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Abstract

The H1N1 influenza pandemic of 2009 has claimed over 18,000 lives. During this pandemic, development of drug resistance
further complicated efforts to control and treat the widespread illness. This research utilizes traditional Chinese medicine
Database@Taiwan (TCM Database@Taiwan) to screen for compounds that simultaneously target H1 and N1 to overcome
current difficulties with virus mutations. The top three candidates were de novo derivatives of xylopine and rosmaricine.
Bioactivity of the de novo derivatives against N1 were validated by multiple machine learning prediction models. Ability of the
de novo compounds to maintain CoMFA/CoMSIA contour and form key interactions implied bioactivity within H1 as well.
Addition of a pyridinium fragment was critical to form stable interactions in H1 and N1 as supported by molecular dynamics
(MD) simulation. Results from MD, hydrophobic interactions, and torsion angles are consistent and support the findings of
docking. Multiple anchors and lack of binding to residues prone to mutation suggest that the TCM de novo derivatives may be
resistant to drug resistance and are advantageous over conventional H1N1 treatments such as oseltamivir. These results
suggest that the TCM de novo derivatives may be suitable candidates of dual-targeting drugs for influenza.
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Introduction

The first global pandemic of the 21st century was announced by

the World Health Organization (WHO) in 2009 due to the

worldwide spread of influenza A subtype H1N1 (H1N1/09) [1].

More than 214 countries have reported laboratory confirmed

cases, and more than 18,449 deaths have been recorded [2].

Currently, the neuraminidase inhibitor TamifluH (oseltamivir)

remains the primary drug prescribed to patients infected with

H1N1/09 [3]. However, the emergence of drug resistant viral

strains [4] and limited drug administration window [5] exemplifies

the need for additional therapies.

Important constituents of influenza surface membrane proteins

include hemagglutinin, neuraminidase, and the matrix protein 2

(M2) proton channel [6,7]. Hemagglutinin mediates the binding of

viral particles to host cell surface sialic acid and the invasion of

viruses into host cell [8–10]. Neuraminidase is responsible for the

cleavage of sialic acid residues to promote the release of progeny

viruses [11,12]. M2 proton channels are critical for viral mRNA

incorporation into the virion and virus budding [13]. Over one

hundred serological subtypes [14] have been identified through

different combinations of the 16 hemagglutinin (H1–H16) and

nine neuraminidase groups (N1–N9) currently known. The 3D-

structure of M2 proton channels have recently been solved in both

influenza A and B [15,16], allowing more in depth studies

regarding its biological function and action mechanism [17–19].

These proteins have been used as targets for rational attempts to

design drugs for influenza [20–27].

The H1N1/09 virus strain is a triple reassortant that contains

gene segments from avian, swine and human influenza viruses

[28]. In addition to antigenic shift that can lead to fundamental

changes in influenza surface antigens, antigenic drift could reduce

binding affinity of host antibodies to antigens [29,30]. A major

challenge in influenza vaccine development is the rapid evolution

of influenza viruses, causing vaccines to be easily outdated and

reformulation necessary each year [31–33]. Although the H1N1/

09 virus is susceptible to neuraminidase inhibitors, cases regarding

oseltamivir-resistant viruses with neuraminidase mutation (such as

H275Y) have been reported [34,35]. Given that influenza viruses

have RNA genomes that are prone to changes, it is imperative to

devise new therapies. Much effort has been made to investigate the

mechanism and devise alternative drugs against the drug-

resistance issue of H1N1 [36–40]. Developing inhibitors that

target both H1 and N1 antigens can reduce resistance issues

resulting from the mutation of a single target antigen.

Computational approaches have been widely applied to

molecular biology and medicine [41–50]. Structure-based meth-

ods, including docking and MD simulation, are invaluable tools in
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Author Summary

The influenza A subtype H1N1 (H1N1/09) pandemic raised
public concerns due to drug resistance strains. Drug resistance
occurs from conformational changes causing the original drug
to lose binding ability and exhibit biological effects. The
world’s largest TCM Database@Taiwan was employed to
screen for potential leads that simultaneously bind to H1 and
N1. Three de novo compounds derived from Rosemarinus
officinalis and Guatteria amplifolia were identified as having
dual binding properties to H1 and N1. Structural analysis
indicated that the candidates bind to multiple residues in both
H1 and N1. In addition, the de novo derivatives were predicted
as bioactive using four different computational models. The
compounds are validated as potent dual targeting influenza
drug candidates through multiple validations. Key advantages
of the candidates include (1) binding to H1 and N1 through
multiple amino acids, and (2) not binding to known mutation
residues in H1 or N1. Such advantages can reduce drug
resistance caused by single point mutations. On a broader
context, features important for successful H1N1 drug devel-
opment are discussed in hopes of providing starting templates
for drug development and improvements.

Figure 1. The flowchart of dual-target H1N1 experimental procedures.
doi:10.1371/journal.pcbi.1002315.g001

Table 1. Docking results of top ten de novo derivatives.

Docking

Name H1 N1 H1+N1

Xylopine_2 144.183 139.023 283.206

Rosmaricine_14 138.916 125.808 264.724

Rosmaricine_15 135.671 121.759 257.430

Rosmaricine_5 97.921 116.324 214.245

Rosmaricine_16 96.528 113.750 210.278

Rosmaricine_23 95.854 113.573 209.427

Rosmaricine_12 95.520 113.207 208.727

Rosmaricine_6 95.429 113.069 208.498

Rosmaricine_21 95.233 112.762 207.995

Rosmaricine_11 94.731 112.283 207.014

TamifluH* 48.545 87.794 137.482

*control.
doi:10.1371/journal.pcbi.1002315.t001
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drug discovery and design. Computational docking is important

for investigating ligand-protein interactions and elucidating

binding mechanisms [51–57]. Since publication of the pioneer

paper in 1977 [58], it has been established that low-frequency

motions existing in proteins and DNA can help reveal dynamic

mechanisms underlying fundamental biological functions [59–63].

NMR observation later confirmed such inferences and the findings

were applied to medical treatments [64–67]. In recent years,

application of molecular dynamics to investigate internal motions

and biological functions of biomacromolecules has opened new

frontiers. Vast amounts of information on molecular recognition

and binding [68–71], conformations or conformational changes

[72–75], molecular mechanisms of bioactivity and stability [76–

79], and drug discovery [80–84] have been found. To understand

interaction of drugs with proteins or DNA, consideration should

be given not only to the static structures but dynamical

information obtained by simulation through a dynamic process.

In this regard, both docking and MD simulation were utilized in

this study to provide comprehensive analysis protein-ligand

interactions under static and dynamic conditions.

Much effort has been placed on developing new, effective

influenza treatments, but most have focused on neuraminidase or

M2 as the target protein [37,38,85–87]. To date, no hemagglu-

tinin inhibitor is available. Traditional Chinese medicine (TCM)

has been used extensively for finding effective drugs [88], and we

Figure 2. Structures of the top three de novo derivatives and
their corresponding native TCM compounds.
doi:10.1371/journal.pcbi.1002315.g002

Figure 3. Docking pose of TCM candidates and TamifluH in N1.
(A) Xylopine_2, (B) Rosmaricine_14, (C) Rosmaricine_15 and (D)
TamifluH.
doi:10.1371/journal.pcbi.1002315.g003

Figure 4. Correlation between observed and predicted activ-
ities (pIC50) of 27 neuraminidase inhibitors using different
prediction models. (A) MLR and (B) SVM.
doi:10.1371/journal.pcbi.1002315.g004
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have successfully designed novel medicinal compounds and

identified potential drug leads through traditional Chinese

Medicine Database@Taiwan (TCM@Taiwan) [89]. Preliminary

studies conducted in this lab show potential for TCM compounds

to serve as neuramindase and hemagglutinin inhibitors individu-

ally [90–95]. In view of the current needs for drugs effective

against native and mutant H1N1/09 and our promising

preliminary results, the present study integrates the concept of

‘‘dual targeting’’ with the aforementioned computational tools and

TCM in the attempt to identify dual-targeting inhibitors of H1N1

that may be useful for drug development.

Results/Discussion

Screening and Structure Analysis
The experimental procedures and screening results after each

filtering step are summarized in Figure 1. Among the 829 native

TCM compounds, 81 docked into both H1 and N1 and were used

for de novo evolution (Table S1). De novo compounds with dual

binding capacities to H1 and N1 were ranked by combined

DockScore and the top ten derivatives are listed in Table 1. Nine

of the ten top ranking de novo compounds were derived from

Rosmaricine, a natural compound isolated from Rosemarinus

officinalis [96]. The remaining de novo compound was based on

Xylopine, which is naturally found in Guatteria amplifolia [97].

The top three derivatives, Xylopine_2, Rosmaricine_14 and

Rosmaricine_15, have in common a pyridinium addition to their

native structure (Figure 2). The pyridinium addition could be the

main explanation for higher DockScores of these three derivatives

compared to their native compounds and the other derivatives.

Rosmaricine_14 and Rosmaricine_15 differed by the number of

fused rings, but the slight difference in DockScore suggests that

addition of an acyclic ring has little influence on binding affinity.

Characteristics of De Novo Product Binding Poses
Docking of the de novo compounds back to the receptor

provides insights to modifications that can be made to modulate

or enhance molecular properties and also highlights important

protein-ligand interactions. When docked into the N1 protein

binding site, Xylopine_2 interacts with Asp151 via a protonated

amino group and has pi and hydrogen bond (H-bond)

Table 2. N1 activity prediction (pIC50) of top three de novo
derivatives by MLR and SVM models.

Name MLR SVM

Xylopine_2 9.837 7.295

Rosmaricine_14 14.069 5.963

Rosmaricine_15 14.116 5.915

TamifluH* 7.613 6.372

*control.
doi:10.1371/journal.pcbi.1002315.t002

Figure 5. RMSD and total energy profiles of top three de novo
derivatives and TamifluH in N1 complexes during 20 ns MD simulation.
doi:10.1371/journal.pcbi.1002315.g005

Figure 6. Important locations for ligand-N1 stability (left) and
relative spatial arrangements (right) within the N1 protein
binding site. (A) Xylopine_2, (B) Rosmaricine_14, (C) Rosmaricine_15,
and (D) TamifluH. Ligands are presented in cyan, amino acids in yellow,
and hydrogen bond formations in white dashed lines.
doi:10.1371/journal.pcbi.1002315.g006
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interactions with Trp179 and Glu228, respectively (Figure 3A).

Rosmaricine_14 (Figure 3B) and Rosmaricine_15 (Figure 3C),

have interactions with Asp151 and Arg293 via the carbonyl

group and Glu228 through the 2-aminopyridinium group.

TamifluH forms H-bond interactions with Arg156, Arg293 and

Arg368, but not with Asp151 or Glu228 (Figure 3D). Both

Asp151 and Glu228 have been reported as one of the major

residues in the N1 ligand binding site [98,99]. The ability of the

de novo derivatives to form interactions with both Asp151 and

Glu228 may account for the higher DockScores.

Binding of the top three de novo derivatives to H1 site is detailed

elsewhere [92]. The ability to bind with important H1 residues

Asp103 and Arg238 [100] indicates the dual targeting possibility of

the candidates.

Prediction of N1 Inhibition by Support Vector Machine
(SVM) and Multiple Linear Regression (MLR)

The top ranking model generated by genetic function

approximation (GFA) includes the following descriptors: ES_

Sum_dssC, CHI_3_C, Kappa_1, Jurs_PNSA_1, and Jurs_RPCS.

Utilizing these five descriptors, the MLR model established for the

neuramindase inhibitors is:

pIC50~3:8919� 1:0012 � ES Sum dssC

z2:116 � CHI 3 C

z0:50012 � Kappa 1�0:029158 � Jurs PNSA 1

z2:0289 � Jurs RPCS

Correlation between the observed and predicted activities of the

27 ligands are shown in Figure 4A. All values were within the 95%

prediction bands and the r2 value = 0.8043. The SVM model was

constructed using identical molecular descriptors and ligands as

the MLR model. The r2 value of the SVM model was 0.8605 and

the correlation between observed and predicted activities of 27

ligands are illustrated in Figure 4B.

Table 2 summarizes the pIC50 values of TamifluH and the top

three candidates as predicted by the generated MLR and SVM

models. The predicted activity of TamifluH using the generated

MLR model (pIC50 = 7.613) is similar to observed bioactivity

values reported in the literature (pIC50 = 7.823) [101]. This

indicates that the generated MLR model is a good prediction

model. Predicted activity values using the SVM model indicate a

lower pIC50 with regard to TamifluH. Nonetheless, both models

indicate that all TCM de novo derivatives are good candidates with

neuraminidase inhibitory activity. MLR and SVM models for

predicting hemagglutinin inhibitory activity were not established

due to the lack of available hemagglutinin inhibitor structures in

the literature.

Molecular Dynamics (MD) Simulation
Stability profile analysis. Root mean square deviation

(RMSD) and total energy results from MD are summarized in

Figure 5 and provide information on N1-ligand complex and

ligand stability. During the 20 ns simulation process, the RMSDs

of the four complexes ranged between 1.4–1.7 Å. Xylopine_2

stabilized after 15 ns, and the total energy of the complex

equilibrated at 219,000 kcal/mol. The ligand RMSD of

Rosmaricine_14 remained stable throughout the simulation, and

no evident changes in total energy were observed after 17 ns. The

RMSD and total energy of Rosmaricine_15 stabilized after 13 ns.

Fluctuations in ligand RMSD was observed in TamifluH for the

first 5 ns, but no changes were observed in ligand RMSD and total

energy from 5 ns until the end of MD. The larger ligand RMSD

Table 3. H-bond analysis of top three de novo derivatives and TamifluH in N1 during MD simulation.

Name H-bond Ligand atom Amino acid H-bond occupancy

Xylopine_2 H-bond_1 H55 Glu228 : OE2 98.23%

H-bond_2 H57 Glu228 : OE1 7.23%

H-bond_3 H57 Glu228 : OE2 2.73%

H-bond_4 H66 Glu228 : OE1 80.50%

H-bond_5 H66 Glu228 : OE2 35.50%

H-bond_6 H57 Leu224 : O 19.28%

Rosmaricine_14 H-bond 1 O1 Arg293 : HH22 4.70%

H-bond 2 H66 Glu119 : OE1 98.63%

H-bond-3 H66 Glu119 : OE2 5.38%

H-bond-4 H55 Glu228 : OE2 96.05%

Rosmaricine_15 H-bond 1 O1 Arg293:HH22 99.80%

H-bond 2 H48 Asn344:OD1 78.10%

H-bond-3 H53 Glu228:OE2 34.00%

H-bond_4 H64 Thr226:O 45.95%

H-bond_5 H55 Thr226:O 26.50%

H-bond_6 H27 Tyr402:OH 7.13%

TamifluH H-bond 1 O3 Arg368:HH22 82.50%

H-bond 2 O10 Arg118:HE 8.90%

H-bond-3 O10 Arg156:HH12 57.33%

H-bond_4 H25 Tyr402:OH 32.30%

doi:10.1371/journal.pcbi.1002315.t003
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fluctuations and higher total energy observed for Xylopine_2 may

be attributed to its spatial structure and docking characteristics.

Xylopine_2 consists of a bulky xylopine and a 2-aminopyridinium

residue linked through 1 in a way similar to that of cis

conformations (Figure 6). It is well established that cis-

conformations are less stable than their trans- counterparts, and

thus may explain the higher total energy levels for Xylopine_2. In

addition, Xylopine_2 binds to N1 though the aminopyridinium

residue, allowing the xylopine structure more freedom to rotate

and thereby increasing ligand RMSDs and total energy levels.

H-Bond network during MD simulation. The H-bond

occupancy of each compound in N1 is summarized in Table 3.

Xylopine_2 can easily form H-bond at Glu228, and the occupancy

rate can reach as high as 98.23%. Rosmaricine_14 forms H-bonds

at Glu119 and Glu228, with high occupancy rates of 98.63% and

96.05%. Rosmaricine_15 forms H-bonds with Arg293 and

Asn344 (99.80% and 78.10%, respectively). TamifluH primarily

forms H-bonds at Arg368 (82.50%) and Arg156 (57.33%). High

H-bond occupancy rates indicate that the compound can maintain

stable binding during the 20 ns MD. Since occupancy is calculated

from the designated cut-off distance of 2.5 Å, distance fluctuations

exceeding the critical value can lead to underestimation of H-bond

formations and skewed conclusions of candidate stability. Distance

profiles of ligand atoms capable of forming H-bonds during MD

are illustrated in Figure 7. The distance between Xylopine_2 and

Glu228 was maintained between 2–3 Å (Figure 7A). The distance

of Rosmaricine_14 and Glu119 and Glu 228 also remained

between 2–3 Å (Figure 7B). From Table 3, Rosmarcine_15 and

TamifluH did not form high occupancy H-bonds with Tyr402.

Intriguingly, bond distance profiles indicate that Tyr402 was one

of the key amino acids for H-bond formation (Figure 7C, 7D).

Tyr402 bond distance generally exceeded 2.5 Å in

Rosmaricine_15, thus explaining the low occupancy rate in

Table 3. For TamifluH, the distance in the first ns was between

3–4 Å and then decreased to 2–3 Å from 1–20 ns, thus accounting

for the low occupancy rate as well. Despite the low occupancy

rates, the bond distance profiles suggest that Tyr402 is an

important N1 binding site for Rosmaricine_15 and TamifluH.

Possible mechanism for protein-ligand interaction. Insights

to how ligand stabilization occurs within the protein binding site

can be discerned from MD simulation. The H-bond formations

with Leu224 at 2 and Glu228 at 3 and 4 ‘‘sandwich’’ the

aminopyridinium and anchors Xylopine_2 (Figure 6A). However,

the xylopine moiety remained unattached, causing strain to the

compound and possibly contributing to large H-bond distance

fluctuations (Figure 7A). At approximately 15 ns, attraction

between Glu228 and 3 causes the terminal amine residue to

torque towards Glu228 increasing the distance from Leu224

Figure 7. H-bond distance profile between N1 and TCM candidates or TamifluH. (A) Xylopine_2, (B) Rosmaricine_14, (C) Rosmaricine_15,
and (D) TamifluH.
doi:10.1371/journal.pcbi.1002315.g007
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(Figure 6A). As a result, the stable H-bond with Leu224 was lost,

and an additional H-bond with Glu228 was formed from 2. At

the end of MD simulation, the primary binding force for

Xylopine_2 was H-bonds formed with Glu228. In contrast to

Xylopine_2, multiple binding sites secured Rosmaricine_14 and

15 within the binding site as reflected by the small H-bond

distance fluctuations compared to Xylopine_2 (Figure 7B, 7C).

Rosmaricine_14 bound to Glu119, Glu228, and Arg293 through

6, 7, and 8 respectively (Figure 6B). The multiple attachment

points anchor both the aminopyridine moiety and the

rosmaricine moiety, reducing strain on the molecular structure

as reflected by the low total energy and bond distance

fluctuations. The increase in bond distance from Arg293 in

Figure 7B starting at 3 ns was due to Arg293 intermolecular H-

bond formation between the O atom and NH2 residue.

Nonetheless, all H-bonds were maintained throughout the MD

simulation, suggesting good stability of Rosmaricine_14. The

mechanism for stability of Rosmaricine_15 is similar to that of

Rosmaricine_14. In addition to H-bonds at 9 with Glu228 and

10 with Arg293 which are identical to Rosmaricine_14, H-bonds

are formed at 11 with Glu228, 12 with Thr226, 13 with Asn262,

and 14 with Tyr402 (Figure 6C). These additional anchor points

stabilized residues that were available for rotation in

Rosmaricine_14, further lowering the total energy of the

compound (Figure 5C). Within the anchored ligand, twisting of

15 contributes to H-bond fluctuations at Glu228 such as

Figure 8. Torsion angles of TCM candidates and Tamiflu in H1 and N1. (A) Xylopine_2, (B) Rosmaricine_14, (C) Rosmaricine_15 and (D)
TamifluH. Lower case letters specify the bonds on which the torsion angle were monitored.
doi:10.1371/journal.pcbi.1002315.g008
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observed at 14 ns (Figure 7C). As a result of the torque at 15, 11
flips toward 12 and the stable H-bond with Glu228 is replaced by

that of Thr226. For Tamiflu, H-bonds formed with Arg156 at 16,

Arg368 at 17, and Tyr402 at 18 anchored the molecule in the

binding site and limited structural fluctuations caused by the

intermolecular H-bond between 17 and 19, and the ‘‘antler-like’’

structure 20 (Figure 6D). The stability of Tamiflu as a result of

these binding anchors is reflected in the low total energy profile

(Figure 5) and small H-bond distance fluctuations (Figure 7D).

The ability of the de novo derivatives to form stable H1-ligand

complexes has also been assessed [92]. All de novo derivatives were

capable of forming H-bonds at Glu83 and Asp103, the key

binding sites on H1.

The torsion angles of flexible bonds in each candidate when in

complex with H1 and N1 are summarized in Figure 8. In

Xylopine_2, all monitored bonds were stable in H1 except for e
(Figure 8A). The fluctuations could be attributed to the attraction

between the amine group H atoms and Asp 103. When bound to

N1, b was the primary location for torque changes in Xylopine_2.

The recorded torsion angle changes at b support our previous

speculation that the unattached xylopine moiety is a key source of

instability for Xylopine_2. Torsion angle fluctuations of Rosmar-

icine_14 in both H1 and N1 were mainly due to rotations at g and

j (Figure 8B). Such changes are expected as the H atoms on the

amine group continuously rotate to form H-bonds with key amino

acids. Bonds in Rosmaricine_15 (Figure 8C) exhibited similar

characteristics to those in Rosmaricine_14. Rapid rotations at the

amine groups l and o are visualized by the recorded angle

trajectories. NAG (Figure 8D) and Tamiflu (Figure 8E) both have

relatively stable intermolecular torsion changes. This indicates that

the lower stability of NAG and Tamiflu in H1 and N1,

respectively, are not due to instability of their ligand structures,

but may be attributed to weaker or unstable ligand-protein

affinities.

Hydrophobic interactions. Hydrophobic interactions also

played a role in stabilizing ligands within H1 (Figure 9) and N1

(Figure 10) binding sites during MD. Due to differences in ligand

structure and binding conformation, amino acids with which

hydrophobic interactions were formed differed. In H1, amino

acids involved in hydrophobic interactions included Pro82,

Asp103, Asn104, Cys107, Cys153, and Pro154. More stabilizing

interactions including H-bonds and hydrophobic interactions were

observed in the N1 binding site (Figure 10). For the TCM

candidates and Tamiflu, the spatial distribution of H-bonds

coupled and hydrophobic interactions limits the free movement of

ligands within N1, thus increasing stability of the N1-ligand

complex.

CoMFA and CoMSIA Analysis
To further investigate docking features, CoMFA and CoMSIA

models were built and validated using 27 neuraminidase inhibitors

listed in Table S2. The PLS analyses results for CoMFA and

CoMSIA models are shown in Table 4. The CoMFA model was

generated using both steric and electrostatic fields and yielded a

Figure 9. Protein-ligand interactions of TCM candidates and TamifluH in H1. H1-ligand interactions following MD are illustrated for (A)
Xylopine_2, (B) Rosmaricine_14, (C) Rosmaricine_15, and (D) TamifluH. Hydrogen bonds are indicated by green dashed lines between the atoms
involved. Amino acids forming H-bonds with the ligand are shown in red. Hydrophobic contacts are represented by arcs with spokes radiating
towards the ligand atoms they contact. The contacted atoms are shown with spokes radiating back.
doi:10.1371/journal.pcbi.1002315.g009

H1N1 Inhibitors from Traditional Chinese Medicine

PLoS Computational Biology | www.ploscompbiol.org 8 December 2011 | Volume 7 | Issue 12 | e1002315



non-cross validated r2 value of 0.924 and a cross validated q2 value

of 0.524 with an optimal number of components as 5. The optimal

CoMSIA model (r2 = 0.937, q2 = 0.673, ONC = 5) consisted of

steric and hydrophobic fields, H-bond acceptors and donors.

When compared against actual observed activities [102], both

CoMFA and CoMSIA models had good predictability, predicting

pIC50 values that differed only marginally from the actual pIC50

values of 24 compounds (Table 5).

The validated CoMFA and CoMSIA maps were used to assess

ligand bioactivity. Contour of the de novo compounds at 20 ns MD

simulation to the relative spatial positions of CoMFA and

CoMSIA feature maps are shown in Figure 11. In Xylopine_2,

Rosmaricine_14 and Rosmaricine_15, the H-bond between the

2-aminopyridinium group and Glu228 matched the electropos-

itive group feature of the CoMFA model (Figure 11A,11C,11E)

and the H-bond donor feature in CoMSIA model

(Figure 11B,11D,11F). The hydrophobic benzene structures of

Xylopine_2 matched the steric favoring region of the CoMFA

map and the hydrophobic feature of the CoMSIA map. The

carbonyl groups in Rosmaricine_14 and Rosmaricine_15 which

formed H-bonds with Tyr402 satisfied the H-bond acceptor

feature in the CoMSIA model. TamifluH also contours to both

CoMFA and CoMSIA models. The 3-methoxypentane group

close to Arg293 and Asn344 matched the steric favoring region of

CoMFA (Figure 11G) and the hydrophobic feature of CoMSIA

(Figure 11H). This residue has similar characteristics to the 2-

aminopyridinium group in the de novo derivatives. In addition, the

N-methylacetamide group in TamifluH, which forms H-bond

Figure 10. Protein-ligand interactions of TCM candidates and TamifluH in N1. H1-ligand interactions following MD are illustrated for (A)
Xylopine_2, (B) Rosmaricine_14, (C) Rosmaricine_15, and (D) TamifluH. Hydrogen bonds are indicated by green dashed lines between the atoms
involved. Amino acids forming H-bonds with the ligand are shown in red. Hydrophobic contacts are represented by arcs with spokes radiating
towards the ligand atoms they contact. The contacted atoms are shown with spokes radiating back.
doi:10.1371/journal.pcbi.1002315.g010

Table 4. CoMFA and CoMSIA analysis for N1 using PLS.

Cross
validation Non-cross validation

Model Fraction ONC q2
cv r2 SEE F

CoMFA - 5 0.524 0.924 0.372 63.567

CoMSIA S 5 0.426 0.936 0.369 41.649

E 5 0.255 0.871 0.626 12.652

H 5 0.337 0.979 0.212 132.092

D 5 0.220 0.737 0.750 7.940

A 5 0.221 0.798 0.658 11.186

S+E 5 0.200 0.925 0.401 34.912

S+H 6 0.565 0.977 0.223 119.225

S+H+D 5 0.570 0.906 0.435 34.000

H+D+A 6 0.528 0.957 0.304 62.855

S+H+D+A* 5 0.673 0.937 0.357 53.360

S+E+H+D+A 5 0.561 0.946 0.331 62.823

ONC: Optimal number of components.
SEE: Standard error of estimate.
F: F-test value.
S: Steric.
E: Electrostatic.
H: Hydrophobic.
D: Hydrogen bond donor.
A: Hydrogen bond acceptor.
*: optimum CoMSIA model.
doi:10.1371/journal.pcbi.1002315.t004
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with Tyr402, is located near the H-bond donor feature in

CoMSIA.

Though all compounds contoured to the N1 inhibitor features

identified by CoMFA and CoMSIA, a critical difference was

observed between TamifluH and the TCM de novo derivatives. All

compounds except TamifluH formed H-bonds at Glu228. As

Glu228 is a primary binding site of N1 [99], ability of the TCM de

novo derivatives to maintain stable binding with Glu228 during

MD simulation supports the potential of these compounds as drug

alternatives to TamifluH.

Due to the lack of reported H1 ligand bioactivities in the

literature, direct assessment of bioactivity through construction of

CoMFA and CoMSIA models was not possible. Alternatively,

indirect support was provided by assessing the ability of de novo

derivatives to maintain contour to the N1 CoMFA/CoMSIA

maps while forming interactions at key residues in H1, Glu83 and

Asp103 [92]. As illustrated in Figure 12 the TCM de novo

derivatives docked into the H1 binding site and formed critical

interactions at Glu83 and Asp103 without losing contour to the

CoMFA and CoMSIA maps. These results suggest that not only

were the TCM de novo derivatives capable of docking into both H1

and N1, but that biological activity was also predicted in both

binding sites, thus it is possible to develop dual-targeting drugs

from the selected de novo derivatives.

Important features for potential H1 and N1 inhibitors are

summarized in Figure 13. For H1, a salt bridge with Glu83 and

H-bond donor and/or electrostatic interactions with Asp103 are

important characteristics that should be met. Potential inhibitors

for N1 should have salt bridge and/or H-bond formation at

Glu228 and interactions with Asp293. These features can be

used to identify or design novel drugs for H1 and/or N1. In the

case of the TCM de novo derivatives from this study, each

compound could structurally fulfill the requirements of both H1

(Figure 13A,13B,13C) and N1 (Figure 13D,13E,13F) binding

sites, thus supporting their potential as dual-targeting com-

pounds.

In this research, we identified Xylopine_2, Rosmaricine_14,

and Rosmaricine_15 as the top three de novo derivatives exhibiting

binding affinity to H1 and N1. Addition of a pyridinum residue to

the native structures of xylopine and rosmaricine contributes to

bond formation at key residues in both H1 (Glu83, Asp103) and

N1 (Glu228, Arg292). The de novo derivatives were predicted as

Table 5. Observed and predicted activities of 27 neuraminidase inhibitors by CoMFA and CoMSIA models.

CoMFA CoMSIA

Compound Observed pIC50
a Predicted pIC50 Residual Predicted pIC50 Residual

1 5.20 5.21 0.01 4.97 20.23

2 5.70 6.00 0.30 5.85 0.15

3 6.74 6.69 20.05 6.40 20.34

4 6.52 6.44 20.08 6.42 20.10

5 6.70 6.75 0.04 6.67 20.03

6 8.00 8.36 0.36 7.82 20.18

7 9.00 8.75 20.25 8.31 20.69

8 7.80 7.82 0.02 8.62 0.82

9 6.82 6.93 0.11 7.00 0.18

10 9.00 8.94 20.06 8.93 20.07

11 5.70 5.45 20.25 5.57 20.13

12 6.65 6.54 20.11 6.48 20.17

13 5.66 5.81 0.15 5.81 0.15

14 7.66 7.88 0.22 7.59 20.07

15 7.22 7.34 0.12 7.16 20.06

16 6.28 6.23 20.05 6.68 0.40

17 5.82 5.76 20.06 6.08 0.25

18 7.00 6.58 20.42 6.76 20.24

19 4.60 4.79 0.19 4.84 0.24

20 8.74 8.58 20.16 8.80 0.06

21 8.34 8.40 0.06 8.30 20.04

22 5.51 5.55 0.04 5.38 20.13

23 5.47 5.49 0.02 5.39 20.08

24 5.64 5.49 20.15 5.96 0.32

25* 3.70 4.03 20.33 4.72 21.02

26* 5.43 5.23 0.20 5.56 20.13

27* 6.85 7.97 21.12 7.74 20.89

a: Adapted from [102].
*: test set.
doi:10.1371/journal.pcbi.1002315.t005
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active by the SVM and MLR models, and contoured well to the

3D-QSAR models. The TCM de novo derivatives were able to

maintain contour while forming key binding interactions in H1,

thus providing indirect support for bioactivity in H1. The results

of this study indicate that the TCM de novo derivatives not only

can bind to, but can also exhibit biological activities in both H1

and N1.

Key binding locations of the de novo derivatives include Glu83

and Asp103 for H1, and Glu228 and Arg292 for N1. Mutations

currently attributed to oseltamivir resistance are located at H275

and N295S of the NA [103]. Since the key binding locations of the

TCM derivatives do not overlap with those causing oseltamivir

resistance, derivatives will be able to bind to viruses that are

currently resistant to TamifluH. In addition, the de novo derivatives

do not bind to amino acids in H1 or N1 that are prone to mutation

(Table 6, Table 7) [40,104], thus would likely be able to exert

activity across a range of mutant H1N1 viruses. Last but not the

least, multiple bond formations observed in MD provide

additional insurance against possible mutations at key binding

residues. In the case of a single point mutation, the de novo

compounds will remain bound to the H1 and N1 sites through

another key residue, therefore resisting the development of drug

resistance in the virus. Based on the results and observations of this

study, the TCM de novo derivatives may be attractive compounds

for designing novel dual-target inhibitors for H1 and N1.

Figure 11. CoMFA (left) and CoMSIA (right) models of the N1
conformation with TCM candidates and TamifluH at 20 ns
simulation time. Respective CoMFA and CoMSIA models of Xylo-
pine_2 (A, B), Rosmaricine_14 (C, D), Rosmaricine_15 (E, F) and Tamiflu
(G, H) are given. Contours in CoMFA represent the following features:
favors bulky substituent (green), disfavors bulky substituent (yellow),
favors electropositive groups (blue), and disfavors electropositive
groups (red). Features in CoMSIA model include: hydrophobic (cyan),
hydrophilic (yellow), favorable H-bond acceptor (magenta), unfavorable
H-bond acceptor (green), H-bond donor (orange), disfavor H-bond
donors (purple).
doi:10.1371/journal.pcbi.1002315.g011

Figure 12. CoMFA (left) and CoMSIA (right) models of the latest
N1 conformation with TCM candidates and TamifluH at 20 ns
simulation time within the H1 protein binding site. Respective
CoMFA and CoMSIA models of Xylopine_2 (A, B), Rosmaricine_14 (C, D),
and Rosmaricine_15 (E, F). Contours in CoMFA represent the following
features: favors bulky substituent (green), disfavors bulky substituent
(yellow), favors electropositive groups (blue), and disfavors electropos-
itive groups (red). Features in CoMSIA model include: hydrophobic
(cyan), hydrophilic (yellow), favorable H-bond acceptor (magenta),
unfavorable H-bond acceptor (green), H-bond donor (orange), disfavor
H-bond donors (purple).
doi:10.1371/journal.pcbi.1002315.g012
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Materials and Methods

Software
Virtual screening, de novo derivative generation, and molecular

dynamics (MD) simulation were performed using Discovery Studio

Client v2.5.0.9164 (DS2.5; Accelrys Inc., San Diego, CA). The

two-dimensional and three-dimensional structures of TCM

compounds were generated using ChemBioOffice 2008 (Perki-

nElmer Inc., Cambridge, MA). Comparative molecular field

analysis (CoMFA) and comparative molecular similarities indices

analysis (CoMSIA) models were constructed using SYBYL� 8.3

package (Tripos Inc., St. Louis, MO).

Docking Analysis
Compounds from the TCM Database@Taiwan were docked to

H1 and N1 protein active sites reported in our previous study [91].

All procedures were completed under the forcefield of Chemistry

at HARvard Molecular Mechanics (CHARMm) [105]. The

virtual screening process was performed using LigandFit. The

conformational search method was based on the Monte Carlo

algorithm. Rigid body minimization following initial ligand

placement was completed using Smart Minimizer. Scoring

functions used by LigandFit were DockScore.

TCM compounds that docked into both H1 and N1 proteins were

selected and then ranked by the sum of their H1 and N1 DockScore.

TamifluH was used as the control for N1, and its N1 docking score

was set as the minimum requirement. The top TCM compounds that

passed the filtering were selected for de novo evolution.

De Novo Evolution and Lipinski’s Rule of Five
In de novo evolution, TCM compounds were placed into the H1

and N1 protein binding sites described previously, and Ludi-

fragments were attached to the native structure. The new

derivatives were generated in full evolution mode. Derivatives

from de novo evolution were subjected to additional screening

through Lipinski’s rule [106] to rule out orally unstable or

pharmacologically inapplicable compounds. As de novo products

generated for H1 and N1 proteins differed, all de novo products

were re-docked to H1 and N1 proteins to assess binding affinity.

De novo products that docked into both H1 and N1 proteins were

selected and ranked by the sum of their respective H1 and N1

DockScore. The top ten compounds with the highest DockScore

were selected for further structure-based analysis.

Bioactivity Prediction by SVM and MLR
The 27 neuraminidase inhibitors used, including 24 training set

compounds and 3 test set compounds, were adapted from Zhang’s

study [102]. Compounds were drawn using ChemBioOffice 2008

(PerkinElmer Inc., Cambridge, MA) and modified to physiological

ionization using the Prepare Ligand function in DS 2.5. Bioactivity

values (IC50) were also obtained from Zhang’s study though the

original sources were not clarified, and converted to pIC50 (log(1/

IC50)). Molecular descriptors of the compounds were calculated using

Calculate Molecular Properties in DS 2.5 and the GFA was used to

select the best representative molecular descriptors [107]. Utilizing

the best representative molecular descriptors identified through

GFA, MLR and SVM models were constructed using MATLAB

(The Mathworks Inc., Natick, MA) and LibSVM [108], respectively,

and used to predict the bioactivity of TCM de novo compounds.

MD Simulation
The MD simulation was performed using the Molecular

Dynamics package of DS 2.5. The complexes were created with

a 10 Å solvation shell of TIP3 water around the protein. Sodium

cations were added to each system for neutralization. Minimiza-

tion using Steepest Descent and Conjugate Gradient were

performed at 500 cycles each. Each protein-ligand complex was

gradually heated from 0K to 310K over 50 ps, followed by a

200 ps equilibration phase. The production stage was performed

for 20 ns using NVT canonical ensemble and trajectory frames

were saved every 20 ps. SHAKE algorithm was applied to

immobilize all bonds involving hydrogen atoms throughout the

MD simulation. Long-range electrostatics were treated with PME

method. Time step was set to 2 fs for all MD stages. The

temperature coupling decay time for the Berendsen thermal

coupling method was 0.4 ps. Post processing of the trajectory was

performed using Analyze Trajectory module. Torsion angles of

each bond were also monitored through DS 2.5. LIGPLOT [109]

was used to generate schematic diagrams of protein-ligand

interactions for each candidate and control in H1 and N1.

CoMFA and CoMSIA Models
CoMFA and CoMSIA models were constructed through the

partial least square (PLS) analysis using previously described

neuraminidase inhibitors [102]. The optimal number of compo-

nents was obtained from leave-one-out method to yield the highest

r2 and q2 values in non-cross validation and cross-validation,

respectively. Biological activities of the TCM de novo compounds

were evaluated based on contour to the generated 3D-QSAR map.

Figure 13. Key features of TCM candidates for stable binding in
H1 and N1. (A) Xylopine_2 in H1, (B) Rosmaricine_14 in H1, (C)
Rosmaricine_15 in H1, (D) Xylopine_2 in N1, (E) Rosmaricine_14 in N1,
and (F) Rosmaricine_15 in N1.
doi:10.1371/journal.pcbi.1002315.g013
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