HRA MRAVENCI PRO MOBILNÍ ZAŘÍZENÍ
ANTZ GAME FOR MOBILE DEVICES

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE
AUTHOR
PETR HOVORKA

VEDOUCÍ PRÁCE
SUPERVISOR
ING. Zbyněk Křivka, Ph.D.

BRNO 2009
Vysoké učení technické v Brně - Fakulta informačních technologií
Ústav informačních systémů

Zadání bakalářské práce

Řešitel: Hovorka Petr
Obor: Informační technologie
Téma: Hra Mravenci pro mobilní zařízení
Kategorie: Uživatelská rozhraní

Pokyny:
1. Seznamte se s různými typy mobilních zařízení a korespondujícími vývojovými platformami (jazyky, vývojová prostředí, přenositelnost).
2. Navrhněte multiplatformní realizaci hry Mravenci (včetně užitelského rozhraní, hratelnou offline, inspirujte se existující hrou pro stolní počítače) jak pro jednoducho, tak pro více hráčů.
3. Hru pro vybranou množinu mobilních zařízení implementujte a řádně otestujte. Navrhněte budoucí rozšíření.
4. Na základě získaných zkušeností klisifikujte a diskutujte konkrétní i obecné problémy provázející vývoj mobilních aplikací a jejich možná řešení.

Literatura:

Při obhajobě semestrální části projektu je požadováno:
- Body 1 a 2.

Podrobné závazné pokyny pro vypracování bakalářské práce naleznete na adrese http://www.fit.vutbr.cz/info/szz/

Technická zpráva bakalářské práce musí obsahovat formulaci cíle, charakteristiku současného stavu, teoretická a odborná východiska řešených problémů a specifikace etap (20 až 30% celkového rozsahu technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy, úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou uloženy na standardním nepřepísovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do písemné zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: Křivka Zbyněk, Ing., Ph.D., UIFS FIT VUT
Datum zadání: 1. listopadu 2008
Datum odevzdání: 20. května 2009

L.S.

doc. Dr. Ing. Dušan Kolář
vedoucí ústavu
Abstrakt

Bakalářská práce popisuje problematiku vývoje her pro mobilní zařízení. Obsahuje popis dnes nejvíce používaných platforem mobilních zařízení a snaží se vybrat jednu z nich, vhodnou pro vývoj jednoduché karetní hry Mravenci. Dále popisuje návrh a implementaci této hry na platformě Windows Mobile v programovacím jazyce C#. Podstatná část práce se zabývá tvorbou uživatelského rozhraní. V závěru jsou diskutována možná budoucí rozšíření hry a obecné problémy provázející vývoj her pro mobilní zařízení.

Klíčová slova

Mravenci, hra, mobilní zařízení, platforma, vývoj, Windows Mobile, C#.

Abstract

This Bachelor’s thesis describes the basics of game development for mobile devices. It contains a description of common mobile platforms and tries to choose one of them, suitable for developing of simple card game Antz. Next it describes design and implementation of this game on platform Windows Mobile and programming language C#. Major part of this document dwells on graphical user interface development. At the end it discusses future extensions of the game and common problems of game development for mobile devices.

Keywords

Antz, game, mobile device, platform, development, Windows Mobile, C#.

Citace

Hra Mravenci pro mobilní zařízení

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením Ing. Zbyňka Křivky, Ph.D.
Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

..........................
Petr Hovorka
20. května 2009

Poděkování

Tímto bych chtěl poděkovat mému vedoucímu Ing. Zbyňku Křivkovi, Ph.D., který mi poskytl cenné rady během mé práce.

© Petr Hovorka, 2009.

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.
Obsah

Obsah..1
Úvod...3
1 Srovnání plattform pro vývoj mobilních aplikací ..4
 1.1 Mobilní platformy ..4
 1.2 Výběr nejrozšířenějších mobilních plattform ..4
 1.2.1 Java ME (Micro Edition) ...4
 1.2.2 Symbian ..5
 1.2.3 Windows Mobile ..5
2 Výběr cílové platformy ..7
 2.1 Parametry zařízení na platformě Windows Mobile ...7
 2.2 Parametry obrazovky ...7
 2.3 Možnosti vstupních zařízení ..9
 2.4 Možnosti zvukového výstupu ...10
 2.5 Možnosti konektivity ..10
 2.5.1 Bluetooth ...10
 2.5.2 Připojení k internetu ...11
 2.6 Technologická platforma .NET Compact Framework 2.0 ..11
3 Návrh hry Mravenci pro mobilní zařízení ..13
 3.1 Hra Mravenci ..13
 3.2 Objektový model hry Mravenci ..14
 3.3 Třída Hrac ..15
 3.3.1 Rozhraní IHrac ...15
 3.3.2 Umělá inteligence ..15
 3.3.3 Algoritmus hodnotící funkce umělé inteligence ..16
 3.4 Třída Pakl ..16
 3.5 Třída Hra ..17
 3.6 Třída Obrazovka a grafické uživatelské rozhraní ...19
 3.6.1 Vytvoření a rozmístění prvků uživatelského rozhraní ..19
 3.6.2 Zpracování vstupu uživatele a předávání zpráv třídě Hra ..20
 3.6.3 Vykreslení aktuálního stavu hry na požádání ...21
 3.6.4 Animace karet ...21
 3.7 Vykreslování ikon a obrázků ...22
 3.7.1 Implementace vlastní komponenty StateBox ...22
 3.7.2 Implementace vlastní komponenty CardBox ...23
3.7.3	Implementace vlastní komponenty HradBox	24
3.7.4	Problém při implementaci průhledných obrázků	25
3.8	Třída Nastavení	26
3.9	Třída Zvuk	26
3.10	Načítání bitových map obrázků	27
4	Závěr	28
Literatura		29
Seznam obrázků		30
Seznam příloh		31
A.	Obsah přiloženého disku DVD	32
Úvod

V této práci se autor snaží o rozebrání problematiky vývoje her pro mobilní zařízení. Díky neustálému technickému pokroku se na trhu objevuje stále větší počet mobilních zařízení, která slouží jako univerzální komunikační prostředky a usnadňují lidem řešení každodenních situací. Díky relativně nízkým cenám těchto zařízení je jejich vlastnictví dnes celkem běžnou záležitostí. Téměř každý člověk dnes vlastní obyčejný mobilní telefon nebo komunikátor, schopný vykonávat nejen základní funkce, jako je telefonování, organizování času a čtení elektronické pošty, ale také umožňuje spouštět pokročilejší aplikace. Mobilní zařízení jsou tedy určená k neustálemu nošení u svého majitele a právě na tato zařízení se zaměřil i trh počítačových her. Proto se v této práci autor věnuje vývoji her pro mobilní zařízení z pohledu programátora počítačových aplikací a nabízí řešení několika problémů souvisejících s jejich vývojem.

V práci autor uvádí příklad různých univerzálních vývojových platforem pro mobilní zařízení a zaměřuje se zejména na platformu Windows Mobile.

Dále se zabývá návrhem a implementací hry Mravenci od Ing. Miroslava Němečka, původně navržené pro osobní počítač se systémem Windows.

Nakonec se autor snaží shrnout problémy související s vývojem her a diskutuje možné další rozšíření hry.

V práci se vyskytují názvy některých objektových tříd, metod, vlastností a objektů implementovaných ve hře. Tyto názvy jsou odlišené použitím fontu psacího stroje.
1 Srovnání platform pro vývoj mobilních aplikací

V této kapitole se seznámíme s pojmy mobilní platforma, mobilní zařízení a přibližíme si nejpoužívanější platformy pro vývoj mobilních aplikací v dnešní době.

1.1 Mobilní platformy

Mobilní platformou se označuje souhrn hardwarových a softwarových prostředků, použitých pro vývoj a provoz mobilních aplikací.

Hardwarovým prostředkem se rozumí přenosné, většinou víceúčelové, elektronické zařízení kompaktních rozměrů. Může to být prostý mobilní telefon, „chytrý“ mobilní telefon s operačním systémem, PDA 1, herní konzola, kompaktní počítač třídy PC, nebo nějaké jiné zařízení schopné spouštět uživatelské programy.

Softwarovým prostředkem chápejme nějaký programový základ, operační systém či vývojové prostředí potřebné pro realizaci a provoz mobilní aplikace.

1.2 Výčet nejrozšířenějších mobilních platform

V této kapitole uvedu příklad tří nejvíce rozšířených platform použitelných pro vývoj a provoz mobilních aplikací.

1.2.1 Java ME (Micro Edition)

Java ME se dělí na několik profilů podle zaměření a nároků na výkon. Pro nás je asi nejdůležitější profil MIDP 2. Je to profil navržený pro mobilní telefony. Obsahuje základní knihovny pro práci s grafickým uživatelským rozhraním a knihovny pro 2D grafiku.

1 Personal Digital Assistant - osobní digitální pomocník; malý kapesní počítač.
2 Mobile Information Device Profile je aplikační rozhraní J2ME, které definuje, jakým způsobem softwarové aplikace spolupracují s mobilními telefony.
Dále existuje mnoho rozšíření, která obsahují rozhraní pro bezdrátovou komunikaci, grafické knihovny, multimediální knihovny, rozhraní pro webové služby, GPS navigaci a jiné. Tato rozšíření jsou ovšem specifická pro konkrétní modely mobilních zařízení a programy se tak musí kompilovat zvlášť pro každý model. To znesnadňuje vývoj pokročilých aplikací pro tuto platformu.

1.2.2 Symbian

Platforma vědoucí trhu mobilních telefonů. Symbian je operační systém převládající na mobilních telefonech značky Nokia, Samsung, Sony Ericsson a Motorola. Je neustále vyvíjen a těší se silné podpoře ze strany firmy Nokia a několika menších výrobců mobilních telefonů. Umožňuje provoz širokého spektra programů a aplikací díky kvalitnímu API[3].

Hlavním programovacím jazykem je C++, ale díky široké škále knihoven je možno spouštět i programy napsané v jazyce Python, Java, Perl, Simkin a OPL. Programy se kompilují do spustitelné verze pro operační systém Symbian, nebo jsou, v případě skriptovacích jazyků, interpretovány příslušnými interprety.

1.2.3 Windows Mobile

Druhá nejrozšířenější platforma pro vývoj a provoz mobilních aplikací. Stejně jako Symbian je Windows Mobile operačním systémem. Na rozdíl od Symbianu se však Windows Mobile nespecializuje pouze na mobilní telefony, ale najdeme jej i na zařízeních typu PDA, komunikátořech nebo na specializovaných průmyslových zařízeních pro monitorování a sběr dat v terénu. Zařízení Windows Mobile se dají rozdělit do dvou kategorií - Pocket PC a Smartphone.

3 Global Positioning System je vojenský polohový družicový systém provozovaný Ministerstvem obrany Spojených států amerických.

4 API je zkratka anglických slov application programming interface, což znamená rozhraní pro programování aplikací.
Pocket PC je zařízení určené především pro kancelářskou práci v terénu. Základem je dotyková obrazovka, několik ovládacích tlačítka a někdy je součástí zařízení i zabudovaná klávesnice.

Smartphone, neboli tzv. „chytrý“ mobilní telefon, je zařízení, jehož základem je uživatelské rozhraní přizpůsobené pro ovládání zabudovanou klávesnicí. Obrazovka je v dětivé většině bez dotykového ovládání, klávesnice číselná nebo znaková, zabudovaná do čela přístroje jako u mobilního telefonu. Ovládací prvky na obrazovce jsou přizpůsobeny pro ovládání pomocí klávesnice a někdy je přístroj vybaven i vysouvací rozšířenou klávesnicí pro pohodlné vkládání textu.

Windows Mobile má propracované API a lze používat i specializované knihovny pro práci s multimédii, internetem, bezdrátovou komunikací a GPS navigací. Existuje i specializovaná podpora trojrozměrné akcelerované grafiky. Programování aplikací pro Windows Mobile se velice přiblížuje k programování aplikací pro systém Windows na osobních počítačích. Díky rozhraní .NET Compact Framework je možno používat stejné programovací postupy známé ze „stolních“ aplikací.

Vývojové prostředí pro operační systém Windows Mobile se nazývá Visual Studio a je dodáváno společností Microsoft. Visual Studio je určeno pro operační systém Windows a dodává se v placených edicích i zdarma. [6]
2 Výběr cílové platformy

Při výběru cílové platformy se zaměříme na přenositelnost aplikace mezi co největším počtem mobilních zařízení. Dalším kritériem výběru je dostupnost a kvalita vývojového prostředí a nástroje na ladění aplikace (debugger). Pokud by nás zajímala pouze přenositelnost aplikace, nejlepší volbou by byla kombinace programovacího jazyka C++, knihovny pro uživatelské rozhraní Qt a některé z volně šiřitelných vývojových prostředí.

2.1 Parametry zařízení na platformě Windows Mobile

Při návrhu hry pro mobilní zařízení je potřeba zjistit několik důležitých parametrů o cílové platformě. Jsou to parametry obrazovky a možnosti zobrazení grafických ovládacích prvků, parametry vstupních zařízení, možnosti zvukového výstupu, a na konec možnosti konektivity pro hru dvou hráčů na dvou mobilních zařízeních.

2.2 Parametry obrazovky

Velice důležitým parametrem pro grafickou reprezentaci hry na obrazovce mobilního zařízení je její rozlišení, poměr stran a možnost změny orientace obrazovky. Tyto parametry jsou na dnešních mobilních zařízeních velice různorodé.

Pokud chceme dodržet dostatečnou kompatibilitu, musí být hra schopna zobrazit grafické prvky jak na nejmenším, tak na největším možném rozlišení obrazovky. Jako nejmenší rozlišení je uvažována hrací plocha o rozměrech 176 x 220 obrazových bodů, největší potom plocha o rozměrech 480 x 800 obrazových bodů. Jsou to rozlišení převzatá ze specifikací dnes prodávaných komunikátorů s operačním systémem Windows Mobile (dříve Pocket PC) v různých verzích, z literatury [4]
a on-line dokumentace [5], [6]. Poměr stran se většinou odvíjí od rozlišení obrazovky a bývá 3:4, 4:5, 1:1 nebo jiné. To je důležité kvůli uspořádání jednotlivých prvků na obrazovce. Seznam běžných rozlišení je uveden v Tab. 2.1.

<table>
<thead>
<tr>
<th>Poměr stran 5:3</th>
<th>Poměr stran 5:4</th>
<th>Poměr stran 4:3</th>
<th>Poměr stran 1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>800x480</td>
<td>176x220</td>
<td>320x240</td>
<td>240x240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640x480</td>
<td>320x320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>480x480</td>
</tr>
</tbody>
</table>

Tab. 2.1: Seznam dnes běžně používaných rozlišení obrazovek mobilních zařízení.

Rozlišení jsou uvedena v počtech obrazových bodů v horizontálním a vertikálním směru.

Další vlastností operačního systému Windows Mobile je možnost změny orientace obrazovky. Mnoho mobilních zařízení mění orientaci obrazovky například při vysunutí klávesnice nebo při změně pozice zařízení v prostoru. Pokud by tato událost nebyla brána v úvahu, obraz by mohl být po této změně deformovaný nebo by se nezobrazil celý. Otočení obrazu je totiž jen v částečně režii operačního systému. Aplikaci je při této události pouze oznámena změna orientace obrazovky a je změněn souřadnicový systém tak, že počátek souřadnic je vždy v levém horním rohu obrazovky. Proto mohou následně některé prvky okna zasahovat mimo obrazovou plochu a musí být aplikací znovu umístěny na vhodnou pozici. V souvislosti s orientací obrazovky se budou používat anglické termíny pro označení orientace obrazovky. Termínem portrait bude označena orientace obrazovky na výšku, termínem landscape orientace obrazovky na délku. Režimy zobrazení jsou ilustrované na Obr. 2.1.

Obr. 2.1: Režimy orientace obrazovky.

Vlevo je zobrazen režim portrait, vpravo režim landscape.
Problém změny orientace obrazovky je ilustrován na Obr. 2.2. Vlevo je obrazovka v režimu portrait s korektně zobrazeným obsahem. Vpravo je obrazovka po změně orientace v režimu landscape se stejným obsahem, avšak bez úpravy na novou orientaci obrazovky. Obsah je viditelně oříznutý a nevykrývá celou plochu obrazovky.

Obr. 2.2: Ilustrace problému zobrazení při změně orientace obrazovky.
Vlevo je obrazovka s orientací portrait, vpravo s orientací landscape.

2.3 Možnosti vstupních zařízení

Vstupní zařízení jsou velice důležité z hlediska ovládání programu. Uživatelské rozhraní musí být přizpůsobeno jednak pro ovládání dotykovou obrazovkou, tak i integrovanou klávesnicí. Pokud má mobilní zařízení vestavěnou hardwarovou klávesnici, obvykle je to buď klávesnice plnohodnotná (Obr. 2.3), nebo numerická jako v mobilním telefonu (Obr. 2.4).

Obr. 2.3: Mobilní zařízení s plnohodnotnou klávesnicí (qwerty)

Obr. 2.4: Mobilní zařízení s numerickou klávesnicí

Při ovládání klávesnice je vhodné rozmístit ovládací prvky programu do tvaru reprezentujícího umístění tlačítka na klávesnici. Pokud je například standardní klávesnice umístěna dole, podél delší strany obrazovky, ovládací prvky na obrazovce je vhodné umístit na stejnou stranu obrazovky.
Na tento problém se autor zaměřil při návrhu uživatelského rozhraní hry. Ovládání dotykovou obrazovkou by mělo brát ohled nejen na ovládání perem, ale také na možnost ovládání prstem. To znamená zvětšit velikost ovládacích prvků programu na úkor informačních ikon.

2.4 Možnosti zvukového výstupu

Platforma Windows Mobile ve verzi 5 spolu s knihovnami .NET Compact Framework neobsahuje nativní podporu zvukového výstupu. V předchozí verzi 2003 této platformy byl zvukový výstup řešen pomocí rozhraní DirectSound. To však bylo ve verzi 5 odstraněno a až ve verzi 6 bylo implementováno jednoduché API pro přehrávání běžně podporovaných formátů, pro které jsou v mobilním zařízení dostupné kodeky ⁵ (MP3, WMA a MID). Z důvodu zachování kompatibility je proto nutné pro přehrávání zvuku použít systémové volání z knihovny CoreDll.DLL umístěné v systému. Přesný popis tohoto volání lze nalézt v dokumentaci v [6].

2.5 Možnosti konektivity

Pokud chceme hru navrhnout s možností hry více hráčů na více zařízeních, je nutné zjistit možnosti spojení hráčů mezi sebou. V dnešní době jsou již mobilní zařízení natolik vyspělá, že i levnější modely disponují bezdrátovými technologiemi Bluetooth a připojením k síti internet. Je proto možné se později zabývat realizací propojení mobilních zařízení přes tyto komunikační kanály.

2.5.1 Bluetooth

Bluetooth je bezdrátová technologie původně vyvinutá jako náhrada za kabely při propojování zařízení jako jsou mobilní telefony, headsety a počítače. Od té doby se Bluetooth rozvinul v bezdrátový standard pro připojení elektronických přístrojů. S touto technologií se nejvíce obzvlášť objevily bezdrátové technologie jako například Bluetooth, které umožňují spojení mobilních zařízení přes více zařízení. Proto je třeba se později zabývat realizací propojení mobilních zařízení přes tyto komunikační kanály.

Technologie Bluetooth přímo vyhovuje k použití při hrání her mezi více hráčů. Navázané spojení mezi mobilními zařízeními je většinou bezdrátové a spojení představuje spolehlivý komunikační kanál na vzdálenost několika metrů. Navíc Bluetooth dnes najdeme téměř na každém mobilním zařízení. Proto se dá dobře využít při návrhu hry pro více hráčů.

⁵ Kodek, složenina z počátečních slabík slov „kodér a dekodér“; převzato z anglického codec analogického původu. Je to zařízení nebo počítačový program, který dokáže transformovat datový proud nebo signál.
2.5.2 Připojení k internetu

Existuje mnoho technologií pro mobilní připojení k sítě internet. Nejběžnější jsou v dnešní době 2.5G-3G mobilní sítě provozované operátory mobilních telefonních sítí a sítě WiFi standardu IEEE 802.11a/b/g/n [1].

Mobilní zařízení se systémem Windows Mobile dokáže tyto technologie připojení využívat, transparentně mezi nimi přepínat a udržet tak stálé připojení k sítii internet. Proto lze navrhnout internetový model hry více hráčů, kdy hru řídí vzdálený server přístupný na sítii internet.

2.6 Technologická platforma .NET Compact Framework 2.0

Slovo podmnožina znamená, že .NET Compact Framework neobsahuje všechny funkce velkého .NET Frameworku, ale pouze ty, u kterých je možné dodržet striktní kompatibilitu v rámci možností (především zobrazovacích) mobilního zařízení.

Obr. 2.5: Srovnání architektur .NET Framework a .NET Compact Framework převzaté z [4].

„Rozhraní mezi těmito dvěma softwarovými platformami je však z hlediska posuzování, zda se jedná o mobilní aplikaci či nikoliv, poměrně neostré. Za mobilní zařízení přecí považujeme také
Notebooky a nejnovější počítače řady Tablet PC, a to i přesto, že na nich mohou dokonce běžet serverové operační systémy, jako jsou Windows 2000 Server nebo modernější Windows 2003 Server.

Zatímco .NET Framework se používá u operačních systémů pro servery, desktopové počítače a Tablet PC, .NET Compact Framework se používá u platform Pocket PC, Smartphone či různých Windows CE, resp. u zařízení Windows Powered.

Srovnání obou architektur je ilustrováno na Obr. 2.5.
3 Návrh hry Mravenci pro mobilní zařízení

V této kapitole bude vysvětlena podstata hry a základní struktura programového kódu. Autor popíše jednotlivé objektové třídy programu, jejich vzájemné vazby a nakonec popíše implementaci vlastních prvků grafického uživatelského rozhraní.

3.1 Hra Mravenci

Hra Mravenci je tahová karetní hra dvou hráčů. Jejím původním autorem je Ing. Miroslav Němeček ze společnosti Gemtree Software s.r.o.. Hra je určena pro operační systém Windows a je nabízena na stránkách firmy jako freeware. Toto je popis hry citovaný přímo z původního programu:

Nikdo z černých ani červených mravenců si již nepamatuje, kdo a kdy začal jejich odvěkou válku o mraveniště „U dvou smrků“. Aby věčným soubojům učinili konec, rozhodli se postavit hradi, s jejichž pomocí by získali nadvládu nad celým územím.

Cílem hry je postavit hrad o výšce 100, nebo zničit hrad soupeře. Levým tlačítkem myši lze vybrat kartu, pravé tlačítko kartu odložit. Každá karta spotřebuje určité množství surovin (číslo vpravo nahoře). Rychlost tvorby surovin závisí na množství týmů.

Obr. 3.1: Ukázka herní plochy hry Mravenci od Ing. Miroslava Němečka.
Hraje se s třemi druhy karet. Jsou to karty stavební, útočné a kouzelnické. Karet je od každého druhu 10 a liší se od sebe cenou surovin a akcí, kterou ve hře provádějí.

Stavební karty staví buď hrad, nebo hradbu. Jejich cena udává kolik cihel bude tato karta stát a akce karty určuje, co se bude stavět a o kolik jednotek.

Útočné karty jsou o něco zajímavější. Ty levnější pouze útočí na hrad a hradbu soupeře, dražší naopak můžou nejen bořit hrad soupeře, ale například převádět zásoby nebo je ničit (karta Zloděj).

Kouzelnické karty umějí vykouzlit zásoby, ničit je soupeřovi, zaklínat soupeře (snížit všechny jeho prostředky o 1) a nakonec přičarovat či odcarovat podstatnou část hradu.

3.2 Objektový model hry Mravenci

Na začátku vývoje hry byla snaha navrhnout funkční a jednoduchou objektovou strukturu, vhodnou pro tento typ hry s možností budoucích rozšíření funkcionality bez významnějších zásahů do kódu. Programovací jazyk C# k tomuto nabízí ideální prostředek – třídy.

Na Obr. 3.2 jsou znázorněny objektové třídy a šipky nastiňující tok informací mezi nimi. Aby bylo možné zajistit dostatečnou flexibilitu programového kódu, objektové třídy byly rozděleny na dvě části. První část tvoří třídy starající se o herní logiku a druhé se starají o obsluhu uživatelského rozhraní. Toto rozdělení usnadňuje případnou budoucí implementaci hry pro jiný typ zařízení s případnými jinými možnostmi uživatelského vstupu a výstupu.

Hlavní řídící třídou herní logiky je třída Hra. Ta obsahuje nejdůležitější obslužné rutiny a zajišťuje fungování celé hry. Pracuje se dvěma instancemi třídy Hrac, které uchovávají informace o hráčích, jejich kartách a stavech. O rozdávání a míchání karet se stará třída Pakl a o nastavování parametrů hry třída Nastavení.
Správu uživatelského rozhraní má na starosti třída Obrazovka. Ta zajišťuje vykreslování stavu hry na obrazovku, přehrávání animací a zvuků a zpracovává vstupy od uživatele. Vstupem se rozumí interakce s ovládacími prvky programu, jako jsou hrací karty, nabídka programu nebo vstup z klávesnice zařízení.

Jak probíhá hra z pohledu jednotlivých objektů? Ve vstupním bodu programu jsou vytvořeny instance tříd Hrac, Obrazovka a Nastavení. Ty jsou použity pro inicializaci třídy Hra, která zastává roli řadiče hry.

Herní řadič určuje hráče a tahů, zajišťuje hráčům spojení s třídou Pakl, generující karty, a provádí změny stavových hodnot hráčů při zahrávání karty. Dále předává informace o stavu hry třídě Obrazovka. Tě jsou na základě herních událostí předávány informace o hráčích, včetně pokynů pro aktualizaci herní plochy.

3.3 Třída Hrac

Třídu Hrac byla vytvořena z důvodu potřeby uchovávat informace o každém hráči zvlášť. Tato třída vychází z rozhraní IHrac, zajišťující jednotný přístup k objektům hráčů a umožňuje budoucí rozšíření o nové typy hráčů. Například bude velice jednoduché vytvořit třídu hráče komunikujícího vzdáleně přes Bluetooth nebo síť Internet. Zatím si vystačíme s běžným typem hráče, ovládajícím hru přes obrazovku či klávesnicí mobilního zařízení.

3.3.1 Rozhraní IHrac

Rozhraní IHrac neposkytuje žádné veřejné metody. Zprostředkovává přístup k vlastnostem jako je jméno hráče, aktuální seznam karet hráčem vlastněných, výška hradu a zdi a nakonec stav surovin a poddaných. Navíc je zde ještě jedna vlastnost s názvem JeNaTahu, která zjišťuje, jak její název napovídá, zdají se hráč na tahu.

3.3.2 Umělá inteligence

Přímo v třídě Hrac je implementována umělá inteligence. Privátní metoda TahPocitace() obsahuje hodnotící funkci, která v případě potřeby vybere nejlepší kartu, kterou je možné v danou chvíli zahrát nebo odložit. Tato metoda je volána v případě, že je typ hráče nastaven na hodnotu Pocitac výčtového typu tHrac a je-li hráč na tahu.

Jelikož hra Mravenci je typem hry s neurčitostí, kdy dopředu nelze odhadnout tah protihráče, není použitá žádná z metod umělé inteligence pro hrání her (popisy metod jsou k nalezení v [7]). Protihráči si totiž navzájem „nevidí“ do karet a tak nelze efektivně odhadnout protihráčův tah. Naopak byla snaha o minimalizaci nároků na výpočet tahu. Hra je totiž určena pro nepříliš výpočetně
zdatná mobilní zařízení a vysoké nároky na výpočetní výkon by jistě snižovaly jejich výdrž na baterie.

3.3.3 Algoritmus hodnotící funkce umělé inteligence

Do téla hodnotící funkce byl implementován následující algoritmus:

1. Pokud má hráč k dispozici alespoň jednu stavební kartu, kterou může v danou chvíli zahrát, vyber z těchto kart tu s nejvyšší cenou a zahraj ji. Pokud žádnou stavební kartu zahrát nelze, pokračuj bodem 2.
2. Pokud má hráč k dispozici alespoň jednu kartu, kterou může v danou chvíli zahrát, vyber z těchto kart tu s nejvyšší cenou a zahraj ji. Pokud žádnou kartu zahrát nemůže, pokračuj bodem 3.
3. Z karet, které má hráč k dispozici, vyber tu s největší cenou a odlož ji.

U nejjednodušší úrovni bylo zvoleno maximální omezení při výběru karty a to na karty s cenou nejvýše 5. Z hratelných kart se navíc vybírá ta nejnižší a všechny karty vyšší než 5 funkce vyřadí a případně takové karty nechá odložit.

U prostřední úrovni už tak silné omezení není a pracuje se s výše zmíněným algoritmem počínaje bodem 2. Nejsou proto upřednostňovány karty stavební a protihráč s umělou inteligencí se proto nesnaží co nejrychleji postavit hrad.

Třída Hrac s rozhraním IHRac tvoří „černou skříňku“, která nezávisle na implementaci poskytuje přístup k vlastnostem hráče. V případě hráče typu počítač navíc obsahuje umělou inteligenci využitou při výběru tažené karty.

3.4 Třída Pakl

Třída Pakl byla navržena na zjednodušení procesu rozdávání karet. Autorův původní záměr byl na začátku hry „zamíchat“ karty a rozdávat je střídavě hráčům. Odložené karty by se vracely zpět do balíčku a znovu rozdávaly hráčům. Bohužel se později ukázalo, že pravidla hry způsobovala opětovné rozdávání stejných karet hráčům, kteří kartu už jednou vlastnili. Nebylo tak možné ve většině kombinací rozdaných karet zajistit výrovnány souboj obou hráčů. Proto byl celý proces rozdávání
karet zjednodušen na pouhé generování karet, kdy už jednou zahráne nebo odložené karty jsou zahozeny.

Karty jsou generované funkcí, která zvyšuje pravděpodobnost výskytu méně hodnotných karet a „vysoké“ karty se generují méně často. Toto rozložení ilustruje histogram na Obr. 3.3.

![Histogram četnosti karet generovaných třídou Pakl.](image)

Obr. 3.3: Histogram četnosti karet generovaných třídou Pakl.

Histogram pochází ze vzorku 300 generovaných karet.
Čísla 1-10 označují hodnotu karet.

Nejvíce se přitom generují stavební karty nižší hodnoty. Funkce je sestavena podle původního algoritmu Ing. Miroslava Němečka, obsaženého ve volně přístupném zdrojovém kódu originální hry Mravenci.

3.5 Třída Hra

Třída Hra tvoří společně s třídou Obrazovka základ herního jádra. Tím je myšlen fakta, že řídí průběh hry, vypočítává nové hodnoty stavů při zahrání karty, střídá hráče na tahu a komunikuje s třídou Obrazovka. Třída Hra obsahuje několik nejdůležitějších vlastností a metod, které stojí za to uvést a popsat tak princip celého programu.

Spuštění hry probíhá inicializací třídy Hra pomocí instancí tříd Hrac, Obrazovka a Nastaveni. Při inicializaci se odkazy na tyto objekty uloží do privátních proměnných a prvnímu ze dvou hráčů se nastavi vlastnost JeNaTahu na hodnotu true. Výše zmíněné odkazy jsou přístupné i zvenčí pomocí veřejných vlastností. Jakýkoliv jiný objekt tak může komunikovat skrze třídu Hra s jiným objektem v programu. Tohoto propojení je hojně využito při řízení běhu hry napříč celým programovým kódem. Když je inicializace u konce, čeká se na aktivaci karty, čili na volání od třídy Obrazovka. Právě tato třída má na starosti vstup od uživatele a spouštění řídící metody.

Na obrázku (Obr. 3.4) je uvedeno zjednodušené znázornění posloupnosti metod volaných třídou Obrazovka při aktivaci hrací karty uživatelem. Názvy metod jsou zčásti smyšlené a spíše
zastupují několik metod skutečných. Povšimněte si postupné střídání metod tříd Obrazovka a Hra, kterým je naznačena jejich vzájemná interakce.

Obr. 3.4: Posloupnost volaných metod, následujících po aktivaci karty uživatelem.

Třída metody je vždy v horní části popisu, název metody v části dolní.

Proces zahrání karty řídí metoda HrejKartu(). Vstupním parametrem je index konkrétní karty hráče na tahu. Metoda ve svém těle přistupuje k vlastnosti HracNaTahu třídy Hrac, která je odkazem na objekt hráče, který právě hraje. Díky tomu, že jde o objekt, může metoda přistupovat ke všem jeho vlastnostem a pracovat tak se stavem hráčových prostředků. Může tak zjistit hodnotu vlastnosti MuzeZahrat objektu HracNaTahu, ze které zjistí, zda má hráč dostatek prostředků k zahrání karty. Pokud je prostředků dostatek, provede se na základě parametrů karty úprava prostředků hráče a případně i protihráče.

Po zahrání karty už zbývá jen kontrola, zda hráč na tahu nedosáhl výšky hradu 100, nebo úplně nezbořil protihráčův hrad. V obou případech by se jednalo o vítězství hráče a hra by skončila.
3.6 Třída Obrazovka a grafické uživatelské rozhraní

Třída Obrazovka, jak její název napovídá, se stará o vykreslování grafického uživatelského rozhraní hry na obrazovku mobilního zařízení. Její činnost není zcela autonomní, ale základní pokyny pro vykreslování jsou předávány z třídy Hra.

Třída má na starosti tyto úkoly:
- Vytvoření a rozmístění prvků uživatelského rozhraní na obrazovce mobilního zařízení
- Zpracování vstupu uživatele a předání zpráv třídě Hra
- Vykreslení aktuálního stavu hry na požádání
- Zobrazení animace karet

3.6.1 Vytvoření a rozmístění prvků uživatelského rozhraní

Jelikož obrazovky mobilních zařízení můžou mít různá rozlišení a poměr stran (viz. kapitola 2.2), musela být vytvořena metoda, která by zajistila správné zobrazení všech objektů na obrazovce. Výsledný obraz musí hlavně působit přirozeně a veškeré textové popisky musejí být čitelné. Proto byl s pomocí návodu v [5] vytvořen následující postup přizpůsobení cílové obrazovce.

Byla použita funkce pro zjištění orientace obrazovky. Tato funkce zjišťuje orientaci na základě rozlišení obrazovky. Vypočítává poměr mezi horizontálním a vertikálním rozlišením. Dle tohoto poměru funkce vrací tři různé režimy - Portrait, Landscape a Simple. Režim Portrait má poměr stran menší než 0,8, což znamená obrazovku orientovanou na výšku. Režim Landscape značí obrazovku orientovanou na šířku a hodnota poměru stran je větší než 1,3. V ostatních případech funkce vrací režim Simple, což znamená poměr stran větší než 0,8 a menší než 1,3.

<table>
<thead>
<tr>
<th>Režim</th>
<th>Poměr stran (x:y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portrait</td>
<td>< 0,8</td>
</tr>
<tr>
<td>Simple</td>
<td>0,8 - 1,3</td>
</tr>
<tr>
<td>Landscape</td>
<td>> 1,3</td>
</tr>
</tbody>
</table>

Tab. 3.1: Režimy orientace obrazovky dle funkce uvedené v [5].

Na základě zjištěné orientace obrazovky se pokračuje v umístění jednotlivých prvků uživatelského rozhraní na plochu obrazovky. Zatím není důležité skutečné rozlišení obrazovky, ale pouze její orientace. Pro každou orientaci bylo zvoleno referenční rozlišení, pro které se prvky na obrazovku rozmíšňují. Poté je vypočten poměr mezi referenčním a skutečným rozlišením obrazovky a všechny
pozice a velikosti jednotlivých prvků se tímto poměrem vynásobí. Díky tomu vypadá rozhraní hry stejně na obrazovkách s rozlišením 240x320 i 480x640.

3.6.2 Zpracování vstupu uživatele a předávání zpráv třídě Hra

Uživatelské vstupy se zpracovávají pomocí skupiny metod třídy Obrazovka. Takováto metoda se označuje anglickým termínem handler a je volána vždy při vykonání určité akce uživatelem, například při zmáčknutí tlačítku mobilního zařízení, nebo při klepnutí na hrací kartu na obrazovce (v případě dotykové obrazovky).

Každý ovládací prvek, nebo jejich skupina, má přiřazený svůj handler. Uvnitř je obsažen kód, který například zjišťuje, která hrací karta byla aktivována a na základě tohoto zjištění se tato informace předá dále třídě Hra, která provede další kroky vedoucí k zahrání karty. Prvky uživatelského rozhraní, které zpracovávají uživatelský vstup, jsou znázorněné na Obr. 3.5. Jsou to hrací karty, nabídka programu a tlačítka mobilního zařízení.

Mezi hracími kartami se dá pohybovat buď pomocí navigačních kláves, nebo jejich označením prstem v případě zařízení s dotykovou obrazovkou. Při označení prstem se karta ihned aktivuje, což se v případě zařízení Smartphone bez dotykové obrazovky provádí potvrzovacím tlačítkem navigačních kláves (skupina tlačitek č. 3 na Obr. 3.5). Nabídku programu lze otevřít pomocí levého a pravého kontextového tlačítka mobilního zařízení (č. 4 na Obr. 3.5), pohybuje se v něm směrovými navigačními klávesami.

Obr. 3.5: Vstupní ovládací prvky uživatelského rozhraní.
1. hrací karty, 2. nabídka programu, 3. navigační tlačítka mobilního zařízení, 4. kontextová tlačítka
3.6.3 Vykreslení aktuálního stavu hry na požádání

Třída Obrazovka obsahuje dvě metody, které provádějí vykreslení aktuálního herního stavu na obrazovku. Jsou to metody VykresliStav() a VykresliKarty().

3.6.4 Animace karet

Správná hra, která chce zaujmout hráče, by dle mého názoru měla používat animace k vizuální prezentaci akcí, které se během hry dějí. Nejjednodušším způsobem, jak tyto animace vytvořit, je používat kombinaci kreslení obrázků a měnění jejich pozice na obrazovce. K tomu, aby byla animace zřetelná je taktéž třeba animaci vhodně krokovat a použít vhodné prodlevy mezi kroky.

Implementaci takové animace je možné si představit jako posloupnost následujících kroků:

1. Vykreslíme na obrazovku snímek animace
2. Přerušíme běh programu na určitou dobu a nezapomeneme před přerušením zajistit, aby se obrázek opravdu vykreslil (k přerušení běhu programu totiž může dojít v místě, kdy obrázek ještě nebyl vykreslen na obrazovku)
4. Opět zajistíme prodloužení vykreslení obrázku a přerušíme běh programu
5. Tento postup opakujeme pro všechny jednotlivé snímky animace

Konkrétní implementace animace byla provedena způsobem popsáným v následujícím odstavci.

Animace se sice zobrazuje vždy po aktivaci karty a zdánlivě probíhá celá najednou, ale v jejím průběhu se provádí také jiné metody, starající se o logickou část tahu. Proto byla animační část kódu rozdělena do tří nových metod AnimujKartu(), AnimujLizani() a AnimujOdlozeni().

Metoda AnimujKartu() provádí animaci pohybu karty při jejím zahrání. Karta se při animaci přesunule v několika krocích do středu hracího pole mezi hrady. Animace je rozdělena na několik kroků a mezi každým krokem pohybu je určitá prodleva.
Metoda AnimujLizani() je velice podobná, avšak její průběh je opačný. Ve středu hrací plochy mezi hrady se objeví nová líznutá karta, která se přesune na prázdné místo po tažené kartě.

Metoda AnimujOdlozeni() probíhá stejně, jako metoda AnimujKartu(), avšak s viditelnou licovou stranou karty.

Mimo výše zmíněné metody se provádí ještě animace stavových ikon při zahrání karty. Tato animace je řízena z metody VykresliStav() na základě instanční proměnné animace třídy Obrazovka.

3.7 Vykreslování ikon a obrázků

Cílová platforma byla vybrána s ohledem na kvalitu programovacího jazyka, vývojových nástrojů a s přihlédnutím k osobním zkušenostem autora, které s platformou má. Vývojové knihovny .NET Compact Framework jsou, jak je psáno v kapitole 2.6, redukovanou verzí knihoven .NET Framework. Nese to s sebou však omezení, na které autor narazil při použití ovládacích prvků, které vykreslují grafické ikony a obrázky.

Při programování stavových ikon bylo třeba zajistit, aby každá ikona zobrazila obrázek prostředku (cihly, zbraně, krystaly...) a u tohoto obrázku čitelnou hodnotu. Původně k tomu byly použity standardní komponenty z knihovny .NET Compact Framework – Label a PictureBox.

Komponenta Label je určena k zobrazování textových popisků, komponenta PictureBox zobrazuje obrázky. Na rozdíl od plné verze knihoven .NET Framework však žádná ze standardních komponent nedokáže pracovat s průhledným pozadím. Každá komponenta má vždy tvar obdélníku vyplněného určitou barvou pozadí a v něm se vykresluje obsah – text, obrázek, tlačítko apod. Proto při kombinaci obrázku a textu byl vždy obrázek překrytý pozadím textu, nebo obráceně. Proto bylo přikročeno k vytvoření vlastních komponent. Bylo využito dědičnosti tříd k vytvoření vlastních komponent StateBox, CardBox a HradBox.

3.7.1 Implementace vlastní komponenty StateBox

Komponenta StateBox je rozšířením standardní komponenty PictureBox. Dědí všechny její vlastnosti a metody. Navíc byla přidána možnost přímého vykreslení textu do bitové mapy obrázku. PictureBox vykresluje bitovou mapu, která je nastavena v jeho vlastnosti Image. Autor pro svůj účel vytvořil nové vlastnosti ImageX, Text a Animace. Dále pomocné metody Renderuj() a AnimujZmenu(). Komponenta PictureBox disponuje zajímavou vlastností, tzv. dvojitým bufferem. Je to vyrovňávání paměť použitá při jejím vykreslování na obrazovku, která jistým způsobem odstraňuje problémové kódy šířící se na vykreslování pozadí a bitmapy komponenty vlastním kódem, o tuto optimalizaci
vykreslování by se přišlo. Proto byla implementována vlastnost ImageX, do které se předává původní bitová mapa k vykreslení.

S bitovou mapou se následně pracuje v metodě Renderuj(). Pomocí vestavěných funkcí pro práci s grafikou se vytvoří prázdná bitová mapa o rozměrech prvku StateBox. Ta je poté vyplněna barvou pozadí komponenty, přes toto pozadí je vykreslen obrázek ImageX a nakonec ještě vypsán text. Tímto způsobem se generuje hotová bitová mapa, která se uloží do vlastnosti Image rodičovské třídy PictureBox. Ta se následně vykreslí standardním způsobem včetně všech optimalizací, o které se tak dále není třeba starat.

Metoda Renderuj() se volá při každé změně některé z vlastností ImageX, Text nebo Animace. Aby se předešlo zbytečnému generování bitové mapy, před voláním metody je provedena kontrolu, zda se nově zadané vlastnosti liší od předchozích. V případě že se vlastnosti shodují, generování se neprovede. Tato optimalizace byla zavedena na základě značně pomalého vykreslování komponenty během hry.

3.7.2 Implementace vlastní komponenty CardBox

Komponenta CardBox má velice podobnou implementaci jako StateBox. Rozdíl je v možnosti vytvoření obrázku hrací karty přesně podle vstupních parametrů. Každá hrací karta se skládá z několika částí (viz. Obr. 3.6).

Z důvodu zachování dobré čitelnosti karet na malé obrazovce mobilního zařízení bylo hned od začátku vyloučeno vykreslování rubové strany karty pouze pomocí bitmapového obrázku. Text byl totiž díky absenci interpolace bitmap v použité verzi knihoven .NET Compact Framework nečitelný. Na některých mobilních zařízeních s malým rozlišením obrazovky navíc nebyl ani zřetelný obrázek karty a už vůbec ne ikona. Autor se tedy rozhodl ke generování obrázků celé karty podle parametrů vlastnimi silami.

Obr. 3.6: Části hrací karty.

Obr. 3.7: Hrací karta optimalizovaná pro malé rozlišení
Díky zkušenostem z implementace prvku StateBox také použil stejné techniky generování bitmapy. Jak je vidět na Obr. 3.6, hrací karta má 5 částí, které se vykreslují jedna po druhé. Opět byla k tomuto účelu implementována metoda Renderuj().

Ikona prostředků a cena karty se vykreslují jako první. Jejich výška je 20% z celkové výšky karty. Název karty se vykresluje o řádek níž. Šířka a výška názvu karty se vypočítává na základě počtu slov v názvu tak, aby byl text vždy čitelný a využíval maximum vyhrazené plochy karty. Obdobně je tomu u popisu chování karty. Obrázek karty je zarovnaný se spodním okrajem a jeho rozměr je dán zbylým místem od popisu chování karty směrem dolů. Zároveň se autor snaží udržet optimální poměr mezi obrázkem a textovými popisky.

Při výpočtu velikosti obrázku karty se také zjišťuje, zda obrázek není příliš malý a nezřetelný. Jeho minimální velikost musí být alespoň jedna třetina šířky spodního okraje karty. V případě menšího rozměru se obrázek karty nevykreslí a volné místo se použije pro textový popis karty. Je tak zaručeno, že i na velmi malé obrazovce bude karta čitelná. Příklad takto optimalizované hrací karty je na Obr. 3.7. Takováto karta se zobrazí na zařízení s rozlišením obrazovek 240x240 obrazových bodů, kde je nedostatek volného prostoru určeného pro hrací karty. Karta je sice široká a klasické hrací karty se příliš nepodobá, avšak její informační hodnota zůstala stejná.

3.7.3 Implementace vlastní komponenty HradBox

Pro účel vykreslování mravenčích hradů a zdi autor vytvořil komponentu HradBox. Je to komponenta založená na poněkud odlišném principu, než předešlé komponenty StavBox a CardBox. Jejím účelem je zobrazovat obrázek hradu nebo zdi proměnné výšky, rostoucí od svého základu směrem vzhůru.

Původně autor zamýšlel tuto komponentu postavit na stejném základu jako komponenty předešlé. Neustálé generování bitové mapy by však bylo zbytečné a jen by zatěžovalo výpočetní prostředky mobilního zařízení. Po celou dobu hry se totiž používá ten samý obrázek hradu nebo zdi a není tak potřeba žádnou část obrázku měnit.

K vytvoření dojmu hradu rostoucího do výšky je využito původní komponenty Panel a v ní umístěný PictureBox, který pouze mění pozici. Komponenta Panel je kontejner s definovanými rozměry, do kterého je možné umístit jiné libovolné objekty. Tyto objekty mohou mít uvnitř libovolnou pozici, avšak viditelná je pouze jejich část, která se nachází uvnitř obdélníku daného rozměru panelu.

Dovnitř panelu byla tedy umístěna komponenta PictureBox, která vykresluje samotný obrázek hradu. Ta se vysouvá v panelu od jeho spodní hrany směrem nahoru, čímž se postupně odkrývá a vytváří dojem, že hrad roste.
3.7.4 Problém při implementaci průhledných obrázků

Jak je uvedeno v kapitole 2.6, platforma .NET Compact Framework neposkytuje možnost vykreslování průhledných obrázků standardním způsobem. Tato možnost je sice obsažená v plné verzi platformy pro osobní počítače, ale z důvodů výkonnostních ji ve verzi Compact nelze použít.

Při samotné implementaci hry průhledné obrázky nebyly potřeba, ale jistě by byl grafická reprezentace hry zajímavější při použití hracích karet se zakulacenými okraji. Toto omezení autorovi také zprvu znemožnilo zobrazit na pozadí hrací plochy obrázek. Ikony hradů a zdí totiž pokrývají většinu volné hrací plochy a protože je jejich tvar stále stejný (provádí se pouze kreslení obrázku uvnitř komponenty HradBox), docházelo k překrývání obrázku na pozadí bílým pozadím těchto komponent. Problém je ilustrovan na Obr. 3.8. Autor se rozhodl pokusně tuto chybějící implementaci doplnit.

Obr. 3.8: Ilustrace chybějící implementace průhlednosti obrázků.
Vlevo je obrazovka zařízení bez implementace průhlednosti komponent, vpravo je průhlednost naimplementovaná.

Aby bylo možné obejít onu nemožnost zprůhlednit pozadí jakékoliv komponenty, musely být rozšířeny třídy použitých komponent o možnost vykreslení libovolného obrázku na jejich pozadí. Ke každé vybrané třídě komponent byla implementována vlastnost Pozadí. Do této vlastnosti je předán odkaz na zvolený obrázek pozadí celé hrací plochy, nikoliv jen jeho části určené pro konkrétní
komponentu. Komponenta samotná si tak na základě známých údajů o svém umístění na obrazovce vybere jen tu část obrázku pozadí, kterou překrývá plochou svého kontejneru.

Tato implementace má ale jednu nevýhodu a to tu, že na mobilních zařízeních s pomalejším procesorem klesá výkon vykreslování a například pohyb karet při animaci je znatelně pomalejší.

Z tohoto důvodu přibyla možnost nastavení, zda zobrazovat pozadí či nikoliv. Toto nastavení je implicitně vypnuto a dá se zapnout v okně nastavení.

3.8 Třída Nastavení

Aby bylo možné uchovávat nastavení parametrů hry i v době, kdy hra není spuštěna, je potřeba zvolit některý z dostupných způsobů jejich ukládání.

V podstatě je na výběr ze dvou variant. Tou první je ukládání parametrů do souboru v adresáři hry v nějakém textovém nebo binárním formátu, případně ve formátu XML. Tato varianta se jeví jako univerzálnější z pohledu budoucí možné implementace hry na jiné platformě.

Druhou možností je ukládání nastavení do systémových registrů operačního systému. Toto není příliš univerzální způsob, ale autor jej zvolil z důvodu snadnější implementace na zvolené platformě.

Aby zde byla možnost budoucí implementace ukládání nastavení jiným způsobem, byla navržena třída Nastavení, která systém ukládání nastavení zapouzdrouje.

Třída Nastavení má veřejně přístupné vlastnosti, které umožňují načíst nebo ukládat nastavení programu. Tyto vlastnosti jsou pojmenované Obtíznost, Protihrac, Audio a Pozadí.

Jsou to celočíselně proměnné vracící index příslušné volby. Při prvním spuštění hry, kdy nastavení nelze načíst, jelikož ještě nebylo hrou uloženo, se použijí výchozí hodnoty definované přímo v programu.

Komplexní přístup k nastavení je implementován ve zvláštním dialogovém okně, které je možné aktivovat přes nabídku programu.

3.9 Třída Zvuk

Metody umožňují přehrávat zvukový soubor synchronně nebo asynchronně. Tyto dva způsoby přehrávání se od sebe liší tím, že při volání metody PlaySync() je přehrán zvukový soubor a po dobu tohoto přehrávání je pozastavena činnost programu. Lze tak jednoduše počkat na konec přehrávání a teprve poté se věnovat vykonání dalších příkazů programu. Metoda PlayAsync()
naopak umožňuje přehrát zvuk a již během přehrávání lze ve vykonávání programu pokračovat. Asynchronní přehrávání se tak hodí v případě, že je potřeba přehrát nějaké zvuky na pozadí hry. Například doprovodnou hudbu nebo zvuky dokreslující atmosféru hry.

3.10 Načítání bitových map obrázků

Aby bylo vůbec možné ve hře zobrazovat obrázky, musejí se do programu buď nějakým způsobem načíst, nebo obrázky vygenerovat vlastními silami v průběhu programu. Druhá varianta je náročnější a její použití se hodí zejména v případě jednodušších her, kde není potřeba složitější grafika. Příkladem může být například hra piškvorky, kdy se grafika vykresluje pomocí přímek a kruhů. Zde evidentně není potřeba načítat obrázky nějakým způsobem dříve vytvořené a uložené ve formě bitových map. Pro hry, kde je potřeba použít předem vytvořené obrázky je tedy nutné je na mobilní zařízení uložit a při spuštění programu načíst.

Vývojové prostředí Microsoft Visual Studio nabízí možnost správy obrázků. Avšak ve výsledku jsou po kompilaci programu součástí výsledného spustitelného souboru. Tuto možnost je vhodné použít při ukládání menších obrázků, jako je například ikona programu. Pro účel hry Mravenci byl proto zvolen způsob uložení obrázků v souborovém systému mobilního zařízení v adresáři spolu se spustitelným souborem hry. Obrázky jsou uložené ve formě bitových map ve formátu BMP.

Načítání bitových map se provádí během inicializace programu. Původně se obrázky načítaly v průběhu hry vždy, když bylo potřeba obrázek zobrazit. Autor vycházel z předpokladu, že mobilní zařízení používá stejnou fyzickou paměť pro operační paměť i úložný prostor souborového systému. Je-li tomu tak či nikoliv, přímé načítání souborů bylo velmi pomalé.

Byla proto implementována vyrovnávací paměť. Všechny obrázky použité ve hře se načítají během inicializace programu do této vyrovnávací paměti, kde zůstanou po celou dobu běhu programu. Při použití v grafických komponentách se obrázky načítají z vyrovnávací paměti, což je mnohem rychlejší.

Načítání obrázků do vyrovnávací paměti trvá během inicializace programu určitou dobu. Aby bylo zřejmé, že se během této doby něco děje, bylo vytvořeno spouštěcí okno hry, kdy se postupně zobrazují informace o průběhu inicializace hry. Povaha těchto informací by pro uživatele hry byla ve většině případů nesrozumitelná či nepodstatná, proto se místo technických údajů zobrazují hlášky „Plním sklady…“, „Michám maltu…“ a jiné.
4 Závěr

Během práce se autorovi podařilo prozkoumat problematiku vývoje her pro mobilní zařízení. Nezabýval se pokročilejšími postupy při tvorbě grafického uživatelského rozhraní za použití specializovaných knihoven. Spíše se snažil využít standardních prostředků vývojové platformy. Podařilo se mu tak navrhnout a implementovat funkční karetní hru Mravenci.

Autor provedl testování funkčnosti hry na vlastních mobilních zařízeních Samsung i600 a HP iPAQ hx2410. Na obou zařízeních byl chod hry plynulý a to i přes různé verze platformy Windows Mobile na každém z nich.

Za vlastní přínos autor považuje obejítí některých omezení standardních komponent .NET Compact Framework, na která narazil během implementace hry. Zejména je to chybějící implementace průhlednosti komponent. Autorovo řešení je uvedeno v kapitole 3.6.

Další omezení, na která autor narazil, se týkají kompatibility mezi jednotlivými verzemi platformy Windows Mobile. Tato platforma prochází neustálým vývojem a čas od času se najde problém s nekompatibilní implementací různých částí aplikací na různých verzích platformy. Příkladem může být přehrávání zvukových souborů uvedené v kapitole 3.9.

Jako možná budoucí rozšíření hry by autor určitě doporučil návrh a implementaci hry dvou hráčů na různých mobilních zařízeních. Použil by k tomu síťové rozhraní s použitím herního serveru umístěného na internetu, nebo rozhraní Bluetooth. Bylo by tak možné pořádat herní turnaje a stavět žebříčky nejlepších hráčů.

V rámci rozšíření funkcionality o hru přes internet by se mohlo využít projektu další bakalářské práce zadané v tomto roce, zpracované na téma „Webová varianta hry Mravenci“.

Dále by bylo jistě zajímavé nabídnout výslednou hru volně ke stažení na internetu a za příplatek nabízet výše zminěné rozšíření hry po síti. Jednalo by se jistě o zajímavý obchodní model.
Literatura

Seznam obrázků

Obr. 2.1: Režimy orientace obrazovky. ... 8
Obr. 2.2: Ilustrace problému zobrazení při změně orientace obrazovky. 9
Obr. 2.3: Mobilní zařízení s plnohodnotnou klávesnicí (qwerty) 9
Obr. 2.4: Mobilní zařízení s numerickou klávesnicí .. 9
Obr. 2.5: Srovnání architektur .NET Framework a .NET Compact Framework převzaté z [4]. 11
Obr. 3.1: Ukázka herní plochy hry Mravenci od Ing. Miroslava Němečka. 13
Obr. 3.2: Zjednodušený objektový model hry Mravenci ... 14
Obr. 3.3: Histogram četnosti karet generovaných třídou Pakl. 17
Obr. 3.4: Posloupnost volaných metod, následujících po aktivaci karty uživatelem. 18
Obr. 3.5: Vstupní ovládací prvky uživatelského rozhraní. ... 20
Obr. 3.6: Části hrací karty. ... 23
Obr. 3.7: Hrací karta optimalizovaná pro malé rozlišení ... 23
Obr. 3.8: Ilustrace chybějící implementace průhlednosti obrázků. 25
Seznam příloh

A.Obsah přiloženého disku DVD ..32
A. Obsah přiloženého disku DVD

DVD:
\applikace
 \dokumentace - programová dokumentace
 \instalátor - instalační program hry pro mobilní zařízení
 \zdrojové soubory - zdrojové soubory pro MS Visual Studio 2008
 \instalace.txt - návod na instalaci hry na mobilní zařízení
 \technická zpráva - technická zpráva ve formátu PDF
 \nástroje - instalační soubory nástrojů použitých při vývoji