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Abstract

The uptake of dissolved CO2 by phytoplankton in the surface ocean and its delivery
to the deep ocean via the remineralisation of sinking particles, the biological pump, is
an important control on the exchange of CO2 between the ocean and the atmosphere.
Ocean biogeochemical models suggest that atmospheric CO2 is sensitive to changes
in the depth at which the majority of particles have been remineralised in the ocean
interior. However, the key mechanisms involved are not well understood. The function
of the biological pump in the past and future is a large uncertainty for the carbon
cycle. This thesis uses observations and modelling to further constrain our mechanistic
understanding of the biological pump.

Geographically Weighted Regression is applied to an updated sediment trap dataset to
explore the spatial variability in statistical relationships between organic matter and
CaCO3 that are the basis for the ballast hypothesis. No uniform strong relationship
at smaller spatial scales and patterns consistent with surface biogeochemistry suggests
ecosystem processes may be important.

In response to the limited sampling of particulate fluxes analysis explored whether
annual average fluxes could be estimated from a PO4 climatology using modelled ocean
transport rates in the form of a transport matrix. The Earth System Model GENIE
was used to create a synthetic dataset to test this approach, finding significant sources
of uncertainty from errors in the observations, the use of modelled transport rates and
the assumption that remineralisation is from particles only.

The transport matrix formed a basis for a steady-state phosphorus-only model used to
find optimal solutions of spatially varying remineralisation using a 600 member Latin
Hypercube ensemble and observed [PO4]. Modelled [PO4] was predominantly sensitive
to global mean remineralisation depths although some spatial variability could be con-
strained. This has implications for using nutrient distributions to validate mechanistic
parameterisations in models.
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CHAPTER 1

Introduction

Changes in global climate are inherently linked to the concentration of carbon dioxide

(CO2) in the atmosphere by its properties as greenhouse gas. Ice core records of at-

mospheric CO2 over the last 800,000 years show that CO2 concentrations have risen

and fallen between 180 and 280 ppm in the quasi-periodic glacial-interglacial cycles

in a tight coupling with temperature (Jouzel et al., 2007). In the last century, an-

thropogenic emissions of CO2 have led to an increase in atmospheric CO2 beyond the

glacial-interglacial amplitude concurrent with an increase in observed global mean air-

surface temperatures (Brohan et al., 2006). Understanding the function of the carbon

cycle is key to understanding both the mechanisms behind the glacial-interglacial cy-

cles of CO2 and changes in atmospheric CO2 through time as well as understanding the

long-term impact and fate of anthropogenic CO2 emissions.

The amount of carbon in the atmosphere is relatively small (∼600 Pg C; 1 Pg C = 1015g)

in comparison to other reservoirs in the carbon cycle and has relatively large exchanges

with the biosphere and the surface ocean (Figure 1.1). Consequently atmospheric CO2

has a small residence time and is very sensitive to changes in the fluxes of carbon in and

out of the atmosphere. On timescales of 10-100 years carbon is exchanged between the

atmosphere, the biosphere and the surface ocean which combined hold less than 4000

Pg C (Figure 1.1). In comparison, the deep ocean reservoir of carbon is much larger in
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Figure 1.1: Schematic of the pre-indsutrial surface (exogenic) carbon cycle. Approxi-
mate reservoir sizes are given in brackets in units Pg C (1 Pg = 1015g). Estimated annual
fluxes between reservoirs for the 1990s are shown as the italic numbers in units Pg C
yr−1. Dashed boxes indicate reservoirs involved in carbon exchange on the timescales
indicated. Adapted from Zeebe and Ridgwell (2011) with estimated flux values from
Denman et al. (2007)

size (37,000 Pg C) but it can only interact with the atmosphere via the surface ocean.

The timescale of ocean overturning is on the order of 1000 years, setting a limit on the

way carbon in the deep ocean can interact with the atmosphere. Because of its size and

timescales of interaction with the atmosphere, changes in the marine carbon cycle are

thought to be a key factor in the glacial-interglacial cycles (Sigman and Boyle, 2000;

Sigman et al., 2010) and in the ultimate fate of anthropogenic CO2 emissions (Archer

et al., 2009).

Exchanges between the surface and deep ocean are not only limited to ocean mixing

however, as some carbon is actively ‘pumped’ from the surface ocean to the deep by

a process known as the ‘biological pump’. This term refers to the net effect of organ-

isms living in the surface ocean taking up carbon and forming either organic matter or

calcium carbonate (CaCO3) which then sink into the ocean interior as the particulate

remains of the organisms. The organic matter component of biological pump is esti-
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Chapter 1 The Biological Pump and the Carbon Cycle

mated to export 5-10 Pg C per year from the surface ocean to the deep ocean (Henson

et al., 2011) and helps maintain a vertical gradient of carbon in the ocean, in part

facilitating the uptake of atmospheric CO2 in the surface ocean. However, the precise

mechanisms controlling the biological pump, and their potential role in past and future

changes in climate, are uncertain. This introductory chapter of the thesis starts by in-

troducing the biological pump and its interaction with the marine carbon cycle (Section

1.1) in the context of the biological pump as a geochemical process, i.e., considering

its net effect on ocean chemistry and how changes in it can affect atmospheric CO2,

such as Sigman et al. (2010). Section 1.2 then focuses on observations of the biological

pump in the modern ocean and current hypotheses about the key mechanisms driving

the biological pump. These are related back to the discussion in Section 1.1 and their

implications for the role of the biological pump in changing atmospheric CO2 through

time. Finally, the aims and outline of the thesis are presented.

1.1 The Biological Pump and the Carbon Cycle

1.1.1 Factors Controlling pCO2 in the Surface Ocean

The exchange of CO2 between the surface ocean and the atmosphere is dependent

on the difference between the partial pressure of CO2 (pCO2) in the atmosphere and

surface ocean. Assuming no change in fluxes from other reservoirs in the carbon cycle,

changes in surface ocean pCO2 will drive changes in atmospheric CO2. pCO2 in the

surface ocean is determined by the concentration of dissolved CO2 and the solubility of

the water determined by the coefficient K0:

pCO2 =
H2CO∗3

K0

(1.1)

Dissolved CO2 is referred to as the hypothetical acid H2CO∗3 because when gaseous

CO2 dissolves into seawater it hydrates into aqueous CO2 which further reacts to form
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Figure 1.2: Sensitivity of K0 to temperature. For a constant [H2CO∗3], pCO2 will vary
predominantly with temperature as per equation 1.1. Figure adapted from Sarmiento
and Gruber (2006)

.

carbonic acid which are not chemically separable from eachother (Zeebe and Wolf-

Gladrow , 2001). K0 is particularly sensitive to temperature (Figure as well as salinity

but the controls on pCO2 are more complicated due to the inorganic chemistry of carbon

in seawater than suggested by equation 1.1.

H2CO∗3 dissociates into bicarbonate (HCO−3 ) and carbonate (CO2−
3 ) forming a thermo-

dynamic equilibrium:

CO2 + H2O ⇀↽ H2CO∗3 ⇀↽ HCO−3 + H+ ⇀↽ CO2−
3 + 2H+ (1.2)

The inorganic carbon system is commonly described by two parameters: dissolved inor-

ganic carbon (DIC), the sum of the carbon species in equation 1.2, and total alkalinity

(ALK), a measure of the total bases (proton acceptors) over acids (proton donators)
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(Zeebe and Wolf-Gladrow , 2001):

DIC = [H2CO∗3] + [HCO−3 ] + [CO2−
3 ] (1.3)

ALK = [HCO−3 ] + 2[CO2−
3 ] + [OH−] + [B(OH)−4 ]− [H+] + minor bases (1.4)

where [OH−] is the concentration of the hydroxide ion and [B(OH)−4 ] is the concentration

of the borate ion. Alternatively, alkalinity can be viewed as the charge balance between

all strong acids and bases including nitrate ([NO−3 ]). DIC and ALK contain common

terms because although an increasing concentration of dissolved CO2 will increase DIC,

the final amount of dissolved CO2 is also dependent on current state of the inorganic

carbon system. Alkalinity indicates how the state of inorganic carbon system with

respect to its equilibrium. Additional parameters of the inorganic carbon system such

as pH, total dissolved boron and the concentration of each carbon species can also be

used. Global mean surface DIC in the modern ocean is dominated by 86.6% [HCO−3 ]

and 10.9% [CO2−
3 ] with [H2CO∗3] forming only 0.5%. Likewise, ALK is dominated by

the anions in DIC, [HCO−3 ] at 76.8% and [CO2−
3 ] at 18.8% (Zeebe and Wolf-Gladrow ,

2001; Sarmiento and Gruber , 2006).

As H2CO∗3 contributes a small fraction of the DIC pool, changes in surface ocean pCO2

are ultimately driven by changes in HCO−3 and CO2−
3 . Therefore, pCO2 in the surface

ocean is a function of temperature, salinity as well as DIC and ALK (Sarmiento and

Gruber , 2006). In the modern ocean, average concentrations of DIC and ALK are

15% and 5% higher respectively in the deep ocean than at the surface (Sarmiento

and Gruber , 2006). Approximately 90% of this vertical gradient is estimated to be

maintained by the action of biology via the biological pump (Gruber and Sarmiento,

2002).
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1.1.2 The Biological Pump

The biological pump is formed of two individual components, the ‘soft-tissue pump’

and the ‘carbonate pump’, that interact with pCO2 via DIC and ALK in different ways

(Figure 1.3).

1.1.2.1 Soft-Tissue Pump

In the upper sunlit zone of the ocean (0-100m), a range of photosynthetic organisms,

such as diatoms, cocclithophores, and other picophytoplankton, use sunlight to split

water molcules and fix carbon from dissolved CO2 during photosynthesis to form the

carbohydrates in organic matter. Other nutrients such as phosphate (PO3−
4 ) and nitrate

(NO−3 ) are also taken up from solution during photosynthesis (Sarmiento and Gruber ,

2006):

106CO2 + 16HNO−3 + H3PO2−
4 + 78H2O + 18H+ ⇀↽ C106H175O42N16P + 150O2 (1.5)

Upon the death of these organisms, a large proportion of the organic matter that was

created in the surface ocean is broken down during heterotrophic respiration by zoo-

plankton and bacteria in-situ, i.e., in the surface, releasing CO2 and nutrients back

into solution. However a fraction of the organic matter (0-25% of which is region-

ally variable; Henson et al., 2011) survives respiration in the surface and is exported

into the ocean interior as either sinking particles (particulate organic matter/carbon:

POM/POC) or smaller suspended particles (dissolved organic matter/carbon: DOM/-

DOC; this is defined operationally as organic matter passing through a 0.45 µm filter

Williams and Follows , 2011) (Figure 1.3). Estimates suggest that between 5-12 Gt C

year−1 is exported from the surface to the ocean interior (Laws et al., 2000; Dunne et al.,

2007; Lutz et al., 2007; Henson et al., 2011), with DOC forming approximately 20% of
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Figure 1.3: Schematic of the biological pump showing the removal of carbon and alka-
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the thermodynamic equilibrium in the modern ocean is shown in grey. The controls on
the balance of [CO2−
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.

this export (Hansell et al., 2009). Ultimately, the amount of organic carbon exported

into the ocean interior (‘export production’) as opposed to the total organic carbon

fixed at the surface (‘net primary production’) is the important factor for altering the

exchange of atmospheric CO2 (Sarmiento and Gruber , 2006).

POM sinking below the surface is further consumed by bacteria and zooplankton as

it sinks through the ocean interior, returning CO2 and nutrients back into solution at

depth. This net process of returning CO2 back into solution is termed ‘remineralisa-

tion’. The majority of organic matter (>90%; Francois et al., 2002) is remineralised by
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<2000m water depth leaving a small fraction of the POM originally exported from the

surface reaching the deep ocean (Martin et al., 1987).

The soft-tissue pump has a direct effect on surface ocean pCO2 by maintaining a vertical

gradient in DIC, due to the removal of CO2 at the surface and delivery to depth,

in the face of ocean circulation which is acting to constantly erode the gradient via

mixing. The removal of NO−3 ions associated with the export of POM increases ALK

at the surface and decreases it at depth with remineralisation, although this effect is

much smaller due to the amount of NO−3 taken up during photosynthesis relative to

carbon e.g., a global average molar ratio across phytoplankton of 16:117 (Anderson

and Sarmiento, 1994). Other forms of nitrogen, such as ammonium, can also taken up

during the formation of organic matter but are not considered in this thesis.

1.1.2.2 Carbonate Pump

As organic matter is being formed, some photosynthetic organisms, such as coccol-

ithophores and zooplankton such as foraminifera, also precipitate hard parts formed of

the mineral calcium carbonate (CaCO3):

Ca2+ + 2HCO−3 ⇀↽ CaCO3 + CO2 + H2O (1.6)

The export of CaCO3 to the ocean interior at ∼100m depth is estimated to be 6-8%

of the organic carbon export (Sarmiento et al., 2002; Jin et al., 2006). The formation

of CaCO3 at the surface has the net effect of decreasing ALK by removing 2 moles of

HCO−3 but also increasing DIC by the addition of 1 mole of CO2 (partly balancing the

removal of 2 moles of HCO−3 from DIC). As with the soft-tissue pump, some of these

particles sink into the ocean interior and partly dissolve leading to the reverse reaction

(Equation 1.6). The carbonate pump sets up the vertical gradient of ALK in the ocean

which also has a direct effect on pCO2 but in the opposite direction to the soft-tissue
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pump.

Unlike the remineralisation of POM, the dissolution of sinking CaCO3 particles is sensi-

tive to the saturation state of seawater with respect to CaCO3. The solubility product

for the two main forms of CaCO3 is defined as:

KCaCO3
sp = [CO2−

3 ]sat[Ca2+]sat (1.7)

KCaCO3
sp is strongly dependent on pressure leading to undersaturation at depth, al-

though this varies between basins due to changes in [CO2−
3 ] with the soft-tissue pump

(Sarmiento and Gruber , 2006). Ca2+ forms a major constituent of modern seawater

and is often assumed a constant (Sarmiento and Gruber , 2006). A larger fraction of

the exported CaCO3, compared to exported POC, reaches the seafloor and is involved

in interactions with the sediments.

1.1.2.3 Interactions with Sediments

Sinking particulates of organic matter and CaCO3 that reach the seafloor are incorpo-

rated into the ocean sediments (Figure 1.3). Interactions between the two components

of the biological pump and the sediments are also an important control on pCO2 via

whole ocean changes in DIC and ALK. The sediments consist of solid particles made up

of clays, CaCO3, silica, and clays, that derive from the sinking particles at the sediment

surface and form a matrix filled with pore water (Sarmiento and Gruber , 2006). DIC

and ALK in the sediment porewater can change as a function of the remineralisation

of organic matter particles and the dissolution of minerals. These processes lead to

large concentration gradients between the pore water and overlying seawater leading to

the diffusion between the two, as well as within different layers of the sediments. As

particulates rain onto the sediment surface, consolidation of the sediment below and

movements of the ocean crust contribute to a downward motion of the sediments, lead-
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ing to some particles becoming ultimately buried. The sediment processes that have

the greatest impact on the dissolved constituents of the ocean occur in the top ∼10cm

of the sediment (Sarmiento and Gruber , 2006) and are considered further.

The precipitation of CaCO3 in the surface ocean and burial in the sediments via the

carbonate pump represents a net loss of [CO2−
3 ] and therefore ALK from the ocean

over time. The weathering of rocks on land also delivers [CO2−
3 ] and ALK to the ocean

via rivers representing a input of ALK in the ocean. By acting as a control on the

loss of ALK, changes in the carbonate pump can have a direct effect on the balance

of ALK in the ocean (Ridgwell and Zeebe, 2005). Equally, changes in the soft-tissue

pump can alter the burial of CaCO3 in the sediments by altering the concentration

of dissolved CO2 in the deep ocean driving a change in the saturation state of the

deep ocean affecting the dissoution of CaCO3 in the surface sediments, e.g., equation

1.7 (Archer , 1991; Arndt et al., 2013). The majority of organic matter reaching the

sediment is remineralised (Sarmiento and Gruber , 2006; Arndt et al., 2013) increasing

the concentration of CO2 in the pore water and increasing the solubility of CaCO3,

providing an additional mechanism for the soft-tissue pump to alter ocean ALK. In

summary, any net change in the ratio of POC to CaCO3 in the deep ocean and sediment

surface will drive changes in the sediment composition and the ALK of the ocean.

1.1.3 How can changes in the Biological Pump drive changes in

Atmospheric CO2?

The exchange of CO2 between the atmosphere and ocean, and therefore the concentra-

tion of CO2 in the atmosphere, is sensitive to changes in the biological pump due to its

effects on DIC and ALK. This section categorises and quantifies the potential ways in

which the two components of the biological pump could change and affect atmospheric

CO2. These are broadly categorised as changes occurring in the surface ocean and

changes occurring in the ocean interior in order to highlight that changes in the ocean
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interior are potentially significant for atmospheric CO2 but have not yet been consid-

ered in as much detail. The following discussion draws on concepts and hypotheses

about the role of the biological pump in glacial-interglacial cycles, which has been a

focus of research when considering the biological pump as a geochemical process e.g.,

Sigman and Boyle (2000); Sigman et al. (2010); Hain and Sigman (2014).

The removal of DIC and ALK from the surface ocean and return at depth through

the action of the biological pump maintains vertical gradients in DIC and ALK in the

face of ocean circulation. The circulation is constantly acting to erode these gradients

and reverse the effect the biological pump by returning DIC and/or ALK back to the

surface ocean (Hain and Sigman, 2014). Changes in atmospheric CO2 can occur by

increasing/decreasing the amount of DIC and ALK in the ocean interior. For example,

a relative increase of DIC in the ocean interior will lead to a drawdown of CO2 whereas

an increase in ALK will lead to an increase in atmospheric CO2. This concept can be

used to define an “efficiency” of the biological pump. As the soft-tissue pump is limited

by nutrients at the surface, e.g., the greater proportion of nutrients maintained in the

deep ocean, the greater the efficiency of the biological pump. In the modern ocean,

a proportion of the nutrients bought to the surface are not utilised by biology before

being subducted back into the ocean interior, representing a “missed opportunity” for

the biological pump (Sigman et al., 2010). Estimates of these nutrients (‘preformed

nutrients’) based on oxygen utilisation in the modern ocean suggest that between 35%

to 50% of nutrients upwelled to the surface ocean are actually utilised by biology (Ito and

Follows , 2005; DeVries et al., 2012a; Duteil et al., 2013). Modelling experiments have

shown that atmospheric CO2 is very sensitive to changes in the global concentration of

preformed nutrients in the ocean (Ito and Follows , 2005; Marinov et al., 2008). The

efficiency of the biological pump can therefore be changed by changing the rate of

nutrients delivered to the surface or by changing the rate at which nutrients are taken

up by biology. In the following sections, changes in the biological pump efficiency driven

by biological processes are described. Sigman and Boyle (2000), Sigman et al. (2010)
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Figure 1.4: Schematic depicting two ways in which biological driven changes in the
biological pump could decrease atmospheric CO2 from abitrary time t to t+1. Surface
ocean changes change the total amount of carbon exported to the deep ocean whereas
interior ocean changes affect the timescale at which carbon is returned to the surface by
circulation. Text indicates the depth of the ocean where POC is remineralised and the
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Adapted from Boyd and Trull (2007).

and references therein consider changes in the biological pump alternatively driven by

changes in circulation in detail which are not discussed further in this thesis.

1.1.3.1 Changes in the Surface Ocean

Changes in the amount of carbon exported from the surface ocean to the ocean interior

have been a major focus for previous research and could occur a number of different

ways: changes in the magnitude of carbon exported and changes between the relative

contribution of the two component pumps to export. In large parts of the low and mid

latitudes of the modern ocean, phytoplankton utilise the majority of nutrients available.

The amount of carbon pumped into the ocean interior is therefore ultimately limited

by the availability of nutrients. Broecker (1982) proposed that increases in the nutrient

inventory (PO4 and NO−3 ) of the ocean could increase the total amount of productivity

and carbon exported to the deep ocean leading to an uptake of CO2. A 30% increase in
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the nutrient inventory is predicted to lead to a 17 - 46 ppm drawdown of CO2 dependent

on whether there is an equal response in the carbonate pump (Sigman and Boyle, 2000).

In the modern ocean, the net nutrient utilisation by phytoplankton at the surface is not

complete everywhere. In the Southern Ocean, deep nutrient-rich water is upwelled to

the surface and flows equatorward before being subducted into mid-depths still contain-

ing a proportion of the original upwelled nutrients (Ito and Follows , 2005; Sarmiento

and Gruber , 2006). Despite high nutrient concentrations, productivity is relatively low

leading to this region, as well as others, being termed High Nutrient Low Chlorophyll

(HNLC) regions. Productivity in HNLC regions is thought to be low due to either

zooplankton grazing suppressing phytoplankton communities, the limitation of a mi-

cronutrient such as iron, or a combination of both (Sarmiento and Gruber , 2006). An

increased flux of iron to the Southern Ocean associated with increased dust deposition

during the Last Glacial Maximum has been hypothesised to increase producitivity in

this region and increase the biological pump efficiency (Martin, 1990; Ziegler et al.,

2013). Reductions in the volume of water ventilated to the Southern Ocean has also

been a significant focus, see Sigman et al. (2010) and Hain and Sigman (2014).

Changes in the biological pump in the surface ocean can also reflect relative changes

between the soft-tissue and carbonate pumps. Archer and Maier-Reimer (1994) demon-

strated that a 40% decrease in the ‘rain-ratio’ between CaCO3 and POC (from 0.25

to 0.15) exported from the surface could be responsible a 70-90ppm decrease in atmo-

spheric CO2 via interactions with deep-sea sediments. The drawdown of atmospheric

CO2 was largely a function of including the dissolution of CaCO3 within sediments

due to in-situ remineralisation of organic carbon in sediment pore-waters (Archer and

Maier-Reimer , 1994). The increased dissolution of sedimentary CaCO3 leads to an

increase in [CO2−
3 ] in the ocean, driving a reduction in CO2 in the atmosphere.
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1.1.3.2 Changes in the Ocean Interior

More recently, there has been an increased focus on the processes of the biological

pump in the ocean interior that have previously been assumed to be relatively static.

Changes in the rate of remineralisation of sinking POC or the rate at which it sinks

can potentially change the depths at which CO2 is returned to solution. In general,

the deeper organic matter is remineralised in the ocean interior, the longer it takes

for the dissolved CO2 to reach the surface ocean (Boyd and Trull , 2007) (Figure 1.4).

By reducing the rate at which nutrients return to the surface, the surface ocean has a

relatively lower concentration of DIC leading to drawdown of atmospheric CO2. Kwon

et al. (2009) measured the sensitivity of atmospheric CO2 to changes in the average

depth of POC remineralisation in an ocean biogeochemical model. An increase of 23m

from 204m to 228m in the e-folding depth (the depth at which 63% of the exponentially

decreasing particulate organic matter flux has been remineralised) was associated with

a 10-27ppm drop in atmospheric CO2, 85% of which was due to the soft-tissue pump

(Kwon et al., 2009).

Although the rain-ratio mechanism as proposed by Archer and Maier-Reimer (1994)

described above, focuses on changes in export, the ultimate reason it affects atmospheric

CO2 is due to relative changes between the organic matter and carbonate fluxes at the

sediment surface (Ridgwell , 2003). This is because the mechanism relies on the disso-

lution of CaCO3 driven by organic matter remineralisation in the sediment porewater

(Archer and Maier-Reimer , 1994). Any change in the delivery of POC or CaCO3 can

therefore have an impact on atmospheric CO2 via interactions with deep-sea sediments.

Changes in the remineralisation of POC as described above, could also lead to changes

in the organic matter reaching the sediments relative to CaCO3. A model sensitivity

study found that the atmospheric CO2 drawdown associated with the same perturba-

tion used by Kwon et al. (2009), was up to 4 times higher when including sediment

feedbacks (8.1 ppm cf. 33.4 ppm) (Roth et al., 2014). The initial drawdown of CO2 from
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the redistribution of DIC and ALK (see Kwon et al., 2009) occurred over ∼2000 years

whilst taking ∼50 000 years to reach a new equilibrium (i.e., the inventory of [CO2−
3 ]

reached a new steady state value) when including sediment feedbacks. In comparison,

atmospheric CO2 was much less sensitive to changes in the CaCO3 remineralisation

depth, lowering by 1.8 ppm for the closed system and 12.2 ppm when perturbed by the

same amount (Roth et al., 2014).

1.2 Mechanistic Understanding of the Biological Pump in

the Ocean Interior

As discussed in the previous section, the concentrations of CO2 in the atmosphere is

potentially sensitive to relatively small changes in the efficiency of the soft-tissue com-

ponent of the biological pump. Despite this, the efficiency of the biological pump has

commonly been considered static in time and space (Boyd and Trull , 2007). Observa-

tions of sinking particles in the modern ocean have led to speculation about potential

mechanisms controlling the remineralisation of particles in the ocean interior that could

have implications for understanding how the biological pump has changed in the past

and will interact with current changes in the ocean due to climate change. In this

section modern observations and existing mechanistic hypotheses on the controls of

sinking particulate organic matter are described with a focus on the implications for

our understanding of the carbon cycle described in the previous section.

1.2.1 Observations of the Biological Pump

1.2.1.1 Sediment Traps

Global observations of sinking particulate material in the ocean interior predominantly

come from sediment traps: devices that trap sinking particles using a funnel that covers

a set area, e.g., 0.25m−2 (WHOI , 2007) and which preserve the samples to protect them
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against degradation by biological processes (Figure 1.5). Traps, such as the commonly

used design illustrated in Figure 1.5a, can be moored in the deep ocean, often for

12 month periods, with the ability to take multiple samples throughout the period.

Honjo et al. (2008) collated a global dataset of 134 annually resolved sediment trap

observations from the deep ocean (∼2km) over the last three decades using this design.

Sediment traps can be subject to a number of biases. Sinking particles that are entering

the trap, as well as those already within the trap, can be entrained by eddies created

by water flowing across the surface of the trap causing the trap to under-sample the

flux (Buesseler et al., 2007). This bias is particularly significant for shallower surface-

tethered sediment traps (Figure 1.5b) where flow rates are generally higher. Neutrally-

buoyant sediment traps have been recently developed to address this issue (Figure 1.5b;

Buesseler et al., 2007). Zooplankton can also enter the trap, contributing additional

organic material or changing elemental ratios through their excretions and consump-

tion of the organic matter. This bias is concentrated in the shallower ocean where

zooplankton are found in greater numbers (Buesseler et al., 2007). Finally, once sam-

pled, chemical elements in the particles can become soluble, entering the supernatant in

the sample bottle, e.g., Brzezinski and Nelson (1995). Analysis of the supernatant can

be used to correct for this. A globally distributed dataset of deep sediment trap data

produced with consistent methodology is available as part of the Joint Global Ocean

Flux Study (JGOFS: Honjo et al., 2008). This dataset comprises of samples from 134

sediment trap sites which although are globally distributed, are not distributed equally

with large regions of the ocean such as southern subtropical and temperate regions of

all basins missing any samples. Of the 134 samples, 47 are in the Pacific, 50 in the

Atlantic, 18 in the Southern Ocean, and 11 in the Indian Ocean (see Figure 3.1). A

new approach to generating high resolution estimates of POC flux curves is explored

in Chapter 4.
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a) b)

Figure 1.5: Schematics of sediment traps and their deployments. (a) the design of a
moored time-series sediment trap (Mark 78G-21) by McLane Research Laboratories
similar to the traps used in the Joint Global Ocean Flux Study (Honjo et al., 2008).
Figure adapted from USGS (2004). (b) Schematic of the range of sediment trap designs
used. Figure adapted from WHOI (2007).

1.2.1.2 Other Observations

Observations of POC fluxes are also available from other methods. The concentration

of POC in the water column can be measured by filtering thousands of litres of sea-

water in-situ using a Multiple Unit Large Volume Filtration System (MULVFS) (Lam

et al., 2011). POC fluxes are then estimated by considering sinking speeds and particles

characteristics (Lam et al., 2011). The MULVFS has the advantage of being able to

take samples with more vertical resolution in the mesopelagic ocean (0-1000m) without

the biases of shallow sediment traps. Lam et al. (2011) provide an assessment of the

globally distributed data collected to date.

1.2.1.3 Global-Scale Estimates of POC Flux Profiles

Vertical profiles of POC fluxes from sediment trap observations show that particle

fluxes reduce rapidly with depth as POC is remineralised until 1000-1500m, below

which fluxes are sinking without significant modification (Figure 1.6a: Martin et al.,

1987). On average the flux in the deep ocean (>2000m) is ∼5% of the original flux
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being exported (Armstrong et al., 2002). Vertical POC fluxes are commonly described

empirically by fitting a power-law function to sediment trap data:

dFz
dz

= Fz0 · (
z

z0
)b (1.8)

where Fz is the flux at depth z, z0 is the depth of the bottom of the surface layer and

b is a dimensionless parameter that controls the attenuation of the flux profile with

depth. A power-law curve was first found to be a best fit to 48 open ocean sediment

trap observations in the North-East Pacific by Martin et al. (1987) who found a value

of b=-0.858±0.1, a value which has been used extensively in subsequent data and mod-

elling studies. A power-law curve with this value of b is known as the ‘Martin Curve’.

Various other functions and algorithms have also been used to describe flux profiles

including other power-law functions (Suess , 1980; Pace et al., 1987) and exponential

functions (Armstrong et al., 2002; Andersson et al., 2004; Lutz et al., 2002, 2007) (see

Figure 5.1 for example). It is worth noting that the choice of function reflects cer-

tain assumptions about the relationship between sinking speeds and remineralisation

rates. An exponential function represents a fixed remineralisation rate and sinking

speed, whereas a power-law curve represents an increasing sinking speed or equally

a decreasing remineralisation rate with depth (Kriest and Oschlies , 2008; Lam et al.,

2011).

Compilations of sediment trap data have calculated that the global average of b =

-0.639 (Henson et al., 2012), -0.70±0.08 (Primeau, 2006) and -0.82±0.16 (Berelson,

2001), which are generally larger (deeper remineralisation) than that found by (Martin

et al., 1987). The flux curve has been widely used to model POC fluxes in ocean

biogeochemical models. Several studies have systematically varied the exponent b and

compared the resulting tracer fields to observations to infer that the optimal global

value of b = -0.9 (Yamanaka and Tajika, 1996), -1.0 (Kwon and Primeau, 2006), ∼-

0.858 (Kriest et al., 2012). These inferred values are generally consistent with the value
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Value of b

a) b)

c)

-0.4 -1.2-0.8 -2.0

d)

-1.6

Figure 1.6: Comparison of POC flux profiles derived from sediment trap data. (a) The
original ‘Martin Curve’ with a value of b=-0.858. From Martin et al. (1987). (b) A
comparison of the range of flux curves versus the Martin Curve with values for b from
Henson et al. (2012) using an export depth of 100m. (c) The spatial variability of b
from Henson et al. (2012). The black star indicates the approximate location of the
data used to fit the Martin Curve in panel a. (d) The spatial variability of b from
shallower sediment traps found by Marsay et al. (2015). White areas indicate where
chlorophyll data from satellite measurements is unavailable.

found by (Martin et al., 1987).

Subsequent studies of globally distributed sediment trap observations have suggested

that the value of b may vary regionally. Values of b <-0.858 indicate that more reminer-

alisation is occurring higher in the water column, and b >-0.858 indicates greater rem-

ineralisation occurring at depth. A study of regional sediment trap profiles found val-

ues of b varying regionally between -1.28 and -0.59 (Berelson, 2001) although Primeau

(2006) suggests statistical errors may contribute to this range. More recently, Hen-

son et al. (2012) performed a systematic comparison of primary production, export

production and flux algorithms applied to a satellite based climatology of chlorophyll.

Estimates of POC fluxes were compared with sediment trap observations to find the

best set of algorithms which were then used to produce a high resolution field of b values
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ranging from -1.18 to -0.24 (Figure 1.6c: Henson et al., 2012). The spatial variability

in b produced by this approach is predominantly latitudinal with shallower reminerali-

sation at high latitudes (b <-0.858) and deeper remineralisation in low latitude regions

(b >-0.858) (Figure 1.6b and Figure 1.6c). Alternative measures, such as the ‘transfer

efficiency’, defined as the fraction of flux typically remaining at depth (∼2000m), also

confirm this large-scale spatial pattern in POC fluxes (Francois et al., 2002; Lutz et al.,

2002; Honjo et al., 2008).

These studies are based on deep sediment traps, e.g., >1000-1500m, due to the sampling

biases of shallower traps (Buesseler et al., 2007). A recent compilation of neutrally-

buoyant sediment traps from shallower depths (<1000m) has suggested that the spatial

pattern of POC flux profiles is the inverse of those previously found (Figure 1.6d; Marsay

et al., 2015). The authors suggest the result may be a function of different components

of the POC flux that are decoupled from eachother. However, this study does not

contain data from regions such as the Southern Ocean (Figure 1.2.1) although this

region is also relatively undersampled in the previous studies (Figure 1.6). Modelling

studies have not fully applied the approach of optimising regionally variable values

of b in ocean biogeochemical models (although see Yao and Schlitzer , 2013) which is

explored further in Chapter 5.

1.2.2 Hypothesised Mechanisms

Ultimately, the regional variability observed in b, or more generally in the depth of

remineralisation as described empirically by a mathematical function, represents a range

of potential processes such as the particle dynamics, the bacterial breakdown of organic

matter, zooplankton grazing, and the effect of minerals that could contribute to the

vertical attenuation of POC fluxes. The following section describes current hypotheses

about the mechanisms and processes leading to the observed spatial variability and

their implications for the carbon cycle.
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1.2.2.1 Ballasting

The synthesis of globally distributed sediment trap data from the deep ocean (>1000-

1500m; where undersampling biases due to currents are considered minimal) provided

the basis for the ‘ballast’ hypothesis Despite large variability in the absolute magni-

tude of POC fluxes exported from the surface, the dry weight of POC at depth, when

normalised to the total particulate flux, converges globally to approximately 5% with

significant regional variability. The majority of the total particulate flux (∼90%) at

depth is however made up of minerals such as CaCO3 and opal rather than POC. This

was used as a basis for a mechanistic model that predicts the flux of POC at depth

(FPOC) as a function of POC:mineral ratios by Armstrong et al. (2002). The model is

formulated as an exponential model (Armstrong et al., 2002):

FPOC(z) = FPOC(∞) + (FPOC(z0) − FPOC(∞)) · exp
−( z−z0

lPOC
)

(1.9)

where a fraction of the POC flux (FPOC(z0)−FPOC(∞)) that is un-associated with min-

erals remineralises according to a globally constant length scale (lPOC) similar to the

Martin Curve. The deep asymptotic flux (FPOC(∞)) is determined by the POC:mineral

ratio. Armstrong et al. (2002) suggested that the quantitative associated between POC

and minerals at depth may be due to the physical protection of some POC from rem-

ineralisation by being incorporated into the mineral structure as well as POC acting as

a glue to bind particles together (Armstrong et al., 2002).

Expanding on the variability in POC:mineral ratios, Klaas and Archer (2002) applied

multiple linear regression to annual average flux data from a globally sampled set of

78 deep sediment traps to investigate the interactions between POC and the different

types of minerals CaCO3, opal and ‘lithogenic’ material: inorganically derived minerals

from sources such as dust deposition at the ocean surface (Figure 1.7). The regression

equation expresses fluxes of POC in the deep ocean (>1500m) as a function of the
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Figure 1.7: Scatterplot of POC fluxes versus CaCO3, opal and lithogenic material
fluxes measured by sediment traps below 1000m depth. Correlation coefficients and
probability values are given. The slopes of the regression lines are 0.126, 0.061 and
0.180 for CaCO3, opal and lithogenic material respectively. Lighter shading in the
central panel corresponds with high opal to total flux ratios. From Klaas and Archer
(2002).

mineral fluxes related to eachother by ‘carrying coefficients’ (βmineral), a statistical

parameter relating an amount of POC to each unit of mineral:

FPOC = FCaCO3 · βCaCO3 + Fopal · βopal + Flitho. · βlitho (1.10)

The ability of the analysis to predict POC fluxes was consistently high (R2 ∼0.95). The

carrying coefficients were relatively large for CaCO3 (βCaCO3=0.070-0.094), smaller for

opal (βopal=0.023-0.030) and more variable for lithogenic material (βlitho.=0.035-0.071)

(Klaas and Archer , 2002). This analysis suggested that 83% of global POC fluxes are

associated with CaCO3. The pattern in carrying coefficients correlates with the density

of each mineral type (CaCO3:2.71 g cm−3 cf. Opal: 2.10 g cm−3; Gehlen et al., 2006)

suggesting that the larger density of CaCO3 increases the sinking velocity of particles

delivering more POC to depth than other minerals such as opal (Klaas and Archer ,

2002).

Laboratory experiments where calcifying and non-calcifying coccolithophore cultures

are allowed to continuously aggregate and sink in rotating tanks of seawater, have

provided evidence that the presence of CaCO3 shells increases the sinking velocity of

particles, promotes the formation of compact aggregates (Ploug et al., 2008; Engel et al.,
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2009a; Iversen and Ploug , 2010) and provides some protection against remineralisation

(Engel et al., 2009b). However, the strong global quantitative relationship between POC

and minerals observed in sediment traps (Armstrong et al., 2002; Klaas and Archer ,

2002) is not evident in studies of ballasting at smaller spatial and temporal scales. For

example, the central panel in Figure 1.7 shows that there are potentially two clusters

of data between POC and opal consistent with regional differences in the magnitude of

opal export. Consequently, the carrying coefficients and their relative magnitude were

significantly different when calculated over ocean regions (Ragueneau et al., 2006; Lam

et al., 2011; Le Moigne et al., 2012, 2014) and during different times of the year (Lutz

et al., 2007; Lee et al., 2009; Lam et al., 2011). The quantitative association supporting

the ballast hypothesis could therefore be an artefact of averaging over different time-

scales and spatial scales rather than an explicit mechanism (De La Rocha and Passow ,

2007; Armstrong et al., 2009; Lam et al., 2011). Chapter 3 presents a novel analysis of

the spatial variability in the carrying coefficients calculated from deep sediment trap

data to further explore these uncertainties.

The correlations between POC and minerals in sediment trap observations could equally

indicate a role for POC in setting mineral fluxes to the deep ocean (Passow , 2004). Ad-

ditional rolling tank experiments have shown that aggregates forming from suspended

particles reached 2-5% dry-weight of POC regardless of the amount of minerals available

(Passow and De la Rocha, 2006; De La Rocha et al., 2008). Particular components of

POC may therefore act as a ‘glue’ for particles aiding aggregation driving the sinking of

particles and the statistical relationships in sediment trap observations. For example,

Transparent Exopolymer Particles (TEP) have been identified as a significant organic

molecule in this role (Passow , 2002; Burd and Jackson, 2009). Although this mecha-

nism would still link the fluxes of POC and minerals, the associated feedbacks on the

carbon cycle may be different.
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1.2.2.2 Alternative Mechanisms

A range of alternative mechanisms have also been suggested to be important in un-

derstanding the variability in biological pump observations. Alternative explanations

of the observed patterns in Figure 1.7 are based on processes driven by processes in

surface ocean ecosystems. Differences in the export ratio of POC, i.e., the amount of

POC leaving the surface versus productivity, have been shown to be strongly correlated

with temperature (Laws et al., 2000; Henson et al., 2011). Low latitude ecosystems

where the supply of nutrients via mixing is low are characterised by a high level of

organic matter recycling in the surface (Laws et al., 2000). POC leaving the surface

may therefore have been already processed many times resulting in relatively refractory

POC being exported from the surface that cannot be broken down so easily as it sinks.

In contrast, POC produced in the the high latitudes may be relatively more labile, facil-

itating remineralisation at a much faster rate resulting in shallower flux curves (Henson

et al., 2012). The interaction between sinking particles and zooplankton has also been

highlighted as important. POC that is consumed by zooplankton and excreted as dense

pellets may reach deeper depths and act to homogenise POC and CaCO3 fluxes (Lam

and Bishop, 2007; Fischer and Karakas , 2009; Alonso-Gonzalez et al., 2010; Lam et al.,

2011).

Although not directly based on biological pump observations, several studies have also

explored the potential for remineralisation rates to be controlled by temperature. Rates

of biological processes are sensitive to temperature, approximately doubling for an in-

crease in 10°C (Eppley , 1972). Following this logic, all things being equal, an increase

(or decrease) in water column temperature could drive an increase (decrease) in rem-

ineralisation rates leading to shallower (deeper) flux curves. A significant effect of

temperature on organic matter remineralisation has been confirmed from a study incu-

bating samples of seawater at a rnage of temperatures that have been collected from

the upper ocean in various locations in the global ocean (Bendtsen et al., 2015). Several
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modelling studies have also considered the potential effects of temperature dependent

remineralisation (Matsumoto et al., 2007; Matsumoto, 2007; Chikamoto et al., 2012;

Segschneider and Bendtsen, 2013; John et al., 2014). The temperature of the water

column also has an effect on the viscosity of seawater that may affect the sinking ve-

locity of particulates. Taucher et al. (2014) predict that a increase in water column

temperature, leading to a decrease in viscosity, could additionally cause a significant

increase the sinking velocity of particles leading to a deeper flux profile.

1.2.3 Implications and Conclusions

As described in section 1.1.3 changes in the biological pump that could potentially

occur within the ocean interior, such as changes in the vertical distribution of DIC

and the relative amounts of POC and CaCO3 reaching the sediments, could have a

large impact on atmospheric CO2 concentrations. In comparison to changes in the

biological pump driven in the surface ocean, changes driven in the ocean interior have

received much less attention despite having a comparable effect on atmospheric CO2.

Modern observations of the biological pump in the modern ocean provide a basis for

understanding what mechanisms are key to understanding how changes in the ocean

interior could have changed atmospheric CO2 in past climates as well as predicting

its role in future climate change. However, the modern observations and the range of

mechanistic hypotheses highlighted illustrate that there are still significant uncertainties

as to how the biological pump functions in the ocean interior.

The range of mechanisms described above, hypothesised to explain the observations of

the modern biological pump in the ocean interior, will respond to a range of different

environmental changes in a number of different ways. This has important implications

for understanding what role changes in the biological pump in the ocean interior may

have had in past changes in atmospheric CO2, as well as predicting how it may respond

to future climate change. For example, by hypothesising that deep fluxes of POC are
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mechanistically linked to fluxes of CaCO3 the ballast hypothesis suggests the efficiency

of the rain-ratio to alter atmospheric CO2 (see Section 1.1.3; Archer and Maier-Reimer ,

1994) may be reduced. Ridgwell (2003) suggests that ballasting could reduce the orig-

inal 70-90ppm reduction of atmospheric CO2 (from a 40% reduction in the CaCO3

export flux) by 75-80%. Modelling experiments also suggest ballasting may even act to

increase atmospheric CO2 dependent on the extent to which POC and CaCO3 fluxes

are coupled (Barker et al., 2003; Hofmann and Schellnhuber , 2009).

Alternative interpretations of the observations that support the ballast hypothesis, as

well as other hypothesised mechanisms, provide an additional source of uncertainty

about the biological pump in the ocean interior. For example, a global increase in

the global mean temperature of the ocean may lead to increased remineralisation rates

(Bendtsen et al., 2015) but also increased sinking velocities due to the decreased viscos-

ity of seawater (Taucher et al., 2014). These two mechanisms will act to offset eachother

in terms of the distribution of DIC as described by POC flux curves. Added to this,

temperature is likely an important component in driving ecosystem changes which may

also change the characteristics of sinking POC (Henson et al., 2012).

Additionally the uncertainty in mechanistic interpretations is affected by uncertainty

in the observations themselves. The relatively small size of sample from regions such

as the Southern Ocean (section 1.2.1) may bias the interpretation of ballasting from

sediment trap observations (De La Rocha and Passow , 2007; Lam et al., 2011). Ad-

ditionally, the focus on fluxes in the deep ocean may also bias our interpretation of

observations (Ragueneau et al., 2006). A recent compilation of sediment trap obsvera-

tions from <1000m water depth show a considerably different spatial pattern of POC

fluxes (Marsay et al., 2015) (Figure 1.6d). Similar to compilations of deep sea obser-

vations, this compilation does not include any observations from the Southern Ocean

(Marsay et al., 2015).

Ultimately, due to uncertainties in the interpretation of modern observations of the
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biological pump and uncertainties in the observations themselves, our understanding

of the biological pump in the ocean interior is still limited. As such, it is still a key

uncertainty in our understanding of the carbon cycle and how it functioned in the past

and how it may respond in the future (Passow and De la Rocha, 2006; Riebesell et al.,

2009; Honjo et al., 2014).

1.3 Aims and Outline of the Thesis

The overall aim of this thesis is to evaluate and advance our current mechanistic un-

derstanding of the biological pump in the modern ocean interior. A particular focus is

made on exploring the global scale function of the biological pump such that the find-

ings are applicable to understanding how they might impact changes in atmospheric

CO2 concentrations. The specific science objectives are:

� To build on existing analyses to assess and explore uncertainties in

the ballast hypothesis to further develop understanding of how this

mechanism works:

Previous studies have suggested that the multiple linear regression analysis deep

sediment trap observations by (Klaas and Archer , 2002) (see equation 1.10) does

not take into account spatial variability in ballasting relationships. In chapter

3, a new updated dataset of global deep sediment trap data is first created.

The novel application of Geographically Weighted Regression, that facilitates the

carrying coefficients from Klaas and Archer (2002) to vary as a function of space, is

described. The results are discussed in relation to new mechanistic interpretations

of the bioloigcal pump in the ocean interior and the use of ballasting in ocean

biogeochemical modelling.

� To explore and develop new methods of diagnosing high resolution

estimates of the spatial variability in remineralisation depths using dis-

solved tracer observations:
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One of the limitations of using observations such as sediment trap data is that the

global sampling density is relatively sparse. Chapter 4 explores whether model

circulation rates can be used to estimate annual average rates of organic matter

remineralisation from observed dissolved tracer fields such as [PO4]. Circula-

tion rates are diagnosed from the Earth system model of intermediate complexity

GENIE using a novel application of the Transport Matrix Method. The vari-

ous sources of error when estimating remineralisation rates and possible future

research directions are explored.

� To explore the uncertainties and sensitivity of remineralisation depths

using an ocean biogeochemical model:

Observed nutrient fields, such as [PO4], have been used to optimise ocean biogeo-

chemical model parameters and validate mechanistic parameterisations of the bio-

logical pump. In chapter 5, a new computationally fast phosphorus-only version

of GENIE based around the steady-state circulation represented by the Transport

Matrix diagnosed in chapter 4 is described. A Latin hypercube approach is used

to sample spatial variability of remineralisation depths in biogeochemical biomes

which are then used to simulate steady state [PO4] fields that can be compared to

observed [PO4]. The sensitivity of [PO4] to regional variability in remineralisation

depths is explored before trying to find a set of optimal remineralisation depths

that statistically fits observations well. The findings are then compared to the

sensitivity of the associated CO2 uptake from changing remineralisation depths.
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Modelling the Biological Pump: A description of

the Earth System Model GENIE

Quantitative models of ocean biogeochemistry and climate are an important tool in

understanding the dynamics of the carbon cycle as well as providing complementary

methods to quantifying processes such as the biological pump in the modern ocean. A

range of models have been applied to explore the biological pump, ocean biogeochem-

istry, and the carbon cycle from box models, which consider the global ocean in terms

of a relatively small number (3-12) boxes with fixed ocean transport, e.g., (Sarmiento

and Toggweiler , 1984; Matsumoto et al., 2002; Zeebe, 2012), to 3D-resolution dynamic

coupled general circulation models (GCMs) with carbon cycle models. Bridging the gap

between these different modelling approaches are Earth system models of intermediate

complexity (EMICs): models that include fewer processes than GCMs but include a

higher number of interacting components (Claussen et al., 2002). The Grid ENabled

Integrated Earth system model (GENIE) is an EMIC that is used in Chapters 4 and 5

of this thesis to explore and quantify the biological pump in the modern ocean. This

chapter provides a general background and a description of the components and results

that are relevant to the use of GENIE in this thesis.
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2.1 Model Description

The version of GENIE used in this thesis is based on the GENIE-1 model (Lenton

et al., 2006; Ridgwell et al., 2007a). GENIE-1 comprises of a ocean-atmosphere-sea

ice climate model (C-GOLDSTEIN) consisting of a 3-D ocean, a 2-D energy-moisture

balance atmosphere model, a dynamic-thermodynamic sea-ice model coupled with a

representation of marine biogeochemical cycling (BIOGEM) and a mixed atmospheric

chemistry box (ATCHEM) (Figure 2.1). GENIE-1 also includes other components, such

as a land surface physics and terrestrial carbon model (ENTS) and a representation of

deep-sea sediments (Ridgwell and Hargreaves , 2007) which are not used or considered

further in this thesis. GENIE-1 was primarily designed for speed of numerical integra-

tion to enable the application to palaeo-climate simulations and long-term simulations

of the carbon cycle and climate (Lenton et al., 2006).

The configuration of C-GOLDSTEIN in GENIE-1 used in this thesis is non-seasonally

forced and implemented on a 36x36 equal-area horizontal grid with grid-boxes that are

incremented by 10° in longitude and a uniform increment in the sine of latitude (3.2°

latitude at the equator to 19.2° latitude at the poles). The ocean has 8 vertical z-

coordinate levels. The horizontal grid and bathymetry are shown in Figure 2.2. Other

configurations of C-GOLDSTEIN are also available including a 16 vertical level model

with non-seasonal and seasonal forcing that are commonly used with BIOGEM (Cao

et al., 2012), as well as higher horizontal and vertical resolutions that have not yet

been used with BIOGEM (Marsh et al., 2011). The 36x36x8 configuration is used

here as the non-seasonal forcing and availability of alternative circulation states from

the original calibration of the circulation parameters facilitate the analysis in Chapter

4. The applicability and limitations of using this configuration are discussed in this

chapter as well as in relation to more specific details in Chapters 4 and 5.

The specific version of GENIE-1 used in this thesis is the “muffin” branch of the carbon

cycle focused version (cGENIE). The “muffin” branch is a version that contains only
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Figure 2.1: Schematic of the relationship between the different components of the
GENIE-1 model. Reproduced from Ridgwell et al. (2007a).

commonly used components of the original model for studying biogeochemical cycles

and the carbon cycle. The code is available from:

https://svn.ggy.bris.ac.uk/subversion/genie/branches/cgenie.muffin/

using the username genie-user and the password g3n1e-user. The svn revision num-

ber for the code used in this thesis is 9167. A minor difference between the muffin

branch and GENIE-1 used in Ridgwell et al. (2007a) is that a default timestep of 96

year−1 is used instead of 100 year−1.

2.1.1 C-GOLDSTEIN

The fast climate model, C-GOLDSTEIN, forms the basis for GENIE and is described

in full by Edwards and Marsh (2005) and more recently by Marsh et al. (2011). It

features a reduced physics (frictional geostrophic) 3-D ocean circulation based on the

thermocline (or plantetary geostrophic) equations with the addition of a linear drag

term in the horizontal momentum equations (Edwards and Shepherd , 2002; Edwards

and Marsh, 2005). The resulting circulation is dynamically similar to that of classical
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Figure 2.2: The gridded contintental configuration and ocean bathymetry of the
36x36x8 grid of the GENIE-1 model. Reproduced from Ridgwell et al. (2007a)

GCMs based on the primitive equations but significantly faster to run. The prognostic

variables at each grid-point are temperature, salinity, and a 3-D vorticity field. The

model calculates the horizontal and vertical transport of heat, salinity and other tracers

(such as the biogeochemical tracers that are transported as passive tracers) through

advection, convection and mixing via parameterised iso- and diapycnal diffusion and

eddy-induced advection (Edwards and Marsh, 2005; Marsh et al., 2011).

C-GOLDSTEIN employs a rigid lid surface boundary condition, i.e., grid cell volumes

cannot change in response to evaporation/precipitation or runoff of freshwater from

land at the ocean surface. Gains or losses of freshwater are implemented via a virtual

salinity flux at the surface. Biogeochemical tracers are salinity normalised prior to

the calculation of ocean transport in C-GOLDSTEIN to represent changes in tracer

concentrations due to this effect (Ridgwell et al., 2007a).

The energy-moisture balance model (EMBM) of the atmosphere has air temperature

and specific humidity as prognostic variables. The model calculates the horizontal trans-

port of heat and moisture in the atmosphere via winds and mixing and precipitation

as a funciton of relative humidity (Marsh et al., 2011). The exchange of heat between

the atmosphere and the ocean, sea-ice and land is calculated as the balance between
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incoming shortwave radiation, sensible and latent heat fluxes, re-emitted long-wave ra-

diation, and outgoing planetary long-wave radiation (Marsh et al., 2011). Exchange

of moisture is calculated as the balance between precipitation, evaporation and runoff

(Marsh et al., 2011).

The sea-ice model calculates the horizontal transport of sea-ice concentration and thick-

ness, as well as the exchanges of heat and freshwater with the atmosphere and surface

ocean (Marsh et al., 2011).

The degree of spatial and temporal abstraction inherent in both C-GOLDSTEIN and

BIOGEM (as is common with other models: Claussen et al., 2002) results in parameter

values that are not well known and require calibrating by comparing model perfor-

mance against observations. The parameters for C-GOLSTEIN were calibrated against

annual mean climatological observations of temperature, salinity, surface air temper-

taure and humidity using the ensemble Kalman filter (EnKF) methodology (Hargreaves

et al., 2004; Ridgwell et al., 2007a), described further in Annan et al. (2005). This

method has been shown to recover parameter values in identical twin testing using

C-GOLSTEIN (Hargreaves et al., 2004; Annan et al., 2005). A useful consequence of

the EnKF calibration is that it produces ensemble members that are random samples

from the probability distribution function, i.e., plausible estimates of the modern ocean

circulation based on different parameter combinations, (Annan et al., 2005; Ridgwell

et al., 2007a) that are used in Chapter 4. The parameter set used in this thesis is

reported in Table C.2 under SYN.

2.1.2 BIOGEM

The biogeochemical model (BIOGEM) is based on the model by Ridgwell (2001) of

which the application within the GENIE framework is described by Ridgwell et al.

(2007a). The following description describes the representation of the biological pump

in BIOGEM that is relevant to Chapters 4 and 5 based on the description by Ridgwell
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Figure 2.3: Schematic illustrating the soft-tissue pump in BIOGEM. Transformations
between the PO4, dissolved organic phosphorous (DOP) and particulate organic phos-
phorous (POP) are governed by equations 2.1, 2.2, 2.3 and 2.4. Carbon equivalents are
given in brackets. Figure adapted from DeVries et al. (2014).

et al. (2007a).

BIOGEM estimates export production based on limitation by a single nutrient, phos-

phate (PO4). The biological uptake of PO4 is then related to other tracers, such as

oxygen (O2), nitrogen and carbon, via global average molar ratios of phytoplankton

nutrient uptake of -170:1 (Anderson and Sarmiento, 1994), 16:1 (Redfield et al., 1963),

and 106:1 (Redfield et al., 1963). The governing equations (see also Figure 2.3 for a

schematic illustration) for PO4 and dissolved organic phosphorous (DOP) in the surface

ocean omitting the ocean transport terms are:

δPO4

δt
= −Γ + λDOP (2.1)

δDOP

δt
= vΓ− λDOP (2.2)

where Γ is the biological uptake of PO4 which is calculated from an assumed maximum

uptake rate uPO4
0 (mol PO4 kg−1 yr−1), that occurs in the absence of any limitation on

phytoplankton growth; a Michaelis-Menten type kinetic limitation of nutrient uptake

where KPO4 is the half-saturation constant; A is the fractional sea-ice coverage calcu-

lated by the sea-ice model; and I is the the strength of solar insolation normalised by

the solar constant (I0):
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Γ = uPO4
0 · PO4

PO4 +KPO4
· (1− A) · I

I0
(2.3)

A proportion (v) of the PO4 taken up by biology in Equation 2.1 is partitioned into DOP

which is remineralised with a time constant of 1
λ
. The remaining PO4 is partitioned into

a particulate organic phosphorous fraction that is exported vertically from the surface

grid-box (hereafter this is related to particulate organic carbon, POC, via the Redfield

ratio stated above). The change in the POC flux with depth (FPOC
z ) in the water

column occurs instantaneously and is represented using the sum of two exponential

decay functions:

FPOC
z = FPOC

z=he ·
(

(1− rPOC) · exp(
zhe − z
lPOC

)

)
+ FPOC

z=he ·
(
rPOC · exp(

zhe − z
lrPOC

)

)
(2.4)

where rPOC is an initial partitioning of POC between labile and refractory components

at the surface which decay with depth according to length scales (lPOC) and (lrPOC)

respectively. The refractory length scale (lrPOC) is set to 1x105m such that almost all

refractory POC reaches the deep ocean. The choice of a double exponential formulation

(Andersson et al., 2004) over a power-law curve, e.g., the ‘Martin Curve’ (Martin et al.,

1987), reflect that they produced a reasonable interior ocean [PO4] distribution (see

Figure 2.6 and discussion in following section) due to the refractory component whilst

retaining an approximation to the Martin Curve at shallower depths (Ridgwell , 2001;

Cameron et al., 2005). All POC reaching the deepest ocean grid-box is remineralised

fully back to PO4 such that there is no net gain or loss from the ocean, i.e., it is a

closed system (although note that GENIE can include a sediment module (SEDGEM:

Ridgwell and Hargreaves , 2007).

Although not used in the thesis but considered here for completeness, the export flux
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of calcium carbonate (FCaCO3
z=he

) from the surface, precipitated at the surface by biology,

is related to the particulate organic carbon flux exported from the surface grid-boxes

(F POC
z=he

) via:

FCaCO3
z=he

= γ · rCaCO3:POC
0 · FPOC

z=he (2.5)

where rCaCO3:POC
0 is a spatially uniform scalar and γ is a thermodynamically-based local

modifier of the rate of carbonate production based on the local saturation state with

respect to calcite (Ω) and a constant (η):

γ = (Ω− 1)η if Ω > 1.0

= 0.0 otherwise (2.6)

The dissolution of CaCO3 in the water column is treated in the same manner as POC

(Equation 2.4).

As with C-GOLDSTEIN, parameters in BIOGEM were calibrated using the EnKF

methodology against annual mean climatological observations of phosphate and alka-

linity (Ridgwell et al., 2007a; Ridgwell and Hargreaves , 2007; Cao et al., 2012) using

the ocean circulation and climate previously calibrated by Hargreaves et al. (2004).

Parameters for the BIOGEM calibration are described in Table 5.1 and Ridgwell and

Hargreaves (2007). Note that this parameter set is slightly different to that originally

reported by Ridgwell et al. (2007a).

2.2 Model Evaluation

This section describes results for the pre-industrial model state derived from the 36x36x8

non-seasonally forced configuration corresponding to the model state used in Chapter
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4 (see experiment SYN but note this simulation is performed with a Martin curve

rather than the exponential formulation of POC in equation 2.4) and the inital spin-up

used in Chapter 5. The description here is based on the more detailed descriptions in

Hargreaves et al. (2004), Edwards and Marsh (2005) for C-GOLDSTEIN and Ridgwell

et al. (2007a) for BIOGEM. The results shown here are kept relevant to the scope of

this thesis: a focus on the ability of C-GOLDSTEIN to simulate large-scale circulation

patterns and the ability of BIOGEM to simulate large-scale patterns in observed [PO4].

2.2.1 Circulation

The large-scale circulation is shown by the overturning circulation in GENIE in Figure

2.4. The model simulates an Atlantic meridional overturning circulation (AMOC) with

an upper cell transporting around 16 Sv and an abyssal cell transporting around 0.2 Sv

(Figure 2.4a) consistent with observations of the AMOC of 15 Sv and 2 Sv respectively

(Ganachaud and Wunsch, 2000). The global overturning has a maximum of 40 Sv and

a minimum of -44 Sv (Figure 2.4c). Hargreaves et al. (2004) show that the overturning

circulation and heat transport in this version of GENIE are within the range of found

in models used for the Coupled Model Intercomparison Project (CMIP).

The low resolution and simplified physics of C-GOLDSTEIN confer some limitations

on the use of the model, particularly in comparison with higher resolution and more

complex GCMs. For example, the low horizontal resolution means that smaller scale

features of the ocean circulation are not resolved, e.g., the Indonesian throughflow

and Agulhas leakage are simulated in GENIE (Hargreaves et al., 2004). This will

limit the study of biogeochemistry at these scales, although this is still an issue for

higher resolution models, e.g., DeVries et al. (2014) removed [PO4] in the North West

Pacific from the comparison against observations when modelling remineralisation as

the circulation was not well constrained in this area in their model. The horizontal

resolution is also an issue for sea-ice in the Southern Ocean. The area in which sea-ice
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a)

b)

c)

Figure 2.4: Zonally averaged overturning circulation (Sv) in each basin simulated by
GENIE. Positive values indicate a clockwise circulation cell and negative values indicate
an anti-clockwise circulation. The magnitude of the values indicates the strength of the
circulation.
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is expected falls within the southern-most grid-boxes around Antarctica (Marsh et al.,

2011) leading to sea-ice not being simulated in the Southern Ocean in this version of

GENIE. This will have some impact on the simulated export production as this is in

part limited by sea-ice (equation 2.3). Overall, the large-scale circulation patterns are

well simulated (Hargreaves et al., 2004).

The low vertical resolution of GENIE (8 z-coordinate levels in the vertical) leads to

a less stable water column at high latitudes resulting in excessive ventilation (Müller

et al., 2006; Ridgwell et al., 2007a). This is demonstrated in Ridgwell et al. (2007a) by

forcing the model with the observed historical trajectory of atmospheric CO2 between

1765 to 2000. At the year 1994, the anthropogenic CO2 inventory is 171 PgC compared

with a data-based estimate of 118±19 GtC (Sabine et al., 2004; Ridgwell et al., 2007a).

Comparison of the water column integrated anthropogenic CO2 shows that the largest

deviations from data-based estimates are in the Southern Ocean and eastern North Pa-

cific (see Figure 2.5). This may have implications for biogeochemical tracers. However,

this effect is significant on decadal timescales and is less important on timescales of

>100 years (Ridgwell et al., 2007a).

2.2.2 Biogeochemistry

The zonal average fields of [PO4] for each basin in GENIE (Figure 2.6) agree with

observations of [PO4] to a first-order. For example, the model captures the high con-

centrations in the deep North Pacific (2.6), the low values of [PO4] associated with deep

water formation in the North Atlantic (Figure 2.6). However, GENIE predicts higher

concentrations than observed in the Atlantic sector of the Southern Ocean (Figure 2.6b

cf. 2.6a) which is indicative of the excess ventilation noted above (Ridgwell et al.,

2007a). Surface concentrations of [PO4] are over-estimated in the West Equatorial Pa-

cific and Equatorial Indian Ocean compared to observations (Figure 2.6h cf. 2.6g). This

occurs due to over-estimated upwelling in these regions (Ridgwell et al., 2007a). The
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Figure 2.5: Water column integrated anthropogenic CO2 inventory in the ocean for the
year 1994 for (top) observed (Key et al., 2004) and (bottom) modelled. Adapted from
Ridgwell et al. (2007a).

global export of POC is 9.01 PgC year−1 which is consistent with data-based estimates

of 5-10 PgC year−1 (Henson et al., 2011). The close match to observations of global

POC export suggests that the excess ventilation is unlikely to bias the biogeochemical

cycling in GENIE (Ridgwell et al., 2007a).

As with C-GOLDSTEIN, the model structure of BIOGEM confers limits on its use in

comparison to other biogeochemical models. The model structure is similar to higher

resolution biogeochemical models used to quantify the biological pump such as used by

Kwon and Primeau (2006), Kriest et al. (2010), Kriest et al. (2012), Kwon et al. (2009)

and DeVries et al. (2014). These models generally predict the magnitude of export

by relaxing surface concentrations of [PO4] to observations (Najjar et al., 2007), have

a representation of DOM and model POC fluxes using a Martin Curve or equivalent

exponential function. The Michaelis-Menten type uptake used in GENIE is therefore

dynamically more representative however the single nutrient limitation neglects addi-
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Figure 2.6: Zonal averages of [PO4] for each basin simulated by GENIE (panels b, d,
and f) compared against observations (a, c, and e) from Key et al. (2004) as shown in
Ridgwell et al. (2007a). The surface ocean (upper-most grid-box) [PO4] simulated by
GENIE is also shown in panel h compared against observations integrated over the top
75m in panel g. Note the small difference in colour scale at low values between model
results and observations due to model results being replotted with a slightly different
parameter set to Ridgwell et al. (2007a). Figure is adapted from Ridgwell et al. (2007a).
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tional limitations such as by iron (Martin, 1990; Ziegler et al., 2013). Ridgwell et al.

(2007a) notes that the single global parameters controlling export may therefore com-

pensate for utilising most [PO4] in the low-latitudes but not utilising too much in the

high nutrient low chloropyll (HNLC) regions. As such surface [PO4] is generally slightly

lower in HNLC regions (Figure 2.6h cf. g: Ridgwell et al., 2007a). The biogeochemical

model also does not simulate different types of phtoplankton or their interactions with

zooplankton, such as done in more complex biogeochemical models like MEDUSA (Yool

et al., 2013), which have been highlighted as potentially important in driving changes

in the biological pump (Lam and Bishop, 2007; Fischer and Karakas , 2009; Henson

et al., 2012; Lam et al., 2011). However, Kriest et al. (2010) showed that tracers such

as [PO4] were sensitive to only a few key parameters such as remineralisation depth and

export. Therefore, relatively simple models similar to the complexity of GENIE were

found to be able to reproduce tracer fields to a similar degree as more complex models

(Kriest et al., 2010).

2.3 Conclusions

GENIE is a relatively low resolution EMIC designed for fast computation speeds which

aid the application to long timescales. The model can reproduce large-scale circulation

patterns and observed patterns in [PO4] although the low resolution lultimately limits

the ability of the model to reliably simulate smaller scale features. Despite this, there

are a number of advantages to the use of GENIE to study the biological pump. Current

observations of POC fluxes in the ocean interior suggest there are significant spatial

differences in the depth of remineralisation although the nature of this variability is

still very uncertain, e.g., Henson et al. (2012) cf. Marsay et al. (2015). In light of this

the ability of GENIE to reproduce large-scales is more than adequate and potentially

preferable as more complex models may add additional uncertainty and degrees of free-

dom. The speed of GENIE also facilitates a modelling approach seeking to quantify the
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uncertainty, similar to the approaches used by previous studies (Kwon and Primeau,

2006; Kriest et al., 2012). Lastly, modelling the biological pump in GENIE can be con-

sistently applied to the additional uncertainty about mechanisms over long timescales

(>1000-10 000 years) and its role in palaeoclimate.
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Spatial variability in particulate organic matter and

mineral sinking fluxes in the ocean interior

3.1 Introduction

Sinking particles transfer particulate organic carbon (POC) and associated nutrients

from the upper ocean to the deep ocean and sediments in a process known as the bio-

logical pump (Honjo et al., 2008). These particles, ultimately derived from the growth

of phytoplankton at the sunlit surface and carbon fixation through photosynthesis, are

also often associated with biominerals such as biogenic silica (opal) and calcium carbon-

ate (CaCO3). As these particles sink, the majority of POC and associated nutrients

are remineralized (predominantly) by bacterial metabolic processes and zooplankton

flux feeding in the upper ∼1000m, leaving a small (5-10%) fraction (relative to that at

∼100m) sinking to depth (Stemmann et al., 2004; Loubere et al., 2007; Honjo et al.,

2008). Understanding the processes that control the efficiency of the biological pump

in transporting carbon and nutrients to depth is key to understanding how the marine

carbon cycle functions and regulates atmospheric carbon dioxide (CO2), e.g., Archer

and Maier-Reimer (1994).

The ratio of particulate inorganic carbon (PIC) to POC within sinking particles is
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known as the ‘rain ratio’ and is potentially a key quantity that could drive changes in

the carbon cycle via the deep ocean and sediments. For instance, on time-scales of a

few thousand years, an initial reduction in the PIC flux exported from the surface such

that the rain ratio is reduced by 40% could, in theory, lead to a 70-90ppm drawdown

of atmospheric CO2. This drawdown is driven by the remineralisation of an increased

POC content in the sediments relative to PIC, lowering the saturation state of the sed-

iment porewater leading to increased carbonate dissolution and therefore an increase in

the ocean alkalinity inventory (Archer and Maier-Reimer , 1994) (See also discussion in

Section 1.1. However, studies based on the analysis of deep sediment trap data in the

modern ocean have observed a strong global correlation between mass fluxes of POC

and CaCO3, suggesting some mechanism of coupling exists between these important

parameters at depth (Armstrong et al., 2002). The resulting ‘ballast hypothesis’ posits

that CaCO3, and to a lesser extent opal and lithogenic material, facilitate the flux of

POC to the deep ocean. The presence of minerals in particles may increase the mean

density of particles resulting in associated POC sinking through the water column at

a faster rate or that POC may be protected from degradation by minerals (Armstrong

et al., 2002; Klaas and Archer , 2002). If true, this would have the effect of buffering

changes in the rain ratio originating at the surface and reducing the potential for al-

tering atmospheric CO2 (Ridgwell , 2003). In the context of ocean acidification and the

potential for decreased pelagic calcification driven by falling surface ocean carbonate

saturation, ballasting creates a positive feedback to CO2 by reducing the efficiency of

the biological pump, i.e., similar changes in the rain ratio as posited by Archer and

Maier-Reimer (1994) could lead to an increase in atmospheric CO2 (Barker et al., 2003;

Heinze, 2004; Riebesell et al., 2009).

The ballast hypothesis is based on a statistically significant global linear relationship

between POC and CaCO3. In response, a range of laboratory and field studies have

been conducted to validate the hypothesised mechanisms. Particles have been shown

to sink faster under laboratory conditions due to the relatively high density of CaCO3
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(Ploug et al., 2008; Engel et al., 2009a; Iversen and Ploug , 2010), supporting the ballast

hypothesis. However, other lines of evidence point to alternative interpretations. For

instance, rolling tank experiments showed the POC:mineral ratio was dependent on

the amount of POC present acting as a ‘glue’, aggregating mineral fluxes (Passow ,

2004; Passow and De la Rocha, 2006; De La Rocha et al., 2008) and controlling the

sinking of CaCO3 rather than vice versa. Alternatively, variations in surface ecosystem

composition might dictate the packaging and remineralization of particles (Francois

et al., 2002; Lam and Bishop, 2007; Lam et al., 2011) and give rise to the correlations

between POC and minerals observed in the deep ocean. These alternative explanations

significantly challenge our mechanistic understanding of the dynamics of POC fluxes

and create substantial uncertainty in both the magnitude and sign of carbon cycle

feedbacks to possible future perturbations (Barker et al., 2003; Riebesell et al., 2009).

The global sediment trap analysis of Klaas and Archer (2002) has been highly influen-

tial in quantifying the correlation between POC and CaCO3 and helping to formulate

the ballasting hypothesis. In that study, the mass flux of POC was expressed as a

linear function of three dominant mineral fluxes (CaCO3, opal and lithogenic mate-

rial), using multiple linear regression analysis (MLRA: Equation 1.10). The derived

‘carrying coefficients’ (the regression coefficients) were largest for CaCO3 (0.070-0.094),

lowest for opal (0.023-0.030), and rather variable for lithogenics (0.035-0.071) (Klaas

and Archer , 2002) with the resulting statistical models able to explain a large propor-

tion of the observed variability in POC flux. The three mineral model provides a basis

for understanding global variability in POC to mineral ratios and can replace this term

in the mechanistic model of Armstrong et al. (2002), making this a useful method for

parameterizing particle fluxes in a range of ocean carbon cycle models (Howard et al.,

2006; Oka et al., 2008; Hofmann and Schellnhuber , 2009; Yool et al., 2013).

The underlying assumption in analysing the global database in this way is that the

statistical relationships (the coefficient values) are the same for any location in the

ocean, i.e., they are assumed stationary in space. The use of these global statistical
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relationships in models then explicitly makes this same assumption. However, it is

reasonable to expect that these relationships may not be constant in space (or time),

i.e., they may exhibit spatial nonstationarity, which can be characterised by a non-

random distribution of residuals in space (Fotheringham et al., 1998). This potentially

raises issues for the interpretation of global regression coefficients and their explicit use

as a parameterisation in modelling studies (Howard et al., 2006).

Spatial variability in the relationship between POC and minerals was noted in sedi-

ment trap data by Passow and De la Rocha (2006) and Ragueneau et al. (2006) who

suggested global MLRA was, therefore, inappropriate and may have misleadingly re-

sulted in the low carrying coefficients obtained for opal and lithogenics. Boyd and Trull

(2007) also note that using global annual mean fluxes ignores a large part of variability

resulting from processes like El Niño and the biogeochemical sources of the fluxes. A

previous basin-scale analysis (Table 3.1) showed considerable regional variability in the

dominance of one mineral over another. Global MLRA may then be hiding important

regional variability which has implications for how the ballast mechanism is interpreted

and particularly for how it is mechanistically implemented in global models.

The spatial variability of the carrying coefficients of ballast minerals is important for

understanding the previously observed differences between global coefficients and those

seen from individual sites (Table 3.1). Ragueneau et al. (2006) took the first step in

this respect and applied MLRA to sediment trap data divided by major ocean basin.

This broad delineation was reasonably justified but further reduction of the spatial scale

poses particular problems. Smaller spatial groupings for regression could be justified,

such as biogeochemical provinces (see Vichi et al., 2011) but this introduces a level

of subjectivity, as well as problems with the relatively sparse sampling coverage of

sediment trap datasets compared to the number of biogeographical provinces.
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Table 3.1: Carrying coefficients, i.e., Klaas and Archer (2002), derived from previous
multiple linear regression analyses applied to a range of global, regional and time-series
sediment trap datasets. Ranges given indicate 95% range of carrying coefficients (2x
standard error). Adapted from Boyd and Trull (2007).

Global Annual Average CaCO3 Opal Lithogenicc R2

Klaas and Archer (2002)d n=78 0.075 0.029 0.052 -
>2000m 0.064-0.086 0.020-0.037 0.034-0.070

Francois et al. (2002)d n=62 0.074 0.015 0.074 0.93
>2000m 0.064-0.084 0.08-0.022 0.051-0.097

Ragueneau et al. (2006) n=189 0.081 0.031 0.035 0.89
>1000m 0.073-0.089 0.023-0.039 0.029-0.041

Regional Annual Average
Ragueneau et al. (2006) n=84 0.077 0.171 0.031 0.87
(Atlantic) >1000m 0.053-0.101 0.047-0.186 0.023-0.039
Ragueneau et al. (2006) n=16 0.026a 0.201 0.015a 0.96
(Indian) >1000m -0.007-0.057 0.123-0.279 -0.079-0.049
Ragueneau et al. (2006) n-89 0.063 0.041 0.024 0.95
(Pacific) >1000m 0.055-0.071 0.035-0.046 0.018-0.030
Regional Time-Series
Wong et al. (1999)d 1982-1993 0.021 0.013 0.0233 0.69
(Ocean Station P) 3800m 0.002-0.039 0.008-0.034 0.170-0.297
Conte et al. (2001)d 1978-1984 0.045 0.063 0.065 0.98
(Bermuda SCIFF) 3200m 0.038-0.053 0.024-0.102 0.034-0.096
Honda and Watanabe (2010)b 1998-2006 0.025 0.044 -0.006 0.92
(W.Pacific Subarctic Gyre) 4810 n/a n/a n/a

a Values from multiple regression analysis were insignificant at p>0.05.
b Data was normalized to average of each time-series component before regression
analysis
c All lithogenic material is estimated as Total Mass-(POCxPOM Conversion
factor)+CaCO3+Opal, except Honda and Watanabe (2010) which was derived from
Al measurements
d Adapted from Table 3a in Boyd and Trull (2007)
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3.1.1 Aims

In this chapter, the spatial variability in ballasting carrying coefficients is explored

using an updated sediment trap dataset as a further test of the ballast hypothesis and

to further explore the controls on POC fluxes in the modern ocean. To achieve this, the

chapter describes the novel application of Geographically Weighted Regression (GWR),

that allows coefficients to vary in space and helps avoid the problems stated above. The

dataset and technique are described in section 3.2 and are applied using the carrying

coefficient approach of Klaas and Archer (2002) to explore the spatial variability of the

these statistical parameters.

3.2 Methods

3.2.1 Sediment Trap Data

An updated global sediment trap dataset has been collated for the analysis in this

chapter. The majority (∼85%) of the dataset used here is from the U.S. Joint Global

Ocean Flux Study (JGOFS) available online via: http://usjgofs.whoi.edu/mzweb/syn-

mod.htm. The JGOFS dataset provides a synthesis of sediment trap data from a range

of study designs including deployments through time both on inter and intra-annual

scales and deployments across various transects. The dataset also has broadly consistent

methodology across the different studies. A full description of the JGOFS dataset

and methodologies can be found in Honjo et al. (2008). Other published datasets,

comprising the remaining ∼15% of the dataset used here, were obtained from additional

studies and the World Data Centre for Environmental Sciences (WDC-MARE) online

database. The flux and metadata from sediment traps used in this chapter are available

in Appendix A.

A range of review criteria were used to select sediment trap data in relation to a number
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of potential biases:

� Sampling Period: The selected data includes only sediment traps that sampled

over a minimum period of 320 days to maximize the quantity of data and its

spatial coverage whilst retaining a reasonable annual coverage, i.e., the sampling

period covers 88% of a year such that a the period covers at least 3 and half

seasons for areas that may significant seasonal variability in fluxes.

� Available Data: Data were excluded if any observations were missing for the major

components required for the analysis (total mass flux, POC, PIC, biogenic silica).

� Sampling Depths - Trapping Efficiencies: Sediment traps at relatively shallow

water depths (approx. <1000-1500m) have been shown to be inefficient at trap-

ping particulate material due to the effect of water flow over the trap entrance

(Scholten et al., 2001; Yu et al., 2001; Buesseler et al., 2007). At shallow depths,

the presence of zooplankton are also an additional uncertainty (Buesseler et al.,

2007). For this reason, and to be consistent with the bulk of previous work on the

ballast hypothesis, only flux data at>1500m water depth are considered here. Ap-

proximately 90 trap samples from the JGOFS dataset are shallower than 1500m

when all other criteria are considered. Previous studies have used data from shal-

lower sediment traps but corrected the flux data for an estimated minimum 40%

undersampling bias based on sediment trap calibration studies (Lutz et al., 2002,

2007). This approach was not used here as any spatial variability in sampling bi-

ases cannot be accounted for and may introduce unknown biases into any spatial

analysis.

� Sampling Depths - Sediments: The majority of the sediment trap data are >200m

above the seafloor (∼97%). 20 traps had unreported bottom depths. Previous

studies have considered the potential effect of resuspended sediments as a bias

for sediment traps (Lutz et al., 2002, 2007) using 200m above the sediment as a

criteria. This is not used here as the dataset is mostly 200m above the sediments
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and ballast hypothesis studies (Klaas and Archer , 2002; Ragueneau et al., 2006)

have not considered this bias.

The mass fluxes of CaCO3 and opal (as g m−2 year−1) were estimated from PIC and

biogenic Silica (bSi) using mass ratio conversion factors of 8.33 and 2.14 respectively

(Mortlock and Froelich, 1989). These mass ratios are the same as used in the original

JGOFS dataset:

CaCO3 = PIC ∗ 8.33 (3.1)

Opal = bSi ∗ 2.14 (3.2)

The flux of lithogenic material was estimated as the remaining fraction of total mass

flux when CaCO3, opal and particulate organic matter (POM) are subtracted. POM

was calculated using a coefficient of 1.86. In a small number of cases this produced

negative values for lithogenic flux, which were then treated as zero as in Salter et al.

(2010):

POM = POC ∗ 1.86 (3.3)

Litho. = Total Mass− (POM + CaCO3 + Opal) if Litho. > 0

= 0 otherwise (3.4)

The resulting dataset comprises 156 individual sediment trap observations which include

data on POC, PIC (as CaCO3), biogenic silica (as opal), lithogenic and total mass fluxes.

The dataset includes observations from 25 biogeochemical provinces of the 56 defined by
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Figure 3.1: Locations of global sediment traps at >1500m. Data locations are given in
the context of biogeochemical provinces as per Longhurst (1998).

Longhurst (1998) (Figure 3.1). In comparison to the previous global datasets (Francois

et al., 2002; Klaas and Archer , 2002), this dataset is larger in size (n=156 cf. n=62-78)

and provides greater spatial coverage, particularly for the southern hemisphere. The

dataset is of a comparable size to the recent sediment trap collation by Honjo et al.

(2008). Approximately half of the dataset is in common with previous analyses, so it is

expected a priori that the results of a global analysis will not be substantially different

from previous studies.

3.2.2 Regression Analysis

3.2.2.1 Global Regression Model

The multiple linear regression analysis used in Klaas and Archer (2002) is applied to

the updated global sediment trap data. The basic global regression analysis expresses

the flux of POC (FPOC) in the deep ocean (here defined as >1500m) as a function of

the fluxes of CaCO3 (FCaCO3), Opal (FOpal) and lithogenic material (Flitho) at depth:

FPOC = β0 + βCaCO3 · FCaCO3 + βOpal · FOpal + βlitho · Flitho (3.5)
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The regression coefficients (β) in Equation 3.5 relate the strength of the relationship

between POC and each mineral type. In the global regression of Klaas and Archer

(2002), the coefficient values are a global parameter. Previous analyses assumed that

the regression passed through the origin (Ragueneau et al., 2006) requiring that the

flux of POC must be zero when the flux of minerals is zero. An additional intercept

term (β0) is included here so that the analysis is amenable and directly comparable

to the geographically weighted technique employed and also to create a more general

model in which it is possible that there could be additional POC not directly associated

with the mineral flux. This can be related directly to the model of Armstrong et al.

(2002) (Equation 1.9) where Equation 3.5 without the intercept term is the FPOC(∞)

term in Equation 1.9, i.e., all POC at depth that is associated with mineral fluxes.

The intercept term allows for some residual POC flux not associated with the mineral

fluxes.

3.2.2.2 Geographically Weighted Regression Model

Geographically weighted regression is a relatively novel but simple technique of regres-

sion which allows the estimation of local statistical parameters. Ror a full description

see Fotheringham et al. (2002), also Brunsdon et al. (1998) and Fotheringham et al.

(1998). The global multiple linear regression model from (3.5) can be considered more

generally as:

yi = β0 +
∑
k

βkxik + εi (3.6)

where k predictors (x) are used to predict y at the ith point in space. The global model

can be re-written to estimate local parameters as:
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yi = β0(ui, vi) +
∑
k

βk(ui, vi)xik + εi (3.7)

where (ui, vi) denotes the coordinates of the ith point in space. βk(ui, vi) is then a

realisation of the continuous function βk(u, v) at point i (Fotheringham et al., 1998).

The global model can be seen as a case where the parameter surface is considered

constant in space. GWR approximates the above equation by selecting a subset of

data around i which is weighted according to their distance from i. This assumes

that parameters display a degree of spatial consistency, i.e., that parameters become

increasingly different as distance increases from i.

The weighting function (kernal) used in GWR can take different forms. The simplest

approach applies a weight of 1 to all data within a set distance (d) of i and 0 to data

outside of this area (Figure 3.2). This function creates artificial boundaries and could

create artefacts in the patterns of parameters estimated. An alternative, illustrated

in Figures 3.2 and 3.3, is to use a continuous weighting function such as a bi-square

function that approximates a Gaussian weighting within the bandwidth and zero beyond

this (Equation 3.8):

wij = [1− (dij/α)2]2 if dij < α

= 0 otherwise (3.8)

where the weight applied (wij) is a function of distance (d) between the central data

point at i, a different data point at j and a parameter referred to as the bandwidth

(α). The bandwidth defines the total distance of the subset of data (Fotheringham

et al., 2002) (Figure 3.3). The bandwidth is a global parameter and can be defined

either as a fixed distance (fixed kernel) or by a number of nearest neighbours (adaptive

kernel). The latter definition allows the weighting function to respond to changes in
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Figure 3.2: Example of the bi-square weighting function used in GWR from Equation
3.8. The function is shown using arbitrary distance units from a central data point and
a arbitrary bandwidth (α)=200. As a comparison a simple weighting function is shown
where all data are weighted equally within the bandwidth. Note that the dotted line
at zero is covered by the full line.

sampling density where a fixed kernel may be unsuitable to apply. In both definitions

the weighting function defines a ‘bump of influence’ around data at point i (Figure 3.3).

The size of the bandwidth is a critical factor in GWR as it defines the area of influence of

each regression. A larger bandwidth will lose information about any spatial variability

in coefficients if present and bias the results towards the global regression. If regression

coefficients are considered to be a continuous field in space, then each data point in

the subset of data will have a unique coefficient value, but defining a subset of data

around each point forces the coefficient to a common (essentially an average) value for

that subset. Therefore, coefficients can never be completely unbiased because there is

always a level of spatial averaging. To minimise the bias of coefficients, a small subset

of data close to i is preferable although this increases the variance and standard error

of the regression model. There is, therefore, a trade-off between the increased variance

associated with smaller subsets of data and the bias towards the global coefficients

55



Chapter 3 Methods

wij

α
dij

Figure 3.3: Schematic of the Geographically Weighted Regression process. The yellow
data point indicates the central location of the analysis. The blue shaded circle indicates
a bandwidth and the parameters that define it defined in equation 3.8. The dashed blue
circles indicate previous iterations. Note that the schematic resembles the case where
the bandwidth is defined as a fixed distance for ease of illustration. When applied to
the sediment trap dataset a bandwidth defined by a number of nearest neighbours is
used which is illustrated in Figure 3.8.

at larger subsets. To address this issue, the bandwidth can be calibrated using the

cross validation score (CV) or the corrected Akaike Information Criterion (AICc: see

Akaike, 1974). These quantities express the overall performance of regression models

and can take into account the bias-variance trade-off, providing an estimate of the best

bandwidth to use (Fotheringham et al., 1998). For example, the AICc for regression

models is a function of the residual sum of squares (AICc penalises larger residual

sum of squares, i.e., a worse fit to observations) and the number of data points (AICc

penalises smaller datasets) (Akaike, 1974). The AICc therefore provides a quantitative
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measure of the bias-variance trade-off.

A number of statistical tests are included with software used to calculate GWR to

allow the assessment of GWR models against global regression models (for full details

see Fotheringham et al., 2002). These include Analysis of Variance (ANOVA), testing

the null hypothesis that the GWR model represents no improvement on the global

model, and a Monte Carlo test to assess the significance of the spatial variability of

GWR coefficients. Under the null hypothesis, any random permutation of the dataset

is equally likely to occur. The details of this output can be found in Appendix A.

3.2.2.3 Application of GWR to Sediment Trap Data

Geographically Weighted Regression provides a rigorous approach to assessing the spa-

tial variability of carrying coefficients. Although there has been extensive work on ex-

tending the predictive use of GWR (Harris et al., 2011; Kumar and Lal , 2011), GWR

is applied here as an exploratory tool. Other related spatial statistics, such as Krig-

ing, could similarly be applied to the sediment trap data. The advantage of the GWR

approach described here is that the original multiple linear regression model used by

Klaas and Archer (2002) is directly comparable to the results described in this chapter.

GWR is applied to the updated sediment trap dataset using software (GWR 3.0) kindly

provided by M. Charlton of the National Centre for Geocomputation, National Univer-

sity of Ireland Maynooth. An adaptive kernel (defining a subset of data by number of

nearest neighbours) was chosen to group data because a fixed kernel (defining a subset

of data strictly by distance) failed to produce results due to the sparse sampling density

in space. For example a fixed kernel large enough to sample reliably in the Southern

Ocean would be too large to reveal spatial relationships in other regions. Conversely,

a fixed kernel able to reveal spatial variability in some regions would sample too little

data in the sparsely sampled Southern Ocean. The bandwidth was chosen by find-

ing the minimum AICc score using an optimisation routine in the GWR 3.0 software
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Figure 3.4: The AICc minimisation technique used to find the optimal bandwidth when
applied to the sediment trap dataset. The optimal bandwidth is 66 nearest neighbours
as indicated by the minimum in AICc.

(Figure 3.4). When applied to the sediment trap dataset, a bandwidth of 66 nearest

neighbours is found. Data were weighted using bi-square function (Equation 3.8). A

Monte Carlo significance test also provided with the GWR 3.0 software was used to

determine whether the regression coefficients were spatially variable (Hope, 1968).

3.3 Results

3.3.1 Global Regression

The sediment trap dataset shows similar global relationships to those obtained previ-

ously with smaller datasets (Figure 3.5 cf. 1.7). The correlation between POC and

CaCO3 is strongest (r=0.60), whilst the correlation between POC and opal is weaker

(r=0.35), with lithogenic fluxes being intermediate (r=0.45). Visually, the association

of POC with both opal and lithogenic material (Figure 3.5) suggests the presence of

two separate distributions, one of high POC flux and low mineral flux and the sec-

ond of low POC flux with high mineral flux (this was originally noted for opal by

Klaas and Archer , 2002). The scatter plot for CaCO3 also displays more variability
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than previously recognized (Figure 1.7). All scatter plots display regional differences

when separated into ocean basins as previously noted by Ragueneau et al. (2006) and

De La Rocha and Passow (2007). The global POC:mineral ratio is 0.052, close to the

ratio observed by Armstrong et al. (2002).

Multiple linear regression is used on the global dataset to express the flux of POC as

a summed linear function of mineral fluxes, and, as observed previously, suggests a

dominant role for CaCO3 (Table 3.2). The resulting regression model is significant at

p<0.001 and predicts 66% of the variability in POC fluxes (R2=0.66). The carrying

coefficient for CaCO3 is close to, although very slightly higher than, previous estimates

(Table 3.1). The coefficient and standard errors for opal are also similar in magnitude

to previous estimates whilst the lithogenic coefficient is much smaller than that found

by Klaas and Archer (2002) and Francois et al. (2002). Both the estimate here and that

of Ragueneau et al. (2006) are derived from significantly larger datasets (n=156-189 cf.

n=62-78) suggesting that this value should be more globally representative.

The R2 value is relatively low in comparison to the global studies in Table 3.1. This

is due to the inclusion of the intercept term in equation (3.5). Repeating the analysis

without the intercept term increases R2 to 0.89, a value consistent with previous studies

(Table 3.1). The large difference between these values is due to the calculation of

R2 from the total sum of squares which is uncorrected without an intercept, leading

to inflated values of R2 (Montgomery et al., 2006). To be consistent and directly

comparable with geographically weighted regression analysis (GWR 3.0 does not allow

for a model without an intercept) an intercept is included, justified by the fact the

residual mean squares (MSE) are very similar (MSE with intercept=0.484, MSE without

intercept=0.481) and that the derived carrying coefficients only differ by a factor of

0.0001. Note, therefore, that R2 values in this study are not directly comparable to

previous studies.
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Figure 3.5: Global annual mass fluxes of particulate organic carbon versus global annual
mass fluxes of (left) CaCO3, (middle) opal and (right) lithogenic material as measured
by sediment traps >1500m depth. Flux data from different ocean basins are indicated
by symbols to highlight regional differences (adapted from Ragueneau et al., 2006).

Table 3.2: Carrying coefficients calculated using multiple linear regression with mass
flux data for different depth ranges and spatial scales. All coefficients are significant
at p<0.001 except a where p<0.05. 95% confidence intervals are given as 2x standard
error. Note that the model for the Southern Ocean is not significant.

Global Data CaCO3 Opal Lithogenic R2

>1500m (n=156) 0.089 0.023 0.027 0.66
0.076-0.102 0.012-0.034 0.017-0.037

Regional Data (>1500m)
Atlantic (n=54) 0.083 0.152a 0.027NS 0.58

0.047-0.118 0.028-0.276 -0.007-0.060
Indian (n=25) 0.083 0.058a 0.058 0.94

0.058-0.108 0.003-0.113 0.034-0.083
Pacific (n=63) 0.056 0.033 0.022 0.80

0.041-0.071 0.025-0.041 0.015-0.028
Southern Ocean (n=12) 0.183NS -0.022NS 0.034NS 0.37NS

-0.065-0.431 -0.139-0.095 -0.050-0.117
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3.3.1.1 Evidence of Spatial Variability

A regional breakdown of the data to an ocean basin scale is also shown in Table 3.2

and is comparable to that by Ragueneau et al. (2006) as summarized in Table 3.1. The

carrying coefficient for opal in the Atlantic displays variability compared to other basins

and is quite distinct from the global value (0.152 cf. 0.023). In the Pacific and Indian

basins, the spatial coefficients are more consistent with the global values. The Indian

basin values differ to those found in Table 3.1 the reason for which is unclear. The

relevant dataset in Table 3.1 is much smaller (n=16 cf. n=25) and it may be that these

coefficients are more influenced by outliers in the regression. In particular, it is also

worth considering that the Pacific basin is the largest in size, covering 19 biogeochemical

provinces and potentially includes multiple sources of variability unlike the smaller

Indian basin comprising 8 biogeochemical provinces. Therefore, it is uncertain whether

the similarity of the Pacific coefficients to global values may be a product of averaging

the potentially large spatial variability in fluxes or is actually representative of the

values in this area. Table 3.2 also includes analysis of data from the Southern Ocean

but the resulting regression model is not significant. Visually there are differences within

the Southern Ocean in Figure 3.5 particularly for opal which may suggest variability

between different sectors. It is worth noting the majority of the sediment trap data

is located in the Atlantic sector of the Southern Ocean (Figure 3.1) although any bias

this may have is difficult to assess given the very small sample size (n=12). These

results highlight the difficulties in conducting regional regression even at the scale of

ocean basins. Making comparisons between areas in this way is problematic because of

varying sample sizes and a lack of consistent statistical methodology.

An alternative method of assessing whether regional variability exists in the global

dataset is to map the residuals of the global regression model (Figure 3.6a). An as-

sumption of regression is that the residuals should have a random distribution around

zero. Extending this logic, if coefficients are truly global they should also exhibit resid-
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uals that are randomly distributed in space (Fotheringham et al., 2002). However, note

here that negative residuals appear to cluster in the low-latitude Atlantic and Pacific

as well as the western sub-arctic Pacific whereas positive residuals cluster in the Ara-

bian Gulf and Indian Ocean. This supports the contention from previous studies that

there is potential spatial non-stationarity in the coefficients which are not truly global

(Passow and De la Rocha, 2006; Ragueneau et al., 2006).

3.3.2 Geographically Weighted Regression

Geographically weighted regression analysis was applied to the global sediment trap

dataset at depths >1500m. The AICc calibration was used to determine an optimal

bandwidth of 66 nearest neighbours (Figure 3.4).

3.3.2.1 Assessing Geographically Weighted Regression

A reduction in the AIC score from the global model score of 341.6 and an increase in

R2 from 0.66 to 0.82 respectively suggest that GWR is an improvement on the global

model (Table 3.3). The results of the ANOVA statistics also show that the GWR

model is a significant improvement on the global model whilst the results of the Monte

Carlo test suggest there is significant spatial variability in the regression coefficients.

A visual comparison of the residuals from the GWR (Figure 3.6b) against the global

regression residuals (Figure 3.6a) indicates greater heterogeneity in areas previously

characterised by clustered residuals, such as the equatorial Pacific, Atlantic and the

Indian Ocean. These metrics suggest that the use of a spatially informed regression

technique is justified here.

GWR calculates regression coefficients and other statistics at each data point, allowing

them to be mapped (Figure 3.7). The results show distinct regional groupings of the

coefficients with minimal variability within these groups. An exception to this are the

coefficients for opal in the North Atlantic, which show a range of values in a relatively
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a)

b)
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Figure 3.6: The spatial distribution of residuals from (a) global multiple linear regres-
sion and (b) geographically weighted regression analysis. Fluxes of POC are predicted
using mass fluxes of CaCO3, opal and lithogenic material as in Klaas and Archer (2002).
The models predict ∼66% and ∼82%, respectively, of the variability in observed POC
fluxes.
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Table 3.3: Summary statistics of the GWR models for sediment trap data at
>1500m. A bandwidth of 66 is the optimal value chosen from the AICc calibra-
tion. Additional bandwidths of 20 and 156 are provided to explore the sensitivity
of the outcomes to bandwidth. AIC is an comparative quantitative score of the
regression models where lower values indicate better models. ANOVA statistics test
the null hypothesis that the GWR model is no improvement on the global model.
‘Global’ carrying coefficients are the median of the 156 coefficients. Monte Carlo
test for spatial variability rejects the null hypothesis at *p<0.05, **p<0.01,*** p<0.001

Bandwidth AIC R2 ANOVA Sig. CaCO3 Opal Lithogenic
66 (optimal) 269.82 0.82 <0.001 0.066*** 0.033*** 0.022***
20 318.04 0.90 <0.001 0.056 0.040*** 0.026***
156 313.41 0.71 <0.001 0.089*** 0.025 0.026

small area with no identifiable spatial trend. In this region, the bandwidth of 66 nearest

neighbours that defines the subsets of data is relatively large in comparison to the area

(see Figure 3.8a), and is therefore influenced by significantly different values in the

Arctic and equatorial Atlantic Oceans. This highlights a particular issue of using GWR

with this dataset: the analysis is limited by the relatively small number of data points

compared to the area sampled, such that areas of low sampling density may produce

spurious results. Data points at the edge of ocean basins or in sparsely sampled areas,

such as the Southern Ocean, will also tend to include data from other basins. The effect

of sparsely sampled areas can be seen in the local R2 values (the fit to each subset of

data). In the Southern Ocean, the R2 is the lowest of the dataset reflecting that data

from potentially different regions is included (Figure 3.8b). The inclusion of data from

other ocean basins is an important caveat for this analysis and limits the following

section to the dicussion of large-scale spatial patterns in coefficients. This caveat is

hereafter referred to as inter-basin influence.

To explore the sensitivity of coefficients to the bandwidth and inter-basin influence,

the bandwidth was manually changed to 20 and 156 nearest neighbours in comparison

to the calibrated 66 neighbours (Table 3.3) and the results from the most variable

mineral, CaCO3, were plotted (Figure 3.9b & 3.9c). A bandwidth of 156 is used to

assess if the GWR technique can recover MLRA global coefficient values. Although
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this will include all data points in the dataset they will still be weighted by distance.

Figure 3.9 shows that most of the coefficients converge towards a global value around

0.09. The equatorial Pacific is the only area not to conform to the global value. This is

likely to be a result of a combination of densely sampled data being weighted heavily

but in relative isolation to other data points. The higher AIC score suggests this

model has less ability to predict POC than the calibrated optimal model, which is also

suggested by the lower R2 value (0.71) although it is still higher than the global mean

MLRA model (0.66) (Table 3.1). With a much smaller bandwidth of 20, the R2 value

increases but the higher AIC score indicates other aspects of the model are worse, such

as increased variance (Table 3.3). One might expect coefficients to vary significantly

at this bandwidth because the coefficients represent local values but are also subject

to influence from outliers. However, the large-scale general spatial patterns (Figure

3.9b) are comparable to those in Figure 3.7a, suggesting these are not an artifact of

bandwidth size. A notable exception to this is the lower coefficients in the equatorial

Atlantic (Figure 3.9b cf. Figure 3.7a). This suggests that the subset of data defined

by a bandwidth of 66 nearest neighbours may be influenced by significantly higher

values in the Southern Ocean but overall our ability to capture the global mean MLRA

coefficient values when relaxing the spatial bandwidth gives us increased confidence in

this method.

The basin-scale coefficients in Table 3.2 appear to corroborate the GWR coefficients.

Furthermore, to test the validity of large scale patterns of coefficients produced by

GWR, subsets of data were manually selected by region and compared them to the

Figure 3.7 (preceding page): The spatial distribution of coefficients calculated using
geographically weighted regression analysis for (a) CaCO3, (b) opal, and (c) lithogenic
material. The model is the same multiple linear regression model applied to the global
data in Table 3.2 and Figure 3.6b. The GWR analysis uses a bandwidth of 66 near-
est neighbours, defined by an AICc minimization calibration procedure. A bi-square
weighting scheme was used. The GWR model predicts ∼82% of the variability in POC
fluxes and is an improvement on the global model. The corresponding global coefficient
values are 0.089, 0.023, and 0.027 for (a), (b), and (c) respectively.
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a)
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Figure 3.8: a) Schematic depicting the bandwidth of geographically weighted regression.
Circular line indicated the distance at which a weight of 0.75 occurs. Data is weighted
>0.75 within the area and <0.75 up to the distance of the last nearest neighbour. A
bandwidth of 66 nearest neighbours is used. (b) Local R2 values from the geographically
weighted regression in Figure 3.7 using a bandwidth of 66 nearest neighbours and bi-
square weighting scheme.
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mean GWR coefficients for the corresponding area (Figure 3.10). Overall there is

general agreement between the coefficients from both methods, supporting the results

of the GWR analysis. This method of validation is difficult because some areas have a

small number of data points, which can lead to statistically unreliable outcomes and is

one reason why GWR is a preferable technique. Overall, the coefficients show general

agreement with the GWR coefficients, suggesting that the GWR technique is producing

reliable results even when considering the potential for inter-basin influence.

3.3.2.2 Spatial Patterns in Regression Coefficients

The geographically weighted regression analysis defines clear regional patterns in the

coefficients for CaCO3, opal and lithogenic particles (Figure 3.7). The Atlantic displays

some of the more unexpected results, with coefficients differing appreciably from global

values. Coefficients for both CaCO3 and opal display a decreasing trend with increasing

latitude between 30 and 60 degrees North in the North Atlantic. Opal is quantitatively

more important than CaCO3 and lithogenics in the low latitude Atlantic, corroborating

the basin-scale approach in Tables 3.1 & 3.2. In the Arctic Ocean however, CaCO3 and

lithogenics are quantitatively more important. This is not revealed by the basin-scale

results.

Overall in the Pacific, there is much less difference between coefficient values, with

no mineral showing overall importance except for the higher coefficients observed for

CaCO3 in the western and equatorial Pacific. These could be a result of inter-basin influ-

ence from the Indian Ocean although similar behavior is not observed in the lithogenic

coefficients, suggesting that it is probably not an artefact. The majority of the CaCO3

Figure 3.9 (preceding page): Spatial distribution for CaCO3:POC coefficients calculated
using geographically weighted regression (a) from Figure 3.7 but with manually altered
bandwidth values of (b) 20 and (c) 156 nearest neighbours. Only coefficients for CaCO3

are displayed, as it displays the most variability of the three minerals considered. For
reference, the global CaCO3 coefficient is 0.089.

69



Chapter 3 Results

a)

b)

c)
CaCO3

Opal

Lithogenic

Figure 3.10: Comparison of regression coefficients calculated over manually selected
areas and mean coefficient values calculated using geographically weighted regression
for the corresponding area for (a) CaCO3, (b) opal, and (c) lithogenic material. Error
bars correspond to 2 x standard error; 1:1 ratio lines are shown.

coefficients in the Pacific are much lower than the global value of 0.089 (as also high-

lighted in the basin-scale analysis; Table 3.2).

The Indian Ocean is one of the only regions that display similar coefficients to those

from the global analysis, with a quantitative importance identified between both CaCO3

and lithogenics, and POC. Variability between the Arabian Gulf and Bay of Bengal is

small and is likely a result of subtle changes in the subsets of data used. Finally, the

Southern Ocean also displays unexpected results, with quantitative importance between

CaCO3 and POC only. Inter-basin influence may be a large problem for the Southern

Ocean, given the small number of samples and the relative distances between them (see

Figure 3.8a for indication of bandwidth sizes). This is reflected in both the insignificant
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regression result in Table 3.2 and the relatively low R2 values generated by the GWR

analysis (Figure 3.8b).

Overall the global coefficient for CaCO3 of 0.089 appears to be dominated by the South-

ern Ocean, the Indian Ocean, western equatorial Pacific and the Arctic whilst regionally

displaying much lower values (<0.04-0.05) in the Atlantic and the remaining Pacific.

In contrast, the global values of 0.023 for opal and 0.027 for lithogenics appear more

consistent over large regions, with exceptions in the Atlantic for opal and the Artic and

Indian Oceans for lithogenics.

3.3.2.3 Predictions of POC fluxes

The carrying coefficients for each mineral in the regression analyses predict the flux of

POC to depth as a function of ballasting fluxes. Figure 3.11 compares the POC flux

predicted by both the MLRA and GWR models as a fraction of the total POC flux

predicted, as suggested by Le Moigne et al. (2012). Globally, the GWR model predicts

less POC associated with CaCO3 than the MLRA model. This is predominantly a

result of differences in the Equatorial and North Pacific as well as the North Atlantic

(Figure 3.11a cf. Figure 3.11b). Since the MLRA coefficient for CaCO3 is a single

global coefficient, it follows that the predicted POC flux mirrors the CaCO3 fluxes,

i.e., ballasting. However, GWR predictions suggest that there is no clear relationship

between POC and CaCO3. There are less differences between the two regression models

for opal and lithogenic material, with greater POC fluxes in the North Pacific and the

Bay of Bengal respectively (Figure 3.11c & 3.11e cf. Figure 3.11d & 3.11f).

3.3.3 Sampling Artefacts: Synthetic Flux Comparison

Sediment trap flux measurements can potentially be biased by a number of factors.

Attempts to reduce biases due to undersampling and zooplankton have been taken by

not considering sediment traps <1500m. An additional source of uncertainty in the use
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Figure 3.11: MLRA and GWR predictions of POC fluxes from each mineral. Values
are expressed as the contribution from each mineral (βCaCO3 · FCaCO3) as a proportion
of the total predicted POC flux, following Le Moigne et al. (2012). The GWR model
is the corresponding model in Figure 3.7.

of deep sediment traps is the dissolution of samples once sampled due to the effects of the

ambient water chemistry, e.g., low carbonate ion or dissolved silicic acid concentrations

(Buesseler et al., 2007). This effect will occur in particular regions such as the deep

North Pacific, where carbonate ion concentrations are low due to the accumulation of

dissolved CO2 (Sarmiento and Gruber , 2006). In contrast, the ocean is under-saturated

everywhere with respect to biogenic opal. The CaCO3 coefficients in the North Pacific

are the smallest in magnitude and form a distinct regional grouping (Figure 3.7a)

suggesting that a dissolution bias should be considered. To address this, GWR is applied
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to a set of synthetic fluxes that are estimated from an empirical model that explicitly

excludes the effects of dissolution. The use of a synthetic dataset provides a qualitative

test that the first-order variability in coefficients calculated from the observed flux

dataset are attributable to changes in the sinking particulate flux and not locally-

occurring dissolution.

Asynthetic dataset is derived from the studies of Dunne et al. (2005), Dunne et al. (2007)

and Dunne et al. (2012). These studies present a synthesis of empirical and mechanis-

tic models of productivity, export, and sinking particulate fluxes that are applied to

satellite chlorophyll measurements to estimate the oceanic cycles of organic carbon, sil-

icon and CaCO3. Other methods were considered, such as using ocean biogeochemical

models to estimate fluxes, but the use of ratios to predict CaCO3 from POC precluded

a lot of spatial variability. The use of more dynamic ecosystem models, e.g., Yool et al.

(2013), may facilitate similar analysis. Estimates of the POC exported from the sur-

face are derived from an export production algorithm based on sea surface temperature

(Dunne et al., 2005) applied to estimates of primary production estimated from 1° x 1°

satellite measurements of chlorophyll, e.g., Behrenfeld and Falkowski (1997). Two al-

gorithms are then used to estimate POC fluxes at depth (2000m); a fixed Martin Curve

where the exponent b = -0.858 (see Section 1.2.1), and spatially variable exponents from

Henson et al. (2012). Export fluxes of opal are taken from Dunne et al. (2007), which

are based on the method of inferring export fluxes from vertical surface and subsurface

nutrient gradients (Sarmiento et al., 2004a). This method predicts silica export:organic

carbon export ratios in 10 different regions. Opal fluxes at depth are estimated using

an exponential decay curve with a length scale of 2000m (Dunne et al., 2007). Fluxes of

CaCO3 are taken as the estimated bottom fluxes of Dunne et al. (2012), again derived

from satellite chlorophyll using a variety of algorithms. The POC and opal export fields

are taken directly from the publications and estimated at depth separately whilst the

bottom fluxes of CaCO3 are taken directly from Dunne et al. (2012). All fields were

sampled from the 1° x 1° grid-box closest to the location of the sediment traps used for
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a) b)

c) d)

Figure 3.12: Estimated mass fluxes at depth (2000m) of particulate organic carbon
versus CaCO3 and opal based on Dunne et al. (2007, 2012). Panels (a) and (b) are
calculated using a Martin Curve with a fixed global exponent. Panels (c) and (d) are
calculated using the spatially variable exponents from Henson et al. (2012). This figure
is directly comparable with Figure 3.1b.

the regression analyses (Figure 3.1a). A synthetic lithogenic dataset is not considered

here as although estimates of dust deposition to the ocean surface are available, e.g.,

Mahowald et al. (2005), the definition of lithogenic material in equation 3.4 as a residual

flux, allows for additional sources such as riverine input that cannot be accounted for

in a synthetic lithogenic dataset based on atmospheric dust deposition.

The synthetic datasets are shown in Figure 3.12. Prominent features of the sediment

trap data (Figure 3.5) are also present in the synthetic dataset, such as a stronger global

linear relationship between POC and CaCO3 (Figure 3.1a and c) and the presence

of the separate distributions for POC and opal (Figure 3.12b and d). The strong

regional linear relationships in Figure 3.12b are an artefact of the algorithm used to

estimate opal export by relating it to POC export by ratios in 10 regions. Overall the

magnitudes of the fluxes are consistent with the sediment trap data, although some POC
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fluxes calculated using variable Martin Curves are significantly higher in the Indian

Ocean (Figures 3.12c and d). This is an artefact of the algorithm from Henson et al.

(2012) which predicts a very large fraction of exported POC reaching the deep ocean

(∼45%) (see Figure 1.6) which is not supported by sediment trap observations that

show smaller fractions (5-10%) (Honjo et al., 2008). The global carrying coefficients for

the synthetic dataset when using the constant Martin Curve (Figure 3.12a and Figure

3.12b) are 0.251 and 0.0671 for CaCO3 and opal respectively (R2=0.80) and when

using the variable Martin Curves (Figure 3.12c and Figure 3.12c) are 0.913 and 0.159

(R2=0.67). The differences in magnitude between these coefficients are those calculated

from the sediment trap data likely reflect differences in flux magnitudes as noted above

but both sets of coefficients indicate a strong quantitative relationship between POC

and CaCO3 as observed.

The same GWR analysis is applied as with the sediment trap data using an adap-

tive bandwidth of 66 nearest neighbours producing a corresponding set of coefficients

(Figure 3.13). The general spatial patterns observed in the original analysis are re-

produced relatively well using both synthetic datasets. In particular, the pattern of

CaCO3 coefficients in the North Pacific and Southern Ocean are consistent suggesting

that dissolution within deep sediment traps before collection does not contribute to

these patterns. Equally, both datasets broadly reproduce the relatively higher opal

coefficients in the Atlantic. The dataset based on the globally constant Martin Curves

captures more of the features seen in the observations such as the gradient of CaCO3

coefficients in the Atlantic. Given first order estimates of flux magnitudes and distribu-

tions, the broad similarity of these results to the spatially variable coefficients in Figure

3.7 suggests that dissolution after sampling by sediment traps does not contribute to

the patterns observed. Although, the synthetic datasets cannot be used a quantita-

tive test of whether the carrying coefficients are a result of a ballasting mechanism, as

this mechanism was not explicitly used to calculate the fluxes, it does suggest that the

global and spatially varying carrying coefficients can be reproduced in the absence of a
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Figure 3.13: The spatial distribution of coefficients calculated using geographically
weighted regression on the synthetic datasets shown in Figure 3.12. The GWR analysis
uses a bandwidth of 66 nearest neighbours. Panels (a) and (b) are the same panels
from Figure 3.7 for comparison. Panels (c) and (d) use the global Martin Curve whilst
(e) and (f) use spatially variable Martin Curves. All coefficients are normalised to the
mean of each set for ease of comparison.
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ballasting mechanism.

3.4 Discussion

Geographically weighted regression (GWR) offers a promising technique to explore the

regional variability of regression coefficients. However, its application to sediment trap

data is limited both by the amount of data available and the geographical distribution of

sampling, which is somewhat clustered, being a collection of individual research projects

focused on specific areas and research questions. The overall size of the dataset is also

at the lower limit of size to which GWR may be successfully applied (Charlton, M.E.,

2012 pers. comm.). GWR is also subject to some of the caveats to previous global mean

(and annual average) analyses and which may contribute to the observed variability. For

instance, differences in the origin of sinking particles could have a significant influence

on the degree of coupling between POC and ballast mineral biasing the use of the

ballast hypothesis as a global mechanism. Foraminiferal CaCO3 can be de-coupled from

POC due to the reproductive cycle, where the gametes (contributing POC) abandon

the organism, leaving particles that are predominantly CaCO3 to sink (Loubere et al.,

2007). Ziveri et al. (2007) showed that the relationship between POC and CaCO3

in different species of coccolithophores can also be variable, leading to differences in

regression coefficients. Similarly, Thunell et al. (2007) observed variable POC to opal

ratios in different coastal diatom species which contributed to variation in regression

coefficients. Because sinking particles captured by sediment traps are expressed as bulk

CaCO3 and opal, it is likely this could be a source of variability in the data which cannot

be accounted for here. The method of estimating lithogenic fluxes has previously been

highlighted as an issue in analysing fluxes (Boyd and Trull , 2007). Defined as the

difference between total mass flux and the main biogenic components, the lithogenic

fraction can be more accurately termed the residual flux (Salter et al., 2010) and may

include material that is unaccounted for. Unfortunately this is not something that has
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been possible to address in this study. A collation of studies where the sources of any

lithogenic material in sediment traps have been explicitly identified, such as Ternon

et al. (2010), would possibly facilitate future work on this issue.

Despite these caveats, GWR removes some of the subjectivity in choosing subsets of

data and provides a framework for dealing with statistical problems, e.g., such as in-

creased variance of coefficients. GWR therefore offers a more objective technique and

one able to explore spatial patterns at a finer resolution than the basin-scale analyses

previously undertaken.

3.4.1 Why is there spatial variability in carrying coefficients?

If there was a systematic mechanism linking increased sinking velocity of particulate

organic matter with CaCO3 or between the efficiency of export to depth and protection

from remineralization (Armstrong et al., 2002; Klaas and Archer , 2002), one would

expect to observe consistent relationships between POC and the presence of minerals

at a global scale. However, in the GWR analysis used here significant spatial variability

in the carrying coefficients has been identified but with generally coherent large-scale

spatial relationships. If models of the ocean carbon cycle are to be improved and

hence better quantify feedbacks and potential impacts of global change, it is essential

to understand why any coherent patterns occur at all and why regions differ from

one another. The underlying complexity and challenge in mechanistic interpretation is

illustrated by considering the quantitative importance observed for opal in the Atlantic

and CaCO3 in the Southern Ocean, which is somewhat counter-intuitive considering

the global distribution of productivity by major plankton groups, with relatively little

opal exported from the surface of the tropical Atlantic and relatively little CaCO3

exported in the Southern Ocean. The inference is that fluxes of POC are quantitatively

associated with fluxes of opal in the Atlantic despite this being an area of very low

opal fluxes. The inverse applies to the Southern Ocean and CaCO3. This suggests that
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there is more to the controls of sinking POC than just the dominant mineral phase

being produced at the surface.

Multiple linear regression reflects the joint variability between all three minerals and

POC and therefore coefficients reflect variability related to the specific combination

of all flux components and should not be interpreted in terms of any one mineral

component in isolation. Honjo et al. (2008) demonstrated that the relationships between

the proportions of POC, CaCO3 and opal within mass fluxes are broadly aligned with

regional patterns such as biogeochemical provinces. They used this to define broad

regions that are dominated either by POC, CaCO3 or opal. The patterns of coefficients

in Figure 3.7 define broad regions and appear consistent with this interpretation, being

visually comparable to biogeochemical provinces (and which have been demonstrated

are not artifacts of the statistical method or inter-basin influence; see Figure 3.10).

The regional regression coefficients observed here may then reveal variability derived

from the specific combinations of flux components that ultimately derive from specific

ecosystem characteristics.

Recent studies have built on this alternative interpretation of the observed relationships

between POC and minerals, focusing on the variability originating from ecosystem pro-

cesses. Francois et al. (2002) originally suggested that differences in the biodegrad-

ability of POC derived from CaCO3-dominated ecosystems resulted in efficient POC

transfer rather than from the direct presence of CaCO3 itself. Developing this method-

ology further with satellite data, Henson et al. (2012) found that the export efficiency

of particles from the surface is low in carbonate dominated regions but transfer effi-

ciency of POC to depth is high, with the reverse being true in regions dominated by

diatoms. This complements similar findings in the Southern Ocean (Lam and Bishop,

2007) and the identification of similar variability through the interaction between the

timing and intensity of activity in producer and consumer communities (Lam et al.,

2011). Our results are consistent with the relationships between mass flux components

being derived from ecosystem characteristics, and support the findings of these studies
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in suggesting that the key factor in the variability of POC reaching the deep ocean is

the interaction between producer and consumer communities in different ecosystems,

possibly reflecting the resulting differences in exported organic matter biodegradability.

In ecosystems with highly seasonal productivity, mismatches in the timing of producer

and consumer activity can result in labile organic matter being exported which is then

readily remineralized in the water column. Likewise, in non-seasonal ecosystems more

constant production and consumption can result in the export of relatively refractory

material which is more resistant to remineralization in the water column and sinking to

depth (Lam et al., 2011). The spatial analysis presented in this chapter suggests that

even within diatom and carbonate dominated regions there are distinct variations which

may relate to specific differences in this packaging function, such as the distribution

of different species and behavior of zooplankton present, and the subsequent action of

bacteria (Lam and Bishop, 2007; Buesseler and Boyd , 2009).

3.4.2 Implications for the ballast hypothesis and modelling

The ballast hypothesis has been highly influential in proposing that fluxes of POC can

be mechanistically linked to fluxes of ballast minerals such as CaCO3. The basis of this

hypothesis is the observed strong global quantitative relationship observed between

POC and CaCO3. However, this strong relationship does not apply to all regions (or

even sub-regions) in the ocean and is not constrained to CaCO3 alone. In effect, the

strong relationship appears to be an artefact of averaging fluxes on a global scale,

masking important regional variability. This could occur because globally there is a

large range of flux magnitudes in both POC and CaCO3 which is larger than the

variability of the regional POC:CaCO3 ratios. This is evident in Figure 3.5 where

different basin scale ratios can be seen within the global data distribution. Using

the relative standard deviation (RSD: standard deviation divided by the mean) as

a comparable measure of the variation within each dataset, the individual fluxes of

CaCO3 and POC have RSD values of 0.62 and 0.71 respectively whereas the RSD
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of the CaCO3 carrying coefficients is smaller at 0.45. As such, the appearance of

a global correlation between CaCO3 and POC could be exaggerated as a result of

considering data at a global scale. Equally, this may bias the interpretation of such

relationships without information on spatial variability. In a similar manner, Lam et al.

(2011) produced global coefficient values when averaging particle concentration data

through time but which masked important temporal variability, suggesting a different

mechanistic interpretation. The analyses of temporal variability (Lam et al., 2011),

transfer efficiencies of POC (Francois et al., 2002; Henson et al., 2012) and the regional

variability highlighted in this study all suggest that ecosystem-based mechanisms are

influential in setting the efficiency of the biological pump. While this does not rule out

ballasting as a mechanism, e.g., Ploug et al. (2008); Engel et al. (2009a); Iversen and

Ploug (2010), it shifts the focus away from a simple causal physical explanation.

The ballast hypothesis has inspired specific parameterizations using the global statis-

tical coefficients to be adopted in a number of global ocean carbon cycle models, e.g.,

HAMOCC5.1 (Howard et al., 2006), CCSR COCO 4.0 (Oka et al., 2008), POTSDAM-

C (Hofmann and Schellnhuber , 2009), and MEDUSA (Yool et al., 2013) but see also

PISCES (Gehlen et al., 2006). The results from this chapter suggest that using these

global statistical parameters explicitly in models requires careful reconsideration. How-

ever, moving away from a common global mechanism to parameterizations able to

capture spatial variability in the flux relationships is not trivial. Application of a sim-

ple prescribed ‘map’ (distribution) of carrying capacities, while potentially improving

the simulation of dissolved nutrient and carbon distributions in the ocean interior,

is likely to fail to provide an appropriate response to global change. Instead, there

needs to be a shift in the focus away from a geochemical-based understanding and pa-

rameterization approaches towards a more ecological-based understanding of fluxes, as

suggested by (Ragueneau et al., 2006; Boyd and Trull , 2007), which will require alterna-

tive mechanistic representations in models. Reflecting ecosystem function will then lead

to potentially very different feedback mechanisms when considering ocean acidification
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and climate change (Henson et al., 2012). However, such a shift towards an ecological-

based understanding requires the representation of complex ecosystem processes and

an increased need for data for validation, highlighting the utility of empirical parame-

terisations such as ballasting. A move towards embracing the complexity of processes

may add additional uncertainties to our ability to use models to look at past and future

changes in the biological pump. In general, further work will be needed to develop flux

parameterizations that link aspects of ecosystem function with organic matter particle

fluxes. In this respect, models are beginning to consider suspended particles, slow sink-

ing particles that are subject to remineralization in the water column, and fast sinking

particles that may be subject to ballasting to facilitate a more complex biological pump

in the ocean interior (Riley et al., 2012; DeVries et al., 2014). Considering the range

of mechanistic interpretations and inherent uncertainty this introduces, further work is

needed to quantitatively constrain the range of feedback processes through more ob-

servations of the biological pump and modelling. Given the need for more observations

of the biological pump to achieve a better representation with which hypotheses like

ballasting can be evaluted against, the next chapter explores a method of estimating

particulate organic matter flux curves in the global ocean.
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Can organic matter flux profiles be diagnosed using

remineralisation rates derived using modelled ocean

transport rates?

4.1 Introduction

Sediment trap studies show that the vertical flux of POC can be described empirically

by a power-law curve (Martin et al., 1987; see Figure 4.1a) where POC is rapidly

remineralised in the upper water column (<1000m) leaving a small fraction (5-10%) of

POC that sinks to greater depths. The exponent of the Martin Curve (b) reflects the

distribution of POC with depth and whether POC is remineralised higher or lower in

the water column. Recent studies using global sediment trap observations, 234Th fluxes

and particle concentration data suggest a highly heterogeneous pattern of flux profiles

and the existence of a general latitudinal trend (Lutz et al., 2007; Honjo et al., 2008;

Henson et al., 2012). POC fluxes in high latitude regions decrease faster with depth,

i.e., they display shallower flux curves than in low latitude regions where a greater

proportion of POC is remineralised at deeper depths (Figure 4.1a). Analysis of the POC

fluxes supports a number of mechanisms that explain these spatial patterns including

increased sinking velocity of particles via a ‘ballast’ effect from minerals such as CaCO3
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(Armstrong et al., 2002; Klaas and Archer , 2002) (see also Chapter 3); aggregation of

particles (Passow , 2004); and surface ecosystem dynamics, such as the level of nutrient

recycling and blooms altering characteristics of the particles being exported (Lam et al.,

2011; Le Moigne et al., 2012). However, further progress towards fully understanding

which mechanisms are key their representation in models has been hindered by the

relatively low sampling density of long-term sediment trap deployments, particularly in

regions such as the Southern Ocean, e.g., Le Moigne et al. (2012) and Chapter 3.

Understanding the underlying reasons for the spatial patterns in remineralisation is a

valuable step in understanding the key mechanisms driving the biological pump. This

is key to understanding how the biological pump will respond to both past and current

changes in climate (Honjo et al., 2014). Atmospheric CO2 concentrations have been

shown to be sensitive to changes in flux profiles when modelled, primarily via the effect

of redistributing DIC in the modern ocean interior (Kwon et al., 2009). Atmospheric

CO2 is also potentially sensitive to changes in the POC flux to deep-sea sediments

relative to fluxes of calcium carbonate (CaCO3) over longer timescales (Archer and

Maier-Reimer , 1994; Roth et al., 2014). These studies have only considered global

changes in remineralisation depths and not spatially variable changes that could result

in additional uncertainty in the response of CO2. Another source of uncertainty in these

model studies is in the representation of vertical fluxes. Methods range from explicit

mechanistic models with sinking and remineralisation rates (Gehlen et al., 2006; DeVries

et al., 2014), to the use of empirically derived functions such as the Martin Curve (Kwon

and Primeau, 2006; Kwon et al., 2009; Kriest et al., 2010).

A potential approach to increasing and enhancing the resolution of POC observations

is to use climatological fields of dissolved nutrients to estimate remineralisation rates.

Fields of dissolved nutrients, such as from the World Ocean Atlas, offer a much higher

resolution of data. The rates of remineralisation are related to vertical flux curves by

the fact that the vertical profile of remineralisation rate is the first derivative of the

vertical profile of fluxes (Figure 4.1a and 4.1b). Therefore, if organic matter reminer-
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a)

b) c)

Figure 4.1: The range of observed Martin Curves and associated remineralisation rate
profiles (a) The mean (b=-0.639) and global range (b=-1.18 to -0.24) of Martin Curves
found by Henson et al. (2012) calculated for a unit flux and export depth (z0=25m)
via Fz = 1 ∗ z

z0

b (b) The first derivative of each flux curve in panel a, equivalent to a

vertical profile of organic matter remineralisation calculated as dFz

dz
= b

z0
∗ z
z0

(b−1).

alisation rates can be estimated, this may provide a way of generating high resolution

estimates of flux curves to complement sediment trap analyses. The global distribution

of a biological nutrient, such as phosphate (PO4) or dissolved inorganic carbon (DIC),

results from the net action of the biological pump (uptake during photosynthesis at

the ocean surface and subsequent remineralisation of organic matter in the interior) in

combination with physical processes (e.g., air-sea gas exchange) and other biological

processes (e.g., denitrification) that are integrated through time via ocean circulation.

These processes need to be taken into account to estimate remineralisation rates.

Apparent Oxygen Utilisation (AOU; in concentration units, e.g., µmol kg-1) has a long

history of use as a measure of the net organic matter remineralisation in the ocean

interior. By assuming that the surface is in equilibrium with the atmosphere with

respect to oxygen (O2), AOU is calculated as the difference between observed [O2] at any

point in the ocean interior and the concentration of O2 at saturation. Any reduction in
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[O2] indicates the net effect of aerobic respiration during the remineralisation of organic

matter. AOU can be converted to apparent oxygen utilisation rates (AOUR; µmol kg-1

yr-1) by combing it with tracers that estimate the time the water mass has last been in

contact with the surface such as radiocarbon or CFCs. AOURs can be related to carbon

remineralisation rates via stoichiometric ratios, e.g., Jenkins (1982). Feely et al. (2004)

compiled AOUR-derived profiles of organic carbon remineralisation rates for 10 regions

in the Pacific noting higher rates in the North Pacific relative to the South Pacific and

similarities between regions with high rates and higher CaCO3 fluxes. However, because

the in-situ AOU of a water parcel reflects the history of remineralisation over its whole

trajectory in the ocean interior, e.g., along an isopycnal, the AOUR is an average rate

that has been shown to be biased towards shallower regions where remineralisation rates

are higher (Stanley et al., 2012). Therefore, when relating AOURs back to flux profiles

by integrating them vertically, estimates are representative of large oceanic regions only

and not amenable to the analysis of spatial variability, i.e., there is a high degree of

spatial smoothing (Sonnerup et al., 2013; Stanley et al., 2012).

An alternative to combining AOU and age tracers is to use the spatial gradients in

tracers created by circulation. These methods attempt to separate out and quantify

the change in tracer concentrations over time at any point in the ocean interior occuring

from circulation leaving the change in tracer due to biological processes such as rem-

inerlisation. Gradient based approaches aim to solve for the effect of mixing by defining

a water mass as the sum of mass fractions from different sources, e.g., Anderson and

Sarmiento (1994); Broecker et al. (1998); Gebbie and Huybers (2010). A recent devel-

opment of this method, the Total Matrix Intercomparison (TMI) method described by

Gebbie and Huybers (2010), solves for up to 6 mass fractions for each grid-box in a 4° x

4° resolution with 33 vertical levels using temperature, salinity, δ18O, and nutrients with

an additional source term reflecting organic matter remineralisation. The source term

is related to the nutrients using stoichiometric ratios. The TMI method therefore pro-

duces a high resolution field of remineralisation estimates. However, these terms only
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reflect an amount of remineralisation not the rate of remineralisation, i.e., TMI predicts

mol PO4 remineralised in a grid box rather than mol PO4 yr-1 (more specifically TMI

predicts the amount of remineralisation over the timescale of circulation, effectively the

residence time, in each grid-box. The residence time varies between boxes such that

the remineralisation amounts cannot be related directly to eachother). This is because

the TMI method models the pathways of ocean transport but not the rates of transport

(Gebbie and Huybers , 2010).

Spatial gradients in tracers have also been used to diagnose export fluxes of calcium

carbonate (Sarmiento et al., 2002) and opal (Sarmiento et al., 2004a). The method is

based on taking the ratio between the concentrations of alkalinity and nitrate between

the upper 100m of the ocean and the 100m below. The ratio is assumed to reflect

the strength of CaCO3 and organic carbon export. The method assumes a dominance

of vertical gradients (Sarmiento et al., 2002). However, a model-based assessment of

the method suggests that biases could occur due to the remineralisation of dissolved

organic matter (DOM) and strong meridional transports that violate the assumption of

processes occurring primarily in the vertical dimension (Jin et al., 2006). Although this

method is not applicable to estimating remineralisation rates in the ocean interior (as

tracer gradients in the ocean interior cannot be assumed to predominantly vertical),

these studies highlight that the assumption that all remineralisation originates from

particles that have sunk through the water column also requires consideration.

4.1.1 Aims and Outline

Ocean circulation models offer the opportunity to estimate remineralisation rates of

organic matter from tracer data by exploiting the calculated modelled transport rates

to estimate the contribution of circulation in a similar process as the TMI method

described above. The aim of this chapter is to explore the feasibility of inferring flux

profiles of particulate organic matter from remineralisation rates that have been de-

87



Chapter 4 Estimating remineralisation rates using modelled ocean transport rates

rived from observed tracers using modelled ocean transport rates. First a method of

estimating remineralisation rates using modelled circulation in form of transport ma-

trices is first introduced in section 4.2 with an illustrative example. A set of model

experiments are used as a synthetic dataset with which to test the sensitivity of the

approach to various sources of error. Section 4.5 explores the potential uncertainties

associated with the assumptions when inferring flux curves from remineralisation rates.

Finally, the potential future directions for the method are discussed.

4.2 Estimating remineralisation rates using modelled ocean

transport rates

4.2.1 Concept and Background

Remineralisation rates (q) can be calculated as the amount of tracer needed to main-

tain tracer observations at steady state once the effects of ocean circulation have been

accounted for, i.e., transport divergence (Deutsch et al., 2007). This requires quan-

tifying the total flux of a tracer into a grid box from circulation (
∑N

i=N F
in
i ) from N

neighbouring locations (i) and the flux out (F outC) at a given location in the ocean

interior (Equation 4.1):

dC

dt
=

N∑
i=1

F in
i Ci − F outC + q (4.1)

The ocean circulation fluxes (F in
i and F out

i ) can be estimated from ocean circulation

models. A practical method for this approach is to apply a transport matrix approach.

A transport matrix, hereafter abbreviated to TM, is a representation of transport rates

in the form of a sparse matrix that is derived empirically from an ocean circulation

model (Khatiwala et al., 2005; Khatiwala, 2007). Using a TM is akin to the fixed

transport rates implied in a box model (e.g., ‘LOSCAR’: Zeebe, 2012) but with the
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advantage that the rates are diagnosed from a dynamic ocean model providing a realistic

representation of ocean circulation with a much higher spatial resolution.

For every grid-box in the model the TM defines the relative fluxes in and out of a tracer

for every grid-box due to ocean circulation during a single time-step of the model (see

Table 4.1 for an illustrative example). Using the TM in place of the model circulation,

the evolution of a tracer in time is then:

cn+1 = Acn + q (4.2)

where A is the TM (unitless), c is a vector representation of the gridded three-dimensional

tracer field (mol kg-1) with the superscript referring to the time-step index. q is a vector

representation of any non-circulation related sources and/or sinks for a tracer over the

timestep of the model (mol kg-1), for instance, due to remineralisation. Note that the

bold q indicates a vector of all grid-boxes in comparison to a single grid-box in equation

4.1. Assuming steady state (where c = cn+1 = cn), the simplest approach to estimating

remineralisation rates using equation 4.2 is to solve for q directly, given the TM and a

steady state tracer:

q = −(A− I)c (4.3)

where I is the identity matrix (see Table 4.1 for the role of I and Appendix B for

derivations of the TM equations). Applying equation 4.3 with a steady-state tracer field

is the same as initialising an ocean circulation model with observed tracer concentrations

and then stepping the model forward for one time step. q will therefore reflect the exact

interior source/sink terms needed in one time step to maintain the steady state tracer

concentrations given the model transport rates. Estimates of remineralisation rates are

found in q but are referred to here as interior source/sinks (ISS) as they do necessarily

represent a mechanistic process.
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Table 4.1: Example of using a transport matrix to calculate PO4 remineralisation (µmol
kg-1 dt-1) in one grid-box from PO4 concentrations (µmol kg−1) given in c. Grid-boxes
are arbitrarily numbered, where the 1 is the grid-box where the calculation is taking
place. Descriptions in brackets give an example of the relationship of the neighbouring
grid-boxes to the central grid-box. Coefficients from A represent the change in a tracer
due to circulation after a single time-step, e.g., the proportion of tracer concentration
left in grid-box 1 after one time step is 0.9816 (see equation 4.2). Coefficients from (A-
I) are the same except now grid-box 1 is equivalent to 0.9816-1.0000 (see equation 4.3).
The sum of the coefficients are shown underneath. The amount in bold at the bottom
of the table is the estimated remineralisation combining (A-I) and c (q in equation 4.3).

Grid-Box A (A-I) c
1 (‘flux out’) 0.9816 -0.0184 2.3439
2 (‘north’) -0.0007 -0.0007 2.3430
3 (‘south’) 0.0086 0.0086 2.4334
4 (‘east’) 0.0002 0.0002 2.3529
5 (‘west’) 0.0005 0.0005 2.3615
6 (‘up’) 0.0097 0.0097 2.4433

7 (‘down’) 0.0001 0.0001 2.3369
1.0000 0.0000 0.0011

4.2.2 Example using a General Circulation Model Transport Matrix

As an example of the approach, the annual average TM derived from a 2.8° configuration

of the MITGCM model (available online: http://www.ldeo.columbia.edu/∼spk/) is

used to invert a regridded annual climatogical PO4 field (World Ocean Atlas 2009;

Garcia et al., 2010), using equation 4.3 (Figure 4.2). The resulting ISS estimates

at shallower depths of the ocean interior (85m) show some spatial patterns that are

consistent with expectations of general export patterns, such as higher rates in the

equatorial upwelling regions, and the subpolar regions of the Southern Ocean (Henson

et al., 2011) (Figure 4.2a). However, negative ISSs also exist, indicating a sink of PO4,

such as in regions of the subpolar Southern Ocean and Pacific equatorial upwelling. At

deeper depths (2030m) the elevated values in the Southern Ocean match the shallower

pattern, but overall there are fewer clear spatial features and a more random pattern

of positive and negative ISSs (Figure 4.2b). The existence of so many negative values

gives rise to near-zero values when averaging over large spatial scales.
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Figure 4.2: Example of using a GCM transport matrix to estimate PO4 remineralisation
rates. (a) The estimated PO4 remineralisation rates generated using the MIT GCM
transport matrix at 85m and (b) 2030m. (c) Vertical profiles of PO4 remineralisation
rates estimated using transport rates from an MITGCM transport matrix (equivalent
to Figure 4.1b) are shown from latitudes corresponding to equivalent regions in the
Pacific at 223°E. and (d) on a log scale, comparable to Figure 4.1c.

Vertical profiles of the PO4 ISSs show a range of features (Figure 4.2c). Several show

negative values at the surface, which is expected given this will reflect uptake of [PO4]

by phytoplankton during photosynthesis. The Pacific profile at 35.17°S is smooth and

fitting expectations of a remineralisation curve in Figures 4.1c and Figure 4.1d. The

profile at 4.22°N however shows increasingly negative ISSs at shallower depths. This ex-

ample shows that a simple inversion of PO4 observations using this approach is suscept-

able to large errors that will likely hinder their interpretation. The difference between

the model circulation and observed circulation is a clear reason why there are large

errors. In the following section, a method is developed to quantify and characterise

these errors.
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4.3 Methods

4.3.1 Model Description

To explore the errors when using modelled transport rates, a synthetic dataset is derived

using the Earth System model ‘GENIE’ (Ridgwell et al., 2007a) (see also Chapter 2).

GENIE features a 3-D ocean circulation model coupled to a 2-D energy-moisture balance

model of the atmosphere and a dynamic-thermodynamic sea-ice model (see Edwards and

Marsh, 2005). In the configuration used here, the ocean model is non-seasonally forced

and solved on a 36x36 equal area horizontal grid (10° longitude by 3°- 15° latitude) and

8 vertical layers. The biogeochemical model is that described in Ridgwell et al. (2007a)

with one exception described below.

Our choice of GENIE over other possible models and available transport matrices re-

flects a number of considerations. The configuration of GENIE used here was derived

using an ensemble, where combinations of parameters relevant to the physical circu-

lation, such as isopycnal diffusivity, were sampled to test the sensitivity of the model

circulation to parameter values and find an optimal set of parameters (Annan et al.,

2005). The availability of this ensemble provides 54 plausible estimates of the mod-

ern ocean circulation enabling an assessment of the errors associated with uncertainty

in model circulation states (see Figure C.1). The annual average circulation, coarse

resolution and integration speed of GENIE also facilitates the relatively easy and fast

retrieval of multiple TMs. This is the first time that transport matrices have been

constructed from an Earth system model. The relative simplicity of GENIE also keeps

a focus on the methodological concept. For example, the relative simplicity of GENIE

means that a simulation can be run for long enough to achieve a steady-state circula-

tion which is not always possible with higher resolution models, which would add an

additional uncertainty to any results. It is worth noting that much of this could also be

achieved by ‘coarse-graining’ a TM derived from a higher resolution model, described
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in Khatiwala (2007), but without the availability of multiple estimates of the modern

ocean circulation.

4.3.2 Diagnosing Transport Matrices in GENIE

The method of Khatiwala et al. (2005) is adapted to diagnose the model ocean circula-

tion in GENIE. The nth ocean grid-box in GENIE (of a total of 6210 ocean grid-boxes in

this configuration) is dyed with 1 mol kg−1 of an inert ‘colour’ tracer, i.e., a conservative

tracer that is only changed by the circulation model. The model is integrated for one

time-step and the resulting pattern of the tracer is recovered, vectorised, and forms the

nth column of a 6210x6210 sparse matrix. This is repeated for all 6210 ocean grid-boxes

in GENIE. Each column of the matrix contains the concentrations of tracer after the

model has calculated net ocean transport one timestep for each grid-box in turn. The

method of diagnosing the TM in GENIE differs from that detailed by Khatiwala et al.

(2005) in two ways. First, the approach in GENIE does not use smoother basis vectors

and instead uses the simpler method of initialising a single grid-box. Secondly, each

grid-box is initialised only once and there is no averaging because the circulation in

the 8-level version of GENIE is non-seasonally forced. The circulation can therefore be

diagnosed during a single continuous simulation. The corresponding Fortran code for

diagnosing a TM in GENIE, its application, and relation to the method of Khatiwala

et al. (2005) can be found in Appendix B.

The transport matrix algorithm is applied to a simulation in GENIE after 10000 years.

This is to ensure that the circulation diagnosed is from a steady-state circulation. After

10000 years deep mean salinity and temperature, as well as the overturning circulation,

have all reached steady state suggesting the circulation is at steady state (Figure C.2).

The deviations in mean temperature and salinity over the last 1000 years of the simu-

lution are <1x10−3 °C, <1x10−5 PSU respectively. All TMs diagnosed in this chapter

are produced in the same way.
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In the ocean model component, C-GOLDSTEIN, grid-box volumes are fixed and net

precipitation-minus-evaporation at the ocean surface is implemented as a virtual salin-

ity flux rather than a loss or gain of freshwater. To account for dilution/concentration

effects in GENIE, the biogeochemical tracer concentrations are salinity normalised be-

fore the calculation of ocean transport and converted back to concentrations after. A

rescaling of the concentrations is performed to ensure the mass conservation of tracers.

The TM therefore requires the salinity normalisation of biogeochemical tracer concen-

trations:

q = −s ◦ ((A− I)(c ◦ s−1)) (4.4)

where s is the vector of salinity from the corresponding model run and ◦ indicates the

element-wise multiplication of vectors.

4.3.3 Experiment Design

The biogeochemical model described in Ridgwell et al. (2007a) with the biogeochemical

parameter values described in Ridgwell et al. (2007b) is used to produce a synthetic

dataset of tracers. The estimated remineralisation rates from a synthetic dataset can

be directly compared to the model input providing a exact test of the TM inversion

methodology. In this, nutrients are utilised by biological activity in the surface ocean

grid-boxes based on a nutrient and light limited scheme. A fraction of the uptake is

exported from the surface as DOM which is advected and remineralised. The remaining

fraction is exported (34%) as particulate organic matter (POM) which remineralises

instantaneously at depth according to the Martin Curve with a global b value of -

0.858. The use of a Martin Curve keeps the discussion relevant to its use with sediment

trap data and is the only difference between our model set-up and that of Ridgwell

et al. (2007a,b). POM remaining in the deepest grid-box is completely remineralised

to maintain a closed system, i.e., there are no sediment interactions.
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Table 4.2: Simulations and Experiments used in this Chapter.
Name Description

Synthetic Datasets

SYN A synthetic [PO4] dataset derived from a 10000 year spin-up of
GENIE. A corresponding transport matrix is diagnosed.

SYN-NODOM As the SYN dataset but with the fraction of DOM exported set to
zero.

Experiments

TWIN The synthetic [PO4] field is inverted using the TM and compared
to the modelled [PO4] remineralisation from SYN

ERR-OBS The synthetic [PO4] is perturbed with error estimates from World
Ocean Atlas observations

ERR-CIRC The synthetic [PO4] is inverted using 54 TMs diagnosed from an
ensemble of modern ocean estimates.

ERR-DOM Particulate flux curves are estimated from the PO4remineralisation
rates from the SYN and SYN-NODOM datasets.

4.3.3.1 Synthetic Datasets

[PO4] is used as the tracer for inversion by the TM. The synthetic tracer is used as a

surrogate for observations for which the associated remineralisation and circulation rates

are known explicitly. An alternative tracer for this could be AOU (related to [PO4] via

stoichiometric ratios), as this tracks only organic matter remineralisation (regenerated

[PO4]) whilst total [PO4] also includes [PO4] that has been advected from the surface

(preformed [PO4]). However, AOU derived from observed oxygen concentrations is

subject to assumptions about oxygen saturation at the surface (Ito et al., 2004; Dietze

and Oschlies , 2005; Duteil et al., 2013). To focus on errors deriving only from the

method of inverting tracers, PO4 is chosen over AOU. The TM derived estimates of

PO4 remineralisation are compared with the total remineralisation of PO4 in each grid-

box as diagnosed within the experiment run as mol PO4 kg-1 year-1 and is converted to
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dt-1 by dividing by the number of timesteps per year (96; dt=0.01 year). The [PO4] field

is the annual average taken from the last year of a 10000 year spin-up. A corresponding

TM is diagnosed at the end of the 10000 years run. This synthetic dataset is referred

to as SYN (Table 4.2). A second synthetic dataset (SYN-NODOM) is also produced

where no DOM is produced to explore the effect of DOM remineralisation (or more

generally an additional source of remineralisation that is not directly related to sinking

particles) when inferring flux curves from remineralisation rates.

4.3.3.2 Experiments

A number of experiments are designed to explore the sensitivity of the approach to

various sources of error (experiment names are indicated in brackets and also described

in Table 4.2):

1. (TWIN)The TM corresponding to the synthetic dataset (SYN) is used to estimate

remineralisation rates from the corresponding [PO4] field as a proof of concept of

the method (a twin-test).

2. (ERR-OBS) Errors associated with the tracer observations are simulated by cal-

culating 100 random perturbations to the synthetic PO4 concentrations (SYN)

within one standard deviation. The standard deviation for each grid-box is taken

as the standard deviation of the WOA [PO4] observations regridded to the GENIE

grid (Garcia et al., 2010). The standard deviation therefore reflects the variability

of observed [PO4] in that grid-box.

3. (ERR-CIRC) To explore the effect of circulation uncertainty, 54 individual TMs

are diagnosed from an existing ensemble of modern ocean circulation estimates

(Annan et al., 2005). The ensemble is the result of tuning circulation parameters

to fit modern temperature and salinity fields using an ensemble Kalman filter.

Each ensemble member is spun-up for 10000 years after which the TM is diagnosed

and used to invert the synthetic [PO4] field (SYN). The circulation parameters
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in Ridgwell et al. (2007a); Ridgwell and Hargreaves (2007) are an average of the

ensemble parameters, such that the 54 TMs offer a range of different but plausable

modern ocean circulation estimates. Details of the ensemble parameters and

comparisons against the standard configuration can be found in Appendix C:

Table C.2.

4. (ERR-DOM) The effect of DOM remineralisation when inferring particulate flux

curves from remineralisation rates is explored. As DOM remineralisation can

occur in a different water column than where DOM was produced, this is a test

of the assumption that reminerlisation rates can be assumed to reflect vertical

processes only. As a comparison to the synthetic dataset, an identical experiment

but with no DOM created (SYN-NODOM) is created, i.e., all PO4 is exported as

particulate organic matter.

4.4 The Transport Matrix Inversion Method

4.4.1 Assessment of the Transport Matrix Inversion Method

The output from a standard configuration of GENIE is used as a synthetic dataset

from which to assess the transport matrix inversion method and identify the sources

and nature of the errors involved. Figure 4.3a and 4.3b show the [PO4] field in GENIE

at two depths, directly below the surface (290m) and in the deep ocean (2106m), with

the corresponding annual average input of PO4 from the continual remineralisation of

sinking particles and dissolved organic matter at the same depths (Figures 4.3c and

4.3d). The higher remineralisation values calculated for single grid-boxes occur where

the remaining particulate flux is remineralised at the seafloor to maintain a closed

system, i.e., to ensure there are no losses to sediments (Figure 4.3d). The inventory of

phosphorus in DOM integrated over the ocean interior below 175m is also shown (Figure

4.3e). DOM has a visually similar pattern to shallow PO4 remineralisation, because
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they are both linked by export production. The close resemblance and magnitude of

the DOM at shallow depths may have implications for using remineralisation rates

to infer remineralisation fluxes which will be discussed in section 4.5. Finally, there

a correspondence between areas in the Southern Ocean with a large magnitude of

remineralisation at shallow depths and locations where convection occurs in the model

(Figure 4.3f). This is consistent with high productivity driven by nutrients delivered

to the surface via strong vertical mixing.

4.4.1.1 Twin-test

To demonstrate and test the method described in section 4.2, the model generated

synthetic [PO4] field is first inverted using the corresponding TM as per equation 4.4

(Figure 4.4a). The interior source/sink term (ISS), calculated by inverting the syn-

thetic [PO4] field, is consistent with the model calculated remineralisation with minor

deviations from the 1:1 ratio line (Figure 4.4a). This demonstrates the success of the

approach as the errors in the synthetic tracer field and circulation scheme are effectively

reduced to near-zero in this example (to an order of magnitude of 1x10−3 nmol kg−1).

The errors between estimated and modelled remineralisation rates cluster around zero

with a median proportion of error of 6.3x10-5 (Figure 4.4b). The errors from the in-

version are randomly distributed at both 290m (Figure 4.4e) and at depth (Figure

4.4f), supporting the suggestion that the SYN run is in steady state (Figure C.2) and

that the method to diagnose the TM is producing an accurate representation of the

model circulation. Overall, the TM inversion of the synthetic [PO4] estimates the PO4

remineralisation rates very well demonstrating that, in theory at least, modelled cir-

culation rates in the form of a transport matrix can be used to successfully estimate

remineralisation rates from a steady state tracer field.
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Figure 4.3: The synthetic tracer dataset used for transport matrix inversions. (a) [PO4]
(µmol kg-1) at 290m and (b) 2106m. (c) the total annual remineralisation flux of PO4

(nmol kg-1 dt-1) at 290m and (d) 2106m. (e) the water column integrated inventory of
phosphorus in dissolved organic matter in the ocean interior (mol P). (f) the average
number of vertical levels that are involved with convection occurring in a water column
(number of depth levels). Higher values indicate deeper and stronger convection in the
model.
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Figure 4.4: Results from inverting the synthetic dataset with its corresponding trans-
port matrix. (a) The interior source/sink estimate for PO4 estimated when inverting
the synthetic [PO4] field with the corresponding transport matrix plotted against the
synthetic PO4 remineralisation data, i.e., the original input. A 1:1 ratio line is also
shown, (b) the distribution of errors for the PO4 interior source/sink estimates (50 bins
sized 0.15x10-5). (c) the interior source/sink estimate for PO4 at 290m and (d) 2106m.
(e) Difference between the inverse interior source/sink estimates and the synthetic rem-
ineralisation field at 290m and (f) 2106m.
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4.4.2 Sensitivity of Inversions to Sources of Errors

Although remineralisation rates can be estimated by applying transport rates to a tracer

field as shown above, there are several assumptions that will introduce error when this

is applied to observations. In the following sections, the results of experiments designed

to explore these sources of error are described.

4.4.2.1 Error from Observations

Error related to the 1° x 1° World Ocean Atlas annual mean climatology (Garcia et al.,

2010) will introduce some uncertainty in the TM inversion due to measurement errors

and biases in the climatology itself as well as re-gridding the observations onto a model

grid such as GENIE or MITGCM. As a measure of how sensitive the TM inversion

method is to these errors, the standard deviation of annual [PO4] observations in the

World Ocean Atlas are regridded onto the GENIE grid (Figure 4.5). The standard

deviations in each grid-box are used to produce an illustrative estimate of the uncer-

tainty inherent in the observations. The standard deviations are highest in the coastal

regions and at shallower depths (Figure 4.5a cf. Figure 4.5b) reflecting where [PO4]

measurements are most variable.

The standard deviations are then used to produce 100 versions of the synthetic [PO4]

field that have been randomly perturbed within the observation uncertainty which are

then inverted using the TM. The resulting standard deviation of the PO4 ISSs are

relatively large compared to the ISS values themselves, around 1-3 orders of magnitude

larger than the ISS values (Figure 4.5c cf. Figure 4.3a). There are positive linear

trends between the standard deviation of observations in each grid-box and the standard

deviation of the 100 corresponding ISS estimates in each grid box (Figure 4.5c). Grid-

boxes with higher uncertainty in the observation results in greater uncertainty in the

ISS estimates. However, two distributions can be broadly defined in Figure 4.5c both

with separate linear trends that correspond well with the size of the ‘flux out’ term
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Figure 4.5: Assessment of the errors arising from the uncertainty in [PO4] observations.
(a) the standard deviation of [PO4] from the World Ocean Atlas 2009 (Garcia et al.,
2010) 1°climatology regridded to the GENIE grid at 290m and (b) 2106m. (c) Standard
deviation of all PO4 interior source/sink estimates when the synthetic [PO4] field is
randomly perturbed within a normal distribution given by the standard deviation of
observations. The two distributions are distinguished by the value of the TM coefficient
in the same grid-box shown by the colour bar. A linear regression trend line fitted to
data where the coefficient is >0.8 (dotted line) gives a slope of 0.03 (R2=0.71). When
fitted to data <0.8 (dashed line), the slope is 0.64 (R2=0.84). Note the change in unit
size from Figure 4.3c and d.

of the TM (see Table 4.1). Where the central grid-box coefficient is smaller in the

TM, leading to correspondingly larger value when used in equation 4.3 (e.g., A − I),

the uncertainty in ISS arising from the uncertainty in the observations is much more

sensitive. This suggests that the ISS uncertainty is also a function of the TM itself, i.e.,

a function of the coefficients within the TM due to the linear nature of the calculation

in equation 4.4. The source of uncertainty from observations is therefore higher in the

high latitudes consistent with where the flux out term in the TM (see Table 4.1) is

largest where convection occurs because this is where the largest transport fluxes are

in the model. This is a caveat of the TM calculation rather than from reflecting the
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uncertainty of the observations themselves.

4.4.2.2 Error from Circulation Estimates

Another potential source of error when inverting nutrient observations arises from the

use of a modelled circulation field that will inevitably have a somewhat poor repre-

sentation of the circulation of the real ocean. Using a ensemble of modern circulation

estimates to invert the synthetic dataset, allows one to explore the effect of errors arising

from uncertainties in circulation rates only. As the ensemble reflects a range of varied

estimates for the modern ocean circulation, e.g., Table C.1, this is used as a surrogate

for model circulations that may be close to but ultimately not matching observed circu-

lation rates. Figure 4.6a shows the mean and 1 standard deviation of the ISS estimates

generated when inverting the synthetic [PO4] field with all 54 ensemble TMs. The val-

ues furthest from the 1:1 ratio line and those with the largest error bars are located in

regions where convection occurs in the model (Figure 4.6a and 4.6c). The strength of

overturning varies within the ensemble (Table C.1) suggesting that this structural un-

certainty in the model is a likely cause for the wide range of remineralisation estimates.

An additional issue is that unlike most grid-boxes in the TM, where the spread of a

tracer over one timestep is limited to neighbouring grid-boxes, convection increases the

number of grid-box connections in the vertical. This could have the effect of increas-

ing the range of remineralisation estimates because there are more grid-boxes. Figure

4.6b shows the same as Figure 4.6a but with the convection-related values removed.

Even in areas where there is no convection in the model, the range of ISS estimates

from circulation uncertainty is larger relative to the range of remineralisation values.

The range of errors arising from using different circulations are also larger at shallower

depths compared to deeper depths in the water column (Figures 4.6c and 4.6d).

To understand why different circulation estimates can have a large impact of ISSs, the

size of the PO4 remineralisation flux in a grid box relative to the size of PO4 flux from
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Figure 4.6: Assessment of error arising from using circulation estimates. a) Comparison
of ISS estimates for each grid-box from the 54 ensemble members against the synthetic
dataset remineralisation. Error bars are 1 standard deviation around the mean. Red
values indicate regions with convection. b) As panel a but with the red values removed.
Note the difference in scale. c) The standard deviation of PO4 ISS errors (Model ISS)
in µmol kg−1 dt−1 for 290m. Values are shown on a log scale. d) As panel c but at
2106m.

the modelled circulation is explored. To illustrate this, the steady state circulation flux

of PO4 into a grid-box is compared with the remineralisation flux of PO4 into each

grid-box from the synthetic run. Across the whole model ocean interior (all grid boxes

below the surface grid-boxes where remineralisation is occurring), the mean proportion

of remineralisation flux to the total flux into each grid box is 0.005±0.025 (±1 standard

deviation). The proportion is generally two orders of magnitude higher at shallower

depths (290m) than at depth (2106m) (Figure 4.7a cf. Figure 4.7b), reflecting the

decrease in remineralisation fluxes with depth whilst circulation fluxes are generally the

same magnitude (Figures 4.7c and 4.7d). Even relatively small errors in the circulation

flux are therefore likely to dominate over the remineralisation fluxes leading to large
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Figure 4.7: Comparison of inputs of PO4 from remineralisation and circulation at
steady-state. (a) PO4 remineralisation as a proportion of the total PO4 flux into each
grid-box calculated using the synthetic tracer field at 290m and b) 2106m. c) the flux of
PO4 into each grid-box from circulation only (µmol kg-1 dt-1) from the synthetic tracer
fields at 290m and d) 2106m.

errors when using modelled circulation rates.

4.4.2.3 Error Comparison

To compare the magnitude of the various possible errors, the global mean synthetic PO4

remineralisation profile is shown with the global mean and median standard deviations

of the ISSs calculated from the ERR-OBS and ERR-CIRC experiments (Figure 4.8).

The mean and median standard deviation are both used in this figure because the mean

standard deviation of the ERR-CIRC experiments are skewed by the large variability

in high latitude regions (Figure 4.6a). Both sources of error are larger at shallower

depth and mostly decrease in magnitude with depth although the mean circulatio un-

certainty increases below 2000m. The magnitude of uncertainty from the observations is
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Figure 4.8: Comparison of error magnitudes when estimating remineralisation rates.
The global mean PO4 remineralisation profile from the synthetic dataset is shown with
the plus and minus the mean and median standard deviations from the ERR-OBS and
ERR-CIRC experiments.

much larger than from the ensemble circulation estimates although the two are similar

magnitudes when the mean standard deviation is used to calculate profiles.

Despite similar magnitudes of uncertainty arising from both potential errors in the

observations and from the model circulation field, the nature of the uncertainty is

different. Uncertainty arising from the observations is partly higher in regions where

observations are more uncertain, e.g., coastal areas in Figure 4.5a and 4.5b, but also in

regions of the model where convection occurs (Figure 4.5c). In contrast, the uncertainty

arising from the model circulation field used may be systematic and dependent on where

the model circulation is most different to the real ocean, e.g., Figure 4.6. The patterns in

the surface PO4 ISSs from the MITGCM inversion (Figure 4.2a) show some systematic

structure which may suggest that errors are predominantly related to the ocean model

rather than from errors in the observations which are likely to be more random. This
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is less the case for the deeper ocean (Figure 4.2b).

4.5 Inferring Flux Curves from Remineralisation Rates

4.5.1 Vertical Profiles and Dissolved Organic Matter

In the previous section, a simple approach to estimating remineralisation rates using

modelled transport rates has been shown to be sensitive to errors. Taking the next

step, in the case that remineralisation rates could be estimated with some reliability,

the sensitivity of inferring flux curves by vertically integrating remineralisation rates

in the presence of DOM is explored. DOM is used here as an example where the

assumption that all remineralisation occurs in the vertical is false. This could also occur

from other biological processes such as denitrification. Flux curves are inferred using

remineralisation rates from the synthetic dataset (SYN) and a second run where no

DOM is exported (SYN-NODOM). To infer a power law curve, a linear trend in fitted

to the log transformed remineralisation rates and log transformed depth (Berelson,

2001; Lam et al., 2011; Stanley et al., 2012). The gradient of the linear trend gives the

value of the exponent for the remineralisation curve, which is converted to a flux curve

by adding 1 (Stanley et al., 2012; See also Figure 4.1).

The exponents from power-law curves, fitted to vertical PO4 remineralisation profiles,

when PO4 is only exported as particulate organic matter, are all close to -1.9 (Figure

4.9a). This corresponds to a flux curve exponent of -0.9, in good correspondence with

-0.858 used for the run. The presence of remineralisation from DOM (see Figure 4.3e)

lowers the value of the fitted exponent reflecting a shallower Martin Curve (Figure

4.9b). In our experiments, the remineralisation of DOM lowers the fitted exponent

by as much as 0.6 to -1.5. This occurs because the remineralisation of DOM inflates

the remineralisation in the shallower grid-boxes relative to those in the water column

below. In a few grid-boxes in the North Atlantic the estimate of the flux curve expo-
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nent increases. This has a strong correspondence with the deepest convection (Figure

4.3f) where DOM is transported deeper into the water column before remineralisation.

This highlights that an additional source of remineralisation not restricted to vertical

processes can alter the flux curve in an unpredictable way. The bias from DOM occurs

predominantly in the high latitudes where DOM is efficiently advected into the ocean

interior. The range of exponents purely from this bias is of a similar magnitude and

spatial distribution to the Martin Curve exponents found in Henson et al. (2012). Other

sources of remineralisation may occur in different regions such as in the Arabian Sea,

the eastern South Pacific and eastern Tropical North Pacific for dentrification (DeVries

et al., 2012b).

4.6 Future Directions

This chapter has presented a straightforward method of using a steady state model

circulation, as represented by a transport matrix, to estimate organic matter reminer-

alisation rates from a tracer climatology. The main goal was to explore the feasibility

of using this method to infer organic matter flux curves aiding additional understand-

ing of the biological pump in the modern ocean. The results show that this method

is associated with a number of significant sources of error that give rise to the spatial

patterns and negative values seen in an example inversion using a circulation field from

a high resolution ocean model (Figure 4.2). The following sections discuss the potential

directions for estimating remineralisation rates from tracer data using model circulation

and considerations needed when using these to infer particle flux curves.

The sensitivity to errors in the observations is partly a result of the way that the

transport matrix (TM) is constructed. A change in a tracer due to circulation in a

model time-step is relatively localised due to the finite speed of advection and diffusion

in the model (Khatiwala et al., 2005). Therefore, the uncertainty in the ISS estimates

is larger when individual coefficients in the TM are relatively larger (see Table 4.1),
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Figure 4.9: Assessment of the uncertainty associated with dissolved organic matter
when inferring flux profiles. Value of the exponent when fitting a power law to the
water column remineralisation rates from a) a model with remineralisation from only
sinking particulate and b) a model with particulate and dissolved organic matter. A
value of -0.858 for the Martin Curve was used in both models. All curves were fitted
with an R2 > 0.9. The exponent for the remineralisation curve is equivalent to -0.858+1.
More negative values indicate a Martin Curve that predicts shallower remineralisation
in the water column. Hatched areas indicate where the water column contained too
few boxes to fit a remineralisation curve (n<3).

i.e., where there is a larger throughput of water during one timestep, or where there

are more grid-box connections such as in regions of convection. This will be a feature

of all TMs constructed using the method of Khatiwala et al. (2005) regardless of the

model used. The ISS estimates are also sensitive to uncertainty in the observations

themselves. Previous methods have relied on relating multiple tracers together such that

the model transport terms cancel out e.g., Anderson and Sarmiento (1994); Sarmiento

et al. (2002) and is a method which could be applied using the TM. For example,

estimating ISSs from two tracers and taking the ratio, e.g., PO4 and alkalinity to

estimate organic carbon to carbonate ratio, may potentially cancel out the systematic
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error of the model circulation. The sensitivity to uncertainty in the tracer observations

however, may pose a problem for such an approach, especially if observational errors

are different between tracers.

The results also illustrate the sensitivity of remineralisation estimates to differences

between the model transport rates and actual transport rates in the ocean. Reminer-

alisation fluxes of PO4 in the synthetic tracer experiments are orders of magnitude

smaller than fluxes of PO4 from circulation. Model transport rates would therefore

need to attain a high level of accuracy to minimise the effect of error on the solu-

tions (Anderson and Sarmiento, 1994; Sarmiento et al., 2002). Even a data assimilated

model, such as produced by the ECCO Consortium (‘Estimating the Circulation and

Climate of the Ocean’; Stammer et al., 2004), designed to be a dynamically consistent

estimate of ocean circulation over recent decades may still lead to large diagnosed flux

errors. An additional consideration is whether the model circulation is at steady state.

The relative abstraction and speed of GENIE allow an acceptable steady state to be

reached which is not always possible in higher resolution and more complex ocean mod-

els. This consideration also extends to how representative an annual average TM may

be of seasonally varying circulation as opposed to the non-seasonally forced circulation

used here.

The flipside of the magnitude of the circulation control on the diagnosed remineral-

isation rates is that tracers with a steady-state constraint, where it is expected that

there should be no significant sources or sinks at depth, could be used to estimate the

magnitude of the circulation-based error. As an example, an ISS field generated when

inverting the salinity field from the synthetic dataset with the corresponding transport

matrix is shown in Figures 4.10a and 4.10b. Salinity ISSs are randomly distributed

around zero, consistent with the concept that salinity is not significantly increasing or

decreasing in the ocean interior. In comparison, using a different transport matrix,

arbitrarily chosen from the ensemble of plausible modern ocean circulations, results in

distinct spatial patterns in the ISSs (Figures 4.10c and 4.10d). Comparing the salinity
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ISSs (Figure 4.10c and 4.10d) with the errors from the inversion of the synthetic [PO4]

field using the same TM (Figures 4.10e and 4.10f) shows that the patterns in the fields

are visibly similar. For example, there are similarities between the positive ISSs for

salinity in Figure 4.10d and the negative errors in the PO4 remineralisation estimates

in Figure 4.10f. This suggests that conservative tracers, i.e., tracers that do not have

sources or sinks in the ocean interior, could constrain the magnitude of error. For ex-

ample, considering equation 4.3 but focussing on an individual grid-box, the ISS (qi=1)

is a function of the TM coefficients (Mi) and the tracer concentrations (Ci) as per the

example in Table 4.1:

qi=1 =
N∑
i=1

MiCi (4.5)

Redfining the modelled circulation terms to reflect that the modelled circulation is a

function of a ‘true’ circulation term and an error term (Mi = Fi + εi) and substituting

into 4.5 and expanding:

qi=1 =
N∑
i=1

FiCi +
N∑
i=1

εiCi (4.6)

For a conservative tracer at steady state, it is expected that
∑N

i=1 FiCi = 0. A significant

departure from zero in qi=1 is likely to result from the error terms. This may provide a

way forward to constrain the ISSs produced by the TM method described here. Such a

method would be conceptually similar to the mixing model approaches that use steady

state constraints (Gebbie and Huybers , 2010). There are however, a limited number of

tracers available (e.g., temperature, salinity, δ18O, ∆14C, CFCs) that could realistically

be used to constrain model circulation errors. In the GENIE TM, there are typically 15

grid-box connections used for each calculation which would lead to an underdetermined

solution, i.e., where the unknowns outnumber the constraints. It would be interesting

to see if a simplified TM with fewer coefficients, such as matching the method of Gebbie
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and Huybers (2010), could use this approach. Ultimately, the number of conservative

tracers currently available to perform this calculation is limiting, for example CFCs

in the ocean are not in steady-state because of their introduction into the atmosphere

as an anthropogenic emission during the twentieth century (Fine, 2011). Additionally,

other factors would need considering such as whether it is realistic to expect a solution

exists (this is explored further in Chapter 5) and whether other constraints, such as

remineralisation rates cannot increase with depth, need to be considered.

The focus of estimating remineralisation rates is to use them to infer information about

the vertical fluxes of particulate organic matter in different regions of the ocean. There-

fore, this chapter has also explored whether, in the event that remineralisation rates

could be estimated to some level of accuracy, there are additional sources of uncertainty

when inferring flux curves. The presence of additional sources/sinks that are not related

to the vertical flux, such as from DOM (section 4.5), could potentially bias the estima-

tion of flux curves. In particular a bias such as DOM, at least in GENIE, causes spatial

variability in flux curves that is similar in pattern and magnitude to patterns of partic-

ulate organic carbon fluxes found in sediment trap studies (Henson et al., 2012; Marsay

et al., 2015). Any method of estimating flux curves, whether derived purely from ob-

servations (Stanley et al., 2012) or using modelling circulation rates, need to consider

this issue. The relatively low vertical resolution of GENIE (8 vertical levels: Chapter

2) may exaggerate this problem because grid-boxes with additional sources/sinks are

weighted more heavily in the calculation. However, this is still an important issue to

consider for future approaches.

An alternative approach to exploring the spatial variability in particulate organic matter

fluxes using modelled circulation is the optimisation of parameters in forward models,

e.g., (Schlitzer , 2004; Kwon and Primeau, 2006; Kriest et al., 2012; Teng et al., 2014).

Such an approach can explicitly include DOM remneralisation, circumvent the problems

of directly inverting a tracer described in this chapter, and circumvent the need to infer

flux curves from vertical profiles of remineralisation rates. Transport matrices are a
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Figure 4.10: Inversion of salinity as a possible constraint on the uncertainty from using
a modelled circulation. (a) Inversion of the salinity field from the synthetic dataset
using the corresponding transport matrix at 290m (PSU dt-1) and at (b) 2106m. (c)
Inversion of the salinity field using a alternative transport matrix from the ensemble
of plausible modern ocean circulations (PSU dt-1) at 290m and (d) 2106m. (e) The
error of the synthetic PO4 ISS (mol kg-1 dt-1) (ISS-synthetic) using the same transport
matrix in panels c and d at 290m and f) 2106m.
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useful tool for this approach to help avoid the length multi-thousand year integration

times for a tracer field to reach equilibrium. In the next chapter, such an approach

based around the GENIE transport matrix described in this chapter, is described and

applied to observed [PO4].
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CHAPTER 5

Optimisation of regionally variable organic matter

remineralisation depths in an Earth System Model

5.1 Introduction

Sinking particles of organic matter transfer 5-10 Pg C per year of carbon (and asso-

ciated nutrients) from the upper ocean to the ocean interior, in a process known as

the biological pump (Henson et al., 2012). As these particles sink, they are reminer-

alised through bacterial and zooplankton related processes, releasing the carbon and

nutrients back into solution at depth. Vertical fluxes of particles in the water column

have been historically described by the canonical Martin Curve, a power-law function

that describes a rapid decrease in flux at shallow depths leading to a small asymp-

totic flux at deeper depths (Martin et al., 1987). The power-law exponent (b) controls

whether organic matter is remineralised predominantly at shallower or deeper depths.

The e-folding depth has been previously used to describe differences in the functions

that model vertical organic matter fluxes (Kwon et al., 2009). This is the depth at

which the exponentially decreasing flux has been reduced to 1
e
; approximately 0.37

times the initial flux exported from the surface (conversely this is the depth at which

∼63% of the flux has been remineralised). In this chapter, the term ‘remineralisation
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depth’ refers to the e-folding depth of the function used to represent the vertical flux

of particulate organic matter. The Martin Curve has an exponent value of b=-0.858,

corresponding to an e-folding depth of 319m. The Martin Curve, and other functions

such as exponential functions: see dashed profiles in Figure 5.1, are commonly used by

ocean biogeochemical models as way of parameterising water column remineralisation

of sinking particles. Traditionally this has been applied with a single global exponent

such that the depth of remineralisation is treated as a global average.

Recent analyses of global sediment trap observations have started to suggest a spa-

tially heterogeneous pattern in Martin Curves that varies predominantly by latitude

(Henson et al., 2012). Particulate organic matter (POM) fluxes in high latitudes de-

crease faster with depth (i.e., shallow remineralisation functions: b=-1.18) than in low

latitudes where a greater proportion of POM is delivered to depth (b=-0.24) (Figure

5.1). A number of hypothetical mechanisms have been proposed to explain these spa-

tial patterns, including the increased sinking velocity of particles via a ‘ballast effect’

(Armstrong et al., 2002; Klaas and Archer , 2002), aggregation of particles (Passow ,

2004) and surface ecosystem processes such as the level of ecosystem activity and how

labile organic matter is (Lam et al., 2011; Le Moigne et al., 2012). However, further

progress on a mechanistic understanding has been hindered by the relatively low sam-

pling density of sediment traps in space (and time), particularly in the Southern Ocean

(Le Moigne et al., 2012) (see Chapter 3).

Ocean biogeochemical models predict that atmospheric CO2 is sensitive to changes in

the global remineralisation depth. This can occur via the redistribution of dissolved

organic carbon (Kwon et al., 2009) and changes in the whole ocean carbon chemistry

via changes in the calcium carbonate (CaCO3) content of deep-ocean sediments over

longer time-scales (Archer and Maier-Reimer , 1994; Roth et al., 2014). These processes

could potentially respond to a range of different environmental parameters that could

lead to feedbacks of different magnitude and directions. The potential impact of rem-

ineralisation depth changes on atmospheric CO2 and climate is a key uncertainty for
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Figure 5.1: The normalised water column distribution of particulate fluxes defined using
the exponential functions used in this study (equation 5.5). As a comparison, Martin
Curves are shown with the minimum and maximum exponent values found when fitting
curves to sediment trap data by Henson et al. (2012). All curves are normalised to an
export depth of 175m consistent with the bottom depth of the surface grid-box in the
8 vertical level configutation of GENIE used here.

understanding both past and current changes in climate (Honjo et al., 2014).

Modelling studies varying key global biogeochemical parameters, such as the rate of

nutrient uptake and remineralisation depth, have shown that [PO4] distributions are

particularly sensitive to changes in the global mean remineralisation depth (Schlitzer ,

2002a, 2004; Kwon et al., 2009; Kriest et al., 2010, 2012). An optimal value for the

remineralisation depth can therefore be found by statistically comparing the model

[PO4] field to observed [PO4]. These studies found that the Martin Curve exponent is

close to -0.9, similar to the value found by (Martin et al., 1987), although lower than the

mean value of -0.639 found by (Henson et al., 2012). [PO4] distributions are also more

sensitive to global changes in remineralisation depths than to export production and

dissolved organic matter production (Kwon and Primeau, 2006; Kriest et al., 2012).

This approach of optimising biogeochemical parameters is an important method for

quantifying the biological pump that can complement the observations from sediment

trap data.
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Parameter optimisation studies have previously accommodated spatial variability in

remineralisation depths. Schlitzer (2002a) used an adjoint method to systematically

vary ocean circulation, air-sea fluxes, production and remineralisation rates simultane-

ously in the Southern Ocean (<50°S) to determine parameter values that were in good

agreement with observations. The adjoint method calculates the gradient of a statis-

tical fit to observations with respect to the parameters that can be used to generate

a new set of parameter values by minimising the gradient (Schlitzer , 2002a, 2004; Yao

and Schlitzer , 2013). A single Martin Curve was applied to the whole Southern Ocean

with b as a tunable parameter. Average values of b=-1.04±0.10 were found across a

range of experiments, providing a quantitative test of the sensitivity to model structure

(Schlitzer , 2002a). This value is in agreement with values in the Southern Ocean found

by Henson et al. (2012). The same method was also applied to the Equatorial and

North Pacific in Schlitzer (2004) and globally in Yao and Schlitzer (2013), but with

remineralisation depths that are able to change in each water-column independently

rather than as a regional mean value. Unfortunately the results for remineralisation

depths were not reported (Schlitzer , 2004; Yao and Schlitzer , 2013). A similar adjoint

method analysis was used by Usbeck (1999) for the Atlantic Ocean. The estimated

remineralisation depths were similarly shallow in the Southern Ocean, agreeing with

Schlitzer (2002a) and Henson et al. (2012). However, they were also shallow in the

Equatorial Atlantic and deeper in the North Atlantic, opposite to the latitudinal pat-

terns reported by Henson et al. (2012) (Figures 5.2d cf. 5.2b).

Nutrient distributions have also used to evaluate and assess the incorporation of mech-

anistic parameterisations of remineralisation in models, e.g., Howard et al. (2006) and

Chikamoto et al. (2012). DeVries et al. (2014) developed a mechanistic model of particle

sinking based on particle size distributions that was evaluated against observed [PO4].

Again, there are notable differences with Henson et al. (2012), with greater particle

fluxes reaching the deep ocean in the high latitudes (Figures 5.2c cf. 5.2a). This also

partly disagrees with the findings of Usbeck (1999) where North Atlantic is a region
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Figure 5.2: Comparison of remineralisation depth metrics from a recent sediment trap
analysis and two model optimisation studies. (a) normalised particle flux at 2000m
from sediment trap analysis adapted from Henson et al. (2012), (b) e-folding depths
from Martin Curves fitted to sediment trap data adapted from Henson et al. (2012). (c)
normalised particle flux at 1000m adapted from the mechanistic model of DeVries et al.
(2014), (d) e-folding depths of power law functions adapted from the optimisation study
of Usbeck (1999). Panels a and c are comparable but note the differences in depth. Flux
curves are almost linear at depth (Honjo et al., 2008) such that the spatial patterns
will not differ greatly. Panels b and d are comparable.

of shallow remineralisation. These two studies are not strictly comparable as multiple

parameters, (e.g., mixing coefficients, surface heat fluxes, gas exchange rates as well

as organic matter export and remineralisation depth) and tracers, (e.g., PO4, alkalin-

ity and oxygen) were used in Usbeck (1999), but it seems reasonable to expect similar

results given that the global remineralisation depth is a key parameter controlling nutri-

ent distributions and similarities between large-scale circulation patterns. Ultimately,

the results of the optimisation and modelling studies described do not agree with the

findings from Henson et al. (2012) and provide a wide range of solutions (Figure 5.2).
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5.1.1 Aims

In this chapter the spatial variability in remineralisation depths is explored in the

context of a model optimisation study. The aim of the chapter is to explore whether

there is an optimum fit to observed [PO4] in a similar manner to previous studies

(Kwon and Primeau, 2006; Kriest et al., 2012) that can be used to inform mechanistic

interpretations along with sediment trap studies. The chapter also has an additional

focus on assessing how well the remineralisation depths are constrained in light of the

range of previous results in Figure 5.2.

To achieve this, a new steady-state model of phosphorus cycling based on GENIE

is built around the GENIE transport matrix developed in the previous chapter. A

set of 15 oceanic regions is defined, within which the remineralisation depth can vary

independently of other regions during a model run. A Latin hypercube is used to

efficiently sample across the large number of potential combinations of spatially variable

remineralisation depths that are then used to simulate [PO4] fields in the new model.

By covering the range of all possible solutions, the Latin hypercube approach can be

used to explore whether there are multiple solutions that can produce model [PO4]

fields that are equal fits to observed [PO4] as well as assessing how the remineralisation

depth in each region contributes to the fit to observations.

5.2 Model and Experiment Description

5.2.1 Model Description

The number of model runs (individual sets of parameters) required to cover a multi-

dimensional parameter space increases rapidly with the number of parameters and the

resolution of the sampling, i.e., ‘the curse of dimensionality’. The Latin hypercube

approach, described further in section 5.2.2, is a method of random sampling that effi-
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ciently fills the parameter space for a given number of samples. Even with this method,

multiple samples are still needed to ensure that the parameter space is representatively

sampled, requiring a large number of model runs. To make this feasible, a new steady-

state phosphorus-only model based on the 8-level model configuration of the Earth

System model GENIE (Ridgwell et al., 2007a: Chapter 2) is first developed. This

model is similar to previous models used by Kwon and Primeau (2006) and DeVries

et al. (2014). Although GENIE is itself, relatively fast, the aim is to construct a signif-

icantly faster ‘offline’ version that removes significant computing constraints associated

with the Latin Hypercube approach used here. A full 10,000 year spin-up of GENIE

is first performed to reach a steady-state solution for the pre-industrial ocean, taking

approximately 15 hours. This run, hereafter referred to as the control run (CTRL:

Table 5.2), forms the basis for constructing the offline model described in the following

sections.

5.2.1.1 Circulation Model

A transport matrix (A) is diagnosed from the CTRL circulation at the end of the

10,000 year spin-up using the method based on Khatiwala et al. (2005) described in

Chapter 4 and Appendix B. The circulation in the 8-level version of GENIE used here

is non-seasonally forced. The transport matrix represents the change in a tracer due to

the effect of advection, diffusion and convection calculated within a single time-step of

GENIE. In contrast to its application in Chapter 4, here the transport matrix is used

as the steady-state ocean circulation for a biogeochemical model.

The transport matrix diagnosed from GENIE includes the effect of virtual salinity fluxes

and so the biogeochemical tracers are normalised by salinity before multiplication with

the transport matrix and converted back to concentration units afterwards. This means

that the mass of tracers is not exactly conserved requiring a rescaling of the tracer

concentrations to ensure there has been no net gain or loss, see Edwards and Marsh
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(2005) and Ridgwell et al. (2007a).

5.2.1.2 Biogeochemical Model

The model contains two dissolved tracers, PO4 and dissolved organic phosphorous

(DOP) which are governed by the following equations:

POt+1
4 = APOt

4 − Juptakez<z0 + JPOPz>z0 + JDOP (5.1)

DOPt+1 = ADOPt + (v · Juptakez<z0)− JDOP (5.2)

where t and t+ 1 refer to the timestep (as per equation 4.2) and z refers to depth and

z0 to the bottom of the surface grid-box. The uptake of dissolved PO4 in the surface

by phytoplankton (Juptake) is calculated using the scheme described by Ridgwell et al.

(2007a) (see Table 5.1) where a maximum uptake rate of PO4 (uPO4
0 ) is kinetically

limited by a Michaelis-Menton type limitation using a half-saturation constant (KPO4).

Limitation from other nutrients, such as Iron which is important in the Southern Ocean,

is not included in this model. Uptake is also modified by sea-ice cover (Fseaice) and the

strength of the local insolation (I) which is normalised by the solar constant (I0). Sea-

ice cover and insolation are taken from the CTRL run and are fixed in the model:

Juptake = uPO4
0 · PO4

PO4 +KPO4
· (1− Fseaice) ·

I

I0
(5.3)

A fraction of the PO4 uptake (v) is partitioned into DOP which can be transported by

ocean circulation and is remineralised with a time constant of (1/k) (Table 5.1):

JDOP = kDOP (5.4)
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The remaining fraction of uptake (1 − v) is exported vertically as sinking particles of

organic matter that are partitioned into a labile fraction (1 − fPOP ) and a refractory

fraction (fPOP ). The refractory fraction is analogous to the ‘protected’ fraction of

organic matter in the ballasting hypothesis (equation 1.9). The two fractions has been

used previously and found to produce a better fit to tracer observations (Andersson

et al., 2004; Ridgwell et al., 2007a; DeVries et al., 2014). The remineralisation of POP

is instantaneous, i.e., it occurs within the same time-step as the export flux. The flux

of POP left at depth (z) proceeds according to an exponential decay:

JPOP(z) = fPOP · JPOP(z0) · exp(
z0 − z
lrPOP

)

+ (1− fPOP ) · JPOP(z0) · exp(
z0 − z
lPOP

) (5.5)

The attenuation of POP with depth is controlled by lPOP . The remineralisation of

a smaller fraction of refractory POP (0.065 of the exported flux from the surface) is

calculated using a longer length scale (Table 5.1) that results in the majority of the

refractory POP reaching the deep ocean. There is no sediment component in this model

so POP that has reached the sediment is remineralised fully in the grid-box directly

above. This maintains a closed-system in respect to PO4. An alternative approach, as

described by DeVries et al. (2014), is to remove all POP reaching the sediment and

matching it with an allochthonous source to the ocean. This would have the effect of

reducing the total remineralisation in the deep ocean and potentially lead to different

results. The approach in GENIE is retained here to maintain direct comparability.

A simulation is achieved by time-stepping the equations forward in time. The ocean

circulation is calculated using a time step of 0.01 year whilst the biogeochemistry is

calculated once every 5 time-steps of the ocean model (0.05 year), as per Ridgwell

et al. (2007a). Previous studies have alternatively used a Newton-Krylov method to
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Table 5.1: Values of biogeochemical parameters used in the steady-state model. a

indicates the value used in Ridgwell and Hargreaves (2007) which is altered in this
study. Numbers in square brackets refer to the corresponding references.

Parameter Value Description

uPO4
0 1.96 µmol kg−1 yr−1 Maximum PO4 uptake rate [1]
KPO4 0.22 µmol kg−1 yr−1 Michaelis-Menton half-saturation concentration [1]
k 0.5 yr−1 DOM remineralisation rate [2][3]
v 0.66 Fraction of DOM from PO4 uptake [1]
fPOP 0.065 Initial fraction of refractory POM [1]
lPOP 550a m e-folding depth of labile POM remineralisation [1]
lrPOP 100000 m e-folding depth of refractory POM remineralisation [1]
z0 175 m Bottom of surface grid-box [2]

[1] Ridgwell and Hargreaves (2007) [2] Ridgwell et al. (2007a) [3] Najjar et al. (2007)

find equilibrium solutions to the governing equations, i.e., finding a solution where

(dPO4

dt
= 0: Kwon and Primeau, 2006; DeVries et al., 2014). A time-stepping method is

used here to achieve a steady-state [PO4] distribution in order to maintain consistency

with the full GENIE model. A comparison of corresponding runs in both models shows

that the steady-state model is a good approximation (r>0.99) for the full GENIE model

(Figure 5.3). There are minor differences in the DOM fields (Figure 5.3c and 5.3d).

In both figures the negative concentrations of DOM can be found in GENIE but not

in the steady-state model. This occurs in the Arctic Ocean and is a consequence of

differences in details of the numerical implementation between each model. Other

deviations from the 1:1 line in Figures 5.3c and 5.3d occur at shallow depths in the

Southern Ocean concurrent with convection in the model. As suggested in Chapter

4, this may reflect minor differences in convection between timesteps that have been

sampled by the sequential grid-box dying method used here. The steady-state model is

run in MATLAB 2013a, and takes approximately 2 minutes to simulate 3000 years on

a standard PC workstation, compared to ∼4.5 hours in GENIE. Experiments are run

in parallel using the parallel toolbox in MATLAB reducing the total simulation time

for multiple experiments.
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Figure 5.3: Comparison of the [PO4] and DOP fields after a 3000 year simulation using
the full GENIE model and the steady-state model described in this chapter. Panels (a)
and (c) show [PO4] and DOP when the global remineralisation depth has been changed
to 100m from the global value of 550.195m. Panels (b) and (d) show the same but when
remineralisation depths have been changed to 1000m.

5.2.2 Experiment Design

5.2.2.1 Defining Regions

A set of oceanic regions are defined to approximately encapsulate the large-scale vari-

ability in biogeochemistry and patterns of remineralisation depths observed in sediment

trap studies and in Chapter 3. Previous studies have defined model regions for similar

purposes based on variables such as vertical mixing, mixed layer depths, sea ice and sea

surface temperature (Sarmiento et al., 2004b; Henson et al., 2010; Fay and McKinley ,

2013, 2014). As ocean circulation is responsible for delivering nutrients to the surface,

helping to drive major feature of dissolved nutrients, this approach produces biogeo-

chemical regions that are internally consistent with the model. However, GENIE does

not simulate mixed layer depths making this approach difficult to implement (note that

more recent developments incorporate the effects of a diagnosed mixed layer depth,
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e.g., Matsumoto et al., 2008). As an alternative, regions are defined by lines of latitude

and basins similar to the approach used by air-sea flux inversion studies, e.g., Gloor

et al. (2001) and Mikaloff Fletcher et al. (2006). 15 regions are defined based on a

partitioning by Gloor et al. (2001) with some minor changes (Figure 5.4a). The Arctic

Ocean is excluded as a region as little export production occurs due to the extent of

sea ice in the model. The Mediterranean is also excluded as it is a relatively shallow

(mostly <1000m) and contained basin where remineralisation depth changes will have

a minimal effect on the global distribution of [PO4]. The defined regions broadly cor-

respond with the major features in the surface [PO4] field from the CTRL run such

as higher concentrations in upwelling regions and lower concentrations in the nutrient-

depleted gyres (Figure 5.4b). This suggests the regions should be a reasonable analogue

for the approach using circulation metrics. Regions are also comparable to the ocean

biomes used in the TransCom: the Atmosphere Tracer Transport Model Intercompari-

son Project, e.g., Gurney et al. (2003). Alternative choices of regions were also tested

including latitude bands that were not separated by basin (n=7) and higher resolution

regions (n=29) (see Appendix C: Figures C.7 and C.8).

5.2.2.2 Model Experiments

The remineralisation length scale (lPOP ) is allowed to vary individually between 100m

and 1000m in each of the 15 regions (compared to 550m in the control run), illustrated

by the solid profiles in Figure 5.1. The range for lPOP used here is similar to ranges

used in previous studies using GENIE (Ridgwell et al., 2007a; Holden et al., 2013). This

range reflects a range of e-folding depths of 275m to 1170m, comparable to the range

found by Henson et al. (2012) of 232m to 6297m (calculated from the range of Martin

Curve b values of -1.18 to -0.24). The deeper e-folding depths from the estimates of

Henson et al. (2012) reflect a potentially anomalously deep end-member estimate as

also found in its use to calculate synthetic fluxes in Chapter 3 (see discussion of Figure

3.12). The appropriateness of the range used is explored in the results. A sensitivity
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Figure 5.4: The 15 regions used for the Latin hypercube sampling. (a) Location and
names of the 15 regions on the GENIE grid, based on regions from Gloor et al. (2001).
Boundaries are at 58°S, 36°S, 13°S, 13°N, 36°N. The equatorial Pacific is split at 198.75°E
following Mikaloff Fletcher et al. (2006). The remineralisation depth in each region is
allowed to change independently of the others. The Arctic and Mediterranean, shown
in hatching, are excluded and take the global average value of 550.195 in all experiments
(Table 5.1). (b) Surface [PO4] field from the control run of GENIE (CTRL; Table 5.2)
with the region boundaries superimposed.
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test on the fraction of refractory POM (fPOP : equation 5.5) showed that [PO4] was

much less sensitive to changes in this parameter compared with remineralisation depths

(Figures C.5 and C.6).

A sensitivity analysis is first performed to explore the behaviour of [PO4] in response to

perturbations to the length scale in each region individually. The length scale is assigned

to both 100m (SENS-100) and 1000m (SENS-1000) in each region separately whilst the

length scale in the other regions are kept constant at 550m (Table 5.2). Experiments

where the length scale is set to 100m and 1000m globally are also performed, i.e., in

all regions, as a comparison (GBL-100 and GBL-1000: Table 5.2).

Latin hypercube sampling is used to vary the length scales in all regions simultaneously

with the aim to sample across the range of all possible combinations of spatially variable

remineralisation depths such that optimum combinations can be identified. Random

and grid (or systematic) sampling are alternative methods to sample model output over

a range of input parameter values. However, multiple sets of random samples cannot

guarantee that the parameter space is sampled evenly. For example, Figure 5.5a shows

a scenario where random sampling can produce samples in close vicinity to each other

resulting in an inefficient and unrepresentative sample of all possible combinations.

Grid sampling, whilst covering the parameter space evenly (Figure 5.5b), requires an

increasingly large number of samples with every parameter added and increase in sam-

pling resolution, e.g., for just 4 samples of each of the 15 remineralisation depths, this

would require 50625 runs, taking ∼ 70 days to run with the steady-state model: the

‘curse of dimensionality’ (Urban and Fricker , 2010).

In a Latin hypercube, the parameter range is partitioned into equally spaced ranges

equal to the size of the number of samples required. Samples are chosen randomly with

the constraint that each row and column can contain only one sample (comparable to

the principle of a sudoku puzzle) (Figure 5.5c). This quality of Latin hypercubes ensures

a more efficient sampling across the parameter space than the random sampling on its
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p1

p2

p1 p1

b)a) c)

Figure 5.5: Schematic of parameter sampling methods for two parameters (p1 and p2)
for n=9 samples. (a) random sampling, (b) gridded sampling and (c) Latin hypercube
sampling. Adapted from Urban and Fricker (2010).

own for any given number of samples. The number of samples is defined by the user.

The key advantage of the Latin hypercube is that the sampling scales with computing

resources (Urban and Fricker , 2010), i.e., the parameter space is always filled efficiently

when using smaller smaples but it can be sampled with increasing resolution with the

ability to take more samples. Due to its relatively fast speed of integration, the steady-

state model described in this chapter can therefore take full advantage of the Latin

hypercube sampling by sampling the parameter space with more resolution providing

an approach not available from the ‘online’ GENIE model or higher resolution models.

The length scales are sampled from a uniform prior distribution ranging from 100m

to 1000m using the lhsdesign function in MATLAB 2013a, i.e., the Latin hypercube

partitioning is equal such that there is an equal probability of the length scale being

between 100 and 1000m (see Figure C.4). A general rule-of-thumb states that the

number of samples should be at least 10 times the number of parameters (Loeppky et al.,

2009; Gregoire et al., 2011; Williams et al., 2013). The steady-state model permits an

increase in the number of samples to 40 times the number of parameters, resulting in a

total of 600 simulations. More simulations could be performed but introduces problems

with storing and analysing a large dataset. All experiments are run for 3000 years from

the CTRL experiment (see Table 5.2). Annual mean fields of [PO4] are diagnosed at

2999.5 years. A simulation of 3000 years is sufficient for the mean surface and deep

ocean [PO4] to equilibrate to a global change in the remineralisation length scale to
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Table 5.2: Description and names of the experiments used in this chapter.
Experiment Description
CTRL Control experiment using parameter values from Table 5.1
GBL-100 Experiment where lPOP = 100m globally
GBL-1000 Experiment where lPOP = 1000m globally

SENS-100 Sensitivity experiments - lPOP = 100m for each region individually
SENS-1000 Sensitivity experiments - lPOP = 1000m for each region individually

LHS Latin hypercube ensemble - lPOP varies between 100m and 1000m

either 100 or 1000m (see Figure C.3).

5.2.2.3 [PO4] Observations and Cost Function

The model [PO4] distribution is compared to observed [PO4] concentrations from the

World Ocean Atlas 2009 (Garcia et al., 2010), regridded onto the GENIE grid using

the box averaging function in Ocean Data View 4.4.4 (Schlitzer , 2002b). The model-

observation misfit is quantified using the global root mean square difference (RMSD):

RMSD =

√∑
(M −O)2

N
(5.6)

The RMSD is also used to quantify how different sensitivity experiments are to the

control. In this case, the RMSD is calculated with the control field in place of the

observations.

5.3 Sensitivity of Model [PO4] to Regional Changes in

Remineralisation Depth

The sensitivity of the global distribution of [PO4] to regional changes in the remineral-

isation depth is tested by perturbing the remineralisation depth to the minimum and

maximum values in each region individually whilst the remineralisation depth is main-

130



Chapter 5 Sensitivity of Model [PO4] to Regional Changes in Remineralisation Depth

tained at 550m in all other regions (SENS-100 and SENS-1000 experiments). Basin

zonal averages of [PO4] are shown at shallow (290m) and deep (2106m) as a propor-

tional deviation from the CTRL zonal average (Figures 5.6 and 5.7). As a comparison,

the zonal averages from the GBL-100 and GBL-1000 runs are also shown. Zero indi-

cates the zonal mean is the same as the CTRL zonal average whilst a deviation of 1

indicates the zonal mean is 100% larger. The model [PO4] distribution is relatively in-

sensitive to regional changes in remineralisation depth in comparison to global changes

in remineralisation depth (black dashed lines) irrespective of whether remineralisation

is shallower or deeper. Across all the experiments, the largest deviations from the

CTRL zonal average in each basin occur when remineralisation changes are local to

that basin (Figure 5.6 and 5.7). The largest deviations in each basin occur in a similar

latitudinal range as the regional change in remineralisation. For example, the pattern

of largest deviations in zonal averages at 290m in the Atlantic follows changes in each

region (red dashed, green dashed and yellow dashed lines in Figure 5.6b). Differences

in [PO4] occurring in a basin other than that in which the remineralisation depth is

changed are difficult to distinguish from the control run zonal averages and are difficult

to distinguish even when using a log scale (not shown).

131



C
h
ap

ter
5

S
en

sitiv
ity

of
M

o
d
el

[P
O

4 ]
to

R
egion

al
C

h
an

ges
in

R
em

in
eralisation

D
ep

th

D
if
fe

re
n
c
e
 i
n
 P

a
t 
2
9
0
m

(P
ro

p
o
rt

io
n
 o

f 
C

T
R

L
)

O
4

D
if
fe

re
n
c
e
 i
n
 P

a
t 
2
1
0
6
m

(P
ro

p
o
rt

io
n
 o

f 
C

T
R

L
)

O
4

Pacific Atlantic Indian
a) b) c)

d) e) f)

GBL

Latitude

Figure 5.6: Proportional deviation zonal averages of [PO4] from the sensitivity experiments where the remineralisation depth in each
region is set to 100m individually (SENS-100; Table 5.2). Each line indicates the proportional change in the zonal average from the
CTRL due to a change in the region indicated in the legend. The black dashed line indicates the run where remineralisation depths
in all regions are at 100m (GBL-100). The top 3 panels (a,b,c) are zonal averages at 290m, and the bottom 3 panels (d,e,f) are at
2106m. The left two panels (a & d) are for the Pacific, (b & e) for the Atlantic, and (c & f) for the Indian Ocean.
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Figure 5.7: See caption for Figure 5.6. Remineralisation depths are now changed to 1000m. The layout and formatting are identical
to Figure 5.6.

133



Chapter 5 Sensitivity of Model [PO4] to Regional Changes in Remineralisation Depth

For the Pacific and Indian Oceans, PO4 concentrations follow a general rule that a

deepening of remineralisation depths will increase the PO4 concentration of the deep

ocean and decrease the surface [PO4], e.g., Boyd and Trull (2007). However, the deep

Atlantic displays an inverse trend (Figures 5.6e and 5.7e). The largest differences in

deep Atlantic [PO4] occur when remineralisation depths are perturbed in the Eq-ATL

and NTemp-ATL regions (green and yellow dashed lines in Figures 5.6e and 5.7e). The

concurrent decrease in surface [PO4] in these regions suggests that changes in surface

[PO4] are being communicated to the deep Atlantic via deep water formation in the

North Atlantic. These surface signals are potentially larger in size than the input of

PO4 from remineralisation that the net change in [PO4] reflects changes at the surface.

Similar variability in Atlantic [PO4] was observed by Kwon and Primeau (2006) and

Kwon et al. (2009). In the NN-ATL region, where deep water formation is occurring,

[PO4] does follow the general rule of thumb, but this is a very localised change (Figures

5.6e and 5.7e). Other factors, such as changes in the magnitude of PO4 particulate

export in these regions as well as the circulation patterns could possibly contribute to

this feature.

Regional changes in remineralisation depth in the Indian Ocean do approach the same

magnitude of change when the global remineralisation depth is perturbed (Figure 5.6c

and 5.6f). Elsewhere differences in [PO4] from regional changes are much smaller in

magnitude. In particular, changes in Southern Ocean and high latitude [PO4] are

relatively small across all depths, basins and regions where remineralisation changes

occur. Equally, changes in the remineralisation depth in the Southern Ocean have a

minimal impact on other regions (compare triangles to circles in Figures 5.6 and 5.7).

To explore the reasons behind the different sensitivies in each region, the [PO4] fields

at the end of each sensitivity run are compared to the CTRL run [PO4] using the

RMSD (Equation 5.6) as a measure of how different the resulting [PO4] field is. This

is then compared with the total export flux of PO4, the fractional change in the export

flux and the standard deviation of the mean vertical profile of [PO4] in each region
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to explore why [PO4] is sensitive to remineralisation changes in some regions and not

others (Figure 5.8). There are strong positive correlations between RMSD and the total

PO4 export flux in each region (r=0.79 and r=0.90; Figure 5.8a and 5.8d). It follows

that the perturbations to remineralisation depth in regions with the largest export flux

of PO4 result in the largest perturbations to the global [PO4] distribution. A notable

outlier to this relationship is the Southern Ocean (red stars in Figure 5.8) that has a

much lower impact on global [PO4] despite the large magnitude of the export flux in

this region. This suggests there are other factors affecting the sensitivity to changes

in remineralisation depth. Although the magnitude of the export flux is important,

changes in remineralisation depth can change the magnitude of the export flux. The

fractional change in the export flux is an indication of how the magnitude of the export

flux responds to changes in the remineralisation depth (Figure 5.8b and 5.8e). Although

there is a correlation (r=0.53 and r=0.67), the relationship is less clear. There is a clear

grouping of high-latitude regions with small changes in export that, in the model, are

limited by light and less responsive to changes in nutrient levels. In regions that are

not limited, there is no clear relationship (Figure 5.8e). Finally, the standard deviation

of the mean profile of [PO4] in each region from the CTRL run is used as a measure

of water column homogeneity and vertical mixing. The strong positive correlations

suggest that changes in the remineralisation depth in vertically homogenous regions,

such as the Southern Ocean, have a minimal impact on [PO4] distributions (r=0.65 and

r=0.76; Figure 5.8c and 5.8f). Vertical mixing therefore also has an important role in

setting the sensitivity of [PO4] to regional changes in remineralisation depth.
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Figure 5.8: Comparison of the difference between the global [PO4] from each sensitivity experiment (SENS-100; SENS-1000) to the
control (CTRL) and various metrics for each region. The RMSD is used to calculate a misfit between each experiment and the control
[PO4]. Results are shown for both the shallow remineralisation depth (SENS-100, panels a,b and c) and deeper remineralisation
(SENS-1000, panels d,e and f). Panels (a) and (c) compare the total export PO4 flux from each region, panels (b) and (d) compare
the fractional change in PO4 export, and panels (c) and (e) compare the standard deviation of the mean water column profiles of
[PO4] in each region.
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5.4 Optimal Solutions of Spatially Variable Remineralisation

Depths

After perturbing the remineralisation depth in each region individually, the reminer-

alisation depths in all regions are varied simultaneously using the Latin hypercube

approach. A total of 600 individual simulations are run, each with a different set of

remineralisation length scales sampled to cover a range of different parameter combina-

tions (see Figure C.4). The global mean remineralisation depths from each of the 600

runs range from 334m to 731m. The Latin hypercube is unlikely to sample all regions

towards the minimum or maximum because of the constraints and its requirement to

fill the parameter space (see Figure 5.5). The 600 runs are summarised on a Taylor

diagram (Taylor , 2001) with the global mean remineralisation depth of each run shown

on a colour scale (Figure 5.9). The runs span a large part of the range between the

GBL-100 and GBL-1000 experiments spanning a range of RMSD values suggesting the

LHS ensemble is representative and reliable.

The statistical fit to observations is strongly affected by the global mean reminerali-

sation depth with the LHS experiments moving towards the GBL-100 and GBL-1000

experiments. Runs that are an improvement on the CTRL run, i.e., that have a better

RMSD score, are clustered around the CTRL run and the global mean remineralisation

depth of 550m. Correlation coefficients for all the runs are relatively similar suggesting

changes in the remineralisation depth do not significantly change the overall structure

of the [PO4] field suggesting that it may be primarily determined by the ocean cir-

culation (this can also be seen in the similar shapes of the zonal averages in Figures

5.6 and 5.7). The global normalised variability of [PO4] is, however, more sensitive to

remineralisation, but is primarily related to the global average remineralisation depth

rather than regional changes.
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Figure 5.9: Pattern statistics of all 600 runs compared to World Ocean Atlas observed
[PO4] (coloured markers) from the LHS experiment plotted as a Taylor diagram. The
radial axis indicates the correlation between the model and observation fields, whilst
the linear axis indicates the standard deviation, i.e., the global variability of [PO4]
normalised to the standard deviation of the observations. The black marker on the
lower axis indicates a perfect match. The CTRL run is shown as the black marker in
the middle of the data. The stars indicate GBL-100 and GBL-1000 experiments. The
colour of the LHS experiments indicates the global mean remineralisation depth for
that run.

5.4.1 Spatial Variability in Remineralisation Depths

A set of improved model runs is defined from the LHS experiments as those with a

RMSD score lower than the CTRL run (RMSD<0.4932). In total, 155 runs out of the

600 are defined as a better fit than the CTRL, with a minimum RMSD of 0.4206 being

achieved. Each parameter has a distribution of 155 values which are displayed using a

boxplot (Figure 5.10). The boxplot has the advantage of summarising non-parametric

distributions that can be irregularly shaped and that contain outliers (Krzywinski and

Altman, 2014), a characteristic of the random sampling of Latin hypercube samples. A

small box (representing the interquartile range) indicates a well constrained parameter,
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i.e., there is a well-defined range of parameter values across the set of best model runs.

If the box is large, this may indicate either a parameter that is unconstrained, i.e.,

the value has no bearing on the fit to data, or that it may be covarying with another

parameter(s), i.e., the parameter is not independent. The boxplots also indicate 95%

confidence intervals (CIs) for each box (triangle markers). In general, when a set of CIs

do not overlap, the medians can be judged to be significantly different (Krzywinski and

Altman, 2014).

The box plots in Figure 5.10b and 5.10c are arranged by basin and increasing latitude

so as to correspond with the predominantly latitudinal variability seen in sediment trap

observation (Figure 5.10a). Since the subset of runs is fairly large, a smaller subset of

the best 40 runs is also shown as a check that any features are consistent across the

runs (Figure 5.10c). Subsets smaller than 40 result in CIs that are larger than the IQR

suggesting they are not reliable (Krzywinski and Altman, 2014). Both Figure 5.10b

and Figure 5.10c show similar patterns suggesting that they are a real feature of the

dataset and not a result of choosing subsets of data. The Atlantic displays a significant

latitudinal relationship that is consistent with sediment trap observations (deeper in

low latitudes and shallower at high latitudes). The Equatorial Atlantic region has a

significantly deeper median length scale than the CTRL (709-824m cf. 550m). In the

Pacific, the northern high latitude regions also have a significantly shallow length scale

(182-348m for the North Pacific, 289-364m for Temperate North Pacific). However, the

latitudinal trend south of the equator is less distinct. The East, West Equatorial Pacific

and Temperate South Pacific regions are not significantly distinguishable. The SubPolar

Pacific region is significantly deeper on average than the other Pacific regions. Finally,

the Southern Ocean is very similar to the CTRL value with a large box relative to the

median in Figure 5.10, suggesting the remineralisation depth in this region cannot be

constrained or is not independent. The Indian Ocean regions display similar features to

the Southern Ocean. Similar spatial patterns for the optimal solutions are found when

using higher resolution regions (Figure C.8).
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Figure 5.10: Boxplots showing the distribution of remineralisation depths in each region
from observations and the best runs from the LHS experiments. (a) boxplots of e-
folding depths calculated from the Martin Curves in Henson et al. (2012). (b) all LHS
experiments with a smaller RMSD than CTRL (n=155), and (c) a subset of the 155 runs
with the smallest RMSD (n=40). The target indicates the median of each distribution,
the box indicates the interquartile range, and the triangles indicate confidence intervals
that are used to judge if the medians are significantly different from each other. Boxes
are arranged by basin and latitude. The dashed horizontal line indicates in (b) and (c)
indicate the CTRL remineralisation depth of 550m and the mean e-folding depth from
Henson et al. (2012). Circles indicate outliers defined as outside 1.5 x interquartile
range. 140
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The reasons for the unconstrained regions can be explored further using the distribu-

tion of the parameters values for each region indicating that some of the large boxes in

Figure 5.10 are potentially the result of multiple optimums (Figure 5.11). For example,

the Southern Ocean, Temperate South Pacifc and SubPolar Atlantic regions have dis-

tributions that may indicate multiple optimum solutions for the remineralisation depth

in those regions. The pattern of remineralisation depths in Figure 5.11 can be related

to the sensitivity results in Figure 5.8. For example, global [PO4] was shown to be

relatively insensitive to remineralisation changes in the Southern Ocean, possibly due

to the extent of vertical mixing. This corroborates the large box size in Figure 5.10

suggesting that this region is difficult to constrain using [PO4]. In contrast to Figure

5.8, the Indian Ocean is not constrained despite its large impact on global [PO4], whilst

the Northern Pacific is well constrained despite its small impact.

To test whether there are regions that are covarying with each other as suggested

by the distributions in Figure 5.11, partial correlations are calculated between the

remineralisation depths of the best 40 runs between each region (Figure 5.12). As all

regions are varied simultaneously, a standard correlation would not be able to separate

the variability between two regions and other regions. Significant negative correlations

exist between the Southern Ocean and the Sub Polar and Temperate South Pacific.

This suggests that changes in remineralisation depths in the Sub Polar and Temperate

South Pacific are compensating for concurrent changes in the Southern Ocean. This

corroborates the shape of the distributions in Figure 5.11. Equally, this can be seen

with the Temperate North Pacific and Equatorial Pacific regions, as well as the Indian

Ocean regions. The only positive correlation between regions occurs between the North

Atlantic and the Sub Polar Indian Ocean. The reason for this interaction is less clear,

although this may reflect an interaction between the Atlantic deep water properties and

the Sub Polar Indian Ocean.
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Figure 5.11: Histograms of the parameter distributions from Figure 5.10b. Panels are
arranged by basin and latitude. Note the scale difference between the NN-PAC panel
and other panels, denoted by *. The dashed box indicates the two equatorial regions
in the Pacific.
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Figure 5.12: Partial correlation coefficients between remineralisation depths in all re-
gions for the 40 best runs of the LHS experiment (see Figure 5.10b). Each partial
correlation coefficient calculated from the remineralisation depths between two regions
while accounting for the simulataneous variability in all other regions. Stars indicate
significance values greater than 95%.

5.5 Discussion

5.5.1 Robustness of the Model and Experiments

A set of experiments have been designed to explore the sensitivity of model [PO4]

distributions to regional changes in remineralisation depths. A combination of spatially

variable remineralisation depths can be defined as a best fit to [PO4] observations, and

also assessed for how robust this solution is. The Latin hypercube approach used to

achieve this result requires a large number of simulations to explore the parameter

space. Two features of this study make this approach feasible: a relatively simple

biogeochemical model with a relatively low resolution steady state circulation and the

use of pre-defined regions. The extent to which these might introduce biases in the

results is explored in the following sections.
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5.5.1.1 Model Structure

Previous studies of the sensitivity of model [PO4] fields to different complexities of

biogeochemical models have shown that increased model complexity does not neces-

sarily result in increased model fidelity (Kriest et al., 2010 and Kriest et al., 2012;

the biogeochemical model used here is equivalent to the N+DOP model used in these

studies). Both studies show that the global [PO4] field is sensitive to changes in the

global remineralisation depth regardless of the biogeochemical model used. However,

there are number of features not considered that may have an impact on the results

in this chapter. The global export parameters used here (uPO4
0 and KPO4) in equation

5.3) represents a compromise between allowing high surface [PO4] to be maintained

in ‘High Nutrient Low Chlorophyll’ regions and depleting [PO4] elsewhere (Ridgwell

et al., 2007a). The limitation of nutrient uptake is potentially an important factor in

setting the sensitivity of [PO4] to changes in the biological pump in certain areas (Fig-

ure 5.8). There is no explicit representation of iron limitation either in the model used

here or in Kriest et al. (2010, 2012) which would likely change uptake rates in these

areas, such as the Southern Ocean, relative to others. In other optimisation studies a

nutrient-restoring scheme has been used for estimating the magnitude of PO4 export

(Kwon and Primeau, 2006; DeVries et al., 2014). As this scheme diagnoses export in

every surface grid-box separately, regions may respond differently. There is no direct

comparison between these two types of schemes to gauge what effect this may have or

how this may affect sensitivity and optimisation approaches.

The model used here includes a refractory fraction of sinking organic matter that pen-

etrates much deeper into the ocean interior in contrast with some previous studies that

considered only one labile fraction (Kwon and Primeau, 2006; Kriest et al., 2012). The

inclusion of a refractory fraction has been shown to improve the fit of model nutrient

distributions to observations, as single fraction flux curves can underestimate fluxes at

depth (Andersson et al., 2004; Kriest and Oschlies , 2013; DeVries et al., 2014). A re-
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fractory flux has also been combined with a burial flux of PO4 in sediments although its

effect on dissolved [PO4] distributions is limited by the relatively long residence time of

PO4 in the ocean compared to the timescales of ocean overturning (Kriest and Oschlies ,

2013). DeVries et al. (2014) compared single fraction flux curves, with the inclusion

of a second refractory fraction and the inclusion of burial finding that the inclusion of

a refractory flux was the most important to fitting [PO4] observations. Overall, the

structure of the biogeochemical model used here sits at the base of the range of models

used in similar studies (see also Chapter 2).

In contrast to the biogeochemical model, the coarse resolution of the circulation model

will also impart some significant limitations on the analysis in this chapter. For ex-

ample, the stability of high latitude water columns may be sensitive to the vertical

resolution of models (Müller et al., 2006). Ridgwell et al. (2007a) note that this may

be a limitation to the 8-level model used here but that excessive high-latitude ventila-

tion would result in overestimates of PO4 export that are not observed in the model.

The vertical resolution may also introduce numerical problems when parameterising the

vertical profile of organic matter remineralisation (Kriest and Oschlies , 2011). Also,

the steady state circulation used here is not seasonal, which again may be an impor-

tant factor in simulating the biological pump in the high latitudes. An important next

step, therefore, would be to apply the methodology of this study using a model with

a higher vertical resolution and/or seasonality. The 16 level version of GENIE forced

both seasonally and non-seasonally (Marsh et al., 2011), would be an ideal candidate to

test the effects of both resolution and seasonality, although the method of diagnosing

a transport matrix used here would need to be adapted for the seasonal circulation.

5.5.1.2 Regions

To facilitate the Latin hypercube approach, the model domain was split into 15 regions

by latitude and basin. Although these have been defined using latitude bands and
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not dynamically using metrics such as upwelling, Figure 5.4b demonstrates that they

are, at least to a first order, consistent with general surface features of [PO4] from up-

welling/downwelling and PO4 uptake. Previous studies have suggested that variability

in remineralisation is to some extent related to large scale biogeochemical differences

such as regions dominated by CaCO3 export or opal export (Klaas and Archer , 2002;

Henson et al., 2012; Wilson et al., 2012). Therefore, the 15 regions should be able to

capture some of this variability. Increasing the number of regions could be an option as

the computational cost using this model is still relatively small. However, the results

of using a larger number of parameters will become harder to analyse because of the

difficulty in dealing with a higher number of dimensions. For example, the features

observed in the Southern Ocean and Sub Polar regions in Figures 5.11 and 5.12 sug-

gest that these regions do not have an independent effect on [PO4] via changes in the

remineralisation depth. Increasing the number and resolution of regions is likely to

exacerbate this problem.

5.5.2 Contrasting the Sensitivity of PO4 to Global and Regional

Remineralisation Changes

In previous model optimisation studies, the global [PO4] distribution was found to be

more sensitive to changes in the global remineralisation depth than changes in other

parameters such as uptake rates and DOM remineralisation (Kwon and Primeau, 2006;

Kriest et al., 2010, 2012). Similarly in this study, there were large differences between

the control run (CTRL) and the two experiments where the remineralisation depth

was changed globally (GBL-100 and GBL-1000) (Figure 5.10). In contrast to this, the

distribution of global [PO4] and the fit to observations were relatively insensitive to

regional changes in remineralisation depths (Figure 5.10).

The sensitivity analysis (Figures 5.6 and 5.7) suggests that changes in [PO4] from

changes in the remineralisation depth are relatively local and therefore do not change

146



Chapter 5 Discussion

the overall fit to observed [PO4]. Although there are differences between regions due

to the magnitude of the organic matter export flux and vertical mixing (Figure 5.8),

none of the regions significantly contributed to the change in global [PO4] distribu-

tion when remineralisation depths were changed globally (Figures 5.6 and 5.7). This

suggests that the changes in regional remineralisation are cumulative such that a net

export of PO4 from the Atlantic to the Pacific observed when deepening reminerali-

sation (Kwon and Primeau, 2006; Kriest et al., 2012) is primarily due to large-scale

changes between basins and not between specific regions. The global [PO4] distribution

may therefore be relatively constrained by large-scale circulation patterns, rather than

by large-scale features in biogeochemistry. This is further supported by the fact that

the majority of changes in the model [PO4] field are related to variability (changes in

the standard deviation) rather than the spatial structure (changes in the correlation

coefficient) (Figure 5.9). If true, this has implications for biogeochemical modelling.

For example, this result may suggest that using a global mean remineralisation depth,

e.g., the Martin Curve, may be preferable over a spatially explicit parameterisation as

it can be constrained. This result may however reflect the similarity in the residence

time of PO4, e.g., 1500 years (Paytan and McLaughlin, 2007), compared to overturning

circulation timescales, e.g., a mean transit time from the surface to deep North Pacific

of 1360±350 years (Khatiwala et al., 2012). This is not necessarily true for all related

tracers such as oxygen (Kriest and Oschlies , 2013).

Another factor that may help to explain why the global [PO4] distribution and fit to

observations are insensitive to regional remineralisation changes may be the interactions

between preformed and regenerated [PO4]. Preformed nutrients reflect nutrients in the

ocean interior that have been advected from the surface, unlike regenerated nutrients

that have entered the ocean interior via the remineralisation of sinking particles (Ito

and Follows , 2005). Similar total [PO4] distributions have been found to arise from

different fields of preformed and regenerated [PO4] suggesting that, to some extent,

they may act to compensate each other (Duteil et al., 2012). In experiments performed
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here, the Atlantic was found to be more sensitive to changes in preformed [PO4] than

other regions (Figures 5.6 and 5.7). This could form an additional constraint, although

methods of estimating regenerated [PO4] from observations can be associated with

significant spatial errors (Ito et al., 2004; Duteil et al., 2013). This is explored in more

detail in section 5.5.4.

5.5.3 Why is there Spatial Variability in the Optimised Remineralisation

Depths?

Given that the global distribution of [PO4] is relatively insensitive to regional changes

in remineralisation, one might expect it to be difficult to find an optimal solution(s).

However, Figure 5.10 shows that the remineralisation depth in some regions, such as the

North Pacific, are well constrained, and that significant latitudinal trends exist across

the Pacific and Atlantic. There are some similarities with current hypotheses such

ballasting. The Sub Polar Pacific is a region that has previously been shown to have a

higher PIC:POC export ratio than in other basins (Sarmiento et al., 2002; Jin et al.,

2006). The deeper remineralisation here could reflect a ballast mechanism. However,

other regions where carbonate export is relatively high such as the North Pacific do not

support this. There are similarities between our results and the sediment trap analysis

of Henson et al. (2012), particularly in the Atlantic Ocean. This may corroborate their

findings suggesting that there are key biogeochemical drivers of the remineralisation of

sinking organic matter. For example, our results could tentatively be interpreted as

evidence for surface ecosystems playing a key role, due to packaging processes or the

lability of organic matter (Lam et al., 2011; Henson et al., 2012). Ultimately, these

processes have similar spatial distributions and may not be easily distinguishable from

each other (Lima et al., 2014).

An alternative explanation, given the range of previous estimates (Figure 5.2) and the

relative insensitivity of [PO4] to regional remineralisation changes, is that the optimised
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remineralisation depths are compensating for deficiencies in the ocean model. Kriest

et al. (2010) found that the North Pacific was responsible for a large part of the global

misfit between model [PO4] and observations because this region is at the end of the

thermohaline circulation and accumulates [PO4]. The significant shallow North Pacific

remineralisation depths found could be responding changes in the deep North Pacific.

Nutrient trapping is a key issue for ocean models in this region (Najjar et al., 2007;

Dietze and Loeptien, 2013). The model may readily accumulate PO4 in the deep North

Pacific, not returning it to the surface. The shallower North Pacific remineralisation

may then be compensating for this feature. Interpreting the optimisation results re-

quires further knowledge of these effects before the spatial patterns can be attributed

to actual biogeochemical processes.

5.5.4 Implications for Modelling

The experiments in this chapter have shown that overall, the distribution of global [PO4]

in ocean biogeochemical models is relatively insensitive to regional changes in reminer-

alisation. In some regions, differences in remineralisation depth can be constrained, but

it is difficult to be certain whether this actually reflects underlying mechanisms or defi-

ciencies in the ocean model. This suggests that global [PO4] observations may not be a

reliable constraint for the spatial variability of remineralisation in ocean biogeochemical

models and may explain the range of solutions in Figure 5.2.

It is important to note that although that [PO4] is relatively insensitive to differences

in remineralisation depths, it does not necessarily mean that the uptake of atmospheric

CO2 via the biological pump is also insensitive. To highlight this, the range of global

P* values (equation 5.7) are calculated for each set of sensitivity experiments (SENS-

100 and SENS-1000) to suggest how sensitive the uptake of atmospheric CO2 is to

changes in remineralisation depth in each region (Figure 5.13). The preformed PO4 for

each sensitivity run is calculated by initialising the surface ocean with the steady-state
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surface PO4 concentrations at the end of each run. The model is then integrated forward

in time for 10000 years with the surface [PO4] being restored to initial surface values.

Regenerated [PO4] (POREG
4 ) is calculated as the difference between the total [PO4] and

preformed [PO4]. Alternative methods using apparent oxygen utilisation could be used

to estimate regenerated and preformed [PO4] but are not available in this phosphorous

only model.

P* =
POREG

4

PO4

(5.7)

P* reflects the ratio between preformed [PO4] and total [PO4] in the global ocean (Ito

and Follows , 2005). An increase in P* is associated with an increase in [PO4] that is

utilised by biology at the surface, and so reflects a more efficient biological pump. Model

experiments have shown a near linear relationship between P* and atmospheric CO2

(Ito and Follows , 2005; Marinov et al., 2008). To estimate the effect of remineralisation

depth changes on atmospheric CO2, a linear fit between modelled P* and atmospheric

CO2 values found by Ito and Follows (2005) is used to predict the resulting CO2:

CO2 = −416.6734 · P* + 414.8058 (5.8)

Figure 5.13 shows the range of atmospheric CO2 values predicted from the P* values

when the remineralisation depth is changed to 100m and 1000m. Regions where rem-

ineralisation depths were harder to constrain, such as the Southern Ocean, the subpolar

South Pacific and the Indian Ocean, are regions where the global uptake of CO2 is most

sensitive. Equally, regions where the remineralisation depth could be constrained have

a smaller effect of atmospheric CO2. Therefore, parameterisations of remineralisation

that include explicit spatial variability could result in large differences in carbon cycle

feedbacks despite producing similar [PO4] fields.
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Figure 5.13: Range of CO2 values in each region when remineralisation depths are
changed in each region estimated from P*. P* is calculated from the SENS-1000 exper-
iments and the SENS-100 experiments using equation 5.7 and converted to atmospheric
CO2 via equation 5.8. A larger value indicates that CO2 uptake via the biological pump
is more sensitive in that region. Hatched regions were not tested, see Figure 5.4a.

5.6 Conclusions

In this chapter, the sensitivity and optimisation of regional differences in the rem-

ineralisation depth of organic matter have been explored using a new steady-state

phosphorus-only version of the Earth system model GENIE and a Latin hypercube

approach. Although the sensitivity of model [PO4] fields to regional changes in the

remineralisation depth were variously sensitive to the magnitude of the PO4 export

and vertical mixing, this sensitivity was relatively small when compared with global

changes in remineralisation. Regional changes in [PO4] occurring from remineralisation

were predominantly local suggesting the sensitivity to global changes in remineralisa-

tion reflect large-scale patterns in ocean circulation rather than in biogeochemistry. An

improved fit between model [PO4] and observations can be achieved, with the resulting

patterns showing some similarities to those found in sediment trap studies. However,

further work is needed to reliably interpret these as biogeochemical features and not

caveats from overfitting the model to data. These findings suggest that [PO4] is not

a good constraint for regional variability in remineralisation depths. The uptake of
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atmospheric CO2 is however sensitive to these changes.
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Conclusions and Further Work

The aim of this thesis was to evaluate and advance the current mechanistic understand-

ing of the biological pump in the ocean interior. The particular focus was on exploring

the global scale function of the remineralisation of sinking particles in the ocean interior

to be able to relate mechanisms back to their effect on atmospheric CO2 concentrations.

Chapter 1 showed that atmospheric CO2 concentrations are potentially sensitive to rela-

tively small changes in the depth of remineralisation sinking particles of organic matter.

This occurs via the redistribution of DIC and alkalinity as well as changes in the al-

kalinity inventory driven by changes in the ratio between POC and CaCO3 fluxes at

the sediment surface. Global observations of sinking particles, primarily from sediment

traps, have revealed significant spatial variability in the depth of POC remineralisation

in the modern ocean leading to the development of a number of mechanistic hypothe-

ses. The ballast hypothesis predicts that the sinking velocity of POC is increased by

the presence of certain minerals such as CaCO3 which has significant implications for

understanding how environmental changes in the past and future may impact particles

fluxes and atmospheric CO2. Alternative interpretations include a more prominent role

for ecosystem processes such as the quality of organic matter being exported. The

uncertainty in the range of mechanisms is accompanied by recent research questioning

the nature of the spatial variability in POC fluxes. This presents a large uncertainty in
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how the biological pump may have contributed to past changes in atmospheric CO2 as

well as its response to future climate change.

In response to this, chapters 3 presents data analysis aimed at exploring uncertainties in

the ballast hypothesis,whilst chapters 4 and 5 present new approaches to quantifying the

biological pump function using an Earth system model. In the rest of this chapter, the

main findings and implications of each chapter are reviewed before discussing directions

for future work.

6.1 Summary of Results

6.1.1 Spatial Variability in Ballasting Statistics

A role for the ballasting of POC by minerals was inferred from significant global corre-

lations (carrying coefficients) between POC and CaCO3 in deep sediment trap measure-

ments (Klaas and Archer , 2002). Regional differences in opal fluxes have been cited as

reason why a global analysis may not be appropriate (De La Rocha and Passow , 2007).

Exploring these uncertainties further requires data to be grouped into representative

regions, e.g. Le Moigne et al. (2012), but problems arise from groupings that either

result in small sample numbers or that are too large that they average any underlying

variability. Geographically Weighted Regression (GWR) presents a practical solution

to this problem by defining regions in a statistically rigorous and consistent way that

allows carrying coefficients to vary in space.

GWR was applied to an updated global sediment trap database. Examination of car-

rying coefficients at a basin scale, the spatial pattern of residuals from the global re-

gression, and statistics from the GWR analysis suggested there was significant spatial

variability in carrying coefficients. The carrying coefficient for CaCO3 was the most

variable and shown to be robust. The lack of a consistent strong global relationship

between POC and CaCO3 suggests that there is more to the controls on sinking POC
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than just the dominant mineral present. Spatial patterns in the CaCO3 coefficients cor-

respond with broad patterns in surface biogeochemistry supporting a role for ecosystem

processes in setting vertical POC fluxes. The GWR model predicts that much less POC

is associated with CaCO3 suggesting that a ballasting parameterisation in ocean bio-

geochemical models may overestimate fluxes of POC to depth as well as potentially

reflecting inappropriate responses to global change. Further interpretation of the car-

rying coefficients from the GWR analysis was limited by the relatively low sampling

density of sediment traps.

6.1.2 Estimating POC Flux Profiles from Observed Tracers

In chapter 3, a major limitation to linking the spatial variability in carrying coefficients

to a mechanistic basis was the sparse sampling of data in space. In response to this

problem, chapter 4 explored whether vertical profiles of POC could be derived from

high-resolution fields of tracer measurements using modelled circulation rates. This

process involves first estimating rates of remineralisation in the water column which

represent the first derivative of the flux profile such as the Martin Curve. Flux curves

can be inferred by integrating remineralisation rates vertically. When applied to Appar-

ent Oxygen Utilisation (AOU), representing the product of remineralisation integrated

over time with ocean circulation, estimates of remineralisation rates are integrated over

large areas of the ocean. An alternative approach was explored using the steady-state

circulation from a model, diagnosed as a Transport Matrix (TM), to estimate remineral-

isation rates from observed tracers such as phosphate (PO4). A synthetic dataset in the

Earth System Model GENIE was created to test the uncertainty arising from various

sources of error. Due to this approach not being applied on a global scale before, the

analysis also explored sources of error when inferring flux curves from remineralisation

rates.

Inverting a model [PO4] field with a TM from the corresponding model circulation re-
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produces remineralisation rates. However, the approach is very sensitive to both sources

of error associated with the [PO4] observations and from the use of model transport

rates. Uncertainty in tracer measurements have a large effect on estimated reminer-

alisation rates due to the way that the TM is constructed. Differences between the

modelled and observed transport rates also contribute uncertainty as transport rates

are 3-4 orders of magnitude larger than remineralisation rates. Errors from the model

transport rates are likely to be systematic suggesting a potential way of constraining

the size of these errors although this is still subject to the uncertainties form the ob-

servations. Our results also suggest that the presence of DOM remineralisation when

inferring particle flux curves from profiles of remineralisation rates can produce spatial

patterns similar to observed patterns in particle fluxes (Henson et al., 2012). These

results suggest that even if remineralisation rates could be estimated accurately, there

is still significant uncertainty when using them to information about particle fluxes.

6.1.3 Optimisation and Sensitivity of Regional Remineralisation Depths

Nutrient distributions and atmospheric CO2 concentrations are sensitive to changes in

the global average depth of POC remineralisation in models. Model optimisation stud-

ies have used this sensitivity to find global mean remineralisation depths that result

in the statistically best fit to tracer observations such as PO4. This provides an al-

ternative approach to the one described in chapter 4 to exploring spatial variability in

POC fluxes. Chapter 5 explored whether there is an optimal set of regionally variable

remineralisation depths in the Earth system model that best fits the observed annual

average [PO4] field and how robust these solutions are.

A computationally fast phosphorous-only version of the Earth system model GENIE

using the TM from chapter 4 was developed to represent steady-state circulation. The

ocean was divided into 15 biogeochemical biomes within which the remineralisation

depth was an independent parameter. Latin hypercube sampling was used to produce
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an ensemble of runs that efficiently sample across the range of potential combinations

of remineralisation depths, producing probability distributions for each region. Despite

sensitivity to the global remineralisation depth, the distribution of [PO4] is shown to be

relatively insensitive to regional changes in remineralisation. An optimal combination of

remineralisation depths in the Atlantic is found that predicts deeper remineralisation in

the low latitudes and shallower at high latitudes, matching sediment trap observations.

Shallow remineralisation is also predicted in the North Pacific. However, remineralisa-

tion depths in the Southern Ocean, South and Equatorial Pacific, and Indian Ocean

cannot be successfully constrained. The comparatively large sensitivity to global rem-

ineralisation depths and insensitivity to regional changes question whether the optimal

solution found is significant. Our results suggest that nutrient observations, such as

[PO4], may not be able to distinguish reliably between different mechanistic models of

the biological pump. A comparison of how sensitive preformed PO4 is in each region

also suggests that the regions that could not be constrained are also the ones where

changes in the remineralisation depth has the largest effect on the air-sea gas exchange

of CO2.

6.2 Future Work

Future work to follow on from the findings presented in this thesis can be broadly

grouped into two directions. Firstly, there is still a need to better understand the

controls on carbon fluxes in the ocean interior and secondly there is a need to un-

derstand the implications of these mechanisms through both better representation in

biogeochemical models and assessing uncertainties.

6.2.1 Towards a Mechanistic Understanding

A mechanistic understanding of the key controls on carbon fluxes in the ocean interior

is clearly important given the range of current hypothesised mechanisms and the uncer-
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tainty in the interpretation of existing observations (Chapter 3). Although deep ocean

sediment traps are an important tool, they can only provide a snapshot of the end results

of key processes occurring higher up in the water column (Ragueneau et al., 2006). In-

creasing the number and type of observations in the mesopelagic is a clear starting point

to improving our understanding. New techniques to provide direct measurements, such

as neutrally-buoyant sediment traps (Buesseler et al., 2007), filtration units to mea-

sure particle concentration (Lam et al., In Press) and indirect measurements, such as

radioisotopes (Le Moigne et al., 2013), will provide important observations in this key

region of the water column. Observations of organic matter in sediments, the ultimate

end-point for particle fluxes, could also provide additional constraints on mechanisms,

e.g. Seiter et al. (2005) and Arndt et al. (2013). The output from the GEOTRACES

programme is an important development in this area (Anderson and Henderson, 2005).

The approaches applied in this thesis have focussed on spatial variability on an annual

average timescale. A particular difficulty in this approach is that potential spatial

variability from ballasting and ecosystem processes may be very similar. A study aimed

at inferring processes from annual particle fluxes simulated in a model using a range of

processes found that it was very hard to distinguish between processes because they are

inextricably linked (Lima et al., 2014). As well as a focus on the mesopelagic, additional

analysis of how fluxes change through time, e.g. on an intra-annual timescale, may

facilitate the separation of processes. For example, a dominant effect from ecosystem

processing may be evident with seasonal changes in POC fluxes at depth. Datasets and

analysis by Lutz et al. (2007) and Lam et al. (2011) provide initial examples of this.

An additional approach to circumventing the problem highlighted by Lima et al. (2014)

is use of the palaeo-record. Past changes in climate and the ocean can provide us with

experiments which can be used to test existing hypotheses against. The data-model

comparison described by (John et al., 2014), that work during this thesis contributed

to, presents a first step towards this. Global mean temperature during the Eocene

epoch (55.5 33.7 Mya) was much warmer than the modern period with largely ice-free
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poles with implications for ocean biogeochemistry such as increased biological rates

(Matsumoto, 2007). A new method developed by John et al. (2013) reconstructs ver-

tical gradients of δ13C from foraminiferal calcite exploiting the fact that individual

species calcify at different depths. The resulting water column δ13C profiles through

the Eocene display a much steeper and larger gradient than observed in the modern.

Remineralisation of organic matter is thought to be a major control on vertical δ13C

gradients (Holden et al., 2013; Schmittner et al., 2013) suggesting temperature depen-

dent remineralisation may be important. A temperature dependent remineralisation

rate was incorporated into a late Paleocene/early Eocene configuration of.the Earth

System Model GENIE using an Arrhenius-type function. Modelled δ13C reproduced

key aspects of the reconstructed gradients supporting an interpretation of temperature

dependent remineralisation rates (John et al., 2014). The palaeo-record may therefore

provide additional constraints on our mechanistic understanding. Past events asso-

ciated with ocean acidification could prove useful when looking for evidence for the

ballast hypothesis (Hönisch et al., 2012).

6.2.2 Towards a Dynamic Understanding

Moving towards a better mechanistic understanding of carbon fluxes in the ocean in-

terior also requires a better representation of these processes in ocean biogeochemical

models in order to fully understand the implications of these processes. The findings

from chapter 5 suggest that nutrient tracers are more sensitive to global changes in

remineralisation depths rather than regional changes. Aside from suggesting that one

should be cautious in interpreting good fits as evidence for a particular parameteri-

sation, this also further supports using the palaeo-record as it may be reasonable to

expect that there were large-scale changes in remineralisation depths. Given the range

of hypothesised mechanisms and current uncertainty over dominant mechanisms, an im-

portant avenue for future work is to systematically explore the implications for different

mechanistic interpretations on past and future changes in climate.
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The representation of remineralisation in the ocean interior has traditionally been mod-

elled using Martin Curves or parameterisations of particular mechanisms such as bal-

lasting or temperature. Moving towards a more mechanistic and explicit modelling of

these processes would be an important development. Surface ecosystem dynamics are

already incorporated into models such as nutrient-phytoplankton-zooplankton-detritus

(NPZD) models (e.g., Yool et al., 2013) and the DARWIN model where plankton di-

versity and biogeography is an emergent property of the model (Follows et al., 2007;

Dutkiewicz et al., 2009). These could form the basis for developing models of ocean

interior fluxes that are dependent on some aspect of the surface ecosystem, whether

related to a ballasting effect from different phytoplankton groups or an organic matter

quality effect. Mechanistic models of organic matter degradation for marine sediments

should also be used as a basis for development (Arndt et al., 2013). As such, the flux of

carbon in the ocean interior is the link between the surface ecosystem where carbon is

fixed and the sediments where carbon is buried and recycled. Developing better models

of the processes in the ocean interior in line with these other areas could ultimately

facilitate the understanding of how the biological pump fully interacts with the carbon

cycle and its role in changing CO2 and climate.
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APPENDIX A

Sediment Trap Data and GWR Output

A.1 Sediment Trap Data

The sediment trap dataset used in Chapter 3 is primarily comprised of data from the
Joint Global Ocean Flux Study (JGOFS) available in its full form online at:

http://usjgofs.whoi.edu/mzweb/syndata.html#Sed Traps.

Full methodological details and references can be found online through this link. Ad-
ditional data was collected from the World Data Centre for Environmental Sciences
(WDC-MARE) online database. Where data was missing in the JGOFS database, the
original papers were consulted to amend details where appropriate. This is detailed in
Table A1. A full reference list for data used is located after the table.

Flux data was reported as particulate inorganic carbon (PIC), biogenic silica (bSi).
These were converted to fluxes of Calcium Carbonate (CaCO3), Opal and Lithogenic
material using the following relationships:

POM = POC ∗ 1.86 (A.1)

CaCO3 = PIC ∗ 8.33 (A.2)

Opal = bSi ∗ 2.14 (A.3)
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Litho. = Total Mass− (POM + CaCO3 + Opal) if Litho. > 0

= 0 otherwise (A.4)
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Table A.1: Sediment trap data and local statistics calcu-
lated using Geographically Weighted Regression in Chap-
ter 3. Data are arranged by latitude in each basin.
Province refers to biogeochemical provinces as defined
by Longhurst (1998). Latitude and longitude are in de-
grees. All flux data (Total, POC, PIC, bSi and Litho)
are given in g m-2 year-1. Depth is given in m. Latitude
and Longitude are given in degrees North and East. All
numbered references indicated are found below the table.

Province Lat Lon Depth Total POC PIC bSi Litho β0 βCaCO3 βopal βLitho R2 References

S. Ocean

ANTA -50.13 5.83 3196 29.4 4.61 0.9 4.22 4.3 0.097 0.121 0.042 -0.008 0.727 [15]; [14]; [50]
ANTA -50.18 5.9 3110 6.44 0.51 0.3 1.02 0.81 0.098 0.121 0.042 -0.008 0.727 [15]; [14]; [50]
ANTA -52 61.52 4000 41.49 0.57 0.6 14.32 4.79 0.286 0.112 -0.001 0.029 0.771 [53]
ANTA -54.33 -3.38 2194 28.82 0.51 0.21 8.22 8.53 0.082 0.117 0.046 -0.010 0.723 [15]; [14]
ANTA -54.33 -3.3 2251 3.07 0.63 0.08 0.22 0.76 0.082 0.117 0.046 -0.010 0.723 [15]; [14]
ANTA -54.33 -3.3 2251 7.38 0.13 0.02 2.36 1.92 0.082 0.117 0.046 -0.010 0.723 [15]; [14]
ANTA -56.9 -170.17 4224 24.55 0.73 1.43 3.85 3.04 0.168 0.069 0.008 0.029 0.688 [33]
ANTA -57 -37 2000 8 0.1 0.12 3.29 0 0.080 0.111 0.047 -0.008 0.707 [25]
APLR -62.08 -40.6 2453 3.36 0.22 0 0.78 1.28 0.118 0.111 0.035 0.000 0.704 [44]
ANTA -62.26 -57.53 1588 107.3 2.32 0.62 18.05 59.19 0.160 0.102 0.024 0.010 0.696 [50]; [13] a

APLR -63 71 3500 4.72 0.16 0.03 1.44 1.09 0.273 0.113 0.000 0.027 0.762 [53]
APLR -63.15 -42.68 2966 1.35 0.09 0 0.32 0.5 0.129 0.110 0.032 0.003 0.703 [44]

Pacific

BERS 58 179 3137 58.03 2.02 0.79 16.22 12.98 0.388 0.035 0.030 0.025 0.786 [26]; [54]
Continued on next page
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BERS 53.5 -177 3193 40.22 1.93 0.8 12.55 3.11 0.432 0.026 0.033 0.023 0.783 [48]; [47]
BERS 53.5 -177 3200 70.55 2.34 1.1 25.02 3.49 0.432 0.026 0.033 0.023 0.783 [48]; [47]
BERS 53.5 -177 3200 62.74 2.56 0.99 19.7 7.57 0.432 0.026 0.033 0.023 0.783 [48]; [47]
BERS 53.5 -177 3199 100.59 3.43 1.75 31.3 12.65 0.432 0.026 0.033 0.023 0.783 [48]; [47]
BERS 53.5 -177 3198 54.79 2.19 0.99 14.04 12.42 0.432 0.026 0.033 0.023 0.783 [48]; [47]
PSAG 50 -145 3800 48.2 2.46 2.23 8.8 6.22 0.503 0.022 0.033 0.022 0.844 [52]
PSAG 50 -145 3800 30.4 0.82 1.72 5.18 3.46 0.503 0.022 0.033 0.022 0.844 [52]
PSAG 50 -145 3800 44.1 1.1 2.71 7.88 2.62 0.503 0.022 0.033 0.022 0.844 [52]
PSAG 50 -145 3800 30.7 0.83 1.45 6.94 2.23 0.503 0.022 0.033 0.022 0.844 [52]
PSAG 50 -145 3800 32.4 0.85 2.09 4.45 3.89 0.503 0.022 0.033 0.022 0.844 [52]
PSAG 50 -145 3800 22.1 1.29 1.25 3.76 1.24 0.503 0.022 0.033 0.022 0.844 [52]
PSAG 50 165 3260 42.52 0.99 1.39 11.68 4.1 0.287 0.040 0.032 0.024 0.769 [22]
PSAG 50 165 5090 31.76 0.88 1.06 7.62 4.99 0.287 0.040 0.032 0.024 0.769 [22]
PSAG 50 165 5090 34.64 0.8 0.84 10.11 4.52 0.287 0.040 0.032 0.024 0.769 [22]
PSAG 49 -174 4826 21.06 1.24 1.24 4.23 0 0.450 0.022 0.034 0.022 0.784 [48]
PSAG 49 -174 4806 33.91 1.61 0.99 8.66 4.14 0.450 0.022 0.034 0.022 0.784 [48]
PSAG 49 -174 4833 23.07 1.13 0.84 6.04 1.05 0.450 0.022 0.034 0.022 0.784 [48]
PSAG 49 -174 4822 42.34 2.08 1.64 10.49 2.36 0.450 0.022 0.034 0.022 0.784 [48]
PSAG 49 -174 4774 45.26 1.68 1.24 11.72 6.73 0.450 0.022 0.034 0.022 0.784 [48]
PSAG 44 155 2960 57.45 2.23 1.83 13.93 8.25 0.162 0.053 0.031 0.025 0.769 [22]
PSAG 44 155 4999 43.47 1.61 1.24 10.22 8.28 0.162 0.053 0.031 0.025 0.769 [22]
PSAG 44 155 4990 48.55 1.46 1.1 12.71 9.47 0.162 0.053 0.031 0.025 0.769 [22]
OCAL 42.19 -127.58 1500 60.5 2.2 1.09 7.77 30.7 0.458 0.028 0.034 0.021 0.881 [10]; [41] b

OCAL 42.09 -125.77 1500 190.1 4.9 1.79 22.3 118.35 0.461 0.028 0.034 0.021 0.883 [10]; [41] b

OCAL 41.55 -132 1500 10.3 0.9 0.5 1.54 1.17 0.441 0.030 0.034 0.021 0.875 [10]; [41] b

KURO 40 165 2986 35 1.31 1.61 7.39 3.34 0.181 0.048 0.033 0.022 0.768 [22]
KURO 40 165 5020 28.32 1.1 1.17 6.21 3.24 0.181 0.048 0.033 0.022 0.768 [22]
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KURO 40 165 5020 40.66 1.35 1.28 11.29 3.33 0.181 0.048 0.033 0.022 0.768 [22]
CHIN 39.67 132.4 2800 96 2.94 1.88 19.51 33.12 0.013 0.075 0.027 0.030 0.781 [23]
OCAL 39.49 -127.69 3785 39.7 1.27 0.66 3.97 23.34 0.428 0.031 0.034 0.021 0.883 [10] b

KURO 34.42 177.74 2848 28.36 1.56 1.87 1.32 7.06 0.224 0.047 0.033 0.022 0.801 [37]; [38]
KURO 34.17 141.98 3423 35.77 0.79 1.9 3.8 10.34 0.005 0.074 0.028 0.030 0.781 [19]
KURO 34.17 141.98 5429 26.65 0.64 0.96 2.98 11.09 0.005 0.074 0.028 0.030 0.781 [19]
KURO 30 175 3873 17.3 0.97 1.32 0.64 3.13 0.174 0.052 0.033 0.022 0.807 [37]; [38]
KURO 27 127 1547 47.32 1.5 1.7 0.38 29.56 -0.082 0.096 0.022 0.030 0.825 [22]
WARM 12.01 134.29 4300 2.74 0.16 0.18 0.2 0.52 -0.092 0.096 0.023 0.032 0.840 [39]
PNEC 11 -140 1600 15.21 0.86 1.01 1.93 1.07 0.302 0.042 0.034 0.020 0.879 [8]; [10]
PNEC 11 -140 3400 13.19 0.59 0.87 1.81 0.97 0.302 0.042 0.034 0.020 0.879 [8]; [10]
PNEC 9 -139.98 2250 8.26 0.56 0.6 0.79 0.53 0.296 0.043 0.034 0.020 0.879 [31]
PNEC 9 -139.98 2150 8.65 0.55 0.66 0.74 0.55 0.296 0.043 0.034 0.020 0.879 [31]
PNEC 8.83 -103.98 3150 19.8 1.38 2.51 3.32 0 0.269 0.043 0.039 0.019 0.917 [10] c

PNEC 8.75 -104 2700 19.8 1.38 0.79 5.89 0 0.268 0.043 0.039 0.019 0.917 [9]
PNEC 6.57 -92.77 3565 25.5 0.89 0.79 1.81 13.39 0.232 0.044 0.044 0.017 0.932 [10] c

PNEC 5.02 -139.79 2100 27.34 1.64 2.15 2.42 1.2 0.286 0.043 0.034 0.020 0.881 [31]
PNEC 5.02 -139.79 3800 24.55 1.4 1.89 2.41 1.04 0.286 0.043 0.034 0.020 0.881 [31]
WARM 5.01 138.83 3130 4.08 0.25 0.32 0.29 0.33 -0.086 0.097 0.023 0.028 0.828 [39]
WARM 4.13 136.28 4574 34.64 2.21 1.42 5.35 7.25 -0.085 0.098 0.022 0.030 0.838 [38]; [36]
WARM 3 135 1590 58.66 3.41 3.13 6.22 12.93 -0.082 0.099 0.022 0.030 0.841 [38]; [36]
WARM 3 135 3900 56.68 2.86 2.81 6.19 14.71 -0.082 0.099 0.022 0.030 0.841 [38]; [36]
PNEC 2.01 -140.14 2203 26.76 1.28 2.16 2.83 0.33 0.277 0.044 0.035 0.020 0.881 [31]
PNEC 1.04 -138.94 4445 37.01 1.3 2.51 5 2.98 0.274 0.044 0.035 0.020 0.882 [10]
PNEC 1 -140 1895 26.91 1.55 1.82 4.3 0 0.275 0.044 0.035 0.020 0.882 [8]; [10]
PNEC 1 -140 3495 21.78 1.19 1.48 3.26 0.26 0.275 0.044 0.035 0.020 0.882 [8]; [10]
PNEC 1 -140 1883 54.39 2.47 3.56 9.57 0 0.275 0.044 0.035 0.020 0.882 [8]; [10]
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PNEC 1 -140 2908 41.74 1.89 2.75 7.29 0 0.275 0.044 0.035 0.020 0.882 [8]; [10]
PEQD 0 -140 2284 35.17 1.67 2.8 3.14 2.02 0.272 0.044 0.035 0.020 0.882 [31]
PEQD 0 -140 3618 34.75 1.6 2.77 4.06 0.01 0.272 0.044 0.035 0.020 0.882 [31]
PEQD -1.95 -139.75 3593 31.15 1.32 2.41 3.87 0.34 0.267 0.044 0.035 0.020 0.883 [31]
SPSG -5 -140 2099 22.44 1 1.73 2.18 1.5 0.258 0.045 0.036 0.020 0.884 [31]
SPSG -5 -140 2209 23.57 0.99 1.76 2.57 1.57 0.258 0.045 0.036 0.020 0.884 [31]
SPSG -5 -140 2316 23.36 1.02 1.79 2.37 1.48 0.258 0.045 0.036 0.020 0.884 [31]
SPSG -12 -135 3594 7.84 0.26 0.74 0.48 0.17 0.228 0.047 0.036 0.019 0.889 [31]
CHIL -29.5 -73.2 2300 65.1 2.8 3.72 5.29 17.58 0.098 0.067 0.037 0.009 0.728 [20]

Atlantic

BPLR 81.07 138.9 1550 16.7 1.05 0.06 1.36 11.34 0.209 0.075 0.019 0.035 0.789 [11]
ARCT 78.86 1.37 2400 5 0.24 0.1 0.28 3.12 -0.087 0.090 0.018 0.064 0.810 [28]; [25]; [29]
ARCT 75.86 11.47 1700 24.63 1.69 0.63 0.87 14.38 -0.116 0.086 0.020 0.069 0.804 [28]; [25]; [29]
ARCT 74.58 -6.72 2823 9.89 0.4 0.38 1.22 3.37 0.025 0.081 0.018 0.055 0.797 [28]; [25]; [29]
ARCT 73.72 14.82 1692 41.25 1.91 1.72 2.06 18.96 -0.152 0.085 0.022 0.073 0.803 [40]
ARCT 72.5 -8 2200 9.44 0.36 0.33 0.42 5.12 0.061 0.076 0.018 0.053 0.791 [49]
ARCT 70 0 3000 34.43 3.28 2.02 0.81 9.77 -0.043 0.075 0.023 0.067 0.788 [49]
ARCT 70 0 3000 49.01 3.48 3.25 1.33 12.62 -0.043 0.075 0.023 0.067 0.788 [49]
ARCT 70 0 3000 60.32 3.93 1.74 0.58 37.27 -0.043 0.075 0.023 0.067 0.788 [49]
SARC 69.5 10 2760 19.95 0.81 1.16 0.51 7.69 -0.115 0.078 0.027 0.072 0.796 [28]; [25]
NADR 54.53 -21.07 2880 21.75 0.74 1.84 1.33 2.2 0.171 0.056 0.024 0.051 0.744 [46]
NADR 49.08 -13.42 3220 41.25 2.97 2 3.18 12.26 0.059 0.046 0.102 0.057 0.747 [46]; [2]; [1]
NADR 48.98 -13.75 4000 40.04 2.48 2.69 0.82 11.26 0.061 0.046 0.101 0.057 0.746 [46]; [2]; [1]
NADR 47.83 -19.5 3100 22.27 1.89 1.39 1.72 3.5 0.123 0.048 0.068 0.053 0.736 [35]
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NADR 47.8 -19.78 3530 14.02 0.67 1.09 0.58 2.45 0.127 0.049 0.066 0.052 0.736 [46]
NADR 47.8 -19.8 2000 29.38 2.29 2.57 1.72 0.03 0.127 0.049 0.066 0.052 0.736 [46]
NADR 47.8 -19.8 3500 24.27 1.04 2.1 1.16 2.36 0.127 0.049 0.066 0.052 0.736 [46]
NADR 47.72 -20.87 3718 25.21 0.99 1.85 2.59 2.42 0.142 0.050 0.057 0.051 0.736 [30]; [27] d

NAST 33.82 -21.02 4564 21.38 0.93 1.63 0.98 3.98 0.024 0.053 0.119 0.040 0.761 [30]; [27] d

NAST 33.15 -21.98 4000 19.93 0.78 1.77 0.62 2.41 0.023 0.054 0.117 0.039 0.760 [46]
NAST 32.95 -22.02 2000 12.08 0.51 1.2 0.28 0.54 0.022 0.054 0.118 0.039 0.760 [46]
NAST 32.95 -22.02 4150 12.01 0.38 1.07 0.38 1.58 0.022 0.054 0.118 0.039 0.760 [46]
NAST 32.73 -70.82 2835 20 0.76 1.33 0.84 5.71 0.231 0.056 0.025 0.027 0.812 [10]; [21] b

NAST 32.08 -64.25 1500 14.13 0.88 0.98 3.47 0 0.210 0.057 0.018 0.029 0.789 [5]; [6]; [4] e

NAST 32.08 -64.25 3200 13.21 0.62 0.92 4.16 0 0.210 0.057 0.018 0.029 0.789 [5]; [6]; [4] e

NAST 31.83 -64.17 1500 11.4 0.88 0.79 0.77 1.53 0.208 0.057 0.018 0.029 0.788 [4] [7]; [3]
NAST 31.83 -64.17 3200 12.8 0.62 0.89 0.85 2.41 0.208 0.057 0.018 0.029 0.788 [4] [7]; [3]
NAST 29.12 -15.42 3075 18.07 0.83 1.02 0.33 7.32 -0.008 0.057 0.141 0.032 0.771 [46]; [43]
NAST 24.55 -22.83 3870 15.11 0.73 0.89 0.43 5.42 -0.033 0.062 0.134 0.026 0.767 [35]
NATR 21.3 -20.7 3568 31.53 1.56 1.94 0.68 11.01 -0.065 0.066 0.149 0.018 0.771 [16]
NATR 21.145 -20.687 3502 56.88 1.73 3.53 1.14 21.82 -0.066 0.066 0.150 0.018 0.771 [16]
NATR 21.138 -20.672 3557 48.05 2.05 2.8 0.91 18.97 -0.066 0.066 0.150 0.018 0.771 [16]
NAST 21.13 -20.67 2195 52.1 1.62 3.2 1.15 19.97 -0.066 0.066 0.150 0.018 0.771 [12]; [51] d

NAST 21.13 -20.67 3502 49.8 1.69 3 0.96 19.61 -0.066 0.066 0.150 0.018 0.771 [12]; [51] d

NATR 20.755 -19.742 2195 64.28 2.62 3.31 2.44 26.61 -0.072 0.067 0.155 0.017 0.772 [16]
NATR 11.5 -21.1 4435 11.24 0.45 0.28 0.4 7.21 -0.147 0.083 0.157 -0.006 0.769 [16]
WTRA 0 -23.4 3139 21.56 1.18 1.51 0.86 4.95 -0.197 0.108 0.128 -0.039 0.750 [16]
WTRA 0 -23.4 3173 25.03 1.31 2.03 1.05 3.44 -0.197 0.108 0.128 -0.039 0.750 [16]
WTRA 0 -23.4 3180 33.97 1.89 2.59 1.55 5.56 -0.197 0.108 0.128 -0.039 0.750 [16]
WTRA 0 -23.5 3170 26.21 1.11 2.24 0.75 3.88 -0.197 0.108 0.128 -0.039 0.750 [16]
WTRA -3.9667 -25.65 4630 18.02 0.81 1.49 0.66 2.69 -0.189 0.110 0.124 -0.044 0.743 [16]
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WTRA -3.988 -25.583 4555 18.98 0.94 1.61 0.77 2.17 -0.189 0.111 0.125 -0.045 0.743 [16]
SATL -7.472 -28.123 4410 9.3 0.47 0.82 0.16 1.25 -0.172 0.111 0.120 -0.045 0.737 [16]
SATL -7.5 -28.2 4736 4.83 0.23 0.43 0.06 0.69 -0.172 0.111 0.120 -0.045 0.737 [16]
SATL -7.5 -28.2 4705 8.38 0.5 0.65 0.27 1.46 -0.172 0.111 0.120 -0.045 0.737 [16]
SATL -7.5 -28.1 4456 9.82 0.51 0.87 0.23 1.13 -0.172 0.111 0.120 -0.045 0.737 [16]
SATL -7.5167 -28.0333 5031 6.71 0.38 0.53 0.16 1.25 -0.172 0.111 0.121 -0.046 0.737 [16]
SATL -11.55 -28.52 4515 4.02 0.2 0.35 0.09 0.54 -0.162 0.112 0.120 -0.048 0.732 [16]
SATL -20.04 9.1617 1647 24.63 2.86 1.54 1.34 3.61 -0.015 0.133 0.093 -0.066 0.745 [16]
SATL -20.05 9.15 1648 36.93 3.77 2.87 1.41 2.99 -0.015 0.133 0.093 -0.066 0.745 [16]
SATL -20.07 9.17 1640 30.5 3.32 2.29 1.35 2.36 -0.015 0.133 0.092 -0.065 0.745 [51]; [12]; [14] d

SATL -20.07 9.17 1648 25.6 2.94 1.68 1.38 3.18 -0.015 0.133 0.092 -0.065 0.745 [51]; [12]; [14]
SATL -20.07 9.17 1648 29.5 2.24 1.98 1.84 4.9 -0.015 0.133 0.092 -0.065 0.745 [51]; [12]; [14] d

NATR -20.07 9.1667 1640 60.84 6.26 4.06 3.96 6.9 -0.015 0.133 0.092 -0.065 0.745 [16]
SATL -28.9 14.6 2516 31.99 1.61 2.67 0.93 4.76 0.075 0.123 0.058 -0.029 0.750 [14] f

Indian

INDE 17.45 89.6 1727 51.81 2.7 1.29 3.55 28.45 -0.190 0.102 0.015 0.050 0.905 [34]; [45]
INDE 17.45 89.6 1727 52.22 2.99 1.97 5.04 19.46 -0.190 0.102 0.015 0.050 0.905 [34]; [45]
ARAB 17.4 58.8 3141 79.4 4.83 4.67 7.54 15.38 -0.206 0.096 0.029 0.061 0.905 [32]
ARAB 17.21 59.59 1857 83.04 5.96 4.72 7.38 16.84 -0.208 0.096 0.029 0.060 0.905 [32]
ARAB 17.21 59.59 2871 81.19 4.87 4.65 6.89 18.65 -0.208 0.096 0.029 0.060 0.905 [32]
ARAB 16 60 3020 51.5 2.6 3.38 4.88 8.07 -0.206 0.097 0.027 0.060 0.904 [17]; [18]; [42]
ARAB 16 60 3020 43.4 2.5 3.02 4.46 4.05 -0.206 0.097 0.027 0.060 0.904 [17]; [18]; [42]
ARAB 16 60 3020 53.2 3.3 3.91 4.08 5.76 -0.206 0.097 0.027 0.060 0.904 [17]; [18]; [42]
ARAB 16 60 3020 75.6 4.5 4.27 10.08 10.09 -0.206 0.097 0.027 0.060 0.904 [17]; [18]; [42]
MONS 15.23 89.17 1717 31.74 2.04 1.47 2.87 9.56 -0.194 0.102 0.015 0.051 0.906 [34]; [45]
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MONS 15.23 89.17 1717 32.19 2.18 1.26 3.29 10.6 -0.194 0.102 0.015 0.051 0.906 [34]; [45]
MONS 15 68 2800 41.5 2.8 2.52 2.29 10.4 -0.211 0.101 0.018 0.057 0.903 [17]; [18]; [42]
MONS 15 68 2800 22.4 1.4 1.33 1.42 5.68 -0.211 0.101 0.018 0.057 0.903 [17]; [18]; [42]
MONS 15 68 2800 40.3 2.2 2.38 3.25 9.43 -0.211 0.101 0.018 0.057 0.903 [17]; [18]; [42]
MONS 15 68 2800 29.3 1.9 1.97 2.33 4.37 -0.211 0.101 0.018 0.057 0.903 [17]; [18]; [42]
MONS 14 64 2900 34.3 1.9 2.72 1.63 4.62 -0.208 0.100 0.020 0.059 0.902 [17]; [18]; [42]
MONS 14 64 2900 18.4 1.1 1.44 0.79 2.67 -0.208 0.100 0.020 0.059 0.902 [17]; [18]; [42]
MONS 14 64 2900 41.4 2.6 2.89 2.08 8.04 -0.208 0.100 0.020 0.059 0.902 [17]; [18]; [42]
MONS 13.15 84.37 2282 43.16 2.51 1.95 3.39 14.99 -0.206 0.102 0.015 0.053 0.908 [34]; [45]
MONS 13.15 84.37 2282 49.77 2.94 1.92 4.37 18.96 -0.206 0.102 0.015 0.053 0.908 [34]; [45]
MONS 13.15 84.37 2282 63.52 3.14 1.73 5.74 30.99 -0.206 0.102 0.015 0.053 0.908 [34]; [45]
MONS 10 65 2363 24.4 1.39 1.82 1.25 3.98 -0.190 0.102 0.017 0.058 0.897 [32]
MONS 10 65 3915 21.31 1.21 1.53 1.11 3.94 -0.190 0.102 0.017 0.058 0.897 [32]
MONS 4.46 87.3 3006 38.37 2.09 2.23 3 9.49 -0.189 0.103 0.015 0.051 0.907 [34]; [45]
MONS 4.46 87.3 3006 30.97 1.85 1.81 3.57 4.81 -0.189 0.103 0.015 0.051 0.907 [34]; [45]

a All flux values from [15]
b Depth from [54]
c Depth amended from within reference(s)
d Depth modified from JGOFS
e All fluxes amended from within reference(s)
f PIC and bSi values from [15]

185



References for Table A1:

[1] Antia, A., B. von Bodungen, and R. Peinert, (1999) Particle flux across the mid-
European continental margin, Deep-Sea Research I, 46, 1999-2024.

[2] Antia, A., W. Koeve, G. Fischer, T. Blanz, D. Schulz-Bull, J. Scholten, S. Neuer, K.
Kremling, J. Kuss, R. Peinert, D. Hebbeln, U. Bathmann, M. Conte, U. Fehner, and B.
Zeitzschel, (2001) Basin-wide particulate carbon flux in the Atlantic Ocean: Regional
export patterns and potential for atmospheric CO2 sequestration, Global Biogeochem-
ical Cycles, 15 (4), 845-862.

[3] Bacon, M.P., C.-A. Huh, A.P. Fleer, and W.G. Deuser, (1985) Seasonality in the flux
of natural radionuclides and plutonium in the deep Sargasso Sea, Deep-Sea Research,
32 (3), 273-286.

[4] Conte, M., N. Ralf, and E.H. Ross, (2001) Seasonal and interannual variability in
deep ocean particle fluxes at the Ocean Flux Program (OFP)/ Bermuda Atlantic Time-
Series (BATS) site in the western Sargasso Sea near Bermuda, Deep-Sea Research II,
48, 1471-1505.

[5] Deuser, W. G., (1987) Variability of hydrography and particle flux: transient and
long-term relationships. Particle Flux in the Ocean. E. T. Degens, E. Izdar and S.
Honjo. Hamburg, Germany, SCOPE/UNEP. 62: 179-193.

[6] Deuser, W.G., E.H. Ross, and R.F. Anderson, (1981) Seasonality in the supply of
sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to
the deep ocean, Deep-Sea Research, 28A (5), 495-505.

[7] Deuser, W.G., T.D. Jickells, P. King, and R.F. Commeau, (1995) Decadal and
annual change in biogenic opal and carbonate fluxes to the deep Sargasso Sea, Deep-
Sea Research I, 42 (11/12), 1923-1932.

[8] Dymond, J., and R. Collier, (1988) Biogenic particle fluxes in the equatorial Pacific:
Evidence for both high and low productivity during the 1982-1983 El Nino, Global
Biogeochemical Cycles, 2 (2), 129-137.

[9] Dymond, J., Lyle, M., (1985) Flux comparisons between sediments and sediment
traps in the eastern tropical pacific: Implications for atmospheric CO2 variations during
the Pleistocene. Limnology and Oceanography. 30 (4), 699 - 712.

[10] Dymond, J., and M. Lyle, (1994) Particle fluxes in the ocean and implications for
sources and preservation of ocean sediments, in Studies in Geophysics: Material Fluxes
on the Surface of the Earth, edited by NRC, pp. 125-142, National Academy Press,
Washington, D.C..

[11] Fahl, K., Nothig, E-M., (2007) Lithogenic and biogenic particle fluxes on the
Lomonosov Ridge (central Arctic Ocean) and their relevance for sediment accumula-
tion: vertical vs. lateral transport. Deep Sea Research Part I: Oceanographic Research
Papers. 54 (8), 1256 - 1272.

[12] Fischer, G., and G. Wefer, (1996) Seasonal and interannual particle fluxes in the
eastern equatorial Atlantic from 1989 to 1991: ITCZ migrations and upwelling, in Par-

186



ticle Flux in the Ocean, edited by V. Ittekkot, P. Schafer, S. Honjo, and P.J. Depetris,
pp. 199-214, John Wiley & Sons, New York, N.Y..

[13] Fischer, G., D. Futterer, R. Gersonde, S. Honjo, D. Ostermann, and G. Wefer,
(1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice
cover, Nature, 335 (6189), 426-428, 1988.

[14] Fischer, G., V. Ratmeyer, and G. Wefer, (2000) Organic carbon fluxes in the
Atlantic and the Southern Ocean: relationship to primary production compiled from
satellite radiometer data, Deep-Sea Research II, 47, 1961-1997.

[15] Fischer, G., R. Gersonde, and G. Wefer, (2002) Organic carbon, biogenic silica
and diatom fluxes in the marginal winter sea-ice zone and the Polar Front Region:
interannual variations and differences in composition, Deep-Sea Research II, 49, 1721-
1745.

[16] Fischer, G., Wefer, G., Romero, O.E., Dittert, N., Donner, B., Ratmeyer, V. (2004),
Transfer of particles into the deep atlantic and the global ocean: control of nutrient
supply and ballast production. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds), The
South Atlantic in the late Quaternary: Reconstructins of Material Budgets and Current
Systems. Springer: Berlin, pp. 21-46

[17] Haake, B., V. Ittekkot, T. Rixen, V. Ramaswamy, R.R. Nair, and W.B. Curry,
(1993) Seasonality and interannual variability of particle fluxes to the deep Arabian
Sea, Deep-Sea Research I, 40 (7), 1323- 1344.

[18] Haake, B., T. Rixen, T. Reemtsma, V. Ramaswamy, and V. Ittekkot, (1996) Pro-
cesses determining seasonality and interannual variability of settling particle fluxes to
the deep Arabian Sea, in Particle Flux in the Ocean, edited by V. Ittekkot, P. Schafer,
S. Honjo, and P.J. Depetris, pp. 251-270, John Wiley & Sons, New York, N.Y.

[19] Handa, N., A. Hosokawa, and T. Masuzawa, (1997) Studies on vertical flux of
particulate carbon and silica in the ocean and factors controlling the chemical fluxes,
in Biogeochemical Processes in the North Pacific, edited by S. Tsunogai, pp. 249-255,
Japan Marine Science Foundation, Tokyo.

[20] Hebbeln, D., M. Marchant, and G. Wefer, (2000) Seasonal variations of the particle
flux in the Peru-Chile current at 30°S under ’normal’ and El Nino conditions, Deep-Sea
Research II, 47, 2101-2128.

[21] Heggie, D., C. Maris, A. Hudson, J. Dymond, R. Beach, and J. Cullen, (1987)
Organic carbon oxidation and preservation in NW Atlantic continental margin sedi-
ments, in Geology and Geochemistry of Abyssal Plains, edited by P.P.E. Weaver, and
J. Thomson, pp. 215-236, Geological Society Special Publication.

[22] Honda, M.C., (2001) Studies of carbon cycles in the NW Pacific Ocean by sediment
trap and C14 data, PhD thesis, Hokkaido University, Sapporo, Japan, (Part 2 of 2)

[23] Hong, G.H., S.-M. Choe, M.-S. Suk, J.-Y. Na, I.C. Sin, C.S. Chung, and S.H.
Kim, (1996) Annual biogenic particle fluxes to the interior of the East Japan Sea, a
large marginal sea of the Northwest Pacific, in Proceedings of the International Ma-
rine Science Symposium, edited by S. Tsunogai, pp. 300-321, Japan Marine Science

187



Foundation, Mutsu, Aomori, Japan.

[24] Honjo, S., (1982) Seasonality and interaction of biogenic and lithogenic particulate
flux at Panama Basin, Science, 218, 883-884.

[25] Honjo, S., (1990) Particle fluxes and modern sedimentation in the Polar Oceans, in
Polar Oceanography, Part B: Chemistry, Biology, and Geology, edited by W.O. Smith,
pp. 687-739, Academic Press, New York.

[26] Honjo, S., (1996) Fluxes of particles to the interior of the open oceans, in Particle
Flux in the Ocean, edited by V. Ittekkot, P. Schafer, S. Honjo, and P.J. Depetris, pp.
91-154, John Wiley & Sons, New York, N.Y..

[27] Honjo, S., and S.J. Manganini, (1993) Annual biogenic particle fluxes to the interior
of the North Atlantic Ocean; studied at 34°N 21°W and 48°N 21°W, Deep-Sea Research
I, 40 (1-2), 587-607.

[28] Honjo, S., S. Manganini, A.L. Karowe, and B.L. Woodward, (1987) Particle fluxes,
northeastern Nordic Seas: 1983-1986, in WHOI Technical Report, pp. 1-84, WHOI,
Woods Hole, MA.

[29] Honjo, S., S. J. Manganini, G. Wefer, (1988) Annual particle flux and a win-
ter outburst of sedimentation in the northern Norwegian Sea., Deep-Sea Research 35:
pp.1223-1234.

[30] Honjo, S., D. W. Spencer, W. D. Gardner, (1992) Sediment trap intercomparison
experiment in the Panama Basin, 1979, Deep Sea Research. Part A: Oceanographic
Research Papers, vol.39, no.2, pp.333-358.

[31] Honjo, S., J. Dymond, R. Collier, and S.J. Manganini, (1995) Export produc-
tion of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac
experiment, Deep-Sea Research II, 42 (2-3), 831- 870.

[32] Honjo, S., Dymond, J., Prell, W., Ittekkot, V., (1999) Monsoon-controlled export
fluxes to the interior of the Arabian Sea. Deep-Sea Research Part II - Topical Studies
in Oceanography. 46 (8-9), 1859 - 1902.

[33] Honjo, S., R. Francois, S. Manganini, J. Dymond, and R. Collier, (2000) Particle
fluxes to the interior of the Southern Ocean in the western Pacific sector along 170°W,
Deep-Sea Research II, 47, 3521-3548.

[34] Ittekkot, V., R.R. Nair, S. Honjo, V. Ramaswamy, M. Bartsch, S. Manganini, and
B.N. Desai, (1991) Enhanced particle fluxes in Bay of Bengal induced by injection of
fresh water, Nature, 351, 385-387.

[35] Jickells, T.D., P.P. Newton, P. King, R.S. Lampitt, and C. Boutle, (1996) Com-
parison of sediment trap records of particle fluxes from 19°to 48°N in the northeast
Atlantic and their relation to surface water productivity, Deep Sea Research I, 43 (7),
971-986.

[36] Kawahata, H., (2002) Suspended and settling particles in the Pacific, Deep-Sea
Research II, 49, 5647-5664.

188



[37] Kawahata, H., A. Suzuki, and H. Ohta, (1998) Sinking particles between the equa-
torial and subarctic regions (0°N 46°N) in the central Pacific, Geochemical Journal, 32,
125-133.

[38] Kawahata, H., A. Suzuki, and H. Ohta, (2000) Export fluxes in the western Pacific
warm pool, Deep-Sea Research I, 47, 2061-2091.

[39] Kempe, S., and H. Knaack, (1996) Vertical particle flux in the western Pacific below
the north equatorial current and the equatorial counter current, in Particle Flux in the
Ocean, edited by V. Ittekkot, P. Schafer, S. Honjo, and P.J. Depetris, pp. 313-323,
John Wiley & Sons, New York, N.Y.

[40] Lakashin, V.N., (2008) Sedimentary matter fluxes in the contour current sedimen-
tation system over the continental slope of the Norwegian Sea. Oceanology. 48 (5), 701
- 709.

[41] Lyle, M., R. Zahn, F. Prahl, J. Dymond, R. Collier, N. Pisias, and E. Suess, (1992)
Paleoproductivity and carbon burial across the California Current: the multitracers
transect, 42°N, Paleoceanography, 7 (3), 251-272.

[42] Nair, R.R., V. Ittekkot, S.J. Manganini, V. Ramaswamy, B. Haake, E.T. Degens,
B.N. Desai, and S. Honjo, (1989) Increased particle flux to the deep ocean related to
monsoons, Nature, 338, 749-751.

[43] Neuer, S., V. Ratmeyer, R. Davenport, G. Fischer, and G. Wefer, (1997) Deep
water particle flux in the Canary Island region: seasonal trends in relation to long-
term satellite derived pigment data and lateral sources, Deep-Sea Research I, 44 (8),
1451-1466.

[44] Pudsey, C.J., and P. King, (1997) Particle fluxes benthic processes and the paleoen-
vironmental record in the northern Weddell Sea, Deep-Sea Research I, 44, 1841-1876.

[45] Schafer, P., V. Ittekkot, M. Bartsch, R.R. Nair, and J. Tiemann, (1996) Fresh water
influx and particle flux variability in the Bay of Bengal, in Particle Flux in the Ocean,
edited by V. Ittekkot, P. Schafer, S. Honjo, and P.J. Depetris, pp. 271-292, John Wiley
& Sons, New York, N.Y.

[46] Scholten, J.C., J. Fietzke, S. Vogler, M.M. Rutgers van der Loeff, A. Mangini, W.
Koeve, J. Waniek, P. Stoffers, A. Anita, and J. Kuss, (2001) Trapping efficiencies of
sediment traps from the deep eastern North Atlantic: the 230Th calibration, Deep-Sea
Research II, 48, 2383-2408.

[47] Takahashi, T., N. Fujitani, M. Yanada, and Y. Maita, (1997) Five year long particle
fluxes in the central subarctic Pacific and the Bering Sea, in Biogeochemical Processes
in the North Pacific, edited by S. Tsunogai, pp. 277-289, Japan Marine Science Foun-
dation, Tokyo.

[48] Takahashi, K., N. Fujitani, M. Yanada, and Y. Maita,(2000) Long-term biogenic
particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990-1995,
Deep-Sea Research I, 47, 1723-1759.

[49] von Bodungen, B., A. Anita, E. Bauerfeind, O. Haupt, W. Koeve, E. Machado,
I. Peeken, R. Peinert, S. Reitmeier, C. Thomsen, M. Voss, M. Wunch, U. Zeller, and

189



B. Zeitzschel, (1995) Pelagic processes and vertical flux of particles: an overview of a
long-term comparative study in the Norwegian Sea and Greenland Sea, Geol. Rundsch,
84, 11-27.

[50] Wefer, G., and G. Fischer, (1991) Annual primary production and export flux in
the Southern Ocean from sediment trap data, Marine Chemistry, 35, 597-613.

[51] Wefer, G., and G. Fischer, (1993) Seasonal patterns of vertical particle flux in
equatorial and coastal upwelling areas of the eastern Atlantic, Deep-Sea Research I, 40
(8), 1613-1645.

[52] Wong, C.S., F.A. Whitney, D.W. Crawford, K. Iseki, R.J. Matear, W.K. Johnson,
J.S. Page, and D. Timothy, (1999) Seasonal and interannual variability in particle fluxes
of carbon, nitrogen and silicon from time series of sediment traps at Ocean Station
P, 1982-1993: Relationship to changes in subarctic primary productivity, Deep-Sea
Research II, 46, 2735-2760.

[53] Treguer unpublished

[54] Honjo unpublished

[54] Francois, R., S. Honjo, R. Krishfield, and S. Maganini (2002) Factors controlling
the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical
Cycles. 16 (4)

A.2 Geographically Weighted Regression Model Output

The geographically weighted regression analysis in Chapter 3 was performed using the
GWR 3.0 software provided by Martin Charlton at the National Centre for Geocompu-
tation at the National University of Ireland Maynooth. A PDF manual for the software
can be found online at:

http://eprints.ncrm.ac.uk/90/1/MethodsReviewPaperNCRM-006.pdf

Since the writing of this thesis, an updated version of the software (GWR 4.0) has been
made available. The analysis performed using GWR 3.0 has been checked using GWR
4.0 and is the same. GWR 4.0 is available freely online at:

https://geodacenter.asu.edu/gwr software

The output from the analysis shown in Figure 3.7 in Chapter 3 using GWR 3.0 is
provided here. The output has been abbreviated by removing the casewise diagnostics
to focus on the statistical ouput.
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*************************************************

* Geographically Weighted Regression *

* Release 3.4.3 *

* (31-iii-2007) *

* *

* Martin Charlton, Chris Brunsdon *

* A Stewart Fotheringham *

* (c) National University of Ireland Maynooth *

*************************************************

Program starts at: Mon Jul 02 09:08:07 2012

** Program limits:

** Maximum number of variables..... 52

** Maximum number of observations.. 80000

** Maximum number of fit locations. 80000

156_model

** Observed data file: D:\GeographicallyWeightedRegression\SedT

** Prediction location file: Estimation at sample point locations

** Result output file: D:\GeographicallyWeightedRegression\SedT

** Variables in the data file...

long lat poc caco3 opal litho

** Dependent (y) variable..........poc

** Easting (x-coord) variable.....long

** Northing (y-coord) variable.....lat

** No weight variable specified

** Independent variables in your model...

caco3 opal litho

** Kernel type: Adaptive

** Kernel shape: Bi-Square

** Bandwidth selection by AICc minimisation

** Use all regression points

** Calibration history requested

** Prediction report requested

** Output estimates to be written to .txt file

** Monte Carlo significance tests for spatial variation

** Casewise diagnostics to be printed

*** Analysis method ***

*** Geographically weighted multiple regression

** Spherical coordinates: Great Circle Distance

***************************************************************

* *

* GEOGRAPHICALLY WEIGHTED GAUSSIAN REGRESSION *

* *
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***************************************************************

Number of data cases read: 156

Observation points read...

Dependent mean= 1.653247

Number of observations, nobs= 156

Number of predictors, nvar= 3

Observation Easting extent: 6.21337223

Observation Northing extent: 2.51711392

** NB these are in radians

*Finding bandwidth...

... using all regression points

This can take some time...

*Calibration will be based on 156 cases

*Adaptive kernel sample size limits: 10 156

*AICc minimisation begins...

Bandwidth AICc

55.116481270000 297.183880324985

83.000000000000 302.634666579220

37.883518934058 321.201178820903

65.767037664058 283.443482508653

72.349443527998 291.796148826405

61.698887133940 287.104618757539

68.281292968108 286.947593281877

64.213142437990 286.395223312413

66.727397730668 284.829063596995

** Convergence after 9 function calls

** Convergence: Local Sample Size= 66

**********************************************************

* GLOBAL REGRESSION PARAMETERS *

**********************************************************

Diagnostic information...

Residual sum of squares......... 73.524015

Effective number of parameters.. 4.000000

Sigma........................... 0.695493

Akaike Information Criterion.... 335.758771

Coefficient of Determination.... 0.657990

Adjusted r-square............... 0.648930

Parameter Estimate Std Err T

--------- ------------ ------------ ------------

Intercept 0.012317497019 0.114000329279 0.108047910035

caco3 0.089002080293 0.006689772651 13.304201126099

opal 0.022807854623 0.005475704736 4.165282249451

litho 0.026949395939 0.004912231407 5.486182212830
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**********************************************************

* GWR ESTIMATION *

**********************************************************

Fitting Geographically Weighted Regression Model...

Number of observations............ 156

Number of independent variables... 4

(Intercept is variable 1)

Number of nearest neighbours...... 66

Number of locations to fit model.. 156

Diagnostic information...

Residual sum of squares......... 37.633261

Effective number of parameters.. 20.016103

Sigma........................... 0.526068

Akaike Information Criterion.... 269.820752

Coefficient of Determination.... 0.824942

Adjusted r-square............... 0.798984

**********************************************************

* ANOVA *

**********************************************************

Source SS DF MS F

OLS Residuals 73.5 4.00

GWR Improvement 35.9 16.02 2.2409

GWR Residuals 37.6 135.98 0.2767 8.0973

**********************************************************

* PARAMETER 5-NUMBER SUMMARIES *

**********************************************************

Label Minimum Lwr Quartile Median Upr Quartile Maximum

-------- ------------- ------------- ------------- ------------- ----

Intrcept -0.210956 -0.147014 0.079721 0.271950 0.502543

caco3 0.022056 0.044169 0.066327 0.101922 0.133332

opal -0.001033 0.023191 0.033392 0.045663 0.156923

litho -0.065595 0.018597 0.022193 0.050515 0.073473

<------------------ LOWER ----------------->

Label Far Out Outer Fence Outside Inner Fence

-------- ------- ------------- ------- ------------

Intrcept 0 -1.403906 0 -0.775460

caco3 0 -0.129091 0 -0.042461

opal 0 -0.044222 0 -0.010515

litho 0 -0.077155 19 -0.029279
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<------------------ UPPER ----------------->

Label Inner Fence Outside Outer Fence Far Out

-------- ------- ------------- ------- ------

Intrcept 0.900396 0 1.528842 0

caco3 0.188552 0 0.275182 0

opal 0.079369 7 0.113076 25

litho 0.098391 0 0.146267 0

*************************************************

* *

* Test for spatial variability of parameters *

* *

*************************************************

Tests based on the Monte Carlo significance test

procedure due to Hope [1968,JRSB,30(3),582-598]

Parameter P-value

---------- ------------------

Intercept 0.30000 n/s

caco3 0.00000 ***

opal 0.00000 ***

litho 0.00000 ***

*** = significant at .1% level

** = significant at 1% level

* = significant at 5% level

Program terminates normally at: Mon Jul 02 09:08:08 2012
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APPENDIX B

Code

This appendix contains code used in Chapter 4 to diagnose a transport matrix in the
Earth System Model of Intermediate Complexity: GENIE, and code to process the
output in MATLAB. The appendix also contains the MATLAB code for the steady-
state model described in Chapter 5.

B.1 Transport Matrix

B.1.1 Context of Transport Matrix in GENIE

The Transport Matrix as described in Khatiwala et al. (2005) and Khatiwala (2007)
contains the finite difference tendency calculated in an ocean model:

dc

dt
=

cn+1 − cn

∆t
= A′ncn + q′n (B.1)

where A’ is the transport matrix containing the finite difference tendencies (dt−1), c is
a tracer (mol kg−1) and q’ is a vector of source/sinks (mol kg−1 dt−1). The superscripts
refer to the time step index. Rearranging Equation B.1 for cn+1:

cn+1 = (I + A′∆t)cn + q′n∆t (B.2)

In GENIE the tracer experiments diagnose the tracer distribution resulting from the
ocean circulation acting on a unit flux over one time step. Therefore, the GENIE
transport matrix (A) described and used in this thesis is equivalent to (I + A′∆t).
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B.1.2 Code

The following code fragments perform and record the colour tracer experiments in
GENIE required to diagnose a transport matrix (Khatiwala et al., 2005). The code
fragments are described below, are written in Fortran 90 and run within the BIOGEM
module:

� biogem.f90 : The code occurs in two parts. The second part (MUFFIN MATRIX
PART II) initialises a single ocean grid-box per iteration of the code with 1 mol
kg-1 of the ‘blue’ colour tracer. This is then passed by BIOGEM to the GOLD-
STEIN module. In the following call of the BIOGEM routine during the next
time-step, the first part of the code (MUFFIN MATRIX PART I) loops over the
‘blue’ colour tracer array, having returned from GOLDSTEIN, recording any non-
zero values. The value of the tracer in the array is written to a text file along
with grid-box indices. The code takes advantage of the vectorisation of the tracer
array already in cGENIE.

� biogem lib.f90 : Variables used for indexing and looping are declared here.

� initialise biogem.f90 : The index and loop variables are set to initial values here.

To diagnose a transport matrix:

1. A spin-up run should first be run with the ‘blue’ colour tracer selected in the
base-config file. The spin-up should be run as long as required or when a desired
steady state ocean circulation has been reached. A recommended run time is
10,000 years. The spin-up is then used as a restart file for the run where the
transport matrix will be diagnosed.

2. Code should then be copied into the biogem.f90, biogem lib.f90 and initialise biogem.f90.

3. Start a new run, using the spin-up as a restart, using the same base and user
configuration files as the restart. The time-stepping ratio between BIOGEM and
GOLDSTEIN should be set to 1 to represent the time-step taken by GOLDSTEIN.

4. An output file will appear in the experiment output file which can be processed
by MATLAB using the sparse function.

All code and line number references are correct for the SVN revision 9167 of the muffin
branch of cGENIE. Please note this code is not available via the SVN repository.

B.1.2.1 biogem.f90 code

The code sits within the biogem tracercoupling subroutine. The variables are first
declared:

!muffin matrix variables

integer::loop_count

real::loc_colb,loc_V

character(len=127)::loc_filename
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The following code loops over the colour tracer array from the previous time-step,
recording the concentration and grid-box indices if the concentration is > 0. This is
then written to a text file and the corresponding grid-boxes set to a concentration of 0:

!!! ************************* !!!

!!! MUFFIN MATRIX PART I !!!

!!! ************************* !!!

! find grid-boxes with colour tracer in from ts (from goldstein)

! need to stagger this after the initialisation step (PART II)

if(matrix_loop.gt.1)THEN

print*,’<<<<Recovering Matrix Information’

! set-up unique filename for writing data n.b.

! matrix_loop will always be matrix_loop-1 to correspond to prev. initialisation

loc_filename=’muffin_matrix’

open(22,file=loc_filename,position=’append’)

! main loop over colb in ts

loop_count=1

do n=1,n_vocn,1

loc_k1 = loc_vts(n)%k1

do k=n_k,loc_k1,-1

! see if anything is sitting in grid-boxes (as mol kg-1) and if so write data

loc_colb=loc_vts(n)%mk(io2l(io_colb),k)!*vphys_ocn(n)%mk(ipo_M,k)

if(abs(loc_colb).gt.const_real_nullsmall)THEN

PRINT*,’found stuff in:’,matrix_loop-1,loc_vts(n)%i,loc_vts(n)%j,k,loc_colb

write(22,FMT=’(I4,4x,I4,4x,e13.7)’) &

&matrix_loop-1,&

&loop_count,&

&loc_colb

end if

loop_count=loop_count+1

end do

end do

close(22) ! close file

END if

! get out clause when all boxes are initialised....

! n_vocn is not the number of all wet

! grid boxes though-> is the number of wet 2d grid points!

IF(matrix_vocn_n.gt.n_vocn)THEN

! write out an indexing file

open(21,file=’muffin_matrix_v_index’)
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do n=1,n_vocn,1

loc_k1 = loc_vts(n)%k1

do k=n_k,loc_k1,-1

write(21,FMT=’(A2,1X,A2,1X,A2)’)&

&fun_conv_num_char_n(2,loc_vts(n)%i), &

&fun_conv_num_char_n(2,loc_vts(n)%j), &

&fun_conv_num_char_n(2,k)

end do

end do

close(21)

! shut down the simulation

print*, ’*** <<< ALL MATRIX BOXES CALCULATED.....STOP!’

stop

end if

!!! ********************************* !!!

!!! END OF MUFFIN MATRIX PART I !!!

!!! ********************************* !!!

After recording the results of the last time-step, this code initialises the next grid-box
with a unit of colour tracer:

!!! ************************** !!!

!!! MUFFIN MATRIX PART II !!!

!!! ************************** !!!

! initialise colour tracer in ts (going to goldstein)

! n.b. matrix_count & matrix_k are set in biogem_lib

!IF(par_misc_matrix)THEN

loc_k1=loc_vts(matrix_vocn_n)%k1

PRINT*,’<<<< Initialising matrix - Box Number:’,&

& matrix_loop,’Box i:’,loc_vts(matrix_vocn_n)%i,&

& ’Box j:’,loc_vts(matrix_vocn_n)%j,&

& ’Box k:’,matrix_k,’loc k1’,loc_k1

! initialising grid_box with 1 mol kg-1 of colour tracer

loc_vts(matrix_vocn_n)%mk(io2l(io_colb),matrix_k)=&

& 1!*vphys_ocn(matrix_vocn_n)%mk(ipo_rM,matrix_k)

IF(matrix_k.gt.loc_k1)THEN ! if matrix_k > the bottom....

matrix_k=matrix_k-1 ! decrement matrix_k

matrix_loop=matrix_loop+1 ! increment matrix_loop

else ! then matrix_k is equal to the bottom....

matrix_k=n_k ! reset matrix_k

matrix_loop=matrix_loop+1 ! increment matrix_loop
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matrix_vocn_n=matrix_vocn_n+1 ! increment matrix_vocn_count

end if

!

!!! ********************************** !!!

!!! END OF MUFFIN MATRIX PART II !!!

!!! ********************************** !!!

B.1.2.2 biogem lib.f90 code

integer::matrix_vocn_n

integer::matrix_k

integer::matrix_loop

NAMELIST /ini_biogem_nml/matrix_vocn_n,matrix_k,matrix_loop

B.1.2.3 initialise biogem.f90 code

matrix_vocn_n=1

matrix_k=8

matrix_loop=1

B.2 Steady-state Model Code

B.2.1 MATLAB Code

B.2.1.1 OMFG.m

function [ Model Output ] = OMFG (...
A,...
runtime,...
dt ratio,...
l POC1,...
frac2,...
uptake scheme,...
restart,...
model directory,...
save output)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Offline Matrix-based Fast GENIE (OMFG)
% "oh my f*cking god that's fast"
%
% forward simulation of phosphate only matrix-genie
%
% govering equations: dPO4/dt=A*PO4-Jup+Jremin+(k*DOP)
% dDOP/dt=A*DOP+(DOP frac*Jup)-(k*DOP)
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%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% initialise variables/arrays

% -- load in genie-based data if needed
addpath(['C:\Users\ggzjw\Local Documents\...

Matlab Files\Spatial Remin\' model directory])
load('matrix vars')
load('genie vars')
if ¬strcmp(uptake scheme,'MM')

load(['C:\Users\ggzjw\Local Documents\Matlab Files\Spatial Remin\ODV PO4']);
end

% -- basic
dt=1/96*dt ratio; % genie timestep (years)
conv d s=24*3600;
conv d yr=365.25;
conv yr s=365.25*24.0*3600.0;
z0=zt edges(2); % bottom of surface layer (m)
loop count=1;
dt loop count=1;
solconst=1368; % solar constant (W m-2)

% -- biology relevant parameters
l POC2=1000000.0; % efolding depth of refractory POP (m)
DOP frac=0.66; % fraction of export for DOP
rDOP frac=1-DOP frac; % reciprical of DOP frac
DOP k=(1/0.5); % DOP decay rate (yr-1 -> year-1)
tau=30/conv d yr; % restoring timescale (days -> yrars)
r tau=1/tau; % reciprical restoring timescale (1/years)
u0PO4=1.9582242E-06; % maximum PO4 uptake (mol kg-1 yr-1)
KPO4=2.1989611E-07; % Michaelis-Menton half sat. conc. (mol kg-1);

% -- arrays
J=zeros(nb,2); % source/sink array
PO4=zeros(nb,2); % tracer array at current time step, (:,1)=PO4 (:,2)=DOP
PO4 1=zeros(nb,2); % tracer array at previous time step
JDOP=zeros(nb,1); % DOP remineralisation array (mol kg-1)
dPO4 dt=zeros(nb,1); % dPO4/dt
remin fracs=zeros(8,36,36);
Ib=find(v index.k==8);
prod mod=zeros(nb,1);
prod mod=(1-(SEAICE./100)).*(SOLFOR./solconst)*u0PO4;
Juptake=zeros(nb,1);
Jremin=zeros(nb,1);

Model Output.Year=zeros(1,numel(save output));
Model Output.PO4=zeros(nb,numel(save output));
Model Output.DOP=zeros(nb,numel(save output));
Model Output.PO4 Uptake=zeros(nb,numel(save output));
Model Output.PO4 Remin=zeros(nb,numel(save output));
Model Output.DOP Remin=zeros(nb,numel(save output));
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Model Output.PO4 Inventory=zeros(1,numel(save output));
Model Output.DOP Inventory=zeros(1,numel(save output));

%% remin matrix
[remin]=create remin matrix(l POC1,l POC2,frac2);

%% run forward simulation

% initialise tracer arrays
if restart==1

[matrix PO4,matrix DOP]=read genie netcdf(...
'fields biogem 3d.nc',1,v index,'ocn PO4','ocn DOM P');

PO4 1(:,1)=matrix PO4;
PO4 1(:,2)=matrix DOP;

else
PO4 1(:,1)=2.159/1e6;

% initial PO4 (umol kg-1 -> mol kg-1) (Ridgwell et al. 2007)
PO4 1(:,2)=0.0235/1e6;

% inital DOP umol kg-1 -> mol kg-1) (Najjar et al. 2007)
end

for t=1:96*runtime

% ocean + biology step
if dt loop count==dt ratio | | dt ratio==1

% reset source/sink arrays
J=zeros(nb,2); Juptake=zeros(nb,1); Jremin=zeros(nb,1);

% DOP remineralisation (mol kg-1),
% n.b. calc seperately to minimise number of calculations
JDOP=PO4 1(:,2)*DOP k*dt;

% Uptake mol kg-1
if strcmp(uptake scheme,'MM')
Juptake(Ib,1)=(dt*(prod mod(Ib,1).*(PO4 1(Ib,1)./(PO4 1(Ib,1)+KPO4))));
else
Juptake(Ib,1)=(dt*(r tau.*(PO4 1(Ib,1)-ODV PO4(Ib,1))));
Juptake(Juptake>0)=0;
end

% DOP from uptake, mol kg-1
J(Ib,2)=(Juptake(Ib,1)*DOP frac);

% remineralisation of uptake, mol kg-1
Jremin(:,1)=(remin*(Juptake*rDOP frac));

% DOP remin to PO4, mol kg-1
J(:,1)=J(:,1)+Jremin-Juptake+JDOP;
% DOP remin from DOP, mol kg-1
J(:,2)=J(:,2)-JDOP;

% transport divergence plus source/sink
PO4=A*PO4 1+J;
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dt loop count=1;

% ocean only step
else
PO4=A*PO4 1;
dt loop count=dt loop count+1;
end

% set previous time-step array PO4 1
PO4 1=PO4;

% integrate save output
if (t≥save output*96-48 & t≤save output*96+48) % is between save dt=1

save ind=(t≥save output*96-48 & t≤save output*96+48);

Model Output.PO4(:,save ind)=Model Output.PO4(:,save ind)+PO4(:,1);
Model Output.DOP(:,save ind)=Model Output.DOP(:,save ind)+PO4(:,2);
Model Output.PO4 Uptake(:,save ind)=...

Model Output.PO4 Uptake(:,save ind)+Juptake;
Model Output.PO4 Remin(:,save ind)=...

Model Output.PO4 Remin(:,save ind)+Jremin;
Model Output.DOP Remin(:,save ind)=...

Model Output.DOP Remin(:,save ind)+JDOP;
Model Output.PO4 Inventory(:,save ind)=...

Model Output.PO4 Inventory(:,save ind)+sum(M.*PO4(:,1));
Model Output.DOP Inventory(:,save ind)=...

Model Output.DOP Inventory(:,save ind)+sum(M.*PO4(:,2));

end

end

% output variables
Model Output.Year=save output;
Model Output.PO4=Model Output.PO4./96;
Model Output.DOP=Model Output.DOP./96;
Model Output.PO4 Inventory=Model Output.PO4 Inventory./96;
Model Output.DOP Inventory=Model Output.DOP Inventory./96;

end

%% SUB FUNCTIONS
function [ remin matrix ] = create remin matrix ( l POC1 , l POC2 , frac2 )

load('matrix vars')
load('genie vars','zt edges','ocn mask','M ratio')

z0=zt edges(2);

%% set up remin profiles
% initialise an idealised water column, extend to full genie grid
% then adjust for bottom depths satisfying closed system
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if numel(l POC1)==1
l POC1=repmat(l POC1,[numel(Ib),1]);

end

if numel(frac2)==1
frac2=repmat(frac2,[numel(Ib),1]);

end

for n=1:numel(Ib)
remin profile=1-...

((1-frac2(n,1))*(exp((z0-zt edges(2:end))/l POC1(n,1)))...
+frac2(n,1)*(exp((z0-zt edges(2:end))/l POC2)));

% cumulative remineralisation fractions (for both fractions)

remin profile diff=diff([remin profile(1:end-1) ; 1]);
% remin proportions in each grid-box
remin profile diff=[0 ; remin profile diff];
% remin proportions in each grid-box

remin fracs(:,v index.j(Ib(n)),v index.i(Ib(n)))=remin profile diff;
% extend to full 8x36x36 grid
end
% loop over water columns and adjust remin profiles for bottom depths
for ii=1:36

for jj=1:36

loc mask=ocn mask(:,ii,jj);
if nansum(loc mask)<8

% if not full 8 box depth profile
loc profile=remin fracs(:,ii,jj);
loc zbot=find(loc mask==1,1,'last');

% find wet grid-box above sediment
remin fracs(loc zbot,ii,jj)=loc profile(loc zbot)+...

sum(loc profile(loc zbot+1:end)); % add rest of remin to grid-box
end

end
end
remin fracs=f2v(remin fracs,v index.i,v index.j,v index.rk);
% vectorise
remin fracs=remin fracs.*M ratio;
% combine with ratio between surface mass and grid-box mass

clear remin profile remin profile diff loc profile loc zbot loc mask
% only needed once so clear from memory

%% create remin transformation matrix
% to transform Jup to vector for multiplication with Jremin

water col remin=sparse(6210,6210);

nbb=numel(find(v index.k==8));
Ib1=[find(v index.k==8);6211];
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for n=2:nbb+1

temp=zeros(nb,1);
temp(Ib1(n-1):Ib1(n)-1)=remin fracs(Ib1(n-1):Ib1(n)-1);

water col remin(:,Ib1(n-1):Ib1(n)-1)=repmat(temp,[1 numel(Ib1(n-1):Ib1(n)-1)]);

end

remin matrix=water col remin;

clear Ib1

end
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APPENDIX C

Supplementary Figures and Tables

This appendix contains supplementary Tables and Figures for all chapters.

Table C.1: Minimum and maximum overturning circula-
tions for each ensemble member from Annan et al. (2005)
and for the standard GENIE configuration corresponding
to the SYN dataset (Ridgwell and Hargreaves , 2007) cal-
culated at the end of the 10000 year spin-up.

Ens. Global Min. Global Max. Atl. Min. Atl. Max

1 -44.984 44.424 -1.145 20.013
2 -42.595 41.983 -1.009 20.767
3 -48.919 48.096 -0.471 17.1
4 -37.221 36.743 -0.781 17.913
5 -40.909 37.746 -0.965 18.436
6 -44.138 41.438 -0.964 18.519
7 -41.648 39.93 -1.199 20.104
8 -33.106 30.128 -0.773 16.518
9 -37.825 35.532 -0.968 16.697
10 -38.763 38.677 -0.976 17.562
11 -45.308 43.577 -0.918 17.668
12 -43.51 41.387 -1.12 17.875
13 -36.348 32.935 -0.91 16.756
14 -40.963 38.4 -0.918 17.543
15 -35.481 33.514 -0.771 16.994
16 -36.058 35.122 -1.213 19.245
17 -45.322 40.9 -1.287 18.462
18 -36.093 33.451 -1.123 17.622

Continued on next page
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Continued from previous page
Ens. Global Min. Global Max. Atl. Min. Atl. Max

19 -43.719 41.425 -0.97 17.7
20 -39.29 36.775 -1.02 18.446
21 -46.585 43.208 -0.946 17.063
22 -46.512 40.972 -1.605 22.607
23 -44.881 41.41 -0.891 16.35
24 -43.417 42.392 -0.888 15.656
25 -41.159 37.946 -0.979 17.759
26 -38.099 36.185 -1.279 18.826
27 -40.831 37.522 -0.907 16.188
28 -36.051 32.139 -1.267 17.629
29 -41.826 39.273 -1.015 18.428
30 -39.999 37.343 -0.883 16.047
31 -44.028 43.078 -1.128 18.89
32 -40.015 38.424 -0.946 17.374
33 -45.535 41.939 -0.975 17.5
34 -37.05 33.947 -0.933 18.752
35 -46.752 43.682 -2.142 19.603
36 -40.286 37.239 -2.18 18.173
37 -44.404 42.344 -0.639 16.259
38 -38.082 37.064 -1.052 16.523
39 -39.32 36.908 -2.129 17.893
40 -34.405 32.641 -1.369 18.476
41 -38.175 38.101 -0.912 19.18
42 -39.147 37.322 -1.099 18.696
43 -45.06 40.854 -1.08 19.603
44 -43.422 42.015 -1.049 18.123
45 -50.089 44.883 -0.997 18.595
46 -40.868 36.177 -0.942 19.541
47 -42.207 39.9 -0.51 15.787
48 -36.276 32.168 -2.061 18.242
49 -41.262 37.757 -0.995 17.64
50 -42.064 39.877 -0.827 16.787
51 -41.28 37.355 -1.025 16.997
52 -39.448 37.092 -1.142 17.869
53 -36.709 32.89 -0.705 15.349
54 -42.012 39.44 -1.308 17.956
SYN -44.751 40.226 -0.177 18.221
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Table C.2: Parameters values from the GENIE ensemble Annan et al. (2005) used in
this study. The parameter values for the standard tuned model set-up in Ridgwell and
Hargreaves (2007) are also shown.

Parameter Reference Min. Max. SYN

Ocean
temp0 go 10 10.115 24.904 0.000
temp1 go 11 10.115 24.904 0.000
rel go 12 0.9 0.9 0.9
sc tau go 13 1.078 2.320 1.932
iso go 14 2480.917 6496.541 4488.812
dia go 15 5.13x10−6 5.14x10−5 2.72x10−5

inverse minimum drag go 16 1.853 4.565 2.940

Atmosphere
atm. Diff. amp. T ea 12 3045602 5357693 4667550
atm. Diff. amp. Q ea 13 1274689 2162105 1097107
dist ’n’ width ea 14 0.923 2.005 1.083
slope ea 15 4.89x10−3 1.48x10−1 6.33x10−2

T z ea 16 -2.40x10−3 2.30x10−1 1.12x10−1

q z ea 18 4.21x10−2 2.30x10−1 2.27x10−1

q m ea 19 4.21x10−2 2.30x10−1 2.27x10−1

extra1a ea 25 -4.29x10−2 -2.60x10−2 2.12x10−2

extra1b ea 26 1.48x10−1 2.43x10−1 1.20x10−1

extra1c ea 27 1.56x10−1 2.58x10−1 1.27x10−1

Ice
sea-ice eddy diffusivity gs 11 2023.114 8000 6200
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a)

b)

Figure C.1: Taylor diagram comparison of the perturbed physics ensemble (Annan
et al., 2005) versus the standard configuration of GENIE (Ridgwell et al., 2007a; Ridg-
well and Hargreaves , 2007) for (a) salinity and (b) temperature.
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a) b)

c) d)

d) e)

°

Figure C.2: Time-series of circulation relevant properties during a 10000 year spin up
to test for steady state. The spin up is from the run that the SYN dataset is created
from (Table 4.2) for (a) deep mean salinity (PSU), (b) deep mean temperature (°C), (c)
the global minimum overturning circulation (Sv), (d) the global maximum overturning
circulation (Sv), (e) the Atlantic minimum overturning circulation (Sv) and (f) the
Atlantic maximum overturning circulation (Sv).
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GBL

GBL

GBL
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a)

b)

Figure C.3: Transient response of the mean benthic and shallow [PO4] when the global
remineralisation depth is perturbed to 100m or 1000m (experiments GBL-100 and GBL-
1000). Remineralisation depths are changed at the beginning of the run. Both benthic
and surface [PO4] are at equilibrium at 3000 years.
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Figure C.4: The sampling of remineralisation depths using a latin hypercube. The 15
regions with 600 samples from a uniform prior distribution between 100m and 1000m
are shown. The histograms illustrate the sampling across the prior distribution. Scatter
plots of all regions versus each other are also shown. Each scatter plot contains 600
data points.
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b)a) c)

e) f)d)

frac2 - 0.01

Figure C.5: Sensitivity of [PO4] zonal averages when fPOP (Equation 5.5) is decreased. Layout and formatting are identical to Figure
5.6, except that now that fPOP is decreased to 0.100 from 0.065, and the remineralisation depth is maintained at 550m
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frac2 - 0.10

b)a) c)

c) d) e)

Figure C.6: Sensitivity of [PO4] zonal averages when fPOP (Equation 5.5) is increased. Layout and formatting are identical to Figure
5.6, except that now that fPOP is increased to 0.100 from 0.065, and the remineralisation depth is maintained at 550m

213



1

2

3

4

5

6

7
R

e
m

in
. 
L
e
n
g
th

 S
c
a
le

 (
m

)

b)

a)

Figure C.7: Regions and optimal solution for n=7 regions. (a) Locations of regions
used (b) boxplot of the 40 best solutions for each region comparable to Figure 5.10.
140 Latin hypercube samples were taken, of which 80 had a RMSD smaller than the
CTRL run.
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Figure C.8: Regions and optimal solution for n=29 regions. (a) Locations of regions
used (b) boxplot of the 40 best solutions for each region comparable to Figure 5.10.
580 Latin hypercube samples were taken, of which 354 had a RMSD smaller than the
CTRL run.
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