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Abstract. This paper introduces an approach based on Genetic Algo-
rithms to learn levels from the Mario AI simulator, based on the Infinite
Mario Bros. game (which is, at the same time, based on the Super Mario
World game from Nintendo). In this approach, an autonomous agent
playing Mario is able to learn a sequence of actions in order to maximize
the score, not looking at the current state of the game at each time.

Different parameters for the Genetic Algorithm are explored, and two
different stages are executed: in the first, domain independent genetic
operators are used; while in the second knowledge about the domain is
incorporated to these operators in order to improve the results.

Results are encouraging, as Mario is able to complete very difficult
levels full of enemies, resembling the behavior of an expert human player.
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1 Introduction

Super Mario Bros. is a sidescroller platform videogame designed by Shigeru
Miyamoto and released for the Nintendo Entertainment System three decades
ago, in 1985. This game has become a great success, achieving over 40 million
sales and making the fifth position in the list of best-selling videogames, the other
four being released after 2005. Today, the Mario franchise has reaped significant
success and Mario videogames and merchandising generate millions of dollars.

In 1990, another Mario game was released: Super Mario World. This game 
implied a technical improvement in graphics, audio and gameplay over the orig-
inal sidescroller, and introduced new characters like Yoshi. In 2009, the Mario AI 
Championship was introduced [10], aiming at developing intelligent agents able 
to complete levels of increasing difficulty of a game based on Infinite Mario Bros., 
a game based at the same time on Super Mario World (but with pseudo-randomly 
generated levels). In 2010, the Mario AI Championship introduced a new track: 
the Learning track, where an agent was intended to learn the best strategy to 
obtain the maximum score in a fixed level of the game, being able to play a 
maximum of 10,000 games of that same level before the competition in order to 
learn it.
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While the competition is no longer organized (it was discontinued in 2013
in favour of the Platformer AI Competition), this paper aims at building an
intelligent agent able to compete following the rules of the Mario AI Learning
track. Genetic Algorithms will be used in order to learn the best strategy (i.e.,
sequence of actions performed by Mario) to maximize the score. This research
work is an extension of a B.Sc. thesis published by Hector Valero [12].

This paper is structured as follows: Sect. 2 describes related work. Later,
Sect. 3 describes the proposal, providing further details about how individuals
are encoded and evaluated and how genetic operators are used. Experiments are
conducted to validate and evaluate the proposal, and their setup and results
are discussed in Sect. 4. Finally, Sect. 5 provides some conclusive remarks and
proposes future lines of work.

2 State of the Art

Some work related to this paper can be found in the papers published by the
organizers of the Mario AI Championship. For instance, the paper published
by Togelius et al. summarizing the main results from the 2009 edition in the
GamePlay track [10] describes the winner solution involving the use of the A*
graph search algorithm, and briefly introduces other solutions using rule-based
controllers, reactive controllers or finite state machines. Even when this paper
referred to the Gameplay track, some solutions used learning algorithms such as
genetic programming, stack-based virtual machines, and imitation or reinforce-
ment learning; in some cases controllers are evolved using genetic algorithms.
However, these approaches are not discussed in the paper, but rather mentioned.

Another work by Togelius et al. [11] discusses approaches using neural net-
works for learning controllers for the Super Mario game, involving multilayer
perceptrons, simple recurrent networks and HyperGP for evolving the weights.
Finally, a work by Karakovskiy and Togelius was published in 2012 [6] discussing
the conclusions regarding the competition organization and summarizing the AI
techniques used by contestants in the different tracks. Another approach using
Q-learning imposing biological constraints for imitating the behavior of human
players in the Infinite Mario Bros. is proposed by Fujii et al. [4,5].

Besides Super Mario, other authors have used AI techniques in order to learn
controllers for videogame characters, imitating the behavior of a human player.
It is specially outstanding a work published by Google DeepMind in Nature
[8] describing the development of an agent to play several games for Atari 2600,
using so-called deep Q-networks (neuron-based networks for reinforcement learn-
ing), where the inputs are the pixels in the screen. A framework for evaluating
other agents in this same domain is provided by Bellemare et al. [2].

3 Proposal

This paper proposes the development of an agent able to maximize the score
obtained in one specific Mario AI level. This agent is designed so that it could
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compete in the Learning Track of the Mario AI Championship, even when the
last edition of this competition happened in 2012. The Learning track allows the
agent to learn the level over N games, evaluating the agent in the game N + 1.
The score is computed considering different aspects of the game, including the
number of collected coins, killed enemies, remaining time after completing the
level, etc. Details about how these aspects are weighted to compute the score
are provided later, when the fitness function is described.

There are two constraints which must be considered when training the agent:
(a) the agent is limited to 10,000 games (N = 10000) in order to be able to learn
the level; and (b) the response time to decide the next action to be performed
by the agent must not exceed 42 ms.

In order to generate the agent who will optimize the obtained score during a
Mario AI game, genetic algorithms will be used. In this approach, the learning
algorithm will not consider the current state of the game (i.e., how Mario is
placed in the environment in a certain point in time), but rather will compute a
predefined sequence of actions (the same actions that could be performed by a
human player) and evaluate it over the game level. This sequence will be evolved
in order to maximize the final score obtained when the level is finished, either
because it is successfully completed or because the character dies.

3.1 Encoding

As described above, an agent is defined as a sequence of actions to be performed
in a specific level of Mario AI. The chromosome must be able to represent a
sequence of all possible actions performed by the agent in the game. In order
to control the character, the player can use a D-Pad with four positions (up,
left, down, right) and two additional buttons, namely A (jump) and B (run and
shoot). The system allows several buttons to be pressed at once, resulting in a
space of 26 = 64 possible actions. However, this set of actions can be significantly
reduced by introducing some domain knowledge: (a) the button up performs no
action in the game; and (b) some combinations are not feasible, such as pressing
left and right at the same time. With these considerations in mind, the number of
actions can be reduced to 22, as pointed out in Table 1. For the genetic algorithm,
we have encoded each gene as an integer in the range 0 to 21.

Once the definition of genes are formally described, the chromosome length
must be determined. In this domain, there is not a fixed length for the sequence
of actions. However, we can estimate a maximum length knowing that (a) the
maximum time for completing a level are 200 s and (b) each second can be
discretized in 15 ticks. As a result, we define sequences of actions of length
3,000, which implies chromosomes of 3,000 genes, even if not all the actions can
be performed (i.e., if Mario completes the game or dies before performing 3,000
actions). This implies that there will be 223000 combinations, so the search space
is noticeably big. For this reason, in the first stage a reduced set of actions will
be used where we assume that Mario is running everytime, i.e., we only consider
actions where the button B is pressed, reducing the search space from 22 actions
to 11 at the expense of imposing limits on the representation.
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Table 1. List of actions along with the pressed buttons for each one.

.
0: A B 1: A B 2: A B

3: A B 4: A B 5: A B

6: A B 7: A B 8: A B

9: A B 10: A B 11: A B

12: A B 13: A B 14: A B

15: A B 16: A B 17: A B

18: A B 19: A B 20: A B

21: A B

3.2 Fitness

The fitness function is defined to be the score function, and the genetic algorithm
will look towards maximizing this value. The score function used is defined by the
Mario AI Championship rules, and follows Eq. 1, where D is the physical distance
traveled by Mario from the start to his final position; df , dm and dgm are the
number of devoured flowers, mushrooms and green mushrooms respectively; k is
the number of killed enemies; kst, ksh and kf are the number of enemies killed
by stomp (jumping), by throwing shells or by throwing fireballs respectively; s
is the final status of the game, either won (1) or lost (0); m is the final status
of Mario, either small (0), big (1) or fire (2); bh is the total number of hidden
blocks found; c is the total number of coins collected and t′ is the time left.

S = D + 64df + 58dm + 58dgm + 42k + 12kst + 17ksh

+ 4kf + 1024s + 32m + 24bh + 16c + 8t′.
(1)

3.3 Genetic Operators

The Genetic Algorithm used performs tournament selection, crossover and muta-
tion. When generating the new population, the offspring will replace their par-
ents. Two different versions for each of these operators have been implemented,
the first one being domain-independent and the second one introducing domain
knowledge to optimize the behavior of the operator.

Initialization. In the first version, a naive initialization is used, where each
action in the chromosome is randomly chosen. However, it is interesting to try
a guided initialization, as the most frequent actions for completing the level are
running to the right (right + B) or running to the right while jumping (right + A
+ B). For this reason, in the second version we introduce a hybrid initialization
approach, where either one of the previous initialization methods (random or
guided) is randomly for each action.
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Selection. Tournament selection is performed, where Ts individuals are ran-
domly selected from the population and face each other, and the one with high-
est fitness will be one of the parents used for generating the next population.
The second version incorporates elitism.

Crossover. The first version uses single-point crossover, where a random point
n is chosen, so that n is a number strictly smaller than the length of the
chromosome (n < l = 3000). If the first parent is p1 = 〈b1

1, b
1
2, . . . , b

1
l 〉 and

the second is p2 = 〈b2
1, b

2
2, . . . , b

2
l 〉, then the following two childs are begotten:

c1 = 〈b1
1, . . . , b

1
n, b2

n+1 . . . , b2
l 〉 and c2 = 〈b2

1, . . . , b
2
n, b1

n+1 . . . , b1
l 〉.

The second version incorporates domain knowledge into the crossover opera-
tor. In particular, the crossover is guaranteed to be performed in a point where
the absolute position of Mario in the game is similar, i.e. a value of n is pur-
sued so that the position of Mario in both games is close (the euclidean distance
between the pairs [x1, y1] and [x2, y2] falls below a threshold Δ). This ensures
continuity in the game, for instance, if one parent had a good start but fails to
keep playing well after a certain point n+ > n and the other parent starts play-
ing bad but improves after a point n− < n, then finding point n will generate
offspring in which one child would be better than both parents.

Mutation. In the first version, mutation is performed randomly in M genes
in the chromosome. In the second version, mutation is performed over the last
wi

t actions performed by the individual i in the last evaluation before the game
ended. wi

t is a value intrinsic to the individual and which may vary from one
generation to another, and is computed as follows:

wi
t =

{
2 × wi

t−1 if Si
t ≤ Si

t−W

w0 if Si
t > Si

t−1

where Si
t is the fitness for individual i at iteration t and W is defined as a

mutation window, which is variable over time.
The fact that the mutated actions are those before the game ended will

mostly change the behavior of the character before he dies, at least in the first
generations where it is likely to encounter bad individuals which will rarely
complete the game. The size of the mutation window (the number of mutated
actions) will double every W generations until the individual improves its fitness
(Si), and at this time its size will be reset to the default value w0.

4 Evaluation

This section describes the parametrization and results for the two stages, the first
using domain-independent genetic operators and a reduced set of 11 actions; and
the second incorporating specific domain knowledge and all 22 actions.
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4.1 1st Stage Experimental Setup

In order to execute the Genetic Algorithm, JGAP library [7] has been used.
Regarding the parametrization of the experiments, the tested values are described
below. In some cases, different values have been assigned to the same parameter:

Selection. The tournament size (Ts) is defined as a fraction over the population
size (P ). In the experiments, it is defined as Ts = 15% and forced to be Ts ≥ 3.

Crossover. Different values are tried for the crossover rate: C = 0.1%, C = 0.2%,
C = 0.3%, C = 0.4% and C = 0.5%.

Mutation. Different values are tried for the mutation rate: M = 5%, M = 3.3%,
M = 2.5%, M = 2%, M = 1.3% and M = 1%.

Population. Two values have been tested for the population size: P = 20 and
P = 50.

Generations. The maximum number of evaluations is fixed by the Mario AI
Championship rules to be EM = N = 10000. The number of generations (G)
must be defined as G = EM/P .

Granularity. This parameter tries to resemble human behavior, as it is often the
case that the time that happens since players press a button until they release
it exceeds one tick. Granularity indicates how many ticks involve each action.
Three different values are tested: g = 1, g = 2 and g = 5.

Besides the previous parameters, Mario AI accepts additional arguments in
order to generate a level. The next arguments have been used:

– Visualization of the game is disabled (-vis off) as otherwise fitness evalua-
tion time would increase significantly.

– Hidden blocks are enabled (-lhb on), so they can appear in the level.
– Enemies are enabled (-lt on), so they can appear in the level.
– Ladders are disabled (-lla off), so they cannot appear in the level.
– Dead ends are enabled (-lde on), so they can appear in the level.
– The level type is set to overground (-lt 0), other options being underground

(1), castle (2) or random (3).
– The level difficulty is set to 1 (-ld 1) in a scale from 1 to 12.
– The level length is defined as 300 (-ll 300), in a scale from 50 to 231 − 1.

While the maximum value is quite high, we have selected an average length
based on the maps of the real game.

– The level PRNG seed is set to 20002.

In the first stage, where only domain-independent definitions of the generic
operators are used, a total of 180 experiments have been executed, this number
resulting from all the possible combinations for the previous parametrization.
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 Table 2. Fitness (average and max.) and completed games for each value of P

Average fitness Maximum fitness Completed games

P = 20 P = 50 P = 20 P = 50 P = 20 P = 50

5, 513.36 5, 622.30 8, 773.07 8, 551.13 61, 921 89, 842

Table 3. Average fitness and completed games for each value of P vs. g

Average fitness Completed games

P = 20 P = 50 P = 20 P = 50

g = 1 4, 917.90 4, 770.22 4, 796 0

g = 2 5, 391.58 5, 438.07 20, 101 23, 678

g = 5 6, 230.61 6, 658.62 38, 024 66, 164

4.2 Sensitivity Analysis of the Parameters

The high combination of parameters makes it impossible to describe all the
results, for that reason, this section provides the main conclusions on how each
parameter affects the score. Results are computed as the average of 10 different
executions.

Population size (P ). Table 2 shows the average fitness, the maximum fitness and
the number of completed games for each value of the population size. It can
be seen that there are no significant differences in the score (neither average
nor maximum), but still a higher population size leads to a higher number of
completed games.

Granularity (g). The impact of the granularity in the average fitness and com-
pleted games is shown in Table 3. It can be clearly seen that the value g = 5
provides better results for both metrics.

Table 4. Average fitness and completed games for each value of P vs. M and C

P vs. M P vs. C

Avg. F. Compl. G. Avg. F. Compl. G.

P = 20 P = 50 P = 20 P = 50 P = 20 P = 50 P = 20 P = 50

5 % 4,468.19 4,577.51 0 0 0.1 5,718.19 5,571.73 17,059 13,341

3.3 % 4,906.72 5,024.67 73 1,277 0.2 5,511.82 5,669.82 13,594 18,903

2.5 % 4,866.14 5,519.18 0 3,887 0.3 5,565.07 5,684.42 17,184 19,991

2 % 5,596.04 5,567.10 6,631 4,350 0.4 5,317.70 5,586.35 8,791 20,090

1.3 % 6,213.64 6,120.62 11,081 30,569 0.5 5,454.03 5,599.19 5,293 17,517

1 % 7,029.44 6,924.71 44,136 49,758
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Mutation rate (M). As it can be seen in Table 4, both the average fitness and
the completed games increases when the mutation rate is decreased. This may
be due to the fact that high mutation rates are promoting exploration, but not
the exploitation of good solutions.

Crossover rate (C). As shown in Table 4, it is difficult to extract conclusions
regarding the impact of the crossover rate: there are not significant differences
in the average fitness, and while there are differences in the number of completed
games, these changes do not adhere to any clear pattern.

4.3 2nd Stage Experimental Setup

After obtaining the results described in the previous section, the second phase
starts. This phase incorporates domain-specific knowledge into the genetic oper-
ators and uses the full set of actions; and also the total number of experiments
is reduced by removing some parameters assignations which have not performed
well. In particular, the next parameters are affected:

Mutation. The only value left for the mutation rate is M = 1%. The initial
mutation window is set to w0 = 2, and the values tested for W are W = 2,
W = 3 and W = 5.

Granularity. The value g = 1 is removed because it was outperformed by the
others, thus leading to values g = 2 and g = 5.

Moreover, new Mario AI combinations have been tested, all of them having
visualization disabled (-vis off), hidden blocks enabled (-lhb on), dead ends
enabled (-lde on), and level length of 300 (-ll 300):

– Scenario 1: level difficulty 4 (-ld 4), ladders disabled (-lda off), enemies
enabled (-le on) and seed 01121987 (-ls 01121987).

– Scenario 2: level difficulty 4 (-ld 4), ladders enabled (-lda on), enemies
enabled (-le on) and seed 201183 (-ls 201183).

– Scenario 3: level difficulty 4 (-ld 4), ladders enabled (-lda on), enemies
disabled (-le off) and seed 334 (-ls 334).

– Scenario 4: level difficulty 4 (-ld 4), ladders enabled (-lda on), enemies
enabled (-le on) and seed 333 (-ls 333).

– Scenario 5: level difficulty 4 (-ld 4), ladders disabled (-lda off), enemies
enabled (-le on) and seed 11062011 (-ls 11062011).

– Scenario 6: level difficulty 4 (-ld 4), ladders enabled (-lda on), enemies
enabled (-le on) and seed 444 (-ls 444).

4.4 2nd Stage Results

Again, the number of combinations is too big to describe the results thoroughly.
Still, this section shows the evolution of the average fitness along each generation,
which is displayed in Fig. 1. It can be noticed that the best configuration always
involves the highest granularity (g = 5) and the lowest mutation rate (M =
0.1%) with W = 2. However, the best crossover rate varies across scenarios.
Results are computed as the average of 10 executions.
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Fig. 1. Fitness evolution for the best configuration of each scenario.

Fig. 2. Proposed new set of feasible actions, along with their encoding (4 bits).

4.5 Discussion

Results clearly show how agents evolve by learning the best strategy to complete 
the game and maximize the score they obtain. In the 2010 Mario AI Champi-
onship celebrated during CIG in Copenhagen [1] the winner obtained 45,017 
points for five different games, i.e., an average score of 9,003.4 points per level. If 
we average the fitness of our best agent for each scenario, we obtain an average 
score of 12,059, outperforming the winner of that year.
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5 Conclusions and Future Work

This paper has proposed the development of an agent able to compete in the
Learning track of the Mario AI Championship. This agent learns a sequence of
actions by using a genetic algorithm with integer encoding, in order to maximize
the attained score after ending the level, not considering the state of the game
at a certain point in time.

The approach has been evaluated using the Mario AI framework in two dif-
ferent stages: in the first one, the set of actions has been simplified and domain-
independent genetic operators have been used; while in the second the full set
of actions has been used and operators have been enriched by incorporating
domain-specific information.

Most agents are able to learn how to complete the game, obtaining an aver-
age of 12,059 points. A video showing the best agent in action can be seen in
YouTube [3] and it has shown significant impact, as it has been cited in Wired [9].

However, there is still room for improvements. For instance, we have noticed
that while the button down is pressed, right and left perform no action; so the
space of actions can be reduced even more, resulting in 16 combinations which
are shown in Fig. 2 along with their encoding using 4 bits. The chosen encoding
resembles Gray code as small changes in the genotype are translated into small
changes in the phenotype, and it consists of the sequence of bits 〈bld, bdr, ba, bb〉;
where ba and bb respectively determine whether the A and B buttons are pressed,
while bld and bdr indicate whether left, right or down buttons are pressed using
the following convention: if only one of bld or bdr is 1, then the pressed button
is left or right respectively, while if both bld and bdr are one, then the pressed
button is down. This encoding has been implemented and evaluating its quality
is left for future work.

Finally, additional experimental setups can be tried in order to further improve
Mario’s performance. However, experiments with bigger populations or higher
granularities are expensive to be evaluated, and the results obtained in this paper
are satisfactory, so this task is left for future work.
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