
1

Real-Time FPGA-Based Multi-Channel Spike
Sorting Using Hebbian Eigenfilters

Bo Yu, Terrence Mak, Member, IEEE, Xiangyu Li, Fei Xia, Alex Yakovlev, Senior Member, IEEE, Yihe
Sun, Member, IEEE, and Chi-Sang Poon, Fellow, IEEE

Abstract—Real-time multi-channel neuronal signal recording
has spawned broad applications in neuro-prostheses and neuro-
rehabilitation. Detecting and discriminating neuronal spikes from
multiple spike trains in real-time require significant compu-
tational efforts and present major challenges for hardware
design in terms of hardware area and power consumption. This
paper presents a Hebbian eigenfilter spike sorting algorithm,
in which principal components analysis (PCA) is conducted
through Hebbian learning. The eigenfilter eliminates the need
of computationally expensive covariance analysis and eigenvalue
decomposition in traditional PCA algorithms and, most impor-
tantly, is amenable to low cost hardware implementation. Scalable
and efficient hardware architectures for real-time multi-channel
spike sorting are also presented. In addition, folding techniques
for hardware sharing are proposed for better utilization of
computing resources among multiple channels. The throughput,
accuracy and power consumption of our Hebbian eigenfilter are
thoroughly evaluated through synthetic and real spike trains.
The proposed Hebbian eigenfilter technique enables real-time
multi-channel spike sorting, and leads the way towards the next
generation of motor and cognitive neuro-prosthetic devices.

Index Terms—Brain-machine interface, Hebbian learning,
spike sorting, FPGAs, hardware architecture design.

I. INTRODUCTION

Recently, multi-electrode arrays (MEAs) have become in-
creasingly popular for neuro-physiological experiments in vivo
[1][2][3][4] or in vitro [5][6][7][8]. Compared with other
methods of signal acquisition, such as functional magnetic
resonance imaging (fMRI) [9], Electroencephalography (EEG)
[10] and Electrocorticographical (ECoG) [11], MEA provides
the capability of recording neuronal spikes from specific
regions of the brain with high signal-to-noise ratio [1][5].
The substantial temporal and spatial resolutions provided by
MEAs facilitate the studies of neural network dynamic [12],
plasticity [13], learning and information processing [14] and
the developments of high performance brain-machine interface
(BMI) for emerging applications, such as motor rehabilitation
for paralyzed or stroke patients [15][16][17].

Bo Yu, Xiangyu Li, Yihe Sun are with Tsinghua National Laboratory for
Information Science and Technology, Institute of Microelectronics, Tsinghua
University Beijing 100084, China. e-mail: (yu-b06@mails.tsinghua.edu.cn;
xiangyuli, sunyh@mail.tsinghua.edu.cn).

Terrence Mak, Fei Xia, Alex Yakovlev are with the School of Electrical,
Electronic and Computer Engineering, Newcastle University, Newcastle upon
Tyne, NE1 7RU, UK. Terrence Mak is also with the Institute of Neuroscience,
Newcastle Biomedicine, at the same University. e-mail: (terrence.mak, fei.xia,
alex.yakovlev@ncl.ac.uk).

Chi-Sang Poon is with Harvard-MIT Division of Health Sciences and
Technology, MIT, Cambridge, MA 02139, USA. e-mail: (cpoon@mit.edu).

Neuronal spike trains recorded by electrodes encompass
noises introduced by measurement instruments and/or inter-
ferences from other vicinity neurons. Neural signal processing
that extracts useful information from noisy spike trains is
necessary for spike information decoding and neural network
analysis in subsequent processes. In most neural signal pro-
cessing flows, especially in the MEA based brain-machine
interface (BMI) systems, spike sorting that discriminates neu-
ronal spikes to corresponding neurons is among the very
first steps of signal filtering [18][19][20] and its correctness
significantly affects the reliability of the subsequent analysis
[21].

Real-time spike sorting requires substantial computational
capability to process continuous and high-bandwidth record-
ings from subjects and support implementation of feedbacks,
such as neural stimulation, when necessary. Hardware sys-
tems providing dedicated circuits for specific computations
can substantially outperform the corresponding computations
using software in terms of computational performance and
power dissipation. It also presents the unique advantages of
portability and bio-implantability for different experimental
needs. Hardware solutions are therefore necessary for neu-
rophysiological signal recordings and analysis where these
factors are crucial.

Principle component analysis (PCA) provides an effective
solution for neuronal spike discrimination because of its ca-
pability of automatic feature extraction [19]. Implementation
of PCA-based hardware systems for spike feature extraction
has been reported in [22]. This system employs an algebra
based PCA, in which computations for covariance matrix
and eigenvalue decomposition are involved, and results in
significant computational complexity. Direct realization of
these numerical methods requires substantial hardware costs,
such as power consumption and hardware area. In addition,
most algebraic approaches compute all principal components
whereas only the first few leading components are required
for spike discrimination. Besides, the number of recording
channels in a single MEA is rapidly increasing. New recording
systems with thousands of channels, e.g. the MEA systems
with 4096 channels [5], require substantial computational
bandwidth to process the real-time recordings. Novel method-
ology and hardware architecture design are therefore vital
to sustain competent performance for the rapidly increasing
recording bandwidth.

Field programmable gate arrays (FPGAs) provide massively
parallel computing resources and are suitable for real-time
and high-performance applications. The reconfigurable abil-

2

ities of FPGAs provide substantial flexibilities for real-time
multichannel recording systems, in which parameters, such as
dimension of neuronal spikes and data word length, need to be
tunable and adaptable for various circumstances. Compared to
application specific integrated circuits (ASIC), system-on-chip
(SoC) and programmable processor implementations, FPGAs
provide high performance, good scalability and flexibility at
the same time [23]. These are crucial criteria for multi-channel
neuronal signal recording systems. As a result, FPGAs have
been employed by a number of neuro-engineering research
groups [5][7].

In this paper, we present a Hebbian eigenfilter approach
based on general Hebbian algorithm (GHA) to approximate the
leading principal components (PCs) of spikes. We also present
a high-gain approach to speed up the convergence of the pro-
posed eigenfilter. Further, we show that the eigenfilter can be
effectively mapped to a parallel reconfigurable architecture to
achieve high-throughput computation. The major contributions
of this paper are:

• We propose a general Hebbian eigenfilter approach to
approximate the principal component analysis. The pro-
posed method provides an approximation to compute a
selected number of eigenvectors. Also, high-gain strate-
gies to speed up the Hebbian network convergence are
discussed.

• An FPGA-based architecture, which exploits the intrinsic
task-independence in the eigenfilter, is presented and has
been integrated into a complete spike-sorting engine to
provide real-time and high-throughput spike train anal-
ysis. To our knowledge, this is the first FPGA-based
Hebbian eigenfilter used for spike sorting realization
that can be readily employed in BMI or multi-channel
recording systems.

• Both the Hebbian eigenfilter algorithm and the FPGA
hardware implementation are rigorously evaluated. The
spike sorting accuracy is evaluated based on synthetic
spike trains that simulate the realistic inter-neuronal in-
terferences and noises from the analogue circuit. The
relationships between word length and hardware resource
consumption, power dissipation and algorithm accuracy
are also studied.

This paper consists of four Sections. Section II introduces
the background of spike sorting and the proposed Hebbian
eigenfilter. Section III describes the architectures of the pro-
posed hardware and the implementation of eigenfilter. Section
IV presents the evaluation results and discussion. Section V
concludes the paper.

II. HEBBIAN EIGENFILTER BASED SPIKE SORTING
ALGORITHM

A. Background

Spike sorting is one of the fundamental challenges in
neurophysiological experiments. During recording, a micro-
electrode always picks up action potentials from more than one
neuron because of the uncontrolled environment around the
electrodes [19][20]. Failing to distinguish different neuronal

spikes will compromise the performance of the neural pros-
thetic system [21]. As a result, spike sorting that discriminates
detected spiking activities to corresponding neurons becomes
crucial.

Typical spike sorting algorithms discriminate neuronal
spikes according to intrinsic characteristics, namely features,
in the time [24] or frequency domains [25][26]. PCA (time-
based) and wavelet transformation (time-frequency-based) are
the most widely used automatic feature extraction methods.
PCA which has become a benchmark feature extraction
method calculates orthogonal bases (principal components)
that capture the directions of variation in data to characterize
differences in data. Wavelet transformation provides a multi-
resolution method to accomplish feature extraction that offers
good time resolution at high frequency domain and good
low frequency resolution at low frequency domain [27]. It
is still controversial which method has better performance
in the spike sorting scenario. However, most algorithms for
the two methods are computationally intensive and require
tremendous hardware resources if implemented on chip. In
order to facilitate on-chip implementations, several computa-
tionally economic approaches have been proposed, such as dis-
crete derivatives [28], integral transform [29], and zero-cross
features [30]. However, the effectiveness of these hardware-
friendly algorithms remains to be validated through real-
data experiments. Instead of proposing a feature extraction
method, in this paper, we present a hardware efficient PCA-
based method. A neural network based approach is utilized to
automatically learn and filter principal components from data.

Besides feature extraction, spike sorting requires a set of
pre and post-possessing steps including spike detection, spike
alignment and clustering. Spike detection distinguishes neu-
ronal spikes from background noises. A commonly used de-
tection method is to compare absolute voltage of the recorded
signal with a threshold that is derived from median value of the
raw spike train [26]. However, hardware cost of obtaining the
median value is high. The nonlinear energy operator (NEO)
based spike detection method provides a hardware efficient
alternative and also achieves high detection accuracy by con-
sidering both spike amplitude and frequency [31]. In general,
detected high dimensional spikes need to be aligned at their
maximum point for the following feature extraction. Through
feature extraction, neuronal spikes are projected into a lower
dimensional feature space that highlights the differences of
aligned spikes. After feature extraction, clustering algorithms
are always employed to automatically identify and differentiate
clusters in the feature space. Fig. 1 exemplifies the clustering
in the feature space, which consists of the first two principal
components. In the feature space, each cluster represents a
prospective neuron, and dots represent aligned neuronal spikes
that are assigned to their closest cluster (centroid). Although
investigation of spike detection, alignment and clustering are
not the core of this paper, these pre and post-possessing
steps are important to ensure high quality spike sorting results
and algorithms including NEO based detection and K-means
clustering [32], have been incorporated in our software and
hardware experiments.

Table I presents a list of parameters that will be used in this

3

Fig. 1. Hebbian eigenfilter based spike sorting algorithm.

TABLE I
PARAMETERS DEFINITION

Parameters Definitions
d Number of samples per aligned spike
l Number of principal components used for spike sorting
L Number of learning iterations
n Total number of spikes
M Total number of channels
α Number of parallel training modules
β Number of parallel on-line modules
N Folding ratio (M

β
)

T Training period
r Number of registers required for a single

channel
a Number of arithmetic units required for a single

channel
S Sampling rate for each channel
Γ Latency of an on-line processor
p Number of clock cycles required for performing

real-time spike sorting per channel
Pi Total number of clock cycles required for performing

i-channel real-time spike sorting
Q Number of estimated clusters

paper.

B. Hebbian Eigenfilter for Spike Sorting

1) Hebbian Spike Sorting Algorithm: The overview of the
Hebbian eigenfilter based spike sorting is shown in Fig. 1.
The proposed method is composed of training and on-line
processing parts. In the training module, a Hebbian eigenfilter
is presented to extract principal components from the aligned
spikes. This module also consists of individual algorithms
for spike detection (NEO based method) and clustering (K-
means clustering) for threshold and centroids estimations,
respectively. The on-line algorithm detects neuronal spikes
according to the estimated threshold and aligns excerpted
spikes at the peak point. It then projects the aligned spikes
to feature space based on the principal components, and then
assigns the projected spikes to the nearest centroid.

Traditional algebra based PCA algorithms are computation-
ally expensive because of involving complex matrix opera-

tions, such as covariance matrix computation and eigenvalue
decomposition of covariance matrix [19][33][34]. Particularly,
these algorithms compute a full spectrum of the eigenvectors
as well as eigenvalues whereas having the first few most
important eigenvectors would be sufficient for effective spike
sorting.

Hebbian learning was originally inspired by the observation
of the pre-synaptic and post-synaptic dynamics and synaptic
weight updating [35]. It was later generalized into a number of
different forms of algorithms for unsupervised learning [36],
classification [37] and auto-association [38]. Particularly, the
general Hebbian algorithm (GHA) [36] presents an efficient
approach for realizing principal component analysis. The
synaptic weights of the feed forward neural network evolve
into the principal components of input data if a specific Oja’s
weight updating rule is followed [36].

We incorporate the Hebbain eigenfilter into the spike sorting
framework and, thus, greatly reduce the computational com-
plexity of the principal components computations.

Suppose we have n aligned spikes, x⃗(i), i ∈ [1, n]. Each
aligned spike is d dimension (containing d sample points), i.e.
x⃗(i) = [x1(i), x2(i), . . . , xd(i)]

T . We let l be the dimension of
feature space (the number of extracted principal components),
η be the learning rate, W⃗ (j) = [W⃗1(j), W⃗2(i), . . . , W⃗l(i)]

T

be a l × d synaptic weight matrix that is initialized to W⃗ (1),
and j be the iteration index.

The Hebbian spike sorting algorithm for calculating the
first l principal components of n aligned neuronal spikes is
summarized in Table II. Step 1 is the initialization process.
Then, the mean vector of n aligned spikes, µ⃗, is calculated
in Step 2. After the mean vector is available, the mean vector
is subtracted from all aligned spikes in Step 3. After that,
iteration learning will be performed on zero-mean spikes. In
the algorithm, LT [m⃗] is an operator that sets all the elements
above the diagonal of matrix, m⃗, to zeros. W⃗ (j) converges
to the l most significant principal components of input data
when j is large enough and the learning rate is appropriate.

Hebbian eigenfilter presents a simple and efficient mecha-

4

TABLE II
ALGORITHM OF HEBBIAN EIGENFILTER

1. Initialize synaptic weight W⃗ (1) and learning rate η.
2. Calculate the mean vector of the aligned spikes

µ⃗ =
∑n

i=1 x⃗(i)/n
3. Zero-mean transformation

x⃗(i) = x⃗(i)− µ⃗ 1 ≤ i ≤ n
4. Perform Hebbian learning on zero-mean data

y⃗(j) = W⃗ (j)x⃗(i)

L⃗T (j) = LT [y⃗(j)y⃗T (j)]
⃗dW (j) = η(y⃗(j)x⃗T (i)− L⃗T (j)W⃗ (j))

W⃗ (j + 1) = W⃗ (j) + ⃗dW (j)
5. If the network converges, the algorithm stops, otherwise

j = j + 1, i = i+ 1, 1 ≤ i ≤ n then go to step 4.

TABLE III
COMPARISON BETWEEN HEBBIAN AND EVD BASED PCA

Hebbian eigenfilter EVD based PCA
Involving covariance matrix No Yes

Accuracy Approximate Accurate
Filtering leading eigenvectors Yes No

Computing eigenvalue No Yes
Computational complexity O(dL+ dn) O(d2n+ d3)

nism to compute principal components. It can be well adopted
into the spike sorting routine. Comparing to conventional PCA
algorithms, Hebbian eigenfilter does not involve covariance
matrix computation and eigenvalue decomposition. It also has
the capability to filter specified number of leading principal
components. These advantages result in significant savings in
terms of computational efforts.

2) Complexity of Hebbian Eigenfilter: In this section, we
analyze the computational complexity of Hebbian eigenfilter
in comparison with the algebra-based method.

Computational complexity of Hebbian eigenfilter is domi-
nated by the number of iterations, L, dimension of spikes, d,
and the number of spikes, n. The computational complexity for
the Hebbian eigenfilter is O(dL+dn) (see Appendix A for the
derivation). In contrast, the algebra-based PCA involves com-
putation of covariance matrix and eigenvalue decomposition
(EVD). Computational complexity for calculating a d× d co-
variance matrix can be characterized as O(nd2) (see Appendix
B for the derivation). Eigen-decomposition of all the eigenvec-
tors of a symmetric matrix (d × d) requires a complexity of
O(d3) [33]. As a result, the total computational complexity of
the eigen-decomposition based PCA becomes O(nd2+d3). In
general, number of spikes, n and data dimension, d, are large
numbers and number of learning epochs, L is much smaller
than nd. The computational delay of Hebbian eigenfilter will
be significantly smaller than the eigen-decomposition based
algorithms. This provides a critical advantage to real-time
spike sorting using eigenfilter. The major characteristics of
Hebbian eigenfilter and eigen-decomposition based algorithms
are summarized in Table III.

3) High-Gain Methods for Hebbian Spike Sorting: An
appropriate learning rate is important to the convergence of
the Hebbian network. If the learning rate is too small, the
network may need a large number of iterations to converge or
may converge to a local solution due to the lack of momentum.
If the learning rate is too large, the network may oscillate or

even become unstable causing numerical problems due to that
the momentum is too large to be attracted.

Two high-gain methods for accelerating convergence of the
eigenfilter are proposed in this section. One approach is to use
non-uniform learning rates for each neuron. Because the most
important principal component has the strongest attraction
while the others are substantially weaker in the Hebbian
network, assigning non-uniform learning rates to neurons,
especially larger values (momentum) to weaker neurons can
help the network converge more synchronously and quickly.
The updating equation of weights becomes,

⃗dW (j) = η⃗(y⃗(j)x⃗T (i)− L⃗T (j)W⃗ (j)) (1)

where η⃗ is l × l diagonal matrix, diag(η1, η2, . . . , ηl), η1 <
η2 < · · · < ηl.

Another high gain approach is to apply “cooling-off” an-
nealing strategies on iteration-varying learning rates to achieve
precise solutions quickly. The basic idea of an annealing
strategy is to use large learning rates at the beginning to bypass
local minima and approach the final result quickly, and to use
gradually smaller learning rates to achieve an accurate global
minimum in the subsequent learning steps. The learning rate
is then characterized using an annealing function η(j), where
j is the index of each iteration. The weight updating rule can
be expressed as,

⃗dW (j) = η⃗(j)(y⃗(j)x⃗T (i)− L⃗T (j)W⃗ (j)) (2)

W⃗ (j + 1) = W⃗ (j) + ⃗dW (j) (3)

where η⃗(j) = diag(η1(j), η2(j), . . . , ηl(j)) is l × l diagonal
matrix, j is the iteration index, ηi(j) is a decreasing function.
Because the learning rate can be a large number at beginning,
the weight can be amplified significantly. To avoid weights
become extremely large, we could normalize the weight at
each learning epoch as,

W⃗ (j + 1) =

{
W⃗ (j+1)

||W⃗ (j+1)||
, if ||W⃗ (j + 1)|| > δ

W⃗ (j + 1), otherwise
(4)

where ||·|| is the norm of a vector, and δ is a constant threshold.
The annealing strategy could yield a better convergent rate.

However, it requires additional computational cost for the
normalization and empirical methods are needed for finding an
optimized annealing strategy, namely ηi(j),∀i, j. In contrast,
using non-uniform learning rates for neurons is more hardware
economical. However, empirical experiments are also required
for finding the optimal learning rates. These high gain methods
are beneficial to spike sorting algorithms, which demand low
latency performance.

III. HARDWARE ARCHITECTURE

A. Overall Hardware Architecture for Multi-channel Spike
Sorting

Neural recording channels are independent to each other
and present intrinsic data-level independencies that can be
fully exploited to maximize the system performance. In a

5

Fig. 2. Architecture of the multi-channel spike sorting hardware.

Fig. 3. Architecture of the hardware Hebbian eigenfilter.

fully parallel structure, independent on-line processing and
training hardware supporting real-time multi-channel spike
sorting are allocated for each channel. However, this fully
parallel structure requires large hardware area and is not
scalable and practical with the increasing number of channels.
Folding and multiplexing techniques need be utilized to share
computing resources among channels.

Our proposed system architecture of multi-channel spike
sorting hardware is shown in Fig. 2. It consists of two major
sub-systems, training and real-time processing modules.

The training module consists of hardware blocks of Hebbian
eigenfilter, K-means and threshold estimation. The threshold
estimation block takes the results of NEO filter as inputs and
calculates the threshold for real-time detection circuits. The
Hebbian eigenfilter operates on the excerpted spikes from real-
time detection circuits and outputs principal components for
real-time projection hardware. Taking the projection results as
inputs, the K-means hardware calculates K centroids for the
real-time module.

Suppose we have α training modules and can be shared
among channels. Also suppose the training period of each
channel is T , there are M number of channels, and the latency

of the training hardware is t. Each training module takes in
charge of M

α channels. The time allocated for training at each
of the channel is T α

M . In order to finish training in such
allocated period, the following relationship should be satisfied,
T α

M > t. In other words, the minimum number of training
module becomes tMT .

The system also consists of a real-time processing module,
which is scalable and parameterizable. A number of identical
architectures are employed to perform real-time spike sorting
in parallel. Folding technique is employed to share computing
resources, in which N channels are processed by a single
processing element through multiplexing. The number of chan-
nels that are processed at one processor is referred as folding
ratio. Therefore, we need ⌈M

N ⌉ parallel real-time processing
elements to process spike trains from M channels.

The real-time module consists of three parts: (i) spike
detection and spike alignment, (ii) eigen-space projection and
(iii) spike classification. A comparator is used to compare the
input signals with the threshold to determine the occurrence
of a spike. There are N FIFOs to buffer recorded samples
from N different channels in each real-time processor. Dur-
ing real-time spike sorting, dot-product is computed between
the outputs of FIFOs and principal components, which are
pre-computed during training and stored in SRAMs. This
projection is realized using the multiply-accumulate block
and intermediate results are stored in registers. There are N
registers allocated for N channels. During real-time spike
classification, distance between feature score, which is the
results of dot-product, and centroids are calculated. The feature
score is assigned to its nearest centroid by the minimizer. This
would give a classification of a spike.

B. Hardware Architecture of Hebbian Eigenfilter

The structure of the Hebbian eigenfilter is presented in
Fig. 3. This architecture provides capability of configuration
through parameters, such as number of spikes, spike dimension

6

and number of learning iterations. The architecture consists
of four parts, “system controller”, “learning kernel”, “mean
calculator” and “interface and memory”. “System controller”
controls the entire circuits. “Learning kernel” performs learn-
ing operations and consists of arithmetic units, storage units
and switchers. “LT” stores the result of LT [y⃗y⃗T]. “Score”
stores result of y⃗ = W⃗ x⃗. “Weight” stores synaptic weights.
Switchers route the signals between arithmetic units and
storing elements. Only two adders and one multiplier are used
for calculating one weight vector. The memory stores aligned
spikes. “Mean calculator” calculates the mean vector of the
aligned spikes before the mean vector of align spikes is ready.
After the mean vector is obtained, “mean calculator” subtracts
the mean vector from each aligned spike and sends the mean
subtracted spikes to the learning kernel.

C. Analysis of Folding Ratio

In a folded architecture, arithmetic units can be shared
among channels using time division multiplexing. For each
channel, intermediate results of computations should be kept
temporarily for subsequent operations. Each channel, there-
fore, would have independent registers to store the interme-
diate results. As a result, the hardware consumption of an
N -folded processor becomes N × r + a, where r is the
number of registers and a is the number of arithmetic units
required for a signal channel real-time processing unit. In other
words, the hardware consumption for each channel is r + a

N .
Therefore, hardware consumption per channel can be reduced
by increasing the folding ratio.

We could also evaluate the maximum latency of the system.
Let S be the sampling rate of each channel. In order to provide
a real-time processing capability, the data processing through-
put should be larger than the data sampling rate. Considering
our fully pipelined architecture, the data processing throughput
is the product of the clock frequency, fclk, and number of
processing elements, β, and this should satisfy the inequality:

fclkβ ≥ MS (5)

The inequality can be further simplified by substituting
M/β = N as:

fclk ≥ NS (6)

For an N -folded real-time processing hardware, the latency,
Γ, for processing a spike can be expressed as,

Γ =
PN

fclk
(7)

where PN is the number of clock cycles for processing N
channels. Substituting Eq. 6 into Eq. 7, we can obtain:

Γ ≤ PN

NS
(8)

Suppose p is the number of clock cycle allocated for one
channel. PN will equal to Np. From Eq. 8, the maximum
latency is expressed as,

Γ ≤ Np

NS
=

p

S
(9)

This implies that the latency of a N -folded system is de-
termined by the sampling rate and number clock cycles to
accomplish the analysis for a single spike.

Moreover, dynamic power dissipation is proportion to clock
frequency and capacitance of circuits. The dynamic power
consumption of an N -folded architecture follows the following
relationship,

Power ∝ N × (r +
a

N
)× fclk (10)

Considering both Eq. 6 and 10, the power consumption per
channel is proportion to,

N × (r + a
N)× fclk

N
≥ (r +

a

N
)×NS

= (N × r + a)× S
(11)

The power consumption per channel increases with the number
of folding ratio.

IV. EVALUATION RESULTS AND DISCUSSION

A. Test Benchmarks and Experimental Flow

In order to quantitatively evaluate the performance of the
Hebbian spike sorting algorithm, spike trains with known
spike times and classifications should be employed. Clinical
extracellular recording with realistic spike shapes and noise
interferences is one option for qualitative studies. However,
it is difficult to determine the precise classifications and the
source of the spike from clinical measurement and these are
the “ground truth” for any effective quantitative evaluation.
Although these recordings can be further manually annotated
by experts, it has been shown that manually clustered spikes
have relative low accuracy and reliability [39]. For these
reasons, synthetic spike trains from both [40] and a spike
generation tool [41] were utilized to quantify the performance
of our algorithm and to compare with other methods. These
synthetic spike trains accurately model various background
noises and neuronal spikes profile that appear at single-channel
clinical recordings.

0 1 2 3
−50

0

50

100

Time (ms)

V
ol

ta
ge

 (
m

v)

(a)

Neuron 1
Neuron 2

0 1 2 3
−50

0

50

100

Time (ms)

V
ol

ta
ge

 (
m

v)

(b)

Neuron 1
Neuron 2

Fig. 4. (a) Clinical and (b) synthetic spike waveform of two neurons.

7

Both baseline [41] and sophisticated synthetic spike trains
[40] were employed for the evaluation. These benchmarks
were used to maximize representative different scenarios in
real experiments. The baseline spike trains were generated
from spike synthesis tool [41]. The tool accurately models
factors affecting extracellular recordings, such as ion channels
of the membrane, the electrical resistance and capacitance
of the membrane, the extended spiking neural surface, back
ground noises and inference from other neurons, and provides
an approximation of realistic clinical data. Fig. 4 shows both
the clinical and synthetic spike shapes. More importantly,
parameters, such as the number of neurons contributing to
the spike train, the waveform of neuronal spike, signal to
noise ratio and the firing rate, can all be specified in the tool.
Through adjusting these parameters, various spike trains can
be generated for quantitative evaluations. For our evaluation,
three groups of spike trains containing two, three and four
neurons were generated. White noise and artifacts noises
contributed by background neurons were considered when
generating noisy synthetic spike trains. Each group contains
spike trains with 11 different noise levels. Under the same
noise level, a group of spike trains with neuron’s firing
rate from 5 Hz to 40 Hz was generated. All the data sets
are 100s in length and generated at a sampling rate of 24
KHz. These spike trains provide ideal testing benchmarks
to evaluate the proposed algorithm with a variety of noise
immunity and realistic background noise. Because our method
differentiates neuronal spikes according to spike profiles, it is
not effective for bursting spikes that appear as concatenated
and with decreasing amplitude. Although bursting spikes can
be identified and ruled out with the help of inter-spike-
interval histograms and cross-correlograms, addressing how
to combine these methods with our work is beyond the scope
of the paper. In this paper, we do not take bursting spikes into
account.

The proposed algorithm and hardware architectures were
thoroughly evaluated following the experimental flow shown
in Fig. 5. Algorithms were implemented using Matlab. A built-
in Matlab function, princomp, was used as the referenced PCA
algorithm for comparing with the proposed eigenfilter. The
accuracy of the proposed spike sorting algorithm was quantita-
tively evaluated using the synthetic spike trains. Hardware was
modeled using Matlab fixed point tool and FPGA. The impacts
of word length of the hardware on power, logic resources
consumptions and accuracy of results were also studied using
hardware models.

Fig. 5. Experimental flow for algorithm and hardware evaluations.

B. Algorithm Evaluation

1) Effectiveness of High Gain Approach: In order to eval-
uate convergence efficiency of the Hebbian network, eigen-
vectors computed by the eigenfilter were compared with
the benchmark eigenvectors, which were obtained using the
Matlab princomp function. The accuracy metric is defined as
the dot products between the two vectors, which is,

Accuracyi =
|P⃗Ci · W⃗i|

||P⃗Ci|| × ||W⃗i||
(12)

where W⃗i and P⃗Ci refer to the i-th synaptic weight and
principal component respectively. The results represent angles
between the two vectors. When the two vectors have the same
direction or the opposite direction, the result equals to one.
Otherwise a value in [0, 1) is obtained.

Fig. 6 shows the learning curves of the Hebbian eigenfilters
using uniform learning rate for three synaptic weights. The
experiment is based on clinical data obtained from [40]. If a
large learning rate, η = 1, is employed, the network begins to
oscillate. In contrast, the network would require a significant
number of epochs, e.g. around 4300 epochs, to converge, if
a small learning rate, η = 0.1, is employed. Under a certain
learning rate, the synaptic weight with stronger attraction has
faster speed of convergence.

Increasing the uniform learning rate can speed up the
convergence and lower the computation latency. However, a
large uniform learning rate may also cause instability to the
network. Instead of simply increasing uniform learning rates,
we employed proposed high-gain approaches to accelerate the
convergence.

50 100 150 200
0

0.5

1

Iteration steps

A
cc

ur
ac

y

(a)

Learning rate=1
Learning rate=0.3
Learning rate=0.1

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

Iteration steps

A
cc

ur
ac

y

(b)

0 1000 2000 3000 4000 5000
0

0.5

1

Iteration steps

A
cc

ur
ac

y

(c)

Fig. 6. The convergent curves of (a) the first synaptic weight, (b) the second
synaptic weight, (c) the third synaptic weight of Hebbian eigenfitler using
uniform learning rate for synaptic weights.

Fig. 7 shows the learning curves of the first three principal
components using three different learning rate configurations:
the uniform learning rate equals to 0.3; three non-uniform
learning rates are specified as, {0.3, 0.4, 0.5}, for the first three
synapses; the annealing strategy is defined as, ηi(n) = ci

1+din
,

where n is the number of learning epochs, ci and di equal to

8

0 10 20 30 40 50
0

0.5

1
(a)

Learning steps

A
cc

ur
ac

y

0 200 400 600 800 1000
0

0.5

1
(b)

Learning steps

A
cc

ur
ac

y

Non−uniform rates
Annealing
Uniform rate

0 500 1000 1500
0

0.5

1
(c)

Learning steps

A
cc

ur
ac

y

Fig. 7. The convergent curves of (a) the first synaptic weight, (b) the second
synaptic weight, (c) the third synaptic weight of Hebbian eigenfitler using
non-unifomr learning rate, annealing learning rate and uniform learning rate
(0.3).

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

Initial value of weight

C
on

ve
rg

en
t s

te
ps

Uniform rate
Non−uniform rate
Annealing

Fig. 8. Convergent speed of Hebbian eigenfilter with different initial
conditions. Results are based on 10,000 runs of the the Hebbian eigenfilter
algorithm with three different learning rate definitions.

{1, 10, 20} and {0.01, 0.05, 0.1} for the first three synapses,
respectively. Normalization are performed when the norm of
the weights exceeds a threshold, e.g. threshold equals to 4.
In general, the annealing approach converges fastest. The
eigenfilter with non-uniform learning rates converges more
synchronously and quickly than the network using a uniform
rate.

Implementing annealing strategy requires more hardware
resources than uniform and non-uniform approaches due to
the additional annealing and normalization functions. Fur-
thermore, programmable mechanism is required to generate
various annealing functions, which complicates the hardware
design.

Initialization of the weight vectors may affect the conver-
gence of the Hebbian eigenfilter. The impacts of initialization
of the weight vector on the convergent rate of the algorithm
were studied. We performed a Monte Carlo simulation to
evaluate the sensibility of convergence speed to the initial
values. Fig. 8 shows the results of the Monte Carlo simulation

between convergent speed and the initial value of the weight
vector. In order to avoid instability, which may be caused by
rapid growth of the weights, initial values only vary between
0.1 and 1. Synthetic spikes generated by the spike synthesis
tool with various noise levels are used for the evaluation.
The results show that the average convergent steps are 426,
325, 245 for the uniform, non-uniform and annealing schemes,
respectively. There are slight variations, 16.9%, 5.74% and
7.9% , in the converging speed with different initial values
for the three learning rate schemes. However, the variation is
small and might just due to statistical randomness.

2) Algorithm Performance Evaluation: We use the true
positive rate (TPR) and the false positive rate (FPR) to evaluate
the performance of our algorithm. The true positive rate is
defined by Eq. 13, where Q is the number of estimated
clusters, and Numcorrect classified spikes,i and Numspikes,i

stand for the number of correctly classified spikes of neuron
i and the total number of spikes of neuron i, respectively.

TPR =

∑Q
i=1

Numcorrect classified spikes,i

Numspikes,i

Q
(13)

The false positive rate is defined by Eq. 14, where
Numfalse classified spikes,i and Numfalse spikes,i stand for
the number of false spikes (not belonging to neuron i) assigned
to neuron i and the total number of false spikes for neuron i,
respectively.

FPR =

∑Q
i=1

Numfalse classified spikes,i

Numfalse spikes,i

Q
(14)

The noise immunity of our Hebbian-based spike sorting
algorithm was studied. In the evaluation, a realistic NEO
based detection was employed to detect neuronal spikes from
noisy spike trains. The detected spikes were aligned at their
peak point for Hebbian-based feature extraction. Then K-
means clustering was incorporated to automatically cluster
each spike. In this paper, we define the SNR of spike trains as
the ratio of the mean peak signal level to the standard deviation
of the background noise (σ) [20], which is

SNR =
Ek[maxt(|sk(t)|)]

σ
(15)

where sk(t) is the k-th spike.
Fig. 9 shows the relationship between the true positive rate

and SNR for spike sorting algorithms using the proposed
Hebbian eigenfilter and Matlab built-in algorithm for PCA,
princomp. Comparing Fig. 9 (a), (b) and (c), we can see that at
the same SNR level, the smaller the neuron number is, the bet-
ter classification results are. We can also see that there is little
difference between Hebbian eigenfilter and Matlab princomp
function used for spike sorting. As a result, although Hebbian
eigenfilter only computes approximate eigenvectors, it has
the same effect as other PCA algorithm in spike sorting
process. We also calculate correct classification of hardware
with different word length. Results show that word length has
a significant impact on the accuracy.

9

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

T
ru

e
P

os
iti

ve
 R

at
e

Hardware eigenfilter (10 bits)
Hardware eigenfilter (4 bits)
Software PCA
Software eigenfilter

(a)

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

T
ru

e
P

os
iti

ve
 R

at
e

Hardware eigenfilter (10 bits)
Hardware eigenfilter (4 bits)
Software PCA
Software eigenfilter

(b)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

T
ru

e
P

os
iti

ve
 R

at
e

Hardware eigenfilter (10 bits)
Hardware eigenfilter (4 bits)
Software PCA
Software eigenfilter

(c)

Fig. 9. Relationship between SNR and true positive rate using Hebbian
eigenfilter and Matlab princomp function (a) 2 neruons (b) 3 neruons (c) 4
neurons. The hardware (4 and 10 bits) performances for different SNR are
also shown in the figure.

Fig. 10 shows the relationship between the false positive rate
and SNR for spike sorting algorithms using Hebbian eigenfilter
and Matlab built-in PCA. There is little difference between
Hebbian eigenfilter and Matlab princomp function. For both
methods, the false positive rate falls as the SNR increases. The
false classifications of hardware with different word length

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR

F
al

se
 P

os
iti

ve
 R

at
e

Hardware eigenfilter (10 bits)
Hardware eigenfilter (4 bits)
Software PCA
Software eigenfilter

(a)

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SNR

F
al

se
 P

os
iti

ve
 R

at
e

Hardware eigenfilter (10 bits)
Hardware eigenfilter (4 bits)
Software PCA
Software eigenfilter

(b)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR

F
al

se
 P

os
iti

ve
 R

at
e

Hardware eigenfilter (10 bits)
Hardware eigenfilter (4 bits)
Software PCA
Software eigenfilter

(c)

Fig. 10. Relationship between SNR and false positive rate using Hebbian
eigenfilter and Matlab princomp function (a) 2 neruons (b) 3 neruons (c) 4
neurons. The hardware (4 and 10 bits) performances for different SNR are
also shown in the figure.

were also evaluated. Results show that word length has a
significant impact on the performance of spike sorting. A
reasonable false positive rate can be obtained with 10 bits
word length.

We further compares the accuracy of spike sorting between
Hebbian eigenfilter, PCA and wavelet transform approaches.

10

1 2 3 4 5 6 7 8 9 10 11 12

−0.2

−0.1

0

0.1

0.2

Data set

D
iff

er
en

ce
 o

f T
ru

e
P

os
iti

ve

(H
eb

bi
an

 −
 P

C
A

/w
av

el
et

)

Difference between Hebbian and PCA
Difference between Hebbian and wavelet

1 2 3 4 5 6 7 8 9 10 11 12

−0.1

−0.05

0

0.05

0.1

Data setD
iff

er
en

ce
 o

f F
al

se
 P

os
iti

ve

(H
eb

bi
an

 −
 P

C
A

/w
av

el
et

)

Fig. 11. The difference in true positive rate between Hebbian eigenfilter
and PCA or wavelet transform (upper), and the difference in false positive
rate between Hebbian eigenfilter and PCA or wavelet transform (lower).
Benchmarks #1∼#12 are C Easy1 noise005-015, C Easy2 noise005-015,
C Difficult1 noise005-015, C Difficult2 noise005-015 taken from [40].

The benchmark data sets are from [40], which captures
complex realistic spike shapes, various background noises,
and interferences from neurons. Fig. 11 shows the evaluation
results. It shows that Hebbian eigenfilter is on par with the
PCA-based approach in terms of spike classification accuracy.
The variation in accuracy is smaller than 1.8%. Hebbian
eigenfilter is also comparable to the wavelet transform ap-
proach. Variations in performance have been observed for data
sets #3 to #12. The variation in performance is smaller than
23.6%. Performance between Hebbian eigenfilter and wavelet
is highly dependable on the data sets. Both the intrinsic
property of the benchmark spikes in time and frequency
domains, and the directions of feature spaces may affect the
performance of spike sorting algorithm. Further discussions
and comparisons between different spike sorting algorithms
can be founded in [41][26].

5 10 15

10
−3

10
−2

10
−1

10
0

Word length

R
el

et
iv

e
m

ea
n

er
ro

r

1st PC
2nd PC
3rd PC

Fig. 12. Relationship between the hardware precision and the word length.

−4
−2

0
2

0

2

4
−2

−1

0

1

PC1PC2

P
C

3

hardware eigenfilter (8 bits)
software eigenfilter

(a)

−4
−2

0
2

0
1

2
3

−2

−1

0

1

PC1PC2

P
C

3
hardware eigenfilter(16 bits)
software eigenfilter

(b)

Fig. 13. Projection resutls of software Hebbian Eigenfilter and (a) 8 bits
hardware, (b) 16 bits hardware in principal component space.

C. Hardware Hebbian Eigenfilter

Word length has a direct impact on precision and also
greatly affects system power dissipation and area consumption.
For hardware evaluation, we studied the impacts of word
length on hardware power, area and accuracy. The target device
is a Xilinx FPGA (Spartan6 Low-Power XC6S-LX150L).
Our hardware is designed using Xilinx System Generator.
Hardware power under different word lengths is obtained by
Xilinx Xpower. Xilinx ISE was employed to synthesize, place
and route the design to the target FPGA. Hardware resources,
such as look-up-tables (LUT, the basic logic element in FPGA)
and embedded memory usage of the FPGA, were reported by
ISE as well.

1) Word length, Accuracy and Power Dissipation: Al-
though truncating hardware word length can lower power and
resource consumption, it will also reduce the accuracy of
hardware results. We use relative mean error (RME) that is
shown in Eq. 16 to describe this accuracy loss, where m is
the length of eigenvector, xsoftware

i and xhardware
i are the i-

th scalar element of eigenvector obtained from software and
hardware. Fig. 12 shows the relationship between the word
length and the precision of the hardware Hebbian eigenfilter.
The relative mean error increases exponentially as the word
length decreases.

11

6 8 10 12 14 16
400

600

800

1000

1200

Word length

A
re

a
(L

U
T

)
(a)

6 8 10 12 14 16
5

6

7

8

9

Word length

P
ow

er
 (

m
W

)

(b)

Fig. 14. Relationships between (a) word length and area consumption, (b)
word length and power consumption. Area consumption is represented in the
term of the number consumed LUT (look-up table), which is the basic logic
resources in FPGAs.

TABLE IV
AREA AND PERFORMANCE OF HEBBIAN EIGENFILTER

Word Length Word Length Software
= 10 bits = 16 bits (Intel Core2

E8400 @3GHz)
Number of Slice 777 1113 –

Number of BRAM 41 65 –
Power (mW) 6.4 8.6 –

Learning 5.6 5.6 93.8Latency (ms)
Projection

9.6× 10−4 9.6× 10−4 3.2× 10−2
Latency (ms)

Projection
1.04× 106 1.04× 106 3.1× 104Throughput

(spike/s)

RME =

∑m
i=1 |x

software
i − xhardware

i |∑m
i=1 |x

software
i |

(16)

Fig. 13 (a) and (b) show word length impact on hardware
in feature space. In Fig. 13 (a), the word length of hardware
Hebbian eigenfilter is 8 bits. A little difference between
software and hardware can be seen. In Fig. 13 (b), the word
length of hardware is 16 bits, in which the differences between
hardware and software are hard to see. Fig. 14 shows the re-
lationships between word length and hardware resources, and
power consumptions. As the word length increases, hardware
resource and power consumption also increase moderately.

2) Implementation Results: Table IV shows area and per-
formance of our Hebbian eigenfilter. Learning latency is the
time needed to obtain all principal components of input data.
Projection latency is the time needed to accomplish one
transformation that transfers a spike potential to a data point
in feature space when the eigenvectors are given. Projection
throughput is the number of transformations per second.
Learning latency of hardware eigenfilter is 17 times faster
than software eigenfilter running on a personal computer that
has an Intel dual core processor E8400. Projection latency
of hardware eigenfilter is 33 times faster than its software

TABLE V
COMPARISON BETWEEN HEBBIAN EIGENFILTER, PCA AND WAVELET FOR

COMPUTATIONAL COMPLEXITY AND HARDWARE PERFORMANCES

#Operations Latency Area #Slice Power
(million) (ms) (mm2) (mW)

Wavelet [27] 49.15 42.4 198.3 30960 255
PCA [22] 48.4 41.8 49.5 7722 49.3
Hebbian 6.49 5.6 5 777 6.4eigenfilter (HE)

Improvement 7.5x 7.5x 9.9x 9.9x 7.7x(PCA/HE)
Improvement 7.6x 7.6x 39.8x 39.8x 39.8x(wavelet/HE)

counterpart.
Table V compares the hardware performance between the

FPGA-based Hebbian eigenfilter and other existing hardware
systems using PCA and wavelet approaches. Hardware results
are varied if different technologies and devices are employed in
the implementations. Especially, hardware performances using
ASIC, FPGAs and DSP processors are different for a particular
design. To obtain a fair comparison, we normalized1 the
hardware implementation results to FPGA equivalent and com-
pared with our implementations. These would provide insight-
ful quantitative evaluations between the different approaches
in terms of hardware performance. But these results shouldn’t
be regarded as specifications of system performances.

In line with [27], number of operations was employed
for the algorithm complexity evaluation. To normalize the
operation as additions, subtraction is considered to be equal
to an addition, and multiplication and division are consid-
ered 10 times as complex as an addition. The complexity
of wavelet (using Lilliefors Test for dimension reduction
[26]) is obtained from [27] and the PCA result is obtained
from [22][44]. Covariance matrix calculation and orthogonal
iteration based eigenvalue decomposition algorithm are con-
sidered for the principal components computation [44]. The
complexity derivation of the Hebbian method is presented in
Appendix A. Hebbian eigenfilter has the smallest complexity,
which is about 13.4% and 13.2% of the PCA and Wavelet
complexity measurements, respectively. This would lead to
substantial advantage in hardware system development.

Suppose the PCA [22] and wavelet [27] hardware archi-
tectures have the same computing capability as the Hebbian
eigenfilter, latency or delay will be proportional to the com-
putational complexity. Latency (or delay) results are reported
in Table V. The Hebbian eigenfilter approach has a significant
advantage in delay that is 7.5 and 7.6 times faster than the
PCA and wavelet approaches, respectively. This is critical to be
employed in real-time spike sorting. The Hebbian eigenfilter
approach has also significant improvement in hardware area.
It reduces hardware area significantly from 9.9 to 39.8 times
when compared to the PCA and wavelet approaches, respec-
tively. Finally, we evaluate the power consumption for the

1We follow a widely acceptable approach [42][43] to convert the ASIC
design into FPGA results. Particularly, FPGA implementation is 4.5 times
slower than the corresponding ASIC design. In terms of area, FPGA imple-
mentation is 21 times larger than equivalent ASIC design in terms of area, and
128 logic counts in FPGAs equals to 0.82 mm2 in 90 nm CMOS technology
[43]. Also, FPGA consumes 12 times more power than the equivalent ASIC.

12

0 20 40 60 80
100

200

300

400

500

600

Folding ratio

Lo
gi

c
re

so
ur

ce
 c

on
su

m
pt

io
n

pe
r

ch
an

ne
l (

N
um

LU
T
)

(a)

0 20 40 60 80
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Folding ratio

P
ow

er
 c

on
su

m
pt

io
n

pe
r

ch
an

ne
l (

m
W

)

(b)

0 20 40 60 80
1.5

2

2.5

3

3.5

4

4.5

5

Folding ratio

Lo
gi

c
×

P
ow

er
 p

er
 c

ha
nn

el

(N
um

LU
T
×m

W
)

(c)

Fig. 15. (a) Relationships between folding ratio and logic resource consumption per channel (in terms of number of look-up table, LUT), (b) folding ratio
and dynamic power consumption per channel and (c) folding ratio and production of resource and power consumption.

three methods. Assume that the three hardware systems run at
the same clock frequency. Then, the dynamic power consump-
tion is proportional to the hardware area. Results show that the
Hebbian eigenfilter has 7.7 and 39.8 times improvement when
compared to the PCA and wavelet hardware implementations
in terms of power consumption.

D. Multi-channel System

Fig. 15 (a) shows the relationship between folding ratio and
number of consumed logic resources per channel in terms of
LUT. In folded structures, the consumption of logic resources
per channel can be reduced by sharing computing resources
among channels. Because storage units that cache intermediate
results cannot be shared among channels, the area reduction
per channel will become less significant as the folding ratio
increases.

From Eq. 11, when the folding ratio increases, power
consumption per channel also increases. The dynamic power
consumption per channel with various folding ratio is shown
in Fig. 15 (b).

The power consumption and logic resource costs are in-
versely related with the increase of folding ratio. If considering
power and logic resource together in terms of the production
of power and logic resource, an optimal value of folding ratio
can be obtained, as shown in Fig. 15(c). An 8-folding ratio is
the optimal case for our real-time processing hardware.

V. CONCLUSION

This paper presents a hardware efficient Hebbian eigenfilter
for principal component analysis, which can be integrated
effectively for spike sorting. The proposed algorithm is com-
putationally efficient and is able to filter specified numbers of
leading principal components. Two new high gain approaches
are presented to improve the network convergence speed of
the eigenfilter. New hardware architectures are presented to
realize the eigenfilter and to deliver the capability of real-
time multi-channel spike sorting. Parallel architectures are
employed to exploit the intrinsic data-level independencies in
multi-channel spike sorting. Folding technique is discussed
to share the computing resources among parallel real-time
processing elements. The proposed algorithm and hardware
architectures are thoroughly evaluated using both synthetic and

clinical spike trains. When compared to software, the FPGA-
based eigenfilter provides 17 and 33 times acceleration when
compared to conventional PCA spike sorting in training and
real-time projection, respectively. Also, the impacts of folding
ratio on power and area consumption of real-time processing
modules are studied. Compared with other conventional spike
sorting algorithms, such as PCA and wavelet transform, our
approach provides hardware implementations with the smallest
power dissipation and hardware resource consumption.

APPENDIX A
COMPUTATIONAL COMPLEXITY OF GHA

Let CGHA, Cmean and Clearn be the computational com-
plexity of GHA, mean centering and learning, respectively.
Let d, n, l and L be the dimensionality of aligned spikes,
the number of spikes for PCA, required leading principal
components and iterations, respectively. We can have,

CGHA = Cmean + Clearn (17)

Cmean is made up of the cost of mean calculation
Cmean vector and zero-mean transformation Cmean center, so,

Cmean = Cmean vector + Cmean center

= (dnCadd + Cdiv) + dnCsub

= 2dnCadd + Cmul

(18)

where we assume that Cadd = Csub and Cdiv = Cmul

(because diving a constant equals to multiply a constant).
Let Cy , CLT , CdW , CW be the cost for calculating y⃗,

LT [y⃗y⃗T], ⃗dW and W⃗ respectively. The total computational
cost of Hebbian learning is

Clearn =(Cy + CLT + CdW + CW)L

=

((
dlCmul + (d− 1)lCadd

)
+

l(l + 1)

2
Cmul+(

l(l + 5)

2
dCmul +

l(l + 1)

2
dCadd

)
+ dlCadd

)
L

=

((
l(l + 7)

2
d+

l(l + 1)

2

)
Cmul+(

l(l + 5)

2
d− l

)
Cadd

)
L

(19)

13

Combining Eq. 22, 18, 19, we obtain the cost of the GHA,

CGHA =

((
l(l + 7)

2
d+

l(l + 1)

2

)
L+ 1

)
Cmul+((

l(l + 5)

2
d− l

)
L+ 2dn

)
Cadd

(20)

l is much smaller than d, n, N in spike sorting. The computa-
tional complexity of GHA can be estimated to be O(dL+dn).

APPENDIX B
COMPUTATIONAL COST OF COVARIANCE MATRIX

CALCULATION

For the covariance matrix calculation, let Ccov , Cmean cov

and Cmatrix cov be the total computational cost, the compu-
tational cost of mean and covariance matrix calculations. We
have

Cmean cov = ((n− 1)Cadd + Cdiv)d+ dnCsub (21)

Cmatrix cov = d2(nCmul + (n− 1)Cadd (22)

We assume Cadd = Csub and Cdiv = Cmul, then,

Ccov = Cmean cov + Cmatrix cov

= (d2n+ 2dn− d2 − d)Cadd + (d2n+ d)Cmul

(23)

Therefore the computational complexity of covariance matrix
calculation can be estimated to be O(nd2).

REFERENCES

[1] D. Warren, E. Fernandez, and R. Normann, “High-resolution two-
dimensional spatial mapping of cat striate cortex using a 100-
microelectode array,” Neuroscience, vol. 105, no. 1, pp. 19–31, 2001.

[2] E. M. Maynard, C. T. Nordhausen, and R. A. Normann, “The Utah
intracortical electrode array: A recording structure for potential brain-
computer interfaces,” Electroencephalography and Clinical Neurophys-
iology, vol. 102, no. 3, pp. 228–239, 1997.

[3] R. A. Normann, E. M. Maynard, P. J. Rousche, and D. J. Warren, “A
neural interface for a cortical vision prosthes,” Vision Research, vol. 39,
no. 15, pp. 2577–2587, 1999.

[4] P. J. Rousche, D. S. Pellinen, D. P. Pivin, J. C. Williams, R. J. Vetter,
and D. R. Kipke, “Flexible polyimide-based intracortical electrode
arrays with bioactive capability,” IEEE Transactions on Biomedical
Engineering, vol. 48, no. 3, pp. 361–371, 2001.

[5] K. Imfeld, S. Neukom, A. Maccione, Y. Bornat, S. Martinoia, P. Farine,
M. Koudelka-Hep, and L. Berdondini, “Large-scale, high-resolution data
acquisition system for extracellular recording of electrophysiological
activity,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 8,
pp. 2064–2073, 2008.

[6] L. Berdondini, P. Massobrio, M. Chiappalone, M. Tedesco, K. Imfeld,
M. G. A. Maccione, M. Koudelka-Hep, and S. Martinoia, “Extracellular
recordings from high density microelectrode arrays coupled to disso-
ciated cortical neuronal cultures,” J. Neuroscience Methods, vol. 177,
pp. 386–396, 2009.

[7] U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Micro-
electronic system for high-resolution mapping of extracellular electric
fields applied to brain slices,” Biosensor and Bioelectronics, vol. 24,
pp. 2191–2198, 2009.

[8] A. Hierlemann, U. Frey, S. Hafizovic, and F. Heer, “Growing cells
atop microelectronic chips: Interfacing electrogenic cells in vitro with
CMOS-based microelectrode arrays,” Proceedings of the IEEE, vol. 99,
no. 2, pp. 252–284, 2011.

[9] R. Sitaram, A. Caria, R. Veit, T. Gaber, G. Rota, A. Kuebler, and N. Bir-
baumer, “fMRI brain-computer interface: A tool for neuroscientific
research and treatment,” Computational Intelligence and Neuroscience,
vol. 2007, 2007.

[10] B. Blankertz, G. Dornhege, M. Krauledat, K. Mller, V. Kunzmann,
F. Losch, and G. Curio, “The Berlin brain-computer interface: EEG
based communication without subject training,” IEEE Transactions
Neural Systems Rehabilitation Engineering, vol. 14, no. 2, pp. 147–152,
2006.

[11] A. Gunduz, J. C. Sanchez, P. R. Carney, and J. C. Principe, “Mapping
broadband electrocorticographic recordings to two-dimensional hand tra-
jectories in humans,” Neural Networks special issue on Brain-Machine
Interfaces, vol. 22, no. 9, pp. 1257–1270, 2009.

[12] M. Gandolfo, A. Maccione, M. Tedesco, S. Martinoia, and L. Berdon-
dini, “Tracking burst patterns in hippocampal cultures with high-density
CMOS-MEAs,” Journal of Neural Engineering, vol. 7, no. 5, 2010.

[13] A. Vogt, G. Wrobel, W. Meyer, W. Knoll, and A. Offenhausser,
“Synaptic plasticity in micropatterned neuronal networks,” Biomaterials,
vol. 26, no. 15, pp. 2549–2557, 2005.

[14] J. Puchalla, E. Schneidman, R. Harris, and M. Berry, “Redundancy in
the population code of the retina,” Neuron, vol. 46, pp. 493–504, 2005.

[15] G. Santhanam, S. I. Ryu, B. M. Yu, A. Afshar, and V. Shenoy, “A high-
performance brain-computer interface,” Nature, vol. 442, pp. 195–198,
2006.

[16] M. A. L. Nicolelis1, “Braincmachine interfaces to restore motor func-
tion and probe neural circuits,” Nature Reviews Neuroscience, vol. 4,
pp. 417–422, 2003.

[17] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,
A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue,
“Neuronal ensemble control of prosthetic devices by a human with
tetraplegia,” Nature, vol. 442, pp. 164–171, 2006.

[18] M. Linderman, G. Santhanam, C. Kemere, and et al, “Signal processing
challenges for neural prostheses,” IEEE Signal Processing Magzine,
vol. 25, no. 1, pp. 18–28, 2008.

[19] M. Lewicki, “A review of methods for spike sorting: the detection
and classification of neural action potentials,” Network: Computational
Neural System, vol. 9, pp. 53–78, 1998.

[20] Z. Zumsteg, C. Kemere, S. O’Driscoll, G. Santhanam, R. Ahmed,
K. Shenoy, and T. Meng, “Power feasibility of implantable digital spike
sorting circuits for neural prosthetic systems,” IEEE Transaction Neural
System Rehabilitation Engineering, vol. 13, pp. 272–279, 2005.

[21] J. Carmena, M. Lebedev, R. E. Crist, J. ODoherty, D. Santucci, D. Dim-
itrov, P. Patil, C. Henriquez, and M. A. Nicolelis, “Learning to control
a brain-machine interface for reaching and grasping by primates,” PLoS
Biol, vol. 1, no. 2, pp. 193–208, 2003.

[22] T. Chen, K. Chen, Z. Yang, K. Cockerham, and W. Liu, “A biomed-
ical multiprocessor SoC for close-loop neuroprosthetic application,” in
International Solid-State Circuits Conference, pp. 434–435, 2009.

[23] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and
challenges,” Foundations and Trends in Electronic Design Automation,
vol. 2, no. 2, pp. 135–253, 2007.

[24] G. L. Gerstein and W. A. Clark, “Simultaneous studies of firing patterns
in several neurons,” Science, vol. 143, pp. 1325–1327, 1964.

[25] K. G. Oweiss, “A systems approach for data compression and latency
reduction in cortically controlled brain machine interfaces,” IEEE Trans-
actions on Biomedical Engineering, vol. 53, no. 7, pp. 1364–1377, 2006.

[26] R. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, “Unsupervised spike detec-
tion and sorting with wavelets and superparamagnetic clustering,” Neural
Computing, vol. 8, pp. 1661–1687, 2004.

[27] S. Gibson, J. Judy, and D. Markovic̀, “Technology-aware algorithm
design for neural spike detection, feature extraction and dimensionality
reduction,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 18, no. 5, pp. 469–478, 2010.

[28] Z. Nadasdy, R. Q. Quiroga, Y. Ben-Shaul, B. Pesaran, D. Wagenaar, and
R. Andersen, “Comparison of unsupervised algorithms for on-line and
off-line spike sorting,” in 32nd Annu. Meeting Soc. Neurosci., 2002.

[29] A. Zviagintsev, Y. Perelman, and R. Ginosar, “Low-power architectures
for spike sorting,” in Proc. 2nd Int. IEEE EMBS Conf. Neural Eng.,
2005.

[30] K. Awais and M. Andrew, “On-chip feature extraction for spike sorting
in high density implantable neural recording systems,” in Biomedical
Circuits and Systems Conference, 2010.

[31] K. Kim and S. Kim, “Neural spike sorting under nearly 0-db signal-to-
noise ratio using nonlinear energy operator and artificial neural-network
classifier,” IEEE Transactions on Biomedical Engineering, vol. 47,
pp. 1406–1411, 2000.

[32] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” Proceedings of 5th Berkeley Symposium on Math-
ematical Statistics and Probability, Berkeley, University of California
Press, vol. 1, pp. 281–297, 1967.

14

[33] K. Reddy and T. Herron, “Computing the eigen decomposition of a
symmetric matrix in fix-point algorithms,” in IEEE Bangalore Section
Tenth Annual Symposium, 2001.

[34] K. Fukunaga, Introduction to Statistical Pattern Recognition, second
edition. New York: Academic Press.

[35] D. Hebbian, The Organization of Behavior. New York: Wiley & Sons.
[36] S. S.Haykin, Neural Networks and Learning Machines. New York:

Prentice Hall.
[37] D. Jeong and S. Lee, “Merging back-propagation and hebbian learning

rules for robust classifications,” Neural Networks, vol. 9, no. 7, pp. 1213–
1222, 1996.

[38] F. Palmieri, “Hebbian learning and self-association in nonlinear neural
networks,” in International Joint Conference on Neural Networks, 1994.

[39] K. Harris, D. Henze, K. Csicsvari, and H. Hirase, “Accuracy of tetrode
spike separation as determined by simultaneous intracellular and extra-
cellular measurements,” Journal of Neurophysiology, vol. 84, pp. 401–
414, 2000.

[40] R. Quiroga, “Wave clus.” http://www2.le.ac.uk/departments/engineering/
research/bioengineering/neuroengineering-lab/spike-sorting.htm, July
2009.

[41] L. Smith and N. Mtetwa, “A tool for synthesizing spike trains with
realistic interference,” Journal Neuroscience Methods, vol. 159, pp. 170–
180, 2007.

[42] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
in FPGA, 2006.

[43] K. Compton and S. Hauck, “Automatic design of area-efficient config-
urable ASIC cores,” IEEE Transactions on Computers, vol. 56, no. 5,
pp. 662–672, 2007.

[44] G. Golub and C. Loan, Matrix Computation. The Johns Hopkins
University Press, 1996.

