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ABSTRACT

Insufficient support and isolation of rotating and non-rotating shipboard equipment and instruments may
cause damage to the components or the ship itself. Reduction of noise emissions to the ship's hull and
protection of equipment from outside disturbances may be attained through isolator mounting systems.
The objective of this thesis is to investigate and analyze the effects of substituting carbon fiber reinforced
polymer (CFRP) for use in the structural mounts on rotating marine diesel engines and on sensitive, non-
rotating Electronic Chart Display and Information Systems (ECDIS). The high specific stiffness of CFRP
make it an interesting candidate for mounting material substitution. The shipboard components were
modeled with mounts made of steel, rubber and CFRP and their step response, impulse response and
transmissibility behavior were analyzed. It was concluded that the choice in appropriate mounting
materials depends on the application, but CFRP was found in many cases to display similar vibration
isolation behavior to steel while being much less dense.
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Introduction

The structural mounting systems for shipboard equipment are an important part of a

ship's design. A well-designed mounting system will function as a damper and reduce vibrations

from the machinery and shock from external disturbances.

Many ships frequently undergo sudden, impulsive forces or shocks that result in a sudden

change in velocity. These shocks could be caused by rough seas, a collision, or an explosion

elsewhere aboard the ship. In order for the shipboard equipment to remain operational in the case

of large shocks, a combination of robust mechanical equipment design and a damping mounting

system may be incorporated to isolate the un-wanted vibrations and keep their effects under

control. The concept in this situation is called isolation and the goal of the mounting system is to

reduce the motion transmitted from the hull of the ship to the instrument and therefore keep the

displacement at a minimum [1].

Another function of the mounting systems of shipboard machinery is to reduce the noise

emitted from the ship into the surrounding water. Such vibrations are caused by machinery with

rotating parts, such as pumps and engines and may be traced by enemy radar or missiles. The

concept in this situation is called transmissibility and the goal of the mounting system is to

reduce the force transmitted from the rotating component to the hull of the ship.

Commercial ships and military-associated ships have different needs with respect to the

mounting structures of their machinery. Both types need protection via isolation of their sensitive

instruments from external disturbances, but military ships typically need to be capable of

withstanding larger impulses. Transmissibility can be a security threat for military ships, because

it makes them more easily detected by enemy ships. In addition, on any type of ship vibrations



caused by insufficient damping of rotating components can cause discomfort for those on board

and be undesirable for general ship maintenance. According to military specifications, most

shipboard installations on naval ships must be tested on their ability to withstand shock loadings

which may be incurred during wartime service [2].

This thesis will investigate the substitution of carbon fiber for materials used in current

mounting systems including steel and rubber and how the material properties of each affect

transmissibility and isolation of vibrations. Table 1, below, shows the fixed values of the

Young's moduli and densities used in this thesis for comparative purposes.

Table 1: Material Properties of Mounting Materials

Young's Modulus Density

(GPa) k

Carbon Fiber 150 1600
Reinforced

Polymer

Steel 210 7800

Rubber 0.1 1100

Note that the Young's modulus of rubber assumes small strain and that the Young's modulus of

CFRP may vary greatly with the orientation of the fibers. CFRP was chosen for this study

because it is rarely used as an isolator pad and its high strength to density ratio make it an

interesting candidate.

The two shipboard machinery components modeled in this thesis were chosen such that

both rotating and non-rotating components were represented as well as large and small masses.

Their masses, areas and frequencies are shown in Table 2, on the next page.



Table 2: Component Characteristics

Marine Diesel Electronic Chart Display
Engine and Information System

(ECDIS)

Mass (kg) 2000 200

Area in contact 3 2
with mount

(M 2 )
Rotating 2000 N/A

Frequency
(rpm)

Marine diesel engines have almost completely dominated the propulsion market for

merchant ships. They are an extremely critical component on any ship and each has an operating

frequency determined by its stroke cycle. For this thesis, mass, area and frequency parameters

fitting of a mid-size diesel engine were chosen [3].

ECDIS is an informational system which must be approved by the International Maritime

Organization and is present on most modem ships that is capable of automatic functions such as

route planning, route monitoring and route documentation. It may also include safety functions

such as tracking tide and current information and collision avoidance [4]. Like any intricate

instrument, the ECDIS contains fragile parts which benefit from an isolating mounting system.

ECDIS's can be tabletop or floor mounted. For this thesis, mass and area parameters fitting of a

fairly large, freestanding ECDIS were chosen.



Analytical Approach

The shipboard components and their mounting systems can be modeled as a simple mass,

spring and dashpot system shown below in Figure 1, where m is the mass of the component, k is

the stiffness of the mounting material and c is the damping coefficient of the system.

m

k c

Figure 1. Mass-spring-dashpot model used to represent the component and mounting pad system

The mass of the spring, which in this case is the structural mount, can be accounted for

using an energy approach to solve for the effective mass of the system, meff. To simplify the

process, it can be assumed that the mount has an evenly distributed mass and a discrete stiffness

[5]. After integrating over the length of the spring, the kinetic energy of the system, T, can be

written as

T = 1(M + x2 (1)

where p is the density of the mounting material, A is the area of contact between the component

and the mounting pad, L is the thickness of the mounting pad and i is the velocity of the

component. It can then be concluded that the effective mass is given by

meff =m+ (2)
3



The equation of motion of this system is derived to be

y = 1000000 * e 2 eff * sin ( k c 2  * t (3)

where y is the vertical displacement of the component. The derivation of this equation is shown

in detail in "Vibration and Shock Isolation: Performance of Different Isolator Pads with Focus on

Polymeric Composites," a paper by James H. Williams, Jr. and David Harry Hawes [6].

Before moving forward with analysis of the system, several assumptions must be made.

First, the damping ratio ,(, of which c is a function must be decided upon. The damping ratio

characterizes the frequency response of the system. It is not a material property so a reasonable

value of C=0.3 may be chosen and kept constant for all cases. A thickness, L, for the isolator

pad, which affects the mass of the system, must also be chosen. Again a reasonable value of L =

0.1 m will be used for each case.

An important intermediate value used to create the plots of interest is the system's natural

frequency, wo which is defined as

Oo = -T- (4)eff(4

A system's natural frequency is its frequency of unforced vibrations.

Settling time is one of the parameters of interest for the systems and is defined as the

amount of time it takes for the response to reach, and stay within, 2% of its final value. It can be

calculated as

T =In (0.02) (5)
Oo

As mentioned previously, the two concepts of transmissibility and isolation are important

in the analysis of the structural mounts. Transmissibility is applicable when the component has



vibratory motion that could be transmitted to the base and is defined as the ratio of the maximum

transmitted force to the maximum excitation force. Isolation is applicable when the vibrations of

the base are being transmitted to the component and is defined as the ratio of the maximum

transmitted displacement to the maximum excitation displacement.



Results

Using the derived equations of motion and the component and material parameters given

in Tables 1 and 2, the behavior of the systems under various conditions can be graphed and

analyzed using MATLAB software.

Impulse Response

Figures 2 through 5 show the systems' impulse responses. An impulse in this case is

defined as an infinitely large, but infinitesimally brief spike in the input function. A key

parameter of interest is the maximum vertical displacement.

Impulse Response
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Figure 2. Vertical displacement of the engine as a function of time in response to an impulse. Only rubber is visible
on this scale



impulse Response
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Figure 3. Close-up version of vertical displacement of engine as a function of time. CFRP and steel are now visible
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Figure 4. Vertical displacement of ECDIS as a function of time in response to an impulse. Only rubber is visible on

this scale
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Figure 5. Close-up version of vertical displacement of ECDIS as a function of time in response to an impulse. Steel

and CFRP now visible.

Table 3 shows the maximum vertical displacement extracted from the impulse response

graphs.

Table 3: Maximum Displacement of Impulse Response

Maximum Displacement (m)

Engine with Rubber Mount 0.267

Engine with CFRP Mount 6.8le-3

Engine with Steel Mount 5.07e-3

ECDIS with Rubber Mount 0.908

ECDIS with CFRP Mount 0.0221

ECDIS with Steel Mount 0.0122



Step Response

Figures 6 through 9 show the systems' response to a step input with a step size of 0.005

meters. The data for these graphs has been non-dimensionalized and normalized about the

settling time for CFRP. A key parameter of interest is the settling time, as defined in Equation

(5).

x 10 Step Response

10 20 30 40 50

Time/Tcfrp
Figure 6. Step response of the engine. Rubber's data is the most visible.
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Figure 7. Close-up of step response of the engine with CFRP and steel mounts.

x 10 Step Response
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Figure 8. Step response of the ECDIS. Rubber's data is most visible.

x 10
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Figure 9. Close up of step response of ECDIS with CFRP and steel mounts

Table 4 shows the settling time of the components with different mounting materials, calculated

using equation (5).

Table 4: Settling Time

Settling Time (s)

Engine with Rubber Mount 0.011

Engine with CFRP Mount 2.85e-4

Engine with Steel Mount 2.73e-4

ECDIS with Rubber Mount 4.80e-3

ECDIS with CFRP Mount 1.3le-4

ECDIS with Steel Mount 1.70e-4



Transmissibility

Figures 10 and 11 show the plots of transmissibility as a function of the ratio of

excitation frequency to natural frequency for the case of the diesel engine.

Transmissibility
2
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1. 6 Rubber

1.6 -- Steel
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Excitation Frequency/Natural Frequency X 10

Figure 10. Transmissibility of engine vibrations through different mounting materials as a function of frequency.
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Figure 11. Close-up of transmissibility of engine vibrations through a rubber mounting pad as a function of

frequency.

Table 5 shows the excitation frequencies that correspond to resonance in transmissibility.

They are calculated using the peak ratio extracted from the data and the known natural

frequencies of the engine and mounting pad systems.

Table 5: Resonant Excitation Frequencies

[iHzi [rpm]

Engine with Rubber Mount 4.4e6 2.6e8

Engine with CFRP Mount 1.9e9 1.2e11

Engine with Steel Mount 2.1e9 1.3e11

The peak amplitude of transmissibility is not relevant since it depends on the damping ratio of

the system which was chosen arbitrarily and set equal for all mounts.



Discussion and Conclusions

The choice of mounting material can affect the behavior of a shipboard mounting system in

different ways depending on the component being mounted and the types of vibrations to be

encountered.

Maximum Amplitude of Displacement

When deciding on a mounting system, maximum amplitude of displacement is an

important factor to be considered. A large displacement can interfere with a sensitive

instrument's readings and/or transmissions. Displacements can also be very damaging to the

shipboard components themselves. Even large, seemingly insensitive machinery can malfunction

if parts become misaligned, which can happen when small displacements are propagated. Figures

2 through 5 show the impulse response of both the engine and the ECDIS with each material

used for mounting. For both components considered in this thesis, the impulse response of an

object with a steel mount results in a smaller maximum displacement than that of an object with

a CFRP mount. When using rubber, however, the maximum displacement is several orders of

magnitude larger than either steel or CFRP. These differences are due largely to the low

Young's modulus of rubber. The light ECDIS system has maximum amplitudes of several times

greater than the corresponding cases of the much heavier engine. The exact values recorded in

Table 3 are only relevant if our assumed value of the damping ratio, C, is accurate. Therefore,

their relative magnitudes are of more importance.



Settling Time

Another consideration in the design of mounting systems is the settling time of an object

in response to a step input. Since it is not a realistic goal to achieve complete isolation from

external forces, it is important for many instruments to recover from disturbances at a rapid rate.

This can be accomplished by having a mounting system with a short settling time. In the case of

the diesel engine, as shown in Figures 6 through 9 and Table 4, a steel mounting system results

in a higher system natural frequency than CFRP and therefore a shorter settling time. This may

be attributed to the large stiffness of steel.

In the case of the ECDIS, a CFRP mounting system results in a higher natural frequency

and the shortest settling time. This can be attributed to the lower density of CFRP, which is more

influential in the ECDIS case because of its smaller mass.

For both the engine and the ECDIS cases, a rubber mounting system resulted in a much

longer settling time than the other materials.

Aside from the discussed material properties, other factors that can reduce the settling

time of the component include decreasing the thickness of the mounting pad, decreasing the

mass of the component, increasing the surface area between the component and the mounting

pad and increasing the damping ratio.



Velocity and Acceleration

Depending on the shipboard component, it may be important to control the velocity

and/or acceleration of the object in addition to its displacement. For the cases studied in this

thesis, steel and CFRP mounting systems resulted in systems that oscillated with similar speeds

and accelerations. Components with rubber mounts on the other hand oscillate much more

slowly and with less acceleration. This can be a considerable advantage in components that

contain extremely fragile parts which are less likely to break at low accelerations.

Transmissibility

For rotating or oscillating components, transmissibility must be taken into account in the

system mounting design. As the figures in the results section show, rubber isolates well at lower

excitation frequencies. Neither CFRP nor steel isolate well at low frequencies, with the resonant

frequency of CFRP slightly lower than that of steel. For the marine diesel engine, the operation

frequency of 2000 rpm is low enough that any of the three discussed materials would neither

propagate nor isolate vibrations by a significant amount. Increasing the thickness of the

mounting pad will shift the frequencies to the right, resulting in better isolation at lower

frequencies. The operating frequency of the shipboard component in question should be

considered when choosing a mounting system design, to ensure that it does not approach the

resonance frequency of the mounting material and incur resonant disaster.



Other Considerations

In addition to the vibration isolation and transmissibility behavior, density of the material

may be taken into account in the design of mounting systems. A low density material may be

desirable for vessels on which weight is a concern. CFRP has the highest stiffness to density

ratio of the discussed materials. Another possibly important material property is the electrical

conductivity of the mounting pad. Steel is the most conductive, followed by CFRP and then

rubber. A non-conductive material such as rubber may be appealing for safety reasons. Thirdly,

the designer may look at the thermal conductivity of the materials. Again, rubber is the least

conductive. Finally cost will realistically always factor in to the choice in material and CFRP is

currently the most expensive followed by steel and rubber, but this gap is subject to change with

time as well as the quality of the materials considered.



Recommendations

There is no one material that emerges as the clear best performer for the systems in this

thesis. The choice in mounting material depends greatly on the application and constraints of the

design. When CFRP is compared with the currently used mounting materials, it achieves very

similar maximum displacements, settling times and resonant frequencies to those of steel. Since

CFRP also has a density which is closer to that of rubber, it provides an interesting middle

ground for mounting material design.

In further research, it may be interesting to analyze the effects of changing the shape

and/or area of the mounting pad. Furthermore, since materials with low stiffness tend to isolate

better at lower frequencies, it may be worth investigating changing the orientation of the fibers in

CFRP, such that their Young's modulus decreases which in turn decreases the stiffness without

changing the material density.
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