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Magneto-electric effect in multiferroics implies that an applied magnetic field induces an electric 

polarization change in a multiferroic solid and vice versa, an applied electric field modifies its 

magnetization. The magneto-electric effect is a powerful feature of multiferroics and has attracted huge 

interest due to potential technological applications. One such possible application is the multicaloric 

effect in multiferroics. However, a closer examination of this effect and its derivation leads to a 

paradox, in which the predicted changes in one of the order phase at a constant applied field are due to 

the excitation by the same field. Here this apparent paradox is first explained in detailed and then 

solved. Understanding how electric and magnetic fields can be induced in multiferroic materials is an 

essential tool enabling their theoretical modelling as well as facilitating the introduction of future 

applications.  

 

 

1. Introduction  

 

Multiferroics are very interesting materials with multi-functional properties. 

Following the initial surge in interest in the field of magneto-electric multiferroics in 

1950s and 1960s [1-4], the topic has lost somehow interest with the scientific 

community. Recently, the interest in magneto-electric multiferroics grew substantially 

[5] because of the realization of their potential for technological applications. Wood 

and Austin summarized many possible applications of multiferroics in an article 

published in 1973 [6]. A more recent comprehensive review article detailing possible 

modern applications of multiferroics was published by Vopson in 2015 [7]. One such 

recently proposed application of multiferroics is their utilization to ultra-efficient solid 

state refrigeration via a new effect, characteristic only to multiferroics, the 

multicaloric effect [8]. The recently discovered multicaloric effect [8] is a significant 

breakthrough because it combines the principles of electrocaloric, magnetocaloric and 

even elastocaloric effects into a unified process with enhanced caloric properties [9]. 

The multicaloric effect is defined as the adiabatic temperature change in multiferroics 

activated by a single excitation (electric, magnetic or elastic) and it is mathematically 

described by the general equation of the giant multicaloric effect:  
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where: Xi = Magnetization (M), Polarization (P), Volume (V), Strain (),… are the 

independent variables; xi  = magnetic field (H), electric field (E), mechanical stress 

(),… are the generalized forces / fields thermodynamically conjugated to the 

generalized variables / displacements Xi; i is the  generalized susceptibility in the 

linear approximation ( Xi / xi) = i; ij is the generalized linear magneto-electric 

coupling coefficient ij = ji =(Xj / xi)T,xji = (Xi / xj)T, xi j;  T is the operation 

temperature and it is a constant;  C is defined as the heat capacity of the system at the 

operation temperature, T, also assumed constant, but it is acknowledged that in reality 

this is a strong approximation as the heat capacity has some non-negligible variation 
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with the applied fields. A full derivation of relation (1) is given in [9], showing that 

the cross couplings between displacements and fields / forces play an important role 

in the multicaloric effect. For a finite adiabatic change in the applied external field xi, 

a variation in temperature T is produced resulting in the enhancement of the total 

temperature change T due to the cross coupling additional terms ij/i(Xi / T). If 

(1) is applied to the particular case of a multiferroic material containing electric and 

magnetic order phases, the electrically and magnetically induced multicaloric effects 

are described by:  
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However, the derivation of relations (1)-(3) in ref. [8, 9] appears to contain an 

apparent paradox, which would invalidate the proposed multicaloric effect. This 

apparent paradox and its solution will be discussed in the next sections. The 

discussion is limited to the particular case of a multiferroic material containing 

electric and magnetic order phases, for which multicaloric effects are described by (2) 

and (3).   

 

2. The paradox  

 

Applying an external E field to 

a dielectric polar material has 

the effect of changing its 

electric polarization. If the 

material is a multiferroic, the 

effect of the E field application 

is to modify its electric 

polarization and 

magnetization, according to 

the magneto-electric coupling 

effect. The converse magneto-

electric effect is also valid, 

when a magnetic field applied 

to a multiferroic results in 

changes of not only 

magnetization of the material, 

but also its electric 

polarization.    

The magneto-electric effect is 

an undisputed fact, proven 

experimentally in single phase 

[10] and composite 

multiferroics [11-13]. 

However, the physical 

explanation of the effect is not 

so developed. There are indeed 

Figure 1. Schematic representation of the magneto-

electric (ME) effect in multiferroics. A) Multiferroic 

specimen with ovals indicating electric dipole moments 

and arrows indicating magnetic moments. B) Electrically 

activated ME effect showing the spontaneous occurrence 

of the ME induced Hme field. C) Magnetically activated 

ME effect showing the occurrence of the ME induced 

Eme field.  
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a number of microscopic models attempting to explain the magneto-electric coupling, 

but they have usually very limited applicability in terms of crystal symmetries, or the 

nature of ferroelectric phase in the multiferroic. Thermodynamically, the magneto-

electric coupling coefficient results immediately from Maxwell equations applied to 

the differential Gibbs free energy of a multiferroic system, without any reference to 

possible microscopic mechanisms responsible for the coupling [7]. One way of 

approaching this problem is to regard the magneto-electric effect as the result of 

fictitious fields induced spontaneously in the material. That is equivalent to saying 

that the magnetization changes in a multiferroic in response to an applied electric field 

are due to a spontaneously induced magnetic field inside the material. The converse 

effect also produces a spontaneous electric field inside the material as a result of the 

application of a magnetic field. These cases are graphically represented in Figure 1. 

A) and B). The introduction of the fictitious field is critical for the derivation of 

relations (2) and (3).  

Let us now examine this approach for the electrically induced magneto-electric effect, 

which is mathematically expressed in integral form as: 

 

dEdM e           (4) 

  

where e is the electrically induced magneto-electric effect. However, magnetization 

can be expressed in terms of linear change with a magnetic applied field as:  

 

dHdM m0          (5) 

 

From the two relations, one could easily deduce the induced magnetic field by an 

electric applied field in a multiferroic as:  
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Relation (6) and its electrical equivalent have been used in [8] to derive the 

multicaloric effect equations (1) and (2). However, at a closer inspection it appears 

that relation (6) is incorrect. Let us write the differential expression of the 

magnetization, talking in account the independent variables and constants:  
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From (7), the correct expression of relation (4) is written by talking in account that the 

change in magnetization occurs at constant H and T is:  

dEdM eHT ,         (8) 

where e is the electrically induced ME coupling coefficient. From (7), we can also 

extract the change in magnetization that occurs at constant T and E, which is the 

equivalent of expression (5):  

dHdM m

ET 0,          (9) 
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If we now recombine (8) and (9) to obtain relation (6), we get: 

 dEdMdM eHTET  ,,        (10) 

 

Relation (10) leads to a paradox, in which the change in magnetization obtained under 

constant electric field is related to the change in the electric field, dEdM eET , , 

which is clearly erroneous, as this would be zero. This fallacy would make relation (6) 

invalid, indicating that there can be no induced magnetic field by an electric field and 

vice versa in multiferroics. It would also invalidate the Multicaloric Effect equations 

(1) and (2) published in [8].  

 

3. The solution to the paradox  

In classical terms, at constant temperature, stress and other environmental conditions, 

magnetization can only be modified by the application of a magnetic field. Therefore, 

the change in magnetization dM in multiferroics due to the application of the electric 

field dE can be attributed to a fictitious magnetic applied field, induced by the 

magneto-electric effect dHme. This field must not be confused with dH used in relation 

(7), as this field results from the magneto-electric coupling and it is induced internally 

by the application of the E field. Introducing the fictitious H field is very common in 

other well-established theories. For example, in the molecular field theory of 

ferromagnetism, Weiss treated ferromagnets as paramagnets by postulating the 

existence of an additional fictitious magnetic field whose origin is not given. Weiss 

[14] called this a molecular field [P. Weiss, L'Hypothese du champ Moleculaire et de 

la Propriete Ferromagnetique, J. de Phys. 6, (1907) pp. 661-690]. Neel also used a 

similar approach when he introduced a fictitious fluctuating magnetic field in order to 

explain time dependent and relaxation phenomena in magnetic materials. Moreover, 

introducing a fictitious magnetic field in order to explain the magnetization change 

due to an applied electric field in multiferroics, is not a new idea. Rado et al. has 

introduced this idea in his 1961 papers [2,3], which were some of the very first studies 

of the magneto-electric coupling in Cr2O3. However, Agyei & Birman wrote one of 

the best papers detailing and categorizing various conditions of the occurrence of a 

spontaneous internal E or H field due to the changes in P or M as a result of the 

application of H or E, respectively [15].  

With this in mind, let us re-write relation (7), by taking into account the applied 

magnetic field and the induced magnetic field due to the magneto-electric effect. This 

is achieved by replacing dH with: 

meapp dHdHdH         (11) 

Relation (11) shows that the acting magnetic field on the multiferroic is a combination 

of the externally applied magnetic field, Happ and the induced magneto-electric field, 

Hme, where the minus sign indicates that the induced magneto-electric field is opposed 

to the applied field as dictated by Newton’s 3rd law, or its extension to magnetic 

phenomena, Lenz’s law. Using (11), relation (7) should then be written as: 
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Electrically induced magneto-electric effect implies that there is no external applied 

magnetic field, or the magnetic applied field is constant (i.e. change of M due to E 

applied only). Hence, dHapp = 0 and the third term in (12) vanishes. On the other 

hand, the induced field dHme is the proposed fictitious field that occurs spontaneously 

due to the application of the E field (see figure 1. B). According to Lenz’s law, the 

strength of the induced field dHme is exactly as large as needed to account for the 

change in magnetization M via the well-known magneto-electric effect due to the 

application of E. This is also the meaning of the negative sign in (11). Therefore, at 

constant T and H (or zero applied magnetic field), the change dM should be zero as 

the effect of the applied E field on M is cancelled out by the occurrence of the induced 

field. Relation (12) is then:  
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Relation (13) leads to: 
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or re-written as: 

ME

m

e dHdE  0         (15) 

Finally, from (15) we re-obtain relation (6) of the induced magnetic field due to the 

application of an electric field in a magneto-electric multiferroic:  

dEdHdH
m

e
ME





0

        (16) 

Relation (16) is identical to (6). The same formalism can be easily applied to the 

converse magneto-electric effect leading to induced internal electric field due to the 

application of a magnetic field:  

dHdEdE
e

m
ME





0

        (17) 

It is important to mention that this is a simplified thermodynamic approach where the 

vector and tensor components have been neglected. For example the magneto-electric 

coupling coefficient is, strictly speaking, a second rank tensor with 9 components, αij. 

In most cases the crystal symmetry and/or experimental geometry reduces 

significantly the magneto-electric coupling tensor to one or a few dominant 

components, but the applicability of these relations must be strictly considered in 
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terms of E and H field vector components and their relationship to the sample 

geometry, crystal symmetry and directions of polarization and magnetization. This is 

particularly important when an antiferromagnetic phase exists in the multiferroic or 

when the sample geometry displays strong spatial variations.  

4. Conclusions  

Changes of electric polarization due to the application of a magnetic field, or 

magnetization due to the application of an electric field in a multiferroic material, are 

thermodynamically predicted to occur via the magneto-electric effect. This is well 

established and there is strong experimental evidence of this effect in both single-

phase and composite multiferroics. The magneto-electric coupling mechanism in 

strain-mediated composite multiferroics is very well understood. However, despite 

numerous theoretical and experimental studies, the physical mechanisms responsible 

for the magneto-electric coupling effect in single-phase multiferroics are not fully 

understood. In this article it has been shown that a useful tool is to assume that these 

ferroic order changes are the result of fictitious induced electric and magnetic fields. 

This approach leads to useful relations linking the excitation field to the induced field 

in multiferroics, which in turn can be used to predict new effects such as the 

multicaloric effect, or to theoretically model the properties of multiferroics. The 

apparent contradiction of these induced fields is also discussed in detail and solved 

within a thermodynamic framework.    
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