as engineering, statistical and artificial intelligence approaches.

The engineering models use details of physical characteristics, operational profiles and
cost to calculate precisely the energy for each component of the building and simulate
its operation [53]. The procedure for calculating the energy consumption of a building
is also standardised by major organizations such as ISO and ASHRAE. Various tools
such as DesignBuilder, EnergyPlus, TREAT etc. have been developed commercially to

calculate the energy efficiency and the sustainability of a building. A solid list of such
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tools can be found in [54], hosted by the US Department of Energy. However, these
tools require detailed information about the building and its environment as an input

and cannot be used by the non-expert building manager.

Another way to predict the energy consumption of a building is to use statistical re-
gression models that correlate the power consumption with a number of influencing
variables. These models are strongly dependent on the historical datasets, and need a
large dataset in order to produce accurate results. By using such a regression model,
the authors of [55] showed that a single variable linear model is able to predict the
energy consumption in hot and cold weather conditions. Another regression model
was developed in [56] to predict the annual energy consumption by using one day,
one week and three month measurements. The results displayed strong influence to
the forecast horizon as the errors were found to be up to 100% for one day, 30% for one
week and 6% for three months data. An auto-regressive integrated moving average
model was developed in [57] to forecast load profiles for next day based on historical
data records. This model was later enhanced with external inputs in order to predict

the peak electricity demand for a building [58, 59].

Artificial intelligence methods have been found effective for solving complex non-
linear problems. ANN has been often applied by researchers to predict the building’s
energy consumption in different environments. A neural network which predicted the
long term energy demand using short term energy data (2-5 weeks), was presented in
[60]. Another interesting technique was used in [61], where the short term electri-
city demand was predicted by using two phases of neural network. In phase one the
weather variable was predicted using neural networks, and this output was then fed
into a second neural network which predicted electricity consumption. In addition
to ANN, support vector machines (SVM) are gaining popularity in predicting electri-
city consumption. Using SVM, the authors of [62] predicted the monthly electricity

consumption for a year by using 3 years data to train the model.

Including weather data has also been found to support the prediction of a building’s
energy consumption [63, 64]. The monthly average temperature was used in [65]

to improve the accuracy of prediction of monthly power consumption of a building.
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Later, this approach was compared to the temperature frequency methods in [66]. In
[67] the energy consumption for one season was predicted by considering many com-
ponents like space heating, hot water etc. and by applying a specific model for each
component. A feed forward neural network was used in [68] to predict the electricity
consumption by relating the local weather and occupancy of the building. Another
model used SVM to predict 1 year electricity consumption using weather variables
[69]. The above models however used the same weather variables in every forecast

without considering the difference of weather effect in different buildings.

According to [70], the energy consumption of different buildings varies according to
the building’s geometry, structure and energy control systems in place. These char-
acteristics define the correlation between the building’s energy consumption and the
outside weather. Trying to capture this correlation, this chapter proposes a model
that filters the weather data and identifies the optimal combination of weather attrib-
utes separately for every building. In addition, the proposed model is combined to
a “triad” prediction model in order to forecast the building’s energy demand and the
“triad” peak at the same time in order to assist the building manager reduce its energy
consumption and its bills. The aim of this chapter is (i) to forecast the most probable
day and most probably half an hour on that day a “triad” could occur, (ii) to identify
the most dominant weather attributes which would improve the demand forecast and

(iii) to forecast the building’s demand at the most probable “triad” day and half-hour.

2.3 Model Description

The proposed “Triad Demand Predictive Model” is presented in Figure 2.1 and con-
sists of three sub-models, namely “Triad Probability Assessment” model, “Pre-Forecast
Analysis” model and “Electricity Demand Forecast” model. Each of these sub-models

performs different tasks using inputs from external sources or the other sub-models.
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Figure 2.1: The Triad Demand Predictive Model

2.3.1 Model Inputs

The predictive model uses data from three different sources at various stages to predict
the most probable half hour of the day where the triad could occur. The data is fed

into the model in three stages (one for each sub-model).

For the “Triad Probability Assessment” model twenty five years of triad data were
collected from National Grid (http://www2.nationalgrid.com/uk/) including inform-
ation regarding the dates and times of the “triad” peaks of the corresponding years.
These data were used in order to calculate the most probable dates and times of the

triad peaks of the forthcoming year.

The second dataset was consisted of weather data. Two year weather data were ob-
tained from the MetOffice (http://wow.metoffice.gov.uk/) to be used as an input to
the “Pre-Forecast” model. The data contained information from the local weather sta-
tion from the period of 2012-2013. Hourly information about the sunny hours, air
temperature, rainfall, hourly global radiation, relative humidity, mean wind direction,

wind mean speed, extend of cloud cover and gust knots was available. The weather
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data was used for our analysis to improve the accuracy of the predictive model.

The third data input to the model was historical energy consumption data from com-
mercial buildings. Half-hourly power demand data from the period of 2012-2013
were available from six commercial buildings in Manchester Science Park, allowing
the evaluation of the model on a realistic environment. The data were granted from
Manchester Science Partnerships, as part of the EPSRC project “Ebbs and Flows of En-
ergy Systems”. The historical power demand data were used by both the “Pre-Forecast

Analysis” model and the “Electricity Demand Forecast” model.

The weather dataset and the building dataset are presented in Appendix A. In order
to increase the quality of the datasets, the data were checked for missing or incorrect
values (e.g. negative energy demand values). It was found that no missing or incorrect

values existed in the datasets.

2.3.2 Triad Probability Assessment model

A stochastic model was developed to estimate the “triad” days of the forthcoming
year. The model uses historical triad data (date and time) to calculate the probability
of having a “triad” peak on certain dates during the “triad season”. The most probable
dates for a “triad” peak are calculated with configurable granularity, using intervals
which have duration from 1 to 20 days. Assuming that there are 120 days between
1st of November and the end of February, setting the interval to -1- would result in
120 probability values (one for each day). In case the interval is set to -2-, the model
produces 60 probability values (one for each 2-day period) etc. As seen in the next sec-
tions, reducing the forecasting resolution (by increasing the interval size) increases the
forecasting accuracy. This trade-off between forecast resolution and forecast accuracy
has to be determined by the model’s operator according to the application, and it is

out of the scope of this chapter.

The probability P(i) of each interval ¢ to include a “triad” peak is calculated using
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Equation (2.1) below:
N 3 . _G=mg)?
2 (2 (n- e e )
P(i) = == < (2.1)
> 3n
n=1
where

P(i) is the probability of interval-i including a triad day (if the interval is one day,

P(7) is the probability of that day being a triad one)

i is the interval index

n is the year index (N th year is the most recent year)

N is the total number of years that triad data are available

k is the triad index for a year

o is the standard deviation of the normal distribution (=1 in our model)

7" is the interval that includes the k" triad day of year n

As seen from Equation (2.1), the probability P(i) of each interval  is obtained by su-
perimposing a set of 3 normal distributions for each year that triad data are available.
These normal distributions have as mean value the index of the “triad” interval (the
interval that includes a “triad” day in that year), and a standard deviation of 1. With
this method, each “triad” date affects not only the probability of the same interval
but also the probability of the neighbouring ones. Considering weekly intervals for
example, if week 5 includes a “triad” date, its probability is increased but so is the
probability of weeks 4, 6 and 3, 7 according to the normal distribution. This is done
in order to consider the uncertainties introduced by the weather in the calculations. It
is known that the “triad” dates are affected by the weather, e.g. it is more probable to
have a “triad” peak when the mean temperature is low and the heating systems of the
consumers are operating. By increasing the probability of the neighbouring intervals

the model expresses the fuzzy relationship:
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If the weather is cold =

We might have a “triad” peak

, and interprets it in order to be used for a probabilistic assessment:

If we had a “triad” peak in the past =
This period of the year has been cold =
This period and its neighbours might also be cold in the future =

We might have a “triad” peak on those periods in the future

The model is built with a learning feature which improves the probability assessment
on an annual basis when new “triad” data are available. Emphasis is given on the
most recent data, by including weights (n in Equation (2.1)) that increase as data are
available from a more recent year. In this way the model can detect possible changes
in the pattern caused by external factors that change on an annual basis (e.g. weather,
technology). A linear weight relationship was assumed for these factors — however,
any prior knowledge that a user may have can be used to modify these weights. Fi-
nally, the sum of the weighted normal distributions is divided by the sum of weights

n in order to obtain the probability P(i) as a weighted average.

The model also calculates the most probable half-hours within a day during which the
“triad” peak demand is expected to occur. Equation (2.1) is used in a different way to
obtain the half-hourly probability of a “triad” peak in a day. In this case the intervals
have a fixed duration of 30 minutes, so only 48 intervals are assessed for one day. The
model looks only at the times that the “triad” peaks occurred, and tries to identify the
most probable half-hours for one. The weather is not an important factor in this case.
What is most important is the daily profile of electricity demand in the system. This
profile is directly related with the activities of the customers and their energy con-
sumption patterns. By superimposing normal distributions for each “triad” half-hour,
we are able to identify an “alert” band, a set of intervals where the “triad” peaks are

expected to appear. The interpreted relationship in this case is:
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If we had a “triad” peak at this half hour in the past =
Certain electricity-demanding activities are happening at this time of day =
These activities could happen at this time and its neighbours in the future =

We might have a “triad” peak this time in the future

The model is able to detect possible changes on a daily basis, caused by changes in
the daily patterns of the customer’s consumption. This could be the case in a few
years from now, when the majority of the electricity consumers will be more proactive
with regards to electricity charges, and shift their energy consumption at hours when
the £/MWh is low. The increasing number of electric vehicles (EVs) will also have a
significant effect on the daily patterns of a consumer [71]. According to [72-75], the
charging fashion of EVs can change completely the electricity profile of a consumer.
By including annual weights the model can detect these changes and update the prob-

ability assessment of the “triad” half-hours.

2.3.3 Pre-Forecast Analysis model

A “Pre-Forecast Analysis” model was developed in order to increase the performance
of the “Electricity Demand Forecast” model by including weather information in the
forecasting process. The objective of this model is to identify the optimal number
of weather attributes to be considered by the “Electricity Demand Forecast” model to
generate an accurate forecast. To this end an iterative process is followed, as presented

in Figure 2.2.

Using historical local weather data and building energy consumption data, a correla-
tion analysis was performed in order to calculate the correlation of the available wea-
ther data with the electricity demand of each building. The Pearson’s correlation mat-
rix was calculated in order to identify the attributes which have the highest correlation

with the energy consumption of each building.

Pearson’s correlation coefficient (also known as r-correlation) is a statistical metric that
measures the correlation strength between two random variables X and Y [76]. It has

been applied to various indices in statistics, such as data clustering and classification
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'
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o |
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| END |

Figure 2.2: The Pre-Forecast Analysis process

[77], time series analysis [78], decision making [79], finance analysis [80], and biolo-
gical research [81]. The Pearson’s correlations coefficient (r) is calculated by dividing
the covariance of the variables by the product of their standard deviations, as presen-
ted in Equation (2.2). The r coefficient takes values between —100% and +100%. Posit-
ive values denote a positive correlation, negative values denote a negative correlation
and zero values denote no correlation at all. The closer the values are to £100%, the
stronger the correlation between the two variables. In this analysis, variable X is the
power demand from a building (2-year time series), while variable Y is the weather

attribute (2-year time series).

r= n=l -100% (2.2)

where
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N is the number of values in the time series (17520 half hours in the two years dataset)
i is the half-hour index

X is the power demand of the building in half-hour i

X is the mean value of the power demand of the building

Y; is the weather attribute value in half-hour ¢

Y is the mean value of the weather attribute

Ten weather attributes were studied for each building to calculate the correlation of
each weather attribute to the building’s electricity demand. Since the buildings have
different energy consumption profiles, the correlation coefficient was calculated sep-

arately for every building and the results are presented in a table (correlation matrix).

Having the correlation matrix, a sensitivity analysis was performed in order to identify
the optimal set of attributes to be considered in the forecast. A set of 11 “Forecast
Scenarios” was defined for each building, consisted of different sets of attributes to be
considered in the forecast. The base attributes were assumed to be the power demand,
time, day and type of day (weekday/weekend). The considered scenarios and their

corresponding attributes are listed below:

1. No weather attributes: Considering only the power demand, time, day, type of

day (weekday/weekend)

2. y weather attribute: Considering the power demand, time, day, type of day (week-
day/weekend) and y most dominant weather attribute(s), i.e. attributes with the

highest correlation factor. The index y varies from 1 to 10.

To identify the optimal forecast scenario, an ANN forecasting model was built us-
ing the WEKA toolkit [82], and the half-hourly electricity consumption on a random
day was forecasted for each building. The data was divided into two datasets: the
tirst dataset consisted of the first n — 1 days and was used to train the model and

the second dataset consisted of the n — th day in order to test the model. The default
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settings of WEKA were used for the configuration of the ANN static parameters (train-
ing time, epochs, learning rate). The only dynamic parameter of the ANN in WEKA
is the number of hidden layers which by default is equal to half the number of the
dataset attributes. To calibrate this parameter, a parametric study was performed to
identify the optimal number of hidden layers for each forecast scenario. It was found
that the best results were achieved when the number of hidden layers matched the
number of attributes considered during the training/testing phase. In the “No wea-
ther attributes” scenario for example, 4 hidden layers were used in the ANN model.
The forecast accuracy for each scenario was calculated using the mean absolute per-
centage error (MAPE) index from Equation (2.3). For each building the attribute set
(forecast scenario) that resulted in the least MAPE was selected as the optimal one for

the electricity demand forecast.

At — Ft
Ay

MAPE = % 3 | 2.3)
t=1

where

n is the number of half-hours in a day (48)
i is the half-hour index
A,; is the actual power demand of the building in half-hour i

F; is the forecasted power demand of the building in half-hour ¢

2.3.4 Electricity Demand Forecast model

The third sub-model is the “Electricity Demand Forecast” model. In this model the
outputs of the previous sub-models were combined in order to forecast the electricity
demand of the building on a “triad” peak period considering the optimal set of wea-
ther attributes. The model performs a day-ahead power demand forecast using the

optimal ANN configuration suggested by the “Pre-Forecast Analysis” model.
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The ANN technique was selected after comparing five techniques, namely Linear Re-
gression, Instance-based learning (K*), Support Vector Regression, Multi-Layer Per-
ceptron ANN and Decision Trees. Each technique was trained and tested on the same
dataset using the default parameters of WEKA toolkit. The results are presented in

Table 2.1.

Table 2.1: Mean Absolute Error (MAE) for every technique

Linear Instance-based | Support Vector | MLP | Decision

Regression | Learning (K¥) Regression ANN | Trees
Building 1 | 3.52 5.42 0.06 5.95 1.33
Building 2 | 12.65 8.11 3.91 17.74 | 2.51
Building 3 | 11.70 7.11 15.69 717 16.60
Building 4 | 13.35 9.12 6.57 1395 | 5.61
Building 5 | 15.08 7.62 7.09 12.51 | 7.35
Building 6 | 22.18 17.16 7.11 14.40 | 7.21

As observed from Table 2.1, the ANN had an overall better performance than the other
techniques for our dataset. Algorithm 2.1 describes the model’s operation for the con-

sidered 6 buildings.

Algorithm 2.1: Algorithm of the “Electricity Demand Forecast” model
Input Most probable triad days and half hours, optimal forecast scenario

Output Building power demand during a triad half hour

1: Select the most probable days triad and half hours on that day as calculated from
“Triad Probability Assessment” model

2: whilei7 < 6 do

3: Configure the ANN according to the Pre-Forecast Analysis of building-

4: Build the training and the testing dataset

5: Train the model

6: Forecast the power demand of building-i at the most probable half-hour

7 1=1+1

8: end while

Algorithm 2.1 describes the process of forecasting the power demand for the most
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probable half hour of a triad day for the 6 buildings. Two inputs are required for
this. The first is the periods identified as the most probable periods for a “triad” peak
(output of the “Triad Probability Assessment” model). The second input is the forecast
scenario of the “Pre-Forecast Analysis” model that gives the lowest MAPE for each
building. Having these inputs from the previous sub-models, the “Electricity Demand
Forecast” model goes in an iterative loop and performs a power demand forecast for
each building. Inside this loop, the ANN parameters are set based on the forecast
scenario identified in the “Pre-Forecast Analysis” model. Once the ANN is configured,
the training and testing files are built according to the optimal forecast scenario. The
ANN is different for each building, as it may follow a different forecast scenario. At
the end of this iterative process, the power demand for each building is calculated for
the most probable triad half-hour. This demand forecast gives the building manager a
pre-emptive advantage to reduce its energy bills by using various control methods to

decrease the consumption of its buildings.

2.4 Model Results

2.4.1 Triad Probability Assessment

The model was developed in Matlab and was trained on real “triad” data from the
period 1990 - 2014. The code is presented in Appendix B. The data were obtained from
National Grid and include information regarding the dates and times of the “triad”
peaks of the corresponding years. As mentioned before, intervals were defined to cal-
culate the probability of the “triad” dates. Figures 2.3 and 2.4 present the results when
considering intervals of 1-day and 5-days respectively. It is assumed that the building
manager can define a warning threshold to the model, and gets warnings for periods
that are calculated to have a “triad” peak probability greater than a certain level. In
this case this threshold is assumed at 70% of the maximum calculated probability from
all intervals (the building manager will be warned for periods which are at the top 30%

of the results).

Looking at Figure 2.3, the most probable “triad” intervals for 2014-2015 (the ones
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Figure 2.3: The daily probability distribution for “triad” peaks
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Figure 2.4: The 5-days probability distribution for “triad” peaks

above the threshold) were calculated to be the following 12 days:

6t — 7th 15" and 17" of December
5th — 7th 15 — 16" and 31" of January
15 — 2nd of February
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Looking at Figure 2.4, when the interval duration is increased to 5 days, the most prob-

able dates for a “triad” peak are following 30 days:

The first 4 intervals of December (1°¢ — 20*" of December)

The 4" and 5" intervals of January (16" — 25" of January)

As seen from the results, the increase of the intervals’ duration results in more “re-
laxed” probability distributions. This is expected, as explained in the previous sec-
tions, since the effect of one “triad” peak on its neighbouring dates expands at longer
interval durations. This results in having longer periods above the defined threshold,

and consequently a greater number of “triad” warnings.

It is important to define correctly both the interval duration and the warning threshold
correctly. Assuming that a “triad” warning triggers certain demand reduction actions,
the number of warnings is associated with a set of costs an example of which is the
comfort of the building’s occupants. The calculation of these costs is out of the scope
of this chapter. The objective is to provide a tool to the building manager to calculate
the probability of “triad” peaks. The building manager must carefully consider all
costs associated with demand reduction actions on the building facility, and decide

the optimal number of warnings for each particular case.

The model was also used to calculate the most probable half-hours for a “triad” peak
in a day. As mentioned before, the interval duration was fixed to 30 minutes and the
probability of each of 48 intervals in a day was assessed. The results are shown in

Figure 2.5.

Assuming the same warning threshold as before, the most probable half-hour for a
“triad” peak was calculated between 17:00 - 17:30. An “alert” band between 16:30 -
18:00 is clearly demonstrated. Using the model to calculate the probability of each half-
hour of a day offers a number of advantages to the building manager. By identifying
the exact half-hours for a “triad” peak, the duration of the demand reduction actions
are limited and consequently so is the disruption of the occupants” comfort in the
building. Reducing the need for long response periods reduces the overall risk of

“missing” a triad peak, as the building managers will be able to increase the number
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Figure 2.5: The half-hourly probability distribution for “triad” peaks in a day

of “triad” warnings they can respond to.

2.4.2 Pre-Forecast Analysis

The “Pre-Forecast Analysis” model was applied on data from the period of 2012-2013.
Half-hourly energy consumption data from six commercial buildings were analysed
and correlated with the corresponding local weather information. The Pearson’s cor-

relation matrix is presented in Table 2.2.

Table 2.2: Correlation matrix of weather attributes with daily energy consumption

Building Cloud | Cloud | Wind Mean | Wind Mean | Max | Air Rainfall Global Relative | Sunny
Total | Base | Speed Direction Gust | Temperature Radiation | Humidity | Hours
Building 1 | 3.52 542 0.06 5.95 133 | 191 3.53 3.23 0.45 8.78
Building 2 | 12.65 | 8.11 391 17.74 2.51 | 36.53 2.32 30.79 6.28 2243
Building 3 | 11.70 | 7.11 15.69 7.17 16.60 | 35.11 591 20.22 2.05 13.73
Building 4 | 13.35 | 9.12 6.57 13.95 5.61 | 34.14 2.02 33.05 11.80 23.33
Building 5 | 15.08 | 7.62 7.09 12.51 7.35 | 46.30 2.30 45.14 17.99 2441
Building 6 | 22.18 | 17.16 | 7.11 14.40 721 |59.83 2.13 67.05 31.23 40.60

As seen from Table 2.2, the correlation of energy consumption with the local weather is
different for each building. The strength of these correlations can be extracted from the

magnitudes of the Pearson’s correlation coefficients in this table (bigger is stronger).
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The weather attribute with the highest correlation to the demand of the Building 1 was
the sunny hours. For the Buildings 2-5 the attribute with the highest correlation was
the outside air temperature. Lastly for Building 6 the attribute with highest correlation
was that of hourly global radiation. As each building has different structural architec-
ture, area and occupancy, it normal to respond differently to the different weather

attributes.

The purpose of this “Pre-Forecast Analysis” model is to identify the optimal combin-
ation of weather attributes to include in the “Electricity Demand Forecast” model. To
this end, a number of forecasting scenarios were defined and their contribution to the
forecast accuracy was calculated using the MAPE index as explained in Section 2.3.3.
This way, a weather sensitivity analysis was performed, testing each forecasting scen-
ario and defining the hidden layers of the ANN to be used in the “Electricity Demand

Forecast” model for each building. The results are presented in Figure 2.6.

For Building 1 the forecast MAPE without considering any weather attributes was
around 7% and when the most dominant weather attribute (sunny hours) was con-
sidered in the forecasting model the MAPE increased to 8%. After running all forecast
scenarios, the lowest MAPE was found when considering all the weather attributes in
the forecasting model (last scenario). Based on this, the ANN to be used in the “Elec-
tricity Demand Forecast” model for Building 1 needs to consider all weather attributes
and use 14 hidden layers (same as the number of the attributes considered in the last

scenario).

The electricity demand forecast for Building 2 without considering any weather at-
tributes resulted in a MAPE of 13%. This was reduced to 6.4% when the outside air
temperature was added to the training and testing file. The MAPE was further re-
duced to 5.8% when the top two correlated weather attributes (outside air temperat-
ure and hourly global radiation) were added to the training and testing file. Unlike
the forecast results of Building 1 which had the lowest MAPE when considering all
weather attributes, for Building 2 the MAPE remained higher than 5.8% as the num-
ber of considered weather attributes was increased. According to this, the ANN of

the “Electricity Demand Forecast” model for Building 2 needs to consider two wea-
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Figure 2.6
ther attributes (outside air temperature and hourly global radiation) and use 6 hidden

was forecasted without considering any weather attributes. It was reduced substan-
tially when weather attributes were added to the training procedure, and a minimum
MAPE of around 7% was reached when considering the 8 most dominant weather at-
tributes. Based on these findings the ANN of the “Electricity Demand Forecast” model

With Building 3, the daily forecasting model gave a MAPE of 30

layers.
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for Building 3 was configured to use 12 hidden layers and the top 8 weather attributes.

Building 4 had similar results to Building 2, although at a smaller magnitude. In this
case, the lowest MAPE was recorded when considering the two strongest weather
attributes and the ANN of the “Electricity Demand Forecast” model for Building 4

was configured to use 6 hidden layers.

The forecasting error reduction when considering weather attributes was very large
for Building 5. A quite high MAPE (around 30%) was found when the forecast was
done without considering any weather attributes. This number reduced to 6% when
considering all the weather attributes, and 14 hidden layers were used in the ANN of

the “Electricity Demand Forecast” model for this building.

The smallest forecast errors were found for Building 6. Despite the MAPE was greater
than 15% in the No Weather Attributes scenario, in almost all the forecast scenarios
which considered some weather attributes the MAPE were reduced to below 5%. A
maximum MAPE reduction of 88% was found when considering the two most domin-
ant weather attributes for this building, and consequently the ANN of the “Electricity

Demand Forecast” model for Building 6 was configured to use 6 hidden layers.

As seen from this analysis, considering weather information when forecasting the elec-
tricity demand of a building reduces the forecasting errors. Furthermore, by choosing
the correct weather attributes to be considered in the forecasting process, results in

removing the irrelevant and “noisy” data and increases the forecast accuracy.

2.4.3 Electricity Demand Forecast

The power demand at 17:30 of the 6th of December 2013 (actual triad half hour and
day) was forecasted separately for each building. The findings of the “Pre-Forecast
Analysis” model were used in order to consider the optimal combination of weather
attributes and configure the ANN for each building separately. The forecasted demand

for each building is presented in Figure 2.7.
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Figure 2.7: Electricity demand forecast for all buildings

2.5 Model Validation

To validate the proposed model, the results were compared with the actual triad dates
and times as well as the actual electricity demand of each building on the forecasted

day and half-hour. The actual “triad” dates for 2014 /2015 are presented in Table 2.3:

Table 2.3: The actual “triad” peak dates and times of 2014/2015

Triad Date Triad Half-Hour
4th of December 2014 17:00 - 17:30
19th of January 2015 17:00 - 17:30
2nd of February 2015 17:30 - 18:00

To compare the results of the “Triad Probability Assessment” model to the actual
“triad” dates for 2014/2015, Figures 2.8 - 2.12 present the actual dates/times with red

colour.

As seen from Figure 2.8, one “triad” peak was above the warning threshold when
considering daily intervals for the calculations. The results are considered satisfactory,

bearing in mind that the “triad” peak of December was only missed for two days.

Looking at Figure 2.9, when the interval duration was increased to 5 days, the “Triad

Probability Assessment” model was able to predict two “triad” peaks of the same
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Figure 2.8: The actual “triad” peak days of 2014/2015 compared to the calculated

daily probability distribution.
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Figure 2.9: The actual “triad” peak days of 2014/2015 compared to the calculated

5-day probability distribution.

year. As explained in the previous sections however, an increase at the duration of the
intervals results in a large number of “triad” warnings (30 compared to 12). This is

something which should be carefully considered by the building manager.



36 2.5 Model Validation

To better understand the usefulness of increasing the interval size of the forecast, a
sensitivity analysis was performed, increasing the interval size from 1 to 10 days for 5
consecutive years (2010-2015). The average number of generated warnings as well as

the average percentage of predicted triad peaks are presented in Figures 2.10 and 2.11.
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Figure 2.10: Percentage of predicted “triad” peaks for different interval sizes
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Figure 2.11: Number of generated “triad” warnings for different interval sizes

As seen from these figures, the results can be grouped into three categories. The first

category includes interval sizes < 3 days, where the number of generated warnings
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varies from 9-25 days and less than 20% of the triad peaks (in average) are successfully
predicted. The second category includes interval sizes between 4-6 days, generates on
average 30 warnings and predicts successfully 30-40% of the triad peaks. The third
category has interval size > 7 days and is able to predict successfully 60% of the triad

peaks; however the number of generated warnings varies from 48-53 days.

As not all buildings have the same usage / occupancy patterns, the building managers
can select the interval size according to the type of the building facility (e.g. residential
/ industrial). In a residential building facility for example, the building manager may
not be willing to respond to a large number of triad warnings as reducing the demand
of the building in the evening would affect the comfort of the occupants. In this case,
the building manager would prefer to use this tool with a small interval size. On the
other hand, the building manager of an industrial facility might be keen to rearrange
electricity demanding operations and avoid the “triad” peak hours between 16:00 -
19:00, even on a frequent basis. Considering that the cost savings would be significant,
the building manager of an industrial facility could accept a higher number of triad
warnings and use this tool with a large interval size, as this would increase the chance

of avoiding the peak.

It is important to say that the increase of the interval size does not make the model
more accurate; it simply “relaxes” the probability distributions and generates more
warnings for the building manager. However, as seen from Figure 2.10, this increases

the likelihood of including the actual “triad” peaks in the warnings.

Figure 2.12 presents the actual “triad” peak half-hours of 2014/2015 compared to the
calculated half-hourly probability distribution. As seen from Table II, two “triad”
peaks occurred between 17:00 and 17:30, while the third one occurred between 17:30
and 18:00. The ‘Triad Probability Assessment” model calculated the period between
16:30 and 18:00 to be the most probable for a “triad” peak which was correct for all
three “triad” peaks. The performance of the model here is excellent as warnings were
issued for all “triad” half-hours. Having an accurate prediction of the exact “triad”
half-hours, the building managers are able to avoid the “triad” peaks and reduce their

bills. Furthermore, the fact that the “alert” zone is only 1.5 hours long reduces any
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Figure 2.12: The actual “triad” peak half-hours of 2014/2015 compared to the calcu-
lated half-hourly probability distribution.

other costs generated when reducing a building’s demand (e.g. the cost of the occu-

pants” discomfort).

To validate the “Pre-Forecast Analysis” and the “Electricity Demand Forecast” mod-
els, the forecasted power demand for each building was compared to the actual one.
Figure 2.13 presents the forecasted and actual power demand for all buildings, while

Figure 2.14 presents the forecasting percentage errors in each case.

As seen from Figures 2.13-2.14, the maximum error was found to be -13.56% for Build-
ing 5. Three forecasts had errors less than 3% which are considered very accurate,

while the accuracy of the other three was found above 89%.

As mentioned before, this model aims to assist the building manager to estimate the
triad days/hours and forecast the electricity demand of the facility. From this point of
view, what is also valuable to the building manager is the aggregated electricity de-
mand of the facility (all buildings combined). As seen from Figure 2.14, the error when
aggregating the forecasts from each building is only -2.422%. Because the individual
errors are positive and negative (the demand was overestimated in some buildings

and underestimated in some others), their aggregation results in an overall smaller
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Figure 2.14: Error of power demand forecast for all buildings

error. Furthermore, having both negative and positive errors proves that the forecast

errors are not systematic and the proposed forecasting model is unbiased.
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2.6 Summary

A Triad Demand Predictive model was developed to forecast the power demand of
commercial buildings during the “triad” periods. The model calculates the probability
of having a “triad” on a daily and half-hourly basis and predicts the power demand of
the building at the periods when a “triad” peak is more likely to occur. A Pre-Forecast
stage was considered where the performance of the forecasting model was improved

by considering weather attributes in the forecasting procedure.

The Triad Probability Assessment model was validated against the UK “triad” dates and
times of 2014 /2015. For an interval size of 5-days, the model predicted successfully the
dates of two out of three “triad” peaks of 2014/2015. It was showed that by increasing
the interval size, the model generates more warnings for the building manager, and
this increases the likelihood of including a “triad” peak. The times of all three “triad”
peaks of 2014/2015 were predicted successfully. It was also showed that the “triad”

peaks tend to occur in a relatively narrow zone during a day (between 16:30 and 18:30).

The Electricity Demand Forecast model was validated with real weather and electricity
demand data from six commercial buildings in Manchester. It was showed that the
weather information plays a significant role in the accuracy of the building energy
demand forecast. The Pre-Forecast stage proved that the choice of weather attributes is
very important to the forecasting accuracy, and in some cases, using less weather data
is more valuable and can lead to more accurate predictions. The Electricity Demand
Forecast model was tailored to each of the six building according to the results of the

Pre-Forecast stage, resulting to an overall 2.4% forecast error for the building facility.

However, reducing the electricity demand of a building is not a trivial activity. Many
other costs are associated to such actions (e.g. the cost of disrupting the comfort of
the occupants) and should be considered by the building managers before forcing a
demand reduction in a building. The occupants must be aware and willing to par-
ticipate in such a scheme. Contractual agreements might also need to be in place to
compensate the occupants, leaving room for new business models. Social studies and

questionnaires could also help in this direction.
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Chapter 3

Management of EV charging at

commercial buildings

3.1 Introduction

It is widely recognized that the electrification of the road transport sector combined
with low carbon electricity generation can significantly improve the conditions in cit-
ies with respect to air pollution and noise. Despite the fact that considerable techno-
logical and economic barriers still exist (mainly related to the storage technologies),
a mass deployment of electric and plug-in hybrid electric vehicles is expected in the
forthcoming years. This is indicated by several prospective studies and projects, for
instance Valentine-Urbschat & Bernhart (2009), National Academy of Sciences USA
(2009) and The Royal Academy of Engineering UK (2010), IEA (2011) etc. The rapid
development of EV charging infrastructure as well as forceful incentives from govern-

ment will enable the mass integration of EVs into power systems.

During the initial phase of EV uptake, EVs will be regarded as mere additional loads
like any other conventional load, and will be billed at normal retail prices. There are
several studies [73-75, 83-85] indicating that uncontrolled charging of EVs might in-
crease the system peak demand resulting in feeder voltage drops and/or equipment
overloads, in case of already stressed networks. Furthermore, since load is highly cor-
related with market prices, it is expected that the increase in domestic consumption,
due to EV charging, will trigger an increase in the market prices. This becomes more

intense when medium or high EV penetration level is considered, as it is analysed
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in [86, 87]. In addition, the EV uptake affects the daily routines of their owners as
they have to consider charging their vehicles on a daily basis. This creates a need for
charging stations both at private and public places so that the EV owners can charge
at home, in parking lots or even on the streets. Trying to accommodate this need
for charging, the building managers install charging stations at their premises and
provide local charging facilities to the occupants/visitors of their buildings. However,
this charging service provision creates a number of costs for the building manager.
Apart from the initial installation cost that is necessary, the EV charging stations have
operational and maintenance costs which the building managers need to cover. Fur-
thermore, EV charging increases the electricity demand of the building and affects the
demand profile creating additional costs for the building manager. To reduce these
costs, the building manager must coordinate the charging of the EVs and minimise its

impact.

EV charging coordination requires a new market entity namely a Charging Station
Manager. The Charging Station Manager is responsible for managing the demand
from the charging stations of large EV fleets according to its strategy [72, 86]. The aim
of the Charging Station Manager is to serve the EV demand in a beneficial way for all
parties involved. Under such a business concept, both the Charging Station Manager
and EV owners can share benefits depending on bilateral contracts [72]. Moreover, the
Charging Station Manager can be incentivized by the distribution network operation
(DNO) in order to offer additional load management services for the improvement
of the network performance. Several management concepts for efficient EV charging
have been presented in the literature [87-94]. Different objectives [90] can be con-
sidered when defining an EV charging strategy, namely technical objectives regard-
ing the physical assets and constraints of the energy system [90, 92, 94], economical
objectives associated with the energy market-related stakeholders (consumers, pro-
ducers and retailers) [87, 88, 93] and techno-economic objectives where technical and

economic aspects are part of the total energy price to be paid by the end-user [89, 91].

In this chapter, a charging control algorithm was developed for the building manager

to reduce the EV charging costs of a building facility. A control model is presented that
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enables the Charging Station Manager to schedule the EV charging and discharging
events following two strategies. The first strategy aims to minimise the impact of EV
charging on the demand profile of a building facility and reduce its peak demand by
discharging the EVs during the peak hours. The second strategy aims to minimize
the total electricity cost of the building facility by charging and discharging the EVs
at the cheap and expensive hours respectively. The control model was evaluated on a
workplace charging scenario at the UK’s generic distribution LV network. The impact

on the demand profile and daily electricity cost was studied for a realistic EV fleet.

3.2 Literature Review

Several approaches for the management of EV charging have been presented in the lit-
erature the past few years. The existing EV charging control strategies can be classified

into two categories, namely centralised and decentralised.

The centralised control strategy uses a central controller (an EV aggregator) which co-
ordinates all the EVs. According to [95], the implementation of a centralized control
strategy allows real time insight at all points of the network and a better utilisation of
the network capacity. However, it requires significant communication infrastructure
across the network and communication links between the central controller and each
individual EV for the acquisition of local information. In addition, a real-time opera-
tion requires significant computational resources in order to process large amounts of
data and solve the scheduling problem of EV charging. Therefore, the centralised con-
trol strategies are costly to implement and susceptible to single-point failures (e.g. if
the EV aggregator fails, the entire EV management system will stop working) [96]. Im-
plementation examples of this control strategy are found to use linear programming
[97], model predictive control [98], dynamic programming [93, 99] and particle swarm
optimisation [100]. Linear programming is a method to achieve the best outcome (such
as maximum profit or lowest cost) in a mathematical model whose requirements are
represented by linear relationships [97]. Although it lets to perform an extensive ana-

lysis of “what-if” scenarios with a small computational cost (since only linear calcu-
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lations are included in the process), it assumes that a liner relationship between the
variables which in some cases is not realistic (e.g. relationship between network losses
and demand) [101]. Model predictive control techniques have been found to outper-
form linear programming methods, converging faster to the optimal solution even on
linear problems [98]. However, they are very sensitive to uncertainties, and that often
leads to suboptimal solutions or even non-convergence for large problems with vari-
ables of probabilistic nature [102]. On the other hand, dynamic programming allows a
more realistic representation of the system since it allows the optimization parameters
to change during the optimization process. The computational requirements however
are significant, and the time needed for solving a large optimization problem could
make this method impractical for a near-real time operation [93]. Particle swarm op-
timization methods have been found to perform well with problems considering un-
certainties, as they have intrinsic parameters with “memory” which are used to return
to a previous better solution of the optimization problem. The correct parametrisation

however requires large amounts of data, and the convergence is slow [103].

On the other hand, decentralised control strategies require information exchanges
among neighbouring units through a local communication network. This eliminates
the need for powerful data processing units and reduces the size of the required com-
munication infrastructure, making this control approach a cost-effective solution. In
addition, the computational requirements are significantly lower when comparing to
centralised approaches for large numbers of EVs [95]. Examples of decentralised con-
trol strategies can be found in [104-107]. Following this strategy, researchers have
often implemented a multi-agent system to control the charging of the EVs, according
to which every EV is seen as an autonomous agent with individual objectives and con-
straints. Papers [86, 108-110] present relevant approaches. Simulating the rationale of
an EV driver, game theoretic approaches are also implemented following a decentral-
ised control architecture, where the scheduling problem is formulated as a cooperative
or non-cooperative game and the participants try to reach the Nash equilibrium (the
state where each EV driver chooses the best possible charging schedule, taking into

account the decisions of the other EV drivers) [111, 112].
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In addition to the flexibility they offer during their charging periods, EVs have the
potential to be used as a flexible storage giving energy back to the grid or to a building.
The acronyms V2G for “Vehicle-to-Grid” or V2B for “Vehicle-to-Building” are often
used. This technology was introduced for the first time by Kempton et al. in 1997
[113], and it implies bi-directional power components that let the batteries share part
of their energy and let it flow towards the grid or the building. The energy storage
capacity of an EV fleet in the V2G concept can be used for ancillary services like reserve
and frequency regulation. V2B concept uses energy exchange between the EVs and a
building, affecting the local demand and/or reducing the building’s energy cost. In
both cases, control, metering and communication technologies will be required within

a proper regulated and standardized framework [114].

The utilisation of the EV batteries in a V2G concept is found in a number of papers in
the literature. Focusing on mitigating the variation of renewable energy generation,
the authors of [115] propose a hierarchical framework which regulates the V2G power
and minimises the total operational cost (TOC). Similar approaches can be found in
[116, 117]. The V2G potential in the ancillary service market was evaluated in [118],
and the results showed that a 40.3% optimal gain factor (defined in [118] as “the aver-
age power discharge to the grid by each vehicle”) is obtainable. The economic value of
V2G in a real time power flow control algorithm was also studied in [119] for a large
scale scenario of EV uptake. The participation of EV charging / discharging in the
ancillary services market is investigated in [120], where V2G is used for primary fre-
quency regulation through a droop-control mechanism that follows a Af/AP curve
in order to define the V2G output according to the system’s frequency. A frequency
droop-based control is also used in [121], where a distributed regulation dispatch al-
gorithm is developed aiming to meet the regulation dispatch signals sent to the EV ag-
gregator by the system operator. Other approaches of EV participation in the ancillary
services market through V2G can be found in [122-128]. A game theoretic approach is
also implemented in [129], while the authors of [130] developed an economic bench-
mark model for the EV charging strategies and showed that V2G provides additional
revenues to the EV owners. Despite the promising results from the various V2G mod-

els, the authors of [131] highlight a number of concerns that arise, especially regarding
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the necessary power electronics hardware, and suggest some research directions for

the near future, in order to possibly make V2G a practical reality.

Apart from the grid-side benefits of V2G, the bi-directional power exchanges of EVs
are also beneficial in small-scale applications like the parking lots of buildings. Using
the EVs in a microgrid that includes a number of buildings and distributed energy
resources (DER) is found in a few papers in the literature. Such an example is found in
[114] and [132], where the authors perform an economic analysis for an office building
in California, and use EVs with Vehicle-to-microgrid (V2m) capabilities in order to op-
timize their storage usage in combination with other DER. Similar work can be found
in [133-135]. Prediction models are also incorporated to the scheduling algorithms in
[136, 137] to forecast the demand profile of local DER and EV charging respectively. A
model predictive control based algorithm is presented in [138] that co-schedules the
HVAC operation, EV charging demand and battery storage to reduce the total build-
ing energy consumption and the peak energy demand, while maintaining the temper-
ature within the comfort zone for building occupants and meeting the deadlines for
EV charging. The authors of [139] present a multi-agent based model for the energy
management of the building with EVs, and compare three different charging strate-
gies with respect to their impact on building comfort. A game theoretic approach is
presented in [140], where a non-cooperative game is played by the EVs to flatten the
demand profile of a building.

According to the best of the author’s knowledge however, the existing models do
not consider the electricity cost of the building manager as the main objective of the
charging control. This chapter proposes a charging control model that reduces impact
of EV charging on the demand profile and the electricity cost of the building, according

to the building manager’s objectives.

3.3 Charging Control Model

The proposed charging control model for the Charging Station Manager follows two

different centralised control strategies namely “Off-Peak Strategy” and “Cost-Reduction
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Strategy”. A two-stage coordination approach is followed as presented in Figure 3.1.
In order to increase the sensitivity of the control model, and offer a dynamic coordin-
ation of the EV charging, both stages of the coordination cycle are repeated on a 15
minutes basis (timestep). This timestep duration was considered small enough to en-
sure a dynamic response to unexpected changes in the system, but also big enough to

avoid the computational delays that are introduced for large numbers of EVs.

;\\\\ \ AN
> Schedule > Dispatch

/
Figure 3.1: The stages of the EV coordination

During the Schedule stage the Charging Station Manager coordinates the charging of
every EV that is connected to a charging point. It calculates the most preferable future
timesteps for the EV charging according to its strategy, considering constraints both
from the infrastructure side (nominal power of charger, network limits) and the vehicle
side (battery capacity, departure time). During the Dispatch stage the Charging Station
Manager sends the charging set point to all EVs that are scheduled to charge during
that timestep.

3.3.1 Off-Peak Strategy

The goal of the Off-Peak strategy is to minimize the impact of EV charging on the de-
mand profile of the building. To this end, the off-peak hours of the building” daily
power demand are preferred for the EV charging. The future power demand of the
building is assumed known, and the scheduled charging set points for an EV are ob-
tained from solving the minimization problem of Equation (3.1). In order to achieve
the optimal solution for the whole EV fleet it is crucial to solve this minimization prob-
lem sequentially for all the connected EVs. That is because the charging schedule of
each EV affects the future power demand of the charging facility (Ps(¢) from Equation
(3.1)), and consequently the charging schedules of the EVs that have not yet scheduled
their charging. The use of the Charging Station Manager is highlighted at this point, as

it aggregates the information from all the EVs and coordinates their charging. Variable
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to is the arrival timestep of an EV, while C'P is the connection period of an EV (number
of timesteps between arrival and departure). Variable C'P together with the timestep
duration (15min) defines the resolution and size of the power vectors for each EV (e.g.
for an EV that arrives at 10:00 and leaves at 14:00, the CP is 16 and all the power vectors

will have 16 values).

to+CP

min Y (Ppy(t) + Ps(1)) (3.1)
t=to
subject to:
to+CP
. — (Soc’maz_SOCin)'BC
gt:o (T~ Pev(t)) Cers
Pgy(t) < P,

Pgy(t) < Pr(t) — Ps(t)

, where

Pry (t) is the scheduled charging set point for timestep ¢
T is the duration of the timestep in hours
Ps(t) is the building’s demand without EV charging at timestep ¢

Pr,(t) is the network limit, the maximum energy that can be supplied from the grid

at timestep ¢ (covering both the building demand and the EV charging)
P, is the nominal power of the EV charger

BC is the battery capacity

Ceyy is the charger efficiency

SoC;, is the initial SoC level

S0C 4z is the maximum SoC that can be reached until the departure of the EV

Such a charging strategy is directly beneficial for the electricity grid as it prevents
the stressing of the network. Depending on the contractual agreements between the
energy provider and the building manager, this charging control strategy could be also

beneficial for the latter, especially if the number of EVs is high.
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3.3.2 Cost-Reduction Strategy

The goal of the Cost Reduction strategy is to reduce the daily energy cost of the build-
ing. The EVs are charged during the cheapest hours of their presence in the park-
ing lot. Following the electricity price curve, the EVs are charging when the kWh is
cheaper. The scheduled charging set points for an EV are obtained from solving the

minimization problem of Equation (3.2).

to+CP
min Y (Pey() - p(t) (32)
t=to
subject to:
to+CP
Oz (T . PEv(t)) = (SOCmax(;STéCm).BC
t=to eff
Ppy(t) < P,

Pgy(t) < Pr(t) — Ps(t)
, where p(t) is the electricity price for timestep ¢.

Such a charging strategy emphasises on minimizing the charging cost for the building
manager. Unlike the Off-Peak strategy, the optimality of the solution is not affected
by the dependencies between the charging schedules of the EVs because the charging
schedule of one EV is not able to affect the electricity prices. There are however indirect
dependencies due to the overall network constraint (Pr(t)) which prevents the EVs

from charging when the scheduled demand exceeds this limit.

3.3.3 Control Algorithm

In every operating timestep ¢ the Charging Station Manager performs the following

steps:

Step 1. Create a list [, with all the EVs that are connected to their charging point.
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Step 2. Sort the list /; according to their disconnection time. EVs that depart first are
placed on the top of the list. The EVs that depart on the same time are classified
according to their SoC' (emptiest first)

Step 3. Calculate the energy requirements for the EV which is first on list /;
Step 4. Identify the most preferred charging timesteps according to the strategy

Step 5. Calculate the future power set points of the EV charger with respect to the EV

charger’s nominal power and the network’s limits

Step 6. Update the scheduled demand of the facility (necessary to maintain optimal-
ity)
Step 7. Remove EV from list [;

Step 8. If there are unscheduled EVs, return to Step 3 otherwise continue to the Dis-

patch stage

The Schedule stage of the charging control model for both strategies during one timestep
is described using Figure 3.2. In the Dispatch Stage, the scheduled power set points in

timestep ¢ are forwarded to the EV chargers in order to charge the EVs.

The abbreviations used in Figure 3.2 are explained in the following list:

l; is a list with all the connected EVs at timestep ¢

Dgy is the departure timestep of the EV, as specified from the EV owner
SoCy is the SoC of the EV at timestep ¢

(1) indicates the ascending order of the sorting

EV is a counter variable for the connected EVs

Ergmain ig the remaining energy to be supplied to EV

Ewanted ig the total energy requirements of the EV

Elgken ig the scheduled energy to be supplied to EV

ts a counter variable for the timesteps of the day
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Figure 3.2: The Schedule stage of the charging control model

p(ts) is the electricity price in /MW h at timestep ts

Pg(ts) is the total scheduled power demand at timestep ¢s in kW
r indicates the ranking value (1 is the highest)

t, is the timestep with ranking value r

Ey, is the network limit, the maximum energy that can be supplied from the grid at

timestep ts (covering both the building demand and the charging of all the EVs)
T is the duration of the timestep in hours

Ep® is the maximum energy that the EV can take from the grid at timestep ¢s
P, is the nominal power of the EV charger

Egy is the energy that the EV is scheduled to take at timestep tr
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3.4 Charging Control Model with V2B

The charging control model was modified in order to include V2B operational capabil-
ities when bi-directional power exchanges are available to the Charging Station Man-
ager. Under the V2B operational mode, the Charging Station Manager coordinates
the EVs to charge and discharge according to the same Off-Peak and Cost Reduction
strategies. As presented before, these strategies are mainly different in the way the
scheduling process is performed, while the dispatch stage is the same. The Charging
Station Manager follows the two stage coordination approach in every timestep, and
schedules the charging and discharging events of every EV that is connected to a char-
ger. It is assumed that a contractual agreement exists between the EV owner and the
building manager that regulates the maximum depth of discharge for each EV. This
depth of discharge level (VV2B) defines the amount of energy that the EV owner agree
to extract from their EV and provide to the building manager (V2B%"¢?), The design
of contractual agreements to reward the participants, as well as business models eval-
uating the viability of a reward system are not studied in this thesis; it is assumed that
both parties are benefited and willing to participate in a V2B scheme. Each EV owner

decides the discharge capacity to offer, according to its needs and use of EV.

3.4.1 Off-Peak Strategy

The Off-Peak Strategy has the same objective as before. The off-peak hours of the build-
ing’s daily power demand are preferred for charging the EVs. Utilizing the dischar-
ging functionality of the EVs, the Charging Station Manager discharges the EVs during
the peak demand hours in order to reduce the overall peak demand of the building
and flatten the demand profile of the building facility. Such a charging strategy offers
great benefits to the electricity grid as it reduces the stressing of the network. Apart
from the contractual agreements between the energy provider and the building man-
ager, additional agreements between the building manager and the EV owners could
be beneficial to both parties. The EVs could be rewarded for their participation to

such a scheme, while the building manager would have a flattened demand profile



3.4 Charging Control Model with V2B 53

for his building facilities and be able to postpone possible unnecessary upgrades of

the installed infrastructure.

3.4.2 Cost Reduction Strategy

The Cost Reduction Strategy is the same as before, only this time the EVs are dischar-
ging at the expensive hours to further reduce the overall cost for the building man-
ager. In case the EV owners pay for their charging on a fixed rate, this strategy could
be applied in order to reduce the electricity cost for the building manager. In this case
however, financial or other incentives should be given to the EV owners as a reward

for their participation to the scheme.

The optimization problems of Equation (3.1) and Equation (3.2) were modified and
transformed into one generalised minimization problem, applicable to both strategies.
A ranking function is used to identify the most preferable timesteps for charging /

discharging. The charging / discharging power set points are obtained after solving

Equation (3.3).
to+CP
min Y (Pp(t) ri(t) + Po(t) - ra(t)) (33)
t=to
subject to:
to+CP
. _ (SOCmax—SOCin)'BC
tzzto - Folt)) = Cery
y<r V2B-BC
t:zto (T- Pp(t) = vz Be
Po(t) < Py
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Pc(t) is the scheduled charging set point for timestep ¢

Pp(t) is the scheduled discharging set point for timestep ¢

r1(t) is the output of the charge ranking function for timestep ¢
r2(t) is the output of the discharge ranking function for timestep ¢
T is the duration of the timestep in hours

Ps(t) is the building’s demand without EV charging at timestep ¢

Pr(t) is the network limit, the maximum energy that can be supplied from the grid

at timestep t (covering both the building demand and the EV charging)
P, is the nominal power of the EV charger

V2B is the agreed depth of discharge level (in % of BC)

BC is the battery capacity

Ceyy is the charger efficiency

SoCyy, is the initial SoC level

S0Cmaz is the maximum SoC that can be reached until the departure of the EV

3.4.3 Control Algorithm

The steps that the EV aggregator executes in every timestep ¢ are listed below:

Step 1. Create a list [; with all the EVs that are connected to their charging point

Step 2. Sort the list /; according to their disconnection time. EVs that depart first are
placed on the top of the list. The EVs that depart on the same time are classified

according to their SoC (emptiest first)
Step 3. Calculate the remaining discharge capacity for the EV which is first on list /;
Step 4. Identify the most preferred discharging timesteps according to the strategy

Step 5. Calculate the future power set points of the EV charger with respect to the EV

charger’s nominal power and the network’s limits
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Step 6. Update the scheduled demand of the facility (necessary to maintain optimal-
ity)

Step 7. Flag the discharging timesteps in order to prevent charging and discharging
at the same time

Step 8. Calculate the energy requirements for the EV which is first on list /;

Step 9. Identify the most preferred charging timesteps according to the strategy

Step 10. Calculate the future power set points of the EV charger with respect to the

EV charger’s nominal power and the network’s limits

Step 11. Update the scheduled demand of the facility (necessary to maintain optimal-
ity)
Step 12. Remove EV from list [,

Step 13. If there are unscheduled EVs, return to Step 3 otherwise continue to the Dis-

patch stage

The Schedule stage of the charging control model for both strategies during one timestep
is described using Figure 3.3. In the Dispatch Stage, the scheduled power set points in

timestep ¢ are forwarded to the EV chargers in order to charge the EVs.

The abbreviations used in Figure 3.3 are explained in the following list:

l¢ is a list with all the connected EVs at timestep ¢

Dgy is the departure timestep of the EV, as specified from the EV owner
SoCy is the SoC of the EV at timestep ¢

(1) indicates the ascending order of the sorting

(1) indicates the descending order of the sorting

EV is a counter variable for the connected EVs

V2B s the remaining energy to be extracted from EV

V2B}97°“d is the total agreed energy to be extracted from EV
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Figure 3.3: The Schedule stage of the charging control model with V2B

V2B%Y" is the scheduled energy to be supplied to EV

Ergmain js the remaining energy to be extracted from EV

Ewanted jg the total energy requirements of the EV

Etgken ig the scheduled energy to be supplied to EV

ts a counter variable for the timesteps of the day

p(ts) is the electricity price in /MW h at timestep ts

Pg(ts) is the total scheduled power demand at timestep ts in kW
r indicates the ranking value (1 is the highest)

t, is the timestep with ranking value r

Ey is the network limit, the maximum energy that can be supplied from the grid at

timestep ts (covering both the building demand and the charging of all the EVs)
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T is the duration of the timestep in hours

E® is the maximum energy that the EV can take from the grid at timestep ¢s
P, is the nominal power of the EV charger

Egy is the energy that the EV is scheduled to take/give at timestep ¢r

discharge is a Boolean variable to prevent charging and discharging at the same time

3.5 Description of the simulation scenario

The developed EV charging coordination algorithm was evaluated on a workplace
charging scenario and the impact of the EV charging / discharging on the demand
profile and electricity cost of a building facility was assessed. In the studied scenario
the EVs were coordinated to charge/discharge during office hours in the parking lot

of an office building.

A typical UK office building was considered to evaluate the performance of the pro-
posed coordination algorithm in the workplace charging Scenario. The considered
office building has a peak demand of 24kW and a typical load profile curve from the
UK Energy Research Centre (UKERC) (see Figure 3.4).
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Figure 3.4: The typical power demand of an office building
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According to [141] and [142], 25 employees are assumed to work in this building. Con-
sidering that an average 67% of the employees go to their work by car [143], approx-
imately 16 vehicles arrive every day in the building (or in the area near the building).
Assuming a 20% EV uptake (estimated for 2025 in [144]), 3 EVs were considered for

each office building in the network.

The behaviour of the EV drivers has been statistically modelled using the data pro-
vided by the NTS regarding the region of Wales (https://www.gov.uk), in order to
calculate arrival / departure times and energy requirements for every EV. Raw files
and extended reports were available from the UK Data Service, providing information
about the arrival and departure times to/from work along with the travelled distance
from 2002 up to 2010. A total of 962 people and 4,099 dairy days have been analysed,
and the model was evaluated on these data. After the data from NTS were analysed,
the arrival and departure time distributions of Figures 3.5-3.6 as well as the travelled
distance distribution of Figure 3.7 was calculated.
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Figure 3.5: Probability distribution of arrival times at workplace

The distribution of Figure 3.7 was used to calculate the EV’s energy requirements
when arriving at home. It is used to identify the initial state of charge (SoCj,) of

an EV when arriving at the parking lot, based on the battery capacity (BC) and the


https://www.gov.uk
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mean energy consumption per km (M EC) of its battery:

MEC - di 1
SoC;,, =100 - MEC dj;tgnce 00 (3.4)

Information regarding the battery capacity and the energy consumption of an EV are
usually published by the EV manufacturers in the vehicle’s datasheet. Looking at

the UK market [144], typical values for the battery capacity are around 28kWh and
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for the mean energy consumption around 0.16kWh/km. In this model, the normal
distributions of Table 3.1 have been considered for both battery capacity and energy

consumption for each EV.

Table 3.1: Parameters of the normal distributions for BC and M EC
Battery Capacity (kWh) | Energy Consumption (kWh/km)

Mean 28 0.16

sigma 2 0.02

The charging stations were assumed to have a charging rate of 7kW. For the Char-
ing Control Model with V2B two scenarios were considered for the agreed depth of
discharge of the EVs (V2B,4r¢cq), With values of 5% and 15% respectively. The daily
electricity prices were obtained from (http://www.n2ex.com/) for a typical winter
weekday. The electricity price curve is presented in Figure 3.8:
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Figure 3.8: The daily electricity prices

The Charging Station Manager was assumed to be located at the LV substation, re-
sponsible for a number of office buildings. The structure of the UK Generic Low
Voltage Distribution Network [145] was considered and modified for a realistic work-
place charging scenario. An 11kV “commercial” feeder was implemented to study
the impact on the electricity grid. The updated network structure for this scenario is

presented in Figure 3.9, while its technical characteristics are summarized in Table 3.2.
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A seen from Figure 3.9, the LV substation supplies electric energy to 16 office buildings

and consequently coordinates the charging / discharging of 48 EVs.

33kv
0.4kV  2x200m 2x200m
11kv 0.4kV 0.4kV
l J/ l l l 300mm? 120mm?
@ /—HK—H
VA A
Service Cable
@ 50mm?
4x1000m
11kV —%
70mm?
g J
() : Charging Station Manager Y

4 Commercial Buildings

-

J

'
16 Commercial Buildings

Figure 3.9: The modified UK Generic Low Voltage Distribution Network

3.6 Simulation results

3.6.1 Impact on the demand profile

Considering 48 EVs in a group of 16 commercial customers, the impact of their char-
ging at a 7kW charger in an uncontrolled fashion is presented in Figure 3.10. As seen
from Figure 3.10, the EV charging leads to an increase of the peak demand during the
arrival hours of the EVs (around 08:00 - 09:00).

As explained in the previous sections, a Charging Station Manager was assumed to
be installed at the 0.4kV bus to manage the EV charging. The impact of EV charging
when the Charging Station Manager operates under the Off-Peak strategy is presented
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Table 3.2: The technical characteristics of the network

Object Description Technical Characteristics

15MVA
33/11kV Transformer X/R ratio =15

18% impedance on 15MVA base

5 Outgoing 11kV “domestic” feeders 3km
11kV Bus

each

1 Outgoing 11kV “commercial” feeder

4km
11kV  185mm? “domestic” | 3-core PICAS, Cu
feeder segment 0.164 +j0.08 ©2/km
11kV  95mm? “domestic” | 3-core PICAS, Cu
feeder segment 0.32 +j0.087 ©2/km

11kV 70mm? “commercial”

feeder segment

3-core XLPE, Al
0.568 +j0.1 ©2/km

11/0.4kV Transformer

500kVA
X/Rratio=15

5% impedance

0.4kV “commercial” Bus

1 Outgoing 0.4kV “commercial” feeder
400m

0.4kV 300mm? “commercial” | XLPE, Cu

feeder segment 0.0802 +j0.072 2/km
0.4kV 120mm? “commercial” | XLPE, Cu

feeder segment 0.197 +j0.072 ©/km
0.4kV 50mm? “commercial” | XLPE, Cu

service cable 0.494 +j0.076 ©2/km

in Figure 3.11. The Off-Peak strategy of the Charging Station Manager places the EV
charging events at the off-peak hours of the demand curve, and reduces the impact
of EV charging on the network. When the EVs offer discharging services, the Char-

ging Station Manager operates under the V2B operation, discharging the EVs at the
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Figure 3.10: Impact of Uncontrolled EV charging

peak hours. Considering a 5% discharging allowance, the Charging Station Manager
reduces the peak demand by 4.8%. When the V2B allowance is increased to 15%, the
EVs discharge for longer periods resulting in further demand reduction (up to 9.7%).
The increased depth of discharge results in longer charging durations from the EVs, in
order to leave the workplace fully charged. This phenomenon is illustrated by looking
at the distribution of the charging hours from the EVs. Longer charging durations are
needed from the EVs to be able to provide this additional discharging capacity. Con-
sidering that not all EV drivers leave the same time from the workplace (also seen in
Figure 3.6), the model tries to reduce the delay for every EV owner. To this end, the
model prioritises EVs leaving early over EVs leaving late and charges them according
to their departure time (Step 2 of the Schedule Algorithm); EVs leaving early will be

charged sooner than EVs that leave later.

Figure 3.12 presents the impact of EV charging when the Charging Station Manager
operates under the Cost Reduction strategy. In this strategy the cheapest hours are
preferred for the charging events and the most expensive hours are preferred for dis-
charging the EVs. As proposed in [72], a maximum limit of 500kW was set to the
Charging Station Manager, in order to avoid a peak in the demand and protect the
MV/LV transformer of the 0.4kV bus. This upper limit at 500kW caps the EV char-
ging demand, and results in prolonged charging events. When bi-directional power
exchanges are available, the Charging Station Manager coordinated the EVs to dis-

charge during the (expensive) morning hours. A seen from Figure 3.12, this strategy
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is very sensitive to price changes, and all EV charging events coincide between 13:00 -
15:00. This is due to the inelastic price curve. A dynamic price mechanism could solve

this problem; however this is not the focus of this chapter.
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Figure 3.11: Impact of EV charging with the Off-Peak Strategy
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3.6.2 Impact on the daily electricity cost

The different charging control strategies were also compared according to the daily
electricity cost that is needed to supply the aggregated demand (as presented in Fig-
ures 3.11-3.12). Figure 3.13 presents the resulting daily cost difference between each
charging strategy and the base case (without EVs at all).

m Uncontrolled EV Charging B EV Charging without V2G
B EV Charging with V2G 5% OEV Charging with V2G 15%

Daily Cost Difference (%)

Off-Peak EV Charging Strategy Cost-reduction EV Charging Strategy

Figure 3.13: Increase of the daily electricity cost comparing to the case without EV

charging.

As expected, the Uncontrolled charging scenario results in the greatest cost increase
as the charging events coincide with the expensive peak hours of the demand curve.
Looking at the rest of the scenarios, the overall daily cost is increased as the EV char-
ging increases the building’s demand. Due to the relatively small differences of the
demand profile in all the charging strategies, the daily cost difference between the dif-
ferent strategies is not significant. Offering V2B services, the Charging Station Man-
ager is able to reduce the electricity cost increase for the building manager especially
in the Cost Reduction strategy. This reduction however is not massive, being only
3.4% comparing to the 4.3% of the Uncontrolled charging scenario. Looking on an

annual basis however, a 1% reduction in the electricity costs is important to the build-



3.6 Simulation results 67

ing managers especially if their electricity costs are high. Furthermore, considering
more EVs (offering V2B services) in the parking lot of the building would result in a
greater electricity cost reduction, as more EVs would be available to discharge during

the expensive hours.

3.6.3 Additional unintended consequences

As presented in the previous section, the operating strategy of the Charging Station
Manager affects the building’s demand profile and consequently the electricity cost of
the building manager. However, reducing the electricity cost of the building manager

has additional unintended consequences to the network.
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Figure 3.14: Minimum bus voltage with Off-Peak strategy

Considering the network structure of Figure 3.9, the bus voltages along the MV feeder
are affected by the building’s demand profile as formed by the charging strategy of
the Charging Station Manager. The minimum voltage is found on the times when

the demand is at its peak value. Charging the EVs in an uncontrolled fashion creates
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a peak in the demand profile of the building as presented in Figure 3.10. This peak
causes a voltage drop along the commercial MV feeder. Figures 3.14-3.15 present the

minimum bus voltage that was observed in a day for both charging strategies.
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Figure 3.15: Minimum bus voltage with Cost-Reduction strategy

When the Charging Station Manager operates under the Off-Peak strategy (without
V2B) the EV charging demand is not creating a new peak at the demand profile of the
building and thus the minimum bus voltage is the same with the case without any
EV charging. When the EVs offer discharging capacity, the Charging Station Manager
reduces the peak demand of the building and the minimum voltage of the buses along
the MV feeder are increased. The voltage increase is not significant, however con-
sidering a case with high levels of EV penetration, the reduction of the impact of EV
charging on the bus voltage could be very valuable to the network (especially to areas

with long MV lines).

When the Charging Station Manager operates under the Cost Reduction strategy, the

EVs charge during the cheap hours and create a peak at the demand profile of the
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building. This peak is capped by the 500kW limit of the Charging Station Manager.
The number of EVs considered in the scenario results in a peak that is larger from
this cap in all cases of the Cost Reduction charging strategy. Consequently the voltage
drop is the same for all cases of this strategy, regardless of the availability or level of the
discharging capacity. The value of the demand cap is highlighted here, as otherwise

the EV charging would result in great stress for the network and further voltage drops.

3.6.4 Additional case studies

One of the key assumptions in this model is that all EV drivers participate in the con-
trol scheme; however this might not always be the case. To understand the model’s
sensitivity to this assumption, additional scenarios were studied for different num-
bers of unresponsive EV drivers (EV drivers who don’t respond to the control signals
of the Charging Station Manager). Figure 3.16 presents the impact of EV charging for

different levels of unresponsive EV drivers.
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Figure 3.16: Impact of EV charging for different levels of Unresponsive EVs

As seen from the results, high levels of unresponsive EV drivers lead in a result which
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is not optimal. When the Charging Station Manager operates under the Off-Peak char-
ging strategy the unresponsive EV drivers cause a new peak in the demand profile
of the building, and when the Charging Station Manager operates under the Cost-
Reduction charging strategy the unresponsive EV drivers charge during the expensive
hours increasing the electricity cost for the building manager. The problem of having
unresponsive EV drivers in the EV fleet has been studied in [146], where we propose
the use of a forecasting model to predict the EV demand from the unresponsive EV
drivers so that the charging schedules of the responsive EV drivers can be adapted

and lead to an optimal result; this work however is not part of this thesis.

The model was also used in a residential charging scenario and the complete results

are presented in Appendix C.

3.7 Summary

In this chapter a control model was presented that enables the Charging Station Man-
ager to schedule the EV charging and discharging events following two different stra-
tegies. The Off-Peak strategy aims to minimise the impact of EV charging on the de-
mand profile of the building and, when V2B is available, reduce its peak demand by
discharging the EVs during the peak hours. Operating under this control strategy, the
Charging Station Manager reduces the overall impact of EV charging to the grid and
enables an efficient network operation, in terms of line overloads, energy losses and
voltage drops. The Cost Reduction strategy aims to minimize the total electricity cost
of the building facility by charging and discharging the EVs at the cheap and expens-
ive hours respectively. Both strategies ensure compliance with equipment nominal
ratings and network technical constraints. The proposed control model was evalu-
ated using a realistic EV fleet modelled based on real statistical data from the NTS. To
study the impact on the grid, the UK generic distribution network was modelled in
MATPOWER. The impact on the demand profile, daily electricity cost and bus voltage

was studied for a workplace charging scenario.

The results showed that the Off-Peak strategy combined with a 15% V2B provision
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reduces the aggregated peak demand of the building by 9.7%. In this case however the
EVs need to charge for longer periods and due to the bell shaped demand profile of a
commercial building and the long peak period, this could lead to insufficient charging
of some EVs. The distribution network is also benefited from this charging strategy.
Studying UK generic distribution network, it was found that the fleet of 48 EVs was
able to increase the minimum voltage of the 0.4kV bus by 0.2%.

Considering that the building managers are often charged for their electricity accord-
ing to the “triad” system [30], the Cost Reduction strategy of the Charging Station
Manager is useful in this case, as it could lead to significant cost savings. It was found
that the Cost Reduction strategy combined with a 15% V2B provision reduces the daily
electricity cost of the building by 1%. However, a demand cap is necessary to be ap-
plied in order to protect the existing infrastructure from excessive stress and overload-

ing due to the simultaneous charging events during cheap hours.
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Chapter 4

A Local Energy Management

System for the building manager

4.1 Introduction

The International Energy Agency (IEA) estimates that buildings represent globally the
32% of the total final energy consumption (energy that is supplied to consumers for all
final energy uses, such as heating, cooling, and lighting), and around 40% of primary
energy consumption in most IEA countries [147]. The United Nations Environment
Program estimates that residential and commercial buildings consume approximately
60% of the world’s electricity, in addition to using 40% of global energy, 25% of global
water, and 40% of global resources. Because of the high energy consumption, build-
ings are also one of the major contributors to greenhouse gas production [148-150], but
also offer the greatest potential for achieving significant greenhouse gas emission re-
ductions, with numbers projected to increase [149], [151]. For these reasons the energy
efficiency of buildings receives a lot of attention globally [152]. Looking at a smaller
scale, the energy efficient buildings lead to significant cost savings for the building

managet, increasing the utility of the paid energy unit.

According to the US National Institute of Standards and Technology (NIST), buildings
are an integral part of a Cyber-Physical system (defined as “a co-engineered interact-
ing network of physical and computational components”) [153]. Being part of this
“smart” ecosystem, the buildings need to integrate with the future smart grids and

transform their simplistic consumption-only profile to a complex one that includes
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local distributed energy resources (DER) and/or storage. Depending on the available
assets, the building managers must change from typical consumers to “prosumers”,
being able to both produce and consume energy in their building premises. Remark-
able work has been done in the past years to this direction. Pacific Northwest Na-
tional Laboratory, with support from the U.S. Department of Energy (DOE), developed
VOLTTRON - an open-source common platform offering in-depth understanding of
complex systems that integrate new challenges, such as renewable energy generation,
energy storage, and EVs [154]. However, the integration of highly variable factors,
such as renewable energy, demands control methodologies that are adaptable and dy-
namic [155]. NIST has been investing in building integration with the smart grid since
2011 developing tools like the Virtual Cybernetic Building Testbed and Net Zero En-
ergy Residential Test Facility [156]. They have recognized the need for new standards
to enable homes and buildings to interact with the grid, with buildings becoming both

energy renewable generators and consumers.

Energy management in buildings is realised through building energy management
systems (BEMSs) which control the heating, ventilation and air conditioning (HVAC)
and lighting systems. Nowadays BEMSs are fundamental components of modern
buildings, performing tasks that seem contradictive e.g. reducing energy consump-
tion while maintaining occupants’ comfort [152]. However, the buildings are not static
components of the smart ecosystem; on the contrary they evolve and interact with
their surroundings. Going through years of exploitation, the thermal characteristics
of the buildings deteriorate, their usage patterns change and their indoor spaces get
rearranged. In time, both the inner and outer micro-climates adjust to changes in
surrounding buildings, overshadowing patterns, and local climates, not to mention
building retrofitting [157, 158]. Due to these ever-changing and uncertain indoor and
outdoor characteristics, the performance of typical BEMS often falls short of expecta-
tions, lacking the necessary data processing, evaluating, and control methodologies.
Being part of a smart ecosystem, a building must not be seen as a singularity but as an
element of a miniature (local) energy system that interacts with the other elements of
the system in a coordinated fashion. A typical BEMS that tries to optimise the build-

ing’s energy efficiency will always fail (in the general context), if other elements of
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the system are not considered. On the other hand, considering the building in a local
energy system with other buildings, distributed energy resources, energy storage and

EVs, the energy management and coordination becomes more difficult.

Advanced algorithms are necessary to cope with the intermittent characteristics of the
different elements of the system, and handle the large amounts of data. Predictive
models should also be incorporated in the coordination mechanism in order to deal
with the associated uncertainties and increase the control efficiency. From the building
manager’s perspective, these algorithms must be able to facilitate different control
strategies according to the overall coordination objective and enhance the awareness

of the system.

In this chapter a complete Local Energy Management System (LEMS) was presented,
developed to control EVs and Energy Storage Units (ESUs) at commercial building
premises. The LEMS uses the Triad Prediction Tool and Electricity Forecast Tool of
Chapter 2 as well as the EV charging control algorithm of Chapter 3 and enables the
building manager to reduce its electricity costs and increase its benefits from EVs and
ESUs at the building premises. The objectives of the LEMS are i) to flatten the demand
profile of the building facility and reduce its peak, ii) to reduce the demand of the
building facility during triad peaks in order to reduce the Transmission Network Use
of System (TNUOo0S) charges of the building manager and iii) to enable the participation
of the building manager in the grid balancing services market through demand side

management and response.

4.2 Literature Review

Considerable work is found in the literature on intelligent BEMSs that utilise soph-
isticated algorithms to maximise the energy savings while maintaining the occupants’
comfort. Computational Intelligence (CI) techniques including fuzzy set theory (fuzzy
logic - FL), evolutionary computing (genetic algorithms - GA) and artificial neural net-
works (ANN) have been used to boost the performance of BEMSs in various applica-

tions.
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Fuzzy logic (FL) was developed to deal with the uncertainties that are present in real
world problems. The difference between classical and fuzzy logic is that classical lo-
gic requires objects to have either 0% or 100% membership to a certain characteristic,
whereas fuzzy logic allows to have any degree of membership between 0% and 100%
[159]. Fuzzy logic based systems mimic the human thinking and execution ability that
helps to deal with uncertainty and vagueness [160]. Therefore, fuzzy systems are cap-
able of approximating any type of problem, even with the existence of inexact inform-
ation [161]. However, generating the rules for a fuzzy system is a challenging task.
Expert knowledge and best practices are required to create the initial rule base, which
may not always be available [162]. Genetic algorithms are an adaptive heuristic search
technique based on the process of natural selection [163, 164]. They generate sets of
possible solutions and through an iterative modification process (called “evolution”)
they reach to the global optimum. Depending on the number of possible solutions and
local optimums however, the convergence rate is low [162]. GAs are mostly applied
when a problem does not require an absolute solution. In some studies, GAs were also
combined with artificial neural networks. ANNs were used for modelling purposes
due to their ability to model complex non-linear system, whereas GAs were used to
find a global optimum (e.g. in [165]). ANN is one of the widely used techniques to
make predictions without having any knowledge of the system. They have a proven
record of accurate forecasts in various time horizons, operating as a black box (looking
only at the relationship between the inputs and the outputs) [43, 44]. They are classi-
fied as data driven method and as such, they heavily rely on the quality of the training
data. The model is built by using historical data and when data outside the training
set are present then the previous model may no longer be valid, which limits the use of
ANNIs in datasets with uncertainties [162]. Furthermore, the calibration of the neural

network is challenging and in most cases a trial and error approach is followed [166].

The use of ANNSs to control BEMSs has been examined in [167, 168], offering self-
learning abilities and improving the control system for the thermal comfort and energy
savings in public buildings. Ferreira et al. [167] demonstrated an ANN deployment
for balancing the desired thermal comfort level and energy savings at the University

of Algarve with energy savings of more than 50%. Energy consumption has been the
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focus of research interests as well, and various models have been developed to under-
stand and predict the energy requirements of a building. For example, the authors of
[169] have used classification techniques on the daily electricity consumption in build-
ings from Birmingham, demonstrating a 99% accurate prediction. Yuce and Rezgui
[170] have used an ANN-GA approach to generate semantic rules and improve the
energy consumption forecast, demonstrating a 25% energy reduction while satisfying
occupants” comfort. ANNs have been also used for the electricity demand forecast of
a large office building [171], capturing 97% of variability in hourly electricity demand
(based on weather and electric power consumption alone). Other CI techniques such
as fuzzy c-means clustering, support vector machines, and GAs have been used for
describing the energy consumption behaviour in [172, 173]. A review of the existing

systems for building energy and comfort management can be found in [174].

Recently, much work has been devoted in finding ways to operate the buildings in a
“smart” way considering them as part of a local energy system (microgrid). Consid-
ering energy storage, EVs, PV panels or other distributed generators (DGs), various
control models have been developed to optimise the overall operation of buildings in
a microgrid. In [175], the authors use the general mixed integer programming method
to schedule the operation of a PV panel, energy storage and CHP unit in order to
minimise the total electricity cost of the building. Similar work can be found in [176],
while in [177] the authors perform a cost-benefit analysis to calculate the optimal size
of battery storage in a microgrid with buildings. The authors of [135] and [178] have
used EVs in order to consume locally the generated power from PVs and reduce the

grid impact of the building’s energy demand.

Considering a grid-connected operation of a microgrid with buildings, demand re-
sponse capabilities have also been incorporated to its energy management systems.
A review of possible control architectures for such a microgrid can be found in [179].
In [180] the authors present an algorithm that enables the participation to a demand
response scheme through utilising home appliances and EVs. In this direction, multi
agent systems (MAS) theory has also been applied in [100, 181]. Based on MAS theory,

the authors of [182] developed a negotiation agent to facilitate bi-directional energy
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trading between the microgrid and the grid. A bidding strategy was developed in
[183], which enabled the participation of a microgrid with buildings in the day-ahead

energy market.

However, the existing control models and energy management systems can only serve
one purpose, and do not provide flexibility when it comes to their objective. Con-
sequently, this limits their efficiency and performance in a real application. The build-
ing managers require an energy management system which offers flexibility and demon-

strates adequate performance regardless of the operational target.

4.3 Description of the LEMS

In this chapter a complete Local Energy Management System (LEMS) is proposed in
order to assist the building manager reduce its electricity costs and increase its benefits
from EVs and ESUs at the building premises. The objectives of the LEMS are i) to
flatten the demand profile of the building facility and reduce its peak, ii) to reduce the
demand of the building facility during triad peaks in order to reduce the Transmission
Network Use of System (TNUO0S) charges of the building manager and iii) to enable the
participation of the building manager in the grid balancing services market through

demand side management and response.

4.3.1 Architecture

The proposed LEMS architecture is presented in Figure 4.1. The Triad Prediction Tool
and the Electricity Demand Forecast Tool described in Chapter 2 were implemented to
work with the LEMS. The Triad Prediction Tool calculates the probability of having a
triad peak and provides warnings for the dates and times that a triad peak is expected
to occur. The Electricity Demand Forecast Tool forecasts the electricity demand of the
building for that period using a neural network (NN). To generate the triad warnings,
the Triad Prediction Tool uses historical triad data available from the System Operator.

To forecast the electricity demand of the building, the Electricity Demand Forecast Tool
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uses historical data regarding the demand of the building and the local weather. The
Pre-Forecast Analysis stage described in Chapter 2 was used to identify the optimal
number of weather attributes and the optimal NN configuration to be considered by

the Electricity Demand Forecast Tool.
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Figure 4.1: The architecture of the LEMS

The LEMS operates in timesteps during which the system is considered static (changes
are only discovered at the end of the timestep). Obviously, a very short timestep (e.g.
1 sec) provides the best representation of the system and enables the near real-time dy-
namic operation of the LEMS. However, such level of detail in representation makes
the system susceptible to synchronization problems and affects the LEMS operation
as the latency of the communication infrastructure is comparable to the timestep dur-
ation and the time needed to complete the calculations. In addition, the cost of trying
to minimise these latencies is often high and additional communication equipment
would be necessary [184], making this not a practical solution. On the other hand,

long timestep durations (e.g. 1 hour) lead to the opposite result, and make the system
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inelastic to changes. Depending on the application, significant changes to the status of
the system would be ignored if they lasted less than one timestep (e.g. an EV needs to
charge for less than one timestep). Considering that the settlement period in the elec-
tricity market (period during which the electricity suppliers buy energy to meet their
customer’s demand) is 30min [185], a timestep higher than 30 min would not be prac-
tical for demand response applications. The timestep duration applied in this work
was considered 15 minutes. According to [186], this timestep duration is a acceptable
trade-off between a dynamic and a reliable operation that allows the frequent capture

of the system’s condition and reduces the risk of communication lags.

Smart Meters are necessary to monitor the demand of the buildings and the status
of the EV charging stations and ESUs. Information regarding the battery capacity,
state of charge (SoC), expected disconnection times, charging / discharging power
rate, charging / discharging schedule and available discharge capacity is requested
from the EV charging stations upon the connection of every EV. Information regarding
the available capacity, state of charge (SoC), charging / discharging power rate and
charging / discharging schedule is requested from every ESU. This information is

stored in a Database, and is accessed from the LEMS on a regular basis (every 15 min).

According to the available information, the LEMS calculates the charging / dischar-
ging schedules for the EVs and ESUs and communicates them through a Gateway. As
seen in Figure 4.1, the Gateway enables bi-directional exchange of information, gath-
ering the data from the Smart Meters and pushing them to the Database, while at the
same time allows the LEMS to push charging and discharging power set points to the

EVs and ESUs.

The building manager can supervise the operation of the LEMS through a User In-
terface. The interface allows the building manager to access the data stored in the
Database and produce visualisations of the previous and/or scheduled operation of
the system. Additionally, the building manager can directly intervene to the operation

of the LEMS in case of a fault or an abnormal event.

The LEMS maximises its utility to the building manager by adjusting its operational

target (objective) according to the system status and condition. Three scheduling al-
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gorithms for the management of the EVs and the ESUs were designed, namely Peak
Shaving Schedule, Triad Cost Reduction Schedule and Demand Response Schedule. Each
algorithm serves one objective and the LEMS shifts from one scheduling strategy to
another depending on the objective that maximises the utility for the building man-

ager. The Matlab code of the LEMS is included in Appendix D.

4.3.2 Peak Shaving Schedule

The Peak Shaving Schedule aims at flattening the aggregated demand profile of the
building facility (similar to the Off-Peak Strategy described in Chapter 3). This is achie-
ved by filling the valleys and shaving the peaks of the demand profile using the con-
trollable loads (EVs, ESUs) of the building facility. The LEMS calculates the charging /
discharging schedules of the EVs and ESUs, and sends them the corresponding power

set points at the beginning of every timestep.

A ranking function is used in every timestep to identify the most preferable timesteps
for charging / discharging. The outputs of this function are two sets of weights (r;(¢)
and 73(t)) indicating the preference order for charging and discharging respectively
according to the aggregated scheduled demand of the building facility. Lower weights
are given to the most preferred timesteps (the most preferred timestep has a weight of
1 etc.) and vice versa. To schedule the charging / discharging of the EVs, the LEMS
calculates the charging / discharging power set points by solving Equation (4.1) upon
the connection of an EV. Similar to the Off-Peak Strategy of Chapter 3, it was assumed
that the EV drivers agree to provide a certain discharging capacity (V2B) to the LEMS

and submit their estimated departure time upon arrival.

to+CP
min Y (Po(t) - ri(t) + Po(t) - 72(1)) 4.1)
t=to
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to+CP
. — (Socmazfsooin)-BC
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, where:

to is the arrival timestep of the EV

C'P is the connection period of an EV (number of timesteps between arrival and de-

parture)

Pc(t) is the scheduled charging set point for timestep ¢

Pp(t) is the scheduled discharging set point for timestep ¢

r1(t) is the output of the discharge ranking function for timestep ¢
r2(t) is the output of the discharge ranking function for timestep ¢
T is the duration of the timestep in hours

Ps(t) is the scheduled power demand of the building at timestep ¢

Pr,(t) is the network limit, the maximum energy that can be supplied from the grid

at timestep t (covering both the building demand and the EV charging)
P, is the nominal power of the EV charger

V2B is the agreed depth of discharge level (in % of BC)

BC is the battery capacity

Ceyy is the charger efficiency

SoC}, is the initial SoC level

S0C4, is the maximum SoC that can be reached until the departure of the EV

Unlike EVs, the ESUs are not mobile therefore they are always connected to their char-
ging equipment. The calculation of the charging / discharging power set points is

repeated every timestep (for the remaining timesteps of the day), after calculating the
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set points of the connected EVs. This way the demand / generation profile of the ESUs
is adjusted to the arrival / departure times of the EVs. To extend the battery life, the
LEMS is only allowed to operate the ESU within a “safety” zone between 20% and 80%
of the nominal storage capacity. To calculate the charging / discharging schedule of
the ESUs, the LEMS uses Equation (4.1) in a slightly different way. V2B now expresses
the “safety” band of the ESU capacity, while SoC,,; (since there is no disconnection)

expresses the maximum SoC that the ESU can reach.

4.3.3 Triad Cost Reduction Schedule

The Triad Cost Reduction Schedule aims at reducing the electricity cost of the building
manager during triad peaks. This is achieved by shifting demand from the expensive
triad timesteps to the cheap off-peak timesteps. The LEMS adjusts the charging / dis-
charging schedules of the EVs and ESUs to an electricity price curve, and places the
charging and discharging events during cheap and expensive timesteps respectively.
This operation is triggered from the warnings of the Triad Prediction Tool. The char-
ging / discharging power set points are calculated using Equation (4.1), only this time
the ranking function changes the way it generates the weights and gives discharging
preference to the triad timesteps. Once a triad warning is received, the LEMS recalcu-
lates the charging / discharging schedules of every controllable asset that is available

(connected EVs, ESUs).

4.3.4 Demand Response Schedule

The Demand Response Schedule aims at enabling the building manager to participate in
the ancillary services market and provide demand response actions to the grid. It was
assumed that the System Operator sends requests to the building manager to either
reduce or increase its aggregated demand in the next timestep (15 min). Triggered by
the arrival of such a request, the LEMS overrides the charging / discharging schedules
of the available controllable assets. In case the request is to increase the demand, the

LEMS forces the ESUs and the connected EVs to charge at the maximum power rate
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possible (respecting at the same time the nominal charger rates, the battery capacity
and the SoC “safety” zones). In case the received request is to decrease the demand,
the LEMS forces the available ESUs and EVs to discharge, reducing the overall de-
mand of the building facility.

4.3.5 Operational Workflow

The LEMS operates in two workflow cycles, namely the Normal and the On-Demand

operation workflow. The operation is illustrated in Figure 4.2.

During Normal operation workflow, the LEMS forecasts the electricity demand of the
building using the Electricity Demand Forecast Tool. On the first timestep of the day, the
Electricity Demand Forecast Tool forecasts the demand of the building facility for every
timestep of the day. The forecasted demand is updated on every timestep using the
actual demand of the last timestep. In case there are no demand response requests
from the System Operator or triad warnings from the Triad Prediction Tool, the LEMS
uses the Peak Shaving sub-workflow to manage the charging / discharging of the EVs
and ESUs. The calculated power set points of the next timestep are forwarded to the
chargers of the EVs and the ESUs through the Gateway. The cycle is repeated in every

timestep, considering the new arrivals of EVs.

In case a demand response request is received, the On-Demand operation workflow
is activated and the LEMS executes the Demand Response sub-workflow. Depending
on the availability of the EVs and ESUs, the LEMS calculates the demand response
capacity at that timestep (the maximum increase / reduction of demand it can offer).
In case the demand response request is to increase the demand, the LEMS cancels any
scheduled discharging events and forces every available asset to charge at maximum
power. Constraints for nominal charger rates, battery capacity and SoC “safety” zones
are applied and considered. In case the demand response request is to reduce the
demand, the LEMS overrides the existing charging schedules and discharges the ESUs
and the connected EVs. The calculated power set points are sent to the EVs and ESUs

through the Gateway. It is important to note that the Demand Response sub-workflow
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Figure 4.2: The workflow chart of the LEMS
lasts only one timestep (the one with a demand response request), and on the next
timestep the LEMS switches back to Normal operation workflow.

In case a triad warning is received for a certain day, the LEMS switches to the On-

Demand operation workflow and executes the Triad Cost Reduction sub-workflow. In
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contrast to the Demand Response sub-workflow, the Triad Cost Reduction sub-workflow
lasts for the whole day for which the triad warning is issued. As soon as this sub-
workflow is activated, the LEMS cancels the existing charging / discharging schedules
and forecasts the timesteps where the triad peaks are most probable to occur using
the Triad Prediction Tool. These timesteps are the ones where the demand should be
reduced to decrease the triad charges for the building manager. The ESUs and every
connected EV, as well as every other EV that arrives during that day, are scheduled to
discharge at those timesteps. The charging events are scheduled according to the daily
electricity prices of the building manager, always avoiding the triad timesteps. At the

end of the day, the LEMS switches back to Normal operation workflow.

The LEMS generates schedules for the period during which the EVs are connected to
their charging points. In case an EV driver needs to leave earlier that the submitted
departure time, the charging cycle might not be completed and the EV battery will
not be fully charged. This is considered acceptable, otherwise having the EV fully
charged at all times would cancel the purpose of the control system (which is to utilise
the flexibility offered by the EVs). To incentivise the participation of EV owners in
such a scheme, it is assumed that contractual agreements exist between the EV owners
and the building manager which rewards the EV owners according to the level up to
which their EV battery is discharged. EV owners that offer greater discharge capacity
are rewarded more than those who offer less discharge capacity. This reward system
would also prevent the participants of “gaming” the LEMS operation (e.g. EV owners
try to avoid the discharging hours), simply because the reward is calculated according

to the discharge level.

4.4 Demonstration of the LEMS

4.4.1 Deployment on Cloud

The proposed system was deployed on cloud to enable future scalability and reduce
the computational time. The distributed engine of CometCloud [187] was adopted,

using a master-worker architecture as seen in Figure 4.3. By combining local and re-
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mote computational resources, CometCloud realizes a virtual cloud with resizeable
computational capabilities and enables scale-up, scale-down and scale-out to address

a dynamic workload.

worker-1 »\
— — -
[ ==
: N —
l e’
worker-N Database

Interface

Figure 4.3: The adopted distributed architecture

A Master processing unit is responsible to distribute the necessary forecasting and
scheduling processes (defined as “tasks”) to remote worker processing units. The worker
units execute the assigned tasks and return the results to the Master unit. The necessary
number of worker units to complete a task is variable and defined by the Master unit
according to the workload. A local Interface was designed to communicate with the
Master processing unit and enable the user to give instructions regarding the LEMS
operation. Reading and writing operations on the Database can only be performed

from the Master unit for security and reliability reasons.

For each LEMS operation workflow the procedure is carried out in the following man-
ner: When a request comes from the user through the Interface, the Master reads the
database and fetches the configuration required for that specific request. Then the
Master creates a job task with all the necessary data required to process the task and
uses a unique identifier for that task. Once the task is created it is posted to be picked
up by an idle worker. The worker carries out the operation and will pushes the result
back to Master. The Master aggregates the results from all the workers and generates a

signal to whether charge or discharge either the ESUs or the EVs.
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4.4.2 Simulated Scenarios

Three scenarios were studied to test the performance of the proposed system, namely
“Peak Shaving Operation”, “Triad Cost Reduction Operation” and “Demand Response
Operation”. As indicated from their name, each scenario aims at simulating the op-
eration of the LEMS in different operation cycles. In the “Peak Shaving Operation”
scenario the LEMS operates in Normal mode, aiming to reduce the peak demand of
the building facility. In the “Triad Cost Reduction” scenario it is assumed that the
Triad Prediction Tool sends a triad warning to the LEMS, indicating the probability of
having a triad in the following day. This scenario studies the performance of the LEMS
trying to reduce the triad electricity cost for the building manager. Finally, the “De-
mand Response” scenario studies the performance of the LEMS in a demand response
occasion, where two demand response requests are received from the System Oper-

ator.

A fleet of 10 EVs was considered in all three scenarios, assuming normal distributions
for their arrival / departure times, initial SoC and battery capacity. Table 4.1 presents
the mean and standard deviation values of these distributions. It was also assumed
that the EV drivers were willing to discharge up to 15% of their vehicle’s battery. The
building facility was assumed to have 2 ESUs with characteristics presented in Table

4.1.

The six commercial buildings of Chapter 2 were considered as the “building facility”
in the simulation scenarios. Their demand on a random winter day was aggregated

and presented in Figure 4.4.

4.5 Experimental Results

4.5.1 Scenario 1: Peak Shaving Operation

Figure 4.5 presents the aggregated demand of the building facility when the LEMS op-
erates under Normal operation (Peak Shaving). The EVs and the ESUs are scheduled
to charge during the off-peak hours, and discharged during the peak hours. A 6.9%
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Table 4.1: EV and ESU assumptions

Parameter Value
Arrival Times Mean: 08:00 StdDev: 0.75h
Departure Times Mean: 19:00 StdDev: 1h
Battery Capacity Mean: 27kWh | StdDev: 3kWh
L% SoC upon connection Mean: 84% StdDev: 4%
V2B 15%
Nominal charging/discharging power 3kW
Charger Efficiency 0.95
Initial SoC 75% 25%
Battery Capacity 10kWh 20kWh
3 Max SoC 80%
)
M| Min SoC 20%
Nominal charging/discharging power 7KW
Charger Efficiency 0.95

peak reduction was achieved comparing to the initial demand of the facility (without

EVs and ESUs).

As explained in Section 4.3, the LEMS sends power set points to the EVs and the ESUs
according to the calculated charging/discharging schedule. These power set points
are messages with the exact power rate at which each EV/ESU must charge/discharge
at each timestep. A message of 2.7kW sent to EV-1 for example means that in this
timestep EV-1 must charge at 2.7kW from its charger. Similarly, a message of -1.6kW
sent to ESU-1 means that in this timestep ESU-1 must discharge at a rate of 1.6kW. The
messages (power set points) that LEMS sent to the EVs and ESUs in this scenario are

presented in Figures 4.6 and 4.7 respectively.

In those figures, each bar is a message to a particular EV/ESU. The bar height in-
dicates the power rate magnitude, while its sign indicates a charging (positive) or a
discharging (negative) set point. Different bar colours indicate the different receiver

(EV/ESU), so for example in Figure 4.7 the light bars are messages to ESU-1 while the



90 4.5 Experimental Results

600

200 /w M’\m\\

= 400

3 / \

R

T 300

=

E

A 200

e

g \’—\m"/

g 100

o
0
0O 0 0 Q0 0000000 0QC0CO00Q0Q0O00CQO0OC0
Q22220 Q020 Q02000002
S 2 ddF a8 EeEd S S dAdEA S8 NGRS S AN
o O O O O O O O O 0O = = == = — = = — — — ] & &

Time of Day

Figure 4.4: The aggregated demand of the building facility
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Figure 4.5: Demand of the facility with Peak Shaving Operation

dark bars are messages to ESU-2. This distinction is difficult in Figure 4.6 as there are
10 different EVs (and consequently 10 different colours); however looking at the graph
we can immediately identify the charging and discharging periods during the day.
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Figure 4.7: The power set points sent to the ESUs

4.5.2 Scenario 2: Triad Cost Reduction Operation

In this scenario it is assumed that the LEMS receives a triad warning from the Triad
Prediction Tool and the Triad Cost Reduction Operation is activated. Figure 4.8 presents
the triad peak hours (as predicted from the Triad Prediction Tool) and the electricity
prices for that day.

This information was used by the LEMS in order to schedule the charging / dischar-
ging of the EVs and ESUs and reduce the overall electricity cost for the building man-
ager. The resulting aggregated demand of the building facility is presented in Figure
4.9. The controllable assets were scheduled to charge during the cheap hours (accord-
ing to Figure 4.8) and discharge during the expected triad peak hours. Due to the
simultaneous charging of the EVs and ESUs at the cheap hours, the peak demand was
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Figure 4.8: The electricity prices and the predicted triad peak hours

increased however this increase is very small (<1%). In case more EVs are charging at
the facility this peak is expected to increase and possibly stress the existing equipment.
Additional measures should be taken then, like the demand cap mentioned in Chapter
3. The discharging of the EVs/ESUs resulted in a 7.5% reduction of the electricity re-
quirements during the triad peak hours (17:00 —20:00). This number is expected to rise

when more EVs are available, increasing the cost savings of the building manager.

The power set points sent to the EVs and ESUs are presented in Figures 4.10 and 4.11
respectively. The discharging events are concentrated in the period between 17:30 and
19:30 as indicated by the triad warning. After the discharging period, the LEMS tried
to charge the EVs in order for them to leave the facility fully charged. However, be-
cause the discharging period was very close to their departure times, there was not
enough time for them to fully recharge. It was found that 6 out of 10 EVs left the fa-
cility with a battery SoC less than 100% (2 of those actually left the facility during the
discharging period). This happens because this is a commercial building facility and
the average departure times of EVs coincide with the discharging period. This is a risk
that all EV drivers are aware of, and highlights the utility of a maximum discharge
capacity agreement (V2B level) being the worst case scenario for the EV driver. Obvi-

ously this is not the case for the ESUs, as their charging/discharging schedules are not
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Figure 4.9: Demand of the facility with Triad Cost Reduction Operation
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Figure 4.10: The power set points sent to the EVs

4.5.3 Scenario 3: Demand Response Operation

In this scenario it was assumed that the LEMS receives two requests for demand re-
sponse as presented in Figure 4.12 by negative and positive bars. A request was re-
ceived at 08:00, asking the LEMS to reduce the demand of the building facility. A

second request was received at 14:00, asking the LEMS to increase the demand of the
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Figure 4.12: The demand response requests

Figure 4.13 presents the aggregated demand of the facility. As explained in Section 4.3,
the Demand Response Operation is not a “full-day” cycle like the Peak Shaving and the
Triad Cost Reduction cycles. The LEMS activates this operation only for one timestep to
satisfy the demand response request, and returns to the Normal Operation (Peak Shav-
ing) at the end of it. As seen in Figure 4.13, the LEMS successfully reduced the ag-
gregated demand of the facility at 08:00 by discharging the connected EVs and ESUs.
A 17.7% demand reduction was achieved comparing to the case without any EVs/E-

SUs. After this, it returned to Normal Operation until the second demand response
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Figure 4.13: Demand of the facility with Demand Response Operation

request was received at 14:00. Upon receipt of the “demand increase” request, the
LEMS overrode the charging / discharging schedules of the EVs/ESUs and charged

every available unit increasing the demand by 8.9%.
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Figure 4.14: The power set points sent to the EVs

The LEMS’ response to the requests is also seen in Figures 4.14 and 4.15 where the
power set points sent to EVs and ESUs are presented. Discharge set points were sent
to both EVs and ESUs at 08:00 in order to decrease the overall demand of the facility.

Similarly, charge set points were sent to the EVs/ESUs at 14:00 in order to increase the
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Figure 4.15: The power set points sent to the ESUs

aggregated demand of the facility. To maximise the demand change (increase or de-
crease), the set points in both cases are of high magnitude requesting discharge/charge
at the nominal power rates of the chargers. Since the LEMS returns to the Normal Oper-
ation right after the Demand Response Operation, Figures 4.14 and 4.15 can be compared
to Figures 4.6 and 4.7. Especially for EVs the demand response set points were the
opposite of the scheduled ones, something realised if we look at the period between

07:00 and 09:00 (clearly a charging period).

4.5.4 Using LEMS to explore different simulation scenarios

Apart from its real time operation, the LEMS can be also used for simulation purposes
in order to explore different use cases (what-if scenarios). By modifying the input
parameters (Table 4.1), the building manager can see the impact of EVs and ESUs on
the demand profile of the building and/or calculate the demand response capacity
to offer to DNOs. One of the key variables in this case is the charging / discharging
rate (nominal power of the chargers). Figures 4.16-4.18 present the simulation results
considering EV and ESU chargers of 3kW and 7kW rate for all three operating modes
of the LEMS.

As seen from Figure 4.16, changing the rate of the chargers does not have a significant
effect on the demand profile of the building facility under the Peak Shaving Opera-
tion. On the other hand, under the Triad Cost Reduction Operation (Figure 4.17), an
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Figure 4.16: Demand of the facility with Peak Shaving Operation

100

Power Demand (kW)
R o8
v

Time of Day
—Initial demand ot the facility
—Demand of the facility with EVs and Storage Units (3kW chargers)
—Demand of the facility with EVs and Storage Units (7kW chargers)

Figure 4.17: Demand of the facility with Triad Cost Reduction Operation

increase on the charging rate is immediately reflected on the demand profile of the
building facility. During the hours when the electricity rate is cheap the connected
EVs and ESUs are scheduled to charge, and during the triad peak hours the connected

EVs and ESUs are scheduled to discharge. Increasing the rate of the chargers results in
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Figure 4.18: Demand of the facility with Demand Response Operation

steeper demand changes, as the LEMS tries to maximise its cost savings by increasing
the demand during the cheap hours and reducing the demand during the triad peak
hours. Similar results were found for the Demand Response Operation of the LEMS
(Figure 4.18). Increasing the charger rate allows the LEMS to offer greater demand re-
sponse capacity to DNOs, which could lead to greater rewards for the building man-
ager. Scenarios like this can be useful for planning purposes, as the building managers
can simulate the LEMS operation under different use cases and calculate the results for

different applications/objectives.

4.6 Summary

In this chapter a complete Local Energy Management System (LEMS) was presented,
developed to control EVs and ESUs at the building premises and reduce the electri-
city costs of the building manager. The LEMS controls the charging and discharging
of ESUs and EVs in order to i) flatten the demand profile of the building facility and
reduce its peak, ii) reduce the demand of the building facility during triad peaks and

consequently the triad charges of the building manager, and iii) enable the participa-
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tion of the building manager in the grid balancing services market through demand
side management and response. The LEMS operates under a Normal or Emergency
mode according to the operational objective. Three scheduling algorithms were de-
veloped, namely Peak Shaving, Triad Cost Reduction and Demand Response in order to
schedule the charging / discharging of the EVs and ESUs. The Triad Prediction Tool
and the Electricity Demand Forecast Tool of Chapter 2 were used in order to predict the
future triad peaks of the system and forecast the building demand at those times. The
V2B charging control algorithm of Chapter 3 is also used as part of the LEMS schedul-
ing algorithm.

The LEMS was deployed on cloud using the CometCloud architecture, and its oper-
ation was demonstrated in three simulation scenarios namely “Peak Shaving Opera-
tion”, “Triad Cost Reduction Operation” and “Demand Response Operation”. In the
“Peak Shaving Operation” scenario the EVs and the ESUs were scheduled to charge
during the off-peak hours, and discharged during the peak hours of the building’s
electricity demand. According to the results, a 6.9% peak reduction was achieved com-
paring to the initial demand of the facility (without EVs and ESUs). In the “Triad Cost
Reduction Operation” scenario the controllable assets were scheduled to charge dur-
ing the cheap hours and discharge during the expected triad peak hours. It was found
that the LEMS resulted in a 7.5% reduction of the electricity requirements during the
triad peak hours (17:00 - 20:00), reducing the triad costs for the building manager.
In the “Demand Response Operation” scenario, the LEMS was assumed to receive
requests for reducing and increasing the demand of the building facility at 08:00 and
14:00 respectively. According to the results, the LEMS was able to override the existing
charging/discharging schedules of the EVs and ESUs, and reduce the overall demand
by 17.7% as a response to the demand reduction request. In addition, an overall 8.9%

demand increase was achieved at 14:00, as a response to the demand increase request.



100 4.6 Summary




101

Chapter 5

Simulation of EV driver behaviour
in road transport and electric power

networks

5.1 Introduction

Environmental and energy security reasons are setting Electric Vehicles (EVs) as a ma-
jor part in the future road transport networks [144]. Integration of EVs will affect the
road transport networks due to their particular characteristics, such as the frequency
and the time needed for recharging the EV battery. Apart from becoming a major
part in road transport networks, EVs are expected to influence significantly the elec-
tric power networks [188]. Considering a typical battery capacity of 30kW, the energy
needs for recharging an EV is nearly double the average daily needs of a house. EV
charging will affect significantly the customer load profiles unless smart grid control
techniques are applied. Several studies indicate that uncontrolled charging of EVs will
increase the peak demand of the power system, resulting in feeder voltage excursion
and overload of the transformers and cables, especially in already stressed networks
[6, 73-75]. The integration of EVs will affect both electricity and transport systems, and
consequently, research is needed on finding possible ways to make a smooth transition
to the electrification of the road transport. To fully understand the EV integration con-
sequences, the behaviour of the EV drivers and its impact on these two systems should

be studied.
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Because of the limitations in the current battery technology, the EVs offer relatively low
driving range. With no major changes in the following years, the EVs will need regular
recharging periods depending on the average daily trip distances. EVs are expected
to recharge mainly at night, when the EV owners return home from their work [6, 75].
However, this will not exclude recharging events during the day. Charging in public
or street locations requires at least a parking space per charging point. Due to the
finite number of parking spaces in a city, especially in the city centre, the number of
EVs that are charging at the same time is limited. This will affect the road transport
networks particularly the daily travel patterns and the congestion parameters [189].
Authorities should take into consideration this behavioural change and implement

proper mechanisms and parking schemes for the EV deployment.

The complexity of the dependencies between road transport and the electric power
system is therefore likely to increase with higher EV market penetration. Coordination
is essential to preserve a stable distribution network operation and avoid unnecessary
investments in infrastructure. Due to limits in power capacity within an electricity
network, it might not be possible to serve all EVs that want to recharge their batter-
ies. In order to protect the electric power network, and maintain a robust operation,
the condition of the various components (e.g. transformers, feeders) needs to be mon-
itored. Future scenarios utilize advanced EV charging management mechanisms that
use the available storage in the EV batteries and the flexibility of the charging demand

to provide ancillary services to the grid operators [72, 116, 123, 190].

This chapter proposes an integrated simulation-based approach, introducing the EV
as an intelligent unit living in both road transport and electric power systems. The
main components of both systems have been considered, and the EV driver behaviour
was modelled using a multi-agent simulation platform. The proposed simulation-
based approach serves as enabling technology in order to understand the EV driver

behaviour and its impact on both the road transport and electric power system.
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5.2 Literature Review

The route choice behaviour of the drivers and the characteristics of the road transport
network are strongly correlated. The route choice behaviour of drivers is affected by
various factors like traffic information, weather and route attributes. According to
Arentze et al. [191], the road accessibility characteristics have a substantial impact
on route preferences. Raveau et al. [192] defined an angular cost variable to reflect
the directness of the chosen route, and used it to improve the explanation of route
choices. On the other hand, the route choice behaviour of the drivers affects the road
transport network [67, 193]. Multi-agent models are often used to model the behaviour
of drivers on road networks [194-196]. Traffic simulation tools like SUMO, OMNet++
and Veins are generally used by researchers in order to quantify the impact of the route

choice behaviour.

EV drivers however, need to consider additional factors when deciding their route.
Factors like energy consumption, charging station availability, charging duration are
introduced in the route choice decision. Nicholas et al. [28] investigated the charging
behaviour of EV drivers by simulating EVs travelling and charging at public chargers.
They showed that more than 5% of the trips would require recharging at a public char-
ger for different driving range and charging assumptions. The location of the charging
stations is directly related to the impact of driving behaviour in urban road transport
networks. In [197] a general corridor model is used to propose the optimal location of
EV charging stations, while the authors of [198] propose a multi-period optimization
model to expand the charging network. Similar studies for an urban environment can
be found in [199, 200]. A spatial-temporal demand coverage location approach is used
in [201] to address the location problem of electric taxi charging stations. Some traffic
simulator platforms offer EV support and give to the user the ability to run traffic
simulations with all or partially electrified vehicle fleets. Such a simulation can be
found in [202], where EVs are simulated in highway networks with on-line charging.
Another example is found in [203], where a spatial-temporal model is build based on
a poison-arrival-location-model (PALM) for EVs charging at public chargers on the

highway. These models however ignore the impact of EV charging on the electricity
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grid.

The charging behaviour of the EV drivers not only at public but also at the home char-
gers affects the electricity grid. The charging fashion in particular has been the centre
of interest, as it defines the magnitude of this impact [74], [73]. To take this impact into
account, integrated models have been developed, which combine a traffic simulator
with power flow studies or another electricity grid simulation model. MATSim was
used in [204], as part of an integrated approach to model EVs in transport and electric
power systems. A vehicle technology assessment model was also used to simulate
the EV’s energy consumption and driving cycle, while a power system simulator was
used to calculate the impact of EV charging on the electricity grid. However, the EV
driver’s behavioural profile is not modelled in detail and the EV charging procedure

is assumed to be controlled by a third-party entity.

A few probabilistic approaches are found, which generate a number of driving and
charging demand profiles for the EVs [205, 206]. These probabilistic models however
can only be used as an input to another simulation tool in order to capture the im-
pact of EV behaviour on both transport and electric power networks. In addition,
the existing studies assume one behavioural profile for the EV drivers, ignoring the
development of the EV integration and the increase of the decision support infrastruc-
ture. In this chapter, an integrated approach is presented to model EVs in a complex
road transport and electricity network. Two behavioural profiles were considered for
the EV drivers in order to describe the driving and charging behavioural change for
different stages of EV adoption. The impact of each behavioural profile on the road

transport and electricity network is demonstrated through a case study.

5.3 The EV agent’s architecture

An EV agent was created using SeSAm [207], simulating the behaviour of a “rational”
EV driver (an EV driver that tries to get to its destination through the shortest path,
and utilises available information to reduce its travelling and charging time). The EV

agent interacts with the other agents, makes calculations and takes decisions regarding
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potential future actions. It lives in a complex environment consisted of a Road Trans-
port network, an Electricity Grid and other EV agents. Its decisions and behaviour
adapts to the behaviour of the other EV agents of the environment, and is affected
from the status of the other simulated objects in the system. The EV agent’s architec-

ture is presented in Figure 5.1.

f EV Agent \

Road Transport EV Driver

Network o Breieriemie Electricity Grid
* Decision Making )
« Districts ¢ > ey | = Substations
o ATERES EV moving EV charging| * f) eeder?) ;
i * Power Deman
> Tifieg Dyioeios EV Characteristics
* Battery

¢ Energy Consumption

Figure 5.1: The architecture of the modelled EV agent

The EV agent combines the driver and the vehicle in one entity. It operates according
to the EV driver’s decisions and strategy but is constrained by the vehicle’s intrinsic
characteristics like battery capacity. Its moving and charging actions entangle the EV
agent with the Road Transport Network and the Electricity Grid respectively. The
simulation of many EV agents and their environment is important in studying and
understanding their interactions in a realistic EV context. The following sections de-

scribe the developed modelling framework.

5.4 Modelling the environment of the EV agent

5.4.1 The Road Transport Network

The modelled road transport network represents a geographical region with a few
communities. It is the geographical area where all the EV agents live, move and in-
teract with each other. Each community was modelled as a district resource entity,

considered as one node of a road transport network. Apart from the nodes, the con-
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sidered road transport network contains links (which connect the nodes) to represent
the roads connecting one community (district) to another. Each link was modelled as

an avenue resource entity. The topology is presented in Figure 5.2.

Figure 5.2: The topology of the Road Transport Network

A district (Dx) is an area with both residential and commercial buildings, and thus
it can be used either as a home district (where an EV agent’s home is) or as a work
/ shopping district (where an EV agent does various activities) for the EV agents. It
was assumed that the home district is different from the work/shopping district of
an EV agent. The avenue entities (Ax) represent the roads of the transport network,
therefore they have traffic. The traffic on the roads was modelled following a macro-
scopic approach on a per-minute granularity. Three variables were used to describe

the traffic on an avenue:
1. Density (k)
2. Flow Rate (q)
3. Mean Speed (u)
Density k(t) reflects the number of vehicles per kilometre of road and is expressed in

vehicles per kilometre (veh/km). At a specific time ¢, the density k of a road segment

with length AX is calculated from Equation (5.1) where n(t) is the number of vehicles
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at time ¢ on that road segment.

k(t) = n(t) (5.1)

The flow rate ¢(t) can be compared to the flux of a stream. It represents the number of
vehicles that passes through a certain section per time unit and is expressed in vehicles
per hour (veh/h). The maximum possible flow rate of a road is called its capacity. For
a time interval AT, the flow rate is calculated from Equation (5.2) where m represents

the number of vehicles that passes the specific location during AT

qt) =+ (52)

The mean speed u(t) is defined as the quotient of flow rate and density and expresses
the average speed of all the vehicles on a road. The three variables are linked through

the fundamental relation of traffic flow theory as shown in Equation (5.3) [208].

a(t) = k(1) - u(t) (5.3)

Assuming a stationary (flow rates do not change along a road and over time) and
homogeneously composed traffic (all vehicles are the same), the three variables are
described graphically by the fundamental diagrams. These diagrams are usually the res-
ult of curve fitting on actual measurements and present the equilibrium traffic states.

Three traffic states require special attention:

Free flowing traffic: When the vehicles are not impeded by other traffic they travel
at the maximum speed u;. This speed is dependent among other factors on
the design speed of the road, the speed restrictions at a particular time and the

weather. At the free flow state, the flow rate and density are close to zero.

Capacity traffic: The capacity of a road is equal to the maximum flow rate ¢.. The
maximum flow rate has an associated capacity density k. and a mean speed u,

(smaller than uy).
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Saturated traffic: On saturated roads the flow rate and speed are zero. The vehicles

are queuing and there is a maximum density of k; (jam density).

The fundamental diagrams that describe the traffic on the avenue entities are presen-
ted in Figure 5.3.

u (km/h) A

Ut

q(vehh)A Ko ik (veh/km)

K, kJ "k (veh/km)

Figure 5.3: The fundamental diagrams assumed in this work

A triangular k — g relationship was assumed, as stated in [208]. The density k() of each
avenue is calculated from Equation (5.1) using the number of EV agents travelling on
the avenue at time ¢ and the avenue length. For densities smaller than the capacity
density the mean speed equals the free flow speed and the flow rate is calculated from
Equation (5.3). In case the density is higher than the capacity density (but smaller than
the jam density), the mean speed is calculated from Equation (5.3) and the flow rate is

calculated from Equation (5.4):

q(t) = - (K(t) — kj) (5.4)

The fundamental diagrams are statistical diagrams obtained from real data, and rep-
resent the relationship between the macroscopic characteristics of the traffic on a road

(density, flow and mean speed). The triangular diagrams are the most commonly
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used diagrams in macroscopic traffic flow modelling when no abrupt density changes
are considered (e.g. a traffic accident) [208]. In this work, the road network used is
not based on a real road network, therefore no real data were available regarding the
traffic of the roads. If data from a real road network were available, the fundamental
diagrams could be extracted directly from the statistical data for a more accurate rep-

resentation of the traffic.

Another way to model the traffic flow on a road network is by following a microscopic
approach. In this approach traffic is not modelled using aggregate variables such as
density, flow rate or mean speed. Microscopic traffic models describe the interactions
between individual drivers, vehicles and the infrastructure [208]. Since it is impossible
to predict the behaviour of each driver with absolute certainty, stochastic models such
as Markov Decision Process (MDP) based models are commonly used to model the
behaviour of drivers [194]. In contrast to macroscopic models this method makes it
easier to specify different types of vehicles and drivers. However, the required com-
puting power and the large number of parameters sometimes impede the use of these

models.

5.4.2 The Electricity Grid

The considered electricity network follows the structure of the UK generic distribution
network [145], and is consisted of 6 types of elements. Each type was modelled as a
resource entity. These are:

1. HV Substations

2. MV Feeders

3. MV Substations

4. Non-EV loads

5. Home Chargers

6. Public Chargers
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The detailed characteristics of those elements were not modelled. Such an abstraction
level was considered acceptable in this study since the elements’ purpose is to operate
as aggregating points of electricity demand (entities 1-4) and points of EV connection
to the AC network (entities 5-6). Nevertheless, efficiency factors were considered to

represent the energy losses from each element. More specifically:

The HV Substations are the highest level of electricity demand aggregation in the model.
They represent the 132kV/33kV transformers connecting the transmission network
to the distribution network. The HV Substations supply electricity to the districts
through the MV Feeders and the MV Substations. The MV Feeders represent the 33kV
lines connecting the HV Substations to the MV Substations. The MV Substations rep-
resent the 33kV/11kV transformers and aggregate the electricity demand coming from
all the Non-EV loads (residential, commercial etc.) and the EV chargers in a district.

The considered network structure and components are shown in Figure 5.4.

Structure SeSAm Object Voltage Level

132kV Transmission Network

HYV Substations
MYV Feeders 33kV Distribution Network
7 i MV Substations
U v
>
- * Non-EV Loads

11kV Distribution Network

» EV chargers

Figure 5.4: The topology of the modelled electricity network in SeSAm

Based on this topology, the power demand aggregation is described by Equations
(5.5)-(5.6).

Nuyv

Py (t) =) PHY(1) (5.5)
1
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Npv Np
Py (t) = Z PAC(t) + Z P(t) (5.6)
1 1
, where
PV (t) is the power demand at the secondary winding of the HV Substation

PMY (1) is the power demand at the primary winding of the MV Substation

Ny is the number of MV Substations connected to the HV Substation
Pi1;v (t) the power demand at the secondary winding of the MV Substation
PAC(t) is the power demand of an EV charger

P(t) is the power demand of a non-EV load

NEgy is the number of EV chargers connected to the MV Substation

Ny, is the number of non-EV loads connected to the MV Substation

Assuming an efficiency factor npp for the losses from the MV Feeders, Equation (5.5)

becomes as follows:

Nyv

Py (t) =npp - Y Pyl (t) (5.7)
1

Considering also the power losses from the voltage transformation, Equations (5.8)-

(5.9) are obtained.

Pisopv (t) = npy - PRV (1) (5.8)
Pty (t) = narv - Prgvy) (5-9)

, where

P31y () is the power demand at the primary winding of the HV Substation



112 5.4 Modelling the environment of the EV agent

npy is the efficiency factor of the HV Substation

nv is the efficiency factor of the MV Substation

The required energy to charge the EV batteries is supplied from the electricity grid
through the charging stations (EV chargers). Two types of chargers were considered
in this work: the Home Chargers and the Public Chargers. A Home Charger represents
a private charging station which is installed at the EV owner’s house; it is therefore
unique for every EV and every EV owner was assumed to have one Home Charger.
Depending on the number of EV owners living in the geographical area, each district
in the model can have more than one Home Chargers. The Public Chargers are char-
gers distributed throughout the districts and offer a recharging point to every EV. They
were modelled with one charging connector allowing the charging of one EV at a time.
Each Public Charger was designed with a queuing feature, so when more than one EV
agent wants to use a Public Charger at the same time, a queue is created and each EV

agent has to wait for the previous one to finish charging.

An efficiency factor was also considered in order to express the losses from the power
conversion in the EV charger. An AC/DC converter is necessary to provide the DC
power the battery needs. The maximum DC voltage that can be produced when con-
nected to an AC network of 230V is calculated from Equation (5.10) for 1-phase and

from Equation (5.11) for 3-phase connection.

2 2

VPO (1) = = V2. VAC - V2230V = 207.7V (5.10)

VDOt = 3 a3 VAC = 3 5 30y = 537.00V (5.11)
m s

Depending on the charging voltage of the EV battery, a DC/DC boost converter might
be necessary to adjust the voltage output of the charger. Considering separate effi-

ciency factors for each conversion stage, the overall efficiency factor ngy of the EV
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charger is given from Equation (5.12).

NEV = NAC/DC " "DC/DC (5.12)

Based on this factor, the grid side power demand of the charger P4 (t) is calculated

from the DC side (battery side) demand PP (t) using Equation (5.13).

PAC(t) = npy - PPC(t) (5.13)

5.5 Modelling the characteristics of the EV agent

5.5.1 The EV agent’s battery

A fundamental element of an EV is the battery. The EV battery operates in two modes:
the charging mode and the discharging mode. In charging mode the battery stores
energy drawn from a charging station (point of connection to the electricity grid) and
thus acts as an electricity load. In discharging mode the battery acts as an electricity

source and releases its stored energy to power the electric motor of the vehicle.

Different ways to model the behaviour and the characteristics of a battery exist in the
literature. Depending on the required level of accuracy, these models can be very
complex. Equivalent circuit models and electrochemical models are often combined
with analytical or machine learning approaches in order to realistically simulate the
states of a battery. The advantages and limitations of such approaches can be found
in [209, 210]. However, the increased accuracy of those models comes with a compu-
tational cost which is not suitable for all applications. In this work a much simpler
approach was followed, based on a modification of the Shepherd battery model. In
[211], Shepherd developed a generic equation to describe the electrochemical beha-
viour of a battery directly in terms of terminal voltage, open circuit voltage, internal

resistance, discharge current and state-of-charge.
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The modified Shepherd model of [212] was used in this work to model the beha-
viour of a Li-ion EV battery on a 1-minute granularity. A 18650 Li-Ion battery cell
with the characteristics of [2] was modelled with respect to its terminal voltage, dis-
charge/charge current and state of charge. The model was used to simulate the be-
haviour of a battery pack similar to the one of a Tesla Roadster vehicle (https://www.
teslamotors.com). According to [213], such a battery pack is consisted of 6,831 Li-Ion
battery cells type-18650 following an 11S 9S 69P configuration. In this configuration
69 Li-lon battery cells connected in parallel form 1 group, 9 groups connected in series

form 1 module and 11 modules connected in series form the battery pack.

Assuming that the battery pack is consisted of the 18650 Li-Ion battery cells with the
characteristics of [2], the battery pack specifications were calculated. For these calcu-
lations a battery cell management system was assumed to be in place to balance the
battery cell utilisation, enabling the battery pack to behave like a single cell. The res-
ults are presented in Table 5.1. The modified Shepherd model was used to calculate the
discharge characteristics of the battery pack for discharge rates of 0.2C, 0.5C, 1C and
2C (30.36A, 75.9A, 151.8A and 303.6A respectively). The characteristics are presented
in Figure 5.5.

Table 5.1: Battery pack specifications
Maximum Capacity | 151.84h

Nominal Capacity 144.9Ah
Nominal Voltage 366.3V
Internal Impedance | 0.05739€2

Standard Charge Constant Current and Constant Voltage (CC/CV)
Conditions Charge Current = 75.94 (0.5C)

End-up Voltage = 415.8V

End Current = 1.5184

Standard Discharge | Constant Current (CC)
Conditions Charge Current = 75.94 (0.5C)
End Voltage = 297V
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Figure 5.5: Generated discharge characteristics for the battery pack

More details on the developed battery model can be found in Appendix E.

5.5.2 The EV agent’s energy consumption

When the EV agent is moving there is energy consumption from the EV battery. The
power consumption of the EV agent was calculated following the approach described

in [214]. According to this approach, the energy usage of an electric vehicle is distrib-
uted into 4 categories:

1. Aerodynamic Losses

2. Tire Losses

3. Drivetrain Losses

4. Ancillary Losses

The aerodynamic losses depend directly on the driving speed. The force of air friction
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F4 on a moving object is a vector pointing to the opposite direction of movement and

it has a magnitude calculated from Equation (5.14).

1
FAzi-Cd-p-A-Xﬂ (5.14)

, where

F 4 is the air fiction (V)

Cy is the drag coefficient

p is the air density (1.225kg/m?)

A is the frontal area of the moving object (m?)

V' is the object speed (relative to air) (m/s)

Assuming that the EV agent is moving at a constant speed V/, the power requirements

P, are described with Equation (5.15).

Pi=F4 -V (5.15)

The drivetrain losses include those that the driver doesn’t typically control: the effi-
ciency of the motor controller, the motor itself, the gearbox and generally all losses in
converting the DC power from the battery pack into useful torque at the wheels of the
car. This is proportional to the speed due to the spinning losses in the gearbox and
motor and also proportional to the power output due to the conversion losses in the
various subsystems. Compared to the aerodynamics, drivetrain losses are more diffi-
cult to calculate using simple equations as the performance of each subsystem has to
be individually modelled. In this work, the vehicle’s speed is assumed to have a 3rd
order polynomial relationship to the required drivetrain power P, as mentioned in

[214]. Equation (5.16) describes this relationship:

Pyp=a-V34+B-V24+~y-V+ Py (5.16)
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, wWhere «, 5 and v are the drivetrain coefficients and Py, is the drivetrain power when

the EV is not moving.

Tire losses are mainly determined by the weight of the vehicle and the rolling drag
of its tires. The power required to overcome the rolling resistance is a function of
the vehicle’s weight w and rolling resistance coefficient C,, and is proportional to the

driving speed V. This power Pr is described by Equation (5.17).

Pr=w:Cp -V (5.17)

All other electrical loads in the vehicle are considered as ancillary losses P,.. These in-
clude losses from audio systems, electric windows, heating ventilation and air condi-
tioning systems (HVAC), battery cooling and management systems as well as interior
and exterior lightning. According to [214], these losses are assumed to be independent

to the vehicle’s speed, and were considered constant in this study.

Since the simulated EV carries a battery similar to the one in Tesla Roadster, the power
consumption calculations were performed using data for the same model, and were
obtained from [215]. The data used in these calculations are presented in Table 5.2. For

vehicle speeds up to 150km /h, the power consumption is presented in Figure 5.6.

Table 5.2: Data used in the power consumption calculations

Cq 0.31

A 2.097m?

o 0.00096

B 0.193

v 18.21

Pstop 0.375kW
w 13096.35N
Crr 0.0089
Poane 2kW
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Figure 5.6: EV power consumption versus EV driving speed

5.6 Modelling the behaviour of the EV agent

5.6.1 The behavioural profiles of the EV agent

The EV agent is an agent designed to simulate the behaviour of the EV owner/driver
while driving and charging the EV. In real life, an EV driver drives the EV to various
destinations and makes sure that the EV has sufficient energy to make the necessary
trips. To simulate this behaviour the EV agent was designed to “think” like a human
EV driver and take logical decisions according to the available information. Living in a
complex environment (road transport and electricity grid), the EV agent operates in an
intelligent way in order to achieve its goals. The goals of the EV agent are summarised

below [216]:

1. Find a route to my destination(s)
2. Recharge my EV battery when the SoC is low
3. Start the next day with a full battery

These goals describe the basic challenges an EV owner faces during the everyday use

of its EV. The way that the EV owner achieves those goals affects its environment, both
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the road transport and the electricity grid.

Many factors affect the EV driver’s behaviour. External factors like traffic data avail-
ability affect the route of the EV driver (e.g. information about a car accident could
help the EV driver avoid traffic) [17, 216]. The “range anxiety” feeling increases the
frequency an EV driver recharges its vehicle and affects the distance an EV driver
“thinks” the EV can make [17]. The available charging infrastructure and the overall
EV integration framework affects the EV driver charging awareness as well as its will-
ingness to respond to economic incentives regarding their charging times and fashion
[217]. To model these factors two behavioural profiles were considered for the EV

agent in this work: the Unaware and the Aware profile.

The Unaware EV agent represents an EV driver with limited intelligence regarding its
routing and charging decisions. It tries to achieve its goals with minimum interac-
tions with its environment, looking for the simplest solution to its routing / charging
challenges. The “range anxiety” feeling is strong and the Unaware EV agent seeks to
frequently recharge its EV - even when it is not absolutely necessary. This kind of be-
haviour is most likely to be found during the early stages of EV adoption, where the

charging infrastructure and EV driver awareness is limited [218].

The Aware EV agent represents an EV driver with increased intelligence. Looking for
the best possible solution to its routing and charging challenges, this EV agent interacts
with its environment and affects the decisions of other Aware EV agents. The Aware
EV agent is more confident about the vehicle’s range (the “range anxiety” feeling is
low) and thus the Aware EV agent recharges its EV only when it is necessary [17].
This type of EV driver is most likely to exist during the mature stages of EV adoption,
where sophisticated charging / communication infrastructure is in place to assist in
the decision making process of the EV owner, and new business entities are emerged
to provide economic incentives according to the charging fashion of the EV owners

[218, 219].

Each behavioural profile was modelled separately and forms the EV agent’s reasoning
engine. The reasoning engine is consisted of activities (behavioural states) and trans-

itions (links between activities). Each activity defines a sequence of actions that are
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executed and can trigger different procedures in the same entity and/or other entit-
ies. Time-dependent variables were defined to dynamically capture the state of the EV
agent (e.g. terminal voltage of its battery) influenced by the interactions from the EV
agent’s environment. Independent variables were also used for the static characterist-
ics of the EV agent (the parameters not affected by other agents or the environment).
Such a parameter is the SoC Threshold, a parameter used to describe the “range anxi-
ety” feeling, which defines the SoC level at which an EV agent expresses its need for
recharging. All interactions among the EV agents follow request-response logic, thus
each request must precede the corresponding response. Following this rule, all EV
agents were modelled with an idle state in which they wait to receive an answer from
another EV agent. This is critical for the EV agent coordination, as during this state,
other EV agents perform various actions that need to be executed prior to this EV

agent’s next action e.g. one EV agent uses the result of another EV agent’s calculation.

5.6.2 Interactions with the Road Transport network

The EV agent interacts with the road transport network of the developed model. It
moves along the avenues to get to the district it wants. It affects the traffic of the
avenue it is on, but also its moving speed is affected by the avenue’s traffic as seen
in the previous sections. To simulate the routing rationale of an EV driver, a routing
algorithm was developed for the EV agents. The routing algorithm is the procedure
followed by the EV agent in order to calculate the route from the current location to its
destination. This procedure is different according to the behavioural profile of the EV

agent.

The Unaware EV agent wants the simplest solution. That is to reach its destination dis-
trict from the shortest path. The Unaware EV agent was designed to use an exhaust-
ive breadth-first search algorithm [220] to calculate all the possible routes (unique se-
quence of avenues) to reach the defined destination district. For each possible route, it

calculates the total trip distance by aggregating the lengths of all avenues in the route.
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It then selects the route with the minimum trip distance according to Equation (5.18).

minDyok (5.18)

, where

S is the starting district of the trip

D is the destination district of the trip

N is the number of possible unique routes from S to D
1=1.N

Route; = { ay..a;, | K avenues connecting S to D }

K
DS—=D _ Z dak
k=1

Route;

d, is the length of avenue a of Route;

The Aware EV agent on the other hand wants the best solution. That is to reach its
destination district in the minimum time. Using the same search algorithm as the
Unaware EV agent, the Aware EV agent calculates all the possible routes to the defined
destination district. The difference is that the Aware EV agent uses live traffic data
to identify the quickest path to its destination. The Aware EV agent estimates the
total travelling time for each possible route to the destination district according to
the current mean travelling speed on each avenue. It then selects the route with the
minimum trip duration according to Equation (5.19). An alternative way to calculate
the quickest path is by using the Dijkstra’s algorithm [221] which is proven to be very
efficient specifically for large graphs [222]; this however was not necessary in this

work, as the considered road network is small.

minTs P (5.19)
Route;

, where

S is the starting district of the trip
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D is the destination district of the trip

N is the number of possible unique routes from S to D
i=1.N

Route; = { ay..a;, | K avenues connecting S to D }

TS'—)D — f: dﬁ

Route; = Uay,

d, is the length of avenue a of Route;

Uq is the current mean speed on avenue a of Route;

In case the SoC of the EV agent’s battery is lower than the pre-defined SoC Threshold,
the EV agent seeks to recharge. If this need is expressed during a trip, the EV agent
tries to modify its route in order to include a recharging stop at a Public Charger.
Trying to simulate a realistic EV driver behaviour, different methodologies to calculate

this recharging stop were developed for each behavioural profile of the EV agent.

The Unaware EV agent follows again a “simplest solution” strategy to this problem.
It seeks for the closest Public Charger. It acquires the location of all Public Chargers
in the region and calculates the shortest path route from its current location to the
location of each Public Charger. The Unaware EV agent then selects the Public Charger
which requires the least travelling distance from its current location. As soon as a
Public Charger is selected, the Unaware EV agent recalculates its route to include a
recharging stop. When the Unaware EV agent reaches the Public Charger, it enters the
queue and charges its battery until its SoC reaches 100%.

The Aware EV agent on the other hand follows a much more sophisticated approach.
It seeks for a recharging stop that minimises the total time needed to reach its initial
destination district. In contrast to the Unaware EV agent, the Aware EV agent con-
siders the live traffic of the avenues and the waiting time (queue) at the Public Char-
gers when calculating the recharging stop. It selects the Public Charger that minimises

Equation (5.20).

. A—PC PC PC PC—D
mzn(Tthtei + Twait + Tcharge + TRout_gj ) (520)
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, where

A is the current district of the Aware EV agent

PC is the district of the Public Charger

D is the destination district of the Aware EV agent

N is the number of possible unique routes from A to PC
i=1.N

Route; = { aj..a;, | K avenues connecting A to PC'}

ASPC _ W d

— _ ap

TRoutei - Z Uq
k=1 'k

dqr, is the length of avenue a of Route;

Uqk is the current mean speed on avenue a of Route;

M is the number of possible unique routes from PC to D
j=1.M

Routej ={ aj..a,, | W avenues connecting PC to D }

w
PC—D _ Z day,

Route; Uay,
w=1

daw is the length of avenue a of Route;

Uqy 1S the current mean speed on avenue a of Route;

TPC

wait

is the waiting time at PC (before charging)

TPC

charge

is the charging time at PC

TA—)PC’

The Aware EV agent uses the live traffic data to estimate the travelling times (T,

and T} ggf ) for each Public Charger. In contrast to the Unaware EV agent, the Aware
EV agents charge only for the necessary time in order to reach their destination. To
this end the Aware EV agent estimates the energy requirements to get to its destin-
ation district and simulates the recharging cycle at that Public Charger. The energy
requirements for each possible route are calculated using the live traffic data. To cal-
culate the recharging time needed to cover these energy requirements, a “Virtual Bat-

tery Model” was developed for the Aware EV agent. The “Virtual Battery Model”
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is used by the Aware EV agent to simulate (in zero time) the whole recharging cycle
of each recharging option and calculate the necessary recharging time at a particular
Public Charger. When the appropriate Public Charger is selected, its queue is updated
accordingly with the estimated recharging time of the Aware EV agent. To calculate
the waiting time at a Public Charger, the Aware EV agent aggregates the estimated

recharging times of the Aware EV agents waiting at the Public Charger’s queue.

5.6.3 Interactions with the Electricity Grid

The EV agent interacts with the electricity grid through the charging at the EV char-
gers. All EV chargers were modelled to operate on a constant current - constant
voltage (CC-CV) charging cycle. Considering the EV chargers with the characterist-
ics presented in Table 5.3, a full charging cycle of the EV agent’s battery is presented

in Figure 5.7.
Table 5.3: The characteristics of the EV chargers
Type Home Charger Public Charger
pAC 7.4kW 22kW
nAC/DC 0.97 0.97
nAc/DC 0.97 0.97
icc (calculated) 16.745 A 49.783 A

Depending on the nominal power rate and the efficiency factor of each charger, the
charge current of the CC phase was calculated. Figure 5.7 presents the EV battery

voltage, current and SoC, as well as the charger’s power demand from the AC grid.

More details on the implementation of the charging / discharging process for the EV

battery can be found in Appendix F.

The duration of charging is different for the two EV agent profiles. The Unaware
EV agent charges its battery at a Public Charger until it is fully charged while the
Aware EV agent charges its battery only for the time necessary to complete its trip.

Longer charging durations affect the electricity grid, as the required energy for one
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Figure 5.7: The battery voltage, charge current and SoC of the EV battery, and the
power demand of the EV charger.

charging event is higher. In addition, the “range anxiety” feeling (expressed by the
SoC Threshold variable), has an effect on the electricity grid as it defines the charging
frequency for an EV agent. When the “range anxiety” feeling is strong (SoC Threshold
is high), the EV agent charges its vehicle multiple times in a day.

In the developed model, the EV agents charge at home every night. Trying to simulate
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the charging behaviour of unconcerned and concerned EV owners, the Unaware EV
agent and the Aware EV agent were modelled to follow different charging regimes at

home.

The Unaware EV agents follow an uncontrolled charging regime. As soon as they
return home from their daily trips, they begin charging regardless the network’s con-

dition. Their charging stops when the EV battery is fully charged.

The Aware EV agents follow a different approach for their home charging. Their goal
is to minimise the impact of their charging at a local level (district level). They coordin-
ate with the other Aware EV agents that live in the same district, and charge during
the off-peak hours of the MV Substation of that district. To identify the off-peak hours,
the expected day-ahead demand of a district was assumed known to the district’s
Aware EV agents. Upon its arrival at home, each Aware EV agent calculates the op-
timal start time (start minute since the simulation runs minute-wise) for its charging.
The optimal start time ¢, is the one which results in the minimum standard deviation
of the expected day-ahead demand of the MV Substation. The Aware EV agent was
modelled to follow a charging strategy that minimises the standard deviation of the

district’s demand profile according to the following function:

te+N _
> (X— X)?

, where

N = 1440 day-ahead minutes

t. is the current minute
te+ N

> X
t=tc

X ="

Pt —ts)+ Ppa(t) ,ifts <t <ts+cd
t —
Ppa(t) ,otherwise

cd is the necessary charging duration (in minutes)
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ts is the start time of charging
P,p,(t) is the charging demand at minute ¢

Pp4(t) is the day-ahead demand of the district’'s MV Substation

In order to calculate the charging demand, the Aware EV agent uses the “Virtual Bat-
tery Model” to simulate the charging procedure at its Home Charger. When the op-
timal start time is calculated, the Aware EV agent updates the expected day-ahead
demand of the MV Substation accordingly. Equation (5.22) was used to update the
day-ahead demand.

Pch(t — ts) + PDA—old(t) Afty <t <ts+cd
XDA—new(t) = (522)
Ppa—o1d(t) ,otherwise

The next Aware EV agent that arrives at home in the same district uses the updated
day-ahead demand to calculate the optimal time to charge its battery. After all Aware

EV agents return home, the result is a coordinated charging with the minimum impact

on the electricity grid.

However, the participation of the EV drivers to such a charging coordination scheme
might result in a charging plan which is not in line with the individual constraints and
wishes of the EV drivers. A form of incentive has to be in place in order to reward
the EV drivers for their participation in such a scheme. This reward can be realised
through a dynamic pricing scheme according to which, the EV drivers are benefited
from cheaper electricity rates when offering a flexible charging profile [146, 223]. In
this work it is assumed that such a rewarding mechanism is in place, and all Aware

EV agents are willing to participate in the coordinated charging scheme.
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5.7 Case Study

5.7.1 Description of the simulation scenarios

The developed model was used in order to study the impact of the EV agents’ be-
havioural profiles in two different scenarios (one for Unaware behaviour and one for
Aware behaviour). In these scenarios, 10000 electricity consumers were considered
for the whole network (geographical area). The consumers were evenly distributed
in each district and were assumed to have different daily electricity demand profiles
obtained from the UK Energy Research Centre (http://www.ukerc.ac.uk/). An EV

uptake of 10% was assumed, and a fleet of 1000 EVs (EV agents) was created.

An activity-based travel pattern was assumed for all EV agents in our model. The
travel pattern assumes a sequence of 4 activities in a day. Starting from Home the se-
quence of the activities is Work-Lunch-Work-Shopping. After completing their activ-
ities, the EV agents return Home for the night. A random number generator was used
to define the location (district) of each activity, with the assumption that these districts
must be different from Home. The times each EV agent spent for each activity were
assumed to be random numbers following a normal distribution (different for each

destination). The distributions are presented in Table 5.4.

Table 5.4: The distribution of the times spent for each activity

Activity Mean Value (u) Standard Deviation (o)
Work 4 hours 0.3 hour

Lunch 0.5 hour 0.25 hour

Work 3 hours 0.3 hour

Shopping 0.5 hour 0.25 hour

5.7.2 Simulation Results

The impact of the different behaviour of the EV agents on their environment and their

battery characteristics was studied. Every dynamic variable of the model is monitored
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during the simulation. A sample of the simulation results was selected and is presen-

ted in this section. Screenshots from the SeSAm GUI can be found in Appendix G.

As mentioned in the previous sections, the Home charging fashion is different for
Unaware and Aware EV agents. The Unaware EV agents start charging immediately
when they arrive at Home, while the Aware EV agents calculate the optimal start time
for charging according to Equation (5.21). The impact of EV charging at Home on the
demand profile of the HV Substation is presented in Figure 5.8 for both EV behavioural
profiles. To emphasise the impact of Home charging demand and increase the EV
charging requirements, it was assumed that the EV agents don’t charge from Public

Chargers during the day.
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Figure 5.8: Impact of EV charging at Home (aggregated)

As seen from Figure 5.8, the Unaware EV agents start charging when they return home
(around 17:30-18:00) and their charging demand coincides with the evening peak of
the residential demand. Consequently, a 9.11% increase of the peak demand is cre-
ated, and the electricity network is stressed. On the other hand, the Aware EV agents
place their charging during the off-peak hours (between 22:00 and 06:00) resulting in
a valley-fill effect on the demand profile of the HV Substation. This “grid-sensitive”
behaviour of the Aware EV agents not only avoids the increase of the peak demand,
but also reduces the stress of the electricity network and postpones any unnecessary

upgrades of the existing infrastructure.
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As described before, the EV agents have a large battery pack (53kWh). Assuming a
full battery in the morning and a realistic SoC Threshold of 30%, the EV agents would
not normally need a recharging stop during the day (especially when the trips are
only five). In order to study the behaviour of the EV agents when a recharging stop
at a Public Charger is required, it was assumed that the need for a recharging stop
is triggered at a much higher SoC level, at 70%. Although this value is unrealistic,
it serves well the demonstrating purposes of this case study. To this end, 100 Public
Chargers were distributed equally to the 10 Districts offering recharging services to
the EV agents.
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Figure 5.9: Distribution of Public EV charging demand to the districts

Figure 5.9 presents the aggregated charging demand from the Public Chargers of each
District. The Unaware EV agents look for the closest Public Charger when they need
a recharging stop, while the Aware EV agents try to minimise the total duration of
the recharging stop by considering the waiting times at a Public Charger. Due to this
behaviour, the Unaware EV agents prefer the central nodes of the transport network
(Districts 2, 5 and 8) for their public charging. This causes an uneven utilisation of
the Public Chargers (only the ones at central districts are used), as well as a significant
impact on the local electricity grid. Queues are also created to the popular Public
Chargers, delaying the charging procedure for the EV agents. On the other hand the
Aware EV agents use the information regarding the availability of Public Chargers,

and charge at Public Chargers in all Districts. This way they avoid the queues and
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reduce their recharging times. Moreover, the Aware EV agent behaviour increases
the utilisation of the public charging facilities and offers an even distribution of the

charging demand to all Districts, reducing the stress of the electricity grid.

The uneven distribution of the charging demand affects the electricity grid. The high
charging demand stresses the distribution network infrastructure and causes increased
line losses and deep voltage drops. As the distribution network has certain limits and
load capacity, an upgrade might be necessary in order to facilitate this additional de-
mand. In addition, the charging demand is directly related to the number of charging
requests in the district. Increased number of charging requests in a district means that
more EVs arrive to that district seeking to recharge, affecting the traffic on the roads
of each district (not modelled in this work). The utilization rate of the public char-
gers is also affected by the distribution of charging requests. Considering third-party
companies that own and manage these public chargers, the utilization rate has a sig-
nificant effect on their income. The capital and operational costs of the public chargers
are seen as investments by these companies, and an underused public charger reduces
the efficiency of this investment. These companies need to understand the EV own-
ers’ behaviour and calculate the expected utilisation ratio of each public charger when

planning its location to make sure that their investment will not be inefficient.
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Figure 5.10: Traffic distribution on avenue A1_2

The EV agents affect the road transport network according to their behavioural profile
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and their recharging requirements. Figure 5.10 presents the average number of EVs
on a random road (avenue A1l_2) of the transport network. Three traffic “peaks” are
created from the EV agents. The first peak occurs during the morning hours, when all
the EV agents go to their work. The second peak is in the early afternoon, when the
EV agents go to lunch, following their pre-defined activity cycle. Due to the stochastic
approach that was followed for the duration of each activity, the width of this peak is
considerably wider than the first peak as not all the EV agents go for lunch at the exact
same time. The same goes for the third peak in the evening hours, when the EV agents

leave their work to go shopping and return home.

The Unaware EV agents choose the shortest route to their destination judging by the
driving distance. The Aware EV agents on the other hand, consider the real time traffic
information and choose the fastest route to their destination, avoiding the busy roads.
Due to this behaviour, the traffic of avenue A1_2 was reduced as seen in Figure 5.10. Of
course, this is not the case with all the avenues in the transport network. The average
traffic density in a day of all the avenues in the transport network is presented in

Figure 5.11.
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Figure 5.11: Average traffic distribution of EVs on all avenues

The Unaware routing behaviour increased the traffic of popular avenues, and led to
an uneven distribution of traffic throughout the network. The Unaware EV agents

face delays in their return to home and the energy consumption of their vehicles is
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increased. Their recharging requirements combined to their charging behaviour in-
creases even more the traffic of the avenues which lead to the central districts. Due to
a high SoC Threshold, the need for a recharging stop is frequent. Considering that the
Unaware EV agents choose the closest Public Charger, many EVs arrive at the central
districts seeking for an available Public Charger increasing the traffic of the surround-

ing avenues.

On the other hand, the Aware EV agents try to minimise the total duration of their
trips. By using the avenues with reduced traffic, they distribute the traffic to all the
transport networks. This reduces the risk of a traffic jam and enables a smooth and
continuous flow of traffic. Their Aware charging behaviour and confidence on the EV
range, allows the Aware EV agents to have less frequent recharging stops and when
they do these are at available Public Stations at less popular districts. This helps in the

disaggregation of traffic from the central districts of the network.

5.8 Summary

A multi-agent system based simulator was developed for the integration of transport
and electricity networks capable of reproducing the behaviour of an intelligent entity
(electric vehicle) co-existing in both systems. The main components of both networks
were modelled in a multi-agent simulation platform to simulate the environment of
the EV. The main EV characteristics were also modelled in detail, allowing a more
in-depth approach to the EV’s interdependencies with its environment. One of the
main aims of this simulator is to enable a variety of possible scenarios to understand
the EV context, bringing together two distinctly different but highly inter-related in-
frastructures. To this end, two realistic behavioural profiles (Unaware/Aware) were

considered to describe the way an EV driver deals with the everyday challenges.

Considering a fleet of 1000 EV agents, two scenarios were considered to understand
the impact of different EV driver behaviour to the road transport and the electricity
grid. The scenarios represent the different stages of EV integration, starting with Un-

aware EV drivers when the public acceptance of EVs is limited, and developing to
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Aware EV owners as the electrification of road transport is promoted in an overall
context. Following a realistic activity-based trip pattern, the EV agents move and stay

at random destinations for durations that were stochastically defined.

It was found that the EV agents’ behavioural profile has direct and indirect impact
on both the road transport network and the electricity grid, affecting the traffic of
the roads, the stress of the distribution network and the utilization of the charging
infrastructure. According to the results, the Unaware EV agents increased the traffic of
popular avenues, and led to an uneven distribution of traffic throughout the network.
On the other hand, the Aware EV agents used the avenues with reduced traffic, and

distributed the traffic throughout the transport network.

When charging at home, the uncontrolled charging of the Unaware EV agents caused a
9.11% increase of the peak demand of the modelled distribution network. On the other
hand, the Aware EV agents place their charging during the off-peak hours (between
22:00 and 06:00) resulting in a valley-fill effect on the daily demand profile of the dis-
trict. When charging at Public Chargers, it was found that the Unaware EV agents
prefer the central nodes of the transport network. This causes an uneven utilisation of
the Public Chargers, as well as a stress at the local electricity grid. On the other hand,
the Aware EV agents were able to offer an even distribution of the charging demand
to all Districts, reducing the stress of the electricity grid and increasing the utilisation

of the Public Chargers.

Observing EV behaviour under different situations with multi-agent simulations will
help understand the impact of future EV integration on both systems and to better un-
derstand how a variety of differing roles within both networks could co-exist. There-
fore, authorities will have knowledge of possible irregularities or needs for adjust-
ments / re-configuration in order to allow and support the EV adoption in the future.
The awareness of the EV drivers should be supported (and incentivised) by the au-
thorities as it reduces the impact of EVs on road transport and electricity networks

and ensures a smooth electrification of road transport.
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Chapter 6

Conclusions and Suggestions for

Further Work

6.1 Thesis Contributions

This thesis investigated the feasibility of EV charging management for reducing the

electricity cost of commercial buildings. The contributions of this thesis are:

1. The development of a model that predicts the “triad” peaks of the grid and the
energy demand of a building. The tool supports the building manager in redu-

cing the high electricity costs of the building during triad peak hours.

2. The development of a local energy management system (LEMS), combining a
triad prediction tool, an electricity demand forecast tool and a charging con-
trol algorithm in a cloud-based program. The management system enables the
building manager to reduce their overall electricity cost, and participate in grid

balancing services.

3. The development of a multi-agent simulation tool that simulates the routing and
charging behaviour of the EV driver in a realistic environment. The tool enables
studying the impact of EV driver behaviour on a road transport and electric

power network.
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6.2 Overview of Chapter 2: Predicting the energy demand of
buildings during triad peaks in GB

6.2.1 Summary

In this chapter a model was developed to forecast the power demand of commercial
buildings during the “triad” periods. The model includes three stages. In the first
stage, a stochastic model was developed to calculate the probability of having a “triad”
on a daily and half-hourly basis and warn the building manager accordingly. In the
second stage, real weather data were analysed and included in the model to increase
its forecasting accuracy. In the third stage, an ANN forecasting model was developed
to predict the power demand of the building at the periods when a “triad” peak is

more likely to occur.

The stochastic model was trained on real “triad” peak data from 1990 onwards, and
validated against the actual UK “triad” dates and times of 2014/2015. The ANN fore-
casting model was trained on real electricity demand data from six commercial build-
ings in Manchester for one year. Real local weather data for the same period were
analysed. The electricity demand of each building on an actual “triad” peak date and

time was predicted successfully.

6.2.2 Conclusions

It was found that modifying the granularity of the calculations affects the number
of “triad” warnings that are generated, and consequently the likelihood of predict-
ing a “triad” peak. A sensitivity analysis showed that higher interval sizes result in
higher numbers of “triad” warnings. Depending on the application, the building man-
agers can select the appropriate interval size and respond to the corresponding “triad”

warnings.

The times of all three “triad” peaks of 2014/2015 were predicted successfully. It was

showed that the “triad” peaks tend to occur in a relatively narrow zone during a day
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(between 16:30 and 18:30). The building managers can use this information and adjust

their demand profiles in order to reduce their costs.

The aggregated power demand of the building facility during an actual “triad” peak
was predicted with 97.6% accuracy. It was showed that the weather information plays
a significant role in the accuracy of the building energy demand forecast. It was de-
monstrated that the choice of weather attributes is very important to the forecasting
accuracy, and in some cases, using less weather data is more valuable and can lead to

more accurate predictions.

6.2.3 Limitations and suggestions for further work

Although the results are very promising, more data are needed before the conclusions
are generalised. Diverse data from other geographical areas should be considered to
capture the effect of local weather on forecasting the electricity demand of a building.
Other types of buildings should also be analysed (e.g. industrial) prior the application

of the proposed model to a non-commercial facility.

6.3 Overview of Chapter 3: Management of EV charging at

commercial buildings

6.3.1 Summary

In this chapter a charging control algorithm was developed for the Charging Sta-
tion Manager to schedule the EV charging and discharging (V2B) events in a com-
mercial building. Two strategies were implemented, namely Off-Peak Strategy and
Cost-Reduction Strategy. The Off-Peak strategy aims to minimise the impact of EV
charging on the demand profile of the building and reduce its peak demand. The Cost
Reduction strategy aims to minimize the total electricity cost of the building facility

by adjusting the EV charging demand to the electricity prices.
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A realistic EV fleet was modelled based on real statistical data from the NTS, in order
to evaluate the control model. To study the impact on the grid, the UK generic dis-
tribution network was modelled in Matlab. The impact on the demand profile, daily

electricity cost and bus voltage was studied for a workplace charging scenario.

6.3.2 Conclusions

It was found that the Off-Peak strategy combined with a 15% V2B provision reduces
the aggregated peak demand of the building by 9.7%. In this case however the EVs
need to charge for longer periods and due to the bell shaped demand profile of a
commercial building and the long peak period, this could lead to insufficient charging
of some EVs. The distribution network is also benefited from this charging strategy.
Studying UK generic distribution network, it was found that the fleet of 48 EVs was

able to increase the minimum voltage of the 0.4kV bus by 0.2%.

Considering that the building managers pay additional charges on triad peaks (as ex-
plained in Chapter 2), the Cost Reduction strategy of the Charging Station Manager
is useful in this case, as it could lead to significant cost savings. It was found that the
Cost Reduction strategy combined with a 15% V2B provision reduces the daily electri-
city cost of the building by 1%. However, a demand cap is necessary to be applied in
order to protect the existing infrastructure from excessive stress and overloading due

to the simultaneous charging events during cheap hours.

A sensitivity analysis showed that the ratio between responsive/unresponsive EV
drivers affects significantly the results. High percentages of unresponsive EV drivers
will lead to a non-optimal result, creating a new peak on the building’s demand pro-
file or charging at the expensive hours increasing the electricity cost for the building

manager.

6.3.3 Limitations and suggestions for further work

Apart from avoiding discharging the EV batteries when their SoC is lower than 20%,

no other measures are considered by the Charging Station Manager to prolong their
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State-of-Health. A detailed modelling of the EV batteries would enable capturing the

effect of charging / discharging cycles on the EV battery’s life.

In addition every EV driver is assumed to participate in this control scheme, allow-
ing the Charging Station Manager to manage the charging / discharging of their EV
battery. This relationship should be agreed and regulated through a contractual agree-
ment, for both parties to enjoy economic incentives and benefits. Such a business

model is not considered in this work.

6.4 Overview of Chapter 4: A Local Energy Management Sys-

tem for the building manager

6.4.1 Summary

In this chapter a complete Local Energy Management System (LEMS) was presented,
developed to control EVs and Storage Units at the building premises and reduce the

electricity costs of the building manager.

Three scheduling algorithms were developed, namely Peak Shaving, Triad Cost Re-
duction and Demand Response. The model of Chapter 2 was used in order to pre-
dict the future triad peaks of the system and forecast the building demand at those
times. The charging control algorithm of Chapter 3 was also used as part of the LEMS

scheduling algorithm.

The LEMS was implemented as a software package deployed on cloud, and its oper-
ation was demonstrated in different simulation scenarios. In the first scenario (Peak
Shaving Operation) the EVs and the Storage Units were scheduled to charge during
the off-peak hours, and discharged during the peak hours of the building’s electricity
demand. In the second scenario (Triad Cost Reduction Operation) the controllable
assets were scheduled to charge during the cheap hours and discharge during the
expected triad peak hours. In the third scenario (Demand Response Operation) the

LEMS was assumed to receive demand response requests from the network operator.
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The use of the LEMS for exploring different use cases (what-if scenarios) was also

demonstrated by studying different charger rate scenarios.

6.4.2 Conclusions

In the Peak Shaving Operation scenario the LEMS successfully coordinated the char-
ging / discharging of the EVs and Storage Units. According to the results, a 6.9% peak
reduction was achieved comparing to the initial demand of the facility (without EVs

and Storage Units).

In the Triad Cost Reduction Operation scenario the LEMS successfully coordinated the
charging / discharging of the EVs and Storage Units to reduce the electricity cost of
the building facility. It was found that the LEMS resulted in a 7.5% reduction of the
electricity requirements during the triad peak hours (17:00 - 20:00), reducing the triad

costs for the building manager.

In the Demand Response Operation scenario, the LEMS was able to override the ex-
isting charging/discharging schedules of the EVS and Storage Units, and reduce the
overall demand by 17.7% as a response to the demand reduction request. In addition,
an overall 8.9% demand increase was achieved as a response to the demand increase

request.

6.4.3 Limitations and suggestions for further work

Similarly to Chapter 3, the LEMS operation is not based on a detailed battery model.
Consequently the impact of the charging / discharging cycles on the battery State-of-

Health is not modelled.

The integration of the developed LEMS with the building’s HVAC systems would
allow further flexibility on the demand profile of the building facility. In this case

however, the impact on the occupants” comfort should be considered.



6.5 Overview of Chapter 5 141

6.5 Overview of Chapter 5: Simulation of EV driver behaviour

in road transport and electric power networks

6.5.1 Summary

This chapter describes an integrated simulation-based approach, modelling the EV as
an intelligent unit living in both road transport and electric power systems. The main
components of both systems have been considered, and the EV driver behaviour was

modelled using a multi-agent simulation platform.

Considering a fleet of 1000 EV agents, two behavioural profiles were studied (Un-
aware/Aware) to model EV driver behaviour. The EV agents were modelled to follow
a realistic activity-based trip pattern, and the impact of EV driver behaviour was sim-

ulated on a road transport and electricity grid.

6.5.2 Conclusions

It was found that the EV agents’ behavioural profile has direct and indirect impact
on both the road transport network and the electricity grid, affecting the traffic of
the roads, the stress of the distribution network and the utilization of the charging

infrastructure.

According to the results, the Unaware EV agents increased the traffic of popular aven-
ues, and led to an uneven distribution of traffic throughout the network. On the other
hand, the Aware EV agents used the avenues with reduced traffic, and distributed the

traffic throughout the transport network.

When charging at home, the uncontrolled charging of the Unaware EV agents caused a
9.11% increase of the peak demand of the modelled distribution network. On the other
hand, the Aware EV agents place their charging during the off-peak hours (between
22:00 and 06:00) resulting in a valley-fill effect on the daily demand profile of the dis-

trict.
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When charging at Public Chargers, it was found that the Unaware EV agents prefer
the central nodes of the transport network. This causes an uneven utilisation of the
Public Chargers, as well as a stress at the local electricity grid. On the other hand, the
Aware EV agents were able to offer an even distribution of the charging demand to all
Districts, reducing the stress of the electricity grid and increasing the utilisation of the

Public Chargers.

6.5.3 Limitations and suggestions for further work

Due to the lack of data, it was not possible to apply the developed model on a real
road / electricity network. Therefore, the results cannot be directly compared to an
real scenario. However, the work in this chapter is published in a journal paper, a con-
ference paper and a book chapter and was reviewed by experts from both the power
system and the transportation research field. Researchers are encouraged to use this
model on a real case study, since it was developed in such a way that supports external
file inputs in order to customise the structure and parameters of the simulated road

network and electricity grid.

6.6 Overall Research Benefit

A number of actors could benefit from this thesis:

The Building Managers may benefit from this research and use it to reduce their elec-
tricity bills. The developed tools can be used by the building managers to manage
the charging / discharging of EVs and energy storage in order to reduce their im-
pact on the electricity demand and cost of a commercial building. Insights of possible
business potential with the DNOs are also offered to the building managers from their
participation in the ancillary services market, which may lead to profitable contractual

agreements for both sides.

The Distribution Network Operators and Energy Suppliers may also benefit from this re-

search as it promotes the energy consumption awareness of the customers. The deve-



6.6 Overall Research Benefit 143

loped tools support the flexible demand side management of EVs and energy storage
and enable the participation of building managers in the ancillary services market.
This prolongs the life of the existing distribution networks and postpones their costly

infrastructure upgrades.

The Operators of charging stations may also benefit from this research with regards to
the analysis of the behaviour of an EV driver. The developed simulation tool could be
used to understand the possible charging and routing behaviour of EV drivers and
calculate the expected utility from public charging stations in a geographical area.
The operators of charging stations could use this tool to identify the locations that
are expected to have large recharging requirements and plan the installation of new

charging stations accordingly.

The Society and the Environment may generally benefit from this research. The increased
awareness of electricity customers and the flexibility of the demand could help the
Smart Grid development in GB and other countries. Therefore, the integration of re-
newable energy sources could be supported and greenhouse gas emissions reductions

may be achieved.
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Appendix A

Electricity demand and weather

data used in Chapter 2

This appendix presents the data which were used in Chapter 2. The data include
the daily electricity demand of the six commercial buildings as well as the weather

information from a weather station in Manchester for the period of 12/2012-12/2013.

A.1 Electricity Demand Data

Figures A.1 - A.6 present the daily electricity demand of the six commercial buildings.
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Figure A.1: The daily electricity demand of Building 1
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Figure A.4: The daily electricity demand of Building 4
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Figure A.6: The daily electricity demand of Building 6

Figures A.7 - A.16 present the weather data as obtained from the MetOffice.
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Appendix B

Matlab code used in Chapter 2

This appendix presents the code that was developed in Matlab to calculate the triad

probability.

B.1 Matlab Code

clear all;
close all;
clc;
%8k USER INPUTS
load triad_data.mat %triad data in day—month—year format
%define duration of a period in days (less than 30)
step=1;
%define the probability threshold (percent of maximum)
reddate_limit_perc=70;
redtime_limit_perc=70;
dev=1;
%l Preprocessing
all_dates=triads (:,[1 2 4 5 7 8]);%remove the years
for j=1:size(all_dates ,1)%fix the months
for i=2:2:6
if all_dates(j,i)==
all_dates(j,i)=3;
elseif all_dates(j,i)==2
all_dates(j,i)=4;
elseif all_dates(j,i)==11
all_dates(j,i)=1;
else
all_dates(j,i)=2;
end ;
end;
end;
all_dates2=all_dates;
for i=1:(size(all_dates ,1))%fix the days into periods
for j=1:2:5
flag=0;
for p=1:floor (((30/step)—1))
if all_dates(i,j)<=p*step
all_dates2(i,j)=p;
flag=1;
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38
39
40
41
42
43
44
45
46
47
48
49
50
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53
54
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break;
end;
end;
if flag==0
all_dates2(i,j)=p+1;
end;
end;
end;
period_hits=[];
for i=1:(size(all_dates,1)) %fix the periods into consecutive periods
for j=1:2:5
period_hits=[period_hits
((floor (((30/step)))=*(all_dates2(i,j+1)—1))+all_dates2(i,j))];
end;
end;
%% Calculations
reddate =[];
pdate=[];
w=0;
for i=1:size(period_hits ,1)—6kcalculate the normal distributions
pl=pdf( 'Normal’,1:(4x floor(30/step)),period_hits(i,1) ,dev);
pdate=[pdate ixpl’];
W=WHI
end;
probability_date=sum(pdate,2) /w;%average probability
reddate_limit=reddate_limit_percsmax(probability_date) /100;
figure (1) ;
bar(100* probability _date);
hold on
set(gca, FontSize’ ,32);
set(gca, XTick’,0:1:25);
plot([1 (4xfloor(30/step))],100+[reddate_limit reddate_limit], 'r—");
for i=1:(4*floor(30/step))
if probability_date(i,1)>reddate_limit%pick the values over the threshold
hold on
plot(i, 100%probability_date(i,1), 'ro’);
reddate=[reddate

il;
text (i, probability_date(i,1),strcat(’'( ' ,num2str(i),’)’), VerticalAlignment’, bottom ', Horizontal Alignment
center’);
end;
end;
xlabel ("Interval Number’);
ylabel (" Probability (%)");
set(gcf, 'Position’, get(0, Screensize’));
saveas(gcf, "intevall .emf’);
hold off

redday=step *(mod(reddate —1,floor (30/step)));%convert back to normal dates
redmonthl=ceil (reddate/floor(30/step));%convert back to normal months
for i=1:size(redmonthl,1)
if redmonthl(i,1)==
redmonth {i,1}="November’;
elseif redmonthl(i,1)==2
redmonth{i,1}="December’;
elseif redmonthl(i,1)==3
redmonth{i,1}="January’;
else
redmonth{i,1}="February’;
end ;

end;

’
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redtime =[];
ptime=[];
w=0;

for i=1:size(times,1)—6kcalculate the normal distributions

pl=pdf( ,1:48 ,times (i, 1) ,dev);
ptime=[ptime ixpl’];
W=WHI

end;

probability_time=sum(ptime,2) /w;%average probability
redtime_limit=redtime_limit_perc*max(probability_time) /100;
figure (2);

bar(100* probability_time);

hold on

set(gca, ,32);

set(gca, ,0:2:48);

plot([1 48],100x[redtime_limit redtime_limit], );
for i=1:48

if probability_time(i,1)>redtime_limit %pick the values over the threshold

hold on
plot(i, 100xprobability_time(i,1), )
redtime=[redtime
il;
text (i, probability_time(i,1),strcat( ,num2str(i), ),
)i
end;
end;
xlabel ( )
ylabel ( )
set(gcf, , get(0, ));
saveas (gcf, )
hold off

clear i pl flag j p

%o Display Results

fprintf( )
for i=1:size(redmonth,1)

if redday(i,1)==0

fprintf ( ,step ,redmonth{i,1});
elseif mod(reddate(i,1)—1,floor(30/step))==floor(30/step)—1
fprintf( ,redday(i,1) ,redmonth{i,1});
else
fprintf ( ,redday(i,1)+1,redday(i,1)+step ,redmonth{i, 1});
end;
end;
fprintf( )

for i=1:size(redtime,1)
if mod(redtime(i,1) ,2)==

fprintf ( ,redtime(i,1)/2—1,redtime(i,1)/2);
else

fprintf ( ,floor (redtime(i,1)/2),floor (redtime(i,1)/2));
end;

end;

clear all_dates all_dates2 i reddate_limit redtime_limit redmonth reddate redmonthl redday redtime step w;
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Appendix C

Management of EV charging at

residential buildings

The EV charging management strategies of the Charging Station Manager proposed in
Chapter 3 were studied in a residential scenario. This section presents the residential

scenario and its simulation results.

C.1 Description of the simulation scenario

The typical daily power demand of a house in UK was obtained from the UK Energy

Research Centre and is presented in Figure C.1.
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Figure C.1: The typical power demand of a house

Following the structure of the UK Generic Low Voltage Distribution Network, a LV
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substation fulfils the electricity requirements of 384 domestic consumers. Figure C.2
presents the network structure and the location of the Charging Station Manager. The

technical characteristics of the network are summarised in Table C.1.
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Figure C.2: The UK Generic Low Voltage Distribution Network

Assuming a 20% EV uptake, a total number of 76 EVs was considered. The EVs were
randomly distributed among the 384 customers. It was assumed that the EVs are

primarily used to commute between the driver’s home and work. After analysing the
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Table C.1: The technical characteristics of the network

11/0.4kV Transformer

Object Description Technical Characteristics
15MVA
33/11kV Transformer X/R ratio =15
18% impedance on 15MVA base
6 Outgoing 11kV “domestic” feeders 3km
11kV Bus
each
11kV  185mm? “domestic” | 3-core PICAS, Cu
feeder segment 0.164 +j0.08 ©2/km
11kV  95mm? “domestic” | 3-core PICAS, Cu
feeder segment 0.32 +j0.087 ©2/km
500kVA

X/R ratio=15

5% impedance

0.4kV “domestic” Bus

4 Outgoing 0.4kV “domestic” feeders

vice cable

300m each
0.4kV 185mm? “domestic” | XLPE, Al
feeder segment 0.164 +j0.074 Q2 /km
0.4kV  95mm? “domestic” | XLPE, Al
feeder segment 0.32 +j0.075 /km
0.4kV 35mm? “domestic” ser- | XLPE, Al

0.851 +j0.041 ©2/km

data from NTS, the arrival and departure time distributions as well as the travelled

distance distribution were calculated (Figures C.3 - C.5). The distribution of Figure

C.5 was used to calculate the energy requirements of EVs when arriving at home using

Equation (3.4) of Chapter 3.
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Figure C.4: Probability distribution of departure times from home
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C.2 Simulation results

C.2.1 Impact on the demand profile

Considering 76 EVs in a group of 384 residential customers, the impact of their char-

ging at a 3kW charger in an uncontrolled fashion is presented in Figure C.6.

— Building Demand without EV Charging
---------- Building Demand with Uncontrolled EV Charging Strategy
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Figure C.6: Impact of Uncontrolled EV charging

As seen from Figure C.6, the EV charging leads to an increase of the peak demand
during the arrival hours of the EVs at home (around 18:00). As explained in the pre-
vious section, a Charging Station Manager was assumed to be installed at the 0.4kV
bus to manage the EV charging. The impact of EV charging when the Charging Sta-
tion Manager operates under the Off-Peak strategy is presented in Figure C.7. The
Off-Peak strategy of the Charging Station Manager places the EV charging events at
the off-peak hours of the demand curve, and reduces the impact of EV charging on
the network. When the EVs offer discharging services, the Charging Station Manager
operates under the V2B operation, discharging the EVs at the peak hours. Considering
a 5% discharging allowance, the Charging Station Manager reduces the peak demand
by 12.8%. When the V2B allowance is increased to 15%, the EVs discharge for longer
periods resulting in further demand reduction (up to 24.8%). The increased depth of

discharge results in greater charging requirements during the night.

Figure C.8 presents the impact of EV charging when the Charging Station Manager

operates under the Cost Reduction strategy. In this strategy the cheapest hours are
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— Building Demand without EV Charging
- Building Demand with Off-Peak EV Charging Strategy
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Figure C.7: Impact of EV charging with the Off-Peak Strategy

preferred for the charging events and the most expensive hours are preferred for dis-

charging the EVs. In this case the EV charging events are concentrated between 01:00

and 03:00 resulting in the creation of a third peak in the demand profile. When bi-

directional power exchanges are available, the Charging Station Manager coordinated

the EVs to discharge during the (expensive) morning hours. Particularly for a 15%

V2B level, the discharging of the EVs supplies almost in total the energy requirements

of the buildings, resulting in a zero net demand requirements from the grid.
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— Building Demand without EV Charging
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C.2.2 Impact on the daily electricity cost

The different charging control strategies were also compared according to the daily
electricity cost that is needed to supply the aggregated demand (as presented in Fig-
ures C.7 - C.8). Figure C.9 presents the resulting daily cost difference between each
charging strategy and the base case (without EVs at all).

m Uncontrolled EV Charging BEV Charging without V2G
BEV Charging with V2G 5% D EV Charging with V2G 15%

Daily Cost Difference (%)

Off-Peak EV Charging Strategy Cost-reduction EV Charging Strategy

Figure C.9: Increase of the daily electricity cost comparing to the case without EV

charging.

As expected, the Uncontrolled charging scenario results in the greatest cost increase
as the charging events coincide with the expensive peak hours of the demand curve.
Looking at the rest of the scenarios, the overall daily cost is increased as the EV char-
ging increases the building’s demand. Offering V2B services, the Charging Station
Manager is able to reduce the electricity cost increase for the building manager espe-
cially in the Cost Reduction strategy. Especially for a 15% V2B allowance, the Cost
Reduction strategy results in almost the same electricity cost as the case without EV

charging (the EVs in this case charge almost for free).
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C.2.3 Additional unintended consequences

As presented in the previous section, the operating strategy of the Charging Station
Manager affects the building’s demand profile and consequently the electricity cost of
the building manager. However, reducing the electricity cost of the building manager

has additional unintended consequences to the network.

Considering the network structure of Figure C.2, the bus voltages along the MV feeder
are affected by the building’s demand profile as formed by the charging strategy of
the Charging Station Manager. The minimum voltage is found on the times when
the demand is at its peak value. Charging the EVs in an uncontrolled fashion creates
a peak in the demand profile of the building as presented in Figure C.6. This peak
causes a voltage drop along the residential MV feeder. Figures C.10 - C.11 present the

minimum bus voltage that was observed in a day for both charging strategies.
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Figure C.10: Minimum bus voltage with Off-Peak strategy

When the Charging Station Manager operates under the Off-Peak strategy (without

V2B) the EV charging demand is not creating a new peak at the demand profile of the
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building and thus the minimum bus voltage is the same with the case without any
EV charging. When the EVs offer discharging capacity, the Charging Station Manager
reduces the peak demand of the building and the minimum voltage of the 0.4kV buses
along the MV feeder are increased. The voltage increase is not significant, however
considering a case with high levels of EV penetration, the reduction of the impact of
EV charging on the bus voltage could be very valuable to the network (especially to

areas with long MV lines).
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Figure C.11: Minimum bus voltage with Cost-Reduction strategy

When the Charging Station Manager operates under the Cost Reduction strategy, the
EVs charge during the cheap hours and create a (third) peak at the demand profile of
the building. The number of EVs considered in the scenario results in a peak that is less
than the peak demand without EV charging in all cases of the Cost Reduction char-
ging strategy. Consequently the voltage drop is the same for all cases of this strategy,
regardless of the availability or level of the discharging capacity.
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Appendix D

Matlab code used in Chapter 4

This appendix presents the code that was developed in Matlab for the LEMS operation.
The LEMS uses a main program to operate on a timestep-basis. The main program

calls secondary functions developed for different procedures in the LEMS operation.

D.1 Matlab Code

Main Program of LEMS

clear all;
clc;
global total chargers sched_load ev_set maslow_set maslow maslow_set_sched building_dmdl building_dmd2 timestep t
ev_set_sched type dr_up dr_down triad_prob sched_price
timestep =0.25;
wait=0.1; %in seconds
t=0;
total =[];
ev_set=[];
soc_all =[];
maslow_set=[];
while t<96
t=t+1;
read_input;
building_dmd2=building_dmd1;
if t==
ev_set_sched=zeros(1,size(chargers,1));
maslow_set_sched=zeros(24/ timestep , size (maslow,1));
end;
if type(t,1)==10;
cost_reduction_shedule;
elseif type(t,1)==0
peak_shaving_shedule;
else
demand_response_shedule;
end;
ev_set=[ev_set
ev_set_sched (1,:)];

if size(ev_set_sched ,b1)<=2
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ev_set_sched=[ev_set_sched (2:end,:)
zeros (1,size (chargers,1))];
else
ev_set_sched=ev_set_sched (2:end,:) ;
end;
maslow_set=[maslow_set
maslow_set_sched (1,:) ];
%o if size(maslow_set_sched,b1)<=2
% maslow_set_sched =[maslow_set_sched (2:end,:)
% zeros(1,size (maslow,1))];
o else
2 maslow_set_sched=maslow_set_sched (2:end,:) ;
%o end;
maslow_set_sched=[maslow_set_sched (2:end,:)
zeros (1,size (maslow,1))];
display (t);
pause (wait) ;
system_simulator;
total=[total
building_dmd1 building_dmd2 |;
helpll=[chargers(:,6)
maslow (:,1) ],
soc_all=[soc_all helpll];
clear helpll;

end;

Secondary Function: read_input

function read_input
global chargers type maslow building_dmdl t sched_load timestep dr_up dr_down triad_prob sched_price
load EV_chargers.mat;
load building.mat;
load type.mat;
load prices.mat;
load triad_probability .mat;
load maslow_units.mat;
if t==
sched_load=build;
building_dmd1=build (1,1);
sched_price=price;
triad_prob=prob;
elseif t<(24/timestep)
sched_load =[sched_load (2:24/ timestep ,1)
build (mod(t—1,24/timestep) ,1) ];
sched_price=[sched_price(2:24/ timestep ,1)
price (mod(t—1,24/timestep) ,1) |;
triad_prob=[triad_prob (2:24/ timestep ,1)
prob (mod(t—1,24/timestep) ,1)];
building_dmdl=build (mod(t,24/ timestep) ,1);
elseif mod(t,24/timestep)==0
sched_load =[sched_load (2:24/ timestep ,1)
build (24/timestep ,1) ];
sched_price=[sched_price(2:24/ timestep ,1)
price(24/timestep ,1) |;
triad_prob=[triad_prob (2:24/ timestep ,1)
prob(24/timestep ,1) ];
building_dmdl=build (24/ timestep ,1) ;
else
sched_load =[sched_load (2:24/ timestep ,1)
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build (mod(t,24/timestep) ,1) ];
sched_price=[sched_price(2:24/ timestep ,1)
price (mod(t,24/timestep) ,1)|;
triad_prob=[triad_prob (2:24/ timestep ,1)
prob (mod(t,24/ timestep) ,1) ];
building_dmd1=build (mod(t,24/ timestep) ,1);
end;
dr_up=0;
dr_down=0;
for j=1:size(chargers,1)
if chargers(j,2)<=t && chargers(j,3)>t
help=[chargers(j,9) (100—chargers(j,6))x*chargers(j,7) /(timestep*100)];
dr_up=dr_up+min(help);
help=[chargers(j,9) (chargers(j,6)*chargers(j,7))/(timestep*100)];
dr_down=dr_down+min (help) ;
end;
end;
for j=1:size(maslow,1)
help =[maslow (j ,3) (100—maslow(j,1))=*maslow(j,2)/(timestep*100)];
dr_up=dr_up+min(help);
help =[maslow (j ,3) maslow(j,1)s*maslow(j,2) /(timestep=100)];
dr_down=dr_down+min (help) ;
end;

end

Secondary Function: cost_reduction_shedule

function cost_reduction_shedule

global chargers timestep t sched_load ev_set_sched type triad_prob sched_price maslow_set_sched

if type(t—1,1)~=10
load building.mat;
sched_load=zeros(24/timestep ,1) ;
for i=1:(24/timestep)
if mod(t+i—1,24/timestep)==
sched_load (i,1)=build(24/timestep ,1);
else
sched_load (i,1)=build (mod(t+i —1,24/timestep) ,1);
end;
if triad_prob(i,1)==
sched_price(i,1)=100xsched_price(i,1);
end;
end;
t2=(floor (t/(24/timestep))+1)*24/timestep ;
maslow_set_sched=zeros (t2—t , size (maslow,1));
for m=1:size (maslow,1)
bc=maslow (m,2) ;
rate=maslow (m,3) ;
socl=maslow(m,1) ;
soc_min=maslow (m,4) ;
soc_max=maslow (m,5) ;
soc=socl;
rnkk=zeros (t2—t ,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort (help, )
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==helpl(jj,1)
rnkk (i, 1)=jj;
help1(jj ,1)=inf;

maslow
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break;
end;
end;
end;
clear help helpl jj i
Eoutmax=(soc_max—soc_min)*bc/100;
Eout=0;
cnt=1;
while Eout<Eoutmax && cnt<=(t2—t)
for w=1:(t2—t)
if rnkk(w,1)==cnt
Ewanted=Eoutmax—Eout;
help=[ratextimestep Ewanted ((soc—soc_min)xbc/100)];
Egiven=min(help);
soc=soc —(100xEgiven/bc) ;
Eout=Eout+Egiven;
sched_load (w,1)=sched_load (w,1) —(Egiven/timestep);
maslow_set_sched (w,m)=—Egiven/timestep ;
cnt=cnt+1;

break;

end ;
rnkk=zeros (12—t ,1) ;
help=sched_price (1:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==help1(jj ,1)
rnkk (i, 1)=jj;
help1(jj ,1)=inf;
break;

end;
clear help helpl jj i
cnt=1;
while soc<soc_max && cnt<=(t2—t)
limit=zeros (t2—t,1);
limit (:,1) =(soc_max—socl)x*bc/100;
for tt=1:(t2—t)
for ttt=tt:(t2—t)
limit(ttt ,1)=limit(ttt ,1)—maslow_set_sched (tt m)=*timestep;
end;
end;
for w=1:(t2—t)
if rnkk(w,1)==cnt
if maslow_set_sched (w,m)<0
cnt=cnt+1;
break;
else
Ewanted =(soc_max—soc)*bc/100;
limitt=limit(w:end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min(help) ;
soc=soc+(100*Egiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep) ;
maslow_set_sched (w,m)=Egiven/timestep ;

cnt=cnt+1;
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end;

break;

for j=1:size(chargers,1)

if chargers(j,2)<=t && chargers(j,3)>t

id=chargers(j,1);
tl=chargers(j,2);
t2=chargers(j,3);
socl=chargers(j,4);
soc2=chargers(j,5);
soc=chargers(j,6);
be=chargers(j,7) ;
v2g=chargers(j,8);
rate=chargers(j,9);
E_in=bc *((soc2—soc+v2g) /100);
E_out=becx(v2g/100);
ev_set_sched (1:(t2—t)+1,id)=0;
if v2g>0.00000001
rnk=zeros (t2—t,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort(help, )
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==help1(jj,1)
rnk(i,1)=jj;
help1(jj ,1)=inf;
break;

end;

clear help helpl jj i

cnt=1;

Ev2g=0;

while Ev2g<E_out && cnt<=(t2—t)

for w=1:(t2—t)
if rnk(w,1)==cnt

Ewanted=E_out—Ev2g;
help=[ratextimestep Ewanted (socxbc/100)];
Egiven=min(help) ;
soc=soc —(100xEgiven/bc) ;
Ev2g=Ev2g+Egiven;
sched_load (w,1)=sched_load (w,1) —(Egiven/timestep) ;
ev_set_sched (w,id )=—Egiven/timestep ;
cnt=cnt+1;
break;

end;

rnk=zeros (t2—t ,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==helpl(jj,1)
rnk(i,1)=jj;
help1(jj ,1)=inf;
break;
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clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t)
limit=zeros (t2—t,1);
limit (:,1)=bc—soclxbc/100;
for tt=1:(t2—t)
for ttt=tt:(t2—t)
limit(ttt,1)=limit(ttt,1)—ev_set_sched(tt,id)xtimestep;
end;
end;
for w=1:(t2—t)
if rnk(w,1)==cnt
if ev_set_sched (w+1,id)<0
cnt=cnt+1;
break;
else
Ewanted=(soc2—soc)x*bc/100;
limitt=limit(w:end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min(help);
soc=soc+(100*Egiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep) ;
ev_set_sched (w,id)=Egiven/timestep;
cnt=cnt+1;
break;
end;
end;
end;
end;
else
rnk=zeros (t2—t ,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==helpl(jj,1)
mk(i,1)=jj ;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t)
for w=1:(t2—t)
if rnk(w,1)==cnt
Ewanted=(soc2—soc)*bc/100;
help=[ratextimestep Ewanted];
Egiven=min (help) ;
soc=soc+(100xEgiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep) ;
ev_set_sched (w,id)=Egiven/timestep ;
cnt=cnt+1;
break;

end;
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end;
else
t2old=(floor ((t—1)/(24/timestep))+1)*24/timestep ;
for b=1:size (maslow,1)
for tt=1:(t2old—t)
sched_load (tt ,1)=sched_load (tt ,1)—maslow_set_sched (tt ,b);
end;
end;
t2=(floor (t/(24/timestep))+1)*24/timestep ;
maslow_set_sched=zeros (t2—t, size (maslow,1));
for m=1:size (maslow,1)
bc=maslow (m,2) ;
rate=maslow (m,3) ;
socl=maslow(m,1) ;
soc_min=maslow (m,4) ;
soc_max=maslow (m,5) ;
soc=socl;
rnkk=zeros (t2—t ,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort (help, )
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==helpl(jj ,1)
rnkk (i, 1)=jj;
help1(jj ,1)=inf;
break;

end;
clear help helpl jj i
Eoutmax=(soc_max—soc_min)xbc/100;
Eout=0;
cnt=1;
while Eout<Eoutmax && cnt<=(t2—t)
for w=1:(t2—t)
if rnkk(w,1)==cnt
if sched_price(w,1)<mean(sched_price) || maslow_set_sched(w,m)>0
cnt=cnt+1;
break;
else
Ewanted=Eoutmax—Eout;
help=[ratextimestep Ewanted ((soc—soc_min)xbc/100)];
Egiven=min(help) ;
soc=soc —(100xEgiven/bc) ;
Eout=Eout+Egiven;
sched_load (w,1)=sched_load (w,1) —(Egiven/timestep) ;
maslow_set_sched (w,m)=—Egiven/timestep ;
cnt=cnt+1;
break;

end;

end;

rnkk=zeros (t2—t,1) ;
help=sched_price (1:(t2—t) ,1);
%help=sched_load (1:(t2—t) ,1);
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helpl=sort (help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==helpl(jj, 1)
rnkk (i, 1)=jj;
help1(jj ,1)=inf;
break;

end;

clear help helpl jj i
cnt=1;
while soc<soc_max && cnt<=(t2—t)
limit=zeros (t2—t,1);
limit (:,1)=(soc_max—socl)x*bc/100;
for tt=1:(t2—t)
for ttt=tt:(t2—t)
limit(ttt ,1)=limit(ttt ,1)—maslow_set_sched(tt m)*timestep;
end;
end;
for w=1:(t2—t)
if rnkk(w,1)==cnt
if maslow_set_sched (w,m)<0
cnt=cnt+1;
break;
else
Ewanted =(soc_max—soc)=*bc/100;
limitt=limit(w:end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min(help);
soc=soc+(100xEgiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep) ;
maslow_set_sched (w,m)=Egiven/timestep ;
cnt=cnt+1;
break;
end;
end;
end;
end ;
end;
for j=1:size(chargers,1)
if chargers(j,2)==
id=chargers(j,1);
tl=chargers(j,2);
t2=chargers(j,3);
socl=chargers(j,4);
soc2=chargers(j,5);
soc=chargers(j,6);
be=chargers(j,7);
v2g=chargers(j,8);
rate=chargers(j,9);
E_in=bc*((soc2—socl+v2g) /100);
E_out=bcx*(v2g/100);
if v2g>0.00000001
ev_set_sched (1:(t2—t) ,id)=0;
rnk=zeros (t2—t ,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort (help, )
for i=1:(t2—t)
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for jj=1:(t2—t)
if help(i,1)==help1(jj,1)
rnk (i, 1)=jj;
help1(jj ,1)=inf;
break;

end;
clear help helpl jj i
cnt=1;
Ev2g=0;
while Ev2g<E_out && cnt<=(t2—t)
for w=1:(t2—t)
if rnk(w,1)==cnt
Ewanted=E_out—Ev2g;
help=[ratextimestep Ewanted (socxbc/100)];
Egiven=min(help) ;
soc=soc —(100xEgiven/bc) ;
Ev2g=Ev2g+Egiven;
sched_load (w,1)=sched_load (w,1) —(Egiven/timestep) ;
ev_set_sched (w,id )=—Egiven/timestep ;
cnt=cnt+1;
break;
end;
end;
end;
rnk=zeros (t2—t ,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==help1(jj,1)

rnk(i,1)=jj;
help1(jj ,1)=inf;
break;
end;
end;
end;

clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t)

limit=zeros (t2—t,1);

limit (:,1)=bc—soclxbc/100;

for tt=1:(t2—t)

for ttt=tt:(t2—t)
limit(ttt ,1)=limit(ttt ,1)—ev_set_sched (tt,id)x*timestep;

for w=1:(t2—t)
if rnk(w,1)==cnt
if ev_set_sched (w,id)<0
cnt=cnt+1;
break;
else
Ewanted=(soc2—soc)*bc/100;
limitt=limit(w:end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min (help) ;

soc=soc+(100xEgiven/bc) ;




393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

434

O ® N Ul R W N e

e
B Ww N = o

176 D.1 Matlab Code
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep);
ev_set_sched (w,id)=Egiven/timestep ;
cnt=cnt+1;
break;

end;
end;
end;
end;
else
rnk=zeros (t2—t ,1);
help=sched_price (1:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==help1(jj,1)
mk(i,1)=jj ;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t)
for w=1:(t2—t)
if rnk(w,1)==cnt
Ewanted=(soc2—soc)*bc/100;
help=[ratextimestep Ewanted ];
Egiven=min(help);
soc=soc+(100*Egiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep) ;
ev_set_sched (w,id)=Egiven/timestep;
cnt=cnt+1;
break;
end;
end;
end;
end;
end;
end;
end;
end

Secondary Function: peak_shaving_shedule

function peak_shaving_shedule
global chargers timestep t sched_load ev_set_sched maslow maslow_set_sched
t2o0ld=(floor ((t—1)/(24/timestep))+1)*24/timestep ;
for b=1:size (maslow,1)
for tt=1:(t2old—t)
sched_load (tt ,1)=sched_load (tt ,1)—maslow_set_sched (tt,b);
end;
end;
t2=(floor (t/(24/timestep))+1)*24/timestep ;
maslow_set_sched=zeros (t2—t, size (maslow,1));
for m=1:size (maslow,1)
bc=maslow (m,2) ;
rate=maslow (m,3) ;

socl=maslow(m,1) ;
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soc_min=maslow (m,4) ;
soc_max=maslow (m,5) ;
soc=socl;
rnkk=zeros (t2—t,1);
help=sched_load (1:(t2—t) ,1);
helpl=sort (help, );
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==helpl(jj, 1)
rnkk (i, 1)=jj;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
Eoutmax=(soc_max—soc_min)*bc /100;
Eout=0;
cnt=1;
while Eout<Eoutmax && cnt<=(t2—t)
for w=1:(t2—t)
if rnkk(w,1)==cnt

if sched_load (w,1)<mean(sched_load) || maslow_set_sched (w,m)>0

cnt=cnt+1;
break;
else
Ewanted=Eoutmax—Eout;
help=[ratextimestep Ewanted ((soc—soc_min)sxbc/100)];
Egiven=min(help);
soc=soc —(100xEgiven/bc) ;
Eout=Eout+Egiven;
sched_load (w,1)=sched_load (w,1) —(Egiven/timestep) ;
maslow_set_sched (w,m)=—Egiven/timestep ;
cnt=cnt+1;
break;
end;
end;
end;
end;
rnkk=zeros (t2—t,1);
help=sched_load (1:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==help1(jj,1)
rnkk (i, 1)=jj;
helpl(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
cnt=1;
while soc<soc_max && cnt<=(t2—t)
limit=zeros (t2—t,1);
limit (:,1) =(soc_max—soc1)*bc/100;
for tt=1:(t2—t)
for ttt=tt:(t2—t)
limit (ttt ,1)=limit(ttt ,1)—maslow_set_sched(tt ,m)x*timestep;

end;
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end;
for w=1:(t2—t)
if rnkk(w,1)==cnt
if maslow_set_sched (w,m)<0
cnt=cnt+1;
break;
else
Ewanted=(soc_max—soc)=*bc/100;
limitt=limit(w:end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min(help);
soc=soc+(100xEgiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep) ;
maslow_set_sched (w,m)=Egiven/timestep ;
cnt=cnt+1;
break;
end;
end;
end;
end;
end;

for j=1:size(chargers,h1)
if chargers(j,2)==
id=chargers(j,1);
tl=chargers(j,2);
t2=chargers(j,3);
socl=chargers(j ,4);
soc2=chargers(j,5);
soc=chargers(j,6);
be=chargers(j ,7) ;
v2g=chargers(j,8);
rate=chargers(j,9);
E_in=bc*((soc2—socl+v2g) /100);
E_out=bcx(v2g/100);
if v2g>0.00000001
ev_set_sched (1:(t2—t) ,id)=0;
rnk=zeros (t2—t ,1);
help=sched_load (1:(t2—t) ,1);
helpl=sort (help, )
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==help1(jj,1)
rnk(i,1)=jj;
help1(jj ,1)=inf;
break;

end;

clear help helpl jj i

cnt=1;

Ev2g=0;

while Ev2g<E_out && cnt<=(t2—t)

for w=1:(t2—t)
if rnk(w,1)==cnt

Ewanted=E_out—Ev2g;
help=[ratextimestep Ewanted (socxbc/100)];
Egiven=min(help);
soc=soc —(100xEgiven/bc) ;
Ev2g=Ev2g+Egiven;
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sched_load (w,1)=sched_load (w,1) —(Egiven/timestep);
ev_set_sched (w,id )=—Egiven/timestep ;
cnt=cnt+1;
break;
end;
end;
end;
rnk=zeros (t2—t,1);
help=sched_load (1:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t)
for jj=1:(t2—t)
if help(i,1)==helpl(jj,1)
mk(i,1)=jj ;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t)
limit=zeros (t2—t,1);
limit (:,1)=bc—socl*bc/100;
for tt=1:(t2—t)
for ttt=tt:(t2—t)
limit(ttt ,1)=limit(ttt ,1)—ev_set_sched(tt,id)xtimestep;

for w=1:(t2—t)
if rnk(w,1)==cnt

if ev_set_sched (w,id)<0
cnt=cnt+1;
break;

else
Ewanted=(soc2—soc)*bc/100;
limitt=limit(w:end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min(help);
soc=soc+(100xEgiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep ) ;
ev_set_sched (w,id)=Egiven/timestep ;
cnt=cnt+1;
break;

end;

end;
else

rnk=zeros (t2—t,1);

help=sched_load (1:(t2—t) ,1);

helpl=sort(help);

for i=1:(t2—t)

for jj=1:(t2—t)
if help(i,1)==helpl(jj,1)

rnk(i,1)=jj;
help1(jj ,1)=inf;
break;

end;
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end;
end;
clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t)
for w=1:(t2—t)
if rnk(w,1)==cnt
Ewanted=(soc2—soc)*bc/100;
help=[ratextimestep Ewanted];
Egiven=min(help) ;
soc=soc+(100xEgiven/bc) ;
sched_load (w,1)=sched_load (w,1) +(Egiven/timestep) ;
ev_set_sched (w,id)=Egiven/timestep ;
cnt=cnt+1;

break;

end;

Secondary Function: demand_response_shedule

function demand_response_shedule
global chargers timestep t sched_load ev_set_sched dr_up dr_down type maslow maslow_set_sched
load building.mat;
sched_load=zeros(24/timestep ,1) ;
for i=1:(24/timestep)
if mod(t+i—1,24/timestep)==0
sched_load (i,1)=build(24/timestep ,1);
else
sched_load (i,1)=build (mod(t+i —1,24/timestep) ,1);
end;
end;
t2=(floor (t/(24/timestep))+1)*24/timestep ;
maslow_set_sched=zeros (t2—t, size (maslow,1));
for m=1:size (maslow,1)
socl=maslow(m,1) ;
bc=maslow (m,2) ;
rate=maslow (m,3) ;
soc_min=maslow (m,4) ;
soc_max=maslow (m,5) ;
if type(t,1)==1
help=[rate (100—socl)sxbc/(timestep *100)];
maslow_set_sched (1,m)=min(help) ;
else
help=[rate soclxbc/(timestep*100)];
maslow_set_sched (1 ,m)=—min(help);
end;
soc=socl+(100x maslow_set_sched (1 ,m)*timestep/bc);
sched_load (1,1)=sched_load (1,1)+maslow_set_sched (1,m);
rnkk=zeros (t2—t —1,1);
help=sched_load (2:(t2—t) ,1);
helpl=sort (help, )
for i=1:(t2—t—1)
for jj=1:(t2—t—1)
if help(i,1)==helpl(jj,1)
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rnkk (i, 1)=jj;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
if soc>soc_max
Eoutmax=(soc—soc_min)*bc/100;
elseif soc<soc_min
Eoutmax=(soc_max—soc)*bc/100;
else
Eoutmax=(soc_max—soc_min)xbc/100;
end;
Eout=0;
cnt=1;
while Eout<Eoutmax && cnt<=(t2—t—1)
for w=1:(t2—t—1)
if rnkk(w,1)==cnt
if sched_load (w+1,1)<mean(sched_load) || soc<soc_min
cnt=cnt+1;
break;
else
Ewanted=Eoutmax—Eout;
help=[ratextimestep Ewanted ((soc—soc_min)xbc/100)];
Egiven=min(help) ;
soc=soc —(100xEgiven/bc) ;
Eout=Eout+Egiven;
sched_load (w+1,1)=sched_load (w+1,1)—(Egiven/timestep) ;
maslow_set_sched (w+1,m)=—Egiven/timestep ;
cnt=cnt+1;

break;

end;
end;
rnkk=zeros (t2—t —1,1);
help=sched_load (2:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t—1)
for jj=1:(t2—t—1)
if help(i,1)==helpl(jj,1)
rnkk (i, 1)=jj;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
cnt=1;
while soc<soc_max && cnt<=(t2—t)
limit=zeros (t2—t,1);
limit (:,1) =(soc_max—socl)*bc/100;
for tt=1:(t2—t)
for ttt=tt:(t2—t)
limit (ttt ,1)=limit(ttt ,1)—maslow_set_sched(tt ,m)x*timestep;
end ;
end;
for w=1:(t2—t—1)
if rnkk(w,1)==cnt
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if maslow_set_sched (w,m)<0
cnt=cnt+1;
break;

else
Ewanted =(soc_max—soc)=*bc /100;
limitt=limit ((w+1):end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min(help) ;
soc=soc+(100xEgiven/bc) ;
sched_load (w+1,1)=sched_load (w+1,1) +(Egiven/timestep);
maslow_set_sched (w+1,m)=Egiven/timestep ;
cnt=cnt+1;
break;

end ;
end;
for j=1:size(chargers,1)
if chargers(j,2)<=t && chargers(j,3)>t
id=chargers(j,1);
tl=chargers(j,2);
t2=chargers(j,3);
socl=chargers(j,4);
soc2=chargers(j,5);
soc=chargers(j,6);
be=chargers(j,7);
v2g=chargers(j,8);
rate=chargers(j,9);
E_in=bc *((soc2—soc+v2g) /100) ;
E_out=bcx*(v2g/100);
ev_set_sched (1:(t2—t),id)=0;
if type(t,1)==
help=[rate (100—soc)*bc/(timestep x100) |;
ev_set_sched (1,id)=min(help);
else
help=[rate socxbc/(timestep*100)];
ev_set_sched (1,id)=—min(help);
end ;
soc=soc+(100*ev_set_sched (1,id)=*timestep/bc);
sched_load (1,1)=sched_load (1,1)+ev_set_sched(1,id);
if v2g>0.00000001
rnk=zeros (t2—t —1,1);
help=sched_load (2:(t2—t) ,1);
helpl=sort(help, )
for i=1:(t2—t—-1)
for jj=1:(t2—t—1)
if help(i,1)==help1(jj,1)
mk(i,1)=jj ;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
cnt=1;
Ev2g=0;
while Ev2g<E_out && cnt<=(t2—t—1)
for w=1:(t2—t—1)
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if rnk(w,1)==cnt
Ewanted=E_out—Ev2g;
help=[ratextimestep Ewanted (socxbc/100)];
Egiven=min(help) ;
soc=soc —(100xEgiven/bc) ;
Ev2g=Ev2g+Egiven;
sched_load (w+1,1)=sched_load (w+1,1)—(Egiven/timestep) ;
ev_set_sched (w+1,id )=—Egiven/timestep ;
cnt=cnt+1;
break;

end;
rnk=zeros (t2—t —1,1);
help=sched_load (2:(t2—t) ,1);
helpl=sort(help);
for i=1:(t2—t—-1)
for jj=1:(t2—t—1)
if help(i,1)==help1(jj,1)
mk (i, 1)=j;
help1(jj ,1)=inf;
break;
end;
end;
end;
clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t—1)
limit=zeros (t2—t,1);
limit (:,1)=bc—socl*bc/100;
for tt=1:(t2—t)
for ttt=tt:(t2—t)
limit(ttt ,1)=limit(ttt,1)—ev_set_sched(tt,6id)=*timestep;
end;
end;
for w=1:(t2—t—1)
if rnk(w,1)==cnt
if ev_set_sched (w+1,id)<0
cnt=cnt+1;
break;
else
Ewanted=(soc2—soc)*bc/100;
limitt=limit ((w+1):end,1);
Battery_limit=min(limitt);
help=[ratextimestep Ewanted Battery_limit];
Egiven=min(help) ;
soc=soc+(100xEgiven/bc) ;
sched_load (w+1,1)=sched_load (w+1,1) +(Egiven/timestep) ;
ev_set_sched (w+1,id)=Egiven/timestep;
cnt=cnt+1;
break;

else

rnk=zeros (t2—t —1,1);
help=sched_load (2:(t2—t) ,1);
helpl=sort (help);

for i=1:(t2—t—1)
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for jj=1:(t2—t—1)
if help(i,1)==help1(jj,1)
rnk(i,1)=jj;
help1(jj ,1)=inf;
break;

end;
clear help helpl jj i
cnt=1;
while soc<soc2 && cnt<=(t2—t—1)
for w=1:(t2—t—1)
if rnk(w,1)==cnt
Ewanted=(soc2—soc)*bc/100;
help=[ratextimestep Ewanted];
Egiven=min (help) ;
soc=soc+(100xEgiven/bc) ;
sched_load (w+1,1)=sched_load (w+1,1) +(Egiven/timestep ) ;
ev_set_sched (w+1,id)=Egiven/timestep ;
cnt=cnt+1;
break;
end;
end;
end;
end;
end;

end;

Secondary Function: system_simulator

function system_simulator
global chargers building_dmd2 ev_set timestep t maslow_set maslow
for i=1:size(chargers,1)
chargers (i,6)=chargers(i,6)+100xev_set(t,i)*timestep/chargers(i,7);
if ev_set(t,i)<0
chargers(i,8)=chargers(i,8)+100xev_set(t,i)*timestep/chargers(i,7);
end;
end;
save EV_chargers.mat chargers;
for i=1:size (maslow,1)
maslow (i,1)=maslow(i,1)+100xmaslow_set(t,i)*timestep/maslow(i,2);
end;
save maslow_units.mat maslow;
building_dmd2=building_dmd2+sum(ev_set(t,:) )+sum(maslow_set(t,:));

end
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Appendix E

The developed model for the
battery pack of the EV agents

The developed model for the battery pack of the EV agents in SeSAm is described in

this section.

E.1 The battery pack model

According to [212], the terminal voltage (V;) of a Li-ion battery is given by Equations
(E.1) and (E.1) for the Discharging and Charging procedure respectively.

Discharging Procedure

Qmaz

Vi=Ey+R-iy— K - (qa—if)+ A e B (E.1)
Qmaz — qd
Charging Procedure
Vt:EO—l—R-z’t—K-M-qd+K-Qmax-i;"—i—A-e*B'qd (E.2)
Qmaz — qd qd

, where:

Vi = terminal voltage of the battery (V)

Ey = battery voltage constant (V)



186 E.1 The battery pack model

R = battery internal impedance (£2)
iy = battery current at minute ¢ (¢; > 0 for charge and i; < 0 for discharge)

iy = filtered battery current at minute ¢ (i; = 0 on the beginning of a current step

change and ¢f = i, for every consecutive minute)
K = polarization constant

Qmaz = battery capacity (Ah)

qq = discharge capacity (Ah)

A = exponential zone amplitude

B = exponential inverse time constant

Parameters A, B, K and Ej were extracted from the typical discharge characteristic
of the battery under study following the procedure mentioned in [212]. An example

discharge curve is presented in Figure E.1.

Point 1

Voltage curve
N Exponential zone
[ Nominal zone

Terminal Voltage (V)

Q - e

Discharge Capacity (Ah)

Figure E.1: Typical Discharge Curve of a battery

As seen in Figure E.1 two zones were defined in the typical discharge characteristic of a
battery, namely the exponential zone and the nominal zone. To extract the parameters,
three points were required from the discharge characteristic: the beginning and end of
the exponential zone, and the end of the nominal zone. Having these points, Equation

(E.1) was used to create Equations (E.3), (E.4) and (E.5).
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In the beginning of the exponential zone (Vi, ¢q1), the discharge capacity and the

filtered current is zero (¢q1 = 0, iy = 0). That leads us to Equation (E.3):

Vi=Ey+R-i; +A (E.3)

At the end of exponential zone (V5, g42) the factor B is approximated to 3/¢q2 according

to [212] and i} = ¢; . Thus, Equation (E.1) becomes as follows:

del‘

Vo=FEo+R-iy— K- —me
Qmax_QdZ

(qaz — i) +A-e? (E.4)

At the end of the nominal zone (V3, ¢43) the terminal voltage of the battery is given by

Equation (E.5).

Qmam

— 3 g,
" Oon — Qa3 (qas — ir) + A - € a2 1 (E5)

Va=FEy+R-1; — K

After solving the system of Equations (??) - (2?), parameters A, K and Ej are obtained.

The particular battery model is based on the following assumptions / limitations:

1. The internal resistance is supposed constant during the charge and discharge

cycles and independent to the amplitude of it.

2. The model’s parameters are extracted from the manufacturer discharge charac-

teristic and assumed to be the same for charging.

3. The model’s accuracy is subject to the precision of the points extracted from the

discharge characteristic.
4. The temperature does not affect the model’s behaviour.
5. The self-discharge of the battery is neglected.

6. The battery has no memory effect.

The model was validated on an 18650 Li-Ion battery cell with the following specifica-

tions:
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Table E.1: 18650 Li-Ion battery cell specifications (from [2])

Maximum Capacity | 2200mAh (0.2C discharge)
Nominal Capacity | 2100mAh (0.2C discharge)
Nominal Voltage 3.7V
Internal Impedance | 40mf2
Standard Charge Constant Current and Constant Voltage (CC/CV)
Conditions Charge Current = 1100mA (0.5C)
End-up Voltage = 4.2V
End Current = 22mA
Standard Discharge | Constant Current (CC)
Conditions Charge Current = 1100mA (0.5C)
End-up Voltage =3.0 V
42

N

by
o

(US)
o]

SOS
P

Voltage (V)
o

34 \ \\
3.2 \ x\
3 -O T T T T T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

— 0.2C

Discharge (% of nominal)

—0.5C 1C —2C

Figure E.2: Discharge characteristics of the 18650 Li-Ion battery cell (from [2])

The parameters of Equation (E.1) were extracted from the 0.5C discharge character-
istic. Table E.2 presents the three points of interest and the extracted parameters. These

parameters were used to reproduce the discharge characteristic of the Li-ion cell for
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discharge rates of 0.2C, 0.5C, 1C and 2C (0.44A4, 1.14, 2.2A and 4.4 A respectively). The

results are presented in Figure E.3.

Table E.2: Parameters of the 18650 Li-Ion battery cell

\%4 4.16V
Point 1
q 0 Ah
\% 3.67V
Point 2
q 1.47Ah
\% 3.4V
Point 3
q 1.9775Ah
A 0.426130069
B 2.040816327
K 0.010985596
Ey 3.777869931
4.2 i
4.0
38

Voltage (V)
N

b
~

3.2 \ \\\\\
3.0
0 10 20 30 40 50 60 70 80 90 100
Discharge (% of nominal)
Datasheet: =— 0.2C — 0.5C —1C =—2C
Model: — 02C — 05C —1C —2C

Figure E.3: Generated and actual discharge characteristics for the 18650 Li-Ion bat-
tery cell.

As seen in Figure E.3 the generated discharge characteristics correspond to the ac-
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tual ones, especially for discharge rates lower than 1C. In EV applications it is highly
unlikely to come across higher discharge rates, and thus this model was considered

accurate enough for the purposes of this study.

The above model was used to model the behaviour of a battery pack similar to the one
of a Tesla Roadster vehicle (https://www.teslamotors.com). According to [213], such
a battery pack is consisted of 6,831 18650 Li-Ion battery cells following an 11S 9S 69P

configuration (see Figure E.4).

Battery pack = 11 modules in series

1 module = 9 groups in series

1 group = 69 cells in parallel

Figure E.4: The 11S 9S 69P configuration

Assuming that the battery pack is consisted of the 18650 Li-Ion battery cells with the

characteristics of Table E.2, the battery pack specifications were calculated:

1. Maximum Capacity: Qmaz,,e. = @maz, - 69 = 2.2-69 = 151.84h
2. Nominal Capacity: Qnom, e, = @nome, - 69 = 2.1-69 = 144.94h
3. Nominal Voltage: Viom,,er, = Viomee; 99 = 3.7-99 = 366.3V

4. Total Impedance: Rpqck = Reerr - 59 = 0.04 - 2 = 0.057399

5. Discharge End Voltage: Vinin,,.,. = Vining,y, - 99 = 3.0 - 99 = 297V
6. Charge Voltage: V... = Ve, - 99 = 4.2-99 = 415.8V

7. Charge End Current: imin,, ;. = imin..,; - 69 = 22mA - 69 = 1.5184


https://www.teslamotors.com

E.1 The battery pack model

For the above calculations a battery cell management system was assumed to be in
place to balance the battery cell utilization, and thus the battery pack behaves exactly
like a single cell. Based on this assumption, the three points of interest of the discharge
characteristic were calculated using the points of the single 18650 Li-Ion battery cell.
Solving the system of Equations (E.3)-(E.5) for the new specifications and points, the

parameters of Equations (E.1) and (E.2) were recalculated. Table E.3 presents the res-

ults for the battery pack:

Table E.3: Parameters of the battery pack

Vv 4.16-99 = 411.84V
Point 1

q 0Ah

Vv 3.67-99 = 363.33V
Point 2

q 1.47-69 = 101.43Ah

Vv 3.4-99 = 366.6V
Point 3

q 1.9775 - 69 = 136.4475Ah
A 42.20110765
B 0.029577048
K 0.015736639
Ey 373.9947934

The discharge characteristics of the battery pack are presented in Figure E.5 for dis-
charge rates of 0.2C, 0.5C, 1C and 2C (30.36 4, 75.94, 151.8 A and 303.6 A respectively).
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417

N
NG
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)
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Discharge (% of nominal)

Terminal Voltage (V)

— 02C —05C —1C —2C

Figure E.5: Generated discharge characteristics for the battery pack
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Appendix F

Implementation of the charging /
discharging procedure of the EV

chargers in SeSAm

This section presents the charging / discharging procedure of the EV chargers in
SeSAm.

E1 The charging/discharging process

The CC-CV charging procedure is described by Equations (F.1) - (E.5). During the CC

phase, the current i(¢) of the battery pack is constant positive and assumed to be the
pbcC

o When

one at which the EV charger does not exceeds its nominal DC power rating
the terminal voltage of the battery pack is maximum. The constant current value was

calculated using Equation (E.1).

PDC
i(t) = oo = 22 (E.1)

Cpack
At the end of each minute the charge difference ¢4(), the terminal voltage of the bat-
tery pack V;(t), the SoC of the battery pack SoC(t) and the DC power of the EV charger
PPC(t) were calculated using Equations (E.2) - (E5).

qalt) = qu(t — 1) — i(t) - — (F2)
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Vi(t) = Bt R K84 =1) K8y g Pt (R3)
SoC(t) = Qmé’“ —aat). 100% (F4)
PPE(t) = Vi(t) - i(t) (E5)

When the terminal voltage of the battery pack reaches its maximum value (415.8V),

the charging procedure enters the CV phase.

During the CV phase, the terminal voltage of the battery pack is kept constant at its
maximum value and the input current i(¢) is reduced till it reaches its minimum value
(1.518A4). At the end of each minute the current i(t), the charge difference g,4(¢), the
SoC of the battery pack SoC(t) and the DC power of the EV charger PPC(t) were
calculated from Equations (F.6) - (F.9).

Vit)— By + K - 5—Smes g (t —1) — A - e~ Baalt=1)

it) = Q'""’Ejf(?) G (E6)
al®) = qalt = 1)~ i) o5 ®7)

SoC(t) = Qmém’; ;jd(t) - 100% (E8)

PPCt) = Vi(t) - i(t) (F9)

When i(t) = 1.518 A the charging procedure is over.

If the EV is moving, there is power consumption from its battery. This power con-

sumption P,y (t) results in a (negative) discharge current i(¢) and a reduction in the
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terminal voltage and SoC of the EV battery pack. Equations (F.10) - (F.13) were imple-
mented in SeSAm to calculate the discharge current i(t), the charge difference ¢,(t), the

terminal voltage V;(t) and the SoC of the EV battery pack at the end of each minute.

(F.10)

Qmam

K- (qe(t —1) —ip) + A- e Balt=1)  (E11
Qmax — qd(t — 1) (Qd( ) t) ( )

Vi(t)=FEo+ R- iy —

qq(t) = qa(t — 1) —i(t) - % (F12)
SoC(t) = Qm‘gpk — ) 100% (F.13)

When the terminal voltage of the battery pack reaches its minimum value (297V) the

EV battery is considered empty, and the EV cannot move any further.
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Appendix G

The developed multi-agent

simulation model in SeSAm

This section presents screenshots from the developed multi-agent simulation model in

SeSAm.

G.1 Screenshots from SeSAm

An example simulation scenario was considered with 10 EV agents in order to demon-
strate the user interface and the environment of SeSAm. The structure of the develo-
ped model in SeSAm is presented in Figure G.1. Every box corresponds to an entity
(agent / resource) with a number of variables. The “world1” entity is a structural

entity necessary to initialise the simulation and perform file operations (import / ex-

port).
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substation :: fixed

MV feeder :; fixed

transformer :: fixed

public charger ;: fixed

myMV feeders :: list of SimO..|"
totaldemand :: HashTable<N..)*
id ;> String d
mv_losses :: Number<Doubled,
noEVdemand :: HashTable<..|

id :: String

mytransformer :: SimObject
mysubstationID :: String
mysubstation :: SimObject

powerdemand :: HashTable..|
noEVdemand :: HashTable<.. |

mydistrict :: SimObject
myM"/feederlD :: String
myMVfeeder :: SimObject

powerdemand :: HashTable.. .

id :: String

Iv_losses :: Number<Double> X
next24hours :: list of Numbe...|"
noEVdemand :: HashTable<...|*

occupied :: HashTable<Num..
mydistrictiD :: String
mydistrict :: SimObject

id :: String

rate :: Number<Double>

P_ac :: HashTable<Number<.,
queue :: list of SimObject
wait_time :: list of Number<D.

world1 :: fixed

maxtime :: Number<Double>

hc_occup :: HashTable<Nu...
pc_occup :: HashTable<Nu...
id :: String

TS :: Number<Double>

currentTimestep :: Numbers<..,

wh_dmd :: HashTable<Num...

hct :: HashTable<Number<D..
pct :: HashTable<Number<D..
data :: HashTable<Number<.. |
rb_dmd1 :: HashTable<Mum...
rb_dmd2 :: HashTable<Mum...

EV : fixed

id :: String
start :: SimObject
end :; SimObject

possible_routes :: list of List..
speed :: HashTable<Number . |
P aerodynamics :: HashTabl..
P drivetrain :: HashTable<Nu. )
P tires :: HashTable<Number . |
Consumption :: HashTable<...
|_dc :: HashTable<Number<...
V_dc :: HashTable<Number ...

Qmax :: Number<Double>

home charger :: fixed

| occupied :: HashTable<Num..
| mydistrictiD :: String
.| mydistrict :: SimObject

°| rate :: Number<Double=
| P_ac :: HashTable<Number<, |*

id :: String

avenue : fixed

district ::

fixed

residencial building :: fixed

| workplace building : fixed

id :: String

districtiD_1 :: String
districtiD_2 :: String
district_1 :: SimObject
district_2 :: SimObject

length :: Number<Double>
Qc :: Number<Double>
Uf :: Number<Double>

Kj :: Number<Double=

Kc :: Number<Double>

runningEV's :: HashTable<N...

k :: HashTable<Number<Dou.

parked_EVs :: HashTable<N..

id :: String
¥ - Number<integer>
y i Number<integer=>

myAvenues :: list of SimObj...

myRB :: list of SimObject
myTransformeriD :: String
myTransformer :: SimObject
myWB :: list of SimObject
myHC :: list of SimObject
myPC :: list of SimObject

id :: String

mydlistrictlD :: String
mydistrict :: SimObject
powerdemand :: HashTable...

| id:: String

‘| mydistrict :: SimObject
‘| powerdemand :: HashTable.. [ ¢

mydistrictiD :: String

Figure G.1: The structure of the developed model in SeSAm

Figure G.2 presents the reasoning engine of the EV agent. As mentioned in Chapter
5 the EV agent’s behaviour was modelled using a state / transition logic, using boxes

for the states and arrows for the transitions.
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Figure G.2: The reasoning engine of the EV agent in SeSAm

A graphical interface was designed in SeSAm to visualise the EV movements on the

road network during the simulation. Different colours were used to describe the EV

agent’s action (red for discharging, green for charging and black for idle). Figure G.3

presents a snapshot of an example simulation.
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Figure G.3: EV agents on the road network during simulation
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Every considered variable of the SeSAm entities was monitored in real time. Figures
G.4 and G.5 present the battery characteristics of an EV agent, as well as the power

demand from 4 random Public Chargers.
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Figure G.4: EV agent characteristics during simulation
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Figure G.5: Power demand from Public Charger entities during simulation

By monitoring the status of the agents’ environment, the impact of EV agent beha-
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viour was studied. Figures G.6 and G.7 present the transformer demand and the av-
enue traffic during an example simulation. For visibility purposes, only a sample of

Transformers and Avenues is presented here.
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Figure G.6: Power demand from Transformer entities during simulation
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Figure G.7: Traffic of Avenue entities during simulation
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