
 1

New model and heuristic solution approach for one-dimensional cutting stock
problem with usable leftovers

Yaodong Cui*, 1, Xiang Song2, Yan Chen1, 3, Yi-Ping Cui3
1College of Computer and Electronic Information, Guangxi University, Nanning 530004, China
2Department of Mathematics, University of Portsmouth, Portsmouth PO1 3HF, United Kingdom

3 School of Business Administration, South China University of Technology, Guangzhou 510640, China

Abstract: In the one-dimensional cutting stock problem with usable leftovers

(1DCSPUL), items of the current order are cut from stock bars to minimize material

cost. Here, stock bars include both standard ones bought commercially and old leftovers

generated in processing previous orders, and cutting patterns often include new leftovers

that are usable in processing subsequent orders. Leftovers of the same length are

considered to be of the same type. The number of types of leftovers should be limited to

simplify the cutting process and reduce the storage area. This paper presents an integer

programming model for the 1DCSPUL with limited leftover types and describes a

heuristic algorithm based on a column-generation procedure to solve it. Computational

results show that the proposed approach is more effective than several published

algorithms in reducing trim loss, especially when the number of types of leftovers is

limited.

Keywords: Cutting and packing; One-dimensional cutting stock; Column

generation; Usable leftovers

1. Introduction
Cutting and packing problems have attracted much research interest (Beeker and

Appa, 2015; Cui et al., 2015; Moreira de Carvalho et al., 2015). One such problem is the
one-dimensional cutting stock problem (1DCSP). In the 1DCSP, a set of item types with
specified lengths and demands is cut from linear objects (such as bars, tubes, and
profiles; this paper only refers to bars) to manufacture various products. This problem
appears in many industries such as the manufacturing of various vehicles, ships, doors,
windows, and iron-made furniture. Good policies and algorithms are expected to
improve material utilization in these situations.

In the one-dimensional multiple stock size cutting stock problem (1DMSSCSP),

m types of items with length il and demand id (1, ,i m= ) are cut from n types

* Corresponding author.
E-mail address: ydcui@263.net (Y. Cui)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/44342519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

of stock bars with length jL and supply jD (1, ,j n= ) such that the material cost

(total cost of bars used) is minimized. Studies have often set the cost of a bar as the bar

length. The cost can also be set to include purchasing costs and other related expenses

such as those incurred for shipping and handling. The 1DMSSCSP generalizes the

one-dimensional single stock size cutting stock problem (1DSSSCSP) in which there is

only one bar type (1n =). As in previous studies, we assume that the lengths of both

bars and items are integers.

The solution of the 1DCSP is a cutting plan that contains a set of different cutting

patterns with corresponding frequencies (number of times a pattern is to be used). Each

pattern uses a particular type of bar and includes some required items; the total length of

the included items should not exceed the bar length. In the 1DCSP with usable leftovers

(1DCSPUL), the residual length of a pattern is considered a leftover if it is not shorter

than a threshold length and as trim-loss otherwise. Leftovers can be returned to stock for

future use. The objective of solving the 1DCSPUL is often to minimize the material cost

(difference between total cost of used bars and total value of generated leftovers, where

if the cost of a bar is equal to the bar length, then the value of a leftover can also be set

to be the leftover length).

Multiple bar types are useful for improving material utilization because they

expand the solution space. When the number of standard bar types that can be bought

commercially is very small, leftovers should be considered to improve material

utilization.

Successive orders are processed when applying the policy of allowing leftovers

(Cherri et al., 2013). A 1DCSPUL instance is solved for each order, with the objective

of minimizing the material cost of the current order. This objective is reasonable

because the information of the next orders is not known when the current order is being

processed. In this paper, the following definitions for usable leftovers are used:

Old leftovers: Leftovers that are generated in the cutting processes of previous

orders and that can be used as stock bars to produce items in the current order; also

referred to as non-standard bar types.

New leftovers: Leftovers generated in the cutting process of the current order and

returned to stock for future use.

Novel leftovers: New leftovers with lengths different from those of the old

leftovers.

 3

Usable leftovers of the same length belong to the same type (UL-type). The

following symbols are used to characterize the basic 1DCSPUL for the current order:

Symbols corresponding to input data:
m Number of item types.

()1, , ml l Item lengths.

()1, , md d Item demands.

n Number of standard bar types.

λ Number of old UL-types (non-standard bar types)

G Total number of possible UL-types.

()1, , n GL L + Bar and leftover lengths. ()1, , nL L , ()1, ,n nL L λ+ + , and

()1, ,n n GL Lλ+ + + are the lengths of standard bar types, old

UL-types, and novel UL-types, respectively. The standard bar

types are arranged such that ()1 nL L> > .

()1, , nD D λ+ Bar supplies. ()1, , nD D and ()1, ,n nD D λ+ + are the

supplies of standard bar types and non-standard bar types,

respectively.

()1, , n Gp p + ip is the cost of a type- i (1, ,i n= ) bar or the cost/value of

a type- i (1, ,i n n G= + +) leftover.

Symbols corresponding to generation of patterns:

K Number of different cutting patterns.

()kα Bar type used by pattern kP , () ()1, ,k nα λ∈ + ,

1, ,k K=  .

()kβ UL-type generated using kP , () ()0, 1, ,k n n Gβ ∈ + + .

() 0kβ = denotes that no leftover is generated, in which case

it is said that a null leftover is generated.

0L Length of a null leftover (0L = 0).

0p Value of a null leftover (0p = 0).

ika Number of type- i items in pattern kP , 1, ,i m=  .

kP Pattern () ()1, , , ,k k mkP k a a kα β=    , 1, ,k K=  . The

 4

pattern uses bar type ()kα and generates UL-type ()kβ . A

pattern contains at most one leftover. It is assumed that

patterns using non-standard bars cannot contain leftovers, i.e.,

() 0kβ = when ()k nα > .

Symbols corresponding to decision variables:

kx Frequency of kP

N Set of non-negative integers

The 1DCSPUL can be formulated as the following integer programming (IP)

model:

() ()()1

min
k

K
kkk

p p x
α β=

− (1-1)

1

K
ik k ik

a x d
=

≥ , 1, ,i m=  (1-2)

() k jk k j

x D
α =

≤ , 1, ,j n λ= + (1-3)

 kx ∈N , 1, ,k K=  (1-4)

Formula (1-1) indicates that the objective is to minimize the material cost.

Constraint (1-2) means that the item demands must be met. Constraint (1-3) means that

the number of bars of each type used should not exceed the supply. Constraint (1-4)

means that the frequency of each pattern is a non-negative integer.

For a particular pattern kP , 1, ,k K=  , the following constraint should be met:

() ()1

m
ik i k ki

a l L Lβ α=
+ ≤ (1-5)

It means that the total length of the included items and the new leftover should not

exceed the bar length.

Leftovers often accumulate when successive orders are processed. To make the

inventory level of leftovers reasonable, some researchers have proposed the use of an

upper bound on the number of leftovers. Cui and Yang’s (2010) model places an upper

bound on the number of each UL-type. Arenales et al.’s (2015) model uses an overall

upper bound on the total number of leftovers. This paper also uses an overall upper

bound maxULN on the total number of leftovers. It means that maxUL1 n jj
D Nλ

+=
≤

holds when processing each order. We use 1DCSPUL_BN to denote that an overall

upper Bound on the total Number of leftovers is used.

 5

The number of possible UL-types may reach several thousands. In practical

applications, a small number of UL-types are often expected in stock. This paper

considers the constraint on the number of UL-types (referred to as the Bound on the

number of leftover Types (BT) constraint). The related problem is referred to as the

1DCSPUL_BNT (1DCSPUL with Bounds on both the Number of leftovers and the

number of leftover Types). Although the total number of possible UL-types G is often

large, the BT constraint requires at most g (g G<<) UL-types to be in stock, i.e.,

gλ ≤ holds when processing each order. The BT constraint is considered for the

following reasons:

(1) Limitation of work area: Each new UL-type generated when processing the

current order forms a stack (possibly in a bin). Therefore, the BT constraint is

required for the available work area.

(2) Limitation of storage area. The storage area may be separated from the work

area. It stores the UL-types accumulated in processing previous orders for

future use. Therefore, the BT constraint is also required for the available

storage area.

(3) Requirement of pattern reduction. Pattern reduction (reducing the number of

patterns in the cutting plan) is necessary for some applications, where a setup

cost is incurred for each new pattern. It is possible to have fewer patterns in the

cutting plan when the frequency of a pattern using a UL-type is less limited. As

the frequency of a pattern using a UL-type is restricted by the corresponding

available supply, large average supply of the UL-types is helpful for pattern

reduction. The average supply of the UL-types decreases with an increase in

g . This means that a large g value hinders pattern reduction, although it may

be useful for improving material utilization. Both the setup and the material

costs should be considered for selecting an appropriate g value. Therefore,

the BT constraint is also necessary for pattern reduction.

The existing approaches for the 1DCSPUL can deal with the BT constraint by

specifying the lengths of the g UL-types to be considered as inputs. Arenales et al.’s

(2015) model allows all possible UL-types; however, in the experiment, only three

UL-types are allowed, and their lengths (200, 300, and 400) are specified as inputs.

Specifying the UL-types to stock often deteriorates the solution quality for the following

two reasons:

 6

(1) The number of possible combinations of g UL-types is very large. Many

other combinations may yield better solutions for the current order.

(2) The average solution quality may deteriorate seriously because the same

combination is used for all orders.

This paper proposes an Integer Linear Programming (ILP) model for the

1DCSPUL_BNT. This model allows different combinations of UL-types when

processing successive orders and determines the best combination for each current order

to minimize the material cost. A two-phase algorithm is presented to solve the model

heuristically. The computational results indicate that the model is more effective than

existing ones in reducing trim-loss, manipulation, and storage area when the BT

constraint is applied; the algorithm is also more effective than several published

algorithms in solving the basic 1DCSPUL.

The remainder of this paper is organized as follows. Section 2 presents a literature

review. Section 3 presents the formulation of the 1DCSPUL_BNT. Section 4 describes

the solution approach. Section 5 presents the computational results. Finally, Section 6

presents the conclusions.

2. Literature review
The 1DCSP can be formulated as an ILP problem (Belov and Scheithauer, 2002;

Valerio de Carvalho, 2005; Belov and Scheithauer, 2006) to minimize the material cost,

where the decision variables are the pattern frequencies and should be integers. The

linear relaxation (LR) is obtained by ignoring the integer constraint on the decision

variables.

Two basic types of approaches are mainly used for the 1DCSP. The first type is

column-generation-based approaches. These approaches can be either exact or heuristic

in nature. Belov and Scheithauer (2002, 2006) and Valerio de Carvalho (2005) have

proposed exact algorithms. Although their computation times for large instances may be

long, approximate solutions can be obtained by using a time limit to stop the

computation to select the best solution obtained so far. Heuristic algorithms usually

solve the LR and apply rounding procedures to a generally non-integral solution

(Gilmore and Gomory, 1963). They often lead to a proved optimum for the 1DCSPSSS,

because the value obtained from rounding-up the LR solution value is often equal to that

of the integer problem and is thus an effective lower bound (Scheithauer and Terno,

1995). The modified integer round-up property conjecture (Scheithauer and Terno, 1995)

 7

states that the gap between these values is always not larger than two. For the

1DCSPMSS, the combinations of different bar types help to improve material

utilization; however, it is more difficult to find optimum solutions because of the

complicated behaviour of the objective function (Belov and Scheithauer, 2002).

The second type of approach includes those based on the sequential heuristic

procedure (SHP). These approaches generate each next pattern in the current cutting

plan to fulfil some portion of the remaining demand and repeat until all demands are

met. Multiple cutting plans can be generated using different parameters to select the best

one. The SHP has the flexibility to consider practical restrictions and objectives such as

open-stacks minimization (Belov and Scheithauer, 2007) and pattern reduction (Foerster

and Wäscher, 2000; Yanasse and Limeira, 2006; Cui 2012).

In the 1DCSPUL_BNT addressed in this paper, successive orders are processed

according to the arrival sequence. The demands of the items in each order must be met

exactly. The items in the current order must be cut from available bars in stock (initially,

only the standard bars bought from suppliers). Both the standard bars not used and the

leftovers generated are carried on for use in processing the next orders. The inventory

levels of standard bars are assumed to be constant, because they can be obtained from

the warehouses of the suppliers with short lead time. The inventory level (total number)

of leftovers may fluctuate; however, it should not exceed the specified upper bound.

Although many UL-types can be considered, at most g types are allowed in stock

after completing each order. The objective is to minimize the material cost in

completing each order. The ILP model proposed in this paper accurately depicts the

1DCSPUL_BNT. The proposed Two-Phase algorithm for the 1DCSPUL_BNT (TPBNT)

solves the problem heuristically. The default range for the leftover lengths is determined

based on the maximum standard bar length. The motivations and properties of this

policy are described in the paragraphs below in comparison with algorithms reported in

literature.

Some algorithms for the 1DCSPUL allow the generation of only one leftover in a

cutting plan (Gradisar et al., 1999a; Gradisar et al., 1999b; Gradisar and Trkman, 2005).

In contrast, the TPBNT allows the generation of multiple leftovers, where each pattern

contains at most one leftover. This can often lead to better material utilization, although

the cutting workload may be increased slightly because of the generation of multiple

leftovers.

 8

The TPBNT explicitly considers an upper bound on the number of leftovers,

whereas some published algorithms (Scheithauer, 1991; Cherri et al., 2009; Cherri et al.,

2013) do not. In processing successive orders, observing the upper-bound constraint is

helpful to keep the inventory level of the leftovers under control. The upper bound is

necessary when there is a budget limit on the total value of the leftovers in inventory.

Although Cui and Yang’s (2010) and Arenales et al.’s (2015) models allow the

generation of multiple leftovers and consider the upper bound on the number of

leftovers, they do not consider the BT constraint. As described previously in Section 1,

these two models can be used to solve the 1DCSPUL_BNT by specifying g UL-types

as inputs. The TPBNT optimizes the UL-types by explicitly considering the BT

constraint. The computational results in this paper show that optimizing the UL-types is

more effective than specifying the UL-types in reducing trim-loss, manipulation, and

storage area.

3. Problem formulation
To formulate the 1DCSPUL_BNT, some additional symbols are defined as

follows:

jδ Flag for using type-j leftovers, 1, ,j n n λ= + + . 0jδ = if

() kk k j
x

α = jD= ; 1jδ = otherwise.

jε Flag for producing type-j leftovers, 1, , +j n n G= +  . 1jε = if

() 0kk k j
x

β =
> ; 0jε = otherwise.

maxULN Upper bound on the total number of leftovers.

g Upper bound on the number of UL-types.
Ψ Large positive integer.

The 1DCSPUL_BNT can be formulated as the following ILP model (2):

() ()()1
min

k

K
kkk

p p x
α β=

− (2-1)

1

K
ik k ik

a x d
=

≥ , 1, ,i m=  (2-2)

() k jk k j
x D

α =
≤ , 1, ,j n λ= + (2-3)

() () maxUL1 0

n
j k kj n k k k k n

D x x Nλ

β α

+

= + > >
+ − ≤   (2-4)

 9

()jj jkk k j
D x Ψ

α
δ δ

=
≤ ≤− , 1, ,j n n λ= + + (2-5)

() kk k jj jx Ψ
β

ε ε
=

≤ ≤ , 1, , +j n n G= +  (2-6)

() ()1 jk jk k j
x D

α
ε

=
≤ − , 1, ,j n n λ= + + (2-7)

()1 1
1n n G

j jj n j n
gλ

λ
λ δ ε+ +

= + = + +
− − + ≤  (2-8)

{ }0,1jδ ∈ , 1, ,j n n λ= + + (2-9)

{ }0,1jε ∈ , 1, , +j n n G= +  (2-10)

kx ∈N , 1, ,k K=  (2-11)

The number of constraints in (2-2)–(2-8) is 2 3m n Gλ+ + + + . The number of

variables (jδ , jε , and kx) in the model is G Kλ + + .

Formula (2-1) indicates that the objective is to minimize the material cost.

Constraint (2-2) means that the item demands must be met. Constraint (2-3) means that

the number of bars of each bar type used should not exceed the supply. Constraint (2-4)

means that the total number of leftovers should not exceed the upper bound after

completing the current order, where
1

n
jj n

Dλ+

= + is the total number of old leftovers in

stock before considering the order; () 0 kk k
x

β > , the number of new leftovers generated;

and () kk k n
x

α > , the number of old leftovers consumed. Constraints (2-5) and (2-6) are

respectively used to validate the definitions of jδ and jε .

Constraint (2-7) prohibits the simultaneous use and generation of the same

UL-type. If leftovers of type-j are used ()()0kk k j
x

α =
> , then jε must be zero

because of this constraint, thus prohibiting the generation of new leftovers of this type.

If leftovers of type-j are generated ()1jε = , then () 0kk k j
x

α =
= because of this

constraint, prohibiting the use of old leftovers of this type. The following illustration

shows that these constraints are useful to simplify the cutting process, and they do not

affect the objective value. Considering a specific old UL-type, there are two cases for

generating s (s ≥ 1, integer) new leftovers and using t (t ≥ 1, integer) old leftovers

of this UL-type: (1) If s t≥ , then the cutting plan can be adjusted by replacing the t

old leftovers with t new leftovers without changing the objective value. With this

adjustment, the cutting plan actually generates -s t new leftovers and uses zero

 10

leftovers of this UL-type. (2) If t s≥ , then the cutting plan can be adjusted by replacing

s old leftovers with s new leftovers without changing the objective value. With this

adjustment, the new cutting plan actually uses -t s old leftovers and generates zero

leftovers of this UL-type. In both cases, the cutting process of the new cutting plan is

less complicated than that of the original cutting plan.

Constraint (2-8) indicates that after completing the current order, the number of

remaining UL-types should not exceed g , where ()1
1n

jj n

λλ δ+

= +
− − is the number of

remaining old UL-types,
1

n G
jj n λ

ε+

= + + is the number of novel UL-types generated. It is

not necessary to consider non-novel new UL-types because of constraint (2-7). For

example, if a non-novel leftover is generated, then the old leftovers of the same type

cannot be used; therefore, the number of remaining UL-types is not affected.

For the current order, let 1λ be the number of UL-types in stock at real time; then,

the BT constraint guarantees that 1 gλ ≤ before and after the cutting process of the

current order. It is clear that 1 gλ ≤ holds during the cutting process if the cutting plan

does not contain novel leftovers. 1 gλ ≤ can also be guaranteed at any time in the

cutting process if the cutting plan contains novel leftovers, as explained below.

The cutting process is divided into two stages. The patterns containing novel

leftovers are cut in the second stage, and the others are cut in the first stage. It is clear

that 1 gλ ≤ holds in the first stage because, initially, 1 gλ λ= ≤ and novel leftovers

are not generated. In the second stage, the patterns only use standard bars (see the

definition of kP in Section 1). 1λ increases because old leftovers are not used and

novel leftovers are generated. It reaches the maximum value at the end of the stage (end

of cutting process). The maximum value does not exceed g because of the BT

constraint. Subsequently, 1 gλ ≤ holds at any time in the second stage.

4. Solution approach

4.1. Overview of TPBNT

The ILP model can be rewritten as follows:

() ()()1
min

k

K
kkk

p p x
α β=

− (3-1)

1

K
ik k ik

a x d
=

≥ , 1, ,i m=  (3-2)

 11

() k jk k j
x D

α =
≤ , 1, ,j n=  (3-3)

() k jk k jj x D
α

δ
=

+ ≤ , 1, ,j n n λ= + + (3-4)

() () maxUL0 1

n
k k jk k k k n j n

x x N Dλ

β α

+

> > = +
− ≤ −   (3-5)

() jkj kk j
Ψ x D

α
δ

=
≥+ , 1, ,j n n λ= + + (3-6)

() 0kk k j jx
β

ε
=

− ≥ , 1, , +j n n G= +  (3-7)

() 0
kj kk j

Ψ x
β

ε
=

− ≥ , 1, , +j n n G= +  (3-8)

()j jkj kk j
D x D

α
ε

=
≤+ , 1, ,j n n λ= + + (3-9)

1 1

n n G
j jj n j n

gλ

λ
δ ε+ +

= + = + +
+ ≤  (3-10)

{ }0,1jδ ∈ , 1, ,j n n λ= + + (3-11)

{ }0,1jε ∈ , 1, , +j n n G= +  (3-12)

kx ∈N , 1, ,k K=  (3-13)

The ILP model refers to Model (3) from here on.

The original problem includes all items of the order. A residual problem includes

some portion of the items. The TPBNT solves the ILP model in two phases. Residual

problems are solved repeatedly by column-generation in Phase-1. The ILP model is

solved using an optimization solver in Phase-2 over some patterns generated in Phase-1.

Let Γ be the set of patterns considered in Phase-2. Initially, let the remaining items

include all items of the order. The procedure of the TPBNT is as follows:

Phase-1:

1

2

3

While there are remaining item demands

Call SolveLPM to solve the LR of the current residual problem.

Call AdmitPats to admit some patterns into the Phase-1 solution.

Add all or some patterns generated in Step 1 to Γ .

Phase-2:

4

5

Use a MILP solver to solve the ILP model to obtain a Phase-2 solution.

Output the better one of the Phase-1 and Phase-2 solutions.

The SolveLPM procedure in Step 1 finds the optimal solution for the LR of the

 12

current residual problem by combining column-generation and dynamic programming

techniques. The AdmitPats procedure in Step 2 admits some patterns in the LR

solution into the Phase-1 solution and updates the remaining item demands and bar

supplies accordingly. In Step 3, all patterns generated by solving the first three residual

problems are admitted into Γ ; for each other residual problem, only the patterns with

positive frequency in the LR solution are admitted. This is useful to reduce the

computational workload of Phase-2. Steps 1–3 are repeated until all demands are met;

then, a MILP solver is used in Phase-2 to solve the ILP model over the patterns in Γ

to obtain a Phase-2 solution. Finally, in Step 5, the better one of the Phase-1 and

Phase-2 solutions is chosen. The SolveLPM and AdmitPats procedures are

described in detail in the following two sub-sections.

4.2. SolveLPM Procedure

Let ir be the remaining demand of type- i items, 1, ,i m=  . Let jR be the

remaining number of type- j bars, 1, ,j M=  , where M n G= + , the first n types

are standard bars, the next λ types are old leftovers, and the last G λ− types are

novel leftovers. For the initial residual problem, i ir d= , 1, ,i m=  ; j jR D= for

1, ,j n λ= + , 0jR = for 1, ,j n n Gλ= + + + . The ILP model of the residual

problem is similar to that of the original problem, where id should be replaced by ir

and jD , by jR .

The procedure is described only for the first residual problem that is the same as

the original problem. The column-generation method solves the LR through iteration. A

new pattern should be generated in each run of the iteration. The number of constraints

in (3-2)–(3-10) is 2 3 2m n Gη λ= + + + + . Let ()1, , ηπ π be the duals of the current

LR solution. The following bounded knapsack problem determines the optimal layout of

the items on the largest bar length 1L , where iy is the number of type-i items

included:

() ()1 1

max m
i ii

F L yπ
=

=  ; 11

m
i ii

l y L
=

≤ ; i i iy y r∈ ∧ ≤N , 1, ,i m=  (4)

The classical dynamic programming recursion (Kellerer et al., 2004) can be used to
solve the problem. It has the all-capacity property: once the solution to the largest bar
length 1L is obtained, the solution to any bar length L is also obtained,

 13

10,1, , 1L L= − . The complexity of the recursion is ()()1 11
min ,m

i ii
O L r L l

=
     .

This paper proposes the GetPattern procedure to generate the best pattern (new

pattern). The best pattern has value bestV ; initially, =bestV 0. Furthermore, a combination

(),α β corresponds to a pattern using a bar of type-α and generating a new leftover

of type-β . No leftover is generated when 0β = .

GetPattern Procedure:

1

2

3

4

5

6

7

Solve Model (4) to obtain ()F L and the related item layouts,

10,1, ,L L=  .

For each { }1, ,nα λ∈ + and 0Rα >

Consider combination (),0α to improve the best pattern.

If nα ≤ then

For 1, ,n n Gβ = + +

Consider combination (),α β to improve the best pattern

Return the best pattern.

In this procedure, Step 3 considers patterns that do not contain leftovers. Steps 4–6

consider patterns using a bar of type-α and generating a new leftover of type-β ,

where nα ≤ in Step 4 indicates that a new leftover can be generated only when the

pattern uses standard bar types. Let V be the value of a pattern determined in Step 3 or

6. The following two paragraphs illustrate how the bestV value and the corresponding

best pattern are achieved, which is followed by the termination criterion.

For combination (),α β , the bar length L used to pack the items is equal to

L Lα β− . If () 0F L = , then the combination is discarded. Otherwise, the current pattern

P is completely determined as ()1, , , ,mP z zα β=  , because ()1, , mz z , the

numbers of items included, have been determined in Step 1. If the current pattern is

introduced into the LR and the pattern frequency is denoted as x , then the coefficients

of x in the constraints of the ILP model are also known and are denoted as

1, ,
T

Q q qη =   , where jq is the coefficient in the j-th constraint. The value of

pattern P is
1 j jj

V qη π
=

= . If bestV V> , then let bestV V= , and record pattern P as

the best pattern.

 14

After calling the GetPattern procedure, the best pattern is introduced into the LR,

and the iteration continues if bestV p pα β> − ; otherwise, the iteration terminates.

To guarantee the convergence of the AdmitPats procedure described in the next

sub-section, the LR of the residual problem is solved in two stages using the

SolveLPM procedure. New leftovers are not allowed in the first stage until the solution

cannot be improved further (when bestV p pα β= −); then, the pattern of maximum

frequency in the first-stage solution is recorded as a special pattern that may be used in

the AdmitPats procedure. After that, the iteration of the second stage starts by

allowing new leftovers.

4.2. AdmitPats Procedure

In Step 1 of the TPBNT, the SolveLPM procedure obtains the optimal solution of

the current LR, where the frequencies of the patterns in the optimal solution are positive

and often fractional (patterns of zero frequencies are not considered). In Step 2 of the

TPBNT, the AdmitPats procedure is called to admit some of the patterns into the

Phase-1 solution to meet the demands of some remaining items.

Let curULN be the total number of leftovers and curg , the number of UL-types

currently in stock.
1

n G
curUL jj n

N R+

= +
= ;

1

n G
cur jj n

g σ+

= +
= , where 1jσ = if 0jR > ,

0jσ = if 0jR = . Let []1, , , ,mP z zα β=  be the current pattern under consideration.

Let f be the frequency of P in the optimal LR solution. The integer frequency is

0f if the pattern is admitted. The steps in the AdmitPats procedure are as follows:

Step 1. Sort the patterns of the optimal LR solution according to the non-increasing

order of their frequencies. Let 0admittedn = .

Step 2. Consider the patterns one by one using Steps 3–11. Go to Step 12 when all

patterns are considered.

Step 3. Go to Step 2 if Rα =0, because the related bar type is used up. Go to Step 4

otherwise.

Step 4. Let { }0 max 1,f f=    .

Step 5. If 0f Rα> then let 0f Rα= to consider the bar supply.

Step 6. Let { }min : 0i i ik r z i z i I= > ∧ ∈   , where { }1, ,I m=  . If 0k f< , then

let 0f k= to avoid surplus items. Go to Step 9 if β = 0.

 15

Step 7. Admitting P will generate 0f new leftovers because β > 0. If

0 max+ curUL ULN f N> , then let 0 maxUL curULf N N= − to consider the upper bound

of the total number of leftovers.

Step 8. If Rβ = 0, admitting P will generate a novel leftover type; then, let 0f =

0 if curg g= to guarantee that the upper bound of the UL-types is not

exceeded.

Step 9. If 0f = 0, then go to Step 2 to consider the next pattern.

Step 10. Admit P into the Phase-1 solution. Set admitted admittedn n= + 1. Set

0R R fα α= − to update the bar supply. Set 0i i ir r f z= − to update the

remaining demands, i I∈ . Update curULN and curg correspondingly.

Step 11. If ({ }1 max 1, 3admittedf n m≥ ∧ =   ) or (1 1admittedf n< ∧ =), then terminate

the procedure; otherwise, go to Step 2 to consider the next pattern.

Step 12. If 0admittedn = , then admit the special pattern with 0 1f = .

In Step 11, at most { }max 1, 3m   patterns will be admitted in each call of the

procedure; when the largest frequency of patterns in the LR solution is smaller than 1, at

most one pattern will be admitted in each call.

This procedure guarantees that at least one pattern is admitted because of Step 12,

where the special pattern uses a bar type with positive supply and does not contain any

leftover; its frequency can be set to be 1 without producing surplus items because

constraint i iz r≤ is guaranteed by Model (4), i I∈ .

5. Computational results
The TPBNT was coded in C# and executed on a Dell computer (Inspiron 3847,

Intel Core i5-4440 3.3 GHz CPU, 8 GB RAM), and the MILP solver CPLEX Version

12.5 was used as the optimization engine. The time limit for the computation in Phase-2

was 5 s.

Although the TPBNT is designed to solve the 1DCSPUL_BNT, it can also solve

the 1DCSPUL and the 1DCSPUL_BN by using infinite bounds. In the following

sub-sections, first, parameter values are introduced, and then, several sets of benchmark

instances are used to demonstrate the effectiveness of the TPBNT.

 16

5.1. Parameters

Let the threshold of leftovers be 1Lη , 0 1η< < and =η 0.5 by default. Let minl

be the minimum length of the items and maxULL , the maximum length of the new

UL-types. Naturally, we have maxUL 1L Lη≥ and max 1 minULL L l= − . Considering that the

number of constraints in (2-6) may be too large if any integer in []1 maxUL,L Lη

represents a valid leftover length, we use

()1 1 ULjLη δ+ − , 1, ,j k= 

to represent the possible lengths of the new UL-types, where ULδ is a positive integer

denoting the difference of two adjacent leftover lengths (1ULδ = by default), and

()maxUL 11 ULLk Lη δ−= +    is the maximum number of the new UL-types. As a new

UL-type and an old UL-type can be combined into one type if they have the same length,

we have G kλ≤ + . The UL-types in the ILP model are indexed such that old

UL-types have smaller indices than novel UL-types.

Let 11

m
i ii

l d L
=

 
  be the estimated number of the longest bars required to

produce the items of an order. Set the upper bound of the total number of leftovers as

maxUL 11
= m

i ii
N l d L

=
 
  by default.

If the lead time for the replenishment of standard bars is negligible, it is not

necessary to hold safety stock to avoid shortages of standard bars. Leftovers are held in

stock, and their capital cost should be considered. We use parameter γ to denote the

capital cost of each unit-length of the leftovers. The costs of the standard bars are set to

be their lengths, namely, i ip L= , 1, ,i n=  . The costs of non-standard bars or the

values of leftovers are set to be ()1 γ− multiple of their lengths, namely,

()1i ip Lγ= − , 1, ,i n n G= + + . The default parameter is γ = 0.0001. By default, the

objective of the TPBNT may be approximately seen as minimizing the net bar length

(difference between the total length of the bars used and that of the new leftovers

generated) because of the small γ value.

5.2. Processing orders independently

Cherri et al.’s (2009) and Cui and Yang’s (2010) algorithms were tested by
processing the orders independently, where the leftovers generated in processing an

 17

order are not used in processing the next orders. Cherri et al.’s (2009) algorithms solve
the basic 1DCSPUL. Although Cui and Yang’s (2010) algorithm can solve the
1DCSPUL_BN, it was tested only for solving the basic 1DCSPUL.

Sixteen classes of instances generated in Cherri et al. (2009) are used. Each class
contains 20 instances. For each instance, the number of item types m is in the range

[10, 40], number of standard bar types is n = 2 (1L = 1100, 2L = 1000, 1 2D D= = 100),

and number of non-standard bar types λ is in the range [3, 7]. The lengths of the
non-standard bar types are smaller than 1000, and the available numbers are in the range
[1, 10]. More detailed descriptions of the instances are available in Cherri et al. (2009).

To consider the same constraints imposed on the feasible solutions, the TPBNT

solved the instances by using maxULN g= = +∞ and allowing the generation of all

leftover lengths not smaller than the threshold ()1

m
ii

l m
= used in the literature.

Considering that leftover reduction (reducing the number of leftovers in stock) is often

desirable, γ = 0.005 is used by the TPBNT to consider this auxiliary objective. The

computational results are shown in Table 1, where “leftover reduction” is the number of

leftovers reduced, which is equal to the difference between the number of non-standard

bars used and the number of new leftovers generated. Both the trim loss and the leftover

reduction values are averaged over all instances. The TPBNT yielded the smallest trim

loss and the largest leftover reduction, indicating that it is effective in solving the

instances. The average computation time of an instance is 15.4 seconds for the TPBNT.

It can be seen as reasonable for practical applications. The average computation time is

22.6 seconds for the best algorithm in Cherri et al. (2009), on a computer of 3GHz CPU

and 2GB RAM; it is 1.6 seconds for the algorithm in Cui and Yang (2010), on a

computer of Intel Core 2 Duo CPU E4500 2.20GHz and 1GB RAM.
Table 1. Results for processing orders independently

 TPBNT Cui and Yang (2010) Cherri et al. (2009)

Trim loss 2.3 9.8 11.5
Leftover reduction 22.7 22.4 2.7

When the default value =γ 0.0001 is used, the average trim loss and leftover

reduction values of the TPBNT are respectively 0 and 21.1. In other words, the TPBNT

solved all instances to optimality if trim loss minimization is the only objective to

consider.

 18

5.3. Processing orders dependently

Cherri et al.’s (2013) algorithms also solve the basic 1DCSPUL. They were tested
on orders that were processed successively using a computer with a Pentium IV 3.2
GHz CPU and 2 GB RAM. The leftovers generated in processing the current order can
be used in processing the next orders.

There are two sets of instances. Each set contains 20 groups, and each group

consists of 12 orders/instances. For each instance, n = 2, 1L = 1100, 2L = 1000, and

1 2D D= = +∞ are assumed; the number of item types m is in the range [20, 40]; the

length il of an item type is in the range [0.01 L , 0.25 L] for the first set and in the

range [0.01 L , 0.4 L] for the second set, where ()1 2 2L L L= + ; the demand id of an

item type is in the range [200, 500] for the first 10 item types in each instance and in the

range [1, 10] for other item types. Furthermore, the lengths of the first 10 item types are

the same for all instances. The motives and detailed descriptions about the generation of

the instances are available in Cherri et al. (2013).

The 12 orders in a group are processed successively. This is equivalent to 12

successive periods in each of which an order must be processed. Cherri et al. (2013)

used discounted costs of leftovers to reduce the inventory level of leftovers. However,

this approach cannot constrain the total number of leftovers and number of UL-types.

The TPBNT uses the following parameters to make fair comparisons: maxULN g= = +∞ .

Considering that Cherri et al. (2013) used the total number of leftovers in stock after 12

periods as an indicator to evaluate the solution quality, the TPBNT uses γ = 0.05 in the

last period and the default value in other periods; default values are used for the other

parameters. Using a larger γ value in the last period is useful to reduce the total

number of leftovers in stock after 12 periods.

Table 2 summarizes the computational results, where ‘no. of leftovers’ denotes the

number of leftovers after 12 periods (averaged over 20 groups in the set) and t , the

computation time; both the computation time and the trim loss are averaged over all

instances in the set. The RGRLP is Cherri et al.’s (2013) best algorithm. The TPBNT

yielded better values for all parameters. For the instances of the first set, the trim loss

was 17.46% (3.3/18.9 = 17.46%) of that of the RGRLP; for the instances of the second

set, the trim loss was only 0.33% (5.1/1545.1 = 0.33%) of that of the RGRLP. Therefore,

the TPBNT is more effective than the RGRLP in solving these two sets of basic

1DCSPUL instances.

 19

Table 2. Results for processing orders dependently

 First set Second set
TPBNT RGRLP TPBNT RGRLP

Trim loss 3.3 18.9 5.1 1545.1
No. of leftovers 0.95 1.1 0.65 1.2

t (s) 8.0 37.8 6.2 36.5

5.4. Considering BT constraint

The 18 classes of instances often used in solving the 1DCSP with pattern reduction

(Foerster and Wäscher, 2000; Yanasse and Limeira, 2006; Cui, 2012) are used. Each

class contains 100 instances whose properties are summarized in Table 3, where d

denotes the average demand of an item type and itemsL , the total length of the items in a

class. There is one standard bar type of length 1000. Only the first 20 instances in each

class were solved by the TPBNT to reduce the total computation time.

Table 3. Properties of the instances

Class m il range d itemsL Class m il range d itemsL

1 10 [10, 200] 10 222344 10 20 [10, 800] 100 17492208
2 10 [10, 200] 100 2160857 11 40 [10, 800] 10 3223629
3 20 [10, 200] 10 448767 12 40 [10, 800] 100 32158806
4 20 [10, 200] 100 4511971 13 10 [200, 800] 10 1038896
5 40 [10, 200] 10 836104 14 10 [200, 800] 100 10192316
6 40 [10, 200] 100 8342336 15 20 [200, 800] 10 2090495
7 10 [10, 800] 10 861178 16 20 [200, 800] 100 20980993
8 10 [10, 800] 100 8353123 17 40 [200, 800] 10 3987594
9 20 [10, 800] 10 1739182 18 40 [200, 800] 100 39817014

As mentioned previously in the literature review, existing models (Cui and Yang,

2010; Arenales et al., 2015) can be used to solve the 1DCSPUL_BNT by specifying g

UL-types as inputs, whereas the TPBNT optimizes the UL-types by explicitly

considering the BT constraint. The TPBNT also specifies the UL-types if G gλ = = is

used. The following two cases are compared:

Case A: Optimizing method — Optimize the UL-types by using default

()max, ,ULNη γ values, ULδ = 10, and specified g value.

Case B: Specifying method — Specify the UL-types by using G gλ = = , default

()max, ,ULNη γ values, and ULδ determined from the following expression, where 0
minl

is the average minimum item length of all instances in a class:

 20

0
max 1 minULL L l= − , () ()max 1 1UU LL gL Lδ η−= −  

For example, 0
minl =23 for Class 1; when G gλ = = = 4, 0

max 1 minULL L l= − = 977, and

ULδ is determined as () ()0.5 1000977 4 1ULδ = × −− =   159. The specified leftover

lengths are respectively 500, 659, 818, and 977.

First, we demonstrate that when the same g value is used by both methods, using

the optimizing method will lead to significant reduction in trim-loss.

Table 4 shows detailed comparisons between the results of Cases A and B for g =

6. For Case A, A
LT is the total trim-loss length of a class, and AU is the material

utilization determined as () 100A
A items items LU L L T= + × . B

LT and BU are those for

Case B. B AU U UΔ = − . The total trim-loss length of Case A is smaller than that of

Case B in each class. A B
L LT T values range from 8.57% to 97.65%. The average value

of 58.98% is obviously smaller than 100%. The average UΔ value in the last row of

the table indicates that optimizing the UL-types can lead to 1.05% increase in material

utilization.

Table 4. Effect of optimizing the UL-types (g = 6)

Class A
LT B

LT A B
L LT T (%) AU % BU % UΔ

1 96 466 20.60 99.96 99.79 0.17
2 133 693 19.19 99.99 99.97 0.03
3 93 758 12.27 99.98 99.83 0.15
4 99 674 14.69 100.00 99.99 0.01
5 96 1120 8.57 99.99 99.87 0.12
6 114 970 11.75 100.00 99.99 0.01
7 107702 122322 88.05 88.88 87.56 1.32
8 1164557 1192641 97.65 87.76 87.51 0.26
9 109278 155990 70.05 94.09 91.77 2.32
10 1293152 1689352 76.55 93.12 91.19 1.92
11 138231 234213 59.02 95.89 93.23 2.66
12 1062974 2092902 50.79 96.80 93.89 2.91
13 176604 195604 90.29 85.47 84.16 1.32
14 1641164 1846589 88.88 86.13 84.66 1.47
15 274685 311301 88.24 88.39 87.04 1.35
16 2770137 3147147 88.02 88.34 86.96 1.38
17 265206 299069 88.68 93.76 93.02 0.74
18 2500986 2829986 88.37 94.09 93.36 0.73

 21

Avg. 58.98 1.05

Table 5 lists the A B
L LT T and UΔ values for different g values, where the data

in the columns for g = 6 are copied from Table 4. Observations similar to those of

Table 4 can be obtained from the last row of the table, where the A B
L LT T values vary

from 54.93% to 74.40% and the average is 63.47%; the UΔ values vary from 0.60%

to 1.44% and the average is 1.07%. The TPBNT yields 36.53% (100% - 63.47% =

36.53%) reduction in trim-loss and 1.07% increase in material utilization, indicating that

optimizing the UL-types is more effective than specifying them.

Table 5. Summary of the effects of optimizing UL-types

Class
A B

L LT T UΔ

g = 2 4 6 8 10 g = 2 4 6 8 10

1 45.66 5.74 20.60 20.17 20.56 1.10 0.63 0.17 0.17 0.17
2 12.77 13.16 19.19 33.67 55.65 0.19 0.04 0.03 0.01 0.00
3 45.23 5.91 12.27 14.98 17.85 0.69 0.33 0.15 0.12 0.10
4 67.49 9.41 14.69 25.19 17.93 0.03 0.02 0.01 0.01 0.01
5 103.27 6.05 8.57 13.93 20.08 -0.02 0.18 0.12 0.07 0.05
6 102.18 11.38 11.75 20.36 24.68 0.00 0.01 0.01 0.01 0.00
7 85.89 83.72 88.05 87.06 95.75 1.76 1.96 1.32 1.40 0.42
8 96.45 94.99 97.65 92.89 96.36 0.42 0.57 0.26 0.80 0.40
9 74.28 61.64 70.05 72.04 75.56 2.41 3.41 2.32 2.00 1.66
10 76.86 70.60 76.55 80.08 77.34 2.34 2.87 1.92 1.51 1.72
11 74.64 66.84 59.02 61.24 61.33 1.66 2.18 2.66 2.25 2.25
12 73.19 58.92 50.79 53.77 56.17 1.59 2.46 2.91 2.48 2.26
13 85.59 83.77 90.29 97.36 98.88 2.21 2.38 1.32 0.34 0.14
14 85.63 83.89 88.88 98.44 102.85 2.14 2.27 1.47 0.19 -0.34
15 85.59 87.57 88.24 94.24 96.16 1.93 1.49 1.35 0.62 0.40
16 79.70 86.94 88.02 90.49 96.40 2.81 1.59 1.38 1.06 0.38
17 74.29 80.79 88.68 85.73 90.39 2.23 1.47 0.74 0.95 0.60
18 70.41 77.39 88.37 87.20 89.88 2.52 1.69 0.73 0.81 0.61

Avg. 74.40 54.93 58.98 62.71 66.32 1.44 1.42 1.05 0.82 0.60

It is known from Table 3 that the average item length of Classes 7–12 is larger than

that of Classes 1–6. The results in Table 5 show that the UΔ values are larger in

Classes 7–12 than in Classes 1–6, indicating that the effect of optimizing the UL-types

is generally stronger when the average item length is larger.

Table 6 shows the total trim-loss length A
LT for each combination of (Class, g).

 22

The corresponding total net bar length A
items LL T+ and material utilization AU can be

obtained indirectly from A
LT in this table and itemsL in Table 3. They should be useful

to future researchers for comparing their algorithms with the TPBNT.

Table 6. Total trim-loss lengths for Case A

Class g = 2 g = 4 g = 8 g = 10

1 2126 86 96 96
2 593 133 133 133
3 2593 93 93 93
4 2719 99 99 99
5 5056 96 96 96
6 3744 114 114 114
7 122672 113712 103752 103392
8 1251277 1189667 1146127 1152107
9 145818 112068 102828 101738
10 1674152 1459152 1232652 1190212
11 179031 159441 127031 127061
12 1564284 1255764 1012224 1013204
13 198664 180604 176604 176604
14 1872464 1676304 1641164 1684164
15 327825 288405 272165 270865
16 3162007 2936677 2743207 2732687
17 305616 288906 260106 258696
18 2807986 2666986 2499486 2447806

Table 6 shows that the total trim-loss length generally decreases with increasing g

value, but occasionally increases slightly. This is not surprising because the TPBNT is a

heuristic algorithm.

Second, we demonstrate that using the optimizing method can significantly reduce

the manipulation and storage area without increasing the trim-loss.

Considering that comparing the results of all classes is tedious, the total trim-loss

of all classes is used. The total trim-loss is 11505307 for the optimizing method with

=g 6. Table 7 shows the total trim-losses for the specifying method with different g

values, where 1g denotes the maximum number of UL-types actually stored in stock.

Table 7. Total trim-loss length for a specific g value (specifying method)

g 6 12 18 23

1g 6 8 10 11
Trim-loss 14121797 12572982 11998425 11577591

 23

Assume that bins are used to hold the leftovers and that each bin is used for

holding one UL-type. The necessary storage area increases with the number of bins used.

The following observations can be made from the results:

(1) Using the optimizing method can significantly reduce the storage area. The

specifying method requires 11 bins to yield a trim-loss of 11577591, whereas

the optimizing method uses only 6 bins to yield approximately the same

trim-loss.

(2) Using the optimizing method can reduce the manipulation of leftovers because

of the small number of UL-types in stock.

(3) For the specifying method, although 1g the maximum number of UL-types

actually stored in stock is generally smaller than g , it may reach g in the

worst case, if additional instances are generated and solved. The number of

bins reserved for holding the leftovers should be equal to g , in response to the

worst case.

6. Conclusions
For practical applications, it is often expected to keep only a small number of

UL-types in stock. Existing approaches can limit the number of UL-types by specifying

their lengths as inputs. The proposed approach explicitly considers the constraint on the

number of UL-types and determines the UL-types to stock through optimization.

Compared with the specifying method, optimizing the UL-types often leads to

significant reduction in trim-loss. For the benchmark instances tested in Section 5.4,

optimizing the UL-types leads to more than 30% reduction in trim-loss.

For practical applications, reductions in manipulation and storage area are also

expected. The computational results in Section 5.4 show that to yield the same total

trim-loss length, the optimizing method requires a significantly lesser number of

UL-types in stock than the specifying method. This observation indicates that the

TPBNT is more effective than published approaches to reduce manipulation and storage

area.

Although the proposed TPBNT algorithm is designed to solve the 1DCSPUL_BNT,

it can also solve the basic 1DCSPUL by using infinite bounds. The computational

results in Sections 5.2 and 5.3 show that the TPBNT outperforms published algorithms

in solving all sets of basic 1DCSPUL instances.

In future research, we may extend the TPBNT to consider other objectives such as

 24

setup and open stack minimization (Belov and Scheithauer, 2007).

Acknowledgments
This research is part of Projects 71371058 and 61363026 supported by the National

Natural Science Foundation of China.

References
Arenales, M., Cherri, A., Nascimento, D. N., Vianna, A. (2015). A new mathematical

model for the cutting stock/leftover problem. Pesquisa Operacional, 2015, 35,
509-522

Beeker, K. H., Appa, G. (2015). A heuristic for the Minimum Score Separation
Problem, a combinatorial problem associated with the cutting stock problem.
Journal of the Operational Research Society, 66, 1297-1311

Belov, G., Scheithauer, G. (2002). A cutting plane algorithm for the one-dimensional
cutting stock problem with multiple stock lengths. European Journal of Operational
Research, 141, 274-294

Belov, G., Scheithauer, G. (2006). A branch-and-cut-and-price algorithm for
one-dimensional stock cutting and two-dimensional two-stage cutting. European
Journal of Operational Research, 171, 85-106

Belov, G., Scheithauer, G. (2007). Setup and open-stacks minimization in
one-dimensional stock cutting. INFORMS Journal on Computing, 19, 27-35

Cherri, A. C., Arenales, M. N., Yanasse, H. H. (2009). The one dimensional cutting
stock problem with usable leftover - a heuristic approach. European Journal of
Operational Research, 196, 897-908

Cherri, A. C., Arenales, M. N., Yanasse, H. H. (2013). The usable leftover
one-dimensional cutting stock problem - a priority-in-use heuristic. International
Transactions in Operational Research, 20, 189-199

Cui, Y. (2012). A CAM system for one-dimensional stock cutting. Advances in
Engineering Software, 47, 7-16

Cui, Y., Yang, Y. (2010). A heuristic for the one−dimensional cutting stock problem
with usable leftover. European Journal of Operational Research, 204, 245-250

Cui, Y-P., Cui, Y., Tang, T., Hu, W. (2015). Heuristic for constrained two-dimensional
three-staged patterns. Journal of the Operational Research Society, 66, 647-656

Foerster, H., Wäscher, G. (2000). Pattern reduction in one dimensional cutting stock
problems. International Journal of Production Research, 38, 1657-1676

Gilmore, P. C., Gomory, R. E. (1963). A linear programming approach to the
cutting-stock problem (Part II). Operations Research, 11, 863-887

 25

Gradisar, M., Kljajic, M. Resinovic, C. (1999a). A sequential heuristic procedure for
one-dimensional cutting. European Journal of Operational Research, 114, 557-568

Gradisar, M., Resinovic, C., Kljajic, M. (1999b). A hybrid approach for optimization of
one-dimensional cutting, European Journal of Operational Research 119 (1999)
719-728

Gradisar, M., Trkman, P. (2005). A combined approach to the solution to the general
one-dimensional cutting stock problem. Computers & Operations Research, 32,
1793-1807

Kellerer, H., Pferschy, U., Pisinger, D. (2004). Knapsack Problems. Springer Verlag,
Berlin.

Moreira de Carvalho, M. A., Soma, N. Y. (2015). A breadth-first search applied to the
minimization of the open stacks. Journal of the Operational Research Society, 66,
936-946

Scheithauer, G. (1991). A note on handling residual lengths. Optimization, 22, 461-466
Scheithauer, G., Terno, J. (1995). The modified integer round-up property of the

one-dimensional cutting stock problem. European Journal of Operational Research,
84, 562-571

Valerio de Carvalho, J. M. V. (2005). Using extra dual cuts to accelerate column
generation. INFORMS Journal on Computing, 17, 175-182

Yanasse, H. H., Limeira, M. S. (2006). A hybrid heuristic to reduce the number of
different patterns in cutting stock problems. Computers & Operations Research,
33, 2744-2756

