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Abstract 

Pressurized distensible tubes are subject to aneurysms. Aneurysm inception will take place at a 

location along the tube when a critical pressure, relative to tube wall thickness at that location, is 

reached. Parents will recognise the existence of critical pressure when endeavouring to inflate a 

party balloon. Another example of aneurysm is the thoracic aortic aneurysm corresponding to 

permanent dilation of the aorta in such proportions that it can be life threatening. Corrective 

procedures for aortic aneurysms involve the introduction of stiff materials to prevent aneurysm.  

Similarly in a proposed distensible tube based wave energy device aneurysm inception is partially 

controlled through the use of alternative longitudinal strips of inextensible material and appropriate 

rubber strips. Here we consider distensible tubes made of one material. 

Having reviewed the aneurysm based literature some inconsistencies were observed between the 

material properties used in a non-linear finite element analysis and the material properties of the 

specimen used to provide experimental measurements for comparison. To appreciate the 

inconsistencies the authors decided to investigate aneurysm development using both non-linear 

finite element analyses and distinct alternative formulations and solution techniques. Rather than 

restrict strain-energy function to a subset of Neo-Hookean, Mooney-Rivlin and Ogden forms, the 

authors have implemented several alternative strain-energy models in parallel, also exploring for the 

first time the impact of using different combinations of uniaxial, equi-biaxial and pure shear 

experimental data for different rubbers. 

 

This paper addresses the needs (necessary considerations, such as the Valanis-Landel hypothesis, 

Maxwell equal area rule and data selection criteria) for a realistic approach to modelling a 

distensible tube to provide predictions of critical pressure. In common with all other cited 

references a static analysis is used.  
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1. Introduction 

 

Within the literature critical pressure is determined from static analysis with differing governing 

equations solved using alternative techniques. In the finite element approach strain-energy functions 

are utilised once the appropriate parameters have been determined from experimentally observed 

material behaviour. Of particular interest in this paper are the challenges and implications of using 

different experimental data sets and alternative strain-energy functions to determine the value of 

critical pressure. This is a problem shared in such diverse fields as bio-engineering, fluid-dynamics, 

mechanical and medical sciences. 

 

The extent of research completed is too large for a single publication. Hence this paper presents the 

associated theory, with an indication of the derivation of the governing equations (omitted in all 

related papers found) and provides limited indicative qualitative comparative results. The 

companion paper presents direct numerical comparisons of predicted results for all different 

possible data set combinations and several alternative strain-energy functions. Predictions of the 

selected finite element package used by the authors are compared with an independently published 

generated finite element analysis. 

 

This paper addresses the identification of a realistic approach to modelling a distensible tube to 

provide meaningful predictions of critical pressure. In common with all other cited references a 

static analysis is used.  

 

Appreciation of balloon inflation is addressed by Osborne & Sutherland [1] and Müller & 

Struchtrup [2].  The investigation of aortic aneurysm is dealt with, in greater detail, by Vorp [3]. 

Medical investigation of ruptured and intact aortic specimens indicates large diameter increases [4]. 

More complex tube construction using two distinct materials can lead to critical pressures beyond 

normal utilisation or occurrence. Medically this corresponds to the introduction of stents for 

reinforcement of arteries [5]. In engineering, the analysis of the more complex tube constructions 

used in wave energy devices ensures practical initial set up operational pressures consistent with 

wave environment. Whilst rubber is seen as a relatively low cost and low maintenance material it 

can experience different kinds of instability [6, 7]. These examples, taken from different fields of 

interest, are sufficient to demonstrate the need to predict the likelihood and the prevention of an 

aneurysm.  An appreciation of existing aneurysm research is summarised next. 
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1.1 Brief review of aneurysm research 

   

Mallock [8] is credited with presenting the first paper addressing the formation of an aneurysm in a 

pressurised rubber tube. Mallock describes the birth of an aneurysm as ‘one or more bulbous 

expansions’ associated with the attainment of a critical radius and hence critical pressure. 

Alexander [9] and Needleman [10] both investigated such instability during the inflation of 

spherical shaped rubber balloons. Haughton [11] has addressed perfect and imperfect spherical 

rubber membranes. Alexander [12] extended the instability studies to cylindrical membranes; 

Kyriakides & Chang [13, 14] have provided theoretical and experimental comparison of the 

formation of aneurysms in cylindrical rubber tubes. Kyriakides & Chang observed experimentally 

that tube radius expanded uniformly along the tube length with increased pressure until critical 

pressure was attained. Thereafter radial growth was localized at the point of aneurysm initiation. As 

more fluid is injected into the tube the pressure is reduced and the aneurysm spreads longitudinally 

until the whole tube approximates a cylindrical shape. Further injection of fluid leads to increased 

pressure and radial growth until material failure occurs. The axial position of the aneurysm is 

influenced by manufacturing imperfections (non uniform wall thickness) or geometrical 

imperfections (radius variations along the tube) or even non homogeneous material properties.  

 

According to Kyriakides & Chang [13, 14] and Kanner & Horgan [15] critical pressure is the peak 

pressure in the pressure-volume curve. However, Fu et al. [16], indicate that the ‘initiation pressure’ 

associated with the initial bulge in the tube occurs within a small (mathematically perceived) 

neighbourhood of the critical pressure. It is defined as the pressure at which bifurcation occurs. This 

more precise definition befits theoretical bifurcation investigations (discussed briefly in Section 

3.3.2) rather than experimental and engineering studies of aneurysm. 

 

Kyriakides & Chang [14] solved stated governing equations using finite differences subject to fixed 

and rolled tube end condition. The slightly more detailed formulation of Guo [17] addresses a 

membrane of general axisymmetric shape. A simpler Guo [18] formulation restricts the initial shape 

of the membrane to be a uniform circular cylinder.  Solutions [17, 18] are generated using a 

‘shooting’ technique (Section 14.1 of [19]) with both tube ends fixed. Yang & Feng [20] formally 

describe the ‘shooting’ technique as the application of the Cauchy-Kawalewski theorem when 

solving ordinary differential equations. That is, a two-point boundary value problem is treated as an 

initial value problem. The finite element approach can address both situations and with an 

appropriate choice of elements permits greater flexibility in tube end conditions and removal of 
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assumed uniform material properties. Shi & Moita [21] developed an axisymmetric hyper–elastic 

membrane and solved the non-linear static problem with the arc–length method [22]. Pamplona et 

al. [23] and Goncalves et al. [24] used the Riks algorithm with the ABAQUS
® 

finite element 

software. 

 

1.2 Comparison of numerical predictions and experimental measurements 

 

Kyriakides & Chang [13, 14] provide very comparable predictions and measurement of critical and 

propagation pressures, radial stretch ratio values at particular longitudinal positions and pressure 

variation with radial stretch ratio. Pamplona et al. [23] and Goncalves et al. [24] also report very 

good agreement between theoretical predictions and experimental measurements. However, closer 

analysis of [23, 24] and the related PhD dissertation [25] (in Portuguese) suggest that material 

properties used in the predictions are quite distinct to those of the experimental study. Furthermore, 

the material stress-strain data is determined from a variant of the standard uniaxial tension test [26]. 

This limited data base and the apparent degree of agreement between prediction and measurement 

aroused our interest. In particular, Figure 3 of [24] is generated using the strain-energy function 

parameters of Table 2 [24]. The close agreement of Neo-Hookean and Mooney-Rivlin fitted strain-

energy functions with the experimental data is quite acceptable. However, the first-order Ogden 

model is quite distinct irrespective of adoption of Equations (15) or (16) of this paper. Furthermore, 

Table 2 [24] is different to Table 4.4 [25], although the corresponding force versus strain figures in 

[24] and [25] are identical. These different inconsistently attributed material properties provided the 

motivation to investigate the role of different selected material models upon critical pressure 

prediction in aneurysm formation.  

 

1.3 Organization of paper 

 

Fundamental theoretical concepts and definitions regarding continuum mechanics for a hyper-

elastic material are presented in Section 2.1. The principal steps to determine strain-energy function 

parameters from experimental data are presented with definitions of commonly used strain-energy 

functions attributed to Mooney-Rivlin, Ogden, Treloar (Neo-Hookean), Yeoh, Arruda-Boyce and 

Marlow in Section 2.2. Section 3 reviews static formulations of differing mathematical complexity 

for modelling and predicting aneurysm characteristics. Section 3.1 addresses a long cylindrical thin-

walled tube, uniformly inflated, whereas a more complex analytic method for an axisymmetric 

membrane is treated in Section 3.2. The derivation of these two alternative semi-analytical methods 
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are presented, together with summary algorithms, since the different predictions are studied to 

appreciate both the appropriateness of the finite element based modelling  and to provide a general 

comparison; a task not previously reported in the literature. The authors’ governing equations 

derivation within Section 3.2 is considered necessary given derivations have not been located in the 

extensive literature search undertaken. Hence they may be deemed useful to other researchers.  The 

more general finite element method is summarised in Section 3.3 with justification of specific 

possible choices made regarding its application. Sample representative results for each technique 

are presented and discussed in Section 4. Finally closure concerning the different mathematical 

approaches is reported in Section 5. The original Treloar rubber data used [27] has been retrieved as 

explained in Appendix A. This data, rather than the Ogden fitted [28, 29] Treloar rubber data, used 

by several authors [10, 21, 30], is utilized in our applications. A second set of tabulated data is due 

to Kawabata et al. [31]. The sensitivity of fitting different rubber models to different combinations 

of measured stress-strain data is a novel and extensive in-depth aspect of this research. 

 

2. Mathematical formulation 

 

Following basic definitions of continuum mechanics related variables, this section reviews basic 

relationship between alternative experimental stress-strain data sets and strain-energy functions. 

The characteristics of the Treloar and Kawabata et al. data sets and the identification of the strain-

energy function parameters using different combinations of the experimental data is summarised 

prior to defining the strain-energy functions applied. 

 

2.1. Continuum mechanics description of rubber material 

 

A practical definition of a rubber-like material, referred to as a hyper-elastic or Green-elastic 

material, is a perfect elastic material for which strain-energy function ( )W  existence can be 

postulated [28]. A rigorous mathematical definition of a hyper-elastic material is found in [32]. This 

approach requires the existence of a scalar elastic potential (strain-energy) function, whose 

derivative with respect to a strain component determines the corresponding stress component as 

outlined in Section 2.2. Different expressions for the strain-energy function permit development of 

different constitutive models for a rubber-like material. In general a strain-energy function depends 

on the stretch tensor U , written as ( )UWW = . Figure 1 indicates a stretching U and a rotation R of 

a material element. In general the deformation gradient tensor F  associated with stretching 

followed by rotation can be decomposed as RUF = . The right Cauchy-Green deformation tensor 
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C  is defined as FFC
T= . For an isotropic material rotation has no influence on material properties 

and hence W is independent of the stretching orientation [33]. Hence W  is expressed as either 

( )321 ,, λλλWW = , a function of principal stretches, 3&2,1: =iiλ  or as ( )321 ,, IIIWW =  a 

function of strain invariants 3&2,1: =iI i .     (1) 

 

Fig. 1.   Basic concepts of continuum mechanics.  

 

For an isotropic material the square of the principal stretches ( )2

iλ  are the eigenvalues of the right 

Cauchy-Green deformation tensorC . They are related to strain invariants ( )iI , in accordance with: 
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The third invariant [ ]3I  describes the volume change during the deformation, that is 0
Jdvdv

t = , see 

[34]. Hence, for an incompressible material it follows that [ ]22 det F=J  i.e. 

( ) 3

2

321

2
IdiagJ =≡ λλλ  and thus 13 =I . Consequently for an isotropic and incompressible 

material the strain–energy function is simply   ( )21,λλWW = or ( )21, IIWW = . The Ogden [28] and 

Mooney–Rivlin [35] strain-energy functions are dependent on both strain invariants, whereas the 

Neo–Hookean [27], Yeoh [36], Arruda–Boyce [37] and Marlow [38] strain-energy functions are 

only dependent upon 1I . More detailed information can be retrieved from original referred papers; 

brief descriptions are provided in Sections 2.2.2 & 2.2.3. 

 

2.2 Relationship between experimental test and strain-energy function 

 

The strain-energy functions presented in this section have different numbers of parameters. These 

parameters must be determined from an experimental data set covering the anticipated range of 

strain to be investigated. In general the experimental data is obtained through a simple uniaxial 

tension test using a dumbbell shaped test piece. Less common measurement procedures are the pure 
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shear test, using a long narrow strip of material, and the equi-biaxial tension test in which a sheet of 

rubber is deployed. Sole use of pure tension testing is extremely hazardous [39]. It is recommended 

that experimental data is acquired by different deformation modes (tests) [33, 40].  

 

Prior to consideration of parameter identification of the strain-energy function it is necessary to 

appreciate the relationship between the Cauchy stresses ,3&2,1:i =iσ for the three possible 

experimental test procedures. For an isotropic incompressible material the principal Cauchy stresses 

are defined [29] as:   

p
W

i

ii −
∂

∂
=

λ
λσ  3&2,1: =i           (3) 

where p  is an arbitrary hydrostatic pressure consistent with the incompressibility constraint. 

Uniaxial tension test: 

In this case the principal stretch ratios satisfy: λλ =1  and 32 λλ = . The incompressibility constraint 

therefore implies that λλλλ 11 132 === .       (4a) 

Given the material is isotropic the principal Cauchy stresses are σσ =1  with 032 == σσ . Since 

02 =σ , the hydrostatic pressure can be eliminated from the expression for 1σ  that is: 
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When the strain-energy is expressed in terms of the invariants, ( )21, IIWW = , Equation (4b) 

assumes the general form: 
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From Equation (2) we note that λ
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and hence, the uniaxial Cauchy stress is: 
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Whereas the Cauchy stresses are by definition related to the deformed cross-sectional area, the 

experimental data is often recorded in terms of engineering or nominal stresses it  referred to the un-

deformed cross-sectional area. Since the deformed and the original volume of the material is the 

same, the ratio of the deformed and original cross-section areas is λ . Hence the Cauchy and 

nominal stresses are related by: iiit λσ= . Thus the uniaxial nominal stress 1t  is expressed as: 
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The formulae for the equi-biaxial and pure shear principal stress can be recovered similarly. Final 

relationships are therefore stated having indicated derivation process for the uniaxial case. 

Equi-biaxial tension test: 

In an equi-biaxial tension test the principal stretch ratios satisfy: 

 λλλ == 21  and so 2

3 1 λλ = .          (9a) 

The principal Cauchy stresses are σσσ == 21  with 03 =σ . Consequently the equi-biaxial nominal 

stress satisfies: 
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Pure shear test: 

For a pure shear test deformation we impose:  

13 =λ , λλ =1  and so λλ 12 = ,                   (10a) 

with σσ =1  and 02 =σ . The stress 3σ  is non-zero to maintain 13 =λ . It may be readily shown that 

the nominal planar stress is: 
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Equations (8) to (10) provide nominal stresses definition for each experimental test condition.  

 

In non-linear finite element analysis [41], the 2
nd

 Piola-Kirchhoff stress tensor, ijS , is often 

preferred. In this case the principal stresses are defined as: 

i

i

i

i

i tS
λ

σ
λ

11
2

≡= .            (11) 

Identification of iσ  or it  requires selection of an appropriate strain-energy function W and the 

fitting of free parameters associated with W using suitable experimental data sets. This is addressed 

next. 

 

2.2.1 Fitting of strain-energy parameters to selected data sets 

 

Two well known and utilized experimental data sets for rubber are those of Treloar [27] and 

Kawabata et al. [31]. The characteristics of the rubbers investigated may respectively be described 

as 8% sulphur vulcanized rubber and isoprene vulcanized rubber. Table 1 provides ranges of 
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investigated λ -values for uniaxial, equi-biaxial and pure shear tests for both data sets. Plots of 

engineering stress versus strain for each measurement procedure are presented in Figures 2 & 3 for 

the Treloar and Kawabata et al. data. 
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Fig. 2.   Treloar data [27] & Appendix A 
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Fig. 3.   Kawabata et al. data [31] 

 

Table 1 Experimentally investigated λ  values 

 Treloar [27] Kawabata et al. [31] 

Uniaxial )[ 5.70.0 −∈λ  [ ]7.30.0 −∈λ  

Equi-biaxial )[ 5.30.0 −∈λ  [ ]1.30.0 −∈λ  

Pure shear )[ 0.40.0 −∈λ  [ ]7.30.0 −∈λ  
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For a selected theoretical strain-energy function W  we may match theoretical and experimental 

stress (nominal or Cauchy) in a least squares sense using data from the three cited test procedures in 

isolation, using any pairs of these data sets or using all the data available. That is, there are seven 

possible combinations of fitting W to the available experimental data. If t

it  denotes theoretically 

predicted nominal stress for uniaxial ( )1=i , equi-biaxial ( )2=i  and pure shear ( )3=i  and m

it  

denotes measured nominal stress, then depending upon publication read, one either minimizes: 

 ( ) ( )( )( )[ ]
2

21

3

1

,...,,∑∑
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Here iβ  denotes the weighting factor applied to the distinct experimental data sets and jγ  is a 

weighting factor applied to a particular element of a selected experimental data set. The outer sum 

may be reduced if a particular form of measured data is not available. Data collected should have an 

equal distribution among different deformation modes at both low and high strains [40]. This is 

especially true if the fitting procedure uses the same weight for each experimental data [33]; 

however finite element method (FEM) codes, generally, use a weighting function in order to 

achieve a better fit near the origin (lower strains) [42]. 

 

The N simultaneously equations used to determine the strain-energy function parameters 

Nipi ,...,2,1: =  are formulated from NipE i ,...,2,1:0 ==∂∂ . If the system is linear a classical 

linear least squares technique is applied or in the case of a non linear function of the sought 

coefficients the Levenberg-Marquardt iterative algorithm is applied [43].  

 

Six alternatives definitions of W  are to be addressed. Details related to the fitting of Treloar 

[Appendix A] and Kawabata et al. data [31] for all seven possible data combinations with the five 

analytic forms of W  is reviewed in Appendix A of the companion paper [44]. Here it is sufficient to 

note that use of certain data sets, in isolation or as a particular combination of data sets, do not 

always lead to a successful derivation of sought strain-energy functions parameters. The W  

functions now defined vary in number of independent variables, parameters and mathematical 

complexity. 
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2.2.2 Mathematical definition of strain-energy functions  

 

Each analytic strain-energy function to be investigated is now briefly presented.  

The Mooney–Rivlin [35] form is: ( ) ( )33 201110 −+−= ICICW .      (14) 

 

The Ogden model [28, 29] is the most commonly used model in non-linear finite element packages 

[39, 40, 45]. Whilst the Ogden model is computationally more demanding than the Mooney-Rivlin 

model, it is preferred because it exhibits more stable fitting qualities [40]. The usual form of the 

Ogden strain-energy function [28, 29] is: ( )∑
=

−++=
N

i i

i iiiW
1

321 3
ααα λλλ

α

µ
,    (15) 

where ( )ii αµ ,  are pairs of material parameters that permit a good fit of the theoretical description to 

the experimental data; N  is the total number of the ( )ii αµ ,  pairs required. When a N-term Ogden 

model is used N  pairs are involved and hence N2  material constants must be specified. Within the 

ABAQUS
®

 finite element analysis (FEA) package [46] an equivalent, but slightly different, 

formulation for the strain-energy function is: ( )∑
=

−++=
N

i i

i iiiW
1

3212
3

2 ααα λλλ
α

µ
.    (16) 

Generally a three-term Ogden model is used [45]: first term controls the low strain behaviour, the 

second term the high strain behaviour and the third term controls the behaviour of different 

deformation modes.  

 

The Neo–Hookean model is the first constitutive mathematical model developed specifically for 

rubber by Treloar [27, 47]. The simple single parameter strain-energy function is:   

( )3110 −= ICW .           (17) 

 

The Yeoh model [36] is essentially a generalization of Neo-Hookean model strain-energy function 

assuming the form: ( ) ( ) ( )3

130

2

120110 333 −+−+−= ICICICW .      (18) 

 

This model is analogous to Biderman (1958) with the linear ( )3201 −IC  term removed [48]. 

The Arruda–Boyce or the ‘eight chain’ model [37] assumes the form: ( )∑
=

−
−=
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with coefficients assigned in accordance with: 
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2

1
1 =C , 

20

1
2 =C , 

1050

11
3 =C , 

7000

19
4 =C   &  

673750

519
5 =C .     (20) 

The coefficients 5,...,2,1: =iCi  are related to the series expansion form of the inverse Langevin 

function [37].  

 

The parameters of the strain-energy function for Mooney-Rivlin, Neo-Hookean and Yeoh model 

have linear forms whereas the Ogden and Arruda-Boyce strain-energy functions assume non linear 

forms. In each case the parameters are identified by using an appropriate least-square fit solver.  

British Standard [26] guidance on selection of strain-energy function suggest that: Neo–Hookean is 

sufficient for many purposes; Yeoh and Arruda–Boyce models require a single deformation test; 

Mooney–Rivlin and Ogden models require a better calibration, that is, experimental data from 

different deformation tests. 

 

2.2.3 Marlow model 

 

Marlow [38] adopts a completely different approach. The strain-energy function W  is defined as an 

integral of the stress-strain curve over the strain interval [ *,0 ε ], that is:  ( ) ( )∫=

*

0

1

*

ε

εεε dtW .      (21a) 

Since 1−= λε  is the uniaxial strain and ( )ε1t  is the nominal uniaxial stress, it follows for uniaxial 

data that λλ 22

1 +=I  using Equation (4a) and hence ( ) ( )10 ** === λε WW  ( ) 031 === IW , that is 

for λ  taking any permissible value for which data exist ( )1IW  is simply: ( ) ( )
( )

∫
−

=
1

0

11

1
*

I

dtIW

λ

εε .  (21b) 

Equations (21) can be used with nominal uniaxial, equi-biaxial or pure shear stress with appropriate 

principal stretch ratio definitions taken from Equations (4a), (9a) or (10a) respectively. This method 

does not seek to determine the underpinning behaviour of the material by combining all the data; it 

simply generates a strain-energy function for a particular set of data determined in a particular 

deformation mode. Marlow [38] claims that the derived W  will exactly reproduce the stress strain 

behaviour used in the generation of W  with good approximation for other deformation modes. 

Marlow does not claim the model is as accurate as a multi-parameter model (e.g. Ogden) when data 

is available in all of the basic modes. Whilst the Marlow method is readily applied its behaviour 

may be adversely affected if large voids occur in the data acquisition. 
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2.2.4 Some observations regarding strain-energy selection and rubber data 

 

The application of strain-energy functions is widespread and the quoted alternative forms, and their 

variations, are used in many different research areas; in engineering [39, 40, 45], mechanical 

engineering [49, 50] and medical sciences research [51, 52, 53, 54]. In the static analysis of a 

distensible tube [13, 14, 17, 18, 21] it is sufficient to use the strain-energy forms quoted. Given the 

authors’ observations concerning [23, 24] application of different strain-energy forms and different 

combinations of material strain stress data sets is necessary to identify appropriate consistent 

modelling techniques to provide acceptable predictions of critical pressure. 

 

Ogden [28] suggests that good fits between theory and experimental data are achieved ‘only at the 

expense of mathematical simplicity.’ Furthermore he suggests that the generality of strain-energy 

functions should be achieved without being as cumbersome as the exponential forms suggested by 

Alexander [48] and Hart-Smith [55] or the generalized Mooney-Rivlin form expressed as: 

( ) ( ) 0:33 002

0,

1 =−−= ∑
∞

=

CIICW
n

nm

m

mn . 

Preferably the selected function should be compliant with the Valanis-Landel [56] hypothesis, 

namely: ( ) ( ) ( ) ( )321321 ,, λλλλλλ fffW ++= . Valanis and Landel indicate that the variable 

separable form is neither arbitrary nor fortuitous, since the strain-energy function W is thought to be 

closely approximated by the entropy function S upon appealing to the statistical network theory of 

rubberlike elasticity.  Furthermore, when addressing an isotropic material the entropy associated 

with deformation in each of the Cartesian orthogonal directions must have the same functional form 

with W  replaced by S in the equation for W ( )321 ,, λλλ . Valanis and Landel then tested the validity 

of their proposal through a series of experimental investigations based on uniaxial and biaxial 

investigations form four distinct cited sources. 

 

Jones & Treloar [57] observed that the Ogden formulation of Equation (15) satisfies this hypothesis. 

Clearly, the Neo-Hookean form of Equation (17), proposed by Treloar [27], and the simplified 

Mooney-Rivlin form of Equation (14) also satisfy the Valanis-Landel hypothesis. 

 

Most of the parameters in the provided definitions of strain-energy function do not have any 

immediate physical interpretation. An exception is the Neo-Hookean coefficient 10C , which is 
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related to the shear modulusG . For the Ogden model, parameters ii µα ,  of Equations (15) and (16) 

satisfy ∑
=

=
N

i

iiG
1

2
1 µα and ∑

=

=
N

i

iG
1

µ  respectively. 

 

Considering the work associated with affine deformation and the difference in entropy between the 

strained and unstrained states of the material Treloar [47, 58] provides arguments to demonstrate 

that ( )32

3

2

2

2

12
1 −++= λλλGW  with NkTG ≡ . Here N  is the number of molecules per c.c., k  is the 

Boltzmann constant and T  is the absolute temperature. It appears that, following some academic 

discussions presented in various journal articles, the suggestion that 37 NkTG ≡  by Kuhn [59] 

was retracted. One might argue that if the ‘mathematical simplicity’ of the Neo-Hookean form was 

sufficient then G  ought to assume the same numerical value, for the same material, irrespective of 

the experimental data set used for its determination. According to the Treloar [27] determination of 

G  (in 1944) using equi-biaxial data only, ≡= 20.4 cmkgG  0.3924 MPa, which gives a good fit 

for values of 3≤λ , [27]. Whereas Treloar is unlikely to have used the least-squares fit method of 

Section 2.2.1, this procedure will yields =G  0.4398 MPa (see Table A3 of [44]). A least squares fit 

of first and second Ogden models respectively yield =G 0.4270 MPa and =G 0.4338 MPa. The 

uniaxial or pure shear data sets provide G  values completely inconsistent with the previous equi-

biaxial derived values. To quote Treloar [27]: ’The reason for the departures from the theoretical 

form in the cases of elongation and shear is not obvious.’ In other words different G  values are 

required to best fit each distinct experimental data set (see Figure 2). Despite the ‘mathematical 

simplicity’ of some strain-energy functions each model will be applied in the finite element analysis 

of a tube undergoing an aneurysm. This apparently irrational step is taken because in certain 

applications the observed mathematical simplicity always yields a stable finite element formulation, 

whereas more complex function forms can be unstable. The manner in which numerical instability 

arises is highlighted in Appendix A of [44]. 

 

Having addressed some of the nuances of fitting strain-energy functions to experimental data the 

next section provides the theoretical background to alternative methods of investigating aneurysm 

onset and growth.   
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3. Alternative methods for prediction of aneurysm related critical pressure  

 

Three radically different approaches are applied to determine critical pressure. The first two choices 

are semi-analytic whereas the third choice is a finite element approach applicable to incompressible 

materials. The simplest method of Section 3.1 merely seeks the variation of inflation pressure with 

uniform longitudinal radial growth of tube, as measured by 1λ . For a selected 1λ -value the 

corresponding longitudinal extension 2λ  is determined iteratively subject to satisfaction of the 

longitudinal equilibrium condition using a bisection method for each selected function W . 

Thereafter the equation of radial equilibrium is used to determine the required inflation pressure for 

the identified combination of 1λ - and 2λ -values. The more advanced method of Section 3.2 seeks 

indirect solution of a set of four ordinary governing differential equations describing the quasi 

static-equilibrium of an axisymmetric membrane. The original two point boundary value problem is 

converted into an initial value problem that is solved applying a ‘shooting’ technique. Cited papers 

[14, 17, 18] quote the details of the boundary value problem formulation without specific derivation 

or source details. Hence an outline derivation is provided since the authors have failed to locate a 

publication providing required derivations. The last method of Section 3.3 is the finite element 

method. The fundamental and theoretical concepts required in the context of a hyper-elastic 

material are addressed with a discussion of the specific solution method selected in the analysis 

application.  

 

All the methods are to be tested for different strain-energy functions using the seven different 

possible combinations of available experimental data sets provide by Treloar and Kawabata et al. 

 

3.1 Critical pressure prediction for a long thin-walled tube 

 

The semi-analytic method to be presented is essentially a means of cross-checking critical pressure. 

This approach does not address the longitudinal variation of the tube cross sectional shape as the 

aneurysm continues development. That is, the changes determined for any one transverse section of 

the tube is a description of how the whole tube changes uniformly along its length. 

In Section 2 Equations (4a), (9a) and (10a) provide specific behavioural characteristics for 21,λλ  

and 3λ  in accordance with the particular experimental method of measuring stress. The physical 

condition now considered is the inflation of a long and thin circular tube of initial length 0l , initial 

radius 0r  and wall thickness 0wt . In this case 1λ  is the circumferential or azimuthal stretch, 0rr  and 
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2λ is the axial or meridional stretch, 0ll . For an incompressible isotropic rubber the Cauchy stress 

is as specified in Equation (3). With ( )21, IIWW =  and strain invariants defined in Equation (2), 

application of the chain rule in Equation (3) readily leads to: 

.3&2,1:
1

2
2

2

1

2 =−








∂

∂
−

∂

∂
= ip

I

W

I

W

i

ii
λ

λσ         (22) 

Since the rubber tube has a thin wall 03 =σ  is assumed. Hence p  can be eliminated from 1σ  and 

2σ  to yield: 

( )
( ) .2&1:

1
2

1
2

2

2

21

1

2

212

2

1

2 =








∂
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−
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∂
−
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∂
−

∂
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= i

I
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I
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I
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I
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i

ii λλ
λλλ
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That is, in agreement with [15]: 

( ) 
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+

∂
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2
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2

1

2

21

2

11

1
2

I

W

I
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λλ
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and 

( ) 
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∂
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21

2
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1
2

I

W

I

W
λ

λλ
λσ .                 (24b) 

Since the Ogden model is not expressed in terms of 1I  and 2I , but uses directly the stretch ratios, 

alternative equivalent expressions for 1σ  and 2σ  are required. Reverting to Equation (3) and 

substituting for p  in 1σ  and 2σ , using 03 =σ , immediately leads to: 

3

3

1

11
λ

λ
λ

λσ
∂

∂
−

∂

∂
=

WW
                    (25a) 

and 

3

3

2

22
λ

λ
λ

λσ
∂

∂
−

∂

∂
=

WW
.                              (25b) 

The radial equilibrium condition [60] was originally discovered by Mariotte [61]. Mariotte became 

one of the first members of the French Academy of Science, in 1666, and was largely responsible 

for the introduction of experimental method into French science. Mariotte designed the pipelines to 

supply water to the Palace of Versailles and subsequently discovered experimentally the bursting 

strength of pipes under internal hydrostatic pressure. He deduced that the required thickness of pipe 

must be proportional to the internal pressure and the pipe diameter [61]. Mariotte observations for a 

tube of radius r , thin wall thickness wt , and an assumed inflation pressure P  led to the 

circumferential equilibrium equation: 
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rPtw =1σ  or 
wt

r
P=1σ .                   (26a) 

From the definition of 1λ  it follows that 01rr λ= , whereas the incompressibility of the material 

requires that ww tt 210 λλ= , and hence the radial equilibrium condition takes the form:  

0

0
2

2

11

wt

r
P λλσ = ,                    (26b) 

with subscript ‘0’ indicating an undeformed dimension. The longitudinal equilibrium requires that: 

22

1
2

σ
σ ==

wt

rP
.           (27) 

Hence from Equation (27) and Equations (24a) and (24b) it follows that: 

( )
( ) 0
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λλ ,                         (28a) 

or, using Equation (27) with Equations (25a) and (25b) yields: 

02
3

3

2

2

1

1 =
∂

∂
+

∂

∂
−

∂

∂

λ
λ

λ
λ

λ
λ

WWW
 with  

21

3

1

λλ
λ = .                          (28b) 

Equations (28) provide a general relation between hoop ( 1σ ) and axial ( 2σ ) stresses for an arbitrary 

given strain-energy function W expressed in terms of the strain invariant derivatives (28a) or the 

stretch ratio derivatives (28b). With Equations (28) provided, a plot of  P  versus 1λ  can be 

obtained as follows: 

• Select 1λ -value and solve Equation (28a) for 2λ  using any of the cited functions W  other 

than the Ogden form. For an Ogden formulation Equation (28b) is used to determine 2λ . 

• Use 1λ - and 2λ -values and known gradients of W to determine 1σ  using Equations (24a) or 

(25a) depending upon W  selected. 

• Use derived 1σ  for determined 1λ - and 2λ -values to provide P  using Equation (26b). 

 

This algorithm appears to be consistent with a procedure outlined by [13]. The nonlinear Equation 

(28a), according to the selected strain-energy function assumes the following forms: 

Neo-Hookean:  0
1

2
2

1

2

2

2

1

4

210 =







−−

λ
λλλC ,            (29NH) 

Mooney-Rivlin:  [ ] [ ] [ ] 022 01

2

110

4

11001

2

2

2

110

4

101

4

2 =+−−++ CCCCCC λλλλλλ ,        (29MR) 

Yeoh:    
( )

( ) ( )[ ] 03332
1

2
2

130120102

21

2

2

2

1 =−+−+











+− ICICC

λλ
λλ ,           (29Y) 
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and 

Arruda-Boyce:  
( )
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1
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whereas Equation (28b) for Ogden has the generalized form 

[ ] [ ]
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δλµδλµλµλ
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ααα

αααααα

              (29OG) 

In Equation (29OG) a generic m
th

 order Ogden model is assumed and the Krönecker delta functions 

satisfy: (i) 12 =mδ  if 2≥m  and 0 otherwise, (ii) 13 =mδ  if 3=m  and 0 otherwise. 

Each form of the nonlinear Equation (29) was solved for 2λ for each selected 1λ -value. The Neo-

Hookean form (29NH) is readily solved in closed analytic form, whereas all other forms are solved 

using a bisection method. Since the behaviour of ( )12 | λλf  for each form of the left hand side of 

Equation (29) is quite distinct a selected relative error convergence tolerance must reflect the range 

and gradient values of this function ( )12 | λλf . For 1λ -values generally greater than 5 the Yeoh 

model requires more care than the other models due to excessive steep gradients of ( )12 | λλf . This 

means the relative error threshold (usually 310− ) cannot be so refined. A suitable convergence 

tolerance was selected for each model to reflect the numerical range of function values.  

 

A representative selection of results based on the application of this technique will be presented and 

discussed in Section 4.1. Next, we provide a more sophisticated semi-analytic analysis capable of 

identify both critical pressure and longitudinal variation of the tube geometry as aneurysm develops. 

 

3.2 Critical pressure prediction for an axisymmetric membrane of finite length  

 

The previous method assumed the tube maintained the same circular cross-section longitudinally 

whilst expanding as pressure increased. In the method now formulated this assumption is relaxed. 

The physical problem is the inflation of an axisymmetric membrane using an appropriate set of 

ordinary differential equations. The governing equations are derived by manipulating geometric 

relationships and equilibrium conditions through the use of strain-energy function W to provide 

expressions for the traction forces. Derivations are provided in outline form since no publication of 

their origin has been located. 

 

With x  and s  defined as the axial and curvilinear coordinates of tube, and subscript ‘0’ indicating 

an original state, the stretch parameters satisfy: 
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0

2

0

1 ,
ds

ds

r

r
== λλ   and 

210

3

1

λλ
λ ≡=

w

w

t

t
.        (30) 

The principal curvatures in the circumferential and axial directions are defined as: 

r

θ
κ

cos
1 =  and 

ds

dθ
κ =2 .          (31) 

The following geometric relationships can be deduced from Figure 4a: 

 θsin−=
ds

dr
 and θcos=

ds

dx
.          (32) 

 

Fig. 4a.   Geometric relationship between srx ,,  and θ  

 

The circumferential (azimuthal) and the axial (meridional) principal stress resultants 1T  & 2T  

illustrated in Figure 4b, are defined as: 

[ ]
121

1311

ˆˆ
0

λλλ
λσσ

∂

∂
=

∂

∂
≡−=

WtW
ttT

w

ww  and [ ]
212

2322

ˆˆ
0

λλλ
λσσ

∂

∂
=

∂

∂
≡−=

WtW
ttT

w

ww .   (33) 

  

Fig. 4b.   Definition of directions of stress resultants 1T  and 2T ([62]) 

 

The Laplace equilibrium condition [62]: 

PTT =+ 2211 κκ ,           (34) 

is readily appreciated through Figure 4c. 
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Fig. 4c.   Representation of Laplace equilibrium equation (based on [62]) 

 

Equations (30) to (34) are basic equations that are to be utilized with an additional equation 

representing the quasi-static equilibrium of deformation of a membrane. Initially we sought 

utilization of Equation (12) in Guo [17], namely: 

( ) ( )[ ] 0ln 0112
2 =−+ r

dx

d
TT

dx

dT
λ ,                  (35a)  

prior to realizing that the logarithmic term is incorrectly dimensional. Figure 4d readily permits 

demonstration of the veracity of Equation (8a) in Kyriakides & Chang [14], namely: 

PrTr
2

1

2

0210 cos2 λπθλπ = .                   (35b)  

 

Fig. 4d.   Representation of Kyriakides & Chang equilibrium equation 

 

However, using Equation (35b) as a starting point the authors failed to derive the final set of 

governing differential equations used by Guo [17,18] and Kyriakides & Chang [14] in their 

theoretical studies. Finally, noting that both Green & Adkins [63] and Guo [18] suggest the same 

alternative form of equilibrium equation, namely:  

( )
ds

dr
T

ds

rTd
1

2 = ,                     (35c) 

this equation was successfully used to derive the remaining required governing equation quoted in 

each of the studies [14, 17, 18]. It should be noted that indices 1 and 2 in Equations (35) are 
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interchanged in the original cited sources. Derivation of the governing equations, considered next, is 

limited to the necessary principal steps.  

 

3.2.1 Outline derivation of governing equations 

 

From the chain rule 
0

0

00 dx

ds

ds

ds

ds

dx

dx

dx
=  and definitions of 2λ  and dsdx , provided in Equations (30) 

and (32), it follows that: 
0

0
2

0

cos
dx

ds

dx

dx
θλ= .                 (36a) 

Applying an appropriate chain rule to the derivative 01 dxdλ leads to: 
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Definitions of 1λ  & 2λ  and dsdr  of Equations (30) and (32) simplify the last equation to:  
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Substituting into Equation (34) the expressions for the principal resultants stresses 1T  and 2T , 

provided in Equation (33), together with definitions of principal curvatures 1κ  and 2κ  of Equation 

(31), yields: P
W

t
ds

dW
t

r
ww =

∂

∂
+

∂

∂

2

2

1

1
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λ
λ

θ

λ
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θ
. 

Use of ( )21,
ˆˆ λλWW =  recognizes dependence of 3λ  upon 1λ  and 2λ  within the general form 

( )321 ,, λλλWW = . Dividing the last derived equation by wt , applying the chain rule  

ds

ds

ds

dx

dx

d

ds

d 0

0

0

0

θθ
≡  and recalling definitions of 21,λλ  and 3λ  from Equation (30) permits derivation 

of third governing equation: 
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Finally to complete the derivation of the frequently quoted governing equations [14, 17, 18] 

Equation (35c) is readily re-expressed in the form: ( )
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2 −= . 
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Next substituting for 1T  & 2T , using Equation (33), and completing the operations  ( ) 1λ∂∂  and 

( ) 2λ∂∂  leads to: 
ds
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dx
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upon cancellation of the common term 
0wt . Rearranging terms and multiplying by 0dsds , recalling 

the definition of 1λ  and substituting for 01 dxdλ  using Equation (36b), provides: 
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Expanding terms within square brackets and applying definitions of 1λ , 2λ and dsdr  of Equations 

(30) and (32) simplifies the last equation to read: 
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Observing that the second part of the first term is cancelled by the penultimate term of the last 

equation, implying: 
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Substituting for dsdr  and simplifying other terms, using definition of 1λ , provides (with minor 

rearrangements) the required governing equation: 
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.              (36d)  

Equations (36) represent a system of non-linear first order differential equations to be solved for 

x,, 21 λλ  and θ  assuming P  is known. Apart from notation changes this equation agrees with Guo 

[17]. Other than implicit definition of pressure these equations are consistent with that of 

Kyriakides & Chang [14] upon setting their axial force to zero. 

 

The required derivatives of the strain-energy function ( ) ( )21321 ,ˆ,, λλλλλ WW ≡ , defined in Section 

2.2.2, are stated in Appendix B. 
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3.2.2 Solution of governing equations 

 

Assuming the tube has an initial length of 02l  and the tube is not allowed to extend in the axial 

direction, the boundary conditions at the central location and end point of the tube are 

0
00

=
=x

x      &    0
00

=
=x

θ                                   (37a) 

and 

0
00

lx
lx

=
=

    &   1
00

1 =
=lx

λ .                    (37b)  

The first two conditions define the symmetry conditions at the centre of the tube, whereas the 

second pair of conditions require the end of the tube to remain fixed and the cross sectional area to 

be unchanged. Since the rubber tube has an initial cylindrical shape of uniform section then it 

follows that 000 =dxdr  and 100 =dxds  and hence Equations (36) can be simplified to the form 

presented by Guo [18], that is 
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The two-point boundary value problem of Equations (38) subject to boundary conditions (37) is 

next re-cast as an initial value problem. In this case the boundary conditions (37a), at the tube 

centre, are treated as two initial conditions. Two additional fictitious initial conditions are 

*

202
0

λλ =
=x

   &   *
PP

x
=

∀
.                      (39) 

Thereafter Equations (38) are solved subject to initial conditions (37a) and (39). If the solution fails 

to satisfy conditions (37b) then *

2λ  and *P , of Equation (39), are modified until (37b) is satisfied. 

The solution technique outlined is often referred to as a ‘shooting’ technique [19]. 
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Application of the simpler method of Section 3.1 suggests (for the selected rubber models) that an 

aneurysm is initiated when ∈1λ  (1.6, 1.9). The corresponding required  ∈2λ  (1.05, 1.25). For 

compatible 1λ - and 2λ -values the critical pressure was typically 27-38 kPa, depending on 

combination of data sets used to identify parameters of selected strain-energy function W . Guo [17] 

suggested formulae for selecting the initial values of *

2λ  and *P  were less successful here than in 

his medical application. 

 

3.2.3 Algorithm implemented  

 

The shooting technique was implemented in accordance with the following procedure: 

• A sensible range of 1λ -values is selected in order to provide a range of pressure values that 

includes the critical pressure. The initial variation of pressure versus radial stretch (
1

λ ) is 

generally linear in behaviour (from observation). Experience of application of this approach 

suggested reduced numerical effort was achieved by exploiting our observations and using 

3.11 =λ  as the initial value in the task of identifying the 1λ -value associated with the 

occurrence of critical pressure. 

• For a selected 1λ -value, initial values of *

2λ  and *P  are assigned in accordance with 

1

*

2 ληλ λ=  and critical

PPP η=* . The coefficients satisfy 15.1=λη  and 8.0=Pη . criticalP is 

selected from application of the simpler method outline in Section 3.1. 

• Equations (38) are solved for specified ( )**

2 , Pλ  values using a specific Matlab
®

 

implemented fourth-fifth order Runge-Kutta solver (ode45) [64]. Satisfaction of the 

boundary conditions (37b) is then checked for an absolute difference tolerance of the order 

of 610− . 

• If the initial pair of values ( )**

2 , Pλ  does not lead to satisfaction of (37b), then Equations (38) 

are next solved for the following 4 pairs of shooting parameters: ( ),, *

2

*

2 Pλλ ∆+  

( ),, *

2

*

2 Pλλ ∆− ( ) ( )PPPP ∆−∆+ **

2

**

2 ,&, λλ . Thereafter the errors 
1λE  and xE  are evaluated 

by comparing required condition (37b) with actual derived end conditions. The errors 
1λE  

and xE  associated with the first and second pair, and the third and fourth pair, of suggested 

shooting parameters permit estimated values of:  

( )**
2

1

,2 P

E

λ

λ

λ∂

∂
,  

( )**
2 ,2 P

xE

λ
λ∂

∂
 and  

( )**
2

1

,P
P

E

λ

λ

∂

∂
, 

( )**
2 ,P

x

P

E

λ∂

∂
 respectively. 
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• The Jacobian of estimated error gradients is readily defined as: 

( ) ( )

( ) ( ) 
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and the required changes ( )**

2 , Pδδλ  to current estimates ( )**

2 , Pλ  are determined from:  
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 −

xdE

dE
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P
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*

2 λ

δ

δλ
.                              (40b) 

• New parameter values ( ) ( )( )1*1*

2 , ++ ii Pλ  are assigned in accordance with ( ) ( ) *

2

*

2

1*

2 ωδλλλ +=+ ii  

and ( ) ( ) **1*
PPP

ii ωδ+=+ . Here i  indicates current iteration number and ω  is a relaxation 

factor used to control convergence of the shooting method.  

• Recasting original boundary value problem as an initial value problem does not guarantee 

that convergence of the process is a straight forward procedure. This is certainly the case in 

addressing Equations (38). The adopted approach may be summarized as follows:  

o Typical initial value of ω  is 0.5. 

o When 1λ  is increased from ( )n

1λ to ( )1

1

+nλ  then 2λ is expected to increase and P  can 

increase or decrease depending upon whether P  is below or above critical pressure. 

Relaxation factor ω  is lowered and solution restarted when the current th
i -iterated 

value of the shooting parameters 
( )in 1

2

+λ  or 
( )in

P
1+

 does not satisfy 
( )( ) 5.11 2

1

2 ≤≤ + nn i λλ  

or 
( )( ) 4.18.0

1 ≤≤ + nn
PP i  respectively. These inequalities are dependent upon the 

converged values of the parameters of the previous th
n step, or, the initial assigned 

values for 1=n .  

o If one or both parameters lie outside the inequality limits, it is considered self 

evident that the current state of solution is not physically meaningful. Therefore the 

process needs to be restarted. This may be achieved by restarting the process with 

the same initial values but with the relaxation factor ω  reduced by 10%. If there is a 

further failure the relaxation is repeatedly reduced by 10% until convergence is 

achieved, or, the total number of iterations for the current 1λ -value exceeds a 

threshold. This threshold unfortunately is influenced by the selected strain-energy 

function. Upon exceeding the selected threshold a final attempt is initiated by using 

the initial values of ( )**

2 , Pλ  with the last relaxation factor ω , prior to threshold 
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exceedence failure, assigned. If both these alternative strategies fail this particular 

1λ -value is abandoned. 

• When boundary condition (37b) is satisfied for current 1λ , then 1λ  is incremented by 0.01 

and the process is repeated until the whole required range of 1λ -values is investigated. 

 

This approach might be considered to have a rather complex associated algorithm. In other papers 

[17, 18] using the shooting method there is no discussion of the implementation details. The 

nuances addressed were found necessary since the process was applied to tubes of significantly 

larger aspect ratio, 002 rl  than the other cited publications [17, 18]. In fact as this ratio increases the 

numerical effort required increases. 

 

In common with the procedure outlined in Section 3.1, representative results from application of 

this method are presented and discussed in Section 4.2. Having provided two distinct critical 

pressure assessment procedures of differing complexity we next consider the finite element 

approach. 

 

3.3 Selection of finite element formulation 

 

The classical displacement-based finite element formulation is well established in many commercial 

finite element codes. The results provided are generally accurate. An exception occurs for problems 

involving an incompressible rubber-like material. In this case a mixed finite element formulation is 

required to avoid ‘locking’ problems. Structural analysis affected by locking seems to enlarge 

structural stiffness and consequently the displacements and hence strains and stresses are 

underestimated. ‘Locking’ can arise in many different situations [41]. The algebraic system 

associated with a finite element discretisation can become ill-conditioned. For an incompressible 

material, such as rubber, the ‘volumetric locking’ effect is attributed to the Poisson ratio 

approaching the thermodynamic limit of 0.5. 

 

Volumetric locking may be overcome by adopting one of the following approaches: 

• Mixed displacement-pressure formulation (U/P): the unknowns variables are represented by 

displacements and pressure [65]. 

• Enhanced strain method: element formulation is enriched with strain modes in order to have 

better predictive capabilities [66, 67]. 
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• Mixed penalty formulation: the introduction of a penalty parameter is used to perturb the 

divergence free constraint [68]. 

 

The U/P mixed formulation is the most efficient technique [69, 70]. Furthermore, this formulation is 

free from both ‘checker-board’ pressure modes [71] and ‘hour-glass’ deformation modes that occurs 

in the enhanced strain method used for large strain conditions [69] or when reduced integration is 

used [72]. For an incompressible material a U/P hybrid method is recommended [73]. Whilst useful 

information concerning different elements [40] is available, only 2D and 3D solid element based 

U/P formulations are available in commercial FEA packages. An evolution of the MITC4
1
 shell 

element [41] awaiting commercialization is the MITC4–3D shell element developed by Toscano & 

Dvorkin [74]. This can model hyper-elastic materials. Having justified selection of the U/P mixed 

formulation, the formulation is briefly introduced together with the impact of the strain-energy 

function upon the creation of the stiffness matrix. 

 

3.3.1 U/P mixed formulation  

This section is primarily concerned with how the strain-energy is taken into account within the FEA 

formulation. Without undertaking a first principles approach it is sufficient to state that the finite 

element formulation is generally obtained by using the principle of virtual work, whereby the 

internal virtual work is considered to be in equilibrium with the external virtual work. Physically 

this means that the external loads applied deform the body and consequently stresses are developed 

within the material (as an internal reaction) to obtain a state of equilibrium. A more general 

mathematical approach to the derivation of the finite element formulation is to recast the governing 

differential (strong) equations into their integral (weak) form [72]. 

 

The finite element counterpart of the internal work is represented by the stiffness matrix. In 

formulating the U/P approach the stress tensor is partitioned into the deviatoric and volumetric 

parts; the deviatoric stress leads to a stiffness matrix designated uuK  and the volumetric stress leads 

to the stiffness matrix upK . The sub-matrices puK  and ppK  of the stiffness matrix arise from the 

weak form of the equation that relates pressure p  to the volumetric strain vε  via the bulk 

modulusκ , i.e. vp κε−= . 

 

Throughout this paper numerical simulations performed are static (not dynamic) leading to a 

simplified formulation in which the mass matrix is neglected. This static analysis strategy is also 

                                                 
1
 A four node Mixed Interpolation of Tensorial Components (MITC) 
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used to assess the rupture of a developed abdominal aortic aneurysm in [75, 76, 77] and the value of 

systolic pressure is applied statically. 

  

The U/P formulation [41, 78] assumes the form: 
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KK

KK

pppu

upuu
,           (41) 

where R  is the external load vector and K  is the stiffness matrix. The displacement (u) and 

pressure (p) constitute the primitive variables of the formulation. The ppK  part of the stiffness 

matrix is identically zero if the material is totally incompressible. This formulation can be extended 

to take into account a non-linear elasticity effect, using an incremental formulation [79]. In this case 

the whole displacement field is solved as a sequence of equilibrium configurations (steps) through 

the introduction of a fictitious time. 

 

The actual configuration at time tt ∆+  is unknown and hence external forces, stresses and strains 

are assigned in accordance with two possible approaches. In the total Lagrangian formulation the 

stresses and strains are related to the initial (undeformed) configuration. In the alternative updated 

Lagrangian formulation the stresses and strains are determined from the previous artificial time 

step. In each case the resulting stress tensors are respectively designated second Piola-Kirchhoff and 

Cauchy, whereas the strain tensors are referred to as Green-Lagrange and infinitesimal strain 

respectively [80]. For an appropriate and meaningful definition of energy stored in the deformed 

configuration it is necessary to match stress evaluations and strain specifications, that is the second 

Piola-Kirchhoff is coupled with Green-Lagrange strain and the Cauchy stress is matched with the 

infinitesimal strain [79]. This matching is sometimes referred to as energetically conjugated stress 

and strain [81]. 

 

The total Lagrangian formulation assumes the form [80]: 
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where U  and P  are respectively the increments in displacement and pressure relative to the 

reference configuration, Rtt ∆+  is the new externally applied vector load and F
t

0  is the vector of 

nodal forces equivalent to the stress at time t. According to this notation [79], the left superscript 

indicates at which time the variable is being considered and the left subscript indicates the reference 

time with which measured changes are being evaluated. That said, it follows that the updated 
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Lagrangian formulation [41] is identical in form to the total Lagrangian formulation, except that the 

left subscript now changes from ‘0’ to ‘t’ [80]. 

 

The precise generation of K  (and F ) using the total and updated Lagrangian formulations are well 

documented in the literature [68, 79]. For an analysis of a rubber material one should consult [41, 

80]. Since the alternative analysis procedure of Sections 3.1 and 3.2 are based on utilisation of 

strain-energy functions W defined in Section 2 we will illustrate how the first element of K , uuK , 

is determined using W  for the simpler total Lagrangian formulation. The sub-matrix uuK  may in 

general be split into a linear and non-linear contribution, written as NL

uu

L

uuuu KKK += .  

L

uuK  is dependent upon the fourth-order constitutive elastic tensor ijhkC  and NL

uuK  is a function of the 

second Piola-Kirchhoff stress tensor, ijS . The stress and constitutive tensors in these cases are 

related to the strain-energy function W  as follows: 
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where ijε  are the components of the Green-Lagrange strain tensor and the over bar indicates that the 

quantity is not pressure dependent and only evaluated from displacement [80]. The Green-Lagrange 

strain tensor ε  and the right Cauchy-Green deformation tensor C  satisfy ( )ICε −= 2
1 . Introducing 

the notation: 
( )
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λ
, where ⊗  is the tensor product or dyad, the 

second Piola-Kirchhoff stress tensor S , of Equation (43), can be explicitly expressed in terms of the 

principal stretches ii :λ  = 1, 2 & 3 as follows [82]: 
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iS is defined in Equation (11) and 2

iλ  & iN  are respectively the eigenvalues and eigenvectors of C  

defined in Section 2.1. 

 

In the finite element analysis to be reported the updated Lagrangian formulation is used. However, 

corresponding details relating the strain-energy function to the finite element formulation are not 

given for the updated Lagrangian formulation, since their explanation is significantly more involved 

[41, 80], and there is only a need to indicate (in this paper) that the U/P formulation can be 

implemented through selection of any strain-energy function addressed by the selected software. 
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In the U/P formulation, irrespective of the Lagrangian formulation used, the displacement and the 

pressure are approximated with a summation over an appropriate shape function iH . Formally: 

∑
=

=
N

i

i

U

i uHu
1

 and ∑
=

=
N

i

i

P

i pHp
1

,         (45) 

where N  represents the number of nodes defining each element used in the discretisation process 

and iu , ip  represent the nodal value of displacement and pressure. For a reliable analysis the 

polynomial shape functions U

iH  & P

iH  should satisfy the Babuska-Brezzi (BB) condition [83] 

otherwise known as the Ladyzhenskaya-Babuska-Brezzi (LBB) condition [83] or the inf-sup 

condition [41, 83]. The derivation and implications of this mathematical condition are addressed in 

[83, 84]. The practical consequence of the inf-sup condition is that the displacement and pressure 

spaces cannot be chosen arbitrarily. A necessary, but not sufficient, condition to fulfil the inf-sup 

condition in the mixed method is the requirement that the pressure shape function must be of a 

lower order than the displacement shape function, i.e. ( ) ( )hh UP dimdim <  where hP  and h
U  are the 

associated spaces of pressure and displacement interpolation functions respectively.  

 

In the FEA undertaken the selected solid elements are capable and appropriate to perform analyses 

involving large deformations [85]. The C3D8H hexahedral element is chosen for its simplicity. The 

C3D8H element is based on a linear interpolation for displacement and a constant value for the 

pressure. Whilst this element complies with the stated necessary condition, the difference in the 

dimensionality of the shape functions is not sufficient to satisfy the LBB condition. However, it is 

an effective and quite widely used element [41] as it: avoids locking problems [86]; it has been 

successfully applied in analysing the complex form of mitral valves [87]; and has been utilized in 

investigating aneurysms in blood vessels [88]. Furthermore, it is noted that C3D8H is a hybrid 

formulation of the continuum element C3D8 used in finite element simulations involving large 

displacements and deformations [89, 90]; hence it is deemed suitable for investigating the 

potentially large strain that may occur prior to the onset of the critical pressure. In the analysis to be 

reported [44] and in other cited papers the radial stretch parameter at critical pressure lies between 

1.6 and 1.9, corresponding to 60% to 90% strain. For hyper-elastic material these are not large 

strains.  

 

The higher order hexahedral element C3D20H provides quadratic interpolation for the displacement 

and linear interpolation for pressure. Comparisons of prediction based on C3D8H and C3D20H 

permits assessment of the effect of higher levels of interpolation within our analysis [44]. These two 
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solid elements are capable of providing the six zero-energy (rigid body) modes [see Table 1.2.1-10 

of 91].  

 

To exploit the cylindrical geometry of the distensible tubes investigated, yet another alternative 

axisymmetric quadrilateral element with hybrid interpolation is used, namely the CAX4H element 

with four nodes and its linear interpolation for the displacement and constant pressure. Again to 

assess the influence of a higher level of interpolation the eight nodes of the CAX8H are used to 

provide quadratic interpolation for the displacement and linear pressure.  

 

In common with the previous elements the S4R shell element with reduced integration, is capable of 

large deformations [90] and generation of the six zero-energy modes [Table 1.2.1-6 of 91]. The S4R 

element has been used to provide: reference solutions for many benchmark problems for geometric 

nonlinear analysis [92]; biomedical aneurysm simulation [51]; and aneurysms in rubber material 

[23, 24]. 

 

It may be noted that the equivalence of U/P and reduced integration method has been established for 

limited applications by Malkus & Hughes [93]. According to Gadala [94] equivalence is not 

established for axisymmetric and three dimensional problems. Furthermore, Gadala quotes other 

sources as justification of the mixed (U/P) models over reduced/selective integration methods in 

geometric non-linear analysis. Comparison of the predictions (Section 4 and [44]) for the different 

selected elements cited may provide additional material for this discussion. 

 

3.3.2 Finite element solution  

 

The finite element analysis of an aneurysm has been formulated as a non-linear static problem. In 

general non-linear static problems may be solved using the classical Newton-Raphson method [41]. 

In this case direct application of Newton-Raphson is inappropriate because of the complex nature of 

the interactions of geometry, material properties, loads and boundary conditions. As the membrane 

load increases the positive stiffness reduces until at maximum load the stiffness becomes zero and 

critical pressure is attained. Beyond the critical pressure the structural stiffness is negative and 

further deformation is achieved with lower loads, hence near and beyond the point of critical 

pressure the Newton-Raphson approach cannot be used. Consequently a path following method 

such as the Riks algorithm [22] or existing modifications [95, 96] is necessary to investigate the 
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behaviour of a cylindrical hyper-elastic membrane subject to inflation. This method is now 

summarised. 

  

Defining  
N

Rv∈  as the unknown variable of N components the nonlinear static problem may be 

written as ( ) 0=vF . A direct solution of this equation is not possible and the governing equation is 

recast in the form: 

  ( ) ,0, =λvF  

where λ  is the loading proportionality factor, or scaling factor for the external load. This parameter 

is introduced with the purpose of changing the load level during the iterative solution procedure, 

whereby the error associated with ( ) 0, =λvF  is reduced by forcing the solution to move along a 

particular curve (or straight line path) designated ( ) 0, =λvf .  This approach may be captured by 

reformulating the problem in the form   

( )
( )
( )






=

λ

λ

,

,

vf

vF
wG   with ( ) 








=

λ

v
w . 

The solution of the new system of equations is obtained with a prediction stage and a correction 

stage. The process starts from the initial undeformed situation 0=λ  and the known solution 0v =0. 

The next step is to increment λ  and v to obtain new values (v1, 1λ  ) to satisfy ( ) 0, =λvF iteratively. 

In a prediction stage a guess of the new equilibrium position is created and subsequently corrected 

using Newton-Raphson iterations ( ) ( ) ( )[ ]ivvv 1

2

1

1

1 ,...,,  until the new equilibrium position 
1v  is reached. 

Once the n=1 solution is found a sequence of solutions can be determined as illustrated in Figure 5. 

 

Fig. 5 Graphical illustration of Riks method for N=1 (based on [97]) 
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The primitive variables in the Riks algorithm (readily available in most finite element packages) are 

simply displacement in a displacement based formulation or displacement and pressure in the U/P 

mixed formulation. Common to both approaches is inclusion of the load proportionality factor λ . 

This factor both influencing and being influenced by the incremental arc length steps taken along 

the equilibrium path F in the load-displacement plane. That is, arc length control is a combination 

of pure load control and pure displacement control. The Riks method permits development of the 

equilibrium path up to and beyond the limit point represented by the critical pressure. 

 

The veracity of the generated equilibrium path beyond the critical pressure point depends upon 

whether alternative branches exist. Mathematically the existence of alternative paths is referred to 

as bifurcation of the solution. Assessing whether or not bifurcation has occurred requires an 

investigation of the positive definiteness of the associated tangent stiffness matrix TK . This can be 

measured by looking at the smallest pivot or the determinant of indicated stiffness matrix or its 

lowest eigenvalue [98].  Computationally the more efficient approach is the study of the diagonal 

members of the L  matrix in the LU decomposition of the tangent stiffness matrix LUK =T . The 

value of all diagonal elements of the upper triangular matrix U  is unity. A sufficient condition for 

instability (bifurcation) is the existence of a negative diagonal element iiL  [99]. During application 

of the Riks arc-length method the likelihood that one of the solution points (defining the arc) 

correspond to a singular point is remote. Therefore, since the diagonal elements of L  are 

continuous functions of the path parameters, the existence of singular points between two adjacent 

computation points can be readily determined by monitoring sign changes of the diagonal elements 

iiL [99]. In the ABAQUS
®

 software this option is implemented in the sense that warnings are issued 

regarding behaviour of the eigenvalues.  

  

Bifurcation arises when a structure and loading system are without any imperfections, such as those 

attributable to manufacturing, assembling et cetera [98]. The presence of many bifurcation points is 

found after the achievement of the maximum pressure [14, 100, 101, 102], or, in the neighbourhood 

of the critical pressure with the first bifurcation point before the critical pressure [21, 103]. These 

bifurcation points tend to cluster together when the tube becomes longer [14, 21] with higher values 

of the aspect ratio 002 rl . Haughton & Ogden [103] found two theoretically possible bifurcation 

modes in their investigation of a cylindrical hyper-elastic tube. In one mode the cylindrical 

membrane remains prismatic with non circular cross-section. In the other mode the tube experiences 

the formation of an axisymmetric bulge whilst the cross-sections remain circular. For each case to 
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exist certain mathematical conditions were derived. However, Haughton & Ogden deemed the 

mathematical conditions required for the prismatic non-circular cross-section were physically 

impossible in a real elastic material.  

 

Once the existence of bifurcation has been established, the introduction of a perturbation removes 

the bifurcation and solution of the slightly modified problem provides the branch most sensitive to 

the perturbation introduced. In finite element analysis this may be achieved by perturbing either the 

geometry through the addition of weighted buckling eigenmodes [21, 46, 98], or, the load. Shi & 

Moita [21] in their post-critical analysis of an inflated cylindrical membrane suggested that the 

clamped boundary condition could be seen as a perturbation of the perfect geometry. 

 

In the reported analyses of Section 4, and the companion paper [44], no buckling eigenmode is 

introduced as a perturbation of the initial perfect geometry. Under this condition the ABAQUS
®

 

software predicts a post-buckling behaviour of a cylindrical membrane consistent with the first 

symmetric bifurcation mode, that is, a bulge deformation symmetric with respect to the tube mid-

span. In just a few cases [44] a higher bifurcation mode persists with symmetric bulge-like 

deformations located either side of the tube mid-span. According to Shi & Moita [21] the first 

bifurcation mode is the most likely mode to occur because it is associated with the lowest 

deformation energy.   

 

In this paper the authors are primarily concerned with the occurrence of critical pressure and not a 

complete post-critical (post-buckling) analysis.  

 

4. Presentation and discussion of representative results 

 

Representative results are presented for each of the three analysis methods described, subject to 

application of some or all the strain-energy functions and complete sets of experimental data based 

on Treloar or Treloar and Kawabata et al. The companion paper [44] provides an in-depth 

investigation using different combinations of data sets provided by Treloar and Kawabata et al., 

application of the strain-energy functions defined in Sections 2.2.2  and the three alternative 

analysis procedures. Only the finite element method can readily adopt the Marlow strain-energy 

function approach, see Section 2.2.3. 

 

 



 35

4.1 Critical and propagation pressure for a long thin-walled tube 

 

The first representative results address critical pressure prediction using the simplified analysis 

based on Equations (24), (26b) and (28) for tube radius 0r = 0.01m and initial thickness 0wt = 

0.001m. As each possible strain-energy function is selected Equations (28) are transformed to those 

presented in Equations (29). Using the Treloar uniaxial, equi-biaxial and pure shear data we find 

that the pressure variation with circumferential stretch ( 1λ ) is quite distinct depending upon the 

strain-energy functions selected. In Figure 6a the Neo-Hookean, Mooney-Rivlin and Ogden (N=1) 

strain-energy functions lead to monotonically decreasing pressure beyond the critical pressure. In 

contrast Figure 6b indicates that the Yeoh, Arruda-Boyce and Ogden (N=2 & N=3) models exhibit 

the ‘N’ shape pressure variation expected from experimental observations of inflated tubes [12, 13, 

14, 30]. The value of 1λ  associated with the critical pressure is very similar magnitude for all 

models apart from Ogden (N=2), with corresponding critical pressures in the range 28.0 to 31.5kPa. 

Arruda-Boyce predicts a rather low critical pressure of 25.6kPa.  

 

The distinct characteristic differences in the pressure variation, beyond critical pressure, in Figures 

6a & b have implications beyond that of simply reflecting changes due to selection of a different 

strain-energy function of vary complexity.   
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Fig. 6a.   1λ−P  curves with only maximum pressure (Treloar rubber) 
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Fig. 6b.   1λ−P  curves with maximum and minimum pressure (Treloar rubber) 

 

Mathematically the pressure may continue to reduce monotonically beyond its peak value, or, it 

may decrease to a minimum and then rise for further increases in the stretch parameter 1λ . These 

two possible outcomes, clearly indicated in Figures 6, have quite distinct implications. In the first 

case (Figure 6a) the non existence of a minimum pressure implies that aneurysm propagation is not 

feasible according to the Maxwell equal area rule [13, 16, 30]; the second case (Figure 6b) 

associated with a longitudinal aneurysm propagation is consistent with experimental observation 

[12, 13, 14, 30]. In short certain available strain-energy functions provide characteristics contrary to 

practical expectations. For this particular analysis procedure it readily follows that the rate of 

increase in volume relative to initial volume 0v , that is 0vvV = , as pressure changes is proportional 

to 2

2

1λλ  [15]. For the selected strain-energy functions the corresponding VP −  curves are presented 

in Figures 6c & d.  
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Fig. 6c.   VP −  curves with only maximum pressure (Treloar rubber) 
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Fig. 6d.   VP −  curves with maximum and minimum pressure (Treloar rubber) 

 

Propagation pressure, pP , is evaluated by determining the inflation pressure P such that Area A, 

under the VP −  curve and above the line pPP = , equals Area B between the VP −  curve and 

below the line pPP = , as illustrated in Figure 7. 
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Fig. 7.   Illustration of Maxwell equal area rule. 

 

Replacing the full sets of Treloar data ([27] and Appendix A) with the corresponding full sets of 

Kawabata et al. data [31] the range of critical pressure values in Figures 8a & b are now smaller. 

We note that Yeoh strongly follows and Ogden (N=3) more weakly follows the expected ‘N’ shape 

in Figure 8b. Furthermore Neo-Hookean and Arruda-Boyce give essentially the same behaviour 

irrespective of the data sets used [44], i.e. any differences observed are very insignificant. For both 

sets of data critical pressure is associated with a 1λ -value in the interval 1.6–1.9. 
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Fig. 8a.   1λ−P  curves with only maximum pressure (Kawabata et al. rubber) 
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Fig. 8b.   1λ−P  curves with maximum and minimum pressure (Kawabata et al. rubber) 

 

Figures 8c & d provide the corresponding Kawabata et al. data based VP −  curves.  
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Fig. 8c.   VP −  curves with only maximum pressure (Kawabata et al. rubber) 
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Fig. 8d.   VP −  curves with maximum and minimum pressure (Kawabata et al. rubber) 

 

The Treloar (Figure 6) and Kawabata et al. (Figure 8) based 1λ−P  curves have essentially the same 

behaviour and location of critical pressure. The Arruda-Boyce and Ogden (N=2) strain-energy 

functions are more acceptable in terms of the existence of minimum pressure when using a Treloar 

rather than a Kawabata based material. When a ‘N’ shape is obtained, calculation of the propagation 

pressure is possible. For the VP −  curves of Figures 6d & 8d, propagation pressure values are 

provided in Table 2.  

 

Table 2   Propagation pressure 

Propagation Pressure [Pa] Model Data source 

12092.11 Ogden N = 2 

Treloar [Appendix A] 
16149.09 Ogden N = 3 

14222.22 Yeoh 

14866.65 Arruda-Boyce 

10638.28 Ogden N = 3 
Kawabata et al. [31] 

17268.27 Yeoh 

 

Clearly both the critical pressure and propagation pressure value are highly sensitive to the strain-

energy function selected. For the Treloar material a small difference (around 0.7kPa) in the value of 

the critical pressure for Ogden N=2 and Ogden N=3 leads to a 4kPa difference for the propagation 

pressure. This behaviour is confirmed for the Kawabata material. In this case a 6.5kPa difference in 

pP  arises for a difference of 1.5kPa in critical pressure. This means the strain-energy functions are 

capturing a different critical pressure value and overall behaviour during inflation. The influence of 

end conditions for a tube of finite length are addressed next with predictions provided from solution 

of Equations (38). 
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4.2 Critical pressure results for an axisymmetric membrane long thin-walled tube 

 

Sample results are now presented for an axisymmetric finite membrane with a length to radius ratio 

of 002 rl =10, an initial uniform radius of 0r = 0.01m and a thickness of 0wt = 0.001m. The 

predictions presented are restricted to use of the three full sets of Treloar data. Figures 9a & b 

illustrate application of Equations (38) with the Yeoh and Ogden (N=3) strain-energy functions 

respectively; required strain-energy function derivatives are provided in Appendix B. Unlike the 

simpler approach the axisymmetric membrane model permits provision of the longitudinal variation 

of cross-section with changing 1λ . The required ‘N’ shape curve is also captured by this method. 

Comparison of Figure 6b with Figure 9a (for Yeoh) and Figure 9b (for Ogden N=3), indicates that 

critical pressure has comparable magnitude for corresponding 1λ -values. This method reflects the 

influence of a finite length of tube, giving a more realistic simulation. More in depth studies based 

on different data sets and other strain-energy function are reported in the companion paper [44]. 

 

Figures 9a & b indicate that Yeoh model has a steeper recovery than the Ogden model from the 

minimum pressure. Whilst this is in accordance with previous results illustrated in Figure 6b, 

further inspection is necessary to ascertain the benefit, or otherwise, of this observation.  

 

Fig. 9a.   1λ−P  curves derived from shooting method with Yeoh and 102 00 =rl  

 

Fig. 9b.   1λ−P  curves derived from shooting method with Ogden N=3 and 102 00 =rl  
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The implicit end conditions within the axisymmetric membrane model is the invariance of the 

cross-section of the tube ends. Hence the end points maintain a radius of 0r  irrespective of assigned 

1λ -values. Figures 9a & b illustrate the change in profile of the plane curve revolved to generate the 

axisymmetric tube for distinct 1λ -values. Figures 9c & e indicate how the membrane shape varies 

with 1λ  using the Yeoh and Ogden strain-energy function. Figures 9d & f provide magnified views 

of the membrane shape at the right-hand end of the tube. These magnified plots indicate, that for 

∈1λ (1.31, 2.11) for Yeoh and ∈1λ (1.31, 2.51) for Ogden there is no effective tube elongation 

beyond the fixed end point. For higher 1λ -values the tube is stretched beyond the end point and the 

curvature is reversed to accommodate membrane equilibrium. Furthermore, in Figure 9d for 

=1λ 3.70 there is a rogue solution. This is not without precedence in the ‘shooting’ technique based 

approach. With appropriate effort one can force a preferred solution consistent with the other 

predictions. However, it is the critical pressure that is of primary interest here. Clearly a detailed 

examination of generated solutions is necessary to appreciate limitation of analysis procedure. 

 

 

Fig. 9c.   Variation of membrane shape for Yeoh model 

 

 

Fig. 9d.   Magnified variation of membrane shape for Yeoh model 
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Fig. 9e.   Variation of membrane shape for Ogden N=3 model 

 

 

Fig. 9f.   Magnified variation of membrane shape for Ogden N=3 model 

 

Just as the application of the axisymmetric membrane represented a less constrained model than the 

long thin-walled tube so we now seek to remove further limitations through the application of the 

finite element approach. 

 

4.3 Critical pressure results for finite element 

 

For the same tube Figures 10 & 11 indicate the influence of different end conditions upon the shape 

of the FEA determined 1λ−P  curves. In this simulation the linear reduced integration shell S4R is 

used. The longitudinal variation of tube cross-section for corresponding 1λ -values is very similar in 

Figures 9, 10 & 11 for ≤1λ 3. For larger values of 1λ  the shape comparison is meaningless due a 

fundamental difference in the axisymmetric membrane approach and the finite element method. In 

the analysis of Section 4.2 the stretch ratio 1λ  is imposed at the centre of the tube prior to solving 
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the governing equations using the appropriate *

2λ - and *P -values required to ensure satisfaction of 

Equation (37b). In the finite element analysis undertaken 1λ  is retrieved during the solution and is 

not assigned incrementally a priori. Consequently the ‘shooting’ method will attempt a solution for 

any assigned 1λ -value irrespective of whether the stretch ratio 1λ  is physically realistic in terms of 

the tube end deformations, as illustrated in Figures 9d & f. 

 

Fig. 10.   1λ−P  curves derived from clamped-clamped FEA with Ogden N=3 and 102 00 =rl  

 

Fig. 11.   1λ−P  curves derived from clamped-rolled FEA with Ogden N=3 and 102 00 =rl  

 

In Figure 10 a 1λ -value greater than 3.5 is not presented. Whereas in the previous membrane 

analysis we highlighted end tube distortion, in the finite element analysis one observes distortion in 

the tube at the starting (end) position of the bulbous aneurysm. In this region the deformation of the 

tube leads to a convergence problem. One might be tempted to assume that this finite element 

difficulty, in common with the application of the membrane method, is a consequence of preventing 

the tube naturally extending. The clamped boundary conditions applied at both ends may be relaxed 

with the introduction of the rolled condition at one end, that is, no radial translation occurs but this 

end may move longitudinally and rotate.  Clearly in Figure 11 the rolled boundary condition at one 

tube end permits the elongation of the tube and removal of cited numerical challenges. The 

truncation of the 1λ  range in Figure 11 does not imply any limitation. 
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5. Conclusions 

 

Three different approaches are reviewed for the prediction of critical pressure.  

 

The first method presented captures the essential physics of the aneurysm development and 

constitutes a fast tool readily implemented. The predicted critical pressures are of sufficient 

accuracy for appreciating the likelihood of an aneurysm. Furthermore, it can be used to provide 

initial estimates of parameters for the more refined and general axisymmetric membrane model.  

 

The membrane model method is more difficult to implement and requires finer numerical tuning to 

successfully obtain converged results. This approach permits prediction of the membrane shape and, 

as will be demonstrated in the companion paper, provides predictions in close agreement with the 

finite element analysis.  

 

Having failed to locate a research paper containing derivation of governing equations for an 

axisymmetric membrane the equations have been derived here from first principle for completeness.  

 

The finite element provides greater analysis scope through greater choice of element selection, 

boundary conditions imposed and material modelling. Furthermore, it constitutes a tool equally 

available to academic and industrial researchers active in different fields of engineering, 

hydrodynamics and bio-medical sciences.  

 

All generated predictions demonstrate the sensitivity of critical pressure to selected strain-energy 

function. This is also true for the propagation pressure predictions. 

 

An appropriate test of whether a strain-energy function is suitable for investigated initiation and 

propagation of an aneurysm is the Maxwell equal area requirement.  

 

For the Treloar and Kawabata data it appears that the required ‘N’ shape variation of inflation 

pressure with radial stretch ratio is correctly provided by the Yeoh and third-order Ogden strain-

energy function. 

 

The variation of critical pressure with respect to the selection of different experimental data sets for 

each strain-energy function will be addressed in depth in the companion paper. Direct numerical 

comparisons of predictions based on the three different techniques presented in this paper will be 

provided with discussion and critical review. 
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Appendix A 

 

Table A1 Treloar retrieved data 

Uniaxial Equi-biaxial Pure Shear 

Stress [Pa] Strain Stress [Pa] Strain Stress [Pa] Strain 

140110 0.144 92057.04 0.02 72176.5845 0.03802 

230196 0.247 155979.00 0.06 167213.412 0.12388 

320368 0.410 236293.47 0.11 250829.928 0.19062 

410600 0.615 257218.20 0.14 338332.185 0.3053 

500946 0.901 326084.40 0.20 422092.908 0.44878 

581299 1.186 434367.18 0.31 593629.587 0.85081 

671589 1.431 508452.30 0.42 765421.326 1.38715 

852311 2.023 647695.44 0.68 941098.806 1.97142 

1052996 2.595 763159.14 0.94 1124206.38 2.46932 

1223493 3.024 959977.17 1.49 1288308.06 2.95773 

1594292 3.761 1239503.31 2.03 1467438.66 3.35973 

1954917 4.375 1440147.24 2.43 1627449.57 3.68509 

2305242 4.765 1706940.00 2.75 1802518.83 3.95282 

2695562 5.176 1972378.98 3.07   

3045652 5.404 2202364.62 3.26   

3415724 5.631 2418459.30 3.45   

3775830 5.879     

4145853 6.066     

4495766 6.172     

4875658 6.277     

5235646 6.444     

5595496 6.509     

 

In the original Treloar paper [27] equi-biaxial data is provided in tabulated form. The uniaxial and 

pure shear data is presented graphically. To convert the Treloar raw equi-biaxial data (column 5 of 

Table I [27]) to SI units of nominal stress the data are weighted by 410⋅⋅λg . The Treloar graphical 

data (Figure 3 [27] for uniaxial and Figure 7 [27] for pure shear) are converted to SI units for 

nominal stress by weighting graphical readings by 410⋅g .  
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Appendix B 

The pure and mixed derivatives of the strain-energy function with respect to 1λ  and 2λ  are 

presented here since they are required for the axisymmetric membrane model of Section 3.2. 
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