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Abstract An optimisation model and a solution method for maintenance routing and 

scheduling at offshore wind farms are proposed. The model finds the optimal schedule for 

maintaining the turbines and the optimal routes for the crew transfer vessels to service the 

turbines along with the number of technicians required for each vessel. The model takes into 

account multiple vessels, multiple periods (days), multiple Operation & Maintenance (O&M) 

bases, and multiple wind farms. We develop an algorithm based on the Dantzig-Wolfe 

decomposition method, where a mixed integer linear program is solved for each subset of 

turbines to generate all feasible routes and maintenance schedules for the vessels for each 

period. The routes have to consider several constraints such as weather conditions, the 

availability of vessels, and the number of technicians available at the O&M base. An integer 

linear program model is then proposed to find the optimal route configuration along with the 

maintenance schedules that minimise maintenance costs, including travel, technician and 

penalty costs. The computational experiments show that the proposed optimisation model and 

solution method find optimal solutions to the problem in reasonable computing times. 

Key words:  Maintenance scheduling, routing problem, offshore wind farm. 

 

1. Introduction 

The development of offshore wind farms has been significant over the past 20 years. One 

of the reasons for this growth is that a wind turbine at sea generally produces more electricity 

than that of its onshore equivalent as the average wind speed at sea is higher. However, the 

installation, operation, and maintenance costs are also much higher for offshore wind 
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turbines, since more resources and infrastructures are needed to install and maintain a wind 

turbine at sea. According to Snyder and Kaiser (2009), the operations and maintenance costs 

could contribute a quarter of the life-cycle costs, making it one of the largest cost components 

of an offshore wind farm. One way to reduce the costs is to make the maintenance activities 

more efficient by optimising maintenance schedules and the routing of maintenance vessels. 

This potential for cost reduction becomes increasingly important as wind farms become 

larger and constructed farther from shore, increasing the vessel travel times both to and 

within the wind farms. 

According to European Committee for Standardization (2010), maintenance activities in 

wind power systems involve corrective maintenance, predetermined (preventive) 

maintenance, and condition-based maintenance. Corrective maintenance is performed 

following detection of a failure where the aim of this maintenance is to restore normal 

operating conditions. Predetermined preventive maintenance is conducted at predetermined 

intervals or based on prescribed criteria such as the age of the equipment and production 

schedule. This maintenance aims to reduce the failure risk or performance degradation of the 

equipment. Condition-based maintenance is done by assessing the actual equipment condition 

using inspection or (on-line) condition monitoring. The maintenance activity is performed 

when there are indicators which give information that the system is deteriorating and the 

probability of failure is rising. In this paper, we deal with the maintenance scheduling 

problem where the recommended period for a set of turbines that need to be maintained is 

given. The turbines can be selected based on the principles of predetermined preventive 

maintenance or condition-based maintenance. A penalty cost is incurred in the model when 

the maintenance activity is performed after the recommended period.  

Maintenance scheduling for offshore wind farms is a complex and challenging problem 

(Shafiee, 2015). The main goal of maintenance scheduling is to construct a detailed schedule 

of maintenance activities that have to be performed within a planning horizon. There are 

several factors that need to be considered when scheduling the maintenance activities of an 

offshore wind farm including the weather conditions, the availability of various resources 

(e.g. service vessels, crews, and spare parts), and the disruption to electricity generation. 

Resources needed for maintaining the offshore turbines are commonly based at the nearest 

port or Operation & Maintenance (O&M) base. The weather conditions (such as wind speed 

and wave height) and the vessel availability are the main factors that affect the performance 

of the maintenance activities. For safety reasons, the maintenance can only be performed in 
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periods where the required weather conditions are met. As good weather periods are limited 

in most locations where wind farms are currently located or being planned, maintenance 

schedules must be optimised to exploit the resulting weather windows. Once the maintenance 

schedules have been fixed (the period when the turbines in the wind farms will be 

serviced/visited), other aspects required to be addressed are as follows: the type of vessels 

that will be used for each period; the optimal route for each selected vessel to visit the set of 

turbines in the wind farms; and the number of each skill type of technicians required by each 

vessel for the given maintenance schedule and vessel route. Therefore, the maintenance 

problem of an offshore wind farm is a complex problem and difficult to solve to optimality.  

The main contributions of this paper include: (i) Presenting a new routing and scheduling 

problem from the offshore wind industry that considers several logistics bases and the 

possibility of servicing more than one wind farms with the same fleet. (ii) Proposing a new 

mathematical model and solution method to solve the problem. (iii) Obtaining new optimal 

solutions for a set of benchmark problems from the literature along with the solutions for new 

more challenging problems.  

The paper is organised as follows: Section 2 presents a description of the maintenance 

routing and scheduling problem for offshore wind farms, a brief review on maintenance 

scheduling in offshore wind farms, and an overview of related routing problems. Section 3 

gives a description of the maintenance routing and scheduling problem for offshore wind 

farm. Section 4 presents the optimisation model and solution method for solving the 

maintenance routing and scheduling problem. Section 5 presents the computational results on 

the data available in the literature and new randomly generated data. The last section provides 

a summary of our findings and some avenues for future research. 

 

2. Literature Review  

2.1 Maintenance routing and scheduling for offshore wind farms 

The maintenance routing and scheduling problem for an offshore wind farm was 

introduced by Dai et al. (2015). The problem consists of finding one route and schedule for 

each vessel to perform maintenance on a set of wind turbines over a planning period of 

several days. The model takes into account a penalty cost if the turbines are maintained after 

the recommended period. The model also considers the capacity of vessels in transporting 
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technicians and spare parts. Stålhane et al. (2015) study the problem proposed by Dai et al. 

(2015), but consider only one period. They propose an arc-flow model of the problem, and 

reformulate it as a path-flow model by using Dantzig-Wolfe decomposition (Dantzig and 

Wolfe (1960)). The re-formulated problem is solved as a mixed integer program, where a 

subset of possible routes and schedules are generated heuristically.  

The papers mentioned above only consider one O&M base and one wind farm. However, 

some wind farm operators or O&M service providers may serve multiple offshore wind farms 

in the same area, and may use multiple ports as the base for conducting O&M. This may be 

increasingly relevant to consider as more clusters of neighbouring wind farms are being 

developed, allowing more resources to being shared between them. To the best of our 

knowledge, there is no paper in the literature dealing with maintenance routing and 

scheduling problem for multiple wind farms and O&M bases. Therefore, in this paper, we 

propose a new mathematical model and a solution method to tackle such a problem. In 

addition, we take into account the number of each skill type of technicians available at each 

O&M base, the availability of the vessels and spare parts, and the ability of a vessel to 

transfer spare parts.  

 

2.2 Review on maintenance scheduling problems for offshore wind farms 

This subsection presents an overview of related maintenance scheduling problems from 

the wind energy sector. We begin by giving an overview of predetermined preventive 

maintenance scheduling, and then presenting papers studying corrective and condition-based 

maintenance scheduling. 

Predetermined preventive maintenance 

A mathematical model for determining the best time for maintenance operations taking 

into account the performance of the wind turbine and the availability of the resources was 

built by Kovács et al. (2011). Parikh (2012) proposed a mathematical model to optimise the 

maintenance cost of wind farms by scheduling preventive maintenance and replacement of 

critical components. An optimal preventive maintenance scheduling model for minimising 

the overall downtime energy losses was studied by Zhang et al. (2012). The model takes into 

account weather conditions, crews, transportation, and tooling infrastructure. A model for the 

preventive maintenance scheduling of power plants including wind farms was proposed by 

Perez-Canton and Rubio-Romero (2013), which aims to maximise the system reliability.  
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Corrective and condition-based maintenance 

There are several papers that study scheduling of corrective and condition based 

maintenance operations. An opportunistic maintenance optimization model taking into 

account wind forecasts and corrective maintenance activities was studied by Besnard et al. 

(2009).  Besnard et al. (2011) extended their previous work by formulating a stochastic 

optimisation problem that considers uncertainty in weather conditions. Byon et al. (2011) 

used the discrete event system specification (DEVS) to build a simulation model for wind 

farm operations and maintenance where two different maintenance strategies, namely 

scheduled maintenance and condition-based maintenance are applied. The results showed that 

condition-based maintenance yields more wind power generation by reducing wind turbine 

failure rates. Van Horenbeek et al. (2012) investigated prognostic maintenance scheduling for 

offshore wind turbines where the added value of a prognostic maintenance policy was 

quantified. Camci (2015) studied a methodology to schedule the maintenance of 

geographically distributed assets using their prognostic information which can be applied for 

maintenance scheduling at offshore wind farm.  

The previous works cited on optimal scheduling of maintenance in this subsection have 

not considered how to access the turbines that need to be maintained. This is taken into 

account in the routing and scheduling problem presented in this paper.  

 

2.3 Related routing problems 

The routing and scheduling problem of maintenance vessels at offshore wind farms can 

be categorized as a vehicle routing problem with pick-up and delivery (VRPDP) according to 

the classification scheme provided in the survey conducted by Berbeglia et al. (2007).  As the 

survey shows, the most successful exact solution approach for this type of pickup and 

delivery problems is based on a Dantzig-Wolfe decomposition of the original mathematical 

formulation (Dantzig and Wolfe, 1960). When applying the Dantzig-Wolfe decomposition 

method to a vehicle routing problem (VRP), one obtains a master problem that consists of 

selecting one route for each vehicle, such that all customers are serviced exactly once. The 

corresponding sub-problems determine the set of feasible routes and their corresponding 

costs. For problems where the number of feasible routes is relatively small, all routes can be 

generated a priori, and the master problem can then be solved as an integer program. 

Otherwise new routes can be generated dynamically in each node of the Branch-and-Bound 
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tree, a method known as branch-and-price (Barnhart et al. 1998). This approach has been 

used successfully to solve different versions of the one-to-one VRPDP by, among others, 

Dumas et al. (1991), Savelsbergh and Sol (1998), Røpke and Cordeau (2009), Brønmo et al. 

(2010) and Baldacci et al. (2011).  

The routing and scheduling problem of maintenance vessels at offshore wind farms also 

incorporates elements from an extension of the one-to-one VRPDP known as the Dial-a-Ride 

Problem (DARP). According to Cordeau and Laporte (2007), DARP problems often include 

quality of service criteria such as maximum route duration and customer ride times. At 

offshore wind farms the length of a shift and the width of the weather window for a given 

vessel limits the maximum route duration, while the requirement of a minimum elapsed time 

between when the technicians are delivered to a turbine and picked up again are the opposite 

of customer ride time considerations where a maximum time between pickup and delivery is 

enforced. Thus, similar to the DARP, it is insufficient to find the optimal route for each 

vessel that performs maintenance at the offshore wind farm; one must also find the optimal 

schedule for this route. Recently, Parragh et al. (2015) studied a branch-and-price algorithm 

to solve a generalization of the DARP where each customer could be visited by more than 

one vehicle, while Gschwind (2015) presented several approaches to the VRPDP where there 

is a minimum and/or maximum time limit on the time elapsed between visiting the pickup 

and corresponding delivery node.  

Another routing problem related to maintenance at offshore wind farms is the travelling 

repairman problem (TRP) where the objective of the TRP is to find a Hamiltonian tour on a 

network made up of a set of failed equipment, starting from and ending at a depot, which 

minimizes the total waiting time of equipment. Salehipour et al. (2011) proposed efficient 

metaheuristics based on GRASP and variable neighborhood search (VNS) for solving the 

traveling repairman problem. A VNS algorithm for heterogeneous traveling repairmen 

problem with time windows was studied by Bjelić et al. (2013). Dewilde et al. (2013) 

proposed heuristic techniques for a variant of TRP, namely the traveling repairman problem 

with profits where the aim of the problem is to maximize the total collected revenue. Related 

to integration of routing problem with condition-based maintenance known as Travelling 

Maintainer Problem (TMP), Camci (2014) introduced a mathematical model integrating the 

output of prognostics in Condition-based Maintenance (CBM) with the Travelling Salesman 

Problem (TSP). Luo et al. (2014) enhanced the multiple traveling repairman problem by 

considering a limitation on the total distance that a vehicle can travel where branch-and-
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price-and-cut is used to address the problem. Bock (2015) studied the complexity status of 

TRP on a line (Line-TRP) with general processing times at the request locations and deadline 

restrictions. Unlike the problem presented in this paper, the TRP assumes that the vehicles 

carrying the repairers wait at each node in the network until the repair is completed. Thus, the 

TRP does not have a pickup and delivery structure, which is present in our problem.  

Common for all the routing problems presented above is the fact that the most successful 

exact solution methods for solving them are based on decomposing the problem into a master 

problem assigning routes to the vehicles and one or more sub-problems that create the routes.  

In fact the overview of new exact solution methods for the capacitated VRP given by Poggi 

and Uchoa (2014) shows that all recent advances in solution methods are built on a similar 

separation of the problem into a master problem and sub-problem(s). It is therefore natural to 

use such decomposition also when solving the routing and scheduling problem of 

maintenance vessels at offshore wind farms.  

 

3. Overview of the proposed maintenance routing and scheduling model  

The main factors considered in the model are depicted in Figure 1. Each wind farm 

consists of a set of turbines that need to be maintained in the next 3-7 day planning horizon 

based on the recommended period of the turbines that need to be serviced. An O&M base is 

usually located at the harbour/port near the wind farm, and contains resources such as vessels, 

technicians, and warehouses. An O&M base may have more than one vessel with different 

specifications. The types of technicians considered in this paper are classified as electrical, 

mechanical, or electromechanical, and each maintenance task requires technicians with 

different skills. 

O&M bases at Port

Offshore Wind Farm

CTVs

O&M bases at Port

CTVs

Offshore Wind Farm

Onshore

Offshore Wind Farm

 
Figure 1. Illustration of the maintenance routing and scheduling framework 
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This section describes the proposed model for routing and scheduling of maintenance 

vessels and technicians in offshore wind farms. Figure 2 shows the maintenance routing and 

scheduling model that we propose and the different inputs, constraints and outputs. The main 

inputs required by the model include the set of turbines that need to be maintained during the 

planning horizon. Each turbine has the following parameters: the maintenance/repair time, 

the number of technicians required (for each type of technician e.g. electrician, mechanical, 

and electromechanical), the availability and the weight of spare parts needed, the 

recommended (last) period of maintenance, and a penalty cost (if the turbine is maintained 

after the recommended period).  

 

Figure 2. The proposed model 

The penalty cost represents the incentives of the operator to perform the maintenance 

tasks and reflects the priority of visiting the different turbines. For periodic inspections and 

predetermined preventive maintenance, the recommended period would be based on the 

recommended inspection/maintenance interval (typically given by the turbine manufacturer). 

For condition-based maintenance, the recommended period of maintenance and the penalty 

Maintenance 
Routing and 
Scheduling 

Optimisation 

Inputs: 
- Set of O&M bases 
- Set of vessels  
- Set of wind farms 
- Set of turbines 
- Planning periods (days) 
- Maintenance tasks: 
o A vessel doesn’t need to 

stay on turbine while 
conducting maintenance 

o A vessel needs to stay 
during maintenance 

- Vessel travelling cost  
- Vessel travelling time 
- Maintenance and access time 

(hours) for each turbine 
- The recommended period for 

turbines to be maintained  
- Weight of spare parts needed 

for maintenance 
- Penalty cost 
- Transfer time for technicians 

and equipment from a vessel 
to the turbine 

- Technicians cost 
 

Constraints: 
- Weather window (maximum 

working hours) 
- Vessel personnel capacity 
- Vessel load capacity 
- Vessel availability 
- Spare parts availability 
- The number of technicians 

available in the O&M base 
for each skill type 

- Vessel ability to transfer 
spare parts  

Outputs: 
- Maintenance cost 

(travel, technician, and 
penalty costs) 

- Maintenance Schedule 
for each turbine  

- Routing for each vessel 
- Technician schedule  

8 



cost could be set to reflect the estimated condition of the turbine and hence the risks 

associated with its deterioration. It could in that case also represent the revenue lost when the 

turbine has to be set (derated) to operate at reduced performance. The determination of the 

penalty costs depends on the preferences and perspective of the user and whether he or she 

represents a wind farm owner/operator or an O&M service provider. In general, the 

electricity price of wind energy is also a key factor in determining the penalty cost. As this is 

a complex problem, further research is worth conducting to determine the penalty cost by 

considering e.g. models for wind power scheduling available in the literature such as García-

González et al. (2008) and Zhang et al. (2013). 

We also need the information on whether the vessels are required to be present during 

the maintenance operation on a turbine. In case that the maintenance operation does not need 

a vessel to be present, the vessel delivers (drop off) the technicians and picks them up on the 

same day after the maintenance activity has been completed. Other information required for 

the model are the travel cost/time for each vessel (based on distance, fuel cost and the speed 

of the vessel), the transfer time for technicians (and equipment) from a vessel to the turbine, 

and technician cost per period/day. Depending on the form of employment for the 

technicians, the main contribution to the technician cost for the operator could be a fixed 

salary component. In this case, the technician cost per period/day should be understood as an 

offshore bonus for the days the technicians are actually performing maintenance work at the 

wind farm. In this study, a turbine is only maintained once during the planning horizon. 

However, if more maintenance tasks are grouped for turbine visits within the planning 

horizon than there is time for any single period, one could easily specify multiple visits to 

different virtual turbines representing the same physical turbine. 

There are several constraints that are taken into account by the model including the 

weather window (maximum working hours per period) for each vessel, vessel personnel 

capacity, vessel load capacity, vessel availability, spare parts availability, the number of each 

skill type of technicians available in the O&M base and vessel ability to transfer spare parts. 

The weather window for each period is different for each vessel depending on its 

specification or accessibility level (the weather conditions are such that technicians can safely 

access an offshore wind turbine from the vessel). The duration for a vessel leaving from the 

harbour and until its return must be less than its weather window. In this study, a vessel will 

not be able to visit more than one wind farm in one period/day. However, in one period it can 

visit/service more than one turbine in a wind farm within the weather window. We also 
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assume that a single weather window per day for each vessel is used. An enhancement of the 

model can be done to consider some vessels that have multiple (non-continuous) weather 

windows per day. The weather window could also to a certain degree reflect the best time 

(period) to do maintenance since low wind speeds and hence low revenue losses due to 

maintenance activities are partially correlated with good accessibility to the turbines. These 

revenue losses are therefore not optimized explicitly in the model. In this study the main 

objective is to find the optimal set of routes and schedules for the vessels and technicians to 

perform the maintenance activities at the offshore wind farms.  

 

4. Maintenance routing and scheduling optimisation model  

The optimisation model proposed consists of a master problem and one sub-problem for 

each vessel. The master problem for a maintenance routing and scheduling model for 

offshore wind farms is presented in this section whereas the sub-problem is given in the next 

sub-section. The following notations are used to describe the sets and parameters of the 

proposed maintenance routing and scheduling model.  

Sets 

B  : set of O&M bases with b as index  
V  : set of vessels with v as index  

bV   : set of vessels at O&M base b ( VVb ⊂ ) 

F : set of wind farms with f as index 
J  : set of turbines that need to be maintained with j  as index  

fJ   : set of turbines at wind farm f ( JJ f ⊂ ) 

vJ   : set of turbines that require the vessel to be present during maintenance ( JJv ⊂ ) 

T  : set of periods with t  as index 
P  : set of technician types (electrical, mechanical, and electromechanical) with p as 

index  

Parameters 

j∂  : the latest period/day to maintain turbine j (without penalty). 

ivic ′  : travel cost of vessel v to travel from node i to i’ ( BJii ∪∈′, ). 

ivi ′τ   : travel time of vessel v to travel from node i to i’ ( BJii ∪∈′, ). 

jτ̂  : required time to perform maintenance task on turbine j. 

vτ~   : transfer time for technicians and equipment from vessel v to a turbine. 
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jw  : weight of spare parts and equipment needed by turbine j. 

pjρ  : number of technicians classified as type p required to maintain turbine j. 

bptρ  : number of technicians (type p) available in O&M b at period t. 

pĉ  : technician (type p) cost per period/day. 

bfλ  : = 1, if O&M base b serves wind farm f,  

   = 0, otherwise 

jc~  : penalty cost per period if turbine j is maintained after period l
j∂  

vρ~  : maximum number of personnel on board vessel v (technician capacity). 

vw  : total weight of spare parts or equipment that can be transported by vessel v. 

vta  : = 1 if vessel v is available at period t, 

= 0 otherwise. 

vjâ  : = 1 if vessel v is able to transfer parts/components needed by turbine j,  

= 0 otherwise. 

jta~  : = 1 if spare parts required by turbine j are available at period t,  

   = 0 otherwise. 

vc  : average fuel cost for vessel v to travel for an hour. 

vftψ  : weather window for vessel v in period t at wind farm f. 

Figure 3 shows the proposed methodology for solving the maintenance routing and 

scheduling problem in offshore wind farms. A new set of all feasible routes for vessel v at 

period t ( vtR ) is introduced.  In the first step, all feasible routes for each vessel and each 

period are generated. In this study, a feasible route may consist of 1 to η turbines where η 

denotes the maximum number of turbines that can be serviced/visited by a vessel in one 

period/day. A Mixed Integer Linear Program (MILP) is proposed to find the optimal routing 

for a set of turbines (more than 1) which is given in subsection 4.1. Once the optimal routing 

has been obtained, the total cost which includes technician, travel, and penalty costs for this 

route is calculated. In the second step, an Integer Linear Program (ILP) is proposed to select 

the best route configuration from all feasible routes that have been determined in the previous 

step. 
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Figure 3. The proposed methodology for solving the routing and scheduling model 

The set of feasible routes ( vtR ) consists of several parameters as follows: 

vtrS  : ordered list of nodes (turbines) included in route r of vessel v in period t. 
r
vtrc  : total cost for route r of vessel v in period t. 

vtrjθ  : = 1 if turbine j is in route r of vessel v in period t,  

   = 0 otherwise. 

vtrpq  : number of technicians (type p) required in route r of vessel v in period t. 

An Integer Linear Programming (ILP) model is proposed to obtain the best route 

configuration from all feasible routes.  

The decision variable is as follows: 

vtrX  = 1 if route r of vessel v in period t is used in the solution,  

 = 0 otherwise. 

The following objective function is used to select the optimal route. 

Minimise ∑ ∑ ∑
∈ ∈ ∈

⋅=
Tt Vv Rr

r
vtrvtrc

vt

cXZ )( ) (1)    

The objective is to find the optimal maintenance schedule and routing for vessels that 

minimises the maintenance costs including travel, technician, and penalty costs of the routes 

that are selected in the optimal solution.  

Subject to the following constraints: 

TtVvX
vtRr

vtr ∈∈∀≤∑
∈

,,1  (2) 

vtR  

j1 
j1, j2 

j1, j2, j3 
j1, j2, j3, j4 
: 
: 

j2 
j2, j3 

j2, j3, j4 
j2, j3, j4, j5 
: 
: 

Solve each possible route 
using MILP that minimises 
travel and technician 
costs. 

The total cost 
(including penalty cost) 
and optimal routing for 
each set of turbines is 
obtained. 

Find the optimal route 
configuration using 
Integer Linear 
Programming (ILP). 

Set of turbines 
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Constraints (2) ensure that a vessel cannot use more than one route at a period. Constraints 

(3) guarantee that a turbine is only maintained/visited once in the planning horizon. 

Constraints (4) state that the total number of technicians (for each type of technicians) 

required by vessels in the solution for each period is not greater than the ones available at the 

O&M base. In sign restrictions (5), all X-variables are set as binary. 

 

4.1 The mixed integer linear program (MILP) for the routing problem 

This subsection presents the sub-problem for a given vessel formulated as a mixed 

integer linear program. It is used to find the optimal route for a vessel (vessel v based at 

O&M base b) to visit/service a set of turbines in a period (period t). Let n denote the number 

of turbines that might be visited and J


 the set of nodes consisting of O&M base b and 

turbines (j1,…,jn) where },...,,{ 1 njjbJ =


 or },...,1,0{ nJ =


 for simplification. The model is an 

extension of the model proposed by Dai et al. (2015) where the cost and the availability of 

different types of technicians are considered. The following notation describes the sets and 

parameters used in the MILP model. 

−J  : set of delivery/drop nodes, },...,2,1{ nJ =− . 

+J  : set of pick up nodes, }2,...,2,1{ nnnJ ++=+ . 

}12,0{* +∪∪= +− nJJJ  : Nodes 0 and 2n+1 represent start and end nodes respectively 

(O&M base b).  
−⊆ JJ v  : the set of turbines that need the vessel to be present during the maintenance 

operations. 

The MILP model aims to find the optimal route that minimises the cost (travel and 

technicians costs). Indices rvfbt  and,,,,  are known/fixed; therefore, in this MILP model, 

those indices are removed. There are three decision variables for this problem as follows: 

iiY ′  : = 1 if vessel v travel from node i to i’, = 0 otherwise ( *, Jii ∈′ ). 
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iT̂  : the time when vessel v visit (drop/pick) node i ( *Ji ∈ ). 

piQ  : number of technicians (type p) on vessel v after leaving node i  

The objective function is defined as follows:  

 trqr ccZ +=min  (6) 

where qrc  and trc  are the technicians and travel costs respectively for route r of vessel v  in 

period t which is formulated as follows: 

 ∑
∈

⋅=
Pp

pp
qr cqc )ˆ(  (7) 

 ∑ ∑
∈ ∈′

′′ ⋅=
* *

)(
Ji Ji

iiii
tr ycc  (8) 

pq  is the number of technicians (for each type p) required by vessel v on period t with 

0pp Qq = . In other words, pq  is the number of technicians leaving from O&M base b.  

The constraints are given as follows: 

*,1
*
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*,,,0)( JiJiPpQQY ipippiii ∈′∈∈∀=−− −
′′′ ρ  (20) 

*,,,0)( JiJiPpQQY ipippiii ∈′∈∈∀=−+ +
′′′ ρ  (21) 

PpQQq ppi
Ji

p ∈∀==
∈

,}{max 0*
 (22) 

*,, JiPpQ ppi ∈∈∀≤ ρ  (23) 

 

The explanation of the constraints is as follows: 

(9) Ensure that each turbine is visited only once for delivery and once for pick up. 

(10) and (11) Ensure that the vessel leaves and returns the harbour only once. 

(12) Ensure flow conservation at each node. 

(13) Guarantee that both delivery and pick up at a turbine are done. 

(14) Ensure that the vessel travels directly from the delivery node to the pickup node (which 

is the same location) if the vessel needs to be present during the maintenance operation. 

(15) Ensure that the time between the delivery and the pickup is greater than the time 

required to perform maintenance at the turbine. 

(16) Guarantee the working time of the service vessels to be less than time window 

(maximum working hours). 

(17) Makes sure that the time when the vessel leaves the O&M base is 0.  

(18) Ensure that the number of technicians onboard does not exceed the vessel capacity. 

(19) Maintain the travel time compatibility of the vessel. 

(20) and (21) track the number of technicians (for each type) onboard the vessel when 

arriving at each node. 

(22) calculate the number of technicians (for each type) required for route r of vessel v in 

period t (which is the number of technicians in the vessel when leaving the harbour). 

(23) Guarantee that the number of technicians (for each type) required is less than the 

number of technicians available. 

Constraints (19) – (21) make the proposed model nonlinear. Here, we transform the model 

into a linear model by incorporating big-M value so the model can be solved using an exact 

method. The introduction of new variables and constraints are needed to linearise the 

problem. Once the optimal route is obtained, we can calculate the maintenance cost ( rc ) for 
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route r of vessel v in period t by including the penalty cost ( lrc ). rc  can be written as 

follows: 

 lrtrqrr cccc ++=  (24) 

with lrc  is defined as follows: 

∑ ⋅∂−⋅=
j

jjj
lr ctc )~)}(,0max{(θ  (25) 

 

4.2 The procedure for generating feasible routes 

An algorithm for generating all feasible routes is presented in this subsection.  Figure 4 

provides the procedure for generating all feasible routes for each vessel in each period. In the 

procedure, in one period/day a vessel only visits one or more turbines within a wind farm as 

the distance between two wind farms is usually relatively far. The maximum number of 

turbines visited by a vessel in a day is also limited to η where || fJ≤η . However, to 

guarantee the optimality,  η must be set to || fJ . 

The algorithm in Figure 4 seeks all possible routes for vessel v at period t. The process of 

the algorithm uses a top-bottom procedure. The first level consists of 1 turbine (n = 1) 

whereas the last level involves η turbines. It starts from the first level and then descends to 

the next level where the higher level is a feasible route. In other words, it starts solving the 

routing problem (and checks its feasibility) for 1 turbine, and if it is a feasible route then the 

algorithm adds another turbine to be maintained. This process is repeated until all possible 

combinations of turbines are explored.  

For n = 1, it is easy to obtain the optimal routing as there is only one possible route 

which is b-j1-j1-b. Here, the vessel leaves from O&M base b and goes to turbine j1 to 

drop/deliver the technicians, and then the vessel waits at this turbine until the maintenance 

task is completed. After the vessel has picked up the technicians, it goes back to O&M base 

b. However, this route might be infeasible if some constraints are not met such as 

load/technician capacity of the vessel and the weather window. For n ≥ 2, the problem is 

harder to solve as the number of possible routes increases drastically. Therefore, the MILP 

procedure is proposed to solve the routing problem as shown in Figure 5.  
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Figure 4. The algorithm for generating all feasible routes 

Procedure Generating_Feasible_Routes ( ) 

For each period t in T do the following: 
For each O&M base b in B do the following: 

For each wind farm f in F do the following: 
If 0=bfλ  then continue (skip the following under looping f). 

For each vessel v in Vb do the following: 
If 0=vta  then continue (skip the following under looping v). 

Set r = 0 and determine the value of η (η = |Jf | for optimality). 
For each turbine j1 in Jf do the following: 

If 0ˆ )( 1
=jva  or 0~

)( 1
=tja  then continue (skip the following under looping j1). 

Set },{ 1jbJ =


 and check feasibility of this set with predefined constraints. 
If not feasible then continue (skip the following under looping j1). 

Update vtrS , r
vtrc , vtrjθ , and vtrpq . 

Set r = r+1. 
For j2 = (j1 +1) to |Jf | do the following: 

If 0ˆ )( 2
=jva  or 0~

)( 2
=tja  then continue (skip the following under looping j2). 

Set },,{ 21 jjbJ =


 
Use Procedure “Solving_MILP” given in Figure 5 to solve the problem. 
If not feasible then continue (skip the following under looping j2). 
For j3 = (j2 +1) to |Jf | do the following: 

If 0ˆ )( 3
=jva  or 0~

)( 3
=tja  then continue (skip the following under looping j3). 

Set },,,{ 321 jjjbJ =


  

Use Procedure “Solving_MILP” given in Figure 5 to solve the problem. 
If not feasible then continue (skip the following under looping j3). 
: 

For jη = (jη-1 +1) to |Jf | do the following: 
: 

End for jη 
: 

End for j3 
End for j2 

End for j1 
End for v 

End for f 
End for b 

End for t 
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Figure 5. The procedure for solving the routing problem using MILP 

The procedure in Figure 5 first ensures that the total weight of spare parts needed to 

service the set of turbines is less than the load capacity of the vessel. The procedure also 

checks whether the problem with the same set of turbines has been solved for the previous 

period. This step aims to decrease the computing time as there is no advantage in solving the 

same problem (with the same constraints) more than once. This can be done by constructing a 

good data structure to store the computational results. The next section presents the 

computational experiments of the proposed method on existing dataset available in the 

literature and newly generated dataset. 

 

Procedure Solving_MILP ( rJtv ,,,


, vtrS , r
vtrc , vtrjθ , vtrpq )  

 Set }{bJJ −=− 
 and ∑

−∈

=
Jj

jww . 

 If wwv <  then return infeasible solution and exit 

 Set γ  = true if J


 has been solved using MILP in the previous period, say period t~  (this can be 
done using a good data structure).  

 If γ  = true then 

If J


provides a feasible route at period t~  and  vftψ  = tvf~ψ  then 

Copy the solution given by MILP for J


 at period t~  into period t. 
Copy the travel cost  
Calculate the penalty cost for period t~  (It could be different from the one at period t) 
Return feasible solution and exit 

End If 
If J


provides an infeasible route at period t~  and  vftψ  ≤ tvf~ψ  then 

Return infeasible solution and exit 
End If 

End if 
 Solve the routing problem for J


 using MILP that we propose (equation 6-23). 

 If the feasible solution is obtained then 
Update vtrS ,  vtrjθ , and vtrpq  

Calculate r
vtrc  and set r = r+1 

Return feasible solution and exit 
Else 

Return infeasible solution and exit 
End If 
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5. Computational analysis 

We carried out extensive experiments to examine the performance of the proposed 

solution approaches. The code was written in C++ .Net 2012 and used the IBM ILOG 

CPLEX version 12.6 Concert Library. The tests were run on a PC with an Intel Core i5 CPU 

@ 3.20GHz processor, 8.00 GB of RAM and under Windows 7. In the computational 

experiments, we use an existing dataset from the literature. We also generate a new more 

challenging dataset where multiple offshore wind farms and O&M bases, and different types 

of technicians available at O&M bases are considered with a longer planning horizon.   
 

5.1 Experiments on the existing dataset with single O&M base and wind farm 

The proposed method was examined with the dataset available in the literature (Dai et 

al., 2015). Here, we tested our method on the dataset called Dataset C consisting of 10 

instances. This dataset is very hard to solve by the model proposed by Dai et al. (2015). The 

dataset only considers one wind farm and one O&M base. It consists of 8 turbines to be 

maintained for 3 periods (days) and it involves 2 vessels with different specifications. The 

experimental results obtained with the proposed method on the existing dataset have been 

compared with the ones obtained by Dai et al. (2015), referred to as DAI. 

In DAI, the objective function of the model only considers the travel and penalty costs. 

To compare with their results, we set the technician cost 0ˆ =pc . Moreover, DAI does not 

take into account the number of technicians available in the O&M base. Here, we set 

Mbpt =ρ  where M is a big number. In other words, the technicians required for maintaining 

the turbines are always available in the O&M base.  

In this study, we vary the maximum number of turbines visited by a vessel η = 3, 4, 5 

and 8. The use of 8|| == fJη  will guarantee to find the optimal solution as all possible 

routes are considered. When the value of η decreases, the objective function value increases 

as the number of trips required increases along with the penalty cost. However, a bigger value 

of η requires a longer computational time to solve the problem. Table 1 presents the 

computational results on the existing dataset where it compares the performance of DAI and 

the proposed method. The optimal objective function value (Z*) is obtained from the 
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proposed method with 8|| == fJη . The percentage deviation (Dev(%)) is calculated as 

follows: 

100
*

*(%) ×
−

=
Z

ZZDev k  

where Zk refers to the solution cost obtained by method ‘k’. CPU time is measured in seconds 

where boldface values in the table refer to the optimal solutions. The table also provides the 

average deviation for each method, the number of instances where the optimal solution is 

found, and the average CPU time. 

In Table 1, the solutions obtained from the proposed method with η = 8 are the optimal 

solutions so we can compare the quality of the solution attained by other approaches. In 

general, regarding the computational time, the proposed method provided a significant 

improvement as the method runs very fast compared to DAI to produce the optimal solutions. 

Furthermore, the table shows that the proposed method improves the solution quality given 

that the value of η is increased. For example, the average deviation (Dev(%)) is decreased 

from 0.0621% to 0% when the value of η is increased from 3 to 8 respectively. However, the 

average computing time increases drastically from 2.45 seconds (η = 3) to 79.11 seconds 

( 8=η ).  

Table 1. Computational results on Dataset C 

Ins-
tance 

Z* 
(Optimal 

Z) 

DAI  Proposed Method 

Dev 
(%) 

CPU 
time 
(s) 

 η = 3 η = 4 η = 5 η = 8 

 
Dev 
(%) 

CPU 
time 
(s) 

Dev 
(%) 

CPU 
time 
(s) 

Dev 
(%) 

CPU 
time 
(s) 

Dev 
(%) 

CPU 
time 
(s) 

#1 4252.55 0.0000 3,130  0.0000 2.36 0.0000 6.05 0.0000 8.31 0.0000 18.98 
#2 4664.47 0.6307 10,000  0.0959 2.69 0.0110 9.72 0.0000 23.88 0.0000 26.21 
#3 4161.47 0.0000 10,000  0.0608 2.53 0.0000 9.13 0.0000 28.28 0.0000 87.62 
#4 5101.95 0.0278 10,000  0.0302 2.21 0.0000 6.49 0.0000 10.07 0.0000 11.60 
#5 3984.52 0.3966 10,000  0.1472 2.58 0.0000 8.72 0.0000 26.20 0.0000 75.24 
#6 6313.97 0.0411 10,000  0.0396 2.94 0.0000 8.83 0.0000 20.24 0.0000 40.17 
#7 5690.93 0.0000 355  0.0000 1.62 0.0000 4.08 0.0000 4.52 0.0000 5.92 
#8 4576.5 0.0023 10,000  0.0037 2.14 0.0000 4.80 0.0000 11.09 0.0000 30.35 

#9 3428.72 0.2760 10,000  0.2438 3.09 0.1083 11.85 0.0000 43.13 0.0000 438.6
4 

#10 5084.91 0.0000 9,874  0.0000 2.29 0.0000 7.19 0.0000 13.74 0.0000 56.38 
Avg Dev 0.1375   0.0621  0.0119  0.0000  0.0000  
# Optimal 4   3  8  10  10  
Avg Cpu  8,336   2.45  7.69  18.95  79.11 
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The proposed method with η = 5 also produces the optimal solutions for all instances. It 

means that in the optimal solution, there is no vessel visiting more than 5 turbines in one 

period/day. The proposed method with η = 5 runs approximately five times faster than the 

one with η = 8 as the number of possible combinations of the set of turbines solved by the 

proposed MILP is relatively smaller.  For relatively small instances, the computational time 

required to obtain the optimal solution is not significant; although when it comes to large 

instances, the computational time increases in order to obtain optimal solution.  

Table 2 presents the breakdown of the cost for the solutions of all instances on the 

existing dataset obtained by the proposed method. There are two costs considered in the 

problem on the existing data namely the travel (fuel) cost and the penalty cost. In Table 2, the 

average travel and penalty costs and the percentage of each cost type from the total cost 

(prop) are also given. The table reveals that to get a good (optimal) solution, the method tends 

to avoid the penalty cost. Penalty cost only occurs on instances 6 and 7 for all the different 

values of η used in the proposed method. It could be occurred because in instances 6 and 7, 

many of turbines need to be maintained on the earlier period/day. On average, the fuel cost 

contributes more or less 94% to the total cost with 6% for the penalty cost. 

Table 2. Breakdown of cost for the solutions attained by the method on Dataset C 

Ins-
tance 

η = 3   η = 4   η = 5 and η = 8 
Fuel 
Cost 

Penalty 
Cost 

Total 
Cost   Fuel 

Cost 
Penalty 

Cost 
Total 
Cost   Fuel 

Cost 
Penalty 

Cost 
Total 
Cost 

#1 4,252.55 0.00 4,252.55  4,252.55 0.00 4,252.55  4,252.55 0.00 4,252.55 
#2 5,111.69 0.00 5,111.69  4,715.82 0.00 4,715.82  4,664.47 0.00 4,664.47 
#3 4,414.56 0.00 4,414.56  4,161.47 0.00 4,161.47  4,161.47 0.00 4,161.47 
#4 5,256.07 0.00 5,256.07  5,101.95 0.00 5,101.95  5,101.95 0.00 5,101.95 
#5 4,571.03 0.00 4,571.03  3,984.52 0.00 3,984.52  3,984.52 0.00 3,984.52 
#6 4,564.20 2,000.00 6,564.20  4,613.97 1,700.00 6,313.97  4,613.97 1,700.00 6,313.97 
#7 4,590.93 1,100.00 5,690.93  4,590.93 1,100.00 5,690.93  4,590.93 1,100.00 5,690.93 
#8 4,593.30 0.00 4,593.30  4,576.50 0.00 4,576.50  4,576.50 0.00 4,576.50 
#9 4,264.60 0.00 4,264.60  3,800.02 0.00 3,800.02  3,428.72 0.00 3,428.72 

#10 5,084.91 0.00 5,084.91   5,084.91 0.00 5,084.91   5,084.91 0.00 5,084.91 
Avg 4,670.39 310.00 4,980.39  4,488.26 280.00 4,768.26  4,446.00 280.00 4,726.00 
Prop. 93.78 6.22   94.13 5.87   94.08 5.92  

 

5.2 Experiments on new dataset with multiple O&M bases and wind farms 

This subsection presents the computational results on the dataset that we have randomly 

generated. The new dataset generated represents the maintenance problem illustrated in 
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Figure 1 which is constructed to illustrate the functionalities of the optimisation model. 

However, we do not claim that the scenario and the values of the input parameters represent 

accurately the O&M of typical, current offshore wind farms. For the new dataset, we would 

like to solve the maintenance routing and scheduling problems where two O&M bases (OM1 

and OM2) and three wind farms are considered. Each O&M base has two vessels with 

different specifications and each O&M base is only able to serve two wind farms. The 

number of technicians available for each technician type in O&M base and the technician 

cost are also taken into account. In this experiment, there are three types of technician namely 

mechanical, electrical, and electromechanical.  

We construct two types of datasets namely Dataset G1 and Dataset G2 where each 

dataset consists of 10 instances. The planning horizon is set to 3 and 7 periods/days in 

Dataset G1 and Dataset G2 respectively. For each instance, the number of turbines that need 

to be maintained in each wind farm is 8 turbines and 12 turbines for Dataset G1 and Dataset 

G2 respectively. It means that for each instance, Dataset G1 involves 24 turbines whereas 

Dataset G2 comprises 36 turbines. The problem with the new generated dataset is more 

difficult to solve than the existing dataset from DAI as the size of the new problem is much 

larger. However, the parameter values of the new dataset are more or less similar to the ones 

of DAI. 

Table 3 presents the specification of the vessels used in the newly generated data. The 

data provides the O&M base for the vessel, the load capacity ( vw ), the personnel capacity 

( vρ~ ), and the fuel cost per hour ( vc ). It is assumed that the vessels are always available on 

the O&M base ( 1=vta ) and all vessels are able to transport the spare parts required for 

maintaining the turbines ( 1ˆ =vja ). In case that 0=vta  or 0ˆ =vja , the complexity of the 

problem decreases.  

Table 3. Specification of the vessels used in the new generated data 

Vessel O&M 
base 

Load Capacity 
(tonnes) 

Personnel 
capacity 

Fuel Cost/hour 
(Euro) 

V1 OM1 1.5 12 225 
V2 OM1 26 12 300 
V3 OM2 2 12 250 
V4 OM2 15 12 280 
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Tables 4 and 5 present the information required in Dataset G1. The weather window 

( vftψ ) of Dataset G1 is given in Table 4 where 1 and,1,1,1 23221211 ==== λλλλ . In other 

words, the vessels based at OM1 serve wind farms 1 and 2 while the vessels at OM2 maintain 

wind farms 2 and 3.  

Table 4. Weather window for each vessel in Dataset G1 

Vessel Period / 
Day 

Weather Window (hours) 
Wind Farm 1 Wind Farm 2 Wind Farm 3 

V1 1 6 6 - 
V1 2 6 6 - 
V1 3 12 12 - 
V2 1 12 12 - 
V2 2 12 12 - 
V2 3 12 12 - 
V3 1 - 7 7 
V3 2 - 7 7 
V3 3 - 12 12 
V4 1 - 12 12 
V4 2 - 12 12 
V4 3 - 12 12 

 

Table 5 illustrates an example of the test data for instance #1 in dataset G1, where the 

maintenance time ( jτ̂ ), the number of technicians ( pjρ ), and the weight of spare parts and 

equipment ( jw ) required to maintain a turbine are given. In the table, technician type 1, 2, 

and 3 denote electrical, mechanical, and electromechanical where the technician cost is € 300, 

€ 325, and € 350 per day, respectively.  Table 5 also provides the recommended/latest period 

to maintain a turbine ( j∂ ) along with the penalty cost per day if the maintenance activity is 

conducted after that period. In the column, vessel needs to be present, the binary value is 

given where 1 means that the service vessel needs to be present during the maintenance 

service, and 0 otherwise. We assume that the required transfer time for technicians and 

equipment from a vessel to a turbine ( vτ~ ) is 15 minutes (0.25 hours). The number of each 

type technician available in each O&M base ( bptρ ) is set to 6. We also assume that the spare 

parts needed to service the turbines are always available ( 1~ =jta ).  

Table 6 shows the computational results of the proposed method on Dataset G1. We also 

implement four scenarios where η = 3, 4, 5 and η = 8 are used. As 8|| =fJ  for f = 1, 2, and 
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3, the proposed method with η = 8 will produce the optimal solutions. Table 6 reveals that the 

proposed method with η = 5 also obtains the optimal solutions for all instances of Dataset 

G1. Similarly to the experiments with the existing dataset, on Dataset A, when η is set to 5, 

the proposed method runs more than three times faster than when η = 8. The proposed 

method with η = 3 and 4 produces a relatively small deviation of 0.0746% and 0.0190% 

respectively in a relatively small computational time. The proposed method with η =3 runs 

approximately five hundred (500) times faster than the one with η = 8. Moreover, the use of 

η = 3 and 4 are able to obtain the optimal solution for 1 and 2 instances respectively. For 

instance 1, in the optimal solution there is no vessel visiting more than 3 turbines in one day. 

Table 5. Test data for instance #1 in Dataset G1 

Turbine Wind 
Farm 

Maint. 
time 

(hours) 

Weight 
of parts 

(kg) 

Penalty 
cost 

(euro) 

The latest 
period 

(in days) 

The vessel 
needs to be 

present 

Number of Technicians 

Type 1 Type 2 Type 3 

T1 WF 1 4 700 1900 3 0 2 0 1 
T2 WF 1 3 700 1500 2 0 0 1 1 
T3 WF 1 5 300 1600 4 1 3 0 0 
T4 WF 1 2 900 1900 1 0 1 0 2 
T5 WF 1 4 600 1200 1 0 1 2 2 
T6 WF 1 5 900 1600 1 1 3 0 0 
T7 WF 1 2 900 1800 4 0 2 2 1 
T8 WF 1 2 500 1100 1 0 3 0 1 
T9 WF 2 3 400 1300 1 0 0 1 1 

T10 WF 2 2 600 1500 3 0 0 1 1 
T11 WF 2 4 800 1400 2 1 1 3 0 
T12 WF 2 2 700 1900 1 0 0 2 1 
T13 WF 2 3 600 1900 2 0 3 2 0 
T14 WF 2 4 800 1600 3 0 1 2 0 
T15 WF 2 4 400 1500 3 1 3 0 1 
T16 WF 2 3 800 1800 2 0 3 1 0 
T17 WF 3 3 700 1300 1 0 3 1 0 
T18 WF 3 4 800 1500 1 1 3 0 1 
T19 WF 3 3 800 1900 4 0 0 2 2 
T20 WF 3 2 700 1200 2 0 0 3 0 
T21 WF 3 3 600 1600 1 0 1 0 2 
T22 WF 3 2 800 1900 4 0 0 1 1 
T23 WF 3 2 700 1500 3 0 0 0 2 
T24 WF 3 5 300 1900 2 1 3 2 0 

 

Table 7 presents the cost breakdown for the solutions of all instances on Dataset G1 

obtained by the proposed method. In Table 7, three types of costs are considered travel (fuel) 
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cost, crew cost and the penalty cost. The table reveals that on average the crew cost 

contributes the highest proportion to the total cost with more or less 57%, followed by the 

fuel cost and penalty cost with 39% and 4% respectively. According to Table 7, the travel, 

crew, and penalty costs increase when the value of η decreases. For η = 5 or 8, there are six 

instances without penalty cost whereas for η = 3, four instances without such cost. The table 

also shows that the proportion of penalty cost to the total cost increases when the value of η 

decreases. 

Table 6. Computational results on Dataset G1 

Instance Z* 
η = 3  η = 4  η = 5  η = 8 

Dev 
(%) 

CPU 
time (s)  

Dev 
(%) 

CPU 
time (s)  

Dev 
(%) 

CPU 
time (s)  

Dev 
(%) 

CPU 
time (s) 

#1 41,839.74 0.0000 30.04  0.0000 121.22  0.0000 698.00  0.0000 2,444.69 
#2 33,425.30 0.0941 24.85  0.0072 90.01  0.0000 255.58  0.0000 542.18 
#3 36,501.28 0.0488 25.92  0.0065 89.47  0.0000 179.13  0.0000 317.69 
#4 31,316.31 0.0681 32.79  0.0247 142.81  0.0000 566.33  0.0000 2,356.46 
#5 31,147.73 0.0746 29.48  0.0008 107.33  0.0000 243.59  0.0000 549.59 
#6 36,141.68 0.0368 22.01  0.0000 70.61  0.0000 132.17  0.0000 134.34 
#7 29,995.24 0.1108 30.64  0.0463 120.98  0.0000 531.33  0.0000 1,779.76 
#8 37,242.48 0.0420 23.04  0.0021 79.53  0.0000 249.62  0.0000 534.70 
#9 30,779.64 0.1016 24.65  0.0615 108.41  0.0000 547.94  0.0000 3,465.71 

#10 33,030.87 0.1688 23.89  0.0406 86.78  0.0000 275.04  0.0000 674.37 
Avg Dev 0.0746   0.0190   0.0000   0.0000  
# Optimal 1   2   10   10  
Avg Cpu  26.73   101.71   367.87   1,279.95 

 

Table 8 presents the experiments results of the proposed method on Dataset G2 where 

12|| =fJ  for f = 1, 2, and 3. This dataset is relatively hard to solve as the number of periods 

and the total number of turbines considered are relatively large. The proposed method with 

12=η  is guaranteed to obtain the optimal solution. In the experiments on Dataset G2, we 

only conduct three scenarios where η = 3, 4, and 5 meaning that the solutions attained cannot 

guarantee optimality. Therefore, the best known solution (Z’) is provided instead of the 

optimal solution (Z*). In Table 10, Dev (%) is calculated by using Z’ instead of Z*. Table 8 

shows that the solutions obtained by the proposed method with η = 5 are used as the best 

known solutions. The proposed method with η = 3 and 4 produce a relative small deviation of 

0.0170% and 0.0033% respectively in a relatively small computational time. The proposed 

method with η = 3 runs approximately 20 times faster than the one with η = 5. Table 9 

presents the cost breakdown for the solutions of all instances on Dataset G2. 
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Table 7. Cost breakdown for the solutions attained by the proposed method on Dataset G1  

Instance 

η = 3 
 

η = 4 
 

η = 5 and 8 

Fuel Cost Crew 
Cost 

Penalty 
Cost 

Total 
Cost  

Fuel Cost Crew 
Cost 

Penalty 
Cost 

Total 
Cost  

Fuel Cost Crew 
Cost 

Penalty 
Cost 

Total 
Cost 

#1 14,014.74 22,425.00 5,400.00 41,839.74 
 

14,014.74 22,425.00 5,400.00 41,839.74 
 

14,014.74 22,425.00 5,400.00 41,839.74 

#2 15,044.57 21,525.00 0.00 36,569.57 
 

13,164.46 20,500.00 0.00 33,664.46 
 

13,225.30 20,200.00 0.00 33,425.30 

#3 15,550.72 20,950.00 1,782.00 38,282.72 
 

14,983.18 19,975.00 1,782.00 36,740.18 
 

14,119.28 20,600.00 1,782.00 36,501.28 

#4 15,322.89 18,125.00 0.00 33,447.89 
 

13,914.89 18,175.00 0.00 32,089.89 
 

13,491.31 17,825.00 0.00 31,316.31 

#5 13,911.23 18,000.00 1,560.00 33,471.23 
 

12,898.45 18,275.00 0.00 31,173.45 
 

12,872.73 18,275.00 0.00 31,147.73 

#6 14,998.26 22,475.00 0.00 37,473.26 
 

13,666.68 22,475.00 0.00 36,141.68 
 

13,666.68 22,475.00 0.00 36,141.68 

#7 14,669.43 18,650.00 0.00 33,319.43 
 

14,108.74 17,275.00 0.00 31,383.74 
 

13,320.24 16,675.00 0.00 29,995.24 

#8 15,581.11 20,825.00 2,400.00 38,806.11 
 

13,854.10 20,175.00 3,292.00 37,321.10 
 

13,775.48 20,175.00 3,292.00 37,242.48 

#9 14,300.09 18,100.00 1,508.00 33,908.09 
 

13,615.74 17,550.00 1,508.00 32,673.74 
 

13,204.64 17,575.00 0.00 30,779.64 

#10 14,679.25 20,825.00 3,103.00 38,607.25 
 

13,043.14 19,600.00 1,730.00 34,373.14 
 

11,400.87 19,900.00 1,730.00 33,030.87 

Avg 14,807.23 20,190.00 1,575.30 36,572.53 
 

13,726.41 19,642.50 1,371.20 34,740.11 
 

13,309.13 19,612.50 1,220.40 34,142.03 

Prop. 40.49 55.21 4.31 
  

39.51 56.54 3.95 
  

38.98 57.44 3.57 
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Table 8. Computational results on Dataset G2  

Instance 
Best 

Known 
Z’ 

η = 3  η = 4  η = 5 
Dev 
(%) 

CPU 
time (s)  

Dev 
(%) 

CPU 
time (s)  

Dev 
(%) 

CPU 
time (s) 

#1 50,835.10 0.0263 99.84  0.0000 499.83  0.0000 1,775.46 
#2 49,047.09 0.0045 121.54  0.0004 735.60  0.0000 3,369.74 
#3 44,026.05 0.0428 124.29  0.0212 713.73  0.0000 3,518.18 
#4 54,139.22 0.0004 100.10  0.0000 510.60  0.0000 1,505.83 
#5 53,733.12 0.0201 106.35  0.0107 603.41  0.0000 3,549.63 
#6 49,156.52 0.0304 121.39  0.0005 776.08  0.0000 3,456.92 
#7 49,315.18 0.0186 120.59  0.0000 742.43  0.0000 3,436.71 
#8 51,051.50 0.0000 112.95  0.0000 631.74  0.0000 1,422.22 
#9 57,920.34 0.0113 101.17  0.0000 458.87  0.0000 907.24 

#10 52,668.30 0.0153 137.14  0.0001 718.16  0.0000 2,866.38 
Avg Dev 0.0170   0.0033   0.0000  
# Optimal 1   5   10  
Avg Cpu  114.53   639.04   2,580.83 

 

Similarly to the results on Dataset G1, the experiments on Dataset G2 given in Table 9 

show that the crew cost also contributes the highest proportion to the total cost with more or 

less 61%, followed by the fuel cost and penalty cost with 35% and 4% respectively. The table 

reveals that the travel and crew costs increase when the value of η decreases, whereas the 

penalty cost increases. In contrast to the previous results on Dataset G1, the results on Dataset 

G2 show that the proportion of penalty cost to the total cost decreases when the value of η 

decreases. In other words, the optimal solution does not only consider the penalty cost but 

also other costs as well. 

To assess the computational complexity of the problem, we also carried out experiments  

with a larger size of the problem, which considers 3 wind farms with 24 turbines each to be 

maintained (72 turbines in total) and a 2 week (14 periods) planning horizon.  This problem 

can be solved successfully by the proposed decomposition method using η = 5. However, it 

requires more than 40 hours to solve the problem. In other words, when the size of the 

problem increases, the CPU time required for solving the problem increases exponentially. 

As the proposed model aims to deal with short term scheduling problem for a planning 

horizon where the weather windows can be accurately forecasted, the complexity of the 

problem does nevertheless not severely impact the applicability of the model. In the case that 

the medium (or long) term problems need to be solved, a simpler scheduling model (without 

routing) would probably be sufficient, or metaheuristic techniques could also be used to 

generate near-optimal solutions in a reasonable computation time.     
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Table 9. Cost breakdown for the solutions attained by the proposed method on Dataset G2  

Instance 

η = 3 
 

η = 4 
 

η = 5 

Fuel Cost Crew 
Cost 

Penalty 
Cost 

Total 
Cost  

Fuel Cost Crew 
Cost 

Penalty 
Cost 

Total 
Cost  

Fuel Cost Crew 
Cost 

Penalty 
Cost 

Total 
Cost 

#1 19,794.83 30,975.00 1,400.00 52,169.83 
 

18,810.10 30,625.00 1,400.00 50,835.10 
 

18,810.10 30,625.00 1,400.00 50,835.10 

#2 17,045.11 32,225.00 0.00 49,270.11 
 

17,114.72 31,950.00 0.00 49,064.72 
 

16,702.09 30,975.00 1,370.00 49,047.09 

#3 16,434.87 29,475.00 0.00 45,909.87 
 

16,259.72 28,700.00 0.00 44,959.72 
 

15,601.05 28,425.00 0.00 44,026.05 

#4 18,834.46 33,450.00 1,876.00 54,160.46 
 

18,813.22 33,450.00 1,876.00 54,139.22 
 

18,813.22 33,450.00 1,876.00 54,139.22 

#5 17,153.23 35,050.00 2,608.00 54,811.23 
 

17,758.00 34,725.00 1,825.00 54,308.00 
 

17,147.12 33,750.00 2,836.00 53,733.12 

#6 19,354.96 29,875.00 1,420.00 50,649.96 
 

18,512.57 29,250.00 1,420.00 49,182.57 
 

18,461.52 29,275.00 1,420.00 49,156.52 

#7 18,672.19 30,000.00 1,561.00 50,233.19 
 

18,704.18 29,050.00 1,561.00 49,315.18 
 

18,704.18 29,050.00 1,561.00 49,315.18 

#8 17,667.50 29,825.00 3,559.00 51,051.50 
 

17,667.50 29,825.00 3,559.00 51,051.50 
 

17,667.50 29,825.00 3,559.00 51,051.50 

#9 18,490.45 36,475.00 3,609.00 58,574.45 
 

18,536.34 35,775.00 3,609.00 57,920.34 
 

18,536.34 35,775.00 3,609.00 57,920.34 

#10 18,166.46 32,125.00 3,183.00 53,474.46 
 

17,694.28 30,800.00 4,180.00 52,674.28 
 

17,988.30 30,500.00 4,180.00 52,668.30 

Avg 18,161.41 31,947.50 1,921.60 52,030.51 
 

17,987.06 31,415.00 1,943.00 51,345.06 
 

17,843.14 31,165.00 2,181.10 51,189.24 

Prop. 34.91 61.40 3.69   35.03 61.18 3.78   34.86 60.88 4.26  
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5.3 Comparative analysis: multiple wind farms and O&M bases model versus 

single wind farm and O&M base model  

 In this subsection, the potential cost saving attained by implementing the multiple wind 

farms and O&M bases model (referred to as the multiple model) instead of applying single 

wind farm and O&M model separately (referred to as the single model) is presented. In the 

single model, an O&M base is dedicated to serve only one wind farm. In other words, the 

resources (vessels and technicians) are also only allocated to the corresponding wind farm. 

Additional experiments were carried out to calculate the cost saving made by implementing 

the multiple model. Dataset G1 is used in this experiment with a little amendment. We 

increase the duration of weather windows for vessel V3 given in Table 4 for periods 1 and 2 

from 7 hours to 12 hours. This is to increase the chance that the feasible optimal solution can 

be obtained if the model is solved separately for each single model.  

Table 10 presents the dataset configuration when the model is solved separately for each 

single model. As Dataset G1 includes three wind farms and two O&M bases, we divide OM2 

into two O&M bases namely OM2a and OM2b. OM1 only serves wind farm 1 (WF1) 

whereas OM2a and OM2b are allocated to WF2 and WF3 respectively. The table also shows 

that OM1 has two vessels while OM2a and OM2b have only one vessel. The number of 

technicians for each skill type available in OM2a and OM2b is half of the one in OM2 (i.e. 6 

technicians). The weather window for each vessel and each period is also given in Table 10. 

As the model will be solved separately, there are three single problems that need to be 

addressed with the total cost calculated by summing up the cost obtained from each problem. 

Ten instances (sets of turbines) of Dataset G1 are also used in this experiment.  

Table 10. Dataset configuration for single wind farm and O&M base model 

O&M 
Number of Technicians Wind 

farm Vessel 
Weather Window (hours) 

Type 1 Type 2 Type 3 Period 1 Period 2 Period 3 

OM1 6 6 6 WF1 
V1 6 6 12 
V2 12 12 12 

OM2a 3 3 3 WF2 V3 12 12 12 
OM2b 3 3 3 WF3 V4 12 12 12 

 

Table 11 shows the comparative analysis between multiple and single models, where the 

objective function value (total cost), CPU time (in seconds), and %Dev (deviation from the 

results of the single model to the multiple ones) are given.  

29 



Table 11. Comparison of results between the multiple and single models 

Instance 

multiple model 
 

single model 
 

Saving 

 
OM1 serves WF 1 

 
OM2a serves WF 2 

 
OM2b serves WF 3 

 

Total Solution 

(OM1+OM2a+OM2b)  

Z 
CPU 

time (s)  
Z 

CPU 
time (s)  

Z 
CPU 

time (s)  
Z 

CPU 
time (s)  

Z 
CPU 

time (s)  
Cost %Dev 

#1 35,944.17 718.78 
 

12,683.69 144.34 
 

10,559.94 3.61 
 

16,055.94 11.84 
 

39,299.57 159.80 
 

3,355.40 9.34 

#2 31,378.89 258.85 
 

10,000.42 103.18 
 

13,600.63 2.32 
 

12,033.73 6.53 
 

35,634.78 112.03 
 

4,255.89 13.56 

#3 32,680.80 183.13 
 

12,380.20 42.73 
 

NF - 
 

11,408.92 13.17 
 

NF - 
 

NF - 

#4 28,770.38 579.89 
 

9,592.68 331.37 
 

8,986.75 8.52 
 

15,385.18 4.10 
 

33,964.61 344.00 
 

5,194.23 18.05 

#5 28,068.42 249.75 
 

10,178.69 110.29 
 

9,290.87 3.23 
 

10,572.14 4.77 
 

30,041.69 118.29 
 

1,973.28 7.03 

#6 33,795.43 134.31 
 

11,822.31 30.57 
 

NF - 
 

NF - 
 

NF - 
 

NF - 

#7 27,499.47 559.84 
 

9,909.68 125.52 
 

9,040.84 9.08 
 

10,476.79 30.87 
 

29,427.31 165.47 
 

1,927.84 7.01 

#8 32,036.04 254.39 
 

12,412.67 21.34 
 

8,398.74 2.71 
 

14,480.66 7.03 
 

35,292.07 31.08 
 

3,256.03 10.16 

#9 27,392.17 797.20 
 

9,140.52 51.76 
 

11,061.70 2.75 
 

12,758.18 33.94 
 

32,960.40 88.45 
 

5,568.22 20.33 

#10 30,517.21 286.07 
 

8,807.03 157.27 
 

NF - 
 

12,637.36 5.33 
 

NF - 
 

NF - 

Average 488.39 
           

145.59 
  

12.21 
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In this experiment we set the maximum number of turbines that can be visited by a vessel (η) 

to 5 as this value provides the optimal solutions for the multiple model. In Table 11, the 

solutions for each single problem along with total solution for all single problems are 

provided. The table shows that in instances 3, 6, and 10 the feasible solution cannot be 

obtained (infeasible solution – NF) when the problem is solved separately. This is due to the 

lack of resources needed in an O&M base to serve an offshore wind farm. This disadvantage 

can be overcome by implementing the multiple model where feasible optimal solutions can 

be obtained by sharing resources to maintain wind turbine in several wind farms. Table 11 

also reveals that implementing the multiple model instead of the single model separately will 

also reduce the maintenance cost by 12.21% on average (calculated based on the results with 

feasible solutions).  However, the computational time (on average) needed to solve the 

multiple model is more than three times compared to the one to solve all single problems. 

This is due to the fact that the number of possible routes for a vessel for visiting wind 

turbines in the multiple model is higher than in the single model. 

 

6. Conclusion and suggestions 

In this paper, we propose an optimisation model and a decomposition solution method 

for maintenance routing and scheduling in offshore wind farms. A mathematical model for 

selecting the optimum route configuration is developed to minimise the total cost comprising 

travel, technicians, and penalty costs. An algorithm incorporating a MILP model for 

generating all feasible routes is also proposed. The algorithm explores all combinations of 

turbines that are feasible to be serviced in a period and finds the optimal routing for the 

vessels to visit those turbines.  

The proposed approach was tested on two types of datasets. The first one is the existing 

dataset from the literature provided by Dai et al. (2015), whereas the second one is randomly 

generated. The computational experiments on the existing dataset show that the proposed 

approach outperforms the method proposed by Dai et al. (2015). The proposed method 

obtained the optimal solutions in a relatively small computational time. The new datasets are 

generated for evaluating the proposed method to solve the enhanced model where multiple 

wind farms, multiple O&M bases, and the number of each  technician type available at each 

O&M base are considered. The newly generated dataset is relatively hard to solve, and based 

on computational experiments, the proposed method required more time to obtain the optimal 
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solutions on this dataset than on the less challenging data set of Dai et al. (2015). Additional 

experiments are also carried out to assess the advantage of implementing the model for 

multiple wind farms and O&M bases compared to the model for single wind farm and O&M 

base. Based on the computational experiments, the proposed model (for multiple wind farms 

and O&M bases) not only gives a cost saving of 12.21% on average, but also provides 

optimal feasible solutions when the feasible solution cannot be found in the single problem 

(one wind farm and one O&M base) due to lack of resources (vessels and technicians). 

There are a number of possible extensions to enhance the model to make it more 

applicable to both offshore wind farms in operation and under development. For larger wind 

farms and clusters of wind farms, one could investigate metaheuristic techniques to solve 

relatively larger maintenance routing and scheduling problems. For far-offshore wind farms 

and clusters of these, the scheduling and routing of Service Operation Vessels (SOV) or other 

"mother vessels" staying offshore for multiple days becomes more relevant. One challenge is 

coordinating the operation of such vessels with the use of daughter vessels, ordinary CTVs 

and possibly also helicopters. Another logistics solution for far-offshore wind farms, namely 

offshore accommodation platforms serving one or a cluster of wind farms, can on the other 

hand be represented in the proposed model without the need for any extensions. Extended or 

similar models could also include possible safety constraints specific to the offshore logistics 

for a given offshore wind farm. Furthermore, the model could also be extended to include the 

grouping of the maintenance tasks and number of turbine visits as decision variables, thus 

allowing "opportunistic" maintenance scheduling and an even more efficient utilization of the 

resources. Including revenue losses in the penalty costs to penalize preventive maintenance 

during good wind conditions would also be a promising extension of the model to further 

improve the maintenance schedule. 

One major challenge for application as an operational decision support tool for a real 

offshore wind farm is the uncertainty and variability associated with weather conditions. 

Stochastic constraints such as weather condition uncertainty could also be taken into account 

in the model. Considering also the experience of the CTV crew on the local conditions within 

the wind farm could also improve the applicability of this optimisation model. 
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