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Abstract

The objective of this paper is to propose an approach to support group multicriteria classification. The approach is
composed of three phases. The first phase exploits the knowledge provided by each decision maker to individually
approximate the decision classes using rough approximation. The second phase seeks to combine the outputs of
individual approximation phase into a collective decision table by using an appropriate aggregation procedure. The
third phase uses the collective decision table in order to infer a set of collective decision rules, which synthesize
the judgements and perspectives of the different decision makers and to permit the classification of all decision
objects. The proposed approach relies on the Dominance-based Rough Set Approach (DRSA), which is used at two
different levels. First, the DRSA is used during the first phase to approximate the input data relative to each decision
maker. Second, the DRSA is used during the third phase to approximate the collective decision table and generate
the collective decision rules. This paper presents the theoretical foundation of the proposed approach, three case
studies using real-world data and a comparative study of recent similar proposals.

Keywords: Multicriteria classification, Ordinal classification, Rough approximation, Dominance-based rough set
approach, Group decision-making.

1. Introduction

The multicriteria classification is a fundamental problem of multicriteria decision-making [36]. The multicriteria
classification can be stated as follows: given a set of objects described by a set of criteria (attributes with preference-
ordered domains), assign these objects to some pre-defined decision classes or categories, such that each object is
assigned to exactly one class. In comparison to other classification methods and techniques (for instance in statistical,
data mining, pattern recognition and machine learning), the multicriteria classification has two main characteristics
[21][62]: (i) the decision classes are defined in an ordinal way; and (ii) the decision objects are evaluated over a set
of criteria meaning that the decision model should have some form of monotonic relationship with respect to the
criteria. Due to the first point, the multicriteria classification is often referred to ordinal classification or sorting in
the literature. In the rest of the paper, the three terms will be used interchangeably.

A large number of real-world case studies of multicriteria classification problems in different domains are
reported in the literature (e.g., [40][70]). In practice, these decision problems often imply several decision makers
having conflicting objectives and judgements. However, most multicriteria classification methods assume a single
decision maker or a homogenous group of decision makers that acts as a single decision maker. Fortunately, several
new methods and decision support systems for group multicriteria classification problems are now available in the
literature, including [10][15][17][24][35][37][38][42][47][48]. However, most of existing proposals fail to resolve
several group decision making problems shortcomings. Indeed, most of them use either input or output based
aggregation strategy. These extreme strategies have some problems as discussed in [14]. In addition, a large number
of previous proposals assume that all decision makers have the same “power” and when “weights” are used, they
often reflect the hierarchal levels of the decision makers. Another important issue that has not been correctly
addressed in the existing works concerns the aggregation rules used to combine individual data and knowledge.
In fact, the most used solutions to deal with this issue are either to combine these information informally based
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on discussion between the decision makers or, at best, using a weighted-sum as an aggregation rule that may lead
to compensation problems. An additional problem concerns the definition of preference parameters as required by
most of multicriteria methods. This is a very difficult exercise in practice which requires an important cognitive
effort to the decision makers. Additionally, the elicitation of parameters is more complicated in a group decision
context since involved decision makers may not agree on the values of the parameters. Finally, there is a lack of
efficient tools to support sensitivity analysis in group decision.

The objective of this paper is to propose an approach to support group decision in multicriteria classification.
The proposed approach contains three phases: (i) individual approximation, (ii) aggregation, and (iii) inference of
collective decision rules. The individual approximation phase exploits the knowledge provided by each decision
maker to approximate individually the collection of upward and downward unions of decision classes using the
dominating and dominated sets. The aggregation phase seeks to combine the outputs of individual approximation
phase into a collective decision table by using an appropriate aggregation procedure. The inference phase uses
the collective decision table in order to infer a set of IF-THEN collective decision rules in order to synthesize the
judgements and perspectives of the different decision makers and to permit the classification of all decision objects.
The proposed approach relies on the Dominance-based Rough Set Approach (DRSA) [26][27][56], which is used
at two different levels. First, the DRSA is used during the first phase to approximate the input data relative to each
decision maker. Second, the DRSA is used during the third phase to approximate the collective decision table and
generate the collective decision rules. The approach is illustrated in detail through one main case study relative to
credit worthiness of 28 European countries and to two other case studies related to heat islands exposition in the
Québec Metropolitan Community in Canada and the management of post-accident nuclear risk in the Southern
France region. The paper also includes a detailed discussion and justification of the different concepts used in the
aggregation procedure.

The approach proposed in this paper has several distinguishing characteristics. First, it adopts a mixed input-
output aggregation strategy to combine the judgments and perspectives of involved decision makers. The mixed
strategy allows taking advantages of both input and output aggregation strategies as explained in [14]. Second, the
“power” of the decision makers that measure the contribution of each one in the assignment of decision objects
to decision classes is computed based on the input data. As stressed in [14], the use of input data to deduce the
“power” of the decision makers seems generally to be more objective than the other weighting techniques. Third,
the assignment of decision objects to decision classes is based on the use of the majority principle and veto effect.
These notions are implemented through the concepts of concordance and discordance, which originated from Social
Choice theory and are now well established in multicriteria analysis. Fourth, it uses a subset of data to extract and
generalize the preferences of the decision makers. This idea has been proven to be very useful in practice (see, e.g.,
[33][49]). Fifth, the approach is enhanced with several tools in order to permit the comparison of the final results
obtained using different input parameters. This will substantially improve the effectiveness of the decision making
process and the successful implementation of the final solution (see, e.g., [35]).

The paper is organized as follows. Section 2 discusses related work. Section 3 presents the background. Section
4 introduces the approach. Section 5 details the aggregation procedure. Section 6 illustrates the approach through
a case study. Section 7 applies the approach to two additional cases studies. Section 8 provides rules to compare
different final results. Section 9 concludes the paper.

2. Related work

In this section, we first comment on the main characteristics of the DRSA (Section 2.1). Then, we discuss the
different extensions of DRSA to group decision making (Section 2.2).

2.1. The characteristics of the DRSA

The DRSA is a well-known multicriteria classification method that has been proposed by [26][27][56] to
overcome the shortcomings of the conventional Rough Sets Theory (RST) [51] in multicriteria classification. The
basic idea of DRSA is to replace the indiscernibility relation used in the classical RST with the dominance relation,
which is more appropriate for multicriteria decision-making. The DRSA has been successfully used in different real-
world decision problems including risk assessment [13], weed species identification [33], pollution risk assessment
of drinking water [43], nuclear risk assessment [12], knowledge management [54], service improvement [46],
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bankruptcy risk evaluation [28], customer satisfaction [30], sustainable planning strategies for farms [50], location
of undesirable facilities [1], metabolomics [4] and product mix [25].

The DRSA has some powerful characteristics that makes it attractive in real-world decision problems:

• there is no need of preference parameters, which reduces the cognitive effort required from the decision
makers;

• it produces IF-THEN decision rules, which are more simple and easily understandable by the decision makers,
especially those with no background in multicriteria decision making [6];

• it is able to deal with incomplete/missing attribute values (see [7][56]);

• it is able to detect and deal with inconsistency problems (see [19][58]);

• it uses a subset of data (as a learning set) to extract and generalize the preferences of the decision makers,
which minimizes the cognitive effort required from them.

The last point, concerning the use of a learning set as input, is adapted in several multicriteria classification
methods, including [8][20][23]. However, the main addition of DRSA compared to other multicriteria classification
methods, that are based on the use of a learning set as input (such as [2][3]), is the simplicity and the easily
understandable IF-THEN decision rules provided as output, while other methods have no such straightforward
interpretation [6].

There are several extensions to DRSA in the literature. The DRSA has been extended to deal with multicriteria
choice and ranking problems in [27][41]. The Variable Consistency Dominance-based Rough Set Approach (VC-
DRSA) [32] is a variant of DRSA that enables the relaxation of the conditions for assignments of objects to the
lower approximations by accepting a limited proportion of negative examples, which is particularly useful for large
decision tables. The Stochastic DRSA, which allows inconsistencies to some degree, has been introduced in [18].
In [5], the authors studied the classification of objects using decision rules in situation where it is covered by no
rule, exactly one rule and several rules. A parameterized DRSA to deal with interval-valued information systems is
presented in [67] and an incremental approach for maintaining approximations of DRSA when attribute values vary
over time is proposed in [45]. The authors in [61] provide a formal and unified framework to define and compute
inter-class reducts, intra-class reducts and constructs across the conventional RSA and the DRSA. Recently, the
DRSA is combined with the robust ordinal regression paradigm in order to obtain robust conclusions [39][57].
There are also several extensions of DRSA for group decision making, which will be briefly discussed in Section
2.2.

The DRSA is useful for dealing with ordered data or for ordinal classification problems with monotonicity
constraints. However, in some real-world decision problems, we may not know a-priori if such an ordering exists.
In this case, it may be necessary to use initially more traditional inference mechanisms in order to learn from the
data before applying DRSA. This topic is further discussed in [24][56]. There is also another solution which consists
in applying a transformation allowing to deal with non ordinal data in DRSA as in [6][63].

2.2. The DRSA extensions to group decision making

There are several extensions of DRSA to support group multicriteria classification. In two previous research
papers [13][14], we discussed and compared several proposals for group decision making with respect to several
criteria, including aggregation strategy (at the input level, at the output level, or mixed input-output), aggregation rule
(statistical, functional, rule-based techniques or by discussion), preference parameters requirement (criteria weights,
parameters, etc.), preference parameters elicitation technique (direct, indirect, mixed), stakeholder weighting (by
a mediator or an external person, based on the hierarchical levels of decision makers, using a dedicated method,
based on input data) and support of robust assignment. In this paper, we discus some extensions of DRSA to support
group decision-making.

The authors in [53] propose a three phase DRSA-based methodology for the identification of crucial knowledge.
Using this methodology allows to take into account the preferences of decision makers that can be different or even
contradictory while exploiting and managing their multiple points of view to evaluate knowledge, without using
a quantitative measuring approach. The methodology proposed in [53] requires, when inconsistency situations are
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identified, that the analyst conducts an in-depth discussion with the different decision makers in order to solve the
conflicts. This is a time-consuming and difficult task. For this purpose, the authors in [9] enhance [53]’s methodology
by proposing an argumentative multi-agent model based on a mediator agent in order to automate the resolution of
conflicts between decision makers.

Another extension of DRSA to support multiple decision makers is reported in [29]. In this paper, the authors
extend the lower and upper approximations and boundary concepts of DRSA. More specifically, they introduce
the concepts of downward and upward multi-union and mega-union. These new concepts are then used to define
lower and upper approximations for unions of classes. In [65], the authors present a rough set approach to group
decisions-making very similar to the work of [29]. To deal with the decision of multiple decision makers they
extend DRSA by introducing specific concepts related to dominance with respect to minimal profiles of evaluations
given by multiple decision makers. In particular, the authors characterize the conditions for a consensus attainable
by multiple decision makers considered as a whole. Such a perspective permits to handle interactions between the
decision makers.

A system that aggregates case-based linguistic decision rules using a hybrid of the DRSA and the Dempster-
Shafer theory of evidence is proposed for multicriteria sorting implying multiple participant in [15]. The method-
ology proposed in [15] can be organized in two phases. First, DRSA is employed to infer linguistic decision rules
that estimate the preferences of a few participants by means of their evaluations of representative case sets. Next,
Dempster-Shafer Theory is applied to aggregate the decision rules triggered by all participants’ evaluations of an
alternative, thereby generating an overall decision recommendation for the alternative. One main shortcomings of
[15]’s proposal is its complexity in the sense that it requires a solid technical and mathematical background in rough
approximation and Dempster-Shafer theory of evidence.

In [13], the authors propose a two-phase methodology to support groups in multicriteria classification problems.
The major addition of [13] is an aggregation procedure implementing the majority principle and veto effect—in
terms of aggregation rules—thus it allows obtaining consensual decisions. Furthermore, the contribution of each
decision maker to the collective decision is objectively measured by the quality of individual classification conducted
by this decision maker during the first phase. The proposal of [13] has been adopted in [54] to the case of binary
decision classes. In [11], the authors refine the aggregation procedure proposed in [13] by replacing the aggregation
rules by more simple and more advanced ones requiring only one parameter (namely, credibility threshold) instead
of two parameters (namely, majority and veto thresholds) in [13].

The paper [69] proposes a two-stage dynamic group decision making method for aggregating ordinal preferences.
The method permits to avoid two problems of group decision making in relation to ordinal preferences—namely,
difficulty of managing conflicting opinions and neglecting the power relationships between the preferences provided
by the decision makers. Although the proposal of [69] is not primary concerned by the extension of the DRSA to
group decision making, it is fruitful to mention that the authors are inspired by the principle of the DRSA in order to
define new support function associated with the Power Average operator used to combine the collective preference.
As argued by the authors, the use of DRSA’s idea permits to better cope with ordinal preferences given by the
decision makers. Additionally and as the support function is defined based on DRSA, the aggregation method can
be easily extended to other quasi-ordinal preference relations. Furthermore, the non-parameterized definition of the
support function (due to DRSA), provides a feasible method to determine the weights of each decision maker.

In [60], the authors present a generalization of the classical DRSA into multi-decision preference dominance-
based rough set model supporting a set of condition criteria and a set of decision classes. The basic idea of [60] is
to define two dominance relations, one on the condition criteria set and the other on the decision classes set, which
are then used to define the lower and upper approximations. The authors propose four versions of their decision
model, which are then applied to solve a multi-agent conflict analysis decision problem and improve the Pawlak
conflict analysis model [52].

Finally, it is important to mention that the approach proposed in this paper enhances the one proposed in [13].
First, this approach uses more advanced weighing system leading to more realistic and precise weights, as explained
in Sections 5.1. Second, it replaces the two assignment rules in [13] by a single assignment rule, which reduces the
number of required parameters and which is more appropriate for sensitivity analysis as illustrated in Section 6.4.
Third, the paper provides a detailed justification of the concepts used including the definition of decision makers’
weights (Section 5.1), the definition of the concordance power (Section 5.2), the definition of the discordance
power (Section 5.3) and the definition of assignment intervals (Section 5.5). Fourth, the paper includes new case
studies that are relative to credit worthiness of 28 European countries (Section 6), heat islands exposition in the
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Québec Metropolitan Community in Canada (Section 7.1) and the management of post-accident nuclear risk in the
Southern France region (Section 7.2). Lastly, a collection of well-known statistics (namely Kendall’s τ , Spearman’s
ρ, Cohen’s κ, Kendall’s W and Fless’s κ) is used to compare in a formal way the final classifications obtained using
different input parameters (Section 8).

3. Dominance-based Rough Set Approach

This section presents a brief introduction to the DRSA. More details are available in [26][27][56].

3.1. Basic concepts and hypothesis
Information regarding the decision objects is often structured in a 4-tuple information table S = ⟨U,Q, V, f⟩,

where U is a non-empty finite set of objects and Q is a non-empty finite set of attributes such that q : U → Vq

for every q ∈ Q. Vq is the domain of attribute q. V =
∩

q∈Q Vq , and f : U ×Q → V is the information function
defined such that f(x, q) ∈ Vq for each attribute q and object x ∈ U . The set Q is often divided into a sub-set C ̸= ∅
of condition criteria and a sub-set D ̸= ∅ of decision classes such that C ∪D = Q and C ∩D = ∅. In this case, S
is called a decision table.

The domain of condition criteria are supposed to be ordered according to a decreasing or increasing preference.
Such attributes are called criteria. The proponents of DRSA assume that the preference is increasing with a value of
f(·, q) for every q ∈ C. We also assume that the set of decision classes D = {d} is a singleton. The unique decision
attribute d makes a partition of U into a finite number of preference-ordered decision classes Cl = {Clt, t ∈ T},
T = {0, · · · , n}, such that each x ∈ U belongs to one and only one class.

3.2. Approximations
In DRSA the represented knowledge is a collection of upward union Cl≥t and downward union Cl≤t of classes

defined as follows:
Cl≥t =

∪
s≥t

Cls, Cl≤t =
∪
s≤t

Cls.

The assertion “x ∈ Cl≥t ” means that “x belongs to at least class Clt” while assertion “x ∈ Cl≤t ” means that
“x belongs to at most class Clt”. As underlined earlier, the basic idea of DRSA is to replace the indiscernibility
relation used in the conventional RST with the dominance relation. Let P ⊆ C be a subset of condition criteria.
The dominance relation ∆P associated with P is defined for each pair of objects x and y as follows:

x∆P y ⇔ f(x, q) ≽ f(y, q), ∀q ∈ P.

In the definition above, the symbol “≽” should be replaced with “≼” for criteria which are ordered according
to decreasing preferences. To each object x ∈ U , we associate two sets: (i) the P -dominating set ∆+

P (x) = {y ∈
U : y∆Px} containing the objects that dominate x, and (ii) the P -dominated set ∆−

P (x) = {y ∈ U : x∆P y}
containing the objects dominated by x.

Then, the P -lower and P -upper approximations of Cl≥t with respect to P are defined as follows:

• P (Cl≥t ) = {x ∈ U : ∆+
P (x) ⊆ Cl≥t },

• P̄ (Cl≥t ) = {x ∈ U : ∆−
P (x) ∩ Cl≥t ̸= ∅}.

Analogously, the P -lower and P -upper approximations of Cl≤t with respect to P are defined as follows:

• P (Cl≤t ) = {x ∈ U : ∆−
P (x) ⊆ Cl≤t },

• P̄ (Cl≤t ) = {x ∈ U : ∆+
P (x) ∩ Cl≤t ̸= ∅}.

The P -boundaries of Cl≥t and Cl≤t are defined as follows:

• BnP (Cl≥t ) = P̄ (Cl≥t )− P (Cl≥t ),

• BnP (Cl≤t ) = P̄ (Cl≤t )− P (Cl≤t ).
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3.3. Quality of approximation
The quality of approximation of a partition Cl by means of a set of criteria P is measured by the following ratio:

γ(Cl) =
|U − ((

∪
t∈T BnP (Cl≥t ))

∪
(
∪

t∈T BnP (Cl≤t )))|
|U | . (1)

It expresses the ratio of all P-correctly classified objects to all objects in the system.

3.4. Accuracy of classes approximation
The accuracy of the rough-set representation of classes is the ratio of the number of objects which can posi-

tively (i.e., in the lower approximation) be placed into the number of objects that can possibly (i.e., in the upper
approximation) be placed in. Mathematically,

α(Cl⋄t ) =
P (Cl⋄t )

P̄ (Cl⋄t
, (2)

where ⋄ ∈ {≥,≤}. It is easy to see that 0 ≤ α(Cl⋄t ) ≤ 1, ∀t. This holds because, by definition, we have:
P (Cl⋄t ) ⊆ P̄ (Cl⋄t ), ∀t. Clearly, when the upper and lower approximations are equal (i.e., boundary region empty),
then α(Cl⋄t ) = 1, and the approximation is perfect. At the other extreme, whenever the lower approximation is
empty, the accuracy is zero, i.e., α(Cl⋄t ) = 0.

3.5. Decision rules
The decision attribute induces a partition of U in a way that is independent of the condition criteria. Hence,

a decision table may be seen as a set of decision rules of the form if [condition] then [consequence], where the
condition part specifies the values assumed by one or more condition criteria and the decision part specifies an
assignment to one or more decision classes. Three types of decision rules may be considered: (i) certain rules
generated from lower approximations of unions of classes, (ii) possible rules generated from upper approximations
of unions of classes and (iii) approximate rules generated from boundary regions.

An object x ∈ U supports a decision rule if its description matches both the condition and the decision parts of
this rule. A decision rule covers object x if the description of x matches at least the condition part of the rule. Each
decision rule is characterized by its strength, which is defined as the number of objects supporting this rule. If the
consequence is univocal (i.e., contains only one decision), the rule is exact, otherwise it is approximate.

4. Dominance rough set approach for group multicriteria classification

The objective of this section is to introduce the Dominance Rough Set Approach for Group (DRSAfG) multi-
criteria classification. First, we will briefly present the aggregation strategy adopted by DRSAfG. Then, we describe
the different phases of DRASfG. Next, we discuss some practical issues. Lastly, we comment on the definition of
decision classes.

4.1. Aggregation strategy
As underlined in [14], we may distinguish two main strategies that may be used to combine judgements and

perspectives of decision makers in group decision making: either at the input or at the output levels. These two
strategies still apply to group multicriteria classification. The input oriented aggregation strategy seems to be
technically and practically easier to implement and to use. However, it assumes that decision makers collaborate
effectively and that there is not much conflict regarding the input data. The output oriented strategy seems to be
more flexible since the involved decision makers can work independently. Hence, it is more suitable for decision
makers that are geographically distributed and/or those that have time constraints. However, the output aggregation
strategy is technically more complex.

The DRSAfG is structured according to a mixed input-output strategy that allows avoidance or reduction of
the respective shortcomings of the input and output strategies. The mixed aggregation strategy proceeds as follows
[14]: (i) each decision maker generates his/her own output (approximations of decision classes); (ii) aggregating
coherently the individual outputs into a collective input (collective decision table); and (iii) use the collective input
in order to generate a collective output (collective decision rules). A detailed description of the three aggregation
strategies is given in [14].
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4.2. The general structure of DRSAfG

The DRSAfG is composed of three phases: (i) individual approximation, (ii) aggregation, and (iii) inference of
collective decision rules. These phases should be mapped directly into the three phases of the mixed input-output
aggregation strategy described previously. Let H = {1, · · · , i, · · · , h} with h ≥ 2 be a finite decision makers set
and I = ⟨U,Q, V, f⟩ be a common information table for all decision makers. Let E1, · · · , Ei, · · · , Eh be h decision
attributes defined in the same domain and associated with decision makers in H . Let ⋄ ∈ {≥,≤}.

4.2.1. Individual approximation
In this phase, each decision maker uses the common information table I to construct her/his own decision table

Si = ⟨U,C∪{Ei}, V, fi⟩whereEi and fi are respectively the decision class and the information function associated
with the ith decision maker. We suppose that each decision maker i ∈ H has a preference order for U represented
by a finite set of preference-ordered classes Cli = {Clt,i, t ∈ Ti}, Ti = {0, · · · , n}, such that

∪n
t=1 Clt,i = U ,

Clt,i∩Clr,i = ∅, ∀r, t ∈ Ti, r ̸= t. The n is the number of decision classes, which is assumed to be the same for all
decision makers. Some solutions to dealt with different number of decision classes are briefly discussed in Section
4.4. Each decision table Si can then be represented as a collection of upward and downward unions of decision
classes and approximated in the same way as with the DRSA. At the end of this phase, the approximation of each
individual decision table Si is characterized, among others, by: (i) the P -lower approximation and the P -boundary
of Cl⋄t,i, ∀t ∈ Ti, (ii) the quality of classification γi defined in similar way to Equation (1), and (iii) the accuracy of
classes approximations α(Cl⋄t ), ∀t, defined in similar way to Equation (2).

4.2.2. Aggregation
The objective of this phase is to construct a collective decision table S = ⟨U,C ∪D,V, g⟩ where D = {E},

E is a collective decision attribute and g is a collective information function defined for each x ∈ U such that
g(x, q) = f(x, q), ∀q ∈ C. Hence, to define S it suffices to specify the values of g(x,E) for all x ∈ U . For this
purpose, we designed an aggregation procedure that will be detailed in Section 5. The basic idea of this procedure
is to use the outputs of individual approximation phase to assign to each object x ∈ U an assignment interval
I(x) = [l(x), u(x)] where l(x) and u(x) are respectively the lower and upper classes to which object x can
be assigned, and then some simple rules are used to reduce the assignment interval I(x) into a single element
representing the value of g(x,E). The collective decision attribute E induces a partition of U into a set of decision
classes Cl = {Clt, t ∈ T}, T = {0, · · · , n} such that each x ∈ U belongs to one and only one class Clt ∈ Cl.

4.2.3. Inference of collective decision rules
The collective decision table S constructed in the previous phase can be approximated using the same principle

given in Section 3, i.e., by applying conventional DRSA. On the basis of the approximations obtained, it is possible to
induce a generalized description of the preferential information contained in the decision table, in terms of collective
decision rules of the form if [condition] then [consequence]. The obtained rules are then used to classify all decision
objects. The most popular rule induction algorithm for DRSA is DOMLEM (DOMinance-based Learning from
Examples Module) [31], which generates minimal set of rules. The same algorithm is used here.

4.3. Practical aspects

The approach is structured as an iterative decision-making process. Specifically, at the end of the third phase,
a set of collective decision rules are generated. If the involved decision makers agree on these rules, then the
decision-making process ends. Otherwise, the process can then be restarted by considering new input data.

The aggregation procedure requires the definition of two parameters. The first one is called credibility threshold.
The latter represents the minimum value for the credibility index for assigning an object to a given class or union of
classes. The second parameter is the interval reduction rule. This parameter will be used to reduce the assignment
interval into a single value corresponding to the value of the collective decision attribute. These parameters should
be fixed by the mediator but the decision makers involved should agree on them. In practice, these parameters will
be of great importance since the mediator can use them in order to test different possible values and to select the
ones that fit better to the decision situation.
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4.4. Definition of decision classes

In the description of DRSAfG, we assumed that the decision makers use the same set of decision classes.
However, in practice, the number of decision classes may differ from one decision maker to another. There are (at
least) four possible solutions to this issue:

• a first intuitive solution consists of the fact that the decision makers should first discuss and agree on a common
set of decision classes before starting the assignment process;

• a second simple solution consists of grouping some decision classes;

• a third simple solution that consists of adding fictitious classes (without assigning objects to them);

• a fourth, more established, solution consists of defining a set of common decision classes as the Cartesian
Product of individual decision classes.

The implementation of the first solution is straightforward and does not need any modification in the proposed
methodology. The second solution is also simple to implement, but it may lead to preferential information loss. For
the third solution, we need only to re-arrange the assignments of the decision objects according to the new definition
of the decision classes. Let for instance assume that the decision problem involves two decision makers with two
sets of decision classes: Cla ≺ Clb ≺ Clc and Clx ≺ Cly . According to the third solution, we need to add a new
decision class, say Clnew, to the second set of decision classes, which leads to Clx ≺ Clnew ≺ Cly. Then, we can
define a new common set of decision classes Cl1 ≺ Cl2 ≺ Cl3 with Cl1 = Cla = Clx, Cl2 = Clb = Clnew and
Cl1 = Clc = Cly. The last solution is more complex to implement. The main issue in this case is the ordering of
the newly created decision classes. For instance, with the same data as above, the Cartesian Product will lead to six
decision classes Cl1 = (Cla, Clx), Cl2 = (Cla, Cly), Cl3 = (Clb, Clx), Cl4 = (Clb, Cly), Cl5 = (Clc, Clx)
andCl6 = (Clc, Cly). However, the new common decision classes cannot be directly used because some of them are
incomparable, for example Cl2 and Cl3 or Cl4 and Cl5. A possible solution is to merge the incomparable decision
classes. Another possible solution is to use some additional information (such as the number of decision makers, the
number of assigned decision objects or the quality of individual classifications) to order the incomparable decision
classes. For the purpose of this paper, we assume that the decision makers use the same set of decision classes. We
note, however, that the above cited solutions will be studied in a more formal way in our future work.

5. Aggregation procedure

The objective of this section is to detail the aggregation procedure that is used in the second phase in order
to construct the collective decision table S = ⟨U,C ∪D,V, g⟩. As underlined in Section 4, the construction of S
requires simply the specification of the values of the collective information function g in respect to the collective
decision attribute E. First, recall that the collective decision attribute E induces a partition of U into a set of decision
classes Cl = {Clt, t ∈ T}, T = {0, · · · , n} such that each x ∈ U belongs to one and only one class Clt ∈ Cl. Let
P ⊆ C be a subset of condition criteria and let ⋄ ∈ {≤,≥}.

5.1. Step 1. Weighting the contribution of decision makers

The definition of the weights of decision makers is a crucial step in group decision making [69]. The authors in
[14] enumerated several techniques to specify the weights in group decision making: (i) weights are defined explicitly
by a mediator or an external independent person as in [44]; (ii) weights are defined based on the hierarchical levels
of involved decision makers; (iii) weights are defined explicitly using a given method as in [34][68]; and (iv)
weights are inferred from input data using some form of regression as in [20]. Each of these techniques have
some advantages and disadvantages and the selection of the technique to use is not obvious. The authors argue
that the most important characteristic of weights definition method is the objectiveness of these weights. In this
respect, it is advocated that the question is not how to use weights, but rather how to objectively quantify them
[16]. Another important characteristic of weights definition methods is the ability of these methods to objectively
measure the expertise of the decision makers or experts, as discussed in [34][55][64]. Indeed and as pointed out
by [34], more experienced decision makers will generally provide more consistent decisions. This is confirmed in
different real-world applications in which the authors were involved, as e.g., [49][53].
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In the DRSAfG, the assignment of objects to decision classes requires the definition of an appropriate weighting
system that reflects in the most objective way the role of each decision maker in the collective decision. In this
paper, the contribution of each decision maker to the collective decision is measured by the quality of input data
provided by the decision maker. More formally, we propose the following formula:

πk(Cl⋄t ) =
γkαk(Cl⋄t )∑

r∈H⋄
t
γrαr(Cl⋄t ) +

∑
r/∈H⋄

t
γr

, (∀k ∈ H)(∀t ∈ T ) (3)

where ⋄ ∈ {≥,≤}, H⋄
t = {j : j ∈ H ∧ αj(Cl⋄t ) > 0}, γk is the quality of approximation of decision maker k

and αk(Cl⋄t ) is the accuracy of approximation of class Cl⋄t by decision maker k. This form of weights definition
combines both the quality of classification and the accuracy of the rough-set representation of classes. It enhances
the weighting system used in [11][13], which is based on the quality of approximation only. In fact, the accuracy of
the approximation of an individual class, sayClt, obtained by a given decision maker, say k, may be equal to 0 which
means that decision maker does not support any assignment of objects to class Clt. This fact is well supported by
the proposed weighting system. Using just the quality of approximation as weights as in [11][13], it does not allow
to take into account this fact (since the quality of approximation characterizes the whole classification rather than
the approximations of individual classes). In the new form of weights definition, an accuracy of the approximation
of class Clt equal to 0 leads to a weight of zero meaning that the decision maker does not support the assignment
of objects to the class Clt. The main argument of using the accuracy of approximation is that a given decision
maker may be able to define more precisely some classes than other ones. For instance, in a problem of assigning
students to three decision classes designed as Bad, Medium, Good, it is expected that one can identify perfectly
good students but it has more difficulty to identify bad or medium students.

It is very important to mention that the weights of decision makers as used in this paper should be interpreted as
used in non-compensatory multicriteria methods, especially those based on outranking relations, where the weights
play the same role as a number of votes in a voting procedure. This contrast with weights definition in compensatory
multicriteria methods (the weighted-sum like methods) where weights are actually scaling constant (this means that
if you change the unit in which is expressed a criterion, the weights change as well).

A final issue about weights definition concerns the controversial situation when a given decision maker provides
fully consistent but controversial choices, where ‘controversial’ means different than the majority of decision
makers. In such a situation the decision maker is more ‘powerful’ than the others, who are less consistent but also
less controversial. This situation is realistic and can happen in real-world decision problems. However, the use of
the majority/veto rule reduces largely the effects of the controversial assignments on the final outputs. In addition,
the weights are specific to each class union. This means that the effects of a controversial assignment of a given
individual class will concern only this class. Furthermore, the other decision makers still have the possibility to
disagree on the final outputs and to end the decision process as briefly discussed in Section 4.3.

5.2. Step 2. Computing of the concordance power
For each x ∈ U and Clt ∈ Cl, we define the concordance set as L(x,Cl⋄t ) = {i : i ∈ H ∧x ∈ P (Cl⋄t,i)}. This

set represents the decision makers for which object x belongs to the lower approximation of Cl⋄t . The concordance
power for the assignment of x to Cl⋄t is then computed as follows:

S(x,Cl⋄t ) =

k=n∑
k=1

Sk(x,Cl⋄t ) (4)

where

Sk(x,Cl⋄t ) =

{
πk(Cl⋄t ), if k ∈ L(x,Cl⋄t ),
0, otherwise. (5)

The number S(x,Cl⋄t ) measures the power of the coalition of decision makers that assign x to the lower approxima-
tion of Cl⋄t . The concordance power verifies some properties which are given in Appendix A.1. The concordance
power is defined on the basis of lower approximation of classes, which contains objects that are assigned with
certainty to a given class. In this sense, it can be seen as an argument that supports the assignment of objects to
classes.

Let us now justify the definition of the concordance power as a sum:

9



[Post print version, please cite as] Chakhar Salem, Ishizaka Alessio, Labib Ashraf, Saad Inès, Dominance-based Rough Set Approach for Group Decisions,
European Journal of Operational Research, advance online publications, doi:10.1016/j.ejor.2015.10.060

• when all the decision makers support the assignment decision, i.e. L(x,Cl⋄t ) = H , the concordance power
will be equal to 1 (the maximum value). This will automatically inhibit the veto effect of the discordance
power (as explained in Section 5.3) and leads to a full support for the assignment of the decision object x to
decision class ClC l

⋄
t ;

• when no decision maker supports the assignment decision, i.e. L(x,Cl⋄t ) = ∅, the concordance power will
be equal to 0 (the minimum value). In this case, the assignment of decision object x to a given class Clt will
be rejected since none of the decision makers supports this assignment;

• when only a subset of decision makers support the assignment decision, i.e. L(x,Cl⋄t ) ̸= H and L(x,Cl⋄t ) ̸=
∅, the assignment is confirmed only and only if: (i) a majority of decision makers supports this assignment;
and (ii) there is not a high opposition to this assignment from the other (minority) decision makers. These
two conditions hold if the credibility index (see Section 5.4) for assigning an object x to a given class Clt is
greater or equal to 0.5.

We note that other ways to define the global concordance power may be used. For instance, the global concor-
dance power may be defined as the product of partial concordance powers. However, this definition is not suitable
since the global concordance power will be equal to 0 even if there is only one decision maker that does not support
the assignment decision. The use of a constrained product of partial concordance powers (to avoid the multiplication
by a zero) could be also used. However, this technique is not attractive in our context since the values obtained will
still tend towards zero (but strictly positive) because all the weights are in the range of ]0, 1].

Finally, we should mention that the definition of the concordance power in this paper is inspired by the definition
of the concept of concordance in the ELECTRE methods family [23]. Indeed, in both cases, the global concordance
power is defined as the sum of the partial concordance powers. The main difference is that the global concordance
power as defined in this paper measures the power of the coalition of decision makers that are in favor of the decision
concerning the assignment of a decision object x to a given class Clt while in ELECTRE methods, the concordance
measures the coalition of criteria that are in favor of the outranking relation between two decision objects (or an
object and a profile limit in the case of the ELECTRE TRI method).

5.3. Step 3. Computing of the discordance power

For each x ∈ U and Clt ∈ Cl, we define the discordance set B(x,Cl⋄t ) = {i : i ∈ H ∧ x ∈ BnP (Cl⋄t,i)}.
This set represents the decision makers for which object x belongs to the boundary of Cl⋄t . Then, the discordance
power for the assignment of x to the boundary of Cl⋄t is computed as follows:

Z(x,Cl⋄t ) =
k=n∏
k=1

Zk(x,Cl⋄t ) (6)

where

Zk(x,Cl⋄t ) =

{
1−πk(Cl⋄t )
1−S(x,Cl⋄t )

, if πk(Cl⋄t ) > S(x,Cl⋄t ) ∧ k ∈ B(x,Cl⋄t ),
1, otherwise.

(7)

The number Z(x,Cl⋄t ) measures the power of the coalition of decision makers that assign x to the boundary of Cl⋄t .
The discordance power verifies some properties which are given in Appendix A.2. The definition of the discordance
power is based on the boundaries of classes, which contains objects that can neither be ruled in nor out as members
of the class. In this sense, it represents an argument that opposes to the assignment of objects to classes.

We may distinguish two cases in the definition of the discordance power. The first case holds when πk(Cl⋄t ) ≤
S(x,Cl⋄t ), which leads to Zk(x,Cl⋄t ) = 1. Hence, there is no veto effect for decision maker k and Zk(x,Cl⋄t )
will have no effect on the definition of the overall discordance power Z(x,Cl⋄t ). The second case holds when
πk(Cl⋄t ) > S(x,Cl≥t ), which leads to 0 < Zk(x,Cl⋄t ) < 1. Here, decision maker k will have a veto effect, and
Zk(x,Cl⋄t ) will have an effect on the value of the overall discordance power.

Let us now justify the definition of discordance power as a product:

10
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• when all decision makers show an opposition to the assignment decision, i.e.B(x,Cl⋄t ) = H , the discordance
power will be equal to 0. This is because the ‘IF’ condition in Equation (7) will be true for all decision makers.
In this case, Equation (7) leads to Zk(x,Cl⋄t ) = 0 since 1− πk(Cl⋄t ) = 0, ∀k ∈ H . Hence, the value of the
global discordance given by (6) will be equal to 0. Consequently, the credibility index will be equal to 0 (as
explained in Section 5.4) and the assignment is rejected. This is an implicit form of veto effect because all
the decision makers are against the assignment;

• when there is no decision maker opposing to the assignment decision, i.e. B(x,Cl⋄t ) = ∅, the discordance
power will be equal to 1. This is because the ‘IF’ condition in Equation (7) will be false for all decision
makers. Hence, the assignment should be accepted since it is supported by all decision makers. Here, there
is no veto effect (all the decision makers agree on the assignment);

• when only a subset of decision makers are opposed to the assignment decision, i.e. B(x,Cl⋄t ) ̸= H and
B(x,Cl⋄t ) ̸= ∅, both the concordance and discordance powers will be in the range of ]0, 1[. In this case,
the final decision depends on both concordance and discordance powers. If the global discordance power
Z(x,Cl⋄t ) is strong enough, the assignment decision is rejected. This is an explicit form of veto effect. If the
global discordance power Z(x,Cl⋄t ) is not strong enough, it will reduce the support level but not as much as
required to reject the assignment. This is also an explicit form of veto effect but the veto is not strong enough
to lead to the rejection of the assignment decision.

Finally, we should mention that the definition of the discordance power in this paper is inspired by the definition
of the concept of discordance in the ELECTRE methods family [23]. Indeed, in both cases, the global discordance
power is defined as the product of the partial discordance powers. The main difference is that the global discordance
power as defined in this paper measures the power of the coalition of decision makers that are not in favor of
the decision concerning the assignment of a decision object x to a given class Clt while in ELECTRE methods,
the discordance measures the coalition of the criteria that are not in favor of the outranking relation between two
decision objects (or an object and a profile limit in the case of the ELECTRE TRI method).

5.4. Step 4. Computing of the credibility indices
Using the concordance and discordance powers, we may compute the credibility indices for assigning x to Cl⋄t

as follows:

σ(x,Cl⋄t ) = S(x,Cl⋄t ) · Z(x,Cl⋄t ) (8)

The credibility index verifies two properties which are given in Appendix A.3. This formula can be explained as
follows. If there is no support for the assignment of x to Cl⋄t , i.e., S(x,Cl⋄t ) = 0, then the credibility index will
be σ(x,Cl⋄t ) = 0. In turn, if there is a full support, i.e., S(x,Cl⋄t ) = 1 (which imposes that Z(x,Cl.t) = 1), then
the credibility index will be σ(x,Cl⋄t ) = 1. Finally, if there is a partial support, i.e., 0 < S(x,Cl⋄t ) < 1 (which
imposes that 0 < Z(x,Cl⋄t ) ≤ 1), then 0 < σ(x,Cl⋄t ) < 1.

In the last case, we may distinguish between two subcases, according to the verification or not of the condition
πk(Cl⋄t ) > S(x,Cl⋄t ) (which is used in Equation (7)). The first subcase holds when the condition πk(Cl⋄t ) >
S(x,Cl⋄t ) is not verified. This leads to Z(x,Cl⋄t ) = 1 and then σ(x,Cl⋄t ) = S(x,Cl⋄t ) < 1. In this subcase, the
credibility index is simply equal to the concordance power; hence the discordance power will have no effect on the
value of the credibility index σ(x,Cl⋄t ). The second subcase holds when the condition πk(Cl⋄t ) > S(x,Cl⋄t ) is
verified. This leads to Z(x,Cl⋄t ) < 1 and consequently σ(x,Cl⋄t ) = S(x,Cl⋄t ) · Z(x,Cl⋄t ) < 1. In this subcase,
the credibility index is obtained by decreasing the concordance power S(x,Cl⋄t ) proportionally to the value of the
discordance power Z(x,Cl⋄t ).

5.5. Step 5. Definition of assignment intervals
The objective of this step is to exploit the credibility indices computed in the previous step in order to assign each

decision object x ∈ U to an assignment interval I(x) = [l(x), u(x)] where l(x) and u(x) with l(x) ≼ u(x) indicate
the lower and upper bounds to which decision object x should be assigned. The assignment of a decision object
x ∈ U into decision class Cl⋄t will depend on the value of credibility indices values. The credibility indices range in
[0, 1] where a value of 1 indicates a full support for assigning x to Cl⋄t and a value of 0 indicates a total disagreement
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with this assignment. A value in the range ]0, 1[ indicates an intermediate support for assigning x to Cl⋄t . From a
decision making perspective, a credibility index value σ(x,Cl≥t ) verifying the constraint σ(x,Cl≥t ) ≥ 0.5 ensures
that at least 50% of decision makers (in terms of their powers) support the assignment of decision object x to
decision class Cl⋄t .

Let λ ∈ [0.5, 1] be a credibility threshold. Then, based on the discussion above, we may distinguish two types of
constraints for assigning objects to decision classes: (i) σ(x,Cl≥t ) ≥ λ (type ‘≥’ constraint) and (ii) σ(x,Cl≤t ) ≥ λ
(type ‘≤’ constraint). The lower l(x) and uppers u(x) bounds of the assignment interval I(x) can be defined based
on the two types of constraints. This leads to four possible solutions for defining l(x) and u(x) (see Table 1). An
appropriate assignment interval I(x) = [l(x), u(x)] should, however, verify the following conditions: (i) the lower
bound l(x) should indicate the minimum class to which a given decision objectx is assigned. Consequently, it should
be defined based on a constraint of the type ‘≥’; and (ii) the upper bounds u(x) should indicate the maximum class
to which a given decision object x is assigned. Consequently, it should be defined based on a constraint of the type
of ‘≤’. Hence, Solutions 1, 3 and 4 cannot be used since: (a) Solution 1 fails to verify condition (ii), (b) Solution 4
fails to verify condition (i), and (c) Solution 3 fails to verify conditions (i) and (ii). Hence, only Solution 2, which
has been used in this paper, is valid since it verifies both conditions.

Table 1: Solutions for defining l(x) and u(x)
Solutions l(x) u(x)
Solution 1 Based on constraints of type ≥ Based on constraints of type ≥
Solution 2 Based on constraints of type ≥ Based on constraints of type ≤
Solution 3 Based on constraints of type ≤ Based on constraints of type ≥
Solution 4 Based on constraints of type ≤ Based on constraints of type ≤

Based on this discussion, we associate to each object x a collective assignment interval I(x) = [l(x), u(x)]
such that:

l(x) =

{
argmaxClt

N1(x), if N1(x) ̸= ∅,
Cl0, otherwise. (9)

u(x) =

{
argminClt

N2(x), if N2(x) ̸= ∅,
Cln, otherwise. (10)

with N1(x) = {Clt : σ(x,Cl≥t ) ≥ λ} and N2(x) = {Clt : σ(x,Cl≤t ) ≥ λ}. The assignment interval verifies
several properties which are given in Appendix A.4. It is easy to see that our definition of the lower l(x) and upper
u(x) bounds of the assignment interval I(x) apply even when N1(x), N2(x) or both are empty.

Let us now justify the definition of l(x) and u(x) as in Equations (9) and (10). There are four possible cases to
specify the values of l(x) and u(x). These solutions are given in Table 2 and represented graphically in Figure 1.

Table 2: Possibilities to define l(x) and u(x)
Cases l(x) u(x)
Case 1 Use Argmin on set N1(x) Use Argmin on set N2(x)
Case 2 Use Argmin on set N1(x) Use Argmax on set N2(x)
Case 3 Use Argmax on set N1(x) Use Argmax on set N2(x)
Case 4 Use Argmax on set N1(x) Use Argmin on set N2(x)

Based on Figure 1, we can conclude that: (a) Case 1 will lead to an assignment interval that concentrates on the
left side of the possible assignments; (b) Case 2 will lead to the largest assignment interval; (c) Case 3 will lead to
an assignment interval that concentrates on the right side of the possible assignments; and (d) Case 4 will lead to the
in-between and smallest interval. In the proposed approach, Case 4 has been used. We mention, however, that the
other three cases can be used. Case 4 has been selected because it leads to the smallest and intermediate assignment
intervals, which we will be more easily accepted by the different decision makers, especially in the presence of
controversial choices.

5.6. Step 6. Construction of collective decision table
To finalize the construction of the collective decision table S, some simple interval reduction rules are used for

reducing the assignment intervals I(x), ∀x ∈ U , to a single class representing the value to assign to the collective
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Figure 1: Definition of assignment intervals

decision attribute E (as explained in Section 4). Let I(x) = [l(x), u(x)] be the assignment interval for object x ∈ U
as previously defined. Two cases hold for the reduction of I(x). The first case holds when l(x) = u(x). Here, object
x is assigned to a single class and consequently we can set g(x,E) = l(x) = u(x). The second case holds when
l(x) ≺ u(x). This corresponds to the situation where object x can be assigned to more than one class. To specify
the value of g(x,E) when the second case holds, we may apply one of the following rules to reduce the collective
assignment interval I(x) to a single class:

• use the “min” operator on I(x): g(x,E) = l(x).

• use the “max” operator on I(x): g(x,E) = u(x).

• use the “median” operator on I(x): g(x,E) = µ(l(x), · · · , u(x)).

• use the “floor” of the median value: g(x,E) = ⌊µ(l(x), · · · , u(x))⌋.

• use the “ceiling” of the median value: g(x,E) = ⌈µ(l(x), · · · , u(x))⌉.

We note that function µ(·) returns the median of the values given as parameters while functions ⌊·⌋ and ⌈·⌉ return
respectively the floor and the ceiling of the median value. It is also important to note that for quantitative variables,
the median is defined as the value in the position n+1

2 if the number of values n is odd and the average of the
two middle values, i.e., values in positions n

2 and n
2 + 1, if n is even. Within ordinal data, the median is generally

defined as the value in the position n
2 if n is even and the value in the position n+1

2 if n is odd. In some cases, for
ordinal values for example, the average value will be a fractional number that should be interpreted as “somewhere
between x and y” where x and y are the two middle values (in positions n

2 and n
2 + 1, respectively). Finally, we

mention that, in some cases, we can use the mode operator as follows: (i) first, use the other operators to reduce the
assignment intervals, and (ii) then apply the mode operator on the results of step (i) in order to select one value.

6. Case study

This section presents the application of the proposed approach using real-world data.

6.1. Decision problem

The problem considered here concerns credit worthiness for a set of 28 European countries. The credit worthiness
is generally defined as the judgment of a country current and future ability, and inclination to honor debt obligations
as agreed upon. The objective of this case study is to apply the proposed approach in order to construct a common
ranking scale of the considered countries based on the ranking scales established by three rating agencies, namely
Fitch, Moody and S&P. Unfruitfully, the rating agencies do not provide any information about the criteria that they
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use to establish the rankings. For the purpose of this paper, we considered a set of seven evaluation criteria, which
are described in Table 3. It is clear that other criteria may be included in the analysis but our objective here is mainly
to illustrate the proposed approach. Table 3 also shows the three decision attributes corresponding to the agencies
Fitch, Moody and S&P, respectively. Table 4 provides the description of the ranking scales of the different rating
agencies. Based on these scales, we defined a common classification scale that is given in Table 4 (fourth column).

Table 3: List of condition criteria and decision attributes
Code Description Scale type Preference Attribute type
GDP Gross Domestic Product Continuous Gain Condition
Infl−Rate Inflation Rate Continuous Cost Condition
Public−Debt Public Debt Continuous Cost Condition
Extern−Debt External Debt Continuous Cost Condition
FDI Foreign Direct Investment (as % of GDP) Continuous Gain Condition
CA Current Account Balance (as % of GDP) Continuous Gain Condition
Unemp−Rate Unemployment Rate Continuous Cost Condition
rank−Fitch Ranking by Fitch Ordinal Gain Decision
rank−Moody Ranking by Moody Ordinal Gain Decision
rank−S&P Ranking by S&P Ordinal Gain Decision

Table 4: Individual and common ranking scales definition
Fitch Moody S&P Common Credit worthiness
AAA Aaa AAA 17 An obligor has EXTREMELY STRONG capacity to meet its financial commitments.
AA+ Aa1 AA+ 16 An obligor has VERY STRONG capacity to meet its financial commitments. It differs from the highest rated
AA Aa2 AA 15 obligors only in small degree.
AA- Aa3 AA- 14
A+ A1 A+ 13 An obligor has STRONG capacity to meet its financial commitments but is somewhat more susceptible to the
A A2 A 12 adverse effects of changes in circumstances and economic conditions than obligors in higher-rated categories.
A- A3 A- 11

BBB+ Baa1 BBB+ 10 An obligor has ADEQUATE capacity to meet its financial commitments. However, adverse economic conditions
BBB Baa2 BBB 9 or changing circumstances are more likely to lead to a weakened capacity of the obligor to meet its financial
BBB- Baa3 BBB- 8 commitments.
BB+ Ba1 BB+ 7 An obligor is LESS VULNERABLE in the near term than other lower-rated obligors. However, it faces major
BB Ba2 BB 6 ongoing uncertainties and exposure to adverse business, financial, or economic conditions which could lead to
BB- Ba3 BB- 5 the obligor’s inadequate capacity to meet its financial commitments.
B+ B1 B+ 4 An obligor is MORE VULNERABLE than the obligors rated ’BB’, but the obligor currently has the capacity to
B B2 B 3 meet its financial commitments. Adverse business, financial, or economic conditions will likely impair the
B- B3 B- 2 obligor’s capacity or willingness to meet its financial commitments.

CCC Caa CCC 1 An obligor is CURRENTLY VULNERABLE, and is dependent upon favourable business, financial, and economic
conditions to meet its financial commitments.

CC Ca CC An obligor is CURRENTLY HIGHLY-VULNERABLE.
C C The obligor is CURRENTLY HIGHLY-VULNERABLE to nonpayment. May be used where a bankruptcy petition

has been filed.
D C D An obligor has failed to pay one or more of its financial obligations (rated or unrated) when it became due.

Expected e,p pr Preliminary ratings may be assigned to obligations pending receipt of final documentation and legal opinions.
The final rating may differ from the preliminary rating.

WR Rating withdrawn for reasons including: debt maturity, calls, puts, conversions, etc., or business reasons (e.g.
change in the size of a debt issue), or the issuer defaults.

unsolicited unsolicited unsolicited This rating was initiated by the ratings agency and not requested by the issuer.
RD SD This rating is assigned when the agency believes that the obligor has selectively defaulted on a specific issue or

class of obligations but it will continue to meet its payment obligations on other issues or classes of obligations
in a timely manner.

NR NR NR No rating has been requested, or there is insufficient information on which to base a rating.

6.2. Data set

The data set used in this application is given in Table 5. This table provides the assessment of the considered
28 European countries in respect to the seven criteria given in Table 3 and also the ranking of these countries
as established by Fitch, Moody and S&P agencies. We note that these data has been collected from the Eurostat
Website (http://ec.europa.eu/eurostat). We also note that the data in Table 5 was accessed in March 2015.

6.3. Application

6.3.1. Individual approximation
The main input for the individual approximation phase is the decision tables (Table 5). The decision objects

set U = {xi : i = 1, 2, · · · , 28} in this table corresponds to the considered 28 European countries. Each country
is described in terms of seven criteria (designed by GDP, Infl−Rate, Public−Debt,Extern−Debt, FDI, CA and
Unemp−Rate) and three decision attributes (rank−Fitch, rank−Moody, and rank−S&P). The values of the decision
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Table 5: Information table with assignment examples (source: http://ec.europa.eu/eurostat)
Object xi Country GDP Inf−Rate Public−Debt Extern−Debt FDI CA Unemp−Rate Rank−Fitch Rank−Moody Rank−S&P

1 Austria 313,067 3 74.6 200 3.20 2.626 4.9 AAA Aaa AA+
2 Belgium 382,692 0.34 99.6 266 -0.60 -1.841 8.5 AA Aa3 AA
3 Bulgaria 39,940 -0.8 17.9 90 3.50 1.768 13 BBB- Baa2 BB+
4 Croatia 43,128 -0.1 52.1 99 1.00 1.237 16 BB Baa3 BB+
5 Cyprus 16,504 -0.58 80.9 129 2.80 -1.929 16.9 B- B3 B+
6 Czech Republic 149,491 0.5 43.9 45 2.40 -1.366 6.6 A+ A1 AA-
7 Denmark 248,975 0.8 45.3 180 0.50 7.119 6.6 AAA Aaa AAA
8 Estonia 18,613 -0.4 6 87 3.90 -1.207 7.7 A+ A1 AA-
9 Finland 193,443 0.8 53.5 155 -2 -0.923 8.4 AAA Aaa AA+

10 France 2,059,852 0.5 89.9 182 0.20 -1.433 10.4 AA Aa1 AA
11 Germany 2,737,600 0.85 79.9 142 1.40 6.863 5.2 AAA Aaa AAA
12 Greece 182,054 -0.7 161.3 174 1.20 0.582 26.8 B Caa1 B
13 Hungary 97,948 0.1 78.6 115 -3.20 4.120 7.8 BB BB+ Ba1
14 Ireland 164,050 0.3 118 1,008.20 21.50 6.221 12 A- Baa1 A
15 Italy 1,560,024 0.09 126.1 108 0.60 0.971 12.6 BBB+ Baa2 BBB-
16 Latvia 23,372 0.6 39.2 146 2.80 -0.806 11.5 A- Baa1 A-
17 Lithuania 34,631 0.3 40.2 80 1.6 1.470 11.9 A- Baa1 A-
18 Luxembourg 45,478 1 18.4 3,443 50.00 5.257 6.1 AAA Aaa AAA
19 Malta 7,263 0.6 77 72 -19.40 0.880 6.9 A+ A3 BBB+
20 Netherlands 602,658 0.89 68.7 73 3.80 10.203 7.2 AAA Aaa AA+
21 Poland 389,695 2.2 53.8 72.6Â  0.50 11.197 9.8 AAA Aaa AAA
22 Portugal 165,690 -0.2 129 223 -0.90 -1.351 14.8 A- A2 A-
23 Romania 142,245 -0.9 37.2 67 3.5 0.510 7.2 BB+ Ba2 BB
24 Slovakia 72,134 1 48.6 68 2.20 -0.939 14 BBB- Baa3 BBB-
25 Slovenia 35,275 0 53.2 47.6 -0.90 6.142 9.6 BBB+ Ba1 A-
26 Spain 1,022,988 -0.85 85.3 167 3.20 0.766 25.2 BBB+ Baa2 BBB
27 Sweden 420,849 0 38.6 47 -0.90 5.959 8 AAA Aaa AAA
28 United Kingdom 1,899,098 1.2 90 406 1.8 -4.264 6.6 AA+ Aa1 AAA

attributes correspond to the rankings established by the rating agencies Fitch, Moody and S&P. The decision tables
can be represented as a collection of upward and downward unions of decision classes and approximated in the same
way as with the DRSA; see Section 3. The quality of the approximations and the accuracy of classes approximations
are summarized in Appendix B.1.

6.3.2. Aggregation
Step 1. Weighting the contribution of decision makers. We need first to quantify the contribution of decision makers
into the assignment process using Equation (3) and the data given in Appendix B.1. The result is given in Table 6. At
this level, it is important to remark that the accuracy of approximation of Cl≤1 (for Fitch and S&P rating agencies)
and Cl≤2 (for S&P rating agency) are equal to zero (see Table 6). This fact will necessary affect the assignment of
objects to Cl≤1 and may affect the assignment of objects to Cl≤2 .

Table 6: Standardized weights
Rating πk(Cl

≥
t ) πk(Cl

≤
t )

agency (k) t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16
Fitch (1) 0.33 0.33 0.33 0.33 0.33 0.36 0.34 0.34 0.34 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0 0.5 0.33 0.33 0.33 0.53 0.32 0.33 0.32 0.31 0.33 0.33 0.33 0.33 0.33 0.33

Moody (2) 0.33 0.33 0.33 0.33 0.33 0.32 0.34 0.34 0.33 0.36 0.33 0.33 0.33 0.33 0.33 0.33 1 0.5 0.33 0.33 0.33 0.21 0.32 0.33 0.34 0.38 0.33 0.33 0.33 0.33 0.33 0.33
S&P (3) 0.33 0.33 0.33 0.33 0.33 0.32 0.33 0.33 0.33 0.32 0.33 0.33 0.33 0.33 0.33 0.33 0 0 0.33 0.33 0.33 0.26 0.36 0.34 0.34 0.31 0.33 0.33 0.33 0.33 0.33 0.33

Step 2. Computing concordance power. The concordance powers obtained are summarized in Appendix B.2.
For illustration, we consider here the computing of S(x14, Cl≤11). Based on the lower approximations, we obtain
L(x14, Cl≤11) = {1, 2}. Then, using Equation (5), we obtain: S1(x14, Cl≤11) = 0.333, S2(x14, Cl≤11) = 0.333 and
S3(x14, Cl≤11) = 0. Next, Equation (4) leads to: S(x14, Cl≤11) = S1(x14, Cl≤11)+S2x14, Cl≤11)+S3(x14, Cl≤11) =
0.67.

Step 3. Computing discordance power. The discordance powers obtained are summarized in Appendix B.3. For
illustration, we consider here the computing of Z(x16, Cl≥8 ). Based on the boundaries, we obtain B(x16, Cl≥8 ) =

{1, 2, 3}. Then, using Equation (6) and knowing that the condition πk(Cl≥2 ) > S(x6, Cl≥2 ) holds for all decision
makers (since S(x16, Cl≥8 ) = 0), we obtain: Z1(x16, Cl≥8 ) =

1−0.33
1−0 = 0.67, Z2(x16, Cl≥8 ) =

1−0.33
1−0 = 0.67 and

Z3(x16, Cl≥8 ) =
1−0.33
1−0 = 0.67. Then, using Equation (6), we get: Z(x16, Cl≥8 ) = Z1(x16, Cl≥8 ) ·Z2(x16, Cl≥8 ) ·

Z3(x16, Cl≥8 ) = 0.30.

Step 4. Computing credibility indices. The credibility indices values are obtained simply by multiplying the con-
cordance powers by the discordance powers (Equation (8)). The credibility indices for all decision objects are
given in Appendix B.4. For instance, the credibility indices for assigning x14 to Cl≤11 and assigning x16 to Cl≥8
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are computed as follows: σ(x14, Cl≤11) = S(x14, Cl≤11) · Z(x14, Cl≤11) = 0.67 · 1 = 0.67 and σ(x16, Cl≥8 ) =

S(x16, Cl≥8 ) · Z(x16, Cl≥8 ) = 0 · 0.30 = 0.

Step 5. Definition of assignment intervals. Assume that the credibility threshold is equal to λ = 0.75. Then, the
assignment intervals can be computed using Equations (9) and (10). The application of these equations are detailed in
Appendix B.5 and the obtained assignment intervals are summarized in Table 7. Let us consider the definition of the
assignment interval for object x15. Defining first the sets N1(x15) and N2(x15). According to the data in Appendix
B.4, it is easy to see that σ(x15, Cl≥t′ ) > 0.75 ∀t′ ∈ {1, · · · , 8} and σ(x15, Cl≥t′′) < 0.75 ∀t′′ ∈ {9, · · · , 17}.
Accordingly, we obtain: N1(x5) = {Cl1, Cl2, · · · , Cl8}. Similarly and based on the data in Appendix B.4, we
observe that σ(x15, Cl≤t′ ) > 0.75 ∀t′ ∈ {10, · · · , 16} and σ(x15, Cl≤t′′) < 0.75 ∀t′′ ∈ {1, · · · , 9}. This leads to
N2(x15) = {Cl10, Cl11, · · · , Cl16}. By Equations (9) and (10), we obtain: l(x5) = max{Cl1, Cl2, · · · , Cl8} =
Cl8 and u(x5) = min{Cl10, Cl11, · · · , Cl16} = Cl10. Finally, we obtain I(x5) = [Cl8, Cl10].

Table 7: Assignment intervals and collective decision classes values for different interval reduction rules and for λ = 0.75
xi N1(xi) N2(xi) I(x) Rule

l(x) u(x) min max floor ceiling
1 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} ∅ 16 17 16 17 16 17
2 {2,3,4,5,6,7,8,9,10,11,12,13,14} {15,16} 14 15 14 15 14 15
3 {2,3,4,5,6,7} {9,10,11,12,13,14,15,16} 7 9 7 9 8 8
4 {2,3,4,5,6} {8,9,10,11,12,13,14,15,16} 6 8 6 8 7 7
5 {2} {4,5,6,7,8,9,10,11,12,13,14,15,16} 2 4 2 4 3 3
6 {2,3,4,5,6,7,8,9,10,11,12,13} ∅ 13 17 13 17 15 15
7 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} ∅ 17 17 17 17 17 17
8 {2,3,4,5,6,7,8,9,10,11,12,13} {16} 13 14 13 14 13 14
9 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} ∅ 16 17 16 17 16 17

10 {2,3,4,5,6,7,8,9,10,11,12,13,14,15} {16} 15 16 15 16 15 16
11 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} ∅ 17 17 17 17 17 17
12 ∅ {3,4,5,6,7,8,9,10,11,12,13,14,15,16} 1 3 1 3 2 2
13 {2,3,4,5,6} {7,8,9,10,11,12,13,14,15,16} 6 7 6 7 6 7
14 {2,3,4,5,6,7,8,9,10} {12,13,14,15,16} 10 12 10 12 11 11
15 {2,3,4,5,6,7,8} {10,11,12,13,14,15,16} 8 10 8 10 9 9
16 {2,3,4,5,6} {11,12,13,14,15,16} 6 11 6 11 8 9
17 {2,3,4,5,6,7,8,9,10} {11,12,13,14,15,16} 10 11 10 11 10 11
18 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} ∅ 17 17 17 17 17 17
19 {2,3,4,5,6,7,8,9,10,11} {13,14,15,16} 11 13 11 13 12 12
20 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} ∅ 16 17 16 17 16 17
21 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} ∅ 17 17 17 17 17 17
22 {2,3,4,5,6,7,8,9,10,11} {12,13,14,15,16} 11 12 11 12 11 12
23 {2,3,4,5,6} {11,12,13,14,15,16} 6 11 6 11 8 9
24 {2,3,4,5,6} {8,9,10,11,12,13,14,15,16} 6 8 6 8 7 7
25 {2,3,4,5,6,7} {11,12,13,14,15,16} 7 11 7 11 9 9
26 {2,3,4,5,6,7,8,9} {10,11,12,13,14,15,16} 9 10 9 10 9 10
27 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17} ∅ 17 17 17 17 17 17
28 {2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} ∅ 16 17 16 17 16 17

Step 6. Construction of collective decision table. To construct the collective decision table, we need to use one of
the different interval reduction rules in order to specify the values of the collective decision attribute E. Table 7
shows the collective decision attribute values for different interval reduction rules and for λ = 0.75.

6.3.3. Inference of collective decision rules
At this level, the mediator should apply DRSA on the collective decision table. Table 8 provides the list of

decision rules obtained for λ = 0.75 and where the operator “floor” is used for interval reduction rule. Let briefly
comment on some decision rules. According to Rule #8 in Table 8, the ranking of a given country is at most Cl9 if (i)
the Public Debt is greater or equal to 126.1 and (ii) the Inflation Rate is greater or equal to 0. This rule is supported
by only one decision object (x15) and its strength is equal to 9.09%. The last Rule #37 indicates that when (i) the
GDP is greater or equal to 382692, (ii) the Inflation Rate is lower or equal to 0.34, and (iii) the Unemployment rate
is lower or equal to 8.5, then, this country should be ranked at least Cl13. Rule 37 is supported by two objects (x2

and x27) and its strength is equal to 15.38%. Finally, we observe that all these decision rules are exact.

6.4. Discussion

The aggregation procedure requires the definition of the credibility threshold λ ∈ [0.5, 1] and the selection
of an interval reduction rule. In what follows, we discuss some examples illustrating the role of these parameters
and the way that they can be used in practice. Let us focus first on the credibility threshold λ. Table 9 shows the
assignment intervals for different values of λ. In this table, we can easily see that assignment intervals become
larger by increasing the credibility threshold. This is a consequence of Properties (5) and (6) given in Appendix
A.3. Indeed, the upper limit u(x) of the assignment interval I(x) is defined based on the values of σ(x,Cl≤t ).
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Table 8: Collective decision rules obtained for λ = 0.75 and using operator “floor” as interval reduction rule
Rule ID Rule description Nb. of supporting Strength (%)

objects
Rule 1 IF (Unemp−Rate≥26.80) THEN (Rank = At most 2) 1 100
Rule 2 IF (CA≤-1.93) & (Unemp−Rate≥16.9) THEN (Rank = At most 3) 1 50
Rule 3 IF (FDI≤-3.2) & (Unemp−Rate≥7.8) THEN (Rank = At most 6) 1 33.33
Rule 4 IF (Unemp−Rate≥14) & (GDP≤72134) THEN (Rank = At most 7) 3 60
Rule 5. IF (Unemp−Rate≥13) & (GDP≤72134) THEN (Rank = At most 8) 4 50
Rule 6 IF (CA≤0.51) & (GDP≤142245) & (FDI≤3.5) THEN (Rank = At most 8) 4 50
Rule 7 IF (Unemp−Rate≥16) THEN (Rank = At most 9) 4 36.36
Rule 8 IF (Public−Debt≥126.1) & (Infl−Rate≥0) THEN (Rank = At most 9) 1 9.09
Rule 9 IF (GDP≤35275) & (FDI≤-0.9) & (Unemp−Rate≥9.6) THEN (Rank = At most 9) 1 9.09
Rule 10 IF (GDP≤39940) & (Unemp−Rate≥11.9) THEN (Rank = At most 10) 3 25
Rule 11 IF (Unemp−Rate≥11.5) THEN (Rank = At most 11) 11 78.57
Rule 12 IF (GDP≤35275) & (FDI≤-0.9) THEN (Rank = At most 12) 2 13.33
Rule 13 IF (CA≤0.51) & (GDP≤142245) THEN (Rank = At most 13) 5 31.25
Rule 14 IF (CA≤-1.84) & (FDI≤-0.6) THEN (Rank = At most 14) 1 5.88
Rule 15 IF (Unemp−Rate≥10.40) THEN (Rank = At most 15) 12 63.16
Rule 16 IF (CA≤-1.21) & (GDP≤149491) THEN (Rank = At most 15) 3 15.79
Rule 17 IF (CA≤4.12) THEN (Rank = At most 16) 20 86.96
Rule 18 IF (Infl−Rate≥0.89) & (Public−Debt≥68.75) THEN (Rank = At most 16) 3 13.04
Rule 19 IF (CA≥11.2) THEN (Rank = At least 17) 1 20
Rule 20 IF (FDI≥50) THEN (Rank = At least 17) 1 20
Rule 21 IF (GDP≥2737600) THEN (Rank = At least 17) 1 20
Rule 22 IF (Extern−Debt≤47) & (CA≥5.96) THEN (Rank = At least 17) 1 20
Rule 23 IF (CA≥7.12) & (Unemp−Rate≤6.6) THEN (Rank = At least 17) 1 20
Rule 24 IF (CA≥6.86) THEN (Rank = At least 16) 4 44.44
Rule 25 IF (Unemp−Rate≤4.9) THEN (Rank = At least 16) 1 11.11
Rule 26 IF (GDP≥1899098) & (FDI≥1.8) THEN (Rank = At least 16) 1 11.11
Rule 27 IF (GDP≥193443) & (Public−Debt≤53.5) THEN (Rank = At least 16) 3 33.33
Rule 28 IF (CA≥10.2) THEN (Rank = At least 15) 2 18.18
Rule 29 IF (Extern−Debt≤47) THEN (Rank = At least 15) 2 18.18
Rule 30 IF (GDP≥2059852) THEN (Rank = At least 15) 2 18.18
Rule 31 IF (CA≥10.2) THEN (Rank = At least 14) 2 16.67
Rule 32 IF (GDP≥2059852) THEN (Rank = At least 14) 2 16.67
Rule 33 IF (GDP≥382692) & (Infl−Rate≤0.34) & (Unemp−Rate≤8.5) THEN (Rank = At least 14) 2 16.67
Rule 34 IF (CA≥10.2) THEN (Rank = At least 13) 2 15.38
Rule 35 IF (Public−Debt≤6) THEN (Rank = At least 13) 1 7.69
Rule 36 IF (GDP≥2059852) THEN (Rank = At least 13) 2 15.38
Rule 37 IF (GDP≥382692) & (Infl−Rate≤0.34)& (Unemp−Rate≤8.5) THEN (Rank = At least 13) 2 15.38

Property (5) sets that σ(x,Cl≤t ) ≤ σ(x,Cl≤t′ ), ∀t′ ≥ t. This means that when the value of λ increases, the condition
σ(x,Cl≤t ) ≥ λ becomes more strict and the value of u(x) moves in the direction of the most preferred class, i.e.,
Cln. Similarly, the lower limit l(x) of the assignment interval I(x) is defined based on the values of σ(x,Cl≥t ).
Property (6) sets that σ(x,Cl≥t ) ≥ σ(x,Cl≥t′ ), ∀t′ ≥ t. This means that when the value of λ increases, the condition
σ(x,Cl≥t ) ≥ λ becomes more strict and the value of l(x) moves in the direction of the least preferred class, i.e.,
Cl1.

Table 9: Assignment interval for different input parameters and collective decision attribute values for different input parameters
λ 0.50 0.64 0.67 0.75

I(xi) Rule I(xi) Rule I(xi) Rule I(xi) Rule
l(xi) u(xi)min max floor ceiling l(xi) u(xi)min max floor ceiling l(xi) u(xi)min max floor ceiling l(xi) u(x) min max floor ceiling

xi Cj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 17 17 17 17 17 17 17 17 17 17 17 17 16 17 16 17 16 17 16 17 16 17 16 17
2 15 15 15 15 15 15 15 15 15 15 15 15 14 15 14 15 14 15 14 15 14 15 14 15
3 8 8 8 8 8 8 8 8 8 8 8 8 7 8 7 8 7 8 7 9 7 9 8 8
4 7 7 7 7 7 7 6 7 6 7 6 7 6 7 6 7 6 7 6 8 6 8 7 7
5 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 4 3 3 2 4 2 4 3 3
6 13 14 13 14 13 14 13 14 13 14 13 14 13 17 13 17 15 15 13 17 13 17 15 15
7 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
8 13 13 13 13 13 13 13 13 13 13 13 13 13 14 13 14 13 14 13 14 13 14 13 14
9 17 17 17 17 17 17 17 17 17 17 17 17 16 17 16 17 16 17 16 17 16 17 16 17

10 15 15 15 15 15 15 15 15 15 15 15 15 15 16 15 16 15 16 15 16 15 16 15 16
11 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
12 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 2 2 1 3 1 3 2 2
13 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 7 6 7 6 7
14 11 11 11 11 11 11 11 11 11 11 11 11 10 12 10 12 11 11 10 12 10 12 11 11
15 9 9 9 9 9 9 9 9 9 9 9 9 8 9 8 9 8 9 8 10 8 10 9 9
16 6 11 6 11 8 9 6 11 6 11 8 9 6 11 6 11 8 9 6 11 6 11 8 9
17 11 11 11 11 11 11 11 11 11 11 11 11 10 11 10 11 10 11 10 11 10 11 10 11
18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
19 11 11 11 11 11 11 11 11 11 11 11 11 11 13 11 13 12 12 11 13 11 13 12 12
20 17 17 17 17 17 17 17 17 17 17 17 17 16 17 16 17 16 17 16 17 16 17 16 17
21 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
22 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 12 11 12 11 12 11 12 11 12
23 6 11 6 11 8 9 6 11 6 11 8 9 6 11 6 11 8 9 6 11 6 11 8 9
24 6 8 6 8 7 7 6 8 6 8 7 7 6 8 6 8 7 7 6 8 6 8 7 7
25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 7 11 7 11 9 9
26 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 9 10 9 10
27 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
28 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 17 16 17 16 17 16 17 16 17

Let us now consider the benefits of proposing different interval reduction rules. The most important argument
for proposing several interval reduction rules is the fact that these rules may apply to different decision-making
situations. For instance, in decision contexts implying human health risk and human exposure to nuclear risks or
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other similar situations, the maximum rule (that picks the highest risk level here) is more appropriate. In other
decision situations with a limited impact on human health, the minimum operator may be better justified. The
median operator provides an intermediate value between the minimum and maximum values.

Finally, we present in Table 10 some statistics and output information. Here we just define the concepts of
minimal cover, reduct and core. The minimal cover is a subset of non redundant decision rules. A reduct is a subset
of attributes which can, by itself, fully characterize the knowledge in the decision table. The set of attributes which
is common to all reducts is called the core. The analysis of Table 10 ensures the importance of the criterion GDP
since it is often present in the core set. The next most important criterion is the Unemp−Rate followed by the criteria
Public−Debt and Infl−Rate. Table 10 also shows that in all cases, a reduced set of collective decision rules in the
minimal cover is generated. Finally, the quality of the classification is equal to 1 in all cases.

Table 10: Statistics and output information according to different input parameters
λ Statistics and output information Rule

min max floor ceiling
0.50 Classification quality (%) 1 1 1 1

Number of decision rules 213 238 236 236
Number of exact decision rules 213 238 236 236
Nb. of rules in the minimal cover 48 34 48 34
Core GDP GDP GDP GDP
Reducts 1. GDP, CA 1. GDP, Public−Debt 1. GDP, CA 1. GDP, CA

2. GDP, Public−Debt, Extern−Debt 2. GDP, CA 2. GDP, Public−Debt, Extern−Debt 2. GDP, Public−Debt, Extern−Debt
3. GDP, Public−Debt, Unemp−Rate 3. GDP, Infl−Rate, Unemp−Rate 3. GDP, Infl−Rate, Unemp−Rate 3. GDP, Infl−Rate, Unemp−Rate

4. GDP, Extern−Debt, Unemp−Rate 4. GDP, Public−Debt, Unemp−Rate 4. GDP, Public−Debt, Unemp−Rate
5. GDP, Extern−Debt, Unemp−Rate 5. GDP, Extern−Debt, Unemp−Rate

0.64 Classification quality (%) 1 1 1 1
Number of decision rules 215 238 242 238
Number of exact decision rules 215 238 242 238
Nb. of rules in the minimal cover 48 34 49 24
Core GDP GDP GDP GDP
Reducts 1. GDP, CA 1. GDP, Public−Debt 1. GDP, CA 1. GDP, CA

2. GDP, Public−Debt, Extern−Debt 2. GDP, CA 2. GDP, Public−Debt, Extern−Debt 2. GDP, Unemp−Rate
3. GDP, Public−Debt, Unemp−Rate 3. GDP, Infl−Rate, Unemp−Rate 3. GDP, Infl−Rate, Unemp−Rate 3. GDP, Public−Debt, Extern−Debt

4. GDP, Extern−Debt, Unemp−Rate 4. GDP, Public−Debt, Unemp−Rate
5. GDP, Extern−Debt, Unemp−Rate

0.67 Classification quality (%) 1 1 1 1
Number of decision rules 243 230 238 238
Number of exact decision rules 243 230 238 238
Nb. of rules in the minimal cover 30 27 37 24
Core GDP ∅ GDP GDP
Reducts 1. GDP, CA 1. GDP, CA 1. GDP, CA 1. GDP, CA

2. GDP, Public−Debt, Extern−Debt 2. GDP, Unemp−Rate 2. GDP, Public−Debt, Extern−Debt 2. GDP, Unemp−Rate
3. GDP, Public−Debt, Unemp−Rate 3. GDP, Public−Debt, Extern−Debt 3. GDP, Infl−Rate, Unemp−Rate 3. GDP, Public−Debt, Extern−Debt

4. Infl−Rate, FDI, Unemp−Rate 4. GDP, Public−Debt, Unemp−Rate
5. Infl−Rate, Public−Debt, Extern−Debt, FDI 5. GDP, Extern−Debt, Unemp−Rate
6. Infl−Rate, Public−Debt, CA
7. Infl−Rate, Extern−Debt, CA
8. Infl−Rate, CA, Unemp−Rate

0.75 Classification quality (%) 1 1 1 1
Number of decision rules 251 238 295 243
Number of exact decision rules 251 238 295 243
Nb. of rules in the minimal cover 30 27 37 24
Core GDP ∅ GDP GDP
Reducts 1. GDP, CA 1. GDP, CA 1. GDP, CA 1. GDP, CA

2. GDP, Public−Debt, Extern−Debt 2. GDP, Unemp−Rate 2. GDP, Public−Debt, Extern−Debt 2. GDP, Unemp−Rate
3. GDP, Public−Debt, Unemp−Rate 3. GDP, Public−Debt, Extern−Debt 3. GDP, Infl−Rate, Unemp−Rate 3. GDP, Public−Debt, Extern−Debt

4. Infl−Rate, FDI, Unemp−Rate 4. GDP, Public−Debt, Unemp−Rate
5. Infl−Rate, Public−Debt, Extern−Debt, FDI 5. GDP, Extern−Debt, Unemp−Rate
6. Infl−Rate, Public−Debt, CA
7. Infl−Rate, Extern−Debt, CA
8. Infl−Rate, CA, Unemp−Rate

Table 11 presents the reducts and cores for individual classifications. This table shows the importance of the
criteria GDP, CA and Public−Debt followed by the criteria External−Debt and Unemp−Rate. Furthermore, the
analysis of Table 11 confirms the importance of the criterion GDP which is the unique criterion belonging to the
core for the three agencies.

Table 11: Reducts and cores for individual classifications
Agency Fitch Moody S&P
Reducts 1. GDP, CA 1. GDP, CA 1. GDP, CA

2. GDP, Public−Debt, External−Debt 2. GDP, Public−Debt, External−Debt 2. GDP, Public−Debt
3. GDP, Public−Debt, Unemp−Rate 3. GDP, Public−Debt, Unemp−Rate

Core GDP GDP GDP
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7. Additional case studies

In this section, we provide two additional case studies illustrating the proposed approach. The first case study
is related to the heat islands exposition in the Québec Metropolitan Community in Canada. The second case study
concerns the management of post-accident nuclear risk in the Southern France region.

7.1. Heat islands exposition in the QMC
This case study was conducted as part of an action-research project whose purpose was to strengthen the resilience

of the Québec Metropolitan Community (QMC), Québec, Canada, to climate change [22][43]. The objective of the
second phase of this project is to assess the hot islands exposition risk at the QMC. A large set of criteria has been
initially identified by the experts during this project. However, only a subset of seven criteria for which data were
available for all the districts of the QMC were used to produce final risk maps. These considered criteria are: Built
density (Built−Density), Built surface fraction (Built−Surface), Land-use distribution (Land−Use), Number of
storeys (Number−Storeys), Electric consumption of a quarter (Elec−Consump), Electric consumption of a quarter
per built surface (Elec−Consump−Surf) and Year of construction (Const−Year).

The experts have also identified a subset of 15 spatial units in the QMC—each spatial unit corresponds to
an average city quarter of 250m × 250m—that have been used as learning examples. Furthermore, they jointly
designed an ordinal risk scale of four levels from the lower risk (1) to the highest risk (4) to compare the spatial units
of the study area. The assessment of the selected spatial units with respect to all criteria is summarized in Table 12.
The experts have been organized randomly into two teams. Based on the scores of the selected spatial units with
respect to all criteria and on their own expertise and knowledge of the territory, each team of experts categorizes
each of the selected spatial units on the risk scale. The result of assignment process is given in Table 12 (the two
last columns).

Table 12: Information table with assignment examples for heat islands exposition in the QMC
Spatial Unit xi Built−Density Built−Surface Land−Use Number−Storeys Elec−Consump Elec−Consump−Surf Const−Year T1 (Team 1) T2 (Team 2)

1 0.5 42 Commercial 1 1144 38 1972 4 4
2 0.3 26 Commercial 1 313 19 1973 4 4
3 0.3 11 Residential 1.9 80 7 1998 1 2
4 1.7 35 Residential 2.9 297 5 1929 3 2
5 2.2 21 Residential 9.6 638 5 1979 2 2
6 1.3 23 Residential 6.4 353 5 1985 2 3
7 2.2 25 Residential 7.1 1207 11 1965 2 3
8 2.7 47 Residential 2.6 667 7 1901 3 2
9 1.6 37 Residential 2.1 345 7 1908 3 2

10 0.3 20 Residential 1.3 120 6 1967 1 1
11 0.4 17 Residential 1.4 119 6 2002 1 1
12 0.8 21 Residential 2.9 253 7 1973 2 2
13 0.3 21 Commercial 1 205 15 2006 4 4
14 2.8 26 Industrial 1 318 0.18 1972 3 3
15 2 42 Industrial 1.8 1060 1.2 1984 4 4

We applied the proposed approach to the data in Table 12. The assignment intervals and the collective decision
attribute values for different interval reduction rules are given Table 13. The list of the collective decision rules
obtained for a credibility threshold λ equal to 0.5 and by using the ‘ceiling’ operator are given in Table 14. The
‘ER’ in this table stands for ‘Exposition Risk’. The quality of approximation for this particular application is equal
to 1. In addition, there are two reducts ({Built−Surface, Elec−Consump−Surf} and {Built−Surface, Land−Use,
Number−Storeys}) and one core ({Built−Surface}).

Table 13: Assignment intervals for heat islands exposition in the QMC
I(xi) Rule
l(xi) u(xi) min max floor ceiling

xi Cj 1 2 3 4
1 4 4 4 4 4 4
2 4 4 4 4 4 4
3 1 2 1 2 1 2
4 2 3 2 3 2 3
5 2 2 2 2 2 2
6 2 3 2 3 2 3
7 2 3 2 3 2 3
8 3 3 3 3 3 3
9 2 3 2 3 2 3
10 1 1 1 1 1 1
11 1 1 1 1 1 1
12 2 2 2 2 2 2
13 4 4 4 4 4 4
14 3 3 3 3 3 3
15 4 4 4 4 4 4
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Table 14: Collective decision rules for heat islands exposition in the QMC
Rule ID Decision rule description Nb. of supporting Strength (%)
Rule 1 IF (Elec−Consump≤120) & (Number−Storeys≤1.4) THEN ER = At most 1 2 100
Rule 2 IF (Built−Surface≤21) & (Elec−Consump−Surf<=5) THEN ER = Atmost 2 1 20
Rule 3 IF (Elec−Consump≤253) & (Elec−Consump−Surf≤7) THEN ER = At most 2 4 80
Rule 4 IF (Land−Use=2) THEN ER = At most 3 10 90.91
Rule 5 IF (Elec−Consump−Surf≤0.18) THEN ER = At most 3 1 9.09
Rule 6 IF (Elec−Consump−Surf≥ 15) THEN ER = At least 4 3 75
Rule 7 IF (Land−Use=3) & (Elec−Consump−Surf≥1.2) THEN ER = At least 4 1 25
Rule 8 IF (Built−Surface≥23) THEN ER = At least 3 9 90
Rule 9 IF (Elec−Consump≥205) THEN ER = At least 2 12 92.31
Rule 10 IF (Elec−Consump−Surf≥7) THEN ER = At least 2 8 61.54

7.2. Management of post-accident nuclear risk

The problem considered in this case study concerns the management of post-accident nuclear risk in the Southern
France region. This evaluation was conducted during the PRIME project, which was supervised by the French
Institute for Radioprotection and Nuclear Safety. A full description of the project is available in [49]. The studied
zone covers a radius of some fifty kilometers around three nuclear sites in the lower Rhône Valley (the Cruas,
Tricastin-Pierrelatte and Marcoule sites). The objective of PRIME is to develop—conjointly with the decision
makers, the stakeholders and representatives of the territory—a multicriteria evaluation approach in order to permit
the analysis and characterization of the contaminated territory, which will be useful for the risk managers. The
evaluation approach should associate to each district of the study area a degree representing the risk on this district
of a nuclear accident resulting in releases into the atmosphere. For this purpose, a scale of six levels (0: normal
situation; 1: very minor impact; 2: minor impact; 3: moderate impact; 4: major impact; and 5: major and long-lasting
negative impact) has been adopted by the PRIME working team.

For the purpose of this paper, only a subset of data is used for illustration. The problem discussed here involves
18 decision objects (corresponding to a subset of the districts of the study area) selected from 492 decision objects, 7
evaluation criteria and three decision makers denoted CM, PP and CAL, respectively. The criteria considered in this
paper are: Radioecological vulnerability of agricultural area (Agri−Vul), Radioecological vulnerability of forest area
(Forest−Vul), Radioecological vulnerability of urban area (Urban−Vul), Real estate vulnerability (RealEstate−Vul),
Tourism vulnerability (Tour−Vul), Economic vulnerability of companies (Eco−Vul) and Employment vulnerability
(Emp−Vul). The evaluation of the decision objects in respect to these criteria is given in Table 15. We note that
the decision table given in Table 15 contains two inconsistent objects, namely #4, and #6. They are inconsistent,
because #4 has better evaluations on all three attributes than #6 but a worse global score.

Table 15: Information table with assignment examples for the post-accident nuclear risk assessment
District xi Agri−Vul Forest−Vul Urban−Vul RealEstate−Vul Tour−Vul Eco−Vul Emp−Vul CM PP CAL

1 4 5 5 5 4 1 1 4 4 5
2 4 5 5 5 4 2 2 4 4 5
3 4 5 5 5 4 2 1 4 4 5
4 4 5 5 5 4 3 1 5 4 5
5 3 2 2 4 4 2 0 3 2 3
6 1 1 1 2 4 1 0 0 0 1
7 2 2 1 2 4 1 0 3 2 2
8 1 2 1 2 2 1 0 0 0 1
9 3 2 2 4 4 2 0 3 2 2
10 3 3 3 4 4 1 0 3 2 3
11 3 3 3 4 4 1 0 3 2 3
12 3 3 2 4 4 1 0 3 2 3
13 3 2 2 4 4 1 0 2 2 3
14 2 2 2 4 4 1 0 2 1 2
15 2 2 1 4 3 1 0 2 1 2
16 2 2 1 4 4 1 0 2 1 2
17 1 1 1 2 4 1 0 3 3 4
18 1 1 0 1 4 1 0 3 3 3

Table 16 shows the assignment intervals and the collective decision attribute values for different values of
credibility threshold λ and different interval reduction rules. Table 17 provides the list of decision rules obtained
for λ = 0.70 and where the operator “floor” is used for interval reduction rule.

8. Comparison of results

The final classifications generated by the DRSAfG may differ according to the input data and parameters. The
objective of this section is to provide a formal way to compare the different final classifications using a series of
well-known non-parametric statistics, namely Kendall’s τ , Spearman’s ρ, Cohen’s κ, Kendall’s W and Fless’s κ.
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Table 16: Assignment intervals for the post-accident nuclear risk assessment
λ 0.60 0.75 0.80 0.95

I(xi) Rule I(xi) Rule I(xi) Rule I(xi) Rule
l(xi) u(xi)min max floor ceiling l(xi) u(xi)min max floor ceiling l(xi) u(xi)min max floor ceiling l(xi) u(xi)min max floor ceiling

xi Cj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5
2 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5
3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 3 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 4 2 4 3 3
6 0 3 0 3 1 2 0 3 0 3 1 2 0 3 0 3 1 2 0 4 0 4 2 2
7 2 3 2 3 2 3 2 3 2 3 2 3 1 3 1 3 2 2 1 4 1 4 2 3
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 3 3 3 3 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 4 2 4 3 3

10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 4 3 3
11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 4 3 3
12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 4 3 3
13 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 4 2 4 3 3
14 2 3 2 3 2 3 2 3 2 3 2 3 1 3 1 3 2 2 1 4 1 4 2 3
15 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2
16 2 3 2 3 2 3 2 3 2 3 2 3 1 3 1 3 2 2 1 4 1 4 2 3
17 0 3 0 3 1 2 0 3 0 3 1 2 0 3 0 3 1 2 0 4 0 4 2 2
18 0 3 0 3 1 2 0 3 0 3 1 2 0 3 0 3 1 2 0 3 0 3 1 2

Table 17: Collective decision rules relative to the post-accident nuclear risk assessment
Rule ID Rule description Nb. of supporting Strength (%)

objects
Rule 1 IF (Tour−Vul≤ 2), THEN (Risk = 0) 1 100
Rule 2 IF (Agri−Vul≤ 1), THEN (Risk = At most 1) 4 100
Rule 3 IF (Forest−Vul≤ 1), THEN (Risk = At most 1) 3 75
Rule 4 IF (Forest−Vul≤ 2), THEN (Risk = At most 2) 11 100
Rule 5 IF (Agri−Vul≤ 3), THEN (Risk = At most 3) 14 100
Rule 6 IF (Urban−Vul≤ 2), THEN (Risk = At most 3) 12 85.71
Rule 7 IF (RealEstate−Vul≤ 4), THEN (Risk = At most 3) 14 100
Rule 8 IF (Emp−Vul≤ 0), THEN (Risk = At most 3) 14 100
Rule 9 IF (Forest−Vul≤ 3), THEN (Risk = At most 3) 14 100
Rule 10 IF (Urban−Vul≤ 3), THEN (Risk = At most 3) 14 100
Rule 11 IF (Eco−Vul≤ 2), THEN (Risk = At most 4) 17 100
Rule 12 IF (Eco−Vul≥ 3), THEN (Risk = At least 5) 1 100
Rule 13 IF (Agri−Vul≥ 4), THEN (Risk = At least 4) 4 100
Rule 14 IF (Forest−Vul≥ 5), THEN (Risk = At least 4) 4 100
Rule 15 IF (Urban−Vul≥ 5), THEN (Risk = At least 4) 4 100
Rule 16 IF (RealEstate−Vul≥ 5), THEN (Risk = At least 4) 4 100
Rule 17 IF (Emp−Vul≥ 1), THEN (Risk = At least 4) 4 100
Rule 18 IF (Forest−Vul≥ 3), THEN (Risk = At least 3) 7 100
Rule 19 IF (Agri−Vul≥ 2), THEN (Risk = At least 2) 14 100
Rule 20 IF (Forest−Vul≥ 2)∧ (Tour−Vul≥ 4), THEN (Risk = At least 2) 13 92.86
Rule 21 IF (RealEstate−Vul≥ 4), THEN (Risk = At least 2) 13 92.86
Rule 22 IF (Forest−Vul≥ 2)∧ (Tour−Vul≥ 3), THEN (Risk = At least 2) 14 100
Rule 23 IF (Tour−Vul≥ 3), THEN (Risk = At least 1) 17 100

8.1. Comparing final classifications

The main input for the DRSAfG is the individual classifications specified by the different decision makers. Intu-
itively, we prefer that the final collective classification produced by the aggregation procedure reproduces perfectly
these classifications. This is often unreachable since decision makers generally provide different assignments. A
more reasonable objective is to obtain a final classification that reproduces “at best” the individual classifications.
LetCi (i = 1, · · · , k) be an individual classification provided by the ith (i = 1, · · · , k) decision maker andCj a final
ranking generated by the aggregation procedure. The first possible comparison is obtained by a direct application
of the Kendall’s τ , Spearman’s ρ and/or Cohen’s κ coefficients to evaluate the agreement between the final rankings
and each of the initial rankings.

The Kendall’s τ coefficient is a metric that counts the number of pairwise disagreements between two ranking
lists. The Spearman’s ρ measures the statistical dependence between two variables and assesses how well the
relationship between two variables can be described using a monotonic function. The Cohen’s κ is a measurement
of concordance or agreement between two rankings. There are two ways of calculating Cohen’s κ: unweighted
and weighted. The weighted κ is more appropriate to variables having more than two categories. The Kendall’s τ ,
Spearman’s ρ and Cohen’s κ are designed to compare two given rankings. In addition, these three statistics accept
ordinal data and can deal with ties. In the rest of this paper, we design by τ(Cj , Ci), ρ(Cj , Ci) and κ(Cj , Ci) the
value of the Kendall’s τ , Spearman’s ρ and Cohen’s κ coefficients relative to a final rankingCj and an initial ranking
Ci.

Let θ ∈ {τ, ρ, κ}. Then, we can easily establish that if θ(Cj , Ci) ≥ θ(Cj′ , Ci) thenCj is more close to individual
classification Ci than Cj′ . In other words, Cj reproduces better the individual classification Ci than does Cj′ .

Comparison rule 1. Let Cj and Cj′ be two collective classifications and let Ci be an individual classification.

21



[Post print version, please cite as] Chakhar Salem, Ishizaka Alessio, Labib Ashraf, Saad Inès, Dominance-based Rough Set Approach for Group Decisions,
European Journal of Operational Research, advance online publications, doi:10.1016/j.ejor.2015.10.060

Then, if θ(Cj , Ci) ≥ θ(Cj′ , Ci), then Cj reproduces better the individual classification Ci than Cj′ . Classification
Cj should be selected.

The rule above applies for one final classification and one initial classification. It is more appropriate to compute
the closeness of a final classification to all the initial classifications taken together. We can compute the closeness
of a collective classification Cj to a set of individual classifications C = {C1, C2, · · · , Ck} as follows:

Eθ(Cj , C) =
∑
Ci∈C

θ(Cj , Ci), (11)

where θ ∈ {τ, ρ, κ}. Then, we can easily establish that if Eθ(Cj , C) ≥ Eθ(Cj′ , C) then Cj is more close
to individual classifications set C = {C1, · · · , Ck} than Cj′ . In other words, Cj reproduces better the individual
classifications than does Cj′ .

Comparison rule 2. Let Cj and Cj′ be two collective classifications obtained from the same set of individual
classifications set C = {C1, · · · , Ck}. Then, if Eθ(Cj , C) ≥ Eθ(Cj′ , C), then Cj reproduces better the individual
classifications than Cj′ . Classification Cj should be selected.

The scores given by Equation (11) for different statistics can be combined in order to identify the best collective
classification based on the different statistics taken together:

E(Cj , C) = Eτ (Cj , C) + Eρ(Cj , C) + Eκ(Cj , C). (12)

We can easily establish that if E(Cj , C) ≥ E(Cj′ , C) then Cj is more close to individual classifications set
C = {C1, · · · , Ck} than Cj′ . In other words, Cj reproduces better the individual classifications set C than does
Cj′ .

Comparison rule 3. Let Cj and Cj′ be two collective classifications obtained from the same set of individual
classifications C = {C1, · · · , Ck}. Then, if E(Cj , C) ≥ E(Cj′ , C), then Cj reproduces better the individual
classifications in C than Cj′ . Classification Cj should be selected.

A more appropriate way to compare a given final classification in respect to all the initial rankings consists in
the use of the Kendall’s W and/or Fleiss’s κ statistics. The Kendall’s W (also known as Kendall’s coefficient of
concordance) is used for assessing agreement among multiple rankings. The Fless’s κ is an extension of Cohen’s κ
to evaluate concordance or agreements between multiple rankings. The Kendall’s W and Fless’s κ are devoted to
compare at least three different rankings. In addition, both of them accept ordinal data and can deal with ties.

LetC = {C1, C2, · · · , Ck} be a set ofk initial rankings and letCj be a final ranking generated by the aggregation
procedure. Then, the statistics Kendall’s W and Fleiss’s κ can be directly used to measure the closeness of the final
ranking Cj to the set of initial rankings C = {C1, C2, · · · , Ck}. In the rest of this paper, we design by W (Cj , C)
and F (Cj , C) the comparison of the final ranking Cj to initial rankings set C = {C1, C2, · · · , Ck} using Kendall’s
W and Fleiss’s κ statistics, respectively.

Let ϕ ∈ {W,F}. Then, we can easily establish that if ϕ(Cj , C) ≥ ϕ(Cj′ , C) then Cj is more close to the
individual classifications set C than Cj′ . In other words, Cj reproduces better the individual classifications set C
than does Cj′ .

Comparison rule 4. Let Cj and Cj′ be two collective classifications and let C = {C1, C2, · · · , Ck} be a set of k
initial rankings. Then, if ϕ(Cj , C) ≥ ϕ(Cj′ , C), then Cj reproduces better the individual classification set C than
Cj′ . Classification Cj should be selected.

The scores given by W (Cj , C) and F (Cj , C) can be combined in order to identify the best collective classifi-
cation based on the statistics Kendall’s W and Fleiss’s κ taken together:

E′(Cj , C) = W (Cj , C) + F (Cj , C). (13)

We can easily establish that if E′(Cj , C) ≥ E′(Cj′ , C) then Cj is more close to individual classifications set
C = {C1, · · · , Ck} than Cj′ . In other words, Cj reproduces better the individual classifications than does Cj′ .
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Comparison rule 5. Let Cj and Cj′ be two collective classifications obtained from the same set of individual
classifications C = {C1, · · · , Ck}. Then, if E′(Cj , C) ≥ E′(Cj′ , C), then Cj reproduces better the individual
classifications than Cj′ . Classification Cj should be selected.

8.2. Illustration

For illustration, we provide in Table 18 the values of θ(Cj , Ci),Eθ(Cj , Ci),E(Cj , C),ϕ(Cj , Ci) andE′(Cj , C)
with θ ∈ {τ, ρ, κ}, ϕ ∈ {W,F}, j ∈ {1, 2, · · · , 16} and i = 1, 2, 3, for the initial and final classifications given in
Table 5 and Table 9, respectively. The values of Kendall τ coefficient are computed using the Web-based and Free
Statistics Software [66], the Spearman ρ and the Cohen’s κ, Kendall’s W and Fleiss’s κ coefficients are computed
using the Web-based StatsToDo Software [59]. In Table 18, the minimum values (corresponding to worst final
classification) are underlined while the maximum values (corresponding to best final classification) are in boldface.

The Kendall’s τ coefficient is in the range [-1,1]. If the agreement between the two rankings is perfect (i.e., the
two rankings are the same) the coefficient has value 1. If the disagreement between the two rankings is total (i.e.,
one ranking is the reverse of the other) the coefficient has value -1. If two rankings are independent, then we would
expect the coefficient to be approximately zero. The Spearman’s ρ coefficient is in the range [-1,1]. A positive
Spearman correlation coefficient indicates that both rankings vary in the same direction. A negative Spearman ρ
coefficient indicates a monotone decreasing relationship between the two rankings. A Spearman ρ coefficient of
zero indicates that there is no tendency between the two rankings. Conventionally, a Kappa of <0.2 is considered
poor agreement, 0.21-0.4 fair, 0.41-0.6 moderate, 0.61-0.8 strong, and more than 0.8 near complete agreement. As
shown in Table 18, the values of Kendall’s τ and Spearman’s ρ coefficients all tend towards 1. We can conclude
that there is a high level of agreement between initial and final rankings. The values of Cohen’s κ in Table 18 are
all greater than 0.8, indicating a near complete agreement between each of initial and final rankings.

Table 18: Kendall’s τ , Spearman’s ρ, Cohen’s κ, Kendall’s W and Fleiss’s κ coefficients
λ 0.50 0.64 0.67 0.75

Rule min max floor ceiling min max floor ceiling min max floor ceiling min max floor ceiling
Ci Statistics Cj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Fitch Kendall τ(Cj, C1) 0.9226 0.946 0.9493 0.9507 0.9373 0.946 0.9524 0.9507 0.8995 0.9048 0.9102 0.9293 0.9109 0.8985 0.9102 0.9293

(i = 1) Spearman ρ(Cj, C1) 0.9686 0.976 0.9835 0.9846 0.9738 0.976 0.9845 0.9846 0.9608 0.9606 0.972 0.9791 0.9659 0.9592 0.9714 0.9791
Cohen κ(Cj, C1) 0.9097 0.9272 0.9288 0.9212 0.9171 0.9272 0.9362 0.9212 0.8503 0.8692 0.8657 0.8792 0.8259 0.8594 0.858 0.8792

Moody Kendall τ(Cj, C2) 0.8981 0.8913 0.9037 0.9051 0.8978 0.8913 0.8981 0.9051 0.8813 0.8651 0.866 0.9046 0.9129 0.8707 0.889 0.9135
(i = 2) Spearman ρ(Cj, C2) 0.9636 0.9573 0.9688 0.9668 0.9643 0.9573 0.9678 0.9668 0.9503 0.9444 0.9507 0.9627 0.9658 0.9425 0.9606 0.9691

Cohen κ(Cj, C2) 0.878 0.8659 0.8818 0.8742 0.8719 0.8659 0.8756 0.8742 0.8732 0.8099 0.8342 0.8614 0.8882 0.8003 0.8541 0.8614
S&P Kendall τ(Cj, C3) 0.8631 0.8738 0.8774 0.8787 0.8657 0.8738 0.8748 0.8787 0.8927 0.8598 0.9003 0.8869 0.8953 0.8624 0.8975 0.8781

(i = 3) Spearman ρ(Cj, C3) 0.9447 0.9466 0.9562 0.9668 0.9467 0.9466 0.9558 0.9579 0.9582 0.9419 0.9691 0.9627 0.9579 0.9446 0.9663 0.9578
Cohen κ(Cj, C3) 0.854 0.8695 0.8577 0.8641 0.8478 0.8695 0.8514 0.8641 0.8495 0.8553 0.8652 0.8511 0.8382 0.8311 0.8574 0.8369
Kendall Eτ (Cj, C) 2.6838 2.7111 2.7304 2.7345 2.7008 2.7111 2.7253 2.7345 2.6735 2.6297 2.6765 2.7208 2.7191 2.6316 2.6967 2.7209

- Spearman Eρ(Cj, C) 2.8769 2.8799 2.9085 2.9182 2.8848 2.8799 2.9081 2.9093 2.8693 2.8469 2.8918 2.9045 2.8896 2.8463 2.8983 2.906
Cohen Eκ(Cj, C) 2.6417 2.6626 2.6683 2.6595 2.6368 2.6626 2.6632 2.6595 2.573 2.5344 2.5651 2.5917 2.5523 2.4908 2.5695 2.5775

- - E(Cj, C) 8.2024 8.2536 8.3072 8.3122 8.2224 8.2536 8.2966 8.3033 8.1158 8.011 8.1334 8.217 8.161 7.9687 8.1645 8.2044
- Kendall’s W W (Cj, C) 0.9709 0.9713 0.9749 0.9750 0.9719 0.9713 0.9748 0.9750 0.9700 0.9672 0.9728 0.9744 0.9725 0.9671 0.9736 0.9746
- Fleiss’s κ F (Cj, C) 0.439 0.4509 0.4246 0.4184 0.439 0.4509 0.425 0.4184 0.4056 0.4079 0.3524 0.3499 0.399 0.4003 0.3396 0.3364

- - E′(Cj, C) 1.4099 1.4222 1.3995 1.3934 1.4109 1.4222 1.3998 1.3934 1.3756 1.3751 1.3252 1.3243 1.3715 1.3674 1.3132 1.311

The Kendall’s W coefficient ranges from 0 (no agreement) to 1 (complete agreement). Intermediate values of
Kendall’s W indicate a greater or lesser degree of unanimity among the various rankings. A negative Fleiss’s kappa
indicates poor agreement. A Fleiss’s κ in the range [0,1] indicates an increasing levels of agreement. A Fleiss’s κ
greater than 0.8 indicates a near perfect agreement. The values of Kendall’s W coefficient in Table 18 tend towards
1. We can conclude that according to Kendall’s W coefficient, there is a high level of agreement between the initial
and the final rankings. The values of Fleiss’s κ show a moderate agreement between the initial and the final rankings.

We conducted the same comparison exercise presented above with the two other case studies given in Section
7.1 and in Section 7.2, respectively. A summary of this comparison is given in Appendix C.

9. Conclusion and future work

We proposed an approach, called DRSAfG, designed to handle multiple decision makers in a way that leads to
one compromise solution. The DRSAfG is structured into three phases. Firstly, the individual approximation of the
knowledge of each decision maker into lower and upper approximation sets. Secondly, the outputs of the first phase
are aggregated into a collective decision table. Thirdly, the inference of collective decision rules. The approach is
illustrated through a series of case studies relative to credit worthiness of a set of European countries, heat islands
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exposition in the Québec Metropolitan Community in Canada and the management of post-accident nuclear risk in
the Southern France region.

The DRSAfG approach presented in this paper addresses appropriately the shortcomings of existing works that
we mentioned in Section 1: (i) it uses a mixed aggregation strategy to combine the judgements and perspectives
of involved decision makers, which avoids the problems of input or output strategies used alone; (ii) it measures
objectively the “powers” of decision makers based on their preferences; (iii) it combines the preference and knowl-
edge of decision makers based on the majority principle and veto effect, which leads to more consensual and fairer
decisions; (iv) it uses a reduced set of decision objects in order to extract and generalize the preferences of the deci-
sion makers thus minimizing their cognitive effort; and (v) it is enhanced with several tools permitting to compare
final results obtained using different input parameters, which substantially improve the effectiveness of the decision
making process and the successful implementation of the final solution.

Three main directions of research should be investigated in the future. The first direction concerns the use of
the VC-DRSA [32] or the method of [5] instead of the conventional DRSA. The second direction of research is
to use the input oriented strategy to combine the judgments and perspectives of decision makers by using some
appropriate rules (such as maxmin, minmax or leximax criteria) or a distance/measure function and then apply
the DRSA to infer the collective decision rules. The third direction of research concerns the exploration of the
decision rule-related information to collectivity classify the decision objects by collecting the individual decision
rules obtained from different decision makers and then the use of some appropriate metrics to remove redundant
and contradictory decision rules.
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[18] Dembczynski, K., Greco, S., Kotlowski, W., Slowiński, R., 2007. Statistical model for rough set approach
to multicriteria classification. In: Kok, J., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenic, D.,
Skowron, A. (Eds.), Knowledge Discovery in Databases: PKDD 2007. Vol. 4702 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, pp. 164–175.
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[39] Kadziński, M., Greco, S., Slowiński, R., 2014. Robust ordinal regression for dominance-based rough set
approach to multiple criteria sorting. Information Sciences 283, 211–228.
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AppendixA. Proofs

AppendixA.1. Properties of concordance power S(·, ·)
Property 1. 0 ≤ S(x,Cl⋄t ) ≤ 1, ∀t and ⋄ ∈ {≥,≤}.

Proof . Let ⋄ ∈ {≥,≤}. S(x,Cl⋄t ) is minimal when L(x,Cl⋄t ) = ∅, i.e., @i ∈ H , such that x ∈ P (Cl⋄t,i).
In this case and based on Equation (5), we have: Si(x,Cl⋄t ) = 0 (i = 1, · · · , h). Then by Equation (4), we
obtain: S(x,Cl⋄t ) = S1(x,Cl⋄t )+ · · ·+Sh(x,Cl⋄t )=0. Consequently, S(x,Cl⋄t ) ≥ 0. S(x,Cl⋄t ) is maximal when
L(x,Cl⋄t ) = H . In this case and based on Equation (5), we have: Si(x,Cl⋄t ) = πi(Cl⋄t ) (i = 1, · · · , h). Then by
Equation (4), we obtain: S(x,Cl⋄t ) = π1(Cl⋄t ) + · · · + πh(Cl⋄t ) = 1. Consequently, 0(x,Cl⋄t ) ≤ 1. Finally, we
get: 0 ≤ S(x,Cl⋄t ) ≤ 1.

Property 2. S(x,Cl≤t ) ≤ S(x,Cl≤s ), ∀s ≥ t.

Proof . By definition of the downward union we have Cl≤t ⊆ Cl≤s , ∀s ≥ t. This leads to: P (Cl≤t ) ⊆ P (Cl≤s ),
∀s ≥ t. This means that: x ∈ P (Cl≤t ) ⇒ x ∈ P (Cl≤s ), ∀s ≥ t. Then L(x,Cl≤t ) ⊆ L(x,Cl≤s ), ∀s ≥ t.
Consequently, S(x,Cl≤t ) ≤ S(x,Cl≤s ), ∀s ≥ t.

Property 3. S(x,Cl≥t ) ≥ S(x,Cl≥s ), ∀s ≥ t.

Proof . By definition of the upward union we have Cl≥s ⊆ Cl≥t , ∀s ≥ t. This leads to: P (Cl≥s ) ⊆ P (Cl≥t ), ∀s ≥ t.
This means that: x ∈ P (Cl≤t ) ⇒ x ∈ P (Cl≤s ), ∀s ≥ t. Then L(x,Cl≥s ) ⊆ L(x,Cl≥t ), ∀s ≥ t Consequently,
S(x,Cl≥t ) ≥ S(x,Cl≥s ), ∀s ≥ t.

AppendixA.2. Properties of discordance power Z(·, ·)
Property 4. 0 ≤ Z(x,Cl⋄t ) ≤ 1, ∀t and ⋄ ∈ {≥,≤}.

Proof . Let ⋄ ∈ {≥,≤}. Two extreme cases may be distinguished in the definition of Z(x,Cl⋄t ). The first case
holds when: πi(Cl⋄t ) > S(x,Cl⋄t ) ∧ i ∈ B(x,Cl⋄t ), ∀i ∈ H . In this case and based on Equation (7), we have:
Zi(x,Cl⋄t ) =

1−πi(Cl⋄t )
1−S(x,Cl⋄t )

(i = 1, · · · , h). By definition we have: 0 ≤ πi(Cl⋄t ) ≤ 1 and by Property (1) we have
0 ≤ S(x,Cl⋄t ) ≤ 1, we conclude that: 0 ≤ Zi(x,Cl⋄t ) ≤ 1. Consequently: 0 ≤ Z(x,Cl⋄t ) ≤ 1. The second case
holds when πi(Cl⋄t ) ≤ S(x,Cl⋄t ) and i /∈ B(x,Cl⋄t ), ∀i ∈ H . In this case we have by definition Zi(x,Cl⋄t ) = 1,
∀i ∈ H . Consequently: 0 ≤ Z(x,Cl⋄t ) ≤ 1.

AppendixA.3. Properties of the credibility index σ(·, ·)
Property 5. σ(x,Cl≤t ) ≤ σ(x,Cl≤t′ ), ∀t′ ≥ t.

Proof . By definition we have: σ(x,Cl≤s ) = S(x,Cl≤s ) ·Z(x,Cl≤s ). Based on Property (2), we have: S(x,Cl≤t ) ≤
S(x,Cl≤t′ ), ∀t′ ≥ t. This means that: 1 − S(x,Cl≤t ) ≥ 1 − S(x,Cl≤t′ ), ∀t′ ≥ t. Then, since 0 ≤ πk(Cls) ≤ 1,
∀k, we obtain 1−πk(Clt)

1−S(x,Cl
≤
t )

≤ 1−πk(Clt′ )

1−S(x,Cl
≤
t′ )

, ∀k, ∀t′ ≥ t. This means that Zk(x,Cl≤t ) ≤ Zk(x,Cl≤t′ ), ∀k, ∀t′ ≥ t.

Consequently, we have: Z(x,Cl≤t ) ≤ Z(x,Cl≤t′ ). This leads to: S(x,Cl≤t ) ·Z(x,Cl≤t ) ≤ S(x,Cl≤t′ ) ·Z(x,Cl≤t′ ).
Finally, we obtain: σ(x,Cl≤t ) ≤ σ(x,Cl≤t′ ).

Property 6. σ(x,Cl≥t ) ≥ σ(x,Cl≥t′ ), ∀t′ ≥ t.

Proof . By definition we have: σ(x,Cl≥s ) = S(x,Cl≥s ) ·Z(x,Cl≥s ). Based on Property (3), we have: S(x,Cl≥t ) ≥
S(x,Cl≥t′ ), ∀t′ ≥ t. This means that: 1 − S(x,Cl≥t ) ≤ 1 − S(x,Cl≥t′ ), ∀t′ ≥ t. Then, since 0 ≤ πk(Cls) ≤ 1,
∀k, we obtain 1−πk(Clt)

1−S(x,Cl
≤
t )

≥ 1−πk(Clt′ )

1−S(x,Cl
≤
t′ )

, ∀k, ∀t′ ≥ t. This means that Zk(x,Cl≤t ) ≥ Zk(x,Cl≤t′ ), ∀k, ∀t′ ≥ t.

Consequently, we have: Z(x,Cl≤t ) ≥ Z(x,Cl≤t′ ). This leads to: S(x,Cl≤t ) ·Z(x,Cl≤t ) ≥ S(x,Cl≤t′ ) ·Z(x,Cl≤t′ ).
Finally, we obtain: σ(x,Cl≤t ) ≥ σ(x,Cl≤t′ ).
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AppendixA.4. Property of assignment intervals I(x)

Property 7. Cl0 ≤ l(x) ≤ Cln.

Proof . We have l(x) = argmaxClt
N1(x). By definition, we have N1(x) = {Clt : x ∈ Cl≥t }. Or the lower

approximation of Cl≥t is defined for t = 1, · · · , n. Then argmaxClt
N1(x) ≥ Cl1. This leads to l(x) ≥ Cl1 and

then l(x) ≥ Cl0.

Property 8. Cl0 ≤ u(x) ≤ Cln.

Proof . We have u(x) = argminClt
N2(x). By definition, we have N2(x) = {Clt : x ∈ Cl≤t }. Or the lower

approximation ofCl≤t is defined for t = 0, · · · , n−1. Then argminClt
N2(x) ≤ Cln−1. This leads to u(x) ≤ Cln−1

and then u(x) ≤ Cln.

Property 9. l(x) ≤ u(x), ∀x ∈ U .

Proof . Case 1. l(x) = Cl0 and u(x) = Cln. Then, l(x) ≤ u(x) is obvious. Case 2. l(x)=argmaxCltN1(x)
and u(x) = Cln. Then, l(x) ≤ u(x) is obvious since argmaxCltN1(x) ≤ Cln. Case 3. l(x) = Cl0 and u(x) =
argminCltN2(x). Then, l(x) ≤ u(x) is obvious since argminCltN2(x) ≥ Cl0. Case 4. l(x)=argmaxCltN1(x) and
u(x)=argminCltN2(x). Let t, t1, t2 ∈ T and λ ∈ [0, 1]. By definition we have: N1(x) = {Clt : σ(x,Cl≥t ) ≥ λ}
and N2(x) = {Clt : σ(x,Cl≤t ) ≥ λ}. Assume that l(x)=argmaxCltN1(x) = Clt1 and u(x)=argminCltN2(x) =
Clt2 . If t1 ≤ t2, then l(x) ≤ u(x) holds. Let now assume that t2 < t1. Let now show by contradiction that this
situation (i.e., t2 < t1) cannot hold.

• Since σ(x,Cl≤t2) ≥ λ leads to (i) x ∈ P (Cl≤t2) and (ii) x /∈ P (Cl≥t2+1). Or by σ(x,Cl≥t1) ≤ λ we have
x ∈ P (Cl≥t1) which contradicts (ii) since P (Cl≥t1) ⊆ P (Cl≥t2+1) (because we assumed that t2 < t1 which
means that t2 + 1 ≤ t1).

• Similarly, σ(x,Cl≥t1) ≥ λ leads to (iii) x ∈ P (Cl≥t1) and (iv) x /∈ P (Cl≤t1−1). Or by σ(x,Cl≤t2) ≥ λ we have
x ∈ P (Cl≤t2) which contradicts (iv) since P (Cl≤t1−1) ⊆ P (Cl≤t2) (because we assumed that t2 < t1 which
means that t1 − 1 ≥ t2).

This means that the situation t2 < t1 in Case 4 cannot hold. Finally, we conclude that l(x) ≤ u(x), ∀x ∈ U .
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AppendixB. Computing details

AppendixB.1. Quality and accuracy on individuals classifications
The quality of the approximations and the accuracy of classes approximations are summarized in Table B.1.

Table B.1: Quality, accuracy of approximations
Rating γk αk(Cl

≥
t ) αk(Cl

≤
t )

agency (k) t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16
Fitch (1) 0.89 1 1 1 1 1 1 0.88 0.91 0.91 0.89 1 1 1 1 1 1 0 1 1 1 1 1 0.57 0.75 0.75 0.82 1 1 1 1 1 1

Moody (2) 0.89 1 1 1 1 1 0.88 0.88 0.91 0.89 1 1 1 1 1 1 1 1 1 1 1 1 0.40 0.57 0.75 0.82 1 1 1 1 1 1 1
S&P (3) 0.89 1 1 1 1 1 0.88 0.87 0.90 0.90 0.89 1 1 1 1 1 1 0 0 1 1 1 0.50 0.63 0.78 0.80 0.82 1 1 1 1 1 1

AppendixB.2. Concordance powers
The Concordance powers are summarized in Table B.2.

Table B.2: Concordance powers
xi Cl

≥
t Cl

≤
t

t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33
2 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 1 1
3 1 1 1 1 1 1 0.67 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0.67 1 1 1 1 1 1 1 1
4 1 1 1 1 1 0.64 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.68 1 1 1 1 1 1 1 1 1
5 1 0.33 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0.67 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0.67 0.67 0.67
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0.67 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0.33 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 0.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.27 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 0.64 0.33 0.33 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0.67 1 1 1 1 1
15 1 1 1 1 1 1 1 0.67 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34 0.68 1 1 1 1 1 1 1
16 1 1 1 1 1 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 0.64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 1 1 1 1 1 1 1 1 1 1 0.33 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.311 0.67 0.67 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 1 1 1 1 1
23 1 1 1 1 1 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 1 1 1 1 1 1
24 1 1 1 1 1 0.36 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 0.67 0.67 0.67 0.32 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0.34 0.35 0.69 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.69 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67

AppendixB.3. Discordance powers
The Discordance powers are summarized in Table B.3.

Table B.3: Discordance powers
xi Cl

≥
t Cl

≤
t

t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 0.30 0.30 0.30 0.46 1 1 1 1 1 1 1 1 1 1 1 0.58 0.30 0.30 0.30 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 1 1 1 1 1 1 0.30 0.30 0.30 0.46 1 1 1 1 1 1 1 1 1 1 1 0.58 0.30 0.30 0.30 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.58 0.30 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AppendixB.4. Credibility indices
The Discordance powers are summarized in Table B.4.
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Table B.4: Credibility indices
xi Cl

≥
t Cl

≤
t

t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33
2 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 1 1
3 1 1 1 1 1 1 0.67 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0.67 1 1 1 1 1 1 1 1
4 1 1 1 1 1 0.64 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.68 1 1 1 1 1 1 1 1 1
5 1 0.33 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66 0.67 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0.67 0.67 0.67
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0.67 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0.33 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 0.68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.26 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 0.64 0.33 0.33 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0.38 0.67 1 1 1 1 1
15 1 1 1 1 1 1 1 0.67 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.34 0.69 1 1 1 1 1 1 1
16 1 1 1 1 1 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 0.64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 1 1 1 1 1 1 1 1 1 1 0.33 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31 0.67 0.67 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 1 1 1 1 1 1 1 1 1 1 0.333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67 1 1 1 1 1
23 1 1 1 1 1 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.38 1 1 1 1 1 1
24 1 1 1 1 1 0.36 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 0.67 0.67 0.67 0.32 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0.33 0.34 0.69 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 0.34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.68 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67

AppendixB.5. Assignment constraints

The assignment constraints forλ = 0.75 are given in Table B.5. These constraints are defined based on Equations
(9) and (10). The symbol “x” means that the object x is assigned to class Cl⋄t with ⋄ ∈ {≥,≤}, while symbol “-”
means that object x is not assigned to this class.

Table B.5: Assignment constraints for λ = 0.75
xi Cl

≥
t Cl

≤
t

t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12 t=13 t=14 t=15 t=16
1 x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - - -
2 x x x x x x x x x x x x x - - - - - - - - - - - - - - - - - x x
3 x x x x x x - - - - - - - - - - - - - - - - - - x x x x x x x x
4 x x x x x - - - - - - - - - - - - - - - - - - x x x x x x x x x
5 x - - - - - - - - - - - - - - - - - - x x x x x x x x x x x x x
6 x x x x x x x x x x x x - - - - - - - - - - - - - - - - - - - -
7 x x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - -
8 x x x x x x x x x x x x - - - - - - - - - - - - - - - - - - - x
9 x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - - -
10 x x x x x x x x x x x x x x - - - - - - - - - - - - - - - - - x
11 x x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - -
12 - - - - - - - - - - - - - - - - - - x x x x x x x x x x x x x x
13 x x x x x - - - - - - - - - - - - - - - - - x x x x x x x x x x
14 x x x x x x x x x - - - - - - - - - - - - - - - - - - x x x x x
15 x x x x x x x - - - - - - - - - - - - - - - - - - x x x x x x x
16 x x x x x - - - - - - - - - - - - - - - - - - - - - x x x x x x
17 x x x x x x x x x - - - - - - - - - - - - - - - - - x x x x x x
18 x x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - -
19 x x x x x x x x x x - - - - - - - - - - - - - - - - - - x x x x
20 x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - - -
21 x x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - -
22 x x x x x x x x x x - - - - - - - - - - - - - - - - - x x x x x
23 x x x x x - - - - - - - - - - - - - - - - - - - - - x x x x x x
24 x x x x x - - - - - - - - - - - - - - - - - - x x x x x x x x x
25 x x x x x x - - - - - - - - - - - - - - - - - - - - x x x x x x
26 x x x x x x x x - - - - - - - - - - - - - - - - - x x x x x x x
27 x x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - -
28 x x x x x x x x x x x x x x x - - - - - - - - - - - - - - - - -
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AppendixC. Summary of comparison studies

We conducted the same comparison exercise presented in Section 8.2 to the two other case studies given in
Section 7.1 and in Section 7.2, respectively. Table C.6 summarizes the comparison results for all the case studies. For
the main case study presented in Section 6, we can establish the following conclusions: (i) the best final classification
is C4 followed by C2 and than C3, C8 and C6; (ii) the worst final classification is C14 followed by C16 and then
C10. In this particular case study, the final classifications obtained by a low value of the credibility threshold λ are
better than the ones obtained by high values of λ. Concerning the second case study, Table C.6 shows that the best
classifications are C1 and C3 and the worst classifications are C2 and C4. According to the results in Table C.6, the
final classifications obtained using the interval reduction rules ‘max’ or ‘ceiling’ (C2 and C4) reproduce better the
initial assignments than the final classifications obtained using the interval reduction rules ‘min’ or ‘floor’ (C1 and
C3). The results of the comparison study for the third case study shows that the best classification is C10 (obtained
for λ=0.80 and ‘max’ rule) and the worst classification is C14 (obtained for λ=0.95 and ‘max’ rule).

Table C.6: Summary of comparison
Case study 1 Case study 2 Case study 3

Statistics Worst classification Best classification Worst classification Best classification Worst classification Best classification
Kendall’s τ C10 C4 C1 , C3 C2 , C4 C5 C10
Spearman’s ρ C14 C4 C1 , C3 C2 , C4 C5 C10
Cohen’s κ C14 C3 C2 , C4 C1 , C3 C14 C12
Kendall’s τ+ Spearman’s ρ +Cohen’s κ C14 C4 C1 , C3 C2 , C4 C14 C12
Kendall’s W C14 C4 , C8 C1 , C3 C2 , C4 C5 C10
Fleiss’s κ C16 C2 C1 , C3 C2 , C4 C14 C1
Kendall’s W + Fleiss’s κ C14 C2 , C6 C1 , C3 C2 , C4 C14 C1
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