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ABSTRACT
We introduce a method to constrain general cosmological models using Baryon Acoustic
Oscillation (BAO) distance measurements from galaxy samples covering different redshift
ranges, and apply this method to analyse samples drawn from the SDSS and 2dFGRS. BAO
are detected in the clustering of the combined 2dFGRS and SDSS main galaxy samples, and
measure the distance–redshift relation atz = 0.2. BAO in the clustering of the SDSS luminous
red galaxies measure the distance–redshift relation atz = 0.35. The observed scale of the
BAO calculated from these samples and from the combined sample are jointly analysed using
estimates of the correlated errors, to constrain the form ofthe distance measureDV (z) ≡

[(1 + z)2D2

Acz/H(z)]1/3. HereDA is the angular diameter distance, andH(z) is the Hubble
parameter. This givesrs/DV (0.2) = 0.1980± 0.0058 andrs/DV (0.35) = 0.1094± 0.0033
(1σ errors), with correlation coefficient of0.39, wherers is the comoving sound horizon
scale at recombination. Matching the BAO to have the same measured scale at all redshifts
then givesDV (0.35)/DV (0.2) = 1.812 ± 0.060. The recovered ratio is roughly consistent
with that predicted by the higher redshift SNLS supernovae data forΛCDM cosmologies,
but does require slightly stronger cosmological acceleration at low redshift. If we force the
cosmological model to be flat with constantw, then we findΩm = 0.249 ± 0.018 andw =
−1.004±0.089 after combining with the SNLS data, and including the WMAP measurement
of the apparent acoustic horizon angle in the CMB.

Key words: cosmology: observations, distance scale, large-scale structure of Universe

1 INTRODUCTION

The physics governing the production of Baryon Acoustic Oscilla-
tions (BAO) in the matter power spectrum is well understood (Silk
1968; Peebles & Yu 1970; Sunyaev & Zel’dovich 1970; Bond &
Efstathiou 1984, 1987; Holtzman 1989). These oscillatory features
occur on relatively large scales, which are still predominantly in
the linear regime; it is therefore expected that BAO should also be
seen in the galaxy distribution (Meiksin et al. 1999; Springel et al.
2005; Seo & Eisenstein 2005; White 2005; Eisenstein et al. 2007).
Consequently, BAO measured from galaxy surveys can be used as
standard rulers to measure the geometry of the Universe through
the distance–redshift relation (Blake & Glazebrook 2003; Seo &
Eisenstein 2003).

BAO have now been convincingly detected at low redshift in

⋆ E-mail: will.percival@port.ac.uk

the 2dFGRS and SDSS galaxy samples (Cole et al. 2005; Eisen-
stein et al. 2005; Huetsi 2006). With the latest SDSS samplesthey
are now detected with sufficient signal to use BAO alone to mea-
sure cosmological parameters (Percival et al. 2007a). Thishas em-
phasised the importance of accurate models for BAO in the galaxy
power spectrum. On small scales, BAO will be damped due to non-
linear structure formation (Eisenstein et al. 2007). Giventhe accu-
racy of current data, uncertainty in the exact form of this damping is
not important, but it will become so for future data sets. On larger
scales, there is currently no theoretical reason to expect system-
atic distortions greater than∼ 1% in the BAO positions between
the galaxies and the linear matter distribution (Seo & Eisenstein
2003; Springel et al. 2005; Seo & Eisenstein 2007; Angulo et al.
2007). Claims of> 1% changes in the BAO position have used
non-robust statistical measures of the BAO scale, such as the po-
sition of the bump in the correlation function, or peak locations in
the power spectrum (Smith et al. 2007a,b; Crocce & Scoccimarro
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2007). These are easily affected by smooth changes to the galaxy
clustering amplitude as a function of scale. In this paper, we use a
more robust approach: the BAO scale is defined via the locations
where the BAO cross a smooth fit to the power spectrum.

Ideally we would use the BAO within two galaxy redshift sur-
veys covering different narrow redshift slices to test a cosmological
model using the following procedure:

(i) Convert from galaxy redshift to distance assuming the cos-
mological model to be tested.

(ii) Calculate the galaxy power spectra for the two samples.
(iii) Measure the oscillations in each power spectrum around the

known smooth underlying power spectrum shape.
(iv) Test whether the change in scale between the two observed

BAO positions agrees with that expected for this cosmological
model.

Unfortunately, a number of complications prevent such a simple
procedure from being used. In particular, this method requires a
distance–redshift relation to be specified prior to measuring the
BAO positions; but the errors and the effect of the survey selection
function depend on this assumption, and these are computationally
expensive to measure for many different models. In recent analy-
ses (Percival et al. 2001; Cole et al. 2005; Tegmark et al. 2006),
a fiducial cosmological model has been used to estimate the power
spectrum, and the effect of this on the recovered shape of thepower
has been tested. However, when providing BAO distance scalemea-
surements we need to allow for the change in the distance–redshift
relation. In this paper, we calculate the power spectrum fora fidu-
cial cosmology, and interpret these data as if the model cosmol-
ogy had been analysed (incorrectly) assuming the fiducial model,
therefore allowing for this effect. This procedure gives better noise
properties for the derived parameters than recalculating the BAO
for each model.

We test models against the data for general smooth forms of
the distance–redshift relation, parametrised by a small number of
nodes. This allows for surveys covering a range of redshifts, and
has the advantage of allowing derived constraints to be applied to
any model provided that it has such a smooth relation. Our “ideal”
method also required us to know the power spectrum shape so we
could extract the BAO. In this paper, we do not model this shape
using linear CDM models. To immunise against effects such as
scale-dependent bias, non-linear evolution, or extra physics such
as massive neutrinos, we instead model the power spectrum shape
by fitting with a cubic spline.

The method is demonstrated by analysing galaxy samples
drawn from the combined SDSS and 2dFGRS (Section 5). Results
are presented in Sections 5.3 & 7, and discussed in Section 8.This
application is novel, as we combine the 2dFGRS and SDSS galaxy
samples before calculating power spectra (the two data setsare in-
troduced in Section 2). The blue selection in the 2dFGRS and the
red selection in the SDSS galaxies emphasise different classes of
galaxies with different large-scale biases – but these can be matched
using a relative bias model leading to the same large-scale power
spectrum amplitudes (Cole et al. 2005; Tegmark et al. 2006; Per-
cival et al. 2007b). If there is scale-dependent bias, then the shape
of the power spectrum calculated from the combined sample will
be an average of the two individual power spectra, because we
are selecting a mix of galaxy pairs. The exact mix will change
with scales, but, this is not expected to be a significant concern for
the BAO positions in the power spectra; these should be the same
across all data sets, although there will be an effect on the damping
of BAO on small scales (this is discussed in Section 3).

2 THE DATA

2.1 The SDSS data

The public SDSS samples used in this analysis are the same as
described in Percival et al. (2007b). The SDSS (York et al. 2000;
Adelman-McCarthy et al. 2006; Blanton et al. 2003; Fukugitaet al.
1996; Gunn et al. 1998, 2006; Hogg et al. 2001; Ivezic et al. 2004;
Pier et al. 2003; Smith et al. 2002; Stoughton et al. 2002; Tucker
et al. 2006) Data Release 5 (DR5) galaxy sample is split into two
subsamples: there are 465789 main galaxies (Strauss et al. 2002)
selected to a limiting extinction-corrected magnituder < 17.77,
or r < 17.5 in a small subset of the early data from the survey.
In addition, we have a sample of 56491 Luminous Red Galaxies
(LRGs; Eisenstein et al. 2001), which form an extension to the sur-
vey to higher redshifts0.3 < z < 0.5. Of the main galaxies, 21310
are also classified as LRGs, so our sample includes 77801 LRGsin
total. Although the main galaxy sample contains significantly more
galaxies than the LRG sample, the LRG sample covers more vol-
ume. The redshift distributions of these two samples are fitted as
described in Percival et al. (2007b), and the angular mask isdeter-
mined using a routine based on a HEALPIX (Górski et al. 2005)
equal-area pixelization of the sphere (Percival et al. 2007b). In or-
der to increase the volume covered at low redshift, we include the
2dFGRS sample, which for simplicity has been cut to exclude an-
gular regions covered by the SDSS samples.

2.2 The 2dFGRS data

The full 2dF Galaxy Redshift Survey (2dFGRS) catalogue contains
reliable redshifts for 221 414 galaxies selected to an extinction-
corrected magnitude limit of approximatelybJ = 19.45 (Colless
et al. 2001, 2003). For our analysis, we only select regions not cov-
ered by the SDSS survey, and we do not include the random fields,
a set of 99 random 2 degree fields spread over the full southern
galactic cap. This leaves 143 368 galaxies in total. The redshift dis-
tribution of the sample is analysed as in Cole et al. (2005), and
we use the same synthetic catalogues to model the unclustered ex-
pected galaxy distribution within the reduced sample.

The average weighted galaxy densities in the SDSS and 2dF-
GRS catalogues were calculated separately, and the overallnor-
malisation of the synthetic catalogues were matched to eachcat-
alogue separately using these numbers (see, for example, Cole et
al. 2005 for details). The relative bias model described in Perci-
val et al. (2007b) was applied to the SDSS galaxies and the bias
model of Cole et al. (2005) was applied to the 2dFGRS galax-
ies. These normalise the large-scale fluctuations to the amplitude
of L∗ galaxies, whereL∗ is calculated separately for each survey.
We therefore include an extra normalisation factor to the 2dFGRS
galaxy bias model to correct the relative bias ofL∗ galaxies in the
different surveys. This was calculated by matching the normalisa-
tion of the 2dFGRS and SDSS bias corrected power spectra for
k < 0.1 h Mpc−1. 2dFGRS galaxies at a single location were all
given the same expected bias, rather than having biases matched to
their individual luminosities. This matches the method used for the
SDSS, and makes the calculation of mock catalogues easier.

3 BAO IN THE GALAXY POWER SPECTRUM

In this section, we consider the relation between BAO measured
from the galaxy distribution, and BAO in the linear matter distribu-
tion. We define the linear BAO as
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Blin(k) ≡ [Tfull(k)]2

[Tno osc(k)]2
, (1)

which oscillates aroundBlin(k) = 1. Tfull(k) is the full linear
transfer function, whileTno osc(k) is the same without the sinu-
soidal term arising from sound waves in the early universe. In the
fitting formulae provided by Eisenstein & Hu (1998), this term
is given by their equation 13, a modified sinc function. Note that
Tno osc(k) contains the change in the overall shape of the power
spectrum due to baryons affecting the small scale damping ofper-
turbations, just not the oscillatory features.Blin(k) can be consid-
ered as a multiplicative factor that corrects the smooth power spec-
trum to provide a full model.

Within the halo model (Seljak 2000; Peacock & Smith 2000;
Cooray & Sheth 2002), the real-space galaxy power spectrum is
related to the linear power spectrum by the addition of an extra
smooth term, and multiplication by a smooth, possibly scalede-
pendent, galaxy biasb(k)

Pobs(k) = b2(k)P (k)lin + P (k)extra. (2)

Theb2(k) term can also be thought of as equivalent to the Q-model
of Cole et al. (2005), used to model the transition between the lin-
ear matter power spectrum and observed galaxy power spectra. The
form of Equation (2) matches that calculated by Scherrer & Wein-
berg (1998) from a general hierarchical clustering argument. b2(k)
andP (k)extra are required to be slowly varying functions ofk such
that we can extract the BAO signal as follows. Substituting Equa-
tion (1) into Equation (2), and writingPlin(k) = Akn[Tfull(k)]2

gives

Pobs(k) = Ab2(k)knBlin(k)[Tno osc(k)]2 + P (k)extra. (3)

We extract BAO from this observed power spectrum by dividingby
a smooth model that, without loss of generality, we can choose to
be

P (k)smooth = Ab2(k)kn[Tno osc(k)]2 + P (k)extra, (4)

so the oscillations inPobs(k)/P (k)smooth are

Bobs(k) = g(k)Blin(k) + [1 − g(k)], (5)

where

g(k) =
Ab2(k)kn[Tno osc(k)]2

Ab2(k)kn[Tno osc(k)]2 + P (k)extra
(6)

is smooth. Thek-scales whereBobs(k) = 1 occur where
Blin(k) = 1, showing that the oscillation wavelength is unchanged
by the translation given by Equation (2). However, the positions
of the maxima and minima will change asg(k) is expected to be
asymmetric around the extrema. In fact, the detailed shape and
amplitude of this damping term will depend on the cosmological
model and on the properties of the galaxies being analysed. Eisen-
stein et al. (2007) have shown thatg(k) can be approximated as a
Gaussian convolution in position-space withσg = 10 h−1 Mpc for
low redshift galaxies. For our default results presented inthis paper,
we fix the damping model to be Gaussian withσg = 10 h−1 Mpc,
which is assumed not to change significantly over the redshifts or
galaxy types used in the analysis. We consider variations inthe
BAO damping model in Section 6.2. Equation (5) shows that the
observed power spectrum is constructed from a smooth component
(Equation 4), and a multiplicative damped BAO model (Equation
5). We assume that such a decomposition can be performed for
power spectra measured from galaxy samples drawn from the 2dF-
GRS and SDSS.

We modelP (k)smooth as a 9 node cubic spline (Press et al.
1992) designed to be able to match the overall shape of the power
spectrum (i.e. to fit Equation 4), but not the BAO. The 9 nodes
were fixed empirically atk = 0.001, and0.025 6 k 6 0.375 with
∆k = 0.05. A cubic spline×BAO model with this node separation
was found to be able to fit model linear power spectra by Percival
et al. (2007a) and can match all of the power spectra presented in
this paper without leaving significant residuals. Theχ2 values of
the fits are all within the expected range of values. We also con-
sider an offset node distribution in Section 6.2. The splinecurve
can be taken as the definition of “smooth”: only effects that cannot
be modelled by such a curve will affect the BAO positions. When
fitting the observed BAO, we do not attempt to extract the BAO
and then fit different models to these data, because the method by
which the BAO are extracted might bias the result. Instead wefit
combined cubic spline× BAO models to the power spectra, allow-
ing the spline fit to vary with each BAO model tested (this follows
the method of Percival et al. 2007a).

We now consider how to model the BAO. Blake & Glaze-
brook (2003) suggest modellingBlin(k) using a simple damped
sinusoidal two-parameter function

Blin(k) = 1 + Ak exp

[

−
(

k

0.1h Mpc−1

)1.4
]

sin
(

2πk

kA

)

,(7)

wherekA = 2π/rs, andrs is the co-moving sound horizon scale
at recombination at scale factora∗

rs =
1

H0Ωm
1/2

∫ a∗

0

cS

(a + aeq)1/2
da. (8)

Here, the amplitudeA is treated as a free parameter. In this paper,
we consider unitsh−1 Mpc, so working in these unitsH0 ≡ 100
in Equation (8). This simple function ignores issues such asthe
propagation of the acoustic waves after recombination. Although
the sound speed drops radically at recombination, acousticwaves
still propagate until the end of the ’drag-epoch’. This leads to the
slightly larger sound horizon as measured from the low-z galaxy
clustering data than the CMB. To include such effects, we usea
BAO model extracted from a power spectrum calculated using the
numerical Boltzmann code CAMB (Lewis et al. 2000), by fitting
with a cubic spline× BAO model. For simplicity, we index our
results based on the sound horizon at recombination,rs. In prin-
ciple, there could be small errors here (i.e. the large-scale struc-
ture to CMB sound horizon ratio could be a function of cosmol-
ogy), but the combination of the current results and WMAP data
mean that we are not looking over that big a range of cosmological
parameters. To test this, we have applied the spline× BAO fit to
CAMB power spectra for flatΛCDM models with recombination
sound horizon scales covering the 2-σ range of our best fit numbers
(±6%). We find that the input sound horizon at recombination is re-
covered with less than 1% error from these fits, showing that this
approximation is not important to current measurement precision.

For our default results, we extract the BAO model from a
power spectrum calculated assumingΩm = 0.25, Ωbh2 = 0.0223
andh = 0.72. For these parametersrs = 111.426 h−1 Mpc, cal-
culated using formulae presented in Eisenstein & Hu (1998).Small
differences of convention in computing the sound horizon scale can
be accommodated by simply scaling to match this value for these
cosmological parameters. If recovered bounds onrs are to be used
to constrain models wherers is not calculated using the formu-
lae presented in Eisenstein & Hu (1998), then our results should
be shifted using the difference betweenrs = 111.426 h−1 Mpc
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4 W.J. Percival et al.

and the model recombination sound horizon scale forΩm = 0.25,
Ωbh2 = 0.0223 andh = 0.72.

4 OBSERVING THE BAO SCALE

4.1 Narrow redshift shell surveys

Suppose that a survey samples a narrow redshift shell of width ∆z
at redshiftz. Furthermore, suppose that we are only interested in
the clustering of galaxies pairs with small separations. For a given
pair of galaxies,∆z and the angular separationθ are fixed by ob-
servation, and we wish to measure the comoving separation for dif-
ferent cosmological models. In the radial direction, separations in
comoving space scale with changes in the cosmological modelas
drc/dz ≃ ∆rc/∆z = c/H(z), whererc(z) ≡

∫

c(1 + z) dt
is the comoving distance to a redshiftz. In the angular direction,
the comoving galaxy separation scales as∆rc = ∆θ(1 + z)DA,
whereDA is the standard angular diameter distance. WritingSk ≡
(1 + z)DA,

Sk(z) =
c

H0

{ |Ωk|−1/2sinh[
√

ΩkH0 rc(z)/c] if (Ωk > 0),
H0 rc(z)/c if (Ωk = 0),
|Ωk|−1/2 sin[

√
−ΩkH0 rc(z)/c] if (Ωk < 0).

(9)

whereΩk = 1 − Ω0 andΩ0 is the ratio of total to critical den-
sity today. If we assume that the pairs of galaxies are statisti-
cally isotropic, then we can combine the changes in scale and, to
leading order, the measured galaxy separations scale with the cos-
mological model through the distance measureDV (z) = [(1 +
z)2D2

Acz/H(z)]1/3. Here, we have introduced a further factor of
z to match the definition ofDV by Eisenstein et al. (2005): in-
cluding functions of redshift does not change the dependence of
DV on different cosmological models. The position of featuresin
the real space 2-pt functions, the (dimensionless) power spectrum
and correlation function will approximately scale with this distance
measure. It is worth emphasising that this is only an approximation,
and would additionally be affected by redshift-space distortions and
other anisotropic effects.

Following these approximations, for a survey covering a nar-
row redshift slice, the power spectrumP (k) only needs to be cal-
culated for a single distance–redshift model. This is easiest if we
assume a flat cosmological model so we can set up a comoving Eu-
clidean grid of galaxies where BAO have the same expected scale in
radial and angular directions. The power spectrum for othermod-
els can be recovered by simply rescaling the measured power in
1/DV (z). Note that we could have instead worked in dimension-
less unitsx/DV (z), where the power spectrum is independent of
the comoving distance–redshift relation. The position of the BAO
in the power spectrum constrainrs/DV (z), which is analogous to
the peak locations in the Cosmic Microwave Background (CMB)
measuringrs/Sk(zls) (ignoring the astrophysical dependencies of
the peak phases), wherezls is the redshift of the last scattering sur-
face.

4.2 Surveys covering a range of redshift

We now consider what it means to measure the BAO scale in sur-
veys covering a range of redshifts. In this situation, the comoving
distance–redshift model assumed in measuringξ or P (k) becomes
increasingly important. We first consider a simple survey covering
two redshift shells, and then extrapolate to more general surveys.

Consider measuring the correlation function as an excess of

galaxy pairs in a survey covering two redshift shells at redshifts z1

andz2. Our estimate of the correlation function from the combined
sample will be the average of the correlation functions measured
in the two redshift bins, weighted by the expected total number of
pairs in each binW (zi), and stretched by the distanceDV (zi).
BAO in the power spectrum correspond to a “bump” in the correla-
tion function, and the position of the bump scales with the BAO po-
sition, and therefore measuresrs/DV (zi). For two redshift slices,
the position of the bump in the combined correlation function de-
pends on the average position of the bumps in the correlations func-
tions for each slice, weighted by the total number of pairs ineach
bin. If DV (z1) is varied, then the same final BAO scale can be
obtained from the combined data provided thatDV (z2) is chosen
such that[W (z1)DV (z1)+W (z2)DV (z2)] remains constant. Ex-
tending this analysis to a large number of redshift shells, we see
that the measured BAO scale, assuming that this is measured from
the mean position of the bump in the correlation function, depends
onrs/D̂V where

D̂V ≡
∫

W (z)DV (z) dz (10)

Here, we do not have to worry about pairs of galaxies where the
galaxies are in different shells because of the small separation as-
sumption. The contributions from different redshiftsW (z), are cal-
culated from the weighted galaxy redshift distribution squared. Be-
cause the weights applied to galaxies when analysing surveys tend
to upweight low density regions the BAO will, in general, depend
on a wider range of redshift than given by the radial distribution of
galaxies.

Now suppose that an incorrect comoving distance–redshift
modelD̄V (z) was assumed in the measurement ofξ or P (k). Fur-
thermore, suppose that this modelD̄V (z) has a different shape to
the trueDV (z) but the same value of̂DV . In this situation, our
measurement ofrs/D̂V is unbiased with respect to the true value.
What has changed is that the BAO signal has been washed out:
the recovered BAO in the power spectrum are of lower amplitude,
and the peak in the correlation function broadens, because the BAO
scales measured at different redshifts are not in phase, although
they sum so that their average has the correct wave-scale. Note that
if D̄V matches the true cosmological model, then there is no dis-
tortion of the BAO positions.

4.3 Fitting the distance–redshift relation

There are many different ways of parametrizing the distance–
redshift relation. For example, we could consider a cubic spline fit
to rc(z), drc/dz or DV (z). ForΛ cosmologies the comoving dis-
tance varies smoothly with redshift, andDV (z), rc(z) anddrc/dz
can all be accurately fitted by a spline with a small number of
nodes. In this paper, we fitDV (z) because of its physical mean-
ing in a simplified survey analysis on small scales; but for non-flat
cosmologies we cannot uniquely recoverrc(z) from DV (z). This
is not a problem because we only expect to measureDV (z), and
mocks calculated assuming the sameDV (z), but with different ge-
ometries, should give the same cosmological constraints. Conse-
quently, without loss of generality, we can assume flatness when
calculating the comoving distances fromDV (z) in order to create
mock catalogues, and use

rc(z)flat =

[

3

∫ z

0

D3
V (z′)

z′
dz′

]1/3

. (11)
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Measuring the BAO scale 5

Figure 1. The result of fitting toDV (z) using a cubic spline fit with three
nodes atz = 0.0, 0.2, 0.35 for 0 < z < 0.5. We plot results for three
cosmological models :ΛCDM (Ωm = 0.25, ΩΛ = 0.75, solid lines),
SCDM (Ωm = 1, ΩΛ = 0, dotted lines), and OCDM (Ωm = 0.3, ΩΛ =
0, dashed lines). The upper panel shows the true values ofDV (z) (black
lines) compared with the spline fits (grey lines) with nodes (solid circles).
The lower panel shows the resulting errors onSk as given by Equation (9).
For the redshift rangez > 0.15, the error is< 1%.

We now consider some of the practicalities of fitting the
distance–redshift relation. Scaling of the distance–redshift relation
can be mimicked by “stretching” the measured power spectra in
k. Consequently, if we parametrize the distance–redshift model
by N numbers, then power spectra only actually need to be cal-
culated for a set ofN − 1 values. For example, if the distance–
redshift model was parametrised by three nodesDV (z1), DV (z2)
& DV (z3), power spectra only need to be calculated for different
DV (z2)/DV (z1) andDV (z3)/DV (z1) values. Working in units
of h−1 Mpc and fittingdrc/dz, is one way of including such a di-
lation of scale in the analysis: in these units the node atz = 0 is
fixeddrc/dz|z=0 = c/H0, and onlyN − 1 nodes are free to vary.
Allowing such a dilation atz = 0, may not be the optimal choice
for the analysis of a survey at higher redshift.

By fitting the comoving distance (or a function of it), we hope
to provide measurements that can be easily applied to any setof
cosmological models, although we only have to analyse a small
number of comoving distance–redshift relations. The cosmological
models that can be tested require that the distance measure adopted
can be well matched by the parametrisation used. In this paper, we
modelDV (z) by a cubic spline fit with 2 nodes atz = 0.2 and
z = 0.35: consequently the results should only be used to delin-
eate between cosmological models whereDV (z) is well modelled
by such a fit. Fig. 1 shows fits of this form matched to a selection
of standard cosmological models (assuming a constant weighted
galaxy distribution with redshift). The error induced on the comov-
ing distance as a result of fittingDV (z) is small for these models.

The boundary conditions of the cubic spline are set so that the sec-
ond derivatives are zero atz = 0 andz = 0.35.

4.4 Differential distance measurements

In order to break the degeneracy between distance measurements
at different redshifts inherent in a single measurement of the BAO
scale, we need to analyse the BAO position in multiple power spec-
tra or correlation functions. This is true even if we are not in the
regime where the small separation assumption holds, although the
degeneracy would then be a more complicated function of the co-
moving distance than̂DV (Equation 10).

For the analysis of the 2dFGRS and SDSS DR5 galaxies pre-
sented in this paper, the sample is naturally split into maingalax-
ies (2dFGRS and SDSS), SDSS LRGs, and the combination of the
three samples. These samples obviously overlap in volume, so the
derived power spectra will be correlated. However, using overlap-
ping samples retains more information than contiguous samples
which would remove pairs across sample boundaries. There isno
double counting as each power spectrum contains new information,
and correlations between different power spectra are included in the
calculation of model likelihoods.

4.5 Basic method

For each distance–redshift relation to be tested using the observed
BAO locations, we could recalculate the power spectrum and mea-
sure the BAO positions. However, the likelihood of each model
would not vary smoothly between different models because the shot
noise term in each band-power varies in a complicated way with the
distance–redshift relation. This would give a “noisy”, although un-
biased, likelihood surface.

An alternative approach is to fix the distance–redshift relation
used to calculate the power spectra. If this is different from the
model to be tested, the difference can be accounted for by adjust-
ing the window function - each measured data value has a different
interpretation for each model tested. One advantage of suchan ap-
proach is that the shot noise component of the data does not change
with the model tested, leading to a smoother and easier to interpret
likelihood surface. The primary difficulty is that the calculation of
the window for each model is computationally intensive. We now
consider the mathematics behind this approach.

Following Feldman et al. (1994), we define the weighted
galaxy fluctuation field as

f(r) ≡ 1

N
w(r) [ng(r) − αns(r)] , (12)

whereng(r) =
∑

j
δ(r−rj) with rj being the location of thejth

galaxy, andns(r) is defined similarly for the synthetic catalogue
with no clustering. Hereα is a constant that matches the average
densities of the two catalogues (see, for example, Percivalet al.
2004), andN is a normalization constant defined by

N =

{
∫

d3r [n̄(r)w(r)]2
}1/2

. (13)

n̄(r) is the mean galaxy density, andw(r) is the weight applied.
The power spectrum of the weighted overdensity fieldf(r) is given
by

〈|F (k)|2〉 =

∫

d3r

∫

d3r′〈f(r)f(r′)〉eik·(r−r′). (14)
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The important term when substituting Equation (12) into
Equation (14) is the expected 2-point galaxy density given by

〈ng(r)ng(r
′)〉 = n̄(r)n̄(r′)

[

1 + ξ(r̂ − r̂′)
]

+n̄(r)δD(r−r
′).(15)

If we analyse the galaxies using a different cosmological model
to the “true” model, the 2-pt galaxy density depends onr̂ and r̂′,
the positions in the true cosmological model that are mappedto
positionsr andr

′ when the survey is analysed. Translating from
the correlation functionξ(r̂) to the power spectrumP (k̂) in the
true cosmological model gives

ξ(r̂ − r̂′) =
1

2π2

∫

P (k̂)e−ik.(r̂−r̂′)d3k̂, (16)

which can be substituted into Equation (15). Combining Equations
(12 – 16) shows that the recovered power spectrum is a triple in-
tegral over the true power. If̂r = r, this reduces to a convolution
of the power spectrum with a “window function” (Feldman et al.
1994). If we now consider a piecewise continuous true power spec-
trumP (k) =

∑

i
Pi[Θ(k)−Θ(k−ki)], whereΘ(k) is the Heav-

iside function, then the triple integral can be written as a linear sum
overPi, 〈|F (k)|2〉 =

∑

i
WiPi. Because the radial interpretation

changes between actual and measured clustering, spherically aver-
aging the recovered power is no longer equivalent to convolving
the power with the spherical average of the window function.Con-
sequently, the window has to be estimated empirically from mock
catalogues created with different true power spectra and analysed
using a different cosmological model. The empirical windowfunc-
tion can be calculated including both the change in cosmological
model and the survey geometry.

5 ANALYSIS OF THE SDSS AND 2dFGRS

5.1 The observed BAO

Fig. 2 shows the BAO determined from power spectra calculated
for the combined sample of SDSS main galaxies and 2dFGRS
galaxies, the SDSS LRG sample, and the combination of these sam-
ples. The power spectra were calculated forN = 70 band powers
equally spaced in0.02 < k < 0.3 h Mpc−1 using the method
described in Percival et al. (2007a), assuming a flatΛ cosmology
with Ωm = 0.25. Errors on these data were calculated from 2000
Log-Normal (LN) density fields (Coles & Jones 1991) covering
the combined volume, from which overlapping mock samples were
drawn with number density matched to each galaxy catalogue.The
distribution of recovered power spectra includes the effects of cos-
mic variance and the LN distribution has been shown to be a good
match to the counts in cells on the scales of interest> 10 h−1 Mpc
(Wild 2005), so these catalogues should also match the shot noise
of the data. The catalogues do not include higher order correla-
tions at the correct amplitude for non-linear structure formation,
which are not included in the Log-Normal model. However, the
BAO signal comes predominantly from large-scales that are ex-
pected to be in the linear or quasi-linear regimes, so these effects
should be small. Each catalogue was calculated on a(512)3 grid
covering a(4000 h−1 Mpc)3 cubic volume. The recovered power
spectra from these mock catalogues were fitted with cubic spline×
BAO fits as described in Section 3, and the errors on the BAO were
calculated after dividing by the smooth component of these fits.

We have fitted cubic spline× BAO models to the SDSS and
2dFGRS power spectra using the method of Percival et al. (2007a).
For each catalogue we have calculated the window function ofthe
survey assuming a flatΛ cosmology withΩm = 0.25 (using the

Figure 2. BAO in power spectra calculated from (a) the combined SDSS
and 2dFGRS main galaxies, (b) the SDSS DR5 LRG sample, and (c)the
combination of these two samples (solid symbols with1σ errors). The data
are correlated and the errors are calculated from the diagonal terms in the
covariance matrix. A StandardΛCDM distance–redshift relation was as-
sumed to calculate the power spectra withΩm = 0.25, ΩΛ = 0.75. The
power spectra were then fitted with a cubic spline× BAO model, assuming
our fiducial BAO model calculated using CAMB, as described inSection
(3). The BAO component of the fit is shown by the solid line in each panel.

method described in Percival et al. 2007a), and the covariance ma-
trix from the LN catalogues, assuming that the power spectraband
powers are distributed as a multi-variate Gaussian. The power spec-
trum for each sample was then fitted using cubic spline including or
excluding the multiplicative BAO model calculated using CAMB
as described in Section 3 for a flatΛ cosmology withΩm = 0.25,
Ωbh2 = 0.0223 & h = 0.72. All three samples are significantly
better fit by the models including BAO. For the combined data,
−2∆ lnL = 9.6, for the LRGs−2∆ lnL = 7.4, and for the SDSS
main + 2dFGRS galaxies−2∆ lnL = 5.9 for the likelihood ratios
between best-fit model power spectra with BAO and without BAO.

Including the 2dFGRS data reduces the error on the derived
cosmological parameters by approximately 25% for our combined
analysis of three power spectra. The BAO calculated from just the
SDSS main galaxies and the combination of the SDSS main galax-
ies and the LRGs are shown in Fig. 3. From just the SDSS main
galaxies,−2∆ lnL = 4.5 for the likelihood ratios between best-
fit model power spectra with BAO and without BAO. There is no
change in the significance of the BAO detection from the combined
SDSS LRG and main galaxy sample from including the 2dFGRS
galaxies.

The power spectra plotted in Fig. 2 are clearly not indepen-
dent. Some of the deviations between model and data in the com-
bined catalogue can be traced back to similar distortions ineither
the main galaxy or LRG power spectra. The LRGs have a greater
weight when measuring the clustering of the combined sampleon
large-scales compared with the lower redshift galaxies, while the
low redshift galaxies have a stronger weight when measuringthe
clustering on smaller scales. The combined sample includesaddi-
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Figure 3. As Fig. 2, but for power spectra calculated from (a) the com-
bined SDSS DR5 LRG and main galaxy sample, (b) the SDSS main galaxy
sample.

Figure 4.Two possible ways of changing the distance–redshift model tested
against the data. Dilating the scale can be achieved by simply scaling the
measured power spectra and windows, while changing the formof the
distance–redshift relation requires recalculation of thewindows.

tional galaxy pairs where the galaxies lie in different subsamples.
All three samples also cover different redshift ranges. As discussed
in Section 4 this means that they all contain unique cosmological
information. By simultaneously analysing all three power spectra,
allowing for the fact that they may be correlated, we can therefore
extract more cosmological information than by analysing a single
power spectrum.

Figure 5. The window function linking the input power spectrum with
an observed band-power atk = 0.08 hMpc−1 (calculated assuming a
ΛCDM model), for the SDSS LRG and 2dFGRS + SDSS main galaxy cat-
alogues. Window functions are plotted for 9 distance–redshift models with
DV (0.2) = 550 h−1 Mpc and800 < DV (0.35) < 1200 h−1 Mpc.
For the LRGs, the peakk-value of the power that contributes to this mea-
sured band–power decreases with increasingDV (0.35).

5.2 Fitting the distance–redshift relation

We test distance–redshift models that are given by a cubic spline
fit to DV , with one node fixed atDV (0.2) = 550 h−1 Mpc and
41 equally separated values of another node atDV (0.35) with
800 < DV (0.35) < 1200 h−1 Mpc. DV (0) = 0 is assumed for
each model. These models are shown in the top panel of Fig. 4. We
also allow the distances to be scaled, which is shown in the lower
panel of Fig. 4 for fixedDV (0.35)/DV (0.2). This scaling can be
accomplished without recalculation of the power spectra, windows
or covariances, which can all be scaled to match the new distance–
redshift relation. In the spline× BAO model that we fit to the data,
we allow the spline nodes to vary with this scaling, so that the spline
nodes always match the same locations in the power spectra.

Fig. 2 shows that we can detect BAO in three catalogues:
SDSS LRG, SDSS main + 2dFGRS and combined SDSS + 2dF-
GRS. We now provide some of the practical details of how we con-
strain the fit toDV (z) using these data. For each model value of
DV (0.35)/DV (0.2), the measured power spectra are a convolu-
tion of the true power, based on the survey geometry and the dif-
ference between the model cosmology and the cosmology used
to calculate the power. In order to calculate the window func-
tion for each convolution, we have calculated 10000 Gaussian ran-
dom fields, allowing the phases and input power spectra to vary.
We assume that the true power is piecewise continuous in bins
of width 0.002 h Mpc−1 between0 < k < 0.4 h Mpc−1. We
calculated 50 fields where power was only added in one of these
200 bins. Each field was calculated on a(512)3 grid covering a
(4000 h−1 Mpc)3 cubic volume. Each Gaussian random field was
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8 W.J. Percival et al.

then translated onto a grid assuming a distance–redshift relation
following the fiducialΛCDM cosmology, and is then sampled and
weighted to match the actual survey. The average recovered power
spectrum from each set of 50 realisations then gives part of the
window function of the data given each model, and combining
data for all 200 bins allows the full window function to be esti-
mated. Fig. 5 shows a few of the resulting window functions for
the recovered band-power atk = 0.08 h Mpc−1. These models
were calculated withDV (0.2) = 550 h−1 Mpc and 9 values of
DV (0.35) with 800 < DV (0.35) < 1200 h−1 Mpc with sepa-
ration 50h−1 Mpc. These numerically determined window func-
tions include both the effects of the volume covered by the survey,
and the different distance–redshift relation. For the LRGs, when we
analyse the data assuming aΛCDM cosmology, if the true value of
DV (0.35) increases, the scales contributing to a given band-power
also increase, and the peak value in the window function ink-space
decreases. The corresponding window functions for the lower red-
shift data plotted in the upper panel of Fig. 5 do not show sucha
significant change because the node atDV (0.2) remains fixed.

We calculate the expected covariances from the LN catalogues
described in Section 5.1. These catalogues were calculatedallow-
ing for overlap between samples, and power spectra were calcu-
lated as for the actual data. Covariances (internal to eachP (k) and
between different power spectra) were recovered assuming that the
power spectra are distributed as a multi-variate Gaussian.For the
set of models tested, we do not change the covariance matrix with
DV (0.35)/DV (0.2) (the change in models shown in the top panel
of Fig. 4), because the recovered data power spectra do not change
when altering this parameter combination. Consequently, in this
direction, it is the correlations between data points that primarily
change. Tests with different matrices show that this has a negligi-
ble effect across the set of models, but recalculating the covariance
matrices for each model introduces significant noise into the like-
lihood surfaces. We do scale the covariance matrix with the data
when we dilate in scale (the change in models shown in the bottom
panel of Fig. 4).

5.3 Results

In this section, we present likelihood surfaces calculatedby fitting
models to the BAO detected in power spectra from the different
samples. In order to remove small likelihood differences caused by
different fits to the overall shape of the power spectrum, we subtract
the likelihood of the best-fit model without BAO from each likeli-
hood before plotting. The likelihood differences between models
with no BAO is caused by the effect of the different window func-
tions on allowed shapes of the spline part of the model.

Fig. 6 presents likelihood surfaces calculated by fitting cu-
bic spline× BAO models to power spectra calculated from dif-
ferent sets of data. The upper row of panels show likelihoods
plotted as a function of the 2 parameters used in the anal-
ysis, DV (0.35)/DV (0.2), and rs/DV (0.2) which is used to
parametrise the dilation of scale. The lower panels show thesame
likelihood surfaces after a change of variables tors/DV (0.2) and
rs/DV (0.35). BAO within the SDSS main galaxy and 2dFGRS
power spectrum primarily fix the distance to thez = 0.2, while
the LRG power spectrum measures the distance toz = 0.35.
When we jointly analyse the power spectra from the low redshift
data, the LRGs and the combination of these samples, we find
rs/DV (0.2) = 0.1980 ± 0.0058 andrs/DV (0.35) = 0.1094 ±
0.0033 (unless stated otherwise all errors given in this paper are
1-σ). These constraints are correlated with correlation coefficient

of 0.39. The likelihood surface is well approximated by treating
these parameters as having a multi-variate Gaussian distribution
with these errors (the left panel of Fig. 7 shows this approximation
compared with the true contours). For completeness, the method
for likelihood calculation is described in Appendix A.

For our conventions,rs = 111.426 h−1 Mpc for Ωm = 0.25,
Ωbh2 = 0.0223 and h = 0.72. Hence, ifΩmh2 = 0.13 and
Ωbh2 = 0.0223, we find DV (0.2) = 564 ± 23h−1 Mpc and
DV (0.35) = 1019 ± 42 h−1 Mpc; one can scale to other values
of Ωmh2 andΩbh2 using the sound horizon scale formula from
Equation (8).

Without the 2dFGRS data, the low-redshift result reduces to
rs/DV (0.2) = 0.1982 ± 0.0067, while thez = 0.35 result is
unchanged: as expected, the 2dFGRS data primarily help to limit
the distance–redshift relation atz ∼ 0.2. We can ratio the high
and low redshift BAO position measurements to remove the de-
pendence on the sound horizon scalerS . From all of the data, we
find DV (0.35)/DV (0.2) = 1.812 ± 0.060. This is higher than
the flatΛCDM value, which forΩm = 0.25 andΩΛ = 0.75 is
DV (0.35)/DV (0.2) = 1.66.

6 TESTING THE METHOD

6.1 The range of scales fitted

Fig. 7 shows the effect of changing the range ofk-values fitted
on the likelihood surface. Reducing the upper limit fromk =
0.3 h Mpc−1 to k = 0.2 h Mpc−1 does not change the signif-
icance of the best fit, compared to the no-BAO solution. How-
ever, this reduction in the range ofk values fitted increases the
possibility of the BAO model fitting spurious noise because the
0.2 < k < 0.3 h Mpc−1 data provide a long lever arm to fix the
overall power spectrum shape. Increasing the lowerk limit consid-
ered in the fit fromk = 0.02 h Mpc−1 to k = 0.05 h Mpc−1 does
reduce the significance of the BAO detection, because the BAOsig-
nal is strongest on large scales. However, there is only a small off-
set in the position of the likelihood maximum if we do this, and
the recovered ratioDV (0.35)/DV (0.2) is unchanged. This gives
us confidence that we are picking up the oscillatory BAO signal,
and that the large scale features of the BAO, which depend on the
details of the BAO production, do not contribute significantly to the
fit.

6.2 The spline× BAO model

Fig. 8 shows likelihood surfaces calculated by fitting the mea-
sured power spectra with different spline× BAO models. We
have considered offsetting the nodes of the spline curve tok =
0.001 h Mpc−1 and 8 nodes with0.05 6 k 6 0.4 h Mpc−1 and
separation∆k = 0.05 h Mpc−1. Using this form for the spline
curve alters the best-fit parameters torS/DV (0.2) = 0.1956 ±
0.0068 andrs/DV (0.35) = 0.1092 ± 0.0039. This spline fit is a
better match to the BAO signal on scalesk < 0.1h Mpc−1, lead-
ing to a smaller difference between likelihoods for spline×BAO
models and models with just a spline curve, and larger errorson
the recovered parameters.

Fig. 8 shows that there is a small systematic change in the dis-
tance ratioDV (0.35)/DV (0.2) when the amplitude of the BAO
damping is altered. Increasing the width of the Gaussian damp-
ing model toσg = 20 h−1 Mpc for the BAO fitted to the three
power spectra decreases the best-fit ratio toDV (0.35)/DV (0.2) =

c© 0000 RAS, MNRAS000, 000–000



Measuring the BAO scale 9

Figure 6. From left to right: Likelihood surfaces calculated from fitting a cubic spline× BAO model to a single power spectrum calculated from the combined
main SDSS galaxy + 2dFGRS sample, to a single power spectrum calculated using for SDSS LRG sample, and to both these power spectra and the additional
power spectrum calculated from the combined catalogue. Where more than one power spectrum is fitted, we allow for correlated errors between the power
spectra. Likelihood contours were plotted for−2 lnL = 2.3, 6.0, 9.2, corresponding to two-parameter confidence of 68%, 95% and 99% for a Gaussian
distribution. In the upper row, we plot the contours as a function of rs/DV (0.2), calculated by dilating the scales of the power spectra, windows and covari-
ances, andDV (0.35)/DV (02), for which different windows were calculated. These likelihoods are plotted as a function ofrs/DV (0.2) andrs/DV (0.35)
in the lower row of this figure. Here the dashed lines show the limits of the parameter space tested.

Figure 7. Likelihood surfaces as plotted in Fig. 6, but now fitting to different ranges ink-space (solid contours). As a reference, the dotted contours show
the Gaussian approximation to the0.02 < k < 0.3 hMpc−1 likelihood surface which hasrs/DV (0.2) = 0.1980 ± 0.0058 and rs/DV (0.35) =
0.1094 ± 0.0033, and correlation coefficient of0.39. Dashed lines show the limit of the parameter ranges considered as shown in Fig. 6.

1.769 ± 0.079. Removing the small-scale BAO damping for all
models increases the ratio toDV (0.35)/DV (0.2) = 1.858 ±
0.051. When changing the damping term, the best fit value
of rs/DV (0.2) does not change significantly, and the change
in the ratio comes almost entirely from different fitted values
of rs/DV (0.35), which is most strongly limited by the LRG
power spectrum. To help to explain this effect, Fig. 9 shows
BAO models with different values ofDV (0.35)/DV (0.2) and
damping strength, compared with the observed LRG BAO. The
BAO observed in the LRG power spectrum occur on larger

scales than predicted by our fiducialΛCDM model, where
DV (0.35)/DV (0.2) = 1.66. By increasing the strength of the
damping, we reduce the significance of the small-scale signal lead-
ing to increased errors and a (< 1σ) systematic shift to smaller
DV (0.35)/DV (0.2).

If we includeσg as a fitted parameter with a uniform prior,
allowing σg to vary between power spectra, we obtain best-fit
values σg = 7.3 ± 4.3h−1 Mpc for the low redshift data,
σg = 1.4 ± 2.2 h−1 Mpc for the LRGs, andσg = 4.7 ±
2.6 h−1 Mpc for the power spectrum of the combined sample.
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10 W.J. Percival et al.

Figure 8. Likelihood surfaces as plotted in Fig. 6, but now calculatedfitting the measured power spectra with different spline× BAO models (solid contours).
Other lines are as in Fig. 7. Top row, from left to right: we consider a spline curve with nodesk = 0.001 h Mpc−1 andk = 0.05 + n0.05 hMpc−1 with
n = 1, 2, ...,7, which are offset ink compared with our default separation. We use our default spline fit, but remove the small-scale BAO damping. We use the
default spline fit, but increase the position-space BAO damping to be a Gaussian withσg = 20 h−1 Mpc. Bottom row: likelihood surface calculated allowing
the damping term, parametrised byσg , to float with a uniform prior, and with Gaussian priorsσg = 10 ± 5 h−1 Mpc or σg = 10 ± 2 h−1 Mpc.

Figure 9. As Fig. 2, but only for the LRG power spectrum, plotted against
BAO models with different levels of small-scale BAO damping(a) no
damping, (b)σg = 10 h−1 Mpc, (c) σg = 20 h−1 Mpc. The solid line
is for DV (0.35)/DV (0.2) = 1.82, while the dashed line is calculated for
DV (0.35)/DV (0.2) = 1.66. DV (0.2) = 568, matching the values of
our fiducialΛCDM model.

Here DV (0.35)/DV (0.2) = 1.827 ± 0.061. However, the in-
clusion of these extra parameters increases the noise in thelikeli-
hood surfaces. This likelihood surface is shown in Fig. 8, reveal-
ing a spur at constantrs/DV (0.35) following models with ex-
treme damping of the low redshift data, weakening the constraint
on rs/DV (0.2). The extra minima atrs/DV (0.35) < 0.1 is due
to models with strongly damped BAO fitted to both the low red-
shift and combined power spectra. Likelihood surfaces calculated
assuming thatσg has a Gaussian prior withσg = 10± 5h−1 Mpc
or σg = 10 ± 2 h−1 Mpc are also plotted in Fig. 8. As expected,
there is a smooth transition between these likelihood surfaces, and
allowing a small error inσg does not change the likelihood signifi-
cantly from the fixedσg = 10 h−1 Mpc form.

We have also considered how using approximations to the
BAO model affects the fits. Fig. 10 shows the likelihood of dif-
ferent rs/DV (0.2) and rs/DV (0.35) values, with BAO mod-
els calculated using the Eisenstein & Hu (1998) fitting formulae,
and the simple model of Blake & Glazebrook (2003), as given
by Equation (7). The BAO models have been damped assuming
σg = 10 h−1 Mpc for a Gaussian position-space convolution as
described in Section 3. For the Eisenstein & Hu (1998) fitting
formulae, we have considered two approaches to calculatingthe
likelihood: either using a fiducial BAO model (calculated for the
same cosmological parameters as our standard CAMB model) and
stretching this model in amplitude and scale, or allowingΩm to
vary to match the desired comoving sound horizon scale, and al-
lowing Ωb/Ωm to fix the BAO amplitude. The second approach
allows the BAO model on scalesk < 0.05 h Mpc−1 to change
with cosmological parameters for fixed value ofDV (0.2). Ideally,
in order to accurately model the BAO on large scales we should
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Figure 10. Likelihood surfaces as plotted in Fig. 6, but now calculatedusing different BAO models (solid contours). Other lines are as in Fig. 7. From left
to right: we use the transfer function fits of Eisenstein & Hu (1998) to model the BAO, calculated for our fiducial cosmologyand stretched in amplitude and
scale as for the standard CAMB model. We again use the fits of Eisenstein & Hu (1998) but now allowΩm to change to fix the sound horizon scale, and
marginalise over the amplitude parametrised byΩb/Ωm. We model the BAO using the simple model of Equation (7).

separaters and the distance scale in the fits. However, there is little
change in the recovered parameters between these two approaches,
demonstrating that this level of complexity is not requiredfor cur-
rent data precision. There is a change in the recovered parameters
of order< 1σ, with best-fit parameters for the Eisenstein & Hu
(1998) fitsrs/DV (0.2) = 0.2020 ± 0.0060 andrs/DV (0.35) =
0.1120±0.0033 with correlation coefficient of0.41. For the Blake
& Glazebrook (2003) fits,rs/DV (0.2) = 0.2011 ± 0.0058 and
rs/DV (0.35) = 0.1104 ± 0.0034 with correlation coefficient of
0.37. The definition ofrs is built into the Blake & Glazebrook
(2003) fit, and will have a different fiducial value to the other fits.

We might expect the ratioDV (0.35)/DV (0.2) to be more
robust to changes in the BAO model as it measures the rela-
tive positions of the BAO at the different redshifts. In essence,
by considering this ratio, we are testing how well the BAO
from low and high redshift match. Our standard CAMB fit gave
DV (0.35)/DV (0.2) = 1.812 ± 0.060. Using the Eisenstein &
Hu (1998) BAO fitting formulae givesDV (0.35)/DV (0.2) =
1.800±0.066, while using the Blake & Glazebrook (2003) fit gives
DV (0.35)/DV (0.2) = 1.827 ± 0.061. These are all consistent at
1σ.

7 COSMOLOGICAL CONSTRAINTS

We consider three ways of using the BAO scale measurements
to restrict cosmological models. Using just the observed posi-
tion of the BAO in the power spectra analysed, we can mea-
sure DV (0.35)/DV (0.2). Alternatively, we can compare these
distance scales with the apparent acoustic horizon angle inthe
CMB: The WMAP experiment has measured this asθA =
0.5952 ± 0.0021◦ (Spergel et al. 2007). For simplicity, we ig-
nore the0.4% error on this measurement, which is negligible com-
pared with the large-scale structure distance errors, and assume that
rs/Sk(1098) = 0.0104. Including this measurement to remove the
dependence onrs givesSk(1098)/DV (0.2) = 19.04 ± 0.58 and
Sk(1098)/DV (0.35) = 10.52 ± 0.32. The third possibility is that
we model the co-moving sound horizon scale, and simply use the
derived bounds onrs/DV (0.2) andrs/DV (0.35). This relies on
fitting the comoving sound horizon scale at recombination inad-
dition to the distance–redshift relation, and has additional parame-
ter dependencies onΩmh2 andΩbh2. In order to calculaters for
each cosmological model tested, we assume thatΩbh2 = 0.0223
andΩmh2 = 0.1277, matching the best-fit WMAP numbers for

Figure 11.Three different ways of using BAO to test cosmological models.
The panels from top to bottom show the constraints onSk(1098)/DV (z),
rs/DV , andDV (z)/DV (0.2) (solid circles with1σ errors). For many of
the data points the errors are smaller than the symbols. These data are com-
pared with three cosmological models:ΛCDM (Ωm = 0.25, ΩΛ = 0.75,
solid lines), SCDM (Ωm = 1, ΩΛ = 0, dotted lines), and OCDM
(Ωm = 0.3, ΩΛ = 0, dashed lines), as plotted in Fig. 1. In order to
calculaters and hencers/DV , we used the fitting formulae of Eisen-
stein & Hu (1998), assumingΩbh2 = 0.0223 and Ωmh2 = 0.1277,
matching the best-fit WMAP numbers forΛCDM cosmologies (Spergel et
al. 2007). Although the best-fitDV (0.35)/DV (0.2) appears to be further
from theΛCDM model than in the other panels, this is just a consequence
of rs/DV (0.2) being greater than andrs/DV (0.35) being less than the
ΛCDM model.
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Figure 12. Top panel: Likelihood surfaces assuming aΛCDM model
parametrised byΩm andΩΛ. Contours and delineations between shaded
regions are plotted for−2 lnL = 2.3, 6.0, 9.2. The shaded re-
gions show the likelihood given justDV (0.35)/DV (0.2). The solid
contours were calculated by modellingrs and using constraints on
rs/DV (0.2) and rs/DV (0.35), and the dashed contours by including
the CMB peak position measurement, and useSk(1098)/DV (0.2) and
Sk(1098)/DV (0.35). The dotted line shows the locus of flat models. Bot-
tom panel: likelihood contours calculated using the same data, but now for
flat cosmological models with constant dark energy equationof state pa-
rameterw. Here the dotted line showsw = −1.

ΛCDM cosmologies (Spergel et al. 2007). We do not include errors
on these parameters, so our recovered errors from fittingrs/DV

will be underestimated. The distance ratiosDV (0.35)/DV (0.2)
andSk(1098)/DV are independent ofh andΩb. These three possi-
ble ways of using the large-scale structure data are shown inFig. 11,
where we compare to three cosmological models.

We demonstrate the consistency of the BAO measurements by
considering how they restrict two sets of cosmological models. The
top panel of Fig. 12 shows likelihood contours for standardΛCDM
cosmologies, parametrised byΩm andΩΛ. The three ways of us-
ing the large-scale structure data that we have considered constrain
different parameter combinations, and the location of their peak
likelihoods do not coincide, although their 95% confidence inter-
vals do overlap. In the lower panel we consider flat models with a
constant dark energy equation of state parameterw that is allowed

Figure 13.As Fig. 12, but now additionally using the SNIa data presented
in Astier et al. (2006) in the Likelihood calculation. The shaded region,
dashed and solid contours were calculated using the BAO based measure-
ments described in the caption to Fig. 12. The dot-dashed contours show
the likelihood surface calculated from just the SNLS data.

to vary fromw = −1. Here,w < −1 is favoured at a significance
of 1.4σ, from theDV ratio assuming a flat prior onΩm.

In Fig. 13 we have included constraints from the set of super-
novae given in Astier et al. (2006). The tightest bounds on models
are obtained if we include the ratio of the sound horizon scale at
recombination to the angular diameter distance to last scattering
calculated from CMB data, which then give a likelihood degener-
acy that is approximately orthogonal to the supernovae likelihood
degeneracy. Including the CMB data givesΩm = 0.252 ± 0.027
and ΩΛ = 0.743 ± 0.047 for ΛCDM models. The curvature is
found to beΩk = −0.004 ± 0.022. For flat models, with constant
equation of state parameterw, we findΩm = 0.249 ± 0.018 and
w = −1.004 ± 0.089.

8 DISCUSSION

We have introduced a general method for providing constraints on
the distance–redshift relation using BAO measured from galaxy
power spectra. The method can be applied to different galaxysur-
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veys, or to subsamples drawn from a single survey that cover dif-
ferent redshift ranges. At the heart of the method is a likelihood
calculation, matching data and model power spectra, assuming that
these have a multi-variate Gaussian distribution. We now review
the components required for this calculation:

PARAMETERS The distance–redshift relation is parametrized
using a spline fit inDV (z) with a small number of nodes,DV (zi).
We can simply scale measured power spectra to follow a multiplica-
tive shift of allDV (zi), so we take as parametersDV (zi)/DV (zj),
i 6= j, and DV (z1) (this was discussed in Section 4). This
parametrization allows the results to be used to constrain general
cosmological models that have such a smoothDV (z), without hav-
ing to specify the set of models before the start of the analysis.
DATA The galaxies are split into subsamples covering different

(possibly overlapping) redshift ranges. The power spectrafor these
samples are calculated assuming a fiducial cosmological model
(Section 4). The position of the BAO in each power spectrum de-
pends on a weighted integral of the distance–redshift relation for
the range of redshifts covered by the sample from which the power
spectrum is calculated. Consequently, by fitting power spectra from
different samples, we can measure the ratio of distances to different
redshifts.
BAO MODEL BAO are extracted from a model power spectrum

calculated using CAMB, by fitting with a spline× BAO model,
as fitted to the observed galaxy power spectra. These BAO are
stretched to allow for varyingrs/DV (z1) (Section 5.1).
MODEL The model is formed from a smooth spline curve multi-

plied by the BAO model (Section 5.1). This is convolved with the
window function, which corrects for both the survey geometry, and
the difference between the fiducial cosmology (at which the data
power spectra were calculated), and the cosmological modelto be
tested (Section 4.5). The window functions were calculatedusing
realisations of Gaussian random fields.
ERRORS Covariance matrices for the power spectra were cal-

culated from Log-Normal realisations of galaxy distributions. Co-
variances between the different power spectra of differentgalaxy
samples were included.
NUISANCE PARAMETERS The spline nodes giving the shapes

of the power spectra were fixed at their best fit values for each
model tested. We are therefore left with a likelihood measurements
for a set ofrs/DV (z1) andDV (zi)/DV (zj), i 6= j values.

This analysis method has been used to jointly analyse samples
of galaxies drawn from the SDSS and 2dFGRS. BAO were cal-
culated by fitting a fiducial power spectrum calculated by CAMB
(Lewis et al. 2000). We have considered using fitting formulae to
calculate the BAO (Eisenstein & Hu 1998; Blake & Glazebrook
2003), and find changes in the recovered BAO scale of order1σ.
Such a dependence was also found recently by Angulo et al. 2007
when fitting simulated data, and it is clear that the combined2dF-
GRS+SDSS data now reveal the BAO with sufficient accuracy that
we need to take care when modelling the BAO.

The BAO scale measurements were used to set limits on two
sets of cosmological models: StandardΛ models, and flat mod-
els with constant dark energy equation of state. When we analyse
flat ΛCDM models, we find similar errors on the matter density
to those obtained by Percival et al. (2007a), where these models
were directly compared with the data. The SNIa data from Astier
et al. (2006) provide cosmological constraints that have a simi-
lar degeneracy direction to the lower redshift BAO constraint on
DV (0.35)/DV (0.2). However, if we include the information from
the position of the peak in the WMAP CMB data, or model the

sound horizon scale at recombination then the likelihoods become
complementary. These two approaches provide different best-fit pa-
rameters, although they are consistent at the 1σ level. ForΛCDM
modelsΩm = 0.266± 0.015 if we model the sound horizon scale,
or Ωm = 0.252 ± 0.027 including the CMB data. Similarly, for
flat models with constantw, we findw = −1.045 ± 0.080 if we
model the sound horizon scale, orw = −1.004 ± 0.088 including
the CMB data.

For flat models with constantw, the differential distance mea-
surementDV (0.35)/DV (0.2) favoursw < −1. However, it is
worth noting that Fig. 12 shows that the total density (Ωtot) and
w are highly coupled, so allowing curvature to vary would signifi-
cantly weaken this conclusion (Clarkson et al. 2007). The SNLS
supernovae data favourw ≃ −1, hinting at a discrepancy be-
tween low and high redshift. Fitting to the SNLS SNIa data gives
DV (0.35)/DV (0.2) = 1.666 ± 0.010 for the set ofΛCDM mod-
els considered, orDV (0.35)/DV (0.2) = 1.665 ± 0.010 for flat
models with constant dark energy equation of state.

The tests presented in Section 6.2 show that the measured dis-
tance ratio from the current BAO data is sensitive to the damping
model. This is clear from Fig. 9, where it is apparent that there is
a small offset between all models and the positions of the first and
second peaks in the LRG BAO. By increasing the BAO damping,
we decrease the significance of the second peak compared withthe
first, and change the fitted ratioDV (0.35)/DV (0.2). However, our
default choice of the damping model – a Gaussian convolutionin
position space withσg ∼ 10 h−1 Mpc – is well motivated by cur-
rent simulation results (Eisenstein et al. 2007; Angulo et al. 2007).
This givesDV (0.35)/DV (0.2) = 1.812 ± 0.060, which is off-
set by2.4σ from the SNIa results. If this is not a case of extreme
bad luck, we must therefore consider at least one of the following
options:

(i) The damping model needs to be revised and made more so-
phisticated;

(ii) The data/analysis is flawed in a way that evades the testswe
have performed so far;

(iii) The simpleΛ model is wrong.

For the Gold supernovae data set (Riess et al. 2004), the sig-
nificance of any evidence forw < −1 at low redshift would in-
crease because this SNIa dataset also favours strong dark energy
at z < 0.3 – so it is conceivable that this discrepancy could be
genuinely cosmological in origin. However, in this paper weonly
compare with the SNLS data because of the benefits of considering
homogeneous data. It will be interesting to recalculate this signifi-
cance when the SDSS supernova survey (Nichol 2007) is complete,
as it focuses onz < 0.5, and should either confirm or reject any
deviations from a simpleΛCDM model at these low redshifts.

ACKNOWLEDGEMENTS

WJP is grateful for support from a PPARC advanced fellowship.
WJP acknowledges useful conversations with Sanjeev Seahra, and
constructive comments from David Weinberg on an early draftof
this manuscript. Simulated catalogues were calculated andanal-
ysed using the COSMOS Altix 3700 supercomputer, a UK-CCC
facility supported by HEFCE and PPARC in cooperation with
CGI/Intel.

The 2dF Galaxy Redshift Survey was undertaken using the
Two-degree Field facility on the 3.9m Anglo-Australian Telescope.

c© 0000 RAS, MNRAS000, 000–000



14 W.J. Percival et al.

The success of the survey was made possible by the dedicated ef-
forts of the staff of the Anglo-Australian Observatory, both in cre-
ating the 2dF instrument and in supporting the survey observations.

Funding for the SDSS and SDSS-II has been provided by
the Alfred P. Sloan Foundation, the Participating Institutions, the
National Science Foundation, the U.S. Department of Energy,
the National Aeronautics and Space Administration, the Japanese
Monbukagakusho, the Max Planck Society, and the Higher Ed-
ucation Funding Council for England. The SDSS Web Site is
http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Con-
sortium for the Participating Institutions. The Participating Insti-
tutions are the American Museum of Natural History, Astrophysi-
cal Institute Potsdam, University of Basel, Cambridge University,
Case Western Reserve University, University of Chicago, Drexel
University, Fermilab, the Institute for Advanced Study, the Japan
Participation Group, Johns Hopkins University, the Joint Institute
for Nuclear Astrophysics, the Kavli Institute for ParticleAstro-
physics and Cosmology, the Korean Scientist Group, the Chinese
Academy of Sciences (LAMOST), Los Alamos National Labora-
tory, the Max-Planck-Institute for Astronomy (MPIA), the Max-
Planck-Institute for Astrophysics (MPA), New Mexico StateUni-
versity, Ohio State University, University of Pittsburgh,University
of Portsmouth, Princeton University, the United States Naval Ob-
servatory, and the University of Washington.

REFERENCES

Adelman-McCarthy J., et al., 2006, ApJS, 162, 38
Angulo R.E., Baugh C.M., Frenk C.S., Lacey C.G., 2007, MNRAS

submitted, astro-ph/0702543
Astier P., et al., 2006, A&A, 447, 31
Blanton M.R., Lin H., Lupton R.H., Maley F.M., Young N., Zehavi

I., Loveday J., 2003, AJ, 125, 2276
Bond, J.R. & Efstathiou, G. 1984, ApJ, 285, L45
Bond, J.R., & Efstathiou, G., 1987, MNRAS, 226, 655
Blake C. & Glazebrook K., 2003, ApJ, 594, 665
Clarkson C., Cortes M., Bassett B.A., 2007, astro-ph/0702670
Cole S., et al., 2005, MNRAS, 362, 505
Coles P., Jones B., 1991, MNRAS, 248, 1
Colless M., et al., 2001, MNRAS, 328, 1039
Colless M., et al., 2003, astro-ph/0306581
Cooray A., Sheth R., 2002, Physics Reports, 372, 1
Crocce M., Scoccimarro R., 2007, PRD submitted, astro-

ph/0704.2783
Eisenstein D.J., Hu W., 1998, ApJ, 496, 605
Eisenstein D.J., et al., 2001, AJ, 122, 2267
Eisenstein D.J., et al., 2005, ApJ, 633, 560
Eisenstein D.J., Seo H.-J., White M., 2007, ApJ, 664, 660
Feldman H.A., Kaiser N., Peacock J.A., 1994, MNRAS, 426, 23
Fukugita M., Ichikawa T., Gunn J.E., Doi M., Shimasaku K.,

Schneider D.P., 1996, AJ, 111, 1748
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APPENDIX A: LIKELIHOOD CALCULATION

The best fit parameters from our analysis of BAO are
rs/DV (0.2) = 0.1980 ± 0.0058 andrs/DV (0.35) = 0.1094 ±
0.0033, with correlation coefficient of0.39. A multi-variate Gaus-
sian likelihood can be estimated from using these numbers given
model values ofrs/DV (0.2) and rs/DV (0.35) as −2 lnL ∝
X

−1
V

−1
X, where

X =

(

rs

DV (0.2)
− 0.1980

rs

DV (0.35)
− 0.1094

)

, (A1)

V
−1 =

(

35059 −24031
−24031 108300

)

. (A2)
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