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Thesis Summary 

The work presented in this thesis consists of 4 manuscripts, focussed on 

characterising the distribution of mutant huntingtin protein in transgenic and 

knock-in mouse models of Huntington’s disease.  

The mouse lines showed a different expression level of mutant huntingtin 

across the different time points. In the R6/1 mice, the inclusions were present 

and widespread from 3.5 weeks of age. In the YAC128 mice, inclusions were not 

present until 15 months of age, but then developed rapidly throughout the brain. 

In the HdhQ92 and HdhQ150 mice, intra nuclear inclusions (NIIs) were apparent 

at 10 and 5 months of age, respectively, and spread anterior to posterior and 

ventral-dorsal directions. In this thesis, the study has shown no increase in GFAP 

immunoactivity in the striatum of each mice line. However we detected a small 

increase in GFAP immunoactivity in the cortex of transgenic mouse models. With 

electron microscopy, we observed ultrastructural pathology with vacuolization, 

uneven cell membrane and degenerated mitochondria in these mouse lines 

along side with the presence of inclusions. Each mouse line showed different 

levels of degeneration such as YAC128 and HdhQ92 mice exhibited apoptitic 

neurons, whereas HdhQ150 mice has shown signs of necrosis. 

The results demonstrate that each of the mouse lines studied has a 

unique pattern of development of neuropathology. Inclusion formations may not 

be pathogenic per se, but may be representative of the dysfunctional neuronal 

populations that underpin the functional disturbances found in each of these 

mouse lines. Electron microscopy shows different cell death morphology in these 

mouse lines 

. 
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1.1 Huntington’s disease 

1.1.1. The Historical Perspective of Huntington’s disease 

Huntington’s disease (HD) is an autosomal dominant, progressive 

neurodegenerative disorder which was first described in 1872 by George 

Huntington in and an article entitled "On Chorea" in The Medical and Surgical 

Reporter (Philadelphia), a weekly journal of the time. The Huntington family 

were physicians in East Hampton, New York and practiced medicine 

throughout almost all of the nineteenth century. George Huntington was the 

youngest of his generation of Huntingtons. "On Chorea" describes his own 

observations of affected families under his care in combination with the 

valuable knowledge he gained from the further observations of his father and 

grandfather at the same practice before him (Harper, 2002). In this classic 

paper, Huntington identifies three marked traits of the disease: its hereditary 

nature, a tendency towards insanity and suicide, and its manifestation as a 

grave disease that appears only in adult life (Huntington, 2003). 

While, the recognition of HD was spreading rapidly throughout the 

world in the late nineteenth century, an attempt was made to identify families 

in the New England region which were believed to be the source of the 

spreading of the HD gene. Comprehensive pedigrees were collected by 

Jelliffe in 1908 and Davenport and Muncey in 1916 and they were linked back 

to the possible founding members. Most of these people seemed to originate 

in the early seventeenth century from the East Anglian regions of England and 

subsequently migrated to the USA. Furthermore, it had been claimed by 

Vessie in 1932 that HD originated from three individuals from the village of 

Bures in Suffolk. This was also supported in other studies by Critchley in 1934 

and later by Maltsbereger in 1961 and van Zwanenberg in 1974. However, in 

1975, Caro and Haines produced genealogical evidence in both England and 

the USA, and discredited the previous findings which were shown to be 

flawed and inadequate. Nonetheless, New England played a central role on 

spreading HD genes from Europe throughout the USA. It was suggested by 

Scrimgeour in 1983 that HD might have spread to some Pacific Island 
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communities by visiting New England whaling ships in the early nineteenth 

century (Harper, 2002). 

 

1.1.2. Clinical features of Huntington’s disease 

The frequency of HD in the Caucasian population is approximately 5-

10 cases per 100000 individuals (Harper, 1992). The first symptoms usually 

occur between the ages of 40 to 50 years old. The symptoms and signs 

gradually change with disease progression and leading to death 15-20 years 

after the motor symptom onset (Roos et al., 1993). Prior to the identification of 

the HD gene and availability of a definitive genetic test, HD was diagnosed by 

three criteria: a family history of HD; a progressive motor disability with chorea 

and psychiatric disturbance with progressive dementia (Vonsattel and 

DiFiglia, 1998). However, today, following identification of the HD gene, HD 

can be confirmed by deoxyribonucleic acid (DNA) analysis of blood samples 

taken from gene carriers.  

The disease is characterized by progressive development of cognitive, 

psychiatric and motor symptoms (Roos et al., 1993). Symptoms can vary 

between individuals, even members of the same family (Georgiou et al., 1999; 

Howeler et al., 1989). Affected individuals may exhibit mild personality 

changes in initial stage of the disease. Other psychiatric symptoms can 

include the irritability, depression, anxiety, apathy and changes in sleeping 

patterns (for a rewiew, see (Kremer and ., 2002; Roos, 2010)). 

Prior to the appearance of motor deficits, some affected individuals 

have been shown to perform poorly on cognitive tests (Campodonico et al., 

1996) and the presence of cognitive deficits is reported in HD gene carriers at 

the ‘pre-symptomatic’ stage, well before the onset of the motor symptoms that 

define the disease. Therefore, it has been suggested that affected individuals 

may pass through an early asymptomatic stage, and that HD can start with 

nonspecific cognitive impairments rather than motor impairments (Ho et al., 

2003; Kirkwood et al., 2000; Lawrence et al., 1996; Lawrence et al., 1998; 
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Lemiere et al., 2004; Robins Wahlin et al., 2007). However, questionnaires 

filled by family members of affected individuals reveal that involuntary 

movements may still be one of the earliest symptoms followed by mental and 

emotional symptoms including sadness, depression and “difficult to get along 

with” (Kirkwood et al., 2001). Some patients may exhibit minor motor 

impairments such as disturbed saccadic eye movement and slowness of rapid 

alternating movements before showing any sign of dominant motor 

abnormalities. However, as the disease progresses, there is a clear 

appearance of increased motor impairment including chorea (an involuntary 

writhing movement of the trunk, head and limbs), hypokinesia and rigidity 

(Penney, Jr. et al., 1990). In the early–middle stage of the disease, affected 

individuals have been reported to display motor signs of clumsiness, lack of 

motivation, sexual problems and paranoia. In the middle stage, patients 

experience motor difficulties that interfere with functional activities such as 

unsteadiness, trouble holding onto things, and trouble walking. In addition to 

motor difficulties, few patients suffer from delusions and hallucinations. In the 

middle- late stage, patients begin to experience speech difficulties and weight 

loss. In the late stage, motor symptoms worsen with increased chorea, 

hypertonic rigidity, dystonia (slow abnormal movements and abnormal 

posturing), bradykinesia (slow movements), rigidity, gait disturbances, speech 

abnormalities and dysphagia (swallowing impairment) (Kremer and ., 2002) 

and individuals have difficulties with bowel and bladder control (Kirkwood et 

al., 2001). In addition to these symptoms, cognitive decline is more obvious 

with difficulties in concentration, obtaining new information, impairment of 

language skills and dementia in late stage of the diseases (Kremer and ., 

2002). Therefore, this broad range of clinical phenotypes results in a varying 

degree of HD, in terms of the age of onset, manifestation and speed of 

progression. 

The symptoms usually get worse and patients lose their independence 

requiring assistance and need care for activities in daily living. Pneumonia 

(33%) is the leading cause of death in affected individuals, followed by heart 
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problems, choking, nutritional deficiencies, chronic skin ulcers (Lanska et al., 

1988) and suicide (Harris and Barraclough, 1994).  

 

1.2. The basal ganglia and Huntington’s Disease 
HD is widely considered to be first and foremost a disease of the basal 

ganglia. Basal ganglia diseases are associated with a range of movement 

disorders such as Parkinson’s disease (hypokinesia), chorea and dystonia 

(hyperkinesia) (Mink, 2003). The basal ganglia consists of the striatum 

(caudate and putamen), the subthalamic nucleus (STN), globus pallidus 

(internal and external segments), and the substantia nigra pars compacta 

(SNc) and pars reticulata (SNr) (Alexander et al., 1986). Together, these 

nuclei form multiple circuits linking the basal ganglia both to the cortex and to 

the thalamus and brainstem. Alexander and Crutcher have proposed that 

there are at least five structurally and functionally distinct circuits in parallel 

(Figure 1; (Alexander et al., 1986). These circuits are thought to originate in 

discrete functional areas of the neocortex and then to funnel through distinct 

regions of the basal ganglia and thalamus and then project back to discrete 

regions of the frontal cortex which has a unique function. For instance, the 

putamen is mainly involved in motor control as the result of its connections 

with the supplementary motor and premotor cortex. Conversely, the 

ventromedial part of the head of the caudate nucleus is involved in the normal 

functions of limbic system such as reward, emotion and motivation. The 

dorsalateral part of the head of caudate forms is part of the dorsalateral 

prefrontal circuit which is involved in cognitive functions. The body of the 

caudate nucleus is part of the oculomotor circuit and involved in saccadic eye 

movement. The ventral striatum is part of the cingulate cortex and is also 

involved in limbic functions (Alexander et al., 1986; Alexander et al., 1990). 

Hence, the striatum can be separated into three distinct striatal regions 

including sensorimotor, associative and limbic territories. However, some 

researchers have suggested that this separation is incomplete and there is 

cross talk between the loops which is reviewed in Parent and Hazrati (1995). 



 
Figure 1; The five proposed basal ganglia- thalamocortical circuits. Each circuits 

Abbreviations: GPi, internal segment of globus pallidus; MD, medialis dorsalis; MDpl, medialis 
dorsalis pars paralamellaris; MDmc, medialis dorsalis pars magnocellularis; MDpc, medialis 
dorsalis parsparvocellularis; SNr, sunstantia nigra pars reticulata; VAmc, ventralis anterior 
pars magnocellularis; Vapc, ventralis anterior pars parsparvocellularis; VLm, ventralis lateralis 
pars medialis; VLo, ventralis lateralis pars oralis; VP, ventral pallidum; cl, caudolateral; cdm, 
caudal dorsamedial;dl, dorsolateral; l, lateral; ldm, lateral dorsomedial; pm, posteromedial; rd, 
rostrodorsal; rl, rostrolateral; rm, rostromedial; vm, ventromedial; vl, ventrolateral;  

 

In addition to the globus pallidus and substantia nigra, the largest part 

of the basal ganglia comprises a group of structurally similar nuclei known 

collectively as the ‘striatum’. Anatomically, there are minor differences in the 

organisation of the basal striatum in rodents and primates (Parent, 1986). In 

the primate striatum, the caudate nucleus and putamen comprise similar 

populations of neurons at a cellular level but are divided into two discrete 

nuclei by the sheet of fibres comprising the internal capsule. However, in the 

rodent brain, the internal capsule is present, not as a sheet but as multiple 

small bundles of fibres so that the caudate nucleus and putamen can not be 

resolved but are jointly referred to as ‘dorsal’ striatum (or ‘neostriatum’). The 

6 

 



more ventral parts of the striatum of both primates and rodents contain the 

nucleus accumbens and olfactory tubercle (Nauta, 1979).  

The neuronal population of striatum consist of 90% medium spiny 

neurons (MSNs) and 10% interneurons in rodents (Kawaguchi et al., 1995; 

Kawaguchi, 1997). Figure 2 below shows the striatal neuron populations and 

neurotransmitters used. 

 

 
Figure 2. Neurons of the striatum with their neurotransmitters. 90% GABAergic MSNs and 
10% interneurons with corresponding neurotransmitters. Abbreviations: GP, globus pallidus; 
ChAT, choline acetyltransferase; NOS, nitric oxide synthase; NADPH, nicotinamide adenine 
dinucleotide phosphate diaphorase.  

 

The MSNs are γ- aminobutyric acid (GABA)-ergic, in addition to GABA, 

they also contain neuropeptides co-transmitters, such as enkephalin and 

substance P and/or dynorphin (Gerfen and Young, III, 1988). Striatal efferents 

contain different neurotransmitters and project to different nuclei. The MSNs 

are distinguished from the interneurons as being the major projection neurons 

of the striatum, with different neurotransmitters corresponding to the different 

projection targets. The MSN can be divided into two relatively equal sized 

populations based on these axonal projections. These main output pathways 

called ‘direct’ and ‘indirect’ pathways due to their connections (Alexander and 

Crutcher, 1990) (Figure 3: inputs and outputs of basal ganglia). In the “direct 

pathway”, striatal neurons containing GABA and substance P project to the 

SNr/globus pallidus internal (GPi). The pathway then goes through the 
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thalamus via the GABA projection and then to the cortex via the excitatory 

glutamate projections. In the “indirect pathway”, striatal neurons containing 

GABA and enkephalin (ENK) project to the globus pallidus external (GPe), 

which then project to the subthalamic nucleus through a GABAergic pathway, 

and finally to the SNr /GPi via glutamatergic neurons. These two populations 

of MSNs are morphologically identical and are not topographically separated 

within the striatum. However the distinct destination and transmitter types of 

two populations may offer a kind of functional separation within the striatum 

(Alexander and Crutcher, 1990; Bates et al., 2002; Chenery et al., 2008).  

                   
 
Figure 3: The inputs and outputs of the basal ganglia (Adapted from Alexander & 

Cruther, 1990 and Chenery et al 2008). Inhibitory projections are shown as dashed lines and 
excitatory projections are shown block lines. Green line, direct pathway; red line, indirect 
pathway; blue line, hyperdirect pathway. GPi, globus pallidus internal; GPe, globus pallidus 
external; STN, subthalamic nucleus; SNr, substantia nigra pars reticulate; SNc, substantia 
nigra pars compacta; GABA, gamma-aminobutyric acid; ENK, enkephalin; Sub P, substance 
P; D1, dopamine receptor 1; D2, dopamine receptors 2. 
 

Additionally, there is a second characteristic feature of these two 

pathways which is they have different expression of dopamine (DA) receptors. 

The striatum receives dopaminergic input from the sunstantia nigra pars 

compacta and all five DA receptors (D1-D5) are expressed within the striatum. 

However, D1 DA receptor (Drd1a) and D2 DA (Drd2) are the most abundant 

receptors. D1 receptors are selectively expressed by MSNs of the direct 
8 
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pathway, whereas, D2 receptors are expressed by MSNs of the indirect 

pathway. These two different receptors have different intracellular signalling 

cascades and targets, causing different cellular responses to extracellular DA 

(Gerfen et al., 1990). As mentioned earlier, MSNs of the direct pathway 

express high levels of substance P and dynorphin, whereas MSNs of the 

indirect pathway express enkephalin. After DA–depleting lesions, striatal 

enkephalin levels are elevated and substance P levels are depressed, 

suggesting that DA differently regulates these two MSNs populations (Young, 

III et al., 1986). Furthermore, it has been shown that the antagonists of D1 and 

D2 receptor restored substance P and enkephalin levels, respectively (Gerfen 

et al., 1990). However, there is debate as whether cells with D1 and D2 

receptors are completely separate or these two receptors are colocalized on 

some cells. For example, an electrophysiological study has showed that both 

D1 and D2 receptor antagonists have effects on the same striatal neurons 

(White and Wang, 1986) indicating the complexity of the circuits and making it 

difficult to separate these two receptors. Nonetheless, recent studies support 

the idea that there is a reasonably clear-cut dichotomy of D1 and D2 receptor 

expression on MSN of the direct- and indirect pathways, respectively (Gertler 

et al., 2008; Valjent et al., 2009) and the impact of DA within the striatal 

circuitry has been reviewed in Gerfen and Surmeier (2010).  

In HD, a decrease of dopaminergic neurons (Huot et al., 2007; Oyanagi 

et al., 1989; Yohrling et al., 2003) and a degeneration of nigrostriatal 

projections (Ferrante and Kowall, 1987; Ginovart et al., 1997) have been 

reported. Furthermore, a down regulation of D1 and D2 receptors has been 

observed in HD brains (Ginovart et al., 1997). In addition to these findings, 

one study has suggested that loss of D2 receptors is a sensitive early marker 

of neuronal impairment in presymptomatic HD patients (van Oostrom et al., 

2005). Taken together, these results suggest the presence of dysfunctional 

nigrostriatal pathways which may be involved in motor and cognitive deficits in 

HD. 

In addition to MSNs in the striatum, there are four subtypes of striatal 

interneurons which can be characterized by their chemical constituents, size 

and dendritic morphology. These interneurons are; cholinergic interneurons, 
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which contain a large soma, widespread dendritic trees and receive direct 

dopaminergic inputs and contains choline acetyltransferase (ChAT); a second 

subtype GABAergic interneurons which express parvalbumin; a third subtype 

GABAergic interneurons that express calretinin and a fourth subtype, which 

are GABAergic express somatostatin, neuropeptide Y, nitric oxide synthase 

(NOS) and nicotinamide adenine dinucleotide phosphate (NADPH)-

diaphorase (+) (Kawaguchi et al., 1995).  

In HD, the GABAergic projection neurons are the most severely 

affected neurons in the striatum in HD (Ferrante, 2009). In early and mid 

stage of HD, it has been observed that enkephalin-containing neurons of the 

striatum are more vulnerable than substance P-containing neurons, causing 

an imbalance between the direct and indirect pathways. However, it has been 

suggested that substance P-containing neurons may also be affected during 

early stages of the disease. Although, in late stage of HD, it has been 

reported that the loss of all projections are prominent (Albin et al., 1992; 

Reiner et al., 1988). The large cholinergic neurons (Ferrante et al., 1987a) 

and striatal interneurons (containing somatostatin, neuropeptides Y or 

NADPH-diaphorase) remain selectively preserved in the caudate nucleus of 

HD patients (Ferrante et al., 1985). Additionally, it has been reported that 

parvalbumin containing interneurons are also spared in HD (Mitchell et al., 

1999). But, a recent study has suggested that the cholinergic system might be 

affected in HD patients (Smith et al., 2006).  

The striatum is also characterised with two neurochemically distinct 

compartments, the patch and matrix. The patch compartment (striosomes) is 

identified by patches of dense opiate receptor binding, and is enriched in 

substance P and enkephalin immunoreactivity. The matrix compartment has 

high acetylcholinesterase (AChE) reactivity and stains more densely for 

somatostatin, neuropeptide Y, NADPH- diaphorase and calbindin. These two 

compartments receive different afferents from the cortex and the midbrain 

(Gerfen, 1984; Gerfen et al., 1985). The matrix mainly projects to the pallidum 

and the SNr, which together make up the main GABAergic systems. In 

contrast, the outputs of patch project to the dopamine-containing SNc and/or 

it’s near surrounds suggesting that the patch linked to some branches of the 
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limbic system, change part of the dopaminergic input to the striatum. There 

are noticeable, but selective cross connections between these two 

compartments and reviewed in Graybiel (1990). 

In early-stage HD, a study has suggested that cell loss is restricted to 

the patch compartment (Hedreen and Folstein, 1995), however, other studies 

have found that the matrix compartment is the more vulnerable (Ferrante et 

al., 1987b; Seto-Ohshima et al., 1988). Interestingly, a previous study has 

shown that the pathology of the patch compartment is greater in patients with 

mood symptoms (Tippett et al., 2007). The role of patch/matrix distinction in 

both normal function and neuropathology remains unresolved and is diffucult 

to marry the more widely adopted direct/indirect pathways characterisation.  

 

1.2.1. Neuropathology of Huntington’s disease 

Mutant huntingtin is responsible for the neurodegeneration of the basal 

ganglia and cerebral cortex which is preceded by neuronal dysfunction in HD 

(Vonsattel, 2008).The most noticeable neurodegenerative changes in the 

post-mortem brains of HD patients are found in the caudate and putamen with 

neuronal loss and astrogliosis being a feature (Vonsattel et al., 1985; 

Vonsattel and DiFiglia, 1998). The severe loss of striatal medium spiny 

neurons (MSNs) is a neuropathlogical hallmark of HD. Striatal MSNs receive 

a major source of afferents from the cortex, and there is considerable 

speculation over whether loss of the striatal cells may be an anterograde 

consequence of cortical atrophy (Graveland et al., 1985; Rosas et al., 2002; 

Rosas et al., 2003; Rosas et al., 2008) or conversely that loss of cortical cells 

may be a retrograde response to loss of their targets (Cudkowicz and Kowall, 

1990). Loss of MSNs leads to a noticeable decrease in striatal volume leading 

to an equivalent enlargement of the lateral ventricles (Vonsattel et al., 1985), 

the pattern of neuronal loss has been shown to appear earliest and to be most 

extensive in dorso-medial sectors of the striatum and to progress ventrally, 

laterally and caudally as the disease develops (Hedreen and Folstein, 1995; 

Mitchell et al., 1999). Unfortunately, by the time of clinical diagnosis, more 
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than 50% of the striatum has atrophied and the total brain weight could have 

reduced by as much as 30% by the time of death (Rosas et al., 2003).  

Brains from HD patients are classified from grade 0 to 4 based on the 

severity of striatal neuropathology. In grade 0, no striatal pathology is found 

despite a positive family history; in the grade 1 brain, there is limited neuronal 

loss and astrogliosis; in grade 2 HD, there is caudate nucleus atrophy; in 

grade 3, atrophy of the caudate-putamen is evident; and in the highest grade, 

grade 4, severe caudate-putamen and nucleus accumbens atrophy are found 

(Vonsattel et al., 1985). The same study has reported that motor and cognitive 

impairments can appear before any obvious neuronal cell loss, suggesting 

that initially these impairments are caused by a neuronal dysfunction, rather 

than cell death per se. However, the some evidence show that there can be a 

significant striatal atrophy even in presymtomatic patients (Aylward et al., 

2004; Kassubek et al., 2004; Ruocco et al., 2006; van den Bogaard et al., 

2011) and it has been suggested that the striatal atrophy begins well before 

the presence of motor symptoms or clinical diagnosis (Aylward et al., 2004).  

In addition to the striatum, cortical atrophy has been observed in grade 

3 and 4 patients. Earlier post mortem studies indicated that the most affected 

layers are especially III, V and IV with a reduction of a subset of pyramidal 

neurons (Sotrel et al., 1991; Vonsattel and DiFiglia, 1998). More recently, 

neuroimaging techniques have exposed important correlations between 

cortico-striatal atrophy and cognitive impairment such as attention, working 

memory and executive functions in HD patients (Montoya et al., 2006). Some 

studies have reported that the presence of cortical atrophy in early to mid-

stages of HD by MRI scan (Kassubek et al., 2004; Rosas et al., 2003). 

However, some recent studies have failed to show cortical atrophy in 

presymtomatic patients (Aylward et al., 2011; Hobbs et al., 2010; Kipps et al., 

2005).  

Although, the neuropathology is most prominent in the neostriatum and 

the cerebral cortex, other brain areas such as amygdala, hippocampus 

(Rosas et al., 2003), globus pallidus (GP) and the nucleus accumbens (van 
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den Bogaard et al., 2011) are also affected in the early stages of the disease. 

With the disease progression, the other regions of brain for example 

substantia nigra (SN) (Vonsattel et al., 1985; Vonsattel and DiFiglia, 1998), 

hippocampus (Spargo et al., 1993), thalamus (de la Monte et al., 1988) 

hypothalamus (Kremer et al., 1991) and the cerebellum (Herishanu et al., 

2009; Jeste et al., 1984; Rodda, 1981) have also found to be atrophied. 

Although, it is important to mention that some studies reported that the 

cerebellum is generally spared in the adult onset form of HD (Rosas et al., 

2003; Ruocco et al., 2006). The recent MRI scans also showed the atrophy of 

the white and gray matter in early HD (Aylward et al., 2011; Hobbs et al., 

2010; Kipps et al., 2005). Therefore, although the principal focus of HD is on 

the cortico-striatal tracts and degeneration of the cortex and striatum, the 

disease, is a disease of the whole brain, and many of the areas outside of the 

cortex and striatum degenerate in early and later stage of the disease 

process. 

 

1.2.2. GFAP expression in the HD brain 
Astrocytes are one of the most abundant cell types in the central 

nervous system (CNS) and are involved in a number of different physiological 

and pathological processes in the brain (Ransom et al., 2003). Their full role 

in the brain is still unclear. They fill the spaces between neurons and provide 

structural support for neuronal migration and positioning, and mediate the 

chemical content of the extracellular space. For instance, astrocytes surround 

synaptic junctions in the brain thus restricting the spread of released 

neurotransmitters and recycling certain neurotransmitter substances such as 

glutamate. The membrane of astrocytes contains special proteins which 

actively remove many neurotransmitters from the synaptic cleft. Additionally, 

astrocytes regulate the concentration of potassium ions in extracellular fluid 

for example cleaning up potassium ions, during intense neuronal activity. 

Unlike neurons, astrocytes can multiply at any time. In particular, after CNS 

injury, the proliferation of astrocytes and their processes results in dense glial 

scar tissue, gliosis (Bear M.F. et al., 2006). The transition of astrocytes from 
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the resting to active state is associated with the expression of new molecules 

which are not detectible in resting astrogilia. This list of new molecules was 

reviewed by Eddleston and Mucke (1993). Molecular tools also suggest that 

astrocytes contribute to the elimination of neutotoxins by both enhanced 

uptake and metabolic turnover (Eddleston and Mucke, 1993). 

An intermediate filament protein, glial fibrillary acidic protein (GFAP) is 

expressed primarily by reactive astrocytes and provides a marker for astroglial 

activation (Bignami et al., 1972; Dahl et al., 1981). The brain reacts to 

neuronal injuries with an increase in number and size of cells expressing 

GFAP, this is called reactive astrogliosis. Hence GFAP immunostaining has 

been used to identify reactive astrogliosis and an early marker of CNS 

damage in HD (Yu et al., 2003). Astrogliosis is observed in human HD 

(Galatioto, 1996; Hedreen and Folstein, 1995; Maat-Schieman et al., 2007). 

The suppression of GFAP expression in human glial cells line suggests that 

GFAP is required for stabilizing glial processes in response to neuronal 

signals (Weinstein et al., 1991). It is also important to emphasize that the 

response of CNS to neurologic injury involves many cell types other than 

astrocytes including microglia, macrophages, and other invading inflammatory 

and immune cells. 

 

1.2.3. Ultrastructural neuropathology in HD 

Ultrastructural neuropathology has been reported in the brain samples 

(Butterworth et al., 1998; DiFiglia et al., 1997; Goebel et al., 1978; Gutekunst 

et al., 1999; Portera-Cailliau et al., 1995; Roizin et al., 1974; Roizin et al., 

1979; Roos and Bots, 1983; Roos et al., 1985; Tellez-Nagel et al., 1974) and 

peripheral tissues (Squitieri et al., 2009) by transmission electron microscopy 

(TEM) in HD patients. In addition to that seen in patients, ultrastructural 

neuropathology has also been observed in mouse models of HD with TEM 

(Davies et al., 1997; Gray et al., 2008; Iannicola et al., 2000; Ikeda et al., 

1996; Montoya et al., 2006; Morton et al., 2000; Panov et al., 2002; Portera-

Cailliau et al., 1995; Stack et al., 2005; Yu et al., 2003). 



15 

 

Ultrastructural pathology in HD brain includes: the alterations of nuclear 

membranes (Goebel et al., 1978; Roizin et al., 1974; Roos and Bots, 1983; 

Roos et al., 1985), the accumulations of large lipofucsin granules (Goebel et 

al., 1978; Roizin et al., 1974; Tellez-Nagel et al., 1974), irregular distributions 

of the rough endoplasmic reticulum, enlargements of Golgi apparatus (Roizin 

et al., 1974), disorganizations of nuclei, reduction of the number of ribosomes  

(Roos and Bots, 1983; Roos et al., 1985) and DNA fragmentation (Butterworth 

et al., 1998; Portera-Cailliau et al., 1995). Several studies have reported 

severe ultrastructural changes in mitochondria, including enlarged 

mitochondria, mitochondria accumulation, and an increased degenerated 

mitochondrial population in HD patients (DiFiglia et al., 1997; Goebel et al., 

1978; Squitieri et al., 2006; Tellez-Nagel et al., 1974), supporting other 

evidence that mitochondrial dysfunction and oxidative stress play a role in the 

neurodegenerative process of the disease (Damiano et al., 2010; Deschepper 

et al., 2011; Kim et al., 2010; Lin and Beal, 2006; Shirendeb et al., 2011).  

Neuronal intra-nuclear inclusions (NIIs) were originally observed in 

1979 in biopsy samples of HD patients using electron microscopy (Roizin et 

al., 1979), and then were discovered in the post-mortem tissues of affected 

individuals with the light and electron microscopes. At the ultrastructural level, 

NIIs are highly heterogeneous in composition and consist of a mixture of 

granules, straight and twisted filaments with no membrane separating it from 

its surroundings (Davies et al., 1997; DiFiglia et al., 1997). Extranuclear 

inclusions (ENNIs) were not detected with conventional TEM analysis, 

however they been identified in the dendrites and axons by immunogold TEM 

(Gutekunst et al., 1999). 

Electron microscopic examination of transgenic mouse striatum 

revealed the presence of striatal neurons with inclusions (Davies et al., 1997), 

and large accumulations of lipofucsin granules and enlarged mitochondria 

(Iannicola et al., 2000). The localization of mutant huntingtin on the 

mitochondrial membrane of transgenic mice were observed by immunogold 

TEM analysis (Panov et al., 2002). Ikeda and co-workers showed 

ultrastructurally that expanded polyQ induces cell death in vitro and in vivo. 
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These dying cells have a punctate staining and show features of apoptotic cell 

death with cytoplasmic fragmentation, condensed nuclei and DNA 

fragmentation in the nuclei (Ikeda et al., 1996). Other studies have also 

reported that the presence of increased shrunken, angular, dark neurons with 

reduced cytoplasm and nucleoplasm in the brains of transgenic mice (Gray et 

al., 2008; Stack et al., 2005; Turmaine et al., 2000). The presence of ENNIs in 

the synaptic densities of the neurons in mice were observed with immunogold 

TEM (Morton et al., 2000). However, one research group have highlighted 

novel ENNIs which are easily identified without immunogold labelling by TEM 

examination in the R6/2 mouse (Morton et al., 2009). 

 

1.3. Genetic background of Huntington’s disease 

The gene responsible for HD was first mapped in 1983 and it was 

reported that the HD locus resides on the short arm of human chromosome 4 

(Gusella et al., 1983). A decade later, a mutation of HD gene, ‘interesting 

transcript 15’ (IT15) was found on exon 1 of the short arm of chromosome 4. 

The IT15 gene, now known as huntingtin, codes for the protein huntingtin 

(HTT), a large ubiquitous 350kDa protein, The Huntington’s Disease 

Collaborative Research Group (1993), which is essential for normal 

embryonic development (Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 

1995). The HD gene consists of 67 exons and extends over 170kb of DNA 

(Ambrose et al., 1994), and contains a polymorphic stretch of repeated CAG 

trinucleotides which encodes polyglutamine (polyQ). Normal individuals may 

have between 6 and 35 CAG repeats, and it is when the numbers of repeats 

increases above 35 (36 to 39), that HD might occur and show partial affects, 

however 40 and more repeats will always cause the disease within a normal 

lifespan (Rubinsztein et al., 1996). Similarly, a previous study is also reported 

that the range between 29-35 CAG repeats are unstable which is likely to 

cause changes in the onset of the disease in the next generation (Trottier et 

al., 1994). Age of onset of HD can vary from early childhood to very old age, 

largely depending on the extent of the repeat length (Wexler et al., 2004). 
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CAG repeat length is inversely correlated with the age of onset (Andrew et al., 

1993; Djousse et al., 2003) and accounts for about 50% of the variance in age 

of onset. Although HD patients carry the same mutation, two patients who 

have the same number of CAG repeat lengths do not necessarily exhibit the 

same cognitive, psychiatric and motor impairments at the same age (Gusella 

and MacDonald, 2009), and are thought to depend upon a range of genetic 

and environmental modifiers. Thus studies of a pair of monozygotic HD twins, 

who share identical CAG repeat length showed differences both in clinical 

symptoms and behavioural abilities (Georgiou et al., 1999; Gomez-Esteban et 

al., 2007). This supports the idea that other genetic and environmental factors 

are also involved in determining onset of the disease (Djousse et al., 2004; 

Wexler et al., 2004). No significant differences in age of onset, symptoms and 

progression of illnesses have been observed between affected HD 

homozygote and HD heterozygote patients (Wexler et al., 1987). However, a 

recent study has shown that homozygotes had a more severe cilincal course 

and affects the phenotype and the rate of the disease progression (Squitieri et 

al., 2003).  

An inverse correlation between repeat lengths and the age of onset of 

the disease has been found (Andrew et al., 1993; Djousse et al., 2003). 

However, no correlation has been reported between duration of the disease 

and CAG repeat length on the adult form of HD (Ruocco et al., 2006). Despite 

these findings, a correlation between the atrophy of the striatum and CAG 

repeat length has been reported (Becher et al., 1998; Myers et al., 1988). In 

addition, a few previous studies have emphasised the presence of somatic 

instability in trinucleotide diseases in human HD (Kennedy et al., 2003; 

Telenius et al., 1994) and mouse models (Fortune et al., 2000; Gonitel et al., 

2008; Kennedy and Shelbourne, 2000; Mangiarini et al., 1997; Wheeler et al., 

1999), and showed that whereas all tissues displayed some repeat 

mosaicism, the greatest level is found in the brain and sperm. The basal 

ganglia and the cortex show the greatest neuropathology and display the 

greatest mosaicism (Telenius et al., 1994). Further, a correlation mechanism 

has been proposed between somatic repeat expansion and disease onset 
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and it has been suggested that the somatic CAG repeat expansion reaches a 

pathological threshold within the life time of patients. The disease becomes 

more apparent when this CAG repeat extends beyond a certain threshold in 

cells of the brain (Kaplan et al., 2007).  

Longer CAG repeats, of ~ 65 or more are associated with juvenile HD 

defined as having onset occurring before 21 years of age (van Dijk et al., 

1986). Under normal circumstances, the duration of the disease is usually 15-

20 years after onset (Roos et al., 1993), but, juvenile HD progresses more 

rapidly, and death occurs within 7-10 years of onset (Ho et al., 2001b; 

Petersen et al., 1999; Roos et al., 1993). The juvenile form of HD differs from 

the adult form with a distinctive combination of parkinsonian symptoms such 

as rigidity, tremor and often epileptic seizures, but never chorea (Telenius et 

al., 1993). The cognitive and behavioural disturbances are similar in nature for 

children and adults, however, juveniles display a more severe disease 

progression (Wexler et al., 1991). In addition, the pattern of the 

neurodegeneration is less selective in juvenile onset. There are 

histopathological differences between juvenile and adult onset HD. Juvenile 

patients have extensive cell loss and gliosis in the cortex with neuronal 

reduction of the dentate nuclei and inferior olivary nuclei (Goebel et al., 1978) 

which is not seen in adult HD. Similarly, it has been revealed that there is 

neurodegeneration in the Purkinje cells of the cerebellum (Robitaille et al., 

1997).  

 

1.3.1. Role of Normal Huntingtin 

Huntingtin is expressed within the CNS and peripheral organs (Zuccato 

et al., 2010), and is a necessary protein for the normal function of the basal 

ganglia. A murine homolog of the human HD gene has been created (Duyao 

et al., 1995; Nasir et al., 1995; Zeitlin et al., 1995). Homozygote animals have 

embryonic lethality before gastrulation and formation of the nervous system, 

however, heterozygote animals do not differ from wild type litter mates at birth 

(Nasir et al., 1995). Huntingtin has been shown to be involved in wide range 
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of functions other than embryonic development including neurogenesis 

(Dragatsis et al., 2000; Reiner et al., 2007; White et al., 1997), vesicle 

trafficking (Metzler et al., 2001; Velier et al., 1998), microtubule-dependent 

retrograde transport of membranous organelles (Li et al., 1998), axonal 

transport (Gunawardena et al., 2003), apoptosis (Gunawardena et al., 2003; 

Rigamonti et al., 2000), neuroprotection (Ho et al., 2001a; Que, Jr. et al., 

1975; Rigamonti et al., 2001), energy homeostasis (Clabough and Zeitlin, 

2006) and spermatogenesis (Dragatsis et al., 2000). Within the cell, wild-type 

huntingtin is mostly present in the cytoplasm, associated with organelles such 

as mitochondria, the Golgi apparatus, the endoplasmic reticulum and synaptic 

vesicles (DiFiglia et al., 1995; Kegel et al., 2002; Sharp et al., 1995), with a 

small amount being intra-nuclear (Hoogeveen et al., 1993).  

It has been indicated that wild-type huntingtin has a role in membrane 

trafficking in the cytoplasm and interacts with many other proteins which may 

be involved in transcriptional regulation, intracellular trafficking and 

cytoskeletal organization (Li et al., 2003; Singaraja et al., 2002). Recently, 234 

high-confidence huntingtin associated proteins have identified (Kaltenbach et 

al., 2007). Some of these huntingtin-binding proteins such as HAP1, HIP1 and 

HIP14 have been isolated (associated with endocytosis). However, their role 

in selective neuropathology has not been demonstrated (Li et al., 1995; 

Singaraja et al., 2002; Wanker et al., 1997). Huntingtin also regulates 

transcription of brain-derived neurotrophic factor (BDNF), a pro-survival factor 

produced by cortical neurons, that is necessary for survival of striatal neurons 

in the brain (Zuccato et al., 2001). Caspases have been associated in the 

cleavage of both wildtype and mutant huntingtin (Goldberg et al., 1996; 

Wellington et al., 1998; Kawaguchi et al., 1995). Depletion of huntingtin 

causes cells to become more vulnerable to apoptotic cell death and increases 

caspase-3 activity (Zhang et al., 2006). It has been assumed that the mutant 

protein has a toxic gain of function from an abnormal conformation of the 

mutant huntingtin protein which harms neurons. However, loss of wild-type 

huntingtin may also contribute to the death of striatal neurons (Cattaneo and 

Calabresi, 2002). Over-expression of normal huntingtin in the YAC128 mice 
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has been reported to show a mild improvement in the striatal neuropathology 

but not motor function, suggesting that mutant huntingtin is responsible for the 

striatal neuropathology seen in these mice (Van Raamsdonk et al., 2006). 

  

1.3.2. Mutant Huntingtin 
Normal and mutant huntingtin is expressed in both post-mortem human 

HD brains and mice (Bhide et al., 1996). In addition to the CNS, peripheral 

organs such as the colon, liver, pancreas and testes express mutant 

huntingtin (Strong et al., 1993). Within the brain, mutant huntingtin is present 

in the cytoplasm and nucleus of neurons (DiFiglia et al., 1997). A small 

amount of mutant huntingtin has been found in some subcellular organelles 

including the plasma membrane, mitochondria, lysosomes and endoplasmic 

reticulum (Kegel et al., 2002; Kegel et al., 2005; Orr et al., 2008; Panov et al., 

2002). In addition to cell bodies, it has been also observed that an N-terminus 

of mutant huntingtin with 115-156 glutamine repeats accumulates in 

dystrophic neurite in the cortex and striatum (DiFiglia et al., 1997) and 

occasionally in astrocytes of HD patients post-mortem brains (Shin et al., 

2005; Singhrao et al., 1998; Turmaine et al., 2000). Despite the widespread 

expression of mutant huntingtin in all body tissues throughout life, the most 

affected cells are MSNs of the striatum (Gusella and MacDonald, 2006). It has 

been suggested that selective degeneration of MSNs in HD may be due to the 

enhanced expression of the mutant huntingtin protein (Kosinski et al., 1997). 

A previous study has also showed that the existence of toxicity of the N-

terminal fragment of huntingtin protein were present in the absence of CAG 

repeat expansion, although the study has confirmed that the presence of CAG 

repeats aggravates the toxicity of mutant huntingtin (O'Kusky et al., 1999). 

 

1.3.2.1. Aggregate formation  

HD is not the only disease caused by a CAG/polyglutamine repeat 

expansion. Glutamine expansion within other genes can cause at least nine 
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other neurodegenerative disorders such as spinal and bulbar muscular 

atrophy (SBMA), dentatorubral pallidoluysian atrophy (DRPLA) and 

spinocerebellar ataxia (SCA) types 1, 2, 3, and 7 (Bates et al., 1997; Schilling 

et al., 1999; Yamamoto et al., 2000; Timchenko and Caskey, 1999). These 

diseases share many common features such as subcortical and cortical 

atrophy, a progressive phenotype (Yamamoto et al., 2000; Davies et al., 

1998) and  the formation of neuronal intra-nuclear inclusions (NIIs) (Davies et 

al., 1998). 

All these PolyQ diseases are associated with protein misfolding which 

is initiated by the expanded polyQ repeats. Protein folding is the process by 

which a polypeptide of amino acids folds into three-dimensional structure. It 

has been described that CAG repeats form a “polar zipper” structure causing 

the formation of the aggregates which may lead to neuronal damage (Perutz 

et al., 1994). Molecular chaperones remove misfolded protein from the 

cytoplasm, thus preventing the possibility of protein aggregation (Johnston et 

al., 1998). The genetic mutation such as HD can cause a failure in protein 

folding processes due to amino acid mis-incorporation  (Johnston et al., 1998; 

Vidair et al., 1996). Previously, aggregation was considered to involve non-

specific coagulated polypeptide chains (Zettlmeissl et al., 1979). However, it 

has subsequently been shown that aggregation is the result of a specific 

interaction of certain conformations rather than non-specific coagulation 

(Speed et al., 1996). Many misfolded proteins are targeted for degradation by 

the proteasome. It has been suggested that protein aggregation happens 

when the capacity of the proteasome degradation is exceeded. Therefore, 

Johnston and co-workwers have suggested two possible ways, either an 

increased substrate expression or decreased proteasome activity (Johnston 

et al., 1998). Huntingtin can be cleaved by apopain which is involved in 

ubiquitin-dependant proteolosis system and the rate of cleavage increases 

with the length of PolyQ (Goldberg et al., 1996). Following this it was shown 

that inclusions were also stained with an anti-ubiquitin antibody in post 

mortem tissues of HD, indicating that inclusions are ubiquitinated (Davies et 

al., 1997). The presence of ubiquitin in the NIIs has also been reported in all 

other PolyQ diseases (Saunders and Bottomley, 2009). These aggregates 
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can sequester proteins including those that have normal functions in the cells. 

This may suggest that aggregation of proteins disrupts cellular function by 

removing one or several vital cellular proteins. Additionally, the presence of 

huntingtin aggregates might inhibit the ubiquitin proteasome system (UPS) 

which is the primary cellular proteolytic pathway that normally manages 

protein misfolding. Ubiquitin is involved in both the normal non-lysosomal 

degregading pathway (Ciechanover, 1994) and the UPS is responsible for the 

turnover of most proteins within cells. This provides an important role in 

degrading key short-lived regulatory proteins (Hershko and Ciechanover, 

1998). One theory regarding the pathogenic properties of the mutant protein is 

that the expanded CAG sequence causes the mutated protein to misfold and 

recruits some protein components of the UPS (Davies et al., 1997; DiFiglia et 

al., 1997; Kopito, 2000). The inhibition of ubiquitin could cause an aberrant 

accumulation of other proteins that would normally digested by the proteolytic 

pathway as part of normal protein turnover (Bence et al., 2001). Molecular 

chaperones mediate protein folding and assure that proteins retain their native 

conformations (Hartl and Hayer-Hartl, 2002). They are also responsible for the 

translocation of many proteins across cellular membrane and promote the 

transfer of misfolded proteins to the proteasome for degradation (Muchowski, 

2002). It has been reported that the presence of molecular chaperones and 

components of the UPS are also a common feature in other 

neurodegenerative diseases (Clark and Muchowski, 2000) including HD, 

which supports the idea that impairment of the UPS may play a key role in 

neurodegenerative diseases. In addition to UPS, it has been suggested that 

the autophagy-lysosomal degradation pathway is impaired in HD (Martinez-

Vicente et al., 2010; Pandey et al., 2007; Ravikumar et al., 2004). Another 

theory has suggested that misfolded proteins initiate a protective stress 

response which is also called the unfolded-protein response (UPR) in the 

endoplasmic reticulum. This may postpone a cellular disaster for a while, but 

will not last long and eventually cause activation of a suicide pathway 

(Bredesen et al., 2006).  
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Recently, nuclear pore complexes have been shown to deteriorate with 

age. This process leads to an increased nuclear permeability and causes a 

leakage of cytoplasmic proteins into the nucleus in old neurons. The same 

study has also revealed that cytoplasmic proteins such as intranuclear tubulin 

aggregates into large filamentous structures which cause severe 

morphological chromatin abnormalities (D'Angelo et al., 2009). Moreover, the 

Tpr protein, which is responsible for exporting molecules from the nucleus and 

localized at intra-nuclear side of nuclear pore complex, has been shown to be 

involved in the nuclear localization of small N-terminal huntingtin, and the 

polyQ domain does not interact with this protein. A faulty nuclear export of N-

terminal huntingtin might be important for nuclear pathology (Cornett et al., 

2005). 

However several general mechanisms of pathology have been 

suggested for HD, including excitotoxiticity, DA toxicity, metabolic impairment, 

mitochondrial dysfunction, oxidative stress, apoptosis and autophagy 

alongside NIIs. These mechanisms develop slowly over time and appear 

prominent at late stage of the disease (Gil and Rego, 2008). Mutant huntingtin 

may also cause neurons to be dysfunctional by a variety of pathogenic 

mechanisms such as abnormal energy metabolism (Seong et al., 2005), 

decreased mitochondrial calcium buffering capacity (Panov et al., 2002), and 

impaired gene transcription (Cha et al., 1998). These factors may initiate the 

cell death of neurons in HD single-handedly or in cooperation (Guidetti et al., 

2006). For example, mutant huntingtin can lead to abnormal protein-protein 

interactions with other nuclear proteins such as pro-apoptotic transcription 

factor p53 and directly interact with several transcription factors such as 

TATA-binding protein (TBP) (Schaffar et al., 2004), cAMP-responsive 

element- binding protein (CREB) (Steffan et al., 2000), specific protein -1 and 

the TBP-associated factor (TAFII130) (Dunah et al., 2002). This process 

results in recruiting these proteins into the aggregates and inhibiting their 

transcriptional activity  (Gil and Rego, 2008). Furthermore, several studies 

suggest that mutant huntingtin can influence synaptic dysfunction by 
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interfering in a variety of synaptic proteins and their receptors (Gil and Rego, 

2008; Li et al., 2003).  

 

1.3.2.2. Role of NIIs 

Intra-nuclear inclusions are formed by the misfolding of mutant 

huntingtin and are a pathological marker of the disease both in mice and 

humans (Davies et al., 1997; DiFiglia et al., 1997). Two types of inclusion 

body formation have been proposed. Firstly, protein aggregation directly 

deposits a single or limited number of inclusions and, secondly, proteins are 

merged from individual aggregates into a single or number of inclusions 

(Kopito, 2000). Roizen and co-workers originally observed them as fibrillar 

and filamentous dense structures in biopsy samples of human patients, by 

electron microscopy (Roizin et al., 1979). Later on, they were discovered in a 

transgenic mouse model of HD (Davies et al., 1997) and then in humans 

(DiFiglia et al., 1997). After the discovery of NIIs in both HD patients and 

mouse models, they became a focus for many research groups who are 

investigating the NII formation in HD pathology. The data from in vivo and in 

vitro studies suggest that there are three possible scenarios for the role of 

NIIs in CAG/polyglutamine repeated diseases. Firstly, NIIs are toxic to cells 

and initiate the pathology (Ross, 1997; Ross et al., 1997; Rubinsztein et al., 

1999; Rubinsztein, 2006). Secondly, they protect the cell from toxic proteins 

(Arrasate et al., 2004; Ravikumar et al., 2004; Saudou et al., 1998). Thirdly, 

they are side products and have no function in cell death (Sisodia, 1998). 

There are several possible mechanisms that have been proposed for 

the mechanism of action of mutant huntingtin in neuronal cell death. It has 

been suggested that mutant huntingtin abnormally binds to interacting 

proteins which may lead to new protein interactions and subsequently disrupt 

the normal function of the huntingtin protein causing cell death (Li et al., 

2003). Recent evidence suggests that diffuse huntingtin aggregates 

dysregulate cell machinery before they become insoluble NIIs (Bennett et al., 

2007; Landles et al., 2010). Some studies have also suggested that the 
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soluble forms of huntingtin, such as monomers and oligomers, might be toxic 

(Menalled et al., 2003; Van Raamsdonk et al., 2005a) and the toxicity is 

induced by aggregates (Waelter et al., 2001). It has been reported that mutant 

huntingtin aggregates impair mitochondrial motility and trafficking in striatal 

neurons more than in cortical neurons, therefore producing selective 

neurodegeneration (Chang et al., 2006). When the effects of aggregate 

localization in both polyglutamine peptides of Q20 and Q42 were compared, it 

was found that the fibrillar forms of neither polyglutamine peptides is toxic to 

the cytoplasm, but, they  both lead to cell death when they are directed in the 

nucleus (Chen et al., 2001; Chen and Wetzel, 2001; Yang et al., 2002). 

Similarly, inhibition of aggregate formation with Congo red treatment in a 

transgenic mouse model of HD exerted beneficial effects on survival, weight 

loss and motor function (Sanchez et al., 2003). However, an indepented study 

replicating this research has shown that Congo red treatment failed to 

ameliorate motor and cognitive functions (Wood et al., 2007). Therefore, it has 

been suggested that early nuclear localization of mutant huntingtin may be a 

key pathogenic event in HD (Van Raamsdonk et al., 2005a; Wheeler et al., 

2000). 

Although these studies have suggested that NIIs might be toxic, some 

studies have proposed that NIIs may not be the cause of cell death  per se, 

but rather they recruit other cell proteins to initiate a neuroprotective 

mechanism (Arrasate et al., 2004; Saudou et al., 1998). For example, in cell 

models, transgenic mice and human brain, mammalian target of rapamycin 

(mTOR) was sequestered in aggregates. Inhibition of mTOR protects cells by 

induced autophagy, a principal clearance pathway for mutant huntingtin and 

reduces huntingtin accumulation (Ravikumar et al., 2004), suggesting that 

NIIs might be neuroprotective. Saudou and colleagues indicated that mutant 

huntingtin acts in the nucleus to induce neurodegeneration by an apoptotic 

mechanism that is cell specific. However, they have also shown that nuclear 

aggregates are not sufficient to initiate neurodegeneration and are not 

correlated with huntingtin–induced apoptosis. Unknown mechanisms and/or 

pathways trigger apoptosis in these cells (Saudou et al., 1998). Likewise, it 
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has been shown that the neurons that contained NIIs had an improved 

survival compared to those that did not (Arrasate et al., 2004).  

CAG repeat length has also been associated with inclusion formation 

(Becher et al., 1998; Martindale et al., 1998) and the rate of cortical atrophy 

(Halliday et al., 1998). It has been observed that a 36 CAG repeat may result 

in NIIs to a variable degree, as shown in HD brain tissues (Gomez-Tortosa et 

al., 2001), however 39 or above always causes NIIs (DiFiglia et al., 1997; 

Gomez-Tortosa et al., 2001; Gourfinkel-An et al., 1998; Gutekunst et al., 

1999; Maat-Schieman et al., 2007). Based on these correlations between 

CAG repeat length, inclusion formation and toxicity, it has been suggested 

that inclusion formation can mediate neurodegeneration in HD (Legleiter et 

al., 2009). There is variability in the distribution and areas of NIIs in post 

mortem brains of HD between different laboratories. However all agree that 

the cortex contains pronounced NIIs. Table 1 summarises the distribution and 

areas of NIIs in various human studies undertaken on post-mortem tissues. 



NIIs in human 
HD

Difigia et al., 1997 Sapp et al., 1997 Gourfinkel-An  et al., 1998 Maat- Schierman 
et al., 1999

Gutekunst et al., 1999

Antibody Ab 1 
(both wt-htt and mhtt) and 
ubiquitin

Ab585 
( both wt-htt and mhtt)

Ubiquitin and 1C2 Ubiquitin EM48

Patients 6 adult onset HD
(Grade 2-3)
3 Juvenile (Grade 3-4)

12 adult onset HD 
(Grade 1-4)
3 Juvenile

5 adult  onset HD 
(Grade 2-3)

5 adult onset HD 
(Grade 3-4)
2 Juvenile

12 adult onset HD
(Grade 1-4)

Most abundant Present all layers of cortex  
(3-6 % of total neuron)
More frequent in juveniles 
(38-52%)

Robust staining the cortex Most abundant in cerebral 
cortex (all layers) and the 
striatum 

Most abundant in the 
neocortex

Most abundant in the cortex 
(More frequent layer V and 
VI, differences between 
cortical areas within individual 
HD brains)

Less abundant Less abundant in the 
striatum

Reduced labelling  in 
medial and dorsal regions 
of the striatum and in the 
globus pallidus (G:1-3)

Less abundant in pallidum, 
thalamus and subthamus

Hippocampus Less abundant in caudate, 
putamen, substantia nigra, 
hypotalamic nuclei, thalamus 
and brain stem

Rare Not reported Not reported Extremely rare in the 
ventral striatum

Rare in the neotriatum Rare in the globus  pallidus, 
hippocampus and cerebellum

Absent Absent in the globus 
pallidus and cerebellum

Not reported Absent in  the cerebellum Absent in the 
cerebellum
Substantia nigra and 
pallidum

NIIs in human 
HD

Difigia et al., 1997 Sapp et al., 1997 Gourfinkel-An  et al., 1998 Maat- Schierman 
et al., 1999

Gutekunst et al., 1999

Antibody Ab 1 
(both wt-htt and mhtt) and 
ubiquitin

Ab585 
( both wt-htt and mhtt)

Ubiquitin and 1C2 Ubiquitin EM48

Patients 6 adult onset HD
(Grade 2-3)
3 Juvenile (Grade 3-4)

12 adult onset HD 
(Grade 1-4)
3 Juvenile

5 adult  onset HD 
(Grade 2-3)

5 adult onset HD 
(Grade 3-4)
2 Juvenile

12 adult onset HD
(Grade 1-4)

Most abundant Present all layers of cortex  
(3-6 % of total neuron)
More frequent in juveniles 
(38-52%)

Robust staining the cortex Most abundant in cerebral 
cortex (all layers) and the 
striatum 

Most abundant in the 
neocortex

Most abundant in the cortex 
(More frequent layer V and 
VI, differences between 
cortical areas within individual 
HD brains)

Less abundant Less abundant in the 
striatum

Reduced labelling  in 
medial and dorsal regions 
of the striatum and in the 
globus pallidus (G:1-3)

Less abundant in pallidum, 
thalamus and subthamus

Hippocampus Less abundant in caudate, 
putamen, substantia nigra, 
hypotalamic nuclei, thalamus 
and brain stem

Rare Not reported Not reported Extremely rare in the 
ventral striatum

Rare in the neotriatum Rare in the globus  pallidus, 
hippocampus and cerebellum

Absent Absent in the globus 
pallidus and cerebellum

Not reported Absent in  the cerebellum Absent in the 
cerebellum
Substantia nigra and 
pallidum

Table 1. The deposition of inclusions in post mortem human studies  
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It has been revealed that there is a close relationship between 

neuronal degeneration and the existence of neuronal inclusions. Even short 

CAG repeat expansions are associated with NIIs in HD patients (Gourfinkel-

An et al., 1998).  

In post-mortem brains of HD patients, the cortex is more intensely 

stained for NIIs than the striatum. In the study by DiFiglia and co-workers 

(1997), it was found that the position of NIIs is variable throughout the nucleus 

of cells. Intra-nuclear inclusions are larger than the nucleolus and of different 

shapes: 55% globular, 30% ovoid and 15% elliptical. Most neurons usually 

contain one NII, however, 5-7% of labelled neurons contain two or three NIIs 

per neuron. Intra-nuclear inclusions are present in all layers of the cortex and 

are more frequent in juvenile patients than adult onset patients. Intra-nuclear 

inclusions are also present in MSNs in the striatum. However, NIIs are absent 

in the globus pallidus and cerebellum. ENNIs were mainly present in 5th and 

6th layers of the cortex, where they satained densely, and had morphology 

consistent with localisation in dystrophic neurites. However, their distribution 

was uneven. ENNIs were more common in adult onset patients than juvenile 

onset patients. While, NIIs are not detected in the presymptomatic patient, 

ENNIs are observed in layer 6 of the cortex of the same presymptomatic 

patient (DiFiglia et al., 1997; Gourfinkel-An et al., 1998; Gutekunst et al., 

1999). 

It has been reported that Grade 0 patients do not contain cortical 

inclusions. However it is important to note that Grade 0 patients, effectively by 

definition, do not show HD pathology (Maat-Schieman et al., 2007). Inclusions 

are found in the cortex of HD brains while many medium spiny neurons lack 

inclusions despite the presence of neuronal loss (Gutekunst et al., 1999). 

There is some variability between human studies, for example, in another 

study (Sapp et al., 1997), the medial and dorsal regions of the striatum 

showed reduced mutant huntingtin staining, whereas the cortex exhibited 

robust staining. A reduced mutant huntingtin staining was also observed in the 

globus pallidus of adult onset HD. Interestingly, Grade 1 patients contain 

pronounced nuclear staining of neuronal nuclei and an increased axonal 

staining in the cortex of both adult and juvenile onset HD patients (Sapp et al., 
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1997). Due to the presence of NIIs in symptomatic patients and the absence 

of presymptomatic patients, it has been suggested that inclusions develop 

before neurological symptoms (Davies et al., 1998).  

 

1.4. Animal Models of Huntington’s disease  

Experimental animal models of HD have been sought to replicate the 

degeneration seen in the human disease. None of these models exactly 

mimics the human disease, but, they do permit the study of the disease 

processes in relative detail and have helped to develop and improve new 

strategies for therapies. The first animal models were generated using 

excitotoxic lesions, by either central or systemic administration of excitotoxins 

and metabolic toxins. Subsequently transgenic and knock-in (KI) mouse lines 

expressing HD have been successfully developed, following the identification 

of the HD gene. These models differ in the promoter used, the length of the 

huntingtin protein, and the length of CAG repeats (Gray et al., 2008; Hodgson 

et al., 1999; Lin et al., 2001; Lloret et al., 2006; Mangiarini et al., 1996; Reddy 

et al., 1998; Schilling et al., 1999; Slow et al., 2003; White et al., 1997).    

 

1.4.1. Excitotoxic lesions  

Until the discovery of the Huntingtin gene in 1993, excitotoxic lesion 

models were the most widely studied models of the disease. These models 

involve the injection of excitotoxins (kainic acid, ibotenic acid or quinolinic 

acid) into the striatum of experimental animals to induce a pattern of cell loss 

that resembles the pathology of HD. The first excitotoxic model was the 

injection of kainic acid into the striatum of the rat which caused clear neuronal 

loss (Coyle and Schwarcz, 1976). It was subsequently identified that kainic 

acid caused remote damage and epileptic side-effects and was replaced, 

initially, by ibotenic acid, and then quinolinic acid, both of which offer a more 

selective striatal cell loss that more closely resembles the neuropathologic 

and neurochemical characteristics of HD (Dunnett and Rosser, 2004; Mason 

et al., 1978; Schwarcz et al., 1983). More recently, 3-nitropropionic acid (3-

NP) lesions have been proposed as an alternative HD model due to their 
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histological and pathological similarities with human HD (Wang and Qin, 

2006). The mechanism of action of 3-NP differs from excitotoxic lesions in that 

3-NP irreversibly disrupts mitochondrial energy metabolism, leading to very 

selective striatal degeneration and functional deficits such as hyperactivity 

(seen in early HD) or hypoactvity (seen in late HD) (Borlongan et al., 1997). 3-

NP has the added facility that it causes selective striatal degeneration even 

after peripheral administration, but suffers from a considerable variability in 

toxicity from animal to animal that makes designed experiments difficult to 

execute. Although requiring central administration, the excitotoxic lesion 

models have proved more reliable, and reproduce similar patterns of striatal 

cell loss as well as many motor and cognitive symptoms of HD. Consequently 

they are useful for studying mechanisms to repair the damage caused by HD 

and replace the lost cells. However, excitoxically-lesioned rats fail to display 

specific chorea- like movements (Wang and Qin, 2006) and cannot clarify the 

underlying molecular mechanisms of pathogenesis in human HD, which is of 

its very essence a genetically defined disease.  

 

1.4.2. Genetic models  
Genetically modified models of HD have been developed in different 

species: Drosophila melanogaster (Warrick et al., 1998), Caenorhabditis 

elegans (Faber et al., 2002), zebrafish (Schiffer et al., 2007), non-human 

primates (Yang et al., 2008), pig (Matsuyama et al., 2000) and rodents (Lin et 

al., 2001; Mangiarini et al., 1996; Menalled et al., 2002; Menalled et al., 2003; 

Schilling et al., 1999; Slow et al., 2003; Slow et al., 2005; Von Horsten et al., 

2003; Wheeler et al., 2000). Of these, rodent models have proved to be the 

most widespread and flexible, incorporating the complexity of the mammalian 

brain necessary to make them suitable for behavioural studies, cell 

replacement and drug development strategies. These models have different 

CAG repeat lengths and different expression levels of mutant huntingtin 

protein. The inserted mutant allele is either truncated or full length.  

Ideally, an animal model should mimic key features of HD, including 

adult onset; progressive motor and cognitive impairments; cell loss in the 
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striatum and cortex; and expression, distribution and progression of 

aggregates/inclusions. Today, no animal models of HD can replicate precisely 

all the features of HD; however rodent models maintain their importance, 

because they are key tools to provide valuable sources of data for discovering 

the pathology of HD and allowing new potential therapeutic targets for clinical 

treatments. The selection of animal model depends on the type of experiment 

planned. For instance, R6 mouse lines progress rapidly and better represents 

juvenile-onset form of HD as such they are more useful for the therapeutic 

approach (Mangiarini et al., 1996). On the other hand, cognitive and 

behaviour experiments need a longer life span to allow for extended training, 

and relativelyselective fronto-striatal pathology to match the cognitive 

symptoms observed in patients, and for these studies knock-in models have 

been found to be more suitable. A multiplicity of genetic models of HD is now 

proving to offer useful tools for the study both of disease pathology and the 

elaboration of novel therapeutic strategies.  

 

1.4.2.1. Knock-out models  

Studies into the geraneration of knock-out HD mouse models showed 

that null mutants did not survive and suffered early embryonic lethality at 

around embryonic days (E)7.5 (Duyao et al., 1995; Nasir et al., 1995; Zeitlin et 

al., 1995). This finding showed that huntingtin is essential for embryonic 

development and made this model unsuitable for further studies. However, 

heterozygous litters for this mutation completed the major events of 

gastrulation and they have demonstrated motor and cognitive impairments 

with reductions of neurons in the subthalamic nucleus (Nasir et al., 1995).  

 

1.4.2.2. Transgenic models 
Transgenic models contain either a fragment of, or the full-length 

human gene with an expanded CAG repeat region which is randomly inserted 

into the rodent genome under the control of a promoter. The R6 mouse line 

was the first transgenic model of HD (Mangiarini et al., 1996). The R6/1 and 

the R6/2 mice express the N- terminal fraction of the human HD gene 
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containing a highly expanded ~116 and ~150 CAG repeats, respectively. The 

R6/2 transgenic model has been one of the most widely used models of HD, 

because R6 mice show a progressive phenotype which includes motor 

impairments (such as tremor, shuddering, stereotypic movements) and 

cognitive abnormalities (Carter et al., 1999; Lione et al., 1999; Mangiarini et 

al., 1996). Their characteristic features have been well documented. R6/2 

mice first display symptoms at 5-6 weeks of age, with death occurring at 

about 12-15 week (Mangiarini et al., 1996). Neuronal loss and reduced brain 

volume have been observed at very late stage of the disease in these mice 

(Stack et al., 2005). Aggregates were initially reported in the cortex and 

striatum of R6/2 mice at 3.5 and 4.5 months of age, respectively (Davies et 

al., 1997). However, another study has reported that the appearance of intra-

nuclear inclusions in R6/2 transgenic mice is present as early as postnatal 

day (P) 1 (Stack et al., 2005) and demonstrated that both numbers and size of 

intra-nuclear inclusions increases with the disease progression (Li et al., 

1999; Stack et al., 2005). It has recently been shown that the different CAG 

repeat size alters the onset of appearance of NIIs in the R6/2 transgenic mice, 

with mice containing shorter repeat lengths exhibiting NIIs earlier than mice 

with longer repeat lengths (Morton et al., 2009). 

In R6/1 mice, the earliest motor deficit with hyperactivity occurs at 4 

weeks of age (Bolivar et al., 2004) and as the diseases progresses, motor 

deficits become apparent with foot clasping at 14 weeks of age (Naver et al., 

2003). Cognitive (Hodges et al., 2008) and behavioural (Naver et al., 2003) 

deficits are present at 15 weeks of age and by 22 weeks of age, a decrease in 

body weight has been observed (Naver et al., 2003). A decrease in striatal 

volume is evident by approximately 20 weeks of age (Mangiarini et al., 1996; 

van Dellen et al., 2000). Impairment of hippocampal neurons has also been 

observed (Grote et al., 2005; Lazic et al., 2006). It has been suggested that 

R6/1 mice have deficits in short-term hippocampal-dependent memory prior to 

the onset of motor symptoms (Nithianantharajah et al., 2008). The degree of 

motor impairment is associated with the number of striatal neurons containing 

NIIs (Hansson et al., 2001). There is variability between studies showing the 

presence of NIIs. For example, NIIs have been reported in the hippocampus 

at 4 weeks of age (Milnerwood et al., 2006), whereas, another study failed to 
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show the appearance of NIIs in the hippocampus at early age (van der and 

Brundin, 2007). It has been reported that the reduced BDNF expression levels 

enhance the number of aggregates in the R6/1 mouse (Pineda et al., 2005). 

There is also conflicting literature on the effects of the environmental 

enrichment on this model. Van Dellen and co-workers have reported that the 

environmental enrichment delays onset of motor deficits but does not alter 

protein aggregate density in R6/1 mice (van Dellen et al., 2008). However, a 

more recent study has shown that the environmental enrichment has an effect 

on decreasing aggregate formation in this mouse line (Benn et al., 2010). 

Another mouse model is the N-171-82Q mouse which has a longer N-

terminal fragment of huntingtin (exon 1 and exon 2) with 82 CAG repeats. 

This model displays less severe behavioural phenotype than that of R6/2 

mice. It has been observed NIIs are more prominent in the cortex than in the 

striatum with widespread in other regions of the brain including hippocampus 

and cerebellum (Schilling et al., 1999). 

Another transgenic mouse model is the yeast artificial chromosome 

(YAC) mouse model which contains the full length human HD gene, including 

the entire regulatory element (Hodgson et al., 1999; Slow et al., 2003). The 

YAC128 mouse contains the full length human HD gene and has been 

characterized by Slow and colleagues in 2003 (Slow et al., 2003; Van 

Raamsdonk et al., 2005a). Motor and behavioural abnormalities arise at 3 

months of age with increased activity in the open field test, followed 

decreased performance on the rotorod at 6 months. Yet, by 12 months of age 

the open field activity declined in transgenic animals in comparison to their 

wildtype litter mates. Cognitive deficit has been reported on the simple 

swimming test at 8 months of age. Minor striatal atrophy was present at 9 

months of age, and by 12 months of age cortical atrophy was detected with 

striatal atrophy. NIIs were not observed until 18 months of age, but, high 

nuclear immunoreactivity was seen from 2 months onwards in the striatum. 

No changes have been observed in hippocampal volume (Van Raamsdonk et 

al., 2005b). Interestingly, a recent study showed a decline in hippocampal cell 

proliferation (Simpson et al., 2010). Similar results were observed in the R6/2 

transgenic mice (Gil et al., 2005) suggesting hippocampal dysfunction in R6/2 
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mouse model (Murphy et al., 2000). It has been suggested that in transgenic 

mouse models, onset of the symptoms is associated with synaptic and 

neuronal dysfunction and then neuronal death occurs (Turmaine et al., 2000; 

van Dellen et al., 2005).  

In addition, a conditional HD mouse model in which the mutant 

huntingtin gene can be switched off has been also generated. The mice 

expressing mutant huntingtin protein, “gene on” demonstrated NIIs with motor 

impairments. However, blockade of expression in these mice caused a 

disappearance of NIIs with improved behavioural phenotype (Yamamoto et 

al., 2000).Figure 4 summarises the other transgenic models of HD. 

 

1.4.2.3 Knock-in models 

Knock-in HD mouse models are created by inserting a linearized 

targeting vector into their own murine huntingtin gene (Htt) which is the 

homologue of human HTT. Therefore, they are the most faithful genetic 

replication of human HD. These mice can be homozygous or heterozygous for 

the mutation and have been less studied than transgenics. They contain 

different CAG repeats. For example, Hdh(CAG)Q150 mice contains approximately 

150 CAG repeats and show motor deficit with hyperactivity and clasping at 3 

months of age (Lin et al., 2001). Cognitive impairment became prominent on a 

set shifting task at 6 months of age (Brooks et al., 2006) and with age 

increases, mice show behavioural impairment at 15 months of age. 

Aggregates are first observed in the striatum at 6 months of age (Tallaksen-

Greene et al., 2005; Woodman et al., 2007). Other knock-in mouse models 

are HdhQ92 and HdhQ111 mouse models. They contain ~ 90 and 109 CAG 

repeats, respectively (Wheeler et al., 2000). HdhQ92 mice exhibit cognitive 

deficit at 4 months of age (Trueman et al., 2007), behavioural and motor 

deficit become apparent with age (Trueman et al., 2009). Aggregates were 

observed at 1.5 months of age (Wheeler et al., 2000). Some of the most 

common knock-in models are summarised in figure 5. 

Initially, knock-in models were not reported to exhibit obvious 

neurological symptoms and early motor abnormalities (Petersen et al., 1999; 
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Shelbourne et al., 1999; Wang and Qin, 2006; Wheeler et al., 2000). 

However, more recent studies show that with more sensitive behavioural 

analysis, most knock-in models do display neurological symptoms and early 

behavioural abnormalities (Brooks et al., 2010b; Brooks et al., 2010c; Brooks 

et al., 2006; Hickey et al., 2008; Lin et al., 2001; Menalled et al., 2002; 

Menalled et al., 2003; Trueman et al., 2007; Trueman et al., 2008). Similarly, 

in early studies, it has been observed that aggregates/nuclear inclusions 

occur in the brains of knock-in mice later than in those of transgenic mice 

(Levine et al., 1999; Lin et al., 2001; Vonsattel, 2008). However, it has been 

confirmed that the appearance of the aggregates in most knock-in models 

occurs at a relatively early stage (Menalled et al., 2003; Tallaksen-Greene et 

al., 2005; Wheeler et al., 2000; Woodman et al., 2007). 
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Figure 4. Transgenic models of HD. Frist appereance of Aggregates/inclutions, behavioral, cognitive and motor symotoms of age. Left column illustrates the 
genetic construct used to generate the transgenic model, indicates survival and emergence of phenotypes in weeks and months. Right column represents % of a 
life span. 
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Figure 5. Knock-in models of HD. Frist appereance of aggregates/inclutions, behavioral, cognitive and motor symotoms of age. Left column illustrates the genetic 
construct used to generate the knock-in model, indicates survival and emergence of phenotypes in weeks and months. Right column represents % of a life span. 
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Recently, it has been proposed that nuclear and cytosolic aggregates 

have different functions and behave differently (Weiss et al., 2008). An 

independent study has reported that in R6/2 transgenic mice, there is a 

progressive appearance of NIIs and ENNIs in striatum, cortex and 

hippocampus (Morton et al., 2000). Additionally, recently it has been shown 

that the difference in CAG repeat size alters the onset of appearance of NIIs. 

it has been shown that mice with shorter repeat length show earlier onset of 

appearance of NIIs, whereas with longer repeat lengths there is delayed onset 

of appearance of NIIs (Morton et al., 2009). The cytoplasmic/ENNIs are 

suggested as possible precursors of intra-nuclear inclusions (Lunkes and 

Mandel, 1998). 

Importantly, astrogliosis is also observed in some  knock-in mouse 

models such as Hdh(CAG)Q150, Hdh(CAG)Q200 (Heng et al., 2010; Lin et al., 2001) 

and some transgenic mouse models such as HD89 transgenic mouse line 

(Reddy et al., 1998) However, it has not been reported in the R6/2 transgenic 

mice, which have the reduced brain size (Mangiarini et al., 1996). However 

one recent study has shown that chimeric R6/2 mice which crossed with 

ROSA26 mice (bear a lacZ transgene, used as wildtype) exhibited increased 

reactive gliosis (Reiner et al., 2007). In addition to astrocytes, microglia 

abnormalities are also observed in this mouse model (Simmons et al., 2007). 

Of the available mouse lines, four lines are of particular interest to us 

as they are representative of the disease in terms of their functional deficits 

but have been created with very different genetic constructs. The HdhQ92 

mouse line is a targeted insertion of a chimeric human-mouse exon 1with 90 

CAG repeats (Wheeler et al., 2000), the HdhQ150 is constructed by insertion 

of approximately 150 CAG repeats into in exon 1 of the mouse Htt locus using 

a two step gene targeting strategy (Lin et al., 2001; Ordway and Detloff, 

1996). The R6/1 mice line is generated by insertion of exon 1 of human gene 

into the genome (Mangiarini et al., 1996), whereas, YAC128 mice contains 

the entire HD gene including the promoter region (Slow et al., 2003).  
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1.5. Aims of this thesis  

There is still much more to learn about all these animal models. For 

example, the exact relationship between the genetic mutation and molecular 

changes in the cell remains unknown, and the impact of these behavioural 

phenotypes has not been fully elucidated. We hypothesise that the 

behavioural symptoms are driven by the pathology in particular cells and 

regions of the brain. Consequenty if we can identify the different patterns and 

time courses of pathological changes in the brain expressed in different 

genetically modified mouse lines, alongside the profile and time course of 

behavioural symptoms, we can begin to propose a causative cascade of 

changes whereby the mutant gene produces the specific symptomatology. A 

long term programme within the Brain Repair Group is to provide the 

comparative analysis of the precise time course and patterns of 

neuropathological changes at an anatomical level in the target mouse to 

identify the model that best represent the human form of HD. 

Specifically, the principal aims of the thesis are as follows; 

• To evaluate mouse models of HD, by producing a detailed 

characterization of the underlying neuronal pathology in both 

knock-in (Hdh(CAG)Q150 and HdhQ92) and transgenic (YAC128 and 

R6/1) mouse models of HD.  

• To analyze the progression, location and level of cell death 

present in these brains and also the possible role that 

aggregation and inclusion formation may have on the brain 

pathology.  

• To assess the distribution, numbers and form of huntingtin 

aggregates in the brain tissues from the Hdh(CAG)Q150 knock-in 

mouse line, HdhQ92 knock-in mouse line and R6/1 transgenic and 

YAC128 transgenic mouse model of HD and compare with 

human HD.  

• To assess whether one of these models represent the human 

condition more accurately than the others and can we identify a 

representative model of the human condition.  
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2.1 Animals 

In this study, two transgenic and knock-in models were used. Animal 

numbers and their backgrounds were described in detailed in each models of 

each chapters.  

For all experiments the mice were housed together under standard 

conditions with ad libitum access to water and food. They were kept in a 

holding room with 12h light: dark cycle and an ambient room temperature of 

20°/±1°C. The cages contained sawdust bedding and a cardboard tube for 

environmental enrichment. Each cage contained 1 to 6 animals. 

All genetic mice and their controls have been through behavioural 

characterization for two years. This study was carried out in accordance with 

the UK Animals (Scientific Procedures) Act, 1986. 

2.2 Histology 

The animals were anaesthetized with a 0.2ml intraperitoneal injection 

of Euthatal (Merial, UK). Mice were perfused intracardially with approximately 

100ml of phosphate buffered saline (PBS, pH 7.4) solution for 3 min, followed 

by another approximately 100ml of 4% paraformaldehyde (PFA) (Fisher 

Scientific, UK) in a 0.1M PBS solution, pH 7.4, for a further 5min. The brains 

were carefully removed and placed in 4% PFA in for 4 hours for post fixation 

at room temperature on a shaker and then transferred to a 25% sucrose in 

PBS at 4°C until they sank. Brains were sectioned at 40µm intervals in the 

coronal plane using a freezing sledge microtome (Leitz Bright Series 8000, 

Germany). The sections were then placed into 96 well plates containing a 

cryoprotective solution and were stored at -20°C. 
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2.3 Cresyl Fast Violet (CV) 

One of six series was stained using the standard Nissl stain, cresyl fast 

violet for morphological and stereological analysis. Briefly, sections were 

mounted on the gelatine-coated glass slides (Thermo Scientific, Menzel-

glaser, Germany) and then air-dried to allow better preservation of 

morphology at 37°C for 24 hours. The sections were then dehydrated using a 

series of ascending ethanol solution (5 min each, 70%, 95%, and 100%) and 

delipidized in a mixture of chloroform and ethanol (1:1, v/v) for 20 minutes. 

Following delipidization, the sections were hydrated in a series of descending 

ethanol solution (5 min each 100%, 95% and 70%) and immersed in distilled 

water for 5 minutes and stained with cresyl violet (0.7 % in distilled water with 

0.5 % sodium acetate, Sigma, UK) for 5 minutes. After rinsing in distilled 

water for 1 minute, the sections were dehydrated in a graded series of ethanol 

(5 min each, 70%, 95%, and 100%), cleared in xylene (VWR, Germany) for at 

least for 10 minutes and then cover-slipped with DPX mounting medium (RA 

Lamb, UK) and analysed under a Leica DMRBE microscope (Leica, 

Germany).  

 

2.4 Immunohistochemisty (IHC) 

All stains were carried out on a one in six series of sections. Free-

floating sections were processed for IHC using the sheep anti-S830 (a kind 

gift from Prof. Gill Bates, King College, London, UK) and rabbit GFAP (DAKO, 

UK) primary antibodies. The S830 antibody was raised against the product of 

the N-terminal region to 53 glutamine residues of exon 1 of human gene and 

selectively recognizes the aggregated form of the mutated htt protein 

(Milnerwood et al., 2006). The GFAP antibody labels astrocytes and 

measures reactive astrogliosis (Reiner et al., 2007).  

The sections were placed in TRIS Buffered Saline (TBS), (pH 7.4) and 

washed twice for 5min. The endogenous peroxidise activity was inhibited by 

incubation in methanol containing 3% H2O2 (VWR, Germany) for 5min and 

then placed in TBS. Non-specific binding sites were blocked with 3 % horse 

serum in TBS for one hour  and the sections were incubated with S830 
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antibody (diluted 1:25000) and GFAP antibody (1:2000) overnight at room 

temperature. After several washes in TBS, sections were incubated with a 

horse anti-goat or horse anti-rabbit secondary antibody, respectively (diluted 

1:200, Vector Laboratories, Burlingame, CA, USA) for two hours at room 

temperature. After several washes in TBS, the sections were incubated with a 

biotin-streptavidin kit (according to the manufacturer’s instructions, Vector 

Laboratories). After each incubation, the sections were rinsed in TBS. The 

peroxidise activity was visualized with 3,3’-diaminobenzidine (DAB). Finally, 

the sections were mounted on gelatine-coated slides, dehydrated in a graded 

series of ethanol (5 min each, 70%, 95%, and 100%), cleared in xylene and 

cover-slipped. 

The S830 staining was also scored in a semi-quantitative fashion that 

included the intensity of specific staining in sections: 0 = absent, (+) = nucleus 

staining; ++ = Diffuse staining; +++ = minimum inclusions; ++++ = Dense 

inclusions in 3 of mouse models (HdhQ150, HdhQ92 and YAC128), but not in 

R6/1 mice due to dense and variability between mice.  

Light microscopic pictures were taken using a Leica DMRBE 

microscope fitted with a digital camera (Optronics, California, USA) and 

imaging Software MagnaFire 1.2C (California, USA). All images captured 

using the same parameters and saved on a computer for further analysis. 

2.5 S830 / CV Stereology 

All quantification assessed blindly to the genotype of mice. A PC-based 

image analysis software (Olympus C.A.S.T. grid system v1.6.) on an Olympus 

BX50 microscope (Japan) was used to quantify the number of CV and S830 + 

cells. Sections through the striatum were sampled in a systematic random 

manner using 1: 6 series. On each section, the striatum was outlined under a 

4X objective and the enclosed area was calculated by the C.A.S.T grid 

software. Sections within a defined volume of the striatum were then sampled 

at random and cells were counted under a 100X objective. The size of the 

counting window was 265 µm2 (Figure 2.1). 
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Figure 2. 1.: A schematic view of Olympus C.A.S.T. grid system on a 

computer screen. A red and green rectangle is counting window of 265 µm2.  

 

In this window, the cells are touching the green line were included, however 

cells are touching the red line excluded. And then using the following formula 

the total number of cells in the structure per section was calculated.  

C= ∑c X (∑A/ ∑a) X f   C: The total number of cells 

     ∑c : The total number of cells counted 

     ∑A : The sum of all the inclusion areas 

     ∑a : The sum of all the sample areas 

     f: The frequency of sectioning  
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2.6 Transmission Electron Microscopy (TEM) for morphological study 

For electron microscopy mice were anaesthetized by intraperitoneal 

injection of 0.1 ml of Euthatal and then perfused with 0.9% NaCl for 3min, 

followed by 2% PFA and 2% glutaraldehyde in 0.1M PBS solution at pH 7.4, 

for 5min. After perfusion, the brains were carefully removed and washed in 

PBS. The striatum were selected according to a mouse brain atlas ( Paxinos 

and Franklin 2001) and transferred into PBS. The striatum was cut into small 

cubes using a razor blade in PBS and transferred into 1% osmium tetroxide in 

distilled water for 2h at +4°C for the post fixation. After washing with distilled 

water 4 X 15min, the samples were stained overnight in 0.5% uranyl acetate 

at 4°C. All tissues used for electron microscopy were dehydrated in ascending 

concentrations of ethanol and fresh propylene oxide, and then infiltrated 

overnight in a mixture of propylene oxide and araldite resin (1:1, v/v) on a 

rotator at room temperature. Following the resin infiltration, the tissues were 

embedded in fresh resin for 48h at 60°C. Ultrathin sections (60nm) were cut 

with a diamond knife on an ultracut-microtome (Reichert-Jung, Leica, UK). 

Thin sections were collected on copper mesh grids, counterstained with 2% 

uranyl acetate for 10min followed by Reynold’s lead citrate for 5min and 

examined under a Philips transmission electron microscope (Philips EM 208, 

The Netherlands). 

 

2.7 Transmission Electron Microscopy for immunogold labelling 

For electron microscopy mice were anaesthetized by intraperitoneal 

injection of Euthatal and then perfused with 0.9% NaCl for 3min, followed by 

3% PFA and 0.2% glutaraldehyde in 0.1M PBS solution, pH 7.4, for 5min, and 

then with 3 % PFA alone at a rate of 15ml/min. After perfusion the brains were 

carefully removed and the striatum were dissected according to a mouse 

brain atlas ( Paxinos and Franklin 2001) and washed in PBS. The striatum 

tissue was cut into small cubes using a sharp razor blade in PBS and 

transferred into a cryoprotective solution (0.05M PBS, pH 7.4, containing 25% 

sucrose and 30% glycerol) for 15min. The tissue was then transferred into 
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methanol in an automated freeze substitution chamber at -80°C for 48h. The 

methanol was replaced with fresh methanol during the first two hours at -

80°C. The chamber temperature was then allowed to increase -50°C for 88h. 

Tissues was then infiltrated by a mixture of Lowicryl HM20 resin and methanol 

(1:1, v/v) for 90min at -50°C, then infiltrated with a mixtures of Lowicryl HM20 

resin and methanol (2:1, v/v) for a further 90min at -50°C, then transferred into 

pure Lowicryl HM20 resin overnight at -50°C. The tissue was then embedded 

in fresh Lowicryl HM20 resin under UV light for 48h at -50°C. The temperature 

was then increased to the room temperature for 24h a causing the UV light to 

polymerised the resin block. Ultrathin sections (60nm) were cut with a 

diamond knife on an ultracut-microtome (Reichert-Jung, Leica, UK). Thin 

sections were collected on pioloform-coated nickel mesh grids and were 

blocked with drops of PBS containing 3% normal donkey serum, 1% bovine 

serum albumin (BSA), 0.2% Triton-X and 0.1% sodium azide for 45min at 

room temperature. The sections were then incubated on drops of sheep 

polyclonal S830 primary antibody (1:500) overnight at 4°C. After rinsing in 

PBS and distilled water, the sections were incubated again in donkey anti-

sheep IgG conjugated gold (10nm, 1:20; BB International) for overnight at 

4°C. After washing in PBS, the grids were counterstained with 2% uranyl 

acetate for 10min followed by Reynold’s lead citrate for 5min and examined 

using a Philips transmission electron microscope. 
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Experimental Papers - Supplementary Information 

S.B. Dunnett, S Brooks and Lesley Jones were involved in the planning 

of experiments and provided valuable advice and input throughout all papers.  

Eduardo M Torres has contributed valuable advice on the stereology 

technique. Alison Baird, former laboratory manager was involved in all mice 

transactions and all their paperwork. HdhQ150 and HdhQ92 mice were bred 

and genotype within the laboratory of Dr Lesley Jones, Yac128 and R6/1 mice 

were bred by Gemma Higgs and Nari Janghra, former research assistants 

within the Brain Repair Group. Ifor Bowen and Anthony Hann contributed 

expertise in the electron microscopic analysis throughout all papers. 

The all experiments were carried out by the candidate.  
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Chapter 3 

 

 

 

 

Paper 1 
 

 

Light and electron microscopic characterization of the 
evolution of cellular pathology in the R6/1 Huntington’s 

disease transgenic mice. 

Bayram-Weston Z., Jones L., Dunnett S.B. and Brooks S.P. 

Brain Res Bull. 2011, In press. 
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a  b  s  t  r  a  c  t

Huntington’s  disease  (HD)  is  an  inherited  neurodegenerative  disorder  caused  by  an  expansion  of  CAG
repeats  in  the  Htt  gene.  Examination  of  the  post-mortem  brains  of  HD  patients  shows  the  presence  of
diffuse  nuclear  htt immunoreactivity  and  intra-nuclear  inclusions.  The  aim  of  this  study  was  to  produce
a detailed  characterization  of  the  neuronal  pathology  in the  R6/1  transgenic  mouse  model.  The  R6/1
carrier  mice  demonstrate  intra-nuclear  and  extra-nuclear  inclusions  with  the  S830  htt  antibody  at  2–11
months  of  age.  The  distribution  pattern  of  neuronal  intra-nuclear  inclusions  (NIIs)  was  irregular  in several
brain regions  including  the  striatum,  cortex  and  hippocampus.  A greater  number  of  NIIs were  found  in
the  ventral  striatum  than  in  the  dorsal  striatum.  In  the  globus  pallidus,  cerebellum  and  thalamus  the
pattern  of  inclusion  formation  was  relatively  consistent  over  time.  At  4 and  6 months  of  age,  the  R6/1
mice  showed  increased  glial  fibrillary  acid  protein  (GFAP)  immunoreactivity  in the  cortex  compared  to
their wildtype  littermates,  yet  no  difference  was found  in the  striatum.  Analysis  by electron  microscopy
ransmission electron microscope (TEM) found  that  neurons  from  the  R6/1  carriers  contained  a densely  packed  cytoplasm  at  1.5  months  of  age,
with  some  neurons  displaying  structural  abnormalities  including  vacuolization  and  nuclear  membrane
folding.  No  NIIs  were  detected  at this  age,  but  by  7 months  of  age,  NIIs  were  present  with  severe  cellular
vacuolization.  The  present  study  indicates  that  a decrease  in  striatal  volume  with  cell  loss is  present  in
young  (2  months)  R6/1  mice,  and  the  distribution  of  NIIs  is robust  and  widespread,  with  considerably
temporal  and  spatial  variation  in  NII  development  between  mice.
. Introduction

Huntington’s disease (HD) is an autosomal dominant neurode-
enerative disease caused by a mutation on the Htt gene, which
ncodes the protein huntingtin [76]. Polyglutamine repeat lengths
f greater than 36 are responsible for the disease [68] which man-
fests symptoms of progressive cognitive, psychiatric and motor
mpairment [3].  The onset of symptoms usually occurs between 35
nd 50 years of age, and ultimately results in death around 15–20
ears after the onset of symptoms. However, onset can vary from
arly childhood to old age depending on repeat length and environ-
ental modification of the disease [19,24]. Polyglutamine repeat

engths of ∼65 and above instigate the juvenile form of HD [30].
ognitive deficits are present in HD gene carriers and early-stage
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  the R6/1 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), d

atients well before the onset of the motor symptoms that define
he disease [29,37,38,41].

� This article is part of a Special Issue entitled ‘HD Transgenic Mouse’.
∗ Corresponding author. Tel.: +44 29 208 74684; fax: +44 29 208 76749.

E-mail address: Bayram-WestonZ@cardiff.ac.uk (Z. Bayram-Weston).

361-9230/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.brainresbull.2011.07.009
© 2011 Elsevier Inc. All rights reserved.

The pathological hallmark of HD is the selective loss of GABAer-
gic medium-sized spiny neurons (MSNs) of the striatum [22,82].
Although the neuropathology is most prominent in the neostriatum
and the cerebral cortex [22], other brain areas such as the amygdala
and hippocampus are also affected in the early stages of the disease
[64]. Other characterising markers of the disease are the presence
of protein aggregates and neuronal intra-nuclear inclusions (NIIs),
in both HD patients and transgenic mouse models of the disease
[15,17]. The role of the aggregates and NIIs is unknown, although
three hypotheses have been suggested for the potential role of
NIIs, which are (i) they are toxic to cells and initiate the pathology
[65–67,69], (ii) they are protective to cells [2,53,61,72], (iii) they are
a result of an unknown mechanism with no function in cells [74]
and it is generally believed that they contribute to cell death, but it
is less accepted that NIIs are directly toxic [15,17,40,84].

As HD is caused by a single gene mutation, it is relatively easy to
model in mice. Several genetic rodent models have been generated
to help determine the nature and time-course of the disease devel-
on microscopic characterization of the evolution of cellular pathology
oi:10.1016/j.brainresbull.2011.07.009

opment in animals [43,50,52,62,83]. The R6 mouse lines were the
first transgenic models of HD [50]. The R6/2 mice show a rapidly
progressive phenotype which includes motor and cognitive abnor-
malities, and death by 13–18 weeks of age [13,44,50].  However,

dx.doi.org/10.1016/j.brainresbull.2011.07.009
dx.doi.org/10.1016/j.brainresbull.2011.07.009
http://www.sciencedirect.com/science/journal/03619230
http://www.elsevier.com/locate/brainresbull
mailto:Bayram-WestonZ@cardiff.ac.uk
dx.doi.org/10.1016/j.brainresbull.2011.07.009
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ewer studies have been carried out on the R6/1 mouse line, in
art because of the later onset and slower progression of pathol-
gy and symptoms. The R6/1 mice express exon 1 of the human htt
ene and carry approximately 116 CAG repeats. The endogenous
evel expression of the R6/2 mice is 75%, whereas, the endogenous
evel expression of the R6/1 mice is 31% [50]. These mice show
omatic instability starting at ∼6 weeks of age which progressively
ncreases with age [4,49].  The first sign of motor deficits became
pparent with hyperactivity at 4 weeks of age [9].  As the disease
rogresses, a deficit with feet clasping is pronounced at 14 weeks
f age and the mice demonstrate a decline in body weight from 22
eeks of age [56]. These mice exhibit early spatial learning deficits

t 12 weeks of age [12]. By 15 weeks of age, cognitive [31] and
ehavioural [56] impairments become more apparent. Bolivar et al.
ave shown that overt neuronal pathology only emerges well after
he behaviour abnormalities in these mice [8].  Moreover, in R6/1

ice, the degree of motor impairments coincide with in the num-
er of striatal neurons containing NIIs [26]. Intra-nuclear inclusions
ere first observed in the hippocampus, coinciding with hyperac-

ivity [54], and were most noticeable in the striatum by 9 weeks
f age [56]. No cell death has been reported at 30 weeks of age
lthough a decreased DARPP-32 immunostaining has been found
56]. Extracellular striatal dopamine levels are also decreased by
0% in these mice compared to their wildtype littermates and it
as been reported that the R6/1 mice are resistant to excitotoxic
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  the R6/1 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), d

esions produced by malonate [60] and quinolinic acid [59].
The present study aimed to characterize anatomically the dis-

ase progression in the R6/1 mouse line in animals of between 2
nd 11 months of age, in parallel with the longitudinal behavioural

ig. 1. Striatal volume in R6/1 mice. R6/1 mice demonstrated a decrease in striatal volum
triatum in R6/1 mice is also apparent compared with their control (B). The total number o
t  4 months of age, after which point the number of affected cells fell (C). Diffuse nuclea
hereas nuclear inclusions were present in all age groups from 2 months of age with the
 PRESS
rch Bulletin xxx (2011) xxx– xxx

study, reported elsewhere [12]. Disease progression was  measured
by determining the onset, and temporal and spatial pattern of pro-
tein aggregation and NII formation throughout the brains of the
mice. The present study aims to define developmentally sensitive,
disease-related time points in the R6/1 mouse line, to optimise ther-
apeutic potential and identify the suitability of this mouse line for
specific therapeutic interventions.

2. Materials and methods

2.1. Animals

In total, 24 male (M)  and 30 female (F) R6/1 transgenic mice were used in the fol-
lowing groups: 2 months = 5 wildtype (3M, 2F) and 3 carriers (2F, 1M); 4 months = 5
wildtype (3M, 2F) and 5 carriers (3M, 2F); 6 months = 5 wildtype (2M, 3F) and 5 carri-
ers  (5M); 7 months = 5 wildtype (2M, 3F) and 5 carriers (5M); 10 months = 3 wildtype
(3F)  and 5 carriers (5F) and 11 months = 3 wildtype (3F) and 5 carriers (5F). The R6/1
mice were obtained from Jackson Laboratory (Maine, USA), and maintained on the
males, and backcrossed on to C57BL/6j wildtype females with the F1 animals being
used for this study. All mice were genotyped on weaning by tail tip samples which
were processed by a commercial company (Laragen Inc., Los Angeles). The carrier
mice used in the present study carried on average 124 CAG repeats with a range of
118–126. Animals were housed in groups of up to 4 mice under a 12 h:12 h light-dark
cycle (lights on 07:00 h) with ad libitum access to food and water and an ambient
room temperature of 21 ± 1 ◦C. All experiments were conducted in accordance with
the  UK Animals (Scientific Procedures) Act 1986, and local ethical review.

2.2. Histology
on microscopic characterization of the evolution of cellular pathology
oi:10.1016/j.brainresbull.2011.07.009

The animals were deeply anaesthetised with Euthatal (Merial, Essex, UK),
pre-washed with 0.1 M phosphate-buffered saline (PBS) and perfused with 4%
paraformaldehyde (PFA) (Fisher Scientific, Loughborough, UK)  in PBS. The brains
were then removed and post-fixed for 4 h and left to saturate with 25% sucrose PBS.
The  brains were sectioned coronally to a thickness of 40 �m on a freezing sledge

e with age compared with their wildtype littermates (A). Neuronal cell loss in the
f affected cells (cells constitute of both diffuse staining and inclusions) was highest
r staining peaked at 4 months of age and was  not detectable by 7 months of age,

ir number peaking at 10 months of age (D).

dx.doi.org/10.1016/j.brainresbull.2011.07.009
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icrotome (Leitz Bright Series 8000, Germany) and the sections were stored in
ntifreeze in the freezer at −20 ◦C.

.3. Cresyl fast violet (CV)

Cresyl violet was used for anatomical and stereological analysis of the sections
n  a one in six series. The sections were mounted on double-coated gelatin slides,
ried overnight and then dehydrated in increasing concentrations of ethanol (70%,
5%  and 100%) for 5 min  each, before being delipidized in a mixture of chloroform
nd ethanol for 20 min. They were then bathed for 5 min  each in 100%, 95%, 70%
thanol and distilled water before the slides were submerged in a solution of cresyl
iolet acetate, 0.7% in distilled water with 0.5% sodium acetate (Sigma, Hertford-
hire, UK) for 5 min. After a rinse in distilled water, the sections were differentiated
nd dehydrated for 5 min  each in 70%, 95% ethanol and finally 100% ethanol before
eing cover-slipped using DPX mounting medium (RA Lamb, Hambridge, Somerset,
K). The sections were analysed under a Leica DMRBE microscope (Leica, Wetzlar,
ermany).

.4.  Immunohistochemistry

Immunohistochemistry was performed as described by Bayram-Weston et al.
7].  The staining was carried out on a one in six series of sections from each brain. The
ections were collected in 96 well plates to undergo immunohistochemical reactions
hile free floating. Sheep anti-S830 primary antibody (a kind gift from Prof. Gillian
ates, King’s College, London, UK) which recognizes the N-terminal region to 53Q of
xon  1 of the human gene [54], and rabbit anti-glial fibrillary acid protein primary
ntibody (GFAP; DAKO, Cambridge, UK) which measures reactive astrogliosis, were
pplied to free floating sections. Reactive astrogliosis was measured by the intensity
f GFAP immunoreactivity at 2, 4 and 6 months, based on the average staining of
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  the R6/1 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), d

nimals at each time point.
The sections were washed in TRIS-buffered saline (TBS) and quenched in dis-

illed water with methanol containing 3% H2O2 (VWR) for 5 min. After three washes
n  TBS, the sections were immersed in a blocking solution containing TBS and 3%
orse serum for 1 h. Subsequently they were incubated with S830 antibody (diluted

ig. 2. Temporal progress of S830 immunoreactivity in R6/1 mouse brain. Columns 1: olfa
I–K),  Columns 4: ventral striatum (M–P), Columns 5: cortex (Q–T) at 2, 4, 7 and 11 mont
 PRESS
rch Bulletin xxx (2011) xxx– xxx 3

1:25,000) and GFAP antibody (1:2000) overnight at room temperature, before three
washes. Sections were then incubated with horse anti-goat or horse anti-rabbit sec-
ondary antibodies (diluted 1:200, Vector Laboratories, Burlingame, CA, USA) for 2 h.
To  further amplify the signal, a biotin-streptavidin kit was  administered accord-
ing to the manufacturer’s instructions (Vector Laboratories) for 2 h. After additional
washes in TBS, the peroxidase activity was visualized with 3,3′-diaminobenzidine
(DAB) reaction (Sigma–Aldrich, Poole, Dorset, UK). The sections were mounted on
gelatine-coated slides, dehydrated and cover-slipped.

Light microscopic pictures were taken using a Leica DMRBE microscope fitted
with a digital camera (Optronics, Goleta, California, USA) and MagnaFire 1.2C imag-
ing  Software (Goleta, California, USA). All images were captured using the same
parameters and saved on computer for further analysis. Images were adjusted in
contrast and brightness only for optimal display with Adobe Photoshop 6.0.

2.5. S830/CV stereology

Two  dimensional stereology was performed on an Olympus BX50 microscope
(Olympus Optical Co. Ltd., Tokyo, Japan) with a PC-based image analysis software
(Olympus C.A.S.T. grid system v1.6.). Cell counts were performed on a one in six
series of S830-stained and CV sections throughout the entire left striatum and then
evaluated blindly to the experimental groups. Briefly, the striatum was outlined
under a 4× objective and the enclosed area was calculated by the C.A.S.T. grid
software. Sections within a defined volume of the striatum were then sampled at
random and cells were counted under a 100× objective using a 265 �m2 2D optical
dissector counting frame. The total number of cells in the structure per section was
calculated using the following formula [1]:

C  =
∑

c ×
(∑

A∑
a

)
× f
on microscopic characterization of the evolution of cellular pathology
oi:10.1016/j.brainresbull.2011.07.009

C:  the total number of cells;
∑

c: the total number of cells counted;
∑

A: the sum

of  all the inclusion areas;
∑

a: the sum of all the sample area; f: the frequency of
sectioning.

ctory tubercle (A–D), Columns 2: piriform cortex (E–H), Columns 3: dorsal striatum
hs of age. The presence of NIIs is clearly visible in all areas of R6/1 mouse brain.

dx.doi.org/10.1016/j.brainresbull.2011.07.009
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Affected cells were identified and the total numbers estimated in terms of pos-
tive  S830-labelling; affected cells were further categorized in terms of whether
hey expressed either diffuse nuclear staining alone or exhibited overt inclusions in
heir  nuclei (NIIs) with diffuse nuclear staining. Extra-nuclear neuronal inclusions
ENNIs) have been excluded from counting because they are not within the nuclei
f cells.

.6. Transmission electron microscopy (TEM) for morphological assessment

An additional 8 mice were sacrificed at 1.5 months and 7 months (n: 8; 2 wild-
ype and 2 carriers at each age) for electron microscopic analysis. The animals were
eeply anaesthetised with Euthatal and then perfused with 0.9% NaCl, followed
y  a mix  of 2% PFA and 2% glutaraldehyde, made in a phosphate buffer of 0.1 M
pH  7.4) for 5 min. The striatum was dissected into five random specimens under
eica Wild M3Z  (Leica, Wetzlar, Germany) microscope according to the Paxinos
nd Franklin Atlas [58]. The striatum were then washed several times with PBS,
nd were cut into small cubes and post-fixed in 1% osmium tetraoxide for 2 h at
◦C. After several washes in distilled water they were stained overnight in 0.5%
ranyl acetate. The following day, specimens were dehydrated in ascending con-
entrations of ethanol and fresh propylene oxide, and then infiltrated overnight in a
ixture of propylene oxide and araldite resin at room temperature. Following resin

nfiltration, the specimens were embedded in fresh resin. The ultrathin sections of
0  nm thickness were produced in an ultramicrotome (Reichert-Jung, Leica UK Ltd.,
ilton Keynes, UK) and collected on copper mesh grids. The grids were stained
ith 2% uranyl acetate for 10 min  followed by Reynold’s lead citrate for 5 min and

xamined with a transmission electron microscope (Philips EM 208, Eindhoven,
he  Netherlands).
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  the R6/1 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), d

.7. Statistical analyses

Statistical analyses were performed using one- and two-way analyses of
ariance using the Genstat statistical package (v13.2; VSN International, Hemel
empsted, UK) with genotype and age as between subject factors.

ig. 3. S830 immunoreactivity in the R6/1 mouse brains. Light micrograph images showing
I–L),  and cerebellum (M–P) at 2, 4, 7 and 11 months of age.
 PRESS
rch Bulletin xxx (2011) xxx– xxx

3. Results

3.1. Striatal atrophy and neuronal cell counts in the R6/1 mice

Striatal volume in the R6/1 transgenic mice and their wild-
type littermates was studied between 2 and 11 months of age
using CV stained sections. For striatal size measurements a statis-
tically significant main effect of age was  returned (Fig. 1A: Age,
F5,42 = 4.97, p < 0.001), however, this is likely to be due to fluctua-
tions within the samples, most notably at 10 months of age in the
wild type mice. A significant difference between the two genotypes
was demonstrated in that the size of the striatum of the R6/1 carri-
ers was smaller than that of the their wildtype littermates (Fig. 1A:
Genotype, F1,42 = 122.42, p < 0.001), with this difference between
the groups widening with age, probably reflecting fluctuations in
the volume estimates in the wild type animals at later time points
(Age × Genotype, F5,42 = 3.19, p < 0.05).

In the cresyl violet stained cells, stereological analyses demon-
strated a significant reduction in neuronal numbers found for the
mice generally as they aged (Fig. 1B: Age, F5,42 = 2.50, p < 0.05), but
within this cell loss the R6/1 mice lost more cells compared with
their wildtype littermates (Genotype, F1,42 = 37.00, p < 0.001). No
interaction effect was found (Age × Genotype, F5,42 = 0.88, n.s.).
on microscopic characterization of the evolution of cellular pathology
oi:10.1016/j.brainresbull.2011.07.009

3.2. Aggregation and inclusion pathology in the R6/1 mice

Diffuse nuclear staining (homogeneous staining with no evi-
dence of inclusions) and NIIs (homogeneous staining with an

 S830 immunoreactivity in the hippocampus (A–D), globus pallidus (E–H), thalamus

dx.doi.org/10.1016/j.brainresbull.2011.07.009
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Fig. 4. High power images of nuclear S830 immunoreactivity in the ventral striatum of R6/1 mice. The diffuse nuclear staining was present at 2 and 4 months of age (A–B).
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,  10 and 11 months of age animals exhibit no diffuse nuclear staining but nuclea
dentified at 11 months of age by the light microscope (F). Black arrow shows wea
nclusions; green arrow denote extra-nuclear inclusions; green arrow heads indica

vert inclusion) were detected with S830 immunohistochemistry
n the R6/1 transgenic mice. The mice also exhibited an exten-
ive expression of intra- and extra-nuclear neuronal inclusions
ENNIs) across all age groups. The total number of affected cells
diffuse nuclear staining and NIIs) increased from 4 to 6 months
f age, after which point the number of affected cells decreased
Fig. 1C: Age, F5,21 = 3.66, p < 0.05). Both diffuse nuclear stain-
ng and NIIs were present in 2 month old mice onwards. After

 months of age, the ratio of diffuse nuclear staining and NIIs
ad changed and we observed more NIIs in most brain regions
xamined such as olfactory tubercle (Fig. 2A–D), piriform cortex
Fig. 2E–H), dorsal (Fig. 2I–L), ventral striatum (Fig. 2M–P) and
erebellum (Fig. 3M–P). Diffuse nuclear staining in the striatum
eaked at 4 months of age, and was persistent until 6 months of
ge and then disappeared (Fig. 1D: Age, F5,21 = 19.40, p < 0.001).
owever, NIIs were present in the striatum at 2 months of age,
nd up to, and including the 11 month time point (Fig. 2). The
umbers of inclusions increased from 2 to 4 months of age and
emained high until 10 months of age, before dropping (Fig. 1D:
ntra-nuclear inclusions, F5,21 = 3.77, p < 0.05). By 11 months of age,
IIs were distributed widely throughout the striatum, olfactory

ubercle, nucleus accumbens, amygdala and piriform cortex. Uni-
orm S830 immunoreactivity was present at 2 months of age and
ncreased with age in the olfactory tubercle and piriform cortex.
he striatum showed a scattered distribution of mutant htt in the
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
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triatum, and the ventral striatum (Fig. 2M–P) generally had a
reater number of inclusions than the dorsal striatum (Fig. 2I–L).
he hippocampus (Fig. 3A–D), thalamus (Fig. 3I–L) and cerebellum
Fig. 3M–P) contained NIIs, the globus pallidus (Fig. 3E–H), amyg-
sions (D–F). Neuronal degeneration and enlarged nuclear inclusions were clearly
lear staining; black arrow head shows diffuse nuclear staining; red arrows denote
enerating neurons showing lost of nucleus membrane integrity. Scale bar = 10 �m.

dala (data not shown), medial septum (data not shown) and motor
cortex (Fig. 2Q–T), contained a few diffuse nuclear staining and NIIs
inclusions. However, the distribution of NIIs in the hippocampus
showed uneven localization and were not layer specific in all age
groups (Fig. 3). The globus pallidus and thalamus showed increased
immunoreactivity at 2 and 4 months of age, but the cerebellum
had a consistent increase in S830 staining through to 11 months
of age (Fig. 3). Cytosolic and nuclear inclusions progressed with
age to form dense and larger inclusions in some areas of the brain
including the striatum (Fig. 4), olfactory tubercle and piriform cor-
tex. Many neurons showed nuclear staining that looks similar to
diffuse along with an over inclusion (Fig. 4C–F).

The ENNIs were observed at 2 months of age onwards in all
brain regions. However, the density and distribution was very low
and varied depending on the region of the brain.

3.3. GFAP immunostaining

GFAP immunoreactivity was  intense in most regions of the brain
including striatum and cortex. The intensity of GFAP staining within
the carriers did not change in the striatum when compared to age
matched control animals (Fig. 5). However, the cortex contained
more intense GFAP-positive astrocytes than their wildtype at 4 and
6 months of age.
on microscopic characterization of the evolution of cellular pathology
oi:10.1016/j.brainresbull.2011.07.009

3.4. Transmission electron microscopy (TEM)

Transmission electron microscopy observations demonstrated
that 1.5-month-old wildtype animals contained a preserved cell

dx.doi.org/10.1016/j.brainresbull.2011.07.009
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ig. 5. Light microscopic images showing GFAP immunoreactivity in the striatum 

ge,  the second row designates 4 months of age and the third row designates 6 mon
ildtype and carriers. However, the cortex of the 4 and 6-month animals are show

orphology. The mitochondria (green arrows) and synaptic junc-
ions (black arrow) were normal (Fig. 6A). The striatum of the
arriers did not contain NIIs at 1.5 months of age and some cells
xhibited normal morphology with compact cytoplasm contain-
ng organelles (Fig. 6B), whereas others showed signs of necrotic
ell death with the loss of membrane integrity, vacuolated cyto-
lasm and uneven nuclear membrane (Fig. 6C). Again, the striatum
f the 7 months of age wildtype mouse exhibited a relatively
ore preserved morphology (Fig. 6D), than that of the compa-

able carrier animal (Fig. 6E). The 7-month-old carriers showed
egenerative neurons with a number of necrotic features such
s angular shape and uneven nuclear membrane and most cyto-
lasmic organelles were largely destroyed and contained severe
ascularisation (Fig. 6F). In addition, the 7-month-old carriers
xhibited NIIs (black arrow) within their nuclei (Fig. 6F). These
nclusions again appeared as large circular structures with no mem-
rane as reported previously [15,17], but they were again clearly
istinguishable from their surroundings.

. Discussion

From the first time point examined (2 months of age), diffuse
uclear staining and NIIs were distributed widely throughout the
triatum, olfactory tubercle, nucleus accumbens, piriform cortex,
lobus pallidus, thalamus and cerebellum in the R6/1 mice. The
istribution of mutant htt found with S830 immunohistochemistry
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  the R6/1 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), d

as uneven in the cortex, striatum and hippocampus, in contrast
o previous reports of a uniform distribution of mutant htt with
M48 antibody in these areas at 10 months of age [80]. Our find-
ngs in the cortex are broadly in agreement with a previous study
and cortex (G–L) of wildtype and R6/1 mice. The first row designates 2 months of
 age. The reactive astrogliosis with GFAP staining is detected in the striatum of both
reased GFAP activity in comparison to control animals. Scale bar = 100 �m.

[54] that demonstrated S830 staining in the cortex of 3-month-old
R6/1s. The distribution of NIIs in the hippocampus showed a scat-
tered pattern of S830 immunoreactivity in all age groups which
was not layer specific, in disagreement with an earlier study with
the S830 antibody that found the localization of mutant htt within
the hippocampus to be layer specific and progressive with age [54].
The presence of S830 immunoreactivity in the hippocampus of this
mouse line may  reflect the cognitive dysfunction in spatial learning
tasks in this line [12,57]. Other studies have also confirmed that
hippocampal neurons are impaired in the R6/1 mice [23,39,78].
However, our results are in contrast to the van der Borght and
Brundin study that failed to detect any NIIs in the hippocampus
of this mouse line using the EM48 antibody [78], suggesting that
S830 may  be the more sensitive of the two  antibodies for identifying
NIIs.

We  also observed NIIs in the cerebellum of R6/1 mice. Interest-
ingly, it has been reported that the cerebellum was spared in the
adult onset form of HD [64,70],  although, this was not found to be
the case in other studies [28,32,63].  Some studies also report the
absence of NIIs in the cerebellum of HD patients [17,21,46],  yet, one
study did report them [25]. The results from the human studies sug-
gest that there is cerebellar pathology, but that is highly variable
across individuals. In the R6/1 mice of the present study, cerebellar
pathology was present in each of the mice examined.

In the present study, we  found a decrease in the striatal volume
and cell loss in the carrier animals in comparison to their wildtype
on microscopic characterization of the evolution of cellular pathology
oi:10.1016/j.brainresbull.2011.07.009

littermates by 4 months of age. This is in contrast to a study using
R6/1 mice where there was  no reported cell loss by 7.5 months of
age [56], although this was not measured quantitatively. Our find-
ing is also in contrast with another study which showed a decrease

dx.doi.org/10.1016/j.brainresbull.2011.07.009
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Fig. 6. Electron microscopic images showing striatal cells from 1.5 (left panel) and 7 (right panel) months of age. A morphologically normal cells with synapses, containing
mitochondria (green arrows) and synaptic junctions (black arrows) in wildtypes (A and D). In R6/1 mice, a striatal cell exhibits also a well preserved cell morphology containing
m (B), a n
( clear
n rs = 1 �
r
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itochondria (green arrows), golgi apparatus and synaptic junctions (black arrows) 

C).  InR6/1 mice, degenerative neurons showed necrotic features such as uneven nu
ucleus (F) at 7 months of age. N, nucleolus; G, golgi apparatus; v, vesicles. Scale ba
eferred to the web  version of the article.)

n volume only apparent at 10 months of age [80], however, in this
tudy only a single time point was examined.

Cell death is generally categorized as necrotic or apoptotic. How-
ver, to date, the definition of the apoptosis morphologically differs
rom one study to another [10,11,20,48,81]. For example, the neu-
onal death found in HD and the R6/1 transgenic mice has been
escribed not as apoptotic cell death, but as dark cell degeneration
77]. Kerr and colleagues have ultrastructurally described apopto-
is as the formation of apoptotic cell bodies, cellular shrinkage,
ondensed chromatin and cytoplasm [33,34]. However, in addition
nd conversely to these observations, it has been shown that apop-
otic cells do not necessarily exhibit all of these criteria, such as the
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  the R6/1 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), d

ppearance of apoptotic bodies [10]. In our ultrastructural analysis
n the YAC128 transgenic [6] and HdhQ92/Q92 knock-in mouse lines
5], we have observed cellular shrinkage, condensed chromatin and
ytoplasm, but not the apoptotic cell bodies. Interestingly, the R6/1
ecrotic cell with uneven nuclear membrane (red arrows) and vacuolated cytoplasm
 membrane contained vascularisation (E) and visible NIIs (black arrow head) in the

m.  (For interpretation of the references to color in this figure legend, the reader is

mice model shows signs of necrotic cell death, with cell swelling,
vacuolization and dissolution of plasma [11]. We  have observed the
appearance of empty vacuoles in the striatal cells, a component of
the degeneration process, by transmission electron microscopy.

Similarly, a recent study has also shown empty vacuoles and
suggested that the autophagic system is affected and responsi-
ble for the delayed cytosilic turnover in HD [51], but the precise
cell death mechanism that underlies the disease is at present still
unknown, and may  be due to a number of causes [14,16,35,36,73].

In the R6/1 mouse, mutant htt can be seen in axonal terminals
by TEM examination [42]. Morton and colleagues have highlighted
novel ENNIs in the R6/2 mouse, which are easily identified without
on microscopic characterization of the evolution of cellular pathology
oi:10.1016/j.brainresbull.2011.07.009

immunogold labelling, by TEM examination [55]. Unlike their find-
ings, we  were not able to observe ENNIs at the ultrastructural level
in the current mouse line, which is in agreement with our previous
studies in other transgenic and knock-in HD lines [5–7].

dx.doi.org/10.1016/j.brainresbull.2011.07.009
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Another feature in the brains of HD patients is astrogliosis
18,47]. Glial response has been observed in several genetic models
ncluding HdhQ150 knock-in, HdhQ200 knock-in [27,43] and HD89
ransgenic mouse lines [62]. However, to our knowledge, it has not
een reported in R6/2 transgenic mice [50]. In the present study,
e did not demonstrate increased intensity of GFAP immunore-

ctivity in the striatum when compared to age matched control
nimals. However, there was a slight increase in the intensity of
FAP in the cortex from 4 months of age when compared to age
atched control animals.
Some of the discrepancies observed in the timing and distribu-

ion of NIIs may  be due to the different antibodies used between
tudies and technical discrepancies between laboratories. Addi-
ionally, variation in background strain has been reported to alter
he accumulation of mutant htt and the development of NIIs in the
triatal neurons of HdhQ111 mice, the mice on the C57BL/6 back-
round exhibiting the early onset of inclusion formation, which
as slowest on 129 Sv background [45]. Similarly, Van Raamsdonk

nd colleagues have shown that the HD-like phenotypes are mod-
lated by background strain [79]. The pathology we have observed
ay, therefore, depend on the C57BL/6 background strain we used.
Generally, our results are consistent with those of the R6/2 and

ther mouse models of HD [5–7,75],  and demonstrate the typical
europathological differences between the human condition and
he HD mouse models: widespread deposition of NIIs with lim-
ted cell loss. In the post mortem examinations of HD patients, NIIs

ere more abundant in the cortex than striatum [17,21,25,47,71],
nd found to be lower in the globus pallidus, hippocampus and
halamus, and absent in the cerebellum [21,25]. Why  there should
e such differences between the mouse models and the human
ondition is open to question, but it is nevertheless a striking and
onsistent observation.

In conclusion, the R6/1 mouse model displays a decrease in stri-
tal volume with evidence of cell loss. Intra-nuclear inclusions were
pparent from 2 months of age. The distribution of NIIs was robust,
idespread and less uniform in comparison with other studies of

he R6/1 line, and between other transgenic and knock-in models,
nd probably reflects the broad functional pathology exhibited by
6 lines. However the distribution of NIIs does not resemble those
hich have been reported in adult onset human patients.
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a  b  s  t  r  a  c  t

Huntington’s  disease  (HD)  is a progressive  neurodegenerative  disease  caused  by  the  insertion  of an
expanded  polyglutamine  sequence  within  the  huntingtin  protein.  This  mutation  induces  the  formation  of
abnormal  protein  fragment  aggregations  and  intra-nuclear  neuronal  inclusions  in  the  brain.  The present
study  aimed  to produce  a detailed  longitudinal  characterization  of  the  neuronal  pathology  in  the  YAC128
transgenic  mouse  brain,  to  determine  the  similarity  of  this  mouse  model  to other  mouse  models  and  the
human condition  in  the spatial  and  temporal  deposition  pattern  of the  mutant  protein  fragments.  Brain
samples  were  taken  from  mice  aged  between  4 and  27 months  of  age,  and  assessed  using  S830  and  GFAP
immunohistochemistry,  stereology  and  electron  microscopy.

Four  month  old  mice  did  not  exhibit  intra-nuclear  or extra-nuclear  inclusions  using  the  S830  antibody.
Diffuse  nuclear  staining  was  present  in  the  cortex,  hippocampus  and  cerebellum  from  6  months  of  age
onwards.  By  15  months  of  age,  intra-nuclear  inclusions  were  visible  in  most  brain  regions  including
nucleus  accumbens,  ventral  striatum,  lateral  striatum,  motor  cortex,  sensory  cortex  and  cerebellum.  The
ventral  striatum  had  a  greater  density  of inclusions  than  the  dorsal  striatum.  At  15  and  24  months  of
age,  the mice  showed  increased  reactive  astrogliosis  in the  cortex,  but  no  differences  were found  in the
striatum.
Necrotic cell  death  with  vacuolation,  uneven  cell  membrane  and  degenerated  Golgi  apparatus  were
detected  ultrastructurally  at 14  months  of  age,  with some  cells  showing  signs  of  apoptosis.  By  26 months
of age,  most  cells  were  degenerated  in  the  transgenic  animals,  with  lipofuscin  granules  being  more  abun-
dant and  larger  in  these  mice  than  in their  wildtype  littermates.  Our  results  demonstrate  a  progressive  and
widespread  neuropathology  in  the  YAC128  mice  line  that  shares  some  similarity  to  the  human  condition.

This article  is  part of a  Special  Issue  entitled  ‘HD  Transgenic  Mouse’.
© 2011 Elsevier Inc. All rights reserved.
. Introduction

Huntington disease (HD) is a neurodegenerative disorder
haracterized by progressive cognitive, psychiatric and motor
ymptoms. The disease progresses to death 15–20 years after the
nset of the symptoms [2].  Studies of HD brains have shown that
here is a correlation among the age of symptom onset, CAG repeat
ength and the atrophy of the striatum [6,46].  However, the dis-
ase symptoms may  be heterogeneously expressed regardless of
AG repeat length [24]. Other factors such as environmental and
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

enetic components also thought to contribute to the age of onset
79]. Neuroimaging techniques have revealed correlations between
triatal and cortical atrophy with cognitive impairment [43]. The

∗ Corresponding author. Tel.: +44 02920874684; fax: +44 029 20 876749.
E-mail address: Bayram-WestonZ@cardiff.ac.uk (Z. Bayram-Weston).

361-9230/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.brainresbull.2011.05.005
neocortex and the striatum (caudate nucleus and putamen) are
thought to be the first affected brain regions because these regions
exhibit the most extensive atrophy and cell loss [22,77,78].  With the
pathological changes in the striatum developing in caudo-rostral,
dorso-ventral and medio-lateral directions [78].

The presence of protein aggregates/intra-nuclear inclusions
(NIIs) is a neuropathological hallmark of the HD brain and has
also been widely reported in transgenic mice and knock-in mouse
models [16,19,34,44].  The contribution of aggregate formation in
disease pathology is still controversial with regards to whether the
aggregates are toxic, pro-survival or have no consequence to the
cell [52,59,61–63,66]. A study by Yang and colleagues indicated
that NIIs are highly toxic to the cell nucleus [81], and inhibition
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

of aggregate formation in R6/2 transgenic mouse model of HD has
been shown to have beneficial effects on survival, weight loss and
motor function [60]. Further, a study that compared the effects of
aggregate localization in polyglutamine peptides with 20 and 42

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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Fig. 1. The striatal volume in YAC128 mouse. The volume of the striatum was  decreased in YAC128 mice compared with the wildtype mice (A). Neuronal cell loss in the
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triatum in YAC128 mice when compared with their controls with age (B). The total 

ffected cells decreased (C). The total number of affected cells with the S830 antibod
t  15 months, and their number increased until 21 months and decreased by 24 mo

AG repeats demonstrated that the fibrillar forms of both polyg-
utamine peptides were not toxic in the cytoplasm, however, they
ead to cell death when directed to the nucleus [11,12,81].

There is still an incomplete understanding of the cellular and
olecular mechanisms underlying neuronal death in HD. Animal
odels of the disease provide the opportunity to determine the

ole of protein aggregation and NII formation in the development of
he disease. The YAC128 mouse contains the full length human HD
ene, including the entire regulatory element [68,74]. These mice
evelop motor abnormalities from 3 months of age with increased
ctivity in open field test, followed by increased motor impairment
y 6 months of age. Some striatal atrophy was present at 9 months
f age, by 12 months of age cortical atrophy was also found to be
resent [68]. In these mice NIIs were not observed until 18 months
f age [68], many months after the initial symptom were demon-
trated. However, high nuclear immunoreactivity from 2 months
nwards was a clear indicator of neuropathology [68,74,75].

In the present study we sought to define the spatial and tempo-
al development of neuronal pathology in the (C57BL/6J) YAC128
ouse, through the examination and quantification of tissue

amples taken from mice undergoing a longitudinal behavioural
ssessment.

. Materials and methods
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

.1. Animals

In the present study, 97 mice were used at 4 months = 9; 6 months = 10; 8
onths = 8; 10 months = 10; 12 months = 10; 15 months = 8; 18 months = 5; 21
er of affected cells was highest at 15 months of age, after which point the number of
ch showed diffuse nuclear staining and inclusions. Nuclear inclusions were present
f age. §Data lost due to failure in tissue processing (D).

months = 7; 22 months = 10; 24 months = 10; 27 months = 10 for histology. Fifty-
one of these mice (28 male, 23 female) were YAC128 hemizygote transgenic mice
with their 46 wildtype (23 male, 23 female). An additional 8 mice were used for the
electron microscopic examination at 14 months and 26 months of age (YAC128 = 2
male, 2 female; wildtype = 2 male, 2 female) at 14 months and 26 months of age. The
mice were obtained from the Hayden laboratory on a FVB/N background (University
of  British Columbia, Vancouver, Canada) and subsequently back-crossed onto and
maintained on a C57BL/6J (Harlan, UK) background over more than 10 generations.
This mouse model has ∼128 CAG repeats of human htt randomly inserted into its
genome via a yeast artificial chromosome [68]. The mice were housed in cages of
up  to 6 mice, under a 12 h light–dark cycle (lights on 07:00: lights off 19:00), with
access to food and water ad libitum. Each mouse had undergone regular behavioural
testing for up to two  years [8]. All animal experiments were performed in compli-
ance with local ethical review and licences held under the UK Animals (Scientific
Procedures) Act 1986.

2.2. Histology

Four to five animals were sacrificed at 2–3 month intervals from 4 months to 27
months of age. The mice were terminally anaesthetized by intraperitoneal admin-
istration of 0.2 ml  sodium pentobarbital (Euthatal) and transcardially perfused with
a  prewash solution of approx. 100 ml phosphate-buffered saline (PBS, pH 7.4) for
3  min, followed by approx. 150 ml 4% paraformaldehyde (PFA) solution (Fisher Sci-
entific, Loughborough, UK), pH 7.4 for 5 min. The brains were then removed, post
fixed in 4% PFA for 4 h and transferred to 25% sucrose in prewash solution until they
sank. The brains were sectioned coronally at 40 �m thickness in series of 1:6 using
a  freezing-stage microtome (Leitz Bright Series 8000, Germany) and the sections
were stored in cryoprotective solution in 96-well plates in the freezer at −20 ◦C.
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

2.3.  Cresyl fast violet (CV)

Brain sections (one in six series) were stained using the standard Nissl stain,
cresyl fast violet for morphological and stereological analysis. The sections were
mounted on glass microscope slides (Fisher Scientific), previously double-coated

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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Table  1
YAC128 transgenic mice. Formation, progression and distribution of intra-nuclear inclusions (NIIs).

YAC128 brain Ages

4 M 6 M 8 M 10 M 12 M 15 M 18 M 21 M 22 M 24 M 27 M

Olfactory tubercle 0 0 0 0 +/++ ++ ++ +++ +++ ++++ ++++
Nucleus accumbens 0 0 0 0 0 +++ ++ +++ + 0/+++ +++
Globus pallidus-lateral 0 0 0 0 + + 0 + 0 + 0/+
Globus pallidus-medial 0 0 0 0 + + 0 + 0 0 0
Striatum ventral 0 0/+ 0 0 +/++ +++ +++ ++++ +/+++ +++ +++/++++
Striatum dorsal 0 0 0 0 0/+ ++ + +++ 0 0/++ 0/+++
Striatum lateral 0 0/+ 0 0 +/++ +++ +++ ++++ +/+++ 0/+++ ++++
Striatum medial 0 0/+ 0 0 0 ++ + +++ 0 0/+/+++ 0/+++
Septum lateral 0 0 0 0 + ++ + + 0 +++ 0/+
Septum med 0 0 0 0 + ++ + + 0 + 0/+
Amygdala BL 0 0/+ 0 0 + ++ ++ ++ + + ++
Amygdala CL 0 0/+ 0 0 + ++ ++ ++ + + ++
Thalamus 0 0/+ 0 0 +/++ ++ +/++ +/++ + +/++ 0/+
Hypothalamus 0 0 0 0 + + 0/+ + +/++ + +
Cerebellum 0 + + + ++ ++++ ++++ ++++ ++++ ++++ ++++
Hippocampus 0 0/+ 0/+ 0/+ 0/+ 0/++ +/++ 0/+++ +/++/+++ 0/+/++++ +/++/++++
Motor cortex 0 0/+ 0/+ 0/+ +/++ +/++/+++ +/++ +/++/+++ +/++/++ +/++/++++ ++/+++/++++
Sensory cortex 0 0/+ 0/+ 0/+ +/++ +/++/+++ +/++ +/++/+++ +/++/+++ +/++/++++ ++/+++/++++
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: absent; +: nuclear staining; ++: diffuse nuclear staining; +++: minimum inclusion

ith  1% gelatin, and allowed to dry. The sections were delipidised in increasing
evels of alcohol from 70% to 95% and then 100% for 10 min  each, followed by 1 h in
ylene and then decreasing alcohols for 10 min  each from 100% to 95% to 70% and
hen distilled water, before incubation in the cresyl violet (0.7% in distilled water
ith 0.5% sodium acetate, Sigma, Hertfordshire, UK) for 5 min. Stained sections were

insed in distilled water, dehydrated in the graded series of ethanols and then cleared
n  xylene (VWR, Darmstadt, Germany) before coverslips were mounted using DPX

ounting medium (RA Lamb, Hambridge, Somerset, UK). The section were analysed
nder a Leica DMRBE microscope (Leica, Wetzlar, Germany).

.4.  Immunohistochemistry (IHC)

Immunohistochemistry was carried out following the same protocol as Bayram-
eston et al. [5]. The staining was carried out on a one in six series of sections of each

nimal. Free-floating sections were processed for IHC using the sheep anti-S830 (a
ift  from Prof. Gill Bates, Kings College, London, UK) which recognizes the N terminal
egion to 53Q of exon 1 of mutant huntingtin [34,41], and rabbit anti-GFAP (DAKO,
K)  which detects astrocytes and measures reactive astrogliosis [53]. The sections
ere  rinsed in TRIS Buffered Saline (TBS), pH 7.4 and endogenous peroxidase activ-

ty  was  reduced by a 3% H2O2 (VWR, Germany) in methanol at room temperature
or  5 min. Subsequently, the sections were treated with 3% horse serum in TBS for

 h, followed by incubation of S830 antibody (diluted 1:25,000) or GFAP antibody
1:2000) overnight. After rinsing in TBS, the sections were incubated with a horse
nti-goat or horse anti-rabbit secondary antibody, respectively (diluted 1:200, Vec-
or  Laboratories, Burlingame, CA, USA). The sites of antibody biding were detected
sing a biotin-streptavidin kit, according to the manufacturer’s instructions (Vector
aboratories) and the peroxidase activity was visualized with 3,3′-diaminobenzidine
DAB) (Sigma–Aldrich, Poole, Dorset, UK). Thereafter, the sections were mounted on
elatine-coated slides, dehydrated and cover-slipped.

The sections were examined and photographed with a Leica DMRBE microscope
tted with a digital camera (Optronics, Goleta, California, USA) and imaging Software
agnaFire 1.2C (Goleta, CA, USA). All pictures were photographed using the same

arameters and saved on computer for further analysis.
A  semi-quantitative analysis was used to assess the intensity of specific stain-

ng. This included rating the intensity of specific staining in sections: 0 = absent,
 = weak nuclear staining; ++ = diffuse nuclear staining; +++ = few/small inclusions;
+++ = many/dense/large inclusions.

.5. S830/CV stereology

Cell counts were carried out using a PC-based image analysis software (Olympus
.A.S.T. grid system v1.6.) on a Olympus (Denmark) BX50 microscope and 2D counts
orrected using the Abercrombie formula [1]. The cells were counted in random
egions within a defined volume of the striatum. The counting objective was at
00×  and counting frame area was 265 �m2. Using the formula the total number of
ells in the structure per section was calculated. Cell counts were carried out on a
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

:6 series of S830-stained, and CV sections, throughout the entire striatum and then
ssessed blindly to the experimental groups. Total affected cells counted the number
f  cells displaying positive S830 immunoreactivity. Cell nuclei may  also demonstrate
iffuse nuclear staining and inclusions, for the purpose of the statistical analyses,
hese cells are classified as cells with inclusions despite having both.
++ +++ +++ +++ ++++

+: dense inclusions.

2.6. Transmission electron microscopy (TEM)

Four mice were sacrificed at 14 months and at 26 months of age and electron
microscopy was  carried out according to Bayram-Weston et al. [5].  Briefly, animals
were anaesthetized with Euthatal and then perfused with 0.9% NaCl, followed by a
mixture of 2% PFA and 2% glutaraldehyde solution (pH 7.4). The brains were removed
and sectioned into 1–3 mm coronal slides, and then the samples were further dis-
sected into five random specimens from the dorso-lateral striatum under Leica Wild
M3Z  (Leica, Wetzlar Germany) microscope with razor blade. The tissue samples were
post-fixed in 1% osmium tetroxide at +4 ◦C for 2 h. The samples were then rinsed in
distilled water and stained overnight in 0.5% uranyl acetate, dehydrated through
a  graded series of ethanols and embedded in fresh resin. Ultrathin sections were
cut on an ultracut-microtome (Reichert-Jung, Leica UK LTD, Milton Keynes, UK),
stained with uranyl acetate followed by Reynold’s lead citrate and viewed on a EM
208  transmission electron microscope (Philips, The Netherlands).

2.7. Statistics

Statistical Analyses were performed using one- and two-way ANOVAs using the
GenStat statistic programme (VSN International, Hemel Hempsted, UK).

3. Results

3.1. Striatal atrophy and neuronal cell counts

The analyses of the striatal volume in YAC128 transgenic mice
and wildtype littermates was calculated from the cresyl violet sec-
tions between 4 and 27 months of age. A small but robust reduction
in the volume of the striatum in YAC128 mice was demonstrated
(Fig. 1A: Genotype; F1,76 = 31.42, p < 0.001). Striatal volume in the
YAC128 mice changed with time relatively to the wildtype mice
(Genotype × Age; F9,76 = 2.27, p < 0.05), although no clearly pro-
gressive pattern of striatal atrophy was observed. In the cresyl
violet stained cells, stereological analyses found significant neu-
ronal cell loss in the striatum of the YAC128 mice when compared
with their wildtype littermates (Fig. 1B: Genotype, F1,76 = 32.18,
p < 0.001). On this measure a decline in cell numbers across age was
apparent in both groups (Age; F10,76 = 4.88, p < 0.001) but was  not
more markedly progressive in the YAC128 mice (Genotype × Age,
F9,76 = 1.19, n.s.).

3.2. Striatal neuronal pathology
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

The S830 staining showed diffuse nuclear staining and NIIs only
in YAC128 mice with the aged matched controls being devoid
of immunoreactivity. Intra-nuclear inclusions were absent at 4

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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Fig. 2. Temporal progress of S830 immunoreactivity in YAC128 mouse brain. Column 1: olfactory tubercle (A–D), Column 2: piriform cortex (E–H), Column 3: dorsal striatum
(  27 m
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I–L),  Column 4: ventral striatum (M–P), and Column 5: cortex (Q–T) at 6, 15, 24 and
rain.

onths of age up to 15 months of age, present at 15 months and
bundant at 21 months of age. At 4 months of age we  did not
bserve either diffuse nuclear staining or NIIs in the brain. By 6
onths of age, very weak nuclear staining was present but limited

o specific brain regions (amygdala, thalamus, cerebellum, hip-
ocampus, cortex and ventral striatum: see Table 1) with some
ariability between animals. Thus, diffuse nuclear staining first
een in the ventral striatum and amygdala in some animals at 6
onths of age was not seen in other animals at 8 and 10 months

f age, and only became a stable feature of staining in all animals
rom 12 months of age. By 12 months of age, the S830 antibody
emonstrated diffuse nuclear staining in the majority of the brain
egions. By contrast, the aggregation of staining into NIIs was not
resent until 15 months of age in any of the brain areas. The dif-
use nuclear staining appeared in most of the brain regions from
his age onwards, including the olfactory tubercle, cortex, thalamus
nd cerebellum. A minimal number of inclusions were observed in
he nucleus accumbens, ventro-lateral striatum and all layers of
he cortex. Dense inclusions were limited to the cerebellum at this
tage. At 21 months of age, NIIs were distributed widely through-
ut the striatum, olfactory tubercle, nucleus accumbens, thalamus
nd piriform cortex along with persistent diffuse nucleus staining.
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

y 24 months of age, the presence of diffuse nuclear staining and
IIs remained region specific (Figs. 2 and 3 and Table 1). The NIIs
ppeared to be small and round in 21 month old mice. Cell nuclei
emonstrating inclusions may  also exhibit diffuse nuclear staining
onths of age. The development of NIIs is clearly visible in all areas of YAC128 mouse

(Fig. 4). The results of stereological analyses of the striatum revealed
that the total number of affected cells was  highest at 15 months
of age, after which point the number decreased (Fig. 1C: affected
cells, F6,26 = 19.75, p < 0.001). Staining with the S830 antibody indi-
cated that diffuse nuclear staining was present in the striatum at
12 months of age, where the number of affected cells increased up
to 15 months of age and then gradually decreased from this point
to 24 months of age. The diffuse staining without inclusions was  no
longer observed in aged animals of 27 month old (Fig. 1D: diffuse
nuclear staining, F6,26 = 84.04, p < 0.001). Intra-nuclear inclusions
were present at 15 months, and their number increased until 21
months and decreased by 24 months of age, interestingly, by 27
months of age, the number of NIIs was higher again (Fig. 1D: inclu-
sions, F6,26 = 11.68, p < 0.001).

The extra-nuclear inclusions (ENNIs) were not present in the
sections of 4 months old YAC128 mice. At 6 months old, ENNIs
were present in the thalamus, hypothalamus and cortex and the
distribution of ENNIs gradually increased with age. By 27 months,
ENNIs were distributed throughout the brain (Table 2).

3.3. GFAP immunostaining
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

The GFAP immunostaining was increased with age both in
carries and control animals, but the distribution of GFAP within
transgenic animals did not reveal an increased intensity of GFAP in
the striatum when compared to their age matched wildtype litter-

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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ig. 3. Illustrative overview of the spatial and temporal evolution of S830 immunos
he  illustrative diagram is adapted after the atlas of Paxinos and Franklin [49]. Eac
6  M,  15 M and 24 M)  in different colours. For colour coding see bottom of columns.

ates. However, the expression of GFAP was more intense in the
ortex of the transgenic animals compared to the wildtype control
ice (Fig. 5).

.4. Electron microscopy

Electron microscopic evaluation revealed that the striatum of
4 months old wild-type animals showed regular medium-sized
triatal neuron morphology. The mitochondria and synaptic junc-
ions appeared to be normal (Fig. 6A). Asymmetric synapses were
bserved between neurons, and had terminals with densely packed
mall round vesicles with associated mitochondria (Fig. 6B). Con-
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

ersely, we also observed three different types of cell morphology
n the 14 month old YAC128 animals. There were large cholinergic
eurons present where the structure appeared to be normal as seen

n wildtype animals (Fig. 6C and D). There were also medium-sized
g in the YAC128 mouse brain at five coronal levels in a rostral-to-caudal sequence.
mn shows the expression patterns of S830 immunoreactivity at three time points
apping staining is represented by mixed colour.

striatal neurons that demonstrated the loss of membrane integrity
(arrow head), vacuolation, degenerated mitochondria and Golgi
apparatus which are features of necrotic cell death (Fig. 6E), and
a third cell morphology was  present that presented as dark, dense
cells, characteristic of cells undergoing apoptosis [7,47] (Fig. 6F).

The rough endoplasmic reticulum, mitochondria, Golgi appara-
tus and lipofuscin granules were present in medium-sized striatal
neurons in 26 month old wildtype animals. However, these animals
showed minor degeneration due to their age, this can be character-
ized as increased lipofuscin granules. Asymmetric synapses showed
clearly defined synaptic vesicles containing mitochondria (Fig. 7A
and B). In the transgenic mice, degenerated cells were present
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

that were characterized by the presence of condensed cytoplasm,
larger lipofuscin granules and vacuolation. Transgenic animals had
more and bigger lipofuscin granules than their wildtype littermates
(Fig. 7C and E). Nuclear inclusions were also visible at this stage

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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Fig. 4. High magnification images of nuclear S830 immunoreactivity in the ventra-striatal sections of YAC128 mouse brain, ages between 6 and 27 months old (A–F). The
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iffuse  nuclear staining was observed in animals aged between 6 and 24 months (A
E  and F). We  were not able to identify neuronal degeneration and enlarged nuclear
rrow  head designates diffuse nuclear staining; red arrows designate inclusions; gr

Fig. 7E) with many striatal cells being extensively degenerated
Fig. 7F).

. Discussion

The YAC128 mice displayed regional expression of intra- and
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

xtra-nuclear inclusions with the S830 antibody. At 4 months of
ge we did not observe either diffuse nuclear staining or NIIs in the
rain. By 6 months, very weak nuclear staining was  observed in
ome brain regions which included the ventral striatum, piriform

able 2
AC128 transgenic mice. Formation, progression and distribution of extra-nuclear inclus

YAC128 brain Ages

4 M 6 M 8 M 10 M 12 M 

Olfactory tubercle 0 0 0 0 0 

Nucleus accumbens 0 0 0 0 0 

Globus pallidus-lateral 0 0 0 0 0 

Globus pallidus-medial 0 0 0 0 0 

Striatum ventral 0 0 0 0 0 

Striatum dorsal 0 0 0 0 0 

Striatum lateral 0 0 0 0 0 

Striatum medial 0 0 0 0 0 

Septum lateral 0 0 0 0 + 

Septum med 0 0 0 0 + 

Amygdala BL 0 0 0 0 0 

Amygdala CL 0 0 0 0 0 

Thalamus 0 0/+ 0/+ 0 ++ 

Hypothalamus 0 + 0/+ 0 + 

Cerebellum 0 0/+ 0 0 0/+ 

Hippocampus 0 0 0 0 0 

Motor  cortex 0 0/+ 0/+ 0/+ 0/+ 

Sensory cortex 0 0/+ 0/+ 0/+ 0/+ 

Piriform cortex 0 + 0/+ 0/+ + 

: absent; +: very low staining; ++: intermediate staining; +++: dense staining; ++++: very
7 months old animals display intra-nuclear inclusions with diffuse nuclear staining
sions by the light microscope. Black arrow designates weak nuclear staining; black
row indicates extra-nuclear inclusions. Scale bar = 10 �m.

cortex and cerebellum. From 12 months of age, the S830 antibody
demonstrated diffuse nuclear staining in the majority of the brain
regions and this progressed with age, such that by 15 months of age,
the NIIs were detectable in the nucleus accumbens, ventra-lateral
striatum, cerebellum and motor and sensory cortices. At 21 months
of age, both diffuse nuclear staining and overt NIIs were widely
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

distributed throughout the striatum, olfactory tubercle, nucleus
accumbens, thalamus and cortex. By 27 months of age, the appear-
ance of diffuse nuclear staining and NIIs were varied depending on
the region of the brain. These findings in YAC128 mouse model are

ions (ENNIs).

15 M 18 M 21 M 22 M 24 M 27 M

++ ++ ++ +++ +++ +++
+ 0 0 0 0 +
+ + +++ 0 + ++
+ + +++ 0 + +
0 0 0 0 + ++
0 0 0 0 0 0/+
0 0 0 0 0/+ 0/+
0 0 0 0 0 0/+
+++ 0/+ ++++ 0/+ ++++ ++++
++ 0/+ ++++ 0 +++ 0/+
+ + + 0 0/+ +
+ + + 0/+ + +++
+ 0 + 0 0 +
++ +++ ++ +++ ++++ ++++
+ ++ ++ ++ ++++ +++
0/+ 0/+ 0/+ 0/+ 0/+ +
+ 0/+ 0/+ 0/+ 0/+/++ ++/+++
+ 0/+ 0/+ 0/+ 0/+/++ ++/+++
+++ +++ +++ ++++ ++++ ++++

 dense staining.
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ig. 5. The distribution of GFAP activity in the striatum and cortex of wildtype (A–C
econd row denotes 15 months old and third row denotes 24 months old. The inten
AC128  mice. However, the cortex of the older animals (15 M and 24 M)  contains in

n agreement with the characteristic neuropathological features in
D [19,21,25,37,61].

In human post-mortem studies more aggregates are found in
he cortex than in the striatum [19,21,25,37,61]. Our study demon-
trates the same pattern in the YAC128 mouse, where aggregates
ere abundant throughout the cortex and seen only in the ventro-

ateral striatum. However, there is variability in the distribution
nd area of aggregates/NIIs in different studies undertaken on
uman post-mortem tissues. For example, one study shows aggre-
ates/NIIs present to a lesser extent in the globus pallidus and the
halamus, but were rarely seen in the ventral striatum and absent in
he cerebellum [21]. In another study, the small numbers of inclu-
ions in the striatum has been confirmed but they have reported
bsence of NIIs in the globus pallidus [37]. The density of aggregates
as also found to be lower in the caudate, putamen, substantia
igra, hypothalamic nuclei and thalamus than in the cortex and
as rarely seen in the globus pallidus, hippocampus and cerebel-

um by Gutekunst and colleagues [25]. Our results in the YAC128
ouse model partially agree with the Gutekunst study [25], as

he density of aggregates was lower in the hypothalamic nuclei,
halamus and globus pallidus, similarly we have found a greater
ensity of aggregates in the cortex than the dorsal striatum. Inter-
stingly, in YAC128 mice, Van Raamsdonk and colleagues reported
hat the striatum contained more nuclear staining than in any other
egions of the brains at 3 month old [74]. This may  due to the differ-
nces in antibodies used in the two studies, but may  also relate to
ifferent expression patterns on the different mouse background
trains [76]. In HD the aggregates are most prominent in the neos-
riatum and in the cerebral cortex, the sites of most prominent
ell loss. Therefore, not surprisingly, it has been suggested that
here is a close relationship between neuronal degeneration and
he occurrence of neuronal inclusions [21,25,37],  although a precise
ausative relationship has proved difficult to define.

We  have also observed dense NIIs in cerebellum in YAC128
ice, in agreement with another study showing the highest level
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

f mutant huntingtin in the cerebellum [71]. Interestingly, it has
een reported that the density of Purkinje cells in the cerebellum
as reduced in HD patients [31,54],  and cerebellar atrophy has also

een observed [54]. A recent study has also reported that there
–I) and YAC128 mice (D–F and J–L). First row denotes 4 months old YAC128 mice,
pression of GFAP is observed in the striatum of older animals of both wildtype and
ed GFAP activity comparison to control animals. Scale bar = 100 �m.

was slight cerebellar atrophy with no caudate atrophy identified by
computerized tomographic and magnetic resonance imaging scans
[27]. Our observations are consistent with some human studies that
demonstrate cerebellar abnormality.

The possible theories regarding the accumulation of the mis-
folded protein in the neurodegenerative diseases are reviewed by
Ross and Poirier [58]. The authors suggest a possibility that in some
models of neurodegerative disease, the initial stage of aggregate
formation could be stochastic with the time of the death being ran-
dom in individual neurons [13]. This would be to the process of
neurodegeneration being a gradual and graded process. Supporting
the former theory, we  observe in the present study on the YAC128
mouse and in a previous R6/1 transgenic mouse model study [4],  the
appearance of S830 staining was stochastic, whereas, our previous
studies in HdhQ150 and HdhQ92 knock-in models [3,5] showed
more graded appearance of S830 staining. Our data suggest that
there may  a dichotomy between the transgenic and knock-in mod-
els of the disease in this respect. The behavioural data from our
laboratory is suggestive that in the YAC128 mouse line, many of the
behavioural abnormalities observed are not progressive in nature
[8], suggestive of sensitive time periods in the disease develop-
ment, rather than an ongoing insidious process. However, we have
also observed non-progressive behavioural abnormalities in the
HdhQ92 knock-in mouse line [73], which does exhibit a gradual
and directional advancement of neuropathology.

In addition to nuclear inclusions, we  also find moderate neu-
ronal loss in the striatum, although this loss was not as significant as
found in human post-mortem studies [25,26,78],  even in the aged
mice, and more importantly was not markedly progressive. Our
results are parallel with Van Raamsdonk and colleagues which have
shown the striatal neuronal loss in YAC128 mice [74]. However,
it conflicts with other studies, which have reported that in some
transgenic and knock-in mouse models of HD the striatal volume is
decreased with no evidence of striatal neuronal loss [33,35,38,40].

The YAC72 transgenic mouse model of HD expressing mutant
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

full-length Htt also demonstrated signs of specific striatal degener-
ation and reactive gliosis by 12 months of age. However, in YAC72
mice, the accumulation of protein aggregates did not correlate with
the neurological symptoms [28], suggesting that some changes

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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Fig. 6. Electron micrographs showing striatal cells of 14 months old WT  and YAC128 mice. A morphologically normal medium-sized striatal neuron (A) containing mitochon-
dria  (mit) and axon terminals that form asymmetric synapses (black arrows) with dendritic spine (B). Three cell structures have been observed in transgenic animals. Firstly,
a  normal cell morphology of transgenic animal (C) with their asymmetric synapse (D). In some cells, the cytoplasm is characterized by the presence of vacuolisation (E), while
i r cells
a ding (
j ale ba
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p
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n  some other cells, apoptotic bodies are often observed in close contact with othe
nd  shrunken and the cytoplasm is condensed and often detached from the surroun
unctions; apoptotic cell, white arrow; arrow head, nuclear membrane integrity. Sc

n the affected cells occur before the overt protein accumulation
r the cell death. This phenomenon has been widely reported in
D mouse models and has been suggested to be due a synaptic
athology rather than overt cell loss [42]. Thus, live-cell, time-lapse
icroscopy in transgenic PC12 cells has suggested that aggregates

re cytoprotective at some stages and postpone cell death, but may
e toxic to the cells at another time. In addition, it has been reported
hat aggregate size was not a good predictor of cell death [20].
lternatively, the aggregates may  be present in the cells in con-

ormations that are not sensitive to the range of histological stains
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

nd antibodies commonly used [34].
A recent study using electron microscopy showed that indi-

iduals with HD may  also exhibit abnormal cell morphology in
eripheral tissues [69]. In this study, we examined ultrastruc-
 type (F). As the apoptotic process proceeds, the nuclei appear homogenously dark
F). Nuc, nucleus; G, Golgi apparatus; v, vesicles; black arrows, asymmetric synaptic
rs are as stated in the figures.

turally the brain samples of YAC128 mice. Our findings are in
agreement with previous reports on post-mortem tissues of indi-
viduals with HD and transgenic and knock-in mouse models, where
nuclear inclusions contain filamentous structures [16,19,25,48].
Electron microscopic analysis of human HD brain tissues has
revealed nuclear membrane indentations, nuclear disorganization,
reduction of the ribosomes [55,56], large accumulations of lipofus-
cin granules, enlarged mitochondria [72] and DNA fragmentation
[9,30,50]. Our results show similar characteristic features in this
mouse line which agrees our previous findings in the Hdh(CAG)150
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

knock-in mouse [5].  By ultrastructural examination, it has been
observed that ENNIs were present in the synaptic densities of the
neurons in the R6/2 mouse line [44]. We  fail to find any ENNIs in the
synaptic junctions of the neurons in the YAC128 mice line, which

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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Fig. 7. Electron micrographs showing striatal cells of 26 months old WT and YAC128 mice. Almost morphologically medium-sized striatal neuron (A) containing small
lipofuscin granules (Lf) and asymmetric synaptic junction (B). A large cholinergic neurons of transgenic animal shows large lipofuscin granules (C) with their symmetric
s  asymm
t bran
a lack a

i
s
n
b
i
a
o
r
[
m
a
h
E
s
i

ynapse (white arrow) with a dendritic spine containing pleomorphic vesicles and
he  presence of vacuolation (E and F). A degenerated cell with uneven nuclear mem
rrows, asymmetric synaptic junction; white arrow, symmetric synaptic junction; b

s parallel with our previous findings [3–5]. A previous study has
hown that there were several increased shrunken, angular, dark
eurons with reduced cytoplasm and nucleoplasm in R6/2 mouse
rains [70]. Similarly, in BAC-HD transgenic mice, the degenerat-

ng dark neurons were present in the striatum at 12 months of
ge by ultrastructural examination [23]. Consistent with these data,
ur results show similar morphology with dark degenerating neu-
ons in 14 month old YAC128 transgenic mice. As noted elsewhere
29] the electron microscopic examination of the R6/1 transgenic

ouse striatum revealed the presence of striatal neurons with
ltered ultrastructural features such as condensed chromatin, a
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in  YAC128 Huntington’s disease transgenic mice, Brain Res. Bull. (2011), do

eterochromatic mass adjacent to nucleolus and inclusions [29].
vidence suggests that mitochondrial dysfunction and oxidative
tress are important factors for the neurodegeneration observed
n the HD brain [14,18,32,36,65]. In the present study we also
etric synapse (D). Another cell type had the cytoplasm which is characterized by
e and condensed cytoplasm (F). Nuc, nucleus; mit, mitochondria; v, vesicles; black
rrow head, intra nuclear inclusion. Scale bars are as stated in the figures.

observed degenerated mitochondria in some cells in 14 and 26
month old animals, but not all cells. In particular mitochondria in
dark cells that were undergoing cell death were difficult to iden-
tify relative to normal unaffected cells. We  are currently looking
specifically at mitochondrial dysfunction in several HD mouse lines
to determine the role and extent of mitochondria in cell death in
these lines.In HD patients, it has been reported that the dorsal puta-
men exhibited the highest density of apoptotic cells in comparison
to the ventral part of the putamen [50]. In the current study the for-
mation of NIIs are more predominant in the ventral striatum rather
than the dorsal striatum. These data suggest two possible scenar-
on microscopic characterization of the evolution of cellular pathology
i:10.1016/j.brainresbull.2011.05.005

ios: that the majority of vulnerable neurons have already died and
therefore they do not contain NIIs, or alternatively, NIIs are playing
a protective role in the cell. The role of inclusions still remains to
be elucidated. The data from in vivo and in vitro studies suggests

dx.doi.org/10.1016/j.brainresbull.2011.05.005
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hree possible hypotheses for their function in HD. The first theory
uggests that aggregates are toxic to cells and leads the pathology
nd secondly, they are protective to cell from toxic proteins. Finally,
hey are side products with no function in cell death [57,59,62,66].
he present study revealed cells containing NIIs and severely dis-
orted organelles at the ultrastructural level. Results from another
tudy showed that in htt171-82Q-injected rats, the occurrence of
IIs leads to neuronal dysfunction and neuronal degeneration asso-
iated with reactive astrogliosis [17]. The study also assessed the
mpact of htt protein length on the formation of aggregates and
onversely found that increased htt protein length postpones the
ppearance of nuclear inclusions [17]. Hence, the cell death in
D may  be associated with expanded glutamine repeats which

nduce apoptosis and cell death [17,30,64].  It has been suggested
hat inclusions develop prior to neurological symptoms and overt
eurodegeneration [15]. However, in some full-length htt mouse
odels, motor and cognitive impairment with neuronal loss occur

efore the appearance of NIIs [39,68,75].  These data indicate that
euronal dysfunction and loss can take place well before visible

nsoluble protein aggregation. Interestingly, Slow and colleagues
tate that soluble protein fragments are more difficult to visualize
han insoluble forms and they have suggested that the insoluble
ggregated proteins may  not be toxic, whereas soluble protein
ragments are [67], and it has been demonstrated that there is a
orrelation between aggregate formation and cell death, suggesting
hat aggregates are ultimately toxic to cells [20]. In agreement with
ther reports [10,44,45],  the present study suggests that aggregates
lay a role in neuronal dysfunction and neuronal cell death.

We did not observe any changes in the intensity of reactive
strogliosis with GFAP immunostaining in the striatum of YAC128
ice in comparison to their wildtype littermates, which is in

greement with our other studies on the HdhQ92 and Hdh(CAG)150

nock-in mice [3,5]. However it conflicts with other studies, which
ave reported an increase in reactive astrogliosis in transgenic
51,70] and knock-in mice [35,80]. Furthermore, we  have observed
ncreased GFAP immunoreactivity in the cortex of the YAC128 mice
han when compared with controls. This may  suggest that the
eactive astrogliosis may  not relate with the mutant htt but may
e outcome of the cell loss in the striatum.Taken together, the
resent study indicates that a number of similarities exist between
he YAC128 transgenic mouse model and the human disease with
espect to the appearance and distribution of NIIs. The general fea-
ure of the model is that inclusion development is more prominent
n the cortex than the striatum and that striatal cell loss is present
ut increases with age at a rate that is comparable with the wildtype
nimals.
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a b s t r a c t

Huntington’s disease (HD) is a fatally progressive neurodegenerative disease that is characterized
anatomically by the abnormal accumulation of fragments of mutant huntingtin protein, within the glia
and neurons of the brain. Several genetic (transgenic and knock-in) animal models have been established
to mimic human HD. None of these models represent all of the elements of the human disease, but they
provide an opportunity to understand the processes of the disease and aid in the development of thera-
peutic strategies. In this study, the HdhQ92 mouse model of Huntington’s disease was analysed at different
time points across the lifespan of the animal. At 4 months of age, HdhQ92/Q92 mice showed dense nuclear
staining and nuclear inclusions in the olfactory tubercle and striatum with the mutant N-terminal anti-
body S830. Widespread formation of mutant huntingtin aggregates in the neuronal nuclei and cytosol
increased in number with age and disease progression. Electron microscopy revealed that at 14 and at 21
months of age neurons showed the features of both necrotic and apoptotic cell death, such as irregular

nuclear and cytoplasmic membranes, dark condensed nuclei, vacuolated cytoplasm, and swollen mito-
chondria. The spatial spread of NIIs progressed along the anterior-posterior and ventral-dorsal planes.
Our detailed analyses of the HdhQ92 mouse line demonstrated a progressive and marked early focal stri-
atal pathology with later widespread neuronal changes, including cellular degeneration, mutant protein
aggregation and inclusion formation. We have demonstrated that the distribution of intra- and extra
nuclear inclusions in this animal model expresses many features similar to the human pathology.
. Introduction

Huntington’s disease (HD) is a neurodegenerative disorder
aused by the expansion of a trinucleotide CAG repeat in the gene
hat encodes the huntingtin protein (Htt) [49]. Emerging evidence
as suggested that normal htt plays a role in membrane trafficking

n the cytoplasm and interacts with many other proteins some of
hich are involved in transcriptional regulation and cytoskeletal

rganization [24,45]. Within the brain, this protein is prevalent in
he cytoplasm, but less abundant in the nucleus [9,11,18,44].

Mutant htt contains an abnormal CAG repeat expansion and is
ssociated with the neurodegeneration of the basal ganglia and
erebral cortex [56]. The neocortex and striatum are thought to be
he first areas to be affected in the HD brain, and these regions
xhibit the most extensive atrophy as the disease progresses.
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in HdhQ92 Huntington’s disease knock-in mice, Brain Res. Bull. (2011), doi:

ithin the striatum, early pathology is characterised by selective
oss of striatal medium spiny neurons (MSNs) accompanied by reac-
ive astrogliosis [57]. As MSNs are the major target of extra-striatal
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afferents from the neocortex and thalamus, loss of these projection
neurons may be attributed to the cortical atrophy [13,36]. There is
a noticeable decrease in the striatal volume and a corresponding
enlargement of the lateral ventricles [2], with these pathological
changes in the striatum of patients spreading along the caudo-
rostral, dorso-ventral and medio-lateral planes [57]. Neuronal loss
also extends to other regions of the brain as the disease progresses,
particularly the globus pallidus (GP), thalamus, substantia nigra
(SN) and hippocampus [56]. Rosas and colleagues demonstrated
with MRI that widespread degeneration is not just a feature of
advanced disease, but may occur even in the early to mid-stages
of the disease process [40].

According to Davies and DiFiglia, when Htt contains 37 or
more CAG repeats mutant htt misfolds and accumulates as large
insoluble aggregates/neuronal inclusions (NIIs). Aggregates are a
neuropathological feature of HD and mouse models of the disease
[8,10], and they are believed to confer a toxic gain of function to
the carrier, however, loss of wild type Htt may also have a role in
on microscopic characterization of the evolution of cellular pathology
10.1016/j.brainresbull.2011.03.013

HD pathology [7,35,41,43,46]. In vitro studies postulate the possi-
bility that the toxicity of mutant htt is induced by the aggregates
[53,58,59], but the mechanisms of the toxicity are still unknown.
Inclusions have been found in the cortex of HD brains, while many

dx.doi.org/10.1016/j.brainresbull.2011.03.013
dx.doi.org/10.1016/j.brainresbull.2011.03.013
http://www.sciencedirect.com/science/journal/03619230
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SNs are devoid of these inclusions despite the presence of neu-
onal loss [15]. It has also been reported that N-terminal fragments
f mutant htt are localized in dystrophic neurites in the cortex and
triatum and occasionally in astrocytes [54] of post mortem HD
rains [10]. Extra-nuclear inclusions (ENNIs) are also present in
oth HD and mouse model brains [10,22,31]. ENNIs may be pre-
ursors of intra-nuclear inclusions [27,42].

After discovery of the HD gene in 1993, a number of genetic
ouse models of HD have been created to better understand

he disease and the development of the disease pathology
14,17,21,25,29,34,47,60,62]. The HdhQ92 knock-in mouse model
as ∼90 CAG repeats inserted into exon 1 of the mouse HD gene
60]. This mouse line demonstrates mild motor-learning impair-

ents from 4 months of age [6,50–52] but otherwise demonstrates
ittle behavioural pathology until the mice are in the latter stages
f life. As part of an ongoing programme to provide a compara-
ive characterisation of different HD mouse lines [3–5], the present
tudy evaluated the nature and the spatial and temporal distri-
ution of neuropathology in the HdhQ92 mouse line. Brains were
aken at regular time points from 4 to 24 months of age and
ssessed with immunohistochemical, stereological and transmis-
ion electron microscope (TEM), to determine the development of
triatal cell loss, mutant huntingtin aggregation and inclusion for-
ation, and whether there was an accompanying inflammatory

esponse as determined by a glial fibrillary acid protein (GFAP)
arker.

. Materials and methods

.1. Animals

Fifty one (26 Female, 25 male) HdhQ92/Q92 homozygotes knock-
n mice and their 50 wildtype litter mates (26 Female, 25 male),

ere backcrossed for six generations in-house, onto a C57BL/6J
Harlan, UK) background. This mouse model has 90 CAG repeats
nserted into exon 1 of the mouse HD gene [60]. The mice were
oused together under standard conditions with ad libitum access
o water and food under a 12 h:12 h light–dark cycle (07:00 lights
n: 19:00 lights off) and an ambient room temperature of 20 ± 1 ◦C.
he cages contained sawdust bedding and a cardboard tube for
nvironmental enrichment. Each cage contained 1–6 animals. The
nimals were sampled from the same cohort as was subjected to
ongitudinal behavioural analysis presented in the accompanying
eport [6]. This study was carried out in accordance with local ethi-
al review and personal, project and facilities licences issued under
he UK Animals (Scientific Procedures) Act, 1986.

.2. Histology

The animals were sacrificed at 2–3 month intervals between
months and 24 months of age. They were anaesthetized

ith Euthetal and perfused trans-cardially. The brains were then
emoved, post-fixed in 4% PFA for 4 h, and cryoprotected in 25%
ucrose in PBS at 4 ◦C. Coronal sections (40 �m) of the brain were
ut in series of 1:6 using a freezing sledge microtome (Leitz Bright
eries 8000, Germany) and the sections were stored in cryoprotec-
ive solution at −20 ◦C until required.

.3. Cresyl fast violet (CV)

A one in 6 series was stained using the standard Nissl stain cresyl
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in HdhQ92 Huntington’s disease knock-in mice, Brain Res. Bull. (2011), doi:

ast violet. Briefly, the sections were mounted on gelatine-coated
lides and air-dried at 37 ◦C for 24 h. The sections were then dehy-
rated in a graded series of ethanol, and delipidised in a mixture
f chloroform and ethanol (1:1, v/v). Following delipidisation, the
 PRESS
rch Bulletin xxx (2011) xxx–xxx

sections were hydrated in a gradually decreasing series of ethanol
and immersed in distilled water and stained with cresyl violet (0.7%
in distilled water with 0.5% sodium acetate, Sigma, UK) for 5 min.
After rinsing with the distilled water, the sections were dehydrated
in a graded series of ethanol, cleared in xylene, cover-slipped with
DPX mounting medium (RA Lamb, UK), and analysed under a Leica
DMRBE microscope (Leica, Germany).

2.4. Immunohistochemistry

Immunohistochemistry (IHC) was undertaken according to
Trueman et al. [50]. Briefly, all stains were applied on a one in
six series of sections. Free-floating sections were processed for IHC
using the sheep anti-S830 (Prof. G. Bates, Kings College, London, UK)
and rabbit GFAP (DAKO, UK) primary antibodies. The S830 antibody
selectively recognizes the aggregated form of the mutated htt pro-
tein [30]. The GFAP antibody was used for detecting astrocytes and
measuring reactive astrogliosis [37].

The sections were then placed in TRIS Buffered Saline (TBS),
washed x3, and then the endogenous peroxidise activity was
quenched in methanol containing 3% H2O2 (VWR, Germany). This
process was followed by 1 h incubation with 3% horse serum in
TBS. Alternate series of sections were then incubated with S830
antibody (diluted 1:25000) or GFAP antibody (1:2000) overnight.
After thorough washing in TBS, the sections were incubated with
a horse anti-goat or horse anti-rabbit secondary antibody, respec-
tively (diluted 1:200, Vector Laboratories, Burlingame, CA, USA). A
biotin–streptavidin kit was used according to the manufacturer’s
instructions (Vector Laboratories) and the peroxidise activity
was visualized with 3,3′-diaminobenzidine (DAB) (Sigma–Aldrich,
Poole, Dorset, UK). The sections were mounted on gelatine-coated
slides, dehydrated and cover-slipped.

A Leica DMRBE microscope fitted with a digital camera (Optron-
ics, Goleta, California, USA) and imaging Software MagnaFire 1.2C
(Goleta, California, USA) were used for light microscopic images.
All pictures were captured using the same parameters and saved
on computer for further analysis. A semi-quantitative analysis was
used to assess the intensity of specific staining. This included the
intensity of specific staining in sections: 0 = absent, + = week nuclear
staining; + + = diffuse nuclear staining; + + + = few/minimum inclu-
sions; + + + + = many/dense inclusions.

2.5. S830/CV stereology

2 dimensional cell counts were carried out using a PC-based
image analysis software (Olympus C.A.S.T. grid system v1.6.) on a
Olympus BX50 microscope (Olympus Corporation, Tokyo, Japan)
and corrected using the Abercrombie formula [1]. Total cell counts
were estimated by unbiased sampling through the striatum, using
the automated microscope stage to select 265 �m2 counting frames
(viewed under a 100× counting objective and 10× eyepiece) at
regular intervals throughout the striatum, Total striatal cell num-
bers (C) of each defined cell type were calculated according to the
following formula:

C =
∑

c ×
(∑

A∑
a

)
× f

where
∑

c is the total number of cells counted;
∑

A is the sum of all
the inclusion areas;

∑
a is the sum of all sample areas; and f is the
on microscopic characterization of the evolution of cellular pathology
10.1016/j.brainresbull.2011.03.013

frequency of sectioning. Cell counts were carried out on 1:6 series
of S830-stained and of CV sections, throughout the entire striatum.
All quantitative microscopy was undertaken and analysed blind to
the experimental group and mouse age.

dx.doi.org/10.1016/j.brainresbull.2011.03.013
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.6. Transmission electron microscopy (TEM)

For electron microscopy, four mice aged 14 months and 21
onths were anaesthetized with Euthetal and perfused with 0.9%
aCl, followed by a mixture of 2% PFA and 2% glutaraldehyde in
.1 M PBS solution (pH 7.4). The striatum of the brains were care-
ully dissected and post-fixed with 1% osmium tetroxide for 2 h at
4 ◦C. After washing with distilled water, the samples were stained
vernight in 0.5% uranyl acetate at 4 ◦C and dehydrated in ascend-
ng series of ethanol and fresh propylene oxide, and then infiltrated
vernight in a mixture of propylene oxide and araldite resin (1:1,
/v) and were embedded in fresh resin. Ultrathin sections (60 nm)
ere cut with a diamond knife on an ultracut-microtome (Reichert-

ung, Leica UK LTD, Milton Keynes, UK), collected on copper mesh
rids and contrasted with uranyl acetate and Reynold’s lead citrate.
he prepared sections were examined with a Philips transmission
lectron microscope (Philips EM 208, The Netherlands).

.7. Statistics

Statistical analyses were performed using one- and two-way
NOVA, using Genstat statistic programme (VSN International,
emel Hempstead, UK).

. Results

.1. Striatal atrophy and neuronal cell counts pathology in the
dhQ92 mice

We examined the volume of the striatum in HdhQ92/Q92 mice and
ildtype littermates between 4 and 24 months of age in CV stained

ections. The total striatal volume (Fig. 1A: Ages, F8,70 = 12.98,
< 0.001) and the total number of striatal neurons stained with
V (Fig. 1B: Ages, F8,70 = 18.57, p < 0.001) were relatively constant
etween 4 and 15 months of age, but then declined significantly
ver 15–24 months, towards the end of the lifespan. The decline
f the striatal volume was similar between knock-in and wild
ype mice, however that there was a significant disease-dependent
ffects (Fig. 1A: Genotype, F1,70 = 14.48 p < 0.001). There was also
ignificant effect on the total number of neurons (Fig. 1B: Geno-
ype, F1,70 = 10.96 p < 0.001). There were no interaction effect on the
triatal volume (Ages X Genotype, F8,70 = 1.51, n.s.), but the number
f neurons decreased differentially with age for the two genotypes
Ages X Genotype, F8,70 = 4.39, p < 0.001), with the wildtype mice
emonstrating a greater number of neurons relative to the knock-in
nimals as the mice aged.

.2. Striatal neuronal pathology in the HdhQ92 mice

The S830 staining demonstrated diffuse nuclear staining and
uclear inclusions in the homozygous mice. These mice exhib-

ted distinctive regional expression of intra- and extra-nuclear
nclusions. Intra-nuclear inclusions were not present in 4 month
ld homozygous mice, but diffuse nuclear staining in neurons
ithin both the striatum and olfactory tubercle was seen from
to 12 months (Figs. 2D and E and 3A–C, Table 1). Both dif-

use nuclear staining and minimum inclusions were focused in the
lfactory tubercle and striatum at 6 months (Fig. 2H, K and N).
y 8 months of age, diffuse nuclear staining appeared in the pir-

form cortex with few inclusions present in the olfactory tubercle
nd nucleus accumbens. By 10 months of age, nuclear inclusions
ere distributed widely throughout the striatum, olfactory tuber-
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in HdhQ92 Huntington’s disease knock-in mice, Brain Res. Bull. (2011), doi:

le, nucleus accumbens, central amygdala and piriform cortex
ith persistent diffuse nucleus staining throughout these areas

Table 1 and graphical summary in Fig. 4). This pattern of depo-
ition did not change until 24 months of age where the presence
 PRESS
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of diffuse nuclear staining and inclusions varied depending on the
brain region. The hypothalamus, cerebellum, and hippocampus
all contained nuclear staining, and the medial septum and motor
cortex contained diffuse nuclear staining, whereas there was no
immunoreactivity in the globus pallidus or basolateral amygdala
at this age (Fig. 4, Table 1). The total number of S830 affected cells
gradually increased up to18 months of age, after which point the
number of affected cells fell (Fig. 1C: Age, F8,34 = 7.69, p < 0.001).
When separated to diffusely stained cells which were present at 4
months and peaked at 10 months of age, before dropping, an affect
of age was found (Fig. 1D:Age, F8,34 = 9.12, p < 0.001). Similarly, the
number of inclusions present also changed with time (Fig. 1D:
inclusions, F8,34 = 15.19, p < 0.001), from being present at 10 months
of age, peaking at 18 months of age before declining again. The
extra-nuclear inclusions were first identified at 6 months old, in
the olfactory tubercle, nucleus accumbens and striatum (Fig. 3F). At
24 months, the density and distribution varied depending on the
region of the brain (Table 2), with the spread of pathology gener-
ally being along the anterior–posterior and ventral–dorsal planes.
Cytosolic and nuclear inclusions progressed with age to more dense
and larger inclusions (Figs. 3D–F and 4).

3.3. GFAP immunostaining

The homozygous HdhQ92/Q92 mice in the present experiment
did not reveal any detectable increase in GFAP activity in compari-
son with the wildtype controls at any age. Although, GFAP activity
increased with age in both homozygotes and control animals and
was intense in several regions of the brain including striatum and
cortex, neither the density nor the distribution of activity differed
between the two experimental groups (Fig. 5).

3.4. Electron microscopy

Ultrastructural analysis revealed that the organelles found in
the cell bodies of the striatum of 14 months old wild-type animal
had preserved morphology including mitochondria, single strands
of rough endoplasmic reticulum, polyribosomes and Golgi appa-
ratus. The mitochondria and synaptic junctions appeared to be
normal (Fig. 6A). Medium spiny neurons within the striatum of
the homozygote animals exhibited intra-nuclear inclusions with
small circular filamentous structures that could be easily identified
and clearly distinguishable from their surrounding structures (NII
in Fig. 6C) as seen before [8,10]. The loss of membrane integrity,
a symptom usually associated with necrosis, was identified within
cells exhibiting vacuolated cytoplasm, swollen mitochondria and
uneven nuclear membrane (Fig. 6C). The majority of cells appeared
unusually dark showing signs of apoptosis with dark cytoplasmic
and nuclear contents. The cytoplasm also showed condensation
and shrinkage, and the cell membrane was usually detached from
the surrounding cells (Fig. 6E). MSNs within the striatum of the 21
months old wild type mouse revealed a more compact structure,
and a preserved morphology, than that of the homozygote animal
(Fig. 6B). The 21 month old homozygotes showed degenerative neu-
rons with a number of apoptotic features (Fig. 6F). These neurons
showed structural abnormalities such as angular shape and uneven
nuclear membrane. The cytoplasm appeared severely vacuolated
and contained swollen mitochondria. Most of the other cytoplas-
mic organelles were largely destroyed. Moreover, the 21 months
old homozygotes displayed neuronal inclusions in the cytoplasm.
on microscopic characterization of the evolution of cellular pathology
10.1016/j.brainresbull.2011.03.013

These inclusions again appeared as large circular filamentous struc-
tures with no membrane (NII in Fig. 6D and F), but they were again
clearly distinguishable from their surrounding as a result of their
high electron density.

dx.doi.org/10.1016/j.brainresbull.2011.03.013
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Fig. 1. The volume of the striatum in HdhQ92/Q92 mice and wildtype littermates between 4 and 24 months of age. The total neuron numbers of Cresyl violet – stained neurons
i pe mic
o ally de
t ntras

4

a
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d
g

T
H

0

n both wildtype and homozygote animals (A). The number of neurons in the wildty
f affected cells increased with age from 4 months old peaks at 18 months and gradu
o 10 months of age before decreasing steadily over the remaining 14 months. By co

. Discussion

The HdhQ92/Q92 mice exhibited a distinctive expression of intra-
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in HdhQ92 Huntington’s disease knock-in mice, Brain Res. Bull. (2011), doi:

nd extra-nuclear inclusions as revealed by the S830 huntingtin
ntibody staining which was both age- and region-dependent. We
id not detect any intra-nuclear inclusions in 4 month old homozy-
ous mice. However, even at this young age, diffuse nuclear staining

able 1
dhQ92/Q92 knock-in mice. Formation, progression and distribution of neuronal intra-nuc

HdhQ92/Q92 brain/ages 4 6 8 10

Olfactory tubercle ++ ++ +++ +++
Nucleus accumbens ++ +++ +++ +++
Globus pallidus-lateral 0 0 0 0
Globus pallidus-medial 0 0 0 0
Striatum ventral + +/++ +/++ ++/+++
Striatum dorsal + +/++ +/++ ++/+++
Striatum posterior ++ ++ ++ ++/+++
Septum lateral 0 + + +/++
Septum med 0 0 0 0
Amygdala BL 0 0 0 0
Amygdala CL 0 ++ ++ +++
Thalamus 0 0 0 0
Hypothalamus 0 0 0 0
Cerebellum 0 0 0 0
Hippocampus 0 0 0 0
Motor cortex 0 0 0 0
Sensory cortex 0 0 0 0
Piriform cortex 0 0 +/++ ++/+++

: absent, +: nuclear staining, ++: diffuse nuclear staining, +++: minimum inclusions, ++++
e is greater than that of the homozygous animals regardless of age (B). The number
creased thereafter (C). Diffuse nuclear staining increased in number from 4 months

t, intra-nuclear inclusions increased from 10 months to peak 18 months of age (D).

was present in both the striatum and olfactory tubercle. Both dif-
fuse nuclear staining and neuronal inclusions progressed with age,
and by 10 months of age, nuclear inclusions were distributed exten-
on microscopic characterization of the evolution of cellular pathology
10.1016/j.brainresbull.2011.03.013

sively within the striatum, olfactory tubercle, nucleus accumbens,
central amygdala and piriform cortex, in the presence of persistent
diffuse nucleus staining. This deposition did not change up to 24
months of age when the mice exhibited diffuse nuclear staining

lear inclusions (NIIs).

12 15 18 21 24

++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
0 0 0 0 0
0 0 0 0 0
++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
+ + ++ ++ ++
0 0 0 0 0
++++ ++++ ++++ ++++ ++++
0 0 + + 0
0 0 + + +
0 0 N/A + +
0 0 + + +
0 0 0/+ 0/+ ++
0 0 0/+ 0/+ +++
++/+++ ++++ ++++ +++ ++++

: dense inclusions, N/A: not available.

dx.doi.org/10.1016/j.brainresbull.2011.03.013
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Fig. 2. Temporal evolution of S830 immunostaining of HdhQ92/Q92 brain in olfactory tubercle. (A,D,G,J), striatum (B,E,H,K), and cortex (C,F,I,L) at 4 (A–C), 8(D–F), 12 (G–I) and
21 (J–L) months of age. The development of NIIs is clearly visible in olfactory tubercle and striatal cells. Pir: piriform cortex, Tu: olfactory tubercle, CPu: striatum, Acb: nucleus
accumbens, AcbSh: nucleus accumbens, shell. Scale bar = 50 �m.

dx.doi.org/10.1016/j.brainresbull.2011.03.013
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Fig. 3. High magnification images of striatal sections of HdhQ92/Q92 brain, showing age-dependent nuclear S830 immunoreactivity in 6 to 24 months old mice (A–F). Both
d 6 and
n th une
B rrows

a
t
t
a
p

T
H

0

iffuse nucleus staining and nuclear inclusions are observed in animals aged between
uclear inclusions (D–F) and at 21 months of age (E), show neuronal degeneration wi
lack arrow head denotes nuclear staining; green arrows indicate inclusions; red a

nd inclusions the size and density of which varied depending on
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in HdhQ92 Huntington’s disease knock-in mice, Brain Res. Bull. (2011), doi:

he region of the brain (Fig. 4 and Table 1). This work supports
he hypothesis that the aggregation process begins with diffuse
ccumulation of protein in the nucleus, and as the phenotype
rogresses, they undergo an aggregation process and probable con-

able 2
dhQ92/Q92 knock-in mouse. Formation, progression and distribution of extra-nuclear inc

HdhQ92/Q92 brain/ages 4 6 8 10

Olfactory tubercle 0 + + ++
Nucleus accumbens 0 + + +++
Globus pallidus-lateral 0 0 + ++
Globus pallidus-medial 0 0 + +
Striatum ventral 0 + + +/++
Striatum dorsal 0 + + +/++
Striatum posterior 0 + + +/++
Septum lateral 0 0 + ++
Septum med 0 0 + +
Amygdala BL 0 0 0 0
Amygdala CL 0 + + +
Thalamus 0 0 0 +
Hypothalamus 0 0 0 +
Cerebellum 0 0 0 +
Hippocampus 0 0 0 +
Motor cortex 0 0 0 0
Sensory cortex 0 0 0 0
Piriform cortex 0 0 + +

: absent, +: very low staining, ++: intermediate staining, +++: dense staining, ++++: very
12 months (A–C). Older animals display no diffuse nucleus staining but widespread
ven nuclear membrane, vacuolisation around NIIs, and enlarged nuclear inclusions.
indicate extra nuclear inclusions. Scale bar = 10 �m.

formational changes resulting in progressively larger NII aggregates
on microscopic characterization of the evolution of cellular pathology
10.1016/j.brainresbull.2011.03.013

[19].
Wheeler et al. [61] previously reported that striatal neurons

in homozygous HdhQ92/Q92 mice expressed diffuse nuclear stain-
ing from 4.5 to 5 months old. Our study confirmed that diffuse

lusions (ENNIs).

12 15 18 21 24

++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
+++ +++ +++ +++ +++
++ ++ +++ +++ ++
+/++ 0/+/++ ++/+++ +++ +++
+/++ 0/+/++ ++/+++ ++/+++ +++
+/++ 0/+/++ ++/+++ ++/+++ +++
+++ +++ +++ +++ +++
++ ++ ++ ++ ++
+ + + + ++
+++ +++ +++ +++ ++++
+ + + + ++
+ + + + +++
+ ++ N/A + +++
+ + + + ++
+ + + + +++
+ + + ++ +++
+++ +++ +++ + ++++

dense staining, N/A: not available.
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Fig. 4. Schematic overview of the spatial and temporal evolution of S830 immunostaining in HdhQ92/Q92 mouse brain at five coronal levels from anterior to posterior. The
schematic diagram is modified after the atlas of Paxinos and Franklin, 1997 [33]. Each column shows the S830 expression patterns for three time points (4 M, 12 M and 24 M)
in different colours. For colour coding see bottom of columns. Overlapping staining is represented by mixed colour.
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Fig. 5. GFAP immunolabelling in the striatum and cortex of wildtype and HdhQ92/Q92 mice. First row represent 4 months old wildtype and HdhQ92/Q92 mice, second row
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epresents 12 months old and third row represents 21 months old. Strong intensity
oth wildtype and HdhQ92/Q92 mice. Wildtype animals showed increased GFAP activ

uclear staining was distributed throughout the striatum at this
ge. In addition, we also detected the diffuse immunoreaction in
ther regions, especially olfactory tubercle and nucleus accumbens
f 4 months old homozygous mice. This finding was consistent with
hat of Trueman et al. [50] who showed that diffuse nuclear staining
ithin the striatum and the olfactory tubercle was also observed

rom 4 months of age in the same mouse model. Wheeler et al. [61]
eported the presence of intra-nuclear inclusions in 12–15 months
ld mice, whereas our study revealed that the inclusions together
ith persistent diffuse nuclear staining were first clearly detectable

s early as 8 months of age, especially in the olfactory tubercle, stria-
um and nucleus accumbens. The former study [61] also described a
rogressive glutamine-dependent process whereby the major pop-
lation of EM48 affected neurones were found in the striatum.
hey reported that this process also occurs in a small proportion
f cells in other regions of the brain, in a gradient from youngest to
ldest (1.5–10 months) and that the piriform cortex and cerebral
ortex were equally affected. We did not observe the presence of
ntra-nuclear inclusions in 12 month old cerebral cortex. The ear-
ier appearance of pathology that we report in comparison with the
revious study [61] is less likely to be attributable to a drift in phe-
otype, as the repeat length is believed to have remained relatively
table in this strain, and is more likely to be due to differences in
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in HdhQ92 Huntington’s disease knock-in mice, Brain Res. Bull. (2011), doi:

he sensitivity of the S830 over the EM48 antibodies. It has been
ecently shown that the different antibodies are sensitive to dif-
erent confirmations of the protein, or that the protein reveals the
elevant epitopes at different stages in the aggregation process [20].
AP immunostaining is observed in the striatum and the cortex of older animals of
ith age, however, it did not differ from HdhQ92/Q92 mice. Scale bar = 100 �m.

In the current study, our primary focus was on characteris-
ing the distribution of the extra nuclear inclusions in HdhQ92/Q92

mice. Sections of 4 month old homozygous mice did not express
any detectable extra-nuclear inclusions. However, by 6 months
old mice began to show small extra-nuclear neuronal inclusions in
some regions of the brain, including the olfactory tubercle, nucleus
accumbens and striatum. The distribution of extra-nuclear inclu-
sions was found to increase gradually with the age of mice. At
24 months, the density of the distribution varied depending on
the region of the brain (Table 2). Li and colleagues [23] found
that other brain regions (cortex, cerebellum, hippocampus) showed
weak staining in the cytoplasm with EM48 antibody in mice of 27
months [23]. This observation is not consistent with our findings,
in that our 24 month old animals did not display any cytoplasmic
staining. On the contrary, our 24 month old HdhQ92/Q92 mice exhib-
ited dense inclusions in the piriform cortex, minimum inclusions
in the sensory cortex, and diffuse nucleus staining in the motor
cortex. We also did not observe any nuclear inclusion formation
in the globus pallidus. However we did detect modest levels of
extra-nuclear inclusions in this region from 8 months and onwards.
Furthermore, Yamamoto et al. [63] reported that the diffuse nuclear
staining were present at 2 months in the HD94 mice striatum
with lesser extent than extra-nuclear aggregates. In our studies,
on microscopic characterization of the evolution of cellular pathology
10.1016/j.brainresbull.2011.03.013

the diffuse nuclear staining was observed at 4 months of age in the
HdhQ92/Q92 mice with no extra-nuclear aggregates. Again, this small
difference in precise timing may be due to the different antibodies
and mouse lines used in both studies. Lloret et al. have shown that

dx.doi.org/10.1016/j.brainresbull.2011.03.013


ARTICLE IN PRESSG Model

BRB-8287; No. of Pages 11

Z. Bayram-Weston et al. / Brain Research Bulletin xxx (2011) xxx–xxx 9

Fig. 6. Morphological characterization of the striatal cells in wildtypes (A,B) and HdhQ92/Q92 mice (C,D) at 14 and 21 months of age. Left panel indicates 14 months; right
panel indicates 21 months of age. In wildtype animals, the cells were closely packed together (A,B). In HdhQ92/Q92 mice, necrotic changes such as vacuolization and membrane
disintegration are noticeable (C,D). Some neurons showed apoptotic cell death features such as chromatin fragmentation, red arrow heads (E). Nuclear inclusions (NIIs)
were clearly discernible from their surroundings with their pale appearance in both 14 months (C) and 21 months (D,F) with electron microscope. Neuronal degeneration
as shown by loss of cytoplasmic contents noted in both age (C-F). NII: intra-nuclear inclusion, v: vacuole, black arrows indicate: uneven nuclear membrane, white arrows
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enetic background alters accumulation of mutant htt and NIIs in
triatal neurons [26]. Similarly, Van Raamsdonk et al. have shown
hat the HD-like phenotypes are modulated by background strain
55], therefore the pathology may vary depending on the mouse
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
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ackground strain used in both studies.
The characteristic neuropathological features in HD patients are

ost prominent in the neostriatum and in the cerebral cortex,
ut are also observed in other brain areas, including accumbens,
ion of the references to color in this figure legend, the reader is referred to the web

globus pallidus, amygdala and hippocampus, which are affected
in the early stages of the disease [40]. Several studies have tried
to correlate the existence and distribution of NIIs with neuronal
degeneration in HD patients [12,15,28]. Maat-Schieman et al. have
on microscopic characterization of the evolution of cellular pathology
10.1016/j.brainresbull.2011.03.013

shown that there is a similar pattern between the distribution of
NIIs and affected layers of the cortex [28]. Similarly, Gourfinkel-
An et al. [12] have indicated that there was a close relationship
between neuronal degeneration and the existence of neuronal
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nclusions. Inclusions were more abundant in all layers of the
erebral cortex and the dorsal striatum. However, they were less
vident in the globus pallidus and the thalamus, and were rarely
een in the ventral striatum and absent in the cerebellum [12].
hese results were partially confirmed by Maat-Schieman et al.,
ho have shown that NIIs were absent in the cerebellum, less

bundant in the neostriatum and more abundant in all layers of
eocortex, however, they were not observed in globus pallidus and
ubstantia nigra [28]. Gutekunst et al. [15] also reported many more
ggregates in the cortex than in the striatum. However, they iden-
ified dorso-striatal neuronal loss, while no cortical degeneration
as described. Higher-grade cases on the Vonsattel scale [57] had

ewer aggregates, suggesting that the lower levels of inclusions typ-
cally reported in the human brain may be a result of a greater
evel of overt neuronal loss than in the mouse, in particular in the
triatum, over time. Moreover, aggregates were not distributed in
he mouse brain in the same way as the pattern of either cellular
athology or neuronal loss seen in HD. Thus, Gutekunst et al. found
hat the density of aggregates was lower in the caudate, putamen,
ubstantia nigra, hypothalamic nuclei and thalamus than in the cor-
ex in human HD, and in the globus pallidus, hippocampus and
erebellum, aggregates were rarely seen [15]. Our findings in the
dhQ92/Q92 partially agree with Gutekunst results, as the density
f aggregates was relatively low in the hypothalamic nuclei, thala-
us, globus pallidus and hippocampus of the HdhQ92/Q92 mouse

lso. However we have found greater density of aggregates in
he striatum. Additionally, Gutekunst et al. found larger punctate
ggregates in later grade cases [15], as in the HdhQ92/Q92 mouse
odel. Although we have observed NIIs in the HdhQ92/Q92 mouse

ine, we have also found the same degree of overt neuronal loss as
n the human studies [15,16,57].

In the current study, we also used electron microscopy to
xamine fixed brain tissue, an approach not previously used in
he HdhQ92 mice line. Our analysis agrees with previous reports
f post-mortem tissue from HD patients brains and transgenic
ouse models, where intra-nuclear inclusions consist of filamen-

ous structures [8,10,15,32]. At the ultrastructural level, it has been
hown that human HD brain tissues exhibit nuclear membrane
ndentations, nuclear disorganization, reduction of the ribosomes
38,39], large accumulations of lipofucsin granules and enlarged

itochondria [48]. Our results show characteristic features in this
ouse line similar both to the descriptions in the human brain

8,10,15,38] and to our previous findings in the Hdh(CAG)Q150 knock-
n mouse [5] and YAC128 transgenic mouse [4]. Morton et al. have
eported that ENNIs were present in the synaptic densities of the
eurons by electron microscopy using immunogold labelling in
he R6/2 mouse line [31]. Although we identified ENNIs with S830
mmunohistochemistry in the light microscope, we were not able
o identify ENNIs in the synaptic junctions of the neurons in the
dhQ92 mice line by conventional, non-immunogold TEM, which

s in agreement with our previous studies [3–5]. This suggests that
NNIs may be a soluble form of aggregate and thus require anti-
odies to enhance the visualization with electron microscopy.

Furthermore, we did not find any alteration in the intensity of
FAP immunostaining between HdhQ92 homozygous and their lit-

ermates. This finding is at variance with the reports of Yamamoto
t al. [63] who found increased GFAP activity in the striatum at 4.5
onths of age in the related HD94 mouse line. Similarly, Reddy et al.

34] also observed increased reactive astrogliosis in their trans-
enic HD89 mice [34], in agreement with our other studies on the
dh(CAG)Q150, YAC128 and R6/1 mouse models [3–5]. This may indi-
ate that astroglial reaction was not associated with the expanded
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in HdhQ92 Huntington’s disease knock-in mice, Brain Res. Bull. (2011), doi:

AG repeat length.
In summary, the present study found a progressive and

patially circumscribed development of neuropathology in the
dhQ92 knock-in mouse line, that developed in a ventro-dorsal,

[

 PRESS
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medial–lateral, and anterior–posterior fashion, as described in
man. The areas most affected were the olfactory tubercle, nucleus
accumbens, striatum, lateral septum, the central amygdala and pir-
iform cortex with the regions that were affected earliest being the
olfactory tubercle, nucleus accumbens and striatum. Furthermore,
our study indicated that motor and sensory cortices were affected
with NIIs at the later stage, consistent with HD patients. This mouse
line also demonstrated a brain atrophy and striatal cell loss that
underlies the advanced disease in man.
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a b s t r a c t

Huntington’s disease is an autosomal dominant, progressive neurodegenerative disease in which a single
mutation in the gene responsible for the protein huntingtin leads to a primarily striatal and cortical
neuronal loss, resulting progressive motor, cognitive and psychiatric disability and ultimately death.
The mutation induces an abnormal protein accumulation within cells, although the precise role of this
accumulation in the disease process is unknown. Several animal models have been created to model the
disease. In the present study, the pathology of the HdhCAG(150) mouse model was analyzed longitudinally
over 24 months. At 5 months of age, the mutant N-terminal antibody S830 found dense nuclear staining
and nuclear inclusions in the olfactory tubercle and striatum of the HdhQ150/Q150 mice. Nuclear inclusions
increased in number and size with age and disease progression, and spread in ventral to dorsal, and
anterior to posterior pattern. Electron microscopy observations at 14 months of age revealed that the
neurons showed a normal nucleus having a circular shape and regular membranes in a densely packed
ransmission electron microscope (TEM) cytoplasm, whereas by 21 months the cytoplasm was vacuolated and contained swollen mitochondria
with many degenerated cytoplasmic organelles. Immunogold labelling of the S830 antibody was found
to be specifically localised to the inner area of the neuronal intra-nuclear inclusions.

Our data demonstrate a marked and progressive cellular phenotype that begins at 5 months of age and
progresses with time. The pathology the HdhQ150/Q150 line was focused on the striatum and cortex until
the late stage of the disease, consistent with the human condition.
. Introduction

Huntington’s disease (HD) is an adult-onset neurodegenerative
isorder characterized by progressive cognitive, psychiatric and
otor symptoms. It is associated with a mutation in the htt gene,
hich codes for the huntingtin protein (Htt). The gene contains a
olymorphic stretch of repeated CAG trinucleotides which encodes
olyglutamine (polyQ) [40]. Mutant htt contains an abnormal CAG
epeat expansion responsible for the neurodegeneration, primary
ocus on the basal ganglia and cerebral cortex [45], which may
e preceded by neuronal dysfunction. The most noticeable neu-
odegenerative changes are found in the medium spiny neurons
MSNs) of striatum (caudate nucleus and putamen) with neuronal
oss and astrogliosis being a feature [2,44,45]. In addition to this
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

evere loss of the MSNs, some atrophy is also present in the cerebral
ortex [19,31]. As the disease progresses, neuronal loss becomes
idespread and effects other regions of the brain linked to cor-

� This article is part of a Special issue entitled ‘HD Transgenic Mouse’.
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361-9230/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.brainresbull.2011.03.014
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ticostriatal circuits, including the globus pallidus (GP), thalamus,
substantia nigra (SN) and hippocampus [9,44,45]. How the mutated
huntingtin protein causes this cell death is still a matter of specu-
lation.

In HD, mutant huntingtin misfolds and accumulates as
large insoluble aggregates/neuronal intra-nuclear inclusions (NIIs).
These NIIs are a pathological marker of the disease both in mice
and humans [7,8]. The expanded CAG sequence of mutant hunt-
ingtin causes protein misfolding and promotes the recruiting of a
variety of proteins which then form aggregates [7,8,14]. Although,
the genetics of HD are well documented, the functional role of pro-
tein aggregation in neuronal cell death remains unclear. It is still
unknown as to whether aggregates are toxic to neurons, protec-
tive against cell degeneration, or simply a side-product markers of
other ongoing cellular processes causing cell death [27,32,34,37].

In addition to the NII pathology within the cell soma, it has
also been observed that N-terminal fragments of mutant huntingtin
accumulate in dystrophic neurites in the cortex, the striatum and in
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

astrocytes in the R6/2 transgenic mice [35,42], and in post mortem
HD brains [32,36]. Extra-nuclear neuronal inclusions (ENNIs) have
been identified in both human and mouse brain [8,15,22]. These
ENNIs may be the precursors of intra-nuclear inclusions [18].

dx.doi.org/10.1016/j.brainresbull.2011.03.014
dx.doi.org/10.1016/j.brainresbull.2011.03.014
http://www.sciencedirect.com/science/journal/03619230
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utekunst et al. [11] found that neuropil aggregates were much
ore common than nuclear aggregates and they were present

efore the onset of clinical symptoms in post mortem HD brains.
A third key sign of cellular pathology is the astrocyte-mediated

nflammatory response to cell insult. Glial fibrillary acidic protein
GFAP) is expressed primarily by astroglia and is an indicator of
stroglial activation [3,6,28]. The brain reacts to neuronal injuries
ith an increase in number and size of cells expressing GFAP [48].
strogliosis is observed in human HD [10,43] and in the HD mouse

ines including HdhCAG(150) [17] and HD89 [26]. By contrast, other
ouse lines, such as R6/2 mice, do not show any reactive astroglio-

is, although they do exhibit modest cell death, striatal atrophy, and
educed brain size [20].

The present study sought to characterise the development of
isease neuropathology in the Hdh(CAG)150 mouse line. We used his-
ology and immunohistochemistry with stereological quantitation,
nd transmission electron microscopy (TEM) to investigate aggre-
ate formation in more detail in an attempt to better understand the
evelopment of neuronal pathology in this mouse model of HD. The
resent study focused on the progression, distribution, number and
orm of huntingtin aggregates in the different regions of the brain,
nd also assessed brain atrophy and neuronal cell loss within the
ame brain sections from tissue taken at regular intervals between
and 24 months of age.

. Materials and methods

.1. Animals

In total 99 mice were used in the present study, spread across 9 time points
5 months = 7; 6 months = 11; 8 months = 5; 10 months = 16; 12 months = 12; 15

onths = 12; 18 months = 15; 21 months = 10; 24 months = 10). Fifty one of these
ice (29 female and 22 male) were HdhQ150/Q150 knock-in mice with 48 wildtype

itter mates (29 female and 19 male). The mice were bred in-house from the orig-
nal line, imported to our laboratory on a mixed 129/Ola × C57BL/6 J background
nd backcrossed onto C57BL/6 J background (Harlan, UK) over six generations. This
ouse has had the normal length CAG repeat in exon 1 of the mouse Hdh gene

eplaced with a 150 CAG repeats [17]. These mice had on average 132 ± 2.65 CAG
epeats (range 120–143 repeats). The mice were housed together under standard
onditions with ad libitum access to water and food. The mice were housed in a hold-
ng room under a 12 h:12 h light/dark cycle (lights on 0700 h) and an ambient room
emperature of 21 ± 1 ◦C. The cages contained sawdust bedding and a cardboard
ube for environmental enrichment. Each cage contained 2–6 animals. Each mouse
ad undergone periodic behavioural testing for up to two years [4]. This study was
arried out in accordance with the UK Animals (Scientific Procedures) Act, 1986.

.2. Histology

The animals were sacrificed at 3 months = 3, 5 months = 7; 6 months = 11; 8
onths = 5; 10 months = 16; 12 months = 12; 15 months = 12; 18 months = 15; 21
onths = 10; 24 months = 10. They were anaesthetized by intraperitoneal injec-

ion of 0.2 ml of Euthetal (Merial, Essex, UK) and then perfused intracardially with
hosphate-buffered saline (PBS, pH 7.4) for 3 min. Followed by 4% paraformalde-
yde (PFA) (Fisher Scientific, Loughborough, UK) in a 0.1 M PBS solution, pH 7.4, for
further 5 min. The brains were carefully removed, post fixed in 4% PFA for 4 h, and

hen transferred in 25% sucrose in PBS, until they sank. For striatal analysis coronal
ections (40 �m) of the brain were cut in series of 1:6 using a freezing sledge micro-
ome (Leitz Bright Series 8000, Germany). The sections were stored in cryoprotective
olution at −20 ◦C.

.3. Cresyl fast violet (CV)

A one in six series was stained using the standard Nissl stain, cresyl fast vio-
et for morphological and stereological analysis. The sections were mounted on
elatine-coated glass slides (Fisher Scientific), and allowed to dry at 37 ◦C for 24 h.
he sections were then dehydrated in a graded series of ethanol (5 min each, 70%,
5%, and 100%) and delipidised in a mixture of chloroform and ethanol (1:1, v/v) for
0 min. Following delipidisation, the sections were hydrated in a gradually decreas-

ng series of ethanol (5 min each 100%, 95% and 70%) and immersed in distilled water
or 5 min and stained with cresyl violet (0.7% in distilled water with 0.5% sodium
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

cetate, Sigma, Hertfordshire, UK) for 5 min. After rinsing in distilled water for 1 min,
he sections were dehydrated in a graded series of ethanol (5 min each, 70%, 95%,
nd 100%), cleared in xylene (VWR, Darmstadt, Germany) for at least for 10 min,
over-slipped with DPX mounting medium (RA Lamb, Hambridge, Somerset, UK)
nd analyzed under a Leica DMRBE microscope (Leica, Wetzlar, Germany).
 PRESS
rch Bulletin xxx (2011) xxx–xxx

2.4. Immunohistochemistry

Immunohistochemistry was carried out according to Trueman et al. [41]. Briefly,
all stains were performed on a 1:6 series of sections. Free-floating sections were
processed immunohistochemically using the sheep anti-S830 (a kind gift from Prof.
Gillian Bates, King’s College, London, UK) and rabbit GFAP (DAKO, Cambridge, UK)
primary antibodies. The S830 antibody was raised against the product of the N-
terminal region to 53 glutamine residues of exon 1 and selectively recognizes the
aggregated form of the mutated htt protein [21].

The sections were placed in (pH 7.4) TRIS buffered saline (TBS), and washed
twice for 5 min. The endogenous peroxidise activity was inhibited by incubation in
methanol containing 3% H2O2 (VWR) for 5 min, and then placed in TBS. Non-specific
binding sites were blocked with 3% horse serum in TBS for 1 h, and the sections
were incubated with S830 antibody (diluted 1:25,000) and GFAP antibody (1:2000)
overnight at room temperature. After several washes in TBS, sections were incubated
with a horse anti-goat or horse anti-rabbit secondary antibody (diluted 1:200, Vec-
tor Laboratories, Burlingame, CA, USA) for 2 h at room temperature. After several
washes in TBS, the sections were incubated with a biotin–streptavidin kit accord-
ing to the manufacturer’s instructions (Vector Laboratories). After each incubation,
the sections were rinsed in TBS. The peroxidase activity was visualized with 3,3′-
diaminobenzidine (DAB) (Sigma–Aldrich, Poole, Dorset, UK). Finally, the sections
were mounted on gelatine-coated slides, dehydrated and cover-slipped.

Light microscopic pictures were taken using a Leica DMRBE microscope fitted
with a digital camera (Optronics, Goleta, CA, USA) and MagnaFire 1.2 C imaging
Software (Goleta, CA, USA). All images were captured using the same parameters
and saved on computer for further analysis. Images were adjusted in contrast and
brightness only for optimal display with Adobe Photoshop 6.0.

The staining in the homozygote mice was also scored in a semi-quantitative fash-
ion that included the intensity of specific staining in sections: 0 = absent, + = weak
nuclear staining present; ++ = diffuse nuclear staining; +++ = few/minimum inclu-
sions; ++++ = many/dense inclusions. Animal numbers each time point was as
follows: 5 months = 4; 6 months = 7; 8 months = 4; 10 months = 7; 12 months = 7;
15 months = 6; 18 months = 4; 21 months = 5; 24 months = 7.

2.5. S830/CV stereology

For the stereological assessment 98 animals were used as follows: 5months = 7;
6 months = 11; 8 months = 5; 10 months = 16; 12 months = 12; 15 months = 12; 18
months = 15; 21 months = 10; 24 months = 10. Two dimensional stereology was car-
ried out using a PC-based image analysis software (Olympus C.A.S.T. grid system
v1.6.) on a Olympus BX50 microscope (Olympus Optical Co., Ltd., Tokyo, Japan).
Cell counts were carried out on a 1:6 series of GFAP, S830-stained, and CV sections,
throughout the entire left striatum and then assessed blindly to the experimental
groups. Cell counts were performed on a Leica DMRB microscope with the counting
objective was at 100× and counting frame area was 265 �m2 and corrected using
the Abercrombie formula [1].

2.6. Transmission electron microscopy (TEM) for morphological study

For the electron microscopy, four mice for each group (aged 14 months and 21
months) were anaesthetized by intraperitoneal injection of 0.2 ml of Euthetal and
then perfused with 0.9% NaCl for 3 min, followed by 2% PFA and 2% glutaraldehyde
in 0.1 M PBS solution at pH 7.4, for 5 min. After perfusion, the brains were carefully
removed and washed in PBS. Tissues were cut into small cubes and transferred into
1% osmium tetroxide for 2 h at +4 ◦C. After washing with distilled water 4 × 15 min,
the samples were stained overnight in 0.5% uranyl acetate at +4 ◦C. All tissues used
for electron microscopy were dehydrated in ascending concentrations of ethanol
and fresh propylene oxide, and then infiltrated overnight in a mixture of propylene
oxide and araldite resin (1:1, v/v) on a rotary shaker at room temperature. Following
resin infiltration, the tissues were embedded in fresh resin for 48 h at 60 ◦C. Ultra-
thin sections (60 nm) were cut with a diamond knife on an ultracut-microtome
(Reichert-Jung, Leica UK LTD, Milton Keynes, UK). Thin sections were collected on
copper mesh grids, counterstained with 2% uranyl acetate for 10 min followed by
Reynold’s lead citrate for 5 min and examined under a Philips transmission electron
microscope (Philips EM 208, Eindhoven, The Netherlands).

2.7. Transmission electron microscopy for immunogold labelling

Two mice for each group (aged 14 months and 21 months) were anaesthetized
by intraperitoneal injection 0.2 ml of Euthetal and then perfused with 0.9% NaCl for
3 min. This was followed by 3% PFA and 0.2% glutaraldehyde in 0.1 M PBS solution,
pH 7.4, for 5 min, and then with 3% PFA alone at a rate of 15 ml/min. After perfusion
the brains were carefully removed and washed in PBS. Relevant region of the brain
was cut into small cubes and transferred into a cryoprotective solution (0.05 M PBS,
pH 7.4, containing 25% sucrose and 30% glycerol) for 15 min. The tissue was then
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

transferred into methanol in an automated freeze substitution chamber at −80 ◦C
for 48 h (Reichest EMAFS, Leica mikrosysteme, Wien, Austria). The methanol was
replaced with fresh methanol during the first 2 h at −80 ◦C. The chamber tempera-
ture was then allowed to increase to −50 ◦C for 88 h. The tissue was then infiltrated
by a mixture of Lowicryl HM20 resin and methanol (1:1, v/v) for 90 min at −50 ◦C,

dx.doi.org/10.1016/j.brainresbull.2011.03.014
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hen infiltrated with a mixture of Lowicryl HM20 resin and methanol (2:1, v/v) for a
urther 90 min at −50 ◦C, then transferred into pure Lowicryl HM20 resin overnight
t −50 ◦C. The tissue was then embedded in fresh Lowicryl HM20 resin under UV
ight for 48 h at −50 ◦C. The temperature was then increased to 20 ◦C for 24 h to com-
lete resin polymerisation. Ultra-thin sections (60 nm) were cut with a diamond
nife on the ultracut-microtome. Thin sections were collected on pioloform-coated
ickel mesh grids and were blocked with drops of PBS containing 3% normal donkey
erum, 1% bovine serum albumine, 0.2% Triton-X and 0.1% sodium azide for 45 min at
oom temperature. The sections were then incubated on drops of sheep polyclonal
830 primary antibody (1:500) overnight at +4 ◦C. After rinsing in PBS and distilled
ater, the sections were incubated again in donkey anti-sheep IgG conjugated gold

10 nm, 1:20; BB International, Cardiff, UK) for overnight at +4 ◦C. After washing in
BS, the grids were counterstained with 2% uranyl acetate for 10 min followed by
eynold’s lead citrate for 5 min and examined using a Philips transmission electron
icroscope.

.8. Statistical analysis

Statistical analyses were undertaken using two-way ANOVA (Genstat v13.2; VSN
nternational, Hemel Hempstead, UK), in all cases with age as a between-subjects
actor. Striatal volume and total striatal cell counts compared Genotype (wildtype vs.
dh150/150) as a second between-subjects factor, whereas cell counts of striatal cells
earing inclusion pathology used type of pathology (diffuse vs. inclusion) as a second
ithin-subjects factor. In view of the large number of age groups with relatively

ew animals of each genotype at each age, a subsequent analysis was undertaken
o determine the age at which overt pathology was significant by repeating the
nalyses of variance with data blocked into three age bands: young (4, 6 and 8
onth), mature (10, 12 and 15 month) and aged (18, 21 and 24 month). Comparisons

etween different ages and age ranges were corrected for multiple comparisons by
he Newman–Keuls test.

. Results

.1. Striatal atrophy and neuronal cell counts in the Hdh(CAG)150

ouse

We examined the volume of the striatum in HdhQ150/Q150

ice and wildtype littermates from 5 months to 24 months of
ge. The volume of the striatum was significantly reduced in
he HdhQ150/Q150 mice compared with the wildtype mice irre-
pective of age (Fig. 1A: genotype, F1,74 = 32.44, p < 0.001). There
as also a significant age effect (age, F8,74 = 15.93, p < 0.01) and a

ignificant interaction effect between the groups over time (geno-
ype × age, F8,74 = 3.30, p < 0.01), suggesting that HdhQ150/Q150 mice
ad reduced striatal volume from 6 months of age which remained

ower then that of wildtypes from this point onwards. However, in
he post hoc analysis with mice blocked into three age bands, the
wo main effects remained highly significant but the interaction
erm was no longer so (F2,86 = 0.20,n.s.), suggesting that the above
nteraction is associated with random variation between a large
umber of independent small groups.

In the cresyl violet stained sections, stereological analyses
evealed a significant increase in striatal cell numbers from

months of age until 8 months which then remained stable
Fig. 1B: age, F8,74 = 12.16, p < 0.001). Furthermore, statistical anal-
sis revealed a significant genotype effect (Fig. 1B: genotype,
1,74 = 6.50, p < 0.05) with HdhQ150/Q150 mice showing reduced cell
umber throughout. However, no interaction effects was found
genotype × age, F8,74 = 0.92, n.s.). The main effect of genotype
emained significant in the blocked post hoc analysis.

.2. Striatal neuronal pathology in the HdhQ150/Q150 mouse

Within the HdhQ150/Q150 brain, S830 staining showed diffuse
uclear staining and nuclear inclusions only in the homozygous
ice. There was no S830 staining found in the control animals,

ndicating that nuclear inclusion formation was dependent on the
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

utation. In order to establish the onset age, a small sample of
mice was examined at 3 months of age. In this sample, no

ntra-nuclear inclusions were observed in any region of the brain,
owever, faint nuclear staining was seen throughout the brain. By
 PRESS
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5 months of age the S830 antibody demonstrated diffuse nuclear
staining and inclusions, the presence of which varied depending on
the brain region. A this early age, diffuse nuclear staining and a low
density of inclusions (minimum inclusions) were observed in the
olfactory tubercle, central amygdala and striatum (Figs. 2 and 3),
but were not apparent in other regions of the brain (Fig. 2 and
Table 1). At 15 month of age, nuclear inclusions were distributed
widely throughout the brain. At this age persistent diffuse nuclear
staining was still present but had disappeared completely by 18
months of age (Fig. 2 and Table 1). In aged homozygous mice (21
and 24 months old), the spatial distribution pattern of inclusions
persisted. Analyses of this pathology found that the total number
of affected neurons, which was comprised of the collective num-
ber of cells with diffuse htt staining or inclusions (Fig. 1C: affected
neurons, F8,43 = 8.35, p < 0.001) increased up to 18 months of age,
before dropping. The number of diffusely stained cells were maxi-
mal at the earliest time point investigated at 5 months, and declined
thereafter to almost 0 by 18 months of age (Fig. 1D: diffuse staining,
F8,43 = 73.00, p < 0.001).

By contrast, the numbers of intra-nuclear inclusions increased
to a peak at 18 months of age, before dropping (Fig. 1D: inclusions,
F8,43 = 19.54, p < 0.001). Nuclear inclusions appeared to be large, sin-
gular and round in one year old mice (Fig. 4C). Inclusions were
usually localised in close proximity to the nuclear membrane in
older mice (Fig. 4E).

Both the decline of early onset diffuse staining
(young > mature > aged) and the increase in the numbers of
cells bearing overt inclusions with age (young < mature = aged)
remained significant in the blocked analyses (F2,49 = 145.26 and
29.48, respectively, both p < 0.001).

Extra-nuclear inclusions existed in all age groups except 3
month old mice. The distribution of extra-nuclear inclusions was
consistent at low levels throughout the brain up to 10 months old.
However, by 12 months of age the density of the distribution varied
depending on the region of the brain. At this point, the extra-nuclear
inclusions increased in the globus pallidus, amygdala and piriform
cortex, whereas other area of the brain remained unchanged. In
very old homozygous mice (21 and 24 months old), the extra-
nuclear inclusions were present throughout the brain (Table 2).
Hence, cytosolic and nuclear inclusions increased in number and
size with age and disease progression.

3.3. Assessment of neuronal cell death

3.3.1. GFAP immunostaining
GFAP is the main intermediate filament in astrocytes and defines

the astrocytic morphology. Since one of the main features of
astroglial reaction is the increased size of cellular projections, it
is possible to assess the astroglial reaction that is identifiable by
the increased expression of GFAP [3]. The expression of GFAP was
intense in several regions of the brain including the striatum and
cortex (Fig. 5) and increased in the striatum with age in both mouse
groups (age, F2,21 = 14.78, p < 0.001), but no differences in expres-
sion levels between the groups was identified in either brain region
(genotype, F2,21 = 0.69, n.s.). No interaction effects (genotype × age,
F2,21 = 0.95, n.s.) were found for the expression levels in the striatum
(data not shown).

3.4. Electron microscopy

The neurodegeneration of HdhQ150/Q150 knock-in mice at
different time points was studied using electron microscopy.
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

Observations of the earlier time point (14 months) revealed that
the neurons had a normal circular nucleus with regular mem-
branes, and a densely packed cytoplasm (Fig. 6A). Mitochondria
also appeared normal and there was no evidence of vacuolisation,

dx.doi.org/10.1016/j.brainresbull.2011.03.014
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Fig. 1. Age-dependent distribution of cresyl violet – stained neurons and S830 affected cells in striatum of Wt and homozygote. (A) The comparison of the total volume
of the striatum in HdhQ150/Q150 animals and wildtype mice. In 10 months and 24 months old animals, the volume of the striatum in HdhQ150/Q150 animals were less than in
wildtype mice. (B) Cresyl violet-stained neurons in both wildtype and homozygote animals. The number of neurons in wildtype is relatively higher than that in homozygotes
regardless of age. (C) Age related distribution of S830 affected neurons in striatum of HdhQ150/Q150 mice. The number of affected cells increased as age progress from 5 months,
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eaks at 18 months and gradually decreased thereafter. Affected cells (D) showing
ucleus staining decreased in number from 5 months to 12 months, whereas those
ecreased. Bars indicate means ± s.e.m.

ilation or membrane degeneration. In the HdhQ150/Q150 mice, the
triatum showed NIIs with a small circular filamentous structure
hat could be easily identified and clearly distinguishable from the
urrounding structures (Fig. 6B). The striatum of the 21 month
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

ld wildtype mouse revealed a more compact structure than that
f the homozygote animal. That of the 21 month old homozy-
ote showed hypertrophic degenerative neurons with a number
f necrotic features (Fig. 6E). These neurons showed structural

able 1
dhQ150/Q150 knock-in mice. Formation, progression and distribution of neuronal intra-nu

Q150 brain/ages 5M 6M 8M 10M

Olfactory tubercle ++/+++ +++ ++ ++++
Nucleus accumbens ++/+++ +++ ++ ++++
Globus pallidus-lateral +/++ +/++ ++ +/++
Globus pallidus-medial +/++ +/++ ++ +/++
Striatum ventral ++/+++ +++ +++ ++++
Striatum dorsal ++/+++ +++ +++ ++++
Striatum posterior ++/+++ +++ +++ ++++
Septum lateral +/++ ++ ++ ++
Septum med +/++ ++ ++ +++
Amygdala BL + + + +
Amygdala CL ++/+++ ++/+++ ++/+++ +++
Thalamus +/++ ++ +/++ ++/+++
Hypothalamus ++ ++ +/++ ++/+++
Cerebellum +/++ +/++ +/++ +/++/+++
Hippocampus ++ +/++ +/++ +/++/+++
Motor cortex +/++ +/++/+++ +/++/+++ +/++/+++
Sensory cortex +/++ +/++/+++ +/++/+++ +/++/+++
Piriform cortex ++ ++ +/++ ++/+++

: absent, +: nuclear staining, ++: diffuse nuclear staining, +++: minimum inclusions, ++++
se nucleus staining and/or intra-nuclear inclusions. Affected cells showing diffuse
ntra-nuclear inclusions increased gradually up to age of 18 months and then slowly

abnormalities such as angular shape and uneven nuclear mem-
branes. The cytoplasm appeared severely vacuolated and contained
swollen mitochondria. Most of the other cytoplasmic organelles
were largely deformed. Electron dense bodies were also found in
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

the cytoplasm which may be the degenerated lysosomal structures.
However, it is noteworthy that the wildtype mice also showed these
bodies but their numbers were reduced from those in the aged
matched homozygote mouse. Moreover, the 21 month old homozy-

clear inclusions (NIIs).

12M 15M 18M 21M 24M

++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
+++ +++ +++ ++++ ++++
+++ +++ +++ ++++ ++++
++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
++++ ++++ ++++ ++++ ++++
++ ++ +++ ++++ +++
+++ +++ ++++ ++++ +++
++ ++ +++ +++ +++
++++ ++++ ++++ ++++ ++++
+++ +++ +++ +++ ++++
+++ +++ +++ +++ ++++
+/++/+++ ++++ ++++ ++++ ++++
+/++/+++ ++/++++ +++/++++ +++/++++ ++++
+/++/+++ ++/+++/++++ +++/++++ +++/++++ +++/++++
+/++/+++ ++/+++/++++ +++/++++ +++/++++ +++/++++
++++ ++++ ++++ ++++ ++++

: dense inclusions.

dx.doi.org/10.1016/j.brainresbull.2011.03.014
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Fig. 2. Schematic overview of the spatial and temporal evolution of S830 immunostaining in HdhQ150/Q150 mouse brain at five coronal levels from anterior to posterior based
on the atlas of Paxinos and Franklin (1997) [25] shown in the left column. Each subsequent column shows the S830 expression patterns for three time points 5, 12 and 24
months, respectively, using different colours. To indicate types of cellular pathology (see legend). Overlapping staining is represented by mixed colour. Abbreviations; Aca:
a : corp
p s, LV:
p

g
i
n
r
u
m

o
m
b
i

nterior commissure, Amy BL: basolateral amygdale, Amy CL: central amygdala, cc
allidus, LS: lateral septum, LSD: dorsal lateral septum, LGP: lateral globus pallidu
iriform cortex, T: thalamus, Tu: olfactory tubercle.

ote mouse exhibited neuronal inclusions in the cytoplasm. These
nclusions appeared as large circular filamentous structures with
o membrane, but they were clearly distinguishable from their sur-
ounding as a result of their high electron density (Fig. 6E). We were
nable to determine small neuritic aggregates (ENNIs) by electron
icroscopy.
We also performed immunogold labelling of S830 antibody
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

n the 14 month old and 21 month old homozygote knock-in
ice. The immuno-reaction of mutant huntingtin was found to

e specifically localised to the inside of the nuclear inclusion. The
mmunogold reactivity was confined to the filamentous bodies in
us callosum, CPu: caudate putamen, Cx: cortex, fmi: corpus callosum, GP: globus
lateral ventricle, Mfb: medial forebrain bundle, MGP: medial globus pallidus, Pir:

the inside of nucleus and appeared as clusters of immunogold par-
ticles (Fig. 6C and F). No gold particles were seen in the negative
control sections to which the application of primary antibody was
omitted.

4. Discussion
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

All of the regions of the HdhQ150/Q150 brain examined showed
diffuse nuclear staining and nuclear inclusions when immuno-
labelled with S830 antibody at 5 month of age. Low levels of
both diffuse nuclear staining and NIIs were observed in the olfac-

dx.doi.org/10.1016/j.brainresbull.2011.03.014
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ig. 3. Temporal evolution of S830 immunostaining of HdhQ150/Q150 brain in olfactor
1 months of age, in successive rows. The development of NIIs is clearly visible in o

ory tubercle, nucleus accumbens and striatum of young animals
5–12M). The 15 month old homozygote animals displayed NIIs
n all regions of the brain with persistent diffuse nuclear staining,

hereas by 18 months of age the mice no longer expressed diffuse
uclear immunoreactivity. This data suggests that the aggregation
ommences with the diffuse accumulation of protein in the nucleus,
nd as the phenotype progresses, these small diffuse concentra-
ions are replaced by larger NII aggregates. Previous studies suggest

utant huntingtin may accumulate first in degenerating neurites
nd which then appear as a neuronal inclusion [33], or that they
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

erge from individual aggregates into a single or several nuclear
nclusions [14]. The latter description is more consistent with our
tudy, which demonstrates that as the number of cells with inclu-
ions increases, the number of cells with aggregations decreases.
rcle (left panels), striatum (middle panels), and cortex (right panels) at 3, 5, 12 and
ry tubercle and striatal cells.

Consequently we report an inverse relationship between diffuse
nuclear staining and inclusion number that is age dependant.

Tallaksen-Greene et al. [38] found in their histological stud-
ies on the HdhQ150/Q150 mice that huntingtin-associated NIIs were
largely restricted to the striatum, with no evidence of gross neu-
rodegeneration. The results of our study indicated that the nuclear
inclusions can be present in all regions of the brain but that the
distribution is age-dependent. The inclusions were found predom-
inantly in the olfactory tubercle, nucleus accumbens, the striatum
and central amygdala. Our study also demonstrated that nuclear
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

inclusions were distributed widely in the striatum with persistent
diffuse nuclear staining at 15 months old. This finding was consis-
tent with that of Tallaksen-Greene et al. [38] who demonstrated
that within the striatum, intra-nuclear huntingtin immunoreactiv-

dx.doi.org/10.1016/j.brainresbull.2011.03.014
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Fig. 4. High magnification images of striatal sections of HdhQ150/Q150 brain, showing age-dependent nuclear S830 immunoreactivity in 5 months through 24 months old
mice (A–F). Both diffuse nucleus staining and nuclear inclusions are observed in animals aged 5, 10 and 12 months (A–C). Older animals display cells with diffuse nuclear
s hroug
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taining together with nuclear inclusions (D–F), and these cells were widespread t
ore than a single inclusion and the black arrow denotes diffuse nuclear staining. T

cale bar = 10 �m. (For interpretation of the references to colour in this figure legen

ty was also observed from 6 months of age and that the diffuse
taining persisted until 8 months [38]. We also observed diffuse
uclear staining in animals up to 12 months of age. With regard
o the nuclear inclusions, the results of our study are consistent
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

ith those obtained by Tallaksen-Greene et al. [38] that showed
uclear inclusions were distributed widely throughout the stria-
um. By contrast, we did not find diffuse nuclear staining in aged
nimals. Another study by Woodman et al. [47] found evidence

able 2
dhQ150/Q150 knock-in mice. Formation, progression and distribution of extra-nuclear incl

Q150 brain/ages 5M 6M 8M 10M

Olfactory tubercle + +/++ + +/++
Nucleus accumbens + +/++ + +/++
Globus pallidus-lateral + +/++ + +/++
Globus pallidus-medial + +/++ + +/++
Striatum ventral + +/++ + +/++
Striatum dorsal + +/++ + +/++
Striatum posterior + +/++ + +/++
Septum lateral + +/++ + +/++
Septum med + +/++ + +/++
Amygdala BL + +/++ + +/++
Amygdala CL + +/++ + +/++
Thalamus + +/++ + +/++
Hypothalamus + +/++ + +/++
Cerebellum + +/++ + +/++
Hippocampus + +/++ + +/++
Motor cortex + +/++ + +/++
Sensory cortex + +/++ + +/++
Piriform cortex + +/++ + +/++

: absent, +: very low staining, ++: intermediate staining, +++: dense staining, ++++: very
hout the striatum at 21 months of age (E). The blue arrowheads denote cells with
en arrows indicate inclusions and the red arrows indicate extra nuclear inclusions.
reader is referred to the web version of the article.)

of NIIs in the striatum and hippocampus by 6 months of age and
in the cortex by 8 months of age in theHdhQ150/Q150 mice, which
may be due to the differences in the penetrance of the background
strains used [47]. In contrast, we were able to observe NIIs in the
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

olfactory tubercle, nucleus accumbens and striatum of 5 months
old HdhQ150/Q150 mice. It has been reported that Hdh(CAG)Q150 mice
exhibits a reduction in striatal neuron numbers and in striatal vol-
ume at approximately 23 months of age [13]. A recent paper found

usions (ENNIs).

12M 15M 18M 21M 24M

+++ ++++ ++++ ++++ ++++
++ +++ ++++ ++++ ++++
+++ +++ ++++ ++++ ++++
+++ +++ ++++ ++++ ++++
++ +++ +++ ++++ ++++
++ +++ +++ ++++ ++++
++ +++ +++ ++++ ++++
++ +++ +++ +++ +++
+++ +++ +++ +++ +++
++ ++ ++ ++ ++
+++ +++ +++ ++++ +++
++ ++ +++ +++ ++++
++ ++ +++ +++ ++++
+++ ++++ ++++ ++++ ++++
++ ++ ++ ++ ++
++ ++ +++ +++ +++
++ ++ +++ +++ +++
+++ +++ ++++ ++++ ++++

dense staining.
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ig. 5. Photomicrographs show the GFAP immunoreactive astrocytes in the striatum
ice; (D–F) and (J–L) represent the HdhQ150/Q150 mouse. First row embody: 5 mont
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o decrease in striatal volume or striatal neurons in the HdhQ200
ice [12], however, in the current study we have observed reduced

triatal volume and striatal neuron numbers at 6 months of age. This
ay be due to the differences in the background.
Gutekunst et al. [11] have used the EM48 antibody which was

aised against the first 256 amino acids of huntingtin and selec-
ively recognizes aggregated huntingtin, to reveal more aggregates
n the cortex than in striatum in the post mortem human HD
rain. This observation is not reflected in our findings, in the
dhQ150/Q150 knock-in mouse line, where the striatum exhibited
greater number of aggregates than in the cortex. Our findings

re consistent with other neuropathological studies in the HD
ouse models [16,17,46] and represents one of the key differences

etween the human condition and the genetic mouse models. The
ight microscopy presented in the present study however, does
eflect the pattern of aggregate distribution in different regions of
D human brain, for example in the caudate, putamen, substantia
igra, hypothalamic nuclei, thalamus, where aggregates are found

n the human but at lower densities than in the cortex. At a cellu-
ar level, Gutekunst et al. [11] also described different localization
f EM48-labelling in the HD cortical neurons. The EM48-labelled
ggregates were found in the neuropil, in neuronal nuclei and
erikarya, conversely we did not observe S830-labelling in the
erikarya in the HdhQ150/Q150 mouse line, which may reflect dif-
erences in the antibodies.

Based on the results of our investigation, we further reveal that
he extra-nuclear inclusions existed in all age groups from 5 months
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

f age onwards. The ENNIs were found to be distributed through-
ut the brain in animals up to 10 months old. At 12 month the
istribution of the immunoreaction products varied depending on
he region of the brain. The globus pallidus, amygdala and piri-
ortex of the wildtype and Hdh animals. (A–C) and (G–I) represent wildtype
age; second row, 12 months old and third row, 21 months old, respectively. Scale

form cortex, show increased intensity of extra-nuclear inclusions
whereas other areas of the brain remained the same. Older homozy-
gous mice of 21 and 24 months of age show the presence of these
inclusions in all regions of the brain, but more densely than seen
prior to 10 months of age. Morton et al. [22] showed that there
is a progressive appearance of NIIs and ENNIs in striatum, cortex
and hippocampus of R6/2 transgenic mice, with ubiquitin antibody
[22]. In these R/2 mice there were two distinctly separate popu-
lations of inclusions, NIIs and ENNIs. We have also observed extra
diffuse nuclear staining in the present study. Unlike Morton et al.,
we were not able to detect any ENNIs in the synaptic dendrites of
the neurons by electron microscopy at any age. This may due to
different antibodies used to detect inclusions, methodological dif-
ferences between laboratories or differences in the mouse lines,
as the R6/2 transgenic mice have a more rapidly progressing and
severe phenotype than that seen in the HdhQ150/Q150 knock-in line.

In the present study, our TEM data in the HdhQ150/Q150

mouse line is in broad agreement with previous reports in
the post-mortem of HD brains and transgenic mouse models,
where intra-nuclear inclusions consist of filamentous structures
[7,8,11,23]. In early studies, HD patient brains show nuclear
membrane indentations, nuclear disorganization, reduction of the
ribosomes [29,30], large accumulations of lipofucsin granules and
enlarged mitochondria [39] at the ultrastructural level. Our findings
show similar characteristic features in the HdhQ150/Q150 mouse. Yu
et al. [48] found that the striatal neurons of 14 month HdhQ150/Q150

mice showed markers of cytoplasmic degeneration such as cyto-
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

plasmic swelling, vacuolization, enlargement and degenerated
mitochondria. In the present study these were absent in 14 month
old animals. However, they were present in the 21 month old
HdhQ150/Q150 mice. Moreover, our results revealed that immuno-

dx.doi.org/10.1016/j.brainresbull.2011.03.014


ARTICLE IN PRESSG Model

BRB-8288; No. of Pages 10

Z. Bayram-Weston et al. / Brain Research Bulletin xxx (2011) xxx–xxx 9

Fig. 6. TEM and immunogold images of the striatum of HdhQ150/Q150 (B, C, E and F) and wildtype mice (A and D) at 14 and 21 months of age. Left panel represents 14
months; right panel represents 21 months of age. Nuclear inclusions are observed in both 14 months (B) and 21 months (E) with electron microscope. Hypertrophic neuronal
degeneration as shown by loss of cytoplasmic contents such as mitochondria (m) and large vacuolization (v) in noted in older HdhQ150/Q150 (E). S830 immunogold labelled
particles are localised in intra-nuclear inclusions as shown by black arrows in 14 months (C) and 21 months old (F) animals. WT: wildtype, Hdh CAG (150): HdhQ150/Q150, N:
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ucleolus, NII: intra-nuclear inclusion, red arrow: electron dense body. Magnificatio
egend, the reader is referred to the web version of the article.)

old particles were only confined to the intra-nuclear inclusions. In
ontrast to our finding, Yu et al. [48] detected immunogold particles
hat were either clustered within the degenerating mitochondria
r associated with the mitochondrial membrane [48]. Similarly
anov et al. [24] showed with electron microscopy, that mutant
untingtin is also localized on the mitochondrial membrane of the
ells in YAC72 transgenic mice [24]. The differences in location of
mmunogold particles may be due to the antibody used, the pre-
ise histochemical and ultrastructural methods and/or the mouse
train. Mutant huntingtin aggregates were also observed in hyper-
rophic and dark glial cells with no visible cytoplasmic organelles
n the striatum of R6/2 mice at 12 weeks with EM48 antibody by
EM [35]. In agreement, we have found hypertrophic cells with
o visible cytoplasmic organelles also in the HdhQ150/Q150 mice.
Please cite this article in press as: Z. Bayram-Weston, et al., Light and electr
in the Hdh(CAG)150 Huntington’s disease knock-in mouse, Brain Res. Bull. (2

recent study found that nuclear pore complexes deteriorate in
ged mice. In old neurons, this progression leads to an increased
uclear permeability and causes a leakage of cytoplasmic proteins

nto the nucleus. It has also been revealed that cytoplasmic proteins
as described in figures. (For interpretation of the references to colour in this figure

such as intra-nuclear tubulin aggregates into large filamentous
structures which caused severe morphological chromatin abnor-
malities [5]. This supports the idea, that the HdhQ150/Q150 mice had
uneven nuclear membrane suggesting a possible deterioration of
the nuclear pore complexes in HD.

Interestingly, we did not find any alteration in the intensity
of GFAP immunostaining between HdhQ150/Q150 homozygous and
their littermates. This finding contradicts the result of Lin et al.
[17] and Yu et al. [48], who studied the same HdhQ150/Q150 knock-in
mouse line and found increased GFAP activity at 14 months of age.
This may indicate that astroglial reaction was not associated with
the expanded CAG repeat length.

In running longitudinal studies of this nature several technical
difficulties arose, most notably regarding the consistency of stain-
on microscopic characterization of the evolution of cellular pathology
011), doi:10.1016/j.brainresbull.2011.03.014

ing. At the 8 month time point we lost some consistency of the S830
staining which impacted on our S830 cell counts but also on our 8
month cresyl violet counts. We also had a tissue processing failure
in 5 months of age which may have resulted in artificially low cell

dx.doi.org/10.1016/j.brainresbull.2011.03.014
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General Discussion  

A variety of rodent genetic models have been created in an attempt to reproduce 

the human condition (Gray et al., 2008; Heng et al., 2007; Hodgson et al., 1996; 

Hodgson et al., 1999; Lin et al., 2001; Lloret et al., 2006; Mangiarini et al., 1996; Reddy 

et al., 1998; Schilling et al., 1999; Slow et al., 2003; Von Horsten et al., 2003; White et 

al., 1997; Yamamoto et al., 2000). Such models not only provide us with the opportunity 

to study the pathological process underling the disease, but also provide a platform for 

the testing of novel therapeutic interventions, however, no animal model fully replicates 

all of the key elements of the disease consequently each model must be apprised to 

determine their validity as a model of the disease.  

In this thesis, a comprehensive investigation has been carried out to study the 

distribution of polyQ aggregates and NIIs in the brains of four different mouse models of 

HD. It has been observed that the distribution of aggregates and inclusions differs 

between each mouse model with minor similarities in the spatial and temporal 

distribution of aggregate pathology between each line. Briefly, in the YAC128 mice, 

aggregates were present from 6 months of age, again limited to specific brain regions 

such as the ventral striatum, amygdala and cortex with some variability between 

animals. However, at 15 months of age, inclusions were present in the ventro-lateral 

striatum, cortex and cerebellum. The R6/1 transgenic mice exhibited an extensive 

expression of aggregates and inclusions across all age groups with S830 

immunohistochemistry, from 3.5 weeks of age (unpublished observations Bayram-

Weston Z, Appendix, Figure 1). Regionally restricted distribution of NIIs were observed 

in the HdhQ92 mice, which exhibited aggregates from 4 months of age in the olfactory 

tubercle, nucleus accumbens and striatum. The HdhQ150 mice displayed a widespread 

distribution of inclusions throughout their lives from 5 months of age, which began in the 

olfactory tubercle, nucleus accumbens and striatum and was present in all brain regions 

at 24 months of age. As would be expected, aggregation and NII formation increased 

with advancing age in each of the mouse lines. 



Summary Table of Results in the transgenic and knock-in mice
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a )Striatal atrophy  

A profound atrophy of the striatum and the cortex has been reported in 

post-mortem brain analysis (Halliday et al., 1998; Vonsattel et al., 1985). It 

has been shown that striatal volume is decreased with no evidence of striatal 

neuronal loss in some transgenic (Klapstein et al., 2001; Martin-Aparicio et al., 

2001; van Dellen et al., 2000) and knock-in mouse models of HD (Levine et 

al., 1999; Menalled et al., 2002). However, in this thesis, the results have 

shown that striatal volume loss is present in late time points in the YAC128, 

R6/1, HdhQ92 and HdhQ150 mice in comparison to their wildtype littermates. 

 

b ) Striatal cell loss  

Not all animal models of HD that express mutant huntingtin show signs 

of the striatal cell loss (Levine et al., 1999; Shelbourne et al., 1999; Stack et 

al., 2005), although some models do (Carroll et al., 2011; Diaz-Hernandez et 

al., 2005; Kantor et al., 2006; Lin et al., 2001; McBride et al., 2006; Reddy et 

al., 1998). The cell loss is minimal compared with that observed in post-

mortem human brains. In agreement, the results from this thesis have shown 

that there is evidence of striatal neuronal loss in these mouse models but not 

as robust as seen in the human condition. This finding may suggest that the 

cells of HD mouse models are more resistant to the disease process than 

human cells.  

 

c-) Ultrastructural comparison of cell death in the HD mouse lines  

Cell death is categorized as apoptotic, necrotic or autophagic 

depending on the morphological appearance of the cells. Apoptosis is 

characterized by cell volume loss, membrane blebbing, chromatin 

condensation, DNA fragmentation and appearance of apoptotic bodies (Kerr 

et al., 1972; Kerr et al., 1995; Koh et al., 1995) although all apoptotic cells 

necessarily do not exhibit apoptotic cell bodies (Bowen, 1993). Apoptosis 

causes cell shrinkage and is not related to cell lysis or inflammation (Gorman, 

  101



2008). However, necrosis includes swelling of ER and mitochondria, does not 

have apoptotic bodies and nuclear fragmentation. It causes cell swelling and 

loss of ATP which leads to cell lysis. Necrosis triggers inflammation in the 

surrounding environment, as a result of releasing cellular contents into the 

extracellular space (Gorman, 2008). Autophagic cell death is characterized by 

autophagic vacuoles and has been suggested that it is triggered by amino-

acid starvation and protein aggregation (Bredesen et al., 2006; Kim et al., 

2008).  

Ultrastructural analysis of YAC128 transgenic and HdhQ92 knock-in 

mice showed signs of apoptosis with cellular shrinkage, condensed chromatin 

and cytoplasmic contents without any apoptotic bodies. However, R6/1 

transgenic and HdhQ150 knock-in mice displayed more necrotic cell death 

such as vacuolated cytoplasm, uneven nuclear membrane, loss of membrane 

integrity and did not show cellular shrinkage, suggesting in the pathology is 

different in each mouse line and may be due to the differences in the genetic 

construct. Interestingly, In all these models, there was a degree of vacuolation 

in the cells supporting recent evidence that the autophagic system may be 

responsible for HD (Kim et al., 2008; Martinez-Vicente et al., 2010). However, 

the molecular mechanism of neuronal cell death in HD is not well understood, 

especially in relation to apoptosis, necrotic and autophagic mechanisms. This 

is partly due to a lack of consensus as to what apoptotic cells should look like 

at the ultrastructural level. Demonstrating cell death with TEM is also 

technically challenging due to the sporadic incidence of the phenomena and 

the small tissue sample used, in addition tissue samples are often not optimal 

for use with TEM due to a range of factors such as post-mortem delay time 

and related fixation problems.  

 

Is astrogliosis present in these mouse models? 

GFAP is the main intermediate filament in astrocytes and defines the 

astrocytic morphology. The astroglial reaction is assessed by the morphology 

of the astrocytes and the increased expression of GFAP (Bignami et al., 

1972). The astroglial reaction is reported in HD post-mortem brains (Galatioto, 
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1996; Hedreen and Folstein, 1995; Maat-Schieman et al., 2007; Vonsattel et 

al., 1985) and has been reported in several genetic models such as the 

HdhQ150 (Heng et al., 2007; Lin et al., 2001), HdhQ200 (Heng et al., 2010) and 

HD89 (Reddy et al., 1998) mouse lines but not in R6/2 mice (Mangiarini et al., 

1996). However, in all mice models examined in this thesis, there was no 

strong evidence of astroglial reaction with anti-GFAP immunohistochemistry. 

None of the mouse lines studied demonstrated any increase in GFAP activity 

in the striatum in comparison to control animals at any age. GFAP activity 

increased with age in both genetically modified animals and control animals, 

although, the cortex of transgenic animals (R6/1 and YAC128 mice) contained 

increased GFAP activity compared to their wildtypes at older ages. As all 

models did not consistently show GFAP activity, this may suggest that 

astroglial reaction is not associated with the expanded CAG repeat length. 

 

Is cell death associated with NIIs?  

From autopsy tissues it can be seen that neuronal loss progresses in a 

dorso to ventral striatum direction (Hedreen and Folstein, 1995; Mitchell et al., 

1999). The frequency of cortical neurons containing NIIs is increased in 

juvenile patients (DiFiglia et al., 1997), however, striatal NIIs are less 

abundant in these patients (Kuemmerle et al., 1999), showing a dissociation 

between the aggregation and selective pattern of striatal neuronal loss. The 

precise role of NIIs in cell death is still unknown. Three possible scenarios 

have been hypothesised for their role in HD pathology. There is evidence that 

NIIs are not toxic, particularly as several mouse lines demonstrate functional 

pathology in the absence of NIIs (Hodgson et al., 1999; Menalled et al., 2003; 

Slow et al., 2003; Slow et al., 2005; Van Raamsdonk et al., 2005b), 

suggesting that neuronal dysfunction and loss might occur well before the 

visible NIIs, and cell loss is not related with NIIs load. However, recent studies 

have indicated that aggregates might be present in conformations that are 

more difficult to visualise than insoluble forms, with commonly used antibodies 

(Landles et al., 2010; Sathasivam et al., 2010; Slow et al., 2006), suggesting 
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these confirmations are present from the start, even if we do not seen them 

they may still be toxic to the cells.  

Interestingly, the results from this thesis show that the distribution of 

inclusion formation in the striatum of the HD mouse line was different. In The 

YAC128 mice, NIIs seems more dominant in the ventral striatum than the 

dorsal striatum. Similarly, in the R6/1 mice showed the same patterns which 

inclusions were more in the ventral striatum than the dorsal striatum, whereas, 

the HdhQ150 and HdhQ92 mice displayed dense the aggregates and NIIs in 

the entire striatum. The distribution of aggregates/ NIIs in the cortex of HD 

mouse line was also different. The YAC128 and R6/1 mice have shown more 

aggregates and NIIs in the cortex than the striatum, whilst, the HdhQ92 mice 

showed more aggregates in the striatum than the cortex, however, the 

HdhQ150 mice displayed widespread distribution of NIIs which did not differ in 

the regions of the striatum and the cortex. In post-mortem HD brains, many 

studies agree that the cortex contains more inclusions than the striatum 

(DiFiglia et al., 1997; Gourfinkel-An et al., 1998; Gutekunst et al., 1999; Maat-

Schieman et al., 1999; Sapp et al., 1997). All layers of neocortex of post-

mortem tissue contained NIIs, however, they were widespread in layers III, V 

and VI, and in juvenile-onset patients, layer II also contained NIIs (Maat-

Schieman et al., 1999). When considered together, the striatum receives 

excitatory glutamatergic inputs from the entire cerebral cortex, therefore, the 

selective striatal vulnerability in HD may be due to the vast glutamatergic 

inputs they receive into these cells (Mathai and Smith, 2011). It has been 

emphasised that brains of HD patients undergo neurophysiological alterations 

as revealed by electrophysiological studies  (Ghiglieri et al., 2011). A recent 

study shows that the variable symptomatology in HD is correlated with the 

variable compartmental pattern of GABA receptor and cell loss in the striatum 

and the cortex (Thu et al., 2010). When considered together these findings 

support the hypothesis that intracellular dysfunction may be induced by 

aggregates/NIIs and suggesting the aggregation process is toxic to the cells. 

More studies need to be carried out to link any neuronal dysfunction and the 

formation of NIIs in these areas. 

Although, the neuropathology is most prominent in the neostriatum and 

the cerebral cortex, other brain areas such as amygdala, hippocampus 
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(Rosas et al., 2003), GP and the nucleus accumbens (van den Bogaard et al., 

2011) are also affected. There is little concordance with regards to other 

regions of the brain. For example, Gutekunst et al have observed rare 

appearance of NIIs in the cerebellum (Gutekunst et al., 1999), while others did 

not find NIIs in the cerebellum (DiFiglia et al., 1997; Gourfinkel-An et al., 1998; 

Maat-Schieman et al., 1999). The results of this thesis show that there NIIs 

initially appeared in the olfactory tubercle in each mouse line. It has been 

hypothesised that PD begins in the myenteric plexus and olfactory system 

(Braak et al., 2006). Interestingly, one recent study has shown that individuals 

in presymptomatic HD  showed odour recognition impairment (Paulsen et al., 

2008), similar to those seen PD patients (Chahine and Stern, 2011), 

supporting the idea that olfactory system may be involved in the HD 

pathology. Therefore, further investigation into other regions of the brain in 

addition to the striatum and cortex, is required.  

In the human study, it has been observed that the cerebellum is 

abnormally small, but the result of the neuropathological assessment showed 

cerebellar density is unaffected in early HD (Vonsattel et al., 1985). However, 

more recent studies indicate cerebellar atrophy in HD (Fennema-Notestine et 

al., 2004; Henley et al., 2006; Herishanu et al., 2009; Jeste et al., 1984; 

Rodda, 1981; Vonsattel and DiFiglia, 1998). Again, NIIs were present in the 

cerebellum of YAC128, R6/1 and HdhQ150 mice, but not in the HdhQ92 mice 

at late stage. The cortex was the one of the regions affected less with NIIs in 

the HdhQ92 mice. This result is interesting because, HdhQ92 mice showed 

late motor deficit in rotarod at 27 months of age, overlapping the late 

appearance of NIIs in the cerebellum. This supports the involvement of NIIs in 

motor impairment and the cerebellar involvement in motor coordination and 

suggests the cerebellum is involved in motor deficit seen HD patients and 

mouse models. It would be interesting to apply S830 antibody to different 

regions of the human post-mortem brains such as olfactory tubercle, piriform 

cortex and cerebellum.  
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Is the genetic construct predictive of the neuropathology?  

All of the animal models studied in this thesis have a different genetic 

construct. The YAC128 mice have yeast artificial chromosome expressing the 

entire human protein with 128 CAG repeats. However, the R6/1 mice contain 

the N terminal fragment of human gene with ~ 124 CAG repeats. While, 

HdhQ92 and HdhQ150 mice include ~ 90 CAG and ~ 134 CAG repeats which 

inserted into murine Hdh locus, respectively. The CAG repeat length was 

relatively similar, suggesting the NIIs pathology in these mouse is not entirely 

related with CAG repeat length. The R6/1 mice have a relatively shorter life 

span comparison to the YAC128, HdhQ92 and HdhQ150 mice which have 

lived up to 2.5 years and contained NIIs at an early age, supporting the 

hypothesis that the fragment of human huntingtin gene is more toxic than the 

full length huntingtin mutation, despite having a shorter repeat length. These 

results also suggest that inserting human huntingtin gene into the mouse 

genome triggers other gene’s interference in transgenic mice and CAG repeat 

length does not affect on the distribution of aggregates and NIIs. 

It should be acknowledged that a number of gene expression studies 

have been carried on HD patients and HD models which are detailed in 

(Seredenina and Luthi-Carter, 2011). Briefly, the results from these studies 

have shown that the regional and cellular gene expression changes in human 

HD brain and are more pronounced in the striatum and the cortex (Hodges et 

al., 2006; Kuhn et al., 2007). Similarly, the striatal gene expression changes 

have been observed in some genetic models of HD including the R6/1, R6/2, 

YAC128, HdhQ150 and HdhQ92 mice. Significantly, all these mice had 

correlations with human striatal gene expression changes and the highest 

correlations were reported in HdhQ150 and R6/2 mice (Kuhn et al., 2007). 

Similarly, the expression of specific gene has been found to correlate well with 

behavioural end points in R6/1 mice (Hodges et al., 2008). Similarly, in 

YAC128 mice, changes in the gene expression levels have been reported as 

early as 3 months of age (Becanovic et al., 2010) supporting the gene 

expression levels and the genetic construct contribute the pathology seen in 

these models. 
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The results from this thesis also show that the aggregation process 

coincides with the behavioural deficits observed in these mice. YAC128 mice 

showed that nuclear staining was present in the ventral striatum and cortex at 

6 months of age, in parallel, cognitive impairments were present in this mouse 

line on the C57BL/6J background at 6 months old (Brooks et al., 2010a; 

Brooks et al., 2011). Similarly, the appearance of diffuse nuclear staining and 

NIIs in the hippocampus (Milnerwood et al., 2006) and in most of the brain 

regions at 3.5 weeks of age (unpublished observations, Bayram-Weston Z), 

overlapping with motor deficit were detected at 4 weeks of age in the R6/1 

mice (Bolivar et al., 2004). The appearance of inclusion in the HdhQ150 mice 

coincided with motor impairments at 3 months of age (Lin et al., 2001), and 

cognitive impairment at 6 months of age (Brooks et al., 2006; Woodman et al., 

2007). Yet again, a similar pattern has been observed in the HdhQ92 mouse 

line, where the presence of diffuse nuclear staining but not with inclusions 

coinciding with the cognitive deficit was present at 4 months of age (Trueman 

et al., 2007; Trueman et al., 2008), suggesting that the deposition of mutant 

huntingtin protein may be toxic and cause neopathological changes in the cell.  

Although atrophy occurs in the brain, it is important to note the mutant 

huntingtin protein is ubiquitously expressed throughout the whole organism. A 

number of peripheral abnormalities have been reported in HD patients such 

as increased corticosteroid level (Bjorkqvist et al., 2006; Heuser et al., 1991), 

reduced testosterone level (Markianos et al., 2005) and gastrointestinal 

dysfunction (van der Burg et al., 2011), indicating the importance of peripheral 

defects in HD pathology. Similarly, in the HdhQ150 and R6/2 mice, peripheral 

pathology has been reported including muscle pathology (Moffitt et al., 2009), 

making it difficult to assess, because motor symptoms may be due to the fact 

that peripheral pathology exists alongside brain pathology.  

 

Is there a faithful representative animal model? 

A representative animal model should recapitulate motor, cognitive and 

behavioural disturbances, alongside the neuropathology which has been 

observed in individuals affected with HD. Data from presymptomatic HD 
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patients show behavioural and cognitive changes occur well before the onset 

of motor symptoms (Duff et al., 2007; Johnson et al., 2007; Solomon et al., 

2007). However, determining exact cognitive and psychiatric abnormalities is 

challenging in the rodent models. The behavioural phenotypes and 

pathological features of some animal models were summarised in chapter 1, 

however many of these models still need to be characterized fully. 

Taken into account when analysing the above traits, the R6/1 mice 

have a more severe phenotype than other models studied here, showing the 

early and widespread appearance of aggregates. R6/1 mice do not replicate 

an accurate picture of the neuropathological features of adult-onset HD, but 

may be more representative of juvenile HD. The behavioural features of the 

HdhQ92 and HdhQ150 knock-in mice appear to replicate adult-onset HD best 

due to their early onset of cognitive and psychiatric deficits. However, NIIs are 

more striatal than cortical unlike post mortem human brains, so they do not 

fully represent human HD. The YAC128 mouse line is a more representative 

model of HD, in terms of aggregate formation as the neuropathology is more 

cortical in nature.  

 

Future work 

Many brain disorders such as Huntington's disease, Alzheimer's 

disease, amyotrophic lateral sclerosis (ALS), PD, stroke, head trauma and 

infection, are associated with inflammation that is involved in 

neuropathogenesis (Heneka and O'Banion, 2007). Microglia and astrocytes 

act as immune cells in the inflamed brain. Both cell types, but especially 

microglia, are thought to contribute to the onset of inflammation in many brain 

diseases by producing a range of proinflammatory mediators including 

cytokines, reactive oxygen species, complement factors, neurotoxic secretory 

products, free radical species and nitric oxide, all of which can contribute to 

neuronal dysfunction and cell death. The cytokine-induced neuronal insults 

can activate microglia (Griffin et al., 1998). An impairment of microglial 

performance with genetic or environmental insults could worsen neuronal 

dysfunction. The next phase of this study will assess the inflammation 

processes at these models in more detail. 
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Conclusions  

 

The results presented in this thesis are as follows; 

• There is cell loss with reduced striatal volume in the striatum of 

each mouse line. 

• The features of apoptotic cell death are present in the YAC128 

and HdhQ92 lines, whereas necrotic cell death was more 

evident in the R6/1 and HdhQ150 lines. 

• R6/1 mice do not replicate an accurate picture of the 

neuropathological features of adult-onset HD, but may be more 

representative of juvenile HD.  

• In HdhQ92 and HdhQ150 knock-in mice, NIIs are more striatal 

than cortical unlike post mortem human HD brains. 

• The YAC128 mouse line is a more representative model of HD, 

in terms of aggregate formation, resembling the human HD 

pathology. 

In this thesis, the results demonstrate that each of the mouse lines has 

an incomparable pattern of development of neuropathology and distribution of 

NIIs, and this may be representative of the neuronal dysfunction in each of 

these mouse lines.  
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Appendix 



Fig.1 : Photomicrographs of S830 staining in the different regions of the R6/1 mice at 3.5 weeks of age. The aggregates and 
NIIs were present in the olfactory tubercle (OT), piriform cortex, ventral striatum, dorsal striatum, cortex, Amydala, Thamus, 
cerebellum and hippocampus. 
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BUFFERS AND SOLUTIONS 

TRIS BUFFRED SALINE I (Concentrated stock solution) 

TRIS base   48g 

Sodium chloride  36g 

Distilled water  1000ml 

Adjusted to pH7.3 with concentrated HCl and stored at +4C0  

TRIS BUFFRED SALINE II-0.1M (Working solution) 

250 ml of stock solution (above) +750 ml Distilled water Adjusted to pH 7.3 
with concentrated HCl and stored at +4C0  

0.05 M TRIS NON SALINE (TNS) for DAB demonstration for HPR 

TRIS base    6.0g 

Distilled water   1000ml 

Adjusted to pH7.6 with concentrated HCl and prepare as needed  

DAB stock solution 

DAB      1g 

TNS Buffer solution( above)  100ml  

Dissolved and divided into 2ml aliquots in small bijou pots. Freeze the aliquots 
as quickly as possible.  

DAB Solution A:  

DAB      20mg 

TNS Buffer solution( above)  40ml  

Mixed very well and aliquot 2ml and kept in 4C0 until needed 

DAB working solution B:  

DAB      2ml aliquot DAB (above) 

Buffer solution   40 ml 

30% H2O2    12µm 
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PHOSPHATE BUFFERED SALINE (PRE-WASH) FOR PERFUSION 

Di-Sodium hydrogen orthophosphate   90g 

Sodium chloride     45g 

Distilled water     5000ml 

Adjusted to pH 7.3 with orthophosphoric acid 

4% Paraformaldehyde solution  

40 g Paraformaldehyde dissolved with heat on the stirrer ( 50-60C0) in 1000ml 
Prewash (above) for 3h, then turned the heat and left stirring overnight at 
room temperature. Adjusted to pH 7.3 with sodiumhydoxidase or 
orthophosphoric acid. 

25% sucrose 

Sucrose   25g 

TBS    Make up to 100ml 

Antifreeze Solution 

Na2HPO4  (dibasic)    4.36g  

NaH2PO4 (monobasic)   1.256g 

Fully dissolved in 320 ml distilled water and then added  

Ethylene glycol (sigma E-9129) 240 ml 

Glycerol (sigma G-7893)   240ml 

Everything mixed very well and stored in the +4C0.  

Cresyl violet working solution; 

Cresyl violet  7g 

Sodium Acetate (anhydrous)  5g 

Distilled water. 600ml 

Adjusted to pH 3.5 with glacial acetic acid. Made up to a final volume of 
1000ml and left stirring overnight. Stored at room temperature (up to 1 year) 
Filtered before use. 
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Acid Alcohol; 

Glacial Acetic Acid     5ml  

95% alcohol                                            200ml 

 

PHOSPHATE BUFFERED SALINE (SORENSEN) FOR TEM 

Solution A 

Sodium phosphate (Na2HPO4.2H2O)   11.876g 

Distilled water     1000ml 

Solution B 

Potassium phosphate (KH2PO4)   9.8g 

Distilled water     1000ml 

 

818 ml Solution A +182ml Solution B (pH 7.4) 

ARALDITE RESIN 

Araldite CY212 (AGAR)   10g 

DDSA (AGAR)    10g 

BDMA (AGAR)    10g 

LOWICRYLS HM20 RESIN (AGAR Kit) 

Crosslinker D   2.98g 

Monomer E    17.02g 

Initiator C    0.10g 

REYNOLD’S LEAD CITRATE 

Lead nitrate (Sigma)   1.33g 

Sodium citrate   1.76g 

Distilled water   30ml 

Adjusted pH 12 with aprox. 8 ml NaOH  
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