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ABSTRACT

Active motility in outer hair cells (OHCs) amplifies basilar-membrane (BM) and auditory-nerve (AN)
responses to low-level sounds. The recent finding that medial olivocochlear (MOC) efferents (which
innervate OHCs) inhibit AN initial peak (ANIP) responses from mid-to-high-level clicks, but do not inhibit
initial BM responses, suggests a coupling of OHC motility to inner-hair-cell (IHC) stereocilia that is not
through the BM. The main thesis objective was to test whether different OHC mechanisms produce AN
responses to low-level sounds versus ANIP from mid-to-high-level clicks by comparing the suppressive
effects of low-frequency "bias-tones" on these responses. Bias tones suppress by pushing OHC
stereocilia into low-slope regions of their mechanoelectric transduction functions thereby lowering OHC
amplification, particularly for probe tones near an AN-fiber's characteristic frequency (CF). This
suppression occurs at opposite bias-tone phases, with one suppression typically larger than the other.
Bias-tone effects were measured on cat AN-fiber responses using 50 Hz bias tones. In the first thesis
part, bias-tone suppressive effects on AN responses to low-level clicks and low-level CF-tones were
found to be similar, as expected but never previously shown. Then, in the main thesis focus, bias-tone
suppressions of AN responses to low-level clicks and ANIP responses were studied. Both responses
were suppressed twice each bias-tone cycle, but their major suppressions were at opposite bias-tone
phases, which indicates that both ANIP and low-level AN responses depend on the slope of OHC-
stereocilia mechanoelectric-transduction, but with some significant difference. In the last thesis part,
bias-tone suppression effects on low-CF (<4 kHz) AN-fiber responses to low-level CF and off-CF (by >0.7
octaves) tones were studied. Previous work found differences in AN-response group delays between CF
and off-CF frequency regions that might arise from two different IHC-drive mechanisms, and the

objective was to test this hypothesis. Our results showed similar bias-tone effects in both regions.

Overall, the results demonstrate differences and similarities in the OHC mechanisms that produce ANIP
and traditional, low-level cochlear amplification, and the results are consistent with the ANIP drive

coupling OHC motility to IHC stereocilia without going through BM motion.

Thesis Supervisor: John J. Guinan, Jr., Ph.D

Title: Professor of Otology and Laryngology, Harvard Medical School
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Chapter 1 . Thesis Introduction and Outline

Background
Research in cochlear mechanics aims to explain the biophysical mechanisms behind the sound

amplification and transmission pathways in the cochlea that lead to deflections of the inner hair cell
(IHC) stereocilia and firings of auditory-nerve (AN) fibers. Today, the theory of the "cochlear amplifier"
and the experiments that support it [Rhode, 1971; Rhode and Robles, 1974; Liberman and Kiang, 1984;
Brownell et al, 1985] are the dominant conceptual framework in the field of cochlear mechanics [Robles
and Ruggero, 2001]. Measurements of basilar membrane (BM) vibration from living animals by [Rhode,
1971] revealed that the frequency tuning of BM motion is significantly sharper than in previously
reported BM results thereby starting to close the apparent gap between the sharpness of frequency
tuning of BM and neural tuning curves which had been a major dilemma. Also, in [Rhode, 1971; Rhode
and Robles, 1974], it was found that BM motion in healthy living animals grows with compressive
nonlinearity as sound level increases for tone stimuli with frequencies near the characteristic frequency
(CF). Postmortem, the sharpness of tuning and nonlinearity disappear thereby providing support to the
idea that there is active mechanical amplification within the cochlea. As for the cellular basis of cochlear
amplification, it has been found that healthy outer hair cells (OHCs) are needed for the high sensitivity
and sharp frequency tuning of the "cochlear amplifier" as evidenced by the loss of sensitivity and sharp
tuning brought on by destruction of OHCs due to acoustic trauma [Liberman and Kiang, 1984;
Schoonhoven et al, 1994]. The discovery of OHC electromotility by [Brownell et al, 1985], together with
the aforementioned work, has led to the current theory of operation of the "cochlear amplifier".
According to this theory, "cochlear amplification" is based on feedback between OHC motility and BM
motion whereby the OHC mechano-electric transduction function converts the deflections of OHC
stereocilia induced by sound stimuli to OHC transmembrane receptor voltage which returns as changes
to BM motion through OHC electromotility [Robles and Ruggero, 2001].

Along with the above developments, and with advances in BM measurement techniques
[Ruggero et al, 1997], it has been found that the tuning and sensitivity in the tuning-curve tip region of
high-CF AN fibers are indeed found in BM motion measured from the same cochleae [Narayan et al,
1998]. This provides support to the currently prevailing view on the mechanism behind sound
transmission to IHCs: (a) the mechanical drive that produces AN firing travels through a single
transmission pathway, the BM traveling wave, with only minor signal transformations between BM
vibration and IHC stereocilia deflections [Narayan et al, 1998; Robles and Ruggero, 2001], and (b) OHC
motility preferentially enhances BM and AN responses to low sound levels through the mechanism of
the "cochlear amplifier" [Dallos, 1992].

Alongside this view, however, it has also been long recognized that BM vibration alone may not
provide an adequate explanation for certain oddments in AN firing in response to low-frequency tones
at high-levels [Kiang, 1984; Cody and Mountain, 1989; Kiang, 1990]. AN responses to low-frequency
tones have been found to show drastic shifts in the phase of firing over changes in tone intensity
whereby a single phase of excitation at low-levels splits to multiple peaks at higher levels which may
revert at even higher sound levels to a single peak with a reversed phase [Kiang, 1984; Kiang, 1990].



These drastic shifts in the phase of excitation were suggested to be explained by level-dependent
interference between two drive components to the IHCs that have opposite phases [Kiang, 1990]. The

role of BM vibration in these phase reversals of AN responses to low-frequency tones were investigated

through a direct comparison of the BM vibrations and AN firings in response to a level series of low-

frequency tones at a basal site of chinchilla cochleae in [Ruggero et al, 2000]. This study found phase

reversals in AN responses to high-level tones that are not accompanied by corresponding phase shifts in

BM vibration. This finding provided direct experimental support to the view that the complex phase

response characteristics of AN firing to high-level, low-frequency tones indicate that there are multiple

modes of mechanical drive to the IHCs [Ruggero et al, 2000].

Evidence for multiple drives to the IHCs at high-sound-levels has also been found from AN

responses to clicks [Lin and Guinan, 2000; Guinan et al, 2005; Guinan and Cooper, 2008]. Clicks are

acoustic realizations of impulses, and analysis of AN responses to clicks can reveal the resonant

properties of the mechanical drives behind the AN responses. Recent studies on AN responses to click-

level series have shown that the mechanical drive to the IHCs for mid-to-high-level clicks (60 - 100 dB

SPL) are far more complex than for low-level clicks. AN responses to mid-to-high-level clicks exhibit

interactions of multiple resonances and potentially multiple drive mechanisms to the IHC stereocilia [Lin

and Guinan, 2000; Lin and Guinan, 2004; Guinan et al, 2005; Guinan, 2009].

Among the complex characteristics of the AN responses to high-level clicks reported in [Lin and

Guinan, 2000; Guinan et al, 2005], the AN initial peak (ANIP) and AN second peak (ANSP) responses to

mid-to-high-levels of clicks are of particular interest. Fig. 1.1 shows compound post-stimulus

histograms (cPSTs) of cat AN responses to a click level series with alternating click polarity. The

rarefaction click responses are plotted upward and the condensation click responses are plotted

downward at each click level. The data came from a low-CF fiber, CT023_U051, with CF = 1.5 kHz and SR

= 45 spikes / s. The click intensity ranged from 30 dB pSPL to 115 dB pSPL, where click intensities are

expressed as peak-equivalent SPL (pSPL) which corresponds to the SPL of a tone stimulus with the same

peak pressure measured near the tympanic membrane as that generated by the clicks. At 80 dB pSPL,

the ANIP responses emerged ahead of the bulk of the response (the bulk of the response can be

considered to be an upward extension of the responses found at lower click levels). Electrical

stimulation of medial-olivocochlear (MOC) efferents inhibits BM and AN responses driven by the

electromotility of OHCs, and has been found to inhibit ANIP responses from mid-to-high click levels as

well as AN responses from low-level clicks [Guinan et al, 2005]. Further, the ANSP response, which

corresponds to the initial peak of the condensation click response, has also been found to be inhibited

by MOC efferent stimulation, but by less than the ANIP inhibition. In Fig. 1.1 , the regions of the click

responses labeled as "LL-Clix" at low-level clicks and "ANIP" and "ANSP" at mid-to-high level clicks are

the regions that were found to be significantly inhibited by stimulation of MOC efferents while the later

peaks following ANIP and ANSP remained largely unaffected by MOC stimulation.



high level clicks are the regions that were found to be significantly inhibited by stimulation of MOC
efferents while the later peaks following ANIP and ANSP remained largely unaffected by MOC
stimulation.
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Fig. 1.1. Cat auditory nerve (AN) compound-PST (cPST) histograms showing responses to clicks at different
sound levels. A cPST histogram plots responses to rarefaction clicks up and to condensation clicks down. ANIP =

AN initial peak, ANSP = AN second peak, LI-Clix is the "low-level click" region. CF = 1.5 kHz. SR=45 sp/s.

Studies of MOC efferent effects on AN responses to clicks have shown that OHC electromotility
is unexpectedly involved in response generation of ANIP and ANSP. These responses are invoked by

click levels well above the click-response threshold thereby challenging the widely accepted notion that
OHCs preferentially affect BM and AN responses to low-level sounds. A question which naturally follows
these findings is whether the detailed mechanism whereby OHC electromotility is coupled to AN firing of
ANIP and ANSP might be somehow different from the mechanism operating at low click levels. A part of
the answer to this question comes from [Guinan and Cooper, 2008] which reported the effects of MOC



stimulation on BM responses to click level series measured in the basal region of the guinea pig's

cochlea. Unlike AN responses to mid-to-high-levels of clicks from the apical region of cats, the initial

peaks of the BM response to mid-to-high-levels of clicks (and to clicks at all levels) were unaffected by

MOC efferent stimulation. Based on these findings, it was hypothesized that the response generation

mechanism for ANIP and ANSP involves OHC electromotility, as does the "cochlear amplifier" . However,
the coupling of ANIP and ANSP drives to IHC stereocilia must be by a mechanism that is different from

the BM cochlear amplification of low-level clicks [Guinan et al, 2005; Guinan, 2009].

The idea that OHC forces can be coupled to deflections of IHC stereocilia through a mechanism

other than BM vibration is supported by a multitude of papers [e.g. Mountain and Cody, 1999; Nowotny

and Gummer, 2006]. In [Mountain and Cody, 1999], the discrepancy between the complexities in AN

responses versus the relatively linear BM motions to high-level tone stimuli was investigated through

computational models of the stimulation of IHC stereocilia. Their results demonstrated that

incorporating an additional coupling path into the model from OHC forces to IHC stereocilia (possibly

through the tectorial membrane) produced significantly closer simulation of the actual measurements of

IHC receptor potentials to high-level tones in comparison to a simpler model based on a single

transmission path through the BM [Mountain and Cody, 1999]. In the in vitro study on excised guinea-

pig cochleae by [Nowotny & Gummer, 20061 for frequencies up to 3 kHz, contraction and elongation of

OHCs brought on by their electromotility caused bulging and squeezing of the subtectorial space above

the IHC stereocilia thereby resulting in fluid flow that deflected the IHC stereocilia with a sufficient

magnitude to stimulate AN firing. Particularly, in [Guinan et al, 2005; Guinan, 2009], a direct fluid

coupling mechanism from OHC forces to IHC stereocilia as described in [Nowotny and Gummer, 2006]

has been offered as a potential explanation for the mechanical drive behind ANIP.



II. Main Objective of the Thesis
The main objective of this thesis is to test the hypothesis from [Guinan et al, 2005] that the

mechanism of OHC involvement in generating ANIP and ANSP responses from cat AN fibers for mid-to-
high-levels of clicks is somehow different from the OHC mechanism that produces AN response
generation for low-level clicks. Specifically, the focus of the investigation is on the following two key
issues:

1) Does the drive mechanism that produces ANIP and ANSP responses involve the OHC mechano-
electric transduction function as well as OHC electro-motility in the same was as found in the
drive mechanism that produces AN responses to low-level sounds? Answering this question is
essential since the MOC efferent study on ANIP and ANSP in [Guinan et al, 2005] only revealed
the involvement of OHC electromotility. The involvement of the OHC mechano-electric
transduction function in response generation of ANIP and ANSP has not been directly shown.
Particularly, it is of interest to determine whether the strength of involvement of OHC mechano-
electric transduction function in ANIP and ANSP response generation is as robust as in the
generation of AN responses to low-level sounds

2) If the mechano-electric transduction function of OHCs is indeed involved in the generation of
ANIP and ANSP responses, are there any significant differences in how the mechano-electric
transduction function of OHCs is used in generating ANIP and ANSP responses at mid-to-high
click levels versus in the generation of AN responses to low-level sounds, i.e., low-level click
responses or low-level CF-tone responses? Further, if there are significant differences in the
shapes of the OHC mechano-electric transduction functions in producing ANIP and ANSP versus
AN responses to low-level sounds, can we infer any differences in the details of the cochlear
mechanisms involved in the generation of ANIP and ANSP responses versus the mechanisms
involved in generating responses to low-level sounds?



III. Experimental Strategy
In-vivo measurements of OHC receptor potentials in response to low-frequency tones in guinea

pigs have shown that the OHC mechano-electric transduction function can be generally described as a

curve with saturating non-linearity at both input ends as shown in Fig. 1.2 [Dallos, 1985; Russell et al,

1986]. The gain of the OHC mechano-electric transduction function that is involved in generating BM

and AN responses depends on the local slope at the operating point on the transduction function.

Studies have shown that the at-rest location of the operating point on the OHC mechano-electric

function varies along the cochlea. Specifically, in the apex of the cochlea the operating point is located

asymmetrically in favor of depolarizing output voltage as in Fig. 1.2(b), and in the base the operating

point shifts to a more symmetric location as in Fig. 1.2(a) [Cai and Geisler, 1996c]. Further, the

operating point of the OHC transduction function has been found to shift in response to the intensity of

tone stimuli for low-frequency tones well below the CF in the base of guinea pig cochleae [Cody and

Russell, 1987]. These shifts in the operating point of the mechano-electric transduction function of

OHCs over cochlear place and stimulus-tone level have been interpreted as indications of significant

differences in cochlear mechanics [Russell and K6ssl, 1992].

The experimental strategy to uncover whether and how the OHC mechano-electric transduction

function is involved in generating AN responses to acoustic stimuli is to study the suppression effects on

AN responses brought about by the application of a low-frequency bias-tone [Patuzzi et al, 1984b; Cai

and Geisler, 1996a; Cai and Geisler, 1996c]. A low-frequency tone (such as 50 Hz) at high sound levels,

presented together with a probe stimulus, can suppress the response of an AN fiber to the probe

stimulus, with a temporal pattern of suppression that is synchronized with the phase of the low-

frequency bias tone. The mechanism behind the temporal pattern of suppression by a low-frequency

bias-tone is now widely accepted to be the modulation of the OHC mechano-electric-transducer

operating point so that it traverses through the low gain regions of the transduction curve brought on by

sinusoidal deflection of the OHC stereocilia by the bias-tone [Ruggero et al, 1992]. A typical example of

a bias-tone-induced suppression pattern is shown in Fig. 1.3 through the effects of a level series of 50 Hz

bias-tones on the AN responses to a low-level CF-tone. In this figure, the spike records are binned re. the

period of the bias-tone and displayed as bias-tone period histograms. From the level series of period

histograms, note the emergence of significant suppression at the bias-tone level of 80 dB SPL with the

suppression phase noted as the "Major Suppression Phase". Further, note that at 90 dB SPL, the "Minor

Suppression Phase" develops at the opposite phase from the "Major Suppression Phase" and the Major

Suppression Phase also further deepens to complete suppression at this level. It is now widely accepted

that the oppositely located phases of suppression correspond to phases of peak deflections of the OHC

stereocilia, which in turn correspond to the low-slope ends of the OHC mechano-electric transduction

function. Accordingly, the phase of the major suppression and the symmetry in suppression depth

between the major and minor suppression phases can provide clues to the location of the at-rest

operating point of the OHC mechano-electric transduction function. Specifically, in [Cai and Geisler,
1996c] more symmetric depths of the major and minor suppressions from basal AN fibers have been

interpreted as showing a more symmetric location of the at-rest OHC mechano-electric transducer

operating point in the base of the cochlea.



Consequently, if two oppositely located suppression phases were to be found from the bias-
tone effects on ANIP and ANSP responses, it would indicate involvement of the mechano-electric
transduction function of OHCs in the response generation mechanism of ANIP and ANSP. Further,

comparison of the major suppression phase and the symmetry of suppression phases between ANIP and
ANSP versus AN responses to low-level sounds can reveal any significant differences in the shape of the
mechano-electric transduction function involved in different types of AN responses.

(a)

0
Sound Pressure, arbitrary units

(b)

0
Sound Pressure, arbitrary units

Fig. 1.2. Models of the mechano-electric transduction function of outer hair cells (OHC): the output shows
saturating non-linearity at either end of the input. Positive sound pressure indicates rarefaction. The gain of

the cochlear amplifier has been linked to the slope of the transduction function at a particular operating point as
is indicated by a red circle in the above plots. The operating point at rest has been found to lie at varying

degrees of asymmetry between the two saturating ends. (a) a schematized version of the OHC mechano-electric
transduction function from the basal region of guinea pigs; (b) a schematized version of the OHC mechano-

electric transduction function from the apical region of guinea pigs
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middle of the period histogram (the "Major Suppression Phase"), and at 90 dB SPL, the suppression depth in the
middle of the period deepens significantly, and a second suppression phase (the "Minor Suppression Phase")

develops at the opposite phase.
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IV. Chapter Outline and Significance
This thesis consists of a total of 5 chapters with the first and the last chapters being the

introductory and concluding chapters, respectively. The motivation and significance of the three main
chapters are outlined as follows.

A. Chapter 2: Bias-tone Effects on Low-level Click Responses and Low-level CF-tone
Responses

Currently, studies on bias-tone effects on AN responses to clicks have not been done
systematically, and the objective of this chapter is to examine the bias-tone effects on cat AN responses
to low-level clicks and to compare them with the bias-tone effects on low-level CF-tone responses.
Since it is widely accepted that a common mechanical drive to the IHC stereocilia is behind the low-level
CF-tone and low-level click responses, it is expected that the suppression pattern on low-level click
responses would be largely similar to the low-level CF-tone responses; however, this has not been
shown previously, and the nonlinearity in cochlear mechanics leaves some reservations on the
expectations. Furthermore, the experimental techniques developed from this chapter for bias-tone
effects on AN response to clicks provide the necessary tools for use in chapter 3 to investigate the OHC
involvement in the generation of AN initial-peak responses to high-level clicks.

B. Chapter 3: Bias-tone Effects on AN Responses to Low-level and Mid-to-high-level
Clicks

This chapter is the focus of the thesis. It investigates whether and how the OHC mechano-
electric transduction function is involved in the mechanisms that produce ANIP and ANSP responses, by
measuring the suppressive effects of a low frequency (50 Hz) bias-tone on ANIP and ANSP responses and
comparing them to the suppression of low-level click responses. Particularly, the detection of a
suppression pattern with two suppression dips at opposite phases will be taken to indicate the
involvement of the OHC mechano-electric transduction in the mechanisms that generate ANIP and ANSP
responses. Further, comparison of the phases of the major suppressions and the symmetry of the two
suppression phases of AN responses to low-level clicks versus ANIP responses versus ANSP responses is
expected to uncover any differences in the shape and the at-rest operating point of the OHC mechano-
electric transduction function that is involved in producing these click response types.

C. Chapter 4: Bias-tone Effects on Low-level CF-tone and Off-CF-tone Responses from
Low-CF Fibers

Prior to the report of OHC involvement in generation of ANIP and ANSP responses [Guinan et al,
2005], it has been hypothesized that interactions between multiple drive mechanisms are involved in
tone responses from low-CF AN fibers [Lin and Guinan, 2000]. Studies have found discontinuities in the
group delay VS tone frequency measurements from AN responses to tones from low-CF fibers. In tuning
curves from AN fibers with CFs < 1 kHz, the CF-centered region had a long group delay, while adjoining
"side-lobe" regions had shorter group delays [Pfeiffer & Molnar, 1980; Kiang, 1984]. These
characteristics have been interpreted through the hypothesis that these different tuning-curve response
regions are likely due to multiple sources driving the IHCs of low-CF fibers [Lin and Guinan, 2000; Guinan
et al, 2005]. Further, MOC efferent studies have shown that OHCs are strongly involved in the
generation of AN responses to low-level tones from both the CF and the "side-lobe" regions [Gifford and



Guinan, 1988c]. One peculiar finding from this study was that for some fibers with CFs near 1 - 2 kHz,
the inhibitory effects of MOC stimulation on near-threshold "side-lobe" tone responses were stronger

than near-threshold CF-tone responses thereby resulting in MOC-induced sharpening of tuning. This

contrasts with the broadening of tuning due to MOC efferent stimulation as found from most AN fibers

[Gifford and Guinan, 1988c]. These findings motivated the hypothesis that the detailed mechanism of

OHCs in generating the "side lobe" tone responses may be distinct from the mechanism generating low-

level CF-tone responses, i.e., the BM-based cochlear amplifier [Guinan, 20091. In this chapter, the

suppressive effects of a low-frequency (50 Hz) bias-tone on AN responses to low-level CF tones versus

"off-CF" tones (tones >0.7 octaves from CF) are compared in order to explore any differences in how the

OHC mechano-electric transduction function is involved in generating AN responses to low-level CF-

tones versus to side-lobe tones.
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Chapter 2 . Bias-tone Effects on Low-level Click Responses and
Low-level CF-tone Responses

I. Introduction
Analysis of auditory nerve (AN) responses to click, (i.e., the acoustic realization of an impulse),

can reveal the resonant properties of the mechanical drive to the inner hair cell (IHC) stereocilia.
Particularly, recent studies have shown that the AN responses to high-level clicks are quite complex
exhibiting interactions of multiple resonances and potentially multiple drives to the IHC stereocilia
[Lin and Guinan, 2000; Lin and Guinan, 2004; Guinan et al, 2005; Guinan, 2009]. Despite the
complexities at high click levels, the mechanical drive behind the AN responses to low-level clicks
can be adequately explained through a single resonant response from the basilar membrane (BM) at
the characteristic frequency (CF) of the AN fiber thereby linking the low-level CF-tone responses as
the tone response counterpart of the low-level click responses [Kiang et al, 1965; Lin and Guinan,
2000].

It has been found that healthy OHCs are needed to produce the high sensitivity and sharp
frequency tuning associated with the low-level CF-tone and low-level click responses as evidenced
by their loss brought on by destruction of OHCs due to acoustic trauma [Liberman and Kiang, 1984;
Schoonhoven et al, 1994]. Now it is widely accepted that the theory of the OHC based "cochlear
amplifier" provides adequate explanations to the mechanism behind the generation of the AN
responses to low-level CF-tone and low-level clicks [Robles and Ruggero, 2001]. The critical part of
the "cochlear amplifier" lies at the mechanical feedback between the BM and OHCs whereby the
stereocilia of OHCs transduce the BM vibration to OHC transmembrane receptor voltage which
returns as changes to the BM movement through the electromotility of the OHCs [Robles and
Ruggero, 2001].

Further, it is widely accepted that the mechanism behind the various non-linear behaviors such
as compressive growth with level, intermodulation distortions and two-tone interactions measured
from human psychoacoustic experiments, AN firing patterns, BM motion, and hair cell receptor
potentials lies primarily at the OHCs [Robles and Ruggero, 2001]. Particularly, the compressive non-
linearity in the mechano-electrical transduction function of the OHCs is cited as the dominant
mechanism behind the non-linear behaviors [Patuzzi et al, 1989; Santos-Sacchi, 1993].

In-vivo measurements of the OHC receptor potential in response to low-frequency acoustic tone
stimulus from guinea pigs have shown that the mechano-electric transduction function can be
generally described as a curve with saturating non-linearity at both ends of the output [Dallos, 1985;
Russell et al, 1986]. Further, it has been found that the sharpness of saturation and the location of
the transduction operating point on the curve depend on the CF location within the cochlea [Dallos,
1985; Russell et al, 1986]. A schematized version of the transduction function from the basal region
of guinea pig cochlea as reported in Fig. 1 of [Russell et al, 1986] is shown in Fig. 2.1(a) where the
operating point is located approximately in the middle of the two saturation plateaus. Also, a
schematized version of the transduction function from the apical region of guinea pig cochlea as



reported in Fig. 10 of [Dallos, 1985] is shown in Fig. 2.1(b) where the operating point is located

closer to the hyperpolarizing saturation plateau.

The shape of the nonlinear transduction function of the OHCs is strikingly well reflected in the

two tone interactions between a low-level probe tone and a second low-frequency bias-tone in the

BM movement, hair cell receptor voltage as well as firing patterns from AN fibers [Ruggero et al,

1992; Patuzzi et al, 1984b; Cai and Geisler, 1996c]. A low-frequency bias-tone with high enough

amplitude sinusoidally deflects the OHC stereocilia over a wide range such that the operating point

of the mechano-electric transduction function traverses through the two saturating end regions

during each cycle of the low-frequency bias-tone. Further, a bias-tone with frequency below -100
Hz deflects the OHC stereocilia with significantly larger amplitude than the IHC stereocilia due to the

differences in their coupling mechanism to acoustic stimulus [Russell and Sellick, 1983]. Specifically,
as shown in Fig. 2.2, the stereocilia of the IHCs are freestanding within the tunnel of Corti whereas

the stereocilia of OHCs are embedded into the overlying tectorial membrane. This anatomical

difference results in mainly fluid coupling to the stereocilia of IHCs by a low-frequency tone which in

turn attenuates low-frequency tone stimulus [Russell and Sellick, 1983]. Therefore, the gain of the

cochlear amplifier acting on a low-level near CF probe tone would be diminished as the operating

point of the OHC transduction passes through the two saturating regions. In addition, the effect of

the low-frequency tone on IHCs should be much less. Consequently, the amplitude of the BM

displacement as well as AN firing rate would be suppressed at two opposite phases within the

period of the low-frequency bias-tone which correspond to the low-gain saturation plateaus in the

OHC transduction function. Further, depending on the location of the operating point of the OHC
transduction function at the particular place within the cochlea, one of the suppression phases

emerges at a lower level of the bias-tone with a larger depth of modulation [Cai and Geisler, 1996a;

Cai and Geisler, 1996c].

Suppression effects on AN responses to a low-level CF-tone by a low-frequency bias-tone are

illustrated through the AN firing pattern evoked by the low-level CF-tone at 1.6 kHz and the 50 Hz

bias-tone recorded from a cat's AN fiber with the CF of 1.63 kHz. Fig. 2.3 shows the bias-tone level

series of bias-tone-period histograms which were constructed by binning the spike records relative

to the period of the bias-tone. At the bias-tone level of 80 dB SPL, the firing rate in response to

the low-level probe tone begins to be suppressed approximately in the middle of the period which is

noted as the "major suppression phase". Then, at 90dB SPL the major suppression phase deepens

to complete suppression, and the "minor suppression phase" develops at the opposite phase

location. These suppression phases would correspond to the phase of the deflections of the OHC

stereocilia into the two saturation plateaus brought on by the 50 Hz bias-tone.

Analysis of the suppression effects by a low-frequency bias-tone on AN firing patterns in

response to a low-level CF-tone has been shown to reveal the shape of the OHC transduction

function behind generation of AN responses to CF-tone which could not be directly measured in

case of high-CF fibers through the in vivo intracellular measurement of the OHC receptor potential

[Cai and Geisler, 1996c]. Specifically, the OHC transduction function at the base of the cochlear as

shown in Fig. 2.1(a) was done with a low-frequency tone, 600Hz, which is well below the CF of the



recording site [Russell et al, 1986]. Analysis of the suppression pattern on low-level CF-tone
response recorded from basal AN fibers of cats has shown that the operating point of the OHC
transduction function in response to the low-level CF-tone of the fiber is significantly more
symmetric across the saturating ends than the apical fibers [Cai and Geisler, 1996c]. Further, by
relating the phase of major suppression with the phase of cochlear microphonic or the phase of
excitation by the bias-tone alone, it has been shown that the phase of major suppression on low-
level CF-tone responses corresponds to the phase of maximum displacement of the BM toward the
scala tympani (ST) in guinea pigs and chinchillas [Patuzzi et al, 1984a; Temchin et al, 1997; Geisler
and Nuttall, 1997]. Note, however, that there have been conflicting reports on this topic for cats.
Specifically, major suppression phase on BM movement was found to correspond to the peak BM
displacement toward ST as in other species [Rhode and Cooper, 1993; Cooper , 1996] whereas the
opposite phase, i.e., peak BM displacement toward scalar vestibule (SV), was reported for
suppression patterns on AN responses [Cai and Geisler, 1996a].

Currently, studies on the bias-tone effects on AN responses to clicks have not been done
systematically, and the main objective of this study is to examine the bias-tone effects on AN
responses from cats to low-level clicks and to compare them with the bias-tone effects on low-level
CF-tone responses. Since it is widely accepted that a common mechanical drive to the IHC
stereocilia is behind the low-level CF-tone and low-level click responses, it is expected that the
suppression pattern on low-level click responses would be largely similar to the low-level CF-tone
responses. However, since the OHC transduction function has been found to depend subtly on the
stimulus parameters [Dallos, 1985; Cody and Russell, 1987], subtle differences may exist. Further,
the experimental techniques developed from this study for the bias-tone effects on AN response to
clicks would provide the necessary tools to investigate the OHC involvement in generation of the
initial peak in the AN responses to high-level click responses where OHCs may be involved through
an unknown drive mechanism [Guinan et al, 2005].
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Fig. 2.1. Models of the mechano-electric transduction function of outer hair cells (OHC): they are with
saturating non-linearity at either ends of the output. The positive sound pressure indicates rarefaction. The

gain of the cochlear amplifier has been linked to the slope of the transduction function at a particular operating
point which is indicated by a red dot in the above plots. The operating point has been found to lie at varying
degree of asymmetry across the two saturating ends. (a) a schematized version of the OHC mechano-electric
transduction function from the basal region of guinea pigs; (b) a schematized version of the OHC mechano-

electric transduction function from the apical region of guinea pigs
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Fig. 2.2. Schematic diagram of the Organ of Corti, the sensory organ within the cochlea. The stereocilia of outer
hair cells (OHCs) are embedded into the overlying tectorial membrane whereas the stereocilia of inner hair cells

(IHCs) are free-standing within the endolymphatic fluid. Consequently, low-frequency transverse vibrations
with frequency below ~10OHz on the Organ of Corti deflect the OHC stereocilia with significantly larger

amplitude than the IHC stereocilia.
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Fig. 2.3. Typical pattern of bias-tone suppression effects on low-level CF-tone responses over a bias-tone level
series: a 50 Hz bias-tone at levels, 70-110 dB SPL, was presented together with a low-level CF-tone stimulus. The

CF of the fiber was 1.63 kHz. The probe tone was 1.6 kHz at 6 dB above threshold. The spikes were binned re.
the bias-tone-period to form bias-tone-period histograms. The bias-tone level series of these histograms are

shown as vertically stacked plots with the corresponding bias-tone level indicated to the right of each histogram.
The scale of the firing rate indicated for the bottom histogram applies to all the plots. Within each bias-tone-
period histogram, the spikes were phase-locked to the probe tone frequency. At the bias-tone level of 80 dB
SPL, the firing rate was suppressed in the middle of the period histogram, and at 90 dB SPL, the suppression
depth in the middle of the period deepened significantly, and a second suppression phase developed at the

opposite phase.
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I. Methods
The experiments were done on cats at the Eaton-Peabody Laboratory (EPL) of Auditory Physiology.

All experiments were conducted in compliance with protocols approved by the Committee on Animal
Care at the Massachusetts Eye and Ear Infirmary.

A. Animal Preparations
23 healthy cats free from ear infections have been used for these experiments. The

experimental methods for animal handling, surgical approach to the AN, and methods for recording
from AN fibers of cats were as described in [Kiang et al, 1965; Stankovic & Guinan, 1999]. The methods
for monitoring the health of hearing during experiments were as described in [Stankovic & Guinan,
1999].

All experiments were acute and began with anaesthetizing the cat with intra-peritoneal (IP)
injection of Nembutal in Urethane with the dosage of 150 mg per kg body weight of the animal. Booster
injection of the same initial mixture with 1/10 of the initial dose was delivered to maintain the level of
the anesthesia. Throughout the duration of the experiment, the depth of anesthesia was monitored
based on toe-pinch reflex, heart rate and breathing rate which determine the timing and amounts of the
booster injections. The animal's temperature was monitored & maintained at 38 deg C with a rectal
thermometer & a heating pad. Experiments typically lasted for 40 to 48 hours during which lactated
ringers were dripped to a leg vein through a catheter.

After the initial anesthesia, the bulla cavities of both ears were exposed to reveal the round
window. Posterior craniotomy followed by aspiration and retraction of the cerebellar tissues were
performed to expose the auditory nerve.

B. Acoustic Setup
All experiments were done inside a double-walled, reduced-reflection chamber. Sound stimuli

were delivered with an acoustic assembly consisting of two earphones and a microphone with a probe
tube. A DT48 dynamic earphone, capable of high output at low-frequency, was used to generate the
low-frequency bias-tone, and all other stimulus types including clicks were generated by the 1-inch
condenser earphone. The magnitude and phase of the frequency response of the microphone plus
probe tube combination were calibrated over the frequency band 0.02-45 kHz using a reference
microphone in a calibration set up to measure the sound pressure near the tip of the probe tube.
During the experiment, the assembly was placed inside the external meatus so that the probe-tube tip
was a few millimeters away from the eardrum. Then, the magnitude and phase of the frequency
response of the earphones were calibrated over the frequency band 0.02-40 kHz using the calibrated
microphone plus probe tube.

Throughout all experiments, the frequency of the bias-tone was fixed at 50 Hz which was
selected because a low-frequency tone below 200-600 Hz can more selectively deflect the OHC
stereocilia compared to the IHC stereocilia [Russell and Sellick, 1983].

C. Data Collection
A silver electrode was inserted through the bulla opening and placed near the round window to

measure the cochlear compound action potentials (CAP). An automated tone-pip audiogram was
measured over the frequency range from 0.5 kHz to 32 kHz at an octave interval with the criterion of 10



pV pp of the CAP. Tone pip audiograms were run periodically every hour or so, and also after a series of

good data in order to ensure good health of the cochlea associated with the collected data.

A glass micropipette electrode filled with 3 M KCL electrolyte with 10 -20 MO impedance was driven

through the exposed view of the auditory nerve by a remotely controlled microdrive until isolating an

AN fiber using a wideband noise burst search stimulus. Spike timings were detected with the resolution

of 10 pisec.

Upon isolating a unit, a threshold tuning curve (TC) was measured, the CF of the fiber was

determined, and the spontaneous rate (SR) of the fiber was measured from the 20 sec duration

recording of spontaneous firing. Then, the following three types of 50 Hz bias-tone paradigms were run:

" Bias-tone alone paradigm
" Bias-tone effects on low-level CF-tone responses

* Bias-tone effects on low-level click responses

Throughout the runs, the quality of spike triggering was monitored & adjusted, and data from recordings

with near perfect triggering with no extra or missed triggers have been selected for this thesis. The

methods for the above experimental paradigms are described in detail with actual data from the

example fiber, CT030_U007, with its CF at 1.88 kHz & SR of 87.2 sps.

D. Bias-tone Only Paradigm: Excitation Threshold & Phase

Acoustic Stimulus and Data Collection
The objective of this paradigm was to measure the neural excitation threshold & phase of

excitation of the fiber invoked by 50 Hz bias-tone. A randomized level series of the 50 Hz bias-tone

trials over the range from 70 dB SPL to 120 dB SPL was presented. A single trial period was 500 ms with

approximately 50% stimulus ON duty cycle. The spike records during the analysis time window of 200

ms duration from the stimulus ON period were binned re. the bias-tone-period in order to form a level

series of the bias-tone-period histogram of the spike records. Averaged results from 8 of such trials

were used to compute the level series of period histograms. The zero phase reference is the cosine

phase of the earphone drive signal. Fig. 2.4 shows the 50 Hz bias-tone level series of period histograms

from the example fiber.

Data Analysis
The rate-level function was calculated from the level series of spike records, and the rate

threshold was determined with the criterion of one standard deviation, a, above the baseline rate. The

baseline rate was determined as the spike rate at the minimum level of the bias-tone level series which

was 60-70 dB SPL. The bias-tone level function of the spike rates including the baseline rate were

calculated from the total spike collection time of 1600 ms averaged from 8 trials of 200 ms in each trial.

Note that the baseline rate was not the spontaneous rate of the fiber. However, none of the recorded

fibers showed a significant upward slope from their rate-level function at the baseline level. The

standard deviation was estimated as the square root of the baseline rate under the assumption of

Poisson random process behind the spikes.



Vector phase analysis was used to estimate the phase of excitation and synchrony index
[Goldberg and Brown, 1969; Johnson, 1980]. Briefly, each spike is represented as a unit vector with its
phase as the phase of occurrence of the spike within the period. The magnitude and phase of the
average vector representation of all the spikes are the synchrony index and vector phase respectively.
Mathematically the average vector corresponds to the first harmonic component of the Fourier series of
the period histogram normalized by the total spike count [Goldberg and Brown, 1969].

Further, statistical significance of the phase estimates were evaluated through the standard
error of the vector phase estimates. The mathematical model for standard error of the phase estimate,
S.E.@ , is described in [Mardia, 2000], and it had been previously applied in AN spike data analysis
[Stankovic & Guinan, 2000].

The excitation threshold of the bias-alone alone response was met when both the spike rate
exceeded the baseline rate by one standard deviation of the baseline, and the standard error on the
phase estimate dropped within 20* (-20*5 S.E.@ 20*). This criterion allows statistically significant
differentiation of the phase data points that are separated by at least 40*.

The detailed analysis of the period histograms in Fig. 2.4 is shown in Fig. 2.5 where the bias-tone
level function of the spike rate, synchrony index and estimate of the excitation phase are displayed in
the top-down order. In this example, the excitation threshold was met at the bias-tone level of 110 dB
SPL. Note that the shape of the histogram moves to a pattern with two modes separated by
approximately half a cycle at 110 dB SPL. The vector phase estimate based on the first harmonic
component estimated the mid-point of the two peaks as the excitation phase as noted in Fig. 2.4. This
phenomenon known as "peak splitting" has been widely reported in previous work for AN response
studies on cats particularly from low-CF fibers below 2 kHz in response to low-frequency tone below 200
Hz [Johnson, 1980; Kiang, 1984; Kiang, 1990; Cai & Geisler, 1996].
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Fig. 2.4. Bias-tone level series of the 50 Hz bias-tone-period histogram of the example fiber, CT030_U007,
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Fig. 2.5. Detailed data analysis metrics to determine bias-tone only response threshold & response phase. Top:
Rate-level function from which the rate-threshold is determined when the spike rate exceeds one standard

deviation; Middle: Level function of the synchrony index; Bottom: the excitation phase estimates with their
standard error. The excitation phase & its standard error is determined by the vector phase method. The

excitation threshold is met when both the rate threshold is met and also when the standard error on the phase
estimate drops within 20*. In this example, the excitation criteria were met at 110 dB SPL.

%I)

CD,
a)

te60
C,,

*~40

S20
C,)

70 8

x
(D

0.6
C
2
c 0.4
C

C/) 0.2,



E. Experimental Paradigm for Bias-tone Effects on Low-level CF-tone Response

Acoustic Stimulus and Data Collection
A randomized level series of 50 Hz bias-tone over the range of 70 dB SPL to 120 dB SPL was

presented together with the CF-tone of the fiber at 10 - 20 dB above the threshold during the 50% ON

duty cycle within the 500 ms trial period as shown in Fig. 2.6(a). As for the exact frequency of the CF-

tone, it was not necessarily a harmonic of the bias-tone frequency, 50 Hz, as done in previous studies

[Sachs and Hubbard, 1981; Cai and Geisler, 1996a]. For the example fiber, the CF-tone was selected as

1.88 kHz at the level of 33.6 dB SPL which is about 16 dB above threshold. Fig. 2.6(b) shows the post-

stimulus time histogram (PSTH) resulting from this paradigm at the bias-tone level of 70 dB SPL from the

example fiber.

The spike analysis window started at 25 ms for the duration of 220 ms spanning 11 cycles of the

50 Hz bias-tone during which the bias-tone and the low-level CF-tone are presented together for

suppression effect analysis. The spike records from 24 of such trials were binned re. the bias-tone-

period of 20 ms to form the bias-tone-period histogram. Note that spike records were initially time-

stamped with the resolution of 10 Is which would yield bias-tone-period histograms with the sample

size of 200000 if left unprocessed. Since spike data analysis for bias-tone effects on period histograms

are concerned mainly with low-frequency modulation on the spike records spanning first few harmonics

of the bias-tone, the spike records were re-binned at a wider time bin width as follows. The initial time

bin width of 10 ps was widened to a value close to the period of the CF-tone in order to reduce the

bandwidth of the period histogram below the phase locking frequency to the CF of the fiber. Note that

since the CF-tone frequency was not necessarily an integer multiple of the bias-tone frequency, the

sample interval of the re-binned histograms was selected to be the bias-tone-period divided by an

integer number whereby the resulting time bin width was closest to the period of the CF-tone. Finally,

the sample size of the period histograms was limited at the maximum of 40 corresponding to the

minimum time bin width of 0.5 ms. Note that the maximum sample size of 40 in this paradigm allowed

spectral analysis up to the first 19 harmonics of the bias-tone as discrete Fourier transform was applied

on the period histograms. The bias-tone level series of the PSTHs and the corresponding bias-tone-

period histograms are shown in Fig. 2.7. In this example with the CF of 1.88 kHz, the period histogram

consisted of 38 samples with the time bin width of 0.5263 ms.



(a) Stimulus Paradigm for Bias-tone on Probe-tone
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Fig. 2.6. Acoustic Stimulus Setup for the Bias-tone on Tone Burst Paradigm: Top: the probe tone & the 50 Hz
bias-tone were presented together for 230 ms of spike analysis time within the total trial period of 500 ms.

Bottom: The post-stimulus time histogram (PSTH) of the spikes over the entire 500 ms trial period. The data
come from the example fiber, CT030_U007, CF=1.88 kHz & SR=87.2 sps. Note the ON duty cycle of ~50%

corresponding to the stimulus setup diagram above. The spike analysis window covered the duration of 180 ms
or 9 periods of the 50 Hz bias-tone. Note that the analysis window starts at 65 ms which was 40 ms after the

onset of the probe-tone in order to avoid the onset adaptation time of the probe-tone burst.
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Fig. 2.7. Level series of PST histograms, Left; The corresponding the bias-tone-period histogram, Right. Spike
records from the ON duty cycle from the PST histograms were binned re. the bias-tone-period to form the bias-
tone-period histogram. The phase reference of the bias-tone-period histogram was the cosine phase of 50 Hz
bias-tone earphone drive signal. Time bin width of the histogram was set at the probe-tone period to reduce

the bandwidth of the data below the frequency of the probe tone.

Analysis of the Bias-tone-period Histograms for Suppression Effects
The period histograms were examined to detect significant suppression. Previous studies have

shown that that the suppression effects by a low-frequency bias-tone predominantly result in either a
single major suppression phase or two suppression phases at opposite phase locations [Patuzzi et al,
1984a; Cai & Geisler, 1996a; Temchin et al, 1997]. Detecting a period histogram with a single major
suppression phase was done through the vector phase analysis for the first harmonic component.
Specifically, significant suppression was detected when the standard error on phase estimate, S.E@, for
the first harmonic dropped below 200 (-20*5 S.E@ 20).

Period histograms with two peaks at opposite phase locations can be analyzed with the same
basic framework of directional statistical analysis by examining the synchrony index, vector phase and
the standard error on the phase estimate with respect to the second harmonic component of the period
histogram [Mardia, 2000]. As with the first harmonic, maximum criterion of 40* on the standard error
on phase for the second harmonic component, S.E.@2, was applied to detect a period histogram with
two suppression phases at opposite phase locations; -40's S.E.4 2 5 40*. Since the span of 40* of second
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harmonic phase is equivalent to 20* of the first harmonic phase, equivalent detection criteria were
applied to the first and second harmonic.

Since the second harmonic phase points to two suppression phases within the period histogram
separated by half a cycle, it was necessary to disambiguate major suppression phase between the two.
The analysis procedure for this problem termed as "Half-period Synchrony Analysis" was based on the
observation that the major suppression phase typically has a higher level of synchrony compared to the
minor suppression phase. The analysis procedure first cuts the original period histogram into two half-
period histograms of equal-length around the two suppression phase locations. The resultant two half-
period histograms would have a single major suppression phase in each, and the depth of suppression in
each were calculated as the synchrony index for the first harmonic of each half-period. Finally, the
major suppression phase from the original full-period histogram was determined as the suppression
phase with higher level of half-period synchrony index. This procedure is illustrated in Fig. 2.8 with the
period histogram at the bias-tone level of 100 dB SPL from the example fiber. In Fig. 2.8(a) the two
suppression phase locations determined by the second harmonic phase are marked as a blue & red
inverted triangle. The resulting two half-period histograms are shown in Fig. 2.8(b). Note that the half-
period histogram centered at the blue triangle starts with the wrapped around data from the time
window from about 16 ms to 20 ms. The synchrony index for first harmonic of the half-period are
shown in each of the half-period histograms. Due to the larger synchrony index value of the red half-
period, the major suppression phase from the original full-period histogram is determined as the red
triangle which is located in the middle of the period.

Finally, the period histograms generated by the bias-tone level at or above the bias-tone alone
excitation threshold were classified as "Excitation" and accordingly excluded from the suppression data
pool. For the period histograms from the example fiber in Fig. 2.7, the period histograms at 110 and 120
dB SPL were excluded from the suppression data pool.

The analysis procedures described above are illustrated on the example fiber as shown in Fig.
2.9. The suppression phase determined by the first and the second harmonic are noted by a blue and a
red inverted triangle respectively at 90 and 100 dB SPIL of the bias-tone level respectively. In this
example, the major suppression phase would be determined by the first harmonic phase at the bias-
tone level of 90 dB SPL. Further, note the drastic shift in the shape of the period histogram at 110 dB
SPL and 120 dB SPL to a shape resembling the period histograms associated with bias-tone excitation.

Fig. 2.10 shows the level functions of the spike rate, synchrony index and vector phase data for
the first and second harmonic. Note that the firing rate starts to decrease at the suppression threshold
at 90 dB SPL and bounces back up at the excitation threshold of 110 dB SPL. From the level function of
the synchrony index, note the sharp increase of the synchrony index prior to reaching the suppression
thresholds.
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Fig. 2.8. Illustration of the "Half-period Analysis": method to determine the major suppression phase from a
period histogram with a significant second harmonic component. The data came from the bias-tone-period

histogram at 100 dB SPL from Fig. 2.7. Top: the two suppression phases based on the second harmonic phase
are shown as blue & red inverted triangle. Half-period boundaries of equal width are formed around these two

suppression phases in order to splice out the two half-period histograms. Bottom: the two half-period
histograms & their first harmonic synchrony index are shown. The suppression phase noted with red has higher

half-period synchrony index, and consequently, it is determined as the major suppression phase.
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Fig. 2.9. The suppression phase analysis on the bias-tone-period histogram of the example fiber. The
suppression threshold based on phase estimate error bound was met at 90 & 100 dB SPL for the first and second
harmonic respectively. The suppression phases are noted with an inverted triangle on the period histogram. In
this example, the major suppression phase would be determined by the first harmonic phase at the bias-tone
level of 90 dB SPL. Further, note the drastic shift in the shape of the period histogram at 110 dB SPL & 120 dB

SPL. Recall from Fig. 2.4. that the excitation threshold was reached at 110 dB SPL, which indicates that the spike
pattern at 110 & 120 dB SPL are mainly due to the bias-tone excitation pattern.



Spike Rate: BT-on-CF & BT-alone
200-

U)n BT-on-CF
U)
( 150 BT alone

) 100

- 5 50

C,)

0
70 80 90 100 110 120

Bias Tone IeveldB SPL
Synchrony Index

1
1st Harmonic

x 0.8
2nd Harmonic

-- 06C
. 0.6

2

0
70 80 90 100 110 120

Bias Tone level dB SPL
Suppression Phase Estimate

1 T 1 Harmonic
Significant 1st Harmonic

0. Significant 2nd Harmonic

0- 0.6

S0.2

70 80 90 100 110 120
Bias Tone level dB SPL

Fig. 2.10. The detailed data analysis on the bias-tone level functions on the suppression effects on CF-tone
responses from the example fiber. Top: the rate-level function for the run with the bias-tone alone and for the

bias on the probe tone run. Note that the firing rate starts to decrease at the suppression threshold of 90 dB SPL
and bounces back up at the excitation threshold of 110 dB SPL. Middle: bias-tone level function of the

synchrony index for 1st & 2nd harmonic. Note the sharp increase of the synchrony indices at the suppression
thresholds. Bottom: level function of the suppression phase estimates for 1" & 2nd harmonic with their standard

error. The data points meeting the error bound are noted with markers labeled as "Significant 1s' Harmonic"
and "Significant 2 Harmonic". The 1 & 2 harmonic suppression thresholds are met at 90 & 100 dB SPL

respectively.



F. Experimental Paradigm for Bias-tone Effects on Clicks

The Click Stimulus
The click stimulus was generated by the 1-inch condenser earphone driven by 100 pisec duration

rectangular pulses. Click intensities are expressed as peak-equivalent SPL (pSPL) which corresponds to
the SPL of a tone stimulus with the same peak pressure generated by clicks as measured at the tympanic
membrane. The click levels were calibrated to compensate for the square law non-linearity of the
earphone.

Stimulus Paradigm and Data Collection
Click level series over the range of 30 dB pSPL to 115 dB pSPL were run in order to determine

the click response threshold level. Each trial with the duration of 20 ms consists of a series of 10 ms
alternating click polarity presentation, and the total of 100 such trials were averaged. The click level
series from the example fiber, CT030_U007, is shown in Fig. 2.11 where the rarefaction click responses
are plotted upward and the condensation click responses are plotted downward at each click intensity
level. For this fiber, 60 dB pSPL of rarefaction click, which was ~20dB re. click threshold, was selected for
the subsequent runs for bias-tone effects on low-level click responses.
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Fig. 2.11. Compound PST of the click level series for the example fiber. Responses to rarefaction and
condensation clicks at each level are combined into a single plot by plotting the rarefaction click responses

upward and the condensation click responses downward. The zero time reference of the plot is the burst time of
the electrical pulse driving the earphone. The click intensity level selected for the subsequent bias-tone effect

runs is indicated in red.
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The acoustic stimulus paradigm for the bias-tone effects on click responses
Clicks with the duration of 100 psec were repeated at 18 ms intervals throughout the trial

period of 2160 ms. The ON stimulus period for the 50 Hz bias-tone extended from 90 ms to 1990 ms.
This allows the analysis time duration for biased click responses from 90 ms to 1890 ms as shown in Fig.
2.12. The time window from 1998 ms to 2160 ms allows measurement of the firing rate invoked by
clicks only. The phase slip between the click repetition interval of 18 ms and the bias-tone-period of 20
ms allowed presentation of a click stimulus at 10 equally spaced phases over the click-bias period of 180
ms as also noted in Fig. 2.12.

T _ I

5 trials

Biased Clicks Analysis Window: 90 msec - 1890 msec

Click-Bias Period: 180 msec 18 mnsec click repetition interval

Clicks-Only Spike Analysis: 1998 msec ~ 2160 msec

0 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160
Trial Time, msec

Fig. 2.12. The acoustic stimulus paradigm for the bias-tone effects on click responses. Clicks with the duration
of 100 usec were repeated at 18 ms interval throughout the trial period of 2160 ms. The ON stimulus period for
the 50 Hz bias-tone extended from 90 ms to 1990 ms with tapering windows of duration 80 ms surrounding the
stimulus duration. This allows the analysis period for biased click responses to be from 90 ms to 1890 ms, and

the analysis for clicks only response to be from 1998 ms to 2160 ms..

Spike records from the "Biased Clicks Analysis Period" with the duration of 1800 ms were binned re. 180

ms click-bias period. Five of such trials are averaged to produce the click-bias period histogram as

shown in Fig. 2.13. The zero phase references of the 50 Hz bias-tone-period are indicated by red lines

and the zero phase references for click repetition interval are noted by black dashed lines.
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Fig. 2.13. Bias level series of click-bias period histograms: the phase slip between the click repetition, 18 ms, and
bias-tone-period, 20 ms, allows click bursts at 10 phase locations within the bias-tone-period over the 180 ms of

click-bias-tone-period. The data came from the example fiber. The zero phase reference of the bias-tone-
period is indicated by red solid lines, and the zero phase references for click repetition interval are noted by

black dashed lines. The time of click responses slips against the bias-tone-period reference. The averaged click
responses from the clicks-only period are plotted far left in blue.

Time Windowed Period Histogram Analysis
We are interested in analyzing the bias-tone effects on individual peaks of the click response.

Therefore, the click response components of interest span over small time windows with the duration of

1 - 1.5 ms. Therefore, period histograms over a particular time window component need to be

constructed from the averaged firing rate over a particular post-click-time window from each of the 10

bias-tone phase samples of the click response. Consequently, the resulting period histogram would

consist of 10 data points with the time bin width of one tenth of the bias-tone-period or 2 ms in this

study.

Further, the phase delay associated with the time window needs to be accounted for in

constructing the time-windowed period histogram and calculation of the suppression phase. For

example, the first peak of the low-level click response of the example fiber spanned over the time

window from 2.7 ms to 3.3 ms as shown in Fig. 2.16. The mid-point of the time window which is at 3.0

ms in this case is considered as the delay of the time window to be compensated for. Since the delay of

3.0 ms corresponds to 1.5 of the time bin width of the bias-tone-period histogram, the period

histograms are built with the delay of one time bin, and the fractional residue of 0.5 time bin or 0.05

period is accounted for by adding it to the phase of the harmonic components.

An example of the time windowed period histogram is illustrated with the analysis over the time

window of 0 - 1 ms at 60 dB pSPL shown in Fig. 2.14. Since this time window precedes the click response

Click-bias Period Histogram Bias-Tone LevelClick Period: 18 msec



latency, the resulting time windowed period histogram should be similar to the period histogram
generated by a level series of 50 Hz bias-tone alone. For this time window with its center at 0.5 ms, the
delay of the time window is accounted for by adding the phase offset of 0.025 period to the harmonic
phase estimates resulting from the time windowed period histogram.

Fig. 2.15 compares the bias-tone-only firing pattern against the bias-tone-period histogram from
the pre-click-latency portion of the bias-tone on click runs which are shown on the left and middle plot
respectively. As expected, the two level series of period histograms showed similar progression of
pattern over the bias-tone level. Specifically, similar phase of excitation with the peak splitting
phenomenon was seen from the two sets of histograms at 100 and 110 dB SPL of the bias-tone. Note
that the peak splitting phenomenon at 100 and 110 dB SPL captured by the two runs showed some
difference in details for two reasons. Firstly, the bias-tone alone paradigm used much finer time bin
width of 0.2 ms in its period histograms compared to the bias-tone on click paradigm. Specifically, for
the analysis window of 0 - 1 ms, the period histograms for the bias-tone on clicks were built with
samples of firing rates at 2 ms intervals with each sample calculated as the average firing rate over the
time window duration of 1 ms. Secondly, as can be seen from the difference in their rate-level function,
the AN fiber was at different states of adaptation which could affect the details of the peak splitting
phenomenon.

Boundary Plot, CF=1.88lkHz

Analysis
Time Window: 0 - 1 msec

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Post click stimulus time, msec

Fig. 2.14. Analysis time window prior to the click response latency, 0 - 1 ms: period histogram analysis over this
time interval is expected show similar pattern as the period histogram generated the bias-tone only level series.
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Fig. 2.15. Comparison of the BT-only firing pattern VS pre-click-latency portion of the Bias-tone on click runs:
Left: period histogram from the bias-tone only level series; Middle: period histogram from the bias-tone on

clicks over the time window of 0-1 ms prior to the click response latency. Right: Firing rate, synchrony index &
suppression in the top-down order for the bias on click response. The firing rate for the bias-tone only and bias

on click runs started off at different levels due to differences in their adaptation states but converged for the
bias-tone levels of 90 dB SPL & above. At 100 and 110 dB SPL, period histograms from both runs showed similar

excitation patterns with the peak splitting phenomenon. Note that there were some differences in details of
peak splitting between the two runs. These differences can be explained by the difference in the time

resolution of the period histograms of the two runs. Refer to the main text for details.

As for the low-level click response of the example fiber, the time windowed period histogram

analysis was done over the first peak at 60 dB pSPL located at the time window from 2.7 ms to 3.3 ms as

shown in Fig. 2.16. The detailed analysis in Fig. 2.17 shows that the suppression threshold of the second

harmonic was reached at the bias-tone level of 100 dB SPL. The half-period histogram analysis was

applied to locate the major suppression phase which was similar to that of low-level CF-tone response

from Fig. 2.9.
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Boundary Plot, CF=1.881kHz, click level = 60 dB pSPL

Analysis Time Window:
2.7 msec - 3.3 msec

1 1.5 2 2.5 3
Post click stimulus time, msec

[I

4 4.5 5

Fig. 2.16. Analysis time window, 2.7 ms - 3.3 ms, for the low-level click response from the same fiber, which
includes the first prominent rarefaction peak.
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Fig. 2.17. Period histogram of the bias-tone alone level series along with the analysis of the bias-tone
suppression effect on the low-level click response: Left: analysis of the bias-tone alone excitation pattern from
Fig. 2.4 where the excitation threshold was reached at 110 dB SPL with the excitation phase noted with a green

triangle; Middle: Bias-tone level series of the period histograms of the bias-tone effects on low-level click
responses: the baseline firing rates without the bias-tone are noted with dashed blue lines, and the firing rates
with the bias-tone on are plotted in red. Note that suppression threshold was reached at 100 dB SPL with the
major suppression phase noted with a red inverted triangle; Right: detailed analysis on the bias-tone effects:
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harmonic and the suppression phase estimates for the 1st & 2nd harmonic are shown in the top-down order.
Note the significant shifts in the all three metrics at the threshold of suppression. Specifically, the rates were

suppressed, synchrony indices rose, and the error on the suppression phase estimates dropped within the
suppression threshold.



III. Results

A. Phase of Excitation by 50 Hz Bias-tone Alone and Phase of Suppression on Low-level
CF-tone Responses

The phase of excitation of AN fibers in response to 50 Hz bias-tone throughout the entire range

of CF is plotted in Fig. 2.18. Note that the zero phase reference of the plots was the cosine phase of the

50 Hz earphone drive signal. Also plotted in Fig. 2.18 is the phase of major suppression on low-level CF-
tone responses at the suppression threshold level. As mentioned previously, the standard error on all

phase estimates was within ±20*which is noted on the plot as the blue error bar.

Major Phase of Suppression on CF-tone VS BT-alone Excitation Phase
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Fig. 2.18. Plot of the phase of excitation from the "bias-tone only" runs and the major suppression phase from
the "bias-tone on CF-tone" responses. Note that the excitation phases form two clusters separated by about YA

cycle, and the phase of suppression on the CF-tone response lies approximately in the middle separated by
about % cycle from the phase of excitation. Similar results have been reported in previous studies [Cai & Geisler,

1992a].

The two data groups formed distinctly separate clusters. The data for the major suppression

phase on the low-level CF-tone responses were located tightly around the phase of 0.55 T within ± one

standard error where T denotes a period of the bias-tone. In contrast, there was significantly wider

spread in the phase of excitation in response to 50 Hz bias-tone. Further, the pattern of data scatter for

the phase of excitation by 50 Hz bias-tone changed sharply across the CF boundary of about 2 kHz as



shown in Fig. 2.19 where the histogram of the fiber count across the excitation phase are plotted first

for fibers with CF < 2 kHz in Fig. 2.19(a) and for the fibers with CF > 2 kHz in Fig. 2.19(b). For fibers with

CF > 2 kHz, the phase of excitation data formed a single mode around 0.8 period whereas for CF < 2 kHz,

the data were widely distributed with two main modes at 0.35 and 0.8 period which are approximately

half a cycle apart. This bimodal distribution of the excitation phase for CF < 2 kHz can be explained by

examining the details of the period histograms generated by 50 Hz bias-tone alone level series as shown

in Fig. 2.4 and Fig. 2.20 where two peaks at about the opposite phases emerge from the period

histogram at high levels of the bias-tone. Specifically, the typical pattern found throughout the animals

showed a wider peak at about phase of 0.35 T as well as a sharper peak at the opposite phase.

Depending on the relative size of the two peaks, the excitation phase was determined as the middle of

the peaks as in Fig. 2.4, the earlier peak in Fig 2.20(a), and the later peak as in Fig. 2.20(b). As

mentioned earlier in methods section, similar results have been reported in previous work on cats AN

fibers below 2 kHz as the "peak splitting" phenomenon [Cai & Geisler, 1996; Johnson, 1980; Kiang, 1984;

Kiang, 1990].



(a) Histogram of Fiber Count Across Excitation Phase of Fibers with CF < 2 kHz

Total 32 Fibers

11i II.
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(b) Histogram of Fiber Count Across Excitation Phase of Fibers with CF > 2 kHz
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Fig. 2.19. Histogram of the AN fiber count across the phase of excitation of the AN fibers in response to 50 Hz
bias-tone presented alone. As shown in Fig. 2.18, the distribution drastically changes across the CF of about 2

kHz. (a) The histogram for fibers with CF < 2 kHz shows three modes at ~0.35 T, 0.53 T & 0.8 T where T denotes a
period of the bias-tone; (b) The histogram for fibers with CF >= 2 kHz shows a single prominent mode at 0.8T.



(a) CT33, Unit6, CF = 0.56kHz, SR=80sps

II

lb . -1 -
L iI-

t 1
10 15

PZC time (ms)

A5.

110 '5-
(n

100

0.52

U)

80

a.

O 0.5

0

Rate Level Function

Rate Threshold: +a

70 80 90 100 110
Tone Lewl, (dB SPL)

Synchrony Index VS Bias Tone Lewi

70 80 90 100 110
Tone Lewi, (dB SPL)

Excitation Phase Estimate

Excitation Phase Estimate
Abow Threshold

70 80 90 100 110
Tone Level, (dB SPL)

(b) CT30, Unit45, CF = 640Hz, SR = 7.2sps
100

BIAS LEVEL 4
dB SPL

50

120

CL

0

110

Rate Levl Function

Rate Threshold: +o,
1'

70 80 90 100 110
Tone Lewl, (dB SPL)

Synchrony Index VS Bias Tone Level

70 80 90 100 110 120
Tone Lewl, (dB SPL)

Excitation Phase Estimate
1.5

Excitation Phase Estimate
Abow Threshold

70 80 90 100 110
Tone Levl, (dB SPL)

Fig. 2.20. Bias-tone alone excitation pattern for CF < 2 kHz displaying the peak splitting phenomenon. Two main
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B. Suppression Effects on Low-level CF-tone Responses and Low-level Click Responses
by 50 Hz Bias-tone

Fig. 2.21 shows the major suppression phase on low-level click responses by 50 Hz bias-tone
together with the major suppression phase on low-level CF-tone responses at the threshold of
suppression throughout the CF of the AN fiber. Most of the data points from both groups were located
closely together within a band of ± one standard error which strongly indicates the similarity of the two
data groups. Note, however, this comparison extends only up to 7 kHz due to the absence of the data
for the low-level clicks above this frequency.

As for the CF dependency of the suppression phase, for both low-level click and tone responses
there was a slight negative slope with increase of CF with the magnitude less than 0.1 period per decade
of CF. Again, the zero phase reference for all data points is cosine phase of the 50 Hz electrical drive
signal to the earphone.

Fig. 2.22 compares the 50 Hz bias-tone level at the threshold of suppression on the low-level CF-
tone responses & low-level click responses. Fig. 2.22(a) shows the distributions of the fiber count over
the suppression threshold. The mode of the distribution for the CF-tone responses was ~10 dB lower
than that of the low-level clicks. Fig. 2.22(b) displays the suppression thresholds over the CF of the fiber.
Up to the CF of ~10 kHz, the suppression threshold for both types of responses remained relatively flat
over the CF with ~10 dB higher threshold for the low-level clicks. For CFs higher than 10 kHz, the
suppression threshold for low-level CF responses rose steeply at the rate of ~10 dB per octave. Note
that for the low-level click responses from the AN fibers with CF higher than 10 kHz, the suppression
threshold was not reached within the maximum level of the 50 Hz bias-tone applied in the trial which
varied from 100 dB SPL to 120 dB SPL. In the next section, the bias-tone effects on low-level click
responses from this region of CF which remained sub-threshold are examined in details with two
example AN fibers with CF of 17.28 kHz and 20.4 kHz.

Fig. 2.23 plots the ratio of 2 nd harmonic VS 1s' harmonic synchrony index at the suppression
threshold by the 50 Hz bias-tone for the CF-tone responses and low-level click responses. A higher value
of this ratio indicates stronger presence of the minor suppression phase at the threshold level of
suppression thereby indicating more symmetrical location of the operating point of OHC mechano-
electrical transduction function across the two saturation plateaus. The data for both response types
showed an upward trend with increase of CF indicating stronger presence of the minor suppression
phase at the threshold level of suppression for AN fibers with higher CFs and accordingly a more
symmetrical location of the OHC operating point.

The degree of symmetry of the location of the operating point within the OHC mechano-electrical
transduction function was examined by another metric, "Half-period Symmetry Index", which tries to
quantify the ratio of modulation depth of the minor VS major suppression phase at the threshold of
suppression. The range of this ratio is from 0 to 1, and as it approaches 1, it indicates more symmetrical
depth of modulation between the two suppression phases thereby more symmetric location of the
operating point of the OHC transduction function. For this purpose, the "Half-period Synchrony
Analysis" method described in the methods section which was used to disambiguate the major



suppression phase from period histograms with two oppositely located suppression phases was

adapted. Specifically, for period histograms which meet the suppression threshold criteria of the second

harmonic, the ratio of the minor VS major suppression phase was calculated as a part of the analysis

procedure to determine the major suppression phase. For period histograms which met the

suppression threshold criteria for the first harmonic, the "Half-period Synchrony Analysis" procedure

was carried out with the suppression phase based on the first harmonic phase estimate. The "half-

period symmetry index" at suppression threshold for low-level CF-tone and low-level click responses are

plotted over the CF of the fiber in Fig. 2.24. Note that the dashed line at the index value of 0.5 indicates

the ratio of 1 to 2 in the half-period synchrony index. Note that most of the data points were located

below the reference level of 0.5 except for the data group for CF-tone responses with CF > 10 kHz

indicating more symmetric shape of suppression pattern at threshold for this data group as found in the

other metrics, i.e., the ratio of second harmonic VS first harmonic synchrony index in Fig. 2.23.
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Fig. 2.21. The major suppression phase for the CF-tone response & low-level clicks are plotted together. Most
data points fell within t standard error (S.E). Note that both data groups showed a slight negative slope across
increase of CF with the magnitude less than ~0.1 period / decade of CF. Similar results have been reported in

Fig. 4A of [Cai and Geisler, 1996a]
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Fig. 2.22. The threshold of suppression on the CF-tone response and low-level click response: (a) Histogram of
the fiber count over the suppression threshold; (b) the plot of the suppression thresholds over CF. The total

fiber counts were 45 & 39 for the CF-tone & low-level clicks respectively. Both data showed that the threshold
on the CF-tone responses was 5 - 10 dB lower than that of the low-level click response throughout CUs.
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Fig. 2.23. Plot of the ratio of 2 over 1 harmonic synchrony index at the suppression threshold VS CF of the
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suppression dips; therefore, lower value of this ratio indicates more asymmetrical location of the operating
point on the OHC mechano-electric transduction function. The data for the low-level clicks are about 10 dB
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Fig. 2.24. Half-period Symmetry Index: is the ratio of the first harmonic synchrony index from the two "Half-
period histograms" which tries to quantify the degree of symmetry in the modulation depth between the two

major and minor suppression phases. Specifically, the "Half-Period Analysis Method" shown in Fig. 2.6 has been
adapted for this purpose. The range of this ratio is from 0 to 1 where 1 indicates perfectly matched modulation
depth between the major and minor suppression phase. Refer to the main text for details. Note the reference
value of 0.5 which indicates the 1 to 2 ratio of modulation index between the two suppression phases. Most of
the data points are located below this value except for the data group for CF-tone response with CF > 20 kHz.

Note that similar trend was seen from the Fig. 2.23.

C. Example Results of the 50 Hz Bias-tone Suppression Effects on Low-level CF-tone and
click responses

In order to aid the reader to appreciate how well the data from individual fibers fit with the data
shown in the previous plots, this section documents the typical suppression patterns of low-level click
and tone responses from individual fibers. Examples are presented from 8 normal AN fibers taken from
7 animals over the entire range of CFs. At least one example is shown for each of six bands with octave
spacing starting at a band of CF < 700 Hz and ending with a band of CF > 11 kHz. For each example, the
AN fiber is identified by its animal and unit number. Each example has three sets of plots. The first set

shows, subplot (a) the threshold tuning curve (TC), and subplot (b) compound PST histograms of the
responses to the click level series. The click level selected for the bias-tone studies is indicated in red.
The second set of plots shows, subplot (c) at left, the 50 Hz bias-tone-level-series period histograms
from the bias-tone only responses, the (d) in the middle, the bias-tone-level-series period histograms

from the responses to bias-tones plus low-level clicks, and subplot (e) at right, the detailed analysis of



the suppression effects on the low-level click responses. The third set of plots shows, at left, subplot (f)
bias-tone-level-series period histograms of the responses to bias-tones plus low-level CF-tone
responses, and at right, subplot (g) the detailed analysis the suppression effects on the low-level CF-tone
response are shown and compared to the suppression effects on the low-level click responses.

Example Result in Fig. 2.25: CT028, U009, CF=0.52 kHz, SR=85 sps
The data from this fiber show the typical pattern from the CF region below 1 kHz. The bias-tone

only excitation threshold was met at 100 dB SPL with the excitation phase detected at the narrower
peak in the period histogram as shown in Fig. 2.25(c). The suppression threshold on the low-level click
and CF-tone responses was reached at 90 and 80 dB SPL as shown in Fig. 2.25(d) and Fig. 2.25(f)
respectively. The minor suppression phase is not visible because the second harmonic suppression
criterion was not met below the excitation threshold.

(a) CT28, unit 9: CF=0.52 kHz, Th=10.1 dB SPL
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(c) Bias Tone Only Period Histogram (d) Bias on Low-level Click Response
ClickR, 60 dB pSPL
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(f) Bias on CF-tone: 0.522kHz / 25.131dB SPL
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Fig. 2.25. Example Result: (a) Tuning Curve, CF=0.522kHz and SR= 85 sps; (b) Click Level Series, rarefaction click
(ClickR) at 60 dB pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series, excitation threshold

reached at 100 dB SPL. Excitation threshold level is indicated in green, and the excitation phase is indicated by a
green triangle; (d) Bias-tone level-series on click response, ClickR at 60 dB pSPL, Time window 4.1 - 5.2 ms. The
suppression threshold and the suppression phase of the 1s harmonic is indicated in blue; (e) Detailed analysis of

the bias-tone effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of
major suppression for the 1' and 2nd harmonic in the top-bottom order; (f) Bias-tone level-series on CF-tone

response: suppression threshold for 1'' harmonic was reached at 80 dB SPL. The major suppression phase of the
low-level click and CF-tone responses was found at similar location approximately in the middle of the period;

(g) Detailed analysis of the bias-tone effects on CF-tone response, Bias-tone level functions of firing rate,
synchrony indices and phase of major suppression for the 1' and 2nd harmonic in the top-bottom order
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Example Result in Fig. 2.26: CT025, U107, CF=0.96 kHz, SR= 84.5 sps
This fiber is another typical example from the CF region below 1 kHz. The bias-tone only

excitation threshold was met at 120 dB SPL with the excitation phase detected at the broader peak in
the period histogram. The suppression threshold on the low-level click and CF-tone responses were
reached at 90 and 80 dB SPL respectively at a similar phase location. The minor suppression phase was
not visible from the period histogram.

(a) CT25, unit 107: CF=0.96 kHz, Th=17.3 dB SPL
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(d) Bias on Low-level Click Response
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(g) Analysis of Bias-tone Effects on CF-tone Response
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Fig. 2.26. Example Result: (a) Tuning Curve, CF=0.96 kHz and SR= 84.5 sps; (b) Click Level Series, ClickR at 60 dB
pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series, excitation threshold reached at 120 dB
SPL. Excitation threshold level is indicated in green, and the excitation phase is indicated by a green triangle;
(d) Bias-tone level-series on click response, ClickR at 60 dB pSPL, Time window 3,78 - 4.6 ms. The suppression
threshold and the suppression phase of the 1" harmonic is indicated in blue; (e) Detailed analysis of the bias-
tone effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of major

suppression for the 150 and 2nd harmonic in the top-bottom order; (f) Bias-tone level-series on CF-tone response:
suppression threshold for 1s' harmonic was reached at 80 dB SPL. The major suppression phase of the low-level

click and CF-tone responses was found at similar location approximately in the middle of the period; (g)
Detailed analysis of the bias-tone effects on CF-tone response, Bias-tone level functions of firing rate, synchrony

indices and phase of major suppression for the 1st and 2nd harmonic in the top-bottom order

(f) Bias on CF-tone: 0.95kHz / 27dB SPL



Example Result in Fig. 2.27: CT033, U014, CF= 1.29 kHz, SR= 0.1 sps
This is a low-SR fiber with its CF just above 1 kHz. The bias-tone only level series did not show

much excitation. The suppression threshold for 1" harmonic criterion was reached at 80 and 70 SPL of

the bias-tone for the low-level click and CF-tone responses respectively. Further, at the bias-tone level

of 10 dB above the 1' harmonic suppression threshold, the minor suppression phase was noticeable
from both period histograms. For the case of the click response, because the bias-tone at 90 dB SPL led
to almost complete suppression, the criterion for the second harmonic was not met.

(a) CT33, unit 14: CF=1.29 kHz, Th=26.5 dB SPL
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(c) Bias Tone Only Period Histogram (d)
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(g) Analysis of Bias-tone Effects on CF-tone Response
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Fig. 2.27. Example Result: (a) Tuning Curve, CF=1.29 kHz and SR= 0.1 sps; (b) Click Level Series, ClickR at 70 dB
pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series: excitation threshold was not reached
within the maximum level of the bias-tone stimulus, 120 dB SPL; (d) Bias-tone level-series on click response,

ClickR at 70 dB pSPL, Time window 3.24 - 4 ms. The suppression threshold and the suppression phase of the 1s

harmonic is indicated in blue; (e) Detailed analysis of the bias-tone effects on click response, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1st and 2nd harmonic in the
top-bottom order; (f) Bias-tone level-series on CF-tone response: suppression threshold for Is harmonic was
reached at 70 dB SPL. The major suppression phase of the low-level click and CF-tone responses was found at
similar location approximately in the middle of the period; (g) Detailed analysis of the bias-tone effects on CF-

tone response, Bias-tone level functions of firing rate, synchrony indices and phase of major suppression for the
1st and 2 harmonic in the top-bottom order
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Example Result in Fig. 2.28: CT031, U079, CF= 2.8 kHz, SR= 14 sps
This fiber is a typical example from the CF region of 2-4 kHz. From the bias-tone-only period

histograms, the peak splitting was not present in contrast to fibers with lower CFs although the narrow
peak remained at about the same phase as in fibers with lower CFs. The suppression threshold for

second harmonic was reached at 90 and 80 dB SPL for the low-level click and CF-tone responses
respectively.

CT31, unit 79: CF=2.12 kHz, Th= 10.4 dB SPL
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(c) Bias Tone Only Period Histogram (d) Bias on Low-level Click Response
ClickR, 70 dB pSPL

Time Window: 2.25-3 ms
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(f) Bias on CF-tone: 2.82kHz / 35.33dB SPL

It]

(g) Analysis of Bias-tone Effects on CF-tone Response

Spike Rate: BT-on-CF & BT-alone
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Fig. 2.28. Example Result: (a) Tuning Curve, CF=2.8 kHz and SR= 14 sps; (b) Click Level Series, ClickR at 60 dB
pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series: peak splitting was not present. Only the
narrow peak was excited at 110 dB SPL; (d) Bias-tone level-series on click response, ClickR at 60 dB pSPL, Time
window 2.25 - 3 ms. The suppression threshold was met at 90 dB SPL for the 2nd harmonic. The suppression
threshold and phase of the 2 harmonic are indicated in red; (e) Detailed analysis of the bias-tone effects on

click response, Bias-tone level functions of firing rate, synchrony indices and phase of major suppression for the
1 A and 2 harmonic in the top-bottom order; (f) Bias-tone level-series on CF-tone response: suppression

threshold for 2" harmonic was reached at 80 dB SPL. The major suppression phase of the low-level click and
CF-tone responses was found at similar location approximately in the middle of the period; (g) Detailed analysis

of the bias-tone effects on CF-tone response, Bias-tone level functions of firing rate, synchrony indices and
phase of major suppression for the I4 and 2 harmonic in the top-bottom order
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Example Result in Fig. 2.29: CT031, U055, CF= 5.55 kHz, SR= 50 sps

Both the TC and the click level series show the typical characteristics of a high-CF fiber.
Specifically, the TC shows a broad low-frequency tail, and the low-level click responses show the
amplitude envelope only with no phase-locking to the CF-tone. From the bias-tone only period
histograms, the peak splitting was not visible, and the narrow peak remained at about the same phase
as in fibers with lower CFs. The suppression threshold was reached at 80 dB SPL with the first and
second harmonic criterion for click and CF-tone response respectively. The suppression pattern on the
low-level CF-tone responses showed more prominent minor suppression phase.
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(c) Bias-tone Only Period Histogram
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(g) Analysis of Bias-tone Effects on CF-tone Response
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Fig. 2.29. Example Result: (a) Tuning Curve, CF=5.55 kHz and SR= 50 sps; (b) Click Level Series, ClickR at 70 dB
pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series: peak splitting was not present. Only the

narrow peak appeared at 100 dB SPL, but the rate threshold was note met; (d) Bias-tone level-series on click
response, ClickR at 70 dB pSPL, Time window 2.3 - 3.3 ms. The suppression threshold was met at 80 dB SPL with

the first harmonic; (e) Detailed analysis of the bias-tone effects on click response, Bias-tone level functions of
firing rate, synchrony indices and phase of major suppression for the 1 i and 2 "a harmonic in the top-bottom

order; (f) Bias-tone level-series on CF-tone response: suppression threshold for 2" harmonic was reached at 80
dB SPL. The suppression pattern on CF-tone responses showed a more symmetrical shape; (g) Detailed analysis
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Example Result in Fig. 2.30: CT023, U066, CF= 7.16 kHz, SR= 80 sps
This is the AN fiber with the highest CF from which the bias-tone effects on low-level click

responses met the suppression threshold criteria. Both the TC and the click level series show the typical
characteristics of a high-CF fiber; the TC shows a broad low-frequency tail, and the low-level click
responses no longer is phased locked to the CF of the fiber but shows the amplitude envelope only.
From the bias-tone only period histograms, the peak splitting is not visible, and the narrow peak remains
at about the same phase as in fibers with lower CFs. The suppression threshold for the second harmonic
was reached at 100 dB SPL and 90 dB SPL for low-level click and CF-tone and responses respectively.
Note that for this fiber, the suppression phase for the low-level click responses was detected at the
opposite phase to the main data group. However, also note that at 10 dB below the threshold at 90 dB
SPL, the actual major suppression phase emerges at the typical location, but fell below the criterion.
Therefore, the suppression pattern for this fiber was not actually different from other fibers in this CF
region.
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(c) Bias-tone Only Period Histogram
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(g) Analysis of Bias-tone Effects on CF-tone Response
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Fig. 2.30. Example Result: Example Result: (a) Tuning Curve, CF= 7.16 kHz and SR= 80 sps; (b) Click Level Series,
ClickR at 70 dB pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series: peak splitting was not
present. Only the narrow peak appeared at ~110 dB SPL, but the rate threshold was note met; (d) Bias-tone

level-series on click response, ClickR at 70 dB pSPL, Time window 1.8 - 2.8 ms. The suppression threshold was
met at 100 dB SPL with the second harmonic. The major suppression phase was opposite of the typical value;

however, at 10 dB the threshold, the actual major suppression phase can be seen in the typical location.
Therefore, the actual suppression characteristic of this fiber was not different from the typical pattern; (e)

Detailed analysis of the bias-tone effects on click response, Bias-tone level functions of firing rate, synchrony
indices and phase of major suppression for the 1st and 2nd harmonic in the top-bottom order; (f) Bias-tone level-
series on CF-tone response: suppression threshold for 2 harmonic was reached at 90 dB SPL. The suppression
pattern on CF-tone responses showed a more symmetrical shape; (g) Detailed analysis of the bias-tone effects
on CF-tone response, Bias-tone level functions of firing rate, synchrony indices and phase of major suppression

for the 1s and 2 harmonic in the top-bottom order.
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Example Result in Fig. 2.31: CTO30, U001, CF= 17.28 kHz, SR= 70 sps
This is one of the fibers with CF > 10 kHz from which the suppression threshold was not reached

for the low-level click responses but found on low-level CF-tone responses at 110 dB SPL. Note that the

maximum bias-tone level applied for the low-level click responses was 110 dB SPL which was 10 dB

lower than on low-level CF response. Further note that the level function of the first harmonic
synchrony index for the bias-tone effects on clicks began to show an upward trend at 110 dB SPL. Based
on these data, the suppression threshold on the low-level clicks could have been slightly above the
maximum level applied in this recording.

(a) CT30 unit 1: CF=17.28 kHz, Th=5.7 dB SPL
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(c) Bias-tone Only Period Histogram (d) Bias on Low-level Click Response
Click R, 70 dB pSPL

Time Window: 1.8 - 3.0 ms
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(e) Analysis of Bias on Clicks
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(g) Analysis of Bias-tone Effects on CF-tone Response
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Fig. 2.31. Example Result: (a) Tuning Curve, CF= 17.28 kHz and SR= 70 sps; (b) Click Level Series, ClickR at 70 dB
pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series: excitation threshold was not met; (d)

Bias-tone level-series on click response, ClickR at 70 dB pSPL, Time window 1.8 - 3.0 ms. The suppression
threshold was not reached within the maximum bias-tone level applied, 110 dB SPL; (e) Detailed analysis of the
bias-tone effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of major
suppression for the 15 and 2nd harmonic in the top-bottom order; (f) Bias-tone level-series on CF-tone response:

suppression threshold for 2nd harmonic was reached at 100 dB SPL. The suppression pattern on CF-tone
responses showed a more symmetrical shape; (g) Detailed analysis of the bias-tone effects on CF-tone response,

Bias-tone level functions of firing rate, synchrony indices and phase of major suppression for the 1s and 2"n
harmonic in the top-bottom order.
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Example Result in Fig. 2.32: CT022, U013, CF= 20.4 kHz, SR= 107.6 sps
This is one of the fibers with CF > 10kHz from which the suppression threshold was not reached

for the low-level click responses but found on low-level CF-tone responses at 90 dB SPL. Note that the
maximum bias-tone level applied for suppression studies in this recording was 100 dB SPL. Further note
that the level functions of the synchrony indices for the bias-tone effects on click responses began to
show an upward trend at 90 dB SPL. Based on these, the suppression threshold on the low-level clicks
may have been above the maximum level applied in this recording.
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(c) Bias-tone Only Period Histogram
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(g) Analysis of Bias-tone Effects on CF-tone Response

Spike Rate: BT-on-CF & BT-alone
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Fig. 2.32. Example Result: (a) Tuning Curve, CF= 20.4 kHz and SR= 107.6 sps; (b) Click Level Series, ClickR at 70
dB pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series: excitation threshold was not met; (d)

Bias-tone level-series on click response, ClickR at 70 dB pSPL, Time window 2.25 - 3.0 ms. The suppression
threshold was not reached within the maximum bias-tone level applied, 100 dB SPL; (e) Detailed analysis of the
bias-tone effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of major
suppression for the 14 and 2 harmonic in the top-bottom order; (f) Bias-tone level-series on CF-tone response:

suppression threshold for 2 harmonic was reached at 90 dB SPL. The suppression pattern on CF-tone
responses showed a more symmetrical shape; (g) Detailed analysis of the bias-tone effects on CF-tone response,

Bias-tone level functions of firing rate, synchrony indices and phase of major suppression for the 1st and 2"n
harmonic in the top-bottom order.
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IV. Discussion

A. The Suppression Effects on AN Firing Reported in This Study Were Primarily Due to
Stimulation of OHCs rather than Direct Stimulation of IHC Stereocilia by the 50 Hz Bias-tone

Although 50 Hz bias-tone used in this study is expected to stimulate the OHC stereocilia with higher

amplitude than the IHC stereocilia [Russell and Sellick, 1983], it has been found in this study and

elsewhere [Sellick et al, 1982; Patuzzi et al, 1984a; Cai and Geisler, 1996a] that AN responses to bias-

tone level series with bias-tone alone do show both firing rate elevation and phasic modulation of

period histograms at high enough levels of bias-tone. Consequently, it would be necessary to examine

whether the results reported in this study as suppressive effects on OHC transduction function were not

significantly affected by direct stimulation of the IHC stereocilia by the bias-tone.

In order to detect results with potential effects of direct stimulation of IHC stereocilia by the bias-

tone, the excitation threshold level on AN firing by the bias-tone alone was measured from the AN

response to bias-level series of bias-tone alone from each AN fiber. Then, the results from the bias-tone

level series on either low-level CF-tone or click responses were not included in the data pool for

suppression effects if the bias-tone level of the suppression data exceeded the excitation threshold.

The criteria to determine the excitation threshold of a AN fiber required firing rate elevation by one

standard deviation and the standard error on the vector phase of firing to be within ±20*. Now, it would

be necessary to examine whether the criteria applied on the reported results were appropriate. In

order to examine the impact of the excitation threshold criteria on the suppression data, several

iterations of data analysis were done with varying degrees of criteria around the values applied on the

reported results. For example, the rate criteria with smaller increment such as Y2 of standard deviation

and the phase criteria with larger error bound such as ±30* are expected to lower the threshold of

excitation by the bias-tone alone whereas a larger increment of firing rate such as two standard

deviation and lower error bound on phase such as 100 would elevate the excitation threshold. Series of

plots of the excitation phase and the major suppression phase on CF-tone and click response as shown

in Fig. 2.18 and Fig. 2.21 with varying criteria on the excitation threshold did not show significant shifts

in the results other than the number and scatter of data points around the same trend as shown in Fig.

2.18 and Fig. 2.21. Considering these, the suppression Effects on AN Firing reported in this study were

concluded to be primarily due to stimulation of OHCs rather than direct stimulation of IHC stereocilia by

the 50 Hz bias-tone

B. Comparison to Previous Studies on Low-frequency Bias-tone Effects on AN Responses
to Low-level CF-tone

The previous study which is the most comparable to the results reported here for the bias-tone

effects on low-level CF-tone responses comes from [Cai and Geisler, 1996a]. In their study, the temporal

aspects of the suppressive effects of a low-frequency bias-tone on low-level CF-tone responses from

cats AN fibers over the entire range of CFs were reported. Specifically, their results covered the bias-

tone frequency of 50 Hz and comparison of the major suppression phase on the low-level CF-tone

responses with the phase of excitation by the 50 Hz bias-tone alone as reported in this study. Overall,

the results reported here were quite similar to the comparable results from [Cai and Geisler, 1996a]

with no major discrepancies.



As reported in Fig 4.A and Fig. 5.A of [Cai and Geisler, 1996a] and in Fig. 2.18 of this study, the

phase of major suppression by 50 Hz bias-tone on low-level CF-tone responses formed a smooth curve

without significant discontinuities over the CFs of the AN fibers with a similar slope of ~-0.1 period of the

50 Hz bias-tone per decade of CF. Further, both studies showed that the major suppression phase was
located -1/4 cycle away from the phase of excitation by the bias-tone alone. Also both studies found

that for the bias-tone frequency of 50 Hz, the phase of excitation by the bias-tone alone varied over the

range of ~1/2 cycle for fibers with CF < ~2 kHz due to the peak-splitting phenomenon whereby a wide
and a narrow peak separated by about ~1/2 cycle developed. For CF > 2 kHz, only the narrow peak was

visible from the excitation pattern by the bias-tone alone, and with reference to the phase of the narrow
peak, the major suppression phase was located with ~1/4 period lead as found by both studies.
Further, similar results of ~1/4 lead of the suppression phase on AN responses to low-level CF-tone in
relation to the phase of excitation by the bias-tone alone have been found from low-frequency bias-tone

studies on guinea pigs and chinchillas [Sellick et al, 1982; Temchin et al, 1997]. Note that the results on

chinchillas' AN were obtained with the bias-tone frequency of 50 Hz as done in this study [Temchin et al,
1997] while the studies on AN fibers from guinea pigs were done with a similar frequency of 40 Hz

[Sellick et al, 1982].

Despite the agreement among various studies on the relationship between the major

suppression phase and the phase of excitation, relating the major suppression phase to the phase of BM
vibration resulted in conflicting reports on cats [Cai and Geisler, 1996a; Rhode and Cooper, 1993].
Studies on low-frequency bias-tone effects on cats' BM vibration to low-level CF-tone by Rhode and
Cooper reported that the major suppression phase corresponded to the phase of peak displacement of

BM toward ST as found in both BM and AN studies on guinea pigs and chinchillas [Sellick et al, 1982;
Patuzzi and Sellick, 1984b; Geisler and Nuttall, 1997; Temchin et al, 1997]. However, the studies on the

bias-tone effects on cats' AN responses in [Cai and Geisler, 1996a] reported that the major suppression

phase corresponded to the phase of peak displacement of BM toward SV which is opposite phase to the

finding from studies on cats BM vibration. In [Cai and Geisler, 1996a], the phase of BM vibration

corresponding to the phase of period histogram of AN firing was estimated from the gross potential

recorded from the electrode placed near the round window. According to their estimate of the phase of

BM vibration, the phase of excitation by the 50 Hz bias-tone as well as the major suppression phase
were opposite to the results on guinea pigs [Sellick et al, 1982]. Consequently, if the BM phase

estimates used in [Cai and Geisler, 1996a] were erroneous such that the phase of excitation actually

corresponded to the phase of peak velocity of BM toward SV as found in other species, the major

suppression phase would indeed correspond to the phase of peak displacement of BM toward ST which

would be consistent with the studies on BM vibration measurements by Rhode and Cooper and also

with the AN and BM studies on guinea pigs and chinchillas.



C. Comparison of the Bias-tone Suppression Patterns on Low-level CF -tone VS Low-
level Click Responses Indicates that OHC Mechano-electrical Transduction Function Is
Similarly Involved in Generating Low-level CF-tone Response and Low-level Click Response
of Cats AN Fibers

It has long been known that AN responses to low-level CF-tone are the tone response counterpart of
low-level click responses [Kiang et al, 1965; Lin and Guinan, 2000]. Further, this relationship has been
refined into the hypothesis that AN responses to low-level CF-tone and clicks are driven by a common
mechanism whereby the OHC mechano-electric transduction is involved in similar ways [Guinan et al,
2005].

In order to test this hypothesis, the suppressive effects of 50 Hz bias-tone level series on AN
responses to low-level CF-tone and clicks were analyzed to compare the shape of the OHC transduction
function behind the two response types. Specifically, the major suppression phase and the degree of
symmetry between the major and minor suppression phase at the suppression threshold were
determined as shown in Fig. 2.21, Fig. 2.23 and Fig. 2.24.

Overall, comparison of the suppressive effects on low-level CF-tone VS low-level click responses in
Fig. 2.21, Fig. 2.23 and Fig. 2.24 indicates that OHCs were involved in generating the low-level CF-tone
and click responses with similar shape of mechano-electrical transduction function for AN fibers with CF
up to ~10 kHz. The strongest evidence for this conclusion comes from Fig. 2.21 where the major
suppression phase of the low-level CF-tone and click response were located mostly within the bound of
one standard error from each other. As for the symmetry of the operating point of the OHC
transduction function, most of the data points of the half-period symmetry index for CF < 10 kHz for
both low-level CF-tone and click response were located below the value of 1/2 as shown in Fig. 2.24
indicating a significantly asymmetric location of the operating point of the OHC transduction function
resembling the model of Fig. 2.1(b) rather than Fig. 2.1(a). As for any CF dependent trend in the
symmetry of the operating point, the trend of increasingly symmetrical location of the operating point
of OHC transduction function at higher CF was seen from the data for low-level CF-tone responses as
shown in Fig. 2.23 and Fig. 2.24 while such a trend was less evident from the data for low-level click
responses. Similar results have been reported in [Cai and Geisler, 1996a] for bias-tone suppression
effects on low-level CF-tone responses from cats AN fibers where the OHC transduction function was
found to change from the asymmetrical shape resembling Fig. 2.1(a) to the more symmetrical type in
Fig. 2.1(b) at higher CFs particularly for AN fibers with CF > 2 kHz.

Note that the conclusion of similarity in the OHC transduction function behind response generation
of the low-level CF-tone and click responses applies up to CFs of ~10 kHz. For AN fibers with CF > 10
kHz, the effects of 50 Hz bias-tone on low-level clicks remained below the suppression threshold for all

four of the fibers from which data were collected. In contrast, for low-level-CF tone responses, the

major suppression phase continued with a similar trend from the lower CF region for 12 of 16 fibers
from which data were collected. This raises several questions: a) What were the details in the

suppression data from the four fibers from which the bias-tone experiments on low-level click responses
were carried out?; b) Do the detailed results indicate any limitations in the experimental methods for

bias-tone effects on low-level click response study on these four fibers?; c) Are the details from these



four fibers compelling enough to conclude that the OHC transduction function worked differently in
generating the low-level click response compared to low-level CF-tone responses for CFs > 10 kHz?

The detailed data from two of the four fibers with CF of 17.28 kHz and 20.4 kHz in Fig. 2.31 and
Fig. 2.32 were discussed in the Results section. For those two fibers, the level series of the synchrony
index and shape of the period histograms indicated that suppression was building up at a similar phase
as the major suppression phase of CF-tone response but failed to reach the suppression threshold
criteria within the maximum level of the bias-tone applied during the experiment.

The plot of the suppression threshold of low-level CF-tone and low-level click response over the
CF in Fig. 4.22 shows that for up to ~10 kHz, the suppression threshold for low-level click response were
~10 dB higher than that of the low-level CF-tone response. For CF > 10 kHz, the suppression threshold
on low-level CF-tone response rose sharply and reached the maximum limit of the bias-tone level, 120
dB SPL. Consequently, if the trend of ~10 dB higher suppression threshold on low-level click response
compared to the low-level CF-tone responses continued for CF > 10 kHz, the projected values of
suppression threshold on low-level click responses would reach or exceed the maximum limit of 120 dB
SPL. Therefore, these data suggest that the sub-threshold result on the bias-tone effects on low-level
click responses were likely due to limitation in the maximum level of the bias-tone in the experiment.
Consequently, they do not suggest that OHC transduction mechanism worked differently in generating
the low-level CF-tone VS low-level click responses for CF > 10 kHz. As for the higher level of suppression
threshold on low-level click responses by ~10 dB over that of the CF-tone responses, they cannot be
interpreted directly as indications for stronger involvement of OHC transduction function in generation
of CF-tone responses over the click responses since suppression thresholds on AN responses by a low-
frequency bias-tone have been found to depend on the relative intensity of the probe stimuli over the
AN response thresholds [Patuzzi et al, 1984a; Cai and Geisler, 1996a]. In this study, only rough attempts
were made in trying to match the relative intensity between the CF-tone and click stimuli over their
respective threshold levels by applying each stimulus type at ~10-20 dB above the respective threshold.

Another experimental methodological factor behind the sub-threshold results on low-level click
response for CF > 10 kHz could be with the parameters of the click stimulus. The pulse duration was 100

plsec with the approximate bandwidth of ~10 kHz beyond which the spectrum shows roll-off, ripples and
zeros. Therefore, for fibers with CF > 10 kHz, the click stimulus would contain higher energy in the tail
frequency region of the fiber's tuning curve compared to the CF region. Consequently, low-level click
response evoked by such click stimuli from AN fibers with CF > 10 kHz might contain significant off-CF
component as well as the CF component. This potential mix of CF and off-CF component in the low-level
click response from AN fibers can lead to elevation of the suppression threshold by low-frequency bias-
tone.

In conclusion, it can be seen from the results of this study that the suppression patterns on AN
responses to low-level CF-tone and low-level click responses by a low-frequency bias-tone are similar
despite the cochlear non-linearities in the AN response generation mechanisms. Therefore, the results
from this study support the hypothesis that AN responses to both low-level CF-tone and clicks share a
common drive mechanism to the IHCs based on the BM-based cochlear amplifier.
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Chapter 3. Bias-tone Effects on AN Responses to Low-level and
Mid-to-high-level Clicks

I. Introduction
Analysis of auditory nerve (AN) responses to clicks, (i.e., the acoustic realization of an impulse),

can reveal the resonant properties of the mechanical drive behind the deflections of inner hair cell

(IHC) stereocilia. Particularly, recent studies on AN responses to click level series have shown that

the mechanical drive to the IHCs at mid-to-high-levels of clicks (60 - 100 dB SPL) are far more

complex than at low-level clicks. The mechanical drive behind the AN responses to low-level clicks

can be adequately explained through a single resonant response from the basilar membrane (BM) at

the characteristic frequency (CF) of the AN fiber [Kiang et al, 1965]. In contrast, AN responses to

mid-to-high-level clicks exhibit interactions of multiple resonances and potentially multiple drive

mechanisms to the IHC stereocilia [Lin and Guinan, 2000; Lin and Guinan, 2004; Guinan et al, 2005;
Guinan, 2009].

From the complex response characteristics of AN responses to mid-to-high-level clicks, it is of

particular interest to investigate the role of outer hair cells (OHC). OHCs have been found to be

directly responsible for the high sensitivity and sharp frequency tuning associated with the low-level

click and low-level CF-tone responses [Liberman and Kiang, 1984; Schoonhoven et al, 1994]. Now it

is widely accepted that the theory of the OHC-based "cochlear amplifier" provides adequate

explanations to the mechanism behind the generation of the AN responses to low-level CF-tone and

low-level clicks [Ruggero, 2001]. The critical part of the "cochlear amplifier" lies at the mechanical

feedback between the BM and OHCs whereby the stereocilia of OHCs transduce the BM vibration to

OHC transmembrane receptor voltage which returns as changes to the BM movement through the

electromotility of the OHCs [Ruggero, 2001]. Up until recently, the prevailing view on the role of

OHCs has been mainly on response generation of low-level click and CF-tone responses. However,

OHCs have also been found to be involved in generating the initial peaks of AN responses to mid-to-

high-levels of clicks [Guinan et al, 2005].

The role of OHCs in generating AN responses to mid-to-high-level clicks has been investigated by

studying the effects of electrical stimulation of medial olivocochlear (MOC) efferent fibers on AN

responses to click level series [Guinan, et al, 2005]. Through the efferent synapse on OHCs,

electrical stimulation of MOC efferents has been found to inhibit electromotility of OHCs thereby

inhibiting AN responses driven by electromotility of OHCs such as AN responses to low-level clicks

[Guinan, 1996]. The studies have revealed that both the initial peaks of AN responses at mid-high

click levels and the entire responses at low-levels of clicks are inhibited by stimulation of MOC

efferents [Guinan, et al, 2005]. The inhibitory effects at mid-to-high-levels of clicks were particularly

strong on the initial peaks of the AN response from fibers with the characteristic frequency (CF)

below ~4 kHz while the later peaks following the inhibited initial peaks were largely unaffected

[Guinan, et al, 2005]. These results hold particular significance since they show that the role of OHC

electromotility in AN response generation is not limited to low-levels of clicks and tones as

previously thought. Further, they show that the AN responses to mid-to-high-levels of clicks consist



of multiple distinct time segments which start with the initial peaks where the OHC electromotility is
strongly involved and followed by the later peaks which are not as significantly affected by OHC
electromotility.

Fig. 3.1 shows the compound post-stimulus histogram (cPST) of a cat's AN responses to click
level series with alternating click polarity where the rarefaction click responses are plotted upward
and the condensation click responses are plotted downward at each click level. The data came from
a low-CF fiber, CT023_U051, with CF = 1.5 kHz and SR = 45 spikes / s. The click intensity ranged from
30 dB pSPL to 115 pSPL where click intensities are expressed as peak-equivalent SPL (pSPL) which
corresponds to the SPL of a tone stimulus with the same peak pressure generated by clicks as
measured near the tympanic membrane. The click response threshold of this fiber was ~40 dB pSPL,
and the click responses at levels within ~20-30 dB from the threshold correspond to "low-level" click
response region where OHC electromotility is strongly involved in response generation [Guinan et al,
2005]. At 80 dB pSPL, an initial peak termed as auditory nerve initial peak (ANIP) due to rarefaction
clicks emerges ahead of the bulk of the responses that can also be seen at lower levels of clicks. The
ANIP response has been found to be strongly inhibited by MOC efferent stimulation [Guinan et al,
2005]. Further, the second peak following ANIP, termed auditory nerve second peak (ANSP), which
corresponds to the initial peak of condensation click response at the same level, has also been found
to be inhibited by MOC efferent stimulation but by less than the ANIP inhibition. Within ~20-30 dB
of click intensities above the threshold of ANIP, which is ~70 dB pSPL for this fiber, MOC efferent
stimulation inhibited ANIP and ANSP with significantly stronger inhibitory effect on ANIP compared
to ANSP while the later peaks following ANIP and ANSP were largely unaffected.

The MOC efferent studies on AN responses to clicks have shown that OHC electromotility is
unexpectedly involved in response generation of ANIP and ANSP which are invoked by click levels
well above the click response threshold. A question which naturally follows these findings is
whether the detailed mechanism whereby OHC electromotility is coupled to AN firing of ANIP and
ANSP might be somehow different from the mechanism at has been found to be the key
mechanism. A part of the answer to this question comes from [Guinan and Cooper, 2008] which
reported the effects of MOC efferent stimulation on BM responses from the basal region of guinea
pig's cochlea to click level series. Unlike the AN responses to mid-to-high-levels of clicks from the
apical region of cats, the initial peaks of the BM response to mid-to-high-levels of clicks were
unaffected by MOC efferent stimulation. Based on these findings, it has been hypothesized that the
response generation mechanism for ANIP and ANSP involves OHC electromotility as with the
"cochlear amplifier"; however, the coupling mechanism to IHC stereocilia must be an unknown
mechanism which is different from the BM based cochlear amplifier at low-level of clicks [Guinan et
al, 2005; Guinan, 2009]. Specifically, in [Guinan et al, 2005; Guinan, 2009] squeezing and bulging of
the subtectorial space driven by the electromotility of OHCs has been proposed as a potential
explanation [Nowotny & Gummer, 2006]. In their studies, it has been found that contraction and
elongation of OHCs brought on by their electromotility caused bulging and squeezing of the
subtectorial space above the IHC stereocilia thereby resulting in fluid flow deflecting the stereocilia



of IHC with a sufficient magnitude to stimulate AN firing at frequencies up to 3 kHz [Nowotny &
Gummer, 2006]. A schematized diagram of the Organ of Corti is shown in Fig. 3.3 for reference.

The objective of this study is to test the above hypothesis that the mechanism of OHC

involvement in generating ANIP and ANSP responses from cat AN fibers with CF < 4 kHz at mid-to-

high-levels of clicks is somehow different from the OHC mechanism behind AN response generation

at low-levels of clicks. The experimental approach toward this objective is through comparison of

suppressive effects by a low-frequency bias-tone on the three click response components, low-level

clicks, ANIP and ANSP, from cat AN fibers.

A low-frequency tone such as 50 Hz with high enough amplitude but still under the neural

threshold level has been known to suppress the firing pattern of AN invoked by a second higher

frequency probe tone with a temporal pattern of suppression which is synchronized with the low-

frequency bias-tone [Ruggero et al, 1992]. Typically the suppressive effects at low bias-tone levels

start with a single suppression phase re. the bias-tone-period which deepens with increasing bias-

tone level, and often progress to two suppression phases located at the opposite phases of the bias-

tone-period [Patuzzi et al, 1984a].

The mechanism behind this typical suppression pattern has been found on the saturating non-

linearity of the mechano-electric transduction function of OHCs which converts deflections of OHC

stereocilia into transmembrane current [Robles and Ruggero, 2001]. In-vivo measurements of the

OHC receptor potential in response to low-frequency acoustic tone stimuli from guinea pigs have

shown that the mechano-electric transduction function can be generally described as a curve with

saturating non-linearity at both ends of the output [Dallos, 1985; Russell et al, 1986]. Further, it has

been found that the sharpness of saturation and the location of the transduction operating point on

the curve depend on the CF location within the cochlea [Dallos, 1985; Russell et al, 1986]. A

schematized version of the transduction function from the basal region of guinea pig cochlea as

reported in Fig. 1 of [Russell et al, 1986] is shown in Fig 3.2(a) where the operating point is located

approximately in the middle of the two saturation plateaus. Also, a schematized version of the

transduction function from the apical region of guinea pig cochlea as reported in Fig. 10 of [Dallos,

1985] is shown in Fig 3.2(b) where the operating point is located closer to the hyperpolarizing

saturation plateau.

The shape of the nonlinear transduction function of the OHCs is strikingly well reflected in the

two tone interactions between a low-level probe tone and a second low-frequency bias-tone in the

BM movement, hair cell receptor voltage as well as firing patterns from AN fibers [Ruggero et al,

1992; Patuzzi et al, 1984b; Cai and Geisler, 1996c]. A low-frequency bias-tone with high enough

amplitude sinusoidally deflects the OHC stereocilia over a wide range such that the operating point

of the mechano-electric transduction function traverses through the two saturating end regions

during each cycle of the low-frequency bias-tone. Therefore, the gain of the OHC mechanoelectric

transduction function and AN responses driven by it are suppressed as the operating point of the

OHC transduction passes through the two saturating regions. Further, depending on the location of

the operating point of the OHC transduction function at the particular place within the cochlea, one



of the suppression phases emerges at a lower level of the bias-tone with a larger depth of
modulation [Cai and Geisler, 1996a; Cai and Geisler, 1996c].

Suppression effects on AN responses to a low-level CF-tone by a low-frequency bias-tone are
illustrated through the AN firing pattern evoked by a low-level CF-tone at 1.6 kHz and a 50 Hz bias-
tone recorded from a cat AN fiber with a CF of 1.63 kHz. Fig. 3.4 shows the bias-tone level series of
bias-tone-period histograms which were constructed by binning the spike records relative to the
period of the bias-tone. At the bias-tone level of 80 dB SPL, the firing rate in response to the low-
level probe tone begins to be suppressed approximately in the middle of the period which is noted
as the "major suppression phase". Then, at 90dB SPL the major suppression phase deepens to
complete suppression, and a "minor suppression phase" develops at the opposite phase location.
These suppression phases would correspond to the phase of the deflections of the OHC stereocilia
into the two saturation plateaus brought on by the 50 Hz bias-tone.

Analysis of the period histograms of the suppression effects produced by a low-frequency bias-
tone on AN response has served as an important investigative tool which revealed subtle differences
in the OHC transduction function from the basal VS apical region of the cochlea [Cai and Geisler,
1996c]. Specifically, analysis of the suppression pattern on low-level CF-tone response recorded
from basal AN fibers of cats has shown that the operating point of the OHC transduction function in
response to the low-level CF-tone of the fiber is significantly more symmetric across the saturating
ends than from apical fibers [Cai and Geisler, 1996c] as seen by the more symmetrical presence of
the major and minor suppression phases at the basal region.

Further, previous studies have shown that the phase of suppression can be related to the phase
of BM deflection thereby linking the phase of OHC stereocilia deflections brought on by the low-
frequency bias-tone with the phase of BM displacement [Patuzzi et al, 1984a; Temchin et al, 1997;
Geisler and Nuttall, 1997]. Specifically, by relating the phase of major suppression with the phase of
cochlear microphonic and the phase of excitation by the bias-tone alone, it has been shown that the
phase of major suppression on low-level CF-tone responses corresponds to the phase of maximum
displacement of the BM toward the scala tympani (ST) in guinea pigs and chinchillas [Patuzzi et al,
1984a; Temchin et al, 1997; Geisler and Nuttall, 1997]. These aspects of the suppressive effects of a
low-frequency bias-tone on AN firing are expected to provide insights on the following key questions
of this study:

a. Are there significant differences in the low-frequency bias-tone induced suppression
patterns on AN response to low-level clicks, ANIP and ANSP thereby indicating significant differences
in the shape of the mechanoelectric transduction function expressed in the AN response generation
mechanism behind the three click response components: low-level, ANIP and ANSP?

b. Are there any significant differences in the strength of involvement of the OHC
mechanoelctric transduction function in the AN response generation mechanism behind the three
click response components as indicated by the differences in the threshold of suppression on the
click response components?



c. If there are differences from the question a and b, do they lie mainly in low-level click
responses VS ANIP and ANSP in agreement with the predictions of the hypothesis that the
mechanism of OHC involvement in generating ANIP and ANSP responses from cat AN fibers with CF
< 4 kHz at mid-to-high-levels of clicks is somehow different from the OHC mechanism behind AN
response generation at low-levels of clicks?
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Fig. 3.1 Cat auditory nerve (AN) compound-PST (cPST) histogram showing responses to clicks at different sound
levels. A cPST histogram plots responses to rarefaction clicks up and to condensation clicks down. ANIP = AN
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0
Sound Pressure, arbitrary units

(b)

Sound Pressure, arbitrary units

Fig. 3.2 Models of the mechano-electric transduction function of outer hair cells (OHC): the output shows
saturating non-linearity at either ends of the input. The positive sound pressure indicates rarefaction. The gain
of the cochlear amplifier has been linked to the slope of the transduction function at a particular operating point

which is indicated by a red dot in the above plots. The operating point at rest has been found to lie at varying
degree of asymmetry across the two saturating ends. (a) a schematized version of the OHC mechano-electric
transduction function from the basal region of guinea pigs; (b) a schematized version of the OHC mechano-

electric transduction function from the apical region of guinea pigs
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Fig. 3.3 Schematic diagram of the Organ of Corti, the sensory organ within the cochlea. The stereocilia of outer
hair cells (OHCs) are embedded into the overlying tectorial membrane whereas the stereocilia of inner hair cells

(lHCs) are free-standing within the endolymphatic fluid. Consequently, low-frequency transverse vibrations
with frequency below ~10OHz on the Organ of Corti deflect the OHC stereocilia with significantly larger

amplitude than the IHC stereocilia.
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Fig. 3.4 Typical pattern of bias-tone suppression effects on low-level CF-tone responses over a bias-tone level
series: bias-tone, 50Hz, level series, 70-110 dB SPL, was presented together with a low-level CF-tone stimulus.

The CF of the fiber was 1.63 kHz. The probe tone was 1.6 kHz at 6 dB above threshold. The spikes were binned
re. the bias-tone-period to form a bias-tone-period histogram. The bias-tone level series of the histograms are

shown as vertically stacked plots with the corresponding bias-tone level indicated to the right of each histogram.
The scale of the firing rate indicated for the bottom histogram applies to all the plots. Within the bias-tone-

period histogram, the spikes are phase-locked to the probe tone frequency. At the bias-tone level of 80 dB SPL,
the firing rate is suppressed in the middle of the period histogram, and at 90 dB SPL, the suppression depth in

the middle of the period deepens significantly, and a second suppression phase develops at the opposite phase.



I. Methods
The experiments were done on cats at the Eaton-Peabody Laboratory (EPL) of Auditory Physiology.

All experiments were conducted in compliance with protocols approved by the Committee on Animal

Care at the Massachusetts Eye and Ear Infirmary.

A. Animal Preparations
23 healthy cats free from ear infections have been used for these experiments. The

experimental methods for animal handling, surgical approach to the AN, and methods for recording
from AN fibers of cats were as described in [Kiang et al, 1965; Stankovic & Guinan, 1999]. The methods
for monitoring the health of hearing during experiments were as described in [Stankovic & Guinan,
1999].

All experiments were acute and began with anaesthetizing the cat with intra-peritoneal (IP)
injection of Nembutal in Urethane with the dosage of 150 mg per kg body weight of the animal. Booster
injection of the same initial mixture with 1/10 of the initial dose was delivered to maintain the level of
the anesthesia. Throughout the duration of the experiment, the depth of anesthesia was monitored
based on toe-pinch reflex, heart rate and breathing rate which determined the timing and amounts of
the booster injections. The animal's temperature was monitored & maintained at 38 deg C with a rectal
thermometer & a heating pad. Experiments typically lasted for 40 to 48 hours during which lactated
ringers were dripped into a leg vein through a catheter.

After the initial anesthesia, the bulla cavities of both ears were exposed to reveal the round
window. Posterior craniotomy followed by aspiration and retraction of the cerebellar tissues were
performed to expose the auditory nerve.

B. Acoustic Setup
All experiments were done inside a double-walled, reduced-reflection chamber. Sound stimuli

were delivered with an acoustic assembly consisting of two earphones and a microphone with a probe

tube. A DT48 dynamic earphone, capable of high output at low-frequency, was used to generate the

low-frequency bias-tone, and all other stimulus types including clicks were generated by the 1-inch

condenser earphone [Bruel & Kjaer (B&K) 4145]. The magnitude and phase of the frequency response

of the microphone plus probe tube combination were calibrated over the frequency band 0.02-45 kHz

using a reference microphone in a calibration set up to measure the sound pressure near the tip of the

probe tube. During the experiment, the assembly was placed inside the external meatus so that the

probe-tube tip was a few millimeters away from the eardrum. Then, the magnitude and phase of the

frequency response of the earphones were calibrated over the frequency band 0.02-40 kHz using the

calibrated microphone plus probe tube.

Throughout all experiments, the frequency of the bias-tone was fixed at 50Hz which was

selected because a low-frequency tone below 200-600 Hz can more selectively deflect the OHC

stereocilia compared to the IHC stereocilia [Russell and Sellick, 1983].

C. Data Collection
A silver electrode was inserted through the bulla opening and placed near the round window to

measure the cochlear compound action potentials (CAP). An automated tone-pip audiogram was

measured over the frequency range from 0.5kHz to 32kHz at an octave interval with the criterion of 10



iV pp of the CAP. Tone pip audiograms were run periodically every hour or so, and also after a series of
good data in order to ensure good health of the cochlea associated with the collected data.

A glass micropipette electrode filled with 3 M KCL electrolyte with 10 -20 MO impedance was driven
through the exposed view of the auditory nerve by a remotely controlled microdrive until isolating an
AN fiber using a wideband noise burst search stimulus. Spike timings were detected with the resolution
of 10 ptsec.

Upon isolating a unit, a threshold tuning curve (TC) was measured, the CF of the fiber was
determined, and the spontaneous rate (SR) of the fiber was measured from the 20 sec duration
recording of spontaneous firing. Then, responses to alternate-polarity click level series were recorded in
order to determine the threshold level for low-level click response and ANIP. From fibers with CF < 4 kHz
where cycle-by-cycle phase locking is evident from the click responses, the threshold level of ANIP was
determined from the click-level series by identifying the initial half-cycle emerging ahead of the latency
of low-level click response. Previous studies have shown that ANIP and ANSP are typically triggered by
rarefaction and condensation clicks respectively at click levels of ~30 - 40 dB higher than the low-level
click response threshold [Guinan et al, 2005]. Then, the following three types of 50Hz bias-tone
paradigms were run:

e Bias-tone only paradigm

e Bias-tone effects on low-level click response: Rarefaction clicks at 10 - 20 dB above the
threshold level were presented. Since the polarity of the click stimulus is not crucial for low-
level click response studies, for most fibers only the rarefaction click stimulus was presented.

* Bias-tone effects on ANIP and ANSP: this procedure was limited to fibers with CF < 4 kHz where
the threshold of ANIP could be determined. Clicks were presented at 10 - 20 dB above the
threshold of ANIP.

Throughout the runs, the quality of spike triggering was monitored and adjusted. Only recordings with
near perfect triggering with no extra or missed triggers were selected for this thesis. The methods for
the above experimental paradigms are described in detail with actual data from the example fiber,
CT023_U051, with its CF at 1.5 kHz & SR of 45.2 sps.

D. Bias-tone Only Paradigm: Excitation Threshold & Phase

Acoustic Stimulus and Data Collection
The objective of this paradigm was to measure the neural excitation threshold & phase of

excitation of the fiber invoked by 50Hz bias-tone. A randomized level series of the 50Hz bias-tone over
the range from 70 dB SPL to 120 dB SPL was presented. A single trial period was 500 ms with
approximately 50% stimulus ON duty cycle. The spike records during the analysis time window of 200
ms duration from the stimulus ON period were binned re. the bias-tone-period in order to form a level
series of the bias-tone-period histogram of the spike records. Averaged results from 8 of such trials
were used to compute the level series of period histograms. The zero phase reference is the cosine
phase of the earphone drive signal. Fig. 3.5 shows the 50Hz bias-tone level series of period histograms
from the example fiber.



Data Analysis
The rate-level function was calculated from the level series of spike records, and the rate

threshold was determined with the criterion of one standard deviation, a, above the baseline rate. The

baseline rate was determined as the spike rate at the minimum level of the bias-tone level series which

was 60-70 dB SPL. The bias-tone level function of the spike rates including the baseline rate were

calculated from the total spike collection time of 1600 ms averaged from 8 trials of 200 ms in each trial.

Note that the baseline rate was not the spontaneous rate of the fiber. However, none of the recorded

fibers showed a significant upward slope from their rate-level function at the baseline level. The

standard deviation was estimated as the square root of the baseline rate under the assumption of

Poisson random process behind the spikes.

Vector phase analysis was used to estimate the phase of excitation and synchrony index

[Goldberg and Brown, 1969; Johnson, 1980]. Briefly, each spike is represented as a unit vector with its

phase as the phase of occurrence of the spike within the period. The magnitude and phase of the

average vector representation of all the spikes are the synchrony index and vector phase respectively.

Mathematically the average vector corresponds to the first harmonic component of the Fourier series of

the period histogram normalized by the total spike count [Goldberg and Brown, 1969].

Further, statistical significance of the phase estimates were evaluated through the standard

error of the vector phase estimates. The mathematical model for standard error of the phase estimate,

S.E.#p , is described in [Mardia, 20001, and it had been previously applied in AN spike data analysis

[Stankovic & Guinan, 2000].

The excitation threshold of the bias-alone alone response was met when both the rate threshold

of the bias-tone alone response was met, and the standard error on the phase estimate dropped to be

within 200 (-20*s S.E.4 5 200). This criterion allows statistically significant differentiation of the phase

data points that are separated by at least 40*.

The bias-tone level series of the period histogram from the example fiber in response to 50 Hz

bias-tone only are shown in Fig. 3.5 with the detailed data analysis in Fig. 3.6 where the bias-tone level

function of the spike rate, synchrony index and estimate of the excitation phase are displayed in the top-

down order.
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Fig. 3.5 Bias-tone level series of the 50 Hz bias-tone-period histogram of the example fiber, CT023_U051, CF=1.5
kHz & SR=45.2 sps. The excitation threshold level was determined as 110 dB SPIL with the excitation phase

noted on the period histogram.
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Fig. 3.6 Detailed data analysis metrics to determine bias-tone only response threshold & response phase. Top:
Rate-level function from which the rate-threshQld is determined when the spike rate exceeds one standard
deviation above the average; Middle: Level function of the synchrony index; Bottom: the excitation phase

estimates with their standard error. The excitation phase & its standard error were determined by the vector
phase method. The excitation threshold is met when both the rate threshold is met and also when the standard

error on the phase estimate drops within 20*. In this example, the excitation criteria were met at 110 dB SPL.
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E. Experimental Paradigm for Bias-tone Effects on Clicks

The Click Stimulus
The click stimulus was generated by the 1-inch condenser earphone driven by 100 psec duration
rectangular pulses. Click intensities are expressed as peak-equivalent SPL (pSPL) which corresponds to
the SPL of a tone stimulus with the same peak pressure generated by clicks as measured at the tympanic
membrane. The click levels were calibrated to compensate for the square law non-linearity of the
earphone.

Stimulus Paradigm and Data Collection
Click level series over the range of 30 dB pSPL to 115 dB pSPL were run in order to determine

the response threshold of low-level click response and ANIP. Each trial with the duration of 20 ms
consisted of a series of 10 ms alternate click polarity presentation, and the total of 100 such trials were
averaged. The click level series from the example fiber, CT023_U051, is shown in Fig. 3.1 where the
rarefaction click responses are plotted upward and the condensation click responses are plotted
downward at each click intensity level. For this fiber, 60 dB pSPL of rarefaction click, which is
approximately 20dB re. click threshold, was selected for the subsequent runs for bias-tone effects on
low-level click responses. The response threshold of ANIP was ~80 dB pSPL; therefore, 90 dB pSPL of
rarefaction and condensation clicks were used for bias-tone studies on ANIP and ANSP respectively.

The acoustic stimulus paradigm for the bias-tone effects on click responses
Clicks at a fixed level and polarity with the duration of 100 psec were repeated at 18 ms

intervals throughout the trial period of 2160 ms. The ON stimulus period for the 50Hz bias-tone
extended from 90 ms to 1990 ms. This allows the analysis time duration for biased click responses to be
from 90 ms to 1890 ms as shown in Fig. 3.7. The time window from 1998 ms to 2160 ms allows
measurement of the firing rate invoked by clicks only. The phase slip between the click repetition
interval of 18 ms and the bias-tone-period of 20 ms allows presentation of a click stimulus at 10 equally
spaced phases over the click-bias period of 180 ms as also noted in Fig. 3.7.
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Fig. 3.7 The acoustic stimulus paradigm for the bias-tone effects on click responses. Clicks with the duration of
100 usec were repeated at 18 ms interval throughout the trial period of 2160 ms. The ON stimulus period for

the 50 Hz bias-tone extended from 90 ms to 1990 ms with tapering windows of duration 80 ms surrounding the
stimulus duration. This allows the analysis period for biased click responses to be from 90 ms to 1890 ms, and

the analysis for clicks only response to be from 1998 ms to 2160 ms.

Spike records from the Biased Clicks Analysis Period with the duration of 1800 ms were binned re. 180
ms click-bias period. Five of such trials were averaged to produce the click-bias period histogram as
shown in Fig. 3.8. The zero phase reference of the 50Hz bias-tone-period is indicated by red lines and
the zero phase references for click repetition interval are noted by black dashed lines.
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bluemn BiawBlack=Biased Clicks, time (ins)3.8 Bias level series of click-bias period histograms: the phase slip between the click repetition, 18 ns, andbias-tone-period, 20 is, allows click bursts at 10 phase locations within the bias-tone-period over the 180 ms of
click-bias-tone-period. The data came from the example fiber. The zero phase reference of the bias-tone-
period is indicated by red solid lines, and the zero phase references for click repetition interval are noted by

black dashed lines. The time of click responses slips against the bias-tone-period reference. The averaged click
responses from the clicks-only period are plotted far left in blue.

Time Windowed Bias-tone-period Histograms
We are interested in analyzing the bias-tone effects on individual peaks of the click response.

The click response components of interest span over small time windows with durations of 1 - 1.5 ims.
Therefore, period histograms over a particular time window component need to be constructed from
the averaged firing rate over a particular post-click-time window from each of the 10 bias-tone phase
samples of the click response. Consequently, the resulting period histogram would consist of 10 data
points with the time bin width of one tenth of the bias-tone-period or 2 ms in this study.

Further, the phase delay associated with the time window needs to be accounted for in
constructing the time-windowed period histogram and calculation of the suppression phase. For
example, the first peak of the low-level click response of the example fiber spanned over the time
window from 3.15 ms to 3.85 ms as noted as "Time Window B" in Fig. 3.9. The mid-point of the time
window which is at 3.5 ms in this case is the delay to be compensated for. Since the delay of 3.5 ms
corresponds to 1.75 of the time bin width of the bias-tone-period histogram, the period histograms are
built with the delay of one time bin, and the fractional residue of 0.75 time bin or 0.075 period needs to
be accounted for by adding it to the estimates of the phase of suppression of the period histogram.
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The bias-tone level series of the time-windowed bias-tone-period histograms for the "Time

Window B" from Fig. 3.9 which corresponds to the first peak of low-level click response of the example

fiber is shown in Fig. 3.10. As in this example, the analysis window for low-level click response covered

the first peak with the width of the window set to 1- 1.5 ms for the data in this thesis. The blue dashed

line in each of the stacked plots notes the average firing rate within the time window without the bias-

tone, and the red plot shows the firing rate with the bias-tone presented the level noted on the right

side of each plot. At 90 dB SPL of the bias-tone, the major suppression phase developed approximately

in the middle of the period. At the next level of 100 dB SPL, the minor suppression phase also appeared

at ~1/2 cycle away from the major suppression phase. Then, at 110 dB SPL the shape of the period

histogram drastically shifted to resemble the bias-tone only excitation pattern at 110 dB SPL shown in

Fig. 3.5. The major suppression phase at 100 and 110 dB SPL determined by the analysis method for

suppression effects on period histograms are noted by a blue and red inverted triangle respectively. The

details of the analysis method for suppression effects on period histograms are presented in the next

section.

Boundary Plot, CF= 1.5 kHz, ClickR, 60 dB pSPL

E 1.5
Time Tim

CL 1 Window A: 0 - 1 ms Win ow B: 3.15 - 3.85 ms

C I

0 0.5 1 1 2 2.5 3 3.5 4 4.5 5 5.5
Post click stimulus time, msec

Fig. 3.9 Time windows for computing bias-tone effects on click responses: Time Window A) analysis time
window prior to the click response latency, 0 - 1 ms: the bias-tone level series of the period histogram over this
time window is expected show similar pattern as the period histogram generated the bias-tone only level series;

Time Window B) analysis time window for low-level click response
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Time-windowed (3.15-3.85 ms) Bias-tone Period Histogram
CT023, U051, Low-level ClickR, 60 dB pSPL
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Bias Tone Period

Fig. 3.10 Bias-tone level series of the time-windowed (3.15 - 3.85 ms) period histogram over the first peak of
low-level click response of the example fiber: the click parameters were 60 dB pSPL, rarefaction. The blue
dashed lines in each of the stacked plot represent the average firing rate over the time window without the

bias-tone. Note that the major suppression phase emerged at 90 dB SPL of the bias-tone in the middle of the
period which further developed to major and minor suppression phase separated by ~1/2 cycle at 100 dB SPL.

The major suppression phase determined by the quantitative analysis method at 100 and 110 dB SPL are noted
by a blue and a red inverted triangle. The details of the analysis method for suppression effects in period-

histograms are presented in the next section. Also note the drastic shift in the shape of the period histogram at
110 dB SPL. Recall from Fig. 3.6 that the excitation threshold was reached at 110 dB SPL which indicates that

the spike pattern at this level was due to excitation by the bias-tone.

Another example of time windowed bias-tone-period histogram is given with the "Time Window
A" shown in Fig. 3.9 which ranges from 0 - 1 ms which precedes the click response latency; therefore,
the bias-tone level series of the resulting histograms is expected to show similar pattern as the period
histograms generated by a level series of 50 Hz bias-tone alone.
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Fig. 3.11 compares the bias-tone-only firing pattern VS the bias-tone-period histogram from the

pre-click-latency portion of the bias-tone on click runs which are shown in Fig. 3.11(a) and Fig. 3.11(b)

respectively. As expected, the two sets of period histograms showed similar progressions of patterns

over the bias-tone levels. Specifically, there were similar phases of excitation at 100 and 110 dB SPL of

the bias-tone. Note that the rate-level functions started at different values but began to converge for

bias-tone levels > 90 dB SPL. This can be attributed to the differences in the adaptation state of the fiber

caused by the differences in the stimulus paradigms.
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Fig. 3.11 Comparison of the BT-only firing pattern VS pre-click-latency portion of the bias-tone on click runs: (a)
period histogram from the bias-tone only level series; (b) period histogram from the bias-tone on clicks over the

time window of 0-1 ms prior to the click response latency; (c) Firing rate, synchrony index & estimate of
excitation phase in the top-down order for Bias-on Clix VS Bias-tone only. The firing rate for the bias-tone only
and bias on click runs started off at different levels due to differences in their adaptation states but started to
converge for the bias-tone levels of 100 dB SPL & above. At 100 and 110 dB SPL, period histograms from both

runs showed similar excitation patterns with very close values of the excitation phase estimates.
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Analysis of Bias-tone-period Histograms for Suppression Effects
Previous studies have shown that that the suppression effects by a low-frequency bias-tone

predominantly result in either a single major suppression phase or two suppression phases at opposite
phase locations [Patuzzi et al, 1984a; Cai & Geisler, 1996a; Temchin et al, 1997].

Detecting a period histogram with a single major suppression phase was done through the
vector phase analysis for the first harmonic component. Specifically, significant suppression was
detected when the standard error on phase estimate, S.E.@, for the first harmonic dropped below 20* (
20* S.E.@ 20*).

Period histograms with two peaks at opposite phase locations can also be analyzed with the
same basic framework of directional statistical analysis by examining the synchrony index, vector phase
and the standard error on the phase estimate with respect to the second harmonic component of the
period histogram [Mardia, 2000]. As with the first harmonic, maximum criterion of 40* on the standard
error on phase for the second harmonic component, S.E. 2, was applied to detect a period histogram
with two suppression phases at opposite phase locations; -40'! S.E.@ 2 5 40'. Since the span of 40* of
second harmonic phase is equivalent to 200 of the first harmonic phase, equivalent detection criteria
were applied to both the first and second harmonic.

Since the second harmonic phase points to two suppression phases within the period histogram
separated by half a cycle, it was necessary to disambiguate the major suppression phase between the
two. The analysis procedure for this problem termed as "Half-period Synchrony Analysis" was based on
the observation that the major suppression phase typically has a higher level of synchrony compared to
the minor suppression phase. The analysis procedure first cuts the original period histogram into two
half-period histograms of equal-length around the two suppression phase locations. The resultant two
half-period histograms would have a single major suppression phase in each, and the depth of
suppression in each were calculated as the synchrony index for the first harmonic of each half-period.
Finally, the major suppression phase from the original full-period histogram was determined as the
suppression phase with higher level of half-period synchrony index. This procedure is illustrated in Fig.
3.12 with the period histogram at the bias-tone level of 100 dB SPL from the example fiber. In Fig.
3.12(a) the two suppression phase locations determined by the second harmonic phase are marked with
a blue & red inverted triangle. The resulting two half-period histograms are shown in Fig. 3.12(b). Note
that the half-period histogram centered at the blue triangle starts with the wrapped around data from
the time window from 18 ms to 20 ms. The synchrony index for the first harmonic of each of the half-
period is shown in the half-period histograms. Due to the larger synchrony index value of the red half-
period, the major suppression phase from the original full-period histogram at 100 dB SPL of the bias-
tone was determined as the red triangle located in the middle of the period which was similar to the
major suppression phase at 10 dB below from Fig. 3.10.

Finally, the period histograms generated by the bias-tone level at or above the bias-tone alone
excitation threshold were classified as "Excitation" and accordingly excluded from the suppression data
pool. For the period histograms from the example fiber in Fig. 3.10, the period histograms at 110 dB SPL
noted in green was not included in the suppression data pool.

107



(a) CT023,U051: ClickR, 60 dB pSPL, Bias-tone at 100 dB SPL
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Fig. 3.12 Illustration of the "Half-period Analysis": method to determine the major suppression phase from a
period histogram with a significant second harmonic component. The data came from the bias-tone-period
histogram at 100 dB SPL from Fig. 3.10. (a) the two suppression phases based on the second harmonic phase are
shown as blue & red inverted triangle. Half-period boundaries of equal width are formed around these two
suppression phases in order to splice out the two half-period histograms; (b) the two half-period histograms &
their first harmonic synchrony index are shown. The suppression phase noted in red has higher half-period
synchrony index; therefore, it was determined as the major suppression phase.

The results of the analysis procedures described above on the period histograms in Fig. 3.10 are
shown in Fig. 3.13 which includes the level functions of the spike rate, synchrony index and vector phase
data for the first and second harmonic in the top-down order. Note that all three metrics started to
show significant changes at the suppression threshold which was 90 dB SPL. Specifically, the firing rate
started to decline, the synchrony index of the first harmonic started to rise, and the standard error on
the suppression phase dropped sharply at 90 dB SPL.

The time-windowed period histogram analysis procedures have been applied on the ANIP and
ANSP component of the click response generated by rarefaction and condensation click at 90 dB SPL
respectively from the example fiber. Their time windows are shown in Fig. 3.14, and the analysis results
are shown in Fig. 3.15 and Fig. 3.16 for ANIP and ANSP respectively. Note that the analysis time
windows were determined visually to cover the first peak from the click response at the respective
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polarity of click. Also, the width of the time window was limited to the maximum of 1 - 1.5 ms. Fig.
3.15 shows the suppression threshold on the ANIP response was reached at the bias-tone level of 100
dB SPL with the second harmonic criterion. Note that the major suppression phase was approximately
opposite to that of low-level click response in Fig. 3.10. As for ANSP, Fig. 3.11 shows that the major
suppression phase was found at a similar location as ANIP at the bias-tone level which was 10 dB higher
than the case of ANIP. Note, however, that the suppression data on ANSP at the bias-tone level of 110
dB SPL were not included in the suppression data pool since the suppression threshold was not below
the excitation threshold from the bias-tone alone run.
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Spike Rates: Biased Clicks VS BT-only
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Fig. 3.13 Detailed data analysis on the bias-tone effects on the first peak of low-level click response from the
example fiber: the period histograms are shown in Fig. 3.10. Top: the rate-level function from the bias on clicks
and bias-tone alone runs. Note that the firing rate started to decrease at the suppression threshold of 90 dB SPIL
and closely approached the rate from the bias-tone only run at 110 dB SPL, which was the excitation threshold;
Middle: bias-tone level function of the synchrony index for 1" & 2nd harmonic. Note the sharp increase of the

synchrony indices at the suppression thresholds. Bottom: level function of the suppression phase estimates for
1 & 2 harmonic with their standard error. The data points meeting the error bound are noted with symbols

labeled as "Significant 1s' Harmonic" and "Significant 2 Harmonic". The 14 & 2 harmonic suppression
thresholds were met at 90 & 100 dB SPL respectively.
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CT023, U051: CF= 1.5 kHz, Click R, 90 dB pSPL

Time Window ANIP: 2.25 - 3.1 ms
Time Window ANSP: 2.7 - 3.4 ms
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Fig. 3.14 Analysis Time Window for ANIP and ANSP at the click level of 90 dB SPIL from the example fiber: ANIP
and ANSP were generated by rarefaction and condensation click at 90 dB pSPL respectively.
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(a) Bias on ANIP, Click R, 90 dB pSPL
Time Window:2.25 - 3.1 ms

(b) Analysis of Bias on ANIP
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Fig. 3.15 Time Windowed Period Histogram and Suppression Data Analysis on ANIP: Stimulated by 90 dB pSPL
rarefaction click. Time Window: 2.25 - 3.1 ms. The suppression threshold was met with the second harmonic

criterion at 100 dB SPL of the bias-tone. Note that the phase of major suppression was approximately opposite
to that of low-level click response shown in Fig. 3.10.
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(a) Bias on ANSP: Click C, 90 dB pSPL
Time Window: 2.7 - 3.4 ms
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(b) Analysis of Bias on ANSP

Spike Rates: Biased Clicks VS BT-only
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Fig. 3.16 Time Windowed Period Histogram and Suppression Data Analysis on ANSP: Stimulated by 90 dB pSPL
condensation click. Time Window: 2.7 - 3.4 ms. The suppression threshold was met with the second harmonic

criterion at 110 dB SPL of the bias-tone with the major suppression phase at a similar location as ANIP but
opposite to that of low-level click response. Since the suppression threshold was reached at the same level of

the bias-tone as the excitation threshold from the bias-tone only run, these data were not included in the
suppression data pool as explained in detail in the main text.
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III. Results

A. Phase of Excitation by 50 Hz Bias-tone Alone and Phase of Suppression on Low-level
Click Responses

The phase of excitation of AN fibers in response to 50 Hz bias-tone throughout the entire range

of CF is plotted in Fig. 3.17. Note that the zero phase reference of the plots was the cosine phase of the

50 Hz earphone drive signal. Also plotted in Fig. 3.17. is the phase of major suppression on low-level

click responses at the suppression threshold level. As mentioned previously, the standard error on all

phase estimates was within ±20*which is noted on the plot as the blue error bar.

Major Suppression Phase of Low-level Clicks VS Bias-tone Excite Phase
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Fig. 3.17 Plot of the phase of excitation from the "bias-tone only" runs and the major suppression phase from
the "bias-tone on low-level click" responses. Note that the excitation phases form two clusters separated by

about % cycle, and the phase of suppression on low-level click response lies approximately in the middle
separated by about % cycle from the phase of excitation.

The two data groups formed distinctly separate clusters. The data for the major suppression

phase on the low-level click responses were located tightly around the phase of 0.55 T within ± one

standard error where T denotes a period of the bias-tone. In contrast, there was significantly wider

spread in the phase of excitation in response to 50 Hz bias-tone. Further, the pattern of data scatter

changed sharply across the CF boundary of about 2kHz as shown in Fig. 3.18 where the histogram of the

fiber count across the excitation phase are plotted first for fibers with CF < 2 kHz in Fig. 3.18(a) and for

the fibers with CF 2 kHz in Fig. 3.18(b). For fibers with CF > 2 kHz, the phase of excitation data formed
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a single mode around 0.8 period whereas for CF < 2 kHz, the data were widely distributed with two main
modes at 0.35 and 0.8 period which are approximately half a cycle apart. This bimodal distribution of
the excitation phase for CF < 2 kHz can be explained by examining the details of the period histograms
generated by 50 Hz bias-tone alone level series as shown in Fig. 3.19 where two peaks at about the
opposite phases emerge from the period histogram at high levels of 50 Hz bias-tone. The typical pattern
found throughout the animals showed a wider peak at about phase of 0.35 T as well as a sharper peak at
the opposite phase. Depending on the relative size of the two peaks, the excitation phase was
determined as either the earlier peak in Fig 3-19(a), the later peak as in Fig. 3.19(b) or the middle of the
two peaks. As mentioned earlier in methods section, similar results have been reported in previous
work on cats AN fibers below 2kHz as the "peak splitting" phenomenon [Cai & Geisler, 1996; Kiang &
Moxon, 1972; Johnson, 1980; Kiang, 1984, 1990].

115



(a) Histogram of Fiber Count Across Excitation Phase of Fibers with CF < 2 kHz
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(b) Histogram of Fiber Count Across Excitation Phase of Fibers with CF > 2 kHz
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Fig. 3.18 Histogram of the AN fiber count across the phase of excitation of the AN fibers in response to 50 Hz
bias-tone presented alone. As shown in Fig. 3.17, the distribution drastically changes across the CF of about 2

kHz. (a) The histogram for fibers with CF < 2 kHz shows three modes at ~0.35 T, 0.53 T & 0.8 T where T denotes a
period of the bias-tone; (b) The histogram for fibers with CF >= 2kHz shows a single prominent mode at 0.8T.
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(a) CT33, Unit6, CF = 0.56kHz, SR=80sps
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Fig. 3.19 Bias-tone alone excitation pattern for CF < 2 kHz displaying the peak splitting phenomenon. Two main
excitation peaks emerge at about half a cycle apart. Depending on the relative size of the two modes, the first
harmonic based vector phase estimate can select either the wider peak as in (a) or the narrower peak as in (b).
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B. Suppression Effects by 50 Hz Bias-tone on Click Response Components: Low-level
Click response, ANIP and ANSP

Overall, the effects of 50 Hz bias-tone level series on low-level clicks, ANIP and ANSP from most

of the fibers with CF < 3 kHz in this study were qualitatively similar to the pattern exhibited by the

example fiber in the method section, CT023_U051, CF=1.5 kHz & SR=45.2 sps.

Major Suppression Phase
The major suppression phase on ANIP and ANSP were quite similar to each other but opposite

to that of low-level click responses as shown in Fig. 3.20. Specifically, the major suppression phase of

ANIP and ANSP were located within one standard error of ±20 deg but at opposite phase from that of

low-level click responses. Therefore, the difference in the major suppression phase of ANIP and ANSP

VS low-level click responses is undoubtedly significant.

Note that data collection trials on ANIP and ANSP were limited to fibers with CF < 4 kHz where

the phase-locked initial peak response could be identified. For low-level click responses, all fibers were

included in the study. The fiber with the highest CF with supra-threshold suppression effects on ANIP or

ANSP was CT026, U039, with the CF=2.585 kHz and SR=70 sps.

Bias-tone Level at the Threshold of Suppression
Fig. 3.21 compares the 50 Hz bias-tone level at the threshold of suppression on the low-level

click responses, ANIP and ANSP. Fig. 3.21(a) shows the distributions of the fiber count over the

suppression threshold. The mode of the distribution for low-level click responses was ~5 dB lower than

that of ANIP. Further, the mode of the ANIP suppression threshold was ~5 dB lower than of ANSP. Fig.

3.21(b) displays the suppression thresholds over the CF of the fiber. Note that the difference in the

threshold of suppression of ANIP and ANSP in comparison to low-level click responses was more notable

for CF > 1 kHz, and the suppression threshold for ANIP and ANSP for fibers with CF > 2 kHz was

approaching the maximum level of the bias-tone available. In the next section, the details of the

suppression effects on the ANIP and ANSP responses from fibers with the CFs of 2.82 kHz and 3.23 kHz

are analyzed to examine how the suppression effects on ANIP and ANSP were affected with increase of

CF.

Degree of Symmetry between the Major and Minor Suppression Phase
Fig. 3.22 plots the ratio of 2 nd harmonic VS 1t harmonic synchrony index at the threshold of

suppression by the 50 Hz bias-tone for the CF-tone responses and low-level click responses. A higher

value of this ratio indicates stronger presence of the minor suppression phase at the threshold level of

suppression thereby indicating more symmetrical location of the operating point of OHC mechano-

electrical transduction function across the two saturation plateaus. The data for ANIP and ANSP were

~5 - 10 dB higher than the low-level click responses

The degree of symmetry of the location of the operating point within the OHC mechano-electrical

transduction function was examined by another metric, "Half-period Symmetry Index", which tries to

quantify the ratio of modulation depth around the minor VS major suppression phase at the threshold

of suppression. The range of this ratio is from 0 to 1, and as it approaches 1, it indicates more

symmetrical depth of modulation between the two suppression phases thereby more symmetric
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location of the operating point of the OHC transduction function. For this purpose, the "Half-period
Synchrony Analysis" method described in the methods section which was used to disambiguate the
major suppression phase from period histograms with two oppositely located suppression phases was
adapted. Specifically, for period histograms which meet the suppression threshold criteria of the second
harmonic, the ratio of the minor VS major suppression phase was calculated as a part of the analysis
procedure to determine the major suppression phase. For period histograms which met the
suppression threshold criteria for the first harmonic, the "Half-period Synchrony Analysis" procedure
was carried out with the suppression phase based on the first harmonic phase estimate. The "half-
period symmetry index" at suppression threshold for low-level click responses, ANIP and ANSP are
plotted over the CF of the fiber in Fig. 3.23. Note that the dashed line at the index value of 0.5 indicates
the ratio of 1 / 2 in the half-period synchrony index. Note that most of the data points for low-level click
responses were located below the reference level of 0.5 whereas for ANIP and ANSP approximately half
of their data points were located above 1/2 thereby indicating stronger presence of the minor
suppression phase at the suppression threshold for ANIP and ANSP in comparison to low-level click
responses. Note that similar trends were seen from the plots of the ratio of second VS first harmonic
synchrony index in Fig. 3.22.
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Fig. 3.20 Major suppression phase of the click response components, Low-level, ANIP and ANSP: major
suppression phase for ANIP and ANSP were located closely together within the bounds of one standard error
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over the CFs. The major suppression phase of low-level clicks was located ~1/2 cycle away from the data group
for ANIP and ANSP.
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R80

-.... LL-Clix
... .--- ANIP
.---A---.. ANSP

80 7 TO 90 100 110 120
BT Level of Suppression Threshold, dBSPL

(b) Suppression Threshold over CF: Low-level clicks VS ANIP VS ANSP

A * A+
A& I e@A A 0e

+000 0 0

o Low-level
+ ANIP
A ANSP

2

0
4-

C

EE
0)

CO,

CF, Hz

Fig. 3.21 The threshold of suppression of the click response components, low-level, ANIP and ANSP: (a)
Histogram of the fiber count over the suppression threshold; (b) the plot of the suppression thresholds over CF.

The fiber counts for low-level, ANIP and ANSP were 41, 20 and 9 respectively. Both data showed that the
suppression threshold on low-level clicks was ~5-10 dB lower than that of ANIP or ANSP. Between ANIP and

ANSP, suppression threshold on ANIP was ~5 dB lower than that of ANSP.
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50Hz Bias Tone Effects on Clix Components: Ratio of Syncidx2/SyncIdx1 at Suppression Threshold
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Fig. 3.22 Plot of the ratio of 2 "d over 1't harmonic synchrony index at the suppression threshold for the click
response components, low-level, ANIP and ANSP: Lower value of the ratio indicates more asymmetry in the
suppression pattern between the two suppression dips; therefore, lower value of this ratio indicates more

asymmetrical location of the operating point on the OHC mechano-electric transduction function. The data for
ANIP and ANSP were 5~10 dB higher than the low-level click responses.
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Fig. 3.23 Half-period Symmetry Index: is the ratio of the first harmonic synchrony index from the two "Half-
period histograms" which tries to quantify the degree of symmetry in the modulation depth between the major

and minor suppression phases. Specifically, the "Half-Period Analysis Method" shown in Fig. 3.12 has been
adapted for this purpose. The range of this ratio is from 0 to 1 where 1 indicates perfectly matched modulation
depth between the major and minor suppression phase. Refer to the main text for details. Note the reference

value of 0.5 which indicates the 1 to 2 ratio of modulation index between the two suppression phases. Note
that the percentage of data points above the reference value of 0.5 for ANIP and ANSP exceeded that of low-
level clicks thereby indicating relatively more symmetrical shape of the operating point of OHC transduction

function for ANIP and ANSP.

C. Example Results of the 50Hz Bias-tone Suppression Effects on Click Response
Components: Low-level, ANIP and ANSP

In order to aid the reader to appreciate how well the data from individual fibers fit with the data
shown in the previous plots, this section documents the typical suppression patterns of low-level click

responses, ANIP and ANSP from individual fibers. Examples are presented from 6 normal AN fibers

taken from 4 animals. At least one example is shown for each of 5 bands with octave spacing starting at

a band of CF < 700 Hz and ending with the band, 5kHz < CF < 10 kHz. For each example, the AN fiber is

identified by its animal and unit number. Each example has four sets of plots. The first set shows,
subplot (a) the threshold tuning curve (TC), and subplot (b) compound PST histograms of the responses

to the click level series. The click level selected for low-level click and ANIP response is indicated in blue
and red respectively. The second set of plots shows, subplot (c) at left, the 50Hz bias-tone-level-series
period histograms from the bias-tone only responses, subplot (d) in the middle, the bias-tone-level-

series period histograms from the responses to bias-tones plus low-level clicks, and subplot (e) at right,
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the detailed analysis of the suppression effects on the low-level click responses. The third set of plots
shows, at left, subplot (f) bias-tone-level-series period histograms of the responses to bias-tones plus
ANIP responses, and at right, subplot (g) the detailed analysis the suppression effects on the ANIP
response are shown. Lastly, the fourth set of plots shows, at left, subplot (h) bias-tone-level-series
period histograms of the responses to bias-tones plus ANSP responses, and at right, subplot (i) the
detailed analysis the suppression effects on the ANSP response are shown.

Example Result in Fig. 3.24: CT026, U013, CF=0.47 kHz, SR=43.3 sps
The data from this fiber show the typical pattern from the CF region below 1 kHz. The

suppression threshold on the low-level click, ANIP and ANSP was met at 90, 90 and 100 dB SPL of the
bias-tone respectively. Around the suppression threshold level of each click response component, the
average firing rate started to decline, and at around the threshold of excitation by the bias-tone alone,
which was 110 dB SPL for this fiber, the firing rates started to plateau down at a rate similar to the rate
by the bias-tone alone. Similar trends on rate suppression patterns over the bias-tone levels were found
from all fibers which met the synchrony based suppression-threshold criterion. As for the major
suppression phase, the suppression phase on low-level clicks was opposite to that of ANIP and ANSP as
seen throughout CFs.
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(c) Bias-tone only Period Histograms
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(d) Bias on Low-level Click Response
ClickR, 60 dB pSPL

Tima WinrA: A - 9 ms

d
A,

(e) Analysis of Bias-tone on Low-level Clicks

Spike Rates: Biased Clicks VS BT-only
1000 -

Bias on clix
Bias Only

500

10 W

0

.

M

100
(N

Z;

90
0

C

80

0

0 80
70 80 90 100 110

Bias Tone leel dB SPL
Synchrony Index

1st Harmonic
0.8 2nd Harmonic

0.6

0.4

0.2

0
70 80 90 100 110

Bias Tone leel dB SPL
Major Suppression Phase Estimate

110

100

90

80 0.

0.

0.

0.

5 10 15
PZC time (ms)

70
20

0 :
0 0.2 0.4

170
0.6 0.8 1

124

.

Significant 1st Har
8:

Significant 2nd Har
6
4.

2

0
70 80 90 100 110

Bias Tone level dB SPL

man 1



(f) Bias on ANIP
Click R, 90 dB pSPL
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(h) Bias-tone on ANSP
Click C, 90 dB pSPL
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Fig. 3.24 Example Result: (a) Tuning Curve, CF=0.47kHz and SR= 43.3 sps; (b) Click Level Series: the click level
selected for low-level click and ANIP/ANSP is noted in blue and red respectively. For all the data presented in

this chapter, rarefaction click was used for low-level studies. For all the data on ANIP and ANSP in this chapter,
ANIP was generated by rarefaction click, and ANSP was generated by a condensation click. The click response
selected for ANSP is plotted in red dotted line; (c) Bias-tone (BT) only level series, excitation threshold reached
at 110 dB SPL. Excitation threshold level is indicated in green, and the excitation phase is indicated by a green
triangle; (d) Bias-tone level-series on low-level click response, ClickR(Rarefaction) at 60 dB pSPL, Time window
4.3 - 5.2 ms. The suppression threshold and the suppression phase of the 1't and 2 harmonic is indicated in

blue and red respectively; (e) Detailed analysis of the bias-tone effects on click response, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1s and 2 harmonic in the

top-bottom order; (f) Bias-tone level-series on ANIP: suppression threshold for 2 harmonic was reached at 90
dB SPL. Note that the major suppression phase on ANIP was opposite of the low-level click response; (g)

Detailed analysis of the bias-tone effects on ANIP, Bias-tone level functions of firing rate, synchrony indices and
phase of major suppression for the 1 and 2 harmonic in the top-bottom order; h) Bias-tone level-series on
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ANSP: suppression threshold for 2"d harmonic was reached at 100 dB SPL. Note that the major suppression
phase on ANSP was similar to that of ANIP opposite of the low-level click response; (i) Detailed analysis of the

bias-tone effects on ANIP, Bias-tone level functions of firing rate, synchrony indices and phase of major
suppression for the 1s and 2"d harmonic in the top-bottom order;
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Example Result in Fig. 3.25: CT025, U107, CF=0.96 kHz, SR=84.5 sps

This fiber is a typical example from the CF region centered at ~1 kHz. The bias-tone only
excitation threshold was met at 120 dB SPL with the excitation phase detected at the broader peak in
the period histogram. The suppression threshold on the low-level click, ANIP and ANSP was reached at
90, 90 and 100 dB SPL of the bias-tone respectively.
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(c) Bias-tone only Period Histograms
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(f) Bias on ANIP: Click R, 90 dB pSPL
Time Window: 2.7 - 3.4 ms
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(h) Bias-tone on ANSP: Click C, 90 dB pSPL (i) Analysis of Bias-tone on ANSP
Time Window 3.15 - 3.9 ms
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Fig. 3.25 Example Result: (a) Tuning Curve, CF=0.96 kHz and SR= 84.5 sps; (b) Click Level Series: the click level
selected for low-level click and ANIP/ANSP is noted in blue and red respectively. For all the data presented in

this chapter, rarefaction click was used for low-level studies. For all the data on ANIP and ANSP in this chapter,
ANIP was generated by rarefaction click, and ANSP was generated by a condensation click. The click response
selected for ANSP is plotted in red dotted line; (c) Bias-tone (BT) only level series, excitation threshold reached
at 120 dB SPL. Excitation threshold level is indicated in green, and the excitation phase is indicated by a green
triangle; (d) Bias-tone level-series on low-level click response, ClickR(Rarefaction) at 60 dB pSPL, Time window
3.87 - 4.5 ms. The suppression threshold and the suppression phase of the 1, and 2 harmonic is indicated in

blue and red respectively; (e) Detailed analysis of the bias-tone effects on click response, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1" and 2 harmonic in the

top-bottom order; (f) Bias-tone level-series on ANIP: suppression threshold for 2 harmonic was reached at 90
dB SPL. Note that the major suppression phase on ANIP was opposite of the low-level click response; (g)

Detailed analysis of the bias-tone effects on ANIP, Bias-tone level functions of firing rate, synchrony indices and
phase of major suppression for the 1St and 2 harmonic in the top-bottom order; h) Bias-tone level-series on
ANSP: suppression threshold for 2nd harmonic was reached at 100 dB SPL. Note that the major suppression

phase on ANSP was similar to that of ANIP opposite of the low-level click response; (i) Detailed analysis of the
bias-tone effects on ANIP, Bias-tone level functions of firing rate, synchrony indices and phase of major

suppression for the 1s and 2nd harmonic in the top-bottom order;
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Example Result in Fig. 3.26: CT025, U102, CF=1.49 kHz, SR=66 sps

This fiber is another example from the CF region, 1 kHz < CF < 2 kHz. The bias-tone only
excitation threshold was met at 120 dB SPL with the excitation phase detected at the broader peak in
the period histogram. The suppression threshold for ANIP and ANSP was 100 dB SPL with the major
suppression phase opposite to that of low-level click response on which suppression threshold was
reached at 90 dB SPL.
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(c) Bias-tone only Period Histograms (d) Bias on Low-level Click Response (e) Analysis of Bias-tone on Low-level
Click R, 60 dB pSPL
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(f) Bias on ANIP: Click R, 90 dB pSPL
Time Window: 2.5-2.8 ms
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(h) Bias-tone on ANSP: Click C, 90 dB pSPL
Time Window: 2.8 - 3.3 ms
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Fig. 3.26 Example Result: (a) Tuning Curve, CF=1.49 kHz and SR= 66 sps; (b) Click Level Series: the click level
selected for low-level click and ANIP/ANSP is noted in blue and red respectively. For all the data presented in

this chapter, rarefaction click was used for low-level studies. For all the data on ANIP and ANSP in this chapter,
ANIP was generated by rarefaction click, and ANSP was generated by a condensation click. The click response
selected for ANSP is plotted in red dotted line; (c) Bias-tone (BT) only level series, excitation threshold reached
at 120 dB SPL. Excitation threshold level is indicated in green, and the excitation phase is indicated by a green
triangle; (d) Bias-tone level-series on low-level click response. The suppression threshold and the suppression
phase of the 1st and 2"d harmonic is indicated in blue and red respectively; (e) Detailed analysis of the bias-tone

effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of major
suppression for the 1st and 2"d harmonic in the top-bottom order; (f) Bias-tone level-series on ANIP: suppression

threshold for 2nd harmonic was reached at 100 dB SPL. Note that the major suppression phase on ANIP was
opposite of the low-level click response; (g) Detailed analysis of the bias-tone effects on ANIP, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1't and 2"d harmonic in the

top-bottom order; h) Bias-tone level-series on ANSP: suppression threshold for 2 harmonic was reached at 100
dB SPL. Note that the major suppression phase on ANSP was similar to that of ANIP opposite of the low-level
click response; (i) Detailed analysis of the bias-tone effects on ANIP, Bias-tone level functions of firing rate,

synchrony indices and phase of major suppression for the 1" and 2"d harmonic in the top-bottom order.
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Example Result in Fig. 3.27: CT031, U079, CF=2.12 kHz, SR=14 sps
This is a typical example fiber from the CF region, 2 kHz < CF < 3 kHz, which was the band with

highest CF from which suppression thresholds were reached on ANIP and ANSP. Note from Fig. 3.21
that the suppression threshold on ANIP and ANSP began to rise sharply in this CF region.

The suppression thresholds on low-level click response, ANIP and ANSP was 90, 100 and 110 dB
SPL respectively. The major suppression phase for ANIP and ANSP was again opposite to that of low-
level click responses. Since the suppression threshold on ANSP at 110 dB SPL was not below the
excitation threshold which was also 110 dB SPL, the ANSP data for this fiber were not included in the
suppression data pool.
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(c) Bias-tone only Period Histograms (d) Bias on Low-level Click Response (e) Analysis of Bias-tone on Low-level
Click R, 60 dB pSPL
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(f) Bias on ANIP: Click R, 90 dB pSPL
Time Window: 1.8 - 2.16 ms
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(h) Bias-tone on ANSP: Click C, 90 dB pSPL (i) Analysis of Bias-tone on ANSP
Time Window: 2.07 - 2.34 ms
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Fig. 3.27 Example Result: (a) Tuning Curve, CF=2.12 kHz and SR= 14 sps; (b) Click Level Series: the click level
selected for low-level click and ANIP/ANSP is noted in blue and red respectively. For all the data presented in

this chapter, rarefaction click was used for low-level studies. For all the data on ANIP and ANSP in this chapter,
ANIP was generated by rarefaction click, and ANSP was generated by a condensation click. The click response
selected for ANSP is plotted in red dotted line; (c) Bias-tone (BT) only level series, excitation threshold reached
at 110 dB SPL. Excitation threshold level is indicated in green, and the excitation phase is indicated by a green
triangle; (d) Bias-tone level-series on low-level click response. The suppression threshold and the suppression
phase of the 1tt and 2nd harmonic is indicated in blue and red respectively; (e) Detailed analysis of the bias-tone

effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of major
suppression for the 15t and 2nd harmonic in the top-bottom order; (f) Bias-tone level-series on ANIP: suppression

threshold for 2nd harmonic was reached at 100 dB SPL. Note that the major suppression phase on ANIP was
opposite of the low-level click response; (g) Detailed analysis of the bias-tone effects on ANIP, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1s and 2"d harmonic in the

top-bottom order; h) Bias-tone level-series on ANSP: suppression threshold for 2 harmonic was reached at 100
dB SPL. Note that the major suppression phase on ANSP was similar to that of ANIP opposite of the low-level
click response; (i) Detailed analysis of the bias-tone effects on ANIP, Bias-tone level functions of firing rate,

synchrony indices and phase of major suppression for the 1" and 2nd harmonic in the top-bottom order.
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Example Result in Fig. 3.28: CT031, U071, CF=3.228 kHz, SR=56.4 sps
For this fiber with CF of 3.23 kHz, the suppression threshold on low-level click response and

ANIP was reached at 90 and 110 dB SPL while the threshold was not reached for ANSP within the
maximum level of the bias-tone applied, which was 110 dB SPL.

The suppression pattern on low-level clicks and ANIP were similar to the other fibers with lower
CFs except for the elevated threshold level. For ANIP at the bias-tone level of 100 dB SPL, the major
suppression phase was visually identifiable at the typical location but was below the threshold criterion.
At the next level of 110 dB SPL which met the threshold criterion, the analysis method, however,
apparently selected the wrong phase as the major suppression phase. Since the excitation threshold
was at 100 dB SPL which was exceeded by the suppression threshold on ANIP, the data for ANIP were
not included in the suppression data pool. As for ANSP, signs of suppression were not visible from the
period-histograms or the rate-level function.

These results suggest that as the CF of the fiber exceeded ~2 kHz, the threshold of suppression
was elevated; however, the overall pattern of suppression remained qualitatively similar to the fibers
with lower CFs.
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(c) Bias-tone only Period Histograms (d) Bias on Low-level Click Response (e) Analysis of Bias-tone on Low-level
Click R, 60 dB pSPL
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(f) Bias on ANIP: Click R, 90 dB pSPL
Time Window: 1.8 - 2.16 ms
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(f) Bias on ANIP: Click R, 90 dB pSPL
Time Window: 2.07-2.34 ms

(i) Analysis of Bias-tone on ANSP
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Fig. 3.28 Example Result: (a) Tuning Curve, CF=3.23 kHz and SR= 56.4 sps; (b) Click Level Series: the click level
selected for low-level click and ANIP/ANSP is noted in blue and red respectively. For all the data presented in

this chapter, rarefaction click was used for low-level studies. For all the data on ANIP and ANSP in this chapter,
ANIP was generated by rarefaction click, and ANSP was generated by a condensation click. The click response
selected for ANSP is plotted in red dotted line; (c) Bias-tone (BT) only level series, excitation threshold reached
at 100 dB SPL. Excitation threshold level is indicated in green, and the excitation phase is indicated by a green
triangle; (d) Bias-tone level-series on low-level click response. The suppression threshold and the suppression
phase of the 1" and 2 harmonic is indicated in blue and red respectively; (e) Detailed analysis of the bias-tone

effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of major
suppression for the 1st and 2nd harmonic in the top-bottom order; (f) Bias-tone level-series on ANIP: suppression

threshold for 2 harmonic was reached at 100 dB SPL. Note that the major suppression phase on ANIP was
opposite of the low-level click response; (g) Detailed analysis of the bias-tone effects on ANIP, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1" and 2"d harmonic in the

top-bottom order; h) Bias-tone level-series on ANSP: suppression threshold for 2 harmonic was reached at 100
dB SPL. Note that the major suppression phase on ANSP was similar to that of ANIP opposite of the low-level
click response; (i) Detailed analysis of the bias-tone effects on ANIP, Bias-tone level functions of firing rate,

synchrony indices and phase of major suppression for the 1" and 2nd harmonic in the top-bottom order.
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Example Result in Fig. 3.29: CT023, U066, CF= 7.16 kHz, SR= 80 sps
On this fiber with the CF of 7.16 kHz, bias-tone studies were done on the low-level click

responses only. Both the TC and the click level series show the typical characteristics of a high-CF fiber;
the TC shows a broad low-frequency tail, and the low-level click responses no longer is phased locked to
the CF of the fiber but shows the amplitude envelope only. From the bias-tone only period histograms,
the peak splitting was not visible, and the narrow peak remained at about the same phase as in fibers
with lower CFs.

The suppression threshold for the second harmonic was reached at 100 dB SPL for low-level
click responses. Note that for this fiber, the suppression phase for the low-level click responses was
detected at the opposite phase to the main data group. However, also note that at 10 dB below the
threshold at 90 dB SPL, the actual major suppression phase emerges at the typical location, but fell
below the criterion. Therefore, the suppression pattern for this fiber was not actually different from
other fibers in this CF region.
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(c) Bias-tone Only Period Histogram
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Fig. 3.29 Example Result: (a) Tuning Curve, CF= 7.16 kHz and SR= 80 sps; (b) Click Level Series, ClickR at 70 dB
pSPL selected for bias-tone effects; (c) Bias-tone (BT) only level series: peak splitting was not present. Only the
narrow peak appeared at ~110 dB SPL, but the rate threshold was note met; (d) Bias-tone level-series on click
response, ClickR at 70 dB pSPL, Time window 1.8 - 2.8 ms. The suppression threshold was met at 100 dB SPL

with the second harmonic. The major suppression phase was opposite of the typical value; however, at 10 dB
the threshold, the actual major suppression phase can be seen in the typical location. Therefore, the actual

suppression characteristic of this fiber was not different from the typical pattern; (e) Detailed analysis of the
bias-tone effects on click response, Bias-tone level functions of firing rate, synchrony indices and phase of major

suppression for the 1 and 2 harmonic in the top-bottom order.
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IV. Discussion

A. The Suppression Effects on AN Firing Reported in This Study Were Primarily Due to

Stimulation of OHCs rather than Direct Stimulation of IHC Stereocilia by the 50 Hz Bias-tone
Although 50 Hz bias-tone used in this study is expected to stimulate the OHC stereocilia with higher

amplitude than the IHC stereocilia [Russell and Sellick, 1983], it has been found in this study and

elsewhere [Sellick et al, 1982; Patuzzi et al, 1984a; Cai and Geisler, 1996a] that AN responses to bias-

tone level series with bias-tone alone do show both firing rate elevation and phasic modulation of

period histograms at high enough levels of bias-tone. Consequently, it would be necessary to examine

whether the results reported in this study as suppressive effects on OHC transduction function were not

significantly affected by direct stimulation of the IHC stereocilia by the bias-tone.

In order to detect results with potential effects of direct stimulation of IHC stereocilia by the bias-

tone, the excitation threshold level on AN firing by the bias-tone alone was measured from the AN

response to level series of bias-tone alone from each AN fiber. Then, the results from the bias-tone level

series on click responses at the bias-tone level at or above the excitation threshold were not included in

the data pool for suppression effects.

The criteria to determine the excitation threshold of an AN fiber required firing rate elevation by a

standard deviation and the standard error on the vector phase of firing to be within ±20*. Now, it would

be necessary to examine whether the criteria applied on the reported results were appropriate. In

order to examine the impact of the excitation threshold criteria on the suppression data, several

iterations of data analysis were done with varying degrees of criteria around the values applied on the

reported results. For example, the rate criteria with smaller increment such as Y2 of standard deviation

and the phase criteria with larger error bound such as ±300 are expected to lower the threshold of

excitation by the bias-tone alone whereas a larger increment of firing rate such as two standard

deviation and lower error bound on phase such as 100 would elevate the excitation threshold. Series of

plots of the excitation phase by 50 Hz bias-tone alone and the major suppression phase on click

response components as shown in Fig. 3.17 and Fig. 3.20 with varying criteria on the excitation

threshold did not reveal significant shifts in the results other than the number and scatter of data points

around the same trend. Considering these, the suppression Effects on AN Firing reported in this study

were primarily due to stimulation of OHCs rather than direct stimulation of IHC stereocilia by the 50 Hz

bias-tone.

B. The Suppression Data on Click Response Components from AN Fibers Show that the

Non-linear Mechanoelectric Transduction Function of OHCs are Involved in Generating ANIP
and ANSP as well as Low-level Click Responses

Qualitatively the suppression effects of 50 Hz bias-tones on the three click response components

from AN fibers were similar to the widely reported results on the suppression effects on AN responses

to low-level CF-tones [Patuzzi et al, 1984a; Cai and Geisler, 1996a]. As in the suppressive effects on low-

level CF-tone responses, the suppressive patterns on AN responses to click components typically

progressed from the appearance of a major suppression phase to two suppression phases at opposite

phases at higher levels of the bias-tone.
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Previous studies have shown that the mechanism behind these suppression patterns on low-level
CF-tone responses is likely to be at the non-linear mechanoelectric transduction function of OHCs with
saturating plateaus at either ends of the stereocilia deflection [Robles and Ruggero, 2001]. As for the
non-linearity of OHCs in response generation of ANIP and ANSP, the possibility of the involvement of the
stereocilia motility of OHCs rather than electromotility has been discussed in [Guinan et al, 2005]. Since
the transduction function for force generation by OHCs through their stereocilia motility also involves
saturating plateaus at either ends of stereocilia deflection [Fettiplace, 2006; Hudspeth, 2008], the
possibility that the bias-tone suppression patterns found on ANIP and ANSP responses may be due to
stereocilia motility cannot be completely ruled out. However, as argued in [Guinan et al, 2005]
stereocilia motility is unlikely to be the drive mechanism behind ANIP and ANSP since stimulation of
MOC efferents is expected to enhance stereocilia motility rather than inhibiting it since
hyperpolarization of OHCs brought on by MOC efferent stimulation would result in increased influx of
the Ca ions which in turn is expected to increase OHC sterecilia motility. The suppression data on
ANIP, ANSP and low-level click responses found in this study along with the inhibitive effects by MOC
efferents [Guinan et al, 2005] strongly suggest that both the mechanoelectric transduction function and
the elctromotility of OHCs are involved in generating ANIP and ANSP responses at mid-to-high-levels of
clicks as well as low-level click responses from AN fibers.

C. Reversal of Major Suppression Phase between the Low-level Click Responses VS ANIP
and ANSP at Mid-to-high-levels of Clicks

Although the overall pattern of suppressive effects by a low-frequency tone on AN responses to
low-level clicks, ANIP and ANSP were similar whereby two suppression phases at opposite phases were
found from all three click response types in this study, the phase of major suppression by 50 Hz bias-
tone on low-level click responses was opposite to that on ANIP and ANSP as shown in Fig. 3.20 while the
major suppression phase of ANIP and ANSP at mid-high click levels was quite similar to each other such
that the data for ANIP and ANSP were located within one standard error of ± 20*. These data are in
support of the hypothesis that the mechanism of OHC involvement in generating AN responses to low-
level clicks VS ANIP and ANSP at mid-to-high-levels of clicks are somehow different [Guinan et al, 2005].
Further, similar to the stronger inhibitive effect on ANIP compared to ANSP by MOC efferent stimulation
reported in [Guinan et al, 2005], the threshold of suppression on ANSP was ~5 dB higher than that of
ANIP thereby supporting the hypothesis that ANSP may consist of offset envelope of ANIP response
which is actively driven by OHCs through an unknown mechanism and the onset of another type of
response with a longer latency than ANIP where OHCs are not actively involved in response generation
[Guinan et al, 2005].

D. Previous Reports of Reversal of Major Suppression Phase by a Low-frequency Bias-
tone on AN Responses

It is of interest to review previous reports of results which are similar to the key findings of this
study, i.e., reversal of the major suppression phase of low-frequency bias-tone effects on AN responses
in order to gather any insights that they may provide. From the suppression patterns on AN responses
to low-level CF-tones by low-frequency bias-tones from cats, [Cai and Geisler, 1996a] reported a wide
range of major suppression phase spanning 1800 from the basal region of the cochlea with the CF of 8.1
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kHz < CF < 13 kHz. Specifically, Fig. 10 of [Cai and Geisler, 1996a] shows fibers with opposite phase of

major suppression phase along with fibers with very symmetrical depths of suppression. In the

companion paper to [Cai and Geisler, 1996a], the mechanism behind the varying location of the major

suppression phase among those individual fibers in the basal region was attributed to the varying

location of the operating point of the mechanoelectric transduction function of OHCs operating behind

the AN fibers [Cai and Geisler, 1996c]. Specifically, for the fibers with symmetrical shape of the

suppression phases, the operating point of the OHC transduction function was attributed to a location

symmetrical across the two saturation plateaus as in Fig. 3.2(a). For fibers with the major suppression

phase which was similar to the apical fibers, the operating point was placed away from the depolarizing

voltage plateau as in Fig. 3.30(a) while the fibers with reversal of the major suppression phase, the

operating point of the OHC transduction function was placed away from the hyperpolarizing voltage

plateau as in Fig. 3.30(b).

Although the stimulus paradigm and the CF region of the AN fibers in [Cai AND Geisler, 1996a]

are different from this study, the cochlear mechanistic interpretations of reversal of the major

suppression phase in [Cai and Geisler, 1996c] raises the following question on the results from this

study: Was the operating point of the mechanoelectric transduction function of OHCs also shifted as

described in [Cai and Geisler, 1996c] from low-levels of clicks to mid-to-high-levels of clicks coincident

with the reversal of the major suppression phase on AN responses to low-level clicks VS ANIP and ANSP?

Experimentally based answers to this question would require intracellular recordings of transduction

voltage of the OHCs from the apex of the cochlea under the experimental paradigm of bias-tone on click

response as done in this study. Such data are currently unavailable and expected to be difficult to

obtain due to the challenges of maintaining the health of the cochlea during intracellular recordings

from the apex of the cochlea [Dallos, 1986]. However, it would be desirable to review relevant studies

from the past which have been primarily from the base of the cochlea for any insights that they might

provide [Cody and Russell, 1985; Cody and Russell, 1987; Russell and K6ssl, 1992].

E. Shift in the Operating Point of OHC Mechanoelectric Transduction Function Can be
Seen From Shift in the DC Component of OHC Transduction Voltage

The transduction voltage response of OHCs to low-frequency tones have been found to show

both AC and DC component [Cody and Russell, 1985; Dallos, 1986]. It is widely accepted that the DC

component is generated by the non-linearity in the OHC transduction function, particularly by the

asymmetry of the operating point from the saturation plateaus of the mechanoelectric transduction

function of OHCs [Cody and Russell, 1985; Dallos, 1986]. Specifically, a positive DC component in the

OHC transduction voltage has been associated with asymmetry similar to that of Fig. 3.30(a) where the

operating point is away from the depolarizing voltage output as seen predominantly from the OHCs in

the apex of the cochlea [Dallos, 1986]. Further, negative DC component from the OHC transduction

voltage has also been found from the base of guinea pig cochlea [Cody and Russell, 1985; Cody and

Russell, 1987] thereby supporting the theory proposed in [Cai and Geisler, 1996c] which links the

reversal of the major suppression phase induced by a low-frequency bias-tone with a reversal of the

asymmetry of the operating point of OHC transduction function over different regions of the cochlea.

Furthermore, the DC component of the OHC transduction function from the base of the guinea pig
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cochlea has been found to change over increasing levels of a low-frequency tone with frequencies in the
range of 200 Hz - 600 Hz [Cody and Russell, 1985; Cody and Russell, 1987]. Specifically, at low and

moderate levels of low-frequency tones, the DC component was negative thereby suggesting the shape
of the underlying mechanoelectric transduction function similar to that of Fig. 3.30(b). At high levels of
the tone stimulus above 90 dB SPL, the DC component was nulled out and came back with an inverted
polarity of positive voltage over increasing levels of the tone [Cody and Russell, 1985; Cody and Russell,
1987] thereby suggesting a reversal in the asymmetry of the operating point of the OHC transduction
function over the levels of the tone stimulus. These studies have shown that the asymmetry of the
operating point of OHCs vary across the cochlea regions and also dynamically shift over the levels of
sound stimulus at a given cochlea location thereby providing a level of support to the hypothesis that
the reversal of the major suppression phase on AN responses to clicks from low-levels of clicks to mid-
to-high-levels of clicks generating ANIP and ANSP as found in this study may be linked to shift in the
operating point of the OHC transduction function over the levels of click stimulus.

Also in [Cody and Russell, 1987], the mechanism responsible for dynamic shift in the operating
point of OHC transduction function over tone stimulus levels has been considered. It has been argued in
[Cody and Russell, 1987] that the dynamic shift in the operating point of OHC transduction function is
likely to be due to changes in the mechanical input to the OHC stereocilia over tone stimulus levels
arising from micromechanical changes in the positions and motions of OHC stereocilia and tectorial
membrane rather than due to non-linearity inherent in the OHCs since OHC transduction voltage
measurements in vitro in response to direct mechanical stimulation of OHC stereocilia do not show any
shift in the asymmetry in the operating point. The issue of potential changes in the cochlear mechanics
linked with shift in the operating point of OHC transduction function over stimulus tone levels has been
investigated in [Russell and K6ssi, 1992] through recordings of the OHC receptor potential from the
basal region of guinea pig cochlea under the paradigm of 100 Hz bias-tone presented together with a
near-CF-tone [Russell and Kossl, 1992] as discussed in the next section.
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(a) Predominant Shape of OHC Mechanoelectric Transduction Function
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Fig. 3.30 Schemnatized version of non-linear mechanoelectric transduction function of OHCs: (a) the
predominant shape where the operating point leads to depolarizing DC component in OHC receptor potentials;
(b) hypothetical version of a OHC transdluction function with polarity reversal. The location of the operating

point leads to hyperpolarizing DC component in OHC receptor potential

F. Previous Reports of Changes in the Cochlear Mechanics Related to Shift in the
Operating Point of Mechanoelectric Transduction Function of OHCs

A low-frequency bias-tone is known to suppress OHC and IHC receptor voltages as well as AN
firings in response to low-level CF-tones with two suppression phases at opposite phases of the bias-

tone at high enough levels [Pattuzi and Sellick, 1984]. In [Russell and K6ssl, 1992], the effects of 100 Hz

bias-tone at the fixed level of 80 dB SPL on the IHC and OHC receptor voltages of guinea pigs in response

to tone stimulus near the CF (CF = 16 kHz) of the recording site were studied. The intensity of the near-

CF-tone stimuli extended from 30 dB SPL to 105 dB SPL which went well above the saturation threshold

of the OHC and IHC responses. As expected, at low-levels of the near-CF-tone stimuli, the bias-tone

suppressed the OHC and IHC receptor potentials in response to the near-CF-tone. Also, as expected

from the saturation of the "cochlear amplifier" at high-levels of the near-CF-tone stimuli, the

suppression effects by the 100 Hz bias-tone on OHC and IHC receptor potentials in response to high-

levels of near-CF-tone stimulus above ~70 dB SPL were negligible.

Along with these expected results on the suppressive effects on the near-CF tone component of the

OHC responses, significant changes in the DC component of the OHC transduction function were seen

across the saturation level of the near-CF-tone stimulus. Specifically, with the near-CF-tone stimuli with
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frequencies of ~1/2 octave below the CF presented together with the bias-tone, the negative value of
the DC component of the OHC transduction function measured at low levels of the near-CF tone was
nulled out, and returned with a polarity reversal as a positive value over increasing levels above ~80 dB
SPL of the near-CF tone. These results show that the near-CF tone component of OHC response which is
driven by the "cochlear amplifier" was saturated over the level of the near-CF-tone where significant
shift in the operating point of the OHC transduction function was observed. Furthermore, over this
critical transition level of the near-CF tone, the phase of both 100 Hz bias-tone component and the near-
CF-tone component went through a sharp reversal [Russell and K6ssl, 1992]. These results show that
significant changes in the cochlear mechanics, i.e., saturation of the cochlear amplifier and reversal of
phase in both 100 Hz bias-tone and near-CF-tone response, occurred over the shift in the operating
point of the OHC transduction function. As for the micromechanics behind the shift in the operating
point of OHC transduction function and the concurrent changes in the cochlear mechanics listed above,
changes in the dynamics of the feedback loop involving the TM-OHC-BM complex brought on by
stimulus dependent changes in the rotational stiffness of OHC stereocilia or changes in the steady-state
length of the OHCs due to non-linearity in the reverse transduction function of OHCs were proposed as
potential explanations [Russell and K6ssl, 1992].

Despite the differences in the species, stimulus paradigms and the CF region of recording in
comparison to this study, the probe-stimulus level dependent shift in the operating point of OHC
transduction function found from the base of the guinea pig cochlea in [Cody and Russell, 1987; Russell
and K6ssl, 1992] are of significance in interpreting the results in this study since it provides a solid
framework to interpret the stimulus-level dependent reversal of the major suppression phase on AN
responses from low-levels of clicks to mid-to-high-levels of clicks found in this study. Specifically, if the
mechanism behind the reversal of the major suppression phase involves shift in the in the operating
point of the OHC transduction function from low levels of stimulus to mid-to-high-levels of stimulus
through similar mechanism as found and proposed in [Russell and K6ssl, 1992], the reversal of the major
suppression phase would indicate significant changes in the cochlear mechanics occurring together
which includes saturation of the cochlear amplifier at mid-to-high-levels of clicks. This interpretation
would be entirely consistent with the studies on MOC efferent effects on AN responses to click level
series where the inhibitive effects on AN response to mid-to-high levels of clicks were limited to ANIP
and ANSP which are thought to be driven by a mechanism which is different from the "cochlear
amplifier" while the later peaks were not affected since the gain of the "cochlear amplifier" is
significantly reduced at mid-to-high-levels of clicks. Therefore, this interpretation is in support of the
hypothesis that ANIP and ANSP are driven by OHC electromotility through an unknown coupling
mechanism to the IHCs which must be different from the BM-based cochlear amplifier [Guinan et al,
2005; Guinan, 2009].
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Chapter 4. Bias-tone Effects on Low-level CF-tone and Off-CF-
tone Responses from Low-CF Fibers

I. Introduction
Cochlear mechanics in the apex has long been suggested to differ significantly from the base

[Kiang, 1984; Liberman, 1984; Carney et al, 1999]. Supporting evidence for this notion comes from the

discontinuities in the function of group delay VS frequency measurements from auditory nerve (ANs)

responses to tones from low-CF fibers with CF < 4 kHz where a CF-centered region with longer group

delay adjoins a "side-lobe" or "off-CF" region with shorter group delay [Pfeiffer & Molnar, 1980; Kiang,

1984]. For AN fibers with CF < 1 kHz from cats [Pfeiffer & Molnar, 1980; Kiang, 1984; Van der Heijden &

Joris, 2006] and chinchillas [Temchin et al, 2009], the group delay VS frequency function constructed

from AN responses to tones can be described as a composite of two regions where the shorter group

delay is seen from stimulus tone frequencies above the CF of the fiber in comparison to the lower

frequency region which extends slightly above the CF of the fiber. Further, similar discontinuities in the

slope of the threshold tuning curves (TC) of AN fibers with CF < 1 kHz can be found whereby the sharply

tuned tip region adjoins the broadly tuned "side-lobe" region with similar locations of the break

frequencies in the group delay function and TC of the fiber [Kiang, 1984]. These characteristics of TC

and group delay function of AN fibers with CF < 1 kHz are illustrated through an example in Fig. 4.1 for

an AN fiber of a cat with CF = 0.4 kHz. Further, for AN fibers with 1 kHz < CF < 4 kHz, similar

discontinuities can be found in the group delay function and TC of the fiber but at the frequency location

of the shorter group delay region in the low-frequency-side of the CF in contrast to the fibers with CF < 1

kHz [Pfeiffer & Molnar, 1980; Kiang, 1984; Van der Heijden & Joris, 2006; Temchin et al, 2009]. These

characteristics have been interpreted through the hypothesis that they are likely due to multiple sources

driving the inner hair cells (IHCs) of low-CF fibers [Lin and Guinan, 2000; Guinan et al, 2005].

Recent work exploring the relationship between the group delay function of tone responses and

the temporal trajectory of the instantaneous frequency (referred to as "frequency glide" in the cochlear

mechanics literature) of impulse responses from ANs and basilar membrane (BM) vibrations allows

some critical evaluation of the above hypothesis. Studies have found that the location of the frequency

region with shorter group delay relative to the CF of the AN fiber in its tone responses is related to

direction of the "frequency glide" in the click responses [Carney et al, 1999]. For low-CF fibers with CF <

1 kHz where the shorter group delay region is located in the upper-side frequencies re. the CF of the

fiber, the instantaneous frequency of the click responses descends from above-CF frequencies settling

down to the CF of the fiber. In contrast, for low-CF fibers with 1 kHz < CF < 4 kHz, where the shorter

group delay region is located in the lower-side frequencies re. the CF of the fiber, the instantaneous

frequency in the click responses ascends from below-CF frequencies leveling to the CF of the fiber

[Carney et al, 1999; Temchin et al, 2009]. Measurements of group delay VS frequency and frequency

glide of impulse responses from the basal region of BM with the characteristic place > 5 kHz of guinea

pigs [deBoer and Nuttall, 1997] showed similar pattern of the group delay and frequency glide as found

with the low-CF AN fibers with 1 kHz < CF < 4 kHz. These similarities in the BM measurement data from

the basal region and the AN response characteristics for AN fibers with 1 kHz < CF < 4 kHz led to the view
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whereby the mechanism behind the upward frequency glide and the discontinuities in the group delay
found from AN fibers with CF > 1 kHz can be explained through the frequency dispersive wave
propagation of BM rather than multiple sources driving the IHCs of AN fibers [Carney, 1999; Shera,
2001]. With this current view point, cochlear mechanics as seen from the basal region of the cochlea is
thought to extend down to the CF of ~1.5 kHz where an upward frequency glide is seen from impulse
responses, and in the frequency domain, the sharply tuned CF region is flanked by the broadly tuned
low-frequency tail region with lower group delay [Shera, 2001]. Even with this view point, however,
cochlear mechanics for the apical region with CF < 1 kHz, which is characterized by an upward frequency
glide in the impulse response, remains unclear and thought to differ significantly from the base of the
cochlea [Carney, 1999].

In exploring the cochlear mechanics in the apex of the cochlea, it is of particular interest to
investigate the role of outer hair cells (OHC) in giving rise to the peculiar characteristics of the AN firing
patterns from the apical fibers; for example, the role of OHCs in generating AN responses to the tones
from the "off-CF" or "side-lobe" region with shorter group delay. OHCs have been found to be directly
responsible for the high sensitivity and sharp frequency tuning associated with the low-level click and
low-level CF tone responses [Liberman and Kiang, 1984; Schoonhoven et al, 1994]. Now it is widely
accepted that the theory of the OHC based "cochlear amplifier" provides adequate explanations to the
mechanism behind the generation of the AN responses to low-level CF tone and low-level clicks
[Ruggero, 2001]. The critical part of the "cochlear amplifier" lies at the mechanical feedback between
the BM and OHCs whereby the stereocilia of OHCs transduce the BM vibration to OHC transmembrane
receptor voltage which returns as changes to the BM movement through the electromotility of the OHCs
[Ruggero, 2001].

The role of OHCs in generating AN responses from the apical fibers to the tones from the CF and
the "off-CF" or "side-lobe" frequency regions have been investigated by studying the effects of electrical
stimulation of medial olivocochlear (MOC) efferent fibers on AN responses to tones [Gifford and Guinan,
1988c]. Through the efferent synapse on OHCs, electrical stimulation of MOC efferents has been found
to inhibit electromotility of OHCs thereby inhibiting AN responses driven by electromotility of OHCs such
as AN responses to low-level CF-tone responses [Guinan, 1996]. The studies have revealed that MOC
efferent stimulation resulted in significant inhibition of AN responses to tones from the CF-centered tip
region and also from the off-CF frequency region of apical fibers. One peculiar finding from this study
was that for some fibers with CFs near 1 - 2 kHz, the inhibitory effects on the near-threshold level off-
CF-tone responses were stronger than on the near-threshold level CF-tone responses thereby resulting
in further sharpening of tuning rather than broadening of tuning due to MOC efferent stimulation as
found from the rest of the fibers [Gifford and Guinan, 1988c]. The unexpected sharpening of tuning of a
low-CF fiber resulting from stimulation of MOC efferent is illustrated through an example with a cat's AN
fiber with CF = 0.8 kHz in Fig. 4.2. In a recent work [Guinan, 2009], these findings have been interpreted
as an indication that the detailed mechanism of OHCs in generating the "off-CF" tone responses from
these low-CF fibers may be distinct from the mechanism generating low-level CF-tone responses, i.e.,
the BM-based cochlear amplifier.
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Fig. 4.1. Tuning Curve & Phase Response Plot of a Low CF=0.4kHz fiber. The phase response displayed as the
group delay VS frequency plot shows two distinct regions where the delay group values for tone frequencies

above the CF of the fiber are distinctly lower compared to the lower half of tone frequency. Note that the
break-frequency in the group delay is aligned with the break-frequency in the neural threshold tuning curve

demarking the side-lobe region. Courtesy of Prof. John J Guinan [Guinan, 2009]
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Fig. 4.2. MOC efferent stimulation inhibits the off-CF portion of responses more strongly from fibers with CF
near 1- 2 kHz thereby sharpening the tuning of the neural threshold TC. . Courtesy of Prof. John J Guinan

[Guinan, 2009]

The objective of this study is further explorations on the possible differences in the OHC
mechanism behind generation of AN responses from low-CF fibers with CF < 4 kHz to tones from the CF
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VS the "off-CF" region of the fiber where shorter group delay values in comparison to the CF-tone region
were reported in [Pfeiffer & Molnar, 1980; Kiang, 1984; Van der Heijden & Joris, 2006}. Specifically, the
selection criteria for the "off-CF" tone frequency was for the selected frequency to be in the region with
lower value of group delay in comparison to the CF region as reported in [Pfeiffer & Molnar, 1980; Kiang,
1984; Van der Heijden & Joris, 2006]. Rather than directly measuring the phase-frequency response
from each fiber, determination of the "off-CF" region with shorter group delay for all fibers was based
on the group delay measurements from low-CF fibers reported in [Pfeiffer & Molnar, 1980; Kiang, 1984;
Van der Heijden & Joris, 2006; Temchin et al, 2009] where such "off-CF" region was found at either the
low-frequency or high-frequency side of the CF for fibers with CF higher or lower than some break-
frequency values respectively. Specifically, [Pfeiffer and Molnar, 1980] reported that the off-CF region
with lower group delay could be found in the high-frequency side of the CF for fibers with CF < 1 kHz,
and on the low-frequency side of the CF for fibers with CF > 1.2 kHz for cats AN fibers. Similar values of
break-frequencies can be found elsewhere for cats AN [Van der Heijden & Joris, 2006; Carney et al,
1999] and for ANs of chinchillas [Temchin et al, 2009]. Accordingly, in this study a single break-
frequency of 1.2 kHz was used whereby the "off-CF" tone frequency was selected from the high-side and
low-side of the CF for fibers with CF 1.2 kHz and CF > 1.2 kHz respectively. Specifically, from either the
low- or high-side of the CF as described above, the off-CF-tone frequency was selected with the spacing
of 0.7 - 2 octave from the CF of the fiber. Note that the frequency spacing of the "off-CF" tone from the
CF of the fiber was also based on the group delay measurements reported in [Van der Heijden & Joris,
2006; Temchin et al, 2009]. Specifically, [Temchin et al, 2009] reported that the lower-group delay
region began at ~0.5 octave away from the CF of the fiber, and it can be seen from Figure 3 of [Van der
Heijden & Joris, 2006] that the "off-CF" region with lower group delay can be found at ~0.7 - 1 octave
from the CF of the fiber for the population of fibers in their study. In the remainder of this chapter, the
terms "off-CF" are based on the above definitions.

As for the experimental approach toward exploring the role of OHC mechanism behind the AN
responses to CF-tone VS off-CF tones, suppressive effects by a low-frequency bias-tone on AN responses
to tones from the CF region VS the "off-CF" region were measured and compared.

A low-frequency tone such as 50 Hz with high enough amplitude but still under the neural
threshold level has been known to suppress the firing pattern of AN invoked by a second higher
frequency probe tone with a temporal pattern of suppression which is synchronized with the low-
frequency bias-tone [Ruggero et al, 1992]. Typically the suppressive effects at low bias-tone levels start
with a single suppression phase re. the bias-tone-period which deepens with increasing bias-tone level,
and often progress to two suppression phases located at the opposite phases of the bias-tone-period
[Patuzzi et al, 1984a].

The mechanism behind this typical suppression pattern has been found in the saturating non-

linearity of the mechano-electric transduction function of OHCs which converts deflections of OHC
stereocilia into transmembrane current [Robles and Ruggero, 2001]. In-vivo measurements of the OHC
receptor potential in response to low-frequency acoustic tone stimuli from guinea pigs have shown that
the mechano-electric transduction function can be generally described as a curve with saturating non-
linearity at both ends of the output [Dallos, 1985; Russell et al, 1986]. Further, it has been found that
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the sharpness of saturation and the location of the transduction operating point on the curve depend on

the CF location within the cochlea [Dallos, 1985; Russell et al, 1986]. A schematized version of the

transduction function from the basal region of guinea pig cochlea as reported in Fig. 1 of [Russell et al,
1986] is shown in Fig 4.3(a) where the operating point is located approximately in the middle of the two

saturation plateaus. Also, a schematized version of the transduction function from the apical region of

guinea pig cochlea as reported in Fig. 10 of [Dallos, 1985] is shown in Fig 4.3(b) where the operating

point is located closer to the hyperpolarizing saturation plateau.

The shape of the nonlinear transduction function of the OHCs is strikingly well reflected in the

two tone interactions between a low-level probe tone and a second low-frequency bias-tone in BM

movement, hair cell receptor voltage and firing patterns from AN fibers [Ruggero et al, 1992; Patuzzi et

al, 1984b; Cai and Geisler, 1996c]. A low-frequency bias-tone with high enough amplitude sinusoidally

deflects the OHC stereocilia over a wide range such that the operating point of the mechano-electric

transduction function traverses through the two saturating end regions during each cycle of the low-

frequency bias-tone. Therefore, the gain of the OHC mechanoelectric transduction function and AN

responses driven by it are suppressed as the operating point of the OHC transduction passes through

the two saturating regions. Further, depending on the location of the operating point of the OHC

transduction function at the particular place within the cochlea, one of the suppression phases emerges

at a lower level of the bias-tone with a larger depth of modulation [Cai and Geisler, 1996a; Cai and

Geisler, 1996c].

Suppression effects on AN responses to a low-level CF-tone by a low-frequency bias-tone are

illustrated through the AN firing pattern evoked by a low-level CF-tone at 1.6 kHz and a 50 Hz bias-tone

recorded from a cat AN fiber with a CF of 1.63 kHz. Fig. 4.5 shows the bias-tone level series of bias-tone-

period histograms which were constructed by binning the spike records relative to the period of the

bias-tone. At the bias-tone level of 80 dB SPL, the firing rate in response to the low-level probe tone

begins to be suppressed approximately in the middle of the period which is noted as the "major

suppression phase". Then, at 90dB SPL the major suppression phase deepens to complete suppression,

and a "minor suppression phase" develops at the opposite phase location. These suppression phases

would correspond to the phase of the deflections of the OHC stereocilia into the two saturation plateaus

brought on by the 50Hz bias-tone.

Analysis of the period histograms of the suppression effects produced by a low-frequency bias-

tone on AN responses has served as an important investigative tool which revealed subtle differences in

the OHC transduction function from the basal VS apical region of the cochlea [Cai and Geisler, 1996c].

Specifically, analysis of the suppression pattern on low-level CF-tone response recorded from basal AN

fibers of cats has shown that the operating point of the OHC transduction function in response to the

low-level CF-tone of the fiber is significantly more symmetric across the saturating ends than the apical

fibers [Cai and Geisler, 1996c] as seen by the more symmetrical presence of the major and minor

suppression phases at the basal region.

Further, previous studies have shown that the phase of suppression can be related to the phase

of BM deflection thereby linking the phase of OHC stereocilia deflections brought on by the low-
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frequency bias-tone with the phase of BM displacement [Patuzzi et al, 1984a; Temchin et al, 1997;
Geisler and Nuttall, 1997]. Specifically, by relating the phase of major suppression with the phase of
cochlear microphonic and the phase of excitation by the bias-tone alone, it has been shown that the
phase of major suppression on low-level CF-tone responses corresponds to the phase of maximum
displacement of the BM toward the scala tympani (ST) in guinea pigs and chinchillas [Patuzzi et al,
1984a; Temchin et al, 1997; Geisler and Nuttall, 1997]. These aspects of the suppressive effects of a
low-frequency bias-tone on AN firing are expected to provide insights on the following key questions of
this study:

a. Are there significant differences in the low-frequency bias-tone induced suppression
patterns on AN responses to CF-tone VS off-CF-tones from low-CF fibers with CF < 4 kHz thereby
indicating significant differences in the shape of the mechanoelectric transduction function
expressed in the mechanism behind generation of AN responses to CF-tones VS off-CF-tones?

b. Are there any significant differences in the strength of involvement of the OHC
mechanoelctric transduction function in the AN response generation mechanism behind the CF-tone
VS off-CF-tone response from low-CF fibers with CF < 4 kHz as indicated by the differences in the
threshold of suppression on the CF-tone VS off-CF-tone responses?

c. Are there significant differences in the low-frequency bias-tone induced suppression
patterns on AN responses to the off-CF-tone responses from the low-CF fibers with CF < 1kHz VS
fibers with CF > 1 kHz? These two groups of low-CF fibers are distinct in terms of the direction of
frequency glide in their impulse responses.
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Fig. 4.3. Models of the mechano-electric transduction function of outer hair cells (OHC): they are with
saturating non-linearity at either ends of the output. The positive sound pressure indicates rarefaction. The

gain of the cochlear amplifier has been linked to the slope of the transduction function at a particular operating
point which is indicated by a red dot in the above plots. The operating point has been found to lie at varying
degree of asymmetry across the two saturating ends. (a) a schematized version of the OHC mechano-electric
transduction function from the basal region of guinea pigs; (b) a schematized version of the OHC mechano-

electric transduction function from the apical region of guinea pigs
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Fig. 4.4. Schematic diagram of the Organ of Corti, the sensory organ within the cochlea. The stereocilia of outer
hair cells (OHCs) are embedded into the overlying tectorial membrane whereas the stereocilia of inner hair cells

(IHCs) are free-standing within the endolymphatic fluid. Consequently, low-frequency transverse vibrations
with frequency below ~10OHz on the Organ of Corti deflect the OHC stereocilia with significantly larger

amplitude than the IHC stereocilia.
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Bias 50 Hz Level Series: CF=1.63kHz; ProbeTone =1.6kHz / 30dB
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Fig. 4.5. Typical pattern of bias-tone suppression effects on low-level CF-tone responses over a bias-tone level
series: a 50 Hz bias-tone at levels, 70-110 dB SPL, was presented together with a low-level CF-tone stimulus. The

CF of the fiber was 1.63 kHz. The probe tone was 1.6 kHz at 6 dB above threshold. The spikes were binned re.
the bias-tone-period to form bias-tone-period histograms. The bias-tone level series of these histograms are

shown as vertically stacked plots with the corresponding bias-tone level indicated to the right of each histogram.
The scale of the firing rate indicated for the bottom histogram applies to all the plots. Within each bias-tone-
period histogram, the spikes were phase-locked to the probe tone frequency. At the bias-tone level of 80 dB
SPL, the firing rate was suppressed in the middle of the period histogram, and at 90 dB SPL, the suppression
depth in the middle of the period deepened significantly, and a second suppression phase developed at the

opposite phase.
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II. Methods
The experiments were done on cats at the Eaton-Peabody Laboratory (EPL) of Auditory Physiology.

All experiments were conducted in compliance with protocols approved by the Committee on Animal
Care at the Massachusetts Eye and Ear Infirmary.

A. Animal Preparations
23 healthy cats free from ear infections have been used for these experiments. The

experimental methods for animal handling, surgical approach to the AN, and methods for recording
from AN fibers of cats were as described in [Kiang et al, 1965; Stankovic & Guinan, 1999]. The methods
for monitoring the health of hearing during experiments were as described in [Stankovic & Guinan,
1999].

All experiments were acute and began with anaesthetizing the cat with intra-peritoneal (IP)
injection of Nembutal in Urethane with the dosage of 150 mg per kg body weight of the animal. Booster
injection of the same initial mixture with 1/10 of the initial dose was delivered to maintain the level of
the anesthesia. Throughout the duration of the experiment, the depth of anesthesia was monitored
based on toe-pinch reflex, heart rate and breathing rate which determined the timing and amounts of
the booster injections. The animal's temperature was monitored & maintained at 38 deg C with a rectal
thermometer & a heating pad. Experiments typically lasted for 40 to 48 hours during which lactated
ringers were dripped into a leg vein through a catheter.

After the initial anesthesia, the bulla cavities of both ears were exposed to reveal the round
window. Posterior craniotomy followed by aspiration and retraction of the cerebellar tissues were
performed to expose the auditory nerve.

B. Acoustic Setup
All experiments were done inside a double-walled, reduced-reflection chamber. Sound stimuli

were delivered with an acoustic assembly consisting of two earphones and a microphone with a probe
tube. A DT48 dynamic earphone, capable of high output at low-frequency, was used to generate the
low-frequency bias-tone, and all other stimulus types including clicks were generated by the 1-inch
condenser earphone [Bruel & Kjaer (B&K) 4145]. The magnitude and phase of the frequency response
of the microphone plus probe tube combination were calibrated over the frequency band 0.02-45 kHz
using a reference microphone in a calibration set up to measure the sound pressure near the tip of the
probe tube. During the experiment, the assembly was placed inside the external meatus so that the
probe-tube tip was a few millimeters away from the eardrum. Then, the magnitude and phase of the
frequency response of the earphones were calibrated over the frequency band 0.02-40 kHz using the
calibrated microphone plus probe tube.

Throughout all experiments, the frequency of the bias-tone was fixed at 50Hz which was
selected because a low-frequency tone below 200-600 Hz can more selectively deflect the OHC
stereocilia compared to the IHC stereocilia [Russell and Sellick, 1983].

C. Data Collection
A silver electrode was inserted through the bulla opening and placed near the round window to

measure the cochlear compound action potentials (CAP). An automated tone-pip audiogram was
measured over the frequency range from 0.5kHz to 32kHz at an octave interval with the criterion of 10
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ptV pp of the CAP. Tone pip audiograms were run periodically every hour or so, and also after a series of

good data in order to ensure good health of the cochlea associated with the collected data.

A glass micropipette electrode filled with 3 M KCL electrolyte with 10 -20 MO impedance was driven

through the exposed view of the auditory nerve by a remotely controlled microdrive until isolating an

AN fiber using a wideband noise burst search stimulus. Spike timings were detected with the resolution

of 10 pisec.

Upon isolating a unit, a threshold tuning curve (TC) was measured, the CF of the fiber was

determined, and the spontaneous rate (SR) of the fiber was measured from a 20 sec duration recording

of spontaneous firing. Upon locating a low-CF fiber with CF < 4 kHz, the following list of 50Hz bias-tone

paradigms were run:

e Bias-tone alone paradigm

* Bias-tone effects on tone responses: low-level CF-tone and low-level off-CF-tone. The frequency

of the off-CF tone was determined as follows.

Selection of the Off-CF tone for bias-tone effect study
The selection criterion for the off-CF tone was for the selected frequency to be in the region

with lower value of group delay in comparison to the CF region as reported in [Pfeiffer & Molnar, 1980;

Kiang, 1984; Van der Heijden & Joris, 2006]. Rather than directly measuring the phase-frequency

response from each fiber, determination of the "off-CF" region with shorter group delay for all fibers

was based on the group delay measurements from low-CF fibers reported in [Pfeiffer & Molnar, 1980;

Kiang, 1984; Van der Heijden & Joris, 2006; Temchin et al, 2009] where such "off-CF" region was found

at either the low-frequency or high-frequency side of the CF for fibers with CF higher or lower than

some break-frequency values respectively. Specifically, [Pfeiffer and Molnar, 1980] reported that the

off-CF region with lower group delay could be found in the high-frequency side of the CF for fibers with

CF < 1 kHz, and on the low-frequency side of the CF for fibers with CF > 1.2 kHz for cats AN fibers.

Similar values of break-frequencies can be found elsewhere for cats AN [Van der Heijden & Joris, 2006;

Carney et al, 1999] and for ANs of chinchillas [Temchin et al, 2009]. Accordingly, in this study a single

break-frequency of 1.2 kHz was used whereby the "off-CF" tone frequency was selected from the high-

side and low-side of the CF for fibers with CF 1.2 kHz and CF > 1.2 kHz respectively. Specifically, from

either the low- or high-side of the CF as described above, the off-CF-tone frequency was selected with

the spacing of 0.7 - 2 octave from the CF of the fiber. Note that the frequency spacing of the "off-CF"

tone from the CF of the fiber was also based on the group delay measurements reported in [Van der

Heijden & Joris, 2006; Temchin et al, 2009]. Specifically, [Temchin et al, 2009] reported that the lower-

group delay region began at ~0.5 octave away from the CF of the fiber, and it can be seen from Figure 3

of [Van der Heijden & Joris, 2006] that the "off-CF" region with lower group delay can be found at ~0.7 -

1 octave from the CF of the fiber for the population of fibers in their study.

Throughout the runs, the quality of spike triggering was monitored & adjusted, and data from

recordings with near perfect triggering with no extra or missed triggers have been selected for this
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thesis. The methods for the above experimental paradigms are described in detail with actual data from
the example fiber, CT030_U007, with its CF at 1.88 kHz & SR of 87.2 sps in Fig. 4.6 - Fig. 4.15.

D. Bias-tone Only Paradigm: Excitation Threshold & Phase

Acoustic Stimulus and Data Collection
The objective of this paradigm was to measure the neural excitation threshold and phase of

excitation of the fiber invoked by 50Hz bias-tone. A randomized level series of the 50Hz bias-tone over
the range from 70 dB SPL to 120 dB SPL was presented. A single trial period was 500 ms with
approximately 50% stimulus ON duty cycle. The spike records during the analysis time window of 200
ms duration from the stimulus ON period were binned re. the bias-tone-period in order to form a level
series of bias-tone-period histogram of the spike records. Averaged results from 8 of such trials were
used to compute the level series of period histograms. The zero phase reference is the cosine phase of
the earphone drive signal. Fig. 4.6 shows the 50Hz bias-tone level series of period histograms from the
example fiber.

Data Analysis
The rate-level function was calculated from the level series of spike records, and the rate

threshold was determined with the criterion of one standard deviation, a, above the baseline rate. The
baseline rate was determined as the spike rate at the minimum level of the bias-tone level series which
was 60-70 dB SPL. The bias-tone level function of the spike rates including the baseline rate were
calculated from the total spike collection time of 1600 ms averaged from 8 trials of 200 ms in each trial.
Note that the baseline rate was not the spontaneous rate of the fiber. However, none of the recorded
fibers showed a significant upward slope from their rate-level function at the baseline level. The
standard deviation was estimated as the square root of the baseline rate under the assumption of
Poisson random process behind the spikes.

Vector phase analysis was used to estimate the phase of excitation and synchrony index
[Goldberg and Brown, 1969; Johnson, 1980]. Briefly, each spike is represented as a unit vector with its
phase as the phase of occurrence of the spike within the period. The magnitude and phase of the
average vector representation of all the spikes are the synchrony index and vector phase respectively.
Mathematically the average vector corresponds to the first harmonic component of the Fourier series of
the period histogram normalized by the total spike count [Goldberg and Brown, 19691.

Further, statistical significance of the phase estimates were evaluated through the standard
error of the vector phase estimates. The mathematical model for standard error of the phase estimate,
S.E@ , is described in [Mardia, 2000], and it had been previously applied in AN spike data analysis
[Stanknovic, 1998; Stankovic & Guinan, 1999b].

The excitation threshold of the bias-alone alone response was met when both the rate threshold
of the bias-tone alone response was met, and the standard error on the phase estimate dropped to be
within 20* (-20*! S.E.4f ! 200). This criterion allows statistically significant differentiation of the phase

data points that are separated by at least 400.

165



The detailed analysis of the period histograms in Fig. 4.6 are shown in Fig. 4.7 where the bias-

tone level function of the spike rate, synchrony index and estimate of the excitation phase are displayed

in the top-down order. In this example, the excitation threshold was met at the bias-tone level of 110

dB SPL. Note that the shape of the histogram moves to a pattern with two modes separated by

approximately half a cycle at 110 dB SPL. The vector phase estimate based on the first harmonic

component estimated the mid-point of the two peaks as the excitation phase as noted in Fig. 4.6. This

phenomenon known as "peak splitting" has been widely reported in previous work for AN response

studies on cats particularly from low-CF fibers below 2 kHz in response to low-frequency tone below 200

Hz [Johnson, 1980; Kiang, 1984; Kiang, 1990; Cai & Geisler, 1996].

Excitation Phase
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Fig. 4.6. Bias-tone level series of 50 Hz bias-tone-period histograms of the example fiber, CT030_U007, CF=1.88
kHz & SR=87.2 sps. The excitation threshold level was determined as 110 dB SPL with the excitation phase

noted on the period histogram.
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Fig. 4.7. Detailed data analysis metrics to determine bias-tone only response threshold & response phase. Top:
Rate-level function from which the rate-threshold is determined when the spike rate exceeds one standard

deviation; Middle: Level function of the synchrony index; Bottom: the excitation phase estimates with their
standard error. The excitation phase & its standard error is determined by the vector phase method. The

excitation threshold is met when both the rate threshold is met and also when the standard error on the phase
estimate drops within 20*. In this example, the excitation criteria were met at 110 dB SPL.
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E. Experimental Paradigm for Bias-tone Effects on Tone Responses: CF and Off-CF tones

Acoustic Stimulus and Data Collection
In this paradigm, a level series of 50 Hz bias-tone was presented together with a probe tone at a

fixed level of 10 - 20 dB above the threshold of the probe tone. The frequency of the probe tone was

either at the CF of the fiber or at the off-CF tone. As for the exact frequency of the probe-tone, it was

not necessarily a harmonic of the bias-tone frequency, 50Hz, as done in previous studies [Sachs and

Hubbard, 1981; Cai and Geisler, 1996a]. For the example fiber, the CF-tone was at the frequency of 1.88

kHz and the level of 33.6 dB SPL which is about 16 dB above threshold as shown in Fig. 4.8. The off-CF

probe-tone for this fiber was at the frequency of 0.8 kHz and the level of 50 dB SPL which was ~10 dB re.

the TC threshold at that frequency as shown in Fig. 4.8.

CT30, unit 7: CF=1.88 kHz, Th=18.3 dB SPL
120

Threshold TC
100 CF-tone: 1.88 kHz

Off-CF-tone: 0.8 kHz
80
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Fig. 4.8. The TC of the example fiber, CT03._U007, CF=1.88 kHz & SR=87.2 sps. The frequency and level of the
CF and the off-CF probe tone applied in the bias-tone effect study are noted along with the TC.

Together with a probe-tone selected as described above, a randomized level series of 50 Hz

bias-tone over the range of 70 dB SPL to 120 dB SPL was presented during the 50% ON duty cycle within

the 500 ms trial period as shown in Fig. 4.9(a). Fig. 4.9(b) shows the post-stimulus time histogram

(PSTH) resulting from this paradigm at the bias-tone level of 70 dB SPL presented together with the CF-

tone from the example fiber.

The spike analysis window started at 25 ms for the duration of 220 ms spanning 11 cycles of the

50 Hz bias-tone during which the bias-tone and the low-level probe-tone are presented together for

suppression effect analysis. The spike records from 24 of such trials were binned re. the bias-tone-

period to form the bias-tone-period histogram. Note that spike records were initially time-stamped with

the resolution of 10 ps which would yield bias-tone-period histograms with the sample size of 200000 if

left unprocessed. Since spike data analysis for bias-tone effects on period histograms are concerned
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mainly with low-frequency modulation on the spike records spanning first few harmonics of the bias-
tone, the spike records were re-binned at a wider time bin width as follows. The initial time bin width of
10 ps was widened to a value close to the period of the CF-tone in order to reduce the bandwidth of the
period histogram below the phase locking frequency to the CF of the fiber. Note that since the CF-tone
frequency was not necessarily an integer multiple of the bias-tone frequency, the sample interval of the
re-binned histograms was selected to be the bias-tone-period divided by an integer number whereby
the resulting time bin width was closest to the period of the CF-tone. Finally, the sample size of the
period histograms was limited at the maximum of 40 corresponding to the minimum time bin width of
0.5 ms. Note that the maximum sample size of 40 in this paradigm allowed spectral analysis up to the
first 19 harmonics of the bias-tone as discrete Fourier transform was applied on the period histograms.
The bias-tone level series of the PSTHs and the corresponding bias-tone-period histograms are shown in
Fig. 4.10. In this example with the CF of 1.88 kHz, the period histogram consisted of 38 samples with the
time bin width of 0.5263 ms.

(a) Stimulus Paradigm for Bias-tone on Probe-tone

50 Hz Bias Tone
Probe Tone

24 trials

0 25 100 200 255 300 400 500
PST time (ms)

(b) Example PSTH and the Spike Analysis Window
0.6 -

0.5

0.4

~ 0.3 Spike Analysis Window: 25 ms - 245 ms0.3 i 220 ms duration or 11 periods of the 50 Hz bias-tone

.20.2i

0.1

0
0 25 100 200 245 300 400 500

PST time (ms)

Fig. 4.9. Acoustic Stimulus Setup for the Bias-tone on Tone Burst Paradigm: Top: the probe tone & the 50 Hz
bias-tone were presented together for 230 ms of spike analysis time within the total trial period of 500 ms.

Bottom: The post-stimulus time histogram (PSTH) of the spikes over the entire 500 ms trial period. The data
come from the example fiber, CT030_U007, CF=1.88 kHz & SR=87.2 sps. Note the ON duty cycle of ~50%

corresponding to the stimulus setup diagram above. The spike analysis window covered the duration of 180 ms
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or 9 periods of the 50 Hz bias-tone. Note that the analysis window starts at 65 ms which was 40 ms after the
onset of the probe-tone in order to avoid the onset adaptation time of the probe-tone burst.

CT30, Unit -7, Series90

jt~ lF1

Bias 50 Hz Level Series:

120

110

PT=1.88lkHz / 33.26dB SPL
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dB SPL
-1 1
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ii q ii1

1 0 1
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PST time (ms)

I 1 I, _ 1. - 11

0.4
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70 0
0 5 10 15 20

PZC time (ms)

Fig. 4.10. Level series of PST histograms, Left; The corresponding the bias-tone-period histogram, Right. Spike
records from the ON duty cycle from the PST histograms were binned re. the bias-tone-period to form the bias-
tone-period histogram. The phase reference of the bias-tone-period histogram was the cosine phase of 50 Hz
bias-tone earphone drive signal. Time bin width of the histogram was set at the probe-tone period to reduce

the bandwidth of the data below the frequency of the probe tone.

Analysis of the Bias-tone-period Histograms for Suppression Effects
The period histograms were examined to detect significant suppression. Previous studies have

shown that that the suppression effects by a low-frequency bias-tone predominantly result in either a

single major suppression phase or two suppression phases at opposite phase locations [Patuzzi et al,
1984a; Cai & Geisler, 1996a; Temchin et al, 1997]. Detecting a period histogram with a single major

suppression phase was done through the vector phase analysis for the first harmonic component.

Specifically, significant suppression was detected when the standard error on phase estimate, S.E.#, for

the first harmonic dropped below 200 (-20's S.E.# 20*).

Period histograms with two peaks at opposite phase locations can be analyzed with the same

basic framework of directional statistical analysis by examining the synchrony index, vector phase and

the standard error on the phase estimate with respect to the second harmonic component of the period

histogram [Mardia, 2000]. As with the first harmonic, maximum criterion of 40* on the standard error

on phase for the second harmonic component, S.E.# 2, was applied to detect a period histogram with
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two suppression phases at opposite phase locations; -400 S.E.402  40". Since the span of 40* of second

harmonic phase is equivalent to 200 of the first harmonic phase, equivalent detection criteria were
applied to the first and second harmonic.

Since the second harmonic phase points to two suppression phases within the period histogram

separated by half a cycle, it was necessary to disambiguate major suppression phase between the two.

The analysis procedure for this problem termed as "Half-period Synchrony Analysis" was based on the
observation that the major suppression phase typically has a higher level of synchrony compared to the
minor suppression phase. The analysis procedure first cuts the original period histogram into two half-
period histograms of equal-length around the two suppression phase locations. The resultant two half-
period histograms would have a single major suppression phase in each, and the depth of suppression in
each were calculated as the synchrony index for the first harmonic of each half-period. Finally, the
major suppression phase from the original full-period histogram was determined as the suppression
phase with higher level of half-period synchrony index. This procedure is illustrated in Fig. 4.11 with the
period histogram at the bias-tone level of 100 dB SPL on low-level CF-responses from the example fiber.

In Fig. 4.11(a) the two suppression phase locations determined by the second harmonic phase are
marked as a blue & red inverted triangle. The resulting two half-period histograms are shown in Fig.
4.11(b). Note that the half-period histogram centered at the blue triangle starts with the wrapped
around data from the time window from ~16 ms to 20 ms. The synchrony index for the first harmonic of
the half-period are shown in each of the half-period histograms. Due to the larger synchrony index
value of the red half-period, the major suppression phase from the original full-period histogram is
determined as the red triangle which is located in the middle of the period.

Finally, period histograms generated by bias-tone levels at or above the bias-tone alone

excitation threshold were classified as "Excitation" and accordingly were not included in the suppression
data pool. For the period histograms of the bias-tone effects on CF-tone responses from the example
fiber, the period histograms at 110 and 120 dB SPL were not included in the suppression data pool.

The analysis procedures described above are illustrated on the bias-tone effects on the low-level

CF-tone, 1.88 kHz, and the off-CF tone, 0.8 kHz, responses from the example fiber as shown in Fig. 4.12

and Fig. 4.13 respectively. In Fig. 4.12, the suppression threshold on the low-level CF-tone response was
met 90 and 100 dB SPL for the first and the second harmonic respectively. The major suppression phase

estimate at 90 and 100 dB SPL is noted by a blue and a red inverted triangle respectively. In this

example, the major suppression phase would be determined by the first harmonic phase at the bias-

tone level of 90 dB SPL. Further, note the drastic shift in the shape of the period histogram at 110 dB

SPL and 120 dB SPL to a shape resembling the period histograms associated with bias-tone excitation.

In Fig. 4.13, the suppression threshold on the off-CF-tone response was met at 100 dB SPL of the bias-

tone level with the second harmonic criterion. The major suppression phase of the off-CF-tone response

noted by a red inverted triangle in Fig. 4.13 is very similar to that of CF-tone response. Again, at the

excitation threshold level of 110 dB SPL, the shape of the period histogram drastically shifts to resemble
the pattern of excitation by the bias-tone alone.
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Fig. 4.14 and Fig. 4.15 show the level functions of the spike rate, synchrony index and vector

phase data for the first and second harmonic for the bias-tone effects on CF-tone and off-CF-tone

response respectively. Note from both Fig. 4.14 and Fig. 4.15 that the firing rate started to decrease at

the suppression threshold and leveled out at 110 dB SPL, the excitation threshold by the bias-tone

alone. From the level function of the synchrony index, note the sharp increase of the synchrony index

at the suppression threshold.

(a) CT 030 /Unit 007: BT level of 100 dB SPL
T - I - I

Half-Period Boundary

[7

2 4 6 8 10 1
PZC Time, msec

14 16 18 20

(b) Spliced Half-period Histograms
S d = T

Sync ldx = 0.266066

Sync Idx = 0.582778

0 2 4 6 8 10 1:
PZC Time, msec

14 16 18 20

Fig. 4.11. Illustration of the "Half-period Analysis": method to determine the major suppression phase from a

period histogram with a significant second harmonic component. The data came from the bias-tone-period

histogram at 100 dB SPL from Fig. 4.10. Top: the two suppression phases based on the second harmonic phase

are shown as blue & red inverted triangles. Half-period boundaries of equal width are formed around these two

suppression phases in order to splice out the two half-period histograms. Bottom: the two half-period

histograms & their first harmonic synchrony index are shown. The suppression phase noted with red has higher

half-period synchrony index, and consequently, it is determined as the major suppression phase.
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Bias 50 Hz Level Series: PT=1.88lkHz / 33.26dB SPL
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I I
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PZC time (ms)

Fig. 4.12. The suppression phase analysis on the bias-tone-period histograms from the bias-tone level series of
CF-tone response from the example fiber. The suppression thresholds based on phase estimate error bound

was met at 90 & 100 dB SPL for the first and second harmonic respectively. The suppression phases are noted
with inverted triangles on the period histogram. In this example, the major suppression phase would be

determined by the first harmonic phase at the bias-tone level of 90 dB SPL. Further, note the drastic shift in the
shape of the period histogram at 110 dB SPL & 120 dB SPL. Recall from Fig. 4.7. that the excitation threshold
was reached at 110 dB SPL, which indicates that the spike pattern at 110 & 120 dB SPL are mainly due to the

bias-tone excitation pattern.

173

BIAS TONE
LEVEL
dB SPL

120

110

_I-

I I - I



Bias 50 Hz Level Series: PT=0.8kHz / 50dB SPL
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Fig. 4.13. The suppression phase analysis on the bias-tone-period histograms from the bias-tone effects on the
responses to off-CF tone, 0.8 kHz, stimulus. The suppression threshold based on phase estimate error bound

was met at 100 dB SPL for the second harmonic. The suppression phase is noted with a red inverted triangle on
the period histogram. Note the drastic shift in the shape of the period histogram at 110 dB SPL & 120 dB SPL.

Recall from Fig. 4.7. that the excitation threshold was reached at 110 dB SPL, which indicates that the spike
pattern at 110 & 120 dB SPL are mainly due to the bias-tone excitation pattern
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Spike Rate: BT-on-CF & BT-alone
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Fig. 4.14. The detailed data analysis on the bias-tone level functions from the suppression effects of CF-tone
responses from the example fiber. Top: the rate-level function for the run with the bias-tone alone and for the
bias on the probe tone run. Note that the firing rate started to decrease at the suppression threshold of 90 dB
SPL and leveled out at the excitation threshold of 110 dB SPL. Middle: bias-tone level functions of synchrony
index for 1St & 2nd harmonics. Note the sharp increase of the synchrony indices at the suppression thresholds.
Bottom: level functions of suppression phase estimates for 1st & 2nd harmonics with their standard errors. The

data points meeting the error criterion are noted with symbols labeled as "Significant 1s Harmonic" and
"Significant 2 Harmonic". The 1st & 2 harmonic suppression thresholds are met at 90 & 100 dB SPL

respectively.
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Spike Rate: BT-on-CF & BT-alone
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Fig. 4.15. The detailed data analysis on the bias-tone level functions from the suppression effects on off-CF-tone
responses from the example fiber. Top: the rate-level function for the run with the bias-tone alone and for the

bias-on-the-probe-tone run. Note that the firing rate started to decrease at the suppression threshold of 100 dB
SPIL and leveled out at 110 dB SPIL which was the excitation threshold for this fiber. Middle: bias-tone level
functions of the synchrony index for 1s & 2 harmonics. Note the increase of the synchrony indices at the

suppression thresholds. Bottom: level function of the suppression phase estimates for 1s & 2nd harmonics with

176



their standard errors. The data points meeting the error bound are noted with markers labeled as "Significant
1 Harmonic" and "Significant 2 Harmonic". Both the 1" & 2 harmonic suppression thresholds were met at
100 dB SPL, and the major suppression phase estimate was determined as the phase estimate based on the 2"n

harmonic phase.
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III. Results

A. Phase of Excitation by 50 Hz Bias-tone Alone and Phase of Suppression on Low-level
CF-tone Responses

The phase of excitation of AN fibers in response to 50 Hz bias-tone throughout the entire range
of CF is plotted in Fig. 4.16. Note that the zero phase reference of the plots was the cosine phase of the
50 Hz earphone drive signal. Also plotted in Fig. 4.16 is the phase of major suppression on low-level CF-
tone responses at the suppression threshold level. As mentioned previously, the standard error on all
phase estimates was within ±20* which is noted on the plot as the blue error bar.

Major Phase of Suppression on CF-tone VS BT-alone Excitation Phase
1 A -T+

A III+ T II+ +

0.9 M x Std Err
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v + A+07
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Fig. 4.16. Plot of the phase of excitation from the "bias-tone only" runs and the major suppression phase from
the "bias-tone on CF-tone" responses. Note that the excitation phases formed two clusters separated by about

YA cycle, and the phase of suppression on the CF-tone response was located approximately in the middle
separated by about % cycle from the phase of excitation. Similar results have been reported in previous studies

[Cai & Geisler, 1992a].

The two data groups formed distinctly separate clusters. The data for the major suppression
phase of the low-level CF-tone responses were located tightly around the phase of 0.55 T within ± one
standard error where T denotes a period of the bias-tone. In contrast, there was significantly wider
spread in the phase of excitation in response to 50 Hz bias-tone. Further, the pattern of data scatter
changed sharply across the CF boundary of about 2 kHz as shown in Fig. 4.17 where a histogram of fiber

178



count across the excitation phase are plotted first for fibers with CF < 2 kHz in Fig. 4.17(a) and for the
fibers with CF > 2 kHz in Fig. 4.17(b). For fibers with CF > 2 kHz, the phase of excitation data formed a
single mode around 0.8 period whereas for CF < 2 kHz, the data were widely distributed with two main
modes at 0.35 and 0.8 period that are approximately half a cycle apart. This bimodal distribution of the
excitation phase for CF < 2 kHz can be explained by examining the details of the period histograms

generated by 50 Hz bias-tone alone level series as shown in Fig. 4.6 and Fig. 4.18 where two peaks at

about the opposite phases emerge from the period histogram at high levels of the bias-tone.
Specifically, the typical pattern found throughout the animals showed a wider peak at about phase of
0.35 T in addition to a sharper peak at the opposite phase. Depending on the relative size of the two
peaks, the excitation phase was determined as the middle of the peaks as in Fig. 4.6, the earlier peak in
Fig 4.18(a), and the later peak as in Fig. 4.18(b). As mentioned earlier in methods section, similar results
have been reported in previous work on cats AN fibers below 2 kHz as the "peak splitting" phenomenon
[Cai & Geisler, 1996; Johnson, 1980; Kiang, 1984; Kiang, 1990].
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(a) Histogram of Fiber Count Across Excitation Phase of Fibers with CF < 2 kHz
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(b) Histogram of Fiber Count Across Excitation Phase of Fibers with CF > 2 kHz
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Fig. 4.17. Histograms of the AN fiber counts across phase of excitation of AN fibers in response to 50 Hz bias-
tones presented alone. As shown in Fig. 4.16, the distribution drastically changes across the CF of about 2 kHz.
(a) Histogram for fibers with CF < 2 kHz shows three modes at ~0.35 T, 0.53 T & 0.8 T where T denotes a period

of the bias-tone; (b) Histogram for fibers with CF >= 2kHz shows a single prominent mode at 0.8T.
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(a) CT33, Unit6, CF = 0.56kHz, SR=80sps
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Fig. 4.18. Bias-tone alone excitation patterns for two AN fibers with CF < 2 kHz displaying the peak splitting
phenomenon. Two main excitation peaks emerge at about half a cycle apart. Depending on the relative size of

181

L

I i i



the two modes, the first harmonic based vector phase estimate can select either the wider peak as in (a) or the
narrower peak as in (b).

B. Suppression Effects by 50 Hz Bias-tone on Low-level CF-tone and Off-CF-tone
Responses from Low-CF Fibers with CF < 4 kHz

Fig. 4.19 shows the major suppression phase of low-level CF-tone and off-CF-tone responses by
50 Hz bias-tone at the threshold of suppression. Note that the data for the off-CF-tone responses cover

low-CF fibers with CF < 4 kHz while the data for CF-tone responses are plotted for all fibers which extend

up to ~35 kHz. The major suppression phase of low-level CF-tone responses was similar to that of off-

CF-tone responses except for a few outliers. Specifically, most data points with CF < 4 kHz for both CF-
tone and off-CF-tone fell within ± 1 standard error (S.E), i.e., ± 20 deg, except for a few outliers located

at ~1/2 cycle apart from the main data group. The detailed data analysis on these outlier data points as

well as typical results are examined in the next section. Note that the frequency of the off-CF-tone

stimulus for the data in Fig. 4.19 are shown in Fig 4.20 as octave spacing of the off-CF-tone frequency re.

the CF of the fiber. Recall that the selection criterion for the off-CF-tone frequency of a fiber was for the

selected frequency to be lower or higher than the CF by 0.7 - 2 octave for CF > 1 kHz and for CF < 1 kHz

respectively.

Fig. 4.21 compares the 50 Hz bias-tone level at the threshold of suppression for the low-level CF-
tone and off-CF-tone responses for fibers with CF < 4 kHz. Fig. 4.21(a) shows the distributions of the

fiber count over the suppression threshold. The mode of the distribution for the CF-tone responses was

~10 dB lower than that of the off-CF-tone responses. Fig. 4.21(b) displays the suppression thresholds

over the CF of the fiber. As in the Fig. 4.21(a), the suppression threshold of off-CF-tone responses was

~10 dB higher than that of CF-tone responses.

Fig. 4.22 plots the ratio of 2nd harmonic VS 1s' harmonic synchrony index at the suppression
threshold by the 50 Hz bias-tone for the CF-tone and off-CF-tone responses. A higher value of this ratio

indicates stronger presence of the minor suppression phase at the threshold level of suppression
thereby indicating more symmetrical location of the operating point of OHC mechano-electrical
transduction function across the two saturation plateaus. In this plot, the data for CF-tone responses

are plotted for the entire range of CF of the recorded fibers up to 35 kHz to serve as a reference. Note

that most of the data for both CF-tone and off-CF-tone from low-CF fibers were located below 0 dB, and

an appreciable difference was not found between the CF-tone and off-CF-tone data for fibers with CF < 4
kHz. Although an appreciable difference was not found between the data for the off-CF-tone VS CF-tone

responses, a significant difference was found across the low-CF VS high-CF data for CF-tone responses.

Specifically, most of the data for CF-tone response from high-CF fibers with CF > 20 kHz were located

above 0 dB reference value in comparison to the data from the low-CF fibers thereby indicating more

symmetrical location of the operating point of the mechanoelectric transduction function of OHCs for

the high-CF fibers in comparison to the low-CF fibers. Similar results were found from cats AN fibers in

[Cai and Geisler, 1996a].

The degree of symmetry of the location of the operating point within the OHC mechano-electrical

transduction function was examined by another metric, "Half-period Symmetry Index", which tries to

quantify the ratio of modulation depth of the minor VS major suppression phase at the threshold of
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suppression. The range of this ratio is from 0 to 1 where values closer to 1 indicate more symmetrical
depth of modulation between the two suppression phases thereby indicating more symmetric location
of the operating point of the OHC transduction function. For this purpose, the "Half-period Synchrony
Analysis" method described in the methods section which was used to disambiguate the major
suppression phase from period histograms with two oppositely located suppression phases was
adapted. Specifically, for period histograms which met the suppression threshold criteria of the second
harmonic, the ratio of the minor VS major suppression phase was calculated as a part of the analysis
procedure to determine the major suppression phase. For period histograms which met the
suppression threshold criteria for the first harmonic, the "Half-period Synchrony Analysis" procedure
was carried out with the suppression phase based on the first harmonic phase estimate, and the ratio of
the synchrony indices of the two half-period histograms was calculated. The "half-period symmetry
index" at suppression threshold for low-level CF-tone and off-CF-tone responses are plotted over the CF
of the fiber in Fig. 4.23. As in Fig. 4.22, the data for CF-tone responses are plotted for the entire range of
CF of the recorded fibers up to 35 kHz to serve as a reference. As in Fig. 4.22, no appreciable difference
between the data for CF-tone and off-CF-tone responses could be found for fibers with CF < 4 kHz.
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Fig. 4.19. The major suppression phase of low-level CF-tone and low-level off-CF-tone responses are plotted
together. Note that the off-CF data extend up to 4 kHz while the suppression phase data on low-level CF-tone
response are plotted for the entire range of CFs extending up to ~35 kHz. The major suppression phase of low-
level CF-tone responses was similar to that of off-CF-tone responses except for a few outliers. Specifically, most

data points with CF < 4 kHz for both CF-tone and off-CF-tone fell within ± 1 standard error (S.E), i.e., ± 20 deg,
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except for a few outliers located at -1/2 cycle apart from the main data group. Note that the frequency of the
of the off-CF-tone stimulus for the off-CF-tone data points in this plot are shown in Fig. 4.20.
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Fig. 4.20. The frequency of the off-CF-tone stimulus for the off-CF-tone data from Fig. 4.19 are plotted as the
octave spacing of the off-CF-tone frequency from the CF of the fiber. Note that the selection criterion for the

off-CF-tone frequency was for the selected frequency to be lower or higher than the CF by 0.7 - 2 octave for CF >
1.2 kHz and for CF < 1.2 kHz respectively. The selection criterion of ±0.7 octave are noted as black dashed lines.
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(a) Histogram of Fiber Count over BT-suppression Threshold Level
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Fig. 4.21. The threshold of suppression on low-level CF-tone response and low-level off-CF-tone response for
fibers with CF < 4 kHz: (a) Histogram of the fiber count over the suppression threshold; (b) the plot of the

suppression thresholds over CF. The total fiber counts were 32 & 16 for the CF-tone and off-CF-tone
respectively. Both data showed that the suppression threshold on the CF-tone responses was ~10 dB lower

than that of the off-CF-tone responses.
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50Hz Bias Tone Effects on CF VS Off-CF Tone Burst: Log Ratio of SyncIdx2 / Syncldx1
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Fig. 4.22. Plot of the ratio of 2nd over 1t harmonic synchrony index at the suppression threshold VS CF of the
fiber for CF-tone and off-CF-tone responses. Lower value of the ratio indicates more asymmetry in the

suppression pattern between the two suppression dips; therefore, lower value of this ratio indicates more
asymmetrical location of the operating point on the OHC mechano-electric transduction function. Appreciable

differences were not be found between the data for the CF-tone and off-CF-tone responses for fibers with CF < 4
kHz.

186

-5

-10

++ +
4+
+

+
*1*

++ +

+ +

10 3



Half-Period Symmetry Index
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Fig. 4.23. Half-period Symmetry Index: is the ratio of the first harmonic synchrony index from the two "Half-
period histograms", which tries to quantify the degree of symmetry in the modulation depth between the minor

and major suppression phases. Specifically, the "Half-Period Analysis Method" shown in Fig. 4.11 has been
adapted for this purpose. The range of this ratio is from 0 to 1 where 1 indicates perfectly matched modulation
depth between the major and minor suppression phase. Refer to the main text for details. Note the reference
value of 0.5 which indicates the 1 to 2 ratio of modulation index between the two suppression phases. Most of
the data points are located below this value except for the data group for CF-tone response with CF > 20 kHz.
Note that similar trend was seen from the Fig. 4.22. Also as in Fig. 4.22, appreciable difference was not found

between the data for CF-tone and off-CF-tone responses for fibers with CF < 4 kHz.

C. Example Results of the 50 Hz Bias-tone Suppression Effects on Low-level CF-tone and
off-CF-tone Responses from Low-CF Fibers

In order to aid the reader to appreciate how well the data from individual fibers fit with the data

shown in the previous plots, this section documents examples of bias-tone induced suppression patterns

on low-level CF-tone and off-CF-tone responses from individual fibers. Examples are presented from 7

normal AN fibers taken from 4 cats. Four of the example fibers are with CF < 1 kHz where the off-CF-

tone was selected from the high-frequency-side of the CF. The remaining three fibers are with with CF >
1.7 kHz where the off-CF-tone was selected from the low-frequency-side of the CF of the fiber. Note

that the two fibers with the CF of 0.64 kHz and 1.76 kHz with their major suppression phase located

outside of the main data cluster in Fig. 4.19 are covered in Fig. 4.25 and Fig. 4.28 respectively.

For each example, the AN fiber is identified by its animal and unit number. Each example has

three sets of plots. The first set shows, subplot (a) the threshold tuning curve (TC) of the fiber is plotted
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along at the frequency and level of acoustic stimuli for the CF-tone and off-CF-tone. The second set of

plots shows, subplot (b) at left, the 50Hz bias-tone-level-series period histograms from the bias-tone

only responses, subplot (c) in the middle, the bias-tone-level-series period histograms from the

responses to bias-tones plus low-level CF-tone, and subplot (d) the bias-tone-level-series period

histograms from the responses to bias-tones plus low-level off-CF-tone. The third set of plots shows, at

left, subplot (e) the detailed analysis the suppression effects on the low-level CF-tone response, and at

right subplot (f) the detailed analysis the suppression effects on the low-level off-CF-tone response.

Example Result in Fig. 4.24: CT033, U012, CF=0.41 kHz, SR=93.6 sps

The data from this fiber show the typical pattern from the CF region below 1 kHz. The off-CF-

tone was selected from the upper-side frequency of 0.7 kHz as shown in Fig. 4.24(a). The bias-tone only

excitation threshold was met at 90 dB SPL with the excitation phase detected at the narrower peak in

the period histogram as shown in Fig. 4.24(b). The suppression thresholds of the low-level CF-tone and

off-CF-tone responses were reached at 80 dB SPL of the bias-tone for the second and first harmonic

criterion respectively as shown in Fig. 4.24(c) and Fig. 4.24(d). The pattern of progression of suppression

on CF-tone and off-CF-tone responses over the bias-tone levels were quite similar including the similar

locations of the major suppression phase. Note that for the bias-tone levels above the excitation

threshold at 90 dB SPL, the period histograms from both the CF-tone and off-CF-tone responses closely

resemble the bias-tone only excitation pattern. The detailed data analysis of the suppression pattern

are shown in Fig . 4.24(e) and 4.24(f) as the bias-tone level function of the spike rate, synchrony index

and suppression phase estimates for the first and second harmonic. Significant changes occurred at

around the suppression threshold from all three metrics. Specifically, the spike rates were suppressed,

the synchrony indices rose, and the standard error on the phase estimates diminished significantly at

around the suppression threshold of 80 dB SPL.
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(a) CT33, unit 12: CF=0.41 kHz, Th=20.6 dB SPL
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(e) Analysis of Bias on CF-tone

Spike Rate: BT-on-Probe & BT-alone

Bias on Probe-Tone
Bias Alone
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Synchrony Index
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Fig. 4.24. Example Result: (a) Tuning Curve, CF=0.4lkHz and SR= 93.6 sps. The acoustic stimulus for the CF and
off-CF-tone are indicated as red '+' and blue 'o' together with the TC; (b) Bias-tone (BT) only level series,

excitation threshold reached at 90 dB SPL. Excitation threshold level is indicated in green, and the excitation
phase is indicated by a green triangle; (c) Bias-tone level-series on CF-tone response. The suppression threshold

for the 2nd harmonic criterion was reached at 80 dB SPL as indicated in red text. The suppression phase of the
2 " harmonic is indicated by a red inverted triangle; (d) Bias-tone level-series on off-CF-tone response.

Suppression threshold for the 1st harmonic was reached at 80 dB SPIL as indicated by blue text. The suppression
phase of the 1s' harmonic is indicated by a blue inverted triangle. The major suppression phase of off-CF-tone
responses was similar to that of CF-tone responses; (e) Detailed analysis of the bias-tone effects on CF-tone
response, Bias-tone level functions of firing rate, synchrony indices and phase of major suppression for the 1s'

and 2 harmonic in the top-bottom order; (f) Detailed analysis of the bias-tone effects on off-CF-tone response,
Bias-tone level functions of firing rate, synchrony indices and phase of major suppression for the 1s and 2"n

harmonic in the top-bottom order
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Example Result in Fig. 4.25: CT030, U045, CF=0.64 kHz, SR=7.2 sps
This is one of the two fibers with the major suppression phase of off-CF-tone responses located

at ~1/2 cycle away from the main data cluster. The off-CF-tone was selected from the upper-side
frequency of 1.4 kHz as shown in Fig. 4.25(a). The bias-tone only excitation threshold was met at 110 dB
SPL with the excitation phase detected at the narrower peak in the period histogram as shown in Fig.
4.25(b). The suppression threshold on the low-level CF-tone and off-CF-tone responses was reached at
90 dB SPL and 100 dB SPL respectively for the second harmonic criterion as shown in Fig. 4.25(c) and Fig.
4.25(d). The major suppression phase of off-CF-tone responses was opposite to that of the CF-tone
responses. The next two examples show two fibers with a similar CF as this fiber which also came from
the same cat as this fiber, CT030.
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(b) Bias-tone Only
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(e) Analysis of Bias on CF-tone

Spike Rate: BT-on-Probe & BT-alone
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(f) Analysis of Bias on off-CF-tone
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Fig. 4.25. Example Result: (a) Tuning Curve, CF=0.64kHz and SR= 7.2 sps. The acoustic stimulus for the CF and
off-CF-tone are indicated as red '+' and blue 'o' together with the TC; (b) Bias-tone (BT) only level series,

excitation threshold reached at 110 dB SPL. Excitation threshold level is indicated in green, and the excitation
phase is indicated by a green triangle; (c) Bias-tone level-series on CF-tone response. The suppression threshold
for the 2 harmonic criterion was reached at 90 dB SPL. The suppression phase of the 2"' harmonic is indicated
by a red inverted triangle; (d) Bias-tone level-series on off-CF-tone response. Suppression threshold for the 2"d
harmonic was reached at 100 dB SPL. The oppositely located major and minor suppression phases are visible at
the suppression threshold. Unlike most other fibers, the major suppression phase of off-CF-tone responses was
opposite to that of CF-tone responses. At 10 dB lower than the suppression threshold, beginning of the major

suppression phase seems to emerge at the opposite phase of the major suppression phase of CF-tone responses;
(e) Detailed analysis of the bias-tone effects on CF-tone response, Bias-tone level functions of firing rate,

synchrony indices and phase of major suppression for the 1st and 2nd harmonic in the top-bottom order; (f)
Detailed analysis of the bias-tone effects on off-CF-tone response, Bias-tone level functions of firing rate,
synchrony indices and phase of major suppression for the 1" and 2"d harmonic in the top-bottom order
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Example Result in Fig. 4.26: CTO30, U024, CF=0.688 kHz, SR=97 sps

This fiber had similar CF as the example in Fig. 4.25 and also came from the same cat as the
example in Fig. 4.25 where the major suppression phase of off-CF-tone responses was located at
approximately opposite phase to that of the main data group. The off-CF-tone was selected from the
upper-side frequency of 1.35 kHz as shown in Fig. 4.26(a). The bias-tone only excitation threshold was
met at 110 dB SPL. The suppression threshold on the low-level CF-tone and off-CF-tone responses was
reached at 90 dB SPL and 100 dB SPL respectively for the second harmonic criterion as shown in Fig.
4.26(c) and Fig. 4.26(d). The major suppression phase of off-CF-tone responses was similar to that of the
CF-tone responses as in the main data group.
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(c) Bias on CF-tone
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(e) Analysis of Bias on CF-tone

Spike Rate: BT-on-CF & BT-alone
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Fig. 4.26. Example Result: (a) Tuning Curve, CF=0.688kHz and SR= 97 sps. The acoustic stimuli for the CF and
off-CF-tone are indicated as red '+' and blue 'o' together with the TC; (b) Bias-tone (BT) only level series,

excitation threshold reached at 110 dB SPL; (c) Bias-tone level-series on CF-tone response. The suppression
threshold for the 2 harmonic criterion was reached at 90 dB SPL. The suppression phase of the 2" harmonic is
indicated by a red inverted triangle; (d) Bias-tone level-series on off-CF-tone response. Suppression threshold
for the 2nd harmonic was reached at 100 dB SPL with the major suppression phase which was similar to that of
CF-tone responses; (e) Detailed analysis of the bias-tone effects on CF-tone response, Bias-tone level functions
of firing rate, synchrony indices and phase of major suppression for the 1s and 2 harmonic in the top-bottom
order; (f) Detailed analysis of the bias-tone effects on off-CF-tone response, Bias-tone level functions of firing
rate, synchrony indices and phase of major suppression for the 1s, and 2nd harmonic in the top-bottom order
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Example Result in Fig. 4.27: CT030, U050, CF=0.791 kHz, SR=41 sps
This fiber had similar CF as the example in Fig. 4.25 and also came from the same cat as the

example in Fig. 4.25 where the major suppression phase of off-CF-tone responses was located at
approximately opposite phase to that of the main data group. The off-CF-tone was selected from the
upper-side frequency of 1.34 kHz as shown in Fig. 4.27(a). The bias-tone only excitation threshold was
met at 110 dB SPL. The suppression threshold on the low-level CF-tone and off-CF-tone responses was

reached at 90 dB SPL for the second harmonic criterion as shown in Fig. 4.27(c) and Fig. 4.27(d). The
major suppression phase of off-CF-tone responses was similar to that of the CF-tone responses as in the
main data group.
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(b) Bias-tone Only
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(e) Analysis of Bias on CF-tone
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(f) Analysis of Bias on off-CF-tone

Spike Rate: BT-on-Probe & BT-alone

Bias on Probe-Tone
Bias Alone

80 90 100
Bias Tone leveldB SPL

Synchrony Index

110 120

1st Harmonic
2nd Harmonic

80 90 100
Bias Tone leveI dB SPL

110 120

Suppression Phase Estimate

Significant 1st Har
Significant 2nd Har

A-

70 80 90 100 110 120
Bias Tone level dB SPL

Fig. 4.27. Example Result: (a) Tuning Curve, CF=0.79lkHz and SR= 41 sps. The acoustic stimuli for the CF and
off-CF-tone are indicated as red '+' and blue 'o' together with the TC; (b) Bias-tone (BT) only level series,

excitation threshold reached at 110 dB SPL; (c) Bias-tone level-series on CF-tone response. The suppression
threshold for the 2 harmonic criterion was reached at 90 dB SPL. The suppression phase of the 2"d harmonic is
indicated by a red inverted triangle; (d) Bias-tone level-series on off-CF-tone response. Suppression threshold

for the 2 harmonic was reached at 90 dB SPL with the major suppression phase which was similar to that of CF-
tone responses; (e) Detailed analysis of the bias-tone effects on CF-tone response, Bias-tone level functions of
firing rate, synchrony indices and phase of major suppression for the 1st and 2nd harmonic in the top-bottom

order; (f) Detailed analysis of the bias-tone effects on off-CF-tone response, Bias-tone level functions of firing
rate, synchrony indices and phase of major suppression for the 1s and 2nd harmonic in the top-bottom order
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Example Result in Fig. 4.28: CT031, U065, CF=1.76 kHz, SR=2.3 sps
This is one of the two fibers with the major suppression phase for off-CF-tone responses located

at -1/2 cycle away from the main data cluster. The off-CF-tone was selected from the lower-side
frequency of 0.8 kHz as shown in Fig. 4.28(a). The bias-tone only excitation threshold was met at 100 dB
SPL with the excitation phase detected at the narrower peak in the period histogram as shown in Fig.
4.28(b). The suppression threshold on the low-level CF-tone was reached at 80 dB SPL of the bias-tone
for the second harmonic criterion with the major suppression phase located at a similar location as the
main data group. As for the off-CF-tone responses, the suppression threshold was reached at 80 dB SPL
with the major suppression phase located away from the main data group. Over the increasing bias-
tone level, the period histogram did not follow the typical progression of suppression pattern.
Specifically, at 100 dB SPL, which was the excitation threshold, the shape of the period histogram did
not resemble the shape from the bias-tone alone runs but drastically shifted to resemble the
suppression pattern on CF-tone responses at 90 dB SPL of the bias-tone. Further, the spike rate on the
off-CF-tone responses remained relatively unchanged up to 100 dB SPL and started to decline for the
bias-tone levels above 100 dB SPL. These observations suggest that the actual suppression effects on
off-CF-tone responses due to the bias-tone effects on OHC transduction function did not start until 100
dB SPL of the bias-tone, and the actual value of the major suppression phase of the off-CF-tone
responses from this fiber did not differ from the main data group. Note that the example fiber from the
methods section had a similar CF of 1.88 kHz and the major suppression phase which was similar to the
main data group.
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(c) Bias on CF-tone
PT=1.756kHz / 39.602dB SPL
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(f) Analysis of Bias on off-CF-tone
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Fig. 4.28. Example Result: (a) Tuning Curve, CF=1.76 kHz and SR= 2.3 sps. The acoustic stimuli for the CF and
off-CF-tone are indicated as red '+' and blue 'o' together with the TC; (b) Bias-tone (BT) only level series,

excitation threshold reached at 100 dB SPL; (c) Bias-tone level-series on CF-tone response. The suppression
threshold for the 2 harmonic criterion was reached at 80 dB SPL. The suppression phase of the 2 harmonic is
indicated by a red inverted triangle; (d) Bias-tone level-series on off-CF-tone response. Suppression threshold
for the 2nd harmonic was reached at 80 dB SPL with the major suppression phase which was opposite to that of

the main data group; (e) Detailed analysis of the bias-tone effects on CF-tone response, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1s and 2nd harmonic in the

top-bottom order; (f) Detailed analysis of the bias-tone effects on off-CF-tone response, Bias-tone level
functions of firing rate, synchrony indices and phase of major suppression for the 1st and 2nd harmonic in the

top-bottom order.
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Example Result in Fig. 4.29: CT028, U026, CF=2.07 kHz, SR=115.3 sps
This fiber with CF=2.07 kHz is a typical example for fibers with CF > 1.7 kHz where the off-CF-

frequency was selected from the lower-side of the CF, i.e., 1.0 kHz for this fiber as shown in Fig. 4.29(a)
The bias-tone only excitation threshold was met at 90 dB SPL. The suppression threshold on the low-
level CF-tone and off-CF-tone was reached at 80 dB SPL for the first harmonic criterion with a similar
value on the major suppression phase as with the main data group. Note that for this fiber, the bias-
tone level function of the period histogram, spike rates and synchrony indices for the CF-tone and the
off-CF-tone responses were quite similar to one another.
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(b) Bias-tone Only
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(e) Analysis of Bias on CF-tone

Spike Rate: BT-on-ProbeTone & BT-alone
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(f) Analysis of Bias on off-CF-tone
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Fig. 4.29. Example Result: (a) Tuning Curve, CF=2.07kHz and SR= 115.3 sps. The acoustic stimuli for the CF and
off-CF-tone are indicated as red '+' and blue 'o' together with the TC; (b) Bias-tone (BT) only level series,

excitation threshold reached at 90 dB SPL; (c) Bias-tone level-series on CF-tone response. The suppression
threshold for the 1s' harmonic criterion was reached at 80 dB SP; (d) Bias-tone level-series on off-CF-tone

response. Suppression threshold for the 1 t harmonic was reached at 80 dB SPL with the major suppression
phase which was similar to that of CF-tone responses as in the main data group; (e) Detailed analysis of the

bias-tone effects on CF-tone response, Bias-tone level functions of firing rate, synchrony indices and phase of
major suppression for the 1' and 2nd harmonic in the top-bottom order; (f) Detailed analysis of the bias-tone
effects on off-CF-tone response, Bias-tone level functions of firing rate, synchrony indices and phase of major

suppression for the 15 and 2 harmonic in the top-bottom order.
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Example Result in Fig. 4.30: CT031, U069, CF=3.44 kHz, SR=59.3 sps
This fiber had the highest CF among the fibers with significant suppression on both the CF-tone

and off-CF-tone responses found in this study. The off-CF-tone was selected as 1.0 kHz from the lower-
side frequency of the CF of the fiber as shown in Fig. 4.30(a). The bias-tone only excitation threshold
was met at 100 dB SPL. Note that peak splitting was visible at 110 dB SPL of the bias-tone with the
location of the wide and narrow peak reversed in comparison to fibers with CF < 1 kHz; for example, Fig.
4.27(b) with CF=0.791 kHz. The suppression threshold on the low-level CF-tone was reached at 80 dB
SPL for the first harmonic criterion. The suppression threshold on the low-level off-CF-tone was reached
at 90 dB SPL for the second harmonic criterion with the major suppression phase similar to that of CF-
tone response as found in the main data group. Note that for this fiber, the bias-tone level function of
the period histogram, spike rates and synchrony indices for the CF-tone and the off-CF-tone responses
were quite similar to one another.

(a) CT31, unit 69: CF=3.44 kHz, Th=12.1 dB SPL
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(d) Bias on CF-tone
PT=1kHz / 60dB SPL

(b) Bias-tone Only
(c) Bias on CF-tone
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(e) Analysis of Bias on CF-tone

Spike Rate: BT-on-ProbeTone & BT-alone
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(f) Analysis of Bias on off-CF-tone

Spike Rate: BT-on-ProbeTone & BT-alone

B ias on Probe-Tone
i Bas Alone

80 90 100 110 120
Bias Tone IewIdB SPL

Synchrony Index

1st Harmonic
2nd Harmonic

70 80 90 100 110 120
Bias Tone level dB SPL

Suppression Phase Estimate

Significant 1st Har
Significant 2nd Har

70 80 90 100 110
Bias Tone level dB SPL

70 80 90 100
Bias Tone level dB SPL

Fig. 4.30. Example Result: (a) Tuning Curve, CF=3.44 kHz and SR= 59.3 sps. The acoustic stimuli for the CF and
off-CF-tone are indicated as red '+' and blue 'o' together with the TC; (b) Bias-tone (BT) only level series,

excitation threshold reached at 100 dB SPL; (c) Bias-tone level-series on CF-tone response. The suppression
threshold for the 1'" harmonic criterion was reached at 80 dB SPL; (d) Bias-tone level-series on off-CF-tone

response. Suppression threshold for the 2nd harmonic was reached at 90 dB SPIL with the major suppression
phase which was similar to that of CF-tone responses as in the main data group; (e) Detailed analysis of the

bias-tone effects on CF-tone response, Bias-tone level functions of firing rate, synchrony indices and phase of
major suppression for the 1s' and 2nd harmonic in the top-bottom order; (f) Detailed analysis of the bias-tone
effects on off-CF-tone response, Bias-tone level functions of firing rate, synchrony indices and phase of major

suppression for the 1st and 2nd harmonic in the top-bottom order.
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IV. Discussion

A. The Suppression Effects on AN Firing Reported in This Study Were Primarily Due to

Stimulation of OHCs rather than Direct Stimulation of IHC Stereocilia by the 50 Hz Bias-tone
Although 50 Hz bias-tone used in this study is expected to stimulate the OHC stereocilia with higher

amplitude than the IHC stereocilia [Russell and Sellick, 1983], it has been found in this study and

elsewhere [Sellick et al, 1982; Patuzzi et al, 1984a; Cai and Geisler, 1996a] that AN responses to bias-

tone level series with bias-tone alone do show both firing rate elevation and phasic modulation of

period histograms at high enough levels of bias-tone. Consequently, it would be necessary to examine

whether the results reported in this study as suppressive effects on OHC transduction function were not

significantly affected by direct stimulation of the IHC stereocilia by the bias-tone.

In order to detect results with potential effects of direction stimulation of IHC stereocilia by the bias-

tone, the excitation threshold level on AN firing by the bias-tone alone was measured from the AN

response to level series of bias-tone alone from each AN fiber. Then, the results from the bias-tone level

series on either low-level CF-tone or click responses were not included in the data pool for suppression

effects.
The criteria to determine the excitation threshold of a AN fiber required firing rate elevation by a

standard deviation and the standard error on the vector phase of firing to be within ±200. Now, it would

be necessary to examine whether the criteria applied on the reported results were appropriate. In

order to examine the impact of the excitation threshold criteria on the suppression data, several

iterations of data analysis were done with varying degrees of criteria around the values applied on the

reported results. For example, the rate criteria with smaller increment such as Y7 of standard deviation

and the phase criteria with larger error bound such as ±300 are expected to lower the threshold of

excitation by the bias-tone alone whereas a larger increment of firing rate such as two standard

deviation and lower error bound on phase such as 10* would elevate the excitation threshold. Series of

plots of the excitation phase and the major suppression phase of CF-tone and click response as shown in

Fig. P and Fig. S with varying criteria on the excitation threshold did not show significant shifts in the

results other than the number and scatter of data points around the same trend as shown in Fig. P and

Fig. S. Considering these, the suppression Effects on AN Firing reported in this study were primarily due

to stimulation of OHCs rather than direct stimulation of IHC stereocilia by the 50 Hz bias-tone

B. Comparison to Previous Studies on Low-frequency Bias-tone Effects on AN Responses

to Low-level CF-tone
The previous study which is the most comparable to the results reported here for the bias-tone

effects on low-level CF-tone responses comes from [Cai and Geisler, 1996a]. In their study, the temporal

aspects of the suppressive effects of a low-frequency bias-tone on low-level CF-tone responses from

cats AN fibers over the entire range of CFs were reported. Specifically, their results covered the bias-

tone frequency of 50 Hz and comparison of the major suppression phase of the low-level CF-tone

responses with the phase of excitation by the 50 Hz bias-tone alone as reported in this study. Overall,

the results reported here were quite similar to the comparable results from [Cai and Geisler, 1996a]

with no major discrepancies.
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As reported in Fig 4.A and Fig. 5.A of [Cai and Geisler, 1996a] and in Fig. 4.16 of this study, the
phase of major suppression by 50 Hz bias-tone on low-level CF-tone responses formed a smooth curve
without significant discontinuities over the CFs of the AN fibers with a similar slope of ~-0.1 period of the
50 Hz bias-tone per decade of CF. Further, both studies showed that the major suppression phase was
located ~1/4 cycle away from the phase of excitation by the bias-tone alone. Also both studies found
that for the bias-tone frequency of 50 Hz, the phase of excitation by the bias-tone alone varied over the
range of ~1/2 cycle for fibers with CF < ~2 kHz due to the peak-splitting phenomenon whereby a wide
and a narrow peak separated by about -1/2 cycle developed. With reference to the phase of the
narrow peak, the major suppression phase was located with -1/4 period lead as found by both studies.
Further, similar results of ~1/4 cycle lead of the suppression phase of AN responses to low-level CF-tone
in relation to the phase of excitation by the bias-tone alone have been found from low-frequency bias-
tone studies on guinea pigs and chinchillas [Sellick et al, 1982; Temchin et al, 1997]. Note that the
results on chinchillas' AN were obtained with the bias-tone frequency of 50 Hz as done in this study
[Temchin et al, 1997] while the studies on AN fibers from guinea pigs were done with a similar
frequency of 40 Hz [Sellick et al, 1982].

Despite the agreement among various studies on the relationship between the major
suppression phase and the phase of excitation, relating the major suppression phase to the phase of BM
vibration resulted in conflicting reports on cats [Cai and Geisler, 1996a; Rhode and Cooper, 1993].
Studies on low-frequency bias-tone effects on cats' BM vibration to low-level CF-tone by Rhode and
Cooper reported that the major suppression phase corresponded to the phase of peak displacement of
BM toward ST as found in both BM and AN studies on guinea pigs and chinchillas [Sellick et al, 1982;
Patuzzi and Sellick, 1984b; Geisler and Nuttall, 1997; Temchin et al, 1997]. However, the studies on the
bias-tone effects on cats' AN responses in [Cai and Geisler, 1996a] reported that the major suppression
phase corresponded to the phase of peak displacement of BM toward SV which is opposite phase to the
finding from studies on cats BM vibration. In [Cai and Geisler, 1996a], the phase of BM vibration
corresponding to the phase of period histogram of AN firing was estimated from the gross potential
recorded from the electrode placed near the round window. According to their estimate of the phase of
BM vibration, the phase of excitation by the 50 Hz bias-tone as well as the major suppression phase
were opposite to the results on guinea pigs [Sellick et al, 1982]. Consequently, if the BM phase
estimates used in [Cai and Geisler, 1996a] were erroneous such that the phase of excitation actually
corresponded to the phase of peak velocity of BM toward SV as found in other species, the major
suppression phase would indeed correspond to the phase of peak displacement of BM toward ST which
would be consistent with the studies on BM vibration measurements by Rhode and Cooper and also
with the AN and BM studies on guinea pigs and chinchillas.

C. Comparison of the Bias-tone Suppression Patterns on Low-level CF-tone VS Off-CF-
tone Responses Indicates that OHC Mechano-electrical Transduction Function Is Similarly
Involved in Generating Low-level CF-tone Response and Low-level Off-CF-tone Response of
Cats AN Fibers with CF < 4 kHz

The suppressive effects of 50 Hz bias-tone level series on AN responses to low-level CF-tone and
low-level off-CF-tones were analyzed to compare the shape of the OHC transduction function behind the

210



two response types. Specifically, the major suppression phase and the degree of symmetry between the

major and minor suppression phase at the suppression threshold were determined as shown in Fig.

4.19, Fig. 4.22 and Fig. 4.23.

Overall, comparison of the suppressive effects on low-level CF-tone VS low-level off-CF-tone

responses in Fig. 4.19, Fig. 4.22 and Fig. 4.23 indicated that OHCs were involved in generating the low-

level CF-tone and off-CF-tone responses with similar shape of mechano-electrical transduction function

for AN fibers with CF up ~3.5 kHz. Particularly, significant differences were not found in the suppression

data for the off-CF-tone responses across the break-frequency of ~1 kHz where the direction of the

frequency glide in impulse responses of AN fibers is known to reverse [Carney et al, 1999; Shera, 2001].

As for the symmetry of the operating point of the OHC transduction function, most of the data points of

the half-period symmetry index for both low-level CF-tone and off-CF-tone responses from fibers with

CF < 3.5 kHz were located below the value of 1/2 as shown in Fig. 4.23 indicating a significantly

asymmetric location of the operating point of the OHC transduction function resembling the model of

Fig. 4.3(b) rather than Fig. 4.3(a) for both low-level CF-tone and off-CF-tone responses.

From the plot of the major suppression phase in Fig. 4.19, two data points with the CF of 0.64 kHz

and 1.76 kHz for the off-CF-tone responses were located at ~1/2 cycle away from the main data group.

These outlier cases for the off-CF-tone responses were analyzed in detail in Fig. 4.25 and Fig 4.28. The

detailed analysis of the case with CF = 1.76 kHz revealed that the significant modulation on the period

histogram detected as suppression effects at 80 dB SPL of the bias-tone is unlikely to be due to the bias-

tone effects on the mechanoelectric transduction function on OHCs since the suppression on spike rates

did not start until 100 dB SPL at which a typical pattern of bias-tone induced suppression started to

emerge. Consequently, the bias-tone induced suppression effects on this fiber did not actually differ

significantly from the main data group. As for the outlier case with CF = 0.64 kHz with the major

suppression phase reversed from the main data group, detailed examination of the level function of the

period histograms and the spike rate suggests that the reversed phase of major suppression at 100 dB

SPL of the bias-tone for this fiber is indeed likely to be due to bias-tone effects on OHC transduction

function. Since typical patterns were found with fibers with similar CFs from multiple animals in

addition to this exceptional case as shown in detail in Fig. 4.29 and Fig. 4.30, this fiber does not

significantly affect the main conclusion from this study that the OHC transduction function is similarly

involved in generating AN responses to CF-tones and off-CF-tones from AN fibers with CFs < 3.5 kHz.

However, due to the relatively small size of the data available from this study, the correlation of this

exceptional behavior with the key parameters of the AN fibers or acoustic stimuli; for example, the

spontaneous rate of the fiber, the range of the CF of the fiber, the frequency spacing of the off-CF-tone

re. the CF of the fiber and the intensity of the off-CF-tone, could not be investigated thereby remains as

an interesting issue for future studies.

As for the suppression thresholds, the thresholds on CF-tone response were ~10 dB lower than that

of off-CF-tone responses for all fibers with CF < 3.5 kHz. Again, no significant shift in the difference in

the suppression threshold between CF-tone VS off-CF-tone responses could be found across the break-

frequency of 1 kHz. These data may suggest that application of a low-frequency bias-tone would result

in broadening of the tuning curve for most of the fibers with CF < 3.5 kHz thereby suggesting a potential
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conflict with results from some of the fibers from the MOC efferent stimulation studies where further
sharpening of tuning was found from some fibers with CFs of 1 - 2 kHz [Guinan and Gifford, 1988c].
Note, however, since MOC efferent stimulation inhibits the electromotility of OHCs whereas a low-
frequency bias-tone suppresses the gain of the mechanoelectric transduction function of OHCs, it is
premature to conclude any conflicts in the results of these two studies. Therefore, this remains as an
interesting issue for future studies.

In summary, comparison of the bias-tone suppression patterns on AN responses to low-level CF-
tone VS the off-CF tones selected from the region where shorter group delays were reported in [Pfeiffer
& Molnar, 1980; Kiang, 1984; Van der Heijden & Joris, 2006; Temchin et al, 2009] indicates that OHC
mechano-electrical transduction function was similarly involved in generating AN responses to low-level
CF-tones and low-level off-CF tones from the frequency region where shorter group delays were
reported.
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Chapter 5. Summary

Review of Thesis Objectives
The main objective of the thesis was to test the hypothesis from [Guinan et al, 2005] that the

outer hair cell (OHC) mechanisms involved in generating auditory nerve (AN) initial peak (ANIP) and AN
second peak (ANSP) responses are somehow different from the OHC mechanisms that produces AN
responses to low-level clicks. The experimental strategy toward this objective was to measure AN
responses while using the suppressive effects of a low-frequency bias-tone to change the OHC
transduction function. The gain of the OHC mechano-electric transduction function and the resulting AN
responses are suppressed at two opposite phases of the bias-tone period which correspond to traversals
through low-gain regions in the OHC transduction function [Ruggero et al, 1992; Cai and Geisler, 1996c].
From the bias-tone-induced suppression patterns, the phase of the major suppression and the
symmetry depth between the two suppression phases are expected to reveal similarities and differences
in the OHC mechano-electric transduction functions that produce the AN response types of interest.
Specifically, the focus of the investigation was on the following key issues which were explored in
chapter 3 through the comparison of the suppressive effects of a 50-Hz bias-tone on ANIP versus ANSP
versus AN responses to low-level clicks:

a. Is the OHC mechano-electric transduction function involved in the generation of ANIP and ANSP
responses? If so, is the strength of involvement as robust as in the mechanism that produces AN
responses to low-level clicks?

b. If the OHC mechano-electric transduction function is indeed involved in the generation of ANIP
and ANSP responses, are there any significant differences in how the OHC mechano-electric
transduction function is used in generating ANIP and ANSP responses at mid-to-high click levels
versus AN responses to low-level clicks? If so, can we infer any details about the cochlear
mechanisms that produce ANIP and ANSP responses versus the mechanisms that produce AN
responses to low-level sounds?

Before delving into the main objective in chapter 3, the suppressive effects of a low-frequency
(50 Hz) bias-tone on AN responses to low-level CF tones VS low-level clicks were studied in chapter 2.
The bias-tone effects on these responses were expected to be similar since it is widely accepted that
both are driven by a common mechanical drive, i.e., BM vibration enhanced by the cochlear amplifier.
However, this similarity had not been shown previously since bias-tone effects on click responses had
not been studied systematically.

In addition to the main objective in Chapter 3, Chapter 4 explored the hypothesis that different

OHC-induced mechanical drives produce AN responses to low-level CF tones versus responses to low-

level tones in tuning-curve side lobes. Responses in the side lobes were measured by using "off-CF"
frequencies where "off-CF" means >0.7 octaves from CF. This hypothesis was explored by comparing

the suppressive effects of a low-frequency bias-tone on AN response to low-level CF-tones versus off-CF-
tones. The hypothesis was motivated by discontinuities in group delays from AN responses to tones in
the tuning-curve CF region compared to the side-lobe region. Shorter group delays are seen in the side
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lobes compared to delays at CF, and frequencies ~0.7 octave or further away from the CF are always in
the side-lobe region [Liberman, 1978; Van der Heijden & Joris, 2006].

IL. Summary of Chapter Conclusions

A. Chapter 2: Bias-tone Effects on Low-level Click Responses and Low-level CF-tone
Responses

The suppressive effects of 50 Hz bias-tones on AN responses to low-level CF tones found in this

thesis are quite similar (i.e. with no major discrepancies) to the most comparable study from the past

[Cai and Geisler, 1996a]. Similar to the report in [Cai and Geisler, 1996a], the results in this thesis

showed the well known pattern of two suppression dips at opposite phases of the bias-tone from most
of the AN fibers recorded throughout the range of CFs from 408 Hz to 26.5 kHz. The major suppression
phase as a function of CF (Fig. 2.18) formed a smooth curve located ~1/4 bias-tone period away from the

phase of excitation by the bias-tone alone, as also reported in [Cai and Geisler, 1996a]. The difference
of ~1/4 cycle between the phase of bias-tone excitation and phase of suppression of CF-tone responses
has been explained through the difference in the coupling mechanism for a low-frequency tone to the

IHC versus OHC stereocilia [Cai and Geisler, 1996a; Sellick et al, 1982; Temchin et al, 1997]. The

symmetry between the two suppression phases was quantified as the ratio of the second harmonic to

the first harmonic synchrony index as shown in Fig. 2.23. This shows a trend of increasing symmetry
toward the base of the cochlea as also reported in [Cai and Geisler, 1996a].

Bias-tone effects on AN responses to low-level clicks were studied by analyzing the suppressive
effects on the first peak of low-level click responses. As the bias tone level was increased, the

characteristic progression of suppression from a single suppression phase to two suppression dips at

opposite bias-tone phases was found over the CF range from 156 Hz to 7.2 kHz. For AN fibers with CFs >
10 kHz, the maximum level of the bias-tone available was not high enough to induce significant

suppression of AN responses to low-level clicks. For AN fibers with CF < 10 kHz, the suppression

patterns of AN responses to low-level clicks versus those to low-level tones were quite similar. In

particular, the major suppression phases of the AN responses to low-level clicks and low-level tones

were located close together, within one standard error of the phase estimate, i.e., 20 * as shown in Fig.

2.21. These results support the widely accepted idea that AN responses to low-level tones and to low-

level clicks are driven by a common OHC mechanism, i.e., the cochlear amplifier.

The failure to achieve criterion suppressions in the bias-tone effects on AN responses to low-

level click responses for CF > 10 kHz is likely due to methodological limitations in the maximum level of

the bias-tone and the bandwidth of the click stimulus. Accordingly, it would be desirable for a future

study to extend direct comparison between the two response types beyond 20 kHz with an improved

acoustic setup. In particular, it would be desirable to determine whether the trend of a rapidly

increasing suppression symmetry from the AN responses to CF-tones for CF > 10 kHz is also seen in bias-

tone effects on AN responses to low-level clicks. Such results would allow a more comprehensive test of

the hypothesis that both low-level tone and low-level click responses are due to the same OHC

mechanisms.

216



B. Chapter 3: Bias-tone Effects on AN Responses to Low-level Clicks and the Initial Peaks
of Mid-to-high-level Clicks

The effects of low-frequency (50 Hz) bias tones on ANIP and ANSP responses from mid-to-high-

level clicks were compared with the bias-tone effects on the first peak of AN responses to low-level

clicks for AN fibers with CFs < 4 kHz. ANIP and ANSP were typically seen at 0.5 ms - 1.5 ms shorter

latencies and ~30 dB higher click levels compared to low-level click responses. From most of the fibers

recorded, as the bias level was increased the characteristic progression of the suppression pattern from

a single suppression phase to two suppression dips at opposite phases of the bias-tone was found for all

three types of click responses. These results indicate that the OHC mechano-electric transduction

function is involved in the generation of ANIP and ANSP responses as well as in the generation of AN

responses to low-level clicks.
The suppression threshold for AN responses to low-level clicks was ~5-10 dB lower than the

suppression threshold of ANIP, and in turn the suppression threshold of ANIP was ~5-10 dB lower than

the suppression threshold of ANSP (Fig. 3.21). Considering the results from Chapter 2 where the

suppression threshold on AN responses to tones was ~5-10 dB lower than the suppression threshold of

low-level click responses, the difference in the suppression threshold between ANIP and the low-level

click responses can be considered as relatively small and is likely due to the difference in the click

stimulus level between the two response types. Therefore, the relatively small difference in the

suppression thresholds between ANIP and AN responses to low-level clicks suggest that the strength of

involvement of the OHC mechano-electric function in ANIP response generation is as robust as in AN

responses to low-level clicks. ANIP and ANSP responses were obtained at the same click level so the

higher bias-tone thresholds for ANSP biasing compared to ANIP biasing are consistent with MOC

efferent studies where the inhibitory effects by MOC efferents were significantly weaker on ANSP than

on ANIP [Guinan et al, 2005]. The MOC results were interpreted in [Guinan et al, 2005] as that ANSP

consists of a mixture of the active OHC drive that produces ANIP and the mostly passive drive that

produces the later click-response peaks. The results in this thesis are consistent with that hypothesis.

In comparing the detailed suppression patterns of the three click-response types, the key data

were the phase of the major suppressions as shown in Fig. 3.20. The major suppression phases of ANIP

and ANSP were close, i.e. within one standard error (± 20*) from each other. The major-suppression

phases for AN responses to low-level clicks, which were similar to those of AN responses to low-level CF-

tones (Chapter 2), were ~1/2 cycle away from the major-suppression phases of ANIP and ANSP. These

results indicate that OHC mechano-electric transduction is involved in the generation of ANIP and ANSP

responses at mid-to-high click levels as well as in the generation of AN responses to low-level clicks.

Furthermore, the significant difference in the major suppression phases of AN responses to low-level

clicks VS to ANIP and ANSP supports the hypothesis in [Guinan et al, 2005] that the OHC mechanisms

that produce ANIP and ANSP are different from the OHC mechanisms that produce AN responses to low-

level clicks.

These results raise the question: "What is the detailed mechanism behind the reversal of the

major suppression phases of AN responses from low-level clicks compared to ANIP and ANSP from mid-

to-high level clicks?" Answers to this question require experimental data on cochlear mechanics from
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the apex of the cochlea which are far from being abundant and reliable due to the challenges of
maintaining the health of the cochlea during mechanical or intracellular recordings from the apex
[Dallos, 1986]. However, it is desirable to review relevant studies from the base of the cochlea for any
insights that they might provide [Cai and Geisler, 1996c; Cody and Russell, 1987; Russell and KOssl,
1992]. Particularly, it is of interest to examine the following points:

a. Are there similar reports of the key finding of this study from the base of the cochlea, i.e.,
reversals of the phase of the major suppression of AN responses produced by a low-frequency
bias-tone?

b. If so, what are the cochlear mechanisms behind the reversals of the major suppression phase?

From the bias-tone effects on cat AN responses to low-level CF-tones, [Cai and Geisler, 1996a]
reported variations in the bias-tone induced suppression patterns from basal fibers including reversals
of the major suppression phase across AN fibers. They also reported that the symmetry between the
suppression phases increased toward the base. In [Cai and Geisler, 1996c], the mechanism behind the
varying location of the major suppression phase across basal fibers was attributed to a shift of the
operating point of the OHC mechanoelectric-transduction function. Specifically, for the fibers with
nearly symmetrical shapes of their suppression phases (as in Fig. 3.2(a)), small changes in the operating
point of the OHC transduction function can shift the polarity of the major suppression phase. For fibers
with a major suppression phase that was similar to apical fibers, the operating point is assumed to be
away from the depolarizing voltage plateau as in Fig. 3.30(a). For fibers with the opposite major
suppression phase, the operating point of the OHC transduction function is assumed to be away from
the hyperpolarizing voltage plateau as in Fig. 3.30(b).

The cochlear mechanical explanation in [Cai and Geisler, 1996c] that links reversals of the major
suppression phase with shifts in the operating point of the OHC mechano-electric transduction function
is supported by in vivo measurements of the OHC receptor potentials from guinea pigs. These OHC
receptor potentials showed differences in the operating point of the OHC mechano-electric transduction
function from the apex to the base of the cochlea and also reversals over tone stimulus levels in the
base of the cochlea [Cody and Russell 1987; Russell and K6ssl 1992]. Due to the differences in species,
stimulus paradigms and the CF regions of the recording in these studies compared to this thesis, the
hypothesis that the shift of the operating point of the OHC mechano-electric transduction function
explains the reversals of the suppression phase across low to mid-to-high click levels found in this thesis
remains strictly a speculation. However, these related studies from the base of the cochlea do show
that the key findings in this study, i.e., the reversals of the suppression phase, were previously observed
in the base of the cochlea.

C. Chapter 4: Bias-tone Effects on Low-level CF-tone and Off-CF-tone Responses from
Low-CF Fibers

The objective of this chapter was the exploration of possible differences in the OHC mechanisms
that generate AN responses to tones from the CF VS the "side-lobe" regions of low-CF fibers. The
motivation for thinking there might be a difference is that group delays are shorter in the side-lobe
region than in the CF region. Shorter group delays at frequencies away from CF in comparison to delays
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in the CF-tone region were reported in [Pfeiffer & Molnar, 1980; Kiang, 1984; Van der Heijden & Joris,

2006]. Selection of a tone frequency in the side-lobe region of an AN fiber was based on the frequency

spacing from the CF of the fiber. Specifically, previous studies reported shorter group delays from the

side-lobe frequency region for frequencies of 0.7 to 2 octaves from the CF of the fiber. For AN fibers

with CF > 1.2 kHz, the side-lobe region was located on the low-side of the CF, and for AN fibers with CF <

1.2 kHz, the side-lobe region was located on the high-side of the CF. To study responses from the side-

lobe region, we measured responses at "off-CF" frequencies, where "off-CF" is defined as frequencies

>0.7 octaves away from CF.

From the comparison of the suppressive effects on low-level CF tone responses VS low-level off-

CF tone responses, significant differences were not found in the major phase suppression phase or in

the symmetry between the major and minor suppression phases, as shown in Fig. 4.19 and Fig. 4.22.

Furthermore, no significant differences in the suppression data were found across the AN fibers with CF

< 1.2 kHz VS CF > 1.2 kHz. These results indicate that the OHC mechano-electrical transduction function

is similarly involved in generating AN responses to low-level CF tones and low-level side-lobe tones.
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